
DAO Governance in the POLIS 
Framework: A Technical Implementation 
Guide 

Introduction 
Decentralized Autonomous Organizations (DAOs) offer a new paradigm for community governance – 

one that is transparent, participatory, and encoded in software rather than confined to traditional 

institutions. In the POLIS civilizational framework, a modern reinterpretation of the ancient polis 

(city-state), DAO-based governance is a cornerstone for enabling self-organizing communities at scale. 

This guide provides a comprehensive, 25-page technical implementation roadmap for integrating 

DAOs into POLIS systems. It is written for developers, implementers, and technical architects who 

seek to deploy or integrate DAO structures in a POLIS context. The tone is clear and pragmatic yet 

maintains a visionary outlook aligned with POLIS’s ambitious goals of decentralized, human-centric 

civilization. 

Scope and Structure: We will explore a modular, multi-

layer DAO architecture that mirrors the POLIS structure 

from the ground up. This includes: 
• Role-based DAOs within a Polis: how individual roles or departments inside a single Polis 

(city-state) can operate as DAOs, derived from Business Process Model and Notation (BPMN) 

workflows. 

• Polis-level DAOs: city-wide governance DAOs for legislation and executive functions of the 

Polis. 

• Inter-Polis (Global) DAOs: federated DAOs that connect multiple Polises to tackle shared 

challenges and global coordination. 

• Onboarding DAO for New Polises: a specialized process for integrating new city-states into 

the POLIS network via decentralized governance. 

• Legislative Forking System: an innovative approach to law-making where laws are managed 

like open-source code (in version-controlled repositories), enabling Polises to “fork” legal 

codes, propose changes (via pull request-style proposals), and record governance evolution in 

a global law repository. 

• DAO Frameworks Evaluation: a technical comparison of leading DAO frameworks – Aragon, 

MolochDAO, DAOstack, Gnosis Safe (with Zodiac modules), and Colony – focusing on 

interoperability, self-sovereignty, user experience (UX), and compatibility with BPMN-

modeled processes. 



• Architecture Diagrams & Workflows: technical diagrams and patterns illustrating how these 

DAO layers and components interact (on-chain and off-chain), including smart contract 

relationships, data flows, and integration with process management tools. 

• Use Case Examples: concrete scenarios demonstrating how DAOs function in practice within 

POLIS, such as a Resource Allocation DAO for budgeting, an Emergency Response DAO for 

crisis coordination, an Ancestral Healing DAO for cultural initiatives, and a Commons Funding 

DAO for public goods. 

By the end of this guide, readers should have both a high-level conceptual understanding and a low-

level technical grasp of implementing DAO governance in the POLIS framework. All design choices are 

justified with current best practices and lessons learned from real-world DAO deployments. 

Modular DAO Governance Architecture in POLIS 

POLIS envisions a network of autonomous but interconnected communities (Neo-Polises or modern 

city-states) that govern themselves democratically while collaborating globally. To enable this, 

governance is structured in layers, each implemented by modular DAOs tailored to the appropriate 

scope. This modular approach ensures decisions are made at the right level – local matters in local 

DAOs, city-wide policies in Polis DAOs, and global issues in inter-Polis DAOs – yet all layers remain 

interoperable. The result is a DAO of DAOs architecture: smaller DAOs roll up into larger ones, 

creating a resilient network rather than a monolith. 

Key design principles for this architecture include decentralization, transparency, and subsidiarity 

(each issue handled at the most local level capable). All governance actions – from budget allocations 

to law changes – are recorded on an open ledger, making corruption or backroom deals nearly 

impossible. Below we detail each layer of this architecture: 

Role-Based DAOs Within a Polis (Micro-DAOs) 

Inside a single Polis, day-to-day operations can be decentralized by creating role-based DAOs for 

various functions, teams, or civic roles. This concept draws from BPMN process modeling: in a BPMN 

diagram of city governance, swimlanes represent roles or departments, and decision gateways 

represent points that require consensus. Each such role or process can be implemented as a micro-

DAO, giving the people (or algorithms) in that role a structured way to make decisions and execute 

tasks. 

For example, consider a Polis’s public health department modeled in BPMN: it might have roles like 

Clinic Manager, Supply Coordinator, and Community Health Workers. Instead of a single boss making 

decisions, each role could operate a DAO: the Clinic Manager DAO might vote on clinic policies, the 

Supply DAO could manage medicine inventory via proposals, and a Health Worker DAO might 

collectively schedule community programs. These role-DAOs remain small and focused, but they 

interface with each other as defined by the BPMN workflow (e.g. a proposal approved in the Supply 

DAO could automatically trigger a task for the Health DAO). Smart contracts can encode these 

workflows so that inter-DAO messages or token transfers mirror the BPMN sequence flows. 

BPMN-Derived Structure: The BPMN model provides a blueprint – tasks become on-chain 

transactions or off-chain actions, decision points become proposals to be voted on, and swimlane 

roles become the DAO membership boundaries. This alignment ensures that the DAO governance 

doesn’t operate in a vacuum; it’s directly derived from well-defined business processes. It also aids in 

onboarding and documentation: stakeholders can literally see the process diagram of how a role-

based DAO feeds into the larger system. 



From a technical standpoint, these micro-DAOs could be instantiated using lightweight DAO 

frameworks (or even multi-signature wallets for very small groups). The emphasis is on ease of use 

and low overhead, since these are operational teams. For instance, using a Gnosis Safe with a voting 

module (like Snapshot + SafeSnap) could be sufficient for a small committee DAO: proposals are 

discussed off-chain, and a Safe transaction is executed when quorum is reached. This gives each role 

both autonomy and accountability – decisions are traceable on-chain, and funds or permissions are 

controlled by the group, not a single boss. In essence, every key role becomes a self-governing unit 

that can adapt quickly and transparently. 

Importantly, self-sovereignty at this micro level means each role-based DAO can’t be easily 

overridden by higher authorities without due process. The code (smart contracts) enforces the rules 

of engagement. As Philippe Honigman notes, a true DAO runs on rules that no outside party can 

unilaterally change – it achieves a degree of autonomy and self-ownership in that its behavior is 

governed by immutable code and the collective will of its members. This principle ensures that even 

at the lowest level, governance in a Polis is resilient to coercion or corruption: no mayor or minister 

can secretly alter a department’s budget if the budget is managed by a DAO with on-chain rules. 

Polis-Level DAOs for City Governance 

At the level of an entire Polis (city-state), we establish a Polis DAO – effectively the city’s 

decentralized government. This is where legislation, high-level policy, and citywide resource 

management occur. All verified citizens of the Polis are typically members (or represented via tokens 

or delegates) in this DAO. The Polis DAO can be thought of as the successor to a city council or 

parliament, but operating via smart contracts and open participation. 

The Polis DAO handles proposals that affect the whole community: passing local laws, setting budgets 

for city projects, electing or nominating officials (who might actually be smart contract controllers 

rather than traditional officials), and ratifying changes to the Polis’s charter. In practice, proposals 

would be submitted to a blockchain-based platform (the governance dApp), where citizens can 

debate and then vote. The CityDAO concept described by futurists is instructive: an online platform 

where proposals are posted and all citizens debate and vote, with certain major proposals requiring 

special quorums or supermajority approval. For instance, an amendment to the Polis constitution 

might need 75% approval and a 1-month deliberation period, ensuring stability and thoughtful 

governance. 

To make large-scale direct democracy feasible, innovative voting mechanisms can be employed. The 

Polis DAO could use quadratic voting to let citizens express the intensity of their preferences, or 

holographic consensus (pioneered by DAOstack) to manage a high throughput of proposals by 

boosting those with merit so they get the community’s attention. Such mechanisms prevent 

governance gridlock and help surface the proposals that people care most about. The Polis DAO 

smart contracts can enforce these rules – e.g., automatically requiring a higher majority for 

constitutional proposals, or slashing malicious proposals. 

The Polis DAO is also the umbrella that coordinates the role-based DAOs internally. It can grant 

autonomy to the micro-DAOs via smart contract permissions. For example, the Polis DAO might hold 

the master treasury, but allocate budgets to departmental DAOs (role-based DAOs) through on-chain 

approvals. Thanks to the modular architecture of frameworks like Aragon OSx, one can set up 

permission hierarchies: the Polis DAO could have the permission to mint or revoke funds to sub-

DAOs, but cannot directly spend those funds except via the sub-DAO’s rules. This way, local decisions 

remain local, yet the Polis DAO ensures alignment with the city’s broader goals. 



Crucially, the Polis DAO provides transparency at scale: “everything from budget allocations to law 

changes is recorded on an open ledger”, visible to all citizens in real-time. This real-time 

accountability is a leap beyond traditional governments where budgets can be opaque. In a Polis 

DAO, any attempt to divert resources or make a decision without approval is simply not possible – the 

smart contract either doesn’t allow it or such a transaction would show up publicly, alerting the 

community. By having all significant governance actions go through the Polis DAO, we fulfill the ideal 

of a transparent, accountable republic in which citizens truly have the final say. 

Inter-Polis DAOs for Global Coordination 

No Polis is an island. While each city-state DAO governs locally, many challenges – pandemics, climate 

change, trade, peacekeeping – are global. The POLIS framework introduces inter-Polis DAOs to 

manage coordination at regional and global levels. One can imagine a “League of Polises” or Global 

Council DAO where each member Polis is represented. This Global DAO is essentially a DAO of DAOs: 

each Polis might send a delegate (which could be an elected human or even an AI agent acting on the 

Polis’s behalf) to participate in the global deliberation. 

The global DAO’s mandate is limited to shared issues – it does not control local matters or infringe on 

a Polis’s sovereignty. Instead, it focuses on tasks like organizing inter-city emergency response (e.g., if 

one city suffers a natural disaster, the global DAO can coordinate aid from others), maintaining global 

protocols (such as climate agreements or open technology standards), and resolving disputes 

between Polises in a neutral forum. In essence, it acts like a decentralized United Nations or 

federation council, but with binding smart contracts instead of unenforceable resolutions. 

From a technical viewpoint, achieving this in a decentralized way suggests each Polis DAO could be 

connected via an interoperability protocol (since different Polises might run on different chains or 

instances). Modern blockchain technology like Cosmos (IBC) or Polkadot (parachains) can facilitate a 

network of blockchains where each city has its own chain/DAO, and they communicate through hubs 

or bridges. For example, if each Polis runs its governance on a local blockchain, a global “hub” chain 

could run the global DAO, and Polises could send cross-chain messages (perhaps via a token or 

credential representing their vote) to that hub. This ensures seamless collaboration without requiring 

a single world government or chain. 

An alternative implementation is to keep it all on one chain but segregate by DAO instances. 

