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Preface

The 2017 International Conference on Image Analysis and Processing, ICIAP 2017,
was the 19th edition of a series of conferences promoted biennaly by the Italian
Member Society (GIRPR) of the International Association for Pattern Recognition
(IAPR). The conference traditionally covers both classic and the most recent trends in
image processing, computer vision, and pattern recognition, addressing both theoretical
and applicative aspects.

ICIAP 2017 (http://www.iciap2017.com) was held in Catania, during September
11–15, 2017, in the Benedictine Monastery of San Nicolò l’Arena. The monastery is a
UNESCO World Heritage Site and today it hosts the Department of Humanities
(DISUM) of the University of Catania. The conference was organized by Image Pro-
cessing Laboratory, Department of Mathematics and Computer Science (DMI) of the
University of Catania. Moreover, ICIAP 2017 was endorsed by the International
Association for Pattern Recognition (IAPR), the Italian Member Society of IAPR
(GIRPR), and received the institutional support of the University of Catania. Notable
sponsorship came from several industrial partners such as STMicroelectronics, Micron,
and iCTLab.

ICIAP is traditionally a venue for discussing image processing and analysis, pattern
recognition, computer vision, and machine learning, from both theoretical and
applicative perspectives, promoting connections and synergies among senior scholars
and students, universities, research institutes, and companies. ICIAP 2017 followed this
trend, and the program was subdivided into eight main topics, covering a broad range
of scientific areas, which were managed by two area chairs per each topic. They were:
Biomedical and Assistive Technology; Image Analysis, Detection and Recognition;
Information Forensics and Security; Imaging for Cultural Heritage and Archaeology;
Multimedia; Multiview Geometry and 3D Computer Vision; Pattern Recognition and
Machine Learning; Video Analysis and Understanding.

Moreover, we hosted several prominent companies as well as start-ups to show their
activities while assessing them with respect to the cutting-edge research in the
respective areas.

ICIAP 2017 received 229 paper submissions coming from all over the world,
including Australia, Austria, Brazil, Canada, China, Colombia, Cuba, France,
Germany, Hungary, Iran, Ireland, Italy, Israel, Japan, Korea, Kuwait, Malaysia,
Mexico, Poland, Portugal, Romania, Russia, Saudi Arabia, Serbia, Spain, South Africa,
The Netherlands, Tunisia, Turkey, UK, USA. The paper review process was managed
by the program chairs with the invaluable support of 15 area chairs, together with the
Program Committee and a number of additional reviewers. The peer-review selection
process was carried out by three distinct reviewers in most of the cases. This ultimately
led to the selection of 138 high-quality manuscripts, 23 oral presentations,
and 115 interactive papers/posters, with an overall acceptance rate of about 60%

http://www.iciap2017.com


(about 10% for oral presentations). The ICIAP 2017 proceedings are published as
volumes of the Lecture Notes in Computer Science (LNCS) series by Springer.

The program also included five invited talks by distinguished scientists in computer
vision pattern recognition and image analysis. We enjoyed the plenary lectures of Daniel
Cremers, Technische Universität München, Irfan Essa, Georgia Institute of Technology,
Fernando Peréz-Gonzalez, University of Vigo, Nicu Sebe, University of Trento, Roberto
Scopigno, ISTI-CNR, and Alain Tremeau, University Jean Monnet, who addressed very
interesting and recent research approaches and paradigms such as deep learning and
semantic scene understanding in computer vision, multimedia forensics, and applica-
tions in the field of color retrieval and management and cultural heritage.

While the main conference was held during September 13–15, 2017, ICIAP 2017
also included five tutorials and seven workshops, held on Monday, September 11, and
Tuesday, September 12, 2017, on a variety of topics.

The organized tutorials were: “Virtual Cell Imaging (Methods and Principles)” by
David Svoboda; “Image Tag Assignment, Refinement, and Retrieval” by Xirong Li,
Tiberio Uricchio, Lamberto Ballan, Marco Bertini, Cees Snoek, Alberto Del Bimbo;
“Active Vision and Human Robot Collaboration” by Dimitri Ognibene, Fiora Pirri,
Guido De Croon, Lucas Paletta, Mario Ceresa, Manuela Chessa, Fabio Solari;
“Humans Through the Eyes of a Robot: How Human Social Cognition Could Shape
Computer Vision” by Nicoletta Noceti and Alessandra Sciutti.

There was a special session, “Imaging Solutions for Improving the Quality of Life
(I-LIFE’17),” organized by Dan Popescu and Loretta Ichim with eight interesting
works selected by the organizers.

ICIAP 2017 also hosted seven half- or full-day satellite workshops: the “First
International Workshop on Brain-Inspired Computer Vision (WBICV 2017)” orga-
nized by George Azzopardi, Laura Fernández-Robles, Antonio Rodríguez-Sánchez;
“Third International Workshop on Multimedia Assisted Dietary Management
(MADiMa 2017)” organized by Stavroula Mougiakakou, Giovanni Maria Farinella,
Keiji Yanai; “Social Signal Processing and Beyond (SSPandBE 2017)” organized by
Mariella Dimiccoli, Petia Ivanova Radeva, Marco Cristani; “Natural Human–Computer
Interaction and Ecological Perception in Immersive Virtual and Augmented Reality
(NIVAR 2017)” organized by Manuela Chessa, Fabio Solari, Jean-Pierre Bresciani;
“Automatic Affect Analysis and Synthesis” organized by Nadia Berthouze, Simone
Bianco, Giuseppe Boccignone, Paolo Napoletano; “International Workshop on Bio-
metrics As-a-Service: Cloud-Based Technology, Systems, and Applications” organized
by Silvio Barra, Arcangelo Castiglione, Kim-Kwang Raymond Choo, Fabio Narducci;
“Background Learning for Detection and Tracking from RGBD Videos” organized by
Massimo Camplani, Lucia Maddalena, Luis Salgado. The workshop papers were all
collected in a separate volume of the LNCS series by Springer.

We thank all the workshop organizers and tutorial speakers who made possible such
an interesting pre-conference program.

Several awards were conferred during ICIAP 2017. The “Eduardo Caianiello”
Award was attributed to the best paper authored or co-authored by at least one young
researcher (PhD student, postdoc, or similar); a Best Paper Award was also assigned
after a careful selection made by an ad hoc appointed committee provided by Springer
and IAPR.
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The organization and the success of ICIAP 2017 were made possible thanks to the
cooperation of many people. First of all, special thanks should be given to the area
chairs, who made a big effort for the selection of the papers, together with all the
members of the Program Committee. Second, we would also like to thank the indus-
trial, special session, publicity, publication, and Asia and US liaison chairs, who,
operating in their respective fields, made this event a successful forum of science.

Special thanks go to the workshop and tutorial chairs as well as all workshop
organizers and tutorial lecturers for making richer the conference program with notable
satellite events. Last but not least, we are indebted to the local Organizing Committee,
mainly colleagues from IPLAB, who dealt with almost every aspects of the conference.

Thanks very much indeed to all the aforementioned people, since without their
support we would have not made it.

We hope that ICIAP 2017 met its aim to serve as a basis and inspiration for future
ICIAP editions.

September 2017 Sebastiano Battiato
Giovanni Gallo

Raimondo Schettini
Filippo Stanco
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Abstract. Often, different segments of a video may be more or less
attractive for people depending on their experience in watching it. Due
to this subjectiveness, the challenging task of automatically predicting
whether a video segment is interesting or not has attracted a lot of atten-
tion. Current solutions are usually based on learning models trained with
features from different modalities. In this paper, we propose a late fusion
with rank aggregation methods for combining ranking models learned
with features of different modalities and by different learning-to-rank
algorithms. The experimental evaluation was conducted on a benchmark-
ing dataset provided for the Predicting Media Interestingness Task at the
MediaEval 2016. Two different modalities and four learning-to-rank algo-
rithms are considered. The results are promising and show that the rank
aggregation methods can be used to improve the overall performance,
reaching gains of more than 10% over state-of-the-art solutions.

Keywords: Multimedia information retrieval · Predicting Media Inter-
estingness · Learning-to-rank methods · Multimodal late fusion · Rank
aggregation

1 Introduction

The production of multimedia data have been grown continuously and consis-
tently. Supported by mobile devices, social networks and cloud environments,
multimedia data can be generated, shared and stored everywhere. In this sce-
nario, there is a growing demand for efficient systems able to manage large vol-
umes of multimedia data and reduce the work and information overload when
seeking a given content of interest [18].

However, several research challenges are involved, from content representa-
tion to its indexing and ranking according to user interests, specially consider-
ing different modalities. In many multimedia applications, the fusion of different
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modalities is essential for improving the overall performance [19,23]. The main
motivation of fusion approaches consists in achieving a more precise representa-
tion of the data by combining features from distinct modalities, such as audio and
visual content [20]. Additionally, different learning models capable of encoding
user preferences can be also considered and fused as complementary information.

In this paper, a multimodal fusion framework based on rank aggregation is
proposed for video interestingness prediction. Firstly, different audio and visual
features are extracted for constructing a content-based representation. Subse-
quently, user preferences are encoded through learning-to-rank algorithms, used
to construct rankers capable of predicting the interestingness degree of a video.
Finally, rank aggregation methods are used for combining the multimodal infor-
mation provided by different pairs of feature-rankers in order to improve the
effectiveness of predictions. Experimental results demonstrate the potential of
rank aggregation methods for combining multimodal information on interest-
ingness prediction tasks, which can improve the state-of-the-art results [1] in
more than 10%. In addition, the relevance of feature selection strategy is also
discussed, providing useful guidance for future work.

This paper is organized as follows. Section 2 discusses related work. Section 3
presents the features, while Sect. 4 presents the learning-to-rank algorithms.
Section 5 discusses the rank aggregation methods. Section 6 reports the results
of our experiments. Finally, Sect. 7 states conclusions and presents future work.

2 Related Work

This section presents an overview of related work dedicated to video interesting-
ness prediction. In this work, we are interested in multimodal approaches based
on data fusion.

The pioneering work of Jiang et al. [16] introduced a new dataset for predict-
ing the interestingness of videos, where a large number of features were evaluated
and used to train prediction models with Ranking SVM [17]. According to their
findings, audio and visual features are effective for approaching this task, and
their fusion can improve the overall performance.

A lot of research on video interestingness prediction has been done for the
MediaEval 2016 Predicting Media Interestingness Task [12]. This task aims to
automatically select the most interesting video shots according to a common
viewer by using features derived from audio-visual content or associated textual
information. Ten groups submitted their results for the video subtask and six
of them adopted a multimodal approach. The final ranking of these six groups
based on the official results was: RECOD [1], UNIGECISA [26], RUC [8], NII-
UIT [22], Technicolor [27], and BigVid [29].

Almeida [1] (RECOD team) extracted motion features from the video shots
and used them to train four different ranking models, which were combined by
a majority voting strategy. Here, we extend the work of Almeida by exploring
data fusion (audio and visual data) to enhance video interestingness prediction.
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Rayatdoost and Soleymani [26] (UNIGECISA team) used both audio and
keyframe-based features provided for the task. Also, they extracted visual senti-
ment and emotional acoustic features. To obtain a single representation for each
shot, they computed the mean and the standard deviation for all the keyframes.
Then, principal component analysis (PCA) were applied to reduce the dimen-
sionality of such features. Finally, three different regression models were trained
based on the reduced features.

Chen et al. [8] (RUC team) used both audio and keyframe-based features
provided for the task. In addition, they extracted statistical acoustic and deep
learning features. A single representation for each shot was computed by apply-
ing mean pooling over all the keyframe-based features. Different features were
combined by early fusion and used to train two different classification models.

Lan et al. [22] (NII-UIT team) used both audio and keyframe-based fea-
tures provided for the task and also extracted deep learning features. A max
pooling strategy was used to aggregate all the keyframe-based features into a
single representation for each shot, which was used to train a SVM (Support
Vector Machine) classifier. Classification models learned with different features
are combined by late fusion using an average weighting scheme.

Shen et al. [27] (Technicolor team) used both audio and keyframe-based
features provided for the task. They used such features to train two different
deep neural network architectures.

Xu et al. [29] (BigVid team) used both audio and keyframe-based features
provided for the task. Also, they extracted semantic features based on sentiment
and style attributes. Average pooling over all the keyframe-based features was
applied to compute a single representation for each shot. Such features were
used to train three different learning models: a classification model using SVM,
a ranking model using Ranking SVM, and a deep neural network. In addition,
they also considered the combination between SVM and Ranking SVM using a
score-level average late fusion.

In this work, we propose a late fusion with rank aggregation methods for
combining ranking models learned with features of different modalities and by
different learning-to-rank algorithms.

3 Feature Extraction

Two main approaches were used to encode video content. One of them encodes
motion information by using histogram of motion patterns [2]. The other app-
roach is based on audio information and considers the well-known mel-frequency
cepstral coefficients [11].

3.1 Histogram of Motion Patterns

Instead of using any keyframe visual features, a simple and fast algorithm
was adopted to encode visual properties, known as histogram of motion pat-
terns (HMP) [2]. It considers the video movement by the transitions between
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frames. For each frame of an input video, motion features are extracted from the
video stream. For that, 2×2 ordinal matrices are obtained by ranking the inten-
sity values of the four luminance (Y) blocks of each macro block. This strategy
is employed for computing both the spatial feature of the 4-blocks of a macro
block and the temporal feature of corresponding blocks in three frames (previ-
ous, current, and next). Each possible combination of the ordinal measures is
treated as an individual pattern of 16-bits (i.e., 2-bits for each element of the
ordinal matrices). Finally, the spatio-temporal pattern of all the macro blocks
of the video sequence are accumulated to form a normalized histogram.

3.2 Mel-Frequency Cepstral Coefficients

Besides encoding visual properties using HMP, we also used a representation
very popular to encode audio information, called mel-frequency cepstral coef-
ficients (MFCC) [11]. They are capable of representing the short-time power
spectrum of a sound in an accurate and compact form. Initially, the audio sig-
nal is filtered with a Finite Impulse Response (FIR) filter to pre-amplify high
frequencies. Then, the resulting signal is converted to frames of small duration
(typically 20–40 ms). Next, such frames are weighted by a Hamming window
aiming at removing any negative effects on its edges. After that, the power spec-
trum of each frame is computed by applying the Discrete Fourier Transform
(DFT) and taking only the magnitude of the spectral coefficients. Thereafter, a
filter bank of overlapping triangular filters, also known as Mel-scale filter bank,
is used to smooth the spectrum and emphasize perceptually meaningful frequen-
cies. Once the filterbank energies are computed, the logarithm of them is taken
aiming at reducing large variations in energy, whose loudness is not perceived by
humans. Finally, the Discrete Cosine Transform (DCT) is applied to the log Mel
filterbank energies and then only the lower-order coefficients are used to form
the feature vector.

4 Ranking Models

The interestingness of videos is a subjective concept that depends on judgments
of different viewers on whether a video is interesting or not based on their expe-
rience in watching it. Due to this subjectiveness, the automatic prediction of the
interestingness degree of a video is a challenging task.

To approach this task, we adopted the strategy proposed by Jiang et al. [16],
where a machine learning model is trained aiming at comparing the interesting-
ness between video pairs. In this way, given two videos to the system, it indicates
the more interesting one. The basic idea is to use machine learning algorithms
to learn a ranking function based on features extracted from training data, and
then apply it to features extracted from testing data.

We have used four different learning-to-rank algorithms. The first three are
based on pairwise comparisons: Ranking SVM [17], RankNet [6], and Rank-
Boost [14]. The latter approach considers lists of objects by using ListNet [7].
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Ranking SVM [17] is a pairwise ranking method that uses the Support Vector
Machine (SVM) classifier to learn a ranking function. For that, each query and
its possible results are mapped to a feature space. Next, a given rank is associated
to each point in this space. Finally, a SVM classifier is used to find an optimal
separating hyperplane between those points based on their ranks.

RankNet [6] is a pairwise ranking method that relies on a probabilistic
model. For that, pairwise rankings are transformed into probability distribu-
tions, enabling the use of probability distribution metrics as cost functions. Thus,
optimization algorithms can be used to minimize a cost function to perform pair-
wise rankings. The authors formulate this cost function using a neural network
in which the learning rate is controlled with gradient descent steps.

RankBoost [14] is a pairwise ranking method that relies on boosting algo-
rithms. Initially, each possible result for a given query is mapped to a feature
space, in which each dimension indicates the relative ranking of individual pairs
of results, i.e., whether one result is ranked below or above the other. Thus, the
ranking problem is formulated as a binary classification problem. Next, a set of
weak rankers are trained iteratively. At each iteration, the resulting pairs are
re-weighted so that the weight of pairs ranked wrongly is increased whereas the
weight of pairs ranked correctly is decreased. Finally, all the weak rankers are
combined as a final ranking function.

ListNet [7] is an extension of RankNet that, instead of using pairwise rank-
ings, considers all possible results for a given query as a single instance, enabling
to capture and exploit the intrinsic structure of the data. Roughly speaking, it
is a listwise ranking method that relies on the probability distribution of per-
mutations. Initially, a given scoring function is used to define the permutation
probability distribution for the predicted rankings. Then, another permutation
probability distribution is defined for the ground truth. Next, the K-L divergence
is used to compute the cross entropy between these two distributions, which is
defined as the listwise ranking loss between them. Finally, a linear neural net-
work model is trained through the gradient descent algorithm, which is used to
minimize the listwise ranking loss.

5 Rank Aggregation Framework

Ranking has been established as a relevant task in many diverse domains, includ-
ing information retrieval, natural language processing, and collaborative filter-
ing [9]. However, in many situations, distinct ranking models produce different
results. Additionally, the information provided by different ranking results is
often complementary, and therefore, can be used for improving the effectiveness
of the systems. This is the objective of rank aggregation methods, which aim at
combining different rankings in order to obtain a more accurate one.

Rank aggregation approaches are often unsupervised, requiring no training
data and can be seen as a way for obtaining a consensus ranking when multiple
scores or ranked lists are provided for a set of objects. Different strategies have
been used, considering mainly the information of the score computed for an
object and the position (or rank) assigned to an object in a ranked list.
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Formally, a rank aggregation method can be defined as follows. Let C =
{vs1, vs2, . . . , vsn} be a collection of video shots, where n denotes the number
of shots for the video being analyzed. Let D = {D1,D2, . . . , Dd} be a set of
rankers. Let the function ρj(i) denotes the interestingness degree assigned by
the ranker Dj ∈ D to the video shot vsi ∈ C.

Based on the score ρj , a ranked list τj = (vs1, vs2, . . . , vsn) can be com-
puted. The ranked list τj can be defined as a permutation of the collection C,
which contains the most interesting video shots according to the ranker Dj . A
permutation τj is a bijection from the set C onto the set [n] = {1, 2, . . . , n}. For a
permutation τj , we interpret τj(i) as the position (or rank) of the video shot vsi
in the ranked list τj . We can say that, if vsi is ranked before vsl in the ranked
list τj , that is, τj(i) < τj(l), then ρj(i) ≤ ρj(k).

Given the different scores ρj and their respective ranked lists τj computed
by distinct rankers Dj ∈ D, a rank aggregation method aims to compute a fused
score F (i) to each video shot vsi. In this work, we used three different methods
based on score and rank information, described in the following sections.

5.1 Borda Method

The Borda [30] method combines the rank information of each video shot in
different ranked lists computed by different rankers. The Borda count method
uses rank information in voting procedures. Rank scores are linearly assigned to
video shots in ranked lists according to their positions and are summed directly.

More specifically, the distance is scored by the number of video shots not
ranked higher than it in the different ranked lists [21]. The new score FB(i) is
computed as follows:

FB(i) =
d∑

j=0

τj(i). (1)

5.2 Reciprocal Rank Fusion

The Reciprocal Rank Fusion [10] uses the rank information for computing a new
score according to a naive scoring formula:

FR(i) =
d∑

j=0

1
k + τj(i)

, (2)

The intuition behind the formula is based on the conjecture that highly-
ranked shots are significantly more relevant than lower-ranked shots [10]. The
constant k mitigates the impact of outlier rankers. For the experiments in this
paper, k = 16 is used.
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5.3 Multiplicative Rank Aggregation

A multiplicative approach [24] is used for the rank aggregation based on scores.
The use of a multiplication approach is inspired by the Näıve Bayes classi-
fiers. Given a set of scores computed by distinct rankers, such classifiers try
to estimate the relevance probability assuming conditional independence among
rankers. Considering the independence assumption, the scores of each ranker are
multiplied. The fused score FM (i) for a given video shot vsi is computed as:

FM (i) =
d∏

j=1

(1 + ρj(i)). (3)

6 Experiments and Results

Experiments were conducted on a benchmarking dataset provided by the Medi-
aEval 2016 organizers for the Predicting Media Interestingness Task [12]. This
dataset is composed of 78 Creative Commons licensed trailers of Hollywood-like
movies. It is divided into a development set of 52 videos (67%) and a test set
of 26 videos (33%). These videos were segmented by hand, producing a total of
7,396 video shots. After video segmentation, the development set has 5,054 shots
and the test set has 2,342 shots.

Each video shot was represented by the HMP and MFCC features, as dis-
cussed in Sect. 3. For encoding visual properties, we extracted the HMP features
directly from the video data. On other hand, for representing audio information,
we used the MFCC features provided for the task [15]. Unlike HMP, MFCC
produces multiple local features for a same video. To obtain a single representa-
tion, we built a Bag-of-Features (BoF) [5] model upon local MFCC features. In
the BoF framework, visual words [28] are obtained by quantizing local features
according to a pre-learned dictionary. Thus, a video sequence is represented as a
normalized frequency histogram of visual words associated with each local fea-
ture. In this work, we construct a codebook of 4000 visual words using a random
selection. For the dictionary creation, we used only the MFCC features extrated
from the development set.

Once the features were extracted, they were used as input to train machine-
learned rankers, as presented in Sect. 4. The SVMrank package1 [17] was used for
running Ranking SVM. The RankLib package2 was used for running RankNet,
RankBoost, and ListNet. Ranking SVM was configured with a linear kernel.
RankNet, RankBoost, and ListNet were configured with their default parameter
settings. All those approaches were calibrated through a 4-fold cross validation
on the development set. Next, the trained rankers were used to predict the
rankings of test video shots. The rankings associated with the video shots of a
same movie trailer were normalized using a z-score normalization. After that,
the normalized rankings of all the rankers are combined using our proposed
1 https://www.cs.cornell.edu/people/tj/svm light/svm rank.html.
2 https://sourceforge.net/p/lemur/wiki/RankLib/.

https://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
https://sourceforge.net/p/lemur/wiki/RankLib/
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framework, producing the final prediction scores. Finally, a thresholding method
was applied to transform the prediction scores into binary decisions. It was found
empirically that better results were obtained when a video shot is classified as
interesting if its prediction score is greater than 0.7; otherwise, it is classified as
non-interesting.

The effectiveness of our strategy was assessed using Mean Average Precision
(MAP), which is the official evaluation metric adopted in the task. Our results
were compared with those reported by Almeida3 [1], which ranked 1st out of 10
groups in the MediaEval 2016 Predicting Media Interestingness Task.

Table 1 presents the results obtained by the HMP and MFCC features in iso-
lation. On the development set, by analyzing the confidence intervals, it can be
noticed that the performance of the different learning-to-rank algorithms is sim-
ilar, with a small advantage to Ranking SVM. On the test set, however, Ranking
SVM provided the best results for HMP whereas ListNet was the best for MFCC.
These results indicate that the fusion of such learning-to-rank algorithms may
be promising.

Table 1. Results obtained by HMP and MFCC on the development set using the
machine-learned rankers in isolation.

Feature Ranker Development set Test set

Avg. Conf. Interval (95%)

Min. Max.

HMP Ranking SVM 15.19 13.99 16.38 18.15

RankNet 13.82 12.09 15.55 16.17

RankBoost 14.67 12.93 16.42 16.17

ListNet 13.32 12.06 14.57 16.56

MFCC Ranking SVM 14.19 12.27 16.12 15.87

RankNet 13.33 11.49 15.17 17.10

RankBoost 12.53 11.55 13.51 15.62

ListNet 13.45 12.20 14.71 17.57

For combining the results provided by different features and machine-learned
rankers, we adopted the strategy proposed by Almeida et al. [3]. Initially, we
sorted the individual results obtained by each pair (feature & ranker) in a
decreasing order of MAP. Then, each pair was selected according to its rank,
i.e., the best was the first, the second best was the second, and so on. At each
step, the next pair was combined with all the previous ones, as discussed in
Sect. 5.

Figure 1 shows the MAP scores obtained by different rank aggregation meth-
ods on the development set. We show the behavior of such methods for combining
3 The results reported by Almeida [1] refer to those obtained using only the HMP

feature and are presented in Table 1.
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the most effective pairs according to the average individual results achieved in
the development set (see Table 1). The horizontal line denotes the MAP score for
the best pair in isolation and forms a baseline for our proposed framework. The
vertical line indicates the set of pairs which achieved the highest MAP score
when combined with the rank aggregation methods. The error bars represent
95% confidence intervals computed from the 4 folds.

Fig. 1. MAP obtained by different rank aggregation methods on the development set.

We can see that, as more pairs are considered for late fusion, more effective
results are obtained, until reach a peak. This is an expected behavior, because dif-
ferent features and machine-learned rankers may complement each other, which
aggregates more information. From a certain point, however, non-relevant results
from the less effective pairs exceed relevant results from the most effective ones
and the gain decreases. By analyzing the confidence intervals, it is important to
note that there is a high variance among the 4 folds. These results indicate that
the ordering defined by such folds, i.e., from the most to the least effective pairs,
is not consistent. This ordering is used for selecting the pairs to be combined by
the rank aggregation methods.

Figure 2 shows the MAP scores obtained by different rank aggregation meth-
ods on the test set. In Fig. 2(a), features and machine-learned rankers were
selected for late fusion with rank aggregation methods in a decreasing order
of their average individual results on the development set (see Table 1). Notice
that the rank aggregation methods did not improve the best individual result
(i.e., HMP & Ranking SVM). The main reason for such results is the selection
strategy adopted for defining the pairs to be used for combination.

In Fig. 2(b), we replicate the previous experiment, however a different selec-
tion strategy was adopted. In this figure, we show the MAP scores as the most
effective pairs are used for combination. Unlike the previous experiment, instead
of considering the decreasing order of average individual results from the devel-
opment set, the ordering was defined based on the individual results achieved
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Fig. 2. MAP obtained by different rank aggregation methods on the test set.

in the test set (see Table 1). As we can see, the best fusion result was obtained
by the Borda method in combining the four most effective pairs (i.e., HMP &
Ranking SVM, MFCC & ListNet, MFCC & RankNet, HMP & ListNet), which
achieved a MAP score equals to 19.97%, yielding gains of more than 10% with
respect to the best single result (i.e., HMP & Ranking SVM).

Such positive results indicate the potential of rank aggregation methods for
combining multimodal information and improving the interestingness prediction.
At the same time, the importance of the selection strategy is also evident. The
better results presented by the set of pairs defined by the effectiveness order on
the test set indicate that unsupervised selection procedures can be exploited.
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7 Conclusions

This paper presented a novel approach for predicting the interestingness of
videos. Our method is based on combining the features of audio and visual
modalities with rank aggregation methods. The proposed strategy relies on a
late fusion of ranking models learned with different learning-to-rank algorithms.

Our approach was validated in the dataset of the MediaEval 2016 Predict-
ing Media Interestingness Task. Conducted experiments demonstrate that our
multimodal strategy yields better video interestingness prediction results when
compared with those based on a single modality (either audio or visual infor-
mation). Also, we show that, by using a proper selection strategy, the rank
aggregation methods can be used to improve the overall performance, achieving
significant gains in comparison with state-of-the-art solutions.

Future work includes the evaluation of other features (e.g., keyframe-based
methods [13,25]), especially those encoding information from different modal-
ities, as well as perform an extensive study on smarter selection strategies for
combining learning-to-rank algorithms (e.g., genetic programming [4]).
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Abstract. The goal of video cosegmentation is to jointly extract the
common foreground regions and/or objects from a set of videos. In this
paper, we present an approach for video cosegmentation that uses graph-
based hierarchical clustering as its basic component. Actually, in this
work, video cosegmentation problem is transformed into a graph-based
clustering problem in which a cluster represents a set of similar supervox-
els belonging to the analyzed videos. Our graph-based Hierarchical Video
Cosegmentation method (or HVC) is divided in two main parts: (i) super-
voxel generation and (ii) supervoxel correlation. The former explores only
intra-video similarities, while the latter seeks to determine relationships
between supervoxels belonging to the same video or to distinct videos.
Experimental results provide comparison between HVC and other meth-
ods from the literature on two well known datasets, showing that HVC
is a competitive one. HVC outperforms on average all the compared
methods for one dataset; and it was the second best for the other one.
Actually, HVC is able to produce good quality results without being too
computational expensive, taking less than 50% of the time spent by any
other approach.

Keywords: Graph-based segmentation · Video cosegmentation ·
Hierarchical clustering

1 Introduction

The goal of video cosegmentation is to jointly extract the common foreground
regions and/or objects from a set of videos. The video cosegmentation can be con-
sidered weakly supervised [7], since the presence of common foreground regions
and/or objects in multiple videos provides some indication that is not available
to the unsupervised problem of segmentation for a single video. That additional
information may help, but it may not be enough to reduce the ambiguity in video
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cosegmentation of general content, due to the presence of multiple foreground
regions and/or objects with low contrast to the background.

In this paper, we present a novel approach for video cosegmentation that
uses graph-based hierarchical clustering as its basic component. Our graph-based
Hierarchical Video Cosegmentation method (HVC) presents two main technical
contributions. The former is the adoption of a simple graph-based hierarchical
clustering method as key component of the framework which respects two impor-
tant principles of multi-scale set analysis, i.e., causality and location principles
[9]. Therefore, it is able to produce a set of video segments that are more homo-
geneous and whose borders are better defined using simple features to calculate
dissimilarity measure between neighboring pixels and voxels (instead of several
and expensive features which are very common in other approaches found in
the literature). The second one is the removal of the need for parameter tuning
and for the computation of a segmentation at finer levels, since it is possible to
compute any level without computing the previous ones.

The few existing methods for video cosegmentation are all based on low-
level features. In [11], the authors separated foreground and background regions
through an iterative process based on feature matching among video frame
regions and spatio-temporal tubes. The video cosegmentation method presented
in [4] can extract multiple foreground objects by learning a global appearance
model that connects segments of the same class. It also uses the Bag-of-Words
(BoW) representation for multi-class video cosegmentation. While BoW provides
more discriminative ability than basic color and texture features, they may be
susceptible to appearance variations of foreground objects in different videos,
due to factors such as pose change. In [15], the authors proposed a method
which employs the object proposal [5] as the basic element, and uses the regu-
lated maximum weight clique method to select the corresponding nodes for video
multi-class segmentation. Finally, in [7], the authors proposed a multi-state selec-
tion graph in which a node representing a video frame can take multiple labels
that correspond to different objects (also based on object proposal [5]). In addi-
tion, they used an indicator matrix to handle foreground objects that are missing
in some videos, and they also presented an iterative procedure to optimize an
energy function along with that indicator matrix.

The paper is organized as follows. Section 2 presents concepts about graph-
based hierarchical clustering used in this work. While Sect. 3 describes our
method to cope with video cosegmentation problem, Sect. 4 presents experi-
mental results of our approach together with a comparative analysis with others
methods from the literature. Finally, we draw some conclusions in Sect. 5.

2 Graph-Based Hierarchical Clustering

Following the seminal ideas proposed in [10], a hierarchy of partitions based on
observation scales can be computed using a criterion for region-merging popu-
larized by [6]. Moreover, it satisfies two important principles of multi-scale set
analysis, i.e., causality and location principles [9]. Namely, and in contrast with
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the approach presented in [6], the number of regions is decreasing when the scale
parameter increases, and the contours do not move from one scale to another.

Thanks to that, one can compute the hierarchical observation scales for any
graph, in which the adjacent graph regions are evaluated depending on the order
of their merging in the fusion tree, i.e., the order of merging between connected
components on the minimum spanning tree (MST) of the original graph. Actu-
ally, one does not need to produce explicitly a hierarchy of partitions, since a
weight map with observation scales can be used to infer the desired hierarchy,
e.g., by removing those edges whose weight is greater than a desired scale value.
This map is a new edge-weighted tree created from MST in which each edge
weight corresponds to the scale from which two adjacent regions connected by
this edge are correctly merged, i.e., there are no other sub-regions of these regions
that might be merged before these two.

Following [10], for computing the weight map of observation scales, we con-
sider the criterion for region-merging proposed in [6] which measures the evidence
for a boundary between two regions by comparing two quantities: one based on
intensity differences across the boundary, and the other based on intensity dif-
ferences between neighboring pixels within each region. More precisely, in order
to know whether two regions must be merged, two measures are considered. The
internal difference Int(X) of a region X is the highest edge weight among all the
edges linking two vertices of X in MST. The difference Diff (X,Y ) between two
neighboring regions X and Y is the smallest edge weight among all the edges
that link X to Y . Then, two regions X and Y are merged when:

Diff (X,Y ) ≤ min
{

Int(X) +
λ

|X| , Int(Y ) +
λ

|Y |
}

(1)

in which λ is a parameter used to prevent the merging of large regions, i.e.,
larger λ forces smaller regions to be merged.

The merging criterion defined by Eq. (1) depends on the scale λ at which the
regions X and Y are observed. More precisely, let us consider the (observation)
scale SY (X) of X relative to Y as a measure based on the difference between
X and Y , on the internal difference of X and on the size of X:

SY (X) = (Diff (X,Y ) − Int(X)) × |X|. (2)

Then, the scale S(X,Y ) is simply defined as:

S(X,Y ) = max(SY (X), SX(Y )). (3)

Thanks to this notion of a scale, Eq. (1) can be written as:

λ ≥ S(X,Y ). (4)

The core of [10] is the identification of the smallest scale value that can be
used to merge the largest region to another one while guaranteeing that the
internal differences of these merged regions are greater than the value calculated
for smaller scales. The hierarchization of this principle has been successfully
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applied to several tasks: image segmentation [10], video segmentation [12–14],
and video summarization [3]. In next section, we present our proposal to extend
its application to the video cosegmentation problem.

3 Proposed Method

In this work, video cosegmentation problem is transformed into a graph-based
clustering task in which a cluster (or connected component of the graph), com-
puted from a graph partition, represents a set of similar supervoxels belonging
to the analyzed videos. In order to do that, our proposed method, named HVC,
is divided in two main parts: (i) supervoxel generation; and (ii) supervoxel corre-
lation. The former explores only intra-video similarities, while the latter seeks to
determine relationships between supervoxels belonging to the same video (intra-
video similarity) or to distinct videos (inter-video similarity).

Figure 1 illustrates the steps of HVC method. First, each video is transformed
into a video graph (step 1). Then, to explore the intra-video similarity, a hierar-
chy is computed from each video graph (step 2) and the identification of video
segments (supervoxels) is made from each hierarchy (step 3). For each video, its
set of supervoxels is described (step 4) and a single supervoxel graph is generated
(step 5) containing all supervoxels from every video, in order to analyze both
intra and inter-video similarities. Again, another hierarchy is computed from

Fig. 1. Outline of our method: each video is transformed into a video graph (step 1);
a hierarchy is computed from each video graph (step 2); the identification of video
segments (supervoxels) is made from each hierarchy (step 3); each set of supervoxels is
described (step 4) and a single supervoxel graph is generated (step 5); another hierarchy
is computed from supervoxel graph (step 6); a partition of supervoxel graph is obtained
(step 7); and, finally, the identification of connected components is made (step 8).
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supervoxel graph (step 6) and a partition of supervoxel graph is obtained (step
7). And, finally, the identification of connected components (i.e., “cosegments”)
is made (step 8).

An example of HVC results can be seen in Fig. 2 for both parts: supervoxels
generation and correlation. The first part – supervoxel generation (steps 1 to
3) – adopts a hierarchical video segmentation (very similar to HOScale method
proposed in [13,14]) that helps producing supervoxels that are more homoge-
neous and whose borders are better defined (HOScale exhibits high values for
3D segmentation accuracy and boundary recall and a low undersegmentation
error [13,14]). The second part – supervoxels correlation (steps 4 to 8) – also uti-
lizes a graph-based hierarchical clustering method based on [10], but applied to
a complete graph generated from video segments obtained before. This removes
the need for parameter tuning, resulting in a method that is not dependent on
the hierarchical level, and consequently, making possible to compute any level
without computing the previous ones [10]. Moreover, this is done using simple
features to calculate dissimilarity measure between neighboring pixels and voxels
(more details are given in Sect. 4).

Video 2Video 1

Fig. 2. HVC results for two videos with the same pair of vases. First row presents some
samples of the original video frames. Video segments are illustrated at the second
line (i.e., pixels with the same color belong to the same supervoxel); and, finally,
cosegmentation results are presented at the third line (i.e., the same color is adopted
to present pixels from common regions between videos).

The method HVC depends on: (i) the dissimilarity measure used in video
graphs; (ii) the minimum size of a video segments (minvs); (iii) the number of
those segments (nvs) per video; (iv) the dissimilarity measure used in supervoxel
graph; (v) the minimum size of connected component (mincc) for eliminating
outliers during supervoxel clustering step; and (vi) the number of connected
components (ncc) used for obtaining a video cosegmentation.

4 Experiments

In order to evaluate our proposed method HVC, we used two well-known
datasets: (i) ObMiC [7,8]; and (ii) MOViCS [4]. ObMiC dataset [7,8] is com-
posed of four sets of video pairs each with two foreground objects in common,
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and the ground truth is manually labeled for each frame. MOViCS dataset [4]
contains four video sets with 11 videos in total, and five frames of each video
are labeled with ground truth at the pixel level.

During supervoxel generation, video graphs are the ones induced by the 26-
adjacency pixel relationship, in which edge weights are calculated by a simple
color gradient computed using the Euclidean distance in Lab color space, and
we set nvs to 100, 200, 300, 400, and 500. The supervoxel graph is generated
as a complete graph, combining every possible number of video segments. In
order to improve the strength of the relationship between supervoxels related
to objects (or foreground regions) belonging to the same video (i.e., intra-video
similarity) an objectness measure (i.e., a value which reflects how likely an image
window covers an object of any category [1]) was used. The average value of
objectness for every supervoxel was computed from the objectness values from its
pixels. Following [1], to calculate the objectness value for a pixel p, the objectness
measure was applied to 1,000 random windows for each video frame and the
measure obtained for each window is added if it contains the pixel p. Actually,
we adopted a normalized version of that objectness measure per pixel, called
heatmap, in which pixels values are rescaled to [0, 1] and used to produced a
pseudo-colored image where areas with high probability of containing an object
are shown in red, while dark blue indicates the absence of any object (see Fig. 3).
Finally, ncc is set to 5%, 10%, 15%, 20%, and 25% of the total number of nodes
of the supervoxel graph.

Fig. 3. Examples of heatmaps generated from objectness measure. (Color figure online)

We have compared our method HVC against two cosegmentation methods
from the literature1: (i) Regulated Maximum Weight Cliques (RMWC) [15]; and
(ii) Multi-state Selection Graph (MSG) [7]. Differently from [7], the used MSG
implementation does not have any post-processing, since the available code does
not have any pixel-level refinement step in it. This allows a much fair comparison
among different approaches because we can focus on the actual results generated
by the cosegmentation methods (instead of considering improvements from post-
processing steps that may be applied to the results of any approach).

To assess the quality of obtained cosegmentation results, we adopted two
metrics (similar to [7]) to evaluate accuracy and error rate: (i) the aver-
age Intersection-over-Union (IoU); and (ii) the average per-frame pixel error
(pFPE), respectively. We present IoU and pFPE scores that are optimal con-
sidering a constant scale parameter for the whole database (ODS) and a scale

1 RMWC is available at http://www.dromston.com/projects/video object
cosegmentation.php and MSG could be found at http://hzfu.github.io/proj
video coseg.html.

http://www.dromston.com/projects/video_object_cosegmentation.php
http://www.dromston.com/projects/video_object_cosegmentation.php
http://hzfu.github.io/proj_video_coseg.html
http://hzfu.github.io/proj_video_coseg.html
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parameter varying for each video (OVS) (analogously to [2]). Thus, HVCD and
HVCV stand for the results of HVC with a constant scale parameter for the
whole database (ODS) and a scale parameter varying for each video (OVS),
respectively.

Table 1 presents accuracy results on both datasets. The method HVCV out-
performs on average RMWC for both datasets (for MOViCS dataset, the dif-
ference in average accuracy is only 1%). The performance of MSG is very poor
on MOViCS dataset, but it has presented an average accuracy 5% greater than
HVCV on ObMiC dataset. As one can see in Fig. 4, good accuracy results are
related to low values of pFPE. Actually, MSG method presented the lowest pFPE
value on average for ObMiC dataset and the highest one for MOViCS dataset,
which could explain its good results for the former and poor performance for the
latter (e.g., see the results for video class Tiger on MOViCS dataset).

In order to assess qualitatively the obtained cosegmentation results, some
examples for different approaches on ObMiC dataset are shown in Fig. 5. Results

Table 1. Accuracy results for different methods on ObMiC and MOViCS datasets.

(a) ObMiC dataset

Video class RMWC MSG HVCV HVCD

Dog 0.11 0.62 0.54 0.54
Monster 0.41 0.53 0.65 0.55
Skating 0.15 0.59 0.40 0.22
Person 0.23 0.32 0.26 0.22
Average 0.22 0.51 0.46 0.38

(b) MOViCS dataset

Video class RMWC MSG HVCV HVCD

Chicken 0.58 0.27 0.43 0.33
Giraffe 0.35 0.29 0.44 0.35
Lion 0.55 0.14 0.53 0.27
Tiger 0.40 0.10 0.47 0.36
Average 0.47 0.20 0.48 0.33

dog monster skating person avg
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(a) IoU on ObMiC dataset.

dog monster skating person avg
0

0.5

1

1.5

2

2.5

·104

RMWC
MSG

HVC-OVS
HVC-ODS

(b) pFPE on ObMiC dataset.
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(c) IoU on MOViCS dataset.
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(d) pFPE on MOViCS dataset.

Fig. 4. Accuracy and error on the ObMiC and MOViCS dataset for different methods.
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are presented for two videos from each class, along with the original video frames
and the expected results (i.e., ground truth). For video class Dog, RMWC results
were very poor, while MSG and HVC produced similar results (with a little
advantage for MSG method). The same pattern can be observed for video class
Skating (but in this case MSG method was even better). For video class Mon-
ster, both RMWC and MSG methods have failed to identify one of the expected
objects. Moreover, MSG method has assigned an instance of those objects from
the first video to a different one in the second video. Finally, for video class Per-
son, HVC was able to identify both persons (without the heads), while RMWC
and MSG have continued failing in identifying one of them. This is similar to
what happened for class Monster, except that in this case an object instance from
the first video was divided and assigned to distinct parts of the same object (by
RMWC) or to segments belonging to two different objects (by MSG).

MonsterDog

Skating Person

Fig. 5. Cosegmentation results on ObMiC dataset. From top to bottom: original video
frames, ground truth, RMWC [15], MSG [7], and our proposed method HVC.
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Similarly, some results produced by different approaches on MOViCS dataset
are shown in Fig. 6. As before, results are presented for each class, along with
the original video frames and the expected results (i.e., ground truth), but some
classes have more than two results since they have more videos (03 for class Tiger
and 04 for class Lion). For classes Chicken and Lion, RMWC has shown the best
results followed closely by HVC method, while MSG results were very poor (it
has divided some objects and has also considered some similar object instances
as distinct). Finally, for classes Giraffe and Tiger, the opposite occurred: HVC
presented best results followed by RMWC (while MSG showed some improve-
ment only for class Giraffe).

Chicken Tiger

Giraffe Lion

Fig. 6. Cosegmentation results on MOViCS dataset. From top to bottom: original
video frames, ground truth, RMWC [15], MSG [7], and our proposed method HVC.

It is worth to mention that, for the class Dog, the proposed method HVC
was not able to relate any segment of the second video to anyone belonging to
the first one. This problem probably occurs due to the low differences between
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color averages of regions belonging to the same video. The same problem has
also happened with RMWC (see the third video of the class Tiger).

Finally, HVC method is able to obtain very good results on both datasets
using only a small amount of time. Table 2 presents total and average (per frame)
time spent for tested methods on both datasets. For ObMiC dataset, HVC spent
only 45.5% and 32.2% of the time spent on average by RMWC and MSG, respec-
tively; while it spent on average 26.6% and 44.5% of the time spent by RMVC
and MSG, respectively, for MOViCS dataset. The method MSG outperforms
HVC on ObMiC dataset, but since it uses a great number of (computational
expensive) features it took 211% more time to obtain the its results.

Table 2. Time spent for different methods on ObMiC and MOViCS datasets.

Method ObMiC dataset MOViCS dataset

Total Avg. per frame Total Avg. per frame

RMWC 14h 28 m 25 s 04m 13 s 128 h 24 h 50 14m 59 s

MSG 20 h 24 m 36 s 05m 57 s 76 h 40 h 12 08m 57 s

HVC 06 h 33 m 10 s 01m 55 s 34 h 04 h 11 03m 59 s

5 Conclusion

In this paper, we present a novel approach for video cosegmentation that uses
graph-based hierarchical clustering as its basic component. Our method HVC
presents two main technical contributions. The former is the adoption of a simple
graph-based hierarchical clustering method as key component of the framework
which respects two important principles of multi-scale set analysis, i.e., causality
and location principles [9]. Therefore, it is able to produce a set of video segments
that are more homogeneous and whose borders are better defined using simple
features to calculate dissimilarity measure between neighboring pixels and vox-
els (instead of several and expensive features which are very common in other
approaches found in the literature). The second one is the removal of the need
for parameter tuning and for the computation of a segmentation at finer levels,
since it is possible to compute any level without computing the previous ones.

In this work, video cosegmentation problem is transformed into a graph-based
clustering task in which a cluster (or connected component of the graph), com-
puted from a graph partition, represents a set of similar supervoxels belonging
to the analyzed videos. Our proposed method HVC is divided in two main parts:
(i) supervoxel generation; and (ii) supervoxel correlation. The former explores
only intra-video similarities, while the latter seeks to determine relationships
between supervoxels belonging to the same video (intra-video similarity) or to
distinct videos (inter-video similarity). Moreover, HVC uses simple features to
calculate dissimilarity measure between neighboring pixels and voxels.
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Experimental results provide quantitative and qualitative comparison involv-
ing new approach and other methods from the literature on two well known
datasets, showing that HVC is a competitive approach. Concerning quality mea-
sures, HVC outperforms on average both tested methods for one dataset; and it
presents on average an accuracy of 5% less than the best method for the other
dataset. In spite of that, HVC method represents an attractive approach which
is able to produce good quality results without being too computational expen-
sive. When compared to the other methods, it took less than 50% of the time
spent by any other approach.

In order to improve and better understand our results, further works involve
inclusion of new features and automatic identification of the number of connected
components; and also the application to another datasets.
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10. Guimarães, S.J.F., Cousty, J., Kenmochi, Y., Najman, L.: A hierarchical image
segmentation algorithm based on an observation scale. In: Gimel’farb, G., et al.
(eds.) SSPR/SPR 2012. LNCS, vol. 7626, pp. 116–125. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-34166-3 13

11. Rubio, J.C., Serrat, J., López, A.: Video co-segmentation. In: Lee, K.M.,
Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7725, pp. 13–24.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-37444-9 2
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Abstract. In this paper, we proposed a method known as interest region
based motion magnification for amplification of invisible motions. This
method enables one to magnify subtle motion in the video for specific
objects of interest to the user. To achieve this task, we have used object
extraction using kernel K-means approach, automatic scribble drawing
using super pixels and Bezier curves, alpha matting, and Eulerian motion
magnification. The proposed method is tested on previously used video
sequences for motion magnification and our own new videos with large
background motion. We show the effectiveness of the proposed method
by comparing with Eulerian motion magnification technique. We have
presented visual results and performed no-reference video quality assess-
ment for original videos and motion magnified videos. We further discuss
the future improvements for motion magnification applications.

Keywords: Eulerian motion magnification · Object segmentation ·
Image matting · Spatial-temporal analysis

1 Introduction

Human visual system understands the neighboring environment and processes
the information through visible spectrum. The light reflected from the scene is
sensed by the eyes and the brain performs complex processes through a net-
work of neurons, receptors, and other specialized cells. Visualizing motion is the
process of interpreting the speed and direction of small particles or objects in
the nearby regions of a given scene. Human eyes can visualize the motion of
objects which are significant. However, motion which can not be visualized by
eyes might be important and might reveal invisible secrets actually present in
the scene. Video motion magnification is an active research area over the past
few years in which an imperceptible object motion is magnified and a synthetic
video is generated where small motions are made perceptible to the eyes.

Wu et al. proposed temporal filtering based motion magnification and called
it as Eulerian method [19] while improving the Lagrangian method that is based
on motion tracking [7]. It follows the same fundamentals of fluid dynamics for
Lagrangian and Eulerian approaches. Most of the work done in the motion mag-
nification follows the uniform magnification for the entire scene. The proposed
method tries to consider only the selected regions of interest from a video which
c© Springer International Publishing AG 2017
S. Battiato et al. (Eds.): ICIAP 2017, Part I, LNCS 10484, pp. 27–39, 2017.
https://doi.org/10.1007/978-3-319-68560-1_3
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exhibit imperceptible motion and therefore, need to be magnified. The proposed
approach is also shown to reduce noise and remove outliers in the generated syn-
thetic magnified video. Using this approach, the video is not only constrained
to specific conditions, such as single object videos, and any given video could be
processed in order to magnify the regions of interest.

It is not a completely automatic approach and requires user intervention
to specify the object of interest. It is challenging as it follows many steps to
complete and error incurred in one step can lead to erroneous output. Hence, it
is needed to choose appropriate methods during each step. Recently, researchers
have used Eulerian motion in tremor assessment [5] and endoscopic surgery [8].
Interest region based motion magnification can be very helpful in these types of
applications to magnify a particular region or object.

The primary contributions of the proposed work are listed below.

1. Interest region based motion magnification has been performed for a given
video with objects exhibiting imperceptible motion.

2. In addition, we show that the noise due to other sources present in the mag-
nified region is reduced.

3. The approach is shown to work on videos of different natural scenes with
objects exhibiting different kinds of motion and a video quality assessment is
presented to check the video quality for noise.

The rest of the paper is organized as follows. In Sect. 2, related work is
discussed. The framework of the proposed method including brief description of
the techniques used is explained in Sect. 3. Experiments along with the results
are discussed in Sect. 4. Finally, the paper is concluded in Sect. 5.

2 Related Work

Researchers have worked in artificial motion manipulation over the past decade
and proposed different approaches using optical flow for many applications. Liu
et al. proposed motion magnification for subtle changes in video [7]. They have
used video registration to suppress camera shake motion, feature tracking to
group correlated object motions, segmentation of motion trajectories, motion
magnification followed by rendering of magnified video to fill the gaps. Wang et
al. proposed “Cartoon Animation Filter” that produces motion exaggeration in
artificial video of input video, which they claim to be more animated and alive.
It subtracts the smoothed and time shifted version of second order derivative of
signal from original signal [18]. These are Lagrangian approaches which make
use of optical flow for motion magnification. First Eulerian motion magnification
approach is proposed by Wu et al. [19]. Instead of calculating optical flow explic-
itly, they have magnified the temporal difference between the frames. This work
is extended in phase-based magnification using complex steerable pyramids for
noise reduction [16]. They magnified local phase variations in all the sub-bands
of complex steerable pyramids. To improve the time complexity, Riesz pyramids
are proposed for phase based motion magnification [17].
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Motion magnification has been utilized in many applications. Deviation mag-
nification of geometric structures is proposed by Wadhwa et al. [15]. Basic para-
metric shapes (e.g., lines and circles) are fitted in object of still images, and
sampling and image matting are performed on particular object shape. Devia-
tion is computed and magnified by a factor, and a rendered image is obtained
in which deviation is magnified. Raja et al. proposed presentation attack detec-
tion scheme for iris recognition system by motion magnification of the phase
information in the eye region [9]. Motion magnification has been used for face
spoofing detection [2]. Subtle facial motions have been magnified, and texture
based features have been used to detect the spoofing. Davis et al. used motion
magnification to infer material properties by emphasizing small vibrations in the
object [3].

Interest region based motion magnification is beneficial in terms of reducing
outliers and noise. To the best of our knowledge, two papers have been proposed
towards this direction. The first work is proposed by Kooij et al. in which they
used depth maps to magnify objects of interest specified by depths [5]. However,
it requires extra information of depth maps which is an additional task. On the
other hand, our method works with only a given video for motion magnification.
In the second work, Elgharib et al. proposed motion magnification in the presence
of large motions and called it DVMAG (Dynamic video magnification) [4]. They
calculated alpha matte of each frame by user specified scribbles and magnified
motion in respective alpha mattes. They applied texture synthesis to fill the gaps
in magnified videos. Our proposed method is different from [4] in the sense that
DVMAG requires a large amount of user interaction to draw scribbles, and the
proposed method required only two coordinates of the region of interest that
can be easily automated in future using object proposals [10,11]. The proposed
method, unlike [4], does not require texture synthesis to fill the detail gaps.

3 Interest Region Based Motion Magnification

Most of the motion magnification techniques which have been proposed in
the past, are for whole video frame irrespective of the object of interest and
restrain to record the video in such conditions that most of the frame area should
contain the object of interest with minimum background. Hence, they can not
be applied to standard video recorded in regular conditions, e.g., fast moving
objects in the background. It will lead to more noise during the magnification.
In the proposed work, motion magnification has been applied to specific objects
in the video. Since the motion magnification is for imperceptible motions, the
region of interest is assumed to be static in the video.

Challenges: Our method is based on the observation that large motions in
background may affect the motion magnified video and bring extensive noise.
Solving this issue bring new challenges in the work. The main challenge of this
work is to get the object of interest and perform an automatic motion magnifi-
cation. Previous two works [4,5] require additional information to get the object
of interest. However, we made it possible with only two pixel locations marked
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by user on the first frame. The rest of the work is handled by an automated
algorithm with no user intervention. The extracted object contains a sharp and
distorted boundary, hence it can not be used as a mask. To get a fuzzy boundary
mask, image matting is performed and for that automatic scribbles are drawn
on background and foreground objects. From extraction of object of interest to
scribble drawing, image matting, and motion magnification, all are performed
automatically.

This algorithm has three main steps. In the first step, an object of interest
is extracted from the first frame of video using kernel k-means approach [14],
discussed in Sect. 3.1. In the second step, the image matting is performed on
the input frame as explained in Sect. 3.2. To perform image matting, scribbles
are required to be drawn on the foreground and background image parts which
is done automatically. In the third step, video magnification is performed using
Eulerian video magnification approach [19] as discussed in Sect. 3.3.

3.1 Object Segmentation

K-means segmentation approach is a partitioning method based on the sum of
squared error in each cluster. In case of two segments C and C̄, likelihood in
energy function can be written as

∑

p∈C

||Ip − μC ||2 +
∑

p∈C̄

||Ip − μC̄ ||2 (1)

Kernel K-means (kKM) segmentation approach is adopted in the proposed
work [14]. kKM is a well proven data clustering technique in machine learning,
that makes use of kernel tricks to separate the complex structures which are
non-linearly separable in the input space. Kernel K-means maps the data into
a higher dimensional Hilbert space using a non-linear mapping ψ. The energy
function of standard K-means segmentation was replaced by the following in
kKM

Ek(C) =
∑

p∈C

||ψ(Ip) − μC ||2 +
∑

p∈C̄

||ψ(Ip) − μC̄ ||2 (2)

where C and C̄ are two segments, Ip are data points in clusters, μC and μC̄ are
cluster means for C and C̄ respectively. Detailed explanation regarding kKM,
adaptive kKM, and kernel bandwidth can be found in [14]. Object segmentation
using kKM is shown in Figs. 1(b) and 4.

3.2 Scribble Drawing and Alpha Matting

Scribbles are used to perform the image matting to extract foreground and back-
ground image regions. They specify the image regions which can be considered
clearly as foreground (white scribbles) and clearly as background (black scrib-
bles) as shown in Fig. 1(e). After the extraction of foreground object, black (on
background) and white (on foreground) scribbles need to be drawn on the most
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Fig. 1. (a) Original frame with manually drawn bounding box using coordinates
(x1, y1) and (x2, y2), (b) Segmented object using kernel K-means, (c) Eroded back-
ground image, (d) Eroded foreground image, (e) Black and white scribbles drawn on
background and foreground image using Bezier curves, and (f) Extracted alpha matte
using [6]

feasible spatial locations in the image in different shapes so that diverse image
regions can be covered through the scribbles. To achieve this, super pixel over
segmentation [1] and Bezier curves are employed [13].

Initially, morphological operations are applied so that scribbles can be drawn
only in the foreground or background part of image and not on the boundary
as it may lead to a erroneous alpha map. Eroded background and foreground
images are shown in Fig. 1(c) and (d). Bezier curves are drawn using six points
chosen near the centroid of each superpixel as mentioned in [13]. Scribbled image
is shown in Fig. 1(e).

Motion magnification in the interest region is a challenging problem, espe-
cially on the object boundary, and it should be applied to a finely segmented
object. Otherwise, it may lead to false video magnification. Hence, it is required
to perform matting to produce the best segmentation of the video frame with
fuzzy boundaries. Matting is an approach which smoothens the boundaries of
segmented objects and makes their appearance more natural while blending.
Intensity of pixels in the image can be expressed as a linear combination of F
(foreground) and B (background) pixels.

I(x, y) = α(x, y)F (x, y) + (1 − α(x, y))B(x, y) (3)

where α(x, y) is foreground opacity. We have used closed form solution for
extracting the alpha matte [6]. In this approach, F and B are assumed to be
smooth in a local window around each pixel. Equation 3 can be rewritten as

α(x, y) ≈ aI(x, y) + b,∀(x, y) ∈ w (4)

where a = 1
F−B , b = B

F−B and w is a small image window. A cost function J , is
minimized for α, a and b

J(α, a, b) =
∑

(p,q)∈I

( ∑

(x,y)∈w

(α(x, y) − a(p, q)I(x, y) − b(p, q))2 + εa(p, q)2
)

(5)
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which can be further modified in terms of only α. More details regarding the
closed form matting can be found in [6]. An example of image matting using this
approach is shown in Fig. 1(f).

3.3 Video Magnification

We have used Eulerian motion magnification approach that amplifies the tempo-
ral difference between consecutive frames [19]. It incorporates spatial and tem-
poral processing to highlight the small motion present in the video. Initially,
the video frames are decomposed into different spatial frequency bands using a
Laplacian filter. In temporal processing, a band pass filter is applied to magnify
few particular frequencies based on the application. Temporal filter is applied on
all spatial sub-bands and all pixels uniformly. The extracted temporal filtered
video frame is magnified by a factor γmag. The theory behind motion magnifica-
tion using temporal filtering follows first-order Taylor series expansion of signal
that is commonly used in optical flow estimation.

If I(x, t) is the image signal of position x and time t, then the modified signal
with γmag factor is given by

Î(x; t) = I(x; t) + γmagB(x; t) (6)

where B(x; t) is the result of the temporal bandpass filter. The motion magnifi-
cation factor γmag can be estimated using the following equation

(1 + γmag)δ(t) <
λc

8
(7)

where λc is the cut-off spatial frequency beyond which an attenuated version
of γmag is used, and δ(t) is the video motion signal. Detailed mathematical
explanation of the Eulerian motion magnification can be found in [19].

Input Video

Object extraction
using Kernel K

means

Alpha matte
initial frame

Scribble
drawing

Laplacian
Pyramid

Temporal
Filtering Imag

Imag ×  Alpha matte

∑ Reconstruction

Alpha matte 1

Alpha matte k

Alpha matte 2

γmag

process for all frames
process for first frame

First framework

Second framework

Fig. 2. Block diagram of the proposed framework. Blue lines shows the processes which
need to be performed for only first frame. Red lines shows the processes which need to
be performed for each frame of video. (Color figure online)
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3.4 Pipeline

The proposed work follows a sequential approach using the three steps discussed
above in order to achieve the task of motion magnification based on interest
region in videos. A small amount of user input is required to process. In the first
frame, user is asked to draw a box on the object of interest or to provide two
coordinates for the same. In Fig. 1(a), coordinates ((x1, y1), (x2, y2)) are shown
in blue marker and bounding box in red. Next, kernel K-means approach is
used to segment the object from the background. It gives an approximate object
segment, which is used to get alpha matte. The eroded background image is
fed to super pixel over segmentation, and scribbles are drawn on foreground
and background image regions using Bezier curves near each centroid of all the
superpixels. After this, image matting is performed on image and corresponding
alpha matte is calculated.

An object of interest which needs to be magnified is assumed to be static
in video with tiny motion. This assumption is valid as the motivation of the
proposed work is to magnify small motions. It relaxes the algorithm, as it requires
scribbles only in the first frame, and these scribbles are enough for other frames
as the object is not exhibiting large movements. On the basis of this assumption,
the following two types of frameworks are adopted in this work depending on
the object of interest in the given video.

1. If the motion of object lies inside the object or it is extremely tiny, then
alpha matte of only the first frame may work for all the frames. If this con-
dition is satisfied, then calculating alpha matte for only one frame will be
computationally very cheap as compared to the second framework.

2. In the second framework, alpha matte of each frame is calculated and further
utilized on magnified video frames.

In both the above mentioned approaches, the alpha matte is calculated for
the first frame or for all the frames. Other than that, video is magnified by a
magnification factor using temporal filtering and alpha matte is multiplied with
magnified temporal difference. In the first framework, same alpha matte of first
frame is multiplied with temporal differences of all the frames. Besides, in the
second framework, alpha matte of each frame is multiplied with corresponding
temporal difference. Finally, the magnified temporal difference of only the fore-
ground object (using alpha matte multiplication) is added to original frame.
Block diagram of both the frameworks is illustrated in Fig. 2.

4 Experiments and Discussion

The proposed method is tested on videos with subtle motion. First frame of each
video is shown in Fig. 3. We have used similar videos as [16,19] and some videos
are recorded in conditions with a moving background. For object extraction
using kKM, hard constraint and smoothness parameters can be set according
to the objects of interest. In most of the cases, hard constraints are set to ‘on’
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(b) (c)(a) (d)

(f) (g)(e)

Fig. 3. (a) Baby, (b) Camera, (c) Eye, (d) Woman, (e) Wrist, (f) Hand, and (g) Person.

as objects of interest must lie inside the box provided by the user. Smoothness
weight should be chosen more than zero to get a more flat image. An example
of object extraction with and without smoothness constraint is shown in Fig. 4.

(c)(b)(a)

Fig. 4. (a) Original frame of hand sequence, (b) Extracted object with no smoothness,
and (c) with .1 smoothness.

To remove the boundary of background and foreground image, erosion is
performed with a disk of 10 or 20 radius. Next, the scribbles are drawn on back-
ground and foreground using superpixels and Bezier curves. Superpixel count
can be placed from 50 to 100 depending on variability in the size of interest
regions. Parameter used in magnification, i.e., band pass frequencies, sampling
rate, magnification factor, and cut-off frequency are adopted from [19]. IIR, But-
terworth, and ideal temporal filters are used in experiments to obtain temporal
difference in frames. Results can be accessed online at: https://sites.google.com/
site/manishaverma89/publications/int-reg-motion-mag.

Results in the form of spatial-temporal plots, are illustrated in Figs. 5, 6,
7 and 8. In Fig. 5, plots of camera sequence are shown. Pixels of a random
column (shown in black line in Figs. 5, 6, 7 and 8) are plotted over time for each
frame. Time and pixel intensities are plotted on x and y axis respectively. The
first image in the Fig. 5 is the first frame of the camera sequence. Figure 5(a)
is time-space plot of the original sequence, and there is no variation in pixel
intensities over time. In Fig. 5(b), intensity variation of Eulerian method [19] is
shown. It is clearly visible that motion magnification adds noise in the video as
it magnifies the background. This problem will not appear if the background is
ideally motionless, however, that is a very unlikely situation. In Fig. 5(b) and
(c), only camera motion is visible as the background motion is not magnified.
Figure 5(b) and (c) follow the first and the second framework respectively. It is

https://sites.google.com/site/manishaverma89/publications/int-reg-motion-mag
https://sites.google.com/site/manishaverma89/publications/int-reg-motion-mag
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noticeable that since the camera sequence has very tiny motion, there is no such
difference in the first and second framework with respect to this example.

time

space
(a) (b) (c) (d)

Fig. 5. Comparison of Wu et al. [19] and proposed method on camera video sequence.
Original first frame and space-time plots of pixel intensities of (a) Original frame (no
motion), (b) Wu et al. method [19] (uniform motion magnification), (c) Proposed
method - first framework (interest region based motion magnification using first frame’s
alpha matte), and (d) Proposed method - second framework (interest region based
motion magnification using each frame’s alpha matte).

In a similar way, time-space plots are drawn for eye sequence. Iris is extracted
as a foreground object and magnified throughout all the frames. Magnification
using alpha matte (Fig. 6(c) and (d)) leads to noiseless magnification where only
iris is magnified, and other portions are unchanged as they were in original
sequence. However, Eulerian motion magnification magnifies the whole frame
(Fig. 6(b)).

time

space
(a) (b) (c) (d)

Fig. 6. Motion magnification comparison in eye video sequence. Original first frame
and space-time plots of pixel intensities of (a) Original frame, (b) Wu et al. method [19],
(c) Proposed method - first framework, and (d) Proposed method - second framework.

In the next two experiments, we have used videos with moving background.
A video is recorded in such condition where a still hand is placed in front of a
monitor displaying a video of waterfall. Hence the video has a subtle motion (of
hand) with moving background (waterfall). First frame of video with a horizontal
black line is shown for which the spatial intensity is plotted over time. Since the
background is moving, Wu et al. [19] approach leads to high noise in background
as shown in Fig. 7(b). On the other hand, our approaches (Fig. 7(c) and (d))
provide motion magnification with less noise.
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(d)(a)
space

time (c)(b)

Fig. 7. Motion magnification comparison in hand video sequence. Original first frame
and space-time plots of pixel intensities of (a) Original frame, (b) Wu et al. method [19],
(c) Proposed method - first framework, and (d) Proposed method - second framework.

In the last experiment, a video is recorded where a person is sitting motion-
less, and another person is moving behind the first person. In Fig. 8, we have
shown vertical and horizontal movements over time. In first column of Fig. 8(i)
and (ii), first frame of video is shown with vertical and horizontal black lines
respectively and corresponding motion graphs are shown in respective rows. Plot
of space and time of original video is shown in Fig. 8(a) for both vertical and hor-
izontal motions. The moving person is seen in the middle of all space-time plots,
as in the middle of video sequence, the background person comes in the contact of
foreground person. Extreme noise in the presence of the background is obtained
by Wu et al. approach. Head of person is considered as foreground and extracted
for motion magnification in the proposed approach and shown in Fig. 8(c) and
(d). The minor difference between the first and the second framework can be

(i)

(a) (b) (c) (d)time

space

(ii)

time

space
(a) (b) (c) (d)

Fig. 8. Motion magnification comparison in person video sequence with (i) vertical and
(ii) horizontal motions. Original first frame and space-time plots of pixel intensities of
(a) Original frame, (b) Wu et al. method [19], (c) Proposed method - first framework,
and (d) Proposed method - second framework.
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seen at the boundary of the foreground object when it comes in contact with
the background person.

We have presented a no-reference video quality assessment based on Video
BLIINDS [12]. It computes video statistics and perceptual features, and feeds
them to a learned support vector regressor for video quality prediction. Video
quality of four videos, i.e., original video, motion magnified video produced by
[19], motion magnified video using proposed framework 1, and proposed frame-
work 2 are measured using Video BLIINDS [12] and shown in Table 1. The
algorithm computes the differential mean opinion score (DMOS index), hence a
low score implies better quality of the video. The DMOS index for the original
video is less for almost all the videos. It is clearly visible that index of Wu et
al. method is highly exceeding from both of the proposed frameworks in all the
videos. There is a minor variation for proposed framework 1 and 2, and that
depends on various factors, e.g., the movement of object, scribbles drawn in the
first frame, and background motion. For two videos hand and person, the score
for proposed magnified video is less than the original video, that could be pos-
sible due to training of Video BLIINDS. Other than that, for all the videos, the
score using the proposed method is less than Wu et al. [19] method.

Table 1. Video quality assessment using video BLIINDS [12]

Video sequence Original Wu et al. [19] Proposed framework 1 Proposed framework 2

Baby −32.0891 77.62 54.12 53.99

Camera 9.21 109.44 62.46 76.42

Eye −108.69 76.77 61.02 60.59

Woman 36.29 91.77 69.18 68.22

Wrist −56.34 52.18 8.89 7.75

Person 41.36 110.63 26.57 30.19

Hand 82.51 114.70 62.88 69.27

5 Conclusion

In the proposed work, interest region based motion magnification is proposed
which helps in reducing noise and removing the outliers in motion magnification.
The proposed work makes use of object extraction, automatic scribble drawing,
image matting and motion magnification to achieve the task. The proposed
method would be very favourable for videos where the object of interest is not
focused in camera and other motions (excluding object of interest) are present
in the video. The proposed method is shown to work well on different videos as
compared to uniform motion magnification.

In the future work, we will try to employ semantic object detection techniques
and try to make a fully automatic system for magnification of specific objects
with no user intervention. Any existing motion amplification methods (phase
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based complex steerable pyramids and Reisz pyramids) can then be employed
to process the interest region. Region based motion magnification can be helpful
in many applications.

Acknowledgement. The authors would like to thank Young Scientists Startup
Research Grant, SERB-DST and Indian Institute of Technology Gandhinagar for
support.
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Abstract. In this work we start investigating the use of appropriately
learnt space-time primitives for modeling upper body human actions.
As a study case we consider cooking activities which may undergo large
intra class variations and are characterized by subtle details, observed
by different view points. With a BoK procedure we quantize each video
frame with respect to a dictionary of meaningful space-time primitives,
then we derive time series that measure how the presence of different
primitives evolves over time. The preliminary experiments we report are
very encouraging on the discriminative power of the representation, also
speaking in favor of the tolerance to view point changes.

Keywords: Spatio-temporal interest points · Motion primitives · Multi-
view motion analysis · Multi-view action analysis · Shearlet transform

1 Introduction

Understanding human motion and its regularities is a key research goal of
Human-Machine Interaction, with a potential to unlock more refined abilities
– such as the anticipation of action goals – and thus the design of intelligent
machines able to proficiently and effectively collaborate with humans [1,2].

In this ongoing work we are interested in investigating HMI functionalities,
where a machine (e.g. a robot) observes a human performing tasks and learns how
to discriminate among the ones characterized by different dynamic properties
[3]. We consider upper body human action primitives taking place in a specific
setting, cooking in our case. For the time being, we restrict our attention to the
actor, and do not exploit any contextual information which could be derived, for
instance, by the presence of a tool or an object.

Since some time we have assisted to a growing interest towards the so-called
space-time key-points. From the pioneering work of Laptev [4], who proposed an
extension to the space-time of corner points, soon followed by alternative and
possibly richer approaches [5,6], we have appreciated the power of these key-
points as low level building blocks for motion analysis and action recognition.
c© Springer International Publishing AG 2017
S. Battiato et al. (Eds.): ICIAP 2017, Part I, LNCS 10484, pp. 40–50, 2017.
https://doi.org/10.1007/978-3-319-68560-1_4
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Space-time key points mark special points where the signal undergoes a signif-
icant variation both in space and time, and for this reason they are quite rare.
They carry meaningful information in particular when we analyze distinctive
dynamic events, but they may be not as effective with more subtle actions or
gestures.

In this work, instead of retaining the sole information provided by these
hand-crafted space-time key-points, we learn ad hoc space-time local primitives
for a given (class of) action(s). Given a dynamic event, different meaningful
local primitives can be observed and associated with an appropriate meaning in
space and time [7]. To achieve this goal we follow and unsupervised approach and
consider a signal representation based on Shearlets [8,9]. Shearlets emerge among
multi-resolution models by their ability to efficiently capture anisotropic features,
to detect singularities [10,11] and to be stable against noise and blurring [12–14].
The effectiveness of Shearlets is supported by a well-established mathematical
theory and confirmed by a variety of applications to image processing [9,14,15].

We propose a pipeline to represent the space-time information embedded in
an image sequence. First, from the 2D + T shearlet coefficients we represent a
space-time neighborhood by appropriately encoding the signal behavior in space
and time. Then, we learn a dictionary of space-time local primitives or atoms
meaningful for a specific action set. To do so, we follow a BoK approach [16],
applying a clustering procedure to all the space-time points of a training set
of image frames. The whole procedure is carried out in an unsupervised way,
in the sense we do not use labels describing specific image features. Finally, we
represent a video sequence as a set of time series depicting the evolution of the
primitives frequency over time.

In the preliminary results we report, we analyze this information and eval-
uate whether it is meaningful and stable to multiple repetitions of the same
action and discriminative among different but similar actions. We also evaluate
its robustness to view point variations and investigate the descriptive power of
dictionaries learnt by different datasets. Instead of addressing view-invariance
as a general property we focus on a set of different view points that describe
typical observation points in human-human interaction (ego-view, frontal view,
lateral view) as they are meaningful to a natural HMI.

2 Shearlet Theory: An Overview

Here we briefly review the construction of the discrete shearlet transform of a
2D + T signal f by adapting the approach given in [17] for 3D signals.

Denoted by L2 the Hilbert space of square-integrable functions f : R2 ×R →
C with the usual scalar product 〈f, f ′〉, the discrete shearlet transform SH[f ] of
a signal f ∈ L2 is the sequence of coefficients

SH[f ](�, j, k,m) = 〈f, Ψ�,j,k,m〉

where {Ψ�,j,k,m} is a family of filters parametrized by
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1. A label � = 0, . . . , 3 of 4 regions or pyramids P� in the frequency domain;
2. The scale parameter j ∈ N;
3. The shearing vector k = (k1, k2) where k1, k2 = −�2j/2�, . . . , �2j/2�;
4. The translation vector m = (m1,m2,m3) ∈ Z

3.

For � = 0 the filters, which do not depend on j and k, are

Ψ0,m(x, y, t) = ϕ(x − cm1)ϕ(y − cm2)ϕ(t − cm3), (1)

where c > 0 is a step size and ϕ is a 1D-scaling function. The system {Ψ0,m}m

takes care of the low frequency cube P0 = {(ξ1, ξ2, ξ3) ∈ ̂R
3 | |ξ1| ≤ 1, |ξ2| ≤

1, |ξ3| ≤ 1}.
For � = 1 the filters are defined in terms of translations and two linear

transformations (parabolic dilations and shearings)

A1,j =

⎛

⎝

2j 0 0
0 2j/2 0
0 0 2j/2

⎞

⎠ S1,k =

⎛

⎝

1 k1 k2
0 1 0
0 0 1

⎞

⎠ , so that

Ψ1,j,k,m(x, y, t) = 2jψ1

(

S1,kA1,j

(

x
y
t

)

−
( cm1

ĉm2
ĉm3

))

, (2)

where c is as in (1) and ĉ > 0 is another step size (in the rest of the paper
we assume that c = ĉ = 1 for sake of simplicity). The system {Ψ1,j,k,m} takes
care of the high frequencies in the pyramid along the x-axis: P1 = {(ξ1, ξ2, ξ3) ∈
̂R
3 | |ξ1| ≥ 1, | ξ2

ξ1
| ≤ 1, | ξ3

ξ1
| ≤ 1}. For � = 2, 3 we have a similar definition by

interchanging the role of x and y (for � = 2) and of x and t (for � = 3).
Our algorithm is based on a nice property that allows us to associate with

any shearing vector k = (k1, k2) a direction (without orientation) parametrized
by two angles, namely latitude and longitude, given by

(cos α cos β, cos α sinβ, sin α) α, β ∈ [−π

2
,
π

2
]. (3)

The correspondence depends on � and, for the first pyramid, it is given by

tan α =
2−j/2k2

√

1 + 2−jk2
1

tan β = 2−j/2k1 α, β ∈ [−π

4
,
π

4
].

The fact that Shearlets are sensitive to orientations allows us to discriminate
among spatial-temporal features of different kinds [7,18].

3 Building Dictionaries of Space-Time Primitives

1 - Space-Time Point Representation (Fig. 1). We start by considering
a point m̂ for the fixed scale ĵ and the subset of shearings encoding different
directions: K =

{

k = (k1, k2) | k1, k2 = −�2ĵ/2�, . . . , �2ĵ/2�
}

. We perform the
following steps:
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Fig. 1. 2D + T point representation: (a) Matrices C1(r, c), C2(r, c) and C3(r, c); (b)
Object C both in gray-levels and 3D visualization; (c) Coefficients grouping; (d) The
obtained representation D.

Figure 1a. We reorganize the information provided by SH[f ](�, ĵ, k, m̂) in three
M × M matrices, each one associated with a pyramid �, where each entry is
related to a specific shearing: C�(r, c) = SH[f ](�, ĵ, krc, m̂) with � = 1, 2, 3,
where r and c, are discrete versions of k1 and k2.

Figure 1b. We merge the three matrices in a single one. The obtained overall
representation C is centered on kmax, the shearing corresponding to the coef-
ficient with the maximum value in the set SH[f ](�, ĵ, k, m̂), with � ∈ {1, 2, 3}
and k ∈ K. The matrix C models how the shearlet coefficients vary in a neigh-
borhood of the direction where there is the maximum variation, and it is built
in a way so that the distance of every entry of C with respect to the center
is proportional to the distance of the corresponding angles (as defined in (3))
from the angles associated with kmax. Different kinds of spatio-temporal ele-
ments can be associated with different kinds of local variations in C (see for
instance Fig. 6).

Figure 1c. We now compute a compact rotation-invariant representation for
point m̂. We group the available shearings in subsets s̄i, according to the
following rule: s̄0 = {kmax} and s̄i will contain the shearings in the i-th ring of
values from kmax in C. We extract the values corresponding to the coefficients
for s̄1 (by looking at the 8-neighborhood of kmax), then we consider the
adjacent outer ring (that is, the 24-neighborhood without its 8-neighborhood)
to have the coefficients corresponding to s̄2, and so on.

Figure 1d. We build a vector containing the values of the coefficients corre-
sponding to each set: D(m̂) = coeff �

s̄0
coeff �

s̄1
coeff �

s̄2
. . . ; coeffs̄i

is the set
of coefficients associated with each shearings subset s̄i:

coeffs̄0
= SH[f ](�kmax

, ĵ, kmax, m̂)

coeffs̄i
=

{

SH[f ](�s̄i
, ĵ, ks̄i

, m̂), ks̄i
∈ s̄i

}

,

where �kmax
is the pyramid associated with the shearing kmax and where �s̄i

represents the pyramid associated to each shearing ks̄i
.
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2 - Learning a Dictionary of Space-Time Primitives (Figure 2).

Figure 2a. This phase considers a set of meaningful frames in a (set of)
sequence(s). The frames are chosen automatically through a key-point detec-
tion process [18]. We select the Nf frames with the highest number of interest
points and we assume that these are the most representative of an action
event.

Figure 2b. We represent each point m̂ of every selected frame by means of
D(m̂), for a fixed scale ĵ. On each frame, we apply K-means and obtain a set
of K cluster centroids, which we use as space-time primitives or atoms.

Figure 2c. We re-apply K-means on all the previously obtained atoms [7]. We
end up with a dictionary D of Na space-time primitives.

Fig. 2. Learning the dictionary. (a) Automatic selection of meaningful frames from the
training set; (b) Atoms learnt by each sequence; (c) Dictionary summarization on the
whole training set.

3 - Encoding a Video Sequence with Respect to a Dictionary
(Figure 3). We now consider a sequence V of a given action.

Figure 3b. For each image frame It ∈ V we follow a BoK approach and quantize
points of It w.r.t the dictionary atoms, obtaining F t

i frequency values (how
many points in frame It can be associated with the i − th atom).

Figure 3c. We filter out still primitives that are not useful to our purpose. To do
this, we consider a point-wise index which we call dynamism measure (DM):

DM[m̂] = SH[f ](�kmax
, j, kmax, m̂) · cos(Θkmax

,n) (4)

where for a given point m̂ we consider the value corresponding to its maxi-
mum shearlet coefficient and its associated shearing parameter kmax; Θkmax

is the associated direction obtained using (3) and n is the normal vector to
the xy plane in our signal (i.e. aligned with the temporal axis). To discard still
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patterns we consider only the values of DM[m̂] which are above a given thresh-
old τ . The angle Θkmax

tells us whether a point belongs to a spatio-temporal
structure which is moving or not1, while the SH[f ](�kmax

, j, kmax, m̂) fac-
tor helps us to consider only points representing a strong spatio-temporal
change. Finally, we compute temporal sequences of frequency values across
time, obtaining Na time series or profiles {Pj}Na

j=1, which summarize the con-
tent of the video sequence.

Fig. 3. Action encoding: (a) A sample frame; (b) The quantization w.r.t. the dictionary
atoms; (c) Examples of temporal profiles (see text for details).

4 Experimental Analysis

4.1 Dataset and Experimental Protocol

The data we consider are drawn from a larger dataset of cooking actions that
we will soon release to the research community. We have used three identical
high resolution IP cameras, mounted on three tripods so that in all acquisitions
we have a still uniform background and moving foreground objects. Figure 4
shows the setup and example video frames. The dataset includes repetitions of
the same action observed from three different viewpoints: a frontal view (A), a
lateral view (B), and an egocentric view, obtained by a camera mounted slightly
above the subject’s head (C). No specific constraints have been imposed to the
volunteer.

For this preliminary analysis we are considering a subset of 3 actions. For each
action and each view we consider 3 action instances. In the following experiments
we consider dictionaries learnt from Eating actions only. For the detection phase
(see [18]), we fix the number of selected frames Nf to 4 and consider only shearlet
coefficients at scale 2. For the dictionary learning phase, the number of centroids
per frame is K = 8, and the final dictionary size is Na = 12.

1 Points belonging to still spatio-temporal structure spawn surfaces over time, and the
normal vector Θkmax for those points will belong to the xy plane, bringing the value
for cos(Θkmax ,n) to be 0.
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Fig. 4. Acquisition setup

We evaluate the dissimilarity between action pairs by means of Dynamic
Time Warping (DTW). Given two videos V 1 and V 2 depicting a certain action
instance and described by two sets of temporal profiles P 1 = {P 1

i }Na
i=1 and P 2 =

{P 2
i }Na

i=1 then Dis(V 1, V 2) = avgNa
i=1DTW (P 1

i , P 2
i ). Z-normalization is applied

to the temporal profiles before computing the dissimilarity.

4.2 Preliminary Investigation

1. How informative are the learnt space-time dictionaries to discrimi-
nate among different actions of the same kind? In this experiment we con-
sider comparisons between actions observed from a given viewpoint, described
according to a dictionary obtained from the same view: we refer to such dictio-
naries as DA, DB , and DC . In Fig. 5a we show the average DTW cost in aligning
the instances of the action classes. We observe that on average the comparisons
of actions from the same class have a lower cost. Among the 3, CAMC appears
to be the most challenging viewpoint. We may notice that Eating action is the
best performing, as dictionaries are built on eating examples. At the same time
we observe a good generalization to other actions.

2. What is the relationship between different dictionaries learnt from
different viewpoint data? Is there any benefit in learning dictionar-
ies from different views? To answer this question, we compare dictionaries
specific to different views, and observe they encode similar spatio-temporal prim-
itives. We build a dissimilarity matrix collecting the Euclidean distances between
atoms of the two dictionaries. The atoms are then matched using the Hungarian
algorithm, and their contributions are sorted in the dissimilarity matrix accord-
ingly. As a consequence, on the main diagonal we may find agglomerations of
atoms belonging to different dictionaries but encoding the same kind of spatio-
temporal information. Figure 6 shows an example where dictionaries referring to
CAMA and CAMB are considered, and where we highlighted groups of atoms
carrying similar information. At the top of the diagonal a group of 3 atoms
(Fig. 6a) describe moving edge-like structures, which correspond to surface in the
space-time domain. Similarly, the primitives in Fig. 6b and c represent corner-
like structures with a different amount of dynamic variations in the direction
around the principal one.
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(a) View dictionary

(b) Combined dictionary (c) KTH dictionary

Fig. 5. Average DTW cost obtained when comparing actions of the same view using
different dictionaries.

Fig. 6. An example of dissimilarity matrix between atoms of two different dictionaries
(from CAMA and CAMB), with a selection of prototypes encoding different dynamic
properties of the signal.

As we observe a large overlap between different dictionaries, we also consider
the benefits of learning a joint dictionary from the 3 views, as this choice would
simplify inter-view comparisons. Figure 5b shows how stable the performance is
when adopting DABC for all the data.

3. To what extent the space-time representation is view-invariant?
Figure 7 provides a first qualitative answer to the question. The plots represent
the average profiles of all actions instances. Eating is characterized by the high-
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(a) CAMA, Eating (b) CAMA, Mixing (c) CAMA, Salt

(d) CAMB , Eating (e) CAMB , Mixing (f) CAMB , Salt

(g) CAMC , Eating (h) CAMC , Mixing (i) CAMC , Salt

Fig. 7. Average temporal profiles of different action instances. Each row corresponds
to a view (CAMA, CAMB , CAMC), while each column refers to an action (Eating,
Mixing, Salt). The dictionary DABC is employed.

est stability across views, while Mixing presents some differences in CAMC with
respect to the other two views. This may be explained with the fact the action
is performed following a quasi-planar shape on the table, favouring a clear and
regular apparent motion from the top view. Salt is a less constrained action char-
acterized by a higher degree of instability over time and across views. Figure 8a
reports the average DTW costs obtained from pairs of views. On the left (DABC)
we confirm Eating is stable across views, while a higher intra-class variability is
associated with Mixing. We also notice a similarity between Eating and Salt. A
visual inspection of the corresponding profiles in Fig. 7 confirms the presence of
common temporal patterns.

We observe that the different temporal profiles are characterized by an uneven
amount of stability. This suggests that a selection of the profiles to be used in
the comparison may be of benefit. This aspect is currently under investigation,
as a proof of concept, in Fig. 8b we consider only one profile, the green one in
Fig. 7. An improvement on the results may be appreciated.
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Fig. 8. Comparison between descriptions from different views.

4. Is it really useful to learn an ad hoc dictionary for a given set of
data? As a final investigation, we reason on the necessity of using data of the
considered scenario. To this purpose we consider an unrelated benchmark (KTH
[19]) showing full body actions. Figure 5c shows the results obtained in this case.
We notice a small degradation, but the overall performance is still acceptable.
This speaks in favor of the potential of our space-time primitives to transfer
knowledge between different settings.

5 Discussion

We presented an ongoing work on representing actions through space-time prim-
itives learnt from data. The preliminary results on a small subset of data include
useful insights on how to proceed: the representation is rich and incorporates not
only space-time corners but also other local structures with a significant dynamic
information; the learnt atoms are quite stable across views, with a strong dis-
criminative power. The action representation is again quite stable across views,
even if some actions seem to be intrinsically view-variant, and some views are
more meaningful than others. Representations obtained from front and lateral
views are very closely related, as expected.

Two main aspect are currently under investigation: (i) Capturing the tempo-
ral cross-correlation between different primitives, especially across views and (ii)
Devising an action recognition module based on the proposed representation.
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Abstract. The huge diffusion of mobile devices with embedded cameras
has opened new challenges in the context of the automatic understanding
of video streams acquired by multiple users during events, such as sport
matches, expos, concerts. Among the other goals there is the interpre-
tation of which visual contents are the most relevant and popular (i.e.,
where users look). The popularity of a visual content is an important cue
exploitable in several fields that include the estimation of the mood of
the crowds attending to an event, the estimation of the interest of parts
of a cultural heritage, etc. In live social events people capture and share
videos which are related to the event. The popularity of a visual content
can be obtained through the “visual consensus” among multiple video
streams acquired by the different users devices. In this paper we address
the problem of detecting and summarizing the “popular scenes” cap-
tured by users with a mobile camera during events. For this purpose, we
have developed a framework called RECfusion in which the key popular
scenes of multiple streams are identified over time. The proposed system
is able to generate a video which captures the interests of the crowd
starting from a set of the videos by considering scene content popularity.
The frames composing the final popular video are automatically selected
from the different video streams by considering the scene recorded by
the highest number of users’ devices (i.e., the most popular scene).

Keywords: Video analysis · Clustering · Social cameras · Scene
understanding

1 Introduction

During a social event, the audience typically uses its personal devices to record
video clips related to the most interesting moments of the event. As a result,
several videos will be related to the same visual contents, and this redundancy
can be exploited to infer the most interesting moments of the event over time,
c© Springer International Publishing AG 2017
S. Battiato et al. (Eds.): ICIAP 2017, Part I, LNCS 10484, pp. 51–61, 2017.
https://doi.org/10.1007/978-3-319-68560-1_5
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according to the people interests on the observed scenes. The issue of crowd-
popularity estimation through automatic video processing is not trivial due to
the variability of the visual contents observed by multiple devices: different points
of view, pose and scale of the objects, lighting conditions and occlusions. The
differences between device models should be also taken into account, since they
imply different characteristics of the lens, color filter arrays, resolution and so
on. For instance, even using two devices with similar (or equal) sensors the colors
recorded will not necessarily be the same because devices responses are processed
with different non-linear transformations due to the differences on the Imaging
Generation Pipelines (IGPs). They can vary from device to device and even on
an per-image basis [1,2].

We propose a system called RECfusion to estimate the popularity of scenes
related to multiple video streams. The streams are analyzed with the aim to
create a continuous video flow, obtained by mixing the several input channels,
taking into account the most popular scenes over time to reflect the interests of
the crowd. Then, the clusters of the different scenes are tracked over time. This
allows to have not only the most popular scene at each time, but also the other
scenes of interest and give the possibility to introduce a scenes story log allowing
the user to select the scene of interest among all the detected ones.

The reminder of the paper is structured as follows: in Sect. 2 we discuss
related studies about crowd-saliency inference from multi-device videos. In
Sect. 3 an overview of the RECfusion framework is given together with the
description of its three main modules: intraflow analysis, interflow analysis and
cluster tracking. In Sect. 4 a proper dataset is introduced, whereas in Sect. 5 we
report the experimental settings and the results. We conclude the paper with a
final discussion and hints for possible future works in Sect. 6.

2 Related Works

Different papers about crowd-saliency inference from multi-device videos have
been proposed in literature in the past. The works in [3,4] exploit Structure
from Motion (SfM) to estimate a 3D reconstruction of the scene and the pose of
employed devices. Hoshen et al. [5] uses egocentric video streams considering a
single camera model acquired by different participants to create a single popular
video of an event. However, in [3–5] the number of the different popular scenes
and the number of the devices are known a priori. Saini et al. [6] developed
the framework MoViMash with the purpose of replicate the behavior of a movie
director: the system learns from a labeled sets of video frames “how to” and
“when” perform transitions between different views. However, this technique is
hardly adaptable for a real-time context, since for each different recorded scene a
proper learning phase should be tuned to. ViComp is another framework similar
to MoViMash [7]. In ViComp the final output video consists in a combination
of several video streams from multiple sources. The combination is obtained by
selecting high quality video segments according to their audio-visual ranking
scores. It selects the best video stream among a pool of available ones basing
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on degradation and noise caused by video compression [8] and estimated camera
pan and tilt [9].

The aforementioned approaches achieve significant results but, compared to
them, our approach (RECfusion) does not need any prior knowledge or train-
ing stage and is able to combine videos from an unknown number and types
of recording devices. RECfusion is a framework with a popularity-based video
selection approach: it clusters the video streams and selects the best video stream
from each cluster exploiting clustering metrics.

3 RECfusion System Overview

RECfusion is a framework designed for automatic video curation driven by the
popularity of the scenes acquired by multiple devices. Given a set of video
streams as input, the framework can group these video streams according to
the viewed similarity and popularity of the scenes over time, then it automati-
cally suggests a video stream to be used as output acting like a “virtual director”.
With the aim to mitigate the aforementioned differences in the color representa-
tion of the devices, due their different IGPs, the video frames are pre-processed
by an equalization algorithm. This step helps the further computations that com-
pares frames captured by different devices [1,10–12]. After this normalization,
the system extracts an image representation from each frame. The algorithm
takes a frame as input and returns a descriptor. The aim is to have a descriptor
that maximize the differences between semantically different frames and min-
imize the differences between semantically similar ones. In [1] a definition of
light conditions (and almost devices) independent representation is given. The
method is based upon the observation that changes of light conditions or device
directly change the RGB values of the frame, while order of sensors response
remains the same. Finally, equalization of RGB channels, as described in [1], is
performed. After the normalization of the color domain, the video streams are
analysed in our approach in three phases (Fig. 1), detailed in the followings.

3.1 Intraflow Analysis

The intraflow analysis segments the sequence of frames of a single video stream
(Fig. 1(a)). During intraflow analysis the frames of each video are processed
comparing their visual contents. For each frame of the video flow, we extract
keypoints using the SIFT detection algorithm [13]. The set of the extracted SIFT
features represents a template for the acquired scene. In this way, the comparison
between frames could be done as the comparison between SIFT templates. When
the comparison between the current frame end the reference template generates
a sensible variation of features (i.e., low matching score), then the algorithm
refreshes the reference template and splits the video producing a new segment.
To make the matching more reliable, we reject the matchings where the keypoints
are too far in terms of spatial coordinates by assuming smooth transition between
consecutive frames [14]. For major stability, a new template can be defined only
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(a) Intraflow Analysis

(b) Interflow Analysis

(c) Cluster Tracking

Fig. 1. RECfusion results applied on Foosball dataset. The chronograms show the
results of the three main steps of RECfusion (intraflow analysis, interflow analysis and
cluster tracking). Foosball dataset is composed by 4 video streams having a duration of
∼2300 frames (∼90 s). Each video stream is represented as a row in the chronograms.
Vertical red lines mark the end of time-slots. (a) Intraframe analysis: red, blue and
green frames are respectively the first, second and third scene of each video stream.
Noisy frames are depicted in black. (b) Interframe analysis: yellow and green clusters
are respectively the first and second cluster of each time-slot. (c) Cluster tracking: red,
blue and green clusters are respectively the first, second and third cluster of the whole
video set. Noisy clusters are depicted in black. (Color figure online)

if it has a duration greater than 2 s, otherwise it is considered as noise. In other
words, a template is considered a stable template if the number of matching
SIFTs do not change too much in time. A backward checking is required in order
to understand if a new defined template regards a new scene or it is related to a
previously observed one. The algorithm compares the new defined template with
the past ones, starting from the last found template. Each reference template
is labeled with a SceneCounter and all video frames achieving a robust match
are labeled with the same SceneCounter. Note that all the frames required to
decide if a template should be considered as a new or an updated one are labeled
as a transition interval.
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3.2 Interflow Analysis

The interflow analysis is computed for each time-slot. It segments video frames
labeled by intraflow analysis and assigns a ClusterCounter with respect to all
the video streams in that specific time-slot (Fig. 1(b)). We want to group together
the devices that are looking at the same scene over time. The descriptor used in
the interflow analysis is based on weighted color histograms [15]. In this context
the device invariance should be granted as well as possible. For this reason we
firstly apply an histogram equalization, as suggested in [1]. The equalization is
followed by a quantization of the color space (8 colors for each channel). The
weights are obtained by using a gradient map as suggested in [15]. The gradient
map is useful to highlight the structures of the objects that appear in the scene,
making more robust the descriptor.

The different scenes obtained with the intraflow analysis could be considered
as nodes of a complete graph in which arcs are weighted with the interflow
distances between the scenes acquired by the devices. The clustering procedure
selects a frame among the unclustered frames and assigns it to the most similar
cluster. We used an average linkage approach to compare a frame with a cluster:
the distance between a frame and a cluster is given by the average distance
between the frame and all the elements within the cluster [14].

3.3 Cluster Tracking

To understand the meaning of the Cluster Tracking module we have to step back
to intraflow analysis. The intraflow analysis segments the sequence of frames of
a single video stream, and assigns a SceneCounter to each segmented scene.
However, frames taken by two different video streams but labeled with the same
SceneCounter can represent different scenes, since SceneCounters are discrim-
inative only within a single video stream. The interflow analysis segments video
frames in a time-slot and assigns a ClusterCounter to the scenes of the video
streams. Interflow analysis exploits the SceneCounters and the set of SIFT
features templates from intraflow analysis. Similarly to SceneCounters, the
ClusterCounters are to be considered only within a single time-slot. Therefore,
we developed a cluster tracking procedure in order to track the clusters repre-
senting the same scene in every video stream and time-slot (Fig. 1(c)). In [16] a
Graphical User Interface implementing the cluster tracking typical video player
commands (like Start, Pause, Stop, . . . ) is described (Fig. 2).

We propose a cluster tracking procedure based on a voting routine that com-
bines the results of the intraflow and interflow analyses. Once interflow procedure
has assigned a ClusterCounter to several SceneCounters, this set of scenes will
characterize the same cluster also in further time-slots, so cluster tracking pro-
cedure an unique LoggedClusterID to this set of scenes. Differently from the
ClusterCounters, the LoggedClusterIDs are intended to be always discrimi-
native. Cluster tracking procedure tracks the clusters in each time-slot assign-
ing them TrackedClusterIDs equals to the most similar LoggedClusterID. In
order to define the most similar LoggedClusterID, cluster tracking procedure
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Fig. 2. RECfusion Graphical User Interface showing the Cluster Tracking framework.
On the left, active clusters with respective amount of recording devices and automat-
ically suggested video stream (called RECfusion: most popular) are shown. User can
browse the Virtual Director panel to dinamically change the active video stream. On
the right side, active video stream with classic video player commands is shown.

requires an initialization phase (at first time-slot). In this phase, the assigned
LoggedClusterIDs are equals to the ClusterCounters. Then, from the second
time-slot on, the clusters will be associated to an existent LoggedClusterID or
to a new one, depending on a voting routine. The same routine is also used to
track the LoggedClusterIDs with proper TrackedClusterIDs.

The voting routine can be divided into 2 phases: casting of vote and vot-
ing decision. In the former phase, for each time-slot, each scene votes with
three different possible values: TrackedClusterID at the previous time-slot,
LoggedClusterID or unlogged scene (VN ), if the scene is Noise, already logged
or unlogged, respectively. Once all the votes are casted in a time-slot, then we
look for a non ambiguous voting decision (i.e., a majority is found). Major-
ity of unlogged scenes is not admitted, so in this case we simply remove
these votes from the voting decision. Depending on the reached decision, new
LoggedClusterIDs might be instantiated, while TrackedClusterIDs at current
time-slot is eventually updated. We will compare the new proposed method
with respect to a cluster tracking method based on a threshold TCT [16]. This
threshold was used as an hyperparameter to decide whenever to create a new
LoggedClusterID or not. The issue with this threshold employed in [16] is that
its value should be fine tuned for each video set in order to achieve the best
results in cluster tracking procedure.

4 Datasets

To perform experiments we have used the RECfusion dataset [14] which is pub-
licly available at the following URL: http://iplab.dmi.unict.it/recfusionICIAP17.
This dataset is made up of three video sets:

http://iplab.dmi.unict.it/recfusionICIAP17
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1. Foosball : indoor context, some people appear in the scene. The number of
contributing devices for this video set is 4, with an average number of frames
per video stream of 2250 (44 time-slots). There are three main subjects in
this video set: a foosball, a couch and a bookcase.

2. Meeting : indoor context, two people appear in the scene. The number of
contributing devices for this video set is 5, with an average number of frames
per video stream of 2895 (60 time-slots). There are two main subjects in this
video set (the two guys).

3. S. Agata: outdoor context, lots of people appear in the scene. The number of
contributing devices for this video set is 7, with an average number of frames
per video stream 1258 (34 time-slots). There are two main subjects in this
video set: the reliquary of S. Agata and the facade of a church.

In the experiments we exploit also a video set from the dataset used in Ballan
et al. [17]. This dataset is called Magician. It is related to an indoor context,
where one person appear in the foreground. The number of contributing devices
for this video set is 6, with a fixed number of 3800 frames per video stream (77
time-slots). There are two main points of view in this video set: one above and
one in front of the magician. We have chosen Magician video set because it is
slighty different from the videos currently in RECfusion dataset. In Magician all
the video streams are focused on a single target and are acquired as a “casual
multi-view video collection” [17]. This means that backgrounds in the video
streams are very different from each other and that severe camera motion could
often appear. The casually filmed events represent a challenging scenario for
detector like SIFT (exploited in our intraflow analysis, see Sect. 3.1), so we add
Magician video set to our tests in order to stress and evaluate scene analysis
and cluster tracking performances. We have also compared the obtained results
with the benchmark dataset proposed in Hoshen et al. [5]. This dataset has been
acquired with wearable devices and, like Magician video set, it is challenging
since every video is strongly affected by motion.