Frameworks like Aragon or DAOstack allow multiple DAO organizations on the same network; a global 

DAO could simply be another organization where each Polis’s wallet/address has a membership 

token. The key is that membership in the global DAO is at the Polis level (one Polis, one vote, for 

instance, or weighted by population – those rules can be encoded as desired). This means human 

citizens don’t directly vote in the global DAO; their Polis’s delegate or aggregated decision does. It’s a 

federated model, similar to how Rojava’s democratic confederalism created networks of councils from 

the village level up to cantons and a federation. Indeed, Abdullah Öcalan’s vision of democratic 

confederalism – “a network of autonomous municipalities and councils cooperating for common 

causes, without a coercive central state” – aligns closely with what POLIS attempts via blockchain 

DAOs. 

Security and trust in the global DAO are bolstered by the blockchain’s neutrality. Since no single Polis 

can control the ledger, agreements made in the global DAO (like resource sharing compacts) are 

automatically enforced by code. For example, if Polises vote to contribute 1% of their surplus energy 

to a global green energy fund, smart contracts could escrow those contributions from each Polis’s 

treasury and allocate funds to projects per the agreed rules. This removes the need for a centralized 

enforcer; the code is the enforcer. 



Finally, the global DAO can also serve as a knowledge hub. It could maintain the global law repository 

(discussed in the next section) and track which Polis has adopted which laws or standards. It becomes 

a ledger of governance data at the civilizational scale – a living record of how our global network of 

city-states evolves rules over time. Each change, each fork, each merge of law in the repository is 

timestamped on this DAO’s chain, creating an immutable history of governance evolution. 

Onboarding New Polises via a DAO Process 

As the POLIS network expands, new communities (perhaps an existing town transitioning to a Neo-

Polis, or a newly founded city) will want to join. Onboarding these new Polises should itself be 

handled through a decentralized, transparent mechanism – an Onboarding DAO or an admissions 

process encoded in smart contracts. This ensures that entry into the network isn’t arbitrary or 

politicized, but based on agreed criteria and collective decision. 

Onboarding Workflow: When a prospective Polis wants to join, it would initiate a request to the 

Onboarding DAO (which could be a subset of the global DAO or a dedicated committee with 

representation from existing Polises). The request might include the new community’s charter, proof 

of meeting baseline requirements (e.g., a commitment to core principles like human rights, a 

functional local DAO governance structure, etc.), and any resources needed or offered. This is akin to 

submitting a pull request to join a network. The Onboarding DAO smart contract would then trigger a 

structured review process: 

1. Verification Phase: Existing members of the Onboarding DAO (representatives of current 

Polises) verify the credentials and preparedness of the applicant. This might involve off-chain 

steps like sending observers or running test scenarios, but the results (e.g., a report or 

attestation) can be anchored on-chain for transparency. For example, a requirement might be 

that a new Polis has a functioning city DAO with at least 1000 participants – an existing Polis 

could cryptographically attest that they’ve seen this in action. 

2. Deliberation Phase: A proposal is created on the Onboarding DAO’s platform detailing the 

new applicant’s profile and the terms of admission (if any). Members discuss this proposal in 

an open forum (possibly off-chain like a discussion board, but linked). This could also include 

negotiating conditions: e.g., the new Polis might need mentorship from an established Polis, 

or maybe a gradual integration plan. 

3. Voting Phase: The existing Polises vote on whether to admit the new member. This could be a 

simple majority or a higher bar, depending on policy. It might also be weighted by some 

measure (like larger Polises having more weight, though one could also argue for one-Polis-

one-vote to keep equality). The voting is executed through the Onboarding DAO smart 

contract, ensuring tamper-proof tally and quorum enforcement. If approved, the contract 

automatically flags the applicant as an official member. If rejected, the contract could allow 

re-application after a waiting period or after certain criteria are met. 

4. Integration Phase: Upon approval, smart contracts could automatically perform integration 

tasks: add the new Polis’s representative to the Global Council DAO with appropriate rights, 

include the new Polis in global resource allocations or communication channels, and perhaps 

trigger a funding mechanism (for example, a joining grant from a global fund to help the new 

Polis get started). The new Polis might also fork the global law repository at this point as a 

starting template for their local laws (see next section). 



The entire onboarding is thus governed by code: no secret ballots, no closed-door diplomacy. All 

decisions and their rationales are recorded. This not only ensures fairness, but also creates a 

knowledge base for future onboardings (lessons learned from each case, visible to all). 

From a UX perspective, joining the POLIS network via the Onboarding DAO should be as 

straightforward as possible. Ideally, a web interface (dApp) guides the applicant through preparing 

their proposal, with checklists for requirements and fields for necessary data. For the existing 

members, their interface would show pending applicants, allow them to review documentation, and 

cast votes. Good UX here is crucial: if it’s too cumbersome, busy city administrators (or AI agents 

governing a Polis) might not engage fully. As Aragon’s team learned, great user experience is crucial 

for enabling healthy participation in governance. Thus, incorporating tutorials, tooltips, and 

simulations in the onboarding dApp (for example, showing a mock vote outcome or impact) can 

improve decision quality and confidence. 

One might ask: could a hostile or incompatible entity force its way in? The DAO mechanism prevents 

that – unless the existing Polises vote them in, they stay out. Conversely, could the existing Polises 

become cliqueish and block worthy new members for selfish reasons? Possibly, but since POLIS’s 

ethos is expansion and collaboration, the governance policies can include inclusivity metrics (for 

instance, requiring a justification if rejecting an applicant, and possibly an override mechanism if a 

majority of citizens across all Polises want a certain community included). The code could integrate 

such checks, although such features must be designed carefully to avoid Sybil attacks (fake 

communities trying to join, etc.). Self-sovereignty implies each Polis ultimately decides whom they 

federate with, but the transparent process ensures they decide based on merits, not prejudice, under 

the eyes of the whole network. 

In summary, the onboarding DAO model treats network admission as a decentralized, procedural 

governance action. It aligns with POLIS’s value of voluntary association: communities join by 

consensus and shared values, not by coercion. Technically, this is implemented via multi-sig or token-

based voting contracts, with off-chain data oracles as needed (e.g., to verify population counts or 

compliance). By the time a new Polis is onboarded, it has already engaged in a mini instance of 

decentralized governance – a fitting rite of passage for joining a DAO-governed civilization. 

Legislative Forking: Open-Source Law Repositories 
One of the most innovative aspects of POLIS governance is treating laws as living documents, 

maintained much like open-source software code. Instead of static law books updated only by slow 

parliamentary processes, POLIS envisions a global law repository – an open-source collection of 

legislation and policies. Each Polis can fork this repository to create its local law code, just as a 

developer might fork a software project. Changes to laws are proposed, discussed, and merged using 

a pull request-style mechanism, with the global repository recording all history of governance 

evolution. 

This approach brings the powerful paradigm of distributed version control (e.g., Git) to legislation. In 

fact, the idea that “laws are open source; free to fork” has already been suggested in tech-forward 

governance discussions. Consider how Dubai adopted aspects of British common law for its financial 

center – essentially “forking” London’s legal code as a base. POLIS takes this further by making the 

process digital and collaborative across all Polises. 

Global Law Repository: Technically, this could be a Git repository (on a platform like GitHub/GitLab or 

a decentralized alternative) containing documents or code that represent laws. For human 

readability, laws could be written in Markdown text, perhaps with structured formatting. For machine 



enforcement (in certain cases), some laws might also have smart contract representations or 

parameter sets (e.g., a tax law could have a smart contract that implements the tax logic). The 

repository is the “master branch” of civilization’s legal knowledge. 

Forking and Customization: When a Polis is formed or when it updates its charter, it forks the global 

repository. This creates a copy that the Polis can modify to suit local needs – for example, adding a 

bylaw unique to its culture, or choosing one of several model policies for an issue (like selecting a 

specific education policy out of multiple global suggestions). This is akin to how Linux distributions 

share a kernel but have different configurations. The act of forking is transparent; everyone can see 

that Polis X’s law repo diverged from the global baseline at certain commits. 

Proposing Changes (Pull Requests): If a Polis innovates a new law or improves an existing one, it can 

propose this change upstream. For instance, Polis A develops an effective policy for community 

policing that reduces conflict. They commit the policy text (and any accompanying smart contract 

code) to their fork. They then open a “pull request” to the global repository, with an explanation of 

the change and the results it achieved. Other Polises (maintainers of the global repo, so to speak) 

review this proposal. This review happens in the open: experts, citizens, and AI advisors can comment 

just like developers comment on code changes. The proposal might be refined through iterative 

feedback. 

Voting and Merging: The decision to merge a legislative pull request could be made by the Global 

Council DAO or a specialized Legislative DAO comprising legal experts/delegates from each Polis. 

Essentially, instead of a single maintainer deciding like in a software project, it’s a decentralized 

decision: do we adopt this law into the global canon? The Legislative DAO might use a weighted 

voting (perhaps larger populations have more say, or just one vote per Polis for simplicity). If the vote 

passes, the pull request is merged – the law change becomes part of the global repository. Polises 

that want to stay synced can pull these changes into their local fork if applicable. If a Polis disagrees, it 

is not forced – it can maintain a different version in its fork (with the understanding it might lose 

some interoperability or mutual recognition from others on that particular issue). 

Versioning and History: Every change is recorded with timestamp, proposer, and diff. This means 

there is a clear history of how a law evolved – “governance commits” over time. Citizens or 

researchers can browse this history to see, for example, why a certain regulation was introduced (the 

discussion thread serves as legislative history). This could solve a common problem in law: figuring 

out legislative intent or tracking amendments becomes as easy as checking commit logs. The global 

law repository thus acts as collective memory of governance. 

To support this system, emerging tools like Governance for Git (Gov4Git) are highly relevant. The 

concept behind Gov4Git is to automate governance processes using Git as the substrate. Frameworks 

are being developed to standardize this: one example is a generic framework for building governance 

applications on Git, automating common tasks like managing proposals and tracking changes. Such a 

framework could be integrated so that whenever a pull request is opened, it automatically creates a 

corresponding proposal in the Legislative DAO for voting, and when merged, triggers notifications to 

all Polis DAOs. 

Benefits of Legislative Forking: This system encourages experimentation and rapid improvement in 

governance. Polises become like labs trying out policies; successful ones propagate to others. It also 

respects local autonomy – you can diverge if you truly want a different path, but you share a common 

baseline that facilitates cooperation. Think of it as maintaining compatibility: just as open-source 

projects benefit from shared protocols and libraries, Polises benefit from shared legal standards while 

still being free to customize. All Polises collectively maintain the “core” laws (like fundamental rights 



maybe, or global environmental protocols) akin to a Linux kernel maintained by thousands of 

contributors. 

This model is transparent by default. All citizens can see proposed law changes and their rationale, 

much like they can browse open pull requests on an open-source project. It demystifies lawmaking, 

inviting experts from anywhere to contribute. For instance, a software engineer in Polis B might 

propose an improvement to data privacy law because they notice a flaw – they don’t need to be a 

politician, just like open-source contributions come from volunteers. 

One challenge is ensuring broad participation and not just letting a few technocrats control the repo. 

This is where the voting threshold and inclusive processes in the Legislative DAO matter, as well as 

providing a good UX for ordinary citizens to follow along. It might be that everyday people won’t 

comment on Git diffs; front-end interfaces could present proposals in plain language, allow people to 

vote or at least express sentiments, which can then guide the delegates’ votes. Education is crucial 

too, so citizens understand that forking a law is not anarchic but a structured way to improve it. 

In summary, the legislative forking system marries the agility of open-source collaboration with the 

rigor of democratic approval. It records governance evolution in an immutable global repository – 

fulfilling the ideal that laws, like code, should be transparent and continuously improved by the 

community they serve. As one observer quipped in a Network State forum: in the future, cities and 

regions will fork entire legal systems like codebases – POLIS turns that vision into a working reality. 

Evaluating DAO Frameworks for POLIS Governance 

Implementing the above governance model requires robust DAO software frameworks. We evaluate 

five prominent DAO frameworks – Aragon, MolochDAO, DAOstack, Gnosis Safe (with Zodiac 

extensions), and Colony – against the needs of POLIS: interoperability (working across 

platforms/chains), self-sovereignty (autonomy and control for communities), user experience 

(usability for both tech-savvy and lay citizens), and BPMN compatibility (ability to map onto process-

driven workflows). Each of these frameworks offers unique strengths: 

• Aragon: A leading platform for creating and managing DAOs with a user-friendly interface and 

customizable governance modules. 

• MolochDAO: A minimalist DAO design focused on simplicity and collective funding (notably 

for grants), known for its “ragequit” mechanism that lets members exit with their share of 

funds. 

• DAOstack: A platform emphasizing collective intelligence and scalability through holographic 

consensus, providing modular governance tools for proposals and voting. 

• Gnosis Safe (with Zodiac): Originally a multi-signature wallet for secure fund custody, 

extended by the Zodiac suite to enable DAO-like governance (on-chain execution of Snapshot 

votes, role modules, etc.). 

• Colony: A platform geared towards project and team management, featuring reputation-

based voting, task allocation, and budget management for decentralized collaboration. 

Let’s examine each in the POLIS context: 

Aragon 

Overview: Aragon provides a comprehensive toolkit for building DAOs on Ethereum and Polygon, 

with a strong focus on ease of use and modularity. The new Aragon OSx is a modular core where 

functionalities are added via plug-in contracts, making it adaptable to various governance needs. 



Interoperability: Historically Ethereum-centric, Aragon has expanded to support multiple EVM chains 

(and Aragon OSx is chain-agnostic to an extent). For inter-Polis usage, Aragon DAOs on different 

chains would require bridging. However, Aragon’s support for common standards means an Aragon-

based DAO in one Polis can interoperate via cross-chain messaging if needed. Also, broadly speaking, 

the trend is that “DAO frameworks are becoming more modular, extensible and interoperable”. 

Aragon exemplifies this with its plugin architecture which could allow integration with other protocols 

(e.g., integrating a Polkadot-based Polis by writing a plugin that reads Polkadot messages). 

Self-Sovereignty: Aragon is open-source and allows communities to fully control their DAO contracts. 

Once a Polis deploys an Aragon DAO, it is owned by the community’s keys; no central Aragon 

authority can shut it down or change its rules. This aligns with self-sovereignty – the Polis DAO is self-

governed on a public blockchain, and thanks to Aragon’s permission system, no outsider can 

arbitrarily intervene. One consideration is Aragon’s use of an external Aragon Network DAO for 

things like Aragon Court (dispute resolution); if a Polis relies on Aragon Court, they are trusting a 

broader network. But participation is optional. A truly self-sovereign Polis might choose to run its 

own instance of a court or avoid that module. 

UX: Aragon has one of the most polished user experiences in the DAO space. The Aragon App (web 

interface) walks users through DAO creation in minutes, and provides a clean dashboard for 

proposals, votes, and finances. This is critical for POLIS, as many community members may not be 

crypto-native. Aragon’s focus on education and guidance in-app (with tooltips and contextual help for 

governance settings) has been noted to significantly lower the barrier for new users. In a POLIS 

deployment, this means citizens could interact with the Polis DAO with minimal training, and role-

based DAOs could be easily spun up by non-programmers (e.g., community organizers). The Aragon 

client is also open for customization – a Polis could white-label it and integrate their own branding to 

make the experience feel native to their community. 

BPMN Compatibility: While Aragon doesn’t natively understand BPMN, its modular nature and 

permission management can approximate process flows. For instance, using Aragon’s ACL (Access 

Control List), one could set that “Action X can only be executed if Proposal Y was approved” – linking 

steps in a workflow. Also, Aragon plugins could potentially be written to enforce sequences or 

conditional logic reflecting a BPMN diagram (e.g., a plugin that represents a multi-step approval 

workflow). The challenge is that complex workflow logic might require writing custom plugins or 

using an external orchestration layer. That said, Aragon’s emphasis on clarity and simplicity might 

encourage us to simplify processes into modular votes rather than mirror every BPMN gateway on-

chain (which could get cumbersome). 

Conclusion on Aragon: It’s a strong candidate for Polis-level DAOs due to its user-friendliness and 

flexible governance features. It’s already used by many major DAO projects, proving its reliability. The 

new Aragon OSx’s design of a lean core with pluggable governance logic is forward-looking and 

matches POLIS’s need for adaptability – we can tailor each Polis’s DAO with specific plugins (like a 

quadratic voting module, a budgeting module, etc.) and upgrade or remove them as needs evolve. 

Aragon’s focus on improving UX and reducing complexity resonates with the need to include all types 

of users in governance. 

MolochDAO 

Overview: MolochDAO is famed for its minimalism – the original Moloch V1 (launched in 2019 for 

funding Ethereum 2.0 grants) had a straightforward model: members join by contributing funds, they 

get voting shares, proposals typically deal with funding requests or adding members, and any 

member can ragequit (leave and withdraw a proportional share of treasury) at any time before a 



proposal they don’t like executes. This “minimum viable DAO” design inspired many forks (like 

MetaCartel, RaidGuild, and DAOhaus’s framework). Moloch V2 added some improvements (like guild 

kick to remove bad actors, and more proposal types), but it remains lean. 

Interoperability: Moloch contracts are EVM-based and have been deployed on various networks 

(Ethereum mainnet, xDAI/Gnosis Chain via DAOhaus, etc.). They are not inherently cross-chain – each 

Moloch DAO is a silo. For POLIS, one could deploy a MolochDAO for each small group or project (it’s 

quite suited for Resource Allocation DAOs or grant committees inside a Polis). However, coordinating 

multiple Molochs (like in a global federation) would be manual or require a meta-layer. There is no 

built-in cross-DAO communication. On the plus side, the simplicity means it’s unlikely to conflict with 

other systems, and one could integrate it into a larger process by treating a Moloch vote result as a 

trigger for other contracts. 

Self-Sovereignty: Moloch’s code is extremely simple, which actually enhances autonomy – there’s 

just not much that can be interfered with. Each DAO is entirely controlled by its members. The 

ragequit mechanism is a key to self-sovereignty at the individual level: if you disagree with the 

direction, you can exit with your share, so you’re never economically coerced to stay under majority 

decisions. From a community perspective, a Moloch DAO has no dependency on any external token 

or protocol (no “DAO token” governance beyond itself), so it’s very self-contained. One trade-off is 

that Moloch lacks on-chain enforcement of anything beyond funding – it doesn’t directly manage 

complex rules or tasks. But as a financial primitive (treasury + group voting), it gives communities a 

lot of sovereignty over pooled resources. 

UX: The original Moloch contracts had no official user interface aside from Etherscan or rudimentary 

dApps, which made it hard for non-technical users. However, projects like DAOhaus built friendly UIs 

that let you deploy a Moloch DAO and manage proposals without coding. Still, compared to Aragon, 

the features are bare-bones (which is by design). For example, Moloch doesn’t natively support 

different voting types or multiple proposal categories – everything is a generic proposal with yes/no 

votes. This simplicity can be a plus (less to learn) but also a minus (less guidance). For POLIS, Moloch 

might be used in contexts where the user group is small and focused (so they can be trained easily) or 

where the stakes are lower (so a mistake in usage isn’t catastrophic). If used for a city-wide DAO, 

Moloch’s simplicity might prove too limiting (no built-in role permissions, no modular apps). But for a 

Commons Contribution Funding DAO that just gives grants, Moloch’s straightforward proposal->vote-

>fund flow could be very effective. The UX there is basically a list of proposals and a vote button – 

simple enough for most after minimal onboarding. The presence of DAOhaus as a ready-made 

interface means we have something to start with. 

BPMN Compatibility: MolochDAO is not process-oriented; it’s more of a single decision loop 

repeated: submit proposal -> vote -> execute (or fail) -> allow ragequit in between. If we needed to 

implement a BPMN-modeled workflow using Moloch, we’d likely need off-chain orchestration or 

conventions. For example, if a BPMN process has sequential approvals, one could model each 

approval as a separate Moloch proposal, but there’s no way to enforce order except socially or via a 

wrapper contract. So Moloch is best for atomic decisions (particularly funding decisions). It doesn’t 

map neatly to multi-step workflows without customization. 

Conclusion on MolochDAO: In the POLIS framework, Moloch-style DAOs might serve as sub-DAOs for 

specific purposes, especially funding pools. Their lean design ensures low gas costs and fewer attack 

vectors, which is attractive for small budgets. They also exemplify the principle of voluntary 

association strongly via ragequit. But for full-fledged governance (like writing laws or managing a 

city’s operations), Moloch alone is insufficient. One could imagine each Polis having a Moloch DAO for 

its community treasury (where citizens donate or pay dues and then collectively fund local projects), 



as this plays to Moloch’s strengths: grant-making and preventing minority oppression (because 

minorities can exit). Moloch’s ethos of simplicity also reminds us not to over-engineer governance – 

sometimes a straightforward yes/no vote on spending money is all that’s needed to decide a local 

issue. 

DAOstack (Alchemy) 

Overview: DAOstack is a modular DAO framework that introduced the concept of Holographic 

Consensus to address scalability in decision-making. Its flagship application, Alchemy, was used by 

communities like Genesis DAO. DAOstack DAOs revolve around a GEN token (for staking on proposals) 

and the idea of “boosting” proposals: anyone can stake GEN on proposals they think are important; if 

a proposal gets enough stake, it enters a boosted state where it’s decided by a relative majority of 

those who vote, rather than needing a full quorum. This allows many proposals to be processed in 

parallel without overwhelming voters – only a subset get boosted for attention. 

Interoperability: DAOstack was originally built for Ethereum, and the GEN token and contracts are on 

Ethereum. However, the principles can be carried to other platforms, and indeed we see new 

frameworks (like DAOstack’s Arc being adapted or influencing others). The WEF DAO Toolkit noted 

that DAO frameworks are increasingly developed beyond Ethereum, on Polkadot, Cosmos, Solana, 

etc.. While DAOstack itself didn’t become multi-chain widely (partly as the ecosystem moved on to 

other tools), the idea of interoperability here might be more about conceptual interoperability: the 

ability to plug into other tools. DAOstack’s focus was governance logic; one could integrate its voting 

mechanism into communities with different collaboration tools. For POLIS, if one needed the 

holographic consensus mechanism, you could potentially port the contracts to a different chain or 

incorporate similar staking concepts in another framework. In practice, for direct use, an Ethereum 

sidechain (like xDAI) was used by some DAOstack DAOs, which shows some flexibility. 