5 Experimental Settings and Results

We select the last instant of time for every time-slot as the representative of
that interval. Validation are made exploiting the Ground Truth related to these
representative frames. To evaluate the performances of the proposed method,
we compute the two quality measures described in [14]. Specifically, for each
clustering step we consider:

– Pr: ground truth popularity value (number of cameras looking at the most
popular scene) obtained from manual labelling;

– Pa: popularity score computed by the system (number of the elements in the
popular cluster);

– Pg: number of the correct videos in the popular cluster (i.e., the number of
inliers in the popular cluster).
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From the above defined scores, the weighted mean of the ratios Pa/Pr and
Pg/Pr over all the clustering steps are computed. The ratio Pa/Pr provides a
score for the popularity estimation, whereas the ratio Pg/Pr verifies the visual
content of the videos in the popular cluster and provides a measure of the quality
of the popular cluster. Note that Pa/Pr is a score: when is lower than 1 it means
that system is under-estimating the popularity of the cluster, while, conversely,
if it is higher than 1 it results in an over-estimation.

Table 1. Validation results of popularity estimation.

Scenario Devices Models Pa/Pr Pg/Pr

Foosball 4 2 1.02 1

Meeting 2 2 1.01 0.99

Meeting 4 4 0.99 0.95

Meeting 5 5 0.89 0.76

SAgata 7 6 1.05 1

Magician 6 6 0.73 0.73

Concert [5] 3 1 1.06 1

Lecture [5] 3 1 1.05 0.86

Seminar [5] 3 1 0.62 0.62

The results of the comparison between the tested video sets are shown in
Table 1. The first five rows are related to RECfusion dataset, whereas the last
three rows are related to the dataset proposed in [5]. Although the constantly
head motion of the wearable recording devices in videos from [5], the framework
reaches good results and seems to be promising room for improvement in the field
of wearable devices. Conversely, we found a drop in the performances when there
is a severe difference of scale between videos in a video set. Indeed, we exploited
Meeting video set to evaluate the drawback in performances when there are high
differences between resolution of devices. We compared three cases, with 2, 4 and
all the 5 devices in Meeting video set, respectively. Other analysis outputs could
be found at the following URL http://iplab.dmi.unict.it/recfusionICIAP17.

In the new proposed procedure we removed the threshold TCT , used as an
hyperparameter to decide whenever to create a new logged-cluster or not. In [16]
the value of TCT was empirically set equals to 0.15 founding the best overall
value between True Positive Rate, True Negative Rate and Accuracy of cluster-
ing tracking procedure on RECfusion dataset. In Fig. 3 a comparison between
the average values of TPR (True Positive Rate, or Recall), TNR (True Negative
Rate, or Specificity) and ACC (Accuracy) of RECfusion dataset and Magician
video set whit several values of TCT is shown. As can be seen, the value of TCT

equals to 0.15 is not the best value to be used by cluster tracking procedure,
while TCT = 0.5 should be used instead. For this reason we proposed the new

http://iplab.dmi.unict.it/recfusionICIAP17
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Fig. 3. A comparison of TPR (True Positive Rate, or Recall), TNR (True Nega-
tive Rate, or Specificity) and ACC (Accuracy) between RECfusion dataset 2015 and
Magician video set cluster tracking validations using the threshold-based procedure
from [16]. As can be seen, Magician requires a fine tuned threshold to increase TPR,
TNR and ACC values.

threshold independent cluster tracking procedure described in Sect. 3.3. We com-
puted TPR, TNR and ACC values for each video set described in Sect. 4 and
compared them with the results obtained in [16]. The comparative validation
results are shown in Table 2.

Table 2. Validation results between cluster tracking procedure threshold-based and
vote-based.

DS Scene TPR (Recall) TNR (Specificity) ACC (Accuracy)

[16] Proposed [16] Proposed [16] Proposed

Foosball 1 0,91 0,92 0,70 1,00 0,69 1,00

2 0,69 0,97 0,98 0,91 0,99 0,97

3 0,41 0,74 1,00 1,00 0,50 1,00

Mean 0,67 0,87 0,89 0,97 0,73 0,99

Meeting 1 0,99 1,00 1,00 1,00 1,00 1,00

2 0,80 1,00 0,95 0,93 0,83 0,67

3 0,43 0,50 1,00 1,00 0,70 1,00

Mean 0,74 0,83 0,98 0,98 0,84 0,89

S.Agata 1 0,71 1,00 1,00 1,00 1,00 1,00

2 0,87 0,97 0,49 0,14 0,80 0,68

3 0,48 0,00 1,00 1,00 0,60 0,00

Mean 0,69 0,66 0,83 0,71 0,80 0,56

Magician 1 0,73 1,00 1,00 1,00 1,00 1,00

2 0,45 0,56 1,00 1,00 0,98 0,91

Mean 0,59 0,78 1,00 1,00 0,99 0,96
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These results show that the proposed vote-based cluster tracking procedure
reaches TPR values much higher than the threshold-based procedure, while
results on TNR and ACC are comparable between the two procedures. Just
in the Meeting video set the proposed vote-based procedure is slighty outper-
formed: this is a limitation of the procedure. Indeed, cluster tracking procedure
relies on intraflow analysis, so if the latter defines N scenes, then the former
is able to distinguish at most N scenes. Hence, differently by threshold-based
procedure used in [16], that can generate a bunch of small sparse clusters if TCT

is not fine tuned, in this case only a limited number of clusters is tracked. In
Meeting video set two people are recorded and there are only two distinguished
clusters focusing on each one of them. Sometimes interflow analysis generates a
cluster containing both of the two people. This is treated by the cluster tracking
vote-based procedure as Noise, since intraflow analysis has never labeled a scene
in which the people are recorded together.

A final remark is about Magician video set. We added it to our dataset in
order to evaluate scene analysis and cluster tracking performances in a video
collection with a single scene, where all the user are focused on the same target
and videos are affected by severe camera motion. Cluster tracking results with
threshold-based procedure from [16] are really bad, indeed we got the worst aver-
age performance on this video set (Table 2). On the other hand, the proposed
vote-based procedure reached good values of TPR, further assessing the sound-
ness of this new cluster tracking approach. The output videos showing the result
of cluster tracking vote-based procedure could be found at the following http://
iplab.dmi.unict.it/recfusionICIAP17.

6 Conclusion and Future Works

In this paper we described RECfusion, a framework designed for automatic video
curation driven by the popularity of the scenes acquired by multiple devices.
Given a set of video streams as input, the framework can group these video
streams by means of similarity and popularity, then it automatically suggests a
video stream to be used as output, acting like a “virtual director”. We compared
RECfusion intraflow and interflow analysis validations with Hoshen [5]. We have
added a video set from Ballan et al. [17] to our RECfusion dataset showing
that RECfusion is capable of recognize and track the scenes of a video collection
even if there is a single scene, where all the user are focused on the same tar-
get and videos are affected by severe camera motion. We proposed a novel and
alternative vote-based cluster tracking procedure and compared it with the one,
threshold-based, described in [16]. From this comparison we found that vote-
based procedure reaches very good results totally automatic and independently
by a hyperparameter fine tuning phase, but with the tradeoff of be unable to
create and track an unlimited number of clusters. As future works and possible
applications, we are planning to augment the framework with features specifi-
cally focused on Assistive Technology or Security issues (i.e., highlight/track bad
behaviour in the life style, log the visited places, search something or someone
that appears in the scene).

http://iplab.dmi.unict.it/recfusionICIAP17
http://iplab.dmi.unict.it/recfusionICIAP17
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Abstract. Object tracking using still or PTZ cameras is a hard task for
large spaces and needs several devices to completely cover the area or
to track multiple subjects. The introduction of 360◦ camera technology
offers a complete view of the scene in a single image and can be useful
to reduce the number of devices needed in the tracking problem. In this
paper we present a framework using 360◦ cameras to simulate an unlim-
ited number of PTZ cameras and to be used for tracking. The proposed
method to track a single target process an equirectangular view of the
scene and obtains a model of the moving object in the image plane. The
target is tracked analyzing the next frame of the video sequence and esti-
mating the P,T and Z shifts needed to keep the target in the center of the
virtual camera view. The framework allows to use a single 360◦ device
to obtain an equirectangular video sequence and to apply the proposed
tracking strategy on each target simulating several virtual PTZ cameras.

Keywords: 360◦ cameras · Equirectangular projection · PTZ cameras ·
Object tracking

1 Introduction

The recent availability of 360◦ camera has provided a new type of images and
videos and several visualization models. For still images, it is common to use the
expanded version of the image (i.e. cylindrical or equirectangular projection)
with the whole content directly visible to the user. Navigable players are mainly
used for videos, allowing to change the direction of the view, different users can
focus on different parts of the 360◦ video and have a totally different information
and experience from the media.

In this paper we use 360◦ videos for tracking. Following the navigable players
paradigm, we don’t use the complete 360◦ information, but we simulate a tradi-
tional PTZ camera that can freely move in a 360◦ world. Using this approach it
is possible to reduce the computational complexity of tracking analyzing only a
small region of the video frames.

In real-time systems, a PTZ camera can miss the target during tracking. The
re-acquisition of the target can be hard and time consuming due to mechanical
limitations of PT motors. In 360◦ video, on the other hand, the target is still
present (in a unknown position) and the re-acquisition of the target might be as
simple as object detection in images.
c© Springer International Publishing AG 2017
S. Battiato et al. (Eds.): ICIAP 2017, Part I, LNCS 10484, pp. 62–72, 2017.
https://doi.org/10.1007/978-3-319-68560-1_6
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Finally, the use of this type of videos can provide practical advantages: reduc-
ing the number of cameras needed to cover a space (just one in a small place)
and allowing multiple subjects tracking using only one video.

2 Related Works

Object tracking has a long history in computer vision. There are a lot of papers
and surveys, [12,18] for example, explaining which are the main aspects to eval-
uate developing a new approach. Different methods use different information of
the observed video, for example the appearance of the target, a model of the
target, color information, keypoints detection and so on. 360◦ tracking is nowa-
days an open problem and the related works in this field is limited and in fast
evolution. In this paper we use 360◦ video to simulate PTZ virtual cameras. In
next paragraphs we report an overview on 360◦ video capturing and handling,
and on classical PTZ tracking techniques.

2.1 360◦ Image Representation

Panoramic images are used to give a single representation of a wide scene, chang-
ing the representation coordinate system from the classic planar projection to
a different one. Most commonly used coordinate systems are the cylindrical
and the spherical ones. They were mainly used in 3D Graphics to reproduce a
real environment or in panoramic stitching to create a synthetic wide-horizontal
image from a collection of pictures, augmenting the real pan of the camera.

An overview on panoramic imaging, including both hardware and software
specific tools, is presented in [8]. In particular, this work describes the capturing,
processing, stitching [17] and reconstruction steps for single cameras or pairs of
stereo cameras. Nowadays this function is often available on smartphones. 360◦

cameras can be considered off-the-shelf products. Image stitching [4] is now a
less important problem, because these devices can directly provide a 360◦ image
from a small number (two, in the principal commercial devices) of sensors. In
our work we give only a brief description of the geometry of a specific panoramic
image projection and we assume that the output of the 360◦ camera is calibrated
and with a negligible distortion.

2.2 PTZ Tracking

The introduction of PTZ cameras offered the capability of focusing on the inter-
esting part of the scene moving the camera and zooming in, having a higher
resolution with respect to static cameras. The main drawback is the control of
the PTZ parameters and the camera calibration. The typical surveillance system
or simple tracking scenario usually uses a master-slave (static-PTZ) couple of
camera [7,16], or a network of devices [14].

In this paper we want to focus only on tracking approaches that use PTZ or
360◦ cameras and, therefore, can observe a wide part of the scene. In [6] tracking
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is performed using a histogram based on the HSV values of the frame as target
feature and the mean shift method to search the target in the next frame. The
result of tracking is then used, separately, to estimate when the target is going
out of the center of the field of view and which are the correct camera PTZ shifts
to keep it inside.

In [3] authors work on the estimation of the PTZ parameters tracking a
moving planar target. The dimensions of the object are known and the focus
of the paper is in recovering from errors in moving the camera due to incorrect
projection and to camera motors. This is done using an extended Kalman filter
and estimating the camera state and the object position in a recursive Bayesian
filter network.

An alternative method, proposed in [10], is based on adaptive background
modelling and the detection of moving objects. Once moving blobs are detected,
tracking is performed using color distribution by histogram intersection.

Authors of [13] proposed a virtual framework for PTZ tracking algorithm
testing. They collect a large number of views of a specific background and gen-
erate a panoramic image. The moving target (foreground) is then inserted in the
image and the PTZ camera can virtually move in it. In this case, possible camera
motions is limited (left, right, up, down, zoom in and out) and with fixed steps.

An experimental framework to evaluate different tracking algorithms is pre-
sented in [15], consisting mainly in a specific hardware setup and a known
ground-truth. Authors uses the following configuration: a PTZ camera is placed
in front of a screen where a projector displays the ground-truth video, so the
whole system is calibrated to allow the comparison of the tracking result (i.e. the
velocities of the motors and the part of the screen seen by the camera) and the
real position of the target on the screen. The paper provides the setting and cal-
ibration parameters estimated using a Cam-Shift based tracking approach and
a Particle Filter one.

A system that combine the use of a face detector and a tracker, based on a
single PTZ camera, is shown in [5]. Authors avoided the use of a static camera
dividing the work of the PTZ one in two modes: zoom-out mode, that shows
the whole scene, and the zoom-in mode, that points on a single face detection
using the known faces in the scene and the calculated trajectories. So the camera
passes from the wide angle mode to the zoomed mode on a single person using
a scheduling algorithm. The authors focused mainly on the face to face and face
to person association, on the camera mode handling and scheduling and on the
real-time implementation of the system.

3 360◦ Camera Model

There are two principal ways to show the output of a 360◦ camera in a single
video: the two-sphere version and the equirectangular projection. Examples of
the former and the latter are shown in Fig. 1. In this case we are considering a
2-sensor camera (a common configuration), but it is possible to use cameras with



360◦ Tracking Using a Virtual PTZ Camera 65

a higher number of sensors obtaining several overlapping spheres. The equirec-
tangular version, on the other hand, is always a single image so we decided to
use it for the tracking problem.

(a) two-sphere output (b) equirectangular projection

Fig. 1. An example of output of a 360◦ device: (a) the two-sphere view, (b) the equirec-
tangular projection.

3.1 Equirectangular Projection

Given a point P = [x, y, z] in world coordinates, the equirectangular projection is
defined by two angles: θ (polar angle), that is the angle defined by the projection
of the P vector on the x-z plane and x axis; φ (azimuth angle) that is the
one formed by the P vector and the x-z plane. Given P, the equirectangular
coordinates θ and φ can be obtained using the following formulas:

θ = acos(z/d)

φ = atan(y/d)

where d = sqrt(x2 + z2).
The equirectangular projection basically maps the θ and φ coordinates

obtained by a spherical projection, as shown in Fig. 2(a), in a coordinate plane
(the equirectangular projection) where θ varies from −π to π and φ from −π/2
to π/2.

3.2 Equirectangular to Virtual Camera Plane Projection

The equirectangular projection is used to have in a single image a complete
information of the scene. To simulate the PTZ camera it is necessary to retrieve
the virtual output of the camera given the PTZ values. The part of the real world
seen in the virtual camera plane according to the PTZ values, can be computed
from a rectangular grid of points. The grid is projected in the equirectangular
representation and the final camera plane image is computed interpolating the
color value of the projected points.

One example of this transformation is shown in Fig. 3, where the virtual
camera setting is: P=−120◦, T = 10◦ and Z = 90◦. The projection of the virtual
camera plane is the blue grid of Fig. 3(a), these values are then interpolated to
obtain the planar surface in Fig. 3(b).
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(a) World to spherical coordinates

(b) eqirectangular projection

Fig. 2. The world coordinates are transformed to spherical ones and then projected in
the equirectangular version

Fig. 3. The blue grid in (a) is the projection of the part of the scene seen by the virtual
camera, (b) is the planar reconstruction. (Color figure online)
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4 Tracking Model

The tracking model takes the equirectangular projection as input, but the actual
tracking is performed in the virtual camera plane. The idea is to use the equirec-
tangular image as a world representation and the virtual camera plane as if it
was the output of a traditional PTZ camera.

Supposing that the virtual camera parameters Pan and Tilt coincide with
the θ and φ of the equirectangular image and that Zoom coincides with the field
of view of the projection, our tracking method estimates, for each frame, how
to update the parameters to keep the target in the center of the virtual camera
plane.

Our method initially computes the differences between the virtual camera
plane with the initial values of PTZ set by hand or by any object detector and
the views obtained shifting the virtual camera parameters, one at once, by a
fixed value. These images, shown in Fig. 5 are assumed as representative of the
moving object relatively to the virtual camera. In this case we move the camera
to simulate the object motion, during tracking the object moves and the tracker
has to adjust PTZ parameters to keep the object in the center of camera plane.

Our method is based on the assumption that the variation in virtual camera
plane due to small object motion is approximately equivalent to the variation
due to small virtual camera parameters shifts.

Figure 4 contains the original target image and the images obtained with
virtual camera P parameter shifted by 0.5◦, 1◦ and 2◦ in both directions. Figure 5
contains the difference images. It is possible to notice that small shifts in the
virtual camera parameters leads to small values in the difference images (the
brighter the value in the figure, the higher is the value of the difference) and vice
versa. For this reason the difference associated to small values of parameter shift
(0.5) are useful to describe slower movements and the ones associated to higher

Fig. 4. The target and the virtual camera planes changing P value by 0.5, 1, 2, −0.5,
−1 and −2.
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values (2) are representative of faster movements. These difference images can
then be considered as a sort of motion templates.

Fig. 5. Difference images changing P value by 0.5, 1, 2, −0.5, −1 and −2.

Our method tries to estimate the motion of the object from a weighted sum
of basic motion templates. For each frame the motion is estimated selecting the
most similar difference image calculated in the off-line step of the algorithm
(Fig. 5), or selecting several difference images creating a mixture. If the target is
not moving, no difference image is selected.

An example of this is present in Fig. 6: the left image is the target object,
the central one is the new frame seen by the camera using the parameters at
previous time instant and the right image is the difference. Looking at the latter,
the position of the brighter parts (the horizontal and vertical segments in the
figure) indicates that the object is moving upwards and slightly to the left.

It is easy to notice that a similar image can be obtained as the mixture of
different difference images: a 0.5◦ in P and a 1◦T, representing the motion in
horizontal and vertical direction. The actual oblique motion is detected as the
weighted mixture of the horizontal and vertical motion. A similar idea has been
exploited in [9,11].

Fig. 6. Residual image obtained from the target and the current output of the camera
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4.1 Tracking Algorithm

The proposed method implements this motion decomposition stating the prob-
lem as a least-square minimization one. We define:

– [Pi, Ti, Zi] as the camera parameters at time ti;
– I(P, T, Z, t) as the virtual camera plane with P,T,Z parameters and at time

t;
– s = [ΔP,ΔT,ΔZ] as the parameter shifts needed to keep the target in the

center of the virtual camera plane;
– w = [wP , wT , wZ ] as the vector containing the difference steps (both positive

and negative) used for P, T and Z parameter in computing the difference
images;

– A as the matrix containing the difference images, represented as column vec-
tors, repeated for different steps in the positive and negative direction.

The tracking algorithm can then be stated as follows:

1. Set ti = t0 (the first frame). Set the initial Pan, Tilt, Zoom parameters
(P0, T0, Z0) on the target obtaining I0 = I(P0, T0, Z0, t0) for the first frame;

2. Calculate A using the differences in w;
3. Calculate I = I(Pi, Ti, Zi, ti+1);
4. calculate R = I − I0;
5. solve x = (ATA)−1ATR;
6. s = −xwT ;
7. Set [Pi+1, Ti+1, Zi+1] = [Pi, T i, Zi] + s, ti = ti+1 and go to step 3.

5 Results

As discussed in Sect. 2, it is difficult to test the performances of 360◦ and PTZ
tracking for different reasons: the lack of a common accepted benchmark for
the former, the use of “real” scenes and actual camera movement for the latter.
In particular for PTZ methods, the only way to compare different algorithms
is testing them in real scenes and visually looking at the result, having a not
repeatable experiment.

To test our method, we initially created a dataset of 59 360◦ videos using
two cameras: a Ricoh Theta S (2 sensors with effective 12 MPixels [1], 26 videos)
and a Samsung Gear 360◦ (2 sensors with effective 15 MPixels [2], 33 videos).
The content of video is composed by outdoor (10) and indoor (49) scenes and
the targets are in uniform or cluttered background.

The method shows good performance for well-shaped targets (i.e. object with
corners) also in cluttered scenes, but the performances are worse when the target
speed is too high (i.e. sudden changes of position).

We tested the method with our dataset using six difference images per para-
meter (three steps in positive and negative direction), so matrix A contains 6× 3
difference images. A higher number of steps could lead to a more precise tracking,
but with a higher computational complexity and the risk of numerical instability
in matrix inversion.
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Fig. 7. An example of two simulated PTZ cameras using a single equirectangular video

6 Conclusions

The large diffusion of the 360◦ technology will probably lead to a significant use
of 360◦ videos in next years. This type of cameras could reduce the number of
devices needed to cover a large area.

In this paper we showed how to simulate one or several PTZ cameras using
a single 360◦ video and a tracking method based on this idea. The first task is
important because 360◦ videos are very useful to compress in a single (equirec-
tangular) video the informations of the whole 360◦ scene without significant loss
of information. In fact the strong distortion, and consequent loss of information
deriving from projection, is mainly in those part (top, bottom) that contains less
important information (roof, sky, ground).

Moreover, simulating a PTZ or still cameras from a 360◦ video allows the use
of well-known methods for tracking and video analytics for conventional video.

The contribution of the paper is two-fold: the realization of a simulated PTZ
camera from a 360◦ video whit the explication of the geometric transformations
needed to implement it and a simple object tracking method for 360◦ videos.
The first one can be used as a starting point to apply known methods of the
state of the art of PTZ or still cameras on 360◦ videos, the second one can be
used to implement a low-complexity tracking method that can run in real time
and on low power devices.

The entire proposed framework, in addition, uses a single equirectangular
video as input and allows to have a dedicated virtual PTZ camera for each target
to track. An example is shown in Fig. 7: on the left there is the equirectangular
video, on the right the two simulated PTZ cameras tracking the book and the
face simultaneously.

As future work, it is possible to fuse sophisticated tracking methods (i.e.
using more informations of motion, keypoint features, recognition and so on) on
the virtual camera plane.
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Abstract. Automatic people detection from videos is an important task
in many computer vision applications either for security and safety moti-
vations or for business intelligence purposes. In order to achieve high per-
son detection accuracy many authors propose the adoption of a depth
sensor mounted in a top-view position in order to mitigate the effects
of occlusions and illumination conditions on the performance. Unfortu-
nately, most approaches presented so far in the scientific literature have
been tested on very small datasets which do not account for the typical
situations arising in real scenarios and consequently do not allow inter-
ested readers to figure out which method has to be used in the specific
scenario at hand. In this paper we benchmark two different approaches
available in the literature for people detection from a zenithal mounted
depth camera; the former is an unsupervised method aimed at finding
the head of persons defined as the local minimum regions in the depth
map, while the latter is based on the combination of the histograms of
oriented gradient description and the support vector machine classifier.
The benchmarking is performed on a public dataset of images captured
in two different lighting conditions and with varying number of persons;
this allows to assess the performance of the considered approaches under
different real world scenarios. A detailed analysis of the two methods is
reported in the experimental section of the paper allowing the reader
to comprehend the pros and cons of each approach on the considered
scenes.

1 Introduction

Computer vision algorithms for the automatic detection of the presence of per-
sons within a scene captured by a camera represent the enabling technology
for several important real world applications. Some noticeable examples where
person detection is required as a preliminary step are: counting the number of
persons passing through a virtual line, determining the statistics regarding the
permanence times of persons in specific areas (as in front of shop windows),
detecting overcrowding conditions, etc. [2,6,9,14].

Unfortunately, accurate person detection is seriously hampered by a series
of problems that arise in real contexts. Among the most important issues we
highlight the occlusions, i.e. the situation when a subject is not detected since
c© Springer International Publishing AG 2017
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he/she is partly or completely obscured by the scene elements (typically other
subjects) which are interposed between the camera and the subject. It is intuitive
to understand that the probability of occurrence of this phenomenon is directly
related to the density of people in the area. In order to mitigate such phenomenon
several authors propose the installation of the camera in a zenithal position which
allows to eliminate the occlusions in the area immediately below the camera, with
only a gradual increase as far as the persons move apart from the optical axis
of the device. A further phenomenon that typically has a significant impact on
the reliability of the person detection methods in real contexts is represented
by the variability of the lighting conditions of the scene due to light switching
in indoor environments or to the slow variation of the solar illumination along
the day in outdoor environments [15], so as the presence of shadows [12] and
specular reflections [1]. In order to cope with such issues, in the recent years
several authors have proposed to use the depth map image provided by the
Microsoft Kinect device as it proves to be partially immune to the problems due
to lighting. Furthermore, the availability of the depth information may ease the
detection of the persons starting from the observation that in typical real world
applications the head is the element of the person that is closest to the camera,
if the latter is installed in a zenithal position. It is interesting to note that the
adoption of top-view depth cameras has also an additional positive effect. In
fact, it allows to easily overcome the stringent regulations on the privacy of the
people applied in the vast majority of countries, making this preferable to other
solutions based on the use of traditional optical cameras and mounted in such
positions as to acquire the faces of persons.

All the above observations motivated several research groups in the recent
years to propose solutions to the problem based on the use of top-view depth
cameras. The recent literature on this topic can be divided in two main streams:
on one side, there are papers proposing unsupervised approaches which find the
persons by looking for their head, being the body part closest to the camera.
Specifically, in [17], Zhang et al. propose an unsupervised approach to locate
persons in the scene; the method simulates water filling with the aim of finding
the local minimum regions in the input depth map, which should correspond to
heads of people. Similarly, in [8], Galćık et al. propose a method that locates
people in the scene by detecting maximal in the depth images followed by region
growing. The found regions are considered heads if they satisfy criteria related
to size, roundness, and there is evidence of being above shoulder-like structures.
Lin and Jhuang in [10] assume that the shapes of the pedestrians in the scene
are similar to ellipses and the area of projection of the upper portion of a person
is normally smaller compared to the lower one, so they compare and stack the
areas of every layer from low to high estimating the top portion of each object
(head and shoulders). Nalepa et al. [11] determine local minima of pixel depth
values and use a modified flood fill algorithm to append neighboring pixels to
the found minima. Then, the method groups blobs representing various parts of
a human body into a single connected component.
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A second group of methods formulate the person localization in the scene as
a detection problem. Rauter in [13] introduces simplified local ternary patterns,
a new feature descriptor which is used for human tracking based on the head
and shoulder part of the human body, then a support vector machine (SVM)
for the classification stage. Also Vera et al. in [16] propose to use an SVM
classifier to detect people, although in this case the description is based on the
histograms of oriented gradients. In Zhu and Wong [18], the 3D map of a person
is described by a data structure called the head and shoulder profile (HASP)
based on Haar wavelet features. The classifier is based on Adaboost algorithm
[7]. Unfortunately, most methods have been tested on private datasets, or in
few cases on very small public datasets that do not allow to thoroughly assess
performance of the approaches in realistic conditions and to have a detailed
insight of the pros and cons of each method.

Contribution. This paper intends to face the latter issue by proposing the
benchmarking of two alternative person detection methods selected from the
recent literature which use depth based vision systems mounted in a top-view
position. The methods have been selected to be representative of the two cate-
gories of approaches described before, i.e. unsupervised and supervised ones. To
the best of our knowledge there is no paper providing a similar contribution in
the literature. The benchmarking is carried out on a common and large dataset,
publicly available, with the aim of providing the reader with a detailed view of
the performance of each method subjected to the two main sources of errors,
namely the lighting conditions and the people density.

The paper is organized as it follows: in Sect. 2 we provide basic informa-
tion regarding the methods which have been considered for the benchmarking
reported in this paper; then, in Sects. 3 and 4 we describe, respectively, the
dataset adopted for the experimentations and the results achieved by the two
methods focusing on their behaviors in two different lighting scenarios and under
varying persons densities. Finally, in Sect. 5 we draw conclusions and delineate
future directions of our research.

2 Methods Considered for the Benchmarking

In this Section we briefly describe the two methods [16,17] which have been
considered for the benchmarking in this paper; for the details the interested
reader may examine the original papers. Hereinfter, we will refer to the method
proposed by Zhang et al. in [17] with the name WATERFILLING, and with
the name HOG-SVM to the method by Vera et al. in [16]. The methods here
considered for the benchmarking have been selected as representative of two
complementary approaches: the WATERFILLING is an unsupervised method
devised to locate the heads of the persons by searching for the local minimum
regions within the depth map, while the HOG-SVM adopts a supervised app-
roach based on support vector machine classifier.



76 V. Carletti et al.

2.1 WATERFILLING

The method moves from the idea that the head is the part of the human body
that is closest to the top-view sensor, so the authors formulate person detection
as the problem of searching the local minimum regions in the depth image; such
regions should correspond to the head of the persons. Formally, the localization
of a head into the depth image is done by finding a region A and its neighborhood
N satisfying the following constraint:

EA(f(x, y)) + η ≤ EN\A(f(x, y)), A ∈ N (1)

The operator E(·) allows to pool the depth information in the region to a real
value that reflects the total depth information in the region. η is a predefined
threshold to ensure that depth in A should be lower than N \ A with a margin.
The idea is that A and N represent the head and the shoulder, respectively. In
order to find the local regions A, the authors employ a methodology based on
the water filling process, which, starting from a representation of the depth map
as a land with humps and hollows, simulates the falling of the raindrop over
it. After the water fall simulation the hollow regions will gather the raindrops.
The hollow regions sufficiently large and deep are considered as heads. For our
test, the authors of the WATERFILLING method provided us the original code
implemented in C++ and based on the OpenCV library.

2.2 HOG-SVM

The HOG-SVM is based on the method initially proposed by Dalal and Triggs
in [3] for pedestrian detection and adapted by Vera et al. in [16] for people
detection from top-view depth cameras. The HOG-SVM method describes a
candidate in terms of the histograms of oriented gradients (HOG). The analysis
is performed on patches of the image of fixed size (96 × 96 pixels); each patch
is divided into blocks, which are divided in 2 × 2 cells each of 8 × 8 pixels. The
blocks are partially overlapped; the amount of overlap corresponds to the size of
the cell. The features are extracted by computing the gradient over the cells. The
orientation of the gradient is clustered into nine-bin histograms. The frequency
is weighted using the magnitude of the gradient blocks. At the end, a person is
described by a feature vector of size 1089. Then classification is done using a
support vector machine. The HOG-SVM person detector uses a sliding window
which is moved around the image over a dense grid. At each position the HOG
description is derived from the 96 × 96 pixels patch and used by the SVM to
classify the patch as either person or not a person. In order to detect persons
at different scales, the image is subsampled to multiple sizes and each of these
subsampled images is searched for people. We provided our own implementation
of the HOG-SVM method. Also in this case, the method has been implemented
in C++ using the OpenCV library.
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3 The Adopted Dataset

The experimental validation of the method has been carried out using the dataset
presented in [4] and successively adopted in [5]. The dataset has been acquired by
using two image sensors, namely a traditional RGB camera and the depth sensor
of a Kinect device. Both acquisition devices are mounted in a zenithal position;
video sequences were captured at 30 fps with a resolution of 640×480 pixels. Since
in this paper we are interested only to the images provided by the depth sensor,
the RGB images were not considered. The dataset includes scenes captured with
either the prevalence of the solar illumination (OUTDOOR) or the artificial light
(INDOOR). The dataset comprises sequences with a variable number of persons
flowing within the area of interest in the same direction and/or in opposite
directions. In particular, in the simplest case, there is a single person in the area
framed by the camera, while in the most complex cases there are up to four
persons moving within the area and proceeding either in the same direction, as
in a queue, or walking in two opposite directions. As a consequence, the adoption
of this dataset for our tests allows to characterize the accuracy of the analyzed
methods under different illumination and crowding conditions. Example images
from the INDOOR and the OUTDOOR environments are shown in Fig. 1, while
in Table 1 we report the number of frames in the dataset containing the number
of persons as specified in the leftmost columns.

Fig. 1. Examples of depth images acquired in the INDOOR (left image) and in the
OUTDOOR (right image) scenarios. The OUTDOOR case is characterized by high
noise due to the sunlight illumination and appearing in the form of numerous black
spots.

The test dataset was originally devised to allow the test of the methods for
counting people crossing a virtual line. Thus, in order to allow the benchmarking
of the methods proposed in this paper, we augmented the ground truth of the
dataset by providing information regarding the position of each person in each
frame. In particular, for each person we added a smaller box containing the
head of the person, and a second box including also the shoulders, as shown in
Fig. 2.
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Fig. 2. Ground truth used for the people detection: the orange and red solid lines
shows the head-shoulders ground truth used for the HOG-SVM method, the blue solid
line shows the head ground truth used for the WATERFILLING method. (Color figure
online)

Table 1. Dataset information: number of frames with 0 to 4 persons, under different
illumination conditions (INDOOR/OUTDOOR).

Persons in the frame INDOOR OUTDOOR TOTAL

0 23, 626 26, 010 49, 636

1 7, 788 8, 753 16, 541

2 1, 652 2, 501 4, 153

3 438 427 865

4 95 108 203

4 Experimental Analysis

In this section we report and analyze the results achieved by the two consid-
ered people detection approaches on the adopted dataset. Specifically, we first
describe the performance indices used for comparing the methods, then we pro-
vide information regarding the configuration parameters of the methods, and
finally, we report the performance and comment the pros and cons of both
approaches.

4.1 Performance Indices

The figure of merit adopted for measuring the detection performance of the
considered approaches is the f -index defined as the armonic mean of Precision
and Recall. Following [16], we declare a person as correctly detected by a method
if the following condition stands:

area(Bd ∩ Bg)
area(Bd ∪ Bg)

> 0.5 (2)

where Bd and Bg are the bounding boxes generated by the method and of
the ground truth, respectively. It has to be noted that the outputs of the two
methods considered for the benchmarking are not exactly the same. As a matter
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of fact the WATERFILLING method only provides the location of the head of
the person, while the HOG-SVM method provides the head and shoulder area.
Consequently in the evaluation of the performance the condition in Eq. (2) was
checked using for each method the proper ground truth (head bounding box for
WATERFILLING and shoulder bounding box for HOG-SVM). We also highlight
that for our evaluation we did not consider the persons in the dataset with head
and shoulder bounding box not completely contained into the capture area of the
camera; coherently we did not care about the object detected by the methods
laying across the borders of the frame.

4.2 Training Procedure

Both people detection methods required a training phase aimed at setting the
optimal parameters to be used during the tests. To this aim, we extracted a
total of 102 frames from the dataset described in the previous section. The
frames, containing at least a person, were randomly selected within the whole
dataset, preserving the original distribution of the number of persons present
in each frame and equally distributed between the two scenarios. The frames
used for the training stage were not used during the tests. Furthermore, the
training dataset was also augmented using rotated and flipped version of the
images; this was particular important for achieving higher generalization of the
SVM stage of the HOG-SVM method from the given set of samples extracted
from the original dataset. During the training phase we noticed that while the
HOG-SVM method is able to cope with the high difference in the signal to noise
ratio that characterizes the video sequences captured in the INDOOR and the
OUTDOOR scenarios (see Fig. 1), in the case of the WATERFILLING approach
we found that the optimal values of the parameters greatly change between the
two scenarios. Consequently we used two different parameterizations for the
latter method for the INDOOR or the OUTDOOR cases.

4.3 Analysis of the Experimental Results

Table 2 reports the overall performance achieved by the HOG-SVM and the
WATERFILLING methods over the considered dataset expressed in terms of
the indices defined before. We immediately notice the large difference between
the two methods. The HOG-SVM largely outperforms the WATERFILLING
approach with respect to all the three indices with a 28.9% relative improvement
of the f -index.

Table 2. Overall performance of the HOG-SVM and the WATERFILLING methods
over the considered dataset.

Method Precision Recall f-index

HOG-SVM 0.978 0.992 0.985

WATERFILLING 0.687 0.859 0.764
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Table 3. Performance of the HOG-SVM and the WATERFILLING methods over the
considered dataset in the INDOOR e OUTDOOR cases.

Method Scenario Precision Recall f-index

HOG-SVM INDOOR 0.969 1.000 0.984

OUTDOOR 0.988 0.983 0.986

WATERFILLING INDOOR 0.943 0.897 0.919

OUTDOOR 0.561 0.830 0.670

In Table 3 we analyze performance of the two approaches with respect to the
scenario, reporting the values of the indices separately for the INDOOR and
the OUTDOOR cases. Focusing on the HOG-SVM method, we notice that its
performance does not depend on the scenario; in fact, the variation of the f -
index between the two cases remains practically unchanged (0.984 vs 0.986),
thus demonstrating to be highly robust to the image noise. Conversely, the
WATERFILLING shows a very different behavior, being strongly affected by the
noise, especially the one that characterizes the OUTDOOR scenario (see Fig. 1).
This is demonstrated by the very high difference of the f -index achieved in the
INDOOR and in the OUTDOOR cases, 0.919 vs 0.670, respectively. Results
in Table 3 shows that the strongest limitation of the WATERFILLING in the
OUTDOOR scenario is the high incidence of false alarms and, to a lesser extent,
the incidence of false negatives. The high alarm rate is motivated by the fact
that the high noise level into the background often causes the fragmentation
of the person’s head in several connected components which generate spurious
detections.

In Tables 4 and 5 we report the performance of the methods for the two
scenarios and for the different number of persons simultaneously present into
the scene. We notice that for both methods the number of persons in the scene
does not have a significant influence over the performance. Specifically, in the
case of HOG-SVM the value of the f -index is bound to a narrow range, from

Table 4. Performance of the HOG-SVM method under different flow densities.

Scenario Persons Precision Recall f-index

INDOOR 1 0.975 1.000 0.987

2 0.964 0.999 0.982

3 0.946 0.999 0.972

4 0.965 1.000 0.982

OUTDOOR 1 0.994 0.997 0.996

2 0.987 0.974 0.980

3 0.993 0.988 0.991

4 0.988 0.968 0.978
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Table 5. Performance of the WATERFILLING method under different flow densities.

Scenario Persons Precision Recall f-index

INDOOR 1 0.965 0.912 0.938

2 0.901 0.863 0.882

3 0.920 0.887 0.903

4 0.944 0.904 0.923

OUTDOOR 1 0.551 0.804 0.654

2 0.579 0.863 0.693

3 0.551 0.870 0.675

4 0.580 0.883 0.701

false negative examples false positive examples
HOG-SVM WATERFILLING HOG-SVM WATERFILLING

Fig. 3. The first two rows show the output in the INDOOR scenario, the last two
rows show the output in the OUTDOOR scenario. In the first and third columns
there are false negative and false positive events from HOG-SVM method, while in
the second and fourth columns there are false negative and false positive events from
WATERFILLING method.

0.972 to 0.996. Furthermore, the best values are obtained in case of a single
person in the scene. This is motivated by the fact that in few cases when there
are persons close to each other the method provides false detections in the region
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separating the two persons (see Fig. 3 for some examples of this situation). In the
case of the WATERFILLING we notice that the values of the f -index varies in
two relatively short ranges for the INDOOR scenario (from 0.882 to 0.983) and
the OUTDOOR scenario (from 0.654 to 0.701) highlighting that the illumination
source has an higher impact than the crowding level on the performance of this
method.

5 Conclusions and Future Work

In this paper, we studied two methods available in the scientific literature for
people detection from top-view depth cameras. The methods under considera-
tion follow two alternative approaches: the WATERFILLING is an unsupervised
method aimed at locating the head of persons by looking for the local minima in
the depth map; conversely, the HOG-SVM is a supervised method based on an
SVM classifier fed by the description of the head and shoulder pattern through
the histograms of oriented gradients.

The two methods have been tested on a publicly available dataset character-
ized by two illumination scenarios (indoor and outdoor) and containing images
with varying persons density. The experimental results highlight an overall accu-
racy of the HOG-SVM method higher than the unsupervised approach, mostly
in the outdoor scenario where the latter generates many false positives. Further-
more, for both methods the crowd density does not appear to have a significant
impact over the performance.

In our future benchmarking effort, we will consider the following aspects:
expanding the set of methods from those available in the scientific literature,
enlarging the dataset in order to account also for other issues that may affect
the performance as the installation height and the depth sensor technology (e.g.
stereo camera and Kinect 2), studying the complementarity of the responses of
the considered detectors and consequently the possibility to improve performance
by fusion of the outputs.
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Abstract. Gesture recognition approaches based on computer vision
and machine learning mainly focus on recognition accuracy and robust-
ness. Research on user interface development focuses instead on the
orthogonal problem of providing guidance for performing and discover-
ing interactive gestures, through compositional approaches that provide
information on gesture sub-parts. We make a first step toward combining
the advantages of both approaches. We introduce DEICTIC, a composi-
tional and declarative gesture description model which uses basic Hidden
Markov Models (HMMs) to recognize meaningful pre-defined primitives
(gesture sub-parts), and uses a composition of basic HMMs to recog-
nize complex gestures. Preliminary empirical results show that DEIC-
TIC exhibits a similar recognition performance as “monolithic” HMMs
used in state-of-the-art vision-based approaches, retaining at the same
time the advantages of declarative approaches.

Keywords: Gesture recognition · Hidden Markov Models · Composi-
tional · Declarative

1 Introduction

Gesture recognition is a long-standing research topic in the computer vision field,
with many applications to Human-Computer Interaction (HCI) [16]. Vision-
based approaches to gesture recognition can be categorized into appearance-
and 3D model- (or tracking-) based [2,17]. In particular, the recognition of
dynamic gestures (as opposed to static ones, that do not include a temporal
dimension) has been addressed using techniques that explicitly consider the
temporal dimension, like Hidden Markov Models (HMM), Dynamic Time Warp-
ing (DTW), Time-Delay Neural Networks (TDNN) and Finite-State Machines
c© Springer International Publishing AG 2017
S. Battiato et al. (Eds.): ICIAP 2017, Part I, LNCS 10484, pp. 84–95, 2017.
https://doi.org/10.1007/978-3-319-68560-1_8
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(FTM) [2,12,17], as well as traditional supervised classification algorithms like
support vector machines (although they are more suited to static gestures [12]).

Vision-based gesture recognition poses a number of challenges, like coping
with a large variety of gestures, and achieving invariance to lighting conditions,
viewpoint changes, cluttered background and gesture speed; usually, a trade-off
between accuracy, performance and usefulness has to be found, based on criteria
like real-time processing capability and scalability [2,17]. Beside the above issues,
under the viewpoint of user interface (UI) development it is very important to
address the orthogonal problem of usability, which is related to the meaning of
interactive gestures for users [15]: indeed, not all gestures that can be recognized
by a machine have a meaning for the human counterpart. In particular, con-
trary to WIMP (Windows, Icons, Menus, Pointer device) interfaces, gestures are
rarely self-revealing, and thus a guidance system for discovering what commands
are available and how to trigger them can definitely improve their usability [3].
This implies that the underlying recognition system should be able to provide
(through a graphical interface) feedback and feedforward information [22], i.e.,
information on which portion of a gesture has been completed, and on its poten-
tial completion, which may be more than one.

The two goals of an accurate/effective recognition and a usable gestural inter-
face can be conflicting. Vision-based approaches usually provide a class label to
a whole gesture pattern recognized in an input sequence, which is viewed as
an atomic event even when the time dimension is internally taken into account
(e.g., using HMMs). However, from the user point of view the performance of
a gesture cannot be reduced to a single event, since it spans over a perceivable
amount of time. On the other hand, compositional and/or declarative approaches
have been proposed for modelling gestures, which explicitly take into account
the subdivision of a gesture into meaningful sub-parts; however, to recognize
sub-parts they rely on heuristic techniques that exhibit a lower effectiveness and
robustness with respect to “monolithic” vision-based approaches. We survey the
relevant literature on both approaches in Sect. 2.

In this paper we make a first step towards filling the gap between vision-
based and compositional/declarative approaches. We start from the declarative
and compositional gesture description model GestIT [20,21] (see Sect. 2.2), that
solves the intermediate feedback problem and provides a superset of composi-
tion operators described in other approaches. We integrate GestIT with HMMs,
using HMMs to recognize basic gesture segments (“primitives”) instead of whole
gestures (Sect. 3). We show that the resulting method, called DEICTIC (DEclar-
atIve and ComposiTional Input Classifier), is capable of recognizing complex
gestures made up of several primitives, rigorously defined according to GestIT
operator semantics. Preliminary empirical results (Sect. 4) provide evidence that
DEICTIC exhibits a recognition performance comparable to that of standard
HMM classifiers, while retaining the advantages of declarative approaches.
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2 Related Work

In this section we overview first the vision-based approaches most relevant to
our work, i.e., the ones which subdivide gestures into sub-parts, and then the
main approaches based on declarative models, including GestIT.

2.1 Vision-Based Gesture Recognition Approaches

Vision-based methods that identify a set of sub-parts (or primitives) common to
different gestures have already been proposed, either for increasing the recogni-
tion rate or to reduce the training set size in learning-based approaches. Prim-
itives can be broadly defined as a set of distinguishable patterns from which
either a whole movement or a part of it can be reconstructed. Different, specific
definitions of “primitive” have been considered in the literature: they may rep-
resent basic movements (e.g., raising a leg, moving an arm to the left), static
poses, or characteristic patterns of low-level signals like the Fast Fourier Trans-
form. In the following we give representative examples for each interpretation of
the primitive concept.

In [23] primitives are identified using a bottom-up clustering approach aimed
at reducing the training set size and at improving the organisation of unla-
beled datasets for speeding up its processing. Gestures are then labelled with
sequences of primitives, which is close to a representation useful also for building
UIs. However, since primitives are identified automatically, they are difficult to
understand for designers while creating feedback and feed-forward systems. In [1]
primitives are defined in a context-grammar established in advance using a top
down approach, which is more suitable to UI designers; however, grammars were
not created taking into account the gesture meaning from the user perspective.

In [13] primitives are used together a three-level HMM classifier architecture
for recognizing (i) the primitives, (ii) their composition and (iii) the pose or
gesture. However, also in this case unsupervised learning was used for defining
both primitives and their composition, which is not suitable for building UIs.

A set of primitives that better suits the understanding by designers includes
3D properties of the movement trajectory. For instance, in [14] primitives iden-
tified in a 2D video are used for classifying 3D movements. Here the primitives
are functions on the 2D features that represent the user’s state. A representa-
tion more linked to geometric features on the 3D space for identifying primitives
was proposed in [5]; however, it requires the understanding of the underlying
mathematical representation, which is not feasible for UI designers.

To our knowledge, the vision-based approach most similar to ours is the one
of [9]. It decomposes gestures into application-specific “primitive strokes”, and
uses a distinct HMM for modelling each stroke; each gesture is then modelled by
a composite HMM obtained by concatenating the corresponding stroke models.
This technique is valid for describing stroke sequences. Our approach is able
to define more complex composite gestures, including alternative (choice) and
parallel definitions. In addition, we do not use a re-training step for avoiding a
degradation in recognition performance.
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2.2 Gesture Recognition: The Declarative Modelling Approach

Declarative approaches allow splitting a gesture into several sub-components.
There are different compositional approaches based on heuristic gesture recog-
nition. For instance, Kammer et al. [7] introduced GeForMT, a language for for-
malizing multitouch gesture for filling the gap between the high-level complex
gestures and the low-level device events. GeForMT uses an Extended Backus-
Naur form grammar, with five basic movements (move, point, hold, line, circle
and semicircle), which are composed through parallel and sequence operators.

A rule-based approach for multitouch gestures has been introduced in
Midas [18]. The rules work on different features, for example the 2D positions,
the speed and the finger tracking state and consists of two components: a prereq-
uisite part and an action part. The first defines the input fact pattern to be recog-
nized while the second the UI behaviour. Mudra [6] is a follow-up research from
the same group extending Midas for multimodal interfaces. It unifies the input
stream coming from different devices, exploiting different modalities. Designers
define both the low-level handling events and the high-levels rules, combining
them into a single software architecture. Khandkar et al. proposed GDL [8] (Ges-
ture Description Language), a domain-specific language designed to streamline
the process of defining gestures. GDL separates the gesture recognition code
from the definition of UI behaviour. This work defines three components: the
gesture name, the code for the gesture validation and a return type. The last
component represents the data notified with a callback to the application logic.

More structured and expressive declarative methods are Proton++ [11] and
GestIT [20,21]. Proton++ separates the temporal sequencing of the event from
the code which describes the UI behaviour. It also allows developers to declara-
tively describe custom gestures through regular expressions, using the operators
of concatenation, alternation and Kleene’s star. A regular expression if defined
by a triplet: (i) the event type, (ii) the touch identifier, (iii) the interface item
hit by the touch; An improved version of the framework [10] included means for
calculating a set of attributes that may be associated to an expression literal.

In GestIT [20,21], gestures are modelled through expressions that define
their temporal evolution, obtained by composing two main elements: ground
and composite terms. A ground term is the smallest block for defining a gesture:
it describes an atomic event which cannot be further decomposed. In general, it
is associated to a value change of a feature, such as the pixel coordinates of a
touch on the screen or the position and rotation of a skeleton joint. Composite
terms are used for defining more complex gestures through a set of operators.
We will use them in the rest of this work, since they are a superset of those
included in Proton++ [21]. Considering two gestures g and h (either ground or
composite terms): g∗ is the iteration of g; g � h is the sequence that connects
g with h; g ‖ h defines that g and h are performed in parallel; g[ ]h is the choice
between either g or h; g[> h disables the iteration of g by performing h. Due to
space limits, for further details about GestIT we refer the reader to [20,21]. Its
main drawback is the heuristic recognition approach for ground terms, which do
not guarantee a good recognition accuracy. We try to solve this problem in this
work.
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3 Combining the Two Approaches with DEICTIC

In defining DEICTIC, our main goal is to make a first step toward filling the
gap between machine learning approaches and declarative description methods,
combining the advantages for UI developers in providing gesture sub-parts noti-
fication (which is a feature of GestIT), together with the high recognition accu-
racy and the robustness to input noise offered by learning-based recognition
approaches like HMMs. We focus in particular on stroke gestures, which may be
segmented into sequences of basic components (e.g., points, lines or arcs).

To describe a gesture, DEICTIC uses the approach of GestIT [20,21]: ground
terms are defined first, then they are combined through temporal operators for
describing more complex ones. The key feature of DEICTIC is that each ground
term is recognised using a distinct, “basic” HMM, trained on a set of examples;
the same, basic HMMs are then used in different gesture recognizers, in the same
way a line following a given direction may be used in more than one trajectory.
In particular, more complex strokes are described through the combination of
basic HMMs into a composite one, whose topology is defined according to the
semantics of the GestIT composition operators (see below). This allows DEIC-
TIC to provide information on the recognition of each single operand inside the
composition. Moreover, contrary to a similar approach like the one of [9] (see
Sect. 2.1), the composite HMM of DEICTIC does not require additional training
with respect to the basic HMMs, providing additional temporal relationships
between primitives besides the sequence. In the following we explain how to cre-
ate basic HMMs for ground terms, and the proposed algorithms to define the
topology of composite HMMs.
Ground Terms. For basic HMMs we use the left-to-right (or Bakis) topology,
which is the most commonly used one for recognizing simple gestures like lines
or arcs. It requires to specify the number of states, whereas the probability
distributions of both transitions and observations may be learned from a dataset.
We point out that in DEICTIC training data are needed only for ground terms.
Iterative Operator. Given a HMM trained to recognize a gesture g, the itera-
tive operator allows recognizing the same gesture an indefinite number of times.
Assuming that the starting state of g is s0 and the ending state is gf , the HMM
for g∗ is defined by adding a transition from all states in the backward star of
sf (represented in red in Fig. 1(a) to all states in the forward of s0 (in green in
Fig. 1(a). This creates a loop in the topology, while no changes are made to the
probability distributions.
Sequence Operator. For recognizing a sequence of gestures in a specified order,
we use the sequence operator. Given two HMMs trained to recognize respectively
gesture g and h, an HMM that recognises the sequence g � h is obtained by
connecting the backward star of the ending state in g with the forward star of
starting state in h. Such operation is depicted in Fig. 1(b). It guarantees that
g � h has only one starting and one ending state. Since the two HMMs may
use a different set of features, the observations of the composed one are obtained
by the union of all features considered by both g and h. In other words, the
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a) b)

c) d)

e)

Fig. 1. Composite HMM topologies: (a) iterative, (b) sequence, (c) choice, (d) dis-
abling, (e) parallel. We denote with g and h the gestures HMMs to be composed.
(Color figure online)

composite model must specify an emission probability for each feature and for
each state.
Choice Operator. A choice between two gestures, denoted by g[]h, allows recog-
nizing either g or h. We obtain the corresponding HMM starting from HMMs
trained to recognize g and h, and putting them in two separate recognition lines.
No transition between the states of g and h is added. The composite HMM has
one starting and one ending state. They are linked respectively with the forward
star of the original starting state and the backward star of the original ending
state in both g and h. All these transitions are equally likely. The choice topology
is shown in Fig. 1(c).
Disabling Operator. In defines a gesture that stops the recognition of another
one. In general, we use it for stopping an iteration loop. Given two gestures g and
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h, the HMM that composes them through the disabling operator is obtained by
inserting a set of transitions that represent a short-cut from each ground term
contained in g to the starting state in h. Each link models the possibility for the
user to stop the execution of g at any time performing h: before starting each
one of the ground terms contained in g the model contains a possible transition
to h that blocks its recognition. However, since a HMM has a single starting
and a single final state, the real HMM topology is more complicated: one needs
to consider also the forward star of the starting state and the backward star of
the ending state in each ground term contained in g. The schema is shown in
Fig. 1(d). In order to maintain the sum of the probabilities towards each state in
the HMM equal to 1, we split the original transition likelihood among all involved
arcs (both the old and the new ones). We apply the same completion procedure
for the observation probability vector we used for the sequence operator.
Parallel Operator. The parallel operator defines the simultaneous performance
of two or more independent gestures. Give two gestures g and h, the composite
HMM for g ‖ h has a state for each pair (sg, sh) where sg is a state in g and sh
is a state in h. The new HMM represents all the possible combinations of states
in g and h. Therefore, we add a transition between two states in the parallel
HMM, only if the transition is valid both in g and in h. More precisely, given
two states in the parallel HMM (sgi , s

h
j ) and (sgx, s

h
y), we add a transition between

them only if the transition from sgi to sgx exists in g and the transition from shi j
to shy exists in h. The observable values of g ‖ h are the concatenation of those
in g and h, and are independent from each other.

We finally point out again that, using the proposed approach, composite
HMMs need not to be re-trained.

4 Experiments and Preliminary Results

We implemented the above composition algorithms using the Python Pome-
granate HMM library [19]. For our first experiments on DEICTIC, we used a
data set containing 60 repetitions of 10 stroke gestures, performed by 14 differ-
ent people. The input sequences consist of the position of the tip of the user’s
dominant hand forefinger, tracked using a Leap Motion sensor. Our dateset con-
tains the following gestures: swipe left ←, swipe right →, V, caret

∧
, left square

bracket [, right square bracket ], X, delete , triangle � and rectangle �.
We used only one ground term for describing such gestures, a left-to-right

movement on the horizontal axis. In order to recognize such ground term, we
created a Bakis HMM with six states, whose observation vector is composed
by two normal distributions, one for the x and one for y coordinate of the
finger/hand position. We then collected 14 training examples (separated from
the gesture dataset) which, after a normalization and resampling step, were used
for estimating the parameters of the ground term HMM. We then “cloned” such
HMM and applied geometric transformations to the x and y distributions in
the observation vector, such as scaling, translation and rotation, in order to
represent different segments in a normalised 2D plane. In order to define the
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expressions for the considered gesture set, we used a cardinal direction notation
and the x and y coordinates in brackets for representing the starting point (in
the list below we always consider the origin, but in the gesture definitions they
are positioned between 0 and 1 in both axes). They represent a geometrically
transformed version of the same ground term HMM:

– e(0, 0), the original term, without any transformation
– n(0, 0), the original term rotated 90◦

– s(0, 0), the original term rotated −90◦

– w(0, 0), the original term rotated 180◦

– ne(0, 0), the original term rotated 45◦

– se(0, 0), the original term rotated −45◦

– nw(0, 0), the original term rotated 135◦

– sw(0, 0), the original term rotated −135◦

– nw60(0, 0), the original term rotated 120◦

– sw60(0, 0), the original term rotated −120◦.

Table 1 shows the modelling expression for all gestures in our dataset. The
third column shows the recognition rate for the DEICTIC HMMs, directly fed
with samples in the dataset, without additional training besides the original
ground term. For comparison, we also trained an ad-hoc HMM for each gesture
type defined using the Bakis topology, and performed a 10-fold cross validation
for each gesture sample of the same type. We consider these results as an upper
limit for DEICTIC, since optimizing the HMM on real samples allows to better
adapt the transition probabilities and emission distributions.

The recognition rates of DEICTIC and of the ad hoc HMM are reported in
Table 1. The confusion matrix for DEICTIC is shown in Table 2. In summary,
the recognition rates are similar, which provides a first evidence that DEICTIC
does not significantly degrade the recognition performance with respect to the
state-of-the-art HMM classification approach. We had only two errors on our
dataset. In the first one, the classifier confused a delete gesture with a triangle.
The sample had a small cross (see sample in Table 2), thus it was really similar
to a triangle. In the second error (a rectangle confused again with a triangle),
the sample had some initial noise that resembled a triangle.

In contrast, DEICTIC exhibits several advantages, in particular considering
the development of gestural UIs. First, DEICTIC was able to recognize new
gestures, significantly different from the samples included in the training set of
each ground term. This is important for UI designers, who would be able to
create gesture recognizers exploiting existing components, as they already do
with UI widgets.

Second, DEICTIC allows the reconstruction of the most likely sequence of
ground terms associated to a particular gestural input, using the Viterbi algo-
rithm [4]. Indeed, by construction, each state in a composite HMM is associated
to a single ground term, for each considered stroke (except for parallel ges-
tures, that consider more than one stroke). Such information is not trivial when
gestures are composed in choice or parallel, since the designer would have the
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Table 1. Recognition rate comparison between HMM defined through DEICTIC and
trained ad-hoc (HMM column).

Table 2. Samples gestures included in the dataset and confusion matrix for the recog-
nition using DEICTIC.

possibility to associate different feedback and feed-forward reactions to differ-
ent ground terms. Such level of granularity is not supported by ad-hoc trained
HMMs.

To further test all composition operators, we also considered a set of syn-
thetic sequences produced as follows. First, we randomly grouped the gestures
in a set of 5 pairs; then, for each pair we created a set of 14 sequences that
should be recognized by the composition of two gestures, using the sequence,
disabling and parallel operator. For creating the sequence samples, we simply
concatenated those of the first gesture with those of the second one. For creat-
ing the disabling samples, we supposed to perform iteratively the first gesture,
which should be blocked by the second one. Therefore, we randomly repeated
the samples for the first gestures a random number of times between 3 and 5,
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concatenating the result with a sample of the second gesture. For the parallel
operator, we juxtaposed the samples of both gestures, randomly shifting up or
down the rows of the second gesture and filling the blanks with random values.
The latter operation guarantees that the gestures may start at different times.
We then built one composite HMM for the sequence with the disabling operator,
and one for the parallel operator. Similarly to the previous experiment, beside
using DEICTIC we also trained an ad-hoc HMM for each gesture category, and
evaluated the recognition performance using the leave-one-out technique. Table 3
shows that also in this case our compositional approach did not introduce a sen-
sible degradation of the recognition rate.

Table 3. Recognition rates for syntethic sequences.

5 Conclusions

We proposed DEICTIC, a declarative and compositional description model for
interactive gestures, based on the composition of a set of basic gesture sub-parts
(ground terms, or primitives) through a set of operators. We use HMMs, a state-
of-the-art technique in vision-based approaches, to recognize ground terms; we
then combine such “basic” HMMs into composite HMMs, according to the oper-
ators, to describe and recognize complex gestures, retaining at the same time the
inspection capabilities on gesture sub-parts needed for providing feedback and
feed-forward in user interfaces. The main contribution of our work is the defin-
ition of algorithms for defining the composite HMM topology according to the
composition semantics of complex gestures, without requiring additional train-
ing for the resulting HMM with respect to the basic ones. Preliminary empirical
evidence shows that our approach is a promising direction toward filling the
gap between the higher recognition accuracy and robustness achieved by vision-
and learning-based approaches, and the capability of providing information on
meaningful gesture sub-parts exhibited by compositional approaches, which is
very useful for user interface design. The main limitation of DEICTIC to be
addressed in future work is that the number of states of the composite HMM
grows linearly (for the sequence, disabling and choice operators) or quadratically
(for the parallel operator) with respect to basic HMMs.
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Abstract. Given the existence of many change detection algorithms,
each with its own peculiarities and strengths, we propose a combination
strategy, that we termed IUTIS (In Unity There Is Strength), based on a
genetic Programming framework. This combination strategy is aimed at
leveraging the strengths of the algorithms and compensate for their weak-
ness. In this paper we show our findings in applying the proposed strat-
egy in two different scenarios. The first scenario is purely performance-
based. The second scenario performance and efficiency must be balanced.
Results demonstrate that starting from simple algorithms we can achieve
comparable results with respect to more complex state-of-the-art change
detection algorithms, while keeping the computational complexity afford-
able for real-time applications.

Keywords: Video surveillance · Change detection · Algorithm combin-
ing and selection · Genetic Programming · CDNET

1 Introduction

Many computer vision applications require the detection of changes within video
streams, e.g. video surveillance, smart environments, video indexing and retrieval
[5,28]. For all these applications, a robust change detection algorithms with a
low false alarm rate is required as a pre-processing step. Many algorithms have
been proposed to solve the problem of video change detection. Most of them
rely on background subtraction techniques to segment the scene into foreground
and background components. The outputs of a change detection algorithm are
usually binary images of the foreground areas corresponding to moving objects.
These algorithms are designed to cope with the challenges that can be found in
a real-world videos such as high variation in environmental conditions, illumina-
tion changes, shadows, camera movements and camera-induced distortions and
so on. To this end, algorithms are becoming increasingly more complex and thus
computationally expensive both in terms of time and memory space. Paralleliza-
tion of background subtraction algorithms on GPU is a possible way to speed
up the computation to make them usable in real-time applications (e.g. [24]).

c© Springer International Publishing AG 2017
S. Battiato et al. (Eds.): ICIAP 2017, Part I, LNCS 10484, pp. 96–107, 2017.
https://doi.org/10.1007/978-3-319-68560-1_9
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Notwithstanding the improvements, it is still difficult to design general-
purpose background subtraction algorithms. These algorithms have been demon-
strated to perform well on some types of videos but there is no single algo-
rithm that is able to tackle all the challenges in a robust and computationally
efficient way. This can be clearly seen in the CDNET 2014 competition [26]
(ChangeDetection.net) where change detection algorithms are evaluated on a
common dataset composed of different types of videos sequences and classified
according to their performance. To date, more than 35 different algorithms have
been evaluated, but many more exists in the literature.

Finally the output of a background subtraction algorithm is usually refined in
order to reduce noisy patterns such as isolated pixels, holes, and jagged bound-
aries. To improve algorithm accuracy, post-processing of the foreground compo-
nent, ranging from simple noise removal to more complex object-level techniques,
has been investigated. Results indicate that significant improvements in perfor-
mance are possible if a specific post-processing algorithm is designed and the
corresponding parameters are set appropriately [18].

Given the existence of so many change detection algorithms, each which its
own peculiarities and strengths, here we are interested in finding how far can we
get, in terms of performances, by leveraging existing algorithms to create new
ones. Instead of designing from scratch a new algorithm, we combine existing
ones with the aim to build a better change detection algorithm. We are interested
in testing this idea under two scenarios: a purely performance-based scenario and
a performance/efficiency balanced scenario. In [3] we have investigated the first
scenario by considering the best change detection algorithms in the CDNET 2014
competition, disregarding their computational complexity, and combining then
under a Genetic Programming (GP) framework [11]. The resulting algorithms
significantly outperform the algorithms used in the combination and even other,
more recent, approaches. In this work, we present our findings with respect
to the second scenario. We apply the same general approach used in [3] but
considering state-of-the-art algorithms that are computationally efficient but
not top-performing. We want to investigate if also in this scenario, we are able
to create an effective algorithm and what kind of performances we can achieve.

2 The Proposed Approach

In this section, we summarize our GP-based combining approach. A detailed
description of the method can be found in [3]. GP is a domain-independent
evolutionary method that genetically breeds a population of functions, or more
generally, computer programs to solve a given problem [11]. Evolution is driven
by the best fit individuals according to an objective function (i.e. fitness function)
that must be maximized or minimized. The solutions can be represented as trees,
lines of code, expressions in prefix or postfix notations, strings of variable length,
etc. GP has been widely used for finding suitable solutions for a wide range of
problems needing optimization. For example, in image processing and computer
vision applications GP has been used for: image segmentation, enhancement,

http://changedetection.net/
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layouting, classification, feature extraction, and object recognition [1,2,4,7,13].
For our purposes, we feed GP the set of the binary foreground images that
correspond to the outputs of the single change detection algorithms, and a set
operators represented by unary, binary, and n-ary functions that are used to
combine the outputs (via logical AND, logical OR, etc. . . ) as well as to perform
post-processing (via filter operators).

More formally, given a set of n change detection algorithms C = {Ci}ni=1,
the solutions evolved by GP are built using the set of functionals symbols F
and the set of terminal symbols T = C. We build the set of functionals symbols
considering operators that work in the spatial neighborhood of the image pixel,
or combine (stack) the information at the same pixel location but across different
change detection algorithms. The list of functional symbols used is given below:

– ERO (Erosion): it requires one input, works in the spatial domain and per-
forms morphological erosion with a 3 × 3 square structuring element;

– DIL (Dilation): it requires one input, works in the spatial domain and per-
forms morphological dilation with a 3 × 3 square structuring element;

– MF (Median Filter): it requires one input, works in the spatial domain an
performs median filtering with a 5 × 5 kernel;

– OR (Logical OR): it requires two inputs, works in the stack domain and
performs the logical OR operation;

– AND (Logical AND): it requires two inputs, works in the stack domain and
performs the logical AND operation;

– MV (Majority Vote): it requires two or more inputs, works in the stack domain
and performs the majority vote operation;

We define the fitness function used in GP by taking inspiration from the
CDNET website, where change detection algorithms are evaluated using different
performance measures and ranked accordingly. Given a set of video sequences
V = {V1, . . . , VS}, a set of performance measures M = {m1, . . . ,mM} the fitness
function of a candidate solution C0, f(C0) is defined as the average rank across
video sequences and performance measures:

f(C0) =
1
M

M∑

j=1

(
rankC0

(
C0;

{
mj

(
Ck(V)

)}n

k=1

)
+

2∑

i=1

wiPi(C0)
)

(1)

where rankC0(·) computes the rank of the candidate solution C0 with respect to
the set of algorithms C according to the measure mj . P1(C0) is defined as the
signed distance between the candidate solution C0 and the best algorithm in C
according to the measure mj :

P1(C0) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−mj(C0(V)) + max
Ck∈C

mj(Ck(V))

if the higher mj the better
mj(C0(V)) − min

Ck∈C
mj(Ck(V))

if the lower mj the better

(2)
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and P2(C0) is a penalty term corresponding to the number of different algorithms
selected for the candidate solution C0:

P2(C0) =
# of algorithms selected in C0

# of algorithms in C (3)

The role of P1 is to produce a fitness function f(C0) ∈ R, so that in case
of candidate solutions having the same average rank, the one having better
performance measures is considered a fitter individual in GP. The penalty term
P2 is used to force GP to select a small number of algorithms in C to build
the candidate solutions. The relative importance of P1 and P2 is independently
regulated by the weights w1 and w2 respectively.

3 Experimental Setup

Since we wanted to test computationally efficient and simple change detection
algorithms, we chose the set of change detection algorithms C to be combined
among those implemented in the BGSLibrary1. BGSLibrary is a free, open source
and platform independent library which provides a C++ framework to perform
background subtraction using code provided by different authors. We used the
1.9.1 version of the library which implements more than 30 different algorithms.
We base our choice of the algorithms on the recent review paper of the authors
of BGSLibrary [20] where the computational costs as well as the performances
of the different algorithms have been assessed. The rationale is to use compu-
tationally efficient algorithms having above average performances, and possibly
exploiting different background subtraction strategies. Based on the results in
[20], and on some preliminary tests that we have performed, we selected the
following algorithms: Static Frame Difference (SFD), Adaptive-Selective Back-
ground Learning (ASB), Adaptive Median (AM) [15], Gaussian Average (GA)
[27], Gaussian Mixture Model (ZMM) [29], Gaussian Mixture Model (MoG) [6],
Gaussian Mixture Model (GMM) [22], Eigenbackground/SL-PCA (EIG) [17],
VuMeter (VM) [9], ΣΔ Background Estimation (SD) [12], Multiple Cues (MC)
[16]. All the algorithms have been tested in [20] with the exception of SigmaDelta
and SJNMultiCue algorithms. These have been added in recent versions of the
BGSLibrary. We decide to include them since they show interesting performances
although they are slightly more computationally intensive with respect to the
simpler algorithms.

The performance measures M are computed using the framework of the
CDNET 2014 challenge [26]. The framework implements the following seven dif-
ferent measures: recall, specificity, false positive ratio (FPR), false negative ratio
(FNR), percentage of wrong classifications (PWC), precision, and F-measure. A
ranking of the tested algorithms is also computed starting from the partial ranks
on these measures. The CDNET 2014 dataset is composed of 11 video categories,
with four to six videos sequences in each category. The categories exhibit differ-
ent video contents and are chosen to test the background subtraction algorithms
1 https://github.com/andrewssobral/bgslibrary.

https://github.com/andrewssobral/bgslibrary
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under different operating conditions. The challenge rules impose that each algo-
rithm should use only a single set of parameters for all the video sequences. For
this reason we set the parameters of the algorithms to their default values, i.e.
the values in the configuration files provided in the BGSLibrary.

We set the parameters of GP as in [3]. Also, the GP solutions are generated by
considering the shortest video sequence in each of the 11 CDNET 2014 categories
as training set. The images in this set are less than 10% of the total images in
the whole dataset; this minimizes the over-fitting effect if more images were
used. We name the best solution found by GP in this way as IUTIS-2 (the
term IUTIS is derived by quoting the Greek fabulists Aesop 620BC-560BC:
“In Unity There Is Strength”). We also created a different algorithm, IUTIS-
1, by considering a smaller training set composed of all video sequences in the
“Baseline” category. As the name suggests, this category contains basic video
sequences. IUTIS-1 exhibits worse performances than IUTIS-2, and since its
results are not directly comparable with the reported ones, it will not be further
considered in the discussion.

4 Results

The tree structure for the IUTIS-2 solution is shown in Fig. 1. In the same figure
an example of the output at each node on a sample frame is also reported. From
the solution tree it is possible to notice that IUTIS-2 selected and combined
a subset of four simple change detection algorithms out of the 11 available:
it selected GA, ZMM, MC, and ASB. Concerning the tree structure, we can
notice that IUTIS-2 presents a single long branch in its right-hand side. Starting
from the functionals defined in Sect. 2, GP was able to create new ones. For
instance, the solution tree uses a sequence of the operator MF, which can be
seen as an approximation of what could be obtained using a larger kernel for
the median filter. The detailed results of the IUTIS-2 algorithm, computed
using the evaluation framework of the CDNET 2014 challenge on its 11 video
categories, are reported in Table 1. The overall F-measure of IUTIS-2 and of

Fig. 1. IUTIS-2 solution tree and example masks.
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Table 1. Detailed evaluation results of the IUTIS-2 algorithm for each category of the
evaluation dataset.

Scenarios Recall Specificity FPR FNR PWC Precision F-measure

Overall 0.6703 0.9846 0.0154 0.3297 2.9932 0.7191 0.6163

Bad weather 0.6388 0.9995 0.0005 0.3612 0.6290 0.9380 0.7525

Low framerate 0.7295 0.9947 0.0053 0.2705 1.2079 0.7160 0.6395

Night videos 0.6089 0.9861 0.0139 0.3911 2.2366 0.4706 0.5157

PTZ 0.8329 0.8939 0.1061 0.1671 10.6978 0.1884 0.2397

Turbulence 0.8444 0.9988 0.0012 0.1556 0.2349 0.7737 0.7967

Baseline 0.7452 0.9978 0.0022 0.2548 1.5115 0.9100 0.7913

Dynamic
background

0.8027 0.9828 0.0172 0.1973 2.0051 0.5564 0.5741

Camera jitter 0.7209 0.9867 0.0133 0.2791 2.4236 0.7184 0.7165

Intermittent
object motion

0.3735 0.9973 0.0027 0.6265 4.7669 0.8374 0.4836

Shadow 0.6636 0.9946 0.0054 0.3364 2.2199 0.8621 0.7393

Thermal 0.4125 0.9987 0.0013 0.5875 4.9923 0.9395 0.5306

Table 2. Overall F-measure all the change detection algorithms considered to build
IUTIS-2 (left), and IUTIS-3, IUTIS-5 and IUTIS-7 (right). An empty circle means that
the algorithm was in C but was not selected, a full circle otherwise.

Method F-meas. Used by Impr. by
IUTIS-2 IUTIS-2

ASB 0.4501 • 0.1662
ZMM [29] 0.5175 • 0.0988
GA [27] 0.4535 • 0.1628
MC [16] 0.5444 • 0.0719
SFD 0.2626 ◦ 0.3537
AM [15] 0.4029 ◦ 0.2134
GMM [22] 0.4589 ◦ 0.1574
EIG [17] 0.3215 ◦ 0.2948
MoG [6] 0.4304 ◦ 0.1859
VM [9] 0.3990 ◦ 0.2173
SD [12] 0.3969 ◦ 0.2194

MV-11 0.5098 0.1065
IUTIS-2 0.6163 -.—-

Method F-meas. Used by Impr. by Impr. by
IUTIS-3/5/7 IUTIS-3 IUTIS-5

FTS [25] 0.7281 •/ • /• 0.0413 0.0540
SBS [21] 0.7092 •/ • /• 0.0602 0.0729
CWS [10] 0.7050 •/ • /• 0.0644 0.0771
SPC [19] 0.6932 / • /• 0.0762 0.0889
AMB [24] 0.7058 / • /• 0.0636 0.0763
KNN [29] 0.5984 / / ◦ 0.1710 0.1837
SCS [14] 0.6572 / / ◦ 0.1122 0.1249
RMG [23] 0.6282 0.1412 0.1539
KDE [8] 0.5689 0.2005 0.2132

MV-3 0.7496 0.0198 0.0325
MV-5 0.7569 0.0125 0.0252
MV-7 0.7115 0.0579 0.0706
IUTIS-3 0.7694 -.—- 0.0127
IUTIS-5 0.7821 -0.0127 -.—-
IUTIS-7 0.7821 -0.0127 0.0000
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Fig. 2. IUTIS-3 solution tree (left) and IUTIS-5 solution tree (right).

all the change detection algorithms considered are reported in Table 2. From the
values reported it is possible to see that our solution is better than the best
algorithm fed to GP (i.e. MC), achieving a F-measure that is 7.2% higher.

For comparison, we also report here (see Fig. 2) the solution trees of IUTIS-
3 and IUTIS-5, that we recall have been generated by the same method here
described but in a purely performance-based scenario [3]. The set of algorithms
C available for GP to build IUTIS-3 were the three top performing algorithms
on CDNET 2014, i.e.: Flux Tensor with Split Gaussian models (FTS) [25], Self-
Balanced SENsitivity SEgmenter (SBS) [21], and Change Detection with Weight-
less Neural Networks (CWS) [10]. The set C available for IUTIS-5 also included
Change Detection based on Spectral Reflectaces (SPC) [19] and Extension of
the Adapting Multi-resolution Background Extractor (AMB) [24].

From the comparison of the solution trees reported in Figs. 1 and 2, it is
possible to notice that IUTIS-2 is more complex in terms of functionals used
(see for example the right branch). This is due to the fact that very simple
algorithms are used and more operations are needed on their output to achieve
higher performance. The overall F-measure of IUTIS-3, IUTIS-5 and of all the
change detection algorithms considered are reported in Table 2. From the results
it is possible to see that IUTIS-3 is better than any other single algorithms, with
a F-measure that is 4.13% higher than the best algorithm used by GP. In the
case of IUTIS-5 this difference increases to 5.4%. It is worth noting that all our
solutions are better than majority vote solutions (denoted with MV) applied to
the corresponding sets C. In [3] we also experimented with larger cardinalities
of C, i.e. #C = 7 and 9, but in both cases the corresponding solutions found by
GP, i.e. IUTIS-7 and IUTIS-9, obtained identical performance with respect to
IUTIS-5 and thus we only report them in Table 2.

Outputs of some of the tested algorithms on sample frames in the CDNET
2014 dataset, together with input images and ground truth masks, are shown in
Fig. 3.
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Fig. 3. Examples of binary masks created by the proposed algorithms and some of the
algorithms used in the combination.
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5 Computational Time

IUTIS-2 algorithm has been implemented in C++ and use the OpenCV library
for image processing. Table 3 reports the computational time of the proposed
algorithm in frames per seconds. For evaluation purpose, we have implemented
two versions of IUTIS-2: a “Sequential” one, and a “Parallel” one. The first
version refers to the implementation of the algorithms without any particular
optimization. While the second one refers to an optimized implementation of
the algorithms obtained by exploiting parallelism on a multicore CPU. We used
the OpenMP directives (parallel for and sections) to parallelize both the
computation of the masks, and the execution branches of the solution tree. The
timing measurements are carried out on a 3.3 GHz Intel Core-i5 (quadcore) with
16 GB RAM and Windows 7 Professional operating system. As it can be seen, the
IUTIS-2 algorithm can be efficiently parallelized. Specifically, the frame rates of
the parallel version is, on average, about 2 times faster than that the sequential
version.

In Table 3 we also report the computational time of IUTIS-3, and IUTIS-
5 used in [3]. For these algorithms, the computational time is an estimated of an
hypothetical parallel implementation and corresponds to the slowest algorithm
used in the solution tree. For completeness we compare the computational time
of the different IUTIS algorithms with the top five algorithms in Table 2 (right).
The slowest algorithm, with 10 frame-per-seconds, is FTS (that is also used in
IUTIS-3 and IUTIS-5). This algorithm is implemented in MATLAB while the
other algorithms are all implemented in C++. The AMB algorithm is the most
efficient one with an impressive 843 frame per second. This result is achieved
thanks to the parallel implementation on GPU using the CUDA architecture.

Table 3. Computational time, in frames per seconds and at the resolution of 320×240
pixels, of different change detection algorithms on a i5-2500K@3.3Ghz computer with
16 GB RAM. For IUTIS-3 and IUTIS-5 we report an estimate corresponding to the
slowest algorithm in an hypothetical parallel implementation.

Algorithm Implementation FPS@320x240

IUTIS-2 C++, Sequential 18

IUTIS-2 C++, Parallel 40

IUTIS-3 Misc 10 (Parallel Estimate)

IUTIS-5 Misc 10 (Parallel Estimate)

FTS MATLAB 10

SBS C++ 31

CWS C++, OpenMP 18

SPC C++ 12

AMB C++, CUDA 843
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6 Conclusion

In this paper we have presented an evolutionary approach, based on Genetic
Programming, to combine simple change detection algorithms to create a more
robust algorithm. The solutions provided by Genetic Programming allow us to
select a subset of the simple algorithms. Moreover, we are able to automatically
combine them in different ways, and perform post-processing on their outputs
using suitable operators to produce the best results. Our combination strategy,
is able to produce algorithms that are more effective in solving the change detec-
tion problem in different scenario. If we are interested in obtaining the maximum
performance disregarding the computational complexity of the algorithms them-
selves, we can combining few top-performing algorithms and achieve the best
overall performances (i.e. IUTIS-3 and IUTIS-5). On the contrary, if we want
to improve the performances of existing algorithms while maintaining a limited
computational complexity, we can effectively combine several simple algorithms
and achieve comparable results of more complex state-of-the-art change detec-
tion algorithms (i.e. IUTIS-2). In particular, the parallelized version of IUTIS-
2 exhibits remarkable performance while being computationally affordable for
real-time applications.
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Abstract. In this paper, we propose a robust real-time tracking sys-
tem using RGB-D image sequence which are obtained through stereo
camera. We apply ‘Elite-type’ particle filter, which is novel structure of
particle filter, for tracking multiple persons. In Elite-type particle filter,
to be robust to change of appearance and partial occlusion, likelihood is
designed based on histogram and each particle possess their own model
histogram. The system assign this particle filter to each person, and esti-
mate state of the target person which vary from frame to frame. Further-
more, the system is able to measure the height of person’s head, which is
effective for analysis human behavior. Real-time tracking performance of
multiple persons was confirmed by experiments which simulating a real
shop.

Keywords: Tracking · Robustness · Particle filter · Color · Stereo sens-
ing · Depth · Likelihood · Human behavior · Walking person · Shopper

1 Introduction

Recently, due to the growing awareness of safety and security or crime prevention
requirement, surveillance cameras are introduced into many places increasingly.
Accordingly, human behavior recognition and analysis technologies based on
image sequences acquired from these have been studied [1–4]. Such technologies
are used in a variety situations such as marketing design, security and health-
care management. We, for example, have tried to make a tracking system named
ISZOT [5] by use of a calibrated single camera to measure rough 2D positions in
the shop to analyze shopper behaviors. In the ISZOT system, shopper’s zone tra-
jectories could be effectively analyzed, which represent their purchasing and/or
wondering behaviors in front of pre-specified zones.

In order to design any effective tracking algorithms, we have had to solve
many ill-conditions in the real environment, such as illumination fluctuation,
occlusion between walking persons, shadows, and so on. The image data acquired
from monochrome or color cameras installed for many security-oriented monitor-
ing, however, are not sufficient for making the tracking algorithms more robust
c© Springer International Publishing AG 2017
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against those ill-conditions due to their limitations of two dimensional (2D)
observation. In recent decade, stereo sensing cameras become popular in the
real world in performance and price in addition with the availability of rapid
network environment to connect them from/to their central controllers. It is
getting important to design any effective algorithms to introduce much more
3D real-time sensing functions into the above mentioned systems, and then to
utilize the 3D data for robust capturing of the target continuous movements in
the scene. In this paper, as our contribution to this field, based on a novel struc-
ture of particle filter, a robust real-time tracking system using RGB-D image
sequence which are obtained through stereo camera sensing is proposed.

The rest of this paper is organized as follows: Sect. 2 describes algorithms of
Elite-type particle filter, Sect. 3 describes how to manage these particle filters
in order to track multiple free walking persons, Sect. 4 shows how to adjust the
parameters based on target locations relative to the stereo sensors or cameras,
Sect. 5 presents the experimental results in the laboratory, and then in Sect. 6
we discuss our conclusive remarks and future works.

2 Elite-Type Particle Filter

2.1 Overall Structure of Tracking Algorithm

In this research, we develop a tracking algorithm by applying particle filters
which has been an approach to estimating the non-linear and transitional sta-
tistical distributions of object states by using a large number of particles dis-
tributed in the observation space. Many study have been reported in human
tracking [6–8]. In general type of it one uses a simple likelihood because of its
limited calculation cost for large number of particles. In this research, contrast to
these conventional methods, we originally utilizes multiple filters, each of which
consists of a smart few particles to follow simultaneously multiple persons. In
this independent filter, each particle memorizes which part of the target or per-
son it may be placed on at the previous frame or sampling time based on three
likelihoods. The basic structure of the proposed tracking system is shown in
Fig. 1. When the person detector finds a set of data probably representing a
person in a subtracted depth image calculated from a RGB-D image, the system
generates and places a particle filter around it. The updating process includes
search and resampling of particles and the state estimation based on likelihoods
are repeated in every sampled frame. Each process is described in detail later.
In this system, 3D position information which xy plane represent floor is cal-
culated from the RGB-D image, where through a calibrated adjustment by the
stereo sensor. We call information of 3D position and color which associated with
coordinate value in image space as a data point.

2.2 Basic Structure of Elite-Type Particle Filter

Figure 2 shows a stereo sensor installed on the ceiling to take images of walking
persons on the floor and the basic concept and situation of the proposed particle
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Fig. 1. Schematic of proposed algorithm Fig. 2. Definition of particle filters

filter. We define a particle filter by coordinating in multiple and dispersive man-
ner each particle of a cylindrical shape, which always lies in the vertical direction
in the real space. Because of their frequent attitudes in standing and/or walking,
we choose the cylinder of the designed size and shape for this purpose and then
it is expected to strong against the changing direction of walking persons due
to its invariance in shape in rotation about the vertical axis to the floor. The
particle P is defined by following equation:

P = {px,D,S} (1)

where px, S and D define the center position, the image region where it is
projected onto, and the set of data points included, respectively. Here, Smart
Window Transform (SWT) [9] has been used to project particle to image, which
enables to calculate D efficiently from S. The particle filter (PF) is a set of the
neighboring particles that can be coordinated not to belong to any other PF
which is defined as F by the next equation.

Fi = {Pi
j | j = 1, . . . Np} (2)

where, Np is the number of component particles. The position of Fi is defined as
fxi which is the average of pxi. In these Elite-type particles, through somewhat
a taking care of each process, we aim to make not so many particles to govern
themselves and follow each target autonomously.

A PF is typically generated when a person comes in the scene and the person
detector, one of provided libraries, possibly detect him or her in the observation
space. Some particles are defined and generated just around the portions of the
head through the chest because the upper body of a walking person has less
change in shape than the lower body has. In order to realize such arrangement,
we use the highest data points in the detected area, where we call them ‘head-top’
of the tracked person. The particle layout is slightly controlled by introducing
random factors in 3D space. The condition is represented in the next equation
with respect to the number density of data points so that each particle can
include enough amount of data points inside it.
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|D| > δp (3)

During this process, although the person detector find person-like area, if
the condition shown in Eq. 3 cannot be satisfied for more than a certain period
of time, it is regarded as an error of the detector and the generation process
gets to be quitted partially only just in this area. Moreover, in order to prevent
multiple placement of PF with severe overlap, we check whether the generated
PF can follow the target and then in order to judge any successful PF generation
relative arrangement of the existing PFs and the the new one xd is used as]break
follows:

∀i, |xd − fx| > λs (4)

where, the threshold λs is so important that it can control the relative arrange-
ment of all of the existing PFs by keeping that their mutual distances should be
larger than λs.

Since as the one of our applications of this algorithm we aim shopper behav-
ior analysis for effective marketing, we have designed an estimator of head-top
positions of persons in each sampled frame because the gaze orientation is one
of the most important demands in such application, extending the possibility
of our proposed algorithm. In order to do this, H-Mask is designed to cover a
head of the average size of Japanese. Figure 3 show the procedure of estimating
the head position hX independently of any tracking process. We first calculate
the head-top position of the target as in the same way as the PF generation.
Secondly, the upper center of the H-Mask is defined to coincide it with the
head-top. Finally, the position corresponding to the center part of the H-Mask is
taken as hX.

2.3 Likelihoods

The particle memorizes its position in the previous sampled frame and then
it searches its own possible location in the current frame for fixing itself in
some range around the previous position. This position determination process
is performed based on the likelihoods which evaluate three types of similarities
with respect to color, height, and trajectory. The likelihood of color Lc uses color
features in their 2D histogram H(t)

c = {h
(t)
c (i, j)} is made from the data point

set D(t) at the frame t. We use color phase ab in the Lab color coordination for
making bins of the histogram. Besides, Lc is calculated by the following equation
which is the intersection evaluation [10] of H(t)

c and H(t−1)
c .

Lc =
na∑

i=1

nb∑

j=1

min(h(t)
c (i, j), h(t−1)

c (i., j)) (5)

where na and nb indicate the number of bins in the histogram, respectively. The
likelihood of height Lh addresses the similarity based on the height histograms.
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Fig. 3. Head-mask Fig. 4. Three likelihood

Similarly to Lc, a height histogram H(t)
h = {h

(t)
h (i)} is made from D(t). It is

calculated as

Lh =
nh∑

i=1

min(h(t)
h (i), h(t−1)

h (i)) (6)

where nh indicates the number of bin in the height histogram. The likelihood
of trajectory Lp is calculated from the difference between the current position
of the particle: px and the estimated position px̂ by use of the velocity and the
position at the previous frame as follows:

Lp =
1

Kr|px̂ − px| + 1
(7)

where Kr is a weight parameter. Here, we have 0 ≤ Lp ≤ 1 and hence the
likelihood decreases as the particle moves away from the estimated location.
The total likelihood L is finally calculated by the following equation as the
combination of the above three likelihoods.

L = αcLc + αhLh + αpLp (8)

where αc, αh, αp, (αc + αh + αp = 1) are the weights for each likelihood, and
in this paper we give those values empirically. Figure 4 shows the concept of
three elemental likelihoods. Moreover, when multiple persons approach and then
sometimes occlude each other, it is afraid that any PF tracking them may fall into
ill-condition and then possibly lose their correct trajectories or follow another
person vice versa as misrecognition. In order to deal with these cases, we utilize
a prohibited area Ci for PF replacement as shown in the next expression.

Ci = {xs||xs − f x̂j | ≤ λc, j = 1, . . . , Nf , j �= i} (9)
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where λc indicates the threshold and f x̂j is estimated position of Fj which should
be distinguished from the estimated position of particle in Eq. 7, for example.
Since the probability of another target person’s existence is high in the estimated
position of their PF, it is regarded as prohibition area.

2.4 Resampling

In order to improve the tracking performance, the resampling process is per-
formed after the searching as in the normal approaches. One can reproduce the
particles by use of this process so that those placed at any ‘wrong’ location or at
non-target ones could be moved to a possible location of the same target. The
resampling process is very important to maintain Elite-type PF in better activity
and in this paper we need the following three procedures: (1) Compatibility eval-
uation, (2) Grouping, and (3) Reliability check. First, we judge a compatibility
of each particle in tracking by using the number density of data points included
in the particle through the Eq. 3 which is same as PF generation. The condition
seems as a simple one however we need introduce a novel scheme as shown in
Sect. 4 to adjust the threshold values including the above one with respect to
their distances from the stereo sensors. If all of the particles have disappeared
at a frame, the PF is judged as it lost its target and then transited to ‘standby’
state, where the detail of this state transition mechanism will be described in
the next Sect. 3.

Secondly, the particles belonging to the same PF are grouped according to
their distances. Let F′ be a set of all of the P that survive through the previous
compatibility evaluation, Gi(i = 1, 2, . . . , Ng) be the direct sum decomposition
of F′, and Ii be their subscript set. Here G means the group, each of which
should satisfies the following condition.

Gi = {Pn | n ∈ Ii}
n ∈ Ii,m ∈ Ij , i �= j ⇒ |pxn − pxm| > Γp

(10)

The above condition means that any member particle to an arbitrary group
and other non-member particles is separated to have larger distance than the
threshold λg. By appropriately setting of this λg, it is possible to satisfactorily
separate the particles placed in the target and non-target subjects.

Finally, we calculate a reliability γi for each group Gi. This represents how
firmly it is placed with fitting to just the target person as follows:

γi = αγγp
i + (1 − αγ)γd

i (11)

where αγ , γp
i , and γd

i are a weighting coefficient, the position-based reliability,
and the data-point-based reliability, respectively, and furthermore γp

i is calcu-
lated as follows:

γp
i =

1
Kr|f x̂ − gxi| + 1

(12)
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where f x̂ and gxi are the estimated position of PF and the average position of
particles belonging to Gi, respectively, and using the same Kr as used for PF
generation. In addition, γd

i is calculated using the following equation.

γd
i =

|gDi|∑ng

j=1 |gDj |
(13)

where |gDi| is the total number of data points of particle belonging to the group.
Only the particles belonging to G which have sufficiently high reliability to
continue better tracking, and the other particles may be deleted. Finally, to
supplement new particles is provided randomly around gx of G so that the total
number of particles in any PF is kept as Np.

3 Transitional Management of PF States

When one imagines some indoor scenes having freely walking people, there may
be some happenings in observation, such as appearing and disappearing in/from
the scene, crossover between any two persons, and sudden stopping and standing.
It is not so easy to deal with all of these cases, however, we try to attack some of
the problems by recognizing transitional states of all of the PF under control of a
management algorithm proposed in this paper. The states of PF can basically be
divided into the following two: an active state Sa and a standby state Sr which
are simply shown in Fig. 5. The former one has been described so far, however,
the latter one needs to explain here. That is the state where any PF may lose
its target person temporally.

Fig. 5. State transition management of PF

As shown in Fig. 5, any PF must be in the active state in the beginning,
and then during its ‘active’ life, it is expected to perform normal tracking. Since
sometimes it gets to lose its target and to have only few data points, it must
be transited to the standby state by checking the total number of data points
belonging to it (f |D|) falls below the threshold δf . During the ‘standby’ life, the
PF must be in exemption from any process for PF except for keeping in the
position just before the transition to wait re-activation. Any standby PF can
have two possibilities as follows: the transition again to the active state if its
target person may be detected just in the neighboring range of the distance λr

from its position. Or the disappearance from the scene if the elapsed time of
its standby state tr exceeds Γs, where we may find absence of the target person
from the observation space. By managing the state of PF, it is possible to obtain
a better adaptation as a real facility.
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4 Parameter Adjustment

In any stereo sensing, the spatial resolution of measured coordinates basically
decreases according to the increasing ego-centric distance from the camera to the
objects, in addition, the measurement errors may have an opposite tendency to
increase together with the distance. For not so short period to keep observation
of moving persons by the stereo camera, we should have designed some scheme to
adjust important parameters in our proposed mechanism to the change. From
fundamental experiments, there must be some sensitive but important para-
meters as follows: the threshold value for compatibility check δp in Eq. 3, the
specified distance between any two PF λs in Eq. 4, and then the threshold value
to determine the standby state of PF in Fig. 5 δf . In the case of δp, the number
of data points may increase as looming persons to the camera as their projected
sizes on the camera plane increase. Thus, it is necessary to adjust their values
smoothly within a predetermined range according to the distance from the cam-
era. In order to realize this requirement we adopted the sigmoid function which
has two representative values. For example, δp is calculated as follows:

δp =
δp2 − δp1

1 + eαs(|pxc|−λd)
+ δp1 (14)

where δp1 and δp2 are the lower and the upper limits, which can be used in the
large and the small distance from the camera, respectively, according to the ego-
centric distance |pxc| of P from the camera. In addition, λd gives the distance at
which the controlled parameter has the middle value and αs realizes an arbitrary
rate of smooth change. Figure 6 shows how δp varies according to the distance
from the camera. Even though two particles contain the same number of data
points, the particle near to the camera is judged incompatible, while the other
one far from the camera is judged compatible. The remaining two parameters

Fig. 6. Parameter adjustment
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λs and δf could be adjusted by use of the similar mechanism above mentioned
successfully in our experiments.

5 Experiment

5.1 Specifications

Since the developed prototype system is a total and somewhat complex one for
the behavior analysis of shoppers, we could not find any other one developed for
the same purpose so far. Therefore, for this reason, we could not include any sim-
ple comparison with the other methods in this paper. In the lab room, we have
installed a stereo sensor near the ceiling for simulation of tracking multiple shop-
pers in the small shops. Eight zones were prepared by desks, pillars, and walls in
the observation spaces together with different product-like items, such as stuffed
toys and stationeries etc. Five walking persons have performed some types of
shoppers, each of whom simply walks, searches around for their products, walks
and stops often to be interested in their products, walks with accompanying
persons, repeatedly stands and crouches, and then frequently picks up the prod-
ucts. In addition, some persons have entered twice into the observation space.
Table 1 shows the specifications of the cameras installed in the stereo sensor. We
have acquired the RGB-D image sequence of the scene in which the maximum
five persons could walk at the same time as a typical complicated situation such
as persons passing and occlusion is frequently occurred between them. We have
tried analyzing the shopper’s behaviors with using parameters shown in Table 2.

Table 1. Camera functions

Param Value

Angle of dip 30◦

Baseline length 150 mm

Size of image 640 × 480

Frame rate 10 fps

Table 2. Experimental specifications

Param Value Param Value Param Value

αc 0.48 δp1 10 λs1 700 mm

αh 0.42 δp2 80 λs2 1800 mm

αp 0.10 δf1 5 λg 180 mm

αγ 0.38 δf2 20 Kr 0.0028

5.2 Results and Discussion

In the experiments, 6 PFs were generated for the same image data sequence,
where the number of person who appeared in the measurement space was 6 (one
appeared twice). As the result, we have confirmed that all of the generated PF
could track their corresponding target persons without any losing. Figure 7 shows
the sampled shots of the results. The colored bold quadrilaterals and the finer
ones show the H-masks and the particle, respectively, both of which are projected
onto the camera plane through the SWT. We could see that continuous tracking
can be realized without losing, even if people pass each other. Table 3 shows
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(a) t=617 (b) t=627 (c) t=637

Fig. 7. Experimental results (Color figure online)

Table 3. Distance error of the system

xy z

ID1 166 118

ID2 88 135

ID3 101 123

ID4 59 123

ID5 100 130

ID6 98 139

Average 102 128
Fig. 8. Measurement trajectory (along z)

the distance errors in the xy plane as 102 mm and the z direction as 128 mm of
each ID respectively, which were not so large in order to use in supermarkets
and so on.

Due to the simple way of locating the H-mask, the error of z direction is
larger than the ones in the xy plane. However, in Fig. 8, we have shown some
measured profiles of variation of height of the head in each frame. We could see
that the estimated values of the head could represent the person postures, such
as standing, crouching, or being seated.

From the above results, one could find that by use of the proposed method
described in this paper it may be possible to realize the simultaneous and robust
tracking of multi-persons in the real environments.

6 Conclusions

A robust tracking approach of multiple walkers was proposed by using RGB-
D image sequence obtained from a stereo sensor. An ‘Elite-type’ particle filter
can be adopted in the proposed method, where three likelihoods based on color,
height, and trajectory are effectively utilized and one can estimate positions
of heads of the target persons by using some specialized mask operation. We
designed our own state transition model for state management of PF for their
application to the real facility where any target to track often changes its situ-
ation very frequently. In addition, we proposed a unique mechanism to adjust
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parameters according to the camera distance, which is one of the important
process in using any stereo sensors. Experimental results simulating a real store
showed the effectiveness of the proposed method.
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Abstract. In the last years, visual saliency has become a challenging
research field, and a big number of computational models were devel-
oped. While detecting salient object in still images was well studied,
video saliency detection is in the early stages. In this paper, we propose
a novel video saliency detection method based on Boolean maps. Unlike
still images, video frames are characterized by statistic and dynamic
information. A set of Boolean maps are generated by thresholding fea-
ture channels (color and motion features). Using the gestalt principle
for figure-ground segregation, saliency prediction is derived from the
Boolean maps where connected regions are marked as salient. Our pro-
posed method is evaluated over two video saliency benchmark datasets
and compared to seven state-of-the-art methods. Results have shown
that our method outperferms other methods on the two datasets.

1 Introduction

In the early 80’s, Treisman and Gelade [23] proposed the feature integration
theory for visual attention. Where they assume that the visual scene is initially
coded along a number of separable dimensions such as color, orientation, spatial
frequency, brightness, direction of movement, etc to provide the feature maps.
Then, these maps are recombined to ensure the correct synthesis of features,
and to provide final focal attention. Based on this theory, various visual saliency
models are developed. Such models can be grouped into two categories: local
and global approaches.

Local approaches measure the rarity of a region over its neighborhoods. Itti
et al. [10] derived a bottom-up visual saliency model based on center sur-
round difference through multi-scale image features. A bottom-up saliency model
derived from a Bayesian framework is proposed in [26]. A saliency model that
computes local descriptors from a given image in order to measure the similarity
of a pixel to its neighborhoods was proposed in [22]. AWS method [5] is based
on two biological mechanisms: the decorrelation and the distinctiveness of local
responses. Harel et al. [6] propose GBVS which is a bottom-up saliency approach
that consists of two steps: the activation maps generation over feature channels,
and their normalization.
c© Springer International Publishing AG 2017
S. Battiato et al. (Eds.): ICIAP 2017, Part I, LNCS 10484, pp. 119–128, 2017.
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In contrast, global approaches are based on the rarity and uniqueness of image
regions with respect to the whole scene. Scharfenberger et al. [21] proposed a
texture based saliency model, where an object is salient if it has a distinctive
texture from the rest of the scene. Kim et al. [12] developed a method which
separates the background from foreground to highlight the salient object. Cheng
et al. [2] proposed a regional contrast based salient object detection model which
assumes that human cortical cells preferentially respond to high contrast stim-
ulus in their receptive fields. Hou and Zhang [7] introduced a spectral based
method by analyzing the spectrum of the input image in order to extract the
residual spectrum. Bruce and Tsotsos [1] proposed the AIM approach using
Shanon’s self-information measure to maximize the sampled information from a
scene. Scharfenberger et al. [20] proposed a salient object detection model that
uses the natural images structural and textural characteristics.

While there are many computational models that detect salient regions in
still images, video saliency methods are in the early stages. In that context, Itti
and Baldi in [9] assumed that salient object is related to surprising events and
developed a model that detects objects influenced by surprising events. Rahtu
et al. [19] developed a saliency model where they incorporated local saliency
features into a conditionnal random field model. Mancas et al. [16] used the
optical flow magnitude to highlight motion in a crowd. A video saliency model
based on optical flow strength and static saliency features of an input video frame
was proposed by Zhong et al. [27]. Beside motion, Fang et al. [3] have used color,
luminance and texture to produce saliency model in compressed domain. Lee
et al. [13] combine a set of spatial saliency features including rarity, compactness,
and center prior with temporal features of motion intensity and motion contrast
into an SVM regressor to detect each video frame’s salient object. Kim et al. [11]
developed a novel approach based on the random walk with restart to detect
salient regions. First, a temporal saliency distribution is found using the motion
distinctiveness, Then, that temporal saliency distribution is used as a restarting
distribution of the random walker. The spatial features are used to design a
transition probability matrix for the walker, to estimate the final spatiotemporal
saliency distribution.

While the Feature Integration Theory for visual attention has led to the devel-
opment of many saliency approaches (for videos and still images), the Boolean
Map theory for visual attention [8] has attracted Researchers. Zhang and Sclaroff
proposed the Boolean Map Saliency in their paper [25]. Also, Qi et al. [18] used
Boolean maps to produce a multi-scale propagation method where a graph-
inference is performed to produce final saliency maps.

Therefore, in this paper we propose a novel video saliency model based on
Boolean maps. First, we compute the optical flow of each pair of frames, and
use our proposed motion feature to remove noise caused by camera motion. The
smoothed optical flow will serve to produce the motion Boolean map. Then, we
generate the color Boolean maps by thresholding the input frame color channel
map. Thereafter, we combine the color and motion Boolean maps into one global
map. Finally, we use the Gestalt principle for figure-ground segregation to main-



Video Saliency Detection Based on Boolean Map Theory 121

tain the surrounded regions in each Boolean map and eliminate the unfenced
regions. The saliency of each video frame is the mean of the processed global
Boolean maps of each frame over the total number of the randomly generated
Boolean maps. The main contribution of this paper is the evaluation of Boolean
maps for video saliency. As an additional contribution we propose a new motion
feature for saliency prediction. To evaluate the proposed approach we use two
standard benchmark datasets for video saliency: SegTrack v2 [14] and Fukuchi
[4].

The paper is organized as follow: First, we will present our method and
explain how we proceeded to generate Boolean maps in Sect. 2. Then, we will
discuss experimental results in Sect. 3. Finally, we provide conclusions in Sect. 4.

2 Boolean-Map Video Saliency

The Boolean Map Theory of visual attention was introduced by Huang and
Pashler [8] where they assume that at a moment an observer’s awareness of a
scene can be represented by a Boolean map. From that assumption, we derive a
video saliency model which highlights regions of interest in videos. We first, fix
two saliency features which are motion and color, then, we build for each frame
color Boolean map and motion Boolean map. These Boolean maps will define
the saliency level of each region in the Boolean map according to its connectivity
(connected regions belong to foreground).

2.1 Boolean Maps Generation

The novel Boolean map saliency method proposed by Zhang and Sclaroff in
[25] used a color thresholding on the input image’s feature maps on the Lab
color space to produce a boolean-map. Lately, Qi et al. in [18] combined the
RGB, Lab and HSV color spaces to generate moreprecise boolean-maps. Recent
works on saliency detection using boolean map theory have been used on color
cues for saliency computation. n this paper, we present a Boolean maps video
saliency model, where we use motion and color cues to generate boolean maps.
Recent video saliency detection works [11,24], have proved that moving objects
attract attention. Therefore, optical flow is used to estimate motion and deter-
mine moving object in the video frame. We use the ptical flow estimation method
proposed by [15] to produce direction and velocity measures. In case of static
camera, optical flow can be a perfect video saliecy indicator, but we work on
benchmark datasets which include different scenarios where the camera is not
static. And While the optical flow displays pixels that change position from one
frame to another, the motion caused by the camera will also be displayed. To
remove the noise caused by the optical flow, we propose a new motion feature.

If we consider Ot and Mt the orientation and the magnitude of the frame t,
we define the motion strength as

St(x, y) =
√

Mt(x, y)2 − Ot(x, y)2 (1)
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Since the optical flow noise caused by the camera motion will produce wrong
measures, we use the motion feature proposed by Papazoglou and Ferrari [17] to
extract the exact motion boundaries

Mt = 1 − exp(−λM ∗ Mt(x, y)) (2)

λM is used to control the function’s steepness which is set to 0.8 then our motion
feature can be computed as

Mt = (Mt(x, y) ∗ St(x, y))/max(Mt(x, y)) (3)

We define Mt as the computed motion at frame t, to determine the motion
Boolean map we apply the function thresh(,θ) to assign 1 to the pixel if its value
is greater than the threshold value θ and 0 otherwise see Eq. 4.

Bm(t) = thresh(Mt, θ), (4)

In our experiments, we set θ to be between the maximum and the minimum of
Mt. While motion is basic to predict saliency in videos, color cue is crucial in
saliency prediction in still images. To strengthen the saliency prediction for our
video frames, we opt to use a static saliency feature (color). We select the RGB
and Lab color spaces to produce the color Boolean map.

We define a vector Fc = {[FR, FG, FB ], [FL, Fa, Fb]} where c ∈ [1, 6]. Then
we generate the feature map using a linear combination between fm(t) which is
the feature channel of the frame t and the vector Fc

Fm(t) = fm(t) ∗ Fc, (5)

The color Boolean map can be computed as

Bc(t) = thresh(Fm(t), β), (6)

also the function thresh(,β) assigns 1 to a pixel if its value is greater than β and
0 otherwise. The values of the feature map Fm are assumed to vary between
0 and 255 by a uniform distribution. The threshold β is set to be between the
maximum and the minimum values of the feature map Fm. Given a color Boolean
map and a motion Boolean map, the master Boolean map can be estimated as
the union of both maps and can be defined as follow

B(t) = Bm(t) ∪ Bc(t) (7)

2.2 Saliency Computation

The Gestalt principle for figure-ground segregation, assumes that connected
regions belong to foreground and are more likely to be perceived as figures.
While Boolean maps decomposes the input frame into selected or non selected
regions, selected regions are defined as a connected region that has either a value
of 0 or 1. Based on the Gestalt principle for figure-ground segregation saliency
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maps are computed. The first thing to do is to eliminate connected regions that
touch the border and set them to be a part of the background. Then each pixel
in the Boolean map, is marked by 1 if it belongs to a surrounded regions which
means that it is salient and 0 to the rest of the map. For each Boolean map
in each video frame a post-processed map R which highlights only important
connected regions is deducted

R(x, y) =
{

1 (x, y) ∈ SR
0 otherwise (8)

where SR is a surrounded region. The map R should be smoothed so that small
areas get more accentuation. Thereby, we apply a dilatation over each post-
processed Boolean map R, then we ensure a linear normalization so that small
areas will get more accentuation.

The final saliency map can be defined as the mean of the post-processed
Boolean map R over the whole number of generated Boolean maps and can be
defined as follow

S(x, y) =
1
n

n∑

i=1

Ri (9)

where n is the number of Boolean maps.

3 Experimental Results

3.1 Experiments

Our method uses Boolean maps to predict saliency in videos. In this section we
will evaluate the performance of our method by comparing the resultant saliency
maps to seven state-of-the-art methods on two benchmark datasets in terms of
Precion-Recall, ROC curves and Mean Absolute Error.

SegTrack v2 dataset [14] is a video segmentation and tracking dataset. It
contains 14 videos with 976 frames. The videos are diversified, there is some
videos with one dynamic object, others with more than one. Each video object
has specific characteristics that can be Slow motion, Motion blur, change in
Appearance, Complex deformation, Occlusion, and Interacting objects. In addi-
tion to video frames, a binarized ground truth for each frame is provided.

Fukuchi dataset [4] is a video saliency dataset which contains 10 video
sequences with a total of 936 frames with a segmented ground truth.

PR-curve plots the Precision against the recall. To do so, each saliency map
is binarized using a fixed set of thresholds variant from 0 to 255. The precision
and the recall are then computed by comparing the binarized map S to the
ground-truth G see Eqs. 10 and 11

precision =

∑

x,y
S(x, y)G(x, y)
∑

x,y
S(x, y)

(10)
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recall =

∑

x,y
S(x, y)G(x, y)
∑

x,y
G(x, y)

(11)

Receiver operating characteristics (ROC) curve plots the false positive
rate against the truth positive rate by varying a fixed threshold from 0 to 255.
For a better estimate of the saliency map ground truth dissimilarity, we compute
the Mean Absolute Error MAE which approximates the estimate level between
the ground truth and the saliency map Eq. 12

MAE =
|S − G|

N
(12)

where S and G are the saliency map and the ground truth, and N is the number
of pixels in the video frame.

3.2 Results

Precision-Recall curves over the benchmark datasets are repotedin Fig. 1. They
provide an efficient comparison of how the produced salient regions in the video
frames are correctly predicted. These curves show that our proposed method
outperforms other methods. When varying the fixed threshold from 0 to 255,
the values of precision and recall are affected. When the value of the thresh-
old is by 255, the recall values of [6,9,16] go down to 0 because their predicted
salient objects do not highlight the exact or the right salient object. Our pro-
posed method provides a minimum value of recall different from zero because our
saliency maps point out the object of interest with a big response. Furthermore,
our proposed method offers more precise saliency maps since we achieved the
best precision rate (over 0.75).

Figure 2 presents our ROC curves against state-of-the-art methods curves
over the two evaluation datasets. On SegTrack v2 dataset our curve has compet-
itive shape with the BMS [25] curve. On Fukuchi dataset, our curve has similar
shape with the BMS [25] in the begining and the end.

On SegTrack v2 and Fukuchi datasets we outperform all other approaches
with a big gap in terms of MAE values (see Fig. 3).

A visual comparison between our proposed method and the state-of-the-art
methods where higher saliency predictions are indicated by bright pixels are
reported in Fig. 4.

The GVS [24] used the spatial and temporal edges of each dynamic object
in the video frame to compute saliency maps. In case of static camera and one
moving object, this method converge to the exact salient object which explains
the good results on Fukuchi dataset and the competitive results SegTrack v2
dataset which includes video frames with different conditions (as we explained
in the last paragraph). The graph based method [6] is a saliency method which
does not include motion cues in saliency map generation which leads to bad PR,
ROC curves and high MAE values and bad saliency maps. While it can be used
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Fig. 1. Precision-Recall curves on Fukuchi and Segtrack v2 datasets
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Fig. 2. ROC curves on Fukuchi and Segtrack v2 datasets
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Fig. 3. Mean Absolute Error on Fukuchi and Segtrack v2 datasets

in saliency detection, this method is more suitable for still image saliency. [16]
is a saliency method that defined region of interest as the region where moving
object is focused. It uses the optical flow to detect moving objects. PR and ROC
curves are not as good as our curves because optical flow with no smoothing can
be useful only in case of videos with no moving camera.

In case of Fukuchi and Segtrack v2 datasets, a camera motion estimation
or an optical flow smoothing should be added to improve saliency maps. The
statistical framework proposed by [19] includes motion features to segment the
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Image GT OURS GVS GB RR RT ITTI BMS

Fig. 4. Visual comparison of saliency maps generated from 6 different methods, includ-
ing our method, GVS [24], GB [6], RR [16], RT [19], ITTI [9] and BMS [25]

salient object from its background. Salient object is characterized by suprising
event in [9] where besides motion, color, intensity, orientation and flicker features
are extracted to produce final saliency map. The saliency maps produced by
[9,19] are not good indicative of salient object because they use spatial and
motion features together, so a static pixel which belongs to background can be
marked salient.

The BMS [25] which uses the Boolean maps theory to predict saliency in
still images, does not provide good results in some video frames (e.g. the last
two rows of Fig. 4) where the color of the background and the moving object are
almost the same. Our Boolean map based method tried to heal this issue. We
suppose that not only moving object attracts attention but, a change in color
could also be important in saliency detection. The Eq. 7 introduces our global
Boolean map which is the union of the motion based Boolean map and color
based Boolean map.

4 Conclusion

In this paper, we presented a video saliency detection method using the Boolean
map theory for visual attention. The proposed method combines color and
motion cues to produce a set of Boolean maps for each video frame. Motion
cue is generated from the optical flow and smoothed using our proposed motion
feature. Then, each Boolean map is processed to highlight only the surrounded
regions which are considered as salient. The final saliency map is a linear com-
bination of all Boolean maps. We evaluate the performance of our method over
two benchmark datasets against seven state-of-the-art methods. We revealed
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that the Boolean maps based video saliency can be effective using color and
motion cues. As future work, we remain to test the influence of other features
channels on saliency detection.
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Abstract. This paper describes the approach employed to implement
the autonomous landing of an Unmanned Aerial Vehicle (UAV) upon
a moving ground vehicle. We consider an application scenario in which
a target, made of a visual pattern, is mounted on the top of a ground
vehicle which roams in an arena using a certain path and velocity; the
UAV is asked to find the ground vehicle, by detecting the visual pattern,
and then to track it in order to perform the approach and finalize the
landing. To this aim, Computer Vision is adopted to perform both detec-
tion and tracking of the visual target; the algorithm used is based on the
TLD (Tracking-Learning-Detection) approach, suitably integrated with
an Hough Transform able to improve the precision of the identification
of the 3D coordinates of the pattern. The output of the Computer Vision
algorithm is then exploited by a Kalman filter which performs the estima-
tion of the trajectory of the ground vehicle in order to let the UAV track,
follow and approach it. The paper describes the software and hardware
architecture of the overall application running on the UAV. The appli-
cation described has been practically used with success in the context of
the “Mohamed Bin Zayed” International Robotic Challenge (MBZIRC)
which took place in March 2017 in Abu Dhabi.

1 Introduction

Autonomous landing on a moving vehicle is an important problem that has been
investigated by different research groups worldwide [2–4]. Cooperation between
UAVs and Unmanned Ground Vehicles (UGVs) to help humanitarian demining
operations [5–7] and for aerial monitoring [8,9] are some of the main applications
in this context. In this paper we describe the system we have designed and
employed in the MBZIRC Challenge. The Mohamed Bin Zayed International
Robotics Challenge 2017 (MBZIRC) is a robotic competition held in Abu Dhabi
in March 2017. The team of the University of Catania has been selected to

c© Springer International Publishing AG 2017
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Fig. 1. Playing Area (left) and Visual Target (right)

participate to the Challenge 1 and this paper reports an overview and some
details on the developed system. The Challenge 1 consists in the autonomous
landing of an UAV on a moving platform [1]. According to MBZIRC rules,
Challenge 1 requires a UAV to locate, track and land on a moving ground vehicle.
The competition was performed in an open arena where a ground vehicle moves
following an eight shaped trajectory, as shown in Fig. 1. On top of the vehicle,
the landing area is a square of dimensions 1.5 m× 1.5 m indicated by a given
target (see the Visual Target depicted in Fig. 1). The UAV takes off from a given
position and autonomously lands on the target placed above the moving vehicle,
in the shortest time possible.

In the following sections an overview of the developed system and its com-
ponents will be presented. Focus will be given to the main modules related to
the dynamical estimator and the vision system. In particular, a tracking mod-
ule able to detect and track a known pattern is employed to select a region
of interest within the whole image. Then, a circle Hough transform is used to
detect the center of the target with high precision. This system resulted the best
solution defined taking into account several constrains related to the considered
task. Indeed, the addressed Challenge requires the definition of an hardware and
software system able to detect the target and its coordinates with very high
precision, and combine this information with other data coming from different
sensors (e.g., UAV position, speed, altitude) in order to define the best trajec-
tory for the UAV. Due to the nature of the Challenge, this software pipeline is
performed in real-time, taking into account further limits caused by the need
of a lightweight hardware. Therefore, we discarded approaches to visual object
tracking existing in the literature that have been formulated making specific
assumptions on the application domain. For the considered task, a method to
update the target representation during the tracking is required, due to the pose
and scale changes the target is subject to. Several solutions based on the state
of the art in object tracking have been considered [12–15]; the final choice is an
hardware and software vision system consisting of an Ocam camera (chosen due
its wide Field of View), which rectified images are processed with a pre-trained
TLD based detection and tracking of the target and the circle Hough transform.
Results of simulations and of the on-field trials will be presented and commented.
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2 System Architecture

Challenge 1 requires carefully taking into account of the control aspects, Com-
puter Vision algorithms and the development and integration of suitable hard-
ware needed to perform the autonomous task. The basic overall approach we
followed consists in reaching the center of the path by using a precise RTK-
DGPS at an altitude suitable for a global view of the environment, for a prelim-
inary detection and localization of the target by means of a wide range camera.
Then, a visual detection and tracking procedure is able to estimate the posi-
tion of the target and generate a suitable trajectory for the UAV. A dynamic
estimator merges the measurements of the vision algorithms with the inertial
and positioning measurements of the UAV and the estimated trajectories of the
UGV. Then, based on the UAV dynamic, the estimator generates the optimal
trajectory to reach the target in real time. When the UAV is in proximity of the
target, Computer Vision techniques are adopted for the accurate estimation of
the 3D coordinates of the target center to be used for safe landing. Once landed,
all motors are switched off. The emphasis has been put on the use of lightweight
hardware platforms. To this aim, the Computer Vision and control algorithms
are optimized to run effectively on a lightweight high performance embedded
system.

2.1 Hardware Architecture

The multirotor frame chosen for the competition is the “Spreading Wings S900”
by DJI, characterized by high payload and stability. The PixHawk is used as
autopilot, it is a high-performance system able to deal with both the stabiliza-
tion and the navigation of the UAV. This simple but powerful system can be
connected to an on-board companion computer that, by running the high-level
navigation algorithms, can easily drive the UAV. The “eyes” of the multirotor
are represented by an Ocam camera, a fish-eye camera which allows the exploita-
tion of a wide Field of View. The image processing algorithm is executed by a
Jetson TX1, an embedded system developed by NVIDIA for visual computing
which provides a high performance GPU computing. The computed target posi-
tion is used by the high level control algorithms to give the proper commands
to the Pixhawk autopilot by means of the Mavlink protocol. The accuracy in
the localization of the multirotor is ensured by an on-board RTK-DGPS sys-
tem, receiving the corrections from a base station. In Fig. 2 the whole hardware
platforms selected are shown.

2.2 Software Architecture

The control software runs on the Jetson TX1. The software architecture is
designed as a multi-thread C/C++ application and it is executed on a Linux
environment. Furthermore, for simulation purposes, the software is able to run
inside a SITL (Software In The Loop) environment, using Gazebo as physics
engine.
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Fig. 2. Hardware platforms used.

The multi-thread process is composed by four threads, as shown in Fig. 3.
MAVLINK, PLANNER and COMPUTER VISION are the threads that pro-

vide support to the STRATEGY one:

Fig. 3. Software architecture.
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– The MAVLINK thread is used as an interface between the process and the
autopilot. It allows translating messages from and to the autopilot through
the Mavlink protocol.

– The COMPUTER VISION thread acquires and analyses images from the
camera and provides the coordinates of the target to the PLANNER thread.

– The PLANNER thread is the interface between the main thread (STRAT-
EGY) and a Finite State Machine (FSM). It receives coordinates from COM-
PUTER VISION in order to update the FSM and gives the position of the
target over time as output to the main thread.

– The STRATEGY is the main thread and represents the decision-making mod-
ule of the overall system. It has a continuous acknowledge of the state variables
of both the system and the target. Its aim is to choose, in each condition, the
best strategy to optimally achieve the result.

3 Dynamic Target Position Estimation

The output of the PLANNER thread consists on the estimated target position
(in terms of latitude and longitude pairs) over time. This information is inferred
by combining the data coming from the Computer Vision algorithms and the
target trajectory estimation, which takes into account the known information
about the path and the vehicle speed.

This thread is composed of the following basic software modules:

– Target Detector is the module handling the visual identification and tracking
of the target;

– Trajectory Predictor is the estimator of the trajectory of the target that takes
into account the (known) path and speed, and suitably adjust the position
of the ground vehicle on the basis of the information given by the Target
Detector.

The first module is described in depth in the following sections since it is
the main objective of this paper, while the latter is briefly described here. The
Target Predictor is a Kalman estimator that tries to determine the position of the
target at each time instant. It basically implements the equation of the motion
of the ground vehicle using a virtual point that drives on the path at the speed of
15 km/h. The output of the predictor is the expected Earth coordinates (latitude
and longitude) of the target, information that is then used by the High-level
Control to proper drive the UAV. These coordinates are continuously adjusted
using data coming from the Target Detector: this module returns the center of
the target, in local coordinates; a local-to-global transformation is then applied
and the error between the detected and estimated coordinates is used to update
the estimate. The Target Detector and the Target Predictor thus work in a tight
cooperation according to the schema reported in Fig. 4.
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Fig. 4. Working schema of the target predictor

4 Target Detection and Tracking

The Target Detector module is aimed to detect and track the target from a live
video stream. For each frame, this module provides to the system the coordi-
nates of the target, according to the coordinate system of the camera (i.e., the
target coordinates from the UAV point of view). These local coordinates are then
transformed in global coordinates, referred to the global coordinate system.

4.1 Acquisition Hardware

The images processed by the Target Detector module are acquired by an Ocam
camera (see Fig. 5). We selected this device due its large Field of View given
by the fish-eye lens. The fish-eye lens produces a strong visual distortion in
the acquired frames. Therefore, the first step of the vision module is a camera
calibration aimed to perform a proper image rectification. Figure 6 an image
frame acquired by the Ocam camera, in Fig. 7 the results of image rectification
is shown.

Fig. 5. Exploited acquisition hardware consisting on an Ocam camera.
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Fig. 6. Camera calibration: the chess-
board pattern, with known squares
dimensions, is exploited to perform the
camera calibration (i.e., find the cam-
era calibration parameters.

Fig. 7. Camera calibration: this figure
shows the result obtained after the
image rectification.

4.2 Video Analysis

The employed video analysis algorithm implements a combination of two differ-
ent well known Computer Vision techniques for the detection and tracking of
a known pattern. The aim of an object tracking algorithm is to estimate the
trajectory of an object as it moves over time by identifying the object posi-
tions in different frames of an input video. Tracking objects can be complex
depending on the application domain that can involve specific constrains. One
of the main issue related to object tracking is to address with the appearance
change of the target object. Generative tracking algorithms represents the tar-
get object in a specific feature space, and then perform a research of the best
match within the image [17,18,21]. Discriminative tracking algorithms define a
binary classification problem aimed to distinguish the target from the back-
ground [11,16,19,20]. In particular, the vision system exploits the Tracking
Learning Detection (TLD) [11] algorithm to detect and continuously track the
position of the target over time, considering both the vehicle and UAV move-
ments. This algorithm implements a real-time detection and tracking of a given
image pattern specified at the starting frame. In our system, the object of inter-
est is provided by the initial detection of the target. It was possible because the
TLD algorithm has been previously trained to detect the considered target. The
TLD has been trained off-line, considering several target positions and distances.
Furthermore, the TLD algorithm simultaneously tracks the object and learns the
object appearances. As a result, the detection and tracking performance improve
over time during the execution of the algorithm, allowing the system to learn
from a large amount of target examples taken with huge acquisition variability.
The TLD algorithm performs a fusion step, which combines the bounding box
given by the tracker and the bounding box of the detector into a single out-
put bounding box. When at least one of the two algorithms provide a bounding
box, the fusion step outputs the maximally confident one, otherwise, if neither
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the tracker nor the detector provides a candidate bounding box, the object is
declared as not visible by the system. The whole TLD pipeline is shown in Fig. 8.

Fig. 8. Scheme of the TLD algorithm.

Once the TLD algorithm provides a bounding box containing the target,
the system employs a circle Hough Transform [10] to detect a circular shaped
pattern in the provided bounding box. This technique allows to find an image
patch which contains an object with the shape of a circle taking into account
imperfect shapes, low quality images and changes in the target pose. The aim
of this step is to find the center of the target, corresponding to the center of the
detected circle. The previous target detection and tracking provided by TLD
gives robustness to the circle detection provided by the Hough transform. This,
combined with the wide Field of View of the camera, allows to find the target
and its position at almost any distance from the UAV with very high precision.

5 Basic Landing Strategy

The STRATEGY software module implements the high-level code to control the
overall behavior of the UAV. The first state, that is achieved when the challenge
is started, is TAKE-OFF and implies to drive the UAV to take-off and reach a
certain starting altitude; immediately after this phase, the UAV is driven towards
the center of the path1 (i.e., the center of the eight shaped path) at an altitude of
10 m from the ground; then, the UAV waits for the passage of the ground vehicle.
When the target is detected, the Target Predictor is initialized and the intercept

1 The GPS coordinates of the area are known a priori.
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position is computed (i.e., the position in which the vehicle can be intercepted
again). When this event occurs, the UAV starts following the vehicle by tracking
the target, also approaching the landing area by means of a descending path.
During the approaching phase, the UAV trajectory is continuously modulated
considering the output of the Target Predictor. When the landing gear touch
sensors detect the successful touch-down event, it causes the turning-off of the
propellers. For what concerns the Computer Vision module, when the target
enter the visible area of the camera, the Detection Module performs the target
detection exploiting the Hough Transform and provides the first target example
to the tracker module, as well as the position of the target.

Starting from this first information, the tracker updates the position of the
target over time. When the vehicle is in detected in the rectilinear part of the
path, the UAV starts the landing phase. When the UAV touches the landing
area, its motors are turned off.

6 Results

6.1 Simulations

Several simulations have been executed to test both the software architecture
and the sub-blocks. PLANNER block has been extensively simulated in MAT-
LAB/Simulink environment. The mission strategy has been improved by further
simulations in both Gazebo (Fig. 9) and MATLAB (Fig. 10) environments by
introducing the dynamical estimation of the target, to generate in real time the
optimal trajectory to reach the target. The whole Software architecture has been
initially simulated in Gazebo environment (Fig. 11).

6.2 On Field Trials

Several on field tests have been performed to acquire real images and data;
moreover target tracking and landing on the mobile platform have been executed.
Initially the videos have been acquired by using a Phantom 3 DJI UAV, and then
the camera was mounted on an ASCTEC Firefly. The software architecture
has been preliminary tested on a Raspberry PI board communicating to the
Pixhawk autopilot and installed on two smaller UAVs (DJI F450 and DJI F550).
Finally, the involved hardware and software solutions has been installed and
tested on the selected DJI S900 platform. Several different trials have been also
performed on the field arena concerning autonomous take-off, navigation and
landing. The experiments highlighted the importance of the vision system during
the target detection, tracking and the approaching of the landing area. The video
of autonomous UVA in action during the MBZIRC competition is available at
the following link: http://iplab.dmi.unict.it/MBZIRC/video.mp4.

http://iplab.dmi.unict.it/MBZIRC/video.mp4


138 S. Battiato et al.

Fig. 9. GAZEBO simulations. Fig. 10. MATLAB/SIMULINK simu-
lations.

Fig. 11. S900 platform during the field trials.

7 Conclusions

The system described in this paper has been used during the above mentioned
International Challenge in March 2017. The developed system reached the goal
to land on the moving vehicle in 120” and the achieved result has been placed at
the fourth position in the ranking of the International Challenge. The support
of the visual module to the whole UAV driving system resulted a crucial factor
for the achieved result during the attended competition. Indeed, all the teams
that didn’t exploit a vision system were unable to detect the target even when
it was very close to the UAV, and often to land at all.
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Abstract. There is an inherent need for autonomous cars, drones, and
other robots to have a notion of how their environment behaves and to
anticipate changes in the near future. In this work, we focus on anticipat-
ing future appearance given the current frame of a video. Existing work
focuses on either predicting the future appearance as the next frame of
a video, or predicting future motion as optical flow or motion trajecto-
ries starting from a single video frame. This work stretches the ability
of CNNs (Convolutional Neural Networks) to predict an anticipation of
appearance at an arbitrarily given future time, not necessarily the next
video frame. We condition our predicted future appearance on a contin-
uous time variable that allows us to anticipate future frames at a given
temporal distance, directly from the input video frame. We show that
CNNs can learn an intrinsic representation of typical appearance changes
over time and successfully generate realistic predictions at a deliberate
time difference in the near future.

Keywords: Action forecasting · Future video frame prediction ·
Appearance prediction · Scene understanding · Generative models ·
CNNs

1 Introduction

For machines to successfully interact in the real world, anticipating actions and
events and planning accordingly, is essential. This is a difficult task, despite the
recent advances in deep and reinforcement learning, due to the demand of large
annotated datasets. If we limit our task to anticipating future appearance, anno-
tations are not needed anymore. Therefore, machines have a slight advantage, as
they can employ the vast collection of unlabeled videos available, which is per-
fectly suited for unsupervised learning methods. To anticipate future appearance
c© Springer International Publishing AG 2017
S. Battiato et al. (Eds.): ICIAP 2017, Part I, LNCS 10484, pp. 140–151, 2017.
https://doi.org/10.1007/978-3-319-68560-1_13
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based on current visual information, a machine needs to successfully be able to
recognize entities and their parts, as well as to develop an internal representation
of how movement happens with respect to time.

We make the observation that time is continuous, and thus, video frame-rate
is an arbitrary discretization that depends on the camera sensor only. Instead
of predicting the next discrete frame from a given input video frame, we aim
at predicting a future frame at a given continuous temporal distance Δt away
from the current input frame. We achieve this by conditioning our video frame
prediction on a time-related input variable.

In this work we explore one-step, long-term video frame prediction, from an
input frame. This is beneficial both in terms of computational efficiency, as well
as avoiding the propagation and accumulation of prediction errors, as in the
case of sequential/iterative prediction of each subsequent frame from the previ-
ous predicted frame. Our work falls into the autoencoding category, where the
current video frame is presented as input and an image resembling the antici-
pated future is provided as output. Our proposed method consists of: an encoding
CNN (Convolutional Neural Network), a decoding CNN, and a separate branch,
parallel to the encoder, which models time and allows us to generate predictions
at a given time distance in future.

1.1 Related Work

Predicting Future Actions and Motion. In the context of action prediction,
it has been shown that it is possible to use high-level embeddings to anticipate
future actions up to one second before they begin [23]. Predicting the future
event by retrieving similar videos and transferring this information, is proposed
in [28]. In [8] a hierarchical representation is used for predicting future actions.
Predicting a future activity based on analyzing object trajectories is proposed
in [6]. In [3], the authors forecast human interaction by relying on body-pose
trajectories. In the context of robotics, in [7] human activities are anticipated
by considering the object affordances. While these methods focus on predicting
high-level information—the action that will be taken next, we focus on predicting
low-level information, a future video frame appearance at a given future temporal
displacement from a given input video frame. This has the added value that it
requires less supervision.

Anticipating future movement in the spatial domain, as close as possible to
the real movement, has also been previously considered. Here, the methods start
from an input image at the current time stamp and predict motion—optical flow
or motion trajectories—at the next frame of a video. In [9] images are aligned to
their nearest neighbour in a database and the motion prediction is obtained by
transferring the motion from the nearest neighbor to the input image. In [12],
structured random forests are used to predict optical flow vectors at the next
time stamp. In [11], the use of LSTM (Long Short Term Memory Networks) is
advised towards predicting Eulerian future motion. A custom deep convolutional
neural network is proposed in [27] towards future optical flow prediction. Rather
than predicting the motion at the next video frame through optical flow, in [25]
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the authors propose to predict motion trajectories using variational autoen-
coders. This is similar to predicting optical flow vectors, but given the temporal
consistency of the trajectories, it offers greater accuracy. Dissimilar to these
methods which predict future motion, we aim to predict the video appearance
information at a given continuous future temporal displacement from an input
video frame.

Predicting Future Appearance. One intuitive trend towards predicting
future information is predicting future appearance. In [26], the authors pro-
pose to predict both appearance and motion for street scenes using top cameras.
Predicting patch-based future video appearance, is proposed in [14], by rely-
ing on large visual dictionaries. In [29] future video appearance is predicted in
a hirarchical manner, by first predicting the video structure, and subsequently
the individual frames. Similar to these methods, we also aim at predicting the
appearance of future video frames, however we condition our prediction on a
time parameter than allows us to perform the prediction efficiently, in one step.

Rather than predicting future appearance from input appearance informa-
tion, hallucinating possible images has been a recent focus. The novel work in
[24] relies on the GAN (Generative Adversarial Network) model [13] to create
not only the appearance of an image, but also the possible future motion. This is
done using spatio-temporal convolutions that discriminate between foreground
and background. Similarly, in [17] a temporal generative neural network is pro-
posed towards generating more robust videos. These generative models can be
conditioned on certain information, to generate feasible outputs given the specific
conditioning input [15]. Dissimilar to them, we rely on an autoencoding model.
Autoencoding methods encode the current image in a representation space that
is suitable for learning appearance and motion, and decode such representations
to retrieve the anticipated future. Here, we propose to use video frame appear-
ance towards predicting future video frames. However, we condition it on a given
time indicator which allows us to predict future appearance at given temporal
distances in the future.

2 Time-Dependent Video Frame Prediction

To tackle the problem of anticipating future appearance at arbitrary temporal
distances, we deploy an encoder-decoder architecture. The encoder has two sep-
arate branches: one to receive the input image, and one to receive the desired
temporal displacement Δt of the prediction. The decoder takes the input from
the encoder and generates a feasible prediction for the given input image and the
desired temporal displacement. This is illustrated in Fig. 1. The network receives
as inputs an image and a variable Δt, Δt ∈ R

+, indicating the time difference
from the time of the provided input image, t0, to the time of the desired pre-
diction. The network predicts an image at the anticipated future time t0 + Δt.
We use a similar architecture to the one proposed in [20]. However, while their
architecture is made to encode RGB images and a continuous angle variable
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to produce RGBD as output, our architecture is designed to take as input a
monochromatic image and a continuous time variable, Δt, and to produce a
monochromatic image, resembling a future frame, as output.
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Fig. 1. Our proposed architecture consists of two parts: (i) an encoder part consisting of
two branches: the first one taking the current image as input, and the second one taking
as input an arbitrary time difference Δt to the desired prediction and (ii) a decoder
part that generates an image, as anticipated, at the desired input time difference, Δt.

More specifically, the architecture consists of the following:

1. an encoding part composed of two branches:
– an image encoding branch defined by 4 convolutional layers, 3 pooling

layers and 2 fully-connected layers at the end;
– a time encoding branch consisting of 3 fully-connected layers.

The final layers of the two branches are concatenated together, forming one
bigger layer that is then provided to the decoding part.

2. a decoding part composed of 2 fully-connected layers, 3 “unpooling” (upscal-
ing) layers, and 3 “deconvolutional” (transpose convolutional) layers.

The input time-indicator variable is continuous and allows for appearance
anticipations at arbitrary time differences. Training is performed by presenting
to the network batches of {Ix,Δt, Iy} tuples, where Ix represents an input image
at current relative time t0, and Δt represents a continuous variable indicating
the time difference to the future video frame, and Iy represents the actual video
frame at t0 + Δt.

Predictions are obtained in one step. For every input image Ix and continuous
time difference variable Δt, a {I,Δt} pair is given to the network as input, and
an image representing the appearance anticipation Iy after a time interval Δt is
directly obtained as output. No iterative steps are performed.

3 Experiments

3.1 Experimental Setup

We evaluate our method by generating images of anticipated future appearances
at multiple time distances, and comparing them both visually and through MSE
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(Mean Squared Error) with the true future frames. We also compare to a CNN
baseline that iteratively predicts the future video frame at kΔt (k = 1, 2, ...)
temporal displacements, from previous predictions.

Training Parameters. During training, we use the Adam optimizer [5], with
L2 loss and dropout rate set to 80% for training. Training is performed up to
500,000 epochs with randomized minibatches consisting of 16 samples, where
each sample contains one input image at current relative time t0 = 0, a temporal
displacement Δt and the real target frame at the desired temporal displacement
Δt. On a Titan X GPU, training took approximately 16 h with, on average,
about 100,000 training samples (varying in each action category). We argue that
the type of action can be automatically detected, and is better incorporated
by training a network per action category. Thus, we opt to perform separate
preliminary experiments for each action instead of training one heavy network
to anticipate video frames corresponding to all the different possible actions.

Network Architecture. Given that the input, and thus also the output, image
size is 120 × 120 × 1 (120 × 120 grayscale images), in our encoder part, we
stack convolutional and pooling layers that yield consecutive feature maps of the
following decreasing sizes: 120 × 120, 60 × 60, 30 × 30 and 15 × 15, with an
increasing number of feature maps per layer, namely 32, 64 and 128 respectively.
Fully-connected layers of sizes 7,200 and 4,096 are added at the end. The sepa-
rated branch of the encoder that models time consists of 4 fully connected layers
of size 64, where the last layer is concatenated to the last fully-connected layer
of the encoder convolutional neural network. This yields an embedding of size
4160 that is presented to the decoder. Kernel sizes used for the convolutional
operations start at 5 × 5 in the first layers and decrease to 2 × 2 and 1 × 1 in
the deeper layers of the encoder.

For the decoder, the kernel sizes are the same as for the encoder, but ordered
in the opposite direction. The decoder consists of interchanging “unpooling”
(upscaling) and “deconvolutiton” (transpose convolution) layers, yielding feature
maps of the same sizes as the image-encoding branch of the encoder, only in the
opposing direction. For simplicity, we implement pooling as a convolution with
2 × 2 strips and unpooling as a 2D transpose convolution.

3.2 Dataset

We use the KTH human action recognition dataset [18] for evaluating our pro-
posed method. The dataset consists of 6 different human actions, namely: walk-
ing, jogging, running, hand-clapping, hand-waving and boxing. Each action is
performed by 25 actors. There are 4 video recordings for each action performed
by each actor. Inside every video recording, the action is performed multiple
times and information about the time when each action starts and ends is pro-
vided with the dataset.
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To evaluate our proposed method, we randomly split the dataset by actors,
in a training set—with 80% of the actors, and a testing set—with 20% of the
actors. By doing so, we ensure that no actor is present in both the training and
the testing split and that the network can generalize well with different look-
ing people and does not overfit to specific appearance characteristics of specific
actors. The dataset provides video segments of each motion in two directions—
e.g. walking from right to left, and from left to right. This ensures a good setup
for checking if the network is able to understand human poses and locations, and
correctly anticipate the direction of movement. The dataset was preprocessed as
follows: frames of original size 160 × 120 px were cropped to 120 × 120 px, and
the starting/ending time of each action were adjusted accordingly to match the
new cropped area. Time was estimated based on the video frame-rate and the
respective frame number.

3.3 Experimental Results

Our method is evaluated as follows: an image at a considered time, t0 = 0
and a time difference Δt is given as input. The provided output represents the
anticipated future frame at time t0 + Δt, where Δt represents the number of
milliseconds after the provided image.

The sequential encoder-decoder baseline method is evaluated by presenting
solely an image, considered at time t0 = 0 and expecting an image anticipating
the future at t0 +Δtb as output. This image is then fed back into the network in
order to produce an anticipation of the future at time t0 + kΔtb, k = 1, 2, 3, ....

For simplicity, we consider t0 = 0 ms and refer to Δt as simply t. It is impor-
tant to note that our method models time as a continuous variable. This enables
the model to predict future appearances at previously unseen time intervals, as
in Fig. 3. The model is trained on temporal displacements defined by the fram-
erate of the training videos. Due to the continuity of the temporal variable, it
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Fig. 2. Comparison of predictions for (a) a person walking to the left, (b) a person
walking to the right, (c) a person waving their hands and (d) a person slowly clapping
with their hands. The third set of images in each group represent the actual future
frame—the groundtruth.
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can successfully generate predictions for: (i) temporal displacements found in the
videos (e.g. t={40ms, 80ms, 120ms, 160ms, 200ms}), (ii) unseen temporal dis-
placement within the values found in the training videos (e.g. t={60ms, 100ms,
140ms, 180ms}) and (iii) unseen temporal displacement after the maximal value
encountered during training (e.g. t=220ms).
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Fig. 3. Prediction of seen and unseen temporal displacements.

Figure 2(a) illustrates a person moving from right to left, from the camera
viewpoint, at walking speed. Despite the blurring, especially around the left leg
when predicting for t = 120 ms, our network correctly estimates the location of
the person and position of body parts. Figure 2(b) illustrates a person walking,
from left to right. Our proposed network correctly localized the person and the
body parts. The network is able to estimate the body pose, and thus the direction
of movement and correctly predicts the displacement of the person to the right
for any given time difference. The network captures the characteristics of the
human gait, as it predicts correctly the alternation in the position of the legs.
The anticipated future frame is realistic but not always perfect, as it is hard
to perfectly estimate walking velocity solely from one static image. This can be
seen at t = 200 ms in Fig. 2(b). Our network predicts one leg further behind
while the actor, as seen in the groundtruth, is moving slightly faster and has
already moved their leg past the knee of the other leg.

Our proposed network is able to learn an internal representation encoding
the stance of the person such that it correctly predicts the location of the person,
as well as anticipates their new body pose after a deliberate temporal displace-
ment. The baseline network does not have a notion of time and therefore relies
on iterative predictions, which affects the performance. Figure 2 shows that the
baseline network loses the ability to correctly anticipate body movement after
some time. Also in Fig. 2(a) the baseline network correctly predicts the position
of the legs up to t = 80 ms, after that, it correctly predicts the global displace-
ment of the person, but body part movements are not anticipated correctly. At
t > 160 ms the baseline network shows a large loss of details, enough to cause
its inability to correctly model body movement. Therefore, it displays fused legs
where they should be separated, as part of the next step the actor is making.
Our proposed architecture correctly models both global person displacement and
body pose, even at t = 200 ms (Fig. 4).
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Fig. 4. Long distance predictions. For larger temporal displacements artifacting
becomes visible. The anticipated location of the person begins to differ from the
groundtruth towards the end of the total motion duration.

Figure 2(c) displays an actor handwaving. Our proposed network successfully
predicts upward movement of the arms and generates images accordingly. Here
however, more artifacts are noticeable due to the bidirectional motion of hands
during handwaving, which is ambiguous. It is important to note that although
every future anticipation is independent from the others, they are all consistent:
i.e. it does not happen that the network predicts one movement for t1 and a
different movement for t2 that is inconsistent with the t1 prediction. This is a
strong indicator that the network learns an embedding of appearance changes
over time, the necessary filters relevant image areas and synthesizes correct future
anticipations.

As expected, not every action is equally challenging for the proposed archi-
tecture. Table 1 illustrate MSE scores averaged over multiple time differences, t,
and for different predictions from the KTH test set. MSE scores were computed
on dilated edges of the groundtruth images to only analyze the part around the
person and remove the influence of accumulated variations of the background.
A Canny edge detector was used on the groundtruth images. The edges were
dilated by 11 px and used as a mask for both the groundtruth image and the
predicted image. MSE values were computed solely on the masked areas. We
compare our proposed method with the baseline CNN architecture. The average
MSE scores, given in Table 1, show that our proposed method outperforms the
encoder-decoder CNN baseline by a margin of 13.41, on average, which is due
to the iterative process of the baseline network.

Table 1. Average MSE over multiple time distances and multiple video predictions,
on the different action categories of KTH. We compare our method with the iterative
baseline CNN, and show that our method on average performs better than the baseline
in terms of MSE (lower is better).

Method Jogging Running Walking Clapping Waving Boxing Avg

Baseline 30.64 40.88 30.87 43.23 43.71 46.22 39.26

Our method 11.66 17.35 19.26 33.93 35.19 37.71 25.85
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3.4 Ambiguities and Downsides

There are a few key factors that make prediction more difficult and cause either
artifacts or loss of details in the predicted future frames. Here we analyze these
factors.

(i) Ambiguities in body-pose happen when the subject is in a pose that
does contain inherent information about the future. A typical example would
be when a person is waving, moving their arms up and down. If an image with
the arms at a near horizontal position is fed to the network as input, this can
results in small artifacts, as visible in Fig. 2(c) where for larger time intervals t,
there are visible artifacts that are part of a downward arm movement. A more
extreme case is shown in Fig. 5(a) where not only does the network predict the
movement wrong, but it also generates many artifacts with a significant loss of
detail, which increases with the time difference, t.
(ii) Fast movement causes loss of details when the videos provided for training
do not offer a high-enough framerate. Examples of this can be seen in Figs. 5(b)
and (c) where the increased speed in jogging and an even higher speed in run-
ning generate significant loss of details. Although our proposed architecture can
generate predictions at arbitrary time intervals t, the network is still trained on
discretized time intervals derived from the video framerate. These may not be
sufficient for the network to learn a good model. We believe this causes the loss
of details and artifacts, and using higher framerate videos during training would
alleviate this.
(iii) Decreased contrast between the subject and the background describes a
case where the intensity values corresponding to the subject are similar to the
ones of the background. This leads to an automatic decrease of MSE values, and
a more difficult convergence of the network for such cases. Thus, this causes to
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Fig. 5. Examples of poorly performing future anticipations: (a) loss of details in waving,
(b) loss of details in jogging, (c) extreme loss of details in running, (d) loss of details
with low contrast and (e) artifacts in boxing.
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loss of details and artifacts. This can be seen in Fig. 5(d). Such effect would be
less prominent in the case in which color images would be used during training.
(iv) Excessive localization of movements happens when the movements of
the subject are small and localized. A typical example is provided by the boxing
action, as present in the KTH dataset. Since the hand movement is close to
the face and just the hand gets sporadically extended, the network has more
difficulties in tackling this. Despite the network predicting a feasible movement,
often artifacts appear for bigger time intervals t, as visible in Fig. 5(e).

Despite the previously enumerated situations leading our proposed architec-
ture to predictions that display loss of details and artifacts, most of these can
be tackled and removed by either increasing the framerate, the resolution of the
training videos, or using RGB information.

4 Conclusion

In this work, we present a convolutional encoder-decoder architecture with a
separate input branch that models time in a continuous manner. The aim is
to provide anticipations of future video frames for arbitrary positive temporal
displacements Δt, given a single image at current time (t0 = 0). We show that
such an architecture can successfully learn time-dependant motion representa-
tions and synthesizes accurate anticipation of future appearance for arbitrary
time differences Δt > 0. We compare our proposed architecture against a base-
line consisting of an analogous convolutional encoder-decoder architecture that
does not have a notion of time and relies on iterative predictions. We show that
out method outperforms the baseline both in terms of visual similarity to the
groundtruth future video frames, as well as in terms of mean squared error with
respect to it. We additionally analyze the drawbacks of our architecture and
present possible solutions to tackle them. This work shows that convolutional
neural networks can inherently model time without having a clear time domain
representation. This is a novel notion that can be extended further and that
generates high quality anticipations of future video frames for arbitrary tempo-
ral displacements. This is achieved without explicitly modelling the time period
between the provided input video frame and the requested anticipation.
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Abstract. The recognition of activities performed by humans, in a non-
intrusive and non-cooperative way, is a very relevant task in the develop-
ment of Ambient Intelligence applications aimed at improving the quality
of life by realizing digital environments that are adaptive, sensitive and
reactive to the presence (or absence) of the users and to their behavior.
In this paper, we present an activity recognition approach where angle
information is used to encode the human body posture, i.e. the relative
position of its different parts; such information is extracted from skeleton
data (joint orientations), acquired by a well known cost-effective depth
sensor (Kinect). The system is evaluated on a well-known dataset (CAD-
60 (Cornell Activity Dataset) for comparison with the state of the art;
moreover, due to the lack of datasets including skeleton orientations, a
new benchmark named OAD (Office Activity Dataset) has been inter-
nally acquired and will be released to the scientific community. The tests
confirm the efficacy of the proposed model and its feasibility for scenarios
of varying complexity.

1 Introduction

Automated high-level human activity analysis and recognition play a fundamen-
tal role in many relevant and heterogeneous application fields such as video-
surveillance, ambient assisted living, automatic video annotation or human-
computer interfaces. Of course different applications need specific approaches to
be designed and implemented; general-purpose solutions, though highly desir-
able, are very difficult to implement due to the differences in the source of infor-
mation, the requirements in terms of efficiency, the environmental factors which
have a significant impact on performance, etc. This work focuses on human
activity recognition in indoor environments which has typical applications in
fall-detection of elderly people, abnormal human behavior detection or human
computer interfaces. In our opinion unobtrusiveness is one of the most impor-
tant and interesting features of ambient intelligence applications; to meet this
requirement, the proposal of this paper is a vision-based technique where simple
cameras are used as input devices and the users are not require to wear neither
to actively interact with sensors of different nature.

c© Springer International Publishing AG 2017
S. Battiato et al. (Eds.): ICIAP 2017, Part I, LNCS 10484, pp. 152–162, 2017.
https://doi.org/10.1007/978-3-319-68560-1_14
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With respect to other application scenarios such as video-surveillance, indoor
environments offer several advantages: the input data are somehow more “con-
trolled” and easier to process (e.g. to segment the subjects in the scene), the
number of possible users is generally limited and input devices, such as RGB-
D cameras, can be successfully adopted for data acquisition. The problem of
activity recognition is however still complex if we consider that the users are not
cooperative and a real-time processing is needed to produce timely and useful
information. This paper proposes an activity recognition technique based on the
use of RGB-D cameras, and in particular the Kinect sensor, for data acquisi-
tion. To the best of our knowledge all the existing techniques based on skeleton
data only exploit 3D joint position, while joint orientation is typically neglected.
Aim of this work is to evaluate the reliability of the joint orientation estimates
provided by Kinect and to verify their effectiveness for action recognition.

The paper is organized as follows: an overview of the state-of-the-art is pro-
vided in Sect. 2, Sect. 3 presents the proposed approach, the results of the exper-
imental evaluation are given in Sect. 4 and finally Sect. 5 draws some conclusions
an presents possible future research directions.

2 State of the Art

Vision-based activity recognition techniques do not require the use of special
devices and the only source of information is represented by cameras placed
in the environment which continuously acquire video sequences. Many works
adopt common RGB cameras to acquire information from the environment, but
undoubtedly the widespread diffusion of low-cost RGB-D sensors, such as the
well-known Microsoft Kinect, greatly boosted the research on this topic. Even
though a few hybrid approaches combining gray-scale and depth information
have been proposed (e.g. [1]), RGB-D sensors alone have been widely used for
activity analysis [2] and several benchmarks have been released to facilitate the
comparative evaluation of recognition algorithms [3,4]. The most attractive fea-
ture of the Kinect sensor is the ability to capture depth images, coupled with the
possibility of tracking rather accurately skeletons of individuals in the scene. The
skeleton representation provided by Kinect which consists of a set of joints, each
described in terms of position and orientation in the 3D space. Such information
is extremely useful for human activity analysis as confirmed by many approaches
in the literature. A few works exploit only the depth information (and not the
skeleton), and typically perform an image segmentation to identify some rele-
vant posture features from the human body [5]. Most of the approaches perform
a skeleton analysis, adopting different representations of the set of joints such
as the simple joint coordinates, normalized according to some body reference
measure [6,7] or joint distances [8], EigenJoints in [9] where PCA is applied to
static and dynamic posture features to create a motion model, histograms of 3D
joints [10], kinematic features, obtained observing the angles between couples
of joints [11], Gaussian Mixture Models representing the 3D positions of skele-
ton joints [12], Dynamic Bayesian Mixture Model of 3D skeleton features [13]
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or spatio-temporal interest points and descriptors derived from the depth image
[14]. Another common approach is to adopt a hierarchical representation where
an activity is composed of a set of sub-activities, also called actionlets [15–18].
Finally a few works also analyze the interaction of humans with objects to obtain
a better scene understanding. The authors of [18] adopt a Markov random field
where the nodes represent objects and sub-activities, and the edges represent the
relationships between object affordances, their relations with sub-activities, and
their evolution over time is proposed; in [19] the authors propose a graph-based
representation.

3 Proposed Approach

The idea behind the proposed approach is to encode each frame of a video
sequence as a set of angles derived from the human skeleton, which summarize
the relative positions of the different body parts. This proposal presents some
advantages: the use of skeleton data ensures a higher level of privacy for the
user with respect to RGB sequences, and the angle information derived from
skeletons is intrinsically normalized and independent from the user’s physical
build. The skeleton information extracted by the Kinect [20] consists of a set
of n joints J = {j1, j2, ..., jn} where the number n of joints depends on the
software used for the skeleton tracking (i.e. typical configurations include 15,
20 or 25 joints). Each joint ji =

(
pi,

−→oi
)

is described by its 3D position pi

and its orientation −→oi with respect to “the world”. Our approach exploits the
information given by joint orientations to compute relevant angles whose spatio-
temporal evolution characterizes an activity. We consider three different families
of angles (see Fig. 1a and b):

– θab: angle between the orientations −→oa and −→ob of joints ja and jb. Angles θab

are computed for the following set of couples of joints:

Aθ = {(j1, j3), (j1, j5), (j3, j4), (j5, j6), (j0, j11), (j0, j12), (j7, j8), (j9, j10)}

– ϕab: angle between the orientation −→oa of ja and the segment
−−→
jajb connecting

ja to jb (we can consider the segment as the bone that interconnects the two
joints). Angles ϕab are computed for the following set of couples of joints:

Aϕ = {(j3, j1), (j3, j4), (j4, j3), (j4, j11), (j11, j4), (j5, j1), (j5, j6), (j6, j5),

(j6, j12), (j12, j6), (j2, j7), (j7, j2), (j7, j8), (j2, j9), (j9, j2), (j9, j10)}
– αbac: angle between the segment

−−→
jajb connecting ja to jb and

−−→
jajc that con-

nects ja to jc. Angles αabc are computed for the following triplets of joints:

Aα = {(j2, j7, j8), (j7, j8, j13), (j2, j9, j10), (j9, j10, j14)}
We consider only subset of the possible angles, mainly obtained from the

joints of the upper part of the body, because not all the angles are really infor-
mative: for example the angles between head and neck are almost constant over
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Fig. 1. (a) Representation of a subset of joints ja = (pa, −→oa), jb = (pb,
−→ob) and jc =

(pc,
−→oc) and related angles θ, ϕ and α. (b) The 28 angles used in our experiments

computed from a skeleton configuration with 15 joints.

time and does not provide useful information for activity discrimination. Differ-
ent configurations of angles have been evaluated and compared in (see Sect. 5).
Therefore, each frame fi of the video sequence Si, i = 1, .., l is represented by
a vector obtained as the ordered concatenation of the values of θi | i ∈ Aθ,
ϕj | j ∈ Aϕ, αk | k ∈ Aα

vi = (θ1, ..., θm, ϕ1, ...ϕn, α1, ..., αs)

of size (m + n + s).
It is worth noting that the number of frames for each video sequence can

be extremely high and certainly not all the resulting feature vectors are signifi-
cant: the variation of the angles between two subsequent frames is minimal and
usually unnoticeable. We decided therefore to adopt a Bag of Word model [21]
with a two-fold objective: minimizing the representation of each sequence keep-
ing only the relevant information and producing fixed-length descriptor which
can be used to train an activity classifier. The idea is to represent each activ-
ity as an histogram of occurrences of some reference postures (see Fig. 2 for a
visual representation), derived from the analysis of the training set. A reference
dictionary is first built by applying the K-means clustering algorithm [22] to
the set of posture features extracted from the training sequences. Since some
subjects could be left-handed, all the angle features are mirrored with respect
to the x-axis. We denote with k the number of clusters determined (i.e. the
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Fig. 2. Visual representation of a subset of key poses corresponding to some cluster
centroids of the dictionary W .

dictionary size). The dictionary should encode the basic postures assumed dur-
ing the different actions in the training set and will be used to represent each
sequence as an histogram of occurrences of such basic elements. Given a set of
training sequences TS = {Si, i = 1, .., d}, representative of the different actions,
the k-means clustering algorithm is applied to the associated set of feature vec-
tors FV = {vi, i = 1, .., d} to obtain a set of k clusters: the cluster centroids
are used as words of the reference dictionary W = {wi, i = 1, .., k}. The number
of clusters k determines the size of the dictionary and is one of the most rel-
evant parameters of the proposed approach. Each sequence is then encoded as
a normalized histogram of occurrences of the words in W . Of course the angle
features are continuous values and a precise correspondence between the words
in the dictionary and the descriptors is very unlikely; therefore when computing
the histogram each feature vector fi is associated to the closest word w∗

j in the
dictionary: j∗ = argminj ||fi − wj ||.

A Random Forest Classifier [23] is trained to discriminate the different activ-
ities represented in the training set; the classifier consists of an ensemble of
decision trees, each trained on a subset of the patterns and a subset of the fea-
tures and the final classification is obtained combining the decisions of the single
sub-trees.

4 Experiments

Several experiments have been conducted to evaluate the sensitivity of the pro-
posed approach to its main parameters (i.e. the set of angles selected and the
dictionary size). Despite of the large number of existing benchmarks for activity
recognition from skeleton information, joint orientations are generally not avail-
able. We used for testing the well-known CAD-60 [15,24], released by the Cornell
University, and a newly acquired dataset. CAD-60 contains 60 RGB-D videos
where 4 different subjects (two male and two female, one left-handed) perform
12 daily activities in 5 environments (office, kitchen, bedroom, bathroom and
living room). The authors of the benchmark propose two settings named new
person, where a leave-one-out cross-validation is adopted, and have seen where
the training set includes data from all the subjects. We adopted the new person
testing protocol, in accordance with all the related works in the literature, to
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allow for a comparison of the results. Moreover, analogously to other works, the
recognition accuracy is measured separately for the different rooms.

4.1 Office Activity Dataset (OAD)

Due to the lack of datasets including information on joint orientations, we
decided to acquire a new database of human activities to perform further tests.
Data acquisition was carried out in a single environment (office) from several
perspectives based on the action being performed. From this point of view the
benchmark is more complex than CAD-60 because all the activities need to be
compared for activity recognition and the higher number of subjects increases
the variability of each action. It contains 14 different activities: drinking, getting
up, grabbing an object from the ground, pour a drink, scrolling book pages, sitting,
stacking items, take objects from a shelf, talking on the phone, throwing some-
thing in the bin, waving hand, wearing coat, working on computer, writing on
paper. Data was collected from 10 different subjects (five males and five females)
aged between 20 and 35, one subject left-handed. The volunteers received only
basic information (e.g. “pour yourself a drink”) in order to be as natural as
possible while performing actions. Each subject performs each activity twice,
therefore we have collected overall 280 sequences.

The device used for data acquisition is the Microsoft Kinect V2 whose SDK
allows to track 25 different joints (19 of which have their own orientation). For
testing, we adopted the same “new person” setting of the CAD-60 dataset: a
leave-one-out cross-validation with rotation of the test subject. The set of angles
used for testing the proposed approach is however the same used for CAD-60.
The dataset will be made available online in the Smart City Lab web site (http://
smartcity.csr.unibo.it).

4.2 Results

Performance evaluation starts from the analysis of the confusion matrix M where
a generic element M (i, j) represents the percentage of patterns of class i clas-
sified by the system as belonging to class j. Further synthetic indicators can be
derived from the confusion matrix; in particular, we computed precision P and
recall R as follows:

P =
TP

TP + FP
,R =

TP

TP + FN

where TP, FP and FN represent respectively the True Positives, False Positives
and False Negatives which can be easily derived from the extra-diagonal elements
of the confusion matrix. In analogy to the proposal in [8], each video sequence is
partitioned into three subsequences which are used independently in the tests.
The results obtained are summarized in Fig. 3 where the Precision (P ) and Recall
(R) values are reported for different experimental settings, i.e. variable dictionary
size (k) and three subsets of angles considered for skeleton representation. In
particular, the efficacy of the joint orientations is assessed by comparing the

http://smartcity.csr.unibo.it
http://smartcity.csr.unibo.it
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Fig. 3. Precision (a) and recall (b) values on CAD-60 with different configurations of
angles, as a function of the dictionary size (k).

results of two different settings - 24 angles, (α angles omitted) and 28 angles -
with those obtained using only Aα angles, computed between all the existing
pairs of neighboring segments (13 angles, no joint orientation is used in this case).
The results show that, overall, the accuracy of the proposed technique is good.
As expected the dictionary size has a significant impact on the performance;
it is worth noting that different actions have often very similar postures (e.g.
drinking and talking on the phone) and a value of k excessively low probably
determines the reference posture of such activities to collapse in a single word,
thus making difficult to correctly distinguish them. On the other hand, a high
value of k produces very sparse feature vectors, more sensitive to the presence
of noise. The best results have been reached with a value of k = 100 which also
allows to efficiently perform the classification task. Also the angle configuration is
important; the use of 28 angles produces better results both in terms of precision
and recall with respect to the version with 24 angles. The limited accuracy of
the configuration with 13 angles, where the orientation is not exploited, confirm
the effectiveness of joint orientation for accurate posture representation. These
results also show that the significance of the angles varies greatly and a few
strategical angles can greatly improve the recognition performance. As to the
computational complexity, the proposed approach is very efficient, and all the
angle configuration are suitable for a real time processing.

The confusion matrix, reported in Table 1, allows to analyze the main causes
of errors. The mismatch occurred are all rather comprehensible since they are
related to very similar activities (e.g. cooking-chopping, cooking-stirring). In
these cases the skeleton information is probably too synthetic to discriminate
the two actions which are very similar in terms of posture. A comparison with
the state of the art is provided in Table 2 which summarizes the results pub-
lished in the benchmark website. Despite of the very good accuracy reached by
different approaches in recent years, the proposed approach outperforms existing
methods, both in terms of precision and recall.

The results on the Office Activity Dataset are reported in Tables 3 and 4 for
the standard configuration with 28 angles and k = 100. The overall results con-
firm that this benchmark is more difficult for several reasons: (i) the activities are
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Table 1. Confusion matrix using k = 100 words and a configuration of 28 angles on
CAD-60.
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Talking on the phone 0.86 0.0 0.14 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Writing on whiteboard 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Drinking water 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Rinsing mouth with water 0.0 0.0 0.0 0.75 0.25 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Brushing teeth 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Wearing contact lenses 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0

Talking on couch 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
Relaxing on couch 0.0 0.0 0.0 0.0 0.0 0.0 0.08 0.92 0.0 0.0 0.0 0.0
Cooking (chopping) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
Cooking (stirring) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.17 0.83 0.0 0.0

Opening pill container 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
Working on computer 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

Table 2. Precision (P ) and recall (R) of the proposed approach on CAD-60, com-
pared to the results published in the benchmark website. “*” indicates that a different
protocol was used.

Algorithm P R

Proposed approach 95.0 95.0

Sung et al. [15,24] - 2012 67.9 55.5

Koppula et al. [18] - 2012 80.8 71.4

Zhang and Tian [11] - 2012 86 84

Ni et al. [25] - 2012 Accur: 65.32 -

Yang and Tian [9] - 2013 71.9 66.6

Piyathilaka and Kodagoda [12] - 2013 70* 78*

Ni et al. [1] - 2013 75.9 69.5

Gupta et al. [5] - 2013 78.1 75.4

Wang et al. [17] - 2013 Accur: 74.70 -

Zhu et al. [14] - 2014 93.2 84.6

Faria et al. [13] - 2014 91.1 91.9

Shan and Akella [7] - 2014 93.8 94.5

Gaglio and Lo Re [6] Morana - 2014 77.3 76.7

Parisi et al. [26] - 2015 91.9 90.2

Cippitelli et al. [8] - 2016 93.9 93.5
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Table 3. Precision (P ) and Recall (R) values of the proposed approach for each activity
on OAD.

Action P R

Drinking 60.87 77.78

Getting up 81.25 72.22

Grabbing object from ground 83.33 83.33

Pouring a drink 75.00 83.33

Scrolling book pages 80.95 94.44

Sitting 59.09 72.22

Stacking items 90.00 100.00

Taking objects from shelf 100.00 94.44

Talking on phone 86.67 72.22

Throwing something in bin 75.00 33.33

Waving 66.67 66.67

Wearing coat 100.00 100.00

Working on computer 94.12 88.89

Writing on paper 78.95 83.33

Overall 80.85 80.16

Table 4. Confusion matrix using k = 100 words and a configuration of 28 angles on
OAD.
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Drinking 0.78 0.0 0.0 0.06 0.0 0.0 0.0 0.0 0.11 0.0 0.06 0.0 0.0 0.0
Getting up 0.0 0.72 0.0 0.0 0.0 0.28 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Grabbing obj. 0.0 0.0 0.83 0.06 0.0 0.06 0.0 0.0 0.0 0.0 0.06 0.0 0.0 0.0
Pour a drink 0.0 0.0 0.0 0.83 0.17 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Scrolling book 0.0 0.0 0.0 0.0 0.94 0.0 0.0 0.0 0.0 0.0 0.06 0.0 0.0 0.0
Sitting 0.0 0.17 0.06 0.0 0.0 0.72 0.0 0.0 0.0 0.06 0.0 0.0 0.0 0.0

Stacking items 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Taking objects 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.94 0.0 0.06 0.0 0.0 0.0 0.0

Talking on phone 0.17 0.0 0.0 0.06 0.0 0.0 0.0 0.0 0.72 0.0 0.06 0.0 0.0 0.0
Throwing something 0.11 0.0 0.11 0.0 0.06 0.17 0.11 0.0 0.0 0.33 0.06 0.0 0.0 0.06

Waving 0.17 0.0 0.0 0.11 0.0 0.0 0.0 0.0 0.0 0.0 0.67 0.0 0.0 0.06
Wearing coat 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

Working on computer 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.89 0.11
Writing on paper 0.06 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.06 0.0 0.06 0.83

not partitioned according to the room where they are performed and the prob-
ability of misclassification increases; (ii) the number of subjects is higher and
the variability in executing the actions increases proportionally. For instance the



Joint Orientations from Skeleton Data for Human Activity Recognition 161

worst results have been measured for the activity “throwing something in bin”
that the different subjects executed very differently. Other mismatches occur
between the activities “sitting” and “getting up”; in principle the reference pos-
tures of the two actions are similar, but their temporal ordering in the execution
is different and probably the BoW representation adopted is not able to capture
this aspect. However in general the good performance of the proposed approach
is confirmed on this dataset as well.

5 Conclusions

A human activity recognition technique based on skeleton information has been
proposed in this work. In particular, the effectiveness of joint orientations, typ-
ically neglected by the works in the literature, has been evaluated on differ-
ent benchmarks. The efficacy of the proposal have been confirmed; the results
obtained overcome the state-of-the-art in the well-known CAD-60 benchmark
and good accuracy levels can be reached also on the newly acquired OAD dataset.
Future researches will be devoted to the study of techniques able to couple the
human posture information (encoded according to the model proposed here) to
the information from the surrounding environment (e.g. about interactions with
objects or facial expressions) which would certainly increase the performance
and enable a fine-grained classification of activities.
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Abstract. In the paper a tensor based method for video stream clustering and
compression is presented. The method does video partitioning in temporal
domain based on its content. Such coherent video partitions are amenable for
better compression. The proposed method detects shot boundaries building a
tensor model from a number of frames in the stream. To build the model, the
best rank tensor decomposition is used. Each incoming tensor-frame is verified
with the model based on the proposed concept drift detector – if it fits, then the
model is updated with that frame. Otherwise, a model is rebuilt. This way
obtained shots are then compressed also with the best rank tensor decomposition
methods.

Keywords: Video shot detection � Signal compression � Tensor-frames �
Best-rank tensor decomposition � Stream tensor analysis

1 Introduction

Enormous amounts of visual data streams put new challenges and requirements on their
automatic analysis methods. In this context, one of the techniques is automatic video
segmentation based on a measure of concise signal content. In video processing such
methods are used for video shot detection which serves for automatic video summa-
rization. In this scenario, a set of consecutive frames with sufficiently coherent contents
is represented by a single representative frame, called a keyframe [1]. To build such
video summaries, majority of the proposed methods utilize specific color and texture
features [2, 9, 13, 15, 17, 20, 22]. On the other hand, large streams of data require data
compression. In this work extend our previous work on shot detection [6] and propose
to join the two activities, i.e. shot detection and data compression, under one frame-
work of processing streams of multi-dimensional signals. In this framework we treat
the frames holistically as 2D or 3D tensors – therefore we call them tensor-frames.
Such a framework allows easy extensions to higher dimensions and any type of digital
signals, though. In case of a video, seen as a 4D tensor, the method allows a uniform
approach to its structure analysis, both in spatial and temporal dimensions. In our
framework we rely on the best rank-(R1, R2, …, RP) tensor decomposition as well as
tensor stream analysis [14, 19].
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https://doi.org/10.1007/978-3-319-68560-1_15



In respect to the related works, a description of the main tasks in video abstraction
is provided in Truong and Venkatesh [20]. Valdes and Martinez discuss on efficient
video summarization and retrieval tools [22]. A recent survey of video scene detection
methods is provided in Fabro and Böszörmenyi [8]. Other works are by De Menthon
et al. [16], video summarization by Mundur et al. [17], STIMO system proposed by
Furini [9], as well as VSUMM proposed by de Avila et al. [2] and VSCAN proposed
by Mahmoud et al. [15]. Tensors and their decompositions are presented in de
Lathauwer et al. [14], Kolda et al. [12], as well as Cyganek [3, 4]. Finally, data streams
are analyzed in the works by Gama [10].

2 Architecture of Tensor Stream Clustering
and Compression

Figure 1 shows architecture of the proposed method. Each frame is represented as a 2D
or 3D tensor-frame for monochrome and color versions, respectively.

The frames are partitioned into shots based on the tensor model. Detected shots are
then compressed. The method relies on tensor analysis which further details can be
found in literature, such as [4, 12, 14]. The proposed system operates as follows. From
the input stream of tensor data, a window of consecutive frame-tensors of size D is
selected. All of them are used to build a tensor model from the best rank-(R1, R2, …,
RN) tensor decomposition method [14]. However, the main modification of this model,
which we incorporate after the work by Sun et al. [19], consists of construction of
covariance matrices from the flattened versions of all tensors from the window D. This
way, for each of the tensor flattenings, a single covariance matrix is created from all the
tensors in the input window. Thus, such covariance matrices convey statistical infor-
mation on all of the input tensors. The next computational gain of this approach comes
from the fact that the covariance matrices belong to the positive definite ones, for which
a more effective eigenvalue decomposition method can be used, as will be discussed.
However, tensor decompositions allow also for significant data compression, as pro-
posed and analyzed in many works, for examples by Wang and Ahuja [23, 24] or by
Cyganek [4]. In this paper we propose to join the video shot detection and then shot

Shot detection Shot
compression

Frame
Shot N Shot M

Scene NM

TENSOR STREAM

t

Fig. 1. Overview of the system architecture. Frames are represented as 2D or 3D tensor-frames
for monochrome and color images, respectively. The frames are partitioned into shots based on
the tensor model. Detected shots are then efficiently compressed due to their content coherency.
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compression based on the tensor stream analysis and best rank-(R1, R2, …, RP) tensor
decomposition. Details will be discussed in consecutive sections.

3 Tensor Model Build and Update Scheme for Data
Clustering

Algorithm 1 shows our proposed tensor model build and concept drift detection
mechanisms for video shot detection. Its particular modules are further discussed.

The above method relies on the best rank tensor decomposition, discussed in the
consecutive parts of this paper. It is worth noticing that the initial rank values R1, R2,
…, RP in Algorithm 1 are the maximal possible ranks that are considered when
building the model. However, real ranks are determined based on the automatic rank
assessment mechanism and, in practice, are usually much smaller than the conserva-
tively assumed initial ranks [6]. These depend on a type of the input signal. For
instance, in our experiments with monochrome and color video, these were heuristi-
cally set to R1 = 0.2N1, R2 = 0.2N2, R3 = N3, where N1 and N2 denote the column and
row dimensions, whereas N3 corresponds to the color, respectively. To present our
tensor decomposition method, let us define a P-dimensional tensor as a P-dimensional
cube of data, with each of its k-th dimensions denoted by Nk, and for 1 � k � P, as
follows [4, 14]:

T 2 <N1�N2�...NP : ð2Þ
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An important role plays the so called tensor flattening, which for a P-th order tensor
T , is defined as the following matrix

T jð Þ 2 <Nj� N1N2...Nj�1Njþ 1...NPð Þ : ð3Þ

In a similar way, a k-th modal product of a tensor and a matrix is denoted as
T �k M for a tensor T 2 <N1�N2�...NP and a matrix M 2 <Q�Nk is defined as a tensor
S 2 <N1�N2�...Nk�1�Q�Nkþ 1�...NP , with the following elements

Sn1n2...nk�1qnkþ 1...nP ¼ T �k Mð Þn1n2...nk�1qnkþ 1...nP¼
XNk

nk¼1

tn1n2...nk�1nknkþ 1...nPmqnk : ð4Þ

Differently from the matrix analysis, in case of tensors there are at least three
different concepts of their ranks. The r-th rank of a tensor T is a dimension of the
vector space spanned by the columns of the r-th flattening T(r) of this tensor. After these
definitions of a tensor algebra, let us briefly focus upon the tensor decompositions.

For a given tensor T 2 <N1�N2�...�NP its Tucker decomposition is its approximating
tensor ~T , given as follows [21]

~T ¼ Z �1 S1 �2 S2. . .�P SP ; ð5Þ

where Z is a core tensor, Si 2 <Ni�Ri are so called mode matrices, and which minimizes
the functional

H Tð Þ ¼ T � ~T
�� ��2

F : ð6Þ

From (5) the following formula for the core tensor is easily obtained

Z ¼ ~T �1 ST1 �2 ST2 . . .�P STP: ð7Þ

Then, from (7) to (5) applied to (6), the following tensor fit measure is obtained

H Tð Þ ¼ T � T
YP

k¼1

�k SkSTk
� �

�����

�����

2

F

: ð8Þ

Nevertheless, in many applications it is important to request orthogonality or ask for
specific rank of Sk. If such a constraint is assumed, then the Tucker decomposition leads
to its special version, called the best rank-(R1, R2,…, RP) tensor decomposition [14]: A

tensor ~T of ranks in each of its modes rank1 ~T
� �

¼ R1, rank2 ~T
� �

¼ R2, …,

rankP ~T
� �

¼ RP, respectively, is the best rank-(R1, R2, …, RP) approximation of a

tensor T 2 <N1�N2�...�NP if it minimizes the functional (8).
Implementation details of the best rank-(R1, R2, …, RP) method are presented for

instance in the publications [3, 12, 14]. However, this algorithm has been extended of
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computation of the covariance matrices from the input tensors, using all of their flat-
tening modes [19]. Algorithm 2 presents the best rank-(R1, R2, …, RP) tensor
decomposition algorithm, with the mentioned modified for processing streams of tensor
data. This is accomplished in steps (9) and (10) which compute the covariance matrices
from each tensor in the input window D and at each of their P flattening modes. In the
step (11) the dominating subspace is computed with help of the fds function. However,
here we take benefit of processing of the covariance matrices which belong to the
symmetrical positive definite group of matrices. Thus, instead of the standard SVD
matrix decomposition, for the fds function a much faster fixed-point method is used, as
described in our previous publication [5].

Based on Algorithm 2 a tensor model is built from a series of D tensors. If an
incoming tensor does not fit to this model, the model needs to be rebuilt from scratch,
starting at the position in the stream. On the other hand, if a new frame fits to the
model, then the model needs only to be adjusted to account for this new tensor and to
account for the changing data stream. However, in this case a faster model update
procedure can be employed. Concretely, it simply relies on an update of the covariance
matrices in (10) in Algorithm 2, in each of the flattening modes with the new tensor
data, as follows [18].
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C tþ 1ð Þ
k ¼ aC tð Þ

k þ S tþ 1ð Þ
k

� �
S tþ 1ð Þ
k

� �T
: ð13Þ

In the above, a denotes a forgetting factor of the previous model, and S tþ 1ð Þ
k is a k-

th mode matrix of a new (updating) tensor at a time stamp t+1.
Last part of the presented method is a concept drift detection function which role is

to measure fitness of a test frame X to the tensor model. First, for all D tensors T i used
to build a model, their fit values (8) are computed. However, instead of the absolute
error values H, the differences of DH are taken into computations in the mean and
standard deviation. Now the error function is defined as follows

DHi � Hi�1 �Hi : ð14Þ

For right processing of the shots with slowly changing content, the following drift
measure is proposed [6].

DHX � �HD

�� ��\ a rD þ b : ð15Þ

where a is multiplicative factor (range 3.0–4.0) and b is an additive component (set to
0.2–2.5), �HD and rD are the mean and standard deviation computed from the differ-
ences of fit values in (14), which are defined as follows

�HD ¼ 1
D

Xw

i¼1
iHD ; and r2 ¼ 1

D� 1

Xw

i¼1
iHD � �HDð Þ2: ð16Þ

4 Stream Compression on Shot Boundaries

The aforementioned best rank-(R1, R2, …, RP) tensor decomposition can be also used
for efficient data compression [4, 23, 24]. Comparing memory required to store the
original tensor and its approximation (5), the following measures should be considered

Q0 ¼ N1N2. . .NP; Q1 ¼ R1R2. . .RP þ
XP

k¼1

NkRk : ð17Þ

Assuming sufficiently small rank values Rk when compared to Nk – it holds that
Q1�Q0. This makes the best rank-(R1, R2, …, RP) decomposition well suited also for
data compression. Connection of the shot detection followed by the shot compression
based on the tensor best rank-(R1, R2, …, RP) decomposition is one of the novelties
presented in this paper. Nevertheless, in practice, when considering storage of Sk and Z
the dynamical range of their elements need to be considered. In other words, the
following coefficient needs to be checked
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C ¼ B Q0ð Þ=B Q1ð Þ ; ð18Þ

where B(Q) is a function that returns a number of bytes necessary to store Q elements.
However, as shown in one of our previous publications, a significant memory savings
are obtained after changing data format from the floating (double in C++) to the
fixed-point representation (2 bytes in our implementation). These require the following
tensor rescaling [4]

~T ¼ k Zb c �1 S1b c �2 S2b c �3 S3b c ð19Þ

where Sib c denotes a scaled values of a matrix Si to a certain range r, and k denotes a
scaling parameter. The scaling of the matrices can be achieved in the following steps:

1. Compute the maximum absolute value smax of the matrix Si.
2. Multiply each element by r/smax.

The same procedure is applied to the core tensor to find out a value of zmax. In result
the additional scalar

k ¼ zmax

rPþ 1

YP

i¼1

s ið Þ
max ð20Þ

is obtained which also needs to be stored. However, its memory occupation is negli-
gible. Thanks to this, each element of the video tensors can be stored on only two bytes.
On the other hand, signal compression ratio is measured by means of the mean-square
error (MSE) or the peak signal to noise ratio (PSNR) measures.

5 Experimental Results

The method was implemented in C++ with the DeRecLib [4, 7]. The experiments were
performed on a computer with the Intel® Xeon® E-1545 processor with clock
2.9 GHz, memory 64 GB RAM, and OS 64-bit Windows 10. The experimental
database contains videos from the Open Video Project [2, 11]. The videos are in the
MPEG-1 format, 30 fps 352 � 240 pixels, of length 1 to 4 min.

Figure 2 depicts shots found by our method in the The Great Web of Water test
video. In this case the color video was converted to monochrome for speed up. The
model windows was set to W = 13, the model check parameters (a, b) = (3.7, 0.2), and
the G = 3. However, during the experiments we observed that it is possible to select hard
shots from all of the detected shots by a simple thresholding since for these types of
shots the fitness function is much larger. In Fig. 2 hard shot cuts detected with this
method are shown in red, while the model fit values are in black. What we have also
noticed is that the results depend on the chosen model window sizeW, but its value is not
critical. That is, for many videos good results are obtained forW in a certain range, such
as 7–15 in this case, rather than for a particular value. This happens because the model is
continuously updated in accordance with the procedure described in Algorithm 1. Also,
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a choice of the parameter G, controlling the series of consecutive “not-fit” frames, is not
a critical one. We set this value to 3 to avoid shot detection on some spurious but single
frames, e.g. due to noise and scratches. On the other hand, the results depend much on
the parameters a and b in (15). Especially, this choice determines how many soft shots
will be detected. The shot detection was tested with the user annotated database of the
[2], and compared with other methods in [9, 15, 17]. The obtained average F value is
0.73 and 0.70 for color and monochrome videos, respectively [6]. In this respect only
VSCAN and for color video shows better parameters, but it relies on specific feature
extraction while tensor methods take signal as it is.

Table 1 shows compression ratio and PSNR value for the exemplary shots shown
in Figs. 3 and 4. Due to relatively small variation among the tensor-frames in a shot,
the small rank values can be set which results in high compression ratio. At the same
time, the MPEG compression for that file was 49. However, the latter provides better
accuracy. This happens because the presented method is not optimized for particular
type of signal, color images in this case. Thanks to this, the proposed method can be
applied to any type of data, though. Figures 3 and 4 show exemplary frames from the
original shot and after compression/decompression. Some artefacts are due to the used
color space and very high compression exceeding 100.

Further research is conducted to avoid these artefacts, as well as to test compression
on different types of signals. However, in our opinion color video examples were the
best to verify the idea behind the presented method.

Fig. 2. Video shots found by our method for the The Great Web of Water (left) W = 13, (a,b) =
(3.7,1.3), sequence Exotic Terrane (segment 04) W = 53, G = 3, (a,b) = (3.7,0.2), a = 0.95
(right). Hard shot cuts denoted in red. Model fit value (14) shown in black.

Table 1. Compression for an exemplary shots.

Ranks Compression ratio PSNR

35-45-6-3 87.54 24.17
24-35-4-3 132.26 24.27
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The average execution times for the shot detection are presented in Table 2.
Unfortunately, execution of the compression module is an order of magnitude longer
due to necessity of decomposing large tensor. Improvement to this is for future work.

6 Conclusions

In this paper the tensor based framework for multidimensional stream temporal clus-
tering and compression is presented. The main idea is to find content coherent shots in
the input stream which then can be easier and better compressed due to its coherency.
For this purpose we propose to build a tensor model for stream processing which then
is either updated, or entirely rebuilt, based on the proposed tensor-frame fitness
function. The found shots cluster the input stream into chunks which can be more

Fig. 3. Exemplary frames from a shot in the The Great Web of Water video from the Open
Video database [11] – top row: original frames no. 2750-2754). Bottom row – the same frames
after compression/decompression ratio C = 87 and PSNR = 24.17 with the tensor method.

Fig. 4. Exemplary frames from a shot in the The Great Web of Water video from the Open
Video database [11] – top row: original frames. Bottom row – the same frames after
compression/decompression with the tensor method, PSNR = 24.27, C = 132.

Table 2. Average execution time for the monochrome 2D tensors, and color 3D tensors.

Video type Mono (2D) 352 � 240 Color (3D) 352 � 240

Frames 1948 1948
Processing time [frames/s] 15.6 3.2
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efficiently compressed due to their coherence. The method was built and tested in the
framework of video streams processing, although any type of signal can be used. The
benefit of the tensor approach is its easy scaling to any number of dimensions of the
input streams. However, this is burdened by the polynomial grow of the computational
complexity, as well as memory consumption. The next feature of our proposed method
is that it does not require any specific feature detection which is a main computational
part of the majority of other methods of video summarization. The best rank tensor
decomposition is used here both, to shot detection, as well as to compression. However,
for specific signals, such as color video, a more accurate compression can be used
instead. Regardless of this, the proposed method reaches high shot detection accuracy
when compared to other methods specifically designed for processing of the color
video streams. Further research will be conducted to improve accuracy and speed,
possibly by developing more efficient model fitness functions, as well as faster methods
for tensor decomposition. For the latter, the GPU acceleration is investigated.

Acknowledgement. This work was supported by the National Science Centre, Poland, under
the grant no. 2016/21/B/ST6/01461.
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Abstract. Modern automated visual surveillance scenarios demand to
process effectively a large set of visual stream with a limited amount of
human resources. Actionable information is required in real-time, there-
fore abnormal pattern detection shall be performed in order to select the
most useful streams for an operator to visually inspect. To tackle this
challenging task we propose a novel method based on convex polytope
ensembles to perform anomaly detection. Our method relies on local tra-
jectory based features. We report State-of-the-Art results on pixel-level
anomaly detection on the challenging publicly available UCSD Pedes-
trian dataset.

Keywords: Computer vision · Anomaly detection · Surveillance

1 Introduction and Related Work

Nowadays a huge effort is put in securing cities and public spaces. Apart from
human engagement in security policy with police forces and other security per-
sonnel, a lot of spending is dedicated to surveillance system deployment. Unfortu-
nately while growing the amount of operators may enhance the security, growing
the amount of sensors alone is not obtaining much benefits. While cameras are
often installed as a deterrent for crimes, the usual approach is to use footage
as evidence in investigations. More actionable information could be gathered if
real-time video analysis provided to surveillance operators a subset of frames to
inspect. Dadashi et al. [6] conducted a study to understand the role of auto-
matic and semi-automatic video analysis in security context. They have shown
that when reliable automatically computed information is provided workload
is greatly reduced. This kind of support to human operators is key since, as
reported in [8] the attention of operators, viewing multiple streams, greatly
degrades just after 20 min.

A very desirable feature in automatic visual surveillance system, is the abil-
ity to pick the right set of streams to watch. This can be casted as measur-
ing the deviation of the most recent frames, from some nominal distribution of
the imagery for the very same stream. More specifically an algorithm, selecting
streams, should also provide localization of such anomalies. This is an important
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feature since it allows to use high resolution PTZ cameras able to directly frame,
at a higher quality, the abnormal pattern.

Modeling complex patterns requires to learn the distribution characterizing
a set of video sequences, taken from a certain view. It is usually assumed that
the camera is fixed, this allows to make models which are simpler and can learn
patterns which are scene specific. Anomaly detection is usually casted as a one-
class learning problem over features extracted from video sequences.

Most of the recent works are based on motion or spatio-temporal features.
The seminal work from Adam et al. [1], learned local optical flow statistics and
compared them to the one computed on forthcoming frames. Optical flow has
been used extensively as low-level feature on which contextual models are then
built [9,13]. One of the main limitation of optical flow lies in the impossibility to
model appearance abnormalities. Nonetheless, using just the appearance, is only
suitable for low-frame rate scenarios [3], therefore many work resort to spatio-
temporal representation, in order to jointly capture appearance and motion [2,
10–12,16].

Several models have been applied to solve one-class learning. Non-parametric
approaches [2,3], model feature distribution implicitly, by looking at distance
between features. Parametric models, have the advantage of a lower memory
footprint, they typically fit a mixture of density functions on the extracted fea-
tures. Li et al. [11] learn a mixture of dynamic textures, computing likelihood
over unseen patterns to perform inference. Similarly, Kim and Grauman [9] learn
a mixture of Principal Components Analyzers, which jointly learns the distri-
bution and perform dimensionality reduction. Feature learning has been rarely
used except for Xu et al. [16], which use autoencoders to directly learn the rep-
resentation, obtaining high accuracy. In this work, we only consider methods not
using anomaly labels in learning, in such cases, the problem becomes a binary
classification task with much less challenge.

In the past, trajectories were the feature of choice to model patterns in visual
surveillance scenarios [4]. Trajectory based anomaly detection unfortunately
requires high quality object tracking and can not find appearance abnormal
patterns. In action recognition, the use of short local trajectories, namely dense
trajectories, to extract features has led to a sensible increase in performance [15].
Several approaches build on this features, showing interesting further improve-
ments and localization capabilities [7,14]. Up to now we are not aware of such
features being employed in unsupervised or semi-supervised tasks like anomaly
detection.

Considering the relatively low computational requirement and high perfor-
mance, we build on dense trajectories, which are known to be very well suited
for a wide set of action recognition problems, since they are able to represent
motion and appearance jointly. We propose to estimate the distribution of tra-
jectory descriptors using convex polytopes [5]. Convex polytopes have been used
in the past but never for computer vision problems. Our approach is inspired
by [5], but is different since instead of modeling the distribution of data with
a single polytope which is approximated using random projections, we consider
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explicitly an ensemble of low-dimensional models. This approach is more suited
to model multi-modal distributions and it allows to merge multiple features in
a single decision.

We report state of the art results on the UCSD dataset both at pixel and
frame level anomaly detection. Interestingly we found that local trajectory shape
can get very good detection rates, potentially reducing the computational cost
for feature extraction.

2 Anomaly Detection with Convex Polytopes

We tackle anomaly detection and localization as a single-class classification prob-
lem in a fully unsupervised way. As we can only train our system on a single
class of input points (the non-abnormal class), we choose to employ the polytope
ensemble technique as modeling method. In particular, we make use of Polytope
Ensemble technique [5]. Polytope Ensemble considers a set of convex polytopes
representing an approximation of the space containing the input feature points.
We want a representation which is shaped according to the distribution of the
points we can observe; among the convex class of polytopes, the convex hull
has the geometric structure which is best tailored to model this kind of data
distribution.

2.1 Model Building

Given an input set of points X = {x1, . . . , xm}, its convex hull is defined as

C(X) =

⎧
⎨

⎩

|X|∑

i=1

θixi|xi ∈ X;
∑

i

θi = 1, θi ≥ 0∀i

⎫
⎬

⎭
(1)

By exploiting the convex hull properties, we can then identify an abnormal
point simply checking whether it belongs to the convex hull or not.

Extended Convex Hull. To ensure robustness of the model, we follow the
procedure of [5] and modify the structure of the convex hull, performing a shift
of its vertices closer or farther from its centroid. This allows to avoid overfitting
and tune our system to cope with different practical conditions. Considering the
set of vertices V ⊂ X and the centroid of the polytope ci, we can calculate the
expanded polytope setting an α parameter such that

Vα = {v + α
(v − ci)
||v − ci|| , v ∈ V } (2)

The new polytope defined by vertices in Vα is a shrunken/enlarged version
of the original convex hull. Negative values of α increase system sensivity, while
positive values reduce it.
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Ensemble Building. We rely on dense trajectory features [15]. We extract
both motion and appearance descriptors using Improved Dense Trajectories
algorithm. This allows us to jointly employ multiple features such as trajec-
tory coordinates, HoG, HoF and MBH to achieve robust anomaly detection and
localization. We set the ensemble size to T convex hulls. Then, for each feature
and for each convex hull, we generate a random projection matrix P f

i with norm
1 and size d × Df , where d is the size of the destination subspace, and Df is the
size of the feature f . We then apply this projections to the original data:

XP f
i

= {P f
i x,∀x ∈ X} (3)

The i-th convex hull is calculated on XP f
i
. Each convex hull will be character-

ized by a unique shape, as we generate a different random projection matrix at
every iteration of model learning. A set of different sensitivity ensembles can be
obtained by the aforementioned shrinking/expansion procedure, based on dif-
ferent values of the α parameter. It is not required to have an α set for each
polytope since, as can be seen in Eq. 2, shrinking factors are computed by scaling
the distance of vertices from the centroid.

2.2 Anomaly Localization

At inference time, we test each extracted descriptor for inclusion in each con-
vex hull of the ensemble, for each feature. We consider a local trajectory, with
descriptors xf as anomalous if the following condition is true:

xf �∈ Cf (XP f
i
) ∀f, i (4)

meaning that the descriptor is external to all the polytopes and that this happens
for all the considered features (Trajectories, HoG, HoF, MBH).

These assumptions are rather strong, but they ensure that we reduce anomaly
detection on unusual but yet ordinary patterns. When a descriptor is marked as
abnormal, this detection lasts for the entire extent of the trajectory descriptor
(15 frames by default). Detecting anomalies for individual trajectory descriptors
allows to generate anomaly proposals in various areas of video frames, exploiting
trajectory coordinates. We can then obtain an anomaly mask for each frame of
each video by filtering these proposals. In Fig. 1 we represent the three main
operations we perform to achieve anomaly detection and localization.

We take into consideration the set of trajectories Ta = {t1, t2, . . . , tN} which
have been marked as anomalous after testing their inclusion into the convex hulls
of the ensemble. Each trajectory ti is a sequence of M points, ti = {pi1, . . . , piM}
lasting M video frames. At frame f , we consider the points of the active anom-
alous trajectories, that is to say the set of points

Pa = {pin ∈ ti|n = f, ti ∈ Ta} (5)

Points identified by active anomalous trajectories at frame f are clustered
with K-means algorithm to locate potentially abnormal areas of the frame. K-
Means yields a partition Sa of the anomalous points set Pa in K Voronoi cells:

Sa = {S1, . . . , SK |S1 ∪ · · · ∪ SK = Pa, Sk1 ∩ Sk2 = ∅ ∀ k1, k2} (6)
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Fig. 1. Operating scheme of our anomaly detection and localization model

Each Sk represents an anomaly proposal for the considered frame. For each
Sk, we verify if its cardinality is smaller than a fixed threshold, that is to say, if
the anomaly proposal constitutes of a minimum number of points. We assume
that small clusters are likely originated by spurious false positive detections, so
we discard all the anomaly proposals Sk whose cardinality does not guarantee
that the detection is reliable. Then, for each remaining Sk, we calculate the
polygon described by its points. Each polygon represents an accepted anomaly
proposal which contributes to the final anomaly mask creation for the frame.

3 Experimental Results

We conduct our experiments on the UCSD Pedestrian dataset. This dataset has
been proposed by Mahadevan et al. [11], and it consist of two sets of videos,
named Ped1 and Ped2, of pedestrian traffic. The dataset is not staged and
features realistic scenarios. In the setting designed by the authors anomalous
patterns are all the non-pedestrian entities appearing in the scene. We perform
the evaluation on the Ped1 and Ped2 following the standard experimental pro-
tocol for this dataset which comprises two evaluation settings: frame-level and
pixel-level [11].

In the frame-level criterion, detections are evaluated frame-wise, meaning
that a frame is considered anomalous if at least an abnormal detection is
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predicted for that frame disregarding its location. In this setting it is possi-
ble to have “lucky guesses”, predicting a frame correctly thanks to a detection
which is spatially incorrect or with a too small overlap with the ground truth
annotation.

Pixel-level evaluation is introduced to obtain a more detailed analysis of
algorithm behavior. In this setting anomaly detections are compared with ground
truth pixel masks. A frame is considered a true positive if there is at least 40%
of pixel overlap between the ground truth and the predicted mask. A frame
is considered a false positive in case anomalies are predicted in normal frames
or if the overlap with ground truth masks is lower than 40%. We report the
Receiver Operating Characteristic (ROC) curve of TPR and FPR varying system
sensitivity, and the Rate of Detection (RD) of our system. We modify system
sensitivity varying α in Eq. 2.

First we perform an analysis of the contribution of different features. For
simplicity, we divide features in three groups: trajectories, motion and appear-
ance. We test each kind of feature alone and in combination with the others on
UCSDPed1. We report the results of feature evaluation in Table 1.

Table 1. Pixel level rate of detection for different descriptors on UCSDPed1

Trajectories Motion (HoF, MBH) Appearance (HoG) RD

� - - 57.9

- � - 60.1

- - � 48.9

� � � 62.2

Interestingly, local trajectories show very good performance. Anyhow, it
appears clearly that motion descriptors give the main contribution to anomaly
localization; however, as expected, best results are obtained fusing the contribu-
tions of all descriptors. In the following, we will then perform other tests using
all the descriptors extracted from the dense trajectory pipeline.

Regarding our model, there are two parameters that can affect the perfor-
mance. In the following experiments we want to understand how projection size
and ensemble cardinality influence the correct detection of anomalies.

All projection size tests were obtained fixing ensemble size to 10 convex hulls,
while all ensemble size tests were obtained fixing projection size to 5. We report
detection rate variation charts in Fig. 2. As we expected, increasing projection
size leads to consistent gain in rate of detection results. On the contrary, bigger
ensembles do not always guarantee performance improvements. This outcome
may be caused by the unpredictable behavior of the random projections when
we raise the number of random generated projection matrices. The best trade-
off from a computational point of view is obtained keeping an ensemble of 10
convex hulls and a projection size of 5 dimensions. Increasing projection size
over 7 causes convex hull generation and inclusion test to be nearly unfeasible
due to very long computation time without bringing noticeable benefits.
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Fig. 2. Evaluation of ensemble size and projection size for our system on UCSDPed1.

With these settings fixed, we compare our results with the existing State-of-
the-Art methods in fully unsupervised settings. First of all, it can be noted that
with our method trajectory descriptors alone obtain very high Rate of Detection
at the pixel level (57.9% as shown in Table 1), higher than most approaches on
Ped1, excluding [12], and the deep learning based method by [16].

As we can see in Figs. 3 and 4, our method succeeds in limiting false posi-
tive detections, especially at low sensitivity, at the frame level. We detect and
localize less than 20% of false positives facing more than 50% of true positives
at lower sensitivity values on Ped1 setting. Our system behaves even better on
Ped2 setting, where we correctly detect and localize more than 50% of true pos-
itive anomalies with less than 5% of mistakes. As we expect, false positive rate

Fig. 3. TPR-FPR curves comparing our approach with various well-known methods
on Ped1 setting. Left figure shows the Frame level criterion, right figure shows Pixel
level criterion.
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Fig. 4. TPR-FPR curves comparing our approach with various well-known methods
on Ped2 setting. Left figure shows the Frame level criterion, right figure shows Pixel
level criterion.

increases when our system becomes more sensitive to unseen patterns, however
maintaining good robustness. Table 2 reports Rate of Detections for all consid-
ered methods for both datasets and both criteria, when reported by authors. Our
method obtains a frame-level performance which is comparable to the State-of-
the-Art and beat all existing methods on the more challenging pixel-level evalua-
tion. Considering the evaluation protocol established in [11], frame level accuracy
may not reflect the actual behavior of a method, because of lucky guesses, while
the pixel-level criterion is stricter.

Table 2. RD comparison of our method versus various well-known State-of-the-Art
techniques on Ped1 and Ped2 (where available) settings, frame-level and pixel-level
criteria.

Method Ped1 Ped2

Frame Pixel Frame Pixel

Ours 78.1 62.2 80.7 75.7

Xu et al. [16] 78.0 59.9 83.0 -

MDT Spatial [11] 56.2 54.2 71.3 63.4

MDT Temporal [11] 77.1 48.2 72.1 56.8

150 fps [12] 85.0 59.1 - -

Bertini et al. [2] 66.0 29.0 68.0 -

Mehran et al. [13] 63.5 40.9 65.0 27.6

Kim and Grauman [9] 64.4 23.2 64.2 22.4

Adam et al. [1] 61.1 32.6 54.2 22.4
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Our Method Force Flow LMH

MDT Spatial MDT Temporal MPPCA

Fig. 5. Qualitative pixel level anomaly detection results on UCSD Ped1 comparing our
method to previous approaches.

Our Method Force Flow LMH

MDT Spatial MDT Temporal MPPCA

Fig. 6. Qualitative pixel level anomaly detection results on UCSD Ped2 comparing our
method to previous approaches.

To show the high quality of our generated masks, we report a qualitative
comparison on two frames. Notably our masks frame very tightly abnormal pat-
terns, such as the bicycle rider and the truck in Figs. 5 and 6. With respect to
[11] our masks are tighter. Methods such as MPPCA, Force Flow and LMH, are
not able, especially in Ped2, to locate all anomalies. This is likely due to a lower
quality of features employed.
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4 Conclusion

In this paper we show a novel, low memory footprint method to exploit dense
trajectory features in anomaly detection. Our method is able to model a complex
multimodal distribution yielded by spatio-temporal descriptors using a simple
convex polytope ensemble. Moreover, when multiple views of the same datum are
available our approach seamlessly performs feature fusion. Indeed, our method
is very flexible, as it allows to combine multiple features maintaining the same
operating mechanisms, and is tunable by a simple geometric transformation of
polytope hulls. Our system can thus be adapted to cope with various practical
conditions without losing its benefits both for anomaly detection and localiza-
tion tasks. We also propose a technique to obtain precise masks by clustering
abnormal trajectories; this mask generation technique allows us to achieve good
robustness against false positive detections and is shown to obtain State-of-the-
Art results in term of pixel-wise detection rate.
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Abstract. In human action classification task, a video must be classi-
fied into a pre-determined class. To cope with this problem, we propose
a mid-level representation which extends the Bag-of-Words formalism
in order to better described the low-level features, exploring distance-
to-codeword histograms. The main contribution of this article is the
assembly of low-level features by a mid-level representation enriched
with information about distances between descriptors and codewords.
The proposed representation takes into account volumes of hyper-regions
obtained from hyperspheres centered at codewords. Experimental results
demonstrated that our strategy either has improved the classification
rates more than 6% with respect to the compared mid-level representa-
tion for UCF Sports, or it is a competitive one, for KTH and UCF-11.