Self-Sovereignty: A DAOstack DAO is self-governed by its members with on-chain proposals, but one 

critique is the reliance on the GEN token and the global DAOstack ecosystem. If a Polis used DAOstack 

and the GEN token for proposal boosting, it’s inviting speculators or external holders of GEN to have 

influence (since anyone could stake on proposals to boost them). In a POLIS context, that could be a 

concern – you might not want an external token economy interfering with local governance. 

However, you can customize the token or parameters. DAOstack’s architecture (Arc and ArcJS) is 

open-source, so a community could deploy their own instance of the contracts and even have their 

own staking token if needed, which would mitigate external dependency. So, sovereignty is 

achievable but requires careful deployment choices. The DAO’s own voting power can still be 

confined to citizens. 

UX: Alchemy (the UI for DAOstack) provided a web interface where proposals are listed with their 

stakes and votes, and users could stake GEN or vote. It was functional but perhaps not as slick as 

Aragon’s interface; also the concept of proposal boosting is more complex for average users to grasp. 

In user testing, many found it confusing why some proposals pass with lower turnout (because they 

were boosted) and others fail (because they weren’t boosted or reached expiration). For a POLIS, this 

added complexity might raise a barrier – it demands user education on how the governance process 

works under the hood. There is power in it (it enables large groups to manage lots of proposals), but 

the great UX challenge is significant. If Aragon emphasizes simplicity, DAOstack historically embraced 

complexity for the sake of scale. A middle-ground approach could be to use some of DAOstack’s 

concepts behind the scenes while simplifying the presentation to users. For example, a POLIS app 

could just say “this proposal is in fast-track mode because it gained support from a prediction 

market” instead of explaining staking ratios. In any case, if an advanced POLIS or an inter-Polis council 

had very heavy governance throughput, DAOstack’s model is worth considering for efficiency. 



BPMN Compatibility: DAOstack could handle different proposal types via its scheme mechanism (Arc 

allowed installing different governance modules). In theory, one could map different parts of a 

process to different scheme contracts – e.g., a voting scheme for general proposals, a budget scheme 

for funding proposals, etc. But orchestrating them in a BPMN sequence would be a challenge. There 

wasn’t a direct way to enforce sequence aside from having proposals that trigger other proposals. 

One intriguing aspect is that the staking mechanism in DAOstack could be seen as a parallel to 

BPMN’s event mechanisms (it’s like a way to prioritize tasks). But overall, using DAOstack doesn’t 

inherently solve process flows; one would still need to design those flows at a higher layer. 

Conclusion on DAOstack: It’s an ambitious framework that tried to solve “too many cooks” problem 

in DAOs by introducing an economic signal (staking) to surface good proposals. For a global POLIS 

network where potentially thousands of proposals could be flying around (imagine all Polises 

submitting ideas to a global repository), something like holographic consensus might be useful so that 

only those proposals deemed valuable by attention (stake) get the global vote. In that niche – high-

volume proposal environments – DAOstack’s approach might shine. However, its relative decline in 

popularity (compared to simpler Snapshot-based off-chain voting, for instance) suggests that 

complexity was a barrier. From an implementation perspective, one might harvest ideas from 

DAOstack (or even integrate parts of it into Aragon via plugins) rather than using it wholesale in 2025. 

It’s noteworthy that new frameworks like Snapshot + Safe or Tally focus on simplicity and off-chain 

efficiency, whereas DAOstack was fully on-chain and economic. For POLIS, a hybrid approach might 

be best: e.g., off-chain signaling (like conviction voting or polling) to narrow down proposals, then on-

chain binding votes for final decisions – achieving the intent of holographic consensus with 

potentially simpler tools. 

Gnosis Safe (Multisig with Zodiac) 

Overview: Gnosis Safe is widely used as a secure crypto wallet requiring multiple signers (multisig). 

By itself, a Gnosis Safe is not a full DAO (there’s no concept of proposals and voting periods – the 

signers just approve transactions). However, the Zodiac suite (developed by Gnosis Guild) transforms 

Safes into DAO components by adding modules: for example, the Reality Module allows off-chain 

Snapshot votes to trigger on-chain Safe actions via the Reality.eth oracle, and the Roles Mod allows 

setting role permissions on Safe operations. Essentially, a Safe with Zodiac modules can emulate 

many DAO governance patterns, with the Safe acting as the treasury and executive and Snapshot as 

the deliberative body. 

Interoperability: Safe contracts are available on many EVM-compatible networks (Ethereum mainnet, 

Polygon, BSC, Arbitrum, Optimism, etc.), which already makes it easy to have Polises on different 

chains using the same wallet standard. There’s also ongoing work on Safe messaging that could link 

Safes across chains (though not trustlessly yet). The nice thing is Safe is quite composable – other 

tools integrate with it (e.g., DeepDAO for analytics, SafeSnap for voting, DAOhaus can even manage a 

Safe). So it scores high on interoperability in practice: it’s becoming a universal primitive for DAO 

treasury and execution. For a POLIS, one could have each DAO’s funds in a Safe and then if a global 

project DAO is needed, you could even make a Safe where each Polis Safe is one signer (although that 

might be cumbersome, it’s possible). 

Self-Sovereignty: Gnosis Safe is non-custodial and permissionless – the users (signers) fully control it. 

By adjusting the signer set or threshold, the community manages its security. With Zodiac modules, 

there is a bit of reliance on external infrastructure: e.g., Snapshot for votes, Reality.eth oracle for 

verification. Those introduce some trust assumptions (Snapshot votes are off-chain, so you trust the 

Snapshot servers or IPFS; Reality.eth introduces a potential oracle delay or attack if not properly set). 

However, you can mitigate these (like using multiple oracles or time delays to catch fraud). In terms of 



sovereignty, a Polis using a Safe plus Snapshot effectively controls its fate (since it sets the rules on 

who can vote and how many votes enact a transaction). There isn’t a centralized party that can 

override a Safe – it’s just code and the key holders. 

One caution: because the Safe doesn’t inherently enforce any particular voting rule (that’s all up to 

modules or off-chain), one must carefully configure it to enforce the will of the DAO. For example, if a 

Safe is 3-of-5 multisig of community-elected signers, then those 5 could collude and ignore Snapshot 

votes unless you have the Reality module enforcing it. So, to be truly autonomous, you’d want the 

Safe’s execution to be bound to your DAO votes (through Zodiac). When done, you get a very robust 

setup: off-chain proposals for cheapness + on-chain enforcement for security. 

UX: Gnosis Safe’s web interface is excellent for managing a wallet – but it’s aimed at the signer 

experience, which is more technical (signing transactions, etc.). A regular citizen wouldn’t directly use 

the Safe interface; instead, they’d use a front-end like Snapshot (which feels like a simple voting app 

where you click choices) or a bespoke UI that the POLIS provides. Snapshot itself is user-friendly for 

voting – many crypto communities use it seamlessly by connecting a wallet and clicking vote. For 

POLIS, one might integrate Snapshot into a broader civic app (perhaps even abstracting the crypto 

parts so users log in with an ID and vote without dealing with keys each time, while still signing under 

the hood). The Safe > Snapshot architecture decouples the treasury and voting UI, which is flexible 

but means there’s two interfaces to manage. The Zodiac tools aren’t all plug-and-play yet for novices; 

setting up a Reality module requires some comfort with contracts. But once set up, participation is 

straightforward: propose on Snapshot, vote, and if passed, the transaction auto-executes from the 

Safe after the oracle confirms the vote result. 

One potential snag is if we want complex workflows (like multi-step approvals) – Snapshot basically 

handles singular proposals, not sequences. But you could make one Snapshot strategy depend on 

multiple questions (there are advanced plugins for conditional proposals). It’s evolving. In terms of 

accessibility, requiring users to have wallets to vote is a known UX hurdle, but solutions like 

integrated key management or mobile apps can help. Given that “poor UX significantly limits who can 

participate in web3 governance”, a Safe + off-chain voting approach tries to give the best of both: it 

leverages easy off-chain UX and ensures on-chain trust. It will be important to hide complexity (like 

telling users their vote will later execute a Safe tx via an oracle – they might not need to know that if 

it always just works). 

BPMN Compatibility: On the execution side, a Safe can be seen as a generic actor that can perform 

many kinds of transactions if authorized. With roles modules, you can specify that certain actions 

require certain conditions. This can mimic process constraints – for example, you could say 

“payments above 1000 require approval by Finance Committee”, and using Roles mod, any 

transaction over 1000 DAI could be restricted to require additional signer or a different module. 

While not exactly BPMN, it is setting business rules in the contract. A BPMN-modeled approval chain 

(say manager -> finance -> director) could in theory be encoded by a combination of threshold and 

role restrictions in a Safe, or by chaining multiple Safes (though that gets convoluted). More 

realistically, one would handle processes off-chain using a process management tool, and just use the 

Safe as the final executor when all conditions are met (perhaps triggered by an oracle when the 

BPMN workflow reaches an end event). Gnosis Safe is flexible enough to integrate into such a 

pipeline; for instance, an external system could automatically craft a Safe transaction when a 

workflow finishes, then use a signer bot or module to execute it once consensus (through the 

workflow) is reached. 

Conclusion on Gnosis Safe: Rather than a full DAO framework, Safe provides the glue for secure 

execution and treasury management, which nearly any DAO will need. In POLIS, we might use Safe as 



the backbone for handling funds and enacting decisions (like changing a parameter, upgrading a 

contract, etc.), while the actual decision process might be managed by Snapshot or other modules. 

The combination of Safe + Snapshot has become a de facto standard for many DAOs because it 

balances security and convenience. For a city context, where funds and decisions have real impact, 

having that multi-signature security (versus just a single admin key) is crucial to avoid single points of 

failure. And the modularity means we can evolve the governance: we could start with a simple 

multisig (perhaps in early stages of a Polis with a few founders), then gradually decentralize by 

moving to Snapshot votes controlling the Safe, and later even fully on-chain governance as the 

community grows confident. Safe allows this gradual transition by adjusting signers and modules, 

exemplifying future-proof flexibility. Its wide adoption also means lots of tooling and community 

support – important for longevity. 

Colony 

Overview: Colony is a platform aimed at enabling online communities to structure their work and 

rewards without strict hierarchies. It introduced the concept of “domains” (sub-organizations or 

departments within a DAO), tasks, reputation (earned by completing tasks or being paid in the 

system), and a token for economic flows. Colony’s model is more work-oriented, making it somewhat 

akin to a project management tool fused with a DAO. Members can create tasks, assign themselves or 

others, stake tokens to object to actions they think are wrong, etc. It’s designed to distribute decision-

making: people with more reputation in a domain have more influence over decisions in that domain. 

Interoperability: The current Colony Network operates on xDAI (Gnosis Chain) to minimize fees, 

though they had Ethereum deployments in the past. They are EVM smart contracts, so could deploy 

on other EVM chains if needed. Colony doesn’t natively integrate with other DAO frameworks (it’s 

somewhat all-encompassing in itself), but one could use external tools with it (e.g., a Colony could 

still hold funds in a Safe if desired, or use Snapshot if they wanted alternative voting). Colony’s 

strength for POLIS might be in internal management rather than cross-DAO interoperability. However, 

since POLIS architecture is modular, one Polis might choose Colony as their internal system while 

another chooses Aragon – they can still collaborate at the global layer if needed by standardizing on 

key points (like both will respect decisions of a global Snapshot or something). 

Self-Sovereignty: Colony is open-source and once a community deploys their Colony, they control it 

via their token and reputation. The architecture is such that the Colony can even continue without its 

native token if set to use ETH or xDAI for payments. One concern is that Colony contracts were quite 

complex, and the Colony Network had an overseer for upgrading the system. In a fully self-sovereign 

approach, a Polis might deploy its own instance of the Colony contracts (not rely on a shared 

network). But using the common network is easier and still decentralized (the network is 

decentralized to an extent; however, upgrades might be managed by the Colony team’s DAO at the 

moment). Assuming maturity by 2025, Colony should allow communities to operate independently 

with minimal outside interference. The reputation system is something to highlight: it’s off-chain (to 

allow frequent updates without gas) but anchored by on-chain mechanisms. That means trust in an 

off-chain process (the Colony server or client computing reputation). This is a trade-off for scalability. 

Self-sovereignty of the community is intact (no external party can take their funds or force tasks), but 

they rely on Colony’s logic for internal governance. If that logic had a bug or if the community wanted 

to customize it, they’d need development effort. 

UX: Colony’s approach tries to mimic familiar project management tools (like Trello or Asana) 

combined with a treasury. It’s somewhat intuitive for users in that context: you see “domains” which 

could be like departments (e.g., Infrastructure, Education, etc. for a city), and within those you have 

tasks or funding decisions. People with skills in those domains do work and get reputation. One 



advantage for POLIS: this allows meritocratic elements – active contributors gain more say in that 

domain’s future decisions. That could be very empowering in a city where, say, those who actually 

build the gardens get more voice in parks & rec decisions. The UI of Colony (as of recent versions) is 

decent, but not as streamlined for pure governance proposals as Aragon or Snapshot. It’s more of an 

integrated management tool. For a general city populace, Colony might be a bit overwhelming unless 

they are actively participating in tasks. Perhaps only certain parts of the community (like committees 

or guilds) use Colony to coordinate work and budgets, while the broader citizenry still votes on high-

level proposals. 

One should consider also the learning curve: understanding reputation and staking objections might 

confuse non-tech users. Colony tries to reduce token-voting plutocracy by using non-transferable rep 

that must be earned – which aligns with ideals of rewarding contribution over capital. This could be 

very positive socially (less “wealthy token whales” issue). The UI would need to clearly show why 

someone has the vote weight they do, etc., to avoid perceptions of unfairness. 

BPMN Compatibility: Colony’s domain structure could naturally map to lanes in a BPMN diagram 

(each domain = swimlane). Tasks in BPMN could directly map to Colony tasks. This is perhaps the 

most intriguing synergy: one could design a BPMN workflow for, say, “Organize City Festival” and then 

implement it as a series of Colony tasks in an “Events” domain, with each task assigned to people and 

having budgets. The sequence flow isn’t enforced by Colony automatically, but one can manually 

follow the plan. Colony doesn’t automate dependency management strongly (though tasks can have 

prerequisites conceptually). We might utilize Colony’s features to model processes: e.g., a process 

might correspond to a Colony project (they have a concept of “extensions” or maybe an upcoming 

“program” feature for grouping tasks). Not out-of-the-box BPMN execution, but philosophically 

aligned: both are about breaking down work and roles. 

Conclusion on Colony: Colony could serve as the operational layer of a Polis, where day-to-day work 

and budgeting happens in a decentralized way, complementing a higher-level governance layer (like 

Aragon or Snapshot votes for laws). It brings granularity: instead of every small spending needing a 

full vote, trusted people in a domain can autonomously do tasks within budgets and only larger 

allocations bubble up for global approval. This multi-tier governance (global votes for big things, 

reputation governance for domain things) is actually quite analogous to how city governments 

delegate responsibilities. For example, the parks department can spend its allotted budget without a 

citywide referendum on each expense, but if they exceed it or need new policy, it goes to the council. 

Colony’s framework naturally enforces budget limits and oversight through the token and objection 

system (any member can object if they think something is out of line, triggering a wider vote). 

For implementing POLIS, one might combine Colony and Aragon: use Colony for internal 

management (tasks, assignments, rewards) and Aragon for enacting official laws and cross-domain 

decisions. The two can be integrated since Colony can execute arbitrary transactions (via its extension 

called Funding, I believe) so it could even trigger an Aragon vote or vice versa. If technical integration 

is too complex, they could run in parallel with some manual coordination. 

In summary, Aragon vs Moloch vs DAOstack vs Safe vs Colony each cover different needs. A likely 

POLIS stack might be: Gnosis Safe as the secure base (treasury & execution), Snapshot/Aragon for 

citizen voting on proposals, Colony for managing projects and work within departments, and maybe 

MolochDAO instances for community funds or special interest groups that want a quick grant 

mechanism. Interoperability is key: ensuring these components talk to each other or at least don’t 

conflict. The good news is an increasing trend toward standardization and modularity: DAO 

frameworks are becoming modular and interoperable, and being developed across chains, which 

aligns with a multi-chain, multi-tool approach. The focus on user experience cannot be overstated: 



whichever combination is chosen, it must be packaged in a cohesive UI for users. A citizen shouldn’t 

need to know that behind the scenes one proposal goes to Aragon and another to Colony; the app 

should route their input to the right contracts. By combining the strengths of these frameworks, 

POLIS implementers can achieve a balance of self-sovereignty, usability, and process alignment 

necessary for real-world adoption. 

Technical Architecture & Workflow Patterns 
Designing the technical architecture for POLIS DAO governance involves integrating blockchain smart 

contracts, off-chain services, and front-end interfaces into a seamless whole. In this section, we 

outline key components and their interactions, supported by architecture diagrams and workflow 

patterns that illustrate how a proposal or task moves through the system. 

Figure: Multi-layer DAO Governance Architecture — Each Polis operates a local governance stack 

(combining tools like Aragon/Safe/Colony), and a global DAO (top layer) connects all Polises for inter-

city decisions. Arrows indicate flow of proposals and information between layers (e.g., local forked 

law changes flowing up as proposals to global repo, or global directives flowing down for local 

implementation). 

Layers and Components: As depicted in the figure above, the architecture can be seen in layers (local, 

city, global) with cross-cutting components for identity and communication: 

• Blockchain Layer (On-chain): This is where the core smart contracts live. Each Polis may have 

its own blockchain or use a shared network, but logically each has: 

o Polis Governance Contracts: e.g., Aragon DAO contracts or custom governance 

contracts (voting, token management, permissions). 

o Sub-DAO Contracts: e.g., Moloch DAOs for committees, or Colony’s set of contracts 

for domains and tasks. 

o Treasury Contract: often a Gnosis Safe or similar, which holds funds and assets, 

executing transactions per approved proposals. 

o Optionally, Inter-Polis Contracts: if using a dedicated chain for global governance, 

those contracts (e.g., a Global Council DAO contract) reside on that network. 

• Off-chain Layer: Includes services that assist with governance but are not themselves 

blockchains: 

o IPFS/Distributed Storage: for storing large proposal texts, law documents, media, or 

BPMN models, ensuring immutability and accessibility for reference. 

o Snapshot (or Off-chain Voting Servers): to handle vote counting when using off-chain 

voting, posting results to an oracle. 

o Reputation or Oracle Servers: e.g., for Colony’s reputation calculation or for feeding 

real-world data (like an emergency trigger) into the DAO. 

o Process Management Tools: possibly a BPM engine (like Camunda or custom code) 

that tracks a workflow (especially for emergency response processes or complex 

multi-step governance) and triggers proposals at certain steps. 



o Notification/Communication Servers: integration with chat (Matrix/Element, 

Discord) or civic apps for notifying citizens of new proposals, results, tasks, etc. 

• Front-end Layer (User Interface): The applications people interact with: 

o Citizen Governance Portal: A web/mobile app that surfaces all proposals (local Polis 

proposals, global proposals, tasks needing volunteers, etc.) in one place. This would 

unify different backends. For example, it shows a list of proposals with their status 

whether they are Aragon votes, Snapshot polls, or Colony tasks – the user might not 

see the difference except maybe via categories. 

o Administrator Dashboard: For those in facilitating roles (like a DAO admin or process 

facilitator), a dashboard to configure settings, initiate the onboarding of new Polises, 

or manage emergencies. 

o Visual Process Map: A UI component that shows a BPMN-like diagram of a 

governance process (e.g., how a law change goes from local proposal to global 

approval). Not essential, but helpful for transparency – citizens can click and see “You 

are here” in the governance process. 

o Identity/Wallet Interface: Could be integrated or separate. Ideally, the app has an 

identity solution (maybe a city digital ID that is linked to a blockchain wallet under 

the hood) so citizens can sign transactions/votes easily. This could use something like 

an identity contract or DID (Decentralized ID) that associates a person with a wallet 

while preserving privacy where needed. 

Workflow Example 1: Local Budget Proposal 

To illustrate a typical workflow, consider a Resource 

Allocation DAO scenario where a neighborhood wants 

funding for a community garden: 
1. Initiation: A citizen or group submits a budget proposal via the Governance Portal: “Allocate 

5000 tokens for Community Garden in District 5”. They fill out a form, attach a PDF or details 

(stored on IPFS). 

2. Routing: The portal knows, based on category or rules, that this is a local project funding 

request. The request is routed to the relevant DAO – perhaps the District 5 DAO (if each 

district has a Moloch or Aragon sub-DAO for participatory budgeting). If District 5 doesn’t 

have its own DAO, it might route to the citywide Polis DAO with a tag for District 5. 

3. On-chain Proposal Creation: The app, through web3 calls, creates a proposal in the District 5 

DAO’s contract (or posts it to Snapshot for that DAO if off-chain voting is used). The proposal 

includes the IPFS link to details. 

4. Deliberation: A notification is sent to District 5 residents (maybe via email or chat 

integration). They discuss on an integrated forum. The BPMN diagram for participatory 

budgeting might specify a 1-week deliberation period, which the app enforces by not opening 

voting until that time passes. 



5. Voting: When ready, voting opens. Residents vote using their tokens or IDs. Suppose District 

5 DAO uses quadratic voting – the portal calculates the quadratic weighting as they vote, 

showing them the effect. After the vote period (say 3 days), the result is tallied. In this case, 

assume it passes. 