Keywords: Human action classification · Mid-level representation ·
Pooling strategy

1 Introduction

Human Action Classification is a pattern recognition task in which the main goal
is to identify the action displayed in a media content. Regardless of the media
source, such as images, sequential selection of video frames, raw video data or
annotations, this task gained a lot of attention in the past few years. Here the
focus is on video data, and one could define the main task as: given a video, one
needs to classify the action displayed into one of a predetermined set of actions
using only the content presented in the video.

To achieve this goal we explore ways to better represent the video content,
transforming the original input information into a more suitable representation
for the classifier. Usually researchers address this problem using two stages [9]:
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(i) feature extraction; and (ii) action classification. In a typical approach, feature
extraction is performed directly on the raw data, here called low-level description,
trying to avoid noise or irrelevant information. Action classification involves
learning statistical models from the extracted features, and using those models
to classify new feature observations.

The most discriminative low-level descriptors available in literature today
rely on identifying regions of interest. Once these regions are identified, desirable
features are then extracted around these regions. The output created by this
process is a set of features, which are related to regions, representing the media.
Facing this scenario, one popular approach is to map the set of local descriptors
into one vector used as a global representation, so-called mid-level representation.

Among the methods for creating a mid-level representation, standout Bag-of-
Words (BoW), Spatial Pyramids and Convolutional Networks for their notable
results. As stated by [2], mid-level representations have three steps in common:
(i) coding; (ii) pooling; and (iii) concatenation. Coding stands for the transforma-
tion locally applied into features vectors, extracting distribution characteristics.
Pooling, in turn, explores the spatial relation between these characteristics; and
concatenation constructs the final vector representation.

Here we explore a new strategy for the pooling step based on a volumetric
partition of an hypersphere centered at codewords. The goal is to maintain the
same probability of assignment to a given hyper-region. We argue that this kind
of pooling could decrease the quantization error created during codification.

This paper is organized as follows. In Sect. 2, some related works involving
mid-level representations and human action classification are described. While in
Sect. 3, a formalization of traditional BoW is presented, in Sect. 4, the new mid-
level representation is given. Experiments for human action recognition taking
into account three well-known datasets are presented in Sect. 5, and finally, some
conclusions are drawn in Sect. 6.

2 Related Work

Human action recognition is a popular topic in video processing, but it still an
open problem due to the difficult in creating a representation able to capture
and describe action motions in different scenarios. Among the most pronounced
action descriptors, local spatio-temporal features, as proposed in [6,15], have
been successfully used in several applications. In [6] the Space-Time Interest
Point (STIP) descriptor are proposed. In STIP, interest points are detected in
multiple scales and associated to a patch. Each path is described using Histogram
of Oriented Gradients (HOG) and Histogram of Optical Flow (HOF). Regarding
Dense Trajectories descriptor, proposed in [15], the trajectories are obtained by
densely tracking sampled points obtained with optical flow fields. After tracking,
feature point descriptors are extracted using HOG, HOF and Motion Boundary
Histogram (MBH) around the trajectories.

These two description approaches represent action videos by a set of local
features. Inspired by the success of mid-level representations of local features in



Human Action Classification Using an Extended BoW Formalism 187

image processing, they rely on vector quantization in a BoW scheme to create
a global video representation. Although they achieve good results, the loss of
information during codification still an open problem.

In order to deal with quantification errors, a wide range of methodologies
for creating mid-level representation has been proposed. Most of these represen-
tations, when applied in action recognition task, follow the vector quantization
based on BoW model, but try to preserve spatial temporal relations during the
coding process taking into account multiple weighted representation.

In [18], it was proposed the combination of local histograms with body
regions histograms in order to preserve spatial temporal relations between inter-
est points. In [8], it was proposed a sparse coding with max pooling framework
applied in multiple contexts, which are defined according to the spatial scale
and nearest neighbors of local features. Moreover, it is constructed one vocab-
ulary and one histogram for each defined context. At the end, these data are
concatenated for the final representation.

In [17], it was proposed a method based on multiple hierarchical levels for
creating histograms. The first level is constructed using the descriptors extracted
from video cuboids. The other levels are created by applying a neighboring func-
tion regarding previous level description and by creating a new codebook and
new histogram for the current level. This scheme is called hierarchical BoW.
In [13] an hierarchical BoW is constructed by recursive computing partitions of
depth maps sequence in temporal domain, called Temporal Bag-of-Words.

In order to explore a representation driven by the histogram information,
in [20], it was defined a contextual domain surrounding a spatial temporal area.
After that, a contextual distance is calculated by adding a penalty value pro-
portional to the probability density function computed from the local descrip-
tors and codewords of the contextual domain. The contextual information is
also used in [19], however it is obtained by histogram intersections, using both
spatial and temporal distances as weighted controlling factors. In [16], Term
Frequency-Inverse Document Frequency (TF-IDF) of visual words is used to
create histograms representing video segments. These histograms are applied
in a continuous framework using a data stream algorithm to update the system
knowledge based on the classification score obtained by the histogram. In [3] con-
textual information incorporate depth camera data and global frame descriptors
in a BoW framework.

In image processing domain, enriched BoW representations with extra
knowledge from the set of local descriptors have been explored on several
approaches [11,21]. However, those works use parametric models leading to a
very high-dimensional representation. On other hand, BossaNova model [1],
which follows BoW formalism (coding/pooling), keeps more information than
the traditional BoW during the pooling step. It estimates a probability density
function by computing a histogram of distances between local descriptors and
codewords. In addition to the pooling strategy, in [1], it also proposed a localized
soft-assignment coding that considers only the k-nearest codewords for coding a
local descriptor.
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3 Traditional Bag-of-Words

In the traditional Bag-of-Words (BoW) model for mid-level representation, the
input is a set of unordered local descriptors, representing the whole data. The
BoW model first requires a dictionary learned from the feature points. The
most common approach to create the dictionary is by an unsupervised clustering
algorithm (e.g., K-means algorithm). The dictionary is composed by a set of M

codewords. More precisely, let X =
{
xj ∈ Rd

}N

j=1
be an unordered set of d-

dimensional descriptors xj extracted from the data and let C = {cm ∈ Rd}Mm=1

and Z ∈ RM be the dictionary learned and the final vector representation,
respectively. As formalized in [2], the mapping from X to Z can be decomposed
into three sucessive steps: (i) coding; (ii) pooling; and (iii) concatenation, as
follows:

αj = f(xj), j ∈ [1, N ] (coding) (1)

hm = g(αm = {αm,j}Nj=1),m ∈ [1,M ] (pooling) (2)

z = [hT
1 , . . . , hT

M ] (concatenation) (3)

In the traditional BoW framework [14], the coding function f minimizes
the distance to a codebook, and the pooling function g computes the sum over
the pooling region. As illustrated in Fig. 1, the coding and pooling functions
can be visualized in terms of the matrix H with N column and M rows, in
this example, the coding function f for a given descriptor xj corresponds to
information obtained from the jst column. Moreover, the pooling function g
for a given visual word cm corresponds to the mst row of the H matrix. Both
functions could be, more precisely, defined as follows:

αj ∈ {0, 1}M = αm,j = 1 iff j = argmin
m≤M

‖ xj − cm ‖22 (4)

hm =
1
N

N∑

j=1

αm,j (5)

in which cm denotes the m-th codeword.

Fig. 1. Matrix H of BoW model in which the rows and columns are related to coding
and pooling functions, respectively, as presented in [1].
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In [4], some improvements were obtained by smoothing the distribution dur-
ing the pooling function. This approach, called soft-assignment, models an ambi-
guity concept in the attribution, creating more expressive models for classifica-
tion. They indicate that large vocabulary increases the probability of multiple
relevant visual words to represent one feature point. This is called visual word
uncertainty and can be formulated as follows:

αm,j =
exp(−β ‖ xj − cm ‖2)

∑M
k=1 exp(−β ‖ xj − ck ‖2)

(6)

where β is a parameter that controls the softness of the soft assignment (hard
assignment is the limit when β → ∞).

4 An Extended BoW Formalism

In the traditional BoW framework [14], the function g for pooling computes the
number of descriptors over the pooling region, thus the mid-level representa-
tion could be defined by a concatenation of all values related to the codewords.
Unfortunately, this pooling strategy is quite poor in terms of information inside
each pooling region, mainly related to spatial distribution of the descriptors. To
cope with this lack of information, we propose a new mid-level representation,
so-called BOH (Bag Of local distribution of descriptors on concentric Hyper-
spheres), which explores the descriptor position inside the largest hypersphere
centred at each codeword for computing the pooling. For that, we propose to
divide this hypersphere into equally probable hyper-regions in which the descrip-
tors inside one hyper-region have similar distances to the codeword.

Let Si and Sj be two hyperspheres centered at codeword cm with radius ri
and rj , respectively, in which ri < rj . We define the hyper-region Ri,j between
the hyperspheres Si and Sj as the hyper-region computed by the difference of
Si and Sj . More precisely, a d-dimensional descriptor belongs to the Ri,j if the
distance to the codeword cm is higher than ri and smaller than or equal to rj .

Two hyper-regions Ri,j and Ri′,j′ are considered equally probables if they
have the same volume, i.e., V (Ri,j) = V (Ri′,j′). Let E be the number of equally
probable hyper-regions related to the codeword cm. Without loss of general-
ity, let SE and S1 be two hyperspheres with radius rE and r1 centered at cm,
V (RE−1,E) = V (R0,1) iff V (SE) = E × V (S1). From this definition, it is easy
to show that re = r1 × n

√
e, ∀ e ∈ [1, E].

Considering these E equally probable hyper-regions, the proposed pooling
strategy is the histogram of distances between the local descriptors and the code-
words taking into account the radius of the largest n-dimensional hypersphere
over the pooling region. Let X = {xj} be an unordered set of d-dimensional
descriptors xj extracted from a video, such that j ∈ [1, N ]. The proposed strat-
egy for pooling is defined by:

hm,e = card

(

xj | αm,j ∈
[

rcm

E
N

√
e

E
, rcm

E
N

√
e + 1

E

])

, e ∈ [0, E − 1] (7)
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in which rcm

E is the radius of largest n-dimensional hypersphere centered at
codeword cm. The final representation z is given by:

z = [hm,e]
T

, (m, e) ∈ {1, ...,M} × {1, ..., E} (8)

where z is a vector of size M × E.
When the number of equally probable hyper-regions is equal to 1, our pooling

strategy is similar to the traditional BoW. As the number of hyper-regions and
codewords increase, the vector z is more sparse but it approximates better the
actual distribution of distances. Thus there is a trade-off between the sparsity
and this size.

In order to exemplify the traditional BoW, the BossaNova and the proposed
method pooling strategies, it is illustrated in Fig. 2 how the regions related to two
codewords are divided. In this example, the coding is done by a hard-assignment
in which the d-dimensional descriptor is associated with just one codeword. In
the traditional BoW, as illustrated in Fig. 2(a), the codewords are represented by
the number of descriptors which are assigned to them. For BossaNova and BOH
each codeword is represented by a histogram of descriptors which are quantized
according to their distance to the codeword. While the quantization used by
BossaNova is based on linear function in terms of the distance-to-codeword, as
shown in Fig. 2(b), the quantization used by BOH is based on the volumes of the
hyper-regions obtained by hyperspheres centered at codewords, as illustrated in
Fig. 2(c).

Fig. 2. Example of pooling strategy for d-dimensional descriptors taking into account
BoW, BossaNova and BOH. For BossaNova the number of hyper-regions is equal to 3,
and for BOH, the number of equally probable hyper-regions related to each codeword
is also equal to 3.
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Fig. 3. Example of hand waving with same subject in different scenarios

5 Experimental Analysis

In this section, we describe the three used datasets, the protocols for classifica-
tion and the experimental setup. Moreover, a quantitative analysis, in terms of
classification rates, comparing our method with the state-of-the-art approaches
is given.

5.1 Datasets and Protocols

In order to validate the proposed method we tested our approach in three well-
known action recognition datasets: (i) KTH [12]; (ii) UCF Sports [10]; and
(iii) UCF 11 [7]. The datasets choices were made due their distinctive character-
istics, such as video duration, intraclass variability and noise scene elements.

The KTH dataset [12] contains six types of human actions: walking, jogging,
running, boxing, hand waving and hand clapping. These actions are performed
by 25 different subjects in four scenarios: outdoors, outdoors with scale varia-
tion, outdoors with different clothes and inside. Some examples are illustrated
in Fig. 3. There are totally 600 video clips with 160 × 120 pixels size and dif-
ferent video durations. We adopt the same experimental setup as in [12,15],
so-called split, where the videos are divided into a training set (eight subjects),
a validation set (eight subjects) and a test set (nine subjects).

The UCF sports dataset [10] contains ten different types of sports actions:
swinging, diving, kicking, weight-lifting, horse-riding, running, skateboarding,
swinging at the high bar, golf swinging and walking. The dataset consists of 150
real videos with a large intra-class variability. Each action class is performed
in different ways, and the frequencies of various actions also differ considerably,
as can be seen in Fig. 4. Contrary to what has been done in many works that
apply their methods on this dataset, we do not extended the dataset with a
flipped version of the videos, trying to prevent the classifier from learning the
background instead of the actions. We adopt a split set dividing the dataset into
103 training and 47 test samples as in [5].

The UCF11 dataset [7] contains 11 action categories: biking/cycling, div-
ing, golf swinging, soccer juggling, trampoline jumping, horse riding, basketball
shooting, volleyball spiking, swinging, tennis swinging, and walking with a dog.
This dataset is challenging due to large variations in camera motion, object
appearance and pose, object scale, viewpoint, cluttered background, and illumi-
nation conditions. Some examples are illustrated in Fig. 5. The dataset contains
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Fig. 4. Example of intra-class variability in UCF Sports dataset. (a) and (b) are both
examples from running class, (c) and (d) from swinging, (e) and (f) from kicking; while
(g) and (h) from walking.

Fig. 5. Example of UCF11 challenges, such as object appearence in (a) and (b), view-
point in (c) and (d), cluttered background in (e) and (f), and illumination conditions
in (g) and (h).

a total of 1646 videos. We adopt the original setup [7] using the leave-one-out
cross-validation for a pre-defined set of 25 folds.

5.2 Experimental Setup

Regarding the feature descriptor, we have chosen to use an approach with a
dense descriptor (dense trajectories [15]) because it is simple and achieved good
results. After the feature extraction step, BoW, BossaNova and BOH are used
to organize the low-level features to represent each video using the mid-level
representation. Here, we used the following parameter values for computing the
BossaNova: λmin = 0.4, λmax = 2, knn = 10 (semi-soft assignment), B = {2, 4}
and M = {512, 2048} (number of visual codewords). For the proposed pooling
strategy BOH, we used the following parameter values: knn = 10 (semi-soft
assignment), E = {2, 4} and M = {512, 2048} (number of visual codewords).

For classification we used non-linear SVM with an RBF kernel which is
a popular classifier that is used throughout different works for human action
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classification [15]. Since this classifier is vastly used in human action classifi-
cation, it is interesting to use it to make fair comparisons between different
approaches.

5.3 Comparison with the State-of-the-art

In order to compare the proposed method to some of the state-of-the-art
approaches we adopted the classification rate (also called recognition rate). Usu-
ally, in literature, there is a bit confusion between the use of classification rate
and accuracy. For the sake of clarification, in this work, the classification rate is
the number of correct video classification by the number of videos. In Table 1, a
comparison, in terms of classification rate, is presented. Except for BossaNova,
the rates of the compared methods were obtained from the original paper. As
one can note, ours give competitive rates for KTH and UCF 11, and much bet-
ter results for UCF Sports. When compared to BossaNova, which uses a similar
pooling strategy, our results are better in UCF Sports and UCF 11.

Table 1. The classification rates for the compared approaches.

Approach Parameters KTH UCF sports UCF 11

Dense trajectories [15] - 94.2% - 84.1%

BoW M = 2048 85.7% 55.3% 53.9%

BossaNova [1] M = 512, B = 2 94.9% 66.0% 78.4%

M = 512, B = 4 96.3% 66.0% 81.0%

M = 2048, B = 2 97.7% 70.2% 78.0%

M = 2048, B = 4 97.7% 70.2% 75.7%

Ours M = 512, E = 2 94.9% 72.3% 75.3%

M = 512, E = 4 94.0% 72.3% 76.0%

M = 2048, E = 2 96.8% 74.5% 79.3%

M = 2048, E = 4 96.3% 76.6% 81.4%

The performances, in terms of classification rates, of the compared
approaches applied to the KTH, UCF Sports and UCF 11 are illustrated in
Fig. 6. As we can see, the rate for BOH increases when the number of codewords
and hyper-regions increase. This behavior does not occurs for BossaNova since
there is no a monotonic increasing neither for number of codewords nor for the
number of hyper-regions. Furthermore, both methods are better than traditional
BoW. In terms of time performance, there is no significant difference between
BOH, BossaNova and BoW, once the main time consuming operation rely on
calculating the distances between feature points and codewords during coding
and are the same for all methods.
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Fig. 6. A comparison between the proposed method and BossaNova concerning the
classification rate according to the number of hyperpheres from 1 to 5. The classification
rate for BoW is also illustrated (when the number of hypersphere is equal to 1).

6 Conclusions and Further Works

In this work, we addressed the task of human action classification using only the
information present in the content of the video. Also, we focused on an interme-
diate stage between feature extraction and classification by using an extended
BoW formalism, so-called BOH to generate a new mid-level video representa-
tion which is obtained directly from densely sampled features extracted around
trajectories.

The idea is to increase the classification rate by careful use of a well dissem-
inate motion descriptor. Here we explored a new strategy for the pooling step
based on a volumetric partition of the hypersphere centered at codewords in
order to maintain the same probability of assignment to a given hyper-region.
The results indicates that this kind of pooling could decrease the quantization
error of the descriptors.

Regarding classification protocols, we experimented the training and test-
ing classification (here called split) for KTH and UCF Sports, and the leave-
one-group-out cross-validation for UCF 11. Experimental results demonstrated
that our strategy either has improved the recognition rates with respect to the
BossaNova, expect for KTH.

For further endeavors, we will study different ways encoding quantization
errors into video descriptors. Another interesting research path is to investigate
the quality of video data used during (and filter it out before) training time for
the classification step and its relationship with the support vectors needed to
produce better accuracy results in human action classification.
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Abstract. In this note, we address the problem of simulating elec-
tromyographic signals arising from muscles involved in facial expres-
sions - markedly those conveying affective information -, by relying solely
on facial landmarks detected on video sequences. We propose a method
that uses the framework of Gaussian Process regression to predict the
facial electromyographic signal from videos where people display non-
posed affective expressions. To such end, experiments have been con-
ducted on the OPEN EmoRec II multimodal corpus.

1 Introduction

The face is the locus of a great deal of emotional expressions and researchers
in different fields crossing with affective science [9] have been keen on facial
electromyographic measures of muscle activity, in particular those related to the
zygomaticus major and the corrugator supercilii (see Fig. 1a). The motivation for
such endeavour is straightforward: the zygomaticus major controls the corners
of the mouth (e.g., by pulling them back and up into a smile), the corrugator
supercilii hauls the brow down and together into a frown [18]. In brief, facial
electromyography is a reliable detector of the affective state, either in the con-
tinuous dimension of valence (positive versus negative affective state) [18], or to
reveal the discrete emotions [16].

Electromyography measures the electrical potentials arising from skeletal
muscles [27]. Facial EMG (fEMG), is based on recording the difference in elec-
trical potential pairs of electrodes that are placed close together on the target
facial muscle (Fig. 1b). Main advantages of fEMG stem from (1) the capability
of intercepting even very weak affective expression and (2) the very good time
resolution that allows to reliably register sudden expression changes. On the
other hand, the need of placing electrodes over the face limits the applicability
of this sensor to laboratory acquisition only (see again Fig. 1b). Cogently, in this
case and more generally, the option of monitoring physiological signals via non-
contact means has promise for a variety of out-of-lab applications well beyond
the affective computing realm [23].
c© Springer International Publishing AG 2017
S. Battiato et al. (Eds.): ICIAP 2017, Part I, LNCS 10484, pp. 197–207, 2017.
https://doi.org/10.1007/978-3-319-68560-1_18
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Fig. 1. (a) Anatomical location of facial muscles involved in this study. (b) Electrode
placing to detect the activity of the zygomaticus major and the corrugator supercilii
muscles. (c) Facial landmarks inferred by the method [8]

Whilst there is a number of works addressing noncontact, physiological mea-
surements of heart rate, e.g. [23,26,30], to the best of our knowledge, this is the
first attempt to estimate fEMG signals from video sequences.

We argue that, apart from the per se appealing issue of avoiding the obtru-
siveness of fEMG, the idea of virtual fEMG derived from observing natural,
non-posed facial expression, can be important for dealing with emotion under-
standing in a broader perspective (see Sect. 4, for a discussion). All things con-
sidered, this endeavour is at this stage affordable, given that in the last decade,
the number of public repositories has grown larger, where behavioral data have
been recorded by multiple modalities [7,29], hence providing adequate training
sets and benchmarking, as will be detailed in Sect. 3.

In Sect. 2 the method we propose for the virtual fEMG generation is
described; in Sect. 3 the experiments and the obtained results are shown and
discussed. In Sect. 4 conclusive remarks on this preliminary study are given.

2 Method

Given a video stream I(t), fEMG signal generation is obtained by relying on per-
ceived facial fiducial points, or landmarks. In a nutshell, landmarks are detected
in a sparse coding framework and signal generation is obtained through Gaussian
Process (GP) regression and prediction. More precisely, use the following random
variables (RVs):

– E: a set of fEMG data over time intervals, i.e. a set of signals e;
– L: a set of landmarks l, over time intervals, each li being a landmark;
– F: a set of feature responses f , over time intervals, each f i being a local feature

response;
– X = [x1, · · · ,xN ] ∈ R

D×N : the matrix of observed training patches.
– W = [w1, · · · ,wL] ∈ R

D×L: a dictionary; each column wi is referred to as a
basis vector or atom;

– Z = [z1, · · · , zN ] ∈ R
L×N the latent sparse code matrix associated to W.
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Then the proposed method can be summarised as the sampling of the virtual
fEMG signal ẽ = [e(1), e(2), · · · , e(T )] from the joint conditional distribution:

ẽ ∼ P (E,L,F,W | X, I). (1)

The joint pdf can be factorised as follows:

P (E,L,F,W |X, I) = P (E |L) × P (L |F) × P (F |W, I) × P (W |X) (2)

The method can be best explained by starting from the last factor on the
r.h.s. of Eq. 2. In the sparse coding framework, such term supports dictionary
inference given a set of training patches:

W∗ = arg max
W

P (W |X) (3)

The problem of inferring dictionary W can be reduced to a maximum likelihood
estimation W∗ = arg max P (W |X) ≈ arg max P (X |W), where the observable
patch vector xi is approximated as a sparse combination of basis vectors wi, i.e.
x = Wz+v, v being a residual noise vector sampled from a zero mean Gaussian
distribution N (0, σ2

I). The dictionary can be derived under the Olshausen
and Field approximation [21], log P (X|W) ≈ ∑N

i=1 maxzi
[log N (xi|Wzi, σ

2
I) +

log P (zi)], and turned in the minimization of the negative log-likelihood (NLL).
This can be done efficiently by using either the K-SVD [3] or the R-SVD [15]
algorithms as shown in [1,2,14].

The third factor represents the feature likelihood under the current observ-
able video I and the inferred dictionary. The goal here is to compute feature
responses

F∗ ∼ P (F | W, I) (4)

at each frame in I. Here, we adopt the Histograms of Sparse Codes (HSC) rep-
resentation to sample the local response f i [8].

The second factor accounts for the detection of landmarks given the observed
F∗. A part-based detection approach is adopted [8], where every facial landmark
can be modeled as a part, and the locations L of parts of the face can be generated
according to m views or poses by some similarity transformation τ , giving rise to
the global model Lk,τ . The generation of L can be accomplished by marginalising
over the set of m models, i.e., P (L|F) =

∑m
k=1

∫

τ
P (L|Lk,τ )P (Lk,τ |F)dτ . The

term P (L|Lk,τ ) accounts for dependence of L from the global configuration Lk,τ .
Assume that: (i) the locations of the parts {li}l

i=1 are conditionally inde-
pendent of one another and the same holds for the detector responses f i;
(ii) the relation between the transformed model landmark and the true landmark
is translationally invariant, i.e., P (lik,τ |lk,τ ) only depends on Δlik,τ = lik,τ − li.
Then, the following MAP solution can be derived,

L∗ = arg max
L

m
∑

k=1

∫

τ

l
∏

i=1

P (Δlik,τ )P (li|f i)dτ, (5)
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where the prior P (Δlik,τ ) accounts for the shape or global component of the
model, and P (li|f i) for the appearance or local component. The latter relies on
patches representing HSC responses to face landmarks.

Eventually, the first factor on the r.h.s. of Eq. 2, is the likelihood supporting
the generation of the fEMG signal given the extracted landmarks. The generative
model behind the conditional distribution P (E |L), under Gaussian assumption,
assumes that a realisation of a target electromyographic signal e is generated
by a latent function g = {g(dn)} of a suitable measurement d of the landmarks
corrupted by additive Gaussian noise. Thus, at time (frame index) t:

e(t) = g(d(lp(t))) + ν(t), ν ∼ N (0, σ2
e) (6)

where, in our case, d(lp) is a vector of distances over the pool lp, a sub-
set of the extracted landmarks l, which is suitable to capture muscle activ-
ity. Note that the mapping function g(·) needs not to be linear. In other
terms, the conditional distribution P (E |L) is defined as the marginal likeli-
hood P (E |L) =

∫

P (E |g,L)P (g |L)dg, where the marginalisation over the
function values g, can be performed by using a GP prior distribution over func-
tions P (g |L) = N (μg(L), k(L,L)), k(L,L) being the kernel function [24], i.e. in
our case

g(d(lp)) ∼ GP(μ(d(lp)), k(d(lp),d′(lp))), (7)

and where the likelihood of the observed targets is P (E |g,L) = N (g, σ2
eI), from

which Eq. 6 is obtained. Note that, due to analytical tractability of the Gaussian
distribution, all the above computations are determined in closed form so that,
prior to the prediction of the virtual fEMG signal ẽ, parameter learning can be
efficiently performed on the given dataset {L,E} (see Rasmussen and Williams
[24] for details).

3 Experimental Work

(A) Experimental Setup. The experiments have been conducted on the mul-
timodal corpus OPEN EmoRec II [25]. The dataset was designed to induce
emotional responses in users involved in naturalistic-like human-computer inter-
action (HCI) according to two HCI-experimental settings. In the former, pictures
taken from the IAPS set [17] were used to induce emotions. Stimulus sequences
consisted of 10 pictures with similar ratings according to the 5 possible affective
states: high valence and high arousal (HVHA), high valence and low arousal
(HVLA), low valence and low arousal (LVLA), low valence and high arousal
(LVHA) and neutral. In the second part of the experiment, the emotions were
induced during a naturalistic-like HCI in a standardized environment. In both
the experiments several data were recorded: video, audio, trigger information and
physiological data, namely respiration, fEMG from corrugator supercilii activity,
fEMG zygomaticus major activity, Blood Volume Pulse and Skin Conductance.

In this paper we refer to the data, videos and fEMG signals, acquired in the
first experiment, that is the recording of 30 subjects, each one stimulated by 5
image sequences.
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(B) Landmark Extraction. Given a video sequence of a facial expression, we
account for Eqs. 3, 4 and 5 by applying the method described in [8] to infer the
locations of facial landmarks (Fig. 1c). Such method extends in a sparse coding
framework Zhu and Ramanan’s technique [31], which jointly performs face and
landmark detection. Once landmarks L have been detected, an adequate pool
lp of landmarks should be defined in order to provide related distance measures
d(lp) as a “proxy” to muscle activity. Figures 2 and 3 below show the landmarks
involved in measuring corrugator supercilii and zygomaticus major activities,
respectively.

Fig. 2. Landmarks and distances accounting for the corrugator supercilii activity
(Color figure online)

Fig. 3. Landmarks and distances accounting for the zygomaticus major activity (Color
figure online)

The fEMG signal captures very local muscle movements and its simulation
should derive from a small subset of facial landmarks with superposition to the
muscle of interest. The most natural choice would be to consider the landmarks
closest to the muscle as shown in Fig. 2, (blue dashed line, left panel) for the
corrugator supercilii, and in Fig. 3, (blue dashed line, left panel) for the zygo-
maticus major. However, landmark displacements are noisy, due to the detection
method and possible occlusions caused by the sensors. We thus investigate sev-
eral pools of displacements aiming at pinpointing the most suitable ones for
fEMG regression.

In the case of the corrugator supercilii, we thus consider the symmetric dis-
tance between the inner eye corners and the inner eyebrow landmarks (Fig. 2, left
panel), the two distances coupled, and more global measures obtained consider-
ing the distances between the inner eye corners and the corresponding eyebrow
landmarks, both separately and all together (Fig. 2, right panel). Similarly for the
zygomaticus major, we take into account the symmetric distance as in Fig. 3, (red
line, left panel), the two punctual distances coupled, and the distances between
the chin and the two halves extern lip contour landmarks, both singularly and
coupled (Fig. 3, right panel).
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Fig. 4. fEMG signal processing pipeline.

(C) fEMG Preprocessing. The raw data set of fEMG measurements derived
from corrugator supercilii and zygomaticus major activities - which we denote
Ec and Ez, respectively - is a collection of 1-D signals captured at 512 Hz or
more (Fig. 4a). The low frequencies are strongly influenced by artifacts such
as motion potentials, eye movements, eye blinks, swallowing, and respiration,
thus requiring a preliminary high-pass filtering to remove the strongest artifacts
that would otherwise dominate the real facial EMG potentials. In the literature
different cutoff frequencies are adopted for this purpose, ranging from 5 to 20 Hz
[6,19,32], We use a 20 Hz cutoff frequency, guaranteeing artifact elimination. In
addition, filtering has to be applied to remove the 50 Hz power line interference.
To this aim, notch filtering is adopted (Fig. 4b). Further, when fEMG activation
is addressed, the rectification and envelope are advised [5,20]. Eventually, to
train the Gaussian process, the signals are down-sampled to 25 Hz so that the
fEMG and the video frequencies are in correspondence (Fig. 4c).

(D) GP Model Learning and fEMG Prediction. Given a dataset of inputs and
targets, {L,E} = {ln, en | n = 1, · · · , N}, we are interested in evaluating the
mapping of S test sequences of landmarks Lnew = {lnew,s | s = 1, · · · , S} into
fEMG sequences Enew = {enew,s | s = 1, · · · , S}, where ẽ = enew,s is the
desired virtual fEMG signal. Notice that here and in what follows, we thoroughly
write lp,new in place of actual measurements d(lp,new) to simplify notation. For-
mally, we need to evaluate the predictive distribution P (Enew|L,E,Lnew) =
∫

P (Enew | gnew)P (gnew | L,E,Lnew)dgnew, where P (Enew | gnew) is the
likelihood given by Eq. 6. The posterior over functions P (gnew | L,E,Lnew)
is a Gaussian distribution N (μnew, knew), whose parameters can be written
in closed form [24], namely, μnew = k(Lnew,L)

[

k(L,L) + σ2
eI

]−1 and knew =
k(Lnew,Lnew) − k(Lnew,L)

[

k(L,L) + σ2
eI

]−1
k(L,Lnew). Kernel functions and

related hyperparameters are obtained from the training stage.
As to the latter, we train different models, varying the referred landmark

pool, p ∈ {1, ..., 6}, associated with the related muscle, and exploring the GP
behaviour by adopting the well-known Squared Exponential Kernel (kSE), Ratio-
nal Quadratic Kernel (kRQ), and the Matern 3/2 kernel (kM32) [24]. For each
model, training and test sets are derived adopting the k-fold cross validation
method, partitioning data into 10 subsets.
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(E) Results. The quality of the virtual fEMG, ẽ, with respect to the original
fEMG filtered signal, e, is evaluated in terms of Mean Square Error (MSE), and
by the Concordance Correlation Coefficient measures (CCC):

MSE(e, ẽ) =
1
T

T
∑

t=1

(e(t) − ẽ(t))2 CCC(e, ẽ) =
2cov(e, ẽ)

σ2
e + σ2

ẽ + (μe − μẽ)2
,

being μe and μẽ the signal means, σ2
e and σ2

ẽ the variances, and cov(e, ẽ) the
covariance.

In Table 1 we report the performances obtained in simulating the corrugator
supercilii fEMG, adopting the different learnt models. Those concerning the
virtual generation of the zygomaticus major fEMG are shown in Table 2.

Analysing the behaviour of the models, we observe that the MSE and the
CCC performances are always coherent. We can conclude that both in the sim-
ulations of the corrugator supercilii fEMG and of the zygomaticus major, best
performances are achieved through the largest pool of landmark distances. This
is likely to depend on the noise that characterizes landmarks localization, cer-
tainly attenuated by considering a pool of landmarks rather than punctual ones.

Table 1. Performances achieved in the virtual generation of the corrugator supercilii
fEMG, referring to different pool of landmarks (p ∈ {1...6}), and different kernels
(kSE , kRQ, kM32). Performances are expressed as MSE and CCC.

Pool MSE CCC

SE RQ M32 SE RQ M32

1 42.0075 31.8062 36.2262 0.9855 0.9888 0.9873

2 4.9623 4.9285 4.9343 0.9983 0.9983 0.9983

3 3.8280 3.7601 3.7185 0.9987 0.9987 0.9987

4 2.0082 1.7696 1.7273 0.9993 0.9994 0.9994

5 1.9681 1.7991 1.7070 0.9993 0.9994 0.9994

6 1.0478 0.7167 0.6522 0.9996 0.9997 0.9998

Table 2. Performances achieved in the virtual generation of the zygomaticus major
fEMG. Results are organized as in Table 1

Pool MSE CCC

SE RQ M32 SE RQ M32

1 11.5408 11.5193 11.5001 0.9969 0.9969 0.9969

2 13.3317 13.2269 13.1922 0.9965 0.9965 0.9965

3 8.1977 7.8251 7.7871 0.9978 0.9979 0.9979

4 2.2541 1.5721 1.4217 0.9994 0.9996 0.9996

5 2.5401 1.2763 1.3191 0.9993 0.9997 0.9997

6 1.0401 0.6291 0.5617 0.9997 0.9998 0.9999
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In particular, we observe that the punctual distance d = 1 in the corrugator
supercilii fEMG gives the worst performances, this because, in the considered
dataset, the fEMG sensor often partial occludes the eyebrow. Also, it is worth
noticing that system behaviour is robust to the use of different kernels.

Figures 5 and 6 illustrate typical fEMG signal reconstructions for both the
corrugator and the zygomaticus muscles.

Fig. 5. Detail of fEMG reconstruction of the corrugator supercilii signal, using the
Squared Exponential kernel and considering the 5-th landmark pool. The shaded area
represents the pointwise mean plus and minus two times the standard deviation for
each input value (corresponding to the 95% confidence region)

Fig. 6. Detail of fEMG reconstruction of the zygomaticus signal, using the Matern 3/2
kernel and considering the 6-th landmark pool
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4 Discussion and Conclusions

We have presented a method for detecting the electromyographic signal aris-
ing from muscles involved in affective, non-posed, facial expressions, which only
relies on the facial landmarks detected in videos. Preliminary experiments on
the OPEN EmoRec II multimodal corpus [25] have given evidence of promising
results.

Clearly, one should be aware that there are limitations in the detection capa-
bility of the method. It is known that real fEMG can intercept even very weak
affective expressions, even below the visible display of the expression itself [18];
however, this limit is shared by all virtual methods that attempt at simulating
in vivo measurements from visual input.

Apart from the appealing issue of avoiding the obtrusiveness of fEMG mea-
surement, what is to be gained by such attempt in view of the affective com-
puting problem? All things considered, as detailed in Sect. 2, the landmarks we
rely upon for regressing the fEMG signal are nothing but a subset of the facial
landmarks we collect, the latter, in principle, providing full information - at least
that available from the video sequence - to further proceed with facial expres-
sion analysis for affective computing purposes. Under the circumstances, it is
worth making clear the rationale behind this study. Affective computing aims
at dealing with machines that might have the ability to (1) recognize emotions,
(2) express emotions, (3) “have emotions”, the latter being the “hardest stuff”
[22]. So far, most current research focuses on (1) and (2), with image process-
ing and pattern recognition-based affect detection playing a prominent role [7].
The research work fostering this study pursues a different approach, centred on
simulation-based affect analysis [28]. According to embodied simulation theories,
understanding emotions of others is supported by running the same emotional
apparatus - possibly in reverse - that is already used to generate or experience
the emotion, eventually causing a “reactivation” of the corresponding mental
state [11–13]. Indeed, an emotion is a neural reaction to a certain stimulus,
realised by a complex ensemble of neural activations in the brain. The latter
often are preparations for (muscular, visceral) actions (facial expressions, heart
rate increase, etc.), as a consequence, the body will be modified into an “observ-
able” [10]. It is in such a broader perspective that it is particularly relevant to
have available a variety of physiological signals, real or virtual, for building the
latent continuous space of emotions [4]. fEMG, together with others that can
be obtained by less obtrusive means (heart rate, skin conductance, respiratory
rhythm, gaze scan path), is one such signal.

Acknowledgments. This research was carried out as part of the project “Interpret-
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shape analysis and bayesian networks”, supported by the Italian Government, managed
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Abstract. 3D action recognition was shown to benefit from a covariance
representation of the input data (3D positions of the joints). A kernel
machine fed with such feature is an effective paradigm for 3D action
recognition, yielding state-of-the-art results. Yet, the whole framework
is affected by the well-known scalability issue. In fact, in general, the
kernel function has to be evaluated for all pairs of instances inducing a
Gram matrix whose complexity is quadratic in the number of samples.
In this work we reduce such complexity to be linear by proposing a
novel and explicit feature map to approximate the kernel function. This
allows to train a linear classifier with an explicit feature encoding, which
implicitly implements a Log-Euclidean machine in a scalable fashion.
Not only we prove that the proposed approximation is unbiased, but
also we work out an explicit strong bound for its variance, attesting
a theoretical superiority of our approach with respect to existing ones.
Experimentally, we verify that our representation provides a compact
encoding and outperforms other approximation schemes on a number of
publicly available benchmark datasets for 3D action recognition.

Keywords: Action recognition · 3D · Kernel · Feature map

1 Introduction

Action recognition is a key research domain in video/image processing and
computer vision, being nowadays ubiquitous in human-robot interaction,
autonomous driving vehicles, elderly care and video-surveillance to name a few
[21]. Yet, challenging difficulties arise due to visual ambiguities (illumination
variations, texture of clothing, general background noise, view heterogeneity,
occlusions). As an effective countermeasure, joint-based skeletal representations
(extracted from depth images) are a viable solution.

Combined with a skeletal representation, the symmetric and positive defi-
nite (SPD) covariance operator scores a sound performance in 3D action recog-
nition [5,9,22]. Indeed, while properly modeling the skeletal dynamics with a
c© Springer International Publishing AG 2017
S. Battiato et al. (Eds.): ICIAP 2017, Part I, LNCS 10484, pp. 211–222, 2017.
https://doi.org/10.1007/978-3-319-68560-1_19
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second order statistic, the covariance operator is also naturally able to handle
different temporal duration of action instances. This avoids slow pre-processing
stages such as time warping or interpolation [20]. In addition, the superiority
of such representation can be attested by achieving state-of-the-art performance
by means of a relative simple classification pipeline [5,22] where, basically1, a
non-linear Support Vector Machine (SVM) is trained using the Log-Euclidean
kernel

K�E(X,Y) = exp
(

− 1
2σ2

‖ logX − logY‖2F
)

(1)

to compare covariance operators X, Y. In (1), for any SPD matrix X, we define

logX = Udiag(log λ1, . . . , log λd)U�, (2)

being U the matrix of eigenvectors which diagonalizes X in terms of the eigen-
values λ1 ≥ · · · ≥ λd > 0. Very intuitively, for any fixed bandwidth σ > 0,
K�E(X,Y) is actually computing a radial basis Gaussian function by compar-
ing the covariance operators X and Y by means of the Frobenius norm ‖ · ‖F

(after X,Y have been log-projected). Computationally, the latter stage is not
problematic (see Sect. 3) and can be performed for each covariance operator
before computing the kernel. In addition to its formal properties in Riemannian
geometry, this makes (1) widely used in practice [5,9,22].

However, the modern big data regime mines the applicability of such a kernel
function. Indeed, since (1) has to be computed for every pair of instances in
the dataset, the so produced Gram matrix has prohibitive size. So its storage
becomes time- and memory-expensive and the related computations (required
to train the model) are simply unfeasible.

The latter inconvenient can be solved as follows. According to the well estab-
lished kernel theory [2], the Kernel (1) induces an infinite-dimension feature
map ϕ, meaning that K�E(X,Y) = 〈ϕ(X), ϕ(Y)〉. However, if we are able to
obtain an explicit feature map Φ such that K�E(X,Y) ≈ 〈Φ(X), Φ(Y)〉, we can
directly compute a finite-dimensional feature representation Φ(X) for each action
instance separately. Then, with a compact Φ, we can train a linear SVM instead
of its kernelized version. This is totally feasible and quite efficient even in the
big data regime [7]. Therefore, the whole pipeline will actually provide a scalable
implementation of a Log-Euclidean SVM, whose cost is reduced from quadratic
to linear.

In our work we specifically tackle the aforementioned issue through the fol-
lowing main contributions.

1. We propose a novel compact and explicit feature map to approximate the
Log-Euclidean kernel within a probabilistic framework.

2. We provide a rigorous mathematical formulation, proving that the proposed
approximation has null bias and bounded variance.

1 For the sake of precision, let us notice that [22] take advantage of multiple kernel
learning in combining several low-level representations and [5] replaces the classical
covariance operator with a kernelization.
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3. We compare the proposed feature map approximation against alternative
approximation schemes, showing the formal superiority of our framework.

4. We experimentally evaluate our method against the very same approximation
schemes over six 3D action recognition datasets, confirming with practice our
theoretical findings.

The rest of the paper is outlined as follows. In Sect. 2 we review the most rele-
vant related literature. Section 3 proposes the novel approximation and discusses
its foundation. We compare it with alternative paradigms in Sect. 4. Section 5
draws conclusions and the Appendix A reports all proofs of our theoretical
results.

2 Related Work

In this Section, we summarize the most relevant works in both covariance-based
3D action recognition and kernels’ approximations.

Originally envisaged for image classification and detection tasks, the covari-
ance operator has experienced a growing interest for action recognition, experi-
encing many different research trends: [9] extends it to the infinite dimensional
case, while [10] hierarchically combines it in a temporal pyramid; [12,22] inves-
tigate the conceptual analogy with trial-specific kernel matrices and [5] further
proposes a new kernelization as to model arbitrary, non-linear relationships con-
veyed by the raw data. However, those kernel methods usually do not scale up
easily to big datasets due to demanding storage and computational costs. As a
solution, the exact kernel representation can be replaced by an approximated,
more efficient version. In the literature, this is done according to the following
mainstream approaches.

(i) The kernel Gram matrix is replaced with a surrogate low-rank version, in
order to alleviate both memory and computational costs. Within these meth-
ods, [1] applied Cholesky decomposition and [24] exploited Nyström approx-
imation.

(ii) Instead of the exact kernel function k, an explicit feature map Φ is computed,
so that the induced linear kernel 〈Φ(x), Φ(y)〉 approximates k(x,y). Our
work belong to this class of methods.

In this context, Rahimi and Recht [17] exploited the formalism of the Fourier
Transform to approximate shift invariant kernels k(x,y) = k(x − y) through
an expansion of trigonometric functions. Leveraging on a similar idea, Le et al.
[13] sped up the computation by exploiting the Walsh-Hadamard transform,
downgrading the running cost of [17] from linear to log-linear with respect to
the data dimension. Recently, Kar and Karnick [11] proposed an approximated
feature maps for dot product kernels k(x,y) = k(〈x,y〉) by directly exploiting
the MacLaurin expansion of the kernel function.

Instead of considering a generic class of kernels, our work specifically focuses
on the log-Euclidean one, approximating it through a novel unbiased estima-
tor which ensures a explicit bound for variance (as only provided by [13]) and
resulting in a superior classification performance with respect to [11,13,17].
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3 The Proposed Approximated Feature Map

In this Section, we present the main theoretical contribution of this work, namely
(i) a random, explicit feature map Φ such that 〈Φ(X), Φ(Y)〉 ≈ K�E(X,Y),
(ii) the proof of its unbiasedness and (iii) a strong theoretical bound on its
variance.

Construction of the Approximated Feature Map. In order to construct
a ν dimensional feature map X �→ Φ(X) = [Φ1(X), . . . , Φν(X)] ∈ R

ν , for any
d×d SPD matrix X, fix a probability distribution ρ supported over N. Precisely,
each component Φ1, . . . , Φν of our ν-dimensional feature map Φ is independently
computed according to the following algorithm.

foreach j = 1, . . . , ν do
1 Sample n according to ρ
2 Sample the dn × dn matrix W of independent Gaussian distributed weights

with zero mean and σ2/
√

n variance
3 Compute log(X)⊗n = logX ⊗ · · · ⊗ logX, n times.
4 Assign

Φj(X) =
1

σ2n

√
exp(−σ−2)

νρ(n)n!
tr(W� log(X)⊗n). (3)

end

The genesis of (3) can be explained by inspecting the feature map ϕ associ-
ated to the kernel K(x, y) = exp

(− 1
2σ2 |x − y|2), where x, y ∈ R for simplicity.

It results ϕ(x) ∝
[
1,

√
1

1!σ2 x,
√

1
2!σ4 x2,

√
1

3!σ6 x3, . . .
]
. Intuitively, we can say

that (3) approximates the infinite dimensional ϕ(x) by randomly selecting one
of its components: this is the role played by n ∼ ρ. In addition, we introduce
the log mapping and replace the exponentiation with a Kronecker product. As a
consequence, the random weights W ensure that Φ(X) achieves a sound approx-
imation of (1), in terms of unbiasedness and rapidly decreasing variance.
In the rest of the Section we discuss the theoretical foundation of our analysis,
where all proofs have been moved to AppendixA for convenience.

Unbiased Estimation. In order for a statistical estimator to be reliable, we
need it to be at least unbiased, i.e., its expected value must be equal to the exact
function it is approximating. The unbiasedness of the feature map Φ of Eq. (3)
for the Log-Euclidean kernel (1) is proved by the following result.

Theorem 1. Let ρ be a generic probability distribution over N and consider X
and Y, two generic SPD matrices such that ‖ logX‖F = ‖ logY‖F = 1. Then,
〈Φ(X), Φ(Y)〉 is an unbiased estimator of (1). That is

E[〈Φ(X), Φ(Y)〉] = K�E(X,Y), (4)

where the expectation is computed over n and W which define Φj(X) as in (3).
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Once averaging upon all possible realizations of n sampled from ρ and the
Gaussian weights W, Theorem 1 guarantees that the linear kernel 〈Φ(X), Φ(Y)〉
induced by Φ is equal to K�E(X,Y). This formalizes the unbiasedness of our
approximation.

On the Assumption ‖ logX‖F = ‖ logY‖F = 1. Under a practical point of view,
this assumption may seem unfavorable, but this is not the case. The reason is
provided by Eq. (2), which is very convenient to compute the logarithm of a
SPD matrix. Since in (3), Φ(X) is explicitly dependent on logX, we can simply
use (2) and then divide each entry of the obtained matrix by ‖ logX‖F . This is
a non-restrictive strategy to satisfy our assumption and actually analogous to
require input vectors to have unitary norm, which is very common in machine
learning [2].

Low-Variance. One can note that, in Theorem1, even by choosing ν = 1 (a
scalar feature map), Φ(X) = [Φ1(X)] ∈ R is unbiased for (1). However, since Φ
is an approximated finite version of the exact infinite feature map associated to
(1), one would expect the quality of the approximation to be very bad in the
scalar case, and to improve as ν grows larger. This is indeed true, as proved by
the following statement.

Theorem 2. The variance of 〈Φ(X), Φ(Y)〉 as estimator of (1) can be explicitly
bounded. Precisely,

Vn,W(KΦ(X,Y)) ≤ Cρ

ν3
exp

(
3 − 2σ2

σ4

)
, (5)

where ‖ logX‖F = ‖ logY‖F = 1 and the variance is computed over all possible
realizations of n ∼ ρ and W, the latter being element-wise sampled from a
N (0, σ2/

√
n) distribution. Also, Cρ

def=
∑∞

n=0
1

ρ(n)n! , the series being convergent.

Let us discuss the bound on the variance provided by Theorem2. Since the
bandwidth σ of the kernel function (1) we want to approximate is fixed, the term
exp

(
3−2σ2

σ4

)
can be left out from our analysis. The bound in (5) is linear in Cρ and

inversely cubic in ν. When ν grows, the increased dimensionality of our feature
map Φ makes the variance rapidly vanishing, ensuring that the approximated
kernel KΦ(X,Y) = 〈Φ(X), Φ(Y)〉 converges to the target one, that is K�E . Such
trend may be damaged by big values of Cρ. Since the latter depends on the
distribution ρ, let us fix it to be the geometric distribution G(θ) with parameter
0 ≤ θ < 1. This yields

Cρ ∝
∞∑

n=0

1
(1 − θ)n · n!

= exp
(

1
1 − θ

)
. (6)

There is a trade-off between a low variance (i.e., Cρ small) and a reduced
computational cost for Φ (i.e., n small). Indeed, choosing θ ≈ 1 makes Cρ big in
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(6). In this case, the integer n sampled from ρ = G(θ) is small with great prob-
ability: this leads to a reduced number of Kronecker products to be computed
in log(X)⊗n. Conversely, when θ ≈ 0, despite n and the related computational
cost of log(X)⊗n are likely to grow, Cρ is small, ensuring a low variance for the
estimator.

As a final theoretical result, Theorems 1 and 2 immediately yield that

P[|KΦ(X,Y)−K�E(X,Y)|≥ ε]≤ Cρ

ν3ε2
exp

(
3−2σ2

σ4

)
(7)

for every pairs of unitary Frobenius normed SPD matrices X,Y and ε > 0, as a
straightforward implication of the Chebyshev inequality. This ensures that KΦ

differs in module from K�E by more than ε with a (low) probability P, which is
inversely cubic and quadratic in ν and ε, respectively.

Final Remarks. To sum up, we have presented a constructive algorithm to com-
pute a ν-dimensional feature map Φ whose induced linear kernel is an unbiased
estimator of the log-Euclidean one. Additionally, we ensure an explicit bound on
the variance which rapidly vanishes as ν grows (inversely cubic decrease). This
implies that 〈Φ(X), Φ(Y)〉 and K�E(X,Y) are equal with very high probability,
even at low ν values. This implements a Log-Euclidean kernel in a scalable man-
ner, downgrading the quadratic cost of computing K�E(X,Y) for every X,Y
into the linear cost of evaluating the feature map Φ(X) as in (3) for every X.
Practically, this achieve a linear implementation of the log-Euclidean SVM.

4 Results

In this Section, we compare our proposed approximated feature map versus the
alternative ones by Rahimi and Recht [17], Kar and Karnick [11] and Le et al.
[13] (see Sect. 2).

Theoretical Comparison. Let us notice that all approaches [11,13,17] are
applicable also to the log-Euclidean kernel (1). Indeed, [13,17] includes our case
of study since K�E(X,Y) = k(logX − logY) is logarithmic shift invariant. At
the same time, thanks to the assumption ‖ logX‖F = ‖ logY‖F = 1 as in
Theorem 1, we obtain K�E(X,Y) = k(〈logX, logY〉) (see (13) in AppendixA),
thus satisfying the hypothesis of Kar and Karnick [11].

As we proved in Theorem 1, all works [11,13,17] can also guarantee an unbi-
ased estimation for the exact kernel function.

Actually, what makes our approach superior is the explicit bound on the
variance (see Table 1). Indeed, [11,17] are totally lacking in this respect. More-
over, despite an analogous bound is provided in [13, Theorem 4], it only ensures
a O(1/ν) decrease rate for the variance with respect to the feature dimension-
ality ν. Differently, we can guarantee a O(1/ν3) trend. This implies that, we
achieve a better approximation of the kernel with a lower dimensional feature
representation, which ease the training of the linear SVM [7].
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Table 1. Comparison of explicit bounds on variance between the proposed approxi-
mation and [11,13,17]: the quicker the decrease, the better the bound. Here, ν ≥ 1
denotes the dimensionality of the approximated feature vector.

Proposed Rahimi and Recht [17] Kar and Karninck [11] Le et al. [13]

O(1/ν3) missing missing O(1/ν)

Experimental Comparison. We reported here the experimental comparison
on 3D action recognition between our proposed approximation and the para-
digms of [11,13,17].

Datasets. For the experiments, we considered UTKinect [23], Florence3D [19],
MSR-Action-Pairs (MSR-pairs) [16], MSR-Action3D [14], [3], HDM-05 [15] and
MSRC-Kinect12 [8] datasets.

For each, we follow the usual training and testing splits proposed in the lit-
erature. For Florence3D and UTKinect, we use the protocols of [20]. For MSR-
Action3D, we adopt the splits originally proposed by [14]. On MSRC-Kinect12,
once highly corrupted action instances are removed as in [10], training is per-
formed on odd-index subject, while testing on the even-index ones. On HDM-05,
the training exploited all instances of “bd” and “mm” subjects, being “bk”, “dg”
and “tr” left out for testing [22], using the 65 action classes protocol of [6].

Data Preprocessing. As a common pre-processing step, we normalize the data
by computing the relative displacements of all joints x − y − z coordinates and
the ones of the hip (central) joint, for each timestamps.

Results. Figure 1 reports the quantitative performance while varying ν in the
range 10, 20, 50, 100, 200, 500, 1000, 2000, 5000. When comparing with [13],
since the data input size must be a multiple of a power of 2, we zero-padded our

Fig. 1. Experimental comparison of our approximation (red curves) against the
schemes ofr Rahimi and Recht [17] (pink curves), Kar and Karnick [11] (green curves)
and Le et al. [13] (blue curves). Best viewed in colors.
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vectorized representation to match 4096 and (whenever possible) 2048 and 1024
input dimensionality. These cases are then compared with the results related to
ν = 5000, 2000, 1000 for RGW and [11,17], respectively. Since all approaches
have a random component, we performed ten repetitions for each method and
dimensionality setup, averaging the scored classification performances obtained
through a linear SVM with C = 10. We employ the publicly available codes
for [11,13,17]. Finally, we also report the classification performance with the
exact method obtained by feeding an SVM with the log-Euclidean kernel whose
bandwidth σ is chosen via cross validation.

Discussion. For large ν values, all methods are able to reproduce the perfor-
mance of the log-Euclidean kernel (black dotted line). Still, in almost all the
cases, our approximation is able to outperform the competitors: for instance, we
gapped Rahimi and Recht on both MSR-Pairs and MSR-Action3D, while Kar
and Karnick scored a much lower performance on HDM-05 and Florence3D. If
comparing to Le et al., the performance is actually closer, but this happens for
all the methods which are able to cope the performance of the Log-Euclidean
kernel with ν ≥ 2000, 5000. Precisely, the true superiority of our approach is evi-
dent in the case of a small ν value (ν = 10, 20, 50). Indeed, our approximation
always provides a much rapid growing accuracy (MSR-Action3D, Florence3D
and UTKinect), with only a few cases where the gap is thinner (Kar and Karnick
[11] on MSR-pairs and Rahimi and Recht [17] on MSRC-Kinect 12). Therefore,
our approach ensures a more descriptive and compact representation, providing
a superior classification performance.

5 Conclusions

In this work we propose a novel scalable implementation of a Log-Euclidean SVM
to perform proficient classification of SPD (covariance) matrices. We achieve a
linear complexity by providing an explicit random feature map whose induced
linear kernel is an unbiased estimator of the exact kernel function.

Our approach proved to be more effective than alternative approximations
[11,13,17], both theoretically and experimentally. Theoretically, we achieve an
explicit bound on the variance on the estimator (such result is totally absent in
[11,17]), which is decreasing with inversely cubic pace versus the inverse linear
of [13]. Experimentally, through a broad evaluation, we assess the superiority of
our representation which is able to provide a superior classification performance
at a lower dimensionality.

A Proofs of All Theoretical Results

In this Appendix we report the formal proofs for both the unbiased approxima-
tion (Theorem 1) and the related rapidly decreasing variance (Theorem2).
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Proof of Theorem 1. Use the definition of (3) and the linearity of the expectation.
We get that En,W [〈Φ(X), Φ(Y)〉] equals to

En

[
1

σ4n

exp(−σ−2)
ρ(n)n!

EW
[
tr

(
W� log(X)⊗n

)
tr

(
W� log(Y)⊗n

)]]
, (8)

by simply noticing that the dependence with respect to W involves the terms
inside the trace operators only. Let us focus on the term tr

(
W� log(X)⊗n

)
. We

can expand

tr
(
W� log(X)⊗n

)
=

d∑
i1,...,i2n=1

wi1,...,i2n log(X)i1,i2 · · · log(X)i2n−1,i2n (9)

by using the definition of log(X)⊗n and the properties of the trace operator.
In Eq. (9), we replace the random coefficient wi1,...,i2n with u

(1)
i1,i2

, . . . , u
(n)
i2n−1,i2n

independent and identically distributed (i.i.d.) according to a N (0, σ2) distrib-
ution. We can notice that (9) can be rewritten as

tr
(
W� log(X)⊗n

)
=

n∏
α=1

d∑
i,j=1

u
(α)
i,j log(X)ij . (10)

Making use of (10) in (8), we can rewrite En,W [KΦ(X,Y)] as

En

⎡
⎣ 1

σ4n

exp(−σ−2)

ρ(n)n!
EW

⎡
⎣( d∑

i,j=1

u
(1)
i,j log(X)ij

)⎛⎝ d∑
h,k=1

u
(1)
h,k log(Y)hk

⎞
⎠
⎤
⎦

n⎤
⎦ (11)

by also considering the independence of u
(α)
i,j are independent. By furthermore

using the fact that EW

[
u
(1)
i,j u

(1)
h,k

]
= 0 if i �= h and j �= k and the formula for the

variance of a Gaussian distribution, we get

En,W [KΦ(X,Y)] = En

[
1

σ4n

exp(−σ−2)
ρ(n)n!

σ2n (〈log(X), log(Y)〉F )n

]
, (12)

by introducing the Frobenius inner product 〈A,B〉F =
∑d

i,j=1 AijBij between
matrices A and B. By expanding the expectation over ρ, (12) becomes

En,W [KΦ(X,Y)] =
∞∑

n=0

ρ(n)
1

σ2n

exp(−σ−2)
ρ(n)n!

(〈log(X), log(Y)〉F )n

= exp
(

− 1
σ2

) ∞∑
n=0

( 〈log(X), log(Y)〉F

σ2

)n 1
n!

. (13)

The thesis easily comes from (13) by using the Taylor expansion for the expo-
nential function and the assumption ‖ log(X)‖F = ‖ log(Y)‖F = 1. ��
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Proof of Theorem 2. Due to the independence of the components in Φ, by defin-
ition of inner product we get Vn,W [〈Φ(X), Φ(Y)〉] = νVn,W [Φ1(X)Φ1(Y)]. But
then Vn,W [〈Φ(X), Φ(Y)〉] ≤ νEn,W

[
Φ1(X)2Φ1(Y)2

]
by definition of variance.

Taking advantage of (3), yields to the equality between Vn,W [KΦ(X,Y)] and

1

ν3
En,U

⎡
⎣ 1

σ8n

exp(−2σ−2)

(ρ(n)n!)2

n∏
α=1

(
d∑

i,j=1

u
(α)
i,j log(X)ij

)2⎛⎝ d∑
h,k=1

u
(α)
h,k log(Y)hk

⎞
⎠
2⎤
⎦ , (14)

where u
(1)
i1,i2

, . . . , u
(n)
i2n−1,i2n

are i.i.d. from N (0, σ2) distribution used to re-

parametrize the original weights W. Exploit the independence of u
(α)
ij to rewrite

(14) as

1

ν3
En

⎡
⎣ 1

σ8n

exp(−2σ−2)

(ρ(n)n!)2
EU

⎡
⎣
(

d∑
i,j=1

u
(1)
i,j log(X)ij

)2⎛⎝ d∑
h,k=1

u
(1)
h,k log(Y)hk

⎞
⎠
2⎤
⎦

n⎤
⎦ . (15)

By exploiting the zero correlation of the weights in U and the formula
E[(N (0, σ2))4] = 3σ4 [4]. Thus,

Vn,W [KΦ(X,Y)] ≤ 1

ν3
En

[
1

σ8n

exp(−2σ−2)

(ρ(n)n!)2
3nσ4n

(
d∑

i,j=1

log(X)2ij log(Y)2ij

)n]
.

(16)

Since
∑d

i,j=1 log(X)2ij log(Y)2ij ≤
(∑d

i,j=1 log(X)2ij
) (∑d

i,j=1 log(Y)2ij
)

= 1 due
to the assumption of unitary Frobenius norm for both logX and logY, we get

Vn,W [KΦ(X,Y)] ≤ 1
ν3

En

[
1

σ8n

exp(−2σ−2)
(ρ(n)n!)2

3nσ4n

]
. (17)

We can now expand the expectation over ρ in (17), achieving

Vn,W [KΦ(X,Y)] ≤ exp(−2σ−2)
ν3

∞∑
n=0

(
3
σ4

)n 1
n!

∞∑
n=0

1
ρ(n)n!

, (18)

since the series of the products is less than the product of the series, provided that
both converge. This is actually true since, by exploiting the McLaurin expansion
for the exponential function, we easily get

∑∞
n=0

(
3

σ4

)n 1
n! = exp

(
3

σ4

)
. On the

other hand, since ρ is a probability distribution, it must be limn→∞
ρ(n+1)

ρ(n) = L

where 0 < L ≤ 1, being N the support of ρ and due to
∑∞

n=0 ρ(n) = 1. Then,
since limn→∞

ρ(n)
ρ(n+1) = 1

L < ∞ and limn→∞ 1
n+1 = 0, by the ration criterion for

positive-terms series [18], there must exist a constant Cρ > 0 such that

∞∑
n=0

1
ρ(n)n!

= Cρ. (19)
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Therefore, by combining (19) in (18), we obtain

Vn,W [KΦ(X,Y)] ≤ exp(−2σ−2)
ν3

exp
(

3
σ4

)
Cρ =

Cρ

ν3
exp

(
3 − 2σ2

σ4

)
,

which is the thesis. ��
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Abstract. The automatic distinction (domain separation) between
handwriting (textual domain) and freehand drawing (graphical domain)
elements into the same layer is a topic of great interest that still requires
further investigation. This paper describes a machine learning based app-
roach for the online separation of domain elements. The proposed app-
roach presents two main innovative contributions. First, a new set of
discriminative features is presented. Second, the use of a Support Vec-
tor Machine (SVM) classifier to properly separate the different elements.
Experimental results on a wide range of application domains show the
robustness of the proposed method and prove the validity of the proposed
approach.

Keywords: Domain separation · Handwriting · Textual domain ·
Freehand drawing · Graphical domain · SVM classifier

1 Introduction

Handwriting and freehand drawing are two modalities of communication that
allow people to express concepts and ideas naturally. Each of them supports
an ever-increasing number of popular desktop and mobile applications [8,9].
Actually, different fields of the technical design (e.g., mechanical engineering)
together with an increasing number of professional applications (e.g., freehand
annotation systems [15]) require that users are enabled to perform both hand-
writing and freehand drawing elements on the same interface with the aim to
make their design experience as effective and efficient as possible. This paper
describes an SVM classifier based approach for the online separation of hand-
writing from freehand drawing elements. In particular, the paper presents two
main novelties with respect to the current literature. First, a new set of highly
discriminative features is presented. Second, an SVM classifier to address this
c© Springer International Publishing AG 2017
S. Battiato et al. (Eds.): ICIAP 2017, Part I, LNCS 10484, pp. 223–232, 2017.
https://doi.org/10.1007/978-3-319-68560-1_20
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matter is adopted. Since all the measurements on the strokes that compose a
scenario are computationally inexpensive, the system works in real-time without
special hardware configuration. The experimental results were supported by 25
persons, i.e., 10 persons for the training set and 15 persons for the evaluation set.
The experiments were performed on 6 scenarios: electronic circuits, mind maps,
Venn diagrams, use cases, flowcharts, entity-relationship diagrams. The obtained
results on the accuracy metric prove that this work is a concrete contribution to
the current literature.

The rest of the paper is structured as follows. Section 2 provides an overview
of the current state-of-the-art in domain separation. Section 3 describes the pro-
posed method, including the set of features and the SVM classifier. Section 4
reports the experimental results obtained on the application domains. Finally,
Sect. 5 concludes the paper.

2 Related Work

The online separation of domain elements is a topic that needs to be further
investigated. The majority of the methods in the literature are focused on recog-
nizing one or more domains with respect to a specific application context [14].
Examples of multi-domain sketch recognition are presented in [1,11]. In [11], a
mixture of geometrical features and an extensible set of heuristics are used to
identify a set of shapes by a fuzzy logic approach. The solution proposed in [1]
can identify shapes through an innovative Bayesian network supported by struc-
tural descriptions. Unlike these works, the focus of the present paper regards
the domain separation. In the current literature, few works are reported. A first
approach for separating text and drawing patterns is presented in [17], where
the textual domain is formed by Japanese characters. According to the nature
of this vocabulary, each stroke is considered as a set of segments. Instead, the
features are based on the relationships between the segment length, the number
of segments, and the bounding-box size (i.e., the small rectangle that contains
all segments). Following, the method proposed in [6] is based on the Multi-Layer
Perceptron (MLP) and Hidden Markov Model (HMM). The MLP performs a text
domain recognition on the feature vectors extracted from the strokes, instead the
HMM discriminates each stroke of the digital ink into two classes: text and graph-
ics. Another interesting work is proposed in [17], where the sum of the angles
formed by two consecutive segments, the ratio between the stroke length and the
bounding-box size, and the stroke direction on the x and y axis are considered as
features. Differently, in [5], the authors perform a classification between shapes
and text strokes, in the context of digital ink, by an entropy measure. The latter
is obtained by the internal angles of the stroke, where a high value of entropy
represents a text, while a low value is associated to a shape. The work proposed
in [3] describes an online framework able to automatically distinguish freehand
drawing from handwriting, where an interesting feature, called band-ratio, was
introduced. This feature considers the distribution of the stroke points within
three specific areas, i.e., top, middle, and bottom, of the bounding-box. The work
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in [7] uses the features proposed in [5] and introduces a new feature related to the
acquisition by hardware mechanism, i.e., the pressure exerted by the user on the
pen to create a stroke. This new set of features is used to perform the separation
between text and freehand drawing. More specifically, the authors analysed a
wide set of Machine Learning (ML) algorithms, including Bootstrap Aggregat-
ing, LADTree, LMT, LogitBoost, MLP, Random Forest, and Sequential Minimal
Optimization (SMO), to check the discriminative power of the selected features.
Finally, the framework presented in [2] shows different interesting stages to sepa-
rate and recognize text and graphical symbols. In particular, the authors describe
separation stage that uses two processes to detect how many and which objects
are performed by users. Subsequently, the framework computes mathematical
and statistical relationships on each candidate object to provide a reliable clas-
sification. Inspired by different works reported above [2,3], but unlike them, the
presented work proposes the use of an SVM classifier to perform the separa-
tion task. SVM technique, respect other well-known techniques [5,13], can be
considered an optimal solution for binary classification. In domain separation,
the distinguishing between text strokes and graphical strokes can be seen as a
binary classification problem where the features are considered as points of a
hyperplane.

3 The Proposed Method

The definitions and terminologies used in this section are defined in [3]. As shown
in Fig. 1, the proposed method is composed of four main stages: pre-processing,
feature extraction, machine learning, and domain separation. The first deals
with simplifying and aggregating each stroke. The second extracts the different
features from a stoke and combines them into a single feature vector. The third
adopts a learned SVM to classify each stroke in one of the two available classes:
textual domain or graphical domain. Finally, the last provides a feedback to the
user in real-time.

Fig. 1. Logical architecture of the proposed system composed of four main stages:
pre-processing, feature-extraction, machine learning, and domain separation.
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3.1 Pre-processing Stage

This stage is composed of two processes: stroke aggregation and stroke simplifi-
cation. The first detects how many and which strokes must be aggregated. The
second simplifies the lines of the stroke by deleting unnecessary points.

Multiple strokes are very frequent in both textual domain and graphical
domain. The stroke aggregation process checks temporal and spatial relationships
among strokes to provide one or more partitioned sets of strokes representing the
candidate objects. More specifically, the process examines pairs of consecutive
strokes and considers the time interval, linked to each bounding-box, elapsed
between the end of the first stroke and the start of the second stroke. To evaluate
if two strokes can be aggregated, one of these conditions must be respected:

– if part of a stroke crosses another one, and the areas of the two bounding-
boxes have a difference of about 10%;

– if the time interval is less of 500 ms;
– if two strokes are overlapped of about 20%, and al least half of a bounding-box

is contained within the other.

At the end of this process, a new set of strokes is created. Then, the latter is sent
to the stroke simplification process. Often, the strokes are composed of a high
number of unnecessary points that may affect the performance and precision
of some features. The stroke simplification process (or line fitting) allows to
delete these points thus simplifying curves and lines [12]. In the proposed work,
two techniques are implemented [10]: Radial-Distance and Douglas-Peucker. The
first (default option) provides an approximation of the elements less accurate but
faster (O(n)). The second provides a more accurate approximation but with a
high computational cost (O(n2)).

3.2 Feature Extraction Stage

Feature extraction is a critical step that can influence the performance of the sep-
aration algorithm. In this work, two features, i.e., entropy [5] and band-ratio [2],
are inherited by the current state-of-the-art due to their proven usefulness. The
other four features have been ad-hoc created to provide a high discriminative
feature vector. In this way, a new feature vector composed by six features is
implemented (Fig. 2).

Entropy feature is defined in [5] as an accurate criterion to distinguish shapes
and text strokes. This feature measures the angles formed by three consecutive
points. For each of them, a letter based on its amplitude is assigned. So, each
stroke is represented by a string of letters. For each representation of stroke,
entropy is calculated as follows:

∑

x∈X

pxlog2px (1)

where X is the set of letters, and px is the probability that a point is assigned
to the letter x.
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Fig. 2. Set of implemented features: (a) Entropy, (b) Band-ratio, (c) Direction,
(d) Intersection, (e) X-Scan, and (f) Projection y-t.

Band-Ratio feature, is defined in [2]. It measures the distribution of the stroke
style. This feature is computed from a vertical point, where the band is created.
Subsequently, the band is increased until it covers 65% of the points of the whole
stroke. The feature is calculated as follows:

fbr =
hband

hbb
(2)

where hband is the height of the band and hbb is the height of bounding box of
the stroke. Its value has a range between 0 and 1.

Direction feature measures represent the number of repeated forwards-
backwards movements produced by the stroke. The number of these movements
is constant and can be considered a very discriminant measure to distinguish
text from drawing. This feature can be calculated as follows:

fd =
∑|N |

i=2 |P |S(pi, pi−1)
lbb

(3)

where |P | is the number of the points of the stroke, i is an integer within the
interval 2 ≤ i ≤ |N |, lbb is the length of the bounding-box, and S is a function
defined by the following expression:

S(u, v) =

{
d(u, v) ifux ≤ vx

−d(u, v) otherwise
(4)

where u and v are two consecutive points, and d(u, v) is the distance between
them. In the case of text, the values are always positive and have a range between
0.1 and 0.5. For the drawing, they can be negative for irregular forms or they
can have a range between 0.6 and 1.
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Intersection feature measures the number of intersection points of a stroke.
The feature calculation process is described as follows:

fI =
|P |∑

i=2

|P |∑

j=i+2

I(pi, pi−1, pj , pj−1) (5)

where I is a function defined as:

I(u, v, w, z) =

{
1 if the segmentuv intersect the segmentwz
0 otherwise

(6)

X-Scan feature. Given the imaginary vertical segments at regular intervals
throughout the length of the bounding-box, the stroke will intersect them many
times. The X-Scan feature measures the number of these segments. This features
is calculated as follow:

fxs =
∑

v∈V Is(v)
lbb

(7)

where v is the vertical segment considered, lbb is the length of bounding-box,
and Is is a function defined as:

Is(v) =

{
1 if v intersects the stroke more than once
0 otherwise

(8)

Projection y-t feature measures analyses the horizontal movement of the
stroke. To avoid the disturbance of the lateral movement, it operates a data
transformation by replacing the x-axis with the acquisition time of the stroke.
This transformation produces a sinusoidal-type curve for the text and more
irregular patterns for the figures.

3.3 Machine Learning Stage

A good set of features is an optimum starting point, but it is necessary to create
or adopt a suitable classifier to reach high level in accuracy and performance. In
the proposed context, we have two main factors. The first regarding the natural
amount of errors due to the handwriting and freehand drawing activities. The
second concerning the binary nature of the matter. These reasons promoted the
use of a SVM classifier to estimate, on one side, the values of the different features
and their relationships and, on the other hand, to mitigate the propagation of
the different errors by a robust hyperplane [4,16].

3.4 Domain Separation Stage

The domain separation stage manages the Graphics User Interface (GUI) and
shows the processing results to the user. In Fig. 3 an example of domain separa-
tion is reported.
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Fig. 3. Online separation GUIs: (a) scenario, (b) handwriting domain, (c) freehand
drawing domain.

4 Experimental Results and Discussion

The main purposes of the experiments were the assessment of the set of salient
features for the separation between textual and graphical domains, the overall
robustness of the proposed approach, and its higher accuracy. The experiments
were performed by using a challenging set of scenarios described in Sect. 4.1. A
discussion of the results and a comparison of the proposed method with selected
key works of the current state-of-the-art are reported in Sect. 4.2.

4.1 Dataset

Nowadays, there is not a common dataset in the field of domain separation.
Consequently, in order to show the robustness of proposed approach, a new
dataset was built. The dataset is based on the union of the six scenarios used by
selected key works of the current literature [2,5–7,17]. The scenarios are shown
in Fig. 4. From left to right are electronic circuits, mind maps, Venn diagrams, use
cases, flowcharts, and entity-relationship diagrams, respectively. These scenarios
were chosen for different reasons. First, they allow a comparison with the key
works of the current state-of-the-art. Second, they are challenging in domain
separation, for example, mind maps is a very difficult scenario because it is not
a formalized diagram and each user can have a personal style in drawing the
different shapes. In order to train the adopted SVM, a training set was created
(in Fig. 5 some instances are shown). In particular, a set of 10 persons aged from
20 up to 30 years, 5 males, 5 females was selected. Each user had to perform,
for 8 times, the whole set of graphical symbols represented by the 6 scenarios
(an example is provided in Fig. 5a), and for 5 times, a set of summaries of about
1000 words in which the words presented different levels of grouping (an example
is provided in Fig. 5b).

4.2 Results

In the evaluation step a set of 15 persons, different from the previous ones
(i.e., training step) but with the same characteristics, was selected (9 males,
6 females). To evaluate the experiments, the accuracy metric was adopted [18].
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Fig. 4. Scenarios for separation between textual and graphical domains.

Fig. 5. Training set: (a) geometrical shapes, (b) four groups of words with different
lengths.

As reported in Table 1, the method achieves an overall accuracy of the 97.3%.
In particular, the use cases scenarios has achieved the best accuracy of 98.5%.
Instead, electronic circuits and mind maps have obtained an accuracy of 96.5%.

Table 1. Comparison of the accuracy measures among state-of-the-art approaches.

Method Accuracy

Proposed approach 97.3%

Bishop et al. [6] 97%

Bhat and Hammond [5] 92.1%

Blagojevic et al. [7] 90.5%

Machii et al. [17] 88%

Avola et al. [2] 85%
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We have compared the proposed method with five key works of the current
literature presented in [2,5–7,17]. The comparison is based on the benchmark of
these works. In Table 1 the overall results are reported. They show that the pro-
posed method is a concrete contribution to the current literature. As mentioned
before, there is not a common dataset to have a direct comparison with these
key works. In addition, some of these works, like the proposed one, are based on
tests performed by a specific class of users (e.g., young people, computer science
students). These factors can influence the experimental phases and often these
details about the persons are not present in the other works. Furthermore, dif-
ferent data acquisition methods can be distinguished. Blagojevic et al. [7] use a
system similar to that proposed. Instead, Machii et al. [17] and Bishop et al. [6]
use an optical system for scanning of strokes. Another consideration regards the
handwriting styles. Machii et al. [17] focused on Japanese writing. Instead, Bhat
and Hammond [5] and Bishop et al. [6] focused on writing in block letters. All
these aspects make the comparison a hard task. To obtain a comparative analy-
sis, we built a dataset containing the contexts in which these works were tested.
Blagojevic et al. [7] performed extensive evaluations on diagrams from 6 differ-
ent domains (4 of these are used into the built dataset). Bishop et al. [6] used
data collected among the employees at Microsoft Research in Cambridge, using
a purpose-written piece of software and additional tests were also obtained from
the Tablet PC Ink Parsing Team at Microsoft in Redmond. Machii et al. [17] used
a dataset where they have chosen 18 patterns on which to perform the experi-
ments. Finally, the presented results allow to give two considerations. First, the
novel set of features is very discriminating. Second, the SVM is very suitable for
this kind of binary separation domain.

5 Conclusions

This paper describes an SVM classifier based approach for the online separa-
tion of handwriting (textual domain) from freehand drawing (graphical domain)
elements. The paper presents two main novelties with respect to the current
literature. First, a new set of highly discriminative features. Second, the use of
an SVM classifier. Despite the lack in literature of a dataset and the lack of a
standard for the comparison of different approaches in this field, the authors of
the present paper have produced wide efforts to provide a reasonable and reliable
comparison between them. The experimental tests have provided a high accuracy
of 97.3% which shown the concrete contribution to the current state-of-the-art.
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Abstract. Awareness of the road scene is an essential component for
both autonomous vehicles and Advances Driver Assistance Systems and
is gaining importance both for the academia and car companies. This
paper presents a way to learn a semantic-aware transformation which
maps detections from a dashboard camera view onto a broader bird’s eye
occupancy map of the scene. To this end, a huge synthetic dataset featur-
ing 1M couples of frames, taken from both car dashboard and bird’s eye
view, has been collected and automatically annotated. A deep-network
is then trained to warp detections from the first to the second view. We
demonstrate the effectiveness of our model against several baselines and
observe that is able to generalize on real-world data despite having been
trained solely on synthetic ones.

1 Introduction

Vision-based algorithms and models have massively been adopted in current
generation ADAS solutions. Moreover, recent research achievements on scene
semantic segmentation [9,14], road obstacle detection [3,12] and driver’s gaze,
pose and attention prediction [7,22] are likely to play a major role in the rise of
autonomous driving.

As suggested in [5], three major paradigms can be individuated for vision-
based autonomous driving systems: mediated perception approaches, based on
the total understanding of the scene around the car, behavior reflex methods,
in which driving action is regressed directly from the sensory input, and direct
perception techniques, that fuse elements of previous approaches and learn a
mapping between the input image and a set of interpretable indicators which
summarize the driving situation.

Following this last line of work, in this paper we develop a model for map-
ping vehicles across different views. In particular, our aim is to warp vehicles
detected from a dashboard camera view into a bird’s eye occupancy map of
the surroundings, which is an easily interpretable proxy of the road state. Being
almost impossible to collect a dataset with this kind of information in real-world,
we exclusively rely on synthetic data for learning this projection. We aim to cre-
ate a system close to surround vision monitoring ones, also called around view

c© Springer International Publishing AG 2017
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Fig. 1. Simple outline of our task. Vehicle detections in the frontal view (left) are
mapped onto a bird-eye view (right), accounting for the positions and size.

cameras that can be useful tools for assisting drivers during maneuvers by, for
example, performing trajectory analysis of vehicles out from own visual field.
In this framework, our contribution is twofold:

– We make available a huge synthetic dataset (>1 million of examples) which
consists of couple of frames corresponding to the same driving scene captured
by two different views. Besides the vehicle location, auxiliary information such
as the distance and yaw of each vehicle at each frame are also present.

– We propose a deep learning architecture for generating bird’s eye occupancy
maps of the surround in the context of autonomous and assisted driving. Our
approach does not require a stereo camera, nor more sophisticated sensors
like radar and lidar. Conversely, we learn how to project detections from
the dashboard camera view onto a broader bird’s eye view of the scene (see
Fig. 1). To this aim we combine learned geometric transformation and visual
cues that preserve objects size and orientation in the warping procedure.

Dataset, code and pre-trained model are publicly available and can be found at
http://imagelab.ing.unimore.it/scene-awareness.

2 Related Work

Surround View. Few works in literature tackle the problem of the vehicle’s
surround view. Most of these approaches are vision and geometry based and are
specifically tailored for helping drivers during parking manoeuvres. In particular,
in [13] a perspective projection image is transformed into its corresponding bird’s
eye view, through a fitting parameters searching algorithm. In [16] exploited the
calibration of six fish eye cameras to integrate six images into a single one, by
a dynamic programming approach. In [17] were described algorithms for creat-
ing, storing and viewing surround images, thanks to synchronized and aligned
different cameras. Sung et al. [20] proposed a camera model based algorithm
to reconstruct and view multi-camera images. In [21], an homography matrix
is used to perform a coordinate transformation: visible markers are required in
input images during the camera calibration process. Recently, Zhang et al. [24]
proposed a surround view camera solution designed for embedded systems, based
on a geometric alignment, to correct lens distortions, a photometric alignment,
to correct brightness and color mismatch and a composite view synthesis.

http://imagelab.ing.unimore.it/scene-awareness
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Videgames for Collecting Data. The use of synthetic data has recently
gained considerable importance in the computer vision community for several
reasons. First, modern open-world games exhibit constantly increasing realism -
which does not only mean that they feature photorealistic lights/textures etc.,
but also show plausible game dynamics and lifelike autonomous entity AI [18,19].
Furthermore, most research fields in computer vision are now tackled by means
of deep networks, which are notoriously data hungry in order to be properly
trained. Particularly in the context of assisted and autonomous driving, the
opportunity to exploit virtual yet realistic worlds for developing new techniques
has been embraced widely: indeed, this makes possible to postpone the (very
expensive) validation in real world to the moment in which a new algorithm
already performs reasonably well in the simulated environment [8,23]. Building
upon this tendency, [5] relies on TORCS simulator to learn an interpretable
representation of the scene useful for the task of autonomous driving. However,
while TORCS [23] is a powerful simulation tool, it’s still severely limited by the
fact that both its graphics and its game variety and dynamics are far from being
realistic.

Many elements mark as original our approach. In principle, we want our sur-
round view to include not only nearby elements, like commercial geometry-based
systems, but also most of the elements detected into the acquired dashboard cam-
era frame. Additionally, no specific initialization or alignment procedures are
necessary: in particular, no camera calibration and no visible alignment points
are required. Eventually, we aim to preserve the correct dimensions of detected
objects, which shape is mapped onto the surround view consistently with their
semantic class.

3 Proposed Dataset

In order to collect data, we exploit Script Hook V library [4], which allows to
use Grand Theft Auto V (GTAV) video game native functions [1]. We develop a
framework in which the game camera automatically toggle between frontal and
bird-eye view at each game time step: in this way we are able to gather infor-
mation about the spatial occupancy of the vehicles in the scene from both views
(i.e. bounding boxes, distances, yaw rotations). We associate vehicles informa-
tion across the two views by querying the game engine for entity IDs. More
formally, for each frame t, we compute the set of entities which appear in both
views as

E(t) = Efrontal(t) ∩ Ebirdeye(t) (1)

where Efrontal(t) and Ebirdeye(t) are the sets of entities that appear at time
t in frontal and bird’s eye view, respectively. Entities e(t) ∈ E(t) constitute
the candidate set for frame t C(t); other entities are discarded. Unfortunately,
we found that raw data coming from the game engine are not always accurate
(Fig. 2). To deal with this problem, we implement a post-processing pipeline in
order to discard noisy data from the candidate set C(t). We define a discriminator
function
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Fig. 2. (a) Randomly sampled couples from our GTAV dataset, which highlight the
huge variety in terms of landscape, traffic condition, vehicle models etc. Each detection
is treated as a separate training example (see Sect. 3 for details). (b) Random examples
rejected during the post-processing phase.

f(e(t)) : C �→ {0, 1} (2)

which is positive when information on dumped data e(t) are reliable and zero
otherwise. Thus we can define the final filtered dataset as

T⋃

t=0

D(t) where D(t) = {ci(i) | f(ci(t)) > 0} (3)

being T the total number of frames recorded. From an implementation stand-
point, we employ a rule-based ontology which leverage on entity information
(e.g. vehicle model, distance etc.) to decide if the bounding box of that entity
can be considered reasonable. This implementation has two main values: first it’s
lightweight and very fast in filtering massive amounts of data. Furthermore, rule
parameters can be tuned to eventually generate different dataset distribution
(e.g. removing all trucks, keeping only cars closer than 10 m, etc.).
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Each entry of the dataset is a tuple containing:

– framef , frameb: 1920 × 1080 frames from the frontal and bird’s eye camera
view, respectively;

– IDe, modele: identifiers of the entity (e) in the scene and of the vehicle’s type;
– frontal coordse, birdeye coordse: the coordinates of the bounding box that

encloses the entity;
– distancee, yawe: distance and rotation of the entity w.r.t. the player.

Figure 3 shows the distributions of entity rotation and distance across the
collected data.

Table 1. Overview of the statistics on the collected dataset. See text for details.

Total

Number of runs 300

Number of bounding boxes 1125187

Unique entity IDs 56454

Unique entity models 198

Fig. 3. Unnormalized distribution of vehicle orientation (a) and distances (b) present in
the collected dataset. Distribution of angles conversely presents two prominent modes
around 0◦/360◦ and 180◦ respectively, due to the fact that the major part of vehicles
encountered travel in parallel to the player’s car, on the same (0/360◦) or the opposite
(180◦) direction. Conversely, distance is almost uniformly distributed between 5 and
30m.

4 Model

At a first glance, the problem we address could be mistaken with a bare geometric
warping between different views. Indeed, this is not the case since targets are
not completely visible from the dashboard camera view and their dimensions in
the bird’s eye map depend on both the object visual appearance and semantic
category (e.g. a truck is longer than a car). Additionally, it cannot be cast as
a correspondence problem, since no bird’s eye view information are available at
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Fig. 4. A graphical representation of the proposed SDPN (see Sect. 4). All layers contain
ReLU units, except for the top decoder layer which employs tanh activation. The
number of fully connected units is (256, 256, 256) and (1024, 1024, 512, 256, 128, 4) for
the coordinate encoder and decoder respectively.

test time. Conversely, we tackle the problem from a deep learning perspective:
dashboard camera information are employed to learn a spatial occupancy map
of the scene seen from above.

Our proposed architecture composes of two main branches, as depicted in
Fig. 4. The first branch takes as input image crops of vehicles detected in the
dashboard camera view. We extract deep representations by means of ResNet50
deep network [10], taking advantage of pre-training for image recognition on
ImageNet [6]. To this end we discard the top fully-connected dense layer which
is tailored for the original classification task. This part of the model is able to
extract semantic features from input images, even though it is unaware of the
location of the bounding box in the scene.

Conversely, the second branch consists of a deep Multi Layer Perceptron
(MLP), composed by 4 fully-connected layers, which is fed with bounding boxes
coordinates (4 for each detection), learning to encode the input into a 256 dimen-
sional feature space. Due to its input domain, this segment of the model is not
aware of objects’ semantic, and can only learn a spatial transformation between
the two planes.

Both appearance features and encodings of bounding box coordinates are
then merged through concatenation and undergo a further fully-connected
decoder which predicts vehicles’ locations in the bird’s eye view. Since our model
combines information about object’s location with semantic hints on the content
of the bounding box, we refer to it as Semantic-aware Dense Projection Network
(SDPN in short).
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Training Details: ImageNet [6] mean pixel value is subtracted from input
crops, which are then resized to 224 × 224 before being fed to the network.
During training, we freeze ResNet50 parameters. Ground truth coordinates in
the bird’s eye view are normalized in range [−1, 1]. Dropout is applied after each
fully-connected layer with drop probability 0.25. The whole model is trained end-
to-end using Mean Squared Error as objective function and exploiting Adam [11]
optimizer with the following parameters: lr = 0.001, β1 = 0.9, β2 = 0.999.

5 Experimental Results

We now assess our proposal comparing its performance against some baselines.
Due to the peculiar nature of the task, the choice of competitor models is not
trivial.

To validate the choice of a learning perspective against a geometrical one,
we introduce a first baseline model that employs a projective transformation
to estimate a mapping between corresponding points in the two views. Such
correspondences are collected from bottom corners of both source and target
boxes in the training set, then used to estimate an homography matrix in a
least-squares fashion (e.g. minimizing reprojection error). Since correspondences
mostly belong to the street, which is a planar region, the choice of the projective
transformation seems reasonable. The height of the target box, however, cannot
be recovered from the projection, thus it is cast as the average height among
training examples. We refer to this model as homography model.

Additionally, we design second baseline by quantizing spatial locations in
both views in a regular grid, and learn point mappings in a probabilistic fashion.
For each cell Gf

i in the frontal view grid, a probability distribution is estimated
over bird’s eye grid cells Gb

j , encoding the probability of a pixel belonging to Gf
i

to fall in the cell Gb
j . During training, top-left and bottom-right bounding box

corners in both views are used to update such densities. At prediction stage, given
a test point pk which lies in cell Gf

i we predict destination point by sampling
from the corresponding cell distribution. We fix grid resolution to 108× 192,
meaning a 10 × quantization along both axes, and refer to this baseline as grid
model. It could be questioned if the appearance of the bounding box content
in the frontal view is needed at all in estimating the target coordinates, given
sufficient training data and an enough powerful model. In order to determine
the importance of the visual input in the process of estimating the bird’s eye
occupancy map, we also train an additional model with approximately the same
number of trainable parameters of our proposed model SDPN, but fully connected
from input to output coordinates. We refer to this last baseline as MLP.

For comparison, we rely on three metrics:

– Intersection over Union (IoU): measure of the quality of the predicted bound-
ing box BBp with respect to the target BBt:

IoU(BBp, BBt) =
A(BBp ∩ BBt)
A(BBp ∪ BBt)
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where A(R) refers to the area of the rectangle R;
– Centroid Distance (CD): distance in pixels between box centers, as an indi-

cator of localization quality1;
– Height, Width Error (hE,wE): average error on bounding box height and

width respectively, expressed in percentage w.r.t. the ground truth BBt size;
– Aspect ratio mean Error (arE): absolute difference in aspect ratio between

BBp and BBt:

arE =
∣∣∣∣
BBp.w

BBp.h
− BBt.w

BBt.h

∣∣∣∣ (4)

The evaluation of baselines and proposed model is reported in Fig. 5(a). Results
suggest that both homography and grid are too naive to capture the complexity
of the task and fail in properly warping vehicles into the bird’s eye view. In
particular, grid baseline performs poorly as it only models a point-wise trans-
formation between bounding box corners, disregarding information about the
overall input bounding box size. On the contrary, MLP processes the bounding
box in its whole and provides a reasonable estimation. However, it still misses
the chance to properly recover the length of the bounding box in the bird’s eye
view, being unaware of entity’s visual appearance. Instead, SDPN is able to cap-
ture the object’s semantic, which is a primary cue for correctly inferring vehicle’s
location and shape in the target view.

A second experiment investigates how vehicle’s distance affects the warping
accuracy. Figure 5(b) highlights that all the models’ performance degrades as
the distance of target vehicles increases. Indeed, closer examples exhibit lower
variance (e.g. are mostly related to the car ahead and the ones approaching from
the opposite direction) and thus are easier to model. However, it can be noticed
that moving forward along distance axis the gap between the SDPN and MLP gets
wider. This suggests that the additional visual input adds robustness in these
challenging situations. We refer the reader to Fig. 6 for a qualitative comparison.

IoU ↑ CD ↓ hE ↓ wE ↓ arE ↓
homo 0.13 191.8 0.28 0.34 0.38
grid 0.18 154.3 0.74 0.70 1.30

MLP 0.32 96.5 0.25 0.25 0.29
SDPN 0.37 78.0 0.21 0.24 0.29

)b()a(

Fig. 5. (a) Table summarizing results of proposed SDPN model against the baselines;
(b) degradation of IoU performance as the distance to the detected vehicle increases.

1 Please recall that images are 1920× 1080 pixel size.
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Fig. 6. Qualitative comparison between different models. Baselines often predict rea-
sonable locations for the bounding boxes. SDPN is also able to learn the orientation and
type of the vehicle (e.g. a truck is bigger than a car etc.).

A Real-World Case Study. In order to judge the capability of our model
to generalize on real-world data, we test it using authentic driving videos taken
from a roof-mounted camera [2]. We rely on state-of-the-art detector [15] to
get the bounding boxes of vehicles in the frontal view. As the ground truth is
not available for these sequences, performance is difficult to quantify precisely.
Nonetheless, we show qualitative results in Fig. 7: it can be appreciated how the
network is able to correctly localize other vehicles’ positions, despite having been
trained exclusively on synthetic data.

SDPN can perform inference at approximately 100 Hz on a NVIDIA TitanX
GPU, which demonstrates the suitability of our model for being integrated in
an actual assisted or autonomous driving pipeline.

Fig. 7. Qualitative results on real-world examples. Predictions look reasonable even if
the whole training was conducted on synthetic data.
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6 Conclusions

In this paper we presented two main contributions. A new high-quality synthetic
dataset, featuring a huge amount of dashboard camera and bird’s eye frames,
in which the spatial occupancy of a variety of vehicles (i.e. bounding boxes, dis-
tance, yaw) is annotated. Furthermore, we presented a deep learning based model
to tackle the problem of mapping detections onto a different view of the scene.
We argue that these maps could be useful in an assisted driving context, in order
to facilitate driver’s decisions by making available in one place a concise repre-
sentation of the road state. Furthermore, in an autonomous driving scenario,
inferred vehicle positions could be integrated with other sensory data such as
radar or lidar by means of e.g. a Kalman filter to reduce overall uncertainty.
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Abstract. In the last years, deep neural networks have revolutionized
machine learning tasks. However, the design of deep neural network
architectures is still based on try-and-error procedures, and they are
usually complex models with high computational cost. This is the rea-
son behind the efforts that are made in the deep learning community
to create small and compact models with comparable accuracy to the
current deep neural networks. In literature, different methods to reach
this goal are presented; among them, techniques based on low rank fac-
torization are used in order to compress pre trained models with the aim
to provide a more compact version of them without losing their effective-
ness. Despite their promising results, these techniques produce auxiliary
structures between network layers; this work shows that is possible to
overcome the need for such elements by using simple regularization tech-
niques. We tested our approach on the VGG16 model obtaining a four
times faster reduction without loss in accuracy and avoiding supplemen-
tary structures between the network layers.

1 Introduction

Following the breakthrough achieved by Alexnet [16] on the Imagenet challenge
[25], during the last years deep learning has revolutionized computer vision,
and has taken the lead on an extensive number of machine learning tasks, such
as speech recognition, natural language processing, image caption generation,
domain adaptation and many others [18].

Despite this widespread use, we are still facing a severe lack of insight on the
design of neural network architectures, having to rely on trial-and-error proce-
dures in order to achieve a specific aim; the training of a network is generally
done by selecting a very large model with several layers, and then by solving a
difficult non-convex optimization problem, treating the architecture’s parame-
ters as hyperparameters to be learned. Nevertheless, recent advances foster the
current trend to train and model very deep neural networks, that is architectures
composed by a great number of layers: in comparison with the 5 convolutional
layers architecture of the pioneering Alexnet, two of the most recent, well-known
and effective models, GoogleNet [31] and Resnet [10], are composed respectively
of 22 layers and up to 152 layers.

c© Springer International Publishing AG 2017
S. Battiato et al. (Eds.): ICIAP 2017, Part I, LNCS 10484, pp. 244–253, 2017.
https://doi.org/10.1007/978-3-319-68560-1_22
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The price to be paid for these effective but complex models is the required
computational cost; these networks are indeed composed by millions, and even
billions of learned parameters, which cause an issue in terms of required space
for storing them and in terms of execution time, which is dominated by the
evaluation of convolutional layers.

This poses serious drawbacks on the use of these powerful models on mobile
and embedded devices, such as smartphone operated through speech, robots and
self-driving cars that perform real time object recognition, and medical devices
that collect and analyze patient data. To overcome these limitations, several
research works are investigating ways to design compact and efficient deep neural
networks or to compress existing models without loss in effectiveness.

In this paper we present a novel technique for the compression of deep con-
volutional neural networks with little or none loss in accuracy. The proposed
method is based on a linear reduction technique, relying on the low-rank charac-
teristic of the weights of the convolutional layers [14], followed by regularizations
techniques which ease the fine-tuning of the parameters in order to regain the
accuracy of the original model. This paper is composed as follows: in Sect. 2, we
are going to revise the state of the art in the compression of deep neural net-
works, focusing on the techniques that inspired our work; in Sect. 3, a detailed
description of our technique will be provided; in Sect. 4, experimental results
showing the quality of our proposal will be reported; Sect. 5 will be devoted to
conclusions and future works that could follow from the presented technique.

2 Related Works

As stated before, a lot of efforts are devoted to the development of compact
and efficient deep neural network models. These attempts are based on the high
redundancy of the parameters of a learned model as shown in several works [3,5].
So far, the proposed approaches can be roughly divided in two classes. Methods
in the first class aim at a design strategy to produce a compact deep neural
network from scratch, using specific layer structures or by reducing the network
as it learns, while methods in the second class are based on model compression,
that is the reduction of a pretrained model guided by the amount of network
accuracy that has to be retained. Our proposal belongs to the latter class, since
it reduces weight matrixes of a pretrained deep convolutional network.

There are many methods that try to generate compact models from scratch,
and generally they starts from oversized architectures using regularization func-
tions in the objective function that guides training. Such regularizers reduce
redundancy [2], enforce sparsity of the parameters [32], generate linear separa-
ble convolutional filters [23] or low-rank filters [13], or constrain the network to
have a predetermined number of parameters [4,30]. Similar to the latter meth-
ods, evolutionary algorithms are used to select a compact network from a set
of models in which the network parameters are treated as genetic traits of a
population of network architectures [27,28]. Other approaches exploit particular
network structures such in [12], or the use of multilayer perceptrons between
layers [21].
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In the model compression domain, one of the first work to be reported is
Optimal Brain Damage [19] in which the authors prune away neural connec-
tions whose weights are labeled as unimportant in terms of network capabilities,
alongside with the more recent Optimal Brain Surgeon [9], which uses informa-
tion conveyed by second order derivatives as a measure of the influence of the
connection. The pruning of irrelevant weights is a simple and effective method,
still analyzed today [1,8,17,20], but that depends on the definition of what is an
essential connection, a concept which is difficult to generalize due to the fact that
is based on thresholds relative to the specific task of the network to be reduced.
A novel technique, called Knowledge Distillation [11], trains a smaller model in
order to mimic the behavior of a bigger model, i.e. forcing a more compact archi-
tecture to reproduce the output of the original model using the same training
set. Recently, this technique was improved in [24], where the authors showed
that is possible to train a new model layer-wise, using the output produced by
hidden layers instead of using only the output of the last one.

The work proposed by [6] shows that the weight matrix of a fully connected
layer can be approximated using Singular Value Decomposition, without affect-
ing the network effectiveness. Following this work, several attempts were made
in order to reduce the weight matrix of a convolutional layer using low-rank
decomposition as in [14,15,34]. In [34] the authors use Singular Value Decompo-
sition on the response of a convolutional layer to find its low-rank approximation.
More specifically, they approximate a convolutional layer of dimension D × D
by substituting it with two convolutional layers D × 1 and 1 × D that, after
retraining each reduced layer one at a time, are shown to obtain the same pre-
diction accuracy as the original model. In [15] the authors perform a Tucker
Decomposition both on the fully connected and convolutional layers, being able
to further reduce the computational complexity of the whole network at a cost
of using three matrixes for each layer, one in the input, one in the output, and
one for the reduced layer.

As in the aforementioned works, our method for the reduction of the weight
matrix of both convolutional and fully connected layers uses a low-rank fac-
torization. However, we introduce simple techniques to overcome the need for
auxiliary matrices between layers after their reduction, used in the preceding
techniques to maintain the original layer dimensionality. By doing so we are able
to lower the computational complexity and the required space for the learned
parameters of the reduced model, with small or even without loss in the predic-
tion accuracy of the original model, being able to cope with both convolutional
and fully connected layers.