6. Execution: Because this is a budget allocation, the DAO contract has an action tied to the 

proposal – to transfer 5000 tokens from the District budget Safe to the Community Garden 

Safe (a sub-safe or a vesting contract). Once the vote is successful, either an on-chain 

contract automatically triggers the transfer (if fully on-chain), or if Snapshot was used, the 

oracle module (Reality.eth) will detect the “yes” outcome and allow an executor to call the 

Safe transaction to send funds. The Safe transaction is pre-defined at proposal creation time 

(this is common in platforms like Aragon and SafeSnap). 

7. Post-Execution: Funds are now in the Community Garden Safe. Perhaps that Safe is 

controlled by a small committee of volunteers (they had their own mini-DAO, maybe a 3-of-5 

Safe). They can now use it to buy seeds, tools, etc., and periodically report expenses. The 

main DAO could require them to report (maybe by another proposal to close out the project, 

or via Colony tasks to track spending). 

8. Feedback and Recording: The outcome is recorded on the open ledger (transaction logs show 

the transfer with the proposal ID). The global law repo is not involved because this is an 

execution of an existing policy (the participatory budgeting policy). However, if someone 

wanted to analyze, they could see District 5’s budget usage via block explorer or a subgraph. 

Feedback from the community (was the garden successful?) could be collected for future 

budgeting decisions. 

Workflow Example 2: Global Policy Fork & Merge 

Now consider a complex one: an Emergency Response 

DAO scenario combined with the legislative forking 

system: 
• A climate pattern indicates high wildfire risk across multiple regions. The Global Council DAO 

has a policy for emergency resource sharing (in the law repository, a section on “Disaster 

Response Protocols”). Polis A, which just experienced a wildfire, realizes the policy doesn’t 

cover how to allocate firefighting drones that some cities have. They come up with an 

improvement to the policy. 

• Fork & Proposal: Polis A’s legal team (or AI assistant) edits their fork of the law repository to 

add “In wildfire emergencies, cities with aerial drones should dispatch them to affected 

neighboring cities automatically”. They then use the governance dApp to propose this change 

to the global level. The app might integrate with Git under the hood: it creates a commit diff 

and opens a pull request on the global law repo (perhaps represented by an IPFS diff or a URL 

to a GitHub PR if using a public platform). Simultaneously, it creates a proposal in the Global 

Council DAO referencing this change. 

• Deliberation: All Polises get notified of a global policy proposal. Because this pertains to 

emergency response, it might be fast-tracked (maybe only a 48-hour discussion given 



urgency). People discuss on an international forum, including experts from each city’s 

emergency services. They reach general consensus that it’s good, with minor tweaks. 

• Amendment: Polis B suggests an amendment (drones should only be dispatched if the 

requesting city agrees to cover maintenance costs, for fairness). In a Git workflow, they could 

even commit to Polis A’s PR branch or add a comment. In the DAO workflow, perhaps Polis B 

submits an amendment proposal. Depending on the process, the Global DAO might allow 

friendly amendments without restarting the whole vote (this could be an advanced feature – 

e.g., an iterative vote or simply withdrawing the first proposal and submitting a revised one 

quickly). 

• Voting: The Global Council DAO votes (each Polis has one vote in this scenario). The vote is 

yes, unanimous. 

• Merge & Record: The law repository maintainers (which could just be the DAO itself with a 

bot) merge the change. The global repository now has v1.1 of Disaster Protocol. The Global 

DAO’s action also triggers an update event – Polises receive an alert “Global Law Updated: 

Disaster Protocol v1.1”. Each Polis can choose to pull this update into their local repository. 

Perhaps the system auto-opens a local proposal in each Polis DAO: “Adopt global protocol 

update v1.1?”. Likely, Polises will approve quickly since it was their reps who agreed globally. 

However, if a Polis had reservations, they could opt not to merge; their fork would then be 

divergent and flagged. 

• Execution (Emergency): Now, when another wildfire hits, the Emergency Response DAO 

(which might be a standing inter-Polis operational DAO) has clear instructions. Possibly an 

Emergency Response DAO is actually an on-chain module triggered by events. For example, 

an oracle tracking wildfire incidence could automatically ping the Emergency DAO, which 

then creates spending proposals to deploy resources as per the protocol. Under the new law, 

it could automatically generate proposals for cities with drones to send them and possibly 

reimburse costs from a global disaster fund. If this Emergency DAO is composed of 

representatives from all Polises, they could vote to authorize these actions extremely quickly 

(or even have pre-authorized it in protocol law to avoid needing a vote each time). The 

important part is that because the law was updated through the proper process, everyone 

knows what to do and has consented to the rules beforehand. 

This example shows how a legislative change moves from one Polis’s idea to global consensus and 

back to local implementation, with each step transparently logged. The global repository acts like the 

source code of a program, and the Polises are like nodes running that program, updating it as it 

evolves. 

Security Considerations: The architecture must consider security at multiple levels. Smart contracts 

should be audited and upgradable only via DAO governance (no single key upgrades). Multisig admins 

might be in place for emergency fixes but under strict social oversight. On the off-chain side, data 

oracles need to be secured (Reality.eth oracle answers could be gamed – the DAO can set up a 

security like multiple oracles or time delays for contentious proposals). Identity verification is crucial 

to prevent Sybil attacks in voting: POLIS might use a proof-of-personhood system or unique ID 

issuance so one person = one vote (or weighted by stake if that’s the model, but likely in city 

governance one would aim for one person one vote or at least one credential one vote to maintain 

equality). Modern approaches like BrightID or Idena could be integrated for this, or government ID 

integration in a privacy-preserving way. 



Scalability and Performance: Using layer-2 solutions or sidechains is important to handle the volume 

of transactions and votes cheaply. As noted, many DAO frameworks (Aragon, Colony) are deploying 

on sidechains. The architecture can include a bridge to mainnet if needed for certain assets or to 

anchor state periodically (for ultimate security, the global law repository hash could be checkpointed 

on Ethereum mainnet occasionally). Off-chain voting massively scales citizen participation by avoiding 

blockchain fees for each vote – an essential aspect for a city of tens of thousands voting regularly. The 

architecture thus leans on off-chain for high-frequency, on-chain for finality and enforcement, which 

is a pragmatic balance. 

Integration with Legacy Systems: A POLIS will still interact with the physical world – sensors, IoT, 

government agencies. The DAO architecture can integrate with those via oracles. For instance, a 

sensor network for water supply could automatically propose a resource allocation if a drought is 

detected (IoT device triggers a proposal to import water from another Polis’s surplus). Those 

proposals come in machine-to-machine, and the human governance layer can supervise or veto if 

needed. Workflow engines might handle the logic, but the DAO provides the trust and transparency. 

Workflow Patterns: We see a few recurring patterns: 

• Proposal Lifecycle Pattern: (Idea → Proposal → Vote → Execution → Feedback). This applies 

to laws, budgets, initiatives. Documenting each stage and ensuring tools exist for each 

(discussion forums for idea, voting mechanisms, auto-execution integration, and feedback 

collection surveys maybe). 

• Hierarchy/Federation Pattern: Local decisions escalate to global if needed (and vice versa, 

global decisions disseminate down). The pattern uses local DAO -> global DAO bridging. That 

could be implemented by having certain members (delegates) be in both DAOs, or by cross-

chain messages. Practically, having human delegates in both might be simplest (each Polis 

delegate can just create proposals in global DAO as needed). 

• Emergency Fast-Track Pattern: In urgent scenarios, bypass some steps (or have pre-

authorized actions). E.g., a multisig of relevant Polises can act quickly, then retroactively the 

DAOs approve or review. This is akin to a circuit breaker pattern – coded in smart contracts 

maybe as a function that can execute with 2-of-3 signatures of affected parties but then 

requires after-the-fact ratification by the full DAO to remain in effect. This pattern should be 

used sparingly but is crucial for real-time response (like a hack emergency in a contract or 

life-and-death disaster response). 

• Continuous Improvement Pattern: Not a single workflow but the idea that everything 

(processes, laws, even the DAO code) is subject to iterative improvement via proposals. This 

is enforced by our legislative repo approach and by open feedback channels. For instance, 

after each major vote, the system could automatically solicit feedback: “Were you satisfied 

with the process? any suggestions?” – and that might itself result in governance process 

tweaks proposed. 

In conclusion, the technical architecture of POLIS DAO governance is a tapestry of blockchain 

contracts, coordinating services, and user-centric applications. It strives to be robust (through 

decentralization and immutability) yet user-friendly (through layering and off-chain optimization). The 

workflows ensure that whether it’s routine local matters or critical global issues, there’s a clear path 

for proposals to be raised, decided, and enacted with accountability at every step. In the next section, 

we ground this further by diving into concrete use case examples, which will demonstrate these 

patterns in action within specific domains of community life. 



Use Case Examples of DAOs in POLIS 

To make the architecture more tangible, we explore four case examples of DAOs addressing different 

community needs in the POLIS framework. Each illustrates how the modular governance structure 

and tools described come together in practice: 

1. Resource Allocation DAO – managing budgeting and resource distribution in a participatory 

manner. 

2. Emergency Response DAO – coordinating rapid, multi-stakeholder actions in crises. 

3. Ancestral Healing DAO – fostering cultural and historical reconciliation through collective 

governance. 

4. Commons Contribution Funding DAO – funding public goods and communal projects with 

community-driven oversight. 

These examples demonstrate the versatility of DAOs: from highly pragmatic functions like budgeting, 

to sensitive social endeavors like healing historical wounds, there is a pattern of transparent, inclusive 

decision-making threading through all. 

Resource Allocation DAO (Participatory Budgeting) 
In a POLIS, budgets for local projects and public services are not decided solely by a central authority; 

instead, a Resource Allocation DAO engages citizens in budgeting decisions. This could be 

implemented at various scales – city-wide (for overall budget priorities) or at district/neighborhood 

level for community grants. 

Scenario: The city has an annual surplus of 1 million tokens to allocate to community projects (parks, 

school improvements, startups, etc.). The Polis establishes a Participatory Budgeting DAO where 

citizens can propose projects and vote on how to distribute funds among them. 

Governance Mechanism: This DAO might use liquid democracy or quadratic voting to ensure fair 

representation of preferences. For example, each citizen gets a certain number of voice credits to 

allocate across projects, allowing them to signal which projects matter most to them (intensity of 

preference). Quadratic voting helps counterbalance whales or large districts overshadowing smaller 

ones by making the cost of heavy influence exponentially higher per additional vote. 

Process: 

• Proposal Stage: Citizens or civic groups submit project proposals by a deadline, including 

required budget and expected impact. These are entered into the DAO, likely off-chain first 

(to gather all proposals) then anchored on-chain once finalized. 

• Deliberation Stage: Proposals are publicized. Town hall meetings (physical or via VR) and 

online discussion boards linked to each proposal allow residents to ask questions and give 

feedback. This stage addresses concerns and refines proposals (some may merge if they’re 

similar, etc.). 

• Voting Stage: The DAO opens voting. Suppose they use quadratic voting: each citizen has, say, 

100 credits that they can spread among proposals (spending credits quadratically: to give 10 

votes to one proposal costs 100 credits, leaving none for others, whereas 1 vote costs 1 credit 

– so it encourages spreading out support). The voting dApp handles the math and provides a 

friendly UI. 