3 Our Approach

A deep convolutional network is composed of L layers (l = 1, · · · , L, where 1
indicates the input layer and L the output one) which can be convolutional or
fully connected. A convolutional layer is composed by D sets of convolutional
filters (called filter banks) of dimension k × k which operate on a C dimensional
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input; the layer weights are stored in a 4-dimensional matrix k × k × C × D. A
fully connected layer has a more simpler structure in which each neural unit is
connected to all the output units of the preceding layer, having a 2-dimensional
weight matrix D × D′ where D is the input dimension and D′ is the output
dimension.

Our approach is based on linear dimensionality reduction of each layer in a
sequential way, starting from the input layer till the last one, reducing one layer
and transforming the subsequent one accordingly. We use the same dimension-
ality reduction procedure with both convolutional and fully connected layers: in
order to do so, we reshape the 4-dimensional weight matrix of a convolutional
layer in a 2-dimensional matrix N × D with N = k2C.

At each step of the procedure we take the weight matrix for the layer l,
namely Wl and center it on its mean obtaining W l; we note that in our case
centering has a negligible effect due to the weight matrices having mean value
around zero. Then we estimate the covariance matrix Cov = 1

N W
T

l W l and we
perform a Singular Value Decomposition on it, thus obtaining Cov = UΣUT .
The diagonal values of Σ are the eigenvalues for the eigenvectors stored in U ;
to perform dimensionality reduction we take only the top d eigenvectors cor-
responding to the top d eigenvalues, scaled by their respective eigenvalues. We
obtain a projection matrix P = ÛΣ̂ of dimension D×d, which is used to reduce
the dimensionality of the original weight matrix, obtaining wl = WlP .

It is not possible to simply substitute the original weight matrix Wl with the
reduced one wl, due to the fact that the subsequent layer l +1 is expecting a D-
dimensional input; several works overcame this problem adding a d × D matrix
after the reduced layer in order to restore the original input dimension, bringing
the complexity of the layer from O(k2cD) to O(k2cd) + O(dD). We choose not
to insert additional elements between layers, but we use the projection matrix
to transform the subsequent layer, obtaining a complexity of O(k2cd).

More precisely, if the subsequent layer l + 1 is a convolutional layer having a
k×k×D×D′ weight matrix, we take the D′ filter banks and perform on each of
them the same dimensionality reduction projection of the previous layer; more in
details, in the layer l+1 we multiply the D′ filter banks Fi (i = 1, · · · ,D′), which
have dimension k × k × D, with the projection matrix P ; thus we obtain what
we call the channel-reduced layer composed by D′ filter banks fi of dimension
k × k × d. If the subsequent layer is a fully connected layer with weight matrix
D × D′ we simply perform the projection on the input dimension, obtaining a
new weight matrix of dimension d × D.

After this step we obtain the reduced layer l and the channel-reduced layer
l + 1, without the need for further structures as in the aforementioned works,
and we can proceed on reducing the dimensionality of the channel-reduced layer
l + 1 and to transform the layer l + 2 accordingly, until we reach the end of the
network.

A crucial parameter is the dimension d for the layer reduction: choosing d too
small results in a dimensionality reduction that doesn’t preserve the information
conveyed by the original layer, therefore putting at risk the capability of the
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reduced network to regain the original accuracy. In order to avoid this issue, we
measure the amount of information conveyed by increasing sets of eigenvectors
by calculating the ratio between the sum of their eigenvalues and the overall
sum of all the eigenvalues. More formally, given a set of D eigenvectores ei, and
their respective eigenvalues λi, we choose d such that:

mind
Σd

i=1λi

ΣD
i=1λi

≥ ε (1)

where ε is the amount of information we want to preserve for the specific layer
l; its value is empirically set for each layer, based on the desired accuracy to
be retained after the model reduction. It is worth noting that, due to the high
redundancy of the layers’ weights, only a small set of eigenvectors retains most
part of information, and that this number of relevant eigenvector is not changed
by the channel-reduction. In the next section we’ll cover these statements in
details with the aid of experimental results.

After the reduction of the network’s layers, we need to perform a retraining
of the reduced network in order to regain the accuracy of the original model. It
is possible to perform a retraining after each layer substitution or a retraining
of all the reduced network at once. In both cases we first need to perform a
regularization of each layer to ease the training of the reduced model by lowering
the number of needed iterations to regain the performance of the original model.
We do so by scaling the weight matrix of each layer in order to have the same
standard deviation of the weight matrix of the original layers. More formally

wl = wl ∗ σ(Wl)/σ(wl) (2)

where σ(W ) is the standard deviation for the matrix W . This simple scaling
has proven to be very effective in reducing the number of necessary iterations.
In some cases, we weren’t even able to train the reduced network without this
scaling procedure. This regularization is inspired by the well-known Xavier ini-
tialization [7], which can be seen as a way to keep the relation between input
and output through a network layer.

4 Experimental Results

In our experiments we used the VGG16 network [29], due to its widespread use
in numerous tasks. The VGG16 model is composed by 13 convolutional layers
and 3 fully connected layers. Every filter has dimension 3 × 3, in Table 1 the
layers’ size are reported.

We tested the network and the reduced model with the Imagenet2012 train
set [25] for retraining, and we used the validation set for assessing the model’s
accuracy. We also tested the transfer learning capability of the reduced model
in comparision with the original one. More precisely, we trained the original and
reduced networks on a different task than Imagenet, namely the 102 Category
Flower Dataset [22]. The reduced model is able to obtain the same accuracy
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Table 1. VGG16 layers’ size (first two columns) and reduced layers’ size (last two
columns).

Layer Channels Filter banks Channels Filter banks

conv11 3 64 3 11

conv12 64 64 11 22

conv21 64 128 22 39

conv22 128 128 39 58

conv31 128 256 58 138

conv32 256 256 138 132

conv33 256 256 132 148

conv41 256 512 148 212

conv42 512 512 212 207

conv43 512 512 207 185

conv51 512 512 185 172

conv52 512 512 172 170

conv53 512 512 170 120

Layer Input Output Input Output

fc6 4096 4096 − 1986

fc7 4096 4096 1986 1653

fc8 4096 1000 1653 1000

of the original model on this new task, as shown in Fig. 1b. In Table 1 the size
of channels and filter banks are reported before and after reduction, whilst in
Table 2 we show the comparison between the original and the reduced model. The
model retraining is accomplished in two ways. In the first setting, we retrained
the reduced layer and the subsequent channel-reduced layer keeping the other
layers fixed, until the original accuracy is regained; we proceed reducing and
retraining in this layer-wise manner until we reach the output layer. In Fig. 1a
we report the top 5 test accuracy of the reduced model during the retraining of
the convolutional layer conv53, after having reduced the preceding layers. In the
second framework, we perform what we call “one-shot” retraining; indeed, we
skip the layer retraining step in favor of reducing the whole network and then
carry out a single retraining pass for the entire reduced model. With the first

Table 2. Comparison of VGG16 and the reduced model in terms of required space of
the model parameters and average execution time using a NVIDIA Tesla P100 GPU.

VGG16 Reduced model

Required space 528MB 72 MB

Execution time 2174.22 ms 569.764 ms
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Fig. 1. (a) Top 5 test accuracy during retraining after the reduction of layer conv53,
with the preceding layers already reduced and retrained. Dashed line is original accu-
racy. (b) Top 5 test accuracy of original and reduced model on the 102 Category Flower
Dataset. Reduced model has a slower learning than original, although it reaches the
same accuracy level of the original model.

strategy we were able to achieve the original accuracy after less than 15 epochs
in total. Conversely, we didn’t manage to replicate the VGG16 results after the
same number of iterations using “one-shot” retraining, resulting in a loss of 5%
in the top-5 and 8% in the top-1 classification error, probably due to the training
being stuck in a local minima.

The choice of the number of filter banks in the reduced model is related to the
ratio in Eq. 1; we show the amount of the ratio for the selected value of each layer
in Table 3. In order to restore the original accuracy, we have to maintain an higher
ratio on the first convolutionl layers, namely from the input layer to conv41, than

Fig. 2. Input area selected as most “important” for prediction of class “tabby cat” from
Imagenet dataset, with red (maximum) and blue (minimum). On the left, visualization
of original model, on the right, visualization of reduced model. Areas related to the
reduced model are more fine grained than the ones of the original. Image best seen in
color.
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Table 3. Ratio of the selected number of filter banks for each layer.

Layer Dimension Ratio

conv11 11 99.96%

conv12 22 96.85%

conv21 39 95.13%

conv22 58 92.21%

conv31 128 97.04%

conv32 132 94.75%

conv33 148 93.15%

conv41 212 91.80%

conv42 207 84.25%

conv43 185 75.09%

conv51 172 70.29%

conv52 170 70.84%

conv53 120 59.96%

fc6 1986 87.58%

fc7 1653 92.40%

on the last ones, as shown in Table 3. A possible hypothesis for this could be
found in [33], in which the authors state that the first layers of a convolutional
neural network learn general purpose filters, whilst the last layers show a task-
dependent behavior. The selected number of filter banks were empirically chosen
following the aforementioned hypothesis of performing conservative reductions
in the first layers. [33].

In Fig. 2 we show the input regions of “importance” for prediction either of
the reduced and the original model on the same input image. We followed the
technique described in [35] and its extension [26], observing more fine grained
areas with the reduced model than the ones used by the original.

5 Conclusions and Future Works

In this work we propose a novel method for linear compression of deep convo-
lutional neural networks, based on linear dimensionality reduction and simple
regularization techniques to avoid the need for auxiliary structures. We show that
our proposal doesn’t affect the prediction accuracy of the original network. We
also show that our reduction technique preserves the transfer learning capability
of the original network.

Further studies will be devoted to a more accurate method for the selection
of the number of reduced filter banks without relying on empirical procedures.
In order to perform even further reductions we are going to investigate the use
of non linear method for dimensionality reduction.
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Abstract. In prior work, we have shown how to compute global network
entropy using a heat bath analogy and Maxwell-Boltzmann statistics. In
this work, we show how to project out edge-entropy components so that
the detailed distribution of entropy across the edges of a network can be
computed. This is particularly useful if the analysis of non-homogeneous
networks with a strong community as hub structure is being attempted.
To commence, we view the normalized Laplacian matrix as the net-
work Hamiltonian operator which specifies a set of energy states with
the Laplacian eigenvalues. The network is assumed to be in thermody-
namic equilibrium with a heat bath. According to this heat bath anal-
ogy, particles can populate the energy levels according to the classical
Maxwell-Boltzmann distribution, and this distribution together with the
energy states determines thermodynamic variables of the network such
as entropy and average energy. We show how the entropy can be decom-
posed into components arising from individual edges using the eigenvec-
tors of the normalized Laplacian. Compared to previous work based on
the von Neumann entropy, this thermodynamic analysis is more effective
in characterizing changes of network structure since it better represents
the edge entropy variance associated with edges connecting nodes of large
degree. Numerical experiments on real-world datasets are presented to
evaluate the qualitative and quantitative differences in performance.

Keywords: Network edge entropy · Maxwell-Boltzmann statistics

1 Introduction

There has been a considerable recent interest in computing the entropy associ-
ated with different types of network structure [2,3,5]. Network entropy has been
extensively used to characterize the salient features of the structure of static and
dynamic of network systems arising in biology, physics, and the social sciences
[1–3]. For example, the von Neumann entropy can be used as an effective char-
acterization of network structure, commencing from a quantum analog in which
the Laplacian matrix on graphs [1] plays the role of the density matrix. Further
development of this idea has shown the link between the von Neumann entropy
and the degree statistics of pairs of nodes forming edges in a network [2], which
can be efficiently computed for both directed and undirected graphs [3]. Since
c© Springer International Publishing AG 2017
S. Battiato et al. (Eds.): ICIAP 2017, Part I, LNCS 10484, pp. 254–264, 2017.
https://doi.org/10.1007/978-3-319-68560-1_23
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the eigenvalues of the density matrix reflect the energy states of a network, this
approach is closely related to the heat bath analogy in statistical mechanics.
This provides a convenient route to network characterization [3,5]. By populat-
ing the energy states with particles which are in thermal equilibrium with a heat
bath, this thermalization, of the occupation statistics for the energy states can
be computed using the Maxwell-Boltzmann distribution [4,5]. The properties of
this physical heat bath system are described by a partition function with the
energy microstates of the network represented by a suitably chosen Hamiltonian.
Usually, the Hamiltonian is computed from the adjacency or Laplacian matrix
of the network, but recently, Ye et al. [4], have shown how the partition function
can be computed from a characteristic matrix polynomial instead.

Although entropic analysis of the heat bath analogy provides a useful global
characterization of network structure, it does not allow the entropy of edge or
subnetwork structure to be easily computed. In this paper, we explore a novel
edge entropy projection which can be applied to the global network entropy com-
puted from Maxwell-Boltzmann statistics. We use this technique to analyze the
distribution of edge entropy within a network and explore how this distribution
encodes the intrinsic structural properties of different types of network.

The remainder of the paper is organized as follows. In Sect. 2, we briefly intro-
duce the von Neumann entropy with its approximate degrees of nodes connected
by an edge. In Sect. 3, we develop an entropic network characterization from the
heat bath analogy and Maxwell-Boltzmann statistics, and then describe our edge
entropy projection. In Sect. 4, we undertake experiments to demonstrate the use-
fulness of this novel method. Finally, in Sect. 5 we conclude our paper with a
summary of our contribution and suggestions for future work.

2 Preliminaries

2.1 Von Neumann Entropy

Let G(V,E) be an undirected graph with node set V and edge set E ⊆ V × V ,
and let |V | represent the total number of nodes on graph G(V,E). The |V |× |V |
adjacency matrix A of a graph is defined as

A =

{
0 if(u, v) ∈ E

1 otherwise.
(1)

Then the degree of node u is du =
∑

v∈V Auv.
The normalized Laplacian matrix L̃ of the graph G is defined as

L̃ = D− 1
2 LD

1
2 = ΦΛ̃ΦT (2)

where L = D − A is the Laplacian matrix and D denotes the degree diag-
onal matrix whose elements are given by D(u, u) = du and zeros elsewhere.
Λ̃ = diag(λ1, λ2, . . . λ|V |) is the diagonal matrix with the ordered eigenvalues as
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elements and Φ = (ϕ1, ϕ2, . . . , ϕ|V |) is the matrix with the ordered eigenvectors
as columns.

In quantum mechanics, the density matrix is used to describe a system with
the probability of pure quantum states. Passerini and Severini [1] have extended
this idea to the graph domain. Specifically, they show that a density matrix for a
graph or network can be obtained by scaling the combinatorial Laplacian matrix
by the reciprocal of the number of nodes in the graph.

With this notation, the specified density matrix is obtained by scaling the
normalized Laplacian matrix by the number of nodes, i.e.

ρ =
L̃

|V | (3)

When defined in this way the density matrix is Hermitian i.e. ρ = ρ† and
ρ ≥ 0,Trρ = 1. It plays an important role in the quantum observation process,
which can be used to calculate the expectation value of measurable quantity.

The interpretation of the scaled normalized Laplacian as a density opera-
tor, opens up the possibility of characterizing a graph using the von Neumann
entropy from quantum information theory. The von Neumann entropy is defined
as the entropy of the density matrix associated with the state vector of a sys-
tem. As noted above, Passerini and Severini [1] suggest how the von Neumann
entropy can be computed by scaling the normalized discrete Laplacian matrix
for a network. As a result the von Neumann entropy is given in terms of the
eigenvalues λ1, ....., λ|V | of the density matrix ρ,

S
V N

= −Tr(ρ log ρ) = −
|V |∑
i=1

λ̂i

|V | log
λ̂i

|V | (4)

The von Neumann entropy [1] computed from the normalized Laplacian spec-
trum has been shown to be effective for network characterization. In fact, Han
et al. [2] have shown how to approximate the calculation of von Neumann entropy
in terms of simple degree statistics. Their approximation allows the cubic com-
plexity of computing the von Neumann entropy from the Laplacian spectrum,
to be reduced to one of quadratic complexity using simple edge degree statistics,
i.e.

S
V N

= 1 − 1
|V | − 1

|V |2
∑

(u,v)∈E

1
dudv

(5)

This expression for the von Neumann entropy allows the approximate entropy
of the network to be efficiently computed and has been shown to be an effective
tool for characterizing structural property of networks, with extremal values for
the cycle and fully connected graphs.

Thus, the edge entropy decomposition is given as

S
V N

edge
(u, v) =

1
|E| − 1

|V ||E| − 1
|E||V |2

1
dudv

(6)
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where S
V N

=
∑

(u,v)∈E S
V N

edge
(u, v). This expression decomposes the global para-

meter of von Neumann entropy on each edge with the relation to the degrees
from the connection of two vertexes.

3 Network Entropy in Maxwell-Boltzmann Statistics

3.1 Thermodynamic Representation

Thermodynamic analogies provide powerful tools for analyzing complex net-
works. The underpinning idea is that statistical thermodynamics can be com-
bined with network theory to characterize both static and time-evolving net-
works [6].

Here we consider the thermodynamic system specified by a system of N
particles with energy states given by the network Hamiltonian and immersed
in a heat bath with temperature T . The ensemble is represented by a partition
function Z(β,N), where β = 1/kBT is an inverse of temperature parameter [5].

When specified in this way, the various thermodynamic characterizations of
the network can be computed. For instance, the average energy of the network
can be expressed in terms of the density matrix and the Hamiltonian operator,

〈U〉 = 〈H〉 = Tr (ρH) =
[
− ∂

∂β
log Z

]
N

(7)

and the thermodynamic entropy by

S = kB [log Z + β〈U〉] (8)

Both the energy and the entropy can be regarded as weighted functions of
the Laplacian eigenvalues which characterize the network structure in different
ways. In the following sections, we set the Boltzmann constant to the unity, i.e.,
kB = 1, and explore the thermodynamic entropy in more detail to represent the
intrinsic structure of networks.

3.2 Maxwell-Boltzmann Statistics

The Maxwell-Boltzmann distribution relates the microscopic properties of par-
ticles to the macroscopic thermodynamic properties of matter [4]. It applies to
systems consisting of a fixed number of weakly interacting distinguishable parti-
cles. These particles occupy the energy levels associated with a Hamiltonian and
in our case the Hamiltonian of the network, which is in contact with a thermal
bath [7].

Taking the Hamiltonian to be the normalized Laplacian of the network, the
canonical partition function for Maxwell-Boltzmann occupation statistics of the
energy levels is

Z
MB

= Tr
[
exp(−βL̃)N

]
=

⎛
⎝ |V |∑

i=1

e−βλi

⎞
⎠

N

(9)
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where β = 1/kBT is the reciprocal of the temperature T with kB as the Boltz-
mann constant; N is the total number of particles and λi denotes the microscopic
energy of system at each microstate i with energy λi. Derived from Eq. (8), the
entropy of the system with N particles is

S
MB

= log Z − β
∂ log Z

∂β
= −NTr

{
exp(−βL̃)

Tr[exp(−βL̃)]
log

exp(−βL̃)
Tr[exp(−βL̃)]

}

= −N

|V |∑
i=1

e−βλi∑|V |
i=1 e−βλi

log
e−βλi∑|V |
i=1 e−βλi

(10)

For a single particle, the density matrix is

ρ
MB

=
exp(−βL̃)

Tr[exp(−βL̃)]
(11)

Since the density matrix commutes with the Hamiltonian operator, we have
∂ρ/∂t = 0 and the system can be viewed as in equilibrium. So the entropy in
the Maxwell-Boltzmann system is simply N times the von Neumann entropy of
a single particle, as we might expect.

3.3 Edge Entropy Analysis

Our goal is to project the global network entropy onto the edges of the network.
In matrix form for Maxwell-Boltzmann statistics in Eq. (10), the entropy can be
written as,

S
MB

= −Tr
[
ρ

MB
log ρ

MB

]
= −Tr[Σ

MB
] (12)

Since the spectral decomposition of the normalized Laplacian matrix is

L̃ = ΦΛ̃ΦT (13)

We can decompose the matrix Σ
MB

as follows

Σ
MB

= Φσ
MB

(Λ̃)ΦT (14)

where

σ
MB

(λi) = −N
e−βλi∑|V |
i=1 e−βλi

log
e−βλi∑|V |
i=1 e−βλi

for Maxwell-Boltzmann statistics. As a result, we can perform edge entropy pro-
jection of the Maxwell-Boltzmann statistical model using the Laplacian eigen-
vectors, with the result that the entropy of edge (uv) is given as,

S
MB

edge
(u, v) =

|V |∑
i=1

σ
MB

(λi)ϕiϕ
T
i (15)

Thus, the global entropy can be projected on the edges of the network sys-
tem. This provides useful measures for local entropic characterization of network
structure in a relatively straightforward manner.
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4 Experiments and Evaluations

4.1 Data Sets

Data-Set 1: The PPIs dataset extracted from STRING–8.2 [8] consisting of net-
works which describe the interaction relationships between histidine kinase and
other proteins. There are 173 PPIs in this dataset and they are collected from 4
different kinds of bacteria with the following evolution order (from older to more
recent). Aquifex and Thermotoga-8 PPIs from Aquifex aelicus and Thermotoga
maritima, Gram-Positive-52 PPIs from Staphylococcus aureus, Cyanobacteria-
73 PPIs from Anabaena variabilis and Proteobacteria-40 PPIs from Acidovorax
avenae [9].

Data-Set 2: The New York Stock Exchange dataset consists of the daily prices
of 3,799 stocks traded continuously on the New York Stock Exchange over 6000
trading days. The stock prices were obtained from the Yahoo! financial database
(http://finance.yahoo.com) [10]. A total of 347 stock were selected from this
set, for which historical stock prices from January 1986 to February 2011 are
available. In our network representation, the nodes correspond to stock and the
edges indicate that there is a statistical similarity between the time series asso-
ciated with the stock closing prices [10]. To determine the edge structure of the
network, we use a time window of 20 days to compute the cross-correlation coef-
ficients between the time-series for each pair of stock. Connections are created
between a pair of stock if the cross-correlation exceeds an empirically determined
threshold. In our experiments, we set the correlation coefficient threshold to the
value to ξ = 0.85. This yields a time-varying stock market network with a fixed
number of 347 nodes and varying edge structure for each of 6,000 trading days.
The edges of the network, therefore, represent how the closing prices of the stock
follow each other.

4.2 Experimental Results

We first investigate the temperature dependence of edge entropy for the PPI
networks. We select three different types of edges with different values of degrees
at the vertices and explore how the entropy changes with temperature.

Figure 1(a) plots three selected edge entropies versus temperature with
Maxwell-Boltzmann occupation statistics. The three edges show a similar depen-
dence of entropy on the temperature. As the inverse of temperature (β) increases,
the edge entropy reaches a maximum value. The edge entropy for vertices
with the high degree increases faster than that for the low-degree in the high-
temperature region. In the low-temperature limit, entropy approaches zero. This
is because when the temperature decreases the configuration of particle occupa-
tion becomes identical as the particles always state at the low energy levels since
the thermalization effects vanish.

Figure 1(b) shows the relationship between the edge entropies in the Maxwell-
Boltzmann and von Neumann cases. There is a transition in the relationship
between two entropies with temperature. At high temperature (i.e., β = 0.1),

http://finance.yahoo.com
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Fig. 1. (Color online) (a) Edge entropy with a different degree on both nodes for
Maxwell-Boltzmann statistics. The red line represents the high-degree edge; the blue
line is the low-degree edge and the black line is the median value of degree on the edge
ends; (b) Scatter plot of edge entropies from Maxwell-Boltzmann vs. von Neumann
entropy with different value of temperatures.

the Maxwell-Boltzmann entropy is roughly in linear proportion to von Neu-
mann entropy. However, as the temperature reduces, it takes on an approxi-
mately exponential dependence. The Maxwell-Boltzmann edge entropy decreases
monotonically with the von Neumann edge entropy in the low-temperature
region (β = 10).

Further exploration of the relationship between Maxwell-Boltzmann edge
entropy and von Neumann entropy is shown in Fig. 2, which shows the 3D plots
of edge entropy with the vertex degree. The figure compares the edge entropy
between Maxwell-Boltzmann statistics and von Neumann entropy with node
degree connection for each edge in the network. The observation is that both
entropies have a similar tendency with the degrees at the end. The Maxwell-
Boltzmann edge entropy is more sensitive to the degree variance than the von
Neumann entropy in the high degree region. The reason for this is the constant
term in the von Neumann entropy formula dominates the value of edge entropy

Fig. 2. (Color online) 3D scatter plot of edge entropy from Maxwell-Boltzmann sta-
tistics and von Neumann entropy. (a) Edge entropy in Maxwell-Boltzmann statistics.
(b) Edge entropy from von Neumann formula. (c) The comparison of edge entropy
between Maxwell-Boltzmann statistics and von Neumann entropy.
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when the degrees are large. Thus, the Maxwell-Boltzmann edge entropy is better
suited to represent the differences in graph structure associated with large degree
nodes.

When compared to the von Neumann edge entropy, the Maxwell-Boltzmann
edge entropy is distributed rather differently. Figure 3 shows two examples of PPI
networks, namely Anabaena variabilis and Aquifex aelicus together with their
associated edge entropy histograms. The Maxwell-Boltzmann edge entropies are
more sensitive to the presence of edges associated with high degree nodes, which
provides better edge discrimination. This effect is manifest in the differences of
edge entropy histograms. In the Maxwell-Boltzmann case, the histogram shows
two peaks in the edge entropy distribution, while the von Neumann edge entropy
is concentrated at low values and has just a single peak. In other words, the von
Neumann edge entropy offers less salient structure.

PPI Networks
Maxwell-Boltzmann Statistics 

Distribution
von Neumann Entropy 

Distribution

Fig. 3. (Color online) Examples of protein-protein interaction networks with the edge
entropy distribution from von Neumann entropy and Maxwell-Boltzmann statistics.

Next, we turn our attention to the time evolution of networks. We take the
NYSE network as an example to explore the entropic characterization in the net-
work structure. Figure 4 plots the total network for the Maxwell-Boltzmann and
von Neumann cases. Both entropies reflect the positions of significant global
financial events such as Black Monday, Friday 13th mini-crash, Early 1990s
Recession, 1997 Asian Crisis, 9.11 Attacks, Downturn of 2002–2003, 2007 Finan-
cial Crisis, the Bankruptcy of Lehman Brothers and the European Debt Crisis.
In each case, the entropy undergoes significant fluctuations during the financial
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Fig. 4. (Color online) Entropy from Maxwell-Boltzmann statistics and von Neumann
entropy for NYSE (1987–2011). Number of particle is N = 1 and temperature is β = 10.

crises, associated with dramatic structural changes. Compared to the von Neu-
mann entropy, the Maxwell-Boltzmann case is more sensitive to fluctuations in
the network structure. A good example is Black Wednesday in 1992, which is
obvious in the Maxwell-Boltzmann entropy but is not clear in the von Neumann
case.

We now focus in detail on one critical financial event, i.e., Black Monday
in October 1987, to explore the dynamic structural difference with the entropic
variance. We visualize the network structure at three-time epochs, i.e., before,
during and after Black Monday, and compare the Maxwell-Boltzmann with von
Neumann edge entropy. Figure 5 shows the network structure and edge entropy
distribution during the crisis. Before Black Monday, the stocks are highly con-
nected with a large number of densely connected clusters of stocks following the
same trading trends. This feature is also reflected in the Maxwell-Boltzmann edge
entropy distribution. However, during Black Monday, the number of connections
between stock decrease significantly with large numbers of nodes becoming dis-
connected. Some stocks do though slightly increase their number of links with
other stocks. This manifests itself as a shift of the peak to the high entropy
region of the distribution. After Black Monday, the stocks begin to recover con-
nections with another. The node degree distribution also returns to its previous
shape. In contrast, the von Neuman edge entropy distribution does not com-
pletely reflect the details of these critical structural changes. Compared to the
Maxwell-Boltzmann edge entropy, the distribution of von Neumann edge entropy
does not change significantly during Black Monday and hence does not effectively
characterize the dynamic structure on the network.

In conclusion, both the Maxwell-Boltzmann and von Neumann edge entropies
can be used to represent changes in network structure. Compared to the von
Neumann edge entropy, the Maxwell-Boltzmann edge entropy is more sensitive to
variance associated with the degree distribution. In the low-temperature region,
the Maxwell-Boltzmann edge-entropy has similar degree sensitivity to the von
Neumann edge entropy. However, it is more sensitive to high degree variations.
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Before Black Monday During Black Monday After Black Monday

Fig. 5. (Color online) Visualization of network structure before, during and after Black
Monday. The edge entropy distribution is computed from von Neumann entropy and
Maxwell-Boltzmann statistics. The statistical model such as Maxwell-Boltzmann case
is more sensitive to represent the dynamic structure in the networks.

5 Conclusion

This paper has explored the thermodynamic characterizations of networks result-
ing from Maxwell-Boltzmann statistics, and specifically those associated with
the thermalization effects of the heat bath on the occupation of the normal-
ized Laplacian energy states. We view the normalized Laplacian matrix as the
Hamiltonian operator of the network with associated energy states which can be
occupied by classical distinguishable particles. This extends the use of entropy
as a tool to characterize network structures in both static and time series data.
To compare with the extensively studied von Neuman entropy, we conduct the
experiments which demonstrate that the thermodynamic edge entropy is better
suited to represent the intrinsic structural properties associated to long-tailed
degree distributions. Future work will focus on exploring non-classical alterna-
tives to the Maxwell-Boltzmann occupation statistics and the detailed distribu-
tion of the entropic characterization for different types of complex networks.
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Abstract. In certain severe mental diseases, like schizophrenia, struc-
tural alterations of the brain are detectable by magnetic resonance imag-
ing (MRI). In this work, we try to automatically distinguish, by using
anatomical features obtained from MRI images, schizophrenia patients
from healthy controls. We do so by exploiting contextual similarity
of imaging data, enhanced with a distance metric learning strategy
(DML - by providing “must-be-in-the-same-class” and “must-not-be-in-
the-same-class” pairs of subjects). To learn from contextual similarity of
the subjects brain anatomy, we use a graph-based semi-supervised label
propagation algorithm (graph transduction, GT) and compare it to stan-
dard supervised techniques (SVM and K-nearest neighbor, KNN). We
performed out tests on a population of 20 schizophrenia patients and 20
healthy controls. DML+GT achieved a statistically significant advantage
in classification performance (Accuracy: 0.74, Sensitivity: 0.79, Speci-
ficity: 0.69, Ck: 0.48). Enhanced contextual similarity improved perfor-
mance of GT, SVM and KNN offering promising perspectives for MRI
images analysis.

1 Introduction

Schizophrenia (SCZ) is a severe, chronic and debilitating mental illness affecting
around 0.4% of the population [1]. Magnetic resonance imaging (MRI) studies
consistently observed alterations in cortical and subcortical brain areas, espe-
cially frontal [21] and temporal [14] regions. The capability of detecting these
pathological alterations in brain images would be of high relevance in accelerat-
ing the diagnostic process, with clear benefits for both patients and psychiatrists.
Given the complexity and multidimensionality of the problem, machine learning
(ML) analysis of magnetic resonance (MR) images is recently becoming popular
in the understanding of this domain.
c© Springer International Publishing AG 2017
S. Battiato et al. (Eds.): ICIAP 2017, Part I, LNCS 10484, pp. 265–275, 2017.
https://doi.org/10.1007/978-3-319-68560-1_24
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ML algorithms have been used in SCZ studies [18] with the aim of detecting
sets of features which could be discriminative in the diagnosis. In the litera-
ture, the majority of ML applications to psychiatric data are purely supervised
methods that learn only from labeled data, with promising and interesting results
[11,13,16]. However, while these findings have been received with great optimism
within the neuropsychiatric community, a major criticism has been that these
algorithms are ordinarily “trained” to categorize patients based on a symptom-
based diagnosis. As such, there are inevitable uncertainty in the “gold standard”:
learning from the unlabeled data seems a possibility to mitigate the problem.
In these situations, classification performances might improve when the learning
process incorporates unlabeled data. Moreover, semi-supervised and unsuper-
vised schemes could provide a better phenotype identification and classification
of diseases [20].

In this paper, we propose to exploit learning from both labeled and unlabeled
MR images. The addition of learning from unlabeled data will decrease the
risk of circular analysis, by exploiting similarities between data without prior
information on the class. To do so, we applied graph transduction (GT), i.e., a
data-driven graph-based semi-supervised label propagation algorithm [4], which
can learn from the contextual similarity (CS) of the imaging data. However,
the problem with label propagation methods is that their performance heavily
depends on the pre-existing CS of the input data. To deal with this problem, we
applied a distance metric learning (DML) strategy, to enhance CS information
of features obtained from MRI images, by providing “must-be-in-the-same-class”
and “must-not-be-in-the-same-class” pairs of subjects (i.e., healthy controls and
SCZ patients), thus increasing the intra-cluster similarity and decreasing the
inter-cluster similarity. The formalization of GT is inspired from game theoretic
notions [4], where the final labeling corresponds to the Nash equilibrium of a non
cooperative game. The players of the game correspond to data features (or nodes
of the graph) and the class labels correspond to available strategies. In our case,
we map the problem of classifying MRI images, where the brain imaging data
of each subject correspond to a player who can choose a strategy to maximize
its pay-off (the pair-wise similarity of the image features between subjects).

Authors of [3] showed a similar concept of what we present here, to solve
a problem in object recognition and scene classification (a general computer
vision problem), confirming the importance of enhancing CS to improve the
performance of a label propagation algorithm. In our study, we implemented
one of the latest and most robust metric learning [19] and label propagation
algorithm [4], to be then applied to MRI data.

To the best of our knowledge, this is the first study to address classification of
SCZ patients and healthy subjects applying a metric learning and graph-based
semi-supervised learning strategy to structural MRI data.

2 Learning from Enhanced Contextual Similarity

In this section, we present a scheme of classification that exploits contextual
brain anatomical similarities of subjects from MR images, so as to differentiate
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healthy controls from SCZ patients. A set of features, characterizing the anatomy
of the brain, was obtained from the MR images of every single subject. Then,
we used a DML technique, specifically the one proposed in [19], to enhance the
CS of the input MRI data and apply the GT algorithm [4] on top of this new
metric space to learn from the newly enhanced context. The overall scheme is
depicted in Fig. 1 and described step-by-step in the next sections.

Fig. 1. The proposed schizophrenia classification scheme using structural brain imaging
data.

2.1 CS Enhancement Using DML

DML represents a useful technique widely exploited in pattern recognition, which
aims to find a metric that maximizes the distance between features belonging to
different classes (and viceversa, minimizes the distance between features belong-
ing to the same class). With this aim, linear and non-linear metrics had been
investigated. On one hand, linear metrics can be computationally less expensive,
but often provide lower performances. On the other hand, non-linear algorithm
might perform better but they are computationally expensive and application-
dependent.

In the linear domain, DML remaps features using a linear combination carried
out by the transformation matrix L, as follows:

x̄′ = Lx̄,

where x̄ is the input feature vector and x̄′ is the transformed feature vector.
If the matrix L is full rank, it is possible to show that the Euclidean distance
between two elements in the transformed space,

D(x̄i, x̄j) = ||L(x̄i − x̄j)||2,

represents a valid metric. Furthermore, the Euclidean distance can be rewritten
using a matrix notation which becomes the so-called Mahalanobis distance. Such
distance is defined as

DM (xi, xj) =
√

(x̄i − x̄j)�M(x̄i − x̄j)

being M = L′L the Mahalanobis positive semidefinite matrix. The effect of such
transformation is shown in Fig. 2. When L is the identity matrix, the Maha-
lanobis distance becomes the standard Euclidean distance.



268 T.M. Dagnew et al.

Fig. 2. Illustration of feature context enhancement by means of large margin nearest
neighbor (LMNN) distance metric learning. Before training (left) and after training
(right).

In this study, we used a linear DML to modify the pre-existing neighbouring
structure of MRI data before feeding it to GT, aiming to achieve classification
improvements. In order to determine the transformation matrix L, we used the
Large Margin Nearest Neighbor DML method described in [19]. The algorithm
makes use of the following equations

pullpush(L) = (1 − μ) pull(L) + μ push(L) (1)

with

pull(L) =
∑
i,j→i

‖L(x̄i − x̄j)‖2

push(L) =
∑
i,j→i

∑
k

(1 − δik)[1 + ‖L(x̄i − x̄j)‖2 (2)

− ‖L(x̄i − x̄k)‖2]+
where yi is the class to which x̄i belongs and δik = 1 if yi = yk or δik = 0
otherwise. [f ]+ implies a hinge-loss such that [f ]+ = max(0, f ). The term j → i
in Eq. (2) implies that j belongs to the same class where i belongs too. Finally,
the parameter μ sets the trade-off between the pulling and pushing objectives
and was set to 0.5 as suggested in [19].

The process of getting the transformation metric L involves minimizing the
overall objective function in Eq. (1). The first term pulls subjects with the same
class label closer in terms of the Mahalanobis distance. The second term pushes
away differently-labeled instances by a large margin, so that they are located
further apart in the transformed space (Fig. 2).

As stated in [19], it is worth noting that Eq. (1) does not define a convex
optimization problem in terms of L. However, it can be rephrased in a convex
fashion using a semi-definitive programming approach by determining M instead
of L. Then, L can be computed using matrix factorization of M .
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2.2 Learning from Enhanced CS of MR Images Using GT

The aim of GT is to address the problem of consistent labeling, with the aim
of predicting or propagating class membership to unlabeled data by exploit-
ing learning both from the labeled and unlabeled samples. Such methodology
involves three different areas: (i) graph theory; (ii) evolutionary game theory;
and (iii) dynamical systems and optimization.

The main idea behind GT is to consider the samples of the dataset as nodes of
a graph, and to propagate class labels to unlabeled nodes, by considering the CS
among the samples. In particular, it exploits CS among data features to perform
label propagation in a consistent way, relying on a common a priori assumption
known as the “cluster assumption” (a reminiscent of the homophily principle
used in social network analysis): nodes that are close to each other, in the same
cluster or on the same manifold are expected to have the same label. Each node
is then a feature vector ∈ R

d (with d being the number of features). Moreover,
each node can select a strategy, i.e., class membership, that maximizes its CS.
Finally, the output labeling corresponds to the Nash equilibrium of the game.

Input features are represented with graph nodes G = (V), where the vertex
set V is composed of n = l + u elements ∈ R

d and consists of a first labeled set
{(x1, y1), ..., (xl, yl)} of l elements and a second unlabeled set {(xl+1, ..., (xl+u)}
of u elements. Then, the similarity matrix E between pairs of nodes is computed,
after having selected a similarity metric. A simple and effective optimization
algorithm to propagate the labels through the graph is given by the so-called
replicator dynamics, developed and studied in evolutionary game theory, which
has proven to be effective in many applications [7,23].

In practice, as explained in Sect. 2.1, labeled examples in the form of “must-
be-in-the-same-class” and “must-not-be-in-the-same-class” pairs of subjects are
provided to the DML framework, to learn the best feature space transformation
matrix L using Eq. (1). Afterwards, the class label propagation occurs on such
transformed feature space (i.e., Lx̄) by constructing the fully connected graph
G = (V), where V is now the set of graph nodes representing the transformed
feature vectors, and E encodes the brain anatomy similarity between subjects
by means of the edge weights (similarity matrix) as depicted in Fig. 3b. E is
constructed in the following manner (for simplicity we show how an edge is
constructed between two transformed feature vectors):

Eij = exp
[
−d(Lx̄i, Lx̄j)2

2σ2

]
(3)

where d(Lx̄i, Lx̄j) is the Euclidean distance. For estimating σ, which is a critical
parameter of the graph’s ability in representing the CS between data points, we
adopted an automatic self tuning method as proposed in [22].
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Fig. 3. (a) ROI and cortical thickness feature extraction from brain images. (b) Rep-
resentation of brain anatomy similarity between subjects.

3 Experiments

3.1 Dataset and Representation

The dataset consisted in T1-weigthed MR images of 20 healthy control sub-
jects (35.8 ± 13, 8 males) and 20 SCZ patients (37.9 ± 11, 13 males). The size of
this dataset is in line with the dimensionality of datasets used in academic works
aimed at medical applications [9,10,17]: in particular, it is not straightforward to
obtain consistent MRI data of psychiatric patients, due to difficulties in recruit-
ment and feasibility of MRI acquisitions in this kind of patients. The data were
collected at the Psychiatric department of Ospedale di Verona (Verona, Italy).
All involved subjects signed an informed consent, following the principle of the
Helsinki’s declaration.

The T1-weigthed images were preprocessed using the software FreeSurfer1

as depicted in Fig. 3a. Based on prior knowledge on schizophrenia [14,21], we
considered the average cortical grey matter thickness of frontal and temporal
regions (namely: caudal middle frontal, inferior temporal, middle temporal, ros-
tral middle frontal and superior frontal of the left hemisphere) as features in the
classification task. The ROI thickness measurement of the subjects is reported
in Table 1. Also, in order to take into account the effect of age on the cortical
thickness, we corrected all the data for age differences using a generalized linear
model [8].

3.2 Experimental Analysis

We performed two series of comparisons to assess the performances of the pro-
posed classification scheme in differentiating healthy controls from SCZ subjects.
First, we verified whether learning from CS (from both labeled and unlabeled
data) might provide better classification results than just learning from labeled

1 http://surfer.nmr.mgh.harvard.edu/.

http://surfer.nmr.mgh.harvard.edu/
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Table 1. Grey matter cortical thickness of ROIs (in mm) of healthy controls and
schizophrenia patients.

ROI HC (mean± std) SCZ (mean± std)

Caudal middle frontal 2.56 ± 0.21 2.44 ± 0.18

Inferior temporal 2.85 ± 0.16 2.64 ± 0.17

Middle temporal 2.89 ± 0.17 2.73 ± 0.18

Rostral middle frontal 2.47 ± 0.19 2.34 ± 0.17

Superior frontal 2.82 ± 0.18 2.65 ± 0.20

data. Second, we tested if the enhancement of CS by DML might provide fur-
ther improvements. To do so, we compared the proposed classification scheme
(DML+GT) with both GT [4] and KNN, with and without metric learning (KNN
[6], DML+KNN [19]), linear SVM and DML+SVM.

We evaluated the classification performances by using accuracy (Acc), sen-
sitivity (Se), specificity (Sp) and Cohen’s kappa (Ck) coefficients. Sensitivity
refers to the true recognition of SCZ patients.

We considered first 70%, then 80% of the data from each class for training
and input labeling of GT, while the rest of data was left to be predicted. In
fact, GT was found to perform sufficiently well when the labeled data were just
a small fraction of the dataset [4]. However, given the small size of our dataset,
we considered labeling 70% and 80% of the data at disposal. We repeated this
procedure by randomly sampling the dataset 100 times and computed the aver-
age performance. In all the experiments we avoided the risk of circular analysis
[5]. For KNN, we chose K = 3, for limiting the possible overfitting due to the
relatively small sample size.

3.3 Experimental Results

The average and standard error of the classification performance for DML+GT
(proposed scheme), DML+SVM, DML+KNN, GT, SVM and KNN (used for
comparison), when 70% and 80% of the samples in each class are labeled are
reported in Table 2 and Fig. 4.

As expected, performance got better when using higher percentage of labeled
data on small datasets for DML+GT and GT. Moreover, in our proposed scheme,
sensitivity was always lower than specificity (Fig. 4c and d), meaning that some
subjects with schizophrenia were classified as healthy, regardless the labeled
sample size. In addition, the increase of training data provided different relative
improvements between sensitivity and specificity (Fig. 4c and d). This means
that these methodologies, under the settings we considered, are capable of recog-
nizing the healthy subjects more easily than the schizophrenia patients.

GT was more affected by the training set’s size (fourth bar in each plot of
Fig. 4) than the other methods. However, when DML was applied before GT,
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Table 2. Average test-set classification performance (± standard deviation across sub-
jects) on brain sMRI data features using 70% and 80% of the data for training.

Methods 70% 80%

DML+GT Acc 0.70 ± 0.01 0.74 ± 0.01

Se 0.66 ± 0.02 0.69 ± 0.02

Sp 0.73 ± 0.02 0.79 ± 0.02

Ck 0.39 ± 0.02 0.48 ± 0.03

DML+SVM Acc 0.71 ± 0.01 0.71 ± 0.02

Se 0.70 ± 0.02 0.74 ± 0.02

Sp 0.73 ± 0.02 0.68 ± 0.02

Ck 0.42 ± 0.02 0.42 ± 0.03

DML+KNN Acc 0.68 ± 0.01 0.70 ± 0.02

Se 0.64 ± 0.02 0.66 ± 0.02

Sp 0.72 ± 0.02 0.75 ± 0.02

Ck 0.36 ± 0.02 0.41 ± 0.03

GT Acc 0.61 ± 0.01 0.67 ± 0.01

Se 0.57 ± 0.04 0.64 ± 0.03

Sp 0.65 ± 0.03 0.71 ± 0.03

Ck 0.22 ± 0.02 0.35 ± 0.03

SVM Acc 0.69 ± 0.01 0.69 ± 0.01

Se 0.70 ± 0.02 0.73 ± 0.02

Sp 0.69 ± 0.02 0.66 ± 0.02

Ck 0.38 ± 0.02 0.38 ± 0.03

KNN Acc 0.65 ± 0.01 0.65 ± 0.01

Se 0.64 ± 0.02 0.62 ± 0.02

Sp 0.65 ± 0.02 0.69 ± 0.02

Ck 0.29 ± 0.03 0.30 ± 0.03

we obtained a drastic classification improvement of all measures except the sen-
sitivity, even with a smaller training set. Furthermore, the use of DML resulted
in a higher performance in all the cases except sensitivity (Fig. 4).

Finally, when 80% of the data is used as training, CS learning, i.e., learning
from unlabeled data as well, enhanced with DML outperformed both SVM and
KNN with DML (first bar vs second and third bar).

3.4 Discussion of the Experimental Results

This work supports the finding that DML+KNN is better than KNN (i.e., with
respect to every evaluation metric considered), as found by other authors [19].
In particular, we showed that this finding holds true when applied to thickness
features extracted from MRI data.
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Fig. 4. Classification results for healthy controls vs. schizophrenia patients. Average
performances and standard errors of the mean are reported.

Moreover, GT is consistently improved by the proposed scheme (DML+GT),
which suggests that CS enhancement of MRI data coupled with learning from
unlabeled samples, can result in a better performance of classifying schizophre-
nia. This result is also supported in [3], within the computer vision domain
(object recognition and scene classification).

Finally, DML+GT performances are higher likely due to the additional infor-
mation obtained from the unlabeled MRI data features. This confirms that DML
and CS has the potential to improve schizophrenia classification.

The results obtained are comparable to the state-of-the-art in classification of
schizophrenia. For example, in [12] using functional MRI (fMRI), they obtained
an average classification accuracy of 0.59 and 0.84 using both static and dynamic
resting-state functional network connectivity approach respectively and linear
SVM. In [15] they obtained up to 0.75 accuracy (combining ROI thickness fea-
tures) using 1.5 T sMRI and covariate multiple kernel learning approach using
SVM. In [2], they achieved 0.75 accuracy considering the left hemisphere.

4 Conclusion

In this study, we designed a classification scheme to discriminate healthy con-
trols from schizophrenia patients using MR images-derived data as features.
We believe that learning from contextual anatomical similarity of subjects (i.e.,
learning both from labeled and unlabeled MRI data features) has a great poten-
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tial in dealing with schizophrenia, due to the nature and complexity of the disease
and its associated diagnostic uncertainty.

Furthermore, we showed that enhancing the CS improved the classification
performances of the label propagation algorithm (semi-supervised context learn-
ing). We demonstrated that the combination of metric learning and graph trans-
duction (DML+GT) is useful to learn a meaningful underlying pattern from
MRI data by exploiting contextual information, resulting in better classification
performances.

In the future, we would like to test a non-linear metric for context enhanc-
ing to assess if it can further improve the classification results. Also, GT could
be improved by using another anatomical feature (dis)similarity measurement
instead of the symmetric Euclidean distance of Eq. (3) since it can handle asym-
metric (dis)similarities also.
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Abstract. For a safe autonomous navigation, it is important to under-
stand the configuration of the environment and quickly, accurately grasp
the information regarding the location, direction, and size of each con-
stituent object. Recent studies on autonomous navigation were per-
formed to not only detect and classify objects, but also to segment and
evaluate their properties. However, in these studies, pre-processing was
required, which incurred a considerable amount of computational cost.
Moreover, the 3D shape model was further analyzed. In other words,
more computation cost and computing power are required. In this study,
we propose a new method for detecting and estimating the pose of a
3D object using LiDAR information via charge-coupled-device (CCD) in
real-time environment. We classified objects into classes (e.g., car, pedes-
trian, and cyclist), and the 3D pose of an object is quickly estimated
without requiring a separate 3D-shape model. From the multiple frames
obtained using the LiDAR and CCD, we design a method to robustly
reconstruct the 3D environment in real time by aligning the object infor-
mation of the previously obtained frames with the current frame through
an optical-flow method. Our method helps in complementing the limita-
tions of CCD-based classifiers and correcting the defects by increasing the
density of the 3D-LiDAR point cloud. We compared the results obtained
using our method with the state-of-the-art results of the KITTI data
set; which were in good agreement in terms of speed and accuracy. This
comparison shows that the 3D pose of a box can be generated with bet-
ter speed and accuracy using the reconstructed 3D-point-cloud clusters
proposed in our method.

Keywords: Object detection · Deep learning · Optical flow · Sensor
fusion

1 Introduction

Detecting 3D objects is particularly important in the field of robotics wherein
real-time interaction with nearby objects is required in an autonomous environ-
ment. In early studies, the focus was on detecting and classifying objects in 2D

c© Springer International Publishing AG 2017
S. Battiato et al. (Eds.): ICIAP 2017, Part I, LNCS 10484, pp. 276–286, 2017.
https://doi.org/10.1007/978-3-319-68560-1_25
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images. In recent studies, 3D objects were classified in terms of their 3D pose
and size. In 2D-based detection algorithms, view-point estimation is considered.
Hence, there is a scope for development in detecting and estimating the pose
of a 3D object. One of the important approaches [14] involves dividing the 3D
pose into sub-categories with advanced two-dimensional object classifiers. In this
method, the samples of many hypotheses are grouped and classified through sub-
categories. So, it is necessary to have a projected 3D-shape model of different
types and various viewing angles. However, combining a single CCD image with
a shape model requires significant amount of manual work to generate learning
data; moreover, subclasses with new shapes cannot be added easily. Another
approach involves employing stereo images. For example, in 3DOP [1], a stereo
image is used to create a depth map and each pixel of the RGB image is projected
onto a 3D space. They use several properties to define the relationship between
the pixels as an energy function of the Markov random field (MRF) [3] and
classify the objects using the linear support vector machine (SVM) [2]. This is
because the sophisticated stereo-based depth-map generation used in the 3DOP
requires considerable amount of computational resources. In another example
like 3DVP [13], a 3D CAD model is superimposed on a CCD image. A CAD
model can be expressed in a voxel form to identify specific areas such as occlu-
sion or truncation. This decreases the speed of overall process, and a considerable
amount of manual work is required for learning the data.

To handle these problems, we propose a method to classify the objects and
reconstruct a 3D pose in a driving environment using LiDAR and CCD infor-
mation. In Fig. 1(a), our approach involves detecting objects by matching the
LiDAR point cloud to the CCD images. The LiDAR point clouds are clustered
in the form of an edge shape, which is used to express the shape of an object.
After that, an object proposal is generated and is classified using the CCD-
based Convolutional Neural Networks (CNN) classifier [8]. The universal size of
the object is estimated through the class label of the classified object, and it is
reconstructed using the 3D-space bounding box in the 3D space to overlay the
partially captured LiDAR point. Through this process, the 3D objects around a
vehicle can be restored. We develop a model to match the LiDAR point cloud
with the CCD image and collect information from multiple frames. Using a local
optical flow [7] in the image space to obtain any lost LiDAR point informa-
tion due to long distance, diffuse reflection, and occlusion. The computational
cost incurred in our proposed method is much lower than that in existing 3D-
geometry models wherein subcategories are employed.
The contributions of our work are as follows:

– We match the uneven LiDAR point cloud with the CCD image by mapping
the points of two coordinate systems into an ordered edge form and easily
cluster the object to offer a proposal for the 2D classifier. Subsequently, we
estimate the pose of a 3D object using the classification results and 3D-edge
orientations.

– Our method helps in clearly representing the objects by improving the point
cloud of the present time by matching objects from multiple frames. This
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Fig. 1. System overview, (a) a two-dimensional object classification process in a t
frame, (b) object classification process in a t− 1 frame, (c) object matching by optical
flow, (d) the alignment of the points that make up the matched object and the cumu-
lative result at t frame (e) classification result image drawn through 3D plane matched
to LiDAR Edge. Blue box : side of vehicle facing corner of 2D bounding box. Orange
box : front or rear of vehicle.

helps in more accurately estimating the orientation in 3D space and supple-
menting the information of the obscured area compared to using single-frame
information.

This paper is organized as follows. In Sect. 2, we describe the proposed
method restore a 3D pose of the object by generating proposals, classifying
the objects, and connecting them to adjacent frames. The experimental results
are presented in Sect. 3.

2 Proposed Method

2.1 2D-Object Detection and 3D-Environment Reconstruction
Using LiDAR

In this section, we explain the method of classifying objects in 2D and 3D spaces
through a multi-frame LiDAR point cloud and a CCD image. We generate a pro-
posal for classifying two-dimensional objects using a widely distributed LiDAR
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point cloud, and subsequently, track the objects in multiple frames with opti-
cal flow using convolutional feature maps in R-FCN [9]. Thereafter, we recon-
struct the surrounding 3D objects more accurately by improving the unstable 3D-
LiDAR-shape model.

Development of 2D LiDAR Edges. This section describes the process of
generating proposals for classifying 2D objects with sparse and widely distributed
LiDAR point cloud set P . A LiDAR point of an object with a particular height
appears in the top view as a complex shape depending on the shape of the object,
but the boundary shape of the object is clear. If the noise around the points that
make up the boundary shape of an object can be effectively removed, this area
can be projected onto a 2D space and use it as a robust 2D-object proposal.
So, we unified the height of LiDAR point pz

xy to 40 cm to eliminate the ground
without missing the objects found in the driving environment. The process can
be expressed as follows.

pz
xy =

{
40 if pz

xy >= 40
empty if pz

xy < 40
, (1)

where pz
xy represents the coordinates of each point on the three-dimensional

space comprising the x, y, and z axes. This compressed point cloud helps in
removing the ground and increasing the density of the sparse shape. Any noise
point other than the desired shape can be removed.

To remove any noise at CCD space, the point cloud should be projected onto
a CCD image through a calibration matrix. Observing the projected point cloud,
the shape of the object viewed from the viewpoint of the vehicle on which the
sensor is mounted becomes the lowermost edge of the projected LiDAR points.
When selected only the lowest point for all the x-axis pixels of the CCD image, it
is possible to obtain an edge close to the peripheral shape of the object as shown
in Fig. 2(a). Because of the difference in height based on the position of the
LiDAR sensor and various factors that interfere with sensing, many noise points
other than the shapes around the object are occurred as shown in Fig. 2(b).
This problem can be solved by using a median filter along the x-axis of the
CCD. This process changes the position of the LiDAR point on the CCD image.
So, we merge the point where the coordinate movement occurs in the CCD image
to the adjacent point having the median value in the 3D space.

Proposal Generation with LiDAR Edges. Because of the characteristics of
the CCD space represented by the pixel unit, a change in one pixel varies signif-
icantly depending on the depth. This means that there is a limit in determining
the continuity in the CCD space. Each point constituting the LiDAR edge in
the CCD space is labeled by number along the x-axis and mapped to the same
point in the 3D space. In the order of number, we form a merged edge until
the sum of the differences in orientation between points is above the threshold
(π/2). Small groups are merged with adjacent groups. This method is similar to
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Fig. 2. (a) Image after removing the noise; the shape of the object can be seen as an
edge. (b) Image captured after 2D projection. Noise is observed above the bottom edge.

initial edge grouping on an edgebox [15]. Next, we divide the area by evaluating
the affinity of the two neighboring edges. The following Eq. 2 is used to compare
the connections of the two edges by employing the difference between the two
average angles θi and θj and the two center coordinates xi and xj . The affinity
score is computed as follows:

a(si, sj) =
|cos(θi − θij) cos(θj − θij)|γ

λmp
, (2)

where θij represents the angle between xi and xj . pi and pj are the adjacent
points of the two edges si and sj , respectively. mp represents the distance
between two edge boundaries. Using affinity score, a proposal is generated based
on the boundary line where the score changes significantly. Based on an image
with a resolution of 376 × 1241 in the KITTI dataset [5], the pixel height is
determined as follows :

Ch
pixeli =

Ch
reali × 750

di
(3)

where Ch
reali represents the actual height of the class Ci to be classified, and

Ch
pixeli is the pixel size to be projected on the CCD image.

Object Classification and Point Labeling. The generated proposal is
used as an input to the region-based CNN classifier. Although several high-
performance classifiers exist, we use R-FCN implemented using residual net [6].
R-FCN is a classifier based on the R-CNN, and it uses vote mechanism whether
an object belongs to the ROI or not. When classifying the objects, the R-FCN
helps in determining the class by considering the translation variance of the
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object in the ROI area. This shows a filtering effect among proposals consisting
of clutterred backgrounds due to noise. As shown in Fig. 1(a), the ROI of the
R-FCN architecture is divided into n grids, and the convolutional features are
trained through each grid cell. In the test phase, if the class is classified through
the proposal, the class label is mapped to the LiDAR edge used in generating the
proposal. From the label-mapped LiDAR edges, we create 3D bounding boxes.

3D Pose Restoration. The most accurate way to perceive the information
around a vehicle in the driving situation is to accurately restore the 3D pose
of the object. We obtained the required information to restore the 3D pose
around the vehicle in the previous section. We created LiDAR Edge si using
Eq. 2 and obtained the average direction θi. Based on this, a 2D bounding box
type proposal was generated to classify the class. The class labels were also
mapped to the LiDAR edges for generating the proposal. Here, if a rigid body
model and the aspect ratio and actual size information are given for each class,
a 3D bounding box can be created based on the orientation of the edge. The
origin of the 3D bounding box is determined by two edge points located adjacent
to the boundary in the 2D space. Considering ph

i , ph
j be the height of the two

points facing the boundary, the base point P o
xy and angle of the 3D bounding

box θo
i are calculated as follows:

po
xy =

{
pi if ph

i < ph
j

pj if ph
i > ph

j

, (4)

θo
xy = θi (5)

where P o
xy is the point corresponding to the foreground edge of the two-

dimensional boundary line, and θi is the average orientation of the edge i includ-
ing po

xy, which is the average angle made by the straight line touching the two-
dimensional boundary line.

2.2 Supplementing Information Through Object Matching in Multi
Frame

Because of the LiDAR sensor characteristics, the information of object pose is
incomplete and the edge is not formed or the orientation is inaccurate. To com-
pensate for this imperfection, we propose a method of matching the information
of the point cloud of the adjacent frames and accumulating them. This method
helps in identifying the same object with a simple optical flow trace and assigns
an ID. Figure 3 shows this process.

Update 3D Bounding Box Using Optical Flow. We used a simple method
to connect objects between the two frames F t and F t−1. In the previous process,
F t and F t−1 already have label-mapped bounding box of the object bt

i ∈ Bt. The
bounding box of the classified objects in the image and internal feature points
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Fig. 3. Process of aligning LiDAR edges of previous frame and current frame in 3D
space by using optical flow.

are matched using the optical flow in the two frames F t and F t−1, and an ID is
assigned to the most matched box. To track the points through the optical flow,
a feature map is needed to compare the similarity between the two frames. In
the proposed system, a convolutional feature map for learning is generated from
the R-FCN architecture. This feature map contains many characteristics that
can represent a 2D class. The convolutional feature map of the R-FCN can be
shared without any separate process as shown in Fig. 1(c). We select 10 feature
points with the highest response in the bounding box. The feature points are
traced through the optical flow to obtain the results in the adjacent frame. For
this reason, optical flow has a simple configuration because all processes except
the searching process are omitted. This can be summarized as follows.

bt
i = max(

∑
(OF (bt−1

i )) (6)

where bt
i is the ID of the bounding box at time t. This explores 10 points in

each bounding box bt−1
i at time t − 1 through the optical flow using the Lucas

Kanade method [10] at time t. The box with the largest number of points is
given the same ID as the bounding box at time t − 1. If the ID is matched, we
accumulate the points by warping st−1

i contained in the bounding box to the
reference coordinates of st

i at time t. This process makes the density of the LiDAR
point edges uniform. After that, st−1

i , which is the edge in the bounding box of
F t−1, is matched with si of F t, and the average orientation of the merged edges
is newly calculated to update the 3D bounding box. Finally, the 3D environment
is reconstructed.

3 Experimental Results

3.1 Implementation Details

We implemented our proposed method using the caffe framework with the
NVIDIA TITAN X GPU. The Faster R-CNN [11] or R-FCN was originally
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trained on the PASCAL VOC dataset [4]. In our method, we trained and tested
R-FCN on KITTI Dataset to utilize the 3D LiDAR data in the driving environ-
ment and test the orientation of the vehicle, which is a rigid body model. The
performance is quantitatively evaluated by comparing the results of other stud-
ies on the KITTI benchmark with mean Average Precision (mAP) and Average
Orientation similarity (AOS).

3.2 KITTI Detection Accuracy

We first trained the R-FCN using the KITTI object data set and tracking
sequence, which is a common data set wherein the CCD and LiDAR information
are employed. In the training phase, it was trained in four classes: car, pedes-
trian, cyclist, and background. In the KITTI object dataset, 6,000 of the 7,481
target training sets were used for training and the remaining 1481 were used for
the testing. We also used 8,008 training sets for the tracking sequence. As the
proposed method does not require additional learning for LiDAR, there is no
need to change the structure of the R-FCN to learn the CCD images. Because
the valid range of the LiDAR sensor data given in the KITTI data set is approx-
imately 50m, we cannot detect the objects outside the LiDAR sensing range,
even though they exist in the CCD image. Table 1 compares the object detec-
tion rate with that obtained using the state-of-the-art method by measuring the
mean average precision (mAP) of the three classes. The accuracy of the box
with the Intersection-of-Union (IOU) threshold of 50% or above with respect
to the ground truth area was measured, and the results were good for car and
pedestrian. However, in the case of a cyclist, the mAP score is relatively low
because a box proposal is not often generated in a sufficient size.

Table 1. Results from the KITTI database of this study are compared with those
obtained using state-of-the-art methods. As the effective measurement distance of the
LIDAR SENSOR is approximately 50 m, hard difficulty is not tested

Car Pedestrian Cyclist

Method E M E M E M

Regionlet 84.75 76.45 73.14 61.15 70.41 58.72

3DVP 87.46 75.77

SubCat 84.14 75.46

SDP 90.33 83.53 77.74 64.19 74.08 61.31

Ours 95.44 88.56 81.76 65.70 72.09 60.91

Table 1 compares the object detection rate with the state-of-the-art meth-
ods by measuring the mean average precision (mAP) of the three classes. The
accuracy of the box with the IOU threshold of 50% or above with respect to the
ground truth area was measured, and the results were good for car and pedes-
trian. However, in the case of a cyclist, the LiDAR points are not uniformly
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distributed depending on the spoke shape of the bicycle wheels, and the mAP
score is relatively low because a box proposal is not often generated in a sufficient
size.

Table 2 presents the comparison of the accuracy and computation time of
this study with those of other proposal generators. All classification networks
used R-FCN. Table 3 presents the mAP changes with the variation in the IOU
ratio compared to the ground truth data. As listed in Table 3, the overlap ratio
is higher than that of the conventional region proposal network (RPN) [11] or
selective search (SS) [12]. These methods are used to generate proposals using the
internal convolutional feature map of the CNN and conventional image features.
This is because the bounding box near the original class is created and fitted
using the sub information of each class. In addition, as shown in Table 2, our
method is faster than existing methods with use separate proposal generators.

Table 2. Comparison of mAPs in KITTI dataset by proposal-generation method used
for R-FCN. For comparing with other studies, learning of R-FCN was conducted at
PASCAL VOC 2007 and 2012.

Training data Test data mAP (%) Test time (sec.)

RPN+Faster R-CNN 07+12 KITTI 75.7 0.37

RPN+R-FCN 07+12 KITTI 77.4 0.20

SS+R-FCN 07+12 KITTI 80.4 2.21

Ours+R-FCN 07+12 KITTI 82.4 0.17

Table 3. mAP change based on IOU of CAR category. The proposed method shows a
higher overlap ratio than the image-based proposal generator (e.g., SS) in the overlap
ratio with ground truth.

Training data Test data AP@ 0.5 AP@ 0.7 AP@ 0.9

RPN+R-FCN 07+12 KITTI (car) 84.8 77.4 55.2

SS+R-FCN 07+12 KITTI (car) 86.3 80.4 58.4

Ours+R-FCN 07+12 KITTI (car) 89.7 82.4 77.2

3.3 KITTI Orientation Accuracy

The official 3D measure of the KITTI data set is the average orientation similar-
ity (AOS), which combines average cosine distance similarity with the 2D-object
detection performance. In other words, as the AOS is performed after object
detection and classification, the upper limit of the AOS is limited to the AP.
The Orientation Score (OS) can be calculated by (1 + cos(Δθ)/2, and the error
for the angle can be calculated by (2×OS − 1). In the KITTI dataset, the error
tolerance is 3/6 for easy/moderate case, respectively. Table 4 shows the results.
It can be confirmed that the performance of our method is better than the latest
approaches in evaluating a car.
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Table 4. AOS comparison in car and cyclist classes. The performance of the car class
near the straight line of the shape is very good, and the result obtained for the cyclist
with the shape change shows a relatively bad result.

Car Cyclist

Method E M E M

3DOP 91.44 86.10 70.13 58.68

Mono3D 91.01 86.62 65.56 54.97

SubCNN 90.67 88.62 72.00 63.65

Deep3Dbox 92.90 88.75 69.16 59.87

Ours 94.22 88.95 70.11 54.34

4 Conclusion

In this study, we have described a simple yet effective way to detect and esti-
mate the pose of a 3D object for autonomous driving. We created LiDAR point
clouds in 2D and 3D spaces to generate proposals based on similarities between
the 2D corners made up of the LiDAR points. We used the proposal as an
input to the R-FCN to classify the objects. Thereafter, we added sub-category
information corresponding to the class label and edge orientation to create a
3D-bounding box. We also made the 3D LiDAR information more robust by
matching the LiDAR edges of the previous and current frames. As the LiDAR
edge is updated, the orientation of the LiDAR edge becomes more sophisticated
to estimate the 3D pose. As a result, our research has achieved better results in
terms of accuracy and speed compared with the latest research.The 3D bound-
ing boxes helps in restoring the 3D object to near-ground truth at the correct
position even though they are only partially represented in the CCD camera
view because of the occlusion or truncation. In addition, our method is efficient
because the proposals are generated without duplication in the area where the
object could exist. Hence, the computation time is significantly reduced. How-
ever, an alternative method is needed to find objects outside the sensing range
of the LiDAR. Moreover, additional studies should be conducted to discriminate
the front and back sides of the 3D bounding box.
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Abstract. This paper focuses on near infrared (NIR) image colorization
by using a Conditional Deep Convolutional Generative Adversarial Net-
work (CDCGAN) architecture model. The proposed architecture is based
on the usage of a conditional probabilistic generative model. Firstly, it
learns to colorize the given input image, by using a triplet model archi-
tecture that tackle every channel in an independent way. In the pro-
posed model, the final layer of red channel consider the infrared image
to enhance the details, resulting in a sharp RGB image. Then, in the
second stage, a discriminative model is used to estimate the probability
that the generated image came from the training dataset, rather than the
image automatically generated. Experimental results with a large set of
real images are provided showing the validity of the proposed approach.
Additionally, the proposed approach is compared with a state of the art
approach showing better results.

Keywords: CNN in multispectral imaging · Image colorization

1 Introduction

Image acquisition devices have largely expanded in recent years, mainly due to
the decrease in price of electronics together with the increase in computational
power. This increase in sensor technology has resulted in a large family of images,
able to capture different information (from different spectral bands) or comple-
mentary information (2D, 3D, 4D); hence, we can have: HD 2D images; video
sequences at a high frame rate; panoramic 3D images; multispectral images;
just to mention a few. In spite of the large amount of possibilities, when the
information needs to be provided to a final user, the classical RGB represen-
tation is preferred. This preference is supported by the fact that human visual
perception system is sensitive to (400–700 nm); hence, representing the informa-
tion in that range helps user understanding. In this context, the current paper
tackles the near infrared (NIR) image colorization, trying to generate realis-
tic RGB representations. Different applications could take advantage of this
c© Springer International Publishing AG 2017
S. Battiato et al. (Eds.): ICIAP 2017, Part I, LNCS 10484, pp. 287–297, 2017.
https://doi.org/10.1007/978-3-319-68560-1_26
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contribution—infrared sensors can be incorporated for instance in driving assis-
tance applications by providing realistic colored representations to the driver,
while the image processing can be automatically performed by the system in
the infrared domain (e.g., semantic segmentation at the material level avoiding
classical problems related with the color of the object surface).

The NIR spectral band is the closest in wavelength to the radiation detectable
by the human eye; hence, NIR images share several properties with visible
images. The interest of using NIR images is related with their capability to
segment images according to the object’s material. Surface reflection in the NIR
spectral band is material dependent, for instance, most pigments used for mater-
ial colorization are somewhat transparent to NIR. This means that the difference
in the NIR intensities is not only due to the particular color of the material, but
also to the absorption and reflectance of dyes.

The absorption/reflectance properties mentioned above are used for instance
in remote sensing applications for crop stress and weed/pest infestations. NIR
images are also widely used in video surveillance applications since it is easier
to detect different objects from a given scene. In these two contexts (i.e., remote
sensing and video surveillance), it is quite difficult for users to orientate when
NIR images are provided, since the lack of color discrimination or wrong color
deploy. In this work a neural network based approach for NIR image coloriza-
tion is proposed. Although the problem shares some particularities with image
colorization (e.g., [1,2]) and color correction/transfer (e.g., [3,4]) there are some
notable differences. First, in the image colorization domain—gray scale image to
RGB—there are some clues, such as the fact that luminance is given by grayscale
input, so only the chrominance needs to be estimated. Secondly, in the case of
color correction/transfer techniques, in general three channels are given as input
to obtain the new representation in the new three dimensional space. In the par-
ticular problem tackled in this work (NIR to visible spectrum representation)
a single channel is mapped into a three dimensional space, making it a diffi-
cult and challenging problem. The manuscript is organized as follows. Related
works are presented in Sect. 2. Then, the proposed approach is detailed in Sect. 3.
Experimental results with a large set of images are presented in Sect. 4. Finally,
conclusions are given in Sect. 5.

2 Related Work

The problem tackled in this paper is related with infrared image colorization, as
mentioned before, somehow it shares some common problems with monocromatic
image colorization that has been largely studied during last decades. Colorization
technique algorithms mostly differ in the ways they obtain and treat the data for
modeling the correspondences between grayscale and color. There have been a
lot of techniques, like spatial and frequency based variational methods, in which
obtain perceptually inspired color and contrast enhancement of digital images,
and the color logarithmic image processing (CoLIP) and antagonist space, Gavet
et al. [5] design a framework that defines a vectorial space for color images.
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It illustrates the representation of the chromaticity diagram with color modifi-
cation application, namely white balance correction and color transfer. Another
technique is the grayscale image matting and colorization, Chen et al. [6] present
a variation of a matting algorithm with the introduction of alpha’s distribution
and gradient into the Bayesian framework and an efficient optimization scheme.
It can effectively handle objects with intricate and vision sensitive boundaries,
such as hair strands or facial organs, plus they combine this algorithm with the
color transferring techniques to obtain his colorization scheme. Welsh et al. [7]
describe a semi-automatic technique for colorizing a grayscale image by trans-
ferring color from a reference color image. They examine the luminance values
in the neighborhood of each pixel in the target image and transfer the color
from pixels with matching neighborhoods in the reference image. This technique
works well on images where differently colored regions give rise to distinct lumi-
nance clusters, or possess distinct textures. In other cases, the user must direct
the search for matching pixels by specifying swatches indicating corresponding
regions in the two images. It is also difficult to fine-tune the outcome selectively
in problematic areas. There are other approaches like colorization by example; in
[8] an algorithm that colorizes one or more input grayscale images is presented.
It is based on a partially segmented reference color image. By partial segmenta-
tion they assume that one or more mutually disjoint regions in the image have
been established, and each region has been assigned to a unique label.

The approaches presented above have been implemented using classical image
processing techniques. However, recently Convolutional Neural Network (CNN)
based approaches are becoming the dominant paradigm in almost every com-
puter vision task. CNNs have shown outstanding results in various and diverse
computer vision tasks such as stereo vision [9], image classification [10] or even
difficult problems related with cross-spectral domains [11] outperforming conven-
tional hand-made approaches. Hence, we can find some recent image colorization
approaches based on deep learning, exploiting to the maximum the capacities
of this type of convolutional neural networks. As an example, we can mention
the work presented in [2]. The authors propose a fully automatic approach that
produces brilliant and sharpen image color. They model the unknown uncer-
tainty of the desaturated colorization levels designing it as a classification task
and use class-rebalancing at training time to augment the diversity of colors
in the result. On the contrary, [12] presents a technique that combines both
global priors and local image features. Based on a CNN a fusion layer merges
local information, dependent on small image patches, with global priors com-
puted using the entire image. The model is trained in an end-to-end fashion, so
this architecture can process images of any resolution. They leverage an existing
large-scale scene classification database to train the model, exploiting the class
labels of the dataset to more efficiently and discriminatively learn the global
priors. In [13], a recent research on colorization, addressing images from the
infrared spectrum, has been presented. It uses convolutional neural networks to
perform an automatic integrated colorization from a single channel NIR image to
RGB images. The approach is based on a deep multi-scale convolutional neural
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network to perform a direct estimation of the low RGB frequency values. The
main problem with this approach lies on the blur results generated by the multi-
scale approach. For that reason it requires a final step that filters the raw output
of obtained image from the CNN and transfers the details of the input image to
the final output image. Finally, also based on the usage of the CNN framework,
[14] proposes a NIR image colorization using a Deep Convolutional Generative
Adversarial Network (DCGAN). In that work, a colorization model is obtained
based on a flat GAN architecture where all the colors are learned at once from
the given input NIR image. This architecture has limitations since all the colors
are considered together.

Generative Adversarial Networks (GANs) are a class of neural networks
which have gained popularity in recent years. They allow a network to learn to
generate data with the same internal structure as other data. GANs are powerful
and flexible tools, one of its more common applications is image generation. It is
a framework presented on [15] for estimating generative models via an adversar-
ial process, in which simultaneously two models are trained: a generative model
G that captures the data distribution, and a discriminative model D that esti-
mates the probability that a sample came from the training data rather than
G. The training procedure for G is to maximize the probability of D making
a mistake. This framework corresponds to a minimax two-player game. In the
space of arbitrary functions G and D, a unique solution exists, with G recover-
ing the training data distribution and D equal to 1/2 everywhere. According to
[16], to learn the generator’s distribution pg over data x , the generator builds a
mapping function from a prior noise distribution pz(z) to a data space G(z; θg).
And the discriminator, D(x; θd), outputs a single scalar representing the proba-
bility that x came from training data rather than pg. G and D are both trained
simultaneously, the parameters for G are adjusted to minimize log(1−D(G(z)))
and for D to minimize logD(X) with a value function V (G,D):

min

G

max

D
V (D,G) = Ex ∼p data(x)[logD(x)] + (1)

Ez ∼p data(z)[log(1 − D(G(z)))].

Generative adversarial nets can be extended to a conditional model if both
the generator and discriminator are conditioned on some extra information y.
This information could be any kind of auxiliary information, such as class labels
or data from other modalities. We can perform the conditioning by feeding y
into both discriminator and generator as additional input layer. The objective
function of a two-player minimax game would be as :

min

G

max

D
V (D,G) = Ex ∼p data(x)[logD(x|y)] + (2)

Ez ∼p data(z)[log(1 − D(G(z|y)))].

In order to improve the efficiency of the generative adversarial networks, [17]
proposes some techniques, one of them named the virtual batch normalization;
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it allows to significantly improve the network optimization using the statistics of
each set of training batches. The main disadvantage is that this process is com-
putationally expensive. Our proposal is based on designing a generative adver-
sarial deep learning architecture that allows the colorization of images of the
near infrared spectrum, so that they can be represented in the visible spectrum.
The following section will explain in detail the proposed network model.

3 Proposed Approach

This section presents the approach proposed for NIR image colorization. As
mentioned above, a recent work on colorization [14] has proposed the usage of a
deep convolutional adversarial generative learning network. It is based on a tra-
ditional scheme of layers in a deep network. In the current work we also propose
the usage of a conditional DCGAN but in a triplet learning layers architecture
scheme. These models have been used to solve other types of problems such as
learning local characteristics, feature extraction, similarity learning, face recogni-
tion, etc. Based on the results that have been obtained on this type of solutions,
where improvements in accuracy and performance have been obtained, we pro-
pose the usage of a learning model that allows the multiple representation of
each of the channels of an image of the visible spectrum (R, G, B). Therefore,
the model will receive as input a near infrared patch (NIR), with a Gaussian
noise added in each channel of the image patch to generate the necessary vari-
ability to generate more diversity of colors, to be able to generalize the learning
of the colorization process. A l1 regularization term has been added on a single
layer in order to prevent the coefficients to fit so perfectly to overfit, which can
improve the generalization capability of the model.

A Conditional DCGAN network based architecture is selected due to several
reasons: (i) the learning is conditioned on NIR images from the source domain;
(ii) its fast convergence capability; (iii) the capacity of the generator model to
easily serve as a density model of the training data; and (iv) sampling is simple
and efficient. The network is intended to learn to generate new samples from
an unknown probability distribution. In our case, the generator network has
been modified to use a triplet to represent the learning of each image channel
independently; at the output of the generator network, the three resulting image
channels are recombined to generate the RGB image. This will be validated by
the discriminative network, which will evaluate the probability that the colorized
image (RGB), is similar to the real one that is used as ground truth. Additionally,
in the generator model, in order to obtain a true color, the DCGAN framework is
reformulated for a conditional generative image modeling tuple. In other words,
the generative model G(z; θg) is trained from a near infrared image plus Gaussian
noise, in order to produce a colored RGB image; additionally, a discriminative
model D(z; θd) is trained to assign the correct label to the generated colored
image, according to the provided real color image, which is used as a ground
truth. Variables (θg) and (θd) represent the weighting values for the generative
and discriminative networks.
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The CDCGAN network has been trained using Stochastic AdamOptimazer
since it prevents overfitting and leads to convergence faster. Furthermore, it is
computationally efficient, has little memory requirements, is invariant to diago-
nal rescaling of the gradients, and is well suited for problems that are large in
terms of data and/or parameters. Our image dataset was normalized in a (−1,1)
range and an additive Gaussian Distribution noise with a standard deviation of
0.00011, 0.00012, 0.00013 added to each image channel of the proposed triplet
model. The following hyper-parameters were used during the learning process:
learning rate 0.0002 for the generator and the discriminator networks respec-
tively; epsilon = 1e-08; exponential decay rate for the 1st moment momentum
0.5 for discriminator and 0.4 for the generator; weight initializer with a standard
deviation of 0.00282; l1 weight regularizer; weight decay 1e-5; leak relu 0.2 and
patch’s size of 64 × 64.

The Triplet architecture of the baseline model is conformed by convolutional,
de-convolutional, relu, leak-relu, fully connected and activation function tanh
and sigmoid for generator and discriminator networks respectively. Addition-
ally, every layer of the model uses batch normalization for training any type
of mapping that consists of multiple composition of affine transformation with
element-wise nonlinearity and do not stuck on saturation mode. It is very impor-
tant to maintain the spatial information in the generator model, there is not
pooling and drop-out layers and only the stride of 1 is used to avoid down-
size the image shape. To prevent overfitting we have added a l1 regularization
term (λ) in the generator model, this regularization has the particularity that
the weights matrix end up using only a small subset of their most important
inputs and become quite resistant to noise in the inputs; this characteristics is
very useful when the network try to learn which features are contributing to
the learning process. Park and Kang [18], present a color restoration method
that estimates the spectral intensity of the NIR band in each RGB color chan-
nel to effectively restores natural colors. According to the spectral sensitivity
of conventional cameras with the IR cut-off filter, the contribution of the NIR
spectral energy in each RGB color channel is greater in the red channel, hence
our architecture add the NIR band at the final red channel layer, this improve
the details of generated images, color and hue saturation. Figure 1 presents an
illustration of the proposed Triplet GAN architecture.

The generator (G) and discriminator (D) are both feedforward deep neural
networks that play a min-max game between one another. The generator takes
as an input a near infrared image blurred with a Gaussian noise patch of 64× 64
pixels, and transforms it into the form of the data we are interested in imitating,
in our case a RGB image. The discriminator takes as an input a set of data,
either real image (z) or generated image (G(z)), and produces a probability of
that data being real (P (z)). The discriminator is optimized in order to increase
the likelihood of giving a high probability to the real data (the ground truth
given image) and a low probability to the fake generated data (wrongly colored
NIR image), as introduced in [16]; thus, the conditional discriminator network
it is updated as follow:
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Fig. 1. Illustration of the network architecture used for NIR image colorization.

�θd

1
m

m∑

i=1

[logD(x(i)) + log(1 − D(G(y(i), z(i))))], (3)

where m is the number of patches in each batch, x is the ground truth image
and y is the colored NIR image generated by the network and z is the ran-
domly Gaussian sampled noise. The weights of the discriminator network (D)
are updated by ascending its stochastic gradient. On the other hand, the gener-
ator is then optimized in order to increase the probability of the generated data
being highly rated, it is updated as follow:

�θg

1
m

m∑

i=1

log(1 − D(G(y(i), z(i)))), (4)

where m is the number of samples in each batch and y is the colored NIR image
generated by the network and z is the randomly Gaussian sampled noise. Like
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in the previous case, the weights of the generator network (G) are updated by
descending its stochastic gradient.

4 Experimental Results

The proposed approach has been evaluated using NIR images and their cor-
responding RGB obtained from [19]. The urban and old-building categories
have been considered for evaluating the performance of the proposed approach.
Figure 2 presents two pairs of images from each of these categories. The urban
category contains 58 pairs of images of (1024 × 680 pixels), while the old-building
contains 51 pairs of images of (1024 × 680 pixels). From each of these categories
250.000 pairs of patches of (64 × 64 pixels) have been cropped both, in the NIR
images as well as in the corresponding RGB images. Additionally, 2500 pairs of
patches, per category, of (64 × 64 pixels) have been also generated for validation.
It should be noted that images are correctly registered, so that a pixel-to-pixel
correspondence is guaranteed.

Fig. 2. Pair of images (1024× 680 pixels) from [19], urban category (the two images in
the left side) and old-building category (the two images in the right side): (top) NIR
images to colorize; (bottom) RGB images used as ground truth. (Color figure online)

The CDCGAN network proposed in the current work for NIR image coloriza-
tion has been trained using a 3.2 eight core processor with 16 GB of memory
with a NVIDIA GeForce GTX970 GPU. On average every training process took
about 28 h. Results from the proposed architecture have been compared with
those obtained with the GAN model presented in [14].

Colored images are referred to as (RGBNIR) while the corresponding RGB
images, provided in the given data sets, are referred to as (RGBGT ) and used
as ground truth. The quantitative evaluation consists of measuring at every
pixel the angular error (AE) between the obtained result (RGBNIR) and the
corresponding ground truth value (RGBGT ):

AngularError = cos−1

(
dot(RGBNIR, RGBGT )

norm(RGBNIR) ∗ norm(RGBGT )

)
. (5)
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This angular error is computed over every single pixel of the whole set of
images used for validation. Table 1 presents the average angular errors (AE)
obtained with the proposed approach for the two categories together with the
results obtained with [14] for the same categories. It can be appreciated that
in all the cases the results with the proposed CDCGAN are better that those
obtained with [14].

Table 1. Average angular errors obtained with the approach presented in [14] (flat
DCGAN) and with the proposed Triplet based CDCGAN architecture.

Category [14] Prop. Approach (CDCGAN)

Urban 6.15 5.94

Old-building 6.95 5.71

Qualitative results are presented in Figs. 3 and 4. Figure 3 shows NIR images
from the urban category colorized with the proposed CDCGAN network and with
the approach presented in [14]; ground truth images (last column) are depicted
to appreciate the similarity reached with the proposed approach. Similar results
have been obtained when images from the old-building category are colorized

Fig. 3. (1st.Col) NIR patches from the Urban category . (2nd.Col) Results from the
approach presented in [14] (flat DCGAN). (3rd.Col) Colorization obtained with the
proposed approach (CDCGAN network). (4th.Col) Ground truth images. (Color figure
online)
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Fig. 4. (1st.Col) NIR patches from the Old-Building category . (2nd.Col) Results
from the approach presented in [14] (flat DCGAN). (3rd.Col) Colorization obtained
with the proposed approach (CDCGAN network). (4th.Col) Ground truth images.
(Color figure online)

with the proposed CDCGAN network (see Fig. 4). As mentioned above, the
usage of a conditional triplet model allows to improve results with respect to the
flat model [14]. This improvement can be particularly appreciated in both the
color and the edges of the colorized images.

5 Conclusions

This paper tackles the challenging problem of NIR image colorization by using
a novel Conditional Generative Adversarial Network model. Results have shown
that in most of the cases the network is able to obtain a reliable RGB repre-
sentation of the given NIR image. Comparisons with a previous approach shows
considerable improvements. Future work will be focused on evaluating others
network architectures, like auto-encoders, cycle-consistent adversarial networks,
which have shown appealing results in recent works. Additionally, increasing the
number of images to train, in particular the color variability, will be considered.
Finally, the proposed approach will be tested in other image categories.
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Abstract. Even though Convolutional Neural Networks have had the
best accuracy in the last few years, they have a price in term of com-
putational complexity and memory footprint, due to a large number
of multiply-accumulate operations and model parameters. For embed-
ded systems, this complexity severely limits the opportunities to reduce
power consumption, which is dominated by memory read and write
operations. Anticipating the oncoming integration into intelligent sen-
sor devices, we compare hand-crafted features for the detection of a lim-
ited number of objects against some typical convolutional neural network
architectures. Experiments on some state-of-the-art datasets, addressing
detection tasks, show that for some problems the increased complex-
ity of neural networks is not reflected by a large increase in accuracy.
Moreover, our analysis suggests that for embedded devices hand-crafted
features are still competitive in terms of accuracy/complexity trade-offs.

Keywords: Aggregated channel features · Convolutional neural
networks · Detection

1 Introduction

The accuracy of object detection algorithms has improved over the years, on one
hand thanks to enriched feature representations (multi-channel, multi-resolution,
multi-orientation, etc.) and on the other hand due to the adoption of Convolu-
tional neural networks (CNN), at the price of an increased computational cost,
especially in the case of neural-based approaches. The complexity and execution
time of detection algorithms have a great impact on many visual recognition
applications, such as robotics, automotive safety, and human-computer interac-
tion. In these contexts, real-time execution is crucial.

In this work, we perform an analysis and comparison of feature-based ver-
sus CNN-based approaches for object detection both in terms of accuracy and
execution time. We focus on the automotive use case, where the task consists in
the localization and recognition of three main categories: pedestrians, cars and
traffic signs. For the hand-crafted approaches we rely on the well performing
c© Springer International Publishing AG 2017
S. Battiato et al. (Eds.): ICIAP 2017, Part I, LNCS 10484, pp. 298–308, 2017.
https://doi.org/10.1007/978-3-319-68560-1_27
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Aggregated Channel Features (ACF) detector [1], further optimizing it in terms
of memory and speed, and we train three different optimized ACF detectors, one
for each class. Then, following the approach implemented by Tomé et al. [2], the
three detectors generate region proposals for fine-tuned AlexNet [3] networks,
incrementally trained to classify pedestrians, cars and traffic signs against the
background. Finally, we test an approach entirely based on neural networks, You
Only Look Once (YOLO) [4] retrained on the same three categories.

The remainder of the paper is structured as follows: Sect. 2, after a brief
excursus on state-of-the-art object detection methods, describes in depth the
hand-crafted and CNN-based approaches exploited in this work; Sect. 3 reports
the experimental evaluation of the detectors, in terms of accuracy and complex-
ity, on a choice of publicly available datasets; finally, Sect. 4 concludes the paper
with some remarks and hints on future work.

2 Object Detection

Given the importance of detecting pedestrians, cars, and traffic signs in auto-
motive, a large number of approaches have been tried over the years. Among
the three categories of objects analyzed in this paper, the most important and
challenging, because of its large intra-class variability, is “pedestrian”. For this
reason, most of the efforts in developing new approaches have been focused on it.

2.1 Traditional Approaches

Traditional approaches for object detection usually employ a region proposal
algorithm which selects regions from the input image at multiple scales. A high-
level feature representation is extracted from the region, which is finally sent to
a classifier to establish if that region contains the object or not.

Different region proposal algorithms exist: some of them are class-agnostic
and hence they can be quickly adapted to any object detection tasks, but they
have the drawback of giving to the subsequent stages an excessive number of
negative regions that have to be successively rejected. The problem is lessened
by designing a region proposal method tailored on the specific object detection
task, to reject most of the negative regions early in the pipeline but preserving
as many positive regions as possible.

The region proposal stage is followed by features extraction, which has greatly
improved over the years thanks to enriched feature representations. The box-
shaped filters, proposed by Viola and Jones [5] in 2003, have been superseded by
more complex and powerful features, such as Histogram of Oriented Gradients
(HOG) [6]. HOG features in turn have been the starting point of even richer and
more complex approaches. For example, Felzenszwalb et al. [7] have improved
accuracy by combining HOG with a Deformable Part Model and Dollár et al.
[1] have proposed the Aggregated Channel Features (ACF) descriptor, which
combines HOG with normalized gradient magnitude and LUV color channels.
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A classifier, such as AdaBoost, Support Vector Machines (SVM), etc. finally
decides if the object of interest is in the current region.

2.2 Neural Networks

In the last five years, Convolutional Neural Networks have shown their supe-
riority, in terms of accuracy over hand-crafted features, in a variety of com-
puter vision tasks such as image classification, object detection and semantic
segmentation.

In the field of object detection, Regions with CNN (R-CNN) [8] has been
widely used due to its generality and fairly good performances. Similarly to tra-
ditional approaches, a region proposal algorithm (typically Selective Search [9])
extracts candidate regions, on which CNN features are extracted. Either a SVM
classifier is trained on the candidate region features to separate between object
classes and background, or the CNN can be directly fine-tuned to discriminate
the classes of interest from the background. After classification a non-maxima
suppression stage is usually applied to refine the selected bounding boxes.

This complex pipeline is quite slow, especially if the number of proposed
regions is high. One possible solution is to drastically reduce the number of
regions, by e.g. applying a task-specific region proposal method to reject most of
the negative examples. Tomé et al. [2] analyze different region proposal methods
followed by a CNN-based representation, comparing them in terms of accuracy
and efficiency for real-time applications and demonstrating that tailored region
proposal algorithms (such as Local Decorrelated Channel Features, LDCF [10],
or ACF) consistently outperform general purpose approaches (e.g. sliding win-
dow or Selective Search) and they achieve much lower miss rates after the CNN
stage. Moreover, LDCF and ACF optimizations further speed up the execution
of region proposal.

The running time of R-CNN can be reduced by sharing convolutions across
proposals, as done in Spatial Pyramid Pooling [11] and Fast R-CNN [12]. To
reduce the execution time of the region proposal stage itself, the Faster R-CNN
[13] approach introduces the Region Proposal Network (RPN), which share the
same convolutional layers of the classification stage. An even more integrated
approach is YOLO [4], where the object detection problem is reformulated as
a regression problem matching spatially separated bounding boxes and class
probabilities to the ground truth. In this way, a single network is optimized
end-to-end directly on detection performances.

2.3 Optimized Aggregated Channel Feature Detection

The Aggregated Channel Features (ACF) detector has been optimized in mem-
ory by compressing the classifier parameters, which represent a large part of
ACF’s memory requirements, with a non-linear scalar quantization.

ACF extracts a set of features from non-overlapped blocks on a multi-
resolution pyramid constructed from the input image. The ACF classifier is
a boosted cascade of small decision trees: each tree is a set of nodes defined
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as {(i, v), s} where the tuple (i, v) represents an intermediate node as a feature
lookup index i and a comparison threshold v and leaf nodes are represented by a
final score s. The index i assumes values between 0 and whc, where w and h are
the width and height of the detection window measured in feature blocks and
c is the number of features per block. See Table 1 for a summary of the tested
models and their parameters, including the minimum amount of bits required to
encode the feature index values.

Table 1. Parameters and size of the ACF models.

Model Trees Block size Scores Thresholds Index bits Size (KB)

INRIA 4 2048 8192 6144 13 65.8

Caltech 2 4096 113252 109156 13 1042.0

Compcars 4 2048 8192 6144 12 65.0

Traffic signs 4 400 3200 2800 10 26.9

A trained tree cascade can have a large number of parameters, ranging from
10 s of KB to a few MBs, but the model size can be reduced by employing scalar
quantization on the parameters of the trees. Thresholds and scores are quantized
separately, because they have different ranges and statistics; for the same reason,
different centroids for thresholds of different types of features (color channels,
gradient magnitude and HOG) are used. If b is the original element size in bits
and Nc is the number of centroids in the scalar quantization, the theoretical
compression ratio is:

r =
�log2 Nc�

b
(1)

However, the real compression ratio will be lower, as the index bits cannot
be compressed.

There is a notable relation between the centroids of the tree thresholds and
the quantization of the features; more precisely, the centroids of the quantized
thresholds are the quantization thresholds for a feature quantization scheme. To
see this, consider that already in the uncompressed case the set of all the thresh-
olds in a tree cascade is partitioning the space of the feature values in a number
of discrete intervals. If N distinct thresholds are present in the cascade and they
are sorted in ascending order, the intervals are [−∞, t1[, [t1, t2[, . . . [tN ,∞[ and
they implicitly quantize the features in N + 1 levels. However, if the thresholds
are quantized e.g. in 2k − 1 � N levels, there will be only 2k distinct intervals,
which is equivalent to quantize features with 2k bits. In this case, both features
and threshold will be represented by k bits.

The difference between feature values inside an interval has no impact on
the result of the classifier, and thus after threshold quantization, the additional
feature quantization has no further penalty on accuracy. Moreover, the com-
parison may be performed directly in the compressed domain if threshold and
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feature centroids are coded in ascending order. Let the feature centroid be nf

(n ∈ {0, . . . , 2n − 1}) and the code of the threshold in the current node be nt: the
left branch in the tree will be selected if nf ≤ nt and the right branch otherwise.
The only operation required is an integer magnitude comparator, which can be
efficiently implemented on specialized hardware.

2.4 Convolutional Neural Network Detection

We decided to compare two different CNN-based approaches, a region-based
one (R-CNN) and one completely based on neural networks (YOLO), trying to
address low complexity target platforms and real time applications.

In R-CNN, we decided to exploit the already trained ACF detectors in the
proposal stage to discard most false positives in the early stages of the pipeline.
Since learning the parameters of a CNN from scratch requires large annotated
datasets, we start from the general-purpose AlexNet neural network, trained on
the Imagenet dataset [17] and we fine-tuned it for a few epochs on the target
dataset using a small learning rate to adapt the network parameters to the new
task. Moreover, we trained three models to incrementally classify pedestrians,
pedestrians and cars and finally all the three classes against the background. For
training we used the well-known Caffe framework [23].

The CNN has been trained on windows cropped from the images in the
dataset; the windows have been generated by the ACF detectors for pedestrians,
cars and traffic signs ran with a low classification threshold. The ground truth
annotations (described in Sect. 3.1) have been used to assign the windows to the
right category, using the “background” class for false positives. By doing so, the
CNN classifier learns to reject most of the false positives generated by the region
proposal algorithm and it increases accuracy. As done by Tomé et al. in [2], the
regions identified by the detectors have been enlarged with padding pixels to
mitigate the issue of imprecise localization. In addition to the false positives
generated by the ACF detectors, the background category has been populated
with random negative regions and the final dataset is further refined by a quick
visual inspection.

To assess the performances of a fully CNN-based detection approach we
selected YOLO, because its low complexity is well suited for a real-time applica-
tion. In particular, we decided to exploit a low-complexity version, tiny-YOLO,
which is much faster than the original YOLO model but less accurate. This model
achieves in classification mode the same top-1 and top-5 accuracy as AlexNet but
with 1/10th of the parameters, since it lacks the large fully connected layers at the
end. Starting from the pre-trained model on Imagenet, we fine-tune the network
on the Cityscapes dataset (see Sect. 3.1) using the Darknet framework [24].

3 Experimental Evaluation

3.1 Datasets

We have have exploited different state of the art datasets for object detection
and in particular we have trained three ACF detectors on object-specific dataset.
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The pedestrian detector has been trained on the INRIA dataset and the more
challenging Caltech Pedestrians dataset. In Caltech, we used the “Reasonable”
setting for the train and test sets, which subsamples the original sequences by
30×. The car detector has been trained on the front/rear views in the Compre-
hensive Car (CompCars) dataset. The restriction on the viewpoint is justified
by the fact that a single ACF detector does not recognize well both front and
lateral views due to their different aspect ratio, and thus an additional detector
must be specifically trained on lateral views. Of the original 136,726 images, we
selected around 1500 rear views for training and test.

Following Mathias et al. [18], the traffic sign detector has been trained on
the German Traffic Signs Detection (GTSD) [19] and the Belgian Traffic Signs
Detection (BTSD) [20] datasets, two large image datasets captured in different
German and Belgian cities and containing a variety of light conditions. We have
merged the training and test sets of the two datasets to obtain a more robust
detector. We use the three annotated super-classes: mandatory (M), danger (D)
and prohibitory (P) and we have disregarded traffic signs which do not belong
to those super-classes.

Training and test splits for all datasets are shown in Table 2.

Table 2. Training and test splits for INRIA, Caltech, Compcars, the merged GTSD
and BTSD and Cityscapes datasets.

Training Testing

Pos. Neg. Pos. Neg.

INRIA 614 1218 288 453

Caltech 4250 4024

Compcars 968 484

GTSD+BTSD 2915 3594 1804 648

Cityscapes 5000 500

To evaluate the R-CNN detector, we trained and tested the pedestrian net-
works separately on the INRIA and Caltech dataset; we trained the car network
on the CompCars dataset restricted to rear views and the traffic sign detector on
Cityscapes [21]. The Cityscapes dataset contains urban street scenes exhibiting
a high variability, in terms of places (50 cities), weather conditions, seasons and
daytime light, hence it is suitable to mimic the behavior of the trained model
in real scenarios. Only segmentation annotations are currently available and
thus we generated object bounding boxes by extracting the rectangles enclosing
the segmentation polygons, which are annotated in Javascript Object Notation
(JSON) format.

The Cityscapes dataset with generated object annotations has also been
exploited to fine-tune the tiny-YOLO CNN, by including only the three cho-
sen classes (pedestrians, cars and traffic signs) and with the addition of the
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“car-group” and “person-group” categories. We choose this dataset for YOLO
as it is the only one to include annotations for all the three classes.

3.2 Metrics for Complexity and Accuracy

To assess computational complexity we compared the analyzed approaches on an
NVIDIA Jetson TK1, a development platform equipped with a 192-core NVIDIA
Kepler GPU, an NVIDIA quad-core ARM Cortex-A15 CPU and 2 GB of mem-
ory. We ported the detectors on this platform and we measured the average time
to process all the frames of a reference VGA video containing objects from the
three categories; then, we estimated the average frame rate.

More precisely, the ACF detector has been ported on ARM using the NEON
Single Instruction, Multiple Data (SIMD) instructions and multi-threading. For
the neural network approaches, the Caffe framework [23] has been compiled on
the platform with CUDA support and used to test both R-CNN and tiny-YOLO.
As the tiny-YOLO model is implemented in the Darknet framework [24], which
is not optimized for ARM platforms, we converted the trained model in the Caffe
format using our own version of the Caffe-yolo project [25] to support a wider
range of network architectures.

To assess accuracy, we chose the Log Average Miss Rate (LAMR) evaluation
metric proposed by Dollár et al. [22]. This metric summarizes detector perfor-
mance by averaging in the range 10−2 to 1 the miss rate at nine points in the
False Positives Per Image (FPPI) axis, evenly spaced in log-space. If the curves
are approximately linear in this range, the LAMR metric is a smoothed estimate
of the miss rate at 10−1 FPPI.

3.3 Accuracy Results

Table 3 reports the results in terms of LAMR and frames per second (fps) for
the ACF, R-CNN and YOLO detectors trained to recognize different objects
(pedestrians, cars and traffic signs) on different datasets. Performances are heav-
ily dependent on the specific dataset, as shown e.g. by the fact that the LAMR of
the ACF pedestrian detector is lower for the simpler INRIA dataset than it is for
the more challenging Caltech dataset. Moreover, the ACF traffic sign detector is
sensitive to the choice of training set: initially, we trained it only on the GTSD
dataset, achieving 9.21% on its test set; however, when the same model was
tested on the BTSD dataset to assess its generalization capability, performances
dropped to 16.52%. This large difference in performances can be ascribed to
the big discrepancy between the two datasets. To obtain a more robust detector
which can localize traffic signs even in adverse conditions (e.g. back-light), we
merged the two training sets, increasing data variability. By doing so, the per-
formances, assessed on the merged test sets, improved back to 9.21% LAMR,
now on a much challenging dataset.

As explained in Sect. 2.3, the ACF models have been optimized in memory, by
compressing thresholds and scores. Figure 1(a) shows the change in accuracy of
ACF models with increasing compression, measured in bits per parameter (both
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Table 3. Detection accuracy an speed on different datasets. The frames per second
(fps) measure is cumulative, that is, for traffic signs is the speed of running a detector
recognizing also cars and pedestrians (ACF trained on INRIA dataset).

Object Dataset ACF R-CNN YOLO

LAMR fps LAMR fps LAMR fps

Pedestrians INRIA 16.82 11 30.92 5.2 62.02 1.4

Caltech 29.2 2.6 28.3 1.98 84.7

Cars CompCars 2.93 10 2.06 4.11 12.55

Traffic signs GTSD+BTSD 9.21 8.5 10.97 3.99 27.35

for thresholds and scores). Up to moderate compression levels (4 bits/element)
the impact on accuracy is small, and higher compression rates affect mostly
models trained on difficult datasets (Caltech). Moreover, for compression rates of
3 bits/element or higher, the relative reduction in size is smaller, as the indexing
bits (term i in Sect. 2.3) starts to dominate the total size, as shown by Fig. 1(b)
and (c). The optimal compression level is thus 4 bits/element, which allows a
model reduction of around 4× with a loss in LAMR of less than 2% over different
datasets and object classes.

Fig. 1. Results of compression: classification error (LAMR) and model size. In
(a) classification error (LAMR) vs bits per element; in (b), model size for the INRIA
pedestrian, car and traffic sign models; in (c), model size for the Caltech pedestrian
model.

Table 3 also shows LAMR results for R-CNN. R-CNN LAMR is lower than
the ACF one both for pedestrians and cars categories, with the notable exception
of the INRIA dataset. The annotations in INRIA are incomplete [15] and a large
number of pedestrians in the background or partially occluded are not labeled.
A quick inspection of the negative examples selected from ACF proposals shows
significant overlap with the image of a person in a large fraction of them; as
CNN performance is sensitive to label noise, the mislabeled examples end up
decreasing the R-CNN accuracy.
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For traffic signs the LAMR of the R-CNN approach (10.97%) is slighlty
greater than the corresponding ACF detector (9.21%), because the CNN was
fine-tuned on the Cityscapes and has been evaluated on the merged German and
Belgian traffic signs test sets, by running the network on the regions proposed
by the ACF traffic signs detector. The network only discards false positives and
it cannot increase recall beyond the ACF one.

The tiny-YOLO detector has been fine-tuned on the challenging Cityscapes
dataset and its accuracy performances have been evaluated on the available
test set, obtaining high LAMR values for pedestrians, cars and traffic signs
categories (74.92%, 32.66% and 72.48%, respectively). These results mostly
depend on the high complexity of the dataset, which contains cars, pedestrians
and traffic signs in a variety of views (e.g. front/back/lateral), and the traffic
signs category includes many different kinds of street signs, not limited to the
mandatory/prohibitory/danger sub-classes. In order to have a fairer compari-
son between ACF/R-CNN on one side and tiny-YOLO on the other, we have
tested the latter on the INRIA, Caltech, CompCars and GTSD+BTSD datasets,
obtaining the results reported in Table 3. Despite having been trained on a com-
pletely different dataset, tiny-YOLO shows acceptable performances in detecting
cars, but performances drop in detecting traffic signs and especially pedestrians.
This is line with the well-known structural limit of YOLO and tiny-YOLO net-
works in recognizing small objects.

3.4 Complexity Results

As already explained, the complexity of ACF, RCNN and tiny-YOLO has been
evaluated by measuring the average frames per second on a reference VGA video
on the NVIDIA Jetson TK1 platform. Results are again reported in Table 3.
Since the tiny-YOLO model has been trained on the 3 categories as a whole,
complexity figures for one and two categories are not available.

4 Conclusion and Future Work

Our analysis on object detection based on convolutional neural networks reveals
that, when compared to an approach based on aggregation of hand crafted fea-
tures followed by a cascade-of-trees classifier, the latter can provide an accurate,
low memory and computational light detector in the automotive applications
modelized by the adopted datasets.

Not surprisingly, YOLO shows the worst performances in term of LAMR and
fps across all datasets and we had to go through multiple iterations to achieve
satisfying results, as the performances we obtained initially were worse than the
ones reported. Excluding YOLO, R-CNN on pedestrians decremented LAMR by
only 3% compared to ACF, while on traffic signs LAMR incremented by 19%
and by 84% on pedestrians/Inria. These are considered poor performances from
an implementation point of view, since R-CNN frame rate ranges between 41%
on cars and 76% on Caltech Pedestrians when compared to the ACF frame rate
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achieved on the NVIDIA Jetson TK1. This result is further exacerbated by the
fact that R-CNN is also exploiting the computational power of the embedded
GPU on top of the optimized ACF detector we developed, increasing the costs
in power consumption and silicon area required to implement the detector.

Our experiments confirmed the initial hypothesis that the increased complex-
ity of neural networks as implemented on the embedded systems under consid-
eration is not justified by a remarkable increase in accuracy, and in some cases,
such as traffic sign detection, neural networks even increased the miss ratio. We
are also aware that new neural network accelerators are designed and imple-
mented on non-GPU architectures for future smart sensors in order to overcome
the aforementioned issues: these architectures will certainly exploit the massive
parallelism of multiply and accumulate operations which dominates CNNs. In
this direction, further investigation of low-power and low-precision implemen-
tations may be promising, such as the binary neural networks approaches [26]
aimed at dramatically reducing memory and complexity costs while maintaining
adequate accuracy and robustness to noise.
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Abstract. Facial expressions provide important indications about
human emotions. The development of an automatic emotion recognition
method is a challenging task and has applications in several domains
of knowledge, such as behavior prediction, pattern recognition, enter-
tainment, interpersonal relations and human-computer interactions. An
automatic approach to emotion recognition based on facial expressions
robust to occlusions is proposed and evaluated in this work. Robust Prin-
cipal Component Analysis is employed to reconstruct the occluded facial
expressions. Facial expressions are extracted through different features
(Gabor Filters, Local Binary Patterns and Histogram of Oriented Gra-
dients), which are used to recognize the expressions by Support Vector
Machine (SVM) and K-Nearest Neighbor (KNN) classifiers. Experiments
conducted on three public datasets demonstrate the effectiveness of the
proposed methodology.

Keywords: Emotion recognition · Facial expression · Occluded images ·
Facial features · Pattern recognition · Image classification

1 Introduction

Emotions can be expressed by means of different forms, for instance, body ges-
tures, speech, cardiac rhythm, respiration, and facial expressions [16]. Facial
expressions allow humans to express emotions in an effective and natural non-
verbal communication.

Automatic recognition of human emotion plays an important role for research
on affective computing and has been recently investigated in several applications,
such as entertainment, human-computer interactions, behavior prediction, secu-
rity, among others. The universality hypothesis considers that there are seven
basic human facial expressions of emotions (anger, disgust, contempt, fear, hap-
piness, sadness and surprise) expressed through similar facial movements inde-
pendent on culture, age and gender.

The recognition of facial expressions can be classified into two main cate-
gories: sequence-based and frame-based. Frame-based approaches identify facial
expressions from a single image, whereas sequence-based recognition employs
temporal information over several images [16], such as head movement, skin
color variation, facial muscle movement, among other factors.
c© Springer International Publishing AG 2017
S. Battiato et al. (Eds.): ICIAP 2017, Part I, LNCS 10484, pp. 309–319, 2017.
https://doi.org/10.1007/978-3-319-68560-1_28
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Automatic recognition systems of facial expression commonly involve three
major stages: (i) facial detection, (ii) facial expression feature extraction and
representation, (iii) and expression recognition [16]. Most of the existing systems
do not deal with faces occluded, for instance, by sunglasses, hat, scarf, hands
and beard during the training process, which could affect the facial expression
recognition accuracy.

As main contribution of this work, a facial expression recognition approach
robust to occlusions composed of five main stages is proposed in this work. The
first step aims to perform the reconstruction of the facial expression under occlu-
sion based on the Dual Algorithm using Robust Principal Component Analysis
(RPCA) principles. The second one involves the automatic detection of facial
fiducial points. The third stage extracts three types of features: Gabor Fil-
ters, Local Binary Patterns and Histogram of Oriented Gradients. The fourth
step performs a dimensionality reduction through Principal Component Analy-
sis (PCA) and Linear Discriminant Analysis (LDA). The latter stage is focused
on occluded and non-occluded facial expression recognition, using Support Vec-
tor Machine (SVM) and K-Nearest Neighbor (KNN) classifiers. The proposed
methodology was evaluated on three facial expression databases: Cohn-Kanade
(CK+) [10], Japanese Female Facial Expression (JAFFE) [11] and MUG Facial
Expression [1] datasets.

Facial occlusions can deteriorate significantly the performance of a facial
expression recognition system. Despite being a challenging problem, our method-
ology was able to achieve high recognition accuracy rates for both occluded and
non-occluded images on the evaluated datasets. The results obtained with our
method were compared against other approaches available in the literature.

The remainder of the paper is structured as follows. Section 2 describes rele-
vant work related to the topic under investigation. Section 3 presents the method-
ology proposed in this work, including details on preprocessing, facial expression
reconstruction, facial feature extraction, feature reduction and facial expression
classification. Experiments conducted on three public datasets are described and
discussed in Sect. 4. Finally, conclusions and directions for future research are
presented in Sect. 5.

2 Related Work

Some approaches of the literature have explored the problem of emotion recog-
nition under the presence of partial obstruction (sunglasses, shadows, scarves,
facial hair, lights), since occlusion is frequent in real-world scenarios.

Bourel et al. [3] proposed a method for facial expression recognition with
occlusions of mouth, upper face and left/right half of the face from video frames,
based on a localized representation of facial expression features and on data
fusion. For tracking and recovering facial fiducial points, an enhanced Kanade-
Lucas tracker was used. Independent local spatio-temporal vectors were created
from geometrical relations between facial fiducial points. Local rank-weighted
KNN classifiers were employed in the classification step. Bourel et al. [4] also
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presented a technique for facial expression recognition robust to partial facial
occlusions and noisy data from image sequences, based on a state-based feature
model of spatially-localized facial dynamics, that consists in a scalar quantization
of the temporal evolution of geometric facial features.

Towner and Slater [14] described three techniques based on PCA to recover
the positions of the upper and lower facial fiducial points. The results showed
that more facial expression information is contained in the lower half of the
face, being less accurately the reconstruction of that part of the face. Zhang
et al. [15] proposed a method robust to occlusions using a Monte Carlo algo-
rithm to extract a set of Gabor based templates from image datasets, then
template matching is applied to find the most similar features located within
a space around the extracted templates, generating features robust to occlu-
sion. This approach conducted experiments on the Cohn-Kanade (CK) [7] and
the Japanese Female Facial Expression (JAFFE) [11] datasets by considering
different occluded facial regions, for instance, eyes, mouth, randomized patches
of different sizes, and transparent and solid glasses. Results showed that the
method is robust to eyes or mouth occlusions, achieving accuracy rates of 95.1%
(eye occlusion) and 90.80% (mouth occlusion) for CK dataset; and 80.30% (eye
occlusion) and 78.40% (mouth occlusion) for JAFFE dataset. However, by ran-
domly applying occluded patches over faces in both training and testing phases
(matched strategy), this approach obtained 75.00% and 48.80% recognition rates
for CK and JAFFE databases, respectively.

There are other techniques that focus on reconstructing texture appearance
features. Mao et al. [12] proposed an approach to robust facial expression recog-
nition. Initially, occlusions were detected using RPCA algorithm and saliency
detection. Occluded regions were filled by RPCA projection and a reweighted
AdaBoost algorithm was used for classification. The method was trained and
tested on both the Beihang University Facial Expression (BHUFE) and JAFFE
databases, performing experiments with hand, hair and sunglasses occlusions
separately, achieving accuracy rates of 59.30%, 84.80% and 68.80% respectively.

Jiang and Jia [6] performed several experiments considering eye and mouth
occlusions separately, where occluded facial regions were reconstructed through
PCA, Probabilistic PCA, RPCA, Dual and Augmented Lagrange Multiplier
(ALM) algorithms. Eigenfaces and Fisherfaces algorithms were then used for
feature extraction, whereas KNN and SVM classifiers were employed in the clas-
sification stage. The accuracy rates for eye and mouth occlusions were not supe-
rior to 76.57% and 72.73%, respectively.

Kotsia et al. [8] presented an analysis of partial occlusion effect on facial
expression recognition. It was concluded that occlusions on the left/right side
of the face did not affect recognition rates, i.e., that both regions contained less
discriminant information for facial expression recognition. Furthermore, mouth
occlusion caused a higher decrease in facial expression recognition performance
than eye occlusion, because mouth occlusion affected more the emotions of anger,
fear, happiness and sadness, whereas eye occlusion affected disgust and sur-
prise. Experiments were conducted on Cohn-Kanade [7] and JAFFE [11] data-
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bases, using Gabor wavelets and Discriminant Non-negative Matrix Factoriza-
tion (DNMF) algorithm for feature extraction and SVM classifier.

Zhang et al. [15] also performed an analysis on the effects of occlusions for
both matched and mis-matched train and test strategies. Their method did not
learn very well the sample patterns to reduce the effect of randomized patch
occlusion, which followed the mis-matched strategy, i.e., using non-occluded
images for training and partial occluded images for testing. Thus, recognition
rates were worse than following the matched strategy. Furthermore, it was con-
cluded that occluded facial expression recognition performance depends on the
occluded region size. It was recommend to use the same type of occlusions during
training phase as that expected to be present in tested samples.

Moore and Bowden [13] presented an analysis on the effects of head poses and
multi-view on facial expression recognition through variations of Local Binary
Patterns (LBP) and Local Gabor Binary Patterns (LGBP) for feature extrac-
tion. Experiments conducted on the BU3DFE database showed that frontal view
was optimal for facial expression recognition. However, some emotions, such as
sadness and anger, performed better at non-frontal views.

3 Methodology

The proposed facial expression recognition methodology with occlusions is
described in this section. The main steps of the method are illustrated in Fig. 1
and detailed as follows.

3.1 Preprocessing

The image preprocessing step is fundamental to the expression recognition
task, whose main objective is to generate randomized occluded facial expres-
sion images with aligned faces, as well as uniform shape and size. This stage is
primordial toward the success of facial expression recognition.

Initially, we perform an automatic fiducial point detection over all facial
expression image sets with Chehra Face and Eyes Tracking Software [2], which
is a fully automatic system that tracks 49 facial landmark points and 10 eye
fiducial points. Each facial expression image is aligned according to the left eye
and right eye coordinates.

For each image dataset, we scale all images proportionally to the minimum
distance between eye coordinates. Facial expression regions are cropped through
a proper rectangle. Color images are converted into grayscale images. Finally,
randomized black rectangles are applied over different facial expression regions,
including bottom left side of the face, bottom right side of the face or bottom
side of the face, left eye, right eye and two eyes, to simulate occlusions.

3.2 Facial Expression Reconstruction

The PCA technique is commonly used to reduce high-dimensional feature spaces
into more compact descriptors. However, PCA does not operate well under cor-
rupted observations, for instance, variations of facial expressions, occluded faces,
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Fig. 1. Diagram of the facial expression recognition methodology.

image noise, illumination problems, among others. On the other hand, RPCA,
an extension of the PCA technique, has demonstrated to be robust to outliers
and missing data.

We applied the RPCA algorithm using 150 iterations and λ selected as follows

λ =
1

√
max (m,n)

(1)

where m and n are the dimensions of a matrix D.
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Following the facial expression reconstruction procedure, all images of testing
set are projected onto the space created by RPCA. Thereby, we fill all occluded
facial expression regions with the reconstructed faces from both training and
testing sets.

Furthermore, a contrast-limit adaptive histogram equalization (CLAHE) is
applied over the reconstructed facial expressions regions in order to enhance
sharpness and contrast levels of images. This helps to improve the precision of
the facial fiducial point detection and accuracy of the occluded facial expression
recognition.

3.3 Facial Feature Extraction

Three feature extraction strategies - Gabor Filters, Local Binary Patterns (LBP)
and Histogram of Oriented Gradients (HOG) - are used for occluded facial
expression recognition.

Gabor wavelet filters are employed to convolve 22 facial expression regions of
15×15 pixels. These regions are located around 22 facial fiducial points: six points
for the corners and middle of the eyebrows (1–6); eight points for the corners
and middle of the borders of the eyes (7–14); four points for the superior and
inferior side of the nose (15–18); and four points for the left, right, superior and
inferior border of the mouth (19–22). After executing several experiments with
different Gabor wavelet parameters, we select to work with a 20 Gabor wavelet
kernel set, using 5 scales (v = {0, 1, 2, 3, 4}) and 4 orientations (μ = {1, 2, 3, 4}),
with σ = kmax = π, and f =

√
2. For each convolved region, we divide it into 9

(= 3×3) blocks of 5×5 pixels. For each of these equivalent blocks, we extracted
the mean and standard deviation. These two measures are concatenated to form
the feature vector. Hence, the generated feature vector has a length of 7920 (=
2×9×20×22).

LBP is applied over the entire facial expression image for extracting the LBP
code for each pixel. After generating an LBP labeled image and performing
several experiments, we decide to divide the facial expression image into 63 (=
7×9) regions. For each facial expression region, we extracted LBP histograms
and concatenated all of them into one with length of 16128 (= 256×63). The
generated LBP histograms describe local texture and global shape information
of the facial expression image.

We extract HOG features using the following parameter set: block size (bs)
= 2 × 2, cell size (cs) = 8 × 8, block overlap (bo) = 1 × 1, bin number (bn)
= 9, and block normalization (bn) = L2. The HOG feature vector encodes local
shape information from regions within an image. The length N of the feature
vector for an image I is expressed as

N = bpi ∗ bs ∗ bn (2)
bpi = ((size(I)/cs) − bs)/((bs − bo) + 1) (3)

where size(.) is the matrix dimension.
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3.4 Feature Reduction

Once the feature vector is obtained, it is simplified by applying feature dimen-
sionality reduction techniques. This process modifies the data representation,
such that the new set of features presents a smaller number of dimensions com-
pared to the original representation, while maintaining the most representative
features.

Two approaches were considered to perform feature reduction: PCA and
PCA+LDA. First, PCA is applied to each feature vector set - Gabor, LBP and
HOG - independently, obtaining principal (feature) vectors. Similarly, PCA is
applied over the combination of feature vectors. Additionally, LDA is employed
over the PCA reduced feature vectors, generating new reduced feature spaces.

3.5 Classification

SVM and KNN classifiers were employed to compare the occluded and non-
occluded facial expression recognition rates. This process requires stages for
training and testing, such that we selected 80% of image data for training and
the remaining 20% for testing.

We established estimation models based on SVM and KNN, which are trained
from the reduced training feature vectors. Thus, using reduced testing feature
vectors, we performed SVM and KNN multiclass classification based on the
trained SVM and KNN models. Afterwards, we obtain the recognition results to
assess the accuracy.

Along this process, we used different feature combination sets, considering
Gabor, LBP and HOG features, whose dimensionality was reduced before the
training and testing stages.

4 Results

Experiments were conducted on three datasets to evaluate the proposed method-
ology: the Cohn-Kanade (CK+) [10] dataset, the Japanese Female Facial Expres-
sion (JAFFE) [11] dataset and the MUG Facial Expression dataset [1].

The CK [10] dataset is available in two versions, such that we used the second
one (CK+). The difference between these two versions is that the second one
contains posed and non-posed (spontaneous) expressions and different metadata
types. The CK+ dataset consists of 593 sequences of labeled face images from
123 subjects, categorized into one of seven facial expressions: anger, disgust, con-
tempt, happy, fear, surprise and sadness. Each image sequence incorporates the
neutral expression to generate a facial expression. The CK+ is a comprehensive
set that also includes some metadata, such as 68 facial fiducial points [10].

The JAFFE dataset is composed of 213 images performed by 10 Japanese
female models, labeled as one of seven facial expressions: anger, disgust, fear,
happiness, neutral, sadness and surprise [11].
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The MUG dataset is an image sequence collection of 86 subjects performing
seven facial expressions as the JAFFE database, without occlusions. The MUG
database also offers 80 facial landmarks [1].

For each of the three datasets, we randomly select 80% of samples of each class
for the training set, whereas the remaining 20% for the testing set. Moreover, 50%
of the training set samples of each class are occluded and a similar procedure is
performed to the testing set. We set 20 different randomized images of occluded
and non-occluded data to conduct experiments on each dataset.

For each occluded and non-occluded image collection, we perform experi-
ments using each strategy shown in Fig. 1, that is, Gabor Filters, Local Binary
Patterns (LBP) and Histogram of Oriented Gradients (HOG) through four pro-
posed classification schemes: PCA+KNN, PCA+LDA+KNN, PCA+SVM and
PCA+LDA+SVM. The results are presented in Tables 1 and 2, whose values
correspond to the average facial expression recognition accuracy, after executing
20 experiments on both randomized training and testing collections.

Table 1. Average accuracy (in percentage) for non-occluded images using Gabor filters,
LBP and HOG for each dataset.

Recognition method CK+ JAFFE MUG

Gabor LBP HOG Gabor LBP HOG Gabor LBP HOG

PCA+KNN 59.71 43.74 64.63 86.20 64.41 83.10 79.06 79.69 80.89

PCA+LDA+KNN 92.76 92.62 90.45 95.36 93.00 96.43 91.84 91.40 91.02

PCA+SVM 86.12 77.17 83.36 93.21 84.18 92.74 85.95 85.70 85.26

PCA+LDA+SVM 94.03 92.84 91.20 95.12 92.50 95.60 91.33 90.07 89.12

Table 2. Average accuracy (in percentage) for occluded images using Gabor wavelets,
LBP and HOG for each dataset.

Recognition method CK+ JAFFE MUG

Gabor LBP HOG Gabor LBP HOG Gabor LBP HOG

PCA+KNN 50.17 42.06 61.57 48.58 45.84 60.01 55.76 58.93 63.04

PCA+LDA+KNN 84.63 88.06 88.29 82.51 83.10 89.05 81.21 85.39 85.15

PCA+SVM 76.87 75.01 80.38 73.48 70.60 79.30 67.76 77.98 77.66

PCA+LDA+SVM 85.68 88.44 88.74 82.86 81.44 88.46 81.02 84.00 84.18

From our experiments with occlusions, it is important to state that RPCA
was always applied to facial reconstruction independently of the evaluated fea-
ture reduction and classification methods. From Table 1, we can observe that
the recognition accuracy rate for non-occluded images using Gabor wavelets is
generally slightly better than other features, except for the JAFFE database,
where HOG is slightly superior. On the other hand, we can see from Table 2
that a recognition rate of occluded collections using LBP and HOG features,
independently, is much better than using Gabor filters.
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From the experiments on both occluded and non-occluded collections, we can
observe that the PCA+LDA approach achieves higher accuracy rate than just
using PCA. Furthermore, it is possible to see that, in some cases, there is no
significant difference between the non-occluded and occluded facial expression
recognition rates using LBP and HOG features. However, when using Gabor
filters, there is a difference of approximately 10% between the recognition rates
of non-occluded and occluded collections.

High non-occluded facial expression recognition accuracy rates using Gabor
filters were achieved due to an accurate fiducial point detection. On the other
hand, the results achieved through HOG features for non-occluded and occluded
collections were competitive since there was not much image background sup-
pression. This allowed to encode local information, such as shape. Moreover,
facial reconstruction for occluded sets influenced positively in the occluded accu-
racy rate.

It is also important to mention that the results achieved with LBP features
are due to the use of PCA approach that allows to select the most relevant
features, instead of assigning different weights to each LBP sub-region. We also
conducted experiments by combining Gabor, LBP and HOG features, however,

Table 3. Accuracy rates (in percentage) for non-occluded images and for comparable
methods that work with random partial occlusions of the faces in both training and
testing phases.

Dataset Approach Strategy Non-occlusion Occlusion

CK+ Proposed method HOG+PCA+LDA+SVM 91.20 88.74

Proposed method LBP+PCA+LDA+SVM 92.62 88.44

Proposed method Gabor+PCA+LDA+SVM 94.03 85.68

Liu et al. [9] Maximum likelihood
estimation sparse
representation

94.29 85.24

Cornejo et al. [5] Local gradient coding of
horizontal and diagonal
gradient priority

87.17 80.18

JAFFE Proposed method HOG+PCA+LDA+KNN 96.43 89.05

Cornejo et al. [5] Local gradient coding of
horizontal and diagonal
gradient priority

88.34 88.57

Liu et al. [9] Maximum likelihood
estimation sparse
representation

93.42 86.73

Proposed method LBP+PCA+LDA+KNN 93.00 83.10

Proposed method Gabor+PCA+LDA+SVM 95.12 82.86

Zhang et al. [15] Gabor template and SVM 81.20 48.80

MUG Proposed method LBP+PCA+LDA+KNN 91.40 85.39

Proposed method HOG+PCA+LDA+KNN 91.02 85.15

Proposed method Gabor+PCA+LDA+KNN 91.84 81.21
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the obtained results did not contribute to a significant improvement in terms of
recognition accuracy rate.

We compared our method to others available in the literature that apply
random partial occlusions to faces in both training and testing phases. Table 3
shows a comparision of the results. There are only few similar works that consider
occlusions in the training stage. It can be observed that our method achieves the
best results for CK+ and JAFFE datasets, not only for occluded images, but
also for non-occluded images.

Table 3 is sorted in descending order by accuracy rate for recognition with
occlusion. Some approaches adopt different protocols on the same data and
employ specific preprocessing stages to the data, such as alignment or crop-
ping of the images, feature normalization and illumination adjustments. Besides
being used to reconstruct occluded facial expressions, it is possible to observe
that our method achieves good results for non-occluded images.

We also conducted experiments with the combination of LBP, HOG and
Gabor descriptors. For CK+ dataset, the accuracy rate had an improvement
in terms of recognition accuracy rate to 90.00% for the occluded images with
PCA+LDA+KNN. For JAFFE and MUG datasets, the combination of the
descriptors produced results equivalent to the application of each descriptor indi-
vidually.

5 Conclusions and Future Work

This work described and evaluated an emotion recognition method using facial
expressions robust to occlusions. Facial reconstruction was performed by Robust
Principal Component Analysis (RPCA). Different features were applied over
the reconstructed facial expression images and the resulting feature vector was
reduced through a number of techniques, allowing high accuracy rates of facial
expression recognition. Experiments were conducted on three public datasets to
evaluate the effectiveness of the proposed methodology.

As directions for future work, we intend to investigate new facial fiducial
point sets, the use of different features, as well as better facial reconstruction
parameters. Additionally, we plan to conduct experiments using dynamic fea-
tures for facial expression recognition in video scenes.
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Abstract. Integrating ontological knowledge is a promising research
direction to improve automatic image description. In particular, when
probabilistic ontologies are available, the corresponding probabilities
could be combined with the probabilities produced by a multi-class clas-
sifier applied to different parts in an image. This combination not only
provides the relations existing between the different segments, but can
also improve the classification accuracy. In fact, the context often gives
cues suggesting the correct class of the segment. This paper discusses a
possible implementation of this integration, and the first experimental
results shows its effectiveness when the classifier accuracy is relatively
low. For the assessment of the performance we constructed a simulated
classifier which allows the a priori decision of its performance with a
sufficient precision.

1 Introduction

This paper tackles the problem of recognising the content of a digital image, and
being able to produce a schematic textual description. Because of the large num-
ber of images available on-line, this is a very hot research topic at the moment,
as shown by the references in Sect. 2, and well performing systems using deep
learning producing description in natural language have been proposed. In this
work we start considering a new way to exploit context information to improve
performance of classification based approaches.

When the aim is to design and implement a framework for the recognition of
some of the components of a natural image, simply applying classification is not
a solution as natural images classifiers only based on information extracted from
the images, can be, in the most general case, error prone. The framework pre-
sented in this work aims at integrating the output of standard classifiers on differ-
ent image parts with some domain knowledge, encoded in a probabilistic ontology.
In fact, while standard ontologies are quite widespread as a means to manage a-
priori information, they fail in the important task of dealing with real world uncer-
tainty. Probabilistic ontologies aim at filling this gap by associating probabilities
to the coded information, and provide then an adequate solution to the issue of
coding the context information necessary to correctly understand the content of
an image. Such information is then combined with the classifier output in order
to correct possible classification errors on the basis of surrounding objects.
c© Springer International Publishing AG 2017
S. Battiato et al. (Eds.): ICIAP 2017, Part I, LNCS 10484, pp. 320–331, 2017.
https://doi.org/10.1007/978-3-319-68560-1_29
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In conclusion, our aim is to improve the performance of a natural images clas-
sifier introducing in the loop knowledge coming from the real world, expressed
in terms of probability of a set of spatial relations between the objects in the
images. Not only the probabilistic ontology can be made available for the con-
sidered domain: it could also be built or enriched by using entities and relations
extracted from a document related to the image. For example, the picture could
have been extracted from a technical report or a book, where the text gives
information which are related to the considered images. We wish to stress the
fact that we are not thinking of a text directly commenting or describing the
image, but of a text which is completed and illustrated by the image. In this
case, both the classes of objects which can appear in the image and the rela-
tions connecting them could be mentioned in the text and could therefore be
automatically extracted [2]. A probability can then be associated to them on the
basis of the reliability of the extraction or the frequency of the item in the text.

The system we are considering, the logical scheme of which is depicted in
Fig. 1, and better detailed in Sect. 3, aims at determining a set of keywords
describing the content of an image and the relations existing among them. The
idea is to design a system that, starting from an image, will first hypothesize the
presence of some objects in the scene through a battery of image based classifiers.
Considering for example the image of a building close to a water poll with some
boats, it is likely that a classifier might label the reflection of the building on the
water beneath the boats as a building, that is a wrong classification. We advocate
that such a mis-classification can be corrected introducing the spatial relation
between the boat-segment and reflected building, and the external knowledge
that an image segment beneath a boat and surrounded by water is more likely
to be water than a building. This world knowledge, that we plan to formalise in
a probabilistic ontology [9], together with the output of the classifier, will be fed
to a probabilistic model [4], in order to improve the performance of the single
classifiers.

The classes associated to each segment combined by the spatial relations
which can be directly extracted from an analysis of the image are eventually
organized in a schematic description of its content. Relations could be further
specialized by better specifing the reciprocal position of the segments. For exam-
ple, the fact that a segment is in the middle, or in the upper right part of the
picture, and so on.

The framework presents two main aspects of novelty. First, the use of a proba-
bilistic ontology for a computer vision problem has, at the best of our knowledge,
never been proposed before. A second element of novelty is the integration of a
probabilistic model with a probabilistic ontology. A preliminary description of
the general idea of the approach has been sketched in [1] in a very concise way.
Here, we discuss all details and a first preliminary experimental assessment.

In the following section, we discuss related work. Section 3 is devoted to the
description of the different modules of the system, with a few details about the
probabilistic ontology (Sect. 3.1), and to the model adopted to combine classifi-
cation and ontology probabilities (Sect. 3.2). Experimental assessment is consid-
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ered in Sect. 4. Some conclusions and proposals for extensions of the presented
work conclude the paper.

2 Related Work

Human beings express their knowledge and communicate using natural language,
and in fact they find usually easy to describe the content of images with simple
and concise sentences. Because of this human skill it is not difficult for a human
user, when using an image search engine, to formulate a query by means of
natural language.

Due to the large amount of images available on the web, for answering to
textual image queries, it will be very helpful being able to automatically describe
the content of an image. However such a task is not easy at all for a machine,
as it requires a visual understanding of the scene, that is almost each object in
the image must be recognised, how the objects relate to each other in the scene,
and in what they are involved must be understood [27]. This task is tackled in
two different ways. The most classical one [10,12,13,17] tries to solve the single
sub-problems separately and combines the solutions to obtain a description of
an image. A different approach [6,15,27] proposes a framework that incorporates
all the sub-problems in a single joint model. A method trying to merge the two
main approaches has been proposed recently in [30] using a semantic attention
model. The problem is, however, very far from being solved.

In the context of textual image queries, it can be enough to extract from the
images a less complex description (image annotation [28]), such as a list of enti-
ties represented in the image, and information about their position and mutual
spatial relation in the image. The work proposed in this document addresses this
task, that is also, as mentioned above, a necessary sub-task of the more general
problem of generating a description in natural language.

The use of ontologies in the context of image recognition is not new [25].
For instance, in [20] it is proposed a framework for an ontology based image
retrieval for natural images, where a domain ontology was developed to model
qualitative semantic image descriptions. An ontology of spatial relations, in order
to guide image interpretation and the recognition of the structures it contains
was proposed in [14]. In [18], low-level features describing the color, position,
size and shape of segmented regions are extracted and automatically mapped
to descriptors forming a simple vocabulary termed object ontology. At the best
of our knowledge, a probabilistic ontology has never been used for the task of
image recognition and annotation.

Contextual information have been used in image recognition for long time
[19,26], and it has been already shown [3] that the use of spatial relations can
decrease the response time and error rate, and that the presence of objects that
have a unique interpretation improves the identification of ambiguous objects in
the scene. Just to mention a few application domains, contextual information
has been used for face recognition [24], medical image analysis [5], analysis of
group activity [7].
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In the same way the use of probabilistic models is not new in computer vision,
in particular a probabilistic model combining the statistics of local appearance
and position of objects was proposed already in [22] for the task of face recogni-
tion, and in [21] in an image retrieval task, showing that adding a probabilistic
model in the loop would improve the recognition rate. In [32] it is proposed a
probabilistic semantic model in which the visual features and the textual words
are connected via a hidden layer. More recently in the context of 3D object
recognition, a system that builds a probabilistic model for each object based on
the distribution of its views was proposed in [29]. In [31] a weakly supervised
segmentation model learning the semantic associations between sets of spatially
neighbouring pixels, that is the probability of these sets to share the same seman-
tic label. Finally [11], in the context of action recognition, presents a generative
model that allows for characterising joint distributions of regions of interest,
local image features, and human actions.

3 System Architecture

The proposed framework, depicted in Fig. 1, is a chain of several logical modules,
each corresponding to an element of a computational pipeline. The first step is
a classifier, or a set of classifiers, detecting a predefined set of interesting objects
in the image, identifying then a set of segments of interest in the image.

The hypotheses formulated for each segment in the image by a statistical
classifier are then fed to a probabilistic model, that has been trained off-line. The
task of this module is to validate, or correct, the hypothesis formulated in the
previous step, integrating the output of the classifier with the world knowledge
given by a probabilistic ontology, and expressed in terms of probability of a
spatial relationship between instances of two classes of image objects. The class
associated to each segment, together with the relations existing between segment
pairs, constitute the image description output by the system.

3.1 Probabilistic Ontology

This section discusses the construction of a fragment of Probabilistic Ontology
(PO) providing the information needed by our system. We need such fragment
for the experimental assessment.

Fig. 1. Scheme of the proposed framework.

Table 1. Data set statistics.

Class # of items

Sink 371

Chair 3,604

Table 558

Computer/monitor 256+417=673

Bed 407

Flower 1,822

Total 7,435
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The main drawback of ontologies when facing real world problems is related
to their inability to cope with uncertain information. Due to this, in the last
years much work has been devoted to the design of effective tools to attach
probabilities to the information contained in ontologies, among whose the most
important is probably PrOWL [8]. From the so obtained POs, it is therefore
possible to obtain a priori knowledge for applications effective also in complex
contexts.

As a consequence, the research area concerning POs is very active and we
expect that a number of POs in different domains will be available soon. How-
ever, we need a PO in the domain of the image data set we will adopt to assess the
system performance, before we can start experimentation. We therefore design
and implement an ontology to use in the experiments. In particular, the schema
of the ontology will contain the classes to associate to the segments and the
spatial relations among them considered in our analysis. On the other hand,
probabilities are estimated from the training set after segments are automati-
cally classified and spatial relations are constructed between segment pairs. In
particular, we estimate the probability that two classes are in a given relation
by the frequency of such event in the data set. No smoothing have been applied.
More precisely denoting with D a set of segments used to compute the prob-
abilities, with R = {r1, . . . , ri} the set of types of relation, with C the set of
segments classes, we compute the probability that c1 ∈ C is in relation r ∈ R
with c2 ∈ C as:

Pr(r, c1, c2) =
Dr(c1, c2)∑

cx∈C,cy∈C

Dr(cx, cy)
(1)

where Dr(cx, cy) is the number of times that pairs of segments in D of classes
respectively c1 and c2 satisfy the relation r. In general, as the relations are not
necessarily symmetric, we have Pr(r, c1, c2) �= Pr(r, c2, c1).

Since there are no tools for directly constructing a PO, we use Protégé 1 for
the construction of the schema of the ontology, while we use Pronto [16] as a
reasoner for POs, as it adopts the standard OWL 1.1. The import of the schema
developed by Protégé into Pronto is performed by editing the corresponding
XML files and adding the probabilities. An example is given in Fig. 2, where the
element tagged pronto:certainty is added to the axiom prepared by Protégé.

Fig. 2. Piece of the XML of the PO corresponding to an axiom with an associated
probability.

1 Freely available from http://protege.stanford.edu/.

http://protege.stanford.edu/


Exploiting Context Information for Image Description 325

Although Pronto accepts probability ranges, as we use simple values, the two
extremes of the interval coincides (0.070990; 0.070990 in the example).

3.2 Combination Models

This section investigates which model to use to integrate the classifiers and the
ontological knowledge.

In the task we are considering the role of POs requires providing probabilities
describing the domain of interest, to be integrated with the ones associated by
the classifier to each class for each input segment. The main goal of our system
is the classification of the segments in the input image. We aim to exploit the
relations between pairs of segments to improve this classification. More formally,
every image contains a set of segments S and there are a number of possible
relations R connecting segment pairs.

For each segment in the image, the classifier associates a probability distrib-
ution to the set of all possible classes C. When we consider only the classification
step, we classify the segment with the most probable class: this represents our
baseline, as it only considers the classifier output, without any information com-
ing from the PO. However, we can see the output of the classifier for each segment
s in the image as a random variable c(s) with values in C. In the following we
discuss how such random variable is integrated with the ontological probabilities.

In fact, the ontology produces, for every pair of classes c1, c2 ∈ C and every
possible relation r ∈ R, the probability Pr(r, c1, c2) that in the real world two
segments of classes c1 and c2 respectively are in relation r: its expression is given
in Eq. 1. By integrating this information with the probabilities computed by the
classifier, the classification performance could improve. Moreover, the solution
output by this integration is likely to be consistent with the ontological knowl-
edge, which can be an important feature in systems where the post-processing
requires a set of properties on the considered candidates. In fact, whenever a
relation can not hold between two classes, the corresponding ontological proba-
bility is null, and this also lowers the probability of the corresponding couple of
classes.

We associate the following log-linear probability to the two classes associ-
ated to each context x = (s1, s2, r : r(s1, s2)) built around the relation type r
connecting segments s1 and s2:

Pr(c1, c2|x) =
evc1fC(s1,c1)+vc2fC(s2,c2)+vr,c1,c2fPO(r(s1,s2),c1,c2)

Zx,c1,c2

(2)

where fC(s, c) = Pr(c(s) = c) and fPO(r, c1, c2) = Pr(r(c1, c2)), while Zx,c1,c2

is a normalisation factor depending on x and on the classes assigned to the two
segments. Note that the features fC(·) are produced by the classifier, while fPO(·)
depends on the probabilistic ontology. In conclusion, we consider two families of
parameters: class parameters vc for each class c and relation parameters vr,c1,c2
for each type of relation r and pair of classes (c1, c2). All in all, there are |C|
class parameters and |R||C|2 relation parameters.
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The parameters are estimated during the training, which maximises the like-
lihood of the training set. For this optimisation, we use the Toolkit for Advanced
Optimisation (TAO) library, which implements a variety of optimisation algo-
rithms for several classes of problems (unconstrained, bound-constrained, and
PDE-constrained minimisation, nonlinear least-squares, and complementarity).
In our work we focus on unconstrained minimisation methods which are used
to minimise a function of many variables without any constraints on the vari-
ables. The method that we have used is Limited Memory Variable Metric, it
is a quasi-Newton optimisation solver and it solves the Newton step using an
approximation factor which is composed using the BFGS update formula.

Once we have estimated all the parameters V = {vc, vr,ci,cj} with c, ci, cj ∈ C
and r ∈ R, we aim to assign the correct class to each segment in the input image.
To do so, we consider two different models: in the former, to which we refer as
M1, we assign to the classes in a given context a score which is equal to the
Pr(c1, c2|x) as given by Eq. 2, while in the latter, M2, the score is given by its
logarithm. In fact, when adopting, as in our case, a log-linear expression, only
considering exponents is much more efficient than directly summing probabil-
ities. We therefore obtain the following expressions for the scores sc1 and sc2
respectively corresponding to M1 and M2.

sc1(c1, c2|x) = Pr(c1, c2|x) =
evc1fC(s1,c1)+vc2fC(s2,c2)+vr,c1,c2fPO(r(s1,s2),c1,c2)

Zx,c1,c2

sc2(c1, c2|x) = log Pr(c1, c2|x) = vc1fC(s1, c1) + vc2fC(s2, c2)
+ vr,c1,c2fPO(r(s1, s2), c1, c2) − logZx,c1,c2 (3)

For each context x, we then compute the score that a given class c is associated
to one segment, by summing the scores that every class is associated to each
segment and that the relation assumes any of all possible relation types. We
then associate to the first segment the class which maximises such a score in all
segment pairs including it:

SC(c|s) = max
s2:∃r,r(s1,s2)

∑

c2∈C

∑

r∈R

sc(c, c2|(s1, s2, r : r(s1, s2)). (4)

In this expression, sc stays for sc1 or sc2 depending on the adopted model. Note
that since all relation types we consider are symmetrical, for every context x =
(s1, s2, r : r(s1, s2)) also the symmetrical one x′ = (s2, s1, r(s2, s1)) is defined,
and therefore we can express the score as considering only the first of the two
cases. However, when asymmetrical relations are also considered, the expressions
can be easily generalised.

Finally, we assign to each segment the class which maximises the score of the
class given the segment:

c∗(s) = arg max
c∈C

SC(c|s) (5)

To complete the textual description, the relations existing between segment pairs
and used for determining the contexts defined above are added.
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4 Experimental Assessment

This section describes and discusses the quantitative assessment of the perfor-
mance of the proposed approach.

For this first experimental assessment of the combination model proposed we
chose a data-set where interesting objects have been manually segmented and
labelled, so to have a reliable ground-truth for estimating the performance of
our model. The data set chosen is the MIT-Indoor including 1, 700 manually
segmented images These pictures are taken in indoor surroundings, including
kitchens, bedrooms, libraries, gymns and so on. Whenever an actual system
based on the proposed approach is implemented, the best available solution for
the segmentation will be included. We randomly divided the data in three parts:
two of them, containing each the 30% of the data, are used to train the PO and
the combination model respectively, while the remaining 40% of the data are
used to assess the system performance. Note that in our view it is important
that the data used to train the PO and the combination models are different, as
in actual domains they usually have different origins.

The system performance is evaluated in terms of classification accuracy, i.e.
the rate of segments which have been correctly classified. In particular, we con-
sidered six classes obtained by clustering the data set ones and then taking the
six with a larger number of items: the adopted classes and the number of times
they occur in the data set are reported in Table 1. Furthermore, we considered
three relation types corresponding to the relative position of two segments in
an image: near, very near and intersecting. Clearly, all three the relations are
symmetrical.

The role of the classifier in our system is to produce a probability distribution
on the set of classes for every input segment. The literature on object recognition
is very rich [23]. The risk in choosing one approach or the other is that the final
results would depend on this choice and its influence can not be distinguished by
the one of the combination model. We therefore decided to substitute the actual
classification with a random simulation able to produce any given performance.
In this way, it is possible to describe the dependence of the system performance
on the classification accuracy. All in all, we therefore need a method to simulate
the behaviour of a multi-class classifier with an assigned accuracy a.

For this goal, we use the strategy described by the pseudo-code in Fig. 3.
Given a segment, we randomly choose a score in [0, 1] by the function U(0, 1)
for each class in the class set C. We then assign, with a probability given by
the desired accuracy a, the maximum score to the gold class, while the other
scores are randomly assigned to the remaining classes. The scores are finally
normalised to obtain a probability distribution. As the classifier assigns to each
segment the maximum probability class, we have that this corresponds to the
right choice in the a percentage of cases, resulting in the desired accuracy. The
use of a simulated classifier is not novel (see, for instance, [33]).

As we aim to assess the improvement we can obtain by introducing the onto-
logical knowledge, we compare the system performance with a baseline consisting
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maxClassProb←0.0;
BestClass← ∅;
for CurrentClass ∈ ClassSet do

NewClassProb ∼ U(0, 1);
ClassProb[CurrentClass]← newClassProb;
if ClassProb[CurrentClass]>MaxClassProb then

MaxClassProbValue← ClassProb[CurrentClass];
BestClass ← CurrentClass;

else
if TossingACoin == Head then

RandomClass ← CurrentClass;
end if

end if
end for
Accuracy ∼ U(0, 1);
Gold ← GoldClass(Segment);
if Accuracy< DesiredAccuracy then

Swap(ClassProb[BestClass],ClassProb[Gold]);
else

swap(ClassProb[RandomClass],ClassProb[Gold]);
end if
normalize(ClassProb);

Fig. 3. Pseudo-code of the simulated
classifier.

Fig. 4. Performance of the two systems
compared with the baseline. Error bars
give the 95% confidence intervals.

in the (simulated) classifier alone. The two approaches discussed in Sect. 3.2 are
applied to combine the PO into the system: M1 and M2.

4.1 Results and Discussion

The system accuracy of the approaches proposed in this paper are depicted in
Fig. 4 and compared with the accuracy of the statistical classifier applied alone.

For the sake of completeness, we considered a very wide range of accuracies
for the simulated classifier: from 20% up to 80%, even if in actual conditions, the
values of classifiers accuracy is more likely under 50−60%. However, in any case,
we see that the M2 outperforms the M1, whose performance even deteriorates
when the classifier accuracy improves. A possible explication for this behaviour
could be that too much confidence is given to the a priori PO score with respect
to the actual input data evidence.

On the other hand, the M2 improves on the simple classifier when the latter
performance are inferior than about 55%, that is in realistic experimental condi-
tions. We can observe how performance of this model are much better than the
classifier alone when the latter performance are worse than 30%, and this can be
the case when the task is not too easy. Even for classifiers obtaining an accuracy
between 30% and 55%, the adoption of an approach integrating PO knowledge
is advantageous.

Last, but not least, we observe that even when M2 performs worse than the
classifier alone, its accuracy improves with the classifier accuracy, so that the
two curves are approximately parallel. This could suggest that a better ontol-
ogy design, resulting in a better PO, could help the system to overcome the
performance obtained by the classifier alone.
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5 Conclusions and Future Work

In this paper, we proposed and experimentally evaluated two different proba-
bilistic models to integrate the probabilities derived from a probabilistic ontology
with the ones produced by a statistical classifier. One of the two proved to per-
form in an acceptable way and could be used in an actual system.

For the sake of obtaining a clear view of the integration module performance,
we tried to minimise the effect of the other modules. Therefore, we started from
images which had been manually segmented and simulated a classifier in such a
way that its accuracy could be controlled. As a future work, we plan to assess
the performance of the proposed approach when coupled with state-of-the-art
modules.

A fragment of a probabilistic ontology has been built by using three relations
which could be automatically recognised in the input images, while the corre-
sponding probabilities have been estimated from their frequencies. When more
sophisticated ontologies will be available, containing information from large data
sets, we expect the integration to give even better results.
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Abstract. Exploiting high-level visual knowledge is the key for a great
leap in image classification, in particular, and computer vision, in general.
In this paper, we present a tool for generating knowledge-enriched visual
annotations and use it to build a benchmarking dataset for a complex
classification problem that cannot be solved by learning low and middle-
level visual descriptor distributions only. The resulting VegImage dataset
contains 3,872 images of 24 fruit varieties, over than 60,000 bounding
boxes (portraying the different varieties of fruits as well as context objects
such as leaves, etc.) and a large knowledge base (over 1,000,000 OWL
triples) containing a-priori knowledge about object visual appearance.
We also tested existing fine-grained and CNN-based classification meth-
ods on this dataset, showing the difficulty of purely visual-based methods
in tackling it.

1 Introduction

Object recognition and image classification have been hot research topics in the
last two decades. Recently, deep-learning methods have been able to achieve
impressive performance on thousands of object classes from the ImageNet
dataset. In spite of such progress, classification approaches are still predom-
inantly based on visual features, leveraging the power of statistical machine
learning to learn distributions of low and middle-level features. While this has
proved to be an effective strategy even for fine-grained classification problems
[13,17,31], there are cases where relying on visual appearance only might fail,
especially in specialized application domains (such as fruit variety identifica-
tion). For example, Fig. 1 (left image) shows four different varieties of cherry
(namely, bing, black tartarian, burlat and lapin) that cannot be easily identified
by only exploiting statistical distribution of visual descriptors. However, objects
in the “real-world” do not appear as isolated items, but come in a rich context
(the right-hand image in Fig. 1 shows the same cherry varieties in their natural
context), which is largely exploited by humans for visual categorization.

c© Springer International Publishing AG 2017
S. Battiato et al. (Eds.): ICIAP 2017, Part I, LNCS 10484, pp. 332–344, 2017.
https://doi.org/10.1007/978-3-319-68560-1_30
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Fig. 1. Example of fine-grained problem tackled in this paper. Left: Four different
cheery varieties, namely (left to right, top to bottom), bing, black tartarian, burlat
and lapin. Right: The same varieties in their natural context. Information about leaf
shape, distance between fruit and tree branches, peduncle length may support the
disambiguation between the four object classes.

Our main assumption is that, for a real breakthrough in computer vision,
computers need to emulate human visual process by combining perceptive ele-
ments (visual descriptors) and cognitive factors (structured knowledge). Such
combined perceptive-cognitive knowledge can be then exploited to solve com-
plex visual recognition tasks when low-level visual description fails to express
the differences among classes. However, while it is relatively easy to describe
visually images, e.g., by identifying variations in shapes, colors, etc., it is more
challenging and complex to annotate images according to specific knowledge as
the ones depicted in Fig. 1, which only experts, making use of domain knowledge,
would be able to do. Nevertheless, domain experts often do not wish to spend
time to provide image annotations, so how can we generate knowledge-enriched
visual annotations necessary to train machine learning techniques?. This paper
aims at addressing the above question, specifically through:

– An annotation tool which guides the visual annotation process according to
specialized domain knowledge model defined as a formal ontology, and which
allows non-experts to generate large-scale domain-specific annotations.

– A knowledge-enriched fine-grained image dataset for fruit variety classifica-
tion, which is hard to solve with typical visual-oriented approaches (e.g.,
GoogLeNet, Overfeat, VLFeat PHOW, KDES) without the use of domain
knowledge.

2 Related Work

The goal of this paper is three-fold: (a) proposing a new semantic annotation tool
driven by (b) domain knowledge through a formal ontology for (c) generating
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a fine-grained image dataset enriched with a large knowledge base. The impor-
tance of visual world semantics (and of context especially) in automated visual
recognition has been long acknowledged [6,14]. Recently, there have been signif-
icant advances in modeling rich semantics using contextual relationships [18,25]
such as object-object [6,20] and object-attribute [9,16] applied to scene classi-
fication [12] or object recognition [27]. In [27], the authors proved that context
information is more relevant for object recognition than the intrinsic object rep-
resentation, especially in cases of poor image quality (e.g., blurred images due to
large distances, occlusions, illumination, shadows). However, visual scenes pro-
vide richer semantics than object-object or object-attribute relationships, which
most of the existing methods do not take into account or do not exploit effectively
as they try to solve the recognition problem by brute force. Nevertheless, one of
the limitations to a larger use of high-level knowledge in computer vision is the
lack of structured resources modeling exhaustively the semantics of our world.
Indeed, so far, the largest resource of structured visual knowledge is the Ima-
geNet dataset that, however, captures only limited semantic relations, ignoring,
for instance, co-occurrence, dependency, mutual exclusion. The need for exhaus-
tive knowledge is also highlighted by the recent sprout of methods employing
high-level knowledge (mainly unstructured) for computer vision tasks: knowledge
transfer methods [10,15] and semantic relation graphs [4,21] have been adopted
to deal with the limits of traditional multi-class or binary models, which suffer
from being overly restrictive or overly relaxed, respectively. Compared to scene
graphs, computational ontologies are able to describe deeper scene semantics by
defining high-level attributes and imposing constraints about real-world object
appearance and their contextual and semantic relations, in an interoperable and
generalizable way.

However, including high-level knowledge in the learning loop needs large
semantically-annotated visual datasets, whose generation is an expensive process:
beside annotating objects in images, other semantic information, such as color,
shape, related-objects and their visual properties, etc., needs to be collected. This,
especially, holds in specialized application domains (e.g., fruit variety, bird, med-
ical images, etc.) where high precision is necessary to avoid affecting the learning
process. In such cases, annotations should be provided by domain experts, who
do not have enough time to spend into the process. To tackle this problem, one
possible solution is to extract and use domain-knowledge to guide/constrain anno-
tations done by non-expert users. So far, only few ontology-based image annota-
tion tools have been proposed [3,7,19], which are, however, mainly thought for
information retrieval rather than for computer vision.

Our proposed tool differs from the above ones and traditional tools [8,22]
in that it constrains and guides the annotation process according to specific
domain knowledge (codified as a formal ontology) where the visual attributes
are inferred through ontology reasoning, thus reducing greatly the knowledge
required to carry out the task.

We used our tool to generate knowledge-enriched visual annotations on fruit
variety images, thus providing a complex benchmark for fine-grained recognition.
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There are several benchmarking datasets for fine-grained classification of birds,
stonefly larvae, etc. [5,17,31] but they mainly contain per-instance segmentations
and do to provide any semantic visual descriptions of objects and their context.
The datasets most similar to ours are the ones for semantic scene labeling [2,24],
which, despite including context information, no exhaustive semantic relations
are defined.

3 Generating Knowledge-Enriched Visual Annotations

In this section we present a formal OWL ontology encoding specialized knowledge
for fruit variety categorization. The combination of such ontology with a tool
able to guide and constrain the annotation process allows to minimize expert
user intervention, thus providing the chance to create large-scale fine-grained
annotations by involving mainly non-expert users.

3.1 The Fruit Ontology

An ontology is a formalism providing, for a specific domain, a common machine-
processable vocabulary and a formal agreement about the meaning of the used
terms, which include important concepts, their properties, mutual relations and
constraints. Basic concepts of a domain correspond to owl:Class, whose expres-
siveness can be enhanced by adding attributes (as owl:DataProperty) and rela-
tions to other owl:Class (as owl:ObjectProperty). The vocabulary is designed and
validated by human users through axioms expressed in a logic language and the
concepts and properties can be enriched using natural language descriptions1

and links (e.g. rdfs:seeAlso property).
We developed a new ontology describing visually the fruit application domain

by involving three expert agronomists, who also supported the generation of
correct instances for the considered fruit varieties. Figure 2 shows the ontol-
ogy’s VOWL (Visual OWL) representation and some statistics generated using
Protégé2. We embedded this ontology in an annotation tool to speed up the
labeling process, making annotation of domain-specific images accessible for
non-expert users (see Sect. 3.2). Before describing the Fruit Ontology, let us
introduce some terminology to avoid ambiguities. We refer to an owl:Class as
an ontology class, and to an image class (i.e., a fruit variety) as a dataset class.
Furthermore, we use target class to indicate the main object class we want to
recognize (in our case Fruit), and context class for all the object classes that can
be considered as part of the context (in our case, Peduncle, Leaf, Petiole) of the
target class. Typically, target classes are objects which are spatially well-defined,
easily-recognizable and possibly not a constituent part of a larger object (e.g.,
a dog rather than its tail, a fruit rather than its peduncle). Context classes are,
instead, those that either are not classification targets or are more easily iden-
tified in relation to a target class. The Fruit Ontology contains two main class
1 http://www.w3.org/2005/Incubator/mmsem/XGR-image-annotation/.
2 http://protege.stanford.edu/.

http://www.w3.org/2005/Incubator/mmsem/XGR-image-annotation/
http://protege.stanford.edu/
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Fig. 2. The fruit ontology VOWL representation. High resolution image: zoom in, too
see classes and properties.

categories: the ones for visually describing target and context objects, and the
ones needed for the annotation process.
Application Domain Classes and Properties. Domain classes and prop-
erties encode a-priori and expert knowledge on fruit varieties in terms of both
visual appearance (colors, shape, edges, etc.) and their context relations (with
Leaf, Peduncle, Petiole, etc.). Three expert agronomists supported us in the
ontology design process by identifying for each target class (i.e., Fruit), the set
of related context classes and the visual features describing their appearance.
Both the target and context classes were mapped to ontology classes (Fruit, Leaf,
Peduncle, Petiole are defined as subclasses of a domain-agnostic PhysicalObject
class) and were enriched with as many owl:DataProperty (e.g., fruitHasStripes,
fruitHasColourDescription, fruitHasOvercolourDescription, etc.) as needed to
represent their visual appearance. Most of the physical features are defined as
classes themselves (e.g. Shape, Edge, FruitRusset, etc., similarly defined as sub-
classes of PhysicalProperty) for defining more articulated visual characteristics
(e.g., fruitRussetHasDistribution, fruitRussetHasType, etc.).

Ontology classes mapping target or context objects only differ in that target
classes include the relations fruitHasSpecies and fruitHasVariety (easily general-
izable to other domains) to Species and Variety ontology classes, which in turn
are defined as skos3 concepts in order to include a taxonomy of varieties (each
taxonomy term corresponds to a dataset image class). The physicalObjectHas-
Part and its inverse physicalObjectIsPartOf and their specialized sub-properties
(e.g., fruitIsInTree, fruitHasPeduncle) are used by the ontology reasoner to infer,
starting from the target class and exploiting property transitivity, all ontology
classes (e.g. Leaf, Peduncle, Petiole) related to its context.

3 http://www.w3.org/2004/02/skos/.

http://www.w3.org/2004/02/skos/
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Annotation Tool Specific Classes and Properties. The link between user
annotations and entities in the ontology is represented by the AnnotationSam-
ple class, whose properties hasBB (for “bounding box”) and hasImage specify
the location of an annotated object in an image. The AnnotationSample class
is specifically designed to speed up the annotation phase. For each new annota-
tion, an instance of AnnotationSample is created and associated with the corre-
sponding PhysicalObject subclass instance; this allows the tool to infer all corre-
sponding PhysicalObject subclass instance properties encoded into the ontology
without the need to specify manually all its properties. Annotator intervention
is needed only in cases a property may assume multiple values (e.g., Russet
for Canadian Reinette apple), from which, however, the tool displays samples
(also encoded in the ontology) to simplify the labeling work for non-experts (see
right-hand side in the bottom part of Fig. 3).

Fig. 3. User interface of the ontology-driven annotation tool. (Left image) Bounding
box annotation of a target object (ideally performed by an expert user). (Right image).
Annotation of context class objects (e.g., a leaf), with automatically-suggested labels
inferred from the one assigned to the bounding box associated to an object of the
target class. The right-hand side part is for disambiguating all those properties that
can assume multiple values (as per Instance definition) through visual comparison with
sample images (also encoded in the ontology instance).

Although the whole annotation schema and representation may seem overly
complex (especially if compared to the current “flat-structure” annotations made
public by dataset providers), they enable encoding annotations as ontology
instances, with one great advantage: the annotation correctness and meaning-
fulness is implicitly validated, as they have to match the ontology schema.

3.2 The Annotation Tool

The presented ontology-driven annotation tool aims at guiding and constraining
users the labeling process within the concepts enforced by the ontology. It basi-
cally provides means to draw and assign labels (most of them are automatically
inferred through ontology reasoning) to bounding boxes for target and context
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classes and to specify attributes for them. Similarly to other annotation tools
[8,22], the interface presents the user with an image to work on, together with
several tools for browsing through images, zooming in and out, adding, editing
and removing annotations. However, unlike those other tools, part of the label
assignment responsibility is moved from the user to the tool itself, through a
two-phase annotation process. The two phases of the annotation process differ
by the degree of expert knowledge required and the amount of annotation work
to be carried out. The first annotation phase consists in assigning a dataset
image class (e.g., a fruit variety) to each image. This initial task requires expert
knowledge necessary to distinguish between dataset classes differing only by sub-
tle details. However, the amount of data to annotate is relatively small, since
the user is only asked to draw one bounding box per image and select the corre-
sponding dataset class, thus limiting the expert employment only to a fraction
of the whole labeling process. Once annotations have been “bootstrapped” by
specifying labels for the bounding boxes containing objects belonging to the tar-
get class, the second phase consists of annotating all the other objects present
in the image, corresponding (1) to the target class (i.e., the fruit), whose labels
are automatically inferred by ontology reasoning, based on the assumption that
they are equal to the one provided by experts; and (2) to context classes (i.e.,
peduncle, leaf, etc.). Annotating bounding boxes of objects related to a context
class, while being in general a task which requires expert knowledge, is simplified
by the presence of the associated object corresponding to the target class: its
label is employed by the tool to infer (through an ontology reasoner4) the subset
of context class instances which can be used to annotate the current bounding
box.

Figure 3 shows how the interface implements the above procedure. Firstly, the
(expert) user annotates (left part in Fig. 3) one object related to a target class
with the corresponding fine-grained class, by simply drawing a bounding box
around the object and selecting its label from a list (dynamically built from the
provided domain ontology), e.g. “cameoFruit”. Then, the (not necessarily expert)
user can continue the process by adding annotations for the other objects in the
image, whose labels are inferred based on the target class instance assigned by
the expert and on the ontology (right part in Fig. 3). In the example, the inferred
labels are “cameoLeaf”, “cameoPeduncle”, “cameoPetal”, since the target class
instance was labeled by the expert as “CameoFruit’. As a final consideration,
it should be noted that the above process transcends the specific application
domain for which the tool is employed, and the concepts to be annotated can be
simply configured at setup time by providing a custom ontology and specifying
the set of target classes (namely, those for which properties physicalObjectHas-
Species or physicalObjectHasVariety are defined) and context classes (related to
the target classes throughout a series of subproperties of physicalObjectHasPart
and physicalObjectIsPartOf.

4 http://owlapi.sourceforge.net/.

http://owlapi.sourceforge.net/
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3.3 The Fruit Image Dataset

The VegImage dataset is a collection of 3,872 images of three common fruit
species, namely, malus domestica (apple), prunus avium (cherry) and pyrus com-
munis (pear). For each fruit species several fruit varieties were included, 10 for
malus domestica, 7 for prunus avium and 7 for pyrus communis. Together with
fruit images, we also provide over than 60,000 bounding boxes (depicting the
different varieties of fruits, leaves, peduncles, etc.) and a large a knowledge base
(over 1,000,000 OWL triples) containing a-priori knowledge about colors, shapes
as well as context objects for the considered fruit varieties. A detailed list of fruit
varieties is shown in Fig. 4.
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Cameo
#img 70
#bb 813

Coscia
#img 167
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Doyenne du Comice
#img 77
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Kaiser
#img 111
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Williams
#img 165
#bb 4817
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Fig. 4. Example images from the fruit image dataset. Numbers in red are number of
images per class while in green the number of bounding boxes. (Color figure online)

Dataset Collection. The fruit variety images were mainly downloaded from
Google Images, Flickr, ImageNet, Yahoo Images. To increase appearance vari-
ability, we also downloaded YouTube documentary videos, from which we man-
ually selected key frames to avoid near duplicates in the dataset. For each of the
27 fruit varieties, about 1,000 images were manually selected to be included in
the dataset. Low-quality images or images depicting multiple fruit varieties or
people as main subjects were filtered out. After this screening, we asked three
expert agronomists to manually check all the resulting images. Thus, we collected
up to 500 images for each fruit variety.

Dataset Annotation. We performed a two-stage annotation phase using the
tool described in the previous section: (a) Image labeling: in this step, the
three agronomists annotated each image with a label decided through consensus
among them; (b) Bounding box annotation: ten non-expert users were asked
to draw bounding boxes (a distribution over fruit varieties is given in Fig. 4) for
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objects of both target (Fruit) and context classes (Peduncle, Leaf and Petiole),
and to disambiguate multi-valued attributes defined in the Fruit Ontology (e.g.,
russet for Canadian Reinette apple), which were finally double-checked by the
experts, being the only kind of annotations which could be subject to errors.

To test automatically the quality of the generated bounding boxes, we com-
pared them with the ones provided by Selective Search [28]. In detail, for each
image we ran selective search (SS) object localization (2,000 object proposals
per image) and we computed the maximum Intersection over Union (IoU) index
between each annotated bounding box and the ones provided by SS. The aver-
age IoU for each fruit class is given in Fig. 5 showing the high-quality of our
annotations taking into account also SS failures.

Fig. 5. Average IoU between generated bounding boxes and SS’ones.

Annotation Effort and Times. To test the performance of our annotation
tool, we used as evaluation criteria: (1) shifting working time from experts to
non-experts, while keeping annotation accuracy high and (2) reducing non-expert
annotation time.

Domain experts manually annotated 3,872 fruit images, while over 60,000
bounding boxes were provided by ten non-expert users. Bounding box attributes
were inferred automatically by the reasoner (through deductive inference) after
the corresponding bounding box class (e.g. Leaf ) and variety (e.g. Cameo) were
specified. The annotations of 3,872 fruit images by the three experts took about
13 days (average of 1.3 h per day per expert) for a total of 51 worker hours, while
the annotation of 105,284 bounding boxes took about 20 days (average of 4 h
per day per annotator). In total, annotating the whole image dataset took 861
worker hours: 810 (about 94% of the total) hours provided by non-experts and
the remaining 51 h by experts.

The average annotation time per bounding box for non-experts was 27.7 s,
which is impressive given that the Fruit Image Dataset deals with a specific and
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complex application domain, and considering that in COCO [11] the annotators
spent, on average, about 80 s per bounding box.

As a final note, our tool allows to tackle the issue recently reported in [29], i.e.,
high-quality annotations on domain-specific applications should be performed,
if not by experts, at least by citizen scientists, since unskilled workers perform
extremely bad. While this may hold for “traditional” annotation approaches,
encoding and incorporating domain knowledge in a tool able to constrain the
labeling process is a valid alternative, which allows non-expert annotators to
provide high-quality annotations, thus saving significantly expensive resources.

4 Comparison to Existing Datasets for Fine-Grained
Recognition

Table 1 compares the proposed Fruit Image dataset with three popular bench-
marking datasets for fine-grained image classification: Oxford-IIIT Pet [17],
Oxford Flower 102 [13] and Caltech-UCSD Birds [31]. Although the three
datasets all have a comparable number of images, the Fruit Image dataset is
more complete in the type of annotations it includes, as it contains several exam-
ples of images with multiple objects and all objects have associated parts (as
context objects) and attributes, beside being enriched with a large knowledge
base. Furthermore, although the number of images in the Fruit Image dataset
is much smaller than popular image classification (not fine-grained) datasets,
e.g., COCO (see Table 1), the number of annotations are comparable, especially
since our dataset provides several object annotations per image, completed with
bounding box locations, class labels and class-specific attributes. Such achieve-
ments would not have been practical if only few experts were asked to perform
all annotations; the approach described in Sect. 3.2 allowed us to involve non-
experts in a fine-grained annotation process, thus greatly speeding up the whole
task.

Table 1. Comparison between popular fine-grained (and not) datasets and our dataset.
Key: #C : number of classes; #I : number of images; I/C : average number of images
per class; O/I : average number of objects per image; P/O : average number of parts
per object; A/O : average number of attributes per object. For our dataset, the O/I
value refers to the number of target objects (i.e., fruits), whereas the P/O value counts
context objects as object parts; object attributes are the OWL triples, mostly inferred
by ontology reasoning, and only a tiny part manually annotated.

#C #I I/C O/I P/O A/O

PET 37 7, 349 198.6 1.0 0.0 0.0

Flower 102 102 8, 189 80.3 1.0 0.0 0.0

Birds 200 11, 788 58.9 1.0 12.0 31.5

COCO 80 123, 287 1, 541.1 7.3 − −
Fruit Image 24 3, 872 161.3 8.0 1.14 11.0
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Table 2. Results obtained by VLFeat PHOW, KDES, OverFeat and GoogleNet on the
proposed dataset and on three other fine-grained datasets.

Dataset Method

VLFEAT KDES OverFeat GoogleNet

Oxford-IIIT Pet 39.25% 45.47% 70.48% 86.14%

Oxford Flower 102 56.68% 24.63% 79.02% 90.04%

Caltech-UCSD Birds 14.62% 7.11% 59.2% 70.2%

Fruit Dataset 4.21% 24.4% 26.6% 36.1%

In order to test the complexity of the proposed dataset, we evaluated four
state-of-the-art classification methods on these four datasets: VLFeat PHOW
[30], KDES [1], OverFeat [23] and GoogleNet [26]. The comparison, in terms
of mean classification accuracy (see Table 2) shows that the tested algorithms
fail to tackle the proposed dataset. We believe that a cause for this failure is
that, unlike current fine-grained datasets, the proposed fruit dataset describes
an application domain where class discrimination is strongly based on a context
dependency between objects, which needs to be encoded and integrated into the
classification methods as a priori information.

5 Conclusions

In this paper we present a knowledge-driven annotation tool which exploits
specialized domain knowledge to generate semantic fine-grained annotations,
greatly reducing the efforts of domain experts, for classification problems that
cannot be solved by using only low and middle-level features. The tool was
used by three expert agronomists to provide high-level and coarse annotations
and by ten non-expert users who provided fine-grained annotations without any
knowledge on the application domain. The resulting VegImage dataset contains
3,872 images, over than 60,000 bounding boxes, and over than 1,000,000 OWL
triples, representing, to the best of our knowledge, one of the most comprehensive
resources for fine-grained classification and one the most exhaustive knowledge
bases in computer vision. As future work, we are working on building semantic
machine learning classifiers integrating classic learning methods with reasoning
approaches able to convert a set of detections into an ontology instance describ-
ing the application domain to be matched against correct instances as provided
by domain experts. The annotation tool, the image dataset, the knowledge base,
and the Fruit ontology will be made publicly available.
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Abstract. In this work we propose a comparative study between dif-
ferent descriptors in analysing histological images. In particular, our
study is focused on measuring the accuracy of moments (Hu, Legendre,
Zernike), Local Binary Patterns and co-occurrence matrices in classi-
fying histological images. The experimentation has been conducted on
well known public datasets: HistologyDS, Pap-smear, Lymphoma, Liver
Aging Female, Liver Aging Male, Liver Gender AL and Liver Gender CR.
The comparison results show that when combined with co-occurrence
matrices and extracted from the RGB images, the orthogonal moments
improve the classification performance considerably, imposing themselves
as very powerful descriptors for histological image analysis.

Keywords: Medical image analysis · Texture descriptors · Moments ·
Local binary pattern · Co-occurence matrix · Classification

1 Introduction

Histological image analysis is a process that allows to evaluate if microscopic
structures at the sub-cellular, cellular, tissue and organs level are affected by dis-
eases, through various computer assisted methods. Tissue image analysis could
be used to measure the cancer cells in a biopsy of a cancerous tumour taken from
a patient and it can significantly reduce uncertainty in characterizing tumours
compared to evaluations done by histologists, or improve the prediction recur-
rence rate of some cancers. Image analysis involves complex algorithms which
identify and characterize cellular colour, shape and quantity of the tissue sample
using image pattern recognition technology. In [1] global features are used to
automatically discriminate lymphoma, in [2] wavelet features are used for the
detection of tumours in endoscopic images and in [3] image texture informations
are used to automatically discriminate polyps in colonoscopy images. Over the
past few years moment functions have been used in medical image analysis with
promising performance. They are statistical measures used to obtain the rele-
vant information of an object. Since the introduction of invariant moments in
image analysis [4], moment functions have been widely used in image process-
ing and pattern classification applications, as discriminative descriptors, such as
c© Springer International Publishing AG 2017
S. Battiato et al. (Eds.): ICIAP 2017, Part I, LNCS 10484, pp. 345–356, 2017.
https://doi.org/10.1007/978-3-319-68560-1_31
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the geometric moments [5] for texture classification, or the complex moments
for texture segmentation [6]. However, both geometric and complex moments
contain redundant information and are sensitive to noise, due to the fact that
the kernel polynomials are not orthogonal. For these reasons many different
moments have been proposed, such as the discrete Tchebichef moments [7], the
discrete moments known as Krawtchouk moments [8] or orthogonal moments
like Legendre and Zernike moments [9].

Orthogonal moments are shown to be less sensitive to noise and have an
efficient capability in feature representation with minimum redundancy. Zernike
moments have been widely used in different types of applications, in shape-
based image retrieval [10,11] and in pattern recognition [12] tasks. In medical
image analysis the orthogonal moments have been used to reconstruct noisy
CT, MRI, X-ray medical images [13], to describe the texture of a CT liver image
[14] or prostate ultrasound [15], to detect tumours in brain images [16] or in
mammography images [17], to recognize parasites [18] and spermatogonium [19].

In this work we propose a comparative study between different descriptors
based on texture information for histological image classification. In particu-
lar, our study is focused on measuring the accuracy of moments (Hu, Legendre,
Zernike), Local Binary Patterns (LPBs) and co-occurrence matrices in classifying
histopathological images. The experimental results show that the combination
of orthogonal moments with co-occurrence matrices reaches a very high level
of accuracy on all the tested datasets, overcoming the most common and used
descriptors. The rest of paper is organized as follows. Next section presents the
texture descriptors definition used throughout this work. Section 3 presents the
experimental evaluation, describing the utilized datasets, showing the experi-
mental measures, the implementation details of each descriptor, and the results
achieved for the specific collections. Finally, in Sect. 4 we give the conclusions.

2 Texture Descriptors

In this section we describe three important classes of texture descriptors: image
geometric and orthogonal moments, cooccurence matrices and local binary pat-
terns.

2.1 Image Moments

The moments are widely used in many applications for features extraction due to
their invariance to scale, rotation and reflection change. The use of moments for
image analysis and pattern recognition was inspired by Hu [4]. Hu’s, Legendre’s
and Zernike’s are the most common moments.

Hu moments. They are derived and calculated from geometric moments. The
two-dimensional geometric moments of order (p+q) of an image of M ×N pixels
with intensity function f(x, y) are defined as:

mpq =
M−1∑

x=0

N−1∑

y=0

xpyqf(x, y), (1)
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where p, q = 0, 1, 2, . . .. A set of n moments consists of all mpq for p + q ≤ n.
The corresponding central moments are defined as:

μpq =
M−1∑

x=0

N−1∑

y=0

(x − x)p(y − y)qf(x, y), (2)

where x = m10/m00 and y = m01/m00 are the coordinates of the centre of mass
of the image. The central moments μpq defined in Eq. 2 are invariant under the
translation of coordinates. They can be normalized to preserve the invariance
by scaling. For p + q = 2, 3, . . . the normalized central moments of an image are
given by:

ηpq =
μpq

μγ
00

with γ =
p + q

2
+ 1. (3)

Hu defined seven functions that are invariant to scale, translation and rotation
changes [4], from the normalized central moments through the order three.

Legendre Moments. Legendre moments are orthogonal moments first introduced
by Teague [9]. They were used in several patterns recognition [4] tasks. The
Legendre moment of order (p + q) of an image of M × N pixels with intensity
function f(x, y) is defined on the square [−1,+1] × [−1,+1], by:

Lpq =
(2p + 1)(2q + 1)

M × N

M−1∑

i=0

N−1∑

j=0

Pp(xi)Pq(yj)f(xi, yj) (4)

where xi and yj denote the normalized pixel coordinates in the range of [−1,+1],
which are given by:

xi =
2i − (M − 1)

M − 1
, yj =

2j − (N − 1)
N − 1

(5)

and

Pp(xi) =
p∑

k=0

(−1)
p−k
2 xk(p + k)!

2pk!
(

p−k
2

)
!
(

p+k
2

)
!

(6)

with p − k even.

Zernike Moments. Zernike moments are the mapping of an image onto a set
of complex Zernike polynomials. As these Zernike polynomials are orthogonal
to each other, Zernike moments can represent the properties of an image with
no redundancy or overlapping of information between the moments [9]. Due to
these characteristics, Zernike moments have been used as features set in many
applications. The computation of Zernike moments from an input image con-
sists of three steps: computation of radial polynomials, computation of Zernike
polynomials and computation of Zernike moments by projecting the image onto
the Zernike polynomials [20]. The real-valued radial polynomial is defined as:



348 C. Di Ruberto et al.

Rp,q(r) =
(p−|q|)/2∑

s=0

(−1)s(p − s)!rp−2s

s!
(p+|q|

2 − s
)
!
(p−|q|

2 − s
)
!

(7)

with Rp,q(r) = Rp,−q(r), and p, q generally called order and repetition, respec-
tively. The order p is a non-negative integer, and the repetition q is an integer
satisfying p − |q| even and |q| ≤ p. The discrete form of the Zernike moments of
an image of size M × N is expressed as follows:

Zpq =
p + 1

λ

M−1∑

x=0

N−1∑

y=0

Rpq(rxy)e−jqθxyf(x, y) (8)

where 0 ≤ rxy ≤ 1 and λ is a normalization factor. In the discrete implementation
of Zernike moments, the normalization factor λ must be the number of pixels
located in the unit circle by the mapping transformation and corresponds to the
area of a unit circle π in the continuous domain. The transformed θxy phase and
the distance rxy at the pixel coordinates (x, y) are given by:

θxy = tan−1

(
(2y − (N − 1))/(N − 1)
(2x − (M − 1))/(M − 1)

)
(9)

rxy =

√(
2x − (M − 1)

M − 1

)2

+
(

2y − (N − 1)
N − 1

)2

. (10)

2.2 Co-occurrence Matrices

One of the earliest method for texture descriptors extraction was proposed
by Haralick et al. [21]. His method is based on the creation of the grey level
co-occurrence matrices, GLCMs, from which features representing some image
aspects can be calculated. A GLCM represents the probability of finding two
pixels i, j with distance d and orientation θ. Obviously, the d and θ values can
assume different values, but the most used are d = 1 and θ = [0◦, 45◦, 90◦, 135◦].
A GLCM for an image of size M × N with Ng grey levels is a 2D array of size
Ng×Ng. Haralick proposed thirteen descriptors that can be extracted from these
matrices. Interesting methods have already been presented in order to extend
the original implementation of GLCM. In [22] different values for the distance
parameter influencing the matrices computation are evaluated, in [23] the GLCM
descriptors are extracted by calculating the weighted sum of GLCM elements, in
[24] the GLCM features are calculated by using the local gradient of the matrix.
Furthermore, the GLCM has been extracted using the colour information from
single channels [25] or by combining them in pairs [26,27]. Considering that
invariant descriptors have our main focus in this work, we compute the GLCM
only using the grey level intensities, and convert the rotation-dependent descrip-
tors in rotationally invariant by the following approach. We start considering
all the possible circular shifts of a feature vector fk = [f1, . . . , fm]. Then, we
construct a matrix of size m × m in which all the circular shifts of the vector fk

are present and disposed regularly, generating a symmetric matrix as follows:
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⎛

⎜⎜⎜⎜⎝

f1 f2 · · · fm−1 fm

f2 · · · · · · fm f1
· · · · · · · · · · · · · · ·

fm−1 fm · · · · · · · · ·
fm f1 · · · · · · fm−1

⎞

⎟⎟⎟⎟⎠

Hence, the eigenvalues of such matrix are the new invariant descriptors, GLCMri,
as they preserve dimension and direction of the original feature vector.

2.3 LBP Descriptors

The LBPs, instead, are a quite recent tool for texture analysis, originally pro-
posed in [28] and widely used for grey level texture classification, due to its
simplicity and robustness. This operator transforms the image by thresholding
the neighbourhood of each pixel and by coding the result as a binary number.
The resulting image histogram can be used as a feature vector for texture clas-
sification. Moreover, radius and number of neighbourhood pixels are two main
parameters needed for the LBP operator. Although the LBP have been extended
in many different ways, the most useful version, proposed by the same authors
[29], realizes a rotation invariant descriptor, called LBPri. The LBPri is easily
obtained through an iterative rotation of the binary digits, until the smallest
value has been reached.

3 Datasets

The experimentation has been carried out on seven of the most famous colour
histology image databases: HistologyDS, Pap-smear, Lymphoma, Liver Aging
Female, Liver Aging Male, Liver Gender AL and Liver Gender CR that represent
a set of really different computer vision problems.

HystologyDS (HIS) database [30] is a collection of 20,000 histology images
for the study of fundamental tissues. It is provided in a subset of 2828 images
annotated by four fundamental tissues: connective, epithelial, muscular and ner-
vous. Each tissue is captured in a 24-bit RGB image of size 720 × 480. Some
sample tissue images from HIS database are showed in Fig. 1.

Pap-smear (PAP) database [31] is a collection of pap-smear images acquired
from healthy and cancerous smears coming from the Herlev University Hospital.
It is composed of 917 images containing cells, annotated into seven classes: four

Connective Epithelial Muscular Nervous

Fig. 1. Four different tissues from HistologyDS database.
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Light Dysplastic Moderate Dysplastic Severe Dysplastic Carcinoma

Normal Columnar Normal Intermediate Normal Superficiel

Fig. 2. The seven classes of cells belonging to Pap-smear database: first four abnormal
and last three normal.

represent abnormal cells and three represent normal cases. Nevertheless, from the
medical diagnosis viewpoint the most important requirement corresponds to the
general two-class problem of correct separation between normal from abnormal
cells. For this reason we have considered only the binary case. Each cell was
captured in a 24-bit RGB image without a fixed size, that ranges from about
50 × 50 to about 300 × 300. Some examples are showed in Fig. 2.

Lymphoma (LYM) database [1] is a collection of tissues affected by malig-
nant lymphoma, a cancer affecting lymph nodes. Three types of malignant lym-
phoma are represented in the set: Chronic Lymphocytic Leukemia (CLL), Follic-
ular Lymphoma (FL) and Mantle Cell Lymphoma (MCL). This dataset presents
a collection of samples from biopsies sectioned and stained with (H&E), realized
in different laboratories by several pathologists. Only the most expert patholo-
gists specialised in these types of lymphomas are able to consistently and accu-
rately classify these three lymphoma types from H&E-stained biopsies. This slide
collection contains significant variation in sectioning and staining and for this
reason it is more representative of slides commonly encountered in a clinical set-
ting. This database contains a collection of 374 slides captured in a 24-bit RGB
image of size 1380 × 1040. In Fig. 3 a randomly selected image from each class
is showed.

AGEMAP Atlas of Gene Expression in Mouse Aging Project [32] is a study
by the National Institute on Aging, involving 48 male and female mice, of four
ages (1, 6, 16, and 24 months), on ad-libitum or caloric restriction diets. Fifty

CLL FL MCL

Fig. 3. Three different kinds of lymphoma belonging to lymphoma database.
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colour images from 30 livers were manually acquired using a Carl Zeiss Axiovert
200 microscope and 40x objective, for a total of 1500 images. Each image is of size
1388× 1040 in TIFF format with a 36-bit RGB colour depth. As the acquisition
was done using 12 bits of quantization per colour channel, the histograms have
been compressed so as to cover the 8 bits encoding. All the slides were prepared
by the same person, thus staining variability in this dataset is very limited.
AGEMAP images can be analysed across multiple axis of differentiation: age,
gender, diet, or individual mice to construct a variety of classification problems.
For these reasons the datasets’ authors proposed three different experiments
using three different subsets of the original images:

– Liver Aging Female (LAF) experiment consists on a 4-way classification
problem using the four classes (1, 6, 16 and 24 months) of images of female
mice on ad libitum diet. This set is composed of 529 images.

– Liver Gender AL (LGAL) experiment consists on a 2-way classifier which
classifies the gender of the mouse based on the images of 6-month old male
and female mice on ad-libitum diet. This set is composed of 265 images.

– Liver Gender CR (LGCR) experiment consists on a 2-way classifier which
classifies the gender of the mouse based on the images of 6-month old male
and female mice on caloric restriction diet. This set is composed of 303 images.

One more experiment has been added, Liver Aging Male (LAM), to the
previously mentioned. It consists on a 4-way classification problem, like the first
one, even though four classes (1, 6, 16 and 24 months) of images of male mice
on an ad libitum diet have been used. This set is composed of 499 images.

4 Experimental Evaluation

The performance of the described descriptors has been evaluated following two
strategies. The first one has been performed converting each image in grayscale
and extracting each descriptor from the converted image. The second one has
been performed over the RGB images applying the computation scheme for the
three R, G, B channels and linking the descriptors into a single vector in order
to take into account the colour information as we proposed in [27]. Classification
performances have been evaluated by calculating the accuracy, which offers a
good indication of the performance since it considers each class of equal impor-
tance. Thus the classification accuracy have been estimated through a k-Nearest
Neighbour (k-NN) classifier, with k = 1 and using the euclidean distance. k-NN
strategy has been preferred over more complex classifier in order to produce
the results more representative of the effectiveness of the descriptors than of the
classifiers themselves. Both analysing the grayscale images and the colour images
we first tested the Hu, Zernike (up to order 10) and Legendre (up to order 8)
moments and GLCMri and LBPri texture descriptors individually to assess the
performances of the state-of-the-art methods. Then, we evaluated if the previous
descriptors could benefit from a combination of them. In particular, we evaluated
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if the invariant moments could be more discriminative if extracted starting from
a different representation instead of directly from the original images. Thus, we
computed Hu, Zernike and Legendre moments starting from the LBP images and
from the GLCM computed with angles 0◦, 45◦, 90◦ and 135◦. In order to better
understand the behaviour of the single descriptors and their combination we
report a plot in Fig. 5 where the average accuracy calculated on every descriptor
applied to each of the datasets from the grayscale images is showed. As it can
be observed, all the invariant moments, and in particular Zernike and Legen-
dre moments, are more discriminant if extracted from a different representation.
However, in order to further improve the classification performances, a second
experiment has been conducted. We extracted the features considering the R,
G, B, channels colour information, by computing every descriptor for each of the
colour channels and then concatenating the results of the three channels in the
same feature vector as we proposed in [27]. In that work we demonstrated that
the performance of a descriptor depends on the used color model. So, in order
to make a fair comparison of our descriptors, in this work we have chosen the
RGB color space. A plot that sums up this experiment is presented in Fig. 6.
The performance of all the descriptors improves considerably by using colour
information.

Female 1 month Female 6 month Female 16 month Female 24 month

Male 1 month Male 6 month Male 16 month Male 24 month

Male AL Female AL Male CR Female CR

Fig. 4. Four liver images representing: female mice of the different ages (top), male
mice of the different ages (center), male and female mice on Ad-libitum diet and on
caloric restriction diet.
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Fig. 5. Average performances of the descriptors extracted from the grayscale converted
images. (Color figure online)
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Fig. 6. Average performances of the descriptors extracted from the RGB images. (Color
figure online)



354 C. Di Ruberto et al.

5 Conclusions

In this work we have proposed a comparative study between different descrip-
tors in analysing histological images. We focused the comparison on descriptors
invariant to image rotations and, in particular, we measured the accuracy of
moments, local binary patterns and co-occurrence matrices in classifying histo-
logical images. The experimentation has been conducted on well known public
biomedical datasets: HistologyDS, Pap-smear, Lymphoma, Liver Aging Female,
Liver Aging Male, Liver Gender AL and Liver Gender CR that represent a set of
really different computer vision problems. We observed that, by extracting the
invariant moments from the GLCM matrices, the overall accuracy of the invari-
ant moments increases considerably, overcoming the classical LBP ang GLCM
approaches. In particular, if extracted taking into account colour information,
the Zernike and Legendre moments impose themselves as very powerful descrip-
tors for histological image analysis.
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Abstract. The empirical fact that classifiers, trained on given data col-
lections, perform poorly when tested on data acquired in different set-
tings is theoretically explained in domain adaptation through a shift
among distributions of the source and target domains. Alleviating the
domain shift problem, especially in the challenging setting where no
labeled data are available for the target domain, is paramount for having
visual recognition systems working in the wild. As the problem stems
from a shift among distributions, intuitively one should try to align
them. In the literature, this has resulted in a stream of works attempting
to align the feature representations learned from the source and target
domains by introducing appropriate regularization terms in the objec-
tive function. In this work we propose a different strategy and we act
directly at the distribution level by introducing DomaIn Alignment Lay-
ers (DIAL) which reduce the domain shift by matching the source and
target feature distributions to a canonical one. Our experimental evalu-
ation, conducted on a widely used public benchmark, demonstrates the
advantages of the proposed domain adaptation strategy.

Keywords: Unsupervised domain adaptation · Deep models · Feature
normalization · Entropy loss

1 Introduction

Many scientists today believe we are witnessing the golden age of computer
vision. The massive adoption of machine learning and, in particular, of deep
learning techniques as well as the availability of large fully annotated datasets
have enabled amazing progresses in the field. A natural question is if the novel
generation of computer vision technologies is robust enough to operate in real
world scenarios. One of the fundamental requirements for developing systems
working in the wild is devising computational models which are immune to the
domain shift problem, i.e. which are accurate when test data are drawn from a
(slightly) different data distribution than training samples. Unfortunately, recent
c© Springer International Publishing AG 2017
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studies in the literature have shown that, even with powerful deep architectures,
the domain shift problem can only be alleviated but not entirely solved [1] and
several methods for deep domain adaptation have been developed.

Domain adaptation focuses on learning classification or regression models
on some target data by exploiting additional knowledge derived from a related
source task. In particular, unsupervised domain adaptation focuses on the chal-
lenging scenario where no labeled data are available in the target domain. Sev-
eral approaches have been proposed for unsupervised domain adaptation in the
past, the most successful of which are based on deep architectures [2–5]. Pre-
vious unsupervised domain adaptation methods can be roughly divided in two
categories. The first category includes methods which attempt to reduce the
discrepancy between source and target distributions by minimizing the distance
between the mean embeddings of the learned representations, i.e. the so-called
Maximum Mean Discrepancy (MMD) [2,5]. A second class of methods learns
domain invariant features by maximizing a domain-confusion objective func-
tion, modelling the loss of an auxiliary classifier which should discriminate if a
sample belongs to the source or to the target domain [3,4].

Following these recent approaches, in this paper we present a domain adap-
tation method which simultaneously learns discriminative deep representations
while coping with domain shift in the unsupervised setting. Differently from
previous works, we do not focus on learning domain-invariant features by explic-
itly optimizing additional loss terms (e.g. MMD, domain-confusion). We argue
instead that domain adaptation can be achieved by embedding in the network
some Domain Alignment layers (DA-layers) which operate by aligning both
source and target distributions to a canonical one. We also show that several
different transformations can be employed in our DA-layers to match source
and target data distributions to the reference, thus highlighting the generality
of our approach. We call our algorithm DIAL – DomaIn Alignment Layers. Our
experimental evaluation, conducted on the most widely used domain adaptation
benchmark, i.e. the Office-31 [6] dataset, demonstrates that DIAL greatly alle-
viates the domain discrepancy and outperforms most state of the art techniques.

2 Related Work

In the last decade unsupervised domain adaptation have received considerable
interest in the computer vision community as in many applications labeled data
are not available in the target domain [2–4,7–13].

Traditional methods for unsupervised domain adaptation attempt to reduce
the domain shift by adopting two main approaches. A first strategy, the so-called
instance re-weighting [7–11], is based on building models for the target domain
by adopting appropriately re-weighted source samples. The idea is to assign
different importance to source samples such as to reflect their similarity with
the target data. This approach has been proposed in [7] where a nonparametric
method called Kernel Mean Matching is used to set weights without explic-
itly estimating the data distributions. Similarly, Gong et al. [10] introduced the
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notion of landmark datapoints, a subset of source samples which are similar to
target data, and proposed a landmark-based domain adaptation method. Chu
et al. [8] presented a framework for joint source sample selection and classifier
learning. While these works considered hand-crafted features, similar ideas can
be also exploited in the case of deep architectures. An example is the work in
[11] where deep autoencoders are used to build source sample weights.

The large majority of previous unsupervised domain adaptation methods are
based on feature alignment, i.e. domain shift is reduced by projecting source
and target data in a common subspace. Several feature alignment methods have
been proposed in the past, both considering shallow models [14–16] and deep
architectures [2–4]. Focusing on works adopting deep architectures, most meth-
ods align source and target feature representations by adding in the objective
function a regularization term attempting to (i) reduce Maximum Mean Discrep-
ancy [2,5,17] or (ii) maximize a domain confusion loss [3,4]. Recent studies have
also investigated alternative methodologies, such as building specific encoder-
decoder networks to jointly learn source labels and reconstruct unsupervised
target images [18,19]. Our approach significantly departs from previous works
by reducing the discrepancy between source and target distributions through the
introduction of our DA-layers. The most similar work to ours is [20] where Li
et al. proposed to revisit batch normalization for deep domain adaptation: BN
layers are used to independently align source and target distributions to a stan-
dard normal distribution, by matching the first- and second-order moments.
While our approach develops from a similar intuition, our method can be
regarded as a generalization of [20], as we consider several transformation in
our DA layers and we introduce a prior over the network parameters in order
to benefit from the target samples during training. Experiments presented in
Sect. 4 show the significant added value of our idea.

3 DIAL: DomaIn Alignment Layers

Let X and Y denote the input space (e.g. images) and the output space
(e.g. image categories) of our learning task, respectively. We consider an unsu-
pervised domain adaptation setting, where we have a source domain described in
terms of a probability distribution ps

xy over X ×Y and a target domain following
pt
xy. The source and target distributions differ in general and are unknown, but

we are provided with n labeled observations S = {(xs
1, y

s
1), . . . , (x

s
n, ys

n)} from
the source domain, i.e. they are sampled from ps

xy, and m unlabeled observa-
tions T = {xt

1, . . . , x
t
m} sampled from the marginal distribution pt

x. The goal
of the learning task is to estimate a predictor for the target domain, using the
observations in S and T . This task is particularly challenging because we lack
observed labels from the target domain and the discrepancy between the source
and target domains, which in general exists, prevents predictors trained on the
source domain to be readily applicable to samples from the target domain.

One key element for the success of an unsupervised domain adaptation
algorithm is its ability of reducing the discrepancy between source and tar-
get domains. There are different approaches to achieve this goal, but we focus
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on aligning the domains at the feature level. Within this family of methods the
most successful ones couple the training process and the domain adaptation step
within deep neural architectures [2,4,5], yielding alignments at different level of
abstractions. Our method is close in spirit to this line of works but we distinguish
from them by (a) not relying on the covariate shift assumption, i.e. we in gen-
eral assume ps

y|x �= pt
y|x, and by (b) hard-coding the domain-invariance properties

directly into our deep neural network. The rationale behind the former choice is
the impossibility theorem for domain adaptation given in [21], which intuitively
states that no domain adaptation algorithm can succeed (in terms of the notion
of learnability) if it relies on the covariate shift assumption and achieves a low
discrepancy between the source and target unlabeled distributions, i.e. ps

x and
pt
x, respectively. Since the latter assumption is what one implicitly pursues by

performing domain alignments at the feature level, we drop the former assump-
tion. The other distinguishing aspect of our method is an architectural solution
to achieve domain-invariance, which contrasts with the majority of approaches
that rely on additional loss terms (e.g. MMD-type losses [2] or adversarial losses
[3,4]) that induce an external pressure on the networks’ parameters at train-
ing time to fulfill the domain-invariance requirement. Works exists that do not
rely on the covariate-shift assumption and take a loss-based approach to feature
alignment, but those typically implement the source and target predictors using
different sets of parameters (not necessarily disjoint) [5,22]. Instead, the method
we propose is able to avoid the covariate shift assumption and at the same time
have the set of learnable network parameters, denoted by θ in this work, that
is totally shared. The key element of our method is the domain-alignment layer
that we describe below.

3.1 Source and Target Predictors
We implement source and target predictors as two deep neural networks that
share the same structure and the same parameters given by θ. However, the
two networks differ by having a number of layers that perform a domain-specific
operation. Those layers are called Domain-Alignment Layers (DA-layers) and
their role is to apply a data transformation that aligns the input distribution
to a pre-fixed reference distribution. In Fig. 1, we provide an illustration of the
basic principle. In general, the input distributions to DA-layers in the source and
target predictors differ, but the reference distribution remains fixed. As a result,
the data transformations that are applied in the DA-layers of the source and
target predictors differ. Consequently, source and target predictors implement
different functions, thus violating the aforementioned covariate shift assumption,
while still sharing the same set of learnable parameters. More details about the
neural network architectures will be provided in the experimental section.

To better understand how the domain-alignment transformation works, we
consider a single DA-layer in isolation. The desired output distribution, namely
the reference distribution, is decided a priori and thus known. The input distri-
bution instead is unknown, but we can rely on a sample D thereof. Now given
a transformation g from a family of transformations G we can push the refer-
ence distribution into the pre-image under g via a variable change. This yields



Just DIAL 361

Fig. 1. DIAL learn a pair of transformations that shift the observed source and target
distribution to match a desired reference distribution.

a family of distributions among which we can select the one, say ĝ, that most
likely represents sample D. In other words, if v is a random variable following
the reference distribution and we assume that the input observations in D are
realizations of random variable u = g−1(v), then we can determine the trans-
formation ĝ ∈ G as the one that maximizes the likelihood pu(D|g). We can
alternatively encode some prior knowledge about the transformation by taking
a Maximum-A-Posteriori (MAP) approach and thus maximize pu(g|D, ψ), where
ψ encodes hyper-parameters governing the prior over g.

This idea paves the way to a number of transformations that could be
obtained by playing with different reference distributions and families of trans-
formations. In this work, we restrict our focus to some families of DA-layers. In
all the cases we consider in this work we assume that G consists of channel-wise
linear transformations of the form G = {u �→ diag(a)− 1

2 (u−b) : a, b ∈ R
d, a > 0}

where diag(a) is a diagonal matrix with diagonal elements given by a. A first
family of approaches is obtained by imposing the standard normal distribution
as reference distribution and depending on the prior knowledge we inject we
obtain the following variations of DA-layers:

Batch normalization. By pushing the standard normal distribution, i.e. the ref-
erence distribution of v, into the pre-image under g ∈ G we obtain a distribution
for random variable u = g−1(v) that is normal with mean b and covariance
diag(a). The maximum likelihood estimates of a and b given sample D, consist-
ing of i.i.d. realizations of u, are given by â = σ2(D) and b̂ = μ(D) respectively,
where μ(D) and σ2(D) represent the sample mean and the diagonal of the sample
covariance of D, respectively. The resulting domain-alignment transformation is
ĝ(u) = diag(σ2(D))− 1

2 [u − μ(D)]. This transformation corresponds to the well-
known batch-normalization layer [23], when D is the mini-batch of a training
iteration.

Batch normalization with prior on variance. This setting is similar to the pre-
vious one, but instead of considering a maximum likelihood estimate of the
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transformation parameter a we opt for a MAP estimate. To this end we intro-
duce an Inverse-Gamma(α,β) prior on the transformation parameter a, yielding
a posterior distribution for a that is Inverse-Gamma(ᾱ,β̄) with ᾱ = α + |D|

2 and
β̄ = β + |D|

2 σ2(D). The corresponding MAP estimate is given by â = β̄
ᾱ+1 . The

hyperparameters of the prior distribution, namely α and β are set to α = |D|
2 −1

and β = εD
2 , where ε is intuitively a prior variance. In this way we have that β̂

gives approximately equal weight to the sample variance and the prior variance,
yielding β̂ = ε+σ2(D). Finally, the estimate of b remains the maximum likelihood
estimate, namely the sample mean, i.e. b̂ = μ(D). Note that the data transfor-
mation we obtain with this procedure is the actual implementation of batch
normalization that we find in most deep learning frameworks, for ε typically
appears as a small additive constant for the variance that prevents numerical
issues. In our case, however ε is not necessarily set to a small constant as we will
see in the experimental section.