• Allocation Stage: Once voting closes, the DAO calculates the winner(s). Maybe it’s a funding 

pool model: the top N projects get funded in full until funds run out. Or it could be 

proportional allocation: each project gets a share of the 1M based on vote share. The rules 

are encoded so results can’t be tampered with after the fact. 

• Execution Stage: The DAO (perhaps via a Safe multi-sig controlled by a committee including 

some citizen reps and city officials) disburses funds to each project’s smart contract or 

escrow. Conditions can be attached – e.g., milestones for projects or refund clauses if project 

fails to start. The Safe ensures that funds are traceable and only used for the intended 

purpose (project leads might have to submit expense transactions that the Safe co-signers 

approve). 

• Transparency: All proposals and results are open data. Citizens can see exactly how much 

went to each project and track progress. Public dashboards show metrics like number of 

voters, distribution of votes (maybe by region or demographic, if known, to ensure broad 

participation). This addresses common trust issues in budgets – no more “where did our tax 

money go?”; it’s all on the blockchain ledger. Indeed, CityDAO’s experiment in land 

governance hints at how tokenized rights can let stakeholders globally manage resources. 

Similarly, our Resource Allocation DAO tokenizes the “right to decide on budget” and shares it 

with all citizens, not just officials. 

Outcome: Such a DAO can dramatically increase civic engagement and ensure resources align with 

citizen priorities, enhancing legitimacy of spending. It can start with small portions of the budget and 

expand as trust in the system grows. By using a DAO, the process is efficient (less bureaucratic 

overhead, since proposals and voting are handled by software) and inclusive (anyone can propose or 

support ideas, not just those with political connections). It also acts as a feedback loop: projects 

funded are essentially those the community believes in, which likely increases volunteer support and 

successful implementation. 

Emergency Response DAO (Crisis Coordination) 
Disasters and emergencies require quick, coordinated action across different agencies and even 

across Polises. A traditional top-down approach can be slow and mired in red tape. The Emergency 

Response DAO provides a platform where stakeholders – government units, citizen volunteers, other 

cities, NGOs – rapidly make decisions and allocate resources when crises strike. 

Scenario: A major flood hits Polis X. Within hours, thousands are displaced. Normally, one might wait 

for a national government or multiple committees to convene. Instead, the Emergency Response 

DAO, which is a standing organization of relevant parties (e.g., city’s disaster management team, 

neighboring city liaisons, volunteer orgs, and maybe an AI monitoring system), kicks into action. 

Governance Mechanism: This DAO likely operates with a blend of automation and multi-sig 

authority. It might have pre-approved emergency policies (as in the law repository) that say “if 

conditions A, B, C are met, do X, Y, Z.” For instance, if a flood of category 5 occurs, auto-deploy relief 

fund up to 500k and request 100 personnel from neighbors. These could be coded as conditional 

proposals – triggered by oracles that monitor weather data or social media reports. The DAO could 

run on a faster voting cadence (maybe a 6-hour voting window with delegated voting – where each 

key stakeholder can respond quickly). 

Process: 



• Detection: IoT sensors and weather APIs feed data to an oracle. When river levels break a 

threshold and numerous distress signals appear (perhaps processed by an AI), the Emergency 

DAO is notified. A proposal is automatically generated: “Declare State of Emergency in Polis X, 

allocate resources per Protocol section 5.2”. 

• Immediate Execution via Smart Contract: Some actions can execute immediately if pre-

authorized – e.g., releasing a certain amount of emergency funds from an insurance pool, or 

activating a communication alert system city-wide. Because these steps were agreed in 

advance in the legislative process, the smart contracts are allowed to do them without a 

fresh vote (or with a quick multi-sig sign-off). This saves crucial time. As noted, centralized 

friction in current systems can cost lives, whereas a decentralized but pre-coordinated system 

can respond faster. 

• Human Coordination via DAO: For other decisions that need human input (like requesting 

specific aid from neighbors, or imposing temporary evacuation orders), the Emergency DAO’s 

members convene virtually (the platform could highlight urgent proposals requiring 

immediate vote). Delegates from surrounding Polises see a proposal like “Polis X requests 20 

medical staff and 5 drones from each neighboring Polis, and proposes to compensate via 

global disaster fund.” They vote within an hour’s time (perhaps a special rule allows one 

delegate per Polis to vote, quorum being majority of those online). If approved, smart 

contracts automatically message those cities’ resource management systems (if integrated) 

or at least create an on-chain mandate. 

• Resource Deployment: Using IoT and supply chain integrations, the DAO triggers actions: 

e.g., unlocking a stocked emergency warehouse that is secured by a DAO-controlled smart 

lock (only opens if DAO signals it), dispatching drones (which might even be autonomous, 

taking commands from the DAO’s IoT integration), and transferring money to relief 

organizations. This might seem futuristic, but with blockchain and IoT it’s feasible – a 

decentralized network can coordinate physical assets if they’re IoT-enabled and trust the 

DAO’s commands. 

• Community Involvement: The DAO could also have a public-facing component for volunteers. 

A separate volunteer coordination DAO or simply an interface linked to the emergency DAO 

allows citizens to offer help (housing, food, labor) and see needs (essentially a decentralized 

crisis marketplace). The emergency DAO might reward volunteers with tokens or reputation 

for their contributions, tracked via the system. Everything is recorded so later analysis can 

improve plans. 

Why a DAO here? The advantage is composable trust and speed. Instead of phoning three 

government departments and waiting for sign-off, the rules are agreed ahead and encoded. The 

network of cities forms a mutual aid pact via the DAO, so when one suffers, all respond in a 

coordinated way without dithering. The Rojava experience with councils in emergency would call a 

general assembly quickly – here the DAO is that assembly but on steroids (with automated parts and 

clear triggers). The SpaceDAO initiative example earlier identified how centralization and friction 

cause up to 80-hour delays in satellite disaster mapping. Our Emergency Response DAO eliminates 

many manual steps: once conditions are met, it’s on. Humans in the loop focus on exceptions and 

moral judgments (like, do we triage resources to City A or B if both have crises?), rather than on 

routine decisions. 

After the crisis, the DAO can seamlessly scale back – retracting special privileges, summarizing actions 

taken, and logging expenditures. It provides a transparent after-action report (every transaction is on-

chain). That accountability builds trust for next time, and maybe for insurance purposes (global 



insurers could trust payouts because they see exactly what was spent). This resonates with the idea 

that open processes yield greater legitimacy. 

Ancestral Healing DAO (Cultural Reconciliation) 
Not all governance is about money or emergencies; some is about intangible but vital community 

healing and cultural preservation. An Ancestral Healing DAO is a more experimental concept where a 

community collectively addresses historical injustices or trauma – for example, healing the wounds of 

past conflicts, honoring indigenous practices, or reconciling between former adversarial groups. 

Scenario: Polis Y has a history where two ethnic communities were in conflict decades ago. There’s 

lingering mistrust and unhealed trauma passed through generations. The city decides to create an 

Ancestral Healing DAO to guide reconciliation projects, manage related funds (perhaps reparations or 

cultural initiatives budget), and ensure equal voice of all groups in shaping a harmonious future. 

Governance Mechanism: This DAO might use sortition (random selection) or balanced 

representation in addition to standard voting, to build trust. For instance, it could have councils 

chosen by lottery from both communities who then propose initiatives. It could also operate with a 

consensus voting model instead of majority rule for certain decisions, to ensure no group feels 

overruled. If disagreements occur, it might employ tools like quadratic voting to find common ground 

or even require facilitated dialogue (with on-chain recorded minutes) before a revote. 

Process: 

• Structure: Let’s say the DAO is structured into two “houses” – Elders Council and Youth 

Council, each with equal representation from the two ethnic groups. Proposals need approval 

by both. Smart contracts can enforce that a proposal has two separate voting events (one per 

council) and only passes if both reach consensus. This mimics a bicameral process but 

encoded in a DAO. 

• Projects: The DAO might oversee projects like “Ancestral Storytelling Circles”, “Memorial 

creation”, “Joint Cultural Festivals”, or recommend policy changes (like renaming a street that 

had a colonial name). 

• Funding: The city allocates a certain fund for healing and cultural projects, which the DAO 

manages (so it’s like a specialized budgeting DAO). But beyond money, it’s also about 

decisions like apologies, acknowledgments, or curriculum changes in schools – these are 

symbolic but powerful actions that the DAO deliberates on. 

• Deliberation: A key aspect here is that deliberation might need to be protected and 

facilitated more than in other DAOs, due to sensitivity. The DAO could integrate a private but 

auditable discussion forum where members speak freely, and after reaching understanding, a 

summary is posted publicly. They might also use tools like conviction voting (which lets 

opinions slowly converge without binary votes until enough support accrues) for proposals 

that might be hard to decide immediately. 

• Ritual and Integration: Because this is about ancestral healing, the DAO might incorporate 

non-Western governance elements. For example, requiring a “ceremony” (which could be a 

smart contract enforced waiting period plus maybe an actual community ritual) before 

finalizing a major reconciliation decision. Technically, one could enforce a week of reflection 

after a vote before execution, giving time for any community member to come forward if 

they strongly object (like a veto period). 



• Outcome Accountability: This DAO would measure success in terms of community sentiment 

improvements (perhaps polled periodically, even via the DAO using a token-weighted survey), 

and the completion of healing projects. It provides a safe, equitable space to make decisions 

on matters that otherwise could be contentious. By using a DAO with equal representation 

and clear rules, it avoids perceptions that one group’s political machinery is forcing decisions 

on another. Everyone can see the fairness: proposals require cross-community support on-

chain to pass, which is very concrete evidence of cooperation. 

While less “technical” in appearance, such a DAO shows the adaptability of decentralized governance 

to even emotional and cultural domains. It replaces or complements traditional truth and 

reconciliation commissions with an ongoing, self-governed process. The transparency can help 

prevent manipulation: e.g., if funds are for reparations, everyone sees them going to designated 

programs, not diverted. The records of decisions become part of the historical archive for future 

generations to see the progress of healing (much as South Africa’s TRC had public records, here they 

are on-chain immutable). 

Commons Contribution Funding DAO (Public Goods) 
Public goods (like open parks, free software, education content, climate action) often suffer from 

underfunding in traditional markets. A Commons Contribution Funding DAO aims to incentivize and 

manage funding for projects that benefit everyone – the “commons”. This is akin to the concept 

behind Gitcoin or common pool funds, implemented in a local or global Polis context. 

Scenario: A global Commons DAO is established by the League of Polises to fund projects that no 

single Polis might fund alone, but that benefit all (for example, an open-source solar energy 

technology, or a cure for a disease, or even maintaining global open knowledge repositories). Each 

Polis contributes a bit of its budget to this global commons fund. Citizens can propose projects to 

receive grants. It’s like a decentralized grant-making foundation where all Polises (and their citizens) 

are stakeholders. 