A second family of approaches is obtained by imposing the Laplace distribu-
tion as reference distribution. In this case we do not explore variations involving
prior knowledge, although it would be possible.

Laplace Batch normalization. If we assume that the reference distribution fol-
lows a standard Laplace distribution, then the maximum likelihood estimate
b̂ corresponds to the sample median, while the maximum likelihood estimate
of a is given by the mean absolute value deviation from the sample median,
i.e. â = 1

|D|
∑

x∈D |x − b̂|.

3.2 Training and Inference

Training. During the training phase we consider the datasets S and T and we
estimate the neural network weights θ. Note that these parameters are shared
by the source and the target predictors. To compute θ we define a posterior
distribution of θ given the observations S and T , π(θ|S,T ), and maximize it
over Θ to obtain a MAP estimate θ̂:

θ̂ ∈ arg max
θ∈Θ

π(θ|S,T ) . (1)

The posterior distribution is defined as π(θ|S,T ) ∝ π(yS |xS , θ)π(θ|T ), where
yS = {y1, . . . , yn} and xS = {x1, . . . , xn} indicate the set of labels and data
points in S, respectively. The term π(yS |xS , θ) is the likelihood of θ with respect
to the source dataset, while π(θ|T ) is a prior term depending on the unlabeled
target samples. Assuming the data samples to be i.i.d., the likelihood term is
given by

π(yS |xS , θ) =
n∏

i=1

fθ
ys
i
(xs

i ;xS) , (2)

where fθ
ys
i
(xs

i ;xS) is the probability that sample point xs
i takes label ys

i according
to the source predictor.
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In analogy to previous works on semi-supervised learning [24] and unsuper-
vised domain adaptation [5], the prior distribution π(θ|T ) is defined in order to
promote models that exhibit well separated classes. This is achieved by defining
π(θ|T ) ∝ exp (−λh(θ|T )), where λ is a user-defined parameter and h(θ|T ) is
the empirical entropy of y|θ conditioned on x, i.e. :

h(θ|T ) = − 1
m

m∑

i=1

∑

y∈Y
fθ

y (xt
i;xT ) log fθ

y (xt
i;xT ) , (3)

where fy(xt
i;T ) represents the probability that sample point xt

i takes label y
according to the target predictor.

Inference. Once the optimal network parameters θ̂ are estimated by solving (1),
the dependence of the target predictor fθ

y (x;xT ) from xT can be removed. In
fact, after fixing θ̂, the input distribution to each DA-layer also becomes fixed,
and we can thus compute and store the required transformation once and for
all. E.g. , for the special case of Batch normalization discussed in Sect. 3.1, this
means simply to store the values of μ(D) and σ(D).

4 Experiments

In this section we extensively evaluate our approach and compare it with state-
of-the-art unsupervised domain adaptation methods. We also provide a detailed
analysis of the proposed framework, performing a sensitivity study and demon-
strating empirically the effect of our domain alignment strategy.

4.1 Experimental Setup

To evaluate the proposed approach, we consider the Office-31 [6] dataset. Office-
31 is a standard benchmark for testing domain adaptation methods. It contains
4652 images organized in 31 classes from three different domains: Amazon (A),
DSRL (D) and Webcam (W). Amazon images are collected from amazon.com,
Webcam and DSLR images were manually gathered in an office environment.
In our experiments we consider all possible source/target combinations of these
domains and adopt the full protocol setting [10], i.e. we train on the entire labeled
source and unlabeled target data and test on annotated target samples.

Networks and Training. We apply the proposed method to two state-of-
the-art CNNs, i.e. AlexNet [25] and Inception-BN [23]. We train our networks
using mini-batch stochastic gradient descent with momentum, as implemented
in the Caffe library, using the following meta-parameters: weight decay 5×10−4,
momentum 0.9, initial learning rate 10−3. We augment the input data by scaling
all images to 256×256 pixels, randomly cropping 227×227 pixels (for AlexNet)
or 224 × 224 pixels (Inception-BN) patches and performing random flips. In all

http://amazon.com
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experiments we choose the parameter λ, which is fixed for tests of a given setting,
by cross-validation.

AlexNet [25] is a well-know architecture with five convolutional and three
fully-connected layers, denoted as fc6, fc7 and fc8. The outputs of fc6 and
fc7 are commonly used in the domain-adaptation literature as pre-trained fea-
ture representations [1,26] for traditional machine learning approaches. In our
experiments we modify AlexNet by appending a DA-layer to each fully-connected
layer. Differently from the original AlexNet, we do not perform dropout on the
outputs of fc6 and fc7. We initialize the network parameters from a publicly-
available model trained on the ILSVRC-2012 data, we finetune all layers, and
learn from scratch the last fc layer (we increase its learning rate by a factor of
10). During training, each mini-batch contains a number of source and target
samples proportional to the size of the corresponding dataset, while the batch
size remains fixed at 256. We train for a total of 60 epochs (where “epoch” refers
to a complete pass over the source set), reducing the learning rate by a factor
10 after 54 epochs.

Inception-BN [23] is a very deep architecture obtained by concatenating
“inception” blocks. Each block is composed of several parallel convolutions
with batch normalization and pooling layers. To apply the proposed method
to Inception-BN, we replace each batch-normalization layer with a DA-layer.
Similarly to AlexNet, we initialize the network’s parameters from a publicly-
available model trained on the ILSVRC-2012 data and freeze the first three
inception blocks. Each batch is composed of 32 source images and 16 target
images. In the Office-31 experiments we train for 20 epochs, reducing the learn-
ing rate by a factor 10 every 33% of the total number of iterations.

DIAL Variations. To evaluate the robustness of our framework, we tested
the 3 DIAL variations we discussed in Sect. 3.1: classical Batch Normaliza-
tion, reported as BN, Batch Normalization with prior on variance, reported
as Epsilon1, Laplacian Batch Normalization, reported as Laplacian BN.

Furthermore, we also tested a new sparse regularizer that has been recently
proposed in [27], which operates at level of the centered features in the batch-
normalization layer (before normalization by the variance). This is beneficial in
terms of decorrelating the features and can be integrated readily in our frame-
work. We consider the new regularizer for our DA-layers that are based on batch-
normalization and regard them as Batch Normalization with sparsity, reported
as sparse and Batch Normalization with prior on variance and sparsity, reported
as Epsilon sparse.

4.2 Results

Comparison with State-of-the Art Methods. In our first series of exper-
iments, summarized in Table 1, we compare our approach, applied to both

1 The ε parameter is set to 1 for all experiments.
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Table 1. Results on the Office-31 dataset using the full protocol.

Method Source Amazon Amazon Webcam Webcam DSLR DSLR Average

Target Webcam DSLR Amazon DSLR Amazon Webcam

AlexNet – source [25] 61.6 63.8 49.8 99.0 51.1 95.4 70.1

DDC [28] 61.8 64.4 52.2 98.5 52.1 95.0 70.6

DAN [2] 68.5 67.0 53.1 99.0 54.0 96.0 72.9

ReverseGrad [4] 73.0 – – 99.2 – 96.4 –

DIAL – AlexNet sparse 76.5 72.4 55.9 99.4 58.6 97.0 76.5

Inception-BN – source [23] 70.3 70.5 57.9 100.0 60.1 94.3 75.5

AdaBN [20] 74.2 73.1 57.4 99.8 59.8 95.7 76.7

AdaBN + CORAL [20] 75.4 72.7 60.5 99.6 59.0 96.2 77.2

DIAL – Inception-BN BN 82.9 87.3 62.6 99.9 63.1 98.2 82.4

AlexNet and Inception-BN, with several state-of-the-art methods on the Office-
31 dataset. In particular, we consider: several deep methods based on AlexNet-
like architectures, i.e. Deep Adaptation Networks (DAN) [2], Deep Domain Con-
fusion (DDC) [28], the ReverseGrad network [4]; a recent deep method based
on the Inception-BN architecture, i.e. AdaBN [20] with and without CORAL
feature alignment [26]. We compare these baselines to the AlexNet and Inception-
BN networks modified with our approach as explained in Sect. 4.1, reporting the
best results among the DA-layer variations we experimented with (see Table 2).
In the table our approach is denoted as DIAL – AlexNet and DIAL – Inception-
BN. As a reference, we further report the results obtained considering standard
AlexNet and Inception-BN networks trained only on source data.

Among the deep methods based on the AlexNet architecture, DIAL – AlexNet
shows the best average performance. Among the methods based on Inception-
BN, our approach considerably outperforms the others, with an average accuracy
of five points higher than the second best, and improvements on the single exper-
iments as high as ten points. It is interesting to note that the relative increase in
accuracy from the source-only Inception-BN to DIAL – Inception-BN is higher
than that from the source only AlexNet to DIAL – AlexNet. The considerable
success of our method in conjunction with Inception-BN can be attributed to
the fact that, differently from AlexNet, this network is pre-trained with batch
normalization, and thus initialized with weights that are already calibrated for
normalized features.

In-Depth Analysis of DA-Layers. In our second series of experiments we
aim to characterize the effects of different variations of the proposed DA-layers.
To do this, we perform an ablation study considering all possible combinations
of the following network variations: (i) with and without the entropy term on
the target samples in the loss function; (ii) with and without DA-layers; (iii)
with the DA-layer variations (Sect. 4.1).
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The results are reported in Table 2, and further synthesized in Fig. 2. As antic-
ipated in the previous section, the DIAL – AlexNet sparse variant achieves the
best accuracy. Overall, independently from the particular DA-layer variant, the
networks utilizing our proposal in its full extent (i.e. those in the “With entropy

Table 2. Analysis of the different variants of the proposed DA layers on the Office-31
dataset using the full protocol.

Method Source Amazon Amazon Webcam Webcam DSLR DSLR Average

Target Webcam DSLR Amazon DSLR Amazon Webcam

Baselines

AlexNet – source [25] 61.6 63.8 49.8 99.0 51.1 95.4 70.1

AlexNet – Entropy loss 63.7 65.6 35.5 96.6 42.9 99.6 67.3

With entropy loss

DIAL – AlexNet BN 73.2 71.7 56.2 99.3 59.6 95.9 76.0

DIAL – AlexNet Epsilon 71.6 71.7 56.7 99.3 59.4 99.2 76.3

DIAL – AlexNet sparse 76.5 72.4 55.9 99.4 58.6 97.0 76.5

DIAL – AlexNet Epsilon sparse 72.1 72.3 57.0 99.7 59.0 97.2 76.2

DIAL – AlexNet Laplacian BN 73.0 72.0 55.1 98.7 56.7 96.6 75.4

Without entropy loss

DIAL – AlexNet BN 62.2 65.5 47.1 99.2 47.6 95.2 69.5

DIAL – AlexNet Epsilon 65.3 64.5 47.3 99.5 48.4 95.0 70.0

DIAL – AlexNet sparse 60.6 64.0 47.0 99.3 48.1 95.6 69.1

DIAL – AlexNet Epsilon sparse 64.6 65.3 46.9 99.7 48.4 95.7 70.1

DIAL – AlexNet Laplacian BN 61.8 65.3 46.8 98.4 46.8 94.8 69.0

Fig. 2. Comparison of the different variants of the proposed method on the Office-31
dataset (average accuracy across different transfer tasks)
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loss” section of Table 2) consistently outperform the others, further confirming
the validity of our domain adaptation approach.

From the results in Table 2, we see that the use of an entropy loss term by
itself does not provide any advantage over the baseline approach. On the con-
trary, an average drop in accuracy of about 3% is observed when comparing
AlexNet – Entropy loss to AlexNet – source, with partial results greatly varying
depending on the particular source/target pair. Interestingly, AlexNet – Entropy
loss shows better accuracy compared to AlexNet – source in all the settings in
which the target dataset is smaller than the source dataset, i.e. A→W, A→D
and D→W. This may be explained by the fact that the entropy term is more
effective when there are sufficient source samples to appropriately bias the deci-
sion boundary. As shown in Fig. 2, the best performance between the proposed
variations of our domain alignment layers are obtained when considering BN
with sparse activations. Adding a sparse regularizer on the activations helps to
decorrelate the filter responses [27] and our results demonstrate that it has a
positive effect on domain adaptation tasks.

5 Conclusions

In this paper we presented DIAL, a general framework for unsupervised, deep
domain adaptation. Our main contribution is the introduction of novel, domain-
alignment layers, which reduce domain shift by matching source and target distri-
butions to a freely definable reference distribution. We also show that improved
performance can be obtained by exploiting unlabeled target data introducing
an entropy loss in the objective function. We evaluated the proposed approach
devising a simple implementation of our DA-layers based on multiple batch nor-
malization transformations. The results of our experiments demonstrate that
DIAL outperforms state-of-the-art domain adaptation methods. Future works
will investigate how to extend the proposed approach to a multi-source/multi-
target setting. We also plan to consider other reference distributions for domain
alignment in order to further improve performance.
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Abstract. Lung nodule classification is a class imbalanced problem
because nodules are found in much lower frequency than non-nodules. In
the class imbalanced problem, conventional classifiers tend to be over-
whelmed by the majority class and ignore the minority class. We there-
fore propose cascaded convolutional neural networks to cope with the
class imbalanced problem. In the proposed approach, multi-stage con-
volutional neural networks perform as single-sided classifiers to filter
out obvious non-nodules. Successively, a convolutional neural network
trained with a balanced data set calculates nodule probabilities. The pro-
posed method achieved the sensitivity of 92.4% and 94.5% at 4 and 8 false
positives per scan in Free Receiver Operating Characteristics (FROC)
curve analysis, respectively.

Keywords: Multi-stage training · Convolutional neural network · False
positive reduction · Computer-aided diagnosis · Lung nodule

1 Introduction

Lung cancer occupies a high percentage in the mortality rates of cancer on
a worldwide basis [1]. Early detection is one of the most promising strategies
to reduce lung cancer mortality [2]. In recent years, along with performance
improvements of CT equipment, increasingly large numbers of tomographic
images are being taken (e.g., at slice intervals of 1 mm), resulting in improve-
ments in the ability of radiologists to distinguish nodules. However, there is a
limitation on interpreting a large number of images (e.g., 300–500 slices/scan) by
relying on humans. Computer-aided diagnosis (CAD) systems show promise for
the urgent task of time-efficient interpretation of CT scans. In one study [2], six
computer-aided detection algorithms of lung nodules in computed tomography
scans were compared. These methods extract features in lung nodule images with
a signal processing technique and classify nodule candidates by using pattern
matching based on statistics or a machine learning method such as the k-nearest
neighbor algorithm (k-NN) and neural networks. By combining six computer-
aided diagnosis algorithms, they obtained detection sensitivities of 81.6% and
c© Springer International Publishing AG 2017
S. Battiato et al. (Eds.): ICIAP 2017, Part I, LNCS 10484, pp. 370–379, 2017.
https://doi.org/10.1007/978-3-319-68560-1_33
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87.0% at 4 and 8 false positives per scan in Free Receiver Operating Charac-
teristics (FROC) curve [2], respectively. In recent years, Convolutional Neural
Network (CNN) has become available thanks to high speed and large capacity
computing resources and it is showing superior performance to conventional tech-
nology in computer vision applications [3]. This is because CNN can be trained
end-to-end in a supervised fashion while learning highly discriminative features,
thus removing the need for handcrafting nodule feature descriptors. Setio et al.
[4] used a CNN specifically trained for lung nodule classification. On 888 scans of
a publicly available data set (the data set is the same as we used in this study.),
their method reached high sensitivities of 90.1% and 91.5% at 4 and 8 false pos-
itives per scan in FROC curve, respectively. Dou et al. [19] proposed a method
employing 3D CNNs for false positive reduction in automated pulmonary nodule
detection from volumetric CT scans. Their detection sensitivity reached 90.7%
and 92.2% at 4 and 8 false positives per scan in FROC curve, respectively.

In this paper, we focus on the task of lung nodule classification. The candidate
locations are computed using three existing candidate detection algorithms [4].
Lung nodule classification is a class imbalanced problem, as nodules are found in
much lower frequency than non-nodules among the candidate images. In other
words, many irregular lesions that are visible in CT images are non-nodules,
such as blood vessels or ribs. In the class imbalanced problem, conventional clas-
sifiers tend to be overwhelmed by the majority class and ignore the minority
class. Several approaches have been proposed to deal with such problems in rare
medical diagnosis [8], detection of oil spills in satellite radar images [9] and the
detection of fraudulent calls [10]. Japkowicz [6] showed that oversampling the
minority class and subsampling the majority class are both very effective meth-
ods of coping with the problem. Chawla et al. [11] proposed SMOTE (Synthetic
Minority Over-sampling Technique) algorithm that is artificially creating minor
class and randomly sub-sample majority class. Kubat and Matwin [7] proposed
a one-sided selection method that keeps all minor class samples and subsamples
the majority class samples. Sun et al. [12] comprehensively reviewed the class
imbalanced problems.

As one method to cope with the class imbalanced problem in lung nodule
classification, we propose a method to aim to filter out obvious non-nodules. Our
method is completely different from previous methods. It positively utilizes dete-
rioration of classification performance caused by learning of class imbalanced. We
call such classifier as single-sided classifier because it filters out majority (non-
nodules) class samples only. The single-sided classifier consists of CNN that
outputs nodule probabilities and filter that filters out the majority class samples
by using a threshold in nodules probability. It has two kinds of outputs: the
obvious non-nodules and suspicious nodule candidates which consist of nodules
and non-nodules. To implement such single-sided classifiers, the CNN is trained
with an inversely imbalanced data set consisting of many nodule images and a
few non-nodule images. By “inverse” we mean that the ratio of the number of
nodules and non-nodules is reversed against the original data set. As the results,
the single-sided classifiers work well for nodule samples, but do not work well
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for non-nodule samples. By using a threshold operation in nodule probability,
the non-nodule samples are classified into obvious non-nodules and suspicious
nodule candidates. The obvious non-nodules are dismissed and assigned zero
probabilities, the suspicious nodule candidates are passed to the down-stream
classifiers. This filtering mechanism contribute to the false positive reduction.
In addition, the single-sided classifiers are concatenated in cascade arrangement.
Figure 1 shows an illustration of our method. The obvious non-nodules (white
circles) are filtered out in each stage, finally suspicious nodule candidates (gray
circles) remain. The aim of our method is not to balance the number of samples
in majority and minority (nodule) class, rather we want to filter out obvious non-
nodules. In the final stage, the CNN trained by a balanced data set extracted
from the suspicious nodule candidates calculates the nodule probabilities. By
“balanced” we mean that the number of nodules is almost equal to the number
of non-nodules. We rely on our newly designed CNNs which have excellent classi-
fication ability to calculate nodule probabilities of suspicious nodule candidates.
As the result, our method can achieve low false positives while maintaining high
sensitivity. It helps decreasing the burden of image interpretation on radiologists.

Fig. 1. Multi-stage processing with single-sided classifiers. It classifies the samples as
suspicious nodule candidates (gray circles) and obvious non-nodules (white circles).
The obvious non-nodules are filtered out and the suspicious nodules are passed to the
next stage. At the final stage, the suspicious nodules are classified.

2 Multi-stage Neural Networks with Single-Sided
Classifiers

Figure 2 shows the schematic diagram of our method. Stage 1, Stage 2 and Stage
n are CNNs that perform as single-sided classifiers and gates to filter out low
nodule probability samples and pass the other samples to down stage. The final
stage is the CNN that calculates nodule probabilities. At Stage 1, by using
the CNN that performs as single-sided classifier, the test data set is classified,
and then, the samples whose probabilities fall below a threshold are removed
from the test data set as the obvious non-nodules. The nodule probabilities of
the removed samples are assigned zero. At Stage 2, the same procedures are
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applied again to remove further the obvious non-nodules from the test data
set. In the final stage, the CNN trained by a balanced data set calculates the
probabilities of the remaining suspicious nodule candidates. The lower part of
Fig. 2 shows the structure of the CNN. There are three main operations in the
CNN: (1) Convolution with rectified linear unit, (2) Pooling or sub-sampling
(3) classification by fully connected layer. The input to the CNN is extracted 2-D
patches from three consecutive slices of X-ray CT scan images. The convolution
layer will compute the output of neurons that are connected to local regions
in the input, each computing a dot product between their weights and a small
region they are connected to in the input volume. The purpose of convolution
is to extract features from the input image. The pooling layer performs a sub-
sampling operation along the spatial dimensions (width, height), resulting in
size of single channel becoming half of input. The last fully-connected layers
will compute the nodule probabilities. The same CNN structure with different
network is used as the single-sided classifier for the probability calculation at the
final stage.

Fig. 2. Schematic diagram of cascaded multi-stage CNNs. Stage 1, Stage 2 and Stage
n are CNNs that perform as single-sided classifiers to filter out non-nodule lesions.
The final stage is a CNN to calculate nodule probabilities. c(x) is nodule probability
of nodule candidate x. th is a threshold value to filter out obvious non-nodules. The
lower part shows the structure of the CNN. The numbers at lowest part show number
of neurons in three dimensions (width, height and channel).

The unique points of our method are that it uses cascaded multi-stage CNNs
that perform as single-sided classifiers and uses the inversely imbalanced data
as the training data. In contrast, there are some works (e.g. Viola-Jones [13]
and Wu et al. [14]) using the weak classifiers to construct boosted cascade layer
with simple features. Compared with the weak classifiers with simple features,
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convolutional neural network can automatically capture features from the CT
images, which can provide higher accuracy for the detection results. As for the
cascaded CNN structure, Li et al. [15] have proposed a cascaded CNN structure
for face detection. They use 6 CNNs in the cascade including 3 CNNs to detect
the face and 3 CNNs to calibrate the bounding box separately. The bounding box
calibration is not needed in our proposed method. The application of cascaded
CNN for face detection [16] [17] and other kind of image feature detection [18]
can also be found. However, the class imbalanced problem is not addressed in
those works.

3 Experiments

3.1 Lung CT Image Data Set

We used the lung CT scan data set obtained from Lung Nodule Analysis 2016 [5].
This set includes 888 CT scan images along with annotations that were collected
during a two-phase annotation process overseen by four experienced radiologists.
Each radiologist marked lesions, they identified as non-nodule, nodule <3 mm,
and nodule ≥3 mm. The data set consists of all nodules ≥3 mm accepted by at
least 3 out of 4 radiologists. The complete data set is divided into ten subsets to
be used for the 10-fold cross-validation. For convenience, the corresponding class
label (0 for non-nodule and 1 for nodule) for each candidate is provided. 1,348
lesions are labeled as nodules and the other 551,062 are non-nodule lesions. In
this study, center coordinates of each lesion are given. Examples of non-nodule
and nodule images in the data set are given in Fig. 3. We use three consecutive
slices to obtain volumetric information. Size of each image cropped from CT
scan images is 48 pixels × 48 pixels with a central on the nodule candidate.

Fig. 3. Example of lesion images in data set of Lung Nodule Analysis 2016 [5].

3.2 Proposed Multi-stage Classifiers

The model of single-sided classifiers and the final stage classifiers are trained and
validated by 10-fold cross-validation. In the cross-validation, eight subsets were
used for training, and one subset is used for network regularization. The remain-
ing subset is used for calculating nodules probabilities of each image sample. 10
CNN models are made by using the holdout procedures. To prepare the train-
ing data set for the single-sided classifiers, non-nodule samples in the subset are
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subsampled to 50 samples, and nodule samples are oversampled nine times by
randomly rotating and scaling original images. As the result, the number of nod-
ules is about twenty-four times the number of non-nodules in the training data
set. if the probability value of a nodule candidate falls below a specific threshold
value, it is classified as an obvious non-nodule, and removed from the subset and
assigned zero probability. The threshold value is determined from a standard
deviation σ of the nodule probability distribution of non-nodule samples at each
stage. One-tenth of the standard deviation is set as the threshold value. In sub-
sequent stage, the same procedures are repeated on the filtered data set of the
previous stage. In the learning loops of the single-sided classifiers, CNN models
having the best nodule classification accuracy over all learning epochs are stored.
There are 20 epochs in each training in the test phase of single-sided classifiers.
At the final stage, the CNN is trained by a balanced data set, extracted from
the filtered data set at the previous stage. The CNN models having the best
classification accuracy (nodules and non-nodules) over all learning epochs are
stored for calculating the probabilities of the nodule candidates of the filtered
data set at the previous stage.

3.3 Baseline Classifiers

For performance comparison, the same CNNs are trained and tested by using
the same data set in manner of the 10-fold cross-validation. We call this conven-
tional method as baseline. The CNNs are trained using a balanced data set with
subsampled non-nodules and oversampled nodules. All of the nodule samples are
oversampled nine times by randomly rotating and scaling original images and
non-nodules are subsampled to balance the number of oversampled nodules. In
the training phase, the CNN models having the best classification accuracy over
all learning epochs are recorded.

4 Experimental Results

Figure 4 shows histograms of nodules (class 1) and non-nodules (class 0) proba-
bilities calculated by the single-sided classifiers at the first stage. The probabil-
ities of non-nodule class (class 0) are separated around 0.0 and 1.0. We assume
the samples around probability 0.0 can be accepted as obvious non-nodules. At
the same time, nodule samples (class 1) around probability 0.0 are erroneously
classified as obvious non-nodules. This is what causes the false negatives in our
method. Figure 5 shows histograms of the nodule probabilities calculated by the
baseline classifiers. Although most of the non-nodule samples are concentrated
around probability 0.0, a little concentration is also seen around 1.0 as shown
in Fig. 5(b). This is what causes the false positives in the baseline classifiers.
The nodules samples around probability 0.0 are more than that of single sided
classifiers as shown in Fig. 5(a). This is what cause low sensitivity in the baseline
classifiers.

We investigated the performance of proposed method with different ratios
of number of class samples in training of single-sided classifiers. The ratios of
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Fig. 4. Histogram of nodule probabilities calculated by single-sided classifiers.

Fig. 5. Histogram of nodule probabilities calculated by baseline classifiers.

number of nodules to non-nodules are 6 to 1, 12 to 1 and 24 to 1. Figure 6 shows
histograms of nodule probabilities calculated by the single-sided classifiers at
the first stage. The nodule samples with small probability decrease as the class
sample ratio becomes larger as shown in Fig. 6(a). At the same time, the non-
nodules samples with small probability decrease as the ratio becomes larger as
shown in Fig. 6(b). As the result, we obtained the reduction rate of number of
class 0 (non-nodule) samples at each stage with different class sample ratios as
shown in Fig. 7(a). The number of class 0 samples are decreased less than half at
the first stage. And, by cascading the single-sided classifiers and filtering obvious
non-nodule samples in class 0, the number of class 0 samples decreases further.
The sample reduction rate of nodule samples reaches under 0.25 at 3-stage. At
the same time, as shown in Fig. 7(b), the number of class 1 (nodules) samples
decreases with the number of stages. This is a side effect of our method. However,
the side effect decreases as the ratio increases.
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Fig. 6. Histograms of nodule probabilities of: (a) class 1 (nodule) and (b) class 0 (non-
nodule), calculated by the single-sided classifier at the first stage. Three kind of class
sample ratios, 6 to 1, 12 to 1 and 24 to 1, are compared.

Fig. 7. Sample reduction rate of class 0 (non-nodules) and number of samples of class
1 (nodule) at each stage with deferent class sample ratios.

Figure 8 shows FROC curves at 4-stage with 6:1 ratio, 6-stage with ratio
12:1 and 3-stage with ratio 24:1. Each stage number showed the highest average
sensitivity among each ratio. As shown in Fig. 7, as the ratio increases the num-
ber of nodule samples (class 1) that are erroneously removed decreases, while
the number of obvious non-nodules (class 0) that are filtered decreases. As the
results, the 3-stage single sided classifiers with 24:1 ratio reaches the best perfor-
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Fig. 8. FROC curves of multi-layer neural networks with different ratio of number of
class samples in training of single-sided classifiers and baseline method.

mance, the sensitivities are 92.4% and 94.5% at 4 and 8 false positives per scan,
respectively. On the other hand, the baseline achieves the sensitivity of 88.4%
and 91.1% at 4 and 8 false positives per scan, respectively.

5 Conclusion

In this paper, we have presented cascaded multi-stage neural networks with
single-sided classifiers to reduce the false positives of lung nodule classification
in CT scan images. We have shown that the proposed method is better than
state of the art CNN methods proposed by Setio et al. [4] and Dou et al. [19].
Our method can decrease the burden of image interpretation on radiologists. In
principle, our method is a kind of boosting method. We believe it can be applied
to other class imbalanced problems.
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Abstract. Texture classification algorithms require generalization abil-
ities in order to be reliably used in real world applications. This paper
casts this problem in the domain adaptation setting and presents the first
study investigating (a) up to which extent this visual recognition prob-
lem suffers from this issue, and (b) the effectiveness of existing domain
adaptation algorithms in mitigating it. We focus on domain adaptation
methods based on shallow classifiers, and test their performance on deep
and non deep features. Results obtained on a newly created domain adap-
tation texture setup show the superiority of deep features compared to
other well known approaches, and highlights the importance of factoring
in the domain shift when dealing with textures in the wild.

Keywords: Color texture classification · Domain adaptation · Gener-
alization

1 Introduction

The ability to recognize materials and their texture based on their visual appear-
ance is crucial in several applications, from robot manipulation to industrial
production, to food recognition and so on. While the topic has historically been
widely researched in computer vision, the generalization abilities obtained so far
are still not up to what would be desirable for moving from research labs to
commercial applications at large [18,32].

The generalization problem, i.e. the experimental fact that classifiers trained
on a given dataset do not perform very well when tested on a new database,
received a renewed attention in the visual learning community since 2012, when
it has been casted into the domain adaptation framework [14,31]. Here, the key
assumption is that images depicting the same visual classes, but acquired in
c© Springer International Publishing AG 2017
S. Battiato et al. (Eds.): ICIAP 2017, Part I, LNCS 10484, pp. 380–390, 2017.
https://doi.org/10.1007/978-3-319-68560-1_34



On the Importance of Domain Adaptation in Texture Classification 381

different settings, at different times and with different devices, are generated by
two related but different probability distributions. Hence, domain adaptation
approaches attempt to close the shift among the two distributions. Although
domain adaptation by its very nature is pervasive in visual recognition, to the
best of our knowledge the problem has not been investigated so far in the texture
classification scenario.

This paper aims at filling this gap, presenting a domain adaptation setting
for material recognition, and studying how different state of the art non-deep
domain adaptation algorithms perform in this scenario. We test all methods
using shallow as well as deep features, and we compare our results with off-the-
shelf classifiers not explicitly addressing the domain shift between training and
test data. Our results clearly show that domain adaptation is a very real problem
for classification of textures in the wild, and that the use of domain adaptive
classifiers lead to an increase in performance of up to 6.87%.

The rest of the paper is organized as follows: Sect. 2 describes the data,
features and classifiers used in our benchmark evaluation. Section 3 reports our
experimental findings, clearly demonstrating the presence of a domain shift in
this setting and the ability of existing domain adaptation algorithm to alleviate
it. We conclude the paper with an overall discussion and proposing possible
future research directions.

2 Materials and Methods

2.1 Databases

The goodness of a domain adaptation technique is evaluated by measuring the
classification accuracy when trained on a given database and tested on another
one that contains the same texture classes. To this end, we have analyzed most
of the existing texture databases in order to identify those that share the highest
number of texture classes. As a result of this process we found 23 classes in com-
mon between the ALOT [3] and RawFooT [11] databases and about ten classes
in common between CureT [12] and ALOT, CureT [12] and KTH-TIPS2b [4],
STex [16] and CureT. For the evaluation presented in this paper we considered
the 23 classes in common between ALOT and RawFooT. Examples of these 23
texture classes of both databases are displayed in Fig. 1.

The Raw Food Texture database (RawFooT), has been specially designed to
investigate the robustness of descriptors and classification methods with respect
to variations in the lighting conditions [8–11]. Classes correspond to 68 samples
of raw food, including various kind of meat, fish, cereals, fruit etc. Samples taken
under D65 at light direction θ = 24◦ are showed in Fig. 2. The database includes
images of 68 samples of textures, acquired under 46 lighting conditions which
may differ in:

1. the light direction: 24, 30, 36, 42, 48, 54, 60, 66, and 90◦;
2. illuminant color: 9 outdoor illuminants: D40, D45, . . . , D95; 6 indoor illumi-

nants: 2700 K, 3000 K, 4000 K, 5000 K, 5700 K and 6500 K, we will refer to
these as L27, L30, . . . , L65;
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Fig. 1. Examples of the 23 classes in common between ALOT (left) and RawFooT
(right)

Fig. 2. Overview of the 68 classes included in the Raw Food Texture database. For
each class it is shown the image taken under D65 at direction θ = 24◦.

3. intensity: 100%, 75%, 50% and 25% of the maximum achievable level;
4. combination of these factors.

For each of the 23 classes in common with ALOT we considered 16 patches
obtained by dividing the original texture image, that is of size 800× 800 pixels,
in 16 non-overlapping squares of size 200 × 200 pixels. We selected images taken
under half of the imaging conditions for training (indicated as set1, a total of
3496 images) and the remaining for testing (set2, a total of 3496 images). For
each class we selected eight patches for training and eight for testing by following
a chessboard pattern (white positions are indicated as W, black positions as B).

The Amsterdam Library of Textures (ALOT) is a color image collection of
250 rough textures. In order to capture the sensory variation in object record-
ings, the authors systematically varied viewing angle, illumination angle, and
illumination color for each material. This collection is similar in spirit as the
CURET collection [3]. Examples from the 250 classes is displayed in Fig. 3.

The textures were placed on a turn table, and recordings were made for
aspects of 0, 60, 120, and 180◦. Four cameras were used, three perpendicular to
the light bow at 0◦ azimuth and 80, 60, 40◦ altitude. Furthermore, one is mounted
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Fig. 3. The 250 classes of the ALOT database. (Color figure online)

at 60◦ azimuth and 60◦ altitude. Combined with five illumination directions and
one semi-hemispherical illumination, a sparse sampling of the BTF is obtained.

Each object was recorded with only one out of five lights turned on, yielding
five different illumination angles. Furthermore, turning on all lights yields a sort
of hemispherical illumination, although restricted to a more narrow illumination
sector than true hemisphere. Each texture was recorded with 3075 K illumination
color temperature, at which the cameras were white balanced. One image for each
camera is recorded with all lights turned on, at a reddish spectrum of 2175 K
color temperature.

For each of the 23 classes shared with RawFooT, we considered 6 patches
obtained by dividing the original texture image, in 6 non-overlapping squares of
size 200 × 200 pixels. For each class we have 100 textures acquired under different
imaging conditions. For each texture we selected three patches for training and
three for testing by following a chessboard pattern (white positions are indicated
as W, black positions as B). We obtained a training set made of 6900 images
(W positions) and a test set made of 6900 images (B positions).

The evaluation is performed on each single pair DB1 → DB2:

1. R → A: RawFooT used for training and ALOT used for test;
2. A → R: ALOT used for training and RawFooT used for test;

For each pair DB1 → DB2 we have 4 subsets:

1. training using DB1: set1 at positions W; test using DB2: set2 at positions B;
2. training using DB1: set1 at positions B; test using DB2: set2 at positions W;
3. training using DB1: set2 at positions W; test using DB2: set1 at positions B;
4. training using DB1: set2 at positions B; test using DB2: set1 at positions W;

this setup, even though is not required for this work, makes it possible to design
unbiased inter-dataset experiments by excluding the possibility that the same
portion of the texture samples or the same acquisition condition are included in
both the training and the test set.
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2.2 Features

The majority of texture analysis methods entails the computation of numerical
representations, called features, that capture the distinctive properties of texture
images. Many features have been proposed in the literature. These were tradi-
tionally divided into statistical, spectral, structural and hybrid [23]. Among tra-
ditional features the most widely known are probably those based on histograms,
Gabor filters [2], co-occurrence matrices [15], and Local Binary Patterns [24].

More recent works approached the problem of texture classification by using
features originally designed for scene and object recognition. For instance, Sha-
ran et al. [27] used SIFT and HOG descriptors for material classification, while
Sharma et al. [29] used a variation of the Fisher Vector approach for texture and
face classification. Cimpoi et al. [5] shown how SIFT descriptors aggregated with
the improved Fisher vector method greatly outperform previous descriptors in
the state of the art on a variety of texture classification tasks. This direction
of research further progressed with the replacement of image features explicitly
designed with features automatically learned from data with methods based on
deep learning [17]. Cimpoi et al., for instance, used Fisher Vectors to pool fea-
tures computed by a convolutional neural network (CNN) originally trained for
object recognition [6]. Lin and Maji used the same underlying CNN features
and summarized them as Gram matrices [19]. In this work we considered three
different images features: (i) Local Binary Patterns, (ii) Bag of SIFT descriptors,
(iii) features computed by a CNN.

Local Binary Patterns (LBP) represent one of the most widely used method
for the representation of textures [22]. LBPs are computed by thresholding the
gray values in a circular neighborhood of pixels with the gray value of the central
pixel. The resulting bits are arranged to form a binary representation that can be
interpreted as a numeric code. The final descriptor is a histogram of the numeric
codes. More in detail, we considered a neighborhood of 16 pixels at a distance
of two pixels from the central one. Moreover, in forming the final histogram
we considered only the “uniform” patterns that are those that include only at
most two 0/1 transitions between adjacent bits and that, therefore, correspond
to simple patterns. With this configuration, the feature vector is a histogram of
243 bins.

One of the most successful approach for image recognition is the use of the
bag of visual words model [7]. Within this approach local descriptors extracted
from an image are aggregated to form a histogram representing their distribution.
More precisely, a codebook of visual words is formed by clustering the descriptors
extracted on a set of training images. Then, given a new image, its descriptors are
assigned to the closest visual word in the codebook, and the counts of descriptors
assigned to each word form the final descriptor. In this work, we built a codebook
of 1024 visual words by clustering the SIFT descriptors [21] extracted from
a set of 20000 images from Flickr containing various content, such as sunset,
countryside, etc. Therefore, the final feature vector is represented by the 1024
bins of the normalized histogram.
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For the third feature vector, we followed the approach explored by Sharif
Razavian et al. [28] that consists in using the intermediate representation com-
puted by a convolutional neural network trained for image recognition. We used
the VGG-16 network model [30] trained to identify the 1000 categories of the
ILSVRC image recognition challenge [26]. As a feature vector we used the acti-
vations of the 4096 units forming the last layer before the computation of the
final probability estimates.

2.3 Domain Adaptation Classifiers

We considered several domain adaptation methods:

Geodesic Flow Kernel (GFK): this method consists of embedding the source
and target datasets in a Grassman manifold and model data with linear sub-
spaces, and then constructing a geodesic flow between the two points, integrat-
ing an infinite number of subspaces along the flow. The geodesic flow repre-
sents incremental changes in geometric and statistical properties between the
two domains. Then, the features are projected into this subspaces to form an
infinite-dimensional feature vectors, and the inner product between these feature
vectors define a kernel function that can be computed over the original feature
space [14]. GFK is one of the most widely used domain adaptation methods
in the literature; recent work showed that, when used over deep features, it is
competitive with several deep domain adaptation approaches.

Subspace Alignment (SA): here, by using PCA we select, for each domain,
the d eigenvectors corresponding to the d largest eigenvalues. These eigenvectors
are used as bases of the source and target subspaces. Each source and target
data are projected to its respective subspace. It is then learned a transformation
matrix to map the source subspace to the target one. This allows to compare the
source domain data directly to the target domain data, and to build classifiers
on source data and apply them on the target domain. The advantages of the
Subspaces Alignment are the robustness of the classifier which is not affected by
local perturbations and the absence of regularization parameters [13].

Landmark-based Kernelized Subspace Alignment (LSSA): both meth-
ods described above have also some limitations. In the GFK algorithm, the search
for the subspaces that lie on the geodesic flow is computationally costly and sub-
ject to a local perturbations. The SA algorithm assumes that the shift between
the two distributions can be corrected by a linear transformation and in most
of the cases only a subset of source data are distributed similarly to the target
domain. So, the LSSA algorithm proposes: (i) selection of landmarks extracted
from both domains so as to reduce the discrepancy between the source and tar-
get distributions, (ii) projecting the source and the target data onto a shared
space using a Gaussian Kernel respect to the selected landmarks, (iii) learning
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a linear mapping function to align the source and target subspaces. This is done
by simply computing inner products between source and target eigenvectors [1].

Transfer Component Analysis (TCA): this method tries to learn some
transfer components across domains in a Reproducing Kernel Hilbert Space
(RKHS) using Maximum Mean Discrepancy (MMD). TCA is a dimensionality
reduction method for domain adaptation such that in the latent space spanned
by these learned components, the variance of the data can be preserved as much
as possible and the distance between different distributions across domain can
be reduced [25].

Transfer Joint Matching (TJM): it aims at reducing the domain difference
using jointly two learning strategies for domain adaptation: feature matching and
instance re-weighting. Feature matching discovers a shared feature representa-
tion by jointly reducing the distribution difference and preserving the important
properties of input data. Matching the feature distributions based on MMD
minimization is not enough for domain adaptation, since it can only match the
first-and high-order statistics, and the distribution matching is far from perfect.
An instance re-weighted procedure should be cooperated to minimize the distri-
bution difference by re-weighting the source data and then training a classifier
on the re-weighted source data [20].

To fully assess the effect of each of the domain adaptation methods described
above, we also used a linear SVM trained on the source data, and we tested it on
the target data. We refer in the following to these experiments as “NA results”.
The C parameter of SVM was set by doing cross-validation on the source domain
with following values ε {0.0001 0.001 0.01 0.1 1.0 10 100 1000 10000}, using the
LIBSVM library.

2.4 Experimental Setup

As described before, we evaluated the different DA methods by comparing their
performance with that of the linear classifier SVM for the no adaptation results,
where we use the original input space without learning a new representation.
The z-normalization is the first important step for the all domain adaptation
algorithms and PCA is the method used for the dimensionality reduction. For
each type of feature we set different parameters for each domain adaptation
algorithm:

– In the GFK the dimensionality of the subspaces was set to 120 for the LBP
features, 300 for the SIFT features and 200 for the CNN features. We evaluate
the accuracy of this method on the target domain over 5 random trials for
each type of features.

– In the SA we set the dimensionality of the subpaces to 150 for the LBP and
CNN features and 300 for the SIFT features. Also for the SA algorithm the
evaluation was performed over 5 random trials for each type of features.
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– In the LSSA algorithm an important parameter is the threshold for measuring
the quality of a candidate landmark. We set it to 0,5. If the quality measure
of the candidate is above this threshold , it is kept as a landmark. The dimen-
sionality of the subpaces was set to the number of matched landmarks.

– In the TCA we used the linear kernel on inputs and fixed μ= 0, 3 (tradeoff
parameter) to construct the transformation matrix. The dimensionalities of
the latent spaces are fixed to 150 for LBP and SIFT features, 200 for CNN
features.

– The TJM approach involves two model parameter: subspaces bases k and λ
regularization parameter . We set λ by searching λ ε {0.01, 0.1, 1, 10, 100}.
The k parameter was set to 100 for each type of feature. The evaluation was
performed over 5 random trials.

3 Results

The results obtained, for each domain adaptation method, are illustrated in
Table 1 when using the LBP features, in Table 2 when using the SIFT features
and in Table 3 when using the CNN features. We see that the GFK method
outperforms on average the other approaches with all type of features when the
ALOT database is the source domain and the Rawfoot database is the target
domain. In the opposite case we get the best result with the JTM algorithm for
the CNN features. In fact we can note that the type of feature has an important
role in the evaluation of the DA methods: when using the CNN features, we
achieve the greatest improvement for all methods.

Figure 4 shows the confusion matrices, where an element of a matrix with
position (i,j ) is a count of observations known to be in group i (true label)
but predicted to be in group j (predicted label), for NA and GFK (top row)
and NA and JTM (bottom row), using deep features. These are the cases where
we see the greater advantage in using Da approaches for the ALOT -Rawfoot

Table 1. Domain adaptation results with the LBP features. A: Alot database, R: Raw-
foot Database

Dataset NA GFK SA TCA LSSA JTM

A → R 41,27% 41,76% 41,45% 37,24% 40,43% 31,34%

R → A 22,29% 22,26% 22,38% 18,15% 21,30% 18,59%

Table 2. Domain adaptation results with the SIFT features. A: Alot database, R: Raw-
foot Database

Dataset NA GFK SA TCA LSSA JTM

A → R 55,36% 60,79% 60,66% 52,94% 58,09% 55,64%

R → A 46,82% 51,66% 51,83% 44,85% 52,03% 44,59%
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Table 3. Domain adaptation results with the CNN features. A: Alot database, R: Raw-
foot Database

Dataset NA GFK SA TCA LSSA JTM

A → R 67,53% 74,40% 74,18% 71,98% 73,67% 72,90%

R → A 71,73% 76,31% 76,83% 74,24% 78,06% 78,17%

Fig. 4. Confusion matrices for No Adapt (a) and GFK (b) evaluation with the CNN
features when ALOT database is the source domain and for No Adapt (c) and JTM
(d) evaluation when Rawfoot database is the source domain.

and Rawfoot-ALOT settings, respectively. We see that both domain adaptation
algorithms significantly reduce the domain shift, alleviating the misclassification
compared to the case where the domain shift is not taken into consideration.

4 Conclusion

This paper addressed the issue of generalization in texture classification, in the
context of domain adaptation. We presented a new benchmark setting that per-
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mits to study the problem in this domain, and a benchmark evaluation of shallow
algorithms using handcrafted as well as deep features. Our results confirm the
existence of the domain shift, as well as the superior generalization abilities of
deep features and the effectiveness of domain adaptation algorithms in increas-
ing the generalization across datasets. Future work will extend this study adding
deep domain adaptation approaches, as well as designing larger experimental
setups.
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Abstract. Grey level co-occurrence matrix (GLCM) has been one of the
most used texture descriptor. GLCMs continue to be very common and
extended in various directions, in order to find the best displacement for
co-occurrence extraction and a way to describe this co-occurrence that
takes into account variation in orientation. In this paper we present a
method to improve accuracy for image classification. Rotation depen-
dent features have been combined using various approaches in order to
obtain rotation invariant ones. Then we evaluated different ways for co-
occurrence extraction using displacements that try to simulate as much
as possible the shape of a real circle. We tested our method on six differ-
ent datasets of images. Experimental results show that our approach for
features combination is more robust against rotation than the standard
co-occurrence matrix features outperforming also the state-of-the-art.
Moreover the proposed procedure for co-occurrence extraction performs
better than the previous approaches present in literature, able to give a
good approximation of real circles for different distance values.

Keywords: Co-occurrence matrix · Feature extraction · Rotation
invariance · Texture classification

1 Introduction

Texture is a feature that helps to analyse an image and although there isn’t
a specific definition of texture accepted by all, it can be viewed as a global
descriptor belonging from the repetition of local patterns. Texture is an any
and repetitive geometric arrangement of the grey levels of an image. It provides
important information about the spatial disposition of the grey levels and the
relationship with their neighbourhood. Human visual system determines and
recognizes easily different types of textures but although for a human observer it
is very simple to associate a surface with a texture, to give a rigorous definition
for this is very complex. Typically a qualitative definition is used to describe
textures. As it can be easily guessed a quantitative analysis of texture passes
through statistical and structural relations among the basic elements of what
we call just texture. Texture analysis is an important and useful area of image
processing that leads the classification of images through the identification of
c© Springer International Publishing AG 2017
S. Battiato et al. (Eds.): ICIAP 2017, Part I, LNCS 10484, pp. 391–401, 2017.
https://doi.org/10.1007/978-3-319-68560-1_35



392 L. Putzu and C. Di Ruberto

their properties. The most important aspect of texture analysis is classification
that concerns the search for particular regions of texture among different pre-
defined classes of texture. Classification is carried out using statistical methods
that define the descriptors of the texture. Many different methods for manag-
ing texture have been developed that are based on the various ways texture
can be characterized. Although there are many powerful methods reported in
the literature for texture analysis, including the scale-invariant feature trans-
form (SIFT) [13], speeded up robust feature (SURF) [14], histogram of oriented
gradients (HOG) [15], local binary patterns (LBP) [16], Gabor filters [19] and
others, in this work we focus on improving one of the earliest method used for
the analysis of grey level texture based on statistical approaches, that is the
Grey-Level Co-Occurrence Matrix (GLCM). Motivated by the wide diffusion of
this method and by the increasing numbers of rotation invariant descriptors,
able to achieve good performances in various situations (eg. rotation invariant
LBP [17]), we wished to investigate how it was possible to improve accuracy and
robustness against rotation of co-occurrence matrix. Some interesting methods
have been presented in order to extend the original implementation of GLCM,
such as the method proposed in [7] where the authors evaluated different val-
ues for the distance parameter that influence the matrices computation, in [12]
the GLCM descriptors are extracted by calculating the weighted sum of GLCM
elements, in [6] the GLCM features are calculated by using the local gradient of
the matrix. In [10] to calculate the features, the grey levels and the edge orien-
tation of the image are considered. In [9] the authors propose to use a variable
window size by multiple scales to extract descriptors by GLCM. The method
in [8] uses the colour gradient to extract statistical features from GLCM. In
[11] various types of GLCM descriptors (classical Haralick features and features
from 3D co-occurrence matrix) and grey-level run-length features are extracted.
Furthermore the GLCM has been extracted using the colour information from
single channels [5] or by combining the channels in pairs [21,22]. Since in this
work we are more interested on invariant descriptors, we compute the GLCM
using just the gray level intensity. Thus, starting from the rotation dependent
GLCM features we investigate different approaches to compute more efficient
rotationally invariant features, as proposed in [18], and finally we propose our
new approach to compute rotationally invariant features. This approach con-
tains also a new formulation for displacement computation able to simulate as
much as possible real circles. To validate our method we have used six different
databases of images, Brodatz, Mondial Marmi, Outex, Vectorial, Kylberg Sin-
torn and ALOT that present different materials and so they represent different
classification problems.The rest of the paper is organized as follows. In Sect. 2 we
report some background information necessary to introduce the existing methods
used. Section 3 shows the proposed approaches to extend the original features to
rotation invariant. Section 4 provides the experiments realised to asses the clas-
sification performances. Finally, in Sect. 5 we present our conclusions and some
possible future works.
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2 Background

A feature is defined as a function of one or more measurements, specifying some
quantifiable property of an object or an image. Features can be classified into low-
level features and high-level features. Low-level features can be extracted directly
from the original images, whereas high-level feature extraction must be based on
low-level features. There are various methods for features extraction and texture
classification and the most important are based on statistical approach. When we
talk about texture analysis we cannot forget Haralick et al. [4], who has crafted
in 1973 a first very simple and very powerful mathematical model with which
all have faced, revising it, correcting it and making it more efficient. In fact,
even after 40 years Haralick’s method is the most powerful model for texture
analysis finding many areas of application from biomedicine to remote sensing,
to industrial or materials inspection. Haralick defined a type of matrix called
Spatial Gray-Level Dependence Matrix (SGLDM), while the current definition
of Gray Level Co-occurrence Matrix (GLCM) is attributed to Gonzalez et al.
[1]. This method involves two steps for features extraction: in the first one the
GLCMs are calculated and in the second one features are computed using the
matrices calculated in the first phase. A GLCM represent the probability of
finding two pixels i and j with distance d and orientation θ and is denoted with
pd,θ(i, j). A GLCM for an image of size N ×M with Ng gray levels is a 2D array
of size Ng × Ng.

2.1 Displacement Type

The GLCM can be defined in eight directions (0, 45, 90, 135, 180, 225, 270 and
315), but in the original formulation Haralick proposed to use only four directions
spaced at angular intervals of 45◦ considering the other four directions obtainable
in a symmetrical way. Also the distance could present a wide range of value but
the most used are d = 1, 2, 3. The displacement obtained with this formulation
are shown in Fig. 1. The main drawback is that only four displacements for each
distance value can be computed. Thus, all the others co-occurrences are not
considered, loosing important texture information.

Fig. 1. Types of displacements using the original Haralick’s formulation.



394 L. Putzu and C. Di Ruberto

For this reason Petrou [20] proposed the use of digital circles in which the
displacements are calculated in a totally different way. In fact the displacements
describe a circle around the central pixel. Since the definition of circle from
the continuous space cannot be represented immediately into the digital domain
there could be many different definitions of digital circles. In this formulation
Petrou considered as valid displacement for a circle of radius d all those pixels
included in the range [d − 1/2, d + 1/2). Thus, the number of displacement
increases as the d value increases, as it can be seen from Fig. 2.

Fig. 2. Types of displacements using the Petrou’s formulation.

2.2 Features Extraction

Once the m GLCMs have been computed with the chosen m angles and distance,
it is possible to extract the features from each GLCM. So considering that from
each GLCM n features could be extracted the amount of features is m × n. In
the original formulation this amount of features could be reduced, by combining
them through a simple average operation, obtaining as a result a feature vector
of size n which is rotationally invariant. So considering fk = [fk

1 , ...., fk
m] as

the feature vector obtained computing only the k-th descriptor from all the m
GLCM, the final f̄k can be computed as follows

f̄k =
1
m

m∑

i=0

fk
i (1)

Although this procedure is always considered valid as in [2,3] it reduces signif-
icantly the discrimination capability of the final feature vector, considering all
the angles in the same way and without taking into account variations in value.
For this reason the average value is often used in combination with the Range
value [18]

Δfk = max(fk
i ) − min(fk

i ) (2)

or the Mean absolute deviation

δfk =
1
m

m∑

i=0

|fk
i − f̄k|. (3)
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Another means to obtain rotation invariant features is the absolute values of the
Discrete Fourier Transform (DFT) [18]

f̂k =
m∑

i=0

fk
i e−√

1
2π(m−1)(i−1)

m (4)

for which the coefficient f̂k should be invariant to any circular shift of the input
vector fk.

3 Our Approach

With both of the approaches previously presented the number of displacements
heavily depends on the used method.

3.1 Proposed Displacement

The approach proposed in this work for displacement calculation comes from the
idea that the digital circle is not enough to classify correctly fine texture. In fact,
as it can be seen in Figs. 1 and 2, the displacements with distance value d = 1 are
the same. Thus, we considered the approach proposed by Ojala et al. in [17] for
the computation of invariant LBP suitable for this purpose, by using the circular
symmetric neighbour set as a new way for representing our displacement. The
displacement can be rewritten as the p grey values equally spaced on a circle with
radius equal to the distance value d. Since the symmetrical property of GLCM
is still valid we considered only the semicircles. Some examples of displacements
can be seen in Fig. 3. Obviously the diagonal grey values cannot be computed
directly but they are determined by interpolation as in [17]. The main advantage
of this approach is that the number of displacement is not longer related to the
distance value, as it was with the digital circle, but it can be decided specifying
the p value, that can assume also higher values in order to better describe fine
textures.

Fig. 3. Types of displacements using our formulation.
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3.2 Proposed Feature Combination

Our features combination approach starts considering all the possible circular
shifts of the input vector fk. So, if this vector is of length m, we construct a
matrix of size m×m denoted as fkk in which all the circular shifts of the input
vector fk are present. The construction of the fkk is not random as it disposes
each circular shift regularly, in order to compose a symmetric matrix. Thus, for
fk = [f1, ...., fm] we should have

⎛

⎜⎜⎜⎜⎝

f1 f2 · · · fm−1 fm

f2 · · · · · · fm f1
· · · · · · · · · · · · · · ·

fm−1 fm · · · · · · · · ·
fm f1 · · · · · · fm−1

⎞

⎟⎟⎟⎟⎠

This kind of matrix presents many important properties being square and
symmetric. A first idea was to compute the absolute value of the determinant,
denoted as fD, in order to preserve the orientation of each possible transforma-
tion. But being a single value, the determinant could not be very discriminant
for a classification task. For this reason we computed also the eigenvalues of the
previous matrix, denoted as fE , obtaining always a number of features equal
to the original number of features and preserving the original direction of the
feature vector. It must be noted that both the determinant and the eigenvalues
are also invariant to mirroring, bringing to the new feature vectors an higher
generalization capability.

4 Datasets

To validate our method we have used six different databases of images, Brodatz,
Mondial Marmi, OuteX, Vectorial, Kylberg Sintorn and ALOT. They present
different materials and textures and so they represent different classification
problems. These databases contain hardware-rotated images taken at nine dif-
ferent rotation, making them the most suitable for our experiments. We have
excluded other databases from these experiments in order to avoid software
rotated images, since this operation could modify the original image structure
and lead to wrong results.

Brodatz database is a well known collection of texture images. Since the
original images included in the Brodatz’s album are not rotated, in this work we
used the 13 textures proposed by Bianconi [18], that acquired hardware-rotated
images directly from the original book, with angular steps of 10◦ (0◦, 10◦, 20◦,
30◦, 40◦, 50◦, 60◦, 70◦, 80◦ and 90◦). Every single image has been subdivided
into 16 205 × 205 sub-images resulting in 2080 total samples.

MondialMarmi is an image database of granite tiles for texture analysis that
includes 12 classes. Every class is represented by 4 textures, that have been
acquired in a 24-bit RGB image of size 544 × 544 using nine rotation angles
(0◦, 5◦, 10◦, 15◦, 30◦, 45◦, 60◦, 75◦ and 90◦). To create the dataset each image has
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been converted into grayscale, and divided into four non-overlapping sub-images
of size 272 × 272, for a total image count of 1728.

Outex database contains a collection of 320 textures acquired with well
defined variations in terms of illumination, rotation and spatial resolution. Each
texture is captured in a 24-bit RGB image of size 538 × 746 using three dif-
ferent simulated illuminations, six spatial resolutions and nine rotation angles
(0◦, 5◦, 10◦, 15◦, 30◦, 45◦, 60◦, 75◦ and 90◦), for a total of 51840 images. Since
we focused only on invariance to rotations and given the considerable size of
this database, we used a test suites proposed by the same Outex authors called
OUTEX00045. It contains 45 texture classes, the original images have been con-
verted into grey levels and divided in 20 non overlapping sub-images of size
128 × 128, for a total count of 8100 images.

Vectorial database is a collection of 20 artificial texture classes proposed, here
again, by Bianconi [18]. Considering that it is not composed of raster images,
they have been software rotated with angular steps of 10◦ (0◦, 10◦, 20◦, 30◦,
40◦, 50◦, 60◦, 70◦, 80◦ and 90◦). The rotated images have been converted to
raster with a resolution of 300 dpi, and subdivided into 16 255×255 sub-images,
resulting in 16 samples per class and 3200 total images.

Kylberg Sintorn database is a collection of 25 textural classes of materials
such as fabric, grains, sugar, rice, etc. The images are provided with nine rotation
angles, but in this case the images have been rotated with angular steps of 40◦

(0◦, 40◦, 80◦, 120◦, 160◦, 200◦, 240◦, 280◦, 320◦ and 90◦). The original images
(one for each class) are 24-bit RGB with a resolution of 5184 × 3456 pixels,
but they have been provided also in small subsets for texture classification,
presenting 400 images for each angle and thus 16 samples per class. The final
dataset contains, therefore, 3600 images.

ALOT contains 250 textures, each one with 100 images obtained under dif-
ferent illumination conditions. For our experiments we considered a subset of
the original dataset that contains only 80 textures provided with four rotation
angles, that have been rotated with angular steps of 60◦ (0◦, 60◦, 120◦ and
180◦). The original images have been converted into grayscale and divided into
16 181 × 181 sub-images, for a total count of 5120 images.

5 Experimental Evaluation

To make a comparison we tested the proposed approach against the other pro-
posed formulations and various combinations. We performed a set of image clas-
sification experiments to evaluate accuracy and robustness against rotation of
the presented descriptors. The features used in our experiments are only the
five most frequently used in literature, the Angular Second Moment that is the
squares sum of the matrix values, the Contrast that is the weighted average of all
diagonals parallel to the main one which emphasizes the correlation between the
different tones, the Correlation that measures how a pixel is in correlation with
its neighbor across the image, the Inverse Difference Moment that measures
the proximity of the distribution from GLCM elements to the GLCM diago-
nal and the Entropy that measures the entropy of the entire matrix. Thus, we
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computed the GLCM both with original methods proposed by Haralick (HAR)
and both with the digital circles (DC) and the proposed approaches for circu-
lar displacement extraction (CIR), using a distance value ranging from 1 to 3.
The rotation dependent descriptors have been extracted from all the GLCMs
and converted in rotationally invariant descriptors using the various approaches
described previously and our approach. To highlight the performances of the
proposed approach, for the state-of-the-art approaches we reported only the
most powerful combinations, f̄ ||Δf reported as f̄Δ and f̄ ||Δf ||δf reported as
f̄Δδ. For each dataset we performed 100 experiments and for each one training
and test sets are represented respectively by the half of the original samples.
The dataset has been divided with a stratified sampling which guarantees that
each class is properly represented both in the training set and in test set. To
better study the effects of image rotation, the classifier is always trained with
features extracted from images acquired at orientation 0◦ and then tested with
feature extracted from images acquired at all orientations. The classification
performances have been evaluated by calculating the accuracy, which gives us a
good indication of the performance since it considers each class of equal impor-
tance. Thus the classification accuracy has been estimated through a k-Nearest
Neighbour (k-NN) classifier, with k = 1 and using the euclidean distance. Th
k-NN has been preferred to a more complex classifier in order to make the
results more representative of the effectiveness of the proposed approach than of
the classifier itself. The results of this first experiment are reported in Table 1,
that shows, for each descriptor, dataset, displacement and distance, the mean
and standard deviation of the classification accuracy. As it can be observed the
proposed approach to convert the rotation dependent descriptors into rotation
invariant fE outperforms the other approaches in most of the experiments. In
particular it can be observed that it performs better than the other approaches
when applied with HAR and DC methods for displacement extraction. Although
the fE does not produce the best results in all the datasets when applied with
the CIR methods, it can be observed that in many cases the other approaches
benefits from this kind of displacement. To further highlight the performances
obtained in the previous experiment we compared our results against one of the
newest and most used invariant texture descriptor that is the Local Binary Pat-
tern LBP ri (LBP). To make a direct comparison with our results, we take into
account the rotation invariant LBP with a neighbourhood of 8 and distance 1
and 2 denoted as LBP ri

8,1 and LBP ri
8,2 respectively, and the rotation invariant

LBP with a neighbourhood of 16 and distance 1 and 2 denoted as LBP ri
16,1 and

LBP ri
16,2 respectively. The average accuracy values reported in Tables 1 and 2

shows an already known trend for co-occurrence features, that are fairly accu-
rate in classification problems involving relatively few classes, but less accurate
in classification problems involving more classes. Indeed, as it can be observed,
the rotation invariant GLCM outperforms LBP in just 4 datasets out of 6, since
the other 2 datasets presents an higher number of classes. It must be noted
that in this work we used just five co-occurrence descriptors, because our main
goal was to establish a good approach for the extraction of rotation invariant
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Table 1. Comparison of displacement extraction and features combination.

Brodatz Mondial Outex Vectorial Kylberg ALOT

HAR d = 1 f̄ 76.8 ± 2.6 80.7 ± 2.0 56.7 ± 1.2 76.9 ± 3.1 88.7 ± 4.3 52.2 ± 2.9

f̄Δ 79.0 ± 12.8 87.0 ± 2.3 60.4 ± 4.5 80.2 ± 3.7 90.1 ± 4.4 58.2 ± 4.4

f̄Δδ 78.7 ± 13.0 87.2 ± 2.5 60.9 ± 4.5 80.3 ± 3.7 90.6 ± 4.2 59.2 ± 4.4

f̂ 82.6 ± 8.7 85.2 ± 2.0 60.5 ± 3.3 79.7 ± 3.2 90.7 ± 4.1 59.1 ± 3.5

fE 88.8 ± 6.7 90.1 ± 2.5 62.0 ± 7.5 81.4 ± 3.4 91.1 ± 5.1 60.8 ± 5.2

DC d = 1 f̄ 76.8 ± 2.6 80.7 ± 2.0 56.7 ± 1.2 76.9 ± 3.1 88.7 ± 4.3 52.2 ± 2.9

f̄Δ 79.0 ± 12.8 87.0 ± 2.3 60.4 ± 4.5 80.2 ± 3.7 90.1 ± 4.4 58.2 ± 4.4

f̄Δδ 78.7 ± 13.0 87.2 ± 2.5 60.9 ± 4.5 80.3 ± 3.7 90.6 ± 4.2 59.2 ± 4.4

f̂ 82.6 ± 8.7 85.2 ± 2.0 60.5 ± 3.3 79.7 ± 3.2 90.7 ± 4.1 59.1 ± 3.5

fE 88.8 ± 6.7 90.1 ± 2.5 62.0 ± 7.5 81.4 ± 3.4 91.1 ± 5.1 60.8 ± 5.2

CIR d = 1 f̄ 78.3 ± 3.1 81.8 ± 1.9 60.0 ± 1.5 79.2 ± 4.1 87.4 ± 4.5 53.2 ± 3.4

f̄Δ 87.7 ± 5.8 86.6 ± 2.3 60.2 ± 5.2 82.8 ± 3.5 88.1 ± 5.1 59.5 ± 4.7

f̄Δδ 87.9 ± 5.5 87.2 ± 2.5 61.2 ± 5.8 83.2 ± 3.8 88.6 ± 5.2 60.4 ± 4.7

f̂ 88.0 ± 6.0 87.7 ± 3.6 61.3 ± 5.7 81.0 ± 3.8 89.5 ± 4.4 59.4 ± 4.6

fE 91.2 ± 5.5 87.9 ± 3.4 61.4 ± 8.2 83.9 ± 4.2 88.8 ± 6.5 60.1 ± 4.9

HAR d = 2 f̄ 81.4 ± 2.9 82.0 ± 2.8 56.8 ± 1.0 80.2 ± 2.4 92.0 ± 3.7 55.5 ± 2.3

f̄Δ 84.5 ± 8.7 88.9 ± 2.1 60.2 ± 3.7 82.8 ± 3.4 95.2 ± 3.2 64.3 ± 3.2

f̄Δδ 84.1 ± 9.1 89.5 ± 2.2 60.7 ± 3.6 82.8 ± 3.5 95.2 ± 3.1 65.8 ± 3.1

f̂ 87.5 ± 6.4 88.5 ± 2.7 60.7 ± 2.2 82.9 ± 2.9 94.8 ± 3.3 64.6 ± 2.8

fE 87.7 ± 7.2 90.2 ± 2.3 61.5 ± 6.5 83.1 ± 3.1 95.0 ± 4.2 66.2 ± 4.6

DC d = 2 f̄ 81.6 ± 1.6 82.6 ± 2.4 57.0 ± 0.9 79.8 ± 2.6 91.9 ± 3.6 55.5 ± 2.4

f̄Δ 91.2 ± 5.8 88.3 ± 2.7 57.8 ± 6.4 82.5 ± 3.0 93.0 ± 4.4 61.0 ± 3.5

f̄Δδ 91.3 ± 5.7 88.6 ± 2.7 57.9 ± 6.5 82.5 ± 3.1 93.1 ± 4.4 61.2 ± 3.6

f̂ 93.4 ± 2.9 88.0 ± 2.3 59.9 ± 2.8 82.8 ± 2.5 94.1 ± 3.4 61.3 ± 3.1

fE 95.3 ± 4.5 91.1 ± 3.5 61.7 ± 4.7 83.9 ± 4.6 93.5 ± 4.2 66.1 ± 4.1

CIR d = 2 f̄ 85.2 ± 1.6 84.4 ± 3.1 61.4 ± 1.5 82.4 ± 3.6 92.5 ± 3.4 58.8 ± 2.8

f̄Δ 97.4 ± 1.6 89.0 ± 3.0 60.5 ± 7.0 85.1 ± 3.8 93.4 ± 4.4 63.8 ± 4.6

f̄Δδ 97.6 ± 1.3 89.0 ± 3.1 60.9 ± 6.9 85.3 ± 4.0 93.6 ± 4.3 63.7 ± 5.2

f̂ 97.3 ± 1.3 89.8 ± 2.9 63.5 ± 3.7 84.9 ± 3.2 94.8 ± 3.3 65.4 ± 4.1

fE 98.1 ± 1.0 92.4 ± 2.7 62.6 ± 7.8 85.1 ± 4.2 92.2 ± 4.6 64.6 ± 3.7

HAR d = 3 f̄ 81.4 ± 2.3 79.7 ± 1.7 52.7 ± 1.1 81.6 ± 2.2 92.4 ± 3.9 55.3 ± 1.4

f̄Δ 86.1 ± 7.3 88.6 ± 1.7 57.0 ± 1.4 84.1 ± 3.3 94.4 ± 3.2 65.9 ± 2.1

f̄Δδ 85.8 ± 7.5 89.2 ± 1.6 58.1 ± 1.5 84.1 ± 3.4 94.2 ± 3.4 67.2 ± 2.1

f̂ 87.6 ± 6.8 89.1 ± 1.8 58.7 ± 1.2 83.9 ± 2.7 94.6 ± 3.5 66.1 ± 2.0

fE 87.6 ± 6.7 91.2 ± 2.7 59.2 ± 2.9 88.1 ± 3.4 95.8 ± 3.5 69.0 ± 3.0

DC d = 3 f̄ 82.6 ± 1.4 80.9 ± 2.5 55.0 ± 1.2 81.4 ± 2.1 91.4 ± 4.1 55.7 ± 1.9

f̄Δ 95.0 ± 2.5 89.5 ± 2.1 59.5 ± 1.6 84.5 ± 2.1 94.4 ± 4.0 63.0 ± 2.7

f̄Δδ 95.1 ± 2.5 89.6 ± 2.1 59.5 ± 1.8 84.5 ± 2.2 94.3 ± 4.0 63.0 ± 2.9

f̂ 95.3 ± 1.1 88.6 ± 2.2 59.0 ± 1.3 84.4 ± 1.8 93.4 ± 3.7 61.9 ± 2.2

fE 96.9 ± 2.4 92.2 ± 2.6 59.8 ± 4.1 86.8 ± 3.5 93.8 ± 4.6 63.2 ± 3.6

CIR d = 3 f̄ 87.9 ± 1.9 82.8 ± 3.3 59.0 ± 1.6 84.5 ± 2.9 92.1 ± 3.9 58.7 ± 1.7

f̄Δ 97.4 ± 1.6 92.1 ± 2.3 62.5 ± 3.3 86.8 ± 3.9 95.0 ± 3.4 65.4 ± 3.1

f̄Δδ 97.5 ± 1.6 92.2 ± 2.2 62.3 ± 3.5 86.6 ± 3.9 95.1 ± 3.5 65.4 ± 3.5

f̂ 97.2 ± 1.2 91.2 ± 2.1 63.1 ± 1.9 86.6 ± 3.1 93.9 ± 3.7 65.8 ± 2.7

fE 98.0 ± 0.9 92.6 ± 2.2 62.0 ± 2.7 85.4 ± 4.7 94.0 ± 5.0 64.7 ± 3.6
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Table 2. Rotation invariant LBP with different displacements.

Brodatz Mondial Outex Vectorial Kylberg ALOT

LBP ri
8,1 85.1 ± 7.5 87.5 ± 2.9 78.4 ± 3.3 76.3 ± 6.7 92.1 ± 3.1 75.4 ± 3.9

LBP ri
16,1 90.4 ± 5.0 85.5 ± 2.1 79.1 ± 3.1 76.1 ± 7.2 94.5 ± 3.4 78.7 ± 3.4

LBP ri
8,2 87.1 ± 6.6 90.9 ± 1.7 81.9 ± 4.5 81.0 ± 5.8 86.1 ± 6.0 76.4 ± 2.5

LBP ri
16,2 96.8 ± 1.5 91.6 ± 1.9 84.1 ± 3.6 81.0 ± 6.4 87.3 ± 5.9 80.7 ± 1.9

co-occurrence features, rather than an excellent approach for texture classifica-
tion. In fact in a recent work [21] we demonstrated that an increased number of
co-occurrence features could also obtain excellent performances for classification.

6 Conclusion

In this work we focused on GLCM, that is one of the oldest and still on of the
most used texture descriptor. It continues to be very common and extended
in various directions. In this work we investigated some approaches to improve
accuracy of GLCM for texture classification, in particular with the presence
of rotated images. Thus, starting from the rotation dependent GLCM features
we investigated some approaches to compute more efficient rotationally invariant
features, already present in literature, and finally we proposed our new approach
to compute rotationally invariant features. We introduced also an approach to
find the best displacement for co-occurrence extraction that try to simulate
as much as possible the shape of a real circle. We tested our method on six
different datasets of images. The results obtained are really encouraging, since
the proposed approach for features combination is more robust against rotation
than the standard co-occurrence matrix features outperforming also the state-
of-the-art. Moreover, the new procedure for co-occurrence extraction is able to
preserve the real position of co-occurrence, minimizing the influence of rotation
for the co-occurrence extraction. Furthermore, this procedure allows to study
textures more accurately. Indeed, increasing the value of the parameter p it is
possible to extract an higher number of co-occurrences even with small distance
values, which is very useful to characterise fine textures.
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atos, A. (eds.) ICVS 2015. LNCS, vol. 9163, pp. 3–13. Springer, Cham (2015).
doi:10.1007/978-3-319-20904-3 1

22. Di Ruberto, C., Fodde, G., Putzu, L.: On different colour spaces for medical colour
image classification. In: Azzopardi, G., Petkov, N. (eds.) CAIP 2015. LNCS, vol.
9256, pp. 477–488. Springer, Cham (2015). doi:10.1007/978-3-319-23192-1 40

http://dx.doi.org/10.1007/11744023_32
http://dx.doi.org/10.1007/978-3-319-20904-3_1
http://dx.doi.org/10.1007/978-3-319-23192-1_40


Visual and Textual Sentiment Analysis
of Brand-Related Social Media Pictures Using

Deep Convolutional Neural Networks

Marina Paolanti1(B), Carolin Kaiser2, René Schallner2, Emanuele Frontoni1,
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Abstract. Social media pictures represent a rich source of knowledge
for companies to understand consumers’ opinions, as they are available
in real time and at low costs and represent an active feedback which is of
importance not only for companies developing products, but also to their
rivals and potential consumers. In order to estimate the overall sentiment
of a picture, it is essential to not only judge the sentiment of the visual
elements but also to understand the meaning of the included text. This
paper introduces an approach to estimate the overall sentiment of brand-
related pictures from social media based on both visual and textual clues.
In contrast to existing papers, we do not consider text accompanying a
picture, but text embedded in a picture, which is more challenging since
the text has to be detected and recognized first, before its sentiment can
be identified. Based on visual and textual features extracted from two
trained Deep Convolutional Neural Networks (DCNNs), the sentiment of
a picture is identified by a machine learning classifier. The approach was
applied and tested on a newly collected dataset, “GfK Verein Dataset”
and several machine learning algorithms are compared. The experiments
yield high accuracy, demonstrating the effectiveness and suitability of
the proposed approach.

1 Introduction

The advent of Social Media has enabled everyone with a smartphone, tablet
or computer to easily create and share their ideas, opinions and contents with
millions of other people around the world. Recent years have witnessed the explo-
sive popularity of image-sharing services such as Instagram1 and Flickr2. These
images do not only reflect people social lives, but also express their opinions
about products and brands. Social media pictures represent a rich source of
1 www.instagram.com.
2 www.flickr.com.

c© Springer International Publishing AG 2017
S. Battiato et al. (Eds.): ICIAP 2017, Part I, LNCS 10484, pp. 402–413, 2017.
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www.instagram.com
www.flickr.com


Visual and Textual Sentiment Analysis 403

knowledge for companies to understand consumers’ opinions [1]. The multitude
of pictures makes a manual approach infeasible and increases the attractiveness
of automated sentiment analysis [2,3].

In the past, companies have conducted consumer surveys for this purpose.
Although well-designed surveys can provide high quality estimations, they can
be time-consuming and costly, especially if a large volume of survey data is gath-
ered [4]. In contrast, social media pictures are available in real time and at low
costs and represent an active feedback, which is of importance not only to com-
panies developing products, but also to their rivals and potential consumers [5].
Algorithms to identify sentiment are crucial for understanding consumer behav-
iour and are widely applicable to many domains, such as retail [6], behaviour
targeting [7], and viral marketing [8].

Sentiment analysis is the task of evaluating this goldmine of information. It
retrieves opinions about certain products and classifies them as positive, nega-
tive, or neutral. Existing research papers [9,10], have focused on sentiment analy-
sis of textual postings such as reviews in shopping platforms and comments in
discussion boards. However, with the increasing popularity of social networks
and image sharing platforms [11,12] more and more opinions are expressed by
pictures. Several researchers have now started to propose solutions for the sen-
timent analysis of visual content. However, a multitude of consumers’ pictures
does not only include visual elements, but also textual elements. For example,
people take pictures of advertisement posters or insert text into photos with the
aid of photo editing software. In order to estimate the overall sentiment of a
picture, it is essential to not only judge the sentiment of the visual elements but
also to understand the meaning of the included text. While a picture showing
a cosmetic product next to a cute rabbit might be positive, the same picture
containing the words “animal testing” might be negative.

This paper introduces an approach to estimate the overall sentiment of a
picture based on both visual and textual information. While many studies have
performed sentiment analysis, most existing methods focus on either only tex-
tual content or only visual content. To the best of our knowledge, this is the
first approach to consider visual and textual information in pictures at the same
time. The sentiment of a picture is identified by a machine learning classifier
based on visual and textual features extracted from two specially trained Deep
Convolutional Neural Networks (DCNNs). The visual feature extractor is based
on the VGG16 network architecture [13] and it is trained by fine-tuning a model
pretrained on the ImageNet dataset [14]. While the visual feature extractor is
applied to the whole image, the textual feature extractor detects and recog-
nizes texts before extracting features. The textual feature extractor is based on
the DCNN architecture proposed by [15] and is created by fine-tuning a model
which has been previously trained on synthesized social media images. Based
on these features, six state-of-the-art classifiers, namely kNearest Neighbors
(kNN) [16,17], Support Vector Machine (SVM) [18], Decision Tree (DT) [19],
Random Forest (RF) [20], Näıve Bayes (NB) [21] and Artificial Neural Network
(ANN) [22,23], are compared to recognize the overall sentiment of the images.
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The approach has been applied to a newly collected dataset “GfK Verein
Dataset” of consumer-generated pictures from Instagram which show commer-
cial products. This dataset comprises 4200 images containing visual and textual
elements. In contrast to many existing datasets, the true sentiment is not auto-
matically judged by the accompanying texts or hash-tags but has been man-
ually estimated by human annotators, thus providing a more precise dataset.
The application of our approach to this dataset yields good results in terms of
precision, recall and F1-score and demonstrates the effectiveness of the proposed
approach.

The paper is organized as follows: Sect. 2 is an overview of the research sta-
tus of textual and visual sentiment analysis; Sect. 3 introduces our approach
consisting of a visual model (Subsect. 3.1), a textual model (Subsect. 3.2) and a
fusion model (Subsect. 3.3) and gives details on the “GfK Verein Dataset” (Sub-
sect. 3.4); final sections present results (Sect. 4) and conclusions (Sect. 5) with
future works.

2 Related Work

Sentiment analysis aims at the detection of polarity and can be achieved in
many different ways. Approaches for sentiment analysis can be differentiated
with respect to the used methods and data sources. From a methodological
perspective, we can distinguish between knowledge-based techniques and statis-
tical methods [24]. Knowledge-based techniques, such as WordNet Affect [25]
and SentiWordNet [26], rely on semantic knowledge resources to determine the
sentiment. For example, in textual sentiment analysis, the sentiment of text is
classified based on the presence of affective words from a lexicon. These methods
are popular because of their easy application and accessibility, but their validity
depends on a comprehensive knowledge base and rich knowledge representation.
Statistical methods are trained with the aid of annotated corpora to identify
the sentiment. These powerful methods are widely applied in research, but their
performance depends on a sufficiently large training corpus [27]. While in for-
mer times shallow feature representations such as bag-of-words combined with
support vector machines have been the mainstream in textual sentiment analy-
sis, deep learning methods are becoming increasingly popular in recent years.
In [28], the authors use a Convolutional Neural Network (CNN) to extract sen-
tence features and perform sentiment analysis of Twitter messages. An ensemble
system to detect the sentiment of a text document from a dataset of IMDB movie
reviews is built in [29]. CNNs have also been applied to visual sentiment analysis.
A deep CNN model called DeepSentiBank is trained to classify visual sentiment
concepts by Chen [30]. A visual sentiment prediction framework is introduced
in [8]. It performs transfer learning from a pre-trained CNN with millions of
parameters.

With respect to the underlying data sources, sentiment analysis approaches
can be divided into unimodal and multimodal [31]. While unimodal approaches
consider only one data source, mulitmodal models take several types of data
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sources into account when determining the sentiment. In [32] the authors employ
both images and text to predict sentiment by fine-tuning a CNN for image sen-
timent analysis and by training a paragraph vector model for textual sentiment
analysis. In [33], the authors employ deep learning to analyze the sentiment of
Chinese microblogs from both textual and visual content.

In this work, we focus on sentiment analysis for both visual and textual
information of brand-related pictures from social media. In contrast to [32,33],
however, we do not consider text accompanying a picture, but text included
in a picture, which is more challenging since the text has to be detected and
recognized first, before its sentiment can be identified.

3 Methods

In this section, we introduce the joint visual and textual sentiment analysis
framework as well as the dataset used for evaluation. The framework is depicted
in Fig. 1 and comprises three main components: the visual feature extractor, the
textual feature extractor, and the overall sentiment classifier. We use especially
trained DCNNs for visual and textual feature extraction. The visual and textual
features are fused and fed into the overall sentiment classifier. We compare com-
mon machine learning algorithms for the overall sentiment classification. Further
details are given in the following subsections.

Social
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Fig. 1. Training pipeline flow
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The framework is comprehensively evaluated on the “GfK Verein Dataset”,
a proprietary dataset collected for this work. The details of the data collection
and ground truth labeling are discussed in Subsect. 3.4.

3.1 Visual Feature Extractor

The visual feature extractor aims at providing information about the visual
sentiment of a picture and is therefore trained with image labels indicating the
visual sentiment of the images. The training is performed by fine-tuning a VGG16
net [13] that has been pre-trained on the ImageNet dataset [14] to classify images
into 1000 categories. We fine-tune by cutting off the final classification layer
(fc8) and replacing it by a fully connected layer with 3 outputs (one for each
sentiment class). In addition, the learning rate multipliers are increased for that
layer so that it learns more aggressively than all the other layers. Finally, loss
and accuracy layers are adapted to take input from the new fc8 layer. Since the
image classifier serves as feature extractor, the output of the next to last fc7
layer is passed to the overall sentiment classifier. The image feature extractor is
implemented using standard Caffe3 tools.

3.2 Textual Feature Extractor

The goal of the textual feature extractor is to provide information about the
textual sentiment of a picture. It is therefore trained with image labels indicating
the textual sentiment of the images. The textual feature extractor consists of
multiple components. The central component is a character-level DCNN with
an architecture as described in [15], which has been extended by one additional
convolution layer. The extra convolution layer, inserted before the last pooling
layer, has a kernel size of 3 and produces 256 features. The textual feature
extractor was trained in two phases: first training a base model on synthesized
social media images and then fine-tuning that base model on our dataset. In
order to generate training data for the base model, accompanying captions from
brand-related social media pictures were inserted into social media pictures in
varying fonts, font-sizes, colors and slight rotations. Since the text is embedded
in the picture as pixels, the text has to be transformed to characters before it
can be processed by the character-level DCNN. We perform the following steps:

1. Text Detection: individual text boxes are detected in an image with the
TextBoxes Caffe model [34].

2. Text Arrangement : detected text boxes are put in order based on a left-to-
right, top-to-bottom policy, thus forming logical lines.

3. Text Recognition: each text box is processed by the OCR model [35] to tran-
scribe the text of the box.

4. Text Encoding : the recognized text is encoded into one-hot vectors based on
the alphabet of the character-level DCNN.

3 http://caffe.berkeleyvision.org/.

http://caffe.berkeleyvision.org/
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The textual features of the next to last layer of the character-level DCNN
are passed to the final sentiment classifier.

3.3 Overall Sentiment Classifier

On the basis of the visual and textual features, the overall sentiment classifier
aims at estimating the overall sentiment of an image. For this purpose, it is
trained with labels indicating the overall sentiment of the images. The number
of visual and textual features is illustrated in Table 1.

Table 1. Number of features

Model Layer Number of features

Image fc7 4096

Text ip4 1024

Based on the fused features, six state-of-the art classifiers, namely kNN,
SVM, DT, RF, NB and ANN are used to recognize the overall sentiment of the
images and compared with respect to precision, recall and F1-score.

3.4 GfK Verein Dataset

In this work, we provide, to the best of our knowledge, the first study on sen-
timent analysis of brand-related pictures on Instagram. As discussed in Sect. 1,
Instagram provides a rich repository of images and captions that are associated
with users’ sentiments. We construct a visual and textual sentiment dataset
from the pictures on Instagram. We utilize the captions of the Instagram posts
to pre-select images that have detectable sentiment content about well-known
brands from the industry of fast moving consumer goods. Typically, the image
captions indicate the users’ sentiment for the uploaded images. The “GfK Verein
Dataset” is composed of brand related social media images as follows:

– 1400 images with positive sentiment;
– 1400 images with neutral sentiment;
– 1400 images with negative sentiment.

To obtain the ground truth of the collected pictures, the true sentiment has been
manually estimated by human annotators, thus providing a more precise and less
noisy dataset compared to automatically generated labels from image captions
or hashtags. All pictures are annotated with respect to their visual, textual and
overall sentiment.

Figure 2 shows three examples of brand related social media pictures of “GfK
Verein Dataset”. As can be seen, the overall sentiment towards a brand or prod-
uct does not only depend on the visual content of a picture but also on its textual
content.
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Fig. 2. Brand Related Social Media Pictures of “GfK Verein Dataset”. Figure 2a is an
example of a picture with overall negative sentiment, Fig. 2b represents an image with
overall neutral sentiment, and Fig. 2c is a picture with overall positive sentiment

Since sentiment estimation is a subjective task where different persons
may assign different sentiments to images, we asked two persons to judge the
sentiment of the images and measured their agreement. The inter-annotator-
agreement is a common approach to determine the reliability of a dataset and the
difficulty of the classification task [36]. We calculate Cohen’s Kappa Coefficient
k which measures the agreement between two annotators beyond chance [37].
The values of Kappa range from −1 to 1, with 1 indicating perfect agreement,
0 indicating agreement expected by chance, and negative values indicating sys-
tematic disagreement. The inter-annotator-agreement for the visual (k = 0.82),
textual (k = 0.82) and overall (k = 0.84) sentiment assignment is high, assuring
good quality of the dataset and feasibility of the machine learning task.

4 Results and Discussion

In this section, the results of the experiments conducted on “GfK Verein Dataset”
are reported. In addition to the performance of the overall sentiment classifier,
we also present the performance of the visual and textual sentiment classifiers
which form the basis of the visual and textual feature extractors and are key to
the overall sentiment classification.

The experiments are based only on these images of the dataset, where both
annotators have agreed on the overall, visual and textual sentiment. By remov-
ing pictures with ambiguous sentiment, we increase the quality of the dataset
and ensure the validity of the experiments. The final dataset is comprised of
a total amount of 3452 pictures, including 1149 pictures with overall positive
sentiment, 1225 pictures with overall neutral sentiment and 1078 pictures with
overall negative sentiment.

We perform the experiments by splitting the labeled dataset into a training
set and a test set. Each classifier will only be trained based on the training set.
Likewise, the test set is also fixed in the beginning and used for all test purposes.
The dataset is split into 80% training and 20% test images, taking into account
all permutations of overall, visual, and textual annotations.
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In order to create the visual feature extractor we trained a DCNN to classify
the visual sentiment of a picture. The performance of the visual sentiment classi-
fication is reported in Table 2. As can be seen, high values of precision and recall
can be achieved, especially for pictures with positive and neutral visual senti-
ment. The recognition of visually negative pictures is more difficult due to the
smaller amount of available training data and the higher variation in motives.
Consumers tend to express their overall negative sentiment towards brands by
adding negative text to neutral or positive motives. As people avoid posting pic-
tures with negative facial expressions on social media, the most frequent form
of visual negative sentiment is graphics with many different motives.

Table 2. Performance of the visual DCNN model, predicting visual sentiment based
only on visual features

Category Precision Recall F1-Score

Positive 0.83 0.82 0.82

Neutral 0.86 0.89 0.88

Negative 0.72 0.67 0.69

MEAN() 0.81 0.79 0.80

For creating a textual feature extractor, we trained a DCNN to estimate
the sentiment of the text in the pictures. Table 3 depicts precision and recall of
the textual sentiment classification. The performance of the textual sentiment
classification is good, but lower than the performance of the visual sentiment
classification. While the judgment of visual and textual sentiment is equally
difficult for humans, the classification of text in pictures is much more challenging
for machines as the text has to be detected and recognized first before it can be
classified, thus being more error-prone. Comparing the different classes reveals
that negative and neutral texts can be recognized better than positive texts. This
fact is also reflected by the characteristics of the dataset. As consumers prefer
visual clues such as happy people or smileys to textual clues for showing their
overall positive sentiment towards brands, positive texts are less expressive.

Table 3. Performance of the textual DCNN model, predicting textual sentiment based
only on textual features

Category Precision Recall F1-Score

Positive 0.71 0.68 0.70

Neutral 0.84 0.61 0.71

Negative 0.67 0.89 0.76

MEAN() 0.74 0.73 0.74
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Based on the visual and textual features, a machine learning classifier is
trained to identify the overall sentiment of a picture. We train several classifiers,
namely SVM, DT, NB, RF, and ANN and compare their performance for differ-
ent parameter settings. Table 4 reports the results of the best parameter setting
for each classifier. As can be seen, the performance of all classifiers is good,
with F1-Scores ranging from 0.72 for NB to 0.79 for ANN, thus demonstrating
the effectiveness and the suitability of the proposed approach. The performance
of the overall sentiment classification is much higher than the performance of
the textual sentiment classification but slightly lower than the performance of
the visual sentiment classification. This comparison shows that recognizing the
overall sentiment is more challenging than only the visual sentiment. Estimating
the overall sentiment, however, is crucial for understanding consumers’ attitudes
towards brands. Relying on the visual sentiment only can be misleasing in many
cases since consumers often embed text in their pictures to verbalize their sen-
timent. Especially, overall negative sentiments are often expressed by adding
negative text to neutral or positive visual motives.

Table 4. Performance of the overall classifier, predicting overall sentiment based on
both visual and textual features

Classifier Precision Recall F1-Score

NB 0.72 0.72 0.72

DT 0.72 0.72 0.72

RF 0.74 0.74 0.74

SVM 0.77 0.77 0.77

kNN 0.78 0.78 0.78

ANN 0.79 0.79 0.79

5 Conclusions

Multimodal sentiment analysis of social media content represents a challenging
but rewarding task enabling companies to gain deeper insights into consumer
behavior. In this paper, we introduce a deep learning approach for recognizing
the sentiment of brand-related social media pictures by taking visual as well as
textual information into account. The sentiment of a picture is identified by a
machine learning classifier based on visual and textual features extracted from
two trained DCNNs. By combining DCNNs with machine learning algorithms
such as kNN, SVM, DT, RF, NB, and ANN, the approach is able to learn a
high level representation of both visual and textual content and to achieve high
precision and recall for sentiment classification. The experiments on the “GfK
Verein Dataset” yield high accuracies and demonstrate the effectiveness and
suitability of our approach. Further investigation will be devoted to improve our
approach by employing a larger dataset and extracting additional informative
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features such as peoples’ emotions as well as positive and negative symbols.
Moreover, we will extend the evaluation by comparing our visual and textual
classifiers with other existing systems for visual and textual sentiment analysis.
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Abstract. Coarse features, such as scene composition and subject
together with fine details, such as strokes and line styles, are useful clues
for painter and style categorization. In this work, to automatically pre-
dict painting’s artist and style, we propose a novel deep multibranch
neural network, where the different branches process the input image
at different scales to jointly model the fine and coarse features of the
painting. Experiments for both artist and style classification tasks are
performed on the challenging Painting-91 dataset, that includes 91 dif-
ferent painters and 13 diverse painting styles. Our method outperforms
the best method in the state of the art by 14.0% and 9.6% on artist and
style classification respectively.

Keywords: Painting categorization · Painting style classification ·
Painter recognition · Deep convolutional neural network ·
Multiresolution

1 Introduction

Research on digital analysis of paintings is gaining increasing attention due to
the large quantities of visual artistic data [4,10,12], made available from art
museums digitizing their collection for cultural heritage, and the need of auto-
matic tools to organize and manage them. In this work, we approach the problem
of categorizing a painting by automatically predicting its artist and style given
solely the digital version of the painting itself [1]. Both these tasks are very chal-
lenging due to the large amount both inter- and intra-class variations, e.g. the
different personal styles in the same art movement, or the same artist adhering to
different schools in different periods in his/her production. Artist classification
consists in automatically associate the painting to its painter. In this task factors
such as stroke patterns, the color palette used, the scene composition, and the
subject must be taken into account. Style classification consists in automatically
categorize a painting into the school or art movement it belongs to. Art theorists
define an artistic style as the combination of iconographic, technical and com-
positional features that give to a work its character [20]. Style categorization is
complicated by the fact that styles may not remain pure but could be influenced
by others.
c© Springer International Publishing AG 2017
S. Battiato et al. (Eds.): ICIAP 2017, Part I, LNCS 10484, pp. 414–423, 2017.
https://doi.org/10.1007/978-3-319-68560-1_37
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1.1 Contribution

We propose a multiresolution approach to solve the tasks of artist and style
categorization. A particular random-crop strategy permits to gather clues from
low-level texture details and, at the same time, exploit the coarse layout of
the painting. The classification process is carried on by a specifically-taylored
multibranch neural network.

Experiments are performed on the challenging painting-91 dataset [10]. On
both artist and style classification tasks our approach improves the mean clas-
sification accuracy by 14.3% and 10.2% respectively, compared to the previous
state-of-the-art models.

1.2 Prior Works

The problem of painter or style categorization has been faced using different
tecniques. Some existing approaches make use of traditional handcrafted features
[4,10] whereas more recent works relay on the use of deep networks [1,14,15,18,
19]. Zhao et al. [21] used a pretrained neural network in a two-step bootstrap
approach to categorize ancient illustration from the British Library. Peng and
Chen [15] use a multiresolution approach to exploit both small details and the
overall image structure. A more sophisticated technique is used by [1] where
the use of a deformable part model is adopted in order to combine low-level
details and an holistic representation of the whole painting. Deep CNNs have
been widely used as features extractors to solve different tasks [3,16], Peng and
Chen [15] and Anwer et al. [1] relay on pretrained deep CNNs to deal with
the small quantity of images of the Painting-91 dataset. Tan et al. [18] made
different experiments by training a network from scratch or finetuning an existing
network for the task of style and painter recognition. They adopted a network
structure similar to the one used by Krizhevsky et al. [11]. Hentschel et al. [8]
performed interesting experiments about the quantity of data needed to fine-tune
the network by Krizhevsky et al. [11] for the task of style classification.

2 Our Approach

The scene composition and the subject depicted are important clues to recognize
a particular author or a painting style. These elements need to be extracted
from the whole painting. At the same time finer details, such as stroke patterns
or the line styles, are also very good clues. Obviously a powerful discriminative
model should consider both the coarse level and fine details. On the basis of these
considerations we decided to adopt a multiresolution approach: first, a predefined
number of squared “small” crops are extracted from the high-resolution image.
Then, the image is downsampled and another “large” crop is extracted from the
low-resolution image (see Sect. 2.1). All the crops are then fed to the branches
of a deep neural network that extracts the corresponding features. The outputs
of the branches are collected by a join layer and fed to a deep neural network
that carries on the categorization process.
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2.1 Input Preprocessing

The first preprocessing step consists in normalizing the input image by subtract-
ing the mean and dividing by the standard deviation of the pixel distribution
of whole training set. This contrast normalization preprocessing is known to
improve CNNs accuracy in different domains [2] by limiting the variability of
the input range. The second step consists in a particular cropping strategy.
Crops are taken at multiple resolutions to capture both fine details and coarse
structures. Since paintings exhibit high variability in terms of aspect-ratios, the
input image is resized such as the minimum side is 512 pixels and the aspect
ratio is preserved. From the resulting image we extract two squared random
crops of 227 pixels side. Then the image is further downsampled, using an aver-
age pooling layer, such as the minimum side is 256 pixels and another squared
crop of 227 by 227 pixels is extracted. All the crops are squared, independently
from the original aspect ratio of the input image. This is done to improve the
computational efficiency allocating GPU memory blocks only once. Images and
crops sizes has been choosen as a tradeoff to exploit fine details and to limit the
computational burden accordingly to the size and quality of the original images.
The coordinates of the crops inside the input image are randomly chosen with
the only constraint that crops coming from the same scale do not overlap. The
rational behind this choice is that the salient details can be anywhere inside the
painting, and the extraction of crops at random locations permits the imple-
mentation of a consensus strategy by simply processing the same input image
several times. The consensus strategy consists in averaging the output of the
last fully-connected layer for the multiple passes of the same image trough the
network, resulting in a feature vector that is then fed to the softmax layer to get
the final prediction.

2.2 Deep Network Structure

We propose a novel network whose structure is shown in Fig. 1. It is composed
of five modules: three branches to extract the low level structures of the painting
crops, a join module to gather the output of the three branches and a classifica-
tion module to make the prediction. Each branch is trained with crops from a
specific scale, thus becoming specialized in processing texture patterns at that
specific resolution. We decided to use only two scales since, in our preliminary
experiments, the use of higher scales brought a slight improvement compared to
the exponential increase of computational burden.

In the three branches and in the classification model our deep network makes
use of Residual Blocks which have been shown to be an effective architectural
choice to build very deep networks [7] and tackle the problem of vanishing gradi-
ents by using shortcut connections. In particular, we used “bottleneck” Residual
Blocks, which allow the network architecture to be even deeper [7]. Each skip
connection has four times the number of channels with respect to the internal
elements of the block. This permits a large troughput of information among
layers while mantaining a low computational complexity and low memory use
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Fig. 1. Scheme of our deep multibranch neural network

insde each block. Our Residual Block structure is different from the one used
by He et al. [7]: we moved the Batch Normalization layer [9] after the sum with
the skip connection because, in our experiments, the resulting configuration has
shown better performances.

The Residual Block we used is shown in Fig. 2. In our network (see Fig. 1)
each of the three branches is composed by three Residual Blocks plus four layers
near the input which perform the first processing (Convolution + BatchNorm
[9] + ReLU [13]) and an initial downsampling (Max Pooling). The join module
is a particular Residual Block which gathers the output of the three branches.
It stacks the output features and then converts them to a smaller-dimensional
feature space by compressing information along the channel dimension. The
reason behind this operation is to make the computations feasible in the following
layers by reducing the channel dimension of the output by a factor of three.
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Fig. 2. The type of residual block used in our deep neural network
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The classification module is composed by 13 Residual Blocks plus a Spatial
Average Pooling layer, a Fully-connected layer and a Softmax layer that outputs
the classes probabilities. While the Residual Blocks in the three branches do
not include any downsampling operator, the classification module uses convolu-
tion operators with stride two to perform a spatial downsampling of the input.
Every five blocks the input is spatially reduced by a factor of two. At the same
time the number of channels is increased by the same amount. This leads to a
gradual increasing of the receptive-fields of the network in the deeper layers and
also favors more abstract representations of the input. In the final part of the
classification module a fully-connected layer maps the output to 13 or 91 classes
depending on the task, respectively artist or style categorization.

3 Experiments

3.1 Dataset

We evaluate our recognition pipeline on the challenging Painting91 dataset [10]
for both artist and style classification tasks. The dataset consists of 4266 paint-
ings of 91 painters. As train and test split we used those provided by the authors
which are in both cases nearly 50%. For the task of artist recognition, the whole
dataset is used whereas for the task of style recognition only 2338 groundtruth
are provided.

3.2 Training

Our training procedure was carried on in two phases. We first pretrained our
deep network on the Kaggle dataset Painterbynumbers.1 This dataset is intended
for a similar task, i.e. painter verification, but it is much bigger. It contains more
than 1500 authors and a training set of 79433 images. Then we finetuned it two
times (one for each of the two tasks) on the Painting91 dataset, substituting the
last fully connected layer with a new one that matched the number of classes
needed for each task.

To cope with the small amount of training data we exploited some data
augmentation techniques:

– Color Jitter. It consists in randomly modifying constrast, brightness and sat-
uration of the input image indipendently.

– Lighting noise. It is a pixelwise transform based on the eigenvalues of the
RGB pixel distribution of the dataset. It has been introduced by Krizhevsky
et al. [11].