Governance Mechanism: Likely quadratic funding or retroactive public goods funding. Quadratic 

funding (like Gitcoin grants model) involves matching pools: individual citizens donate small amounts 

to projects they like, and the DAO’s fund matches those donations in a quadratic way (so a project 

with broad support from many people gets a big match). This encourages lots of people to signal 

what they value in the commons. The DAO governs the parameters of the matching (how much, any 

category preferences, etc.) and ensures funds are disbursed as promised. Alternatively, a retroactive 

funding model could be used (like Vitalik Buterin’s concept): projects are funded after they show 

success, based on impact metrics voted on by the DAO. 

Process: 

• Round Setup: The DAO decides to host quarterly funding rounds focusing on themes 

(environment, education, etc.). They allocate, say, 500k tokens for the next round as the 

matching pool. 

• Proposal Submission (Project Registration): People submit the projects they want to get 

funded, with descriptions, a funding target, and an address to receive funds. These could be 

local community initiatives or global open-source projects. The DAO might verify some 

criteria (non-profit nature, etc.) through a curation committee. 



• Donation Period: Citizens (from any Polis, or even outsiders if allowed) contribute small 

donations to the projects they support, via the DAO’s platform. Because it’s on-chain, every 

contribution is logged per project. This runs for a set time (e.g., 2 weeks). 

• Matching Calculation: At the end, the DAO’s smart contract calculates matches using 

quadratic funding formula. For example, if Project A had 100 distinct donors giving total 1000, 

and Project B had 2 donors giving total 1000, Project A will get a much larger match, 

reflecting that more people care about it, not just deep pockets. This formula essentially 

optimizes for equitable resource utilization in the commons – broad-based support gets 

rewarded, which is great for things that many find valuable. 

• Approval and Payout: The DAO might still put the final list to a governance vote (mostly a 

formality if rules are clear, but in case someone suspects fraud, they could veto a particular 

payout). Once approved, funds are automatically distributed to project wallets. 

• Accountability: As a condition, projects may need to report back or their results are tracked. 

The DAO could use a KPI options or milestone contracts: for instance, pay 50% upfront and 

50% after showing a deliverable. The community could vote if a project delivered 

satisfactorily (like a milestone review DAO vote). This prevents abuse and ensures continuous 

alignment. However, overhead of too many votes can be streamlined by electing a Commons 

Steward Committee (maybe rotated reps) that does preliminary oversight, only escalating to 

full DAO if something’s contentious. 

• Local Commons DAOs: Similarly, at Polis level, a Commons DAO might fund local public goods 

like street art, libraries, or free Wi-Fi. The global one might tackle bigger or more abstract 

goods (like climate or open-source software used by all Polises). 

By funding commons in this way, POLIS incentivizes contribution to things that traditional markets 

undervalue. It also globalizes the effort: Polises band together to fund, say, a carbon capture tech 

which, if succeeded, benefits all and perhaps is open licensed for all to use. Each Polis alone might 

not risk that investment, but collectively, through a DAO that ensures fairness (everyone pays a fair 

share and everyone gets the benefits), it becomes feasible. 

This also democratizes what “commons” are prioritized: citizens literally put money (even small 

amounts) where their mouth is. If many people in many Polises want more mental health resources, 

they’ll donate to such projects and the match amplifies their voice. It’s more direct than waiting for 

an election on a broad mandate. The DAO can quickly respond to emerging needs (like funding open 

research on a new virus outbreak). 

Real-world analogs like Gitcoin have shown this can mobilize millions for public goods in crypto 

domain. In a POLIS context, it could be even more powerful because it’s not just digital developers 

but all citizens engaging. The transparency is key to trust: historically, public funds for development 

often get lost in bureaucracy or corruption. Here, every token’s destination is known, and outcomes 

can be tied back to inputs, strengthening the social contract around public goods. 

 

These four examples scratch the surface of what’s possible. Importantly, they aren’t isolated; they can 

interconnect. For instance, a project funded by the Commons DAO (like a flood early warning system) 

might feed into the Emergency DAO as a tool. A cultural heritage project funded by Commons might 

be overseen by the Ancestral Healing DAO to ensure it’s done sensitively. The modular DAO 

framework means each domain can have its own governance optimized for its context, while still 

plugging into the larger POLIS governance network. 



Each example highlights: clear purpose, open participation, and algorithmic fairness (quadratic 

votes, consensus requirements, etc.) as core features. By implementing these, POLIS communities 

become not only more efficient and resilient, but also more just and inclusive, as people see that 

governance is a collective endeavor open to all, not a distant authority. In the concluding section, we 

will reflect on implementing such a vision and the path forward for POLIS DAO governance. 

Conclusion and Path Forward 
In this extensive guide, we laid out a technical and organizational blueprint for integrating DAO 

governance into the POLIS civilizational framework. Through a combination of layered DAO 

structures, innovative governance processes, and carefully chosen frameworks, we see how a 

network of city-states could govern themselves by the people in a direct, transparent, and adaptive 

manner. From local role-based DAOs executing everyday processes to global councils coordinating on 

existential challenges, the POLIS model leverages decentralization to make governance both more 

effective and more legitimate. 

This approach is visionary yet pragmatic. It draws inspiration from futurist ideas (like open-source 

law and AI-assisted governance) but grounds them in proven technologies and historical precedents: 

• Ancient Greek polis democracy and modern participatory budgeting inform the emphasis on 

citizen deliberation. 

• Rojava’s federated councils and the principle of democratic confederalism guide the multi-

layer architecture of autonomous but cooperative Polises. 

• Blockchain communities’ experiments (CityDAO, Gitcoin, Moloch) provide working prototypes 

of pieces of this puzzle – land governance, public goods funding, minimal governance 

contracts, respectively. 

• The open-source software movement’s practices (forking, merging, collaborative review) are 

repurposed to handle living societal rules. 

Implementers looking to deploy these ideas should proceed in phases: 

1. Prototype at Polis Level: Start with one city or community. Establish a Polis DAO for city 

governance on a chosen stack (Aragon on xDai, for instance) and identify one or two sub-

DAOs to pilot (maybe a budgeting DAO and a volunteer coordination DAO). Run a small 

participatory budgeting cycle to test the waters. Use this to refine UX and smart contracts 

with real user feedback. 

2. Integrate BPMN Processes: Work with city administration to model a couple of internal 

processes (like business licensing or event permitting) in BPMN, then implement them via 

DAOs or smart contracts triggers. Even partial automation (like using a DAO vote instead of a 

committee meeting) can show value. Document how the BPMN-to-DAO translation went to 

create templates for future processes. 

3. Onboard Additional Polises: As one Polis finds success, invite others to join the experiment. 

Use the onboarding DAO model – perhaps initially just an informal coalition, but gradually 

formalize it. Develop the global law repository and populate it with a draft “Polis Charter” 

that new members can adopt and fork. This acts as a starter kit of laws and governance 

modules they can customize. 



4. Launch Global DAO & Commons Initiatives: Once a handful of Polises are networked, 

establish the Global Council DAO and perhaps start with a low-stakes global commons project 

(like a joint cultural festival or an inter-city knowledge exchange program) to test global 

voting and coordination. This will surface issues in cross-polity voting methods or 

communication lags, which can then be fixed. 

5. Iterate and Scale: As more join, governance will need scaling solutions (potentially moving 

more to off-chain with verification as noted, or introducing hierarchical delegation). Always 

incorporate the principle from Aragon’s learnings: move from complexity towards simplicity 

whenever possible. That means after adding features, see if they can be simplified or if some 

processes can be automated away to reduce cognitive load on participants. 

6. Legal and Societal Integration: Work on the interface between these DAOs and traditional 

legal systems. For now, the DAO decisions might still need to be rubber-stamped by a city 

council or encoded in law via some translation. Over time, as legal recognition of DAOs 

improves (maybe via frameworks like the proposed Wyoming DAO LLC laws or others), ensure 

each Polis DAO has an appropriate legal wrapper so its actions have standing (e.g., a Polis 

DAO could be the legal equivalent of a city council in some jurisdictions). Also, invest in 

education and inclusivity: train citizens in using these tools, provide support for those 

without digital access, and guard against the system being captured by a tech-savvy elite. A 

true POLIS means every citizen, young or old, feels they can meaningfully participate. 

Challenges will arise, from technical bugs to cultural resistance. Some people may be wary of “code 

running society” or distrust the idea of open-sourcing laws. Early successes and transparency will be 

crucial to win trust. Showing, for instance, that corruption opportunities vanish when budgets are on-

chain (because any attempt to mis-spend was visible and stopped) will turn skeptics into proponents 

through real examples. Emphasize that this isn’t removing the human element – rather it’s 

empowering more humans (the whole populace) to be involved, with code just doing the boring 

bookkeeping and enforcement. The self-sovereignty of communities and individuals is enhanced: 

rules are mutual and no longer imposed from above or manipulated in backrooms. 

This journey aligns with a broader shift in the world: people demanding more say in decisions that 

affect them, and technology enabling new forms of cooperation across borders. The POLIS DAO 

governance framework is a path to universal peace and flourishing envisioned by Jeremy Stein and 

others – not by naive hope, but by systematically redesigning our governance machinery to reduce 

conflict (through transparency and fairness), reduce scarcity (through efficient allocation of common 

resources), and unlock human potential (through inclusive participation and gamified civic 

engagement, making contribution rewarding). 

By weaving together blockchain DAO infrastructure with the societal framework of Polises, we are, in 

essence, coding the next chapter of human social evolution – one where the city (whether a local 

community or a digital network) is the locus of empowerment, and all cities link arms in a network of 

knowledge and aid, rather than a Hobbesian competition. It is an ambitious vision, but as this guide 

has shown, the building blocks are ready to be assembled. 

The path forward is iterative and collaborative: each implementation will teach new lessons, which 

can be fed back into the global knowledge commons (via our forking law repository and shared open-

source tooling). Mistakes will happen – a DAO might get hacked or a voting mechanism might fail in 

an edge case – but the community can then patch the code and evolve the governance, much like 

open-source projects improve over time. Unlike rigid nation-state constitutions, the POLIS 

governance code is a living document. 



In conclusion, the POLIS DAO governance model offers a clear answer to many of today’s challenges 

of governance: How do we distribute power and decision-making in a complex society? By modular, 

multi-layered DAOs that bring decision-making to the most effective level and include those affected. 

How do we trust our systems? By open-sourcing them – “sunlight is the best disinfectant” applied 

literally to governance. How do we cooperate at scale? By networking autonomous units via global 

protocols – a “League of Polises” bound by smart contracts of mutual aid rather than precarious 

treaties. 

It’s a vision where, someday, the world is one grand Polis – a global city of peace composed of many 

communities, as eloquently put in the World Reform whitepaper. We end not with a firm declaration, 

but with an invitation to innovators, technologists, and community leaders: take this guide, improve 

it, implement it in your context, and share back your experiences. The POLIS future is ours to code – 

together, let’s transform these ideals into a lived reality, step by step, vote by vote, block by block. 

 