– Gaussian Blur. It consists in applying a blur filter with fixed σ to random
images choosen with probability 0.5.

1 https://www.kaggle.com/. We took part to the Painterbynumbers competition and
ended among the top positions. Our method, that is disclosed here, achieves an
accuracy of 53.8% on validation set for the task of artist classification.

https://www.kaggle.com/
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– Geometric transforms. It includes small changes in scale and aspect-ratio of
the input image.

As explained in the Subsect. 2.1 our network exploits random crops. Therefore
if the same input is processed several times by the same network, the final
prediction vectors can be averaged before being fed to the last softmax layer. In
Table 1 we report the performance in terms of accuracy at different number of
passes. Results are averaged over ten independent runs. The biggest improvement
is obtained by exploiting two passes with respect to the single one. The best
performance are obtained using four passes.

Table 1. Accuracy vs number of passes trough the network. Each value represents the
average of 10 runs.

Passes 1 2 4 8

Artist 77.5 78.1 78.5 78.3

Style 83.6 84.1 84.4 84.3

3.3 Results

In Table 2 we report the performances of our method with respect to the state-
of-the-art on the Paintings-91 dataset. Concerning our method, we report the
average accuracy over ten independent runs together with the minimum and
maximum values. Considering our average performance, our method outperforms
the best method in literature by 14.0% and 9.6% on the task of artist and style
categorization respectively.

Table 2. Comparison with the state of the art. Average classification rates on the
Paintings-91 dataset for the tasks of Artist and Style recognition. Our values are
obtained as the maximum of 10 runs.

Method Artist Style

VGG-16 FC [17] 51.7 67.2

MF [10] 53.1 62.2

CL-CNN [14] 56.4 69.2

MS-MCNN [15] 58.1 71.0

MOP [6] 59.7 68.8

Holistic [5] 61.8 70.1

Holistic + Part Based [1] 64.5 74.8

Ours (worst performance among 10 runs) 77.9 83.8

Ours (average performance among 10 runs) 78.5 84.4

Ours (best performance among 10 runs) 78.8 85.0
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Fig. 3. Confusion matrix for the task of style recognition. The highest error rates are
between Neo-Classical paintings, Baroque and Renaissance.

Figure 3 shows the confusion matrix for the style recognition task. The high-
est classification errors are between the Neo-Classical, Baroque and Renaissance
classes. This seems to agree with styles’ contaminations and influences as studied
by art historians. For example Caravaggio paintings are classified as Baroque in
Paintings-91 groundtruth. Actually he lived at the end of the Renaissance era,
having a great influence on future Baroque painters.

Figure 4 shows the confusion matrix for the task of artist recognition. The
highest error rates are between Memling and Van Eyck (27%), and Zurbaran
and Vermeer (30%). Memling and Van Eyck are contemporaneous and both
belonging to the Dutch and Flemish Renaissance, while Zurbaran and Vermeer
are coeval painters, both belonging to the Baroque movement. To be able to
actually discriminate between the last two painters, the network should be aware
that Vermeer paintings are usually about indoor every-day life scenes whereas
Zurbaran mostly painted religious subjects.

Figure 5 shows in the top row the highest scored errors. To better denote
the complexity of the task, we also reported the highest scored and correctly
classified example for the corresponding painter. Most confusions are between
coeval painters. Even for an untrained human it could be difficult to predict the
correct artist for a new unseen painting.
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Fig. 4. Confusion matrix for the task of artist recognition. The highest error rates are
between Zurbaran and Vermeer, Memling and Van Eyck. These painters are coeval and
belongs to the same artistic movement.

Predicted: Hopper
Real: Hockney

Predicted: Dalì
Real: Ernst

Predicted: Manet
Real: Zurbaran

Predicted: Rembrandt
Real: Rubens

Predicted: Hopper
Real: Hopper

Predicted: Dalì
Real: Dalì

Pred: Zurbaran
Real: Zurbaran

Predicted: Rembrandt
Real: Rembrandt

Predicted: Mirò
Real: Klee

Predicted: Mirò
Real: Mirò

Predicted: Delacroix
Real: Goya

Predicted: Goya
Real: Goya

Predicted: Lissitzky
Real: Kandinsky

Predicted: Lissitzky
Real: Lissitzky

Predicted: Bruegel
Real: Bosh

Predicted: Bruegel
Real: Bruegel

Fig. 5. Top row: highest scored errors for the task of painters classification. Bottom
row: for each of the predicted painters, we report the correctly classified example with
the highest score.
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4 Conclusions

We proposed a novel approach to accomplish the task of painter and style recog-
nition on the challenging Painting91 dataset. Our particular crop strategy per-
mits to exploit multiple cues at different scales. Both fine details and coarse
structures are considered during the classification process. The crops are fed
to a multibranch deep neural network which merge the information at multiple
scales and different spatial locations and performs the final prediction. Since the
classification process is not fully deterministic we reported the results as aver-
age performance and best performance among ten runs. Our approach clearly
outperforms state-of-the-art methods on Paintings-91 dataset by a large margin.
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Abstract. This paper presents a novel variation of the use of LBP codes.
Similarly to Uniform LBP and Local Salient Patterns (LSP), it aims at
both obtaining an effective texture description, and decreasing the length
of the feature vectors, i.e., of the chains of LBP histograms. Instead of
considering uniform codes, we rather consider the codes providing the
highest “representativeness” power with respect to texture features. We
identify this subset of codes by a generalized notion of entropy. This
allows determining the most informative items in an homogeneous set.

Keywords: Local binary patterns · Information content · Entropy

1 Introduction

Though quite simple and light to compute, Local Binary Patterns (LBP) rep-
resents a very efficient texture operator. The basic procedure uses the value of
each image pixel in turn as a binarization threshold for the values in its neigh-
borhood (originally a 3×3 window); afterward, the code assigned to each pixel is
the binary number represented by the string of binary elements obtained in such
neighborhood. While the gray-level value of a given pixel represents its spectral
propriety, its LBP code represents the textural aspect of the given pixel. LBP
has achieved a great and still increasing popularity since its introduction in [9],
where it is presented as a simplification of texture units (TUs) [18] making up
the texture spectrum of an image. Similarly to LBP, TUs are obtained from a
neighborhood of 3×3 pixels, yet using three (0, 1, 2) instead of two values, giving
a much higher number of codes. The texture spectrum is defined as the histogram
(frequency of occurrences) of texture units computed over a region. The work in
[9] shows that LBP, when used together with a simple local contrast measure,
achieves better performance in unsupervised texture segmentation than other
methods for texture analysis quite popular at that time. Due to this descriptive
power, since its introduction, LBP has been the object of extensive investiga-
tions and evaluations, as well as variations [10]. It has been applied to address
many problems, in particular, in the field of biometrics. A few examples include
face recognition [1], demographics classification [19], gender recognition [15,17],
c© Springer International Publishing AG 2017
S. Battiato et al. (Eds.): ICIAP 2017, Part I, LNCS 10484, pp. 424–434, 2017.
https://doi.org/10.1007/978-3-319-68560-1_38
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or even face expression recognition [14]. A comprehensive survey of the use of
LBP in Computer Vision can be found in [11].

This work deals with a novel approach to reduce the size of the code set for
LBP, along the line of Uniform LBP codes [16] and Local Salient Patterns (LSP)
[2]. Therefore, these two are the reference techniques we will compare with. In
other words, the contribution of this work is to propose a new code reduction
technique, and to compare it with the previously proposed ones.

The new operator is denoted as Weighty LBP (W-LBP). The core idea is
to choose the most relevant codes according to their informative content with
respect to textural features. Though Uniform LBP codes can be perceptually
appreciated as more relevant with respect to the remaining ones, there is no
assessment of their individual “informative” power. The same holds for LSP.
We propose to analyze the LBP codes by exploiting a generalized definition of
entropy. This was introduced to identify relevant face images in a set, and used
for image analysis [6], for template selection in video-surveillance tasks [4], for
the construction of a difference space for face image classification [13], and also
for clustering [8]. Then it was extended to analyze generic items in a set, e.g., to
quantize colors for image segmentation [5]. We apply the underlying approach
here to select the most “representative” LBP codes.

The application of the method based on set entropy requires to exploit a
suited similarity measure able to capture the characteristic nature of the items
at hand (see Sect. 3.1). In the case of LBP such items are binary strings. Despite
many different similarity/distance measures have been proposed, each such mea-
sure captures different aspects. Therefore, in the following we will briefly present
the ones that we chose to analyze in order to capture the possible “informative
power” of LBP codes. Afterward, we will follow a double evaluation procedure. In
the first place, for each similarity measure, the subset of the most representative
codes will be identified, and then among the obtained subsets those achieving
the best classification results will be selected.

2 Related Work

LBP can be used in two ways. It can be used to characterize an image by a fea-
ture vector built with the histogram of LBP codes from the image, or to produce
a gray level feature image by substituting each pixel in the original image by its
LBP code. Feature images then undergo further computer vision processing. In
particular applications, e.g., face recognition, LBP robustness can be increased
by processing the image divided in cells according to a grid, whose size depends
on image resolution. In this case, LBP is applied separately to each grid cell,
and, in the case of histograms, the final feature vector is obtained by chaining
the single cell histograms. This causes possibly huge feature vectors. Methods
requiring a training step may incur the curse of dimensionality problem. For this
reason, an interesting research line investigates how to identify and use a reduced
the number of LBP codes, achieving a possibly better texture characterization
with shorter feature vectors. However, finding the optimal subset of patterns is
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a demanding combinatorial problem. The selection of a subset of NP or less
patterns out of the total 256, requires to assess the performance of a number of
possible solutions that even for moderate values of NP requires huge computing
resources. Therefore a suboptimal yet satisfying solution is often searched for.
The work in [16] compares two approaches to extract a relevant subset of LBP
codes. The first one uses beam search and explores subsets of patterns mini-
mizing the classification error. The method iteratively increases the size of the
pattern subset up to dimension NP and updates a list of the best BS subsets
identified. The classification at each iteration exploits a reduced LBP histogram
that contains one bin for each pattern chosen so far. All the remaining patterns
are collapsed into a single bin. After NP iterations, the procedure returns BS
distinct pattern sets, from which the optimal patterns can be chosen.

The second approach proposes the nowadays popular Uniform LBP patterns.
It first defines a measure of nonuniformity U(LBP), which corresponds to the
number of transitions (from 0 to 1 or the inverse) in the circular bitwise represen-
tation of the code. The assumption is that the lower the number of transitions,
the more robust the code to image distortions. Based on this, the authors propose
using the nine uniform patterns and their circularly rotated versions (this allows
some transformation invariance). In practice, this corresponds to use 58 out of
the 256 original unrotated patterns . Even in this case, all the remaining patterns
are compressed into a single bin, therefore obtaining a 59-bin histogram. The
conclusions drawn in [16] underline that every application may have its optimal
set of patterns, but uniform patterns appear to perform well in many situations.

An example of a different strategy to address the reduction of LBP codes is
represented by Local Salient Patterns (LSP) [2]. This recent approach derived
from the original formulation of LBP focuses on the location of the largest pos-
itive and negative differences within the pixel neighborhood. This is deemed to
remove the noise influence. The coding takes into account the possible pairs of
neighbor indexes (pdiffmax, pdiffmin) that provide the maximum and the min-
imum difference with the central value of the neighborhood (usually, a 3 × 3
window). Therefore there are 57 distinguished codes (the last one corresponds
to equal differences for all neighbors). This descriptor has achieved good perfor-
mances in different facial analysis tasks, and experiments reported in [2] show
that in most cases, LSP can outperform Uniform LBP.

3 The Proposed LBP Reduction

3.1 Entropy to Select Representatives in a Set

In image analysis, entropy is usually exploited as a measure of random-
ness/homogeneity of image pixels. Each pixel x in image I is treated as a symbol
in the alphabet emitted by a source S. As for gray scale images, the alphabet
is the set of 8-bit integers in [0, 255]. After normalizing the image histogram
values in the range [0, 1], each bin represents the probability of occurrence of the
corresponding symbol in I. Entropy H(I) is:

H(I) = −
∑

255
k=0p(k)log2(k) (1)
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Equation 1 can be generalized to express the amount of homogeneity in a set
of items of any kind, given a suited abstraction. We summarize here the basic
notation. More details can be found in [6].

Given a set G of objects/elements/observations (items from here on), we
first search for a suitable similarity measure s, which is used to associate a
real scalar value to any pair of feature vectors (templates) used to characterize
the items of interest according to a chosen set of characteristics. The choice
of the similarity measure to exploit depends in the first place on the kind of
items to compare, and on the extracted feature templates. Computational cost
of measuring this similarity can provide a further criterion. Popular examples
are Euclidean distance, if feature vectors are represented as points in a space, or
Dynamic Time Warping (DTW) for time series. The noticeable property of the
following definitions is that they hold whichever is the chosen similarity measure
s. From here on, if not otherwise specified, the notation will identify templates
with the items they describe. In a preliminary definition step, let us assume to
compare the probe template v to classify with a set templates gi (from now on
denoted as gallery.) This produces a similarity measure s(v, gi), denoted as si.
After score normalization, si is a real value in the interval [0, 1]. The score si
can be interpreted as the probability that v conforms (adapts) to gi, therefore
obtaining a probability distribution over the set G, i.e., si,v = p(v ≈ gi). In
order to compute a total value for the entropy of the set G each of its elements
is considered in turn as a probe v, to compute all-against-all similarities. Let’s
denote as Q the number of pairs 〈qi, qj〉 in G such that si,j > 0, used as a
normalization factor; then entropy of G is denoted as H(G) and computed as:

H(G) = − 1
log2(|Q|)

∑
qi,j∈Qsi,j log2(si,j) (2)

The value of H(G) can be considered as a measure of heterogeneity for the items
in G. It is possible to order all of them according to their informative power
or representativeness, by computing their contribution to H(G). Given G, the
devised procedure computes the complete similarity matrix M and the value for
H(G). For each item gi ∈ G, M is used to compute the value of H(G\gi) obtained
by ignoring gi. The item gi, achieving the minimum difference f(G, gi) = H(G)−
H(G\gi), is selected; the matrix M is updated by deleting the i − th row and
column, and the process is repeated, until all elements of G have been selected.
According to this procedure, we first select the most representative samples, i.e.
those causing the lower entropy decrease. The algorithm progressively reduces
the inhomogeneity of the set. We finally obtain an ordering of the elements as
they are selected by the algorithm, with the corresponding value of f(·). The
trend of the resulting curve presents local maxima and minima in a smooth saw
tooth shape, that can be usually quite well approximated by a parabola (see [6]).
The values obtained for f(·) can be used to cluster the set elements, in a way
similar to one of the approaches in [13]. The first relative maximum becomes the
representative element of the first cluster. The following elements along f(·) until
the next relative maximum are included in this cluster. A new cluster is created
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when the next relative maximum is found, and cluster population is continued
as before. This procedure is repeated till the end of f(·).

3.2 Binary Similarity and Distance Measures

In order to explore the information content of LBP codes with respect to differ-
ent similarity measures, we refer to the survey presented in [3]. In that work, 76
binary similarity and distance measures are discussed that have been used over
the last century, and their correlation is investigated through a hierarchical clus-
tering technique. The interested reader can refer to that paper. For our purposes,
we selected a subset of 65 out of the measures mentioned there, leaving out or
merging duplicates. Similarly to [3], the definitions of measures are expressed by
Operational Taxonomic Units (OTUs) [7]. Assume to have two binary vectors,
i and j. Let n be their common dimension. The following notation is used:

– a = the number of vector entries where the values of i and j are both 1 (or
presence, if the binary values are interpreted in this way), meaning positive
matches: a = i • j

– b = the number of entries where the value of i and j is (0, 1) (or i absence
mismatch): b = ī • j

– c = the number of attributes where the value of i and j is (1, 0) (or j absence
mismatch): c = i • j̄

– d is the number of attributes where both i and j have 0 (or absence), meaning
negative matches: d = ī • j̄.

The sum a+d gives the total number of matches between i and j, while the sum
b + c gives the total number of mismatches between i and j. Measures defined
as distances were transformed into similarities to obtain consistent measures.

4 Experimental Results

The experiments carried out for this work aimed at investigating a novel strategy
to identify the most “informative” binary patterns produced by the LBP feature
extractor, and how reducing the LBP code set to them can affect the perfor-
mance of a classifier in terms of recognition accuracy. In the specific case, the
experiments adopted a very simple classifier, namely Nearest Neighbor (NN)
in order to avoid the dependence of the observed variations from factors not
related to the aspect under study (the different sets of LBP codes). With the
same idea in mind, the face database used as testbed is EGA [12]. This dataset
is the result of the integration of subsets of a number of existing face datasets,
that are quite different in nature in terms of ethnicity (E), gender (G), and age
(A) of subjects. While EGA is expressly built to be quite balanced with respects
to such demographic traits, it also offers a good variety in terms of image qual-
ity. It includes a total of 2345 images captured from 469 subjects, 5 images per
subject. More details on source datasets and EGA organization can be found in
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[12]. As for this work, it is important to underline that, since EGA collects face
images extracted from datasets with different characteristics, both for the demo-
graphics of subjects, for capture setting and for capture devices, carrying out
experiments on it is equivalent to carrying out experiments on the correspond-
ing subsets of the source datasets. All experiments in this work considered all
EGA subjects, with two out of the five images each: the first one in the dataset
for the experiment gallery and the second one as the probe. Each image was
pre-processed by Viola-Jones algorithm to detect the position of the face and of
the center of the eyes. Faces were resized in order to have a constant inter-eye
distance of 40 pixels, and cropped to 64×100 pixels. No pre-processing was per-
formed regarding illumination, because LBP is in itself an operator quite robust
to most illumination distortions. Firstly, for each similarity measure the subset
of the most representative codes was identified, and then among the obtained
subsets those achieving the best classification results were selected. This is quite
different from beam search, that tries to add any missing code to a candidate
subset, and from Uniform LBP, that selects LBP codes based on some code
pattern (e.g., uniformity). We rather try to identify “weighty” LBP codes.

For sake of space, it is not possible to report the definition of all the 65
considered measures. Table 1 only reports those providing results worth men-
tioning, with the number indicating the ordering used here. Such numbering is
maintained to preserve the relation with Figs. 2 and 3 below that report exper-

Table 1. The considered similarity (S) and distance (D) measures.

S INTERSECTION a (10)

D EUCLID
√
b + c (14)

D HELLINGER or CHORD 2 ∗
√

1 − a/
√

(a + b) ∗ (a + c) (22)

S MOUNTFORD a/(0.5 ∗ (a ∗ b + a ∗ c) + b ∗ c) (29)

S JOHNSON a/(a + b) + a/(a + c) (34)

S DENNIS (a ∗ d − b ∗ c)/
√

n ∗ (a + b) ∗ (a + c) (35)

S SIMPSON a/min(a + b, a + c) (36)

S FAGER & McGOWAN a/
√

(a + b) ∗ (a + c) − max(a + b, a + c)/2 (38)

S BARONI-URBANI & BUSER-I (
√
a ∗ d + a)/(

√
a ∗ d + a + b + c) (60)

Fig. 1. LBP feature images produced with different strategies to reduce the set of codes:
(a) All LBP (256 bins), (b) Uniform LBP (59 bins), (c) Entropy with MOUNTFORD
measure (80 bins) and with (d) BARONI-URBANI & BUSER-I measure (41 bins).



430 M. De Marsico and D. Riccio

imental results. The complete list can be found in [3] and a compacted one at
the end of the paper (Table 3). Figure 1 shows some examples of LBP images
produced for the same face image, but with sets of LBP codes obtained by com-
puting representativeness according to two different measures, namely MOUNT-
FORD measure (80 bins) and BARONI-URBANI & BUSER-I measure (41 bins),
respectively entries indexed as (29) and (60) in Table 1. The discussion about
experimental results will show that these two measures provide complementary
yet orthogonal improvements. The first experiment aimed at verifying if and
how a different identification of relevant LBP codes can affect the accuracy of
a simple NN classifier. Classifier performances were measured in terms of Equal
Error Rate (EER) in verification mode (1:1 matching with identity claim) and
Recognition Rate (RR) in identification mode (1:N matching without identity
claim). Chosen a similarity measure, the resulting f(·) function was computed
and used for the clustering procedure as described in Sect. 3.1. When coding
images, each code is substituted by the representative of the cluster to which it
belongs. A further information provided by the used clustering algorithm is the
number of returned clusters for the corresponding similarity measure. This helps
evaluating also the efficiency of the produced coding (the lower the number of
clusters, the lower the number of codes required), together with the obtained
accuracy. Therefore, in the following figures, we have on the y axis three differ-
ent items of information: the number of clusters produced, the EER and the RR
value, for each of the 65 measures whose index is on x axis.

LBP feature vector is the chaining of histograms from a grid of image sub-
regions, therefore a further element of interest is the size of such sub-regions
(the smaller the size, the higher the number of histograms to chain, the higher
the size of the final feature vector). Therefore the first experiment was repeated
with four different sub-region dimensions: 16× 16, 24× 24, 32× 32, and 36× 36.
Figures 2 and 3 show the plots obtained for the two extreme cases, where of
course the plot of the number of clusters is always the same. The plots obtained
by intermediate region sizes show a consistent trend.

Fig. 2. Performance of NN with LBP over 16 × 16 sub-regions.

The results obtained in this experiment suggest that all similarity measures
are affected in a generally similar way by sub-region sizes. It is possible to observe
that with more information (smaller region size) both RR and EER are con-
stantly better, and as the sub-region dimension increases, the accuracy decreases
for almost all measures. RR is especially negatively affected by growing size, since
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Fig. 3. Performance of NN with LBP over 36 × 36 sub-regions.

not only it decreases in general, but also becomes much more dependent from
the exploited similarity measure. In this sense, some measures show a very dif-
ferent behavior from the others, either in positive or negative sense. Measures
EUCLID, HELLINGER or CHORD, and FAGER & McGOWAN, respectively
(14), (22) and (38) in Table 1, generate a number of bins that is too low, taking
to an excessive performance decrease, which is further accentuated whit larger
regions. On the contrary, BARONI-URBANI & BUSER-I, i.e., (60) in Table 1,
though producing a very low number of bins, is able to provide an accuracy com-
parable with the others, and is also robust to region growing. A similar result
holds, though with slightly lower performance, for INTERSECTION, JOHN-
SON, DENNIS and SIMPSON, respectively (10), (34), (35) and (36) in Table 1.
Though dramatically decreasing the size of the feature vector, they maintain a
sufficient discriminative power of extracted features.

The second experiment compared the proposed approach with LBP and with
Uniform LBP. Table 2 shows the results, and reports the number of bins used by
the different variations of LBP with the corresponding values of EER and RR,

Table 2. Performance of NN with different strategies to reduce the set of LBP codes.
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Table 3. The full set of similarity (S) and distance (D) measures.

S\D Name OTU
S JACCARD or TANIMOTO a/(a + b + c) (1)
S DICE or CZEKANOWSKI or NEI

& LI
2 ∗ a/(2 ∗ a + b + c) (2)

S 3W-JACCARD 3 ∗ a/(3 ∗ a + b + c) (3)
S SOKAL & SNEATH-I a/(a + 2 ∗ b + 2 ∗ c) (4)
S SOKAL & MICHENER (a + d)/(a + b + c + d) (5)
S SOKAL & SNEATH-II 2 ∗ (a + d)/(2 ∗ a + b + c + 2 ∗ d) (6)
S ROGER & TANIMOTO (a + d)/(a + 2 ∗ (b + c) + d) (7)
S FAITH (a + 0.5 ∗ d)/(a + b + c + d) (8)
S GOWER & LEGENDRE (a + d)/(a + 0.5 ∗ (b + c) + d) (9)
S INTERSECTION a (10)
S INNERPRODUCT a + d (11)
S RUSSELL & RAO a/(a + b + c + d) (12)
D HAMMING b + c (13)
D EUCLID

√
b + c (14)

D CANBERRA or MANHATTAN or
CITYBLOCK or MINKOWSKI

b + c (15)

D MEAN MANHATTAN (b + c)/(a + b + c + d) (16)
D VARI (b + c)/(4 ∗ (a + b + c + d)) (17)

D SIZEDIFFERENCE (b + c)2/(a + b + c + d)2) (18)

D SHAPEDIFFERENCE (n ∗ (b + c) − (b − c)2)/(a + b + c + d)2 (19)

D PATTERNDIFFERENCE 4 ∗ b ∗ c/(a + b + c + d)2 (20)
D LANCE & WILLIAMS or BRAY &

CURTIS
(b + c)/(2 ∗ a + b + c) (21)

D HELLINGER or CHORD 2 ∗
√

1 − a/
√

(a + b) ∗ (a + c) (22)
S COSINE a/(a + b) ∗ (a + c) (23)
S GILBERT & WELLS log(a) − log(n) − log((a + b)/n) − log((a + c)/n) (24)

S OCHIAI-I or OTSUKA a/
√

(a + b) ∗ (a + c) (25)
S FORBES-I n ∗ a/(a + b) ∗ (a + c) (26)

S FOSSUM n ∗ (a − 0.5)2/(a + b) ∗ (a + c) (27)

S SORGENFREI a2/(a + b) ∗ (a + c) (28)
S MOUNTFORD a/(0.5 ∗ (a ∗ b + a ∗ c) + b ∗ c) (29)

S MCCONNAUGHEY (a2 − b ∗ c)/(a + b) ∗ (a + c) (30)
S TARWID (n ∗ a − (a + b) ∗ (a + c))/(n ∗ a + (a + b) ∗ (a + c)) (31)
S KULCZYNSKI II (a/2 ∗ (2 ∗ a + b + c))/((a + b) ∗ (a + c)) (32)
S DRIVER & KROEBER (a/2 ∗ (1/(a + b) + 1/(a + c))) (33)
S JOHNSON a/(a + b) + a/(a + c) (34)

S DENNIS (a ∗ d − b ∗ c)/
√

n ∗ (a + b) ∗ (a + c) (35)
S SIMPSON a/min(a + b, a + c) (36)
S BRAUN & BANQUET a/max(a + b, a + c) (37)

S FAGER & McGOWAN a/
√

(a + b) ∗ (a + c) − max(a + b, a + c)/2 (38)
S FORBES-II (n∗a−(a+b)∗(a+c))/(n∗min(a+b, a+c)−(a+b)∗(a+c)) (39)
S SOKAL & SNEATH-IV 1/4 ∗ (a/(a + b) + a/(a + c) + d/(b + d) + d/(c + d)) (40)

S GOWER (a + d)/
√

(a + b) ∗ (a + c) ∗ (b + d) ∗ (c + d) (41)

S PEARSON-I χ2 with χ2 = n ∗ (ad − bc)2/(a + b)(a + c)(c + d)(b + d) (42)

S PEARSON-II
√

χ2/(n + χ2) (43)

S PEARSON-III
√

ρ/(n + ρ) with ρ = (ad − bc)/
√

(a + b)(a + c)(c + d)(b + d) (44)
S PEARSON & HERON-I ρ (45)

S PEARSON & HERON-II cos(π ∗ √
b ∗ c/(

√
a ∗ d +

√
b ∗ c)) (46)

S SOKAL & SNEATH-III (a + d)/(b + c) (47)

S SOKAL & SNEATH-V or
OCHIAI-II

a ∗ d/
√

(a + b) ∗ (a + c) ∗ (b + d) ∗ (c + d) (48)

S COLE
√

2 ∗ (ad −
bc)/

√
a ∗ d − b ∗ c)2 − (a + b) ∗ (a + c) ∗ (b + d) ∗ (c + d)

(49)

S STILES log10(n∗(|ad−bc|−n/2)2/((a+b)∗(a+c)∗(b+d)∗(c+d))) (50)
S YULE Q (a ∗ d − b ∗ c)/(a ∗ d + b ∗ c) (51)
D YULE Q 2bc/(a ∗ d + b ∗ c) (52)

S YULE w (
√

a ∗ d − √
b ∗ c)/(

√
a ∗ d +

√
b ∗ c) (53)

S KULCZYNSKI-I a/(b + c) (54)

S DISPERSON (a ∗ d − b ∗ c)/(a ∗ d + b ∗ c)2 (55)
S HAMANN ((a + d) − (b + c))/(a + b + c + d) (56)

S MICHAEL 4 ∗ (a ∗ d − b ∗ c)/((a + d)2 + (b + c)2) (57)

S GOODMAN & KRUSKAL (σ − σ′)/(2 ∗ n − σ′) with
σ = max(a, b) + max(c, d) + max(a, c) + max(b, d) and
σ′ = max(a + c, b + d) + max(a + b, c + d)

(58)

S ANDERBERG (σ − σ′)/(2 ∗ n) (59)

S BARONI-URBANI & BUSER-I (
√

a ∗ d + a)/(
√

a ∗ d + a + b + c) (60)

S BARONI-URBANI & BUSER-II (
√

a ∗ d + a − (b + c))/(
√

a ∗ d + a + b + c) (61)
S PEIRCE (a ∗ b + b ∗ c)/(a ∗ b + 2 ∗ b ∗ c + c ∗ d) (62)

S EYRAUD n2 ∗(n∗a−(a+b)∗(a+c))/((a+b)∗(a+c)∗(b+d)∗(c+d)) (63)
S TARANTULA a ∗ (c + d)/(c ∗ (a + b)) (64)
S AMPLE |(a ∗ (c + d)/(c ∗ (a + b))| (65)
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having chosen the most representative measures according to the results of the
first experiment. We can observe that using MOUNTFORD measure, i.e. (29) in
Table 1, and carrying out our clustering/selection procedure, we obtain an LBP
coding able to achieve better performance than Uniform LBP at the expense
of a higher number of bins. On the contrary, BARONI-URBANI & BUSER-I is
able to finally produce a lower number of bins, with a decrease of performance
that might be negligible according to the accuracy requirements. In summary,
it is possible to improve the performance over Uniform codes either in terms of
feature vector length or in terms of EER.

5 Conclusions

This paper presented a novel approach to the selection of the most represen-
tative LBP codes in order to obtain smaller though sufficiently discriminative
feature vectors. The proposed method neither performs an unaffordable exhaus-
tive search nor relies on codes with special patterns. It rather exploits a cluster-
ing procedure based on a measure of representativeness of the different codes.
Such measure is based in turn on a suitable similarity measure among binary
codes. The obtained results show that it is possible to reduce the number of
LBP codes to use in building feature vectors, without affecting the classification
performance too much. The experiments aimed at analyzing 65 different similar-
ity/distance measures. Though some common aspects of behavior were detected,
some measures resulted better able to improve the selection of an appropriate
subset of codes, by either reducing the size of the feature vectors without a dra-
matic decrease in performance, or obtaining a slightly better result than Uniform
LBP at the expense of using some more codes. Our future work will be focused
on testing the generality of these outcomes on different classes of images. In
practice, LBP can be used in many applications based on texture analysis, and
it will be interesting to evaluate our approach in a different context. In particu-
lar, it will be interesting to investigate if the same similarity measures produce
equivalent results on different classes of images.
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Abstract. This work presents a system based on a recurrent deep neural
network to classify actions performed in an indoor environment. RGBD
and infrared sensors positioned in the rooms are used as data source. The
smart environment the user lives in can be adapted to his/her needs.

Keywords: Deep learning · Human actions · LSTM · Indoor activities

1 Introduction

Ambient intelligence exploits smart sensors, pervasive computing and artificial
intelligence techniques in order to make environments responsive, flexible and
adaptive to the people living inside them to improve their daily life [5].

After the features of the users and their surroundings have been determined,
a reasoning on perceived data takes place, followed by the selection of the more
suitable actions aimed at assisting and improving the living conditions of users.

An effective Ambient Intelligence System can encompass hearing, vision, lan-
guage, and knowledge. As a consequence, houses can nowadays be provided with
sophisticated sensors networks like cameras, audio and pressure sensors, motion
detectors as well as wearable technologies in order to realize an intelligent sys-
tem which proactively perceives and analyzes the activities occurring in an apart-
ment, setting up actions to provide help in the execution of tasks and optimizing
the resources for the efficiency and the well being of the people living in it [17].

In this context a proper recognition of meaningful patterns in data is the
crucial point towards the realization of such a system capable of detecting and
recognizing user actions and activities on the environment [4,6,10,11].

An accurate classification of the user’s actions allows the effective under-
standing of user’s habits and preferences [1,20]. In a domestic environment
the detection of the user activities makes it possible the optimization of home
resources in compliance with the distribution of the activities [14]. It also can be
exploited to assist home’s residents in their daily activities, possibly monitoring
also their health conditions [12,15].

c© Springer International Publishing AG 2017
S. Battiato et al. (Eds.): ICIAP 2017, Part I, LNCS 10484, pp. 435–444, 2017.
https://doi.org/10.1007/978-3-319-68560-1_39
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In this work we illustrate the evolution of an action detection module we have
developed [7,19] that can be embedded into an ambient assisted living system
to properly classify patterns of measures according to a specific set of actions.

The proposed system is based on a deep learning approach, and in particular
relies on a deep recurrent neural networks [13]. As widely shown in different
applicative contexts, a deep learning approach allows for more detailed feature
representations compared to conventional neural networks.

Approaches of this kind have been widely exploited even in the field action
classification and recognition: see, for example, [2].

Our has been tested using the dataset of the SPHERE (Sensor Platform for
HEalthcare in Residential Environments) project [18]. The dataset consists in
collection of measures from RGB-d cameras, worn accelerometers and passive
environmental sensors, collected asking a set of trained people to perform a set
of action in an indoor environment.

We have compared the approach with a previous methodology aimed at
indoor action detection through probabilistic induction model [19].

The paper is organized as follows: Deep Learning Neural Networks are pre-
sented, with a focus on Long Short Term Memory Neural Networks in Sect. 2.
The proposed classification approach and the pre-processing operations on the
SPHERE dataset are shown in Sect. 3, while Sect. 3 discusses some experimental
results, with a comparison with a baseline classifier employing a conventional
Multi Layer Perceptron Network. Section 4 contains some conclusions and a dis-
cussion on future developments.

2 Neural Networks for Indoor Activity Classification

The new trend in machine learning aims at overcoming the limits of conventional
techniques and approaches in the processing of data in raw form. They typically
require a careful engineering and domain expertise to design the set of feature
to transform the original data in suitable vectors.

Deep-learning methods usually employ a set of non-linear modules that auto-
matically extract a set of features from the input and transfer them to the next
module [13]. The weights of the layers of features are learned directly from data,
allowing to discover intricate structures in high-dimensional data, regardless of
their domain (science, business, etc.). With this mechanism very complex func-
tions can be learned combining these modules: the resulting networks are often
very sensitive to minute details and insensitive to large irrelevant variations.

2.1 MLP Multilayer Perceptron

A multilayer perceptron (MLP) is a feedforward network that maps sets of input
data onto a set of desiderata outputs; it consists of at least three layers - an input
layer, a hidden layer and an output layer - of fully connected nodes in a directed
graph. Except for the input nodes, each node is a neuron (or processing ele-
ment) with a nonlinear activation function - usually a sigmoid, or the hyperbolic
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tangent, chosen to model the bioelectrical behaviour of biological neurons in a
natural brain. Learning occurs through backpropagation algorithm that modi-
fies connections weights in order to minimize the difference between the actual
network output and the expected result.

2.2 Deep Neural Networks

The new techniques for sub-symbolic representation has given a strong impulse
for the machine learning algorithms.

Several advantages in using Recurrent Neural Networks for sequence labeling
are listed in [8], the most important of which are the flexible use of context
information to choose what information are to be stored, and the ability to give
a reliable output even in the presence of sequential distorsions. In particular,
Long-Short Term Memory units have been successfully employed for time series
classification, as they are able to better retain the influence of past inputs decays
quickly over time with respect to other recurrent networks, thus mitigating the
so-called vanishing error problem. A subsequent section will describe the internal
structure of a LSTM unit in detail.

Anyway, a single LSTM unit is unlikely to learn a satisfactorily meaning-
ful, low-dimensional, and somewhat invariant feature space with anything but
trivial datasets, because of the inherent complexity of many of them. More com-
plex models with multiple layers may be used to represent multiple level of
abstractions.

While a detailed theoretical explanation of the reasons behind the advantages
of using more complex networks is offered in [16], an analogy that is suitable for
the field of visual pattern recognition can be considered: if we had a network
made of multiple layers, the neurons in the first layer might learn to recognize
edges, while those in the second layer could learn to recognize more complex
shapes built connecting some of these edges, such as triangles or rectangles.

In our scenario, as there is not a clear hierarchy of features, we chose to
gradually stack LSTM layers and measure the trend of the F1-score to determine
what the correct number of strata can be. Each LSTM layer is separated from
the next one by a ReLU function. In addition, given a sequence length, we strived
to determine how many neurons are needed for the representation to be of good
quality.

After the LSTM layers have determined the boundaries of the representation
space, several fully-connected layers are used to learn a function in that space.
In these layers every input is connected to every output by a set of trained
weights. Its output is fed to an activation function, which is usually a non-linear
operation. We chose to use two deeply connected strata; while the first one having
twice the number of classes we use is connected to a ReLU activation function,
the last one feeds its output to a softmax stratum, thus generating a probability
distribution over classes, the most probable of which is chosen as output [3].
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2.3 LSTM

LSTMs have been designed by Hochreiter and Schmidhuber [9] to avoid the
long-term dependency problem, at the price of a more complex cell structure.

The key feature of LSTMs is the “cell state” that is propagated from a
cell to another. State modifications are regulated by three structures called
gates, composed out of a sigmoid neural net layer and a pointwise multiplication
operation.

The first gate, called “forget gate layer”, considers both the input xt and
the output from the previous step ht−1, and returns values between 0 and 1,
describing how much of each component of the old cell state Ct−1 should be left
unaltered: if the output is 0, no modification is made; if the output is one, the
component is completely replaced.

New information to be stored in the state is processed afterwards. The second
sigmoid layer, called the input gate layer, decides which values will be updated.
Next, a tanh layer creates a vector of new candidate values, C̃t, that could be
added to the state.

ft = σ(Wf · [ht−1, xt] + bf )

it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(WC · [ht−1, xt] + bc)

Ct = ft ∗ Ct−1 + it ∗ C̃t

To perform a state update, Ct−1 is first multiplied by the output of the forget
gate ft, and the result is added to the pointwise multiplication of the input gate
output it and C̃t.

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot ∗ tanh(Ct)

Finally, the output ht can be generated. First, a sigmoid is applied, taking
into account both ht−1 and ht−1; its output is then multiplied by a constrained
version of Ct, so that we only output the parts we decided to.

3 Action Detection Through Classification

The action detection task exploits and regards a set of sampled human body
joint configurations coming from different kinds of sensors. Each and every one
of these samples will have a label describing the behaviour of the action the
subject was carrying out.

Each sample has an inherent temporal relationship with its predecessors and
successors: the complete dataset set of samples is thus a time series, and fixed-
length sequences of joints can display interesting regularities.

Data has been pre-processed to make it homogeneous and let the computation
proceed smoothly.
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First of all, the input sensors have different sampling frequencies. Cameras
acquire data with 30 fps, while accelerometers have a frequency of 20 Hz. We
supposed that human actions are much slower, so we downsampled the data to
2 Hz considering the time frame detailed enough to capture human actions. We
also considered a time window to capture information and associate a label to a
set of movements. The size of the time window depends on the data and on the
task, and has been determined after several batches of experiments.

Our experiments have been performed on the SPHERE dataset, available
online1 and a detailed outline of the dataset is available in [18]. The 2787 samples
have been manually annotated with one of the given labels. The values sampled
by accelerometer, RGB-D and environmental data for a vector of eighteen values.
In particular the value are referred to

– x, y, z: acceleration along the x, y, z axes
– centre 2d x, y: the coordinated of the center of the bounding box along x and

y axes
– bb 2d br x, y: The x and y coordinates of the bottom right (br) corner of the

2D bounding box
– bb 2d tl x, y: The x and y coordinates of the top left (tl) corner of the 2D

bounding box
– centre 3d x, y, z: the x, y and z coordinates for the centre of the 3D bounding

box
– bb 3d brb x, y, z: the x, y, and z coordinates for the bottom right back (brb)

corner of the 3D bounding box
– bb 3d flt x, y, z: the x, y, and z coordinates of the front left top (flt) corner

of the 3D bounding box.

Twenty activity labels have been used to annotate the dataset, as follows.
There are three main categories:

– action
– position
– transitions

All the activities requiring movements are called actions; they are ascent
stairs, descent stairs, jump, walk with load and walk ;

Position is referred to a still person; its labels are bending, kneeling; jump,
lying, sitting, squatting, standing.

The transition are the intermediate steps between two positions and are:
stand-to-bend; kneel-to-stand; lie-to-sit; sit-to-lie; sit-to-stand; stand-to-kneel;
stand-to-sit; bend-to-stand; turn.

To increase training accuracy and have a richer set of examples to use, a set of
more generic labels is compiled out of the original ones. All the transition labels
have been clustered together in a simple label transition. The classes according
the walking have been merged together in a single class. The final labels are:

1 http://irc-sphere.ac.uk/sphere-challenge/home.

http://irc-sphere.ac.uk/sphere-challenge/home
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– bending
– standing
– lying
– sitting
– transition

The dataset has been divided in two parts. Four fifths have been used for the
training set, while the remaining one fifth has been used as test set.

Every deep network has been trained using a batch size of 32, which has been
found to give a good throughput while keeping variability low.

Classification performance is evaluated using standard functions from Informa-
tion retrieval. The value of the True Positive (TP) counts the number of samples
that have been correctly detected. False Positive (FP) is the number of times a
wrong label has been assigned to a sample. False Negative (FN) is the number of
samples that have not been correctly classified. The values of True Negative (TN)
is referred to the wrong labels that have not been assigned to a sample. For these
experiments it has always been set to zero. The accuracy of is defined as:

Acc =
TP + TN

TP + TN + FP + FN

Precision and recall are instead defined as:

Prec =
TP

TP + FP
Rec =

TP

TP + FN

The harmonic mean of precision and recall is called F1-score:

F1 = 2 × Prec × Rec

Prec + Rec

In our experiments timespans 2 to 20 samples long were used to ascertain
the importance of using longer sequences to have better results. The F1-score
has been chosen as reference metric as it balances precision and recall.

First of all, we wondered if our more complex deep networks really fared
better against simpler networks: in Fig. 1 we see that the latter generally has a
worse performance even at its peak at timespan = 19.

Let us first consider networks having 2 stacked, hidden LSTM layers. While
sharp changes in the F1 score can be detected as the time span increases, an
increasing trend may be recognized in the network having 128 neurons per LSTM
layer as you use longer sequences, so we can deem it the best configuration in
this subset (Fig. 2).

Using 4 hidden layers sharp changes in the F1 score are still present, and the
same tendency evaluation we applied before can suggest the use of 64 neurons,
but the increase in F1 slows down as sequences longer than 15 frames are used
(Fig. 3).

Besides, having enough hidden layers to employ, choosing the right number
of neurons per layer is crucial to balance feature expressiveness and training
time. Considering precision and recall curves might offer some advice in this
discernment.
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Fig. 1. F1 score: deep networks have better performance than MLP

Fig. 2. F1 versus timespan for 2-layered LSTM

Fig. 3. F1 versus timespan for 4-layered LSTM
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Considering precision alone as we have done in Fig. 4, we see that there is
not a distinctive trend that can guide us towards the choice of a given number
of frames; we can only exclude the configuration of 4 layers with 64 and 128
neurons each, that is able to fare marginally better than the MLP.

Fig. 4. Precision versus timespan for the deep neural architectures vs MLP

The trend of recall, as shown in Fig. 5 is very similar to precision: this may
indicate either a well-balanced dataset, or the need of improvements in either
feature extraction or regularization.

Fig. 5. Recall versus timespan for the deep neural architectures vs MLP

Both deep networks have better performance than the multilayer perceptron.
On average, 2-layered Deep Networks have better precision and recall than 4-
layered networks, and this reflects on the average F1 Score. As far as the accuracy
is concerned they are a mostly even match.

For both deep networks the value of sigma, showing the spreading of the
values across the average, is low, indicating a stable set of values near the average.

Anyway, if we take into account the very tiny differences between the shape
of these curves, it seems that using 2 layers having 128 neurons each is the best
course of action.
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Table 1. Results for the test of labelling with the two deep neural networks and the
multilayer perceptron

MLP 2-layered DeepNet 4-layered DeepNet

μ σ μ σ μ σ

Precision 0.75 0.001 0.831 1.2e−4 0.822 1.9e−4

Recall 0.74 0.001 0.833 7.46e−5 0.822 2.77e−2

Accuracy 0.75 0.001 0.832 7.46e−5 0.831 3.29e−6

F1 score 0.75 0.001 0.832 7.46e−5 0.822 1.9e−4

Taking into account both the metrics and the training time the 2-layered
network must be preferred. The proposed system outperforms an analogous sys-
tem based on a probabilistic model that is tuned with evaluation of the principal
component analysis [19]. The accuracy is comparable but the F1 measure shows
the neural system to be more robust (Table 1).

4 Conclusions

Within the framework of ambient intelligence, we have presented an approach
to classify human indoor actions using deep neural network. We have shown
that the use of networks having several stacked LSTM hidden layer have a good
performance in classifying both short and long sequences of frames. To find an
amenable number of hidden layers and neurons per layer a set of experiments
have been carried on comparing different metrics varying the geometry the neural
network.

Possible future works include:

– the use of different, richer datasets;
– the enrichment of the current dataset;
– a broader experimentation with different types of hidden layers and activation

functions.
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Abstract. We present a fast and accurate center-based, single-pass app-
roach for data clustering in a non-parametric fashion, with main focus
on features from large image collections and streaming videos. We use a
dictionary of clusters and a list (‘short memory’) of centers temporarily
stored during parsing the data. The latter is used to determine emerg-
ing clusters, not previously observed, or outliers that are discarded.
Our method assigns features to existing or newly created clusters with
constant-time computations, and it can be used for more general static
datasets or sequential (streaming) data. In our experiments, we make
extensive comparisons with approaches commonly used in feature clus-
tering, with respect to accuracy and efficiency.

Keywords: Online feature clustering · Visual vocabularies · Single-pass
clustering

1 Introduction

A typical representative of building cluster center dictionaries is K-means [12]
and its variants [2,15]. The basic K-means algorithm is known to strongly depend
on initialization, and the results can vary arbitrarily [13]. Some more advanced
versions, such as K-means++ [2] and Biset K-means [20], provide better ini-
tializations but are still sensitive to noise and usually do not yield the desired
results for complex data. Other center-based algorithms, such as EM-clustering
[17] and Fuzzy c-means [3], suffer from similar drawbacks. In terms of complex-
ity, K-means is linear with respect to the data size, yet the algorithm iterates
many times to converge, which requires multiple passes over the entire dataset.
Also, like many center-based methods, it is an in-memory algorithm, which raises
the issue of appropriate data handling/pre-processing when the dataset cannot
fit into the main memory. Another issue of center-based greedily iterative algo-
rithms is that they require the user to specify the number of centers. In most
practical situations this corresponds to domain knowledge that may not be avail-
able. In the problem of finding feature similarities in large image collections, such
information is a priori unknown. A rough approximation of the number of clus-
ters can be obtained by first executing the algorithm many times for parameter
c© Springer International Publishing AG 2017
S. Battiato et al. (Eds.): ICIAP 2017, Part I, LNCS 10484, pp. 445–456, 2017.
https://doi.org/10.1007/978-3-319-68560-1_40
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tuning, which increases the overall running time significantly. Some algorithms,
such as Affinity Propagation [10] and Density Peaks [24], are able to detect the
number of clusters automatically, but usually either perform well only when the
data are simple (with limited noise and clutter between clusters), or are ineffi-
cient for large datasets.

Improving Efficiency. Some hierarchy-based clustering algorithms, like
BIRCH [29], are reported to provide increased efficiency. BIRCH builds a CF
(clustering feature) tree and uses an agglomerative clustering algorithm to merge
leaves towards a specific number of clusters. Since agglomerative clustering is
very expensive with O(N2lgN) time complexity, the efficiency is guaranteed only
if the user chooses the correct parameters to generate a reasonable amount of
leaves. Although it can be fast with careful parameter selection, it does not pro-
vide natural clusters and its performance is usually sensitive to the permutation
of the data [29]. On the other hand, reducing the complexity of iterative methods
has been a major motivation for developing single-pass algorithms, i.e., methods
that parse the data once [25]. Despite its aforementioned limitations, BIRCH
[29] is a popular single-pass framework. [9] describes a single-pass K-means that
yields results similar to the iterative version. StreamSL [19] performs better than
BIRCH, yet with higher complexity. StreamKM++ [1] approximates the perfor-
mance of K-means++, is faster than StreamSL, yet is still slower than BIRCH.
Overall, fast, stream clustering algorithms have reported accuracy lower than or
equal to the accuracy of K-means++.

Visual Vocabularies. The greedily iterative paradigm is still very popular in
Computer Vision, despite its drawbacks, due to its simplicity and its acceptable
efficiency for some applications. Specifically, despite the advances of deep neural
networks in image classification, building visual vocabularies [7,14,22,26] can
still provide significant benefits for various tasks, including unsupervised object
detection in image collections [5] or in streaming data where new categories
may emerge. Coates et al. [6] use simple K-means clustering and a triangle
metric to learn small image blocks, and use these learned features to encode an
image. In [14,21,22], K-means and EM clustering are used to encode SIFT [16]
features detected from an image, known as VLAD (Vector of Locally Aggregated
Descriptors) and Fisher Vector encoding, respectively. For object retrieval, [23]
uses randomized k-d forest when matching between centers and points to boost
the speed of simple K-means, and reports better results than the vocabulary tree
method in [18].

In this paper we present a center-based approach that improves the trade-
off between accuracy and efficiency. Specifically, our method: (i) is able to
detect accurately the number of natural clusters in a non-parametric fashion,
(ii) requires only a single-pass through the dataset, while its efficiency can be
further improved using hierarchy, and (iii) can be used for building visual vocab-
ularies and/or object proposals from streaming images, where new clusters may
emerge.
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2 Method Overview

Consider a dataset D = {x1;x2; . . . ;xN}, where xi is 1 × d feature vec-
tor. We build assignments to an a priori unknown number, K, of clusters
{π1;π2; . . . ;πK}, πk

⋂
πl = ∅, ∀k �= l, such that

⋃K
k=1 πk ⊆ {x1;x2; . . . ;xN}.

Data not assigned to clusters are considered as outliers/noise. For xi and xj ,
∀i �= j ≤ N , a threshold θ, and a similarity measure s(xi,xj), xj is matched to
xi if s(xi,xj) > θ; here we consider s as the negative Euclidean distance. If xi

is a cluster center, then xj is assigned to πi.
In our method, illustrated in Fig. 1, we build a list of centers dynamically,

what we call ‘Dictionary’, which is initially empty and then enriched by fre-
quently matched features while parsing the given dataset. At any given instance
of Dictionary, features near the cluster centers are in higher density, which
means that these are the most representative samples of the formed patterns
in the parsed subset of the data, though not representative of the entire dataset.
Therefore, instead of parsing the data sequentially, we perform random sampling
without replacement, which improves accuracy as we show below. A practical
way to do so is shuffling: consecutive features in the shuffled order are actu-
ally random samples from the original dataset. We match each feature xi in
shuffled order with the closest existing center in the Dictionary. If the match
succeeds with respect to a similarity threshold θ, then we assign the feature

Fig. 1. Feature clustering with fading affect bias [28]: clustering while ‘forgetting’. We
cluster features from large image collections or streaming videos, with a priori unknown
number of clusters. Dictionary is a dynamically populated list of formed cluster centers,
while Memory is a temporary list of unmatched or rarely matched features. When a
feature cannot be matched with any existing center in Dictionary, it moves to Memory;
similar to that features also move to Memory, where they form a cluster, which is then
transferred to Dictionary as a new cluster. The ‘activity’ counter is increased when a
Memory entry is populated, and is reduced for every feature matched in Dictionary or
moved to Memory but not assigned to the corresponding temporary center. This way,
a center in Memory is ‘activated’ (transferred to Dictionary), or ‘dies’ (diminishes).
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to the corresponding cluster πk and update its center ck in constant time as,
ck

(new) = ‖πk‖ck+xi

‖πk‖+1 . If no matching center is found, we temporarily store the
feature in what we call (short) memory with ‘fading affect bias’ [28], or for
simplicity ‘Memory’, which is a list of centers initially empty, then dynamically
enlarged, and progressively diminished. Temporarily stored features are either
‘forgotten’ as outliers or move to Dictionary as members of a new cluster.

Memory uses a variable ‘activity’, indicating how frequently an entry (tem-
porary center) is matched. The activity is set to an initial value, a0, when a
new entry is created and then varies during feature assignments. When a Mem-
ory entry is matched, its activity value is increased; when this value exceeds a
threshold, φ, the corresponding entry is transferred to the Dictionary as a new
cluster. The activity value of an entry is reduced when a feature is matched with
either a center in the Dictionary or a different entry in Memory. When activity
becomes negative, the corresponding entry ‘dies’, i.e., diminishes and is removed
from Memory. This way we reject outliers, assuming that they are randomly
assigned to Memory entries, or form new entries of small sizes that will dimin-
ish. This is why we consider this as a short memory: it keeps ‘forgetting’ data
while receiving data, and the less persistent the assignments to a given entry
(indicative to noise), the more likely it is for this entry to diminish. We borrow
the term ‘fading affect bias’ from cognitive psychology [28] to describe the
fact that noise (negative memories) is discarded (fades) fast.

3 Parameter Estimation

In what is described above, the initial activity value a0 and threshold φ essen-
tially dictate how soon noise is discarded from Memory during parsing the
dataset, while also determining whether informative features would be consid-
ered as noise.

In the shuffled list, each feature of the dataset has the same probability 1/N to
appear in any cluster. Therefore the probability that a feature xi in the shuffled
list is from cluster πk is P (xi ∈ πk) = pk = ‖πk‖

N . If we assume all features from
the same cluster can be matched to each other with respect to some similarity
threshold θ, we can define noise as small clusters with population smaller than
a certain number Nf , and then the probability of a feature appexaring in such
a noise cluster is smaller than Nf/N . Therefore, in what follows, Nf/N and θ
are related to each other: for smaller values of θ, higher values for Nf/N should
be considered.

Consider a newly created entry in Memory with its activity value initialized
to a0. The activity value will decrease to 0 if no feature is matched with this
entry during a0 steps, i.e., during processing a0 new features. These a0 steps
include sampling the dataset, matching and adding in Dictionary or Memory,
and removing from Memory. Thus, φ indicates how frequently a Memory entry
should be matched within a0 steps to be considered ‘informative’ and not noise.

Our primary hypothesis H0 = ‘informative’ for a feature xi in the data
is

{
H0 : P (xi ∈ πk, ‖ πk ‖≥ Nf )

}
, and the alternative hypothesis, namely
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H1 = ‘noise’, is
{
H1 : P (xi ∈ πk, ‖ πk ‖< Nf )

}
. This translates into calcu-

lating (a) a lower bound for a0 that guarantees we have sufficient samples before
rejecting a cluster, and (b) a lower bound for φ that indicates sufficient evidence
that a temporary cluster is not noise. In other words, we must guarantee low
probability of discarding real clusters as noise and low probability of permanently
accepting noise, or respectively,

{
P{H1 = 1 | H0 = 1,H1 = 0} ≤ α Condition A
P{H1 = 0 | H0 = 0,H1 = 1} ≤ β Condition B

(1)

where α and β indicate probabilistic significance and are typically very small
numbers (≤ 0.05). However, these two probabilities cannot be small simultane-
ously without increasing a0, which is the sample size. A solution is to satisfy α
first and then enlarge the sample size to satisfy β [11].

Assume an entry k in Memory has been matched X times during a0 process-
ing steps. Then, X follows binomial distribution X ∼ B(a0, pk). Accord-
ing to the Central Limit Theorem [11], when a0 is large and a0pk ≥ 5,
we can approximate binomial distribution B(a0, pk) with normal distribution
N(a0pk,

√
a0pk(1 − pk). Then, according to Condition A in Eq. (1), we expect

that P{X ≤ X∗} ≤ α, where X∗ is the lowest bound of acceptance. If we
consider the statistical variable, Y = X−a0pk√

a0pk(1−pk)
∼ N(0, 1),

P{X ≤ X∗} = P

{

Y ≤ X∗ − a0pk√
a0pk(1 − pk)

}

≤ α (2)

If Φ is the cumulative distribution function of the standard normal distribution,

i.e., P

{

Y ≤ X∗−a0pk√
a0pk(1−pk)

}

= Φ

(
X∗−a0pk√
a0pk(1−pk)

)

, then the solution for X∗ is,

X∗ ≥ a0pk + Φ−1(α)
√

a0pk(1 − pk) ≥ Xf ,with (3)

Xf = a0
Nf

N
+ Φ−1(α)

√

a0
Nf

N

(
1 − Nf

N

)
, (4)

considering pk ≥ Nf

N and Nf

N , pk ≤ 0.5. Therefore, if an entry in Memory is
matched more than Xf times within a0 steps, we have confidence of 1 − α that
the features matched to this entry are from a real cluster and can be added to
Dictionary, which satisfies Condition A in Eq. (1).

Once a Memory entry is matched with an input feature, its activity value,
initialized with a0, increases by a0. If after m steps the entry is matched X times,
X ≤ m < a0, the activity value will be a0+Xa0−(m−X) = X(a0+1)+a0−m,
and for {X = Xf ,m = a0},

φ = Xf (a0 + 1), (5)
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which determines how long an entry is preserved in Memory, before being trans-
ferred to Dictionary as a permanent cluster.

Next, we examine how we can choose a0 so that we do not discard real clusters
from Memory, based on Condition A of Eq. (1). Let us assume an existing entry
in Memory is from a real cluster, with population Nπ ≥ Nf . The probability of
an informative feature, among a0 samples, not being matched (e.g., if it appears
only once) is P =

(
N−Nπ

N

)a0 . If we need 1 − α confidence that this will not
happen, i.e.,

1 −
(

N − Nπ

N

)a0

= 1 − P{H1 = 1 | H0 = 1,H1 = 0} ≥ 1 − α, then (6)

a0 ≥ ln α

ln(1 − Nπ

N )
≥ ln α

ln(1 − Nf

N )
(7)

Therefore, the probability of discarding a real cluster as noise is significantly low
if we choose a0 according to the condition above.

In Condition B of Eq. (1) we also require low probability of accepting noise
as ‘informative’ features. Assume a noise cluster has been formed, πz, where
‖ πz ‖< Nf , and it has been matched Z times during a0 steps. Again, Z follows
a binomial distribution Z ∼ B(a0, pz), with pz = ‖πz‖

N , however, we cannot
approximate it using a normal distribution since pz is practically very small;
instead, we use Poisson P{Z ≥ Xf} =

∑a0
q=X∗

(a0pz)
q

q! e−a0pz . We cannot derive
a closed form solution for this probability, however we can see with an example
that it is insignificant: Recall Nf

N is the minimum portion of the dataset that a
real cluster can contain. For Nf

N = 0.01 and α = 0.01, from Eq. (7) it is a0 ≥ 458.
If we consider a0 = 458 and pz = 1

2
Nf
N , then P{Z ≥ Xf} = 1.3955 · 10−4. In

the worst-case where pz = Nf
N , it is P{Z ≥ Xf} = 0.0191, which determines the

β-value in Eq. (1).

Sufficient Subset Size. Next, we show the portion of the dataset that needs
to be processed for cluster centers to be calculated accurately. If we consider a
cluster πk and we sample N∗ features from the dataset of size N , then the total
number of features Nk expected to be from πk follows the binomial distribution,
Nk ∼ B(N∗, pk). Let us consider the Chebyshev inequality,

P {| Nk − E[Nk] |< ε} ≥ 1 − D[Nk]
ε2

, (8)

with E[Nk] = N∗pk being the expectation and D[Nk] = N∗pk(1 − pk) the
variance of the random variable Nk, while ε is a positive constant. Then,

P {| Nk − N∗pk |< ε} ≥ 1 − N∗pk(1 − pk)
ε2

(9)

If we consider that from the N∗ samples it is expected that N∗ Nf

N outliers will
emerge, we can assign ε = ωN∗ Nf

N , 0 < ω < 1. Then, Eq. (9) becomes

P

{

| Nk − N∗pk |< ωN∗ Nf

N

}

≥ 1 − 1 − Nf

N

ω2N∗ Nf

N

(10)
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For a probability significance 1 − γ, we expect,

P

{

| Nk − N∗pk |< ωN∗ Nf

N

}

≥ 1 − γ (11)

From Eqs. (10) and (11),

1 − 1 − Nf

N

ω2N∗ Nf

N

≥ 1 − γ ⇒ N∗ ≥ 1 − Nf

N

ω2γ
Nf

N

, (12)

which is the condition for the size of the subset of the data that needs to be
processed to generate accurate clusters.

Correctness. The analysis above involves a feature subset of size a0. Since we
have T =  N

a0
� such subsets (sampling without replacement), the probability of

failure to detect a cluster is (Condition A in Eq. (1)),

Pfail = (P{H1 = 1 | H0 = 1,H1 = 0})T = αT (13)

and for all K clusters, the probability of success is

Psuccess = [1 − Pfail]
K =

(
1 − αT

)K
(14)

To illustrate the importance of this probability, let us consider a set of N = 105

features and K = 100 clusters (ground-truth). If we choose Nf

N = 0.01 α = 0.01,
then from Eq. (7) it is a0 ≥ 458. Considering the minimum number of features in
each sample set, a0 = 458, it is Psuccess =

(
1 − 0.01� 105

458 �)100 ≈ 1. Thus, under a
distinct grouping pattern among the data, the algorithm is theoretically able to
find a perfect clustering result. Note that Nf

N determines the maximum portion
of the data allowed to form a noise cluster, or equivalently, the minimum portion
of the data that can be in a real cluster.

Clustering Streaming Features. Our method inherently carries the idea of
sequential processing: it parses the dataset once, and each feature requires con-
stant computation. However, we made the assumption that it shuffles the order
at the beginning, in order to distribute noise evenly among the considered sub-
sets of size a0 and avoid noise accumulation. If we consider the problem of feature
clustering in image collections, the average case is that noise is equally likely to
appear in any image, and therefore shuffling the order of the features does not
have significant effect. For the sequence paradigm, the worst case would be when
successive images include more noise, or when noise is distributed spatially in
an image in a non-uniform fashion. In such scenarios, if we do not shuffle the
data, we can rely on the size of the formed clusters, and remove small ones trans-
ferred from Memory to Dictionary as statistically insignificant with respect to
the content of the images.

Here we show that for a cluster πk, ‖ πk ‖≥ Nf , no matter what the order of
the input features is, there exists at least one consecutive subsequence of features
x, ‖ x ‖= a0, such that,

‖ {xi | xi ∈ πk,xi ∈ x} ‖
a0

≥ Nf

N
(15)
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In what follows, we consider binary variables ν to describe the feature mem-
bership to a specific cluster.

Lemma: For any permutation of a binary set {νi | νi = 0 or νi = 1}N and any
positive integer a0 ≤ N , there exists at least one consecutive subsequence ν of
length a0, such that,

‖ {νi | νi = 1, νi ∈ ν} ‖
a0

≥
∑N

n=1 νn

N
, (16)

where ν can include tail-head permutations, i.e., [νi, νi+1, . . . , νN , ν1, ν2, . . .].

Note: This condition means that there is at least one consecutive subsequence
of length a0 where the density of the cluster members is greater than or equal
to the average density of the cluster members in the entire dataset.

Proof. We prove this lemma by contradiction. Assume for any a0-length con-
secutive subsequence of an arbitrary permutation [ν1, . . . , νN ],

i+a0−1∑

j=i

νmod(j,N)+1 < a0

∑N
n=1 νn

N
, ∀i = 0, 1, . . . , N − 1 (17)

We consider the modulo index mod(j,N) + 1 to account for tail-head permuta-
tions (see above). In total, there are N distinct consecutive subsequences. Then,

N−1∑

i=0

⎛

⎝
i+a0−1∑

j=i

νmod(j,N)+1

⎞

⎠ = a0

N∑

n=1

νn, (18)

i.e., each element in the dataset is added a0 times (consider an a0-length win-
dow ‘sliding’ N times along the dataset/sequence). However, according to the
assumption in Eq. (17), we have,

N−1∑

i=0

⎛

⎝
i+a0−1∑

j=i

νmod(j,N)+1

⎞

⎠ <
N−1∑

i=0

(

a0

∑N
n=1 νn

N

)

= a0

N∑

n=1

νn, (19)

which contradicts Eq. (18). �

4 Experimental Results

Image categorization involves, in general, three steps: (a) building visual vocab-
ularies from image features, (b) image encoding using the vocabularies, and
(c) classification. We used our method to cluster SIFT features [16] and cre-
ate visual vocabularies. To show-case the benefit of using our method in such
problems, namely improving the trade-off between accuracy and efficiency,
we adopted three image classification methods: Vector of Locally Aggregated
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Descriptors (VLAD) [14], Bag-of-Visual-Words (BoVW) [7], and Fisher Vec-
tor (FV) [22]. We make comparisons between our approach, ANN K-means [15],
and Naive EM [17], when used in these three methods. Note that variations of K-
means and Naive EM are among the most popular clustering approaches utilized
in such Computer Vision tasks.

We used three publicly available image collections: (a) Object Discovery 100
(Obj. Disc); (b) Caltech 101 (Caltech101); and (c) PASCAL VOC 2007: we
first used a subset of 6 randomly chosen categories (PASC(6)) and then the
entire collection (PASC(all)).

In the experiments with K-means and EM, we follow the approach in [27] and
randomly chose K·1000 features for VLAD and FV, and K·200 for BoVW. Since
our algorithm is much more efficient than K-means and Naive EM, it allows
us to mine a larger dataset and still be much faster than those two. For the
experiments with our method, we used: for FV, 0.8 million features (N) from
each dataset; for VLAD, 1 million features from Obj. Disc. dataset, 5 million
from PASC(6), and 5 million from PASC(all); for BoVW, 2 million features from
Obj. Disc. and 5 million from each of PASC(6) and PASC(all).

Table 1 summarizes the results of our method and the competition when used
in each image classification method (VLAD, BoVW, FV) and for each dataset.
Each row corresponds to a different vocabulary size K, as set by the competing

Table 1. Comparisons in building visual vocabularies for three popular image cat-
egorization methods. K = number of clusters; mAP= mean Average Precision [23];
DB = Davies-Bouldin index [8]; CH= Calinski-Harabasz index [4]; LL= Log-likelihood
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method. For each experiment (row), we ran our method and the competition
25 times, and we report average results. To evaluate clustering itself, we used
the Davies-Bouldin (DB) index [8], Calinski-Harabasz (CH) index [4], and Log-
likelihood (LL). To evaluate the overall accuracy of VLAD, BoVW, and FV, we
used the mean Average Precision (mAP) [23]. The reported times are for clus-
tering only. These results illustrate that our method and the competition yield,
on average, comparable accuracy, with our method being significantly faster:
in Table 1, the boldface numbers correspond to indicative comparison instances
and examples where our method is 4 to 42 times faster than the competition.
Note that SIFT features from natural images are usually very cluttered, there-
fore there are no natural groups in the clustered data. However, our method still
generates competitive results while boosting the clustering efficiency.

To test the performance of our approach in sequential data (clustering on the
fly), we used videos captured by an onboard camera of a quadrotor during flight.
Figure 2 illustrates an indicative example of clustering detected SIFT features
in eight non-consecutive 752 × 480 frames of a video (frame numbers are shown
on top left of each image). The detected features are marked in different shapes
and colors, indicating different cluster assignments. The magenta-yellow arrows
in frames #250 and #375 show indicative examples of newly emerged clusters
(orange and green square categories), while the long double arrow indicates cor-
respondence between features (features in the same cluster) across frames. In
this experiment we used Nf/N = 0.005 and θ = −275.

Fig. 2. Building visual vocabularies on the fly. Colors and shapes indicate cluster
assignments of the detected features, while the arrows in frames #250 and #375 indi-
cate emerged clusters (orange/green squares). (Color figure online)

Finally, we also validated the efficiency of our method using synthetic datasets
generated by different Mix Gaussian models with random means and covari-
ances, large numbers of clusters, and uniformly distributed noise. Compared to
K-means++ [2], BIRCH [29], and EM clustering [17], our approach was on aver-
age 3–7 times faster than the first two, while EM was the slowest among the
competition. Note that BIRCH builds a CF-tree, where grouping the leaves into
the desired number of clusters is computationally expensive with O(N2logN).
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5 Conclusions

We described a fast and accurate center-based clustering method suitable for
large datasets with a high number of natural clusters. It produces clustering
centers with a single pass through the data, by using a Dictionary and a (short)
Memory list for building and enriching a global (sparse) histogram of the data:
dense entries in Dictionary and Memory correspond to frequently matched fea-
tures, thus indicating formed clusters. Input features that are not matched in
Dictionary move to Memory, where either they are assigned to an existing entry,
or create a new one. Memory entries that are not populated sufficiently are dis-
carded as noise, while dense entries are moved to Dictionary permanently. In our
results we showed that the trade-off between accuracy and efficiency is improved,
compared clustering approaches commonly used in Computer Vision.
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Abstract. This paper presents a novel method for representing actions
in terms of multinomial distributions of frequent sequential patterns of
different length. Frequent sequential patterns are series of data descrip-
tors that occur many times in the data. This paper proposes to learn
a codebook of frequent sequential patterns by means of an apriori-
like algorithm, and to represent an action with a Bag-of-Frequent-
Sequential-Patterns approach. Preliminary experiments of the proposed
method have been conducted for action classification on skeletal data.
The method achieves state-of-the-art accuracy value in cross-subject
validation.

Keywords: Action classification · Apriori algorithm · Frequent pattern

1 Introduction

In this work we propose to represent time series of descriptors by means of distri-
butions of frequent sequential patterns of different length for action classification.
We define a sequential pattern as a series of data descriptors indexed in time
order, and a frequent pattern is one that occurs many times in the data [10].

A classical approach to represent actions is Bag Of Visual Words (BoVW) [5,
8,13,14,16]. In BoVW, an action is represented as a distribution of image/video
patches (visual words). The codebook of visual words is generally computed by
clustering algorithms, i.e. k-means [9,12,15,17]. To consider the dynamics of
visual information in a time series within BoVW, spatio-temporal descriptors
extracted from fixed-length cuboids [13,14,16] or multi-scale time windows [4]
have been used. Visual feature dynamics are especially useful for discriminating
actions that share similar body poses but show different temporal evolution; as
an example, sit down and get up are actions sharing similar body poses, but
these poses appear in different time order.

In contrast to the classical BoVW approach, we describe an action by means
of frequent sequences of visual descriptors, thus focusing more on the body
motion dynamics rather than actual body poses. Figure 1 gives an overview of
the proposed Bag-of-Frequent-Sequential-Patterns approach. In our approach,
the codebook of frequent sequential patterns is computed by means of a modi-
fied apriori algorithm [1,6]. Our implementation of the apriori algorithm allows
c© Springer International Publishing AG 2017
S. Battiato et al. (Eds.): ICIAP 2017, Part I, LNCS 10484, pp. 457–468, 2017.
https://doi.org/10.1007/978-3-319-68560-1_41
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Fig. 1. Bag-of-Frequent-Sequential-Patterns: a test sequence is encoded in terms of
frequent sequential patterns (fp1, fp2, ..., fpN ) by means of vector quantization; hence,
a histogram of frequent sequential patterns is computed and used to predict the action
class based on 1-vs-1 SVMs. In the proposed approach, the codebook is learned by a
modified apriori algorithm on the training set.

us to calculate frequent patterns of different lengths, which represent different
levels of body motion details. While in general clustering algorithms group ele-
ments based only on pairwise element similarities, our technique considers both
similarity and frequency of the elements when learning a codebook of frequent
sequential patterns. This allows us to ignore infrequent patterns that might be
less informative or even confusing for classification purposes.

To summarize, our contribution in this paper is twofold:

1. we represent actions by multinomial distributions of frequent sequential pat-
terns;

2. we propose an apriori algorithm-based learning approach for codebook of
frequent sequential patterns.

We demonstrate our approach in the context of 3D skeleton-based action clas-
sification [11]. The proposed framework can be easily extended to other kinds
of visual descriptors such as histograms of STIP features [16] or HOG [3]. We
present preliminary experimental results on the Microsoft Research Cambridge-
12 (MSRC-12) gesture dataset [18] in cross-subject validation. Our technique
achieves state-of-the-art accuracy values.

The paper is organized as follows. Section 2 discusses related work; Sect. 3
explains both our modified apriori algorithm for learning a codebook of frequent
sequential patterns, and how to represent an action in terms of histogram of
frequent patterns (HoP); Sect. 4 presents experimental results and, finally, Sect. 5
discusses conclusions and future work.
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2 Related Work

Two of the most successful approaches for representing visual content in images
or videos, dictionary-based representations and Bag of Visual Words (BoVW),
are based on dictionary/codebook learning. In dictionary-based representation
approaches, the signal is represented as a linear combination of elements of a dic-
tionary [23]. In Bag-of-Visual-Words (BoVW) approaches [14], introduced first
for visual categorization in [5], visual content of images/videos is represented
in terms of distributions of elements (codewords) in a codebook. Whilst [5]
adopts a Bayesian hierarchical model to learn such kind of distributions, in
practice the most commonly used pipeline requires the following steps [14]:
local feature extraction, learning of a codebook by means of clustering tech-
niques (e.g., k-means), vector quantization (for discretization of the analyzed
signal in terms of codewords), codewords-based histogram computation. Such
kind of paradigm has been adopted for action representation in several former
works [4,8,9,12,13,15–17] In particular, in [4], sequences are represented as a
distribution of local temporal texture descriptors estimated at different time
scales. A codebook of multi-scale local representations is learned via k-means,
and classification is performed via SVM. In [22], a codebook of temporal win-
dows is learned via spectral clustering of data subsequences. Similarly to [4,22],
we represent an action as a distribution of temporal windows of different lengths,
but we adopt a data mining technique rather than a clustering technique to learn
a codebook.

In the context of 3D Action Representation from skeletal data [11], the work
in [20] represents actions in terms of co-occurring spatial and/or temporal con-
figurations (poses) of specific body parts. A bag-of-words approach is adopted to
represent an action where the codebook comprises co-occurring body-parts and
is learned by contrast mining technique. In this sense, the codebook represents
emerging patterns, that is patterns whose supports change significantly from one
class to another. The work in [21] applies the apriori algorithm to find discrimi-
native actionlet. An actionlet is defined as a subset of joints in the skeleton, and
an action is represented by a linear combination of actionlets whose weights are
learned via a multiple kernel learning approach. In contrast to this approach,
our method aims at mining frequent sequential patterns and representing actions
with a Bag-of-Frequent-Patterns approach. Our modified apriori algorithm is
inspired by the work in [6]. The work in [6] focuses on detecting reduplications
in a video of American Sign Language (ASL). The method detects frequent
sequential patterns of increasing length by combining smaller frequent sequen-
tial patterns, and relies on approximate matching of the discovered sequential
patterns with data. In counting frequencies of patterns, a waiting mechanism is
used to account for poor matching arising in presence of small misalignments
between patterns and data sequence. In this sense, [6] finds gapped sequential
patterns. The focus of our paper is action classification; we use a method similar
in spirit to [6] for mining sequential patterns to be added to our codebook. We
apply our technique to a set of data streams rather than a single stream and
look for non-gapped sequential patterns. During the pattern discovery process,
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all frequent patterns that do not contribute to the generation of longer patterns
are added to our codebook. In contrast to [6], we learn frequent pattern models
by averaging over matched data windows. In practice, this strategy proved to
account for noise in data.

3 Representation by Histogram of Frequent Patterns

As shown in Fig. 1, a time series is represented as a histogram of frequent patterns
by matching subsequences with the patterns stored in the codebook.

Frequent patterns may be found by data mining techniques, such as the
apriori algorithm proposed for transactional databases [1]. In such kind of appli-
cations, a pattern C(k) is a set of k items from an alphabet A , and the problem
is that of finding the longest frequent patterns in the database.

Since in transactional databases there is no need of considering the order
of the items within the patterns, the method is not appropriate for sequential
data, such as time series, and requires some modifications in order to calculate
frequent ordered item-sets. Modified apriori-algorithm for sequential data have
been proposed in [2,6,10]. In particular, the method in [6] deals with the discov-
ery of reduplication of ASL within a single data stream. As we will detail next,
we borrow some of the ideas in [6] and adapt them to the learning (rather than
discovering) of sequential patterns from a set of time series.

3.1 Codebook of Frequent Patterns

The main idea behind apriori-like algorithms is that a pattern C(k) is frequent if
and only if each pattern C(k−1) ⊂ C(k) is frequent as well. Therefore a frequent
pattern C(k) may be generated iteratively by extending a pattern C(k−1) with
an item i ∈ A , and ensuring that the generated pattern is composed of only
frequent sub-patterns.

At the k-th iteration, apriori-like algorithms consist mainly of three steps:

– Generation of candidates of length k by frequent patterns of length k − 1;
– Counting of candidate frequencies;
– Removal of infrequent patterns.

Infrequent patterns have a frequency count lower than a predefined threshold ψ.
We modified these steps to adapt them to the processing of sequential data.

Algorithm 1 shows the work-flow required to discover frequent patterns from
training data D . The algorithm generates frequent sequential patterns C(KM ) of
maximal length KM . At the k-th iteration, C(k) is a set of patterns C

(k)
i with

i ∈ [1, . . . , Nk], where Nk represents the number of frequent sequential patterns
of length k that have been found in data D . Each C

(k)
i is an ordered sequence

of feature descriptors ci,j , i.e. C
(k)
i = [ci,1, ci,2, . . . , ci,k]. The set codebook stores

frequent sequential patterns of different-length. The set fp(k−1) stores frequent
sequential patterns of length k − 1 that cannot be used to generate longer pat-
terns.
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Algorithm 1. Learning a codebook of frequent sequential patterns
1: function codebook = codebookLearning(D , KM )
2: k ← τ
3: codebook ← ∅
4: C(k) ← generateCandidatePatterns(D , k)
5: while k < KM do
6: k ← k + 1
7: [C(k), fp(k−1)] ← newCandidatePatternGeneration(C(k−1))

8: codebook ← codebook ∪ fp(k−1)

9: C(k) ← duplicatesRemoval(C(k))
10: getFrequencies(C(k),D)
11: C(k) ← infrequentPatternsRemoval(C(k))
12: end while
13: codebook ← codebook ∪ C(KM )

14: end function

Candidate Pattern Generation: In the classical apriori algorithm [1], the
initial set of items (alphabet A ) is known. In our application, this initial set
is unknown and we start the algorithm with all possible windows of minimal
length τ extracted from the data streams with a sliding window approach. We
refine such initial set of candidate patterns C(τ) by pruning the duplicated and
infrequent ones as detailed later.

Candidate Pattern Frequencies: Given a set of candidate patterns C(k)

and data D , we need to count how many times each candidate pattern occurs
in the data. In contrast to the classical apriori algorithm, our method entails
the processing of non categorical data; therefore we need a strategy to estab-
lish approximate matches between candidate patterns and data. In particular,
each candidate pattern C

(k)
i has to be compared against temporal windows

extracted from data and of the same length as the considered pattern. Let us
assume for a moment that D contains only one sequence, i.e. D = [d1, d2, . . . dN ],
and consider a pattern C

(k)
i = [ci,1, ci,2, . . . , ci,k]. We consider a sliding window

Wt = [dt, dt+1, . . . , dt+k−1]. The similarity between the candidate pattern and
the temporal window Wt is measured by the following similarity score:

s(C(k)
i ,Wt) =

1
k

·
k∑

j=1

e−λ·||ci,j−dt+j−1||2 (1)

where λ is a scaling parameter that multiplies the per-item squared Euclidean
distance. When this score is greater than a threshold ε, it is possible to establish
a match between the pattern and the window, and increment the candidate
pattern frequency. For each pattern, we keep track of the matched temporal
windows by considering the list WCi = {Wj}j∈J .
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New Candidate Pattern Generation and Codebook Learning: Let us
consider two frequent patterns C

(k−1)
1 = [c1,1, c1,2, . . . , c1,k−1] and C

(k−1)
2 =

[c2,1, c2,2, . . . , c2,k−1] such that c1,j = c2,j−1 ∀j ∈ [2, k − 1]. Following [6], a
candidate frequent pattern of k items can be defined as C(k) = [C(k−1)

1 , c2,k−1].
Figure 2 sketches the new candidate pattern generation procedure.

Fig. 2. The figure illustrates the idea behind the candidate pattern generation process.
The new generated candidate is formed by concatenating the first item of C1, the items
shared by both C1 and C2, and the last item of C2.

This candidate generation procedure would work in case of exact match of
the items. In our implementation, we establish approximate matches between
candidate patterns C

(k−1)
1 and C

(k−1)
2 when all corresponding items score a

similarity greater than ε. By defining the following binary variable:

m(C(k−1)
1 , C

(k−1)
2 ) =

k−1∏

j=2

(e−λ·||c1,j−c2,j−1|| ≥ ε), (2)

if m(C(k−1)
1 , C

(k−1)
2 ) is equal to 1 then an approximate match between the two

candidate patterns can be established.
In contrast to [6], where the items of each frequent pattern comes from the

data stream, we learn a pattern model by means of the lists of matched windows
of the two candidate patterns, respectively WC1 and WC2 . The new generated
pattern will have the form C(k) = [μ1, μ2:k−1, μk] where μ1 is the expected value
of the first item of C(k) and is computed by averaging the first elements of the
windows in WC1 ; μ2:k−1 are expected values of subsequent items in the pattern
C(k) and are calculated by considering both the items of windows in WC1 and
windows in WC2 ; finally, μk is the expected value of the last item in C(k) and is
computed by averaging the last elements of the windows in WC2 .

Whenever a candidate pattern of length k−1 does not contribute to generate
candidate patterns of length k, and its frequency is greater than a threshold ψ,
then the pattern is stored into the codebook.
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Removal of Duplicated and Infrequent Candidate Patterns: After the
generation step, a pairwise comparison of candidate patterns is carried on. Each
pair of candidates with a similarity score greater than ε is replaced by a new can-
didate generated averaging the lists of matched windows. Such kind of pruning
is necessary to deal with approximate matches between data and patterns. To
focus on frequent patterns, candidate patterns with a frequency count smaller
than a threshold ψ are considered infrequent and, hence, pruned.

3.2 Histogram of Frequent Patterns

Provided with a codebook of N frequent sequential patterns {Ci}i∈[1,N ] of dif-
ferent length, we aim at representing a time series V = {y1, y2, . . . , yv} as a his-
togram of frequent patterns (HoP) by performing vector quantization (VQ) [14].
For each frame in V and for each pattern Ci in the codebook, we consider a
subsequence of V that starts from the current frame, and of length equal to that
of the considered pattern Ci. We compare each window to the patterns by the
score in Eq. (1) and only increment the bin of the histogram that corresponds
to the pattern achieving the highest similarity (i.e. we apply hard coding).

At the top of Fig. 3, a sample of the action class Push-Right is shown. The bar
under the sequence indicates which patterns in the codebook have been detected
in the sequence (each color corresponds to a different pattern); the patterns are
represented under the bar while, at the bottom of the figure, the histogram of
patterns is plotted.

Fig. 3. The figure illustrates the HoP of a sample of the Push−Right class in terms of
frequent patterns learned by our apriori algorithm. In the figure, only few distinctive
skeletons of the sequence and of the patterns are shown.
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4 Experimental Results

We validated our technique on the Microsoft Research Cambridge-12 (MSRC-12)
gesture dataset [18]. The dataset consists of sequences of skeletons described by
means of the coordinates of 20 3D body joints. Skeletons were estimated by using
the Kinect Pose Estimation pipeline [19]. The dataset includes 594 sequences
representing the performances of 12 actions (Start system (SS), Duck (D), Push
Right (PR), Goggles (G), Wind it up (W), Shoot (S), Bow (B), Throw (T), Had
enough (H), Change weapon (C), Beat both (BB), Kick (K)) from 30 different
subjects. Each sequence is a recording of one subject performing one gesture sev-
eral times. Considering that the MSRC-12 dataset has been proposed for action
detection, no temporal segmentation of the single performance is provided with
the dataset but only the time when the action is considered recognizable. In
order to test our method in action classification, we adopted the annotation
made publicly available by [7]. Such annotation specifies the initial/final frame
when each performance starts/ends. This annotation has produced 6243 different
action sequences. In order to account for biometric differences, we preprocessed
each action sequence by removing its average skeleton. In general, mining algo-
rithms are used over a single sequence to discover repetitive patterns. In con-
trast, our algorithm learns frequent patterns over the entire training dataset,
which includes segmented action sequences from different classes and performed
by different subjects. Thus, our training approach allows us to learn more gen-
eral frequent patterns. We repeated the experiment 10 times in cross-validation
with a 50% subject split experimental protocol, that is we randomly select half
of the subjects to build the training set, while the sequences of the remaining
subjects are used for test.

The training set has been used to learn a codebook of frequent sequential
patterns, and to train one vs one χ2 kernel SVMs with C equals to 10. In our
modified apriori algorithm we set minimal and maximal pattern length respec-
tively to τ = 3 and KM = 30. The similarity threshold ε used to establish a
match between pattern candidates and time windows was set to 0.9, while the
threshold ψ was set to 75.

4.1 Results

We performed experiments to test the quality of the codebook of frequent sequen-
tial patterns generated via Algorithm 1. On average, our codebook has a size of
120 ± 14.72 patterns. The average accuracy value over 10 runs is approximately
of about 88.32%. This result is very encouraging considering that the action
representation is very compact.

As detailed in Sect. 3.1, the codebook stores all patterns with a frequency
count greater than ψ that do not contribute to the generation of longer patterns.
However, since we adopt an approximate matching strategy, the frequency count
of the generated patterns is not a very reliable measure of the importance of the
learned patterns. Hence, it is reasonable to wonder if patterns that are consid-
ered infrequent during the codebook learning procedure might actually improve
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T vs P SS D PR G W S B T H C BB K

SS 80.23 0 0 0 0.43 4.18 0.04 0.90 v4.59 1.07 7.63 0.93

D 0 99.96 0 0 0 0 0.04 0 0 0 0 0

PR 0.04 0 96.35 0 0.73 1.42 0 0.24 0.12 1.09 0 0

G 0.12 0 0 93.14 1.00 1.66 0 0 3.12 0.48 0.48 0

W 0.42 0 1.24 0.09 92.43 1.18 0 0.10 0 2.00 2.54 0

S 0.59 0 0.07 0.11 0.30 93.76 0.04 0.04 0.12 2.28 2.67 0

B 0 4.38 0 0 0 0.20 95.15 0.04 0 0.03 0 0.19

T 0.04 0 0.08 0 0.04 0.81 0.44 93.10 0 1.42 0.04 4.03

H 2.74 0 0.04 5.35 0.12 1.28 0 0 89.00 0.04 1.42 0

C 0.08 0 0.04 0.08 0.28 3.31 0 0 0.04 95.77 0.40 0

BB 3.19 0.62 0.08 0.41 3.89 6.22 0 0.15 1.61 2.47 81.33 0.04

K 0.20 0.07 0 0 0.04 0.24 0.30 0.35 0 0.49 0 98.30

action classification. To validate our hypothesis, we also included in the code-
book sequential patterns that are pruned in line 11 of Algorithm1 and having
a frequency count greater than a threshold φ. Then, we study how frequent a
frequent pattern should be for being included in the codebook by studying how
the average recall changes when varying φ in the range [0, 100].

Figure 4(a) shows the trend of the average per-class recall over 10 runs when
varying φ. Vertical bars represent standard deviations of recall values. Figure 4(b)
shows the number of patterns in the codebook with a frequency greater than
φ. As shown in the latter plot, the codebook size decreases exponentially; on
average, the codebook size ranges between 50583 (when φ = 0, i.e. all infrequent
patterns are included in the codebook) and 44 (when φ = 100).

On the other hand, as shown in Fig. 4(a), there is an increase of the recall
values for growing values of φ. For value of φ in [20–70] there is a very limited
variation of the average recall; what it really changes is the codebook size that
affects the complexity of the vector quantization step. The best average per-class
recall is obtained for φ = 40 and is of about 92.38% ± 0.97. The corresponding

Fig. 4. Plots in (a) and (b) show how the average per-class recall and the number
of patterns in the codebook, respectively, change by varying the minimal pattern fre-
quency. Values are averaged over 10 runs, and vertical bars show standard deviations.
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codebook size is of about 3086. For φ = 70, the average recall is of about 91.31%
and the codebook size is on average 400. For φ > 70, the recall value decreases,
however the information embedded in very frequent patterns is still very high
considering that, with only 44 codewords (on average) with φ = 100, the method
achieves an average recall of about 82.26%.

Experimental results shows the confusion matrix obtained with our technique
averaged over 10 runs when φ = 40. Columns of the table represents predicted
class labels while rows represent true class labels. As shown in the table, most
of the confusion is between the action classes Start System (SS) and Beat both
(BB), Had enough (H) and Goggles(G), Beat both (BB) and Shoot (S). We stress
here that our technique has been tested directly on the 3D joints coordinates and
the only preprocessing of the sequences consists of making them zero mean. Since
the method is very general, we believe that the use of more complex features
extracted from skeletal data might result in higher value of the average recall.

We compare our method against the work in [7] on equal terms of experimen-
tal protocol. In [7], a pyramid of covariance matrices of 3D joints coordinates
is used to represent a sequence of skeletons: the root node encode information
about the entire sequence; at lower levels, sequences of covariance matrices cal-
culated by a sliding window approach are considered. Action classification is
performed by linear SVM. The work only reports the average correct classifica-
tion rate or accuracy value averaged over 10 runs in different configuration, and
achieves the best accuracy value of about 91.7%. Our accuracy value is of about
92.31% at φ = 40, which is slightly superior to the one of [7].

5 Conclusions and Future Work

In this paper we demonstrate the idea of representing sequences of skeletons by
means of distributions of frequent patterns. In our framework, frequent sequen-
tial patterns are computed by means of a modified version of the apriori algo-
rithm. At each iteration, all frequent patterns that cannot be used for generat-
ing longer patterns are stored and used as codewords. This approach yields to a
codebook of patterns of different length.

To encode the data, at each frame, we use a temporal window whose length
adapts to the length of the pattern. Then, the most similar pattern is found and
the histogram is updated accordingly.

One question we have tried to answer in our experiments is how frequent our
frequent patterns have to be. Our experiments show that the method benefits
from ignoring infrequent patterns both in terms of recall and computational
complexity, since a more compact sequence description can be obtained with a
smaller codebook. However, considering only the most frequent patterns may
result in a lost of details of the action representation and, hence, might have a
negative impact on the performance of the method.

We presented preliminary results by validating our method on skeletal data.
On the MSRC-12 dataset our method achieves state-of-the-art accuracy values.
In future work, we will extensively study the effect of varying some parameters,
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such as ε and ψ, on the performance of the method. The main limitation of our
method is that it might not be able to cope with varying execution velocity of the
action, which also depends on the subject. Therefore, we also plan to extend our
formulation by accounting for the misalignments between patterns and matched
temporal window in order to improve the learning of sequential patterns.

Acknowledgement. We are grateful to Mr. Giovanni Caruana for making available
his implementation of the classic apriori algorithm, which he implemented in his Master
thesis work at University of Palermo.
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Abstract. By thoroughly revisiting the classic human action recogni-
tion paradigm, we analyzed different training/testing strategies, discover-
ing that standard (cross-validating) testing strategies are not always the
suitable validation procedures to assess an algorithm’s performance. As a
consequence, we design a novel action recognition architecture, applying
a “personalized” strategy to learn how any subject performs any action.
We discover that it is advantageous to customize (i.e., personalize) the
method to learn the actions carried out by each subject, rather than try-
ing to generalize the actions executions across subjects. Leveraging on
that, we propose an action recognition framework consisting of a two-
stage classification approach where, given a test action, the subject is first
identified before the actual recognition of the action takes place. Despite
the basic, off-the-shelf descriptors and standard classifiers adopted, we
score a favorable performance with respect to the state-of-the-art as to
certify the soundness of our approach.

Keywords: Action recognition · Kinematic analysis · Generalization ·
Personalization strategy

1 Introduction

The video-based classification of human actions is a very complex task due to
contextual clutter and noise, illumination variations, occlusions, and the implicit
variability and complexity of actions. All these problems can be mitigated by the
three-dimensional (3D) sensor technology, which allows to capture human motion
at high spatial/temporal resolution (VICON), with good accuracy and low cost
(Kinect). As a consequence, the development and improvement of computational
approaches for 3D action recognition sharply rose in the recent year [12].

Within the context of 3D action recognition, this work undertakes a revisiting
perspective, probing the principal evaluation strategies applied in the literature
on the most common, publicly available, benchmark datasets. Thus, we aim at
providing a deep understanding about the challenges that have to be faced when
c© Springer International Publishing AG 2017
S. Battiato et al. (Eds.): ICIAP 2017, Part I, LNCS 10484, pp. 469–480, 2017.
https://doi.org/10.1007/978-3-319-68560-1_42
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devising classification protocols: such awareness leads us to introduce a new
effective, yet simple, approach for action recognition. The experimental testbed
we have chosen consists of 3 public datasets, namely MSR-Action3D [11], MSRC-
Kinect12 [6] and HDM-05 [13]. Each has own peculiar traits, e.g., the amount
and type of considered action classes or the number of skeletal joints. However,
a common shared aspect is that a same action is performed by several subjects
and a same subject actually performs each action more times. The variability
of considered actions aim at reproducing real-world scenarios, while repeating
actions and considering multiple actors allow to increase the learning methods in
robustness and generalization, respectively. Usually, action recognition methods
in the literature do not exploit the information associated to the subject identity,
but they typically consider different splits of all action instances (e.g., k-fold
cross-validation) in the training/testing phases. Nevertheless, such information
is quite relevant, indeed discriminant, for the actual recognition of the actions
since each human being shows peculiar features which are reflected in the way
an action is performed. The former aspects have been rarely investigated and
seldom quantified by previous recognition system to date and, to this end, we
focus on two main aspects:

• Inter-subject variability, which either refers to anthropometric differences of
body parts or to incongruous personal styles in accomplishing the scheduled
action. In practice, different subjects may perform the same (even very simple)
action in different ways.

• Intra-subject variability, which represents the random nature of each single
action class (e.g., throwing a ball), which can also be dictated by pathological
conditions or environmental factors. In other words, this reflects the fact that
a subject never performs an action in the same exact way.

Both aspects lead to the fact that a same action could not be performed
exactly equal to itself, either it is executed by the same or different human
beings. In this line, the additional information of subject identity has empirically
demonstrated to be effective in customizing the classification on a specific user
for speech [15], handwriting [4], and gesture [10,19] recognition.

Among the few works which studied the variability within/across subjects,
for instance, [1] did not register a strong impact of different subjects in daily
activities classification, and [5] documented the stability of the performance on
an ad hoc acquired dataset characterized by biometric homogeneity of the par-
ticipants. Differently, in [16], the performance of checking the correct execution
of gymnastics sharply falls when the subject under testing is excluded from the
training phase. A similar trend was registered by [17,20] for computer assisted
rehabilitation tasks, as well as by [2] which performed a theoretical dissertation
about within-subject and across-subjects noise using wearable motion sensors.
Globally, [1,2,5,16,17,20] did not mutually agree in their conclusions and, also,
their investigation is actually limited by the use of private datasets explicitly
designed for the considered application.
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Despite some previous approaches grant in some way the importance of the
knowledge of the human subject (especially for rehabilitation purposes, where
the goal is directed to a specific subject), no study has been systematically
reported to date on commonly used and publicly available datasets for general
action/activity recognition. In other words, it is still an open problem to quantify
how much those datasets are affected by inter- and intra-subject variability, and
hence to figure out the impact of subjectiveness in action recognition to actually
investigate the trade-off between personalization and generalization in the design
of robots and automatic systems.
These arguments are investigated through the following main contributions.

(i) We analyze the role of the individual subject in human action recog-
nition. By considering MSR-Action3D [11], MSRC-Kinect12 [6] and HDM-05
[13] benchmark datasets, we propose a novel testing strategy, called Person-
alization , where action classification is performed by considering the instances
belonging to one specific subject at a time. We register a superior performance of
Personalization while comparing it against One-Subject-Out , which left out
the data of one subject as the test set, and Cross-Validation , where testing is
performed on all subjects (which are also used for training).

(ii) In order to explain the latter performance and analyze the role of subjec-
tiveness, we introduce a quantitative statistical analysis. This allows to evaluate
the impact of retrieving in testing all the subjects used in the training phase,
ultimately assessing the role played by either inter- or intra-subject variability.

(iii) Capitalizing on our improved understanding, we boost action recogni-
tion by learning the subject’s identity. In particular, we propose a two-stage
recognition pipeline (Fig. 1) where the preliminary estimation of the subject is
followed by a subject-specific action classification. Overall, our new proposed
pipeline shows a strong performance with respect to both Cross-Validation
and One-Subject-Out strategies, also being superior to the state-of-the-art
methods [18].

Fig. 1. As opposed to the generic recognition of an action performed by an unspecified
human agent, we investigate a counterpart approach in which the action recognition
accuracy is boosted by adopting a “personalization” 2-stage method, where the subject
is first identified, followed by the actual classification of the action.

The rest of the paper is organized as follows. In Sect. 2, we present the consid-
ered datasets and the features adopted, and the evaluation strategies investigated
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are reported in Sect. 3. Section 4 presents and widely discusses the experimental
results, and we illustrate the aforementioned two-stage classification pipeline in
Sect. 5. Finally, Sect. 6 draws the conclusions of this study.

2 Datasets and Feature Encoding

Our investigation involves three publicly available MoCap datasets for activity
recognition: MSR-Action3D, MSRC-Kinect12 and HDM-05. In all our experi-
ments, we only used the 3D skeleton coordinates while the other data available
(e.g., depth maps or RGB videos) were not considered. For the sake of clarity,
we briefly introduce each of them.

– MSR-Action3D [11] dataset has 20 action classes of mostly sport-related
actions (e.g., jogging or tennis-serve), performed by 10 subjects. J = 20 joints
are extracted from the Kinect sensor data to model the human pose of the
human agents. Each subject performs each action 2 or 3 times. In total, we
used 544 sequences [8].

– MSRC-Kinect12 [6] is a relatively large dataset of 3D skeleton data,
recorded by means of a Kinect sensor. The dataset has 5881 sequences, con-
taining 12 action classes performed by 30 different subjects. Each subject
accomplishes each class of action 16 times, on average. The available motion
files contain the trajectories estimated for J = 20 3D skeleton joints.

– In HDM-05 [13], the number of skeleton joints is J = 31, each action is
repeated 5 times on average by each of the 5 subjects involved during the
acquisition through a VICON system. We followed the 14-classes experimental
protocol of [8,18].

For all the aforementioned datasets, each trial can be formalized as a col-
lection S of τ different acquisitions p(1), . . . ,p(τ). For any t = 1, . . . , τ, we
denote with p(t) the column vector which stacks p1(t), . . . ,pJ (t) ∈ R

3, the
three-dimensional x, y, z coordinates of the J skeletal joints. Using this nota-
tion, we now briefly introduce the two different representations for MoCap data.

First, we investigated the usage of dynamic time warping (DTW), a classical
tool to quantify the similarity across two different time series by means of align-
ment [7,14]. In order to apply DTW, we evaluated the differences between any
two joints collection S = [p(1), . . . ,p(τ)] and S′ = [p′(1), . . . ,p′(τ ′)] through
the following distance

d(p(s),p′(t)) =
1
J

∑J

j=1
‖pj(s) − p′

j(t)‖, (1)

where ‖ · ‖ is the Euclidean norm, s = 1, . . . , τ and t = 1, . . . , τ ′. The final
similarity measure, provided by DTW to compare S and S′, is δ(S,S′) which is
the minimum value of (1) computed over all the sequences of timestamps which
optimally align S with S′ (see [14] for more details).



Revisiting Human Action Recognition: Personalization vs. Generalization 473

Second, we also estimated the n × n covariance matrix

C =
1

τ − 1

τ∑

t=1

(p(t) − p)(p(t) − p)�, (2)

related to any trial S, where p = 1
τ

∑τ
s=1 p(s) averages all the τ coordinates

and we denote n = 3J for convenience. Since C is positive definite, we thus
exploited the theory of the Riemannian manifold Sym+

n and projected (2) onto
the tangent space to obtain C̃ [9]. Then, using the symmetry of C̃, we extracted
its independent entries, yielding the following n(n + 1)/2 vector

COV = [C̃11, . . . , C̃1n, C̃21, . . . , C̃2n, . . . , C̃nn]. (3)

Note that the usage of covariance is inspired by [18], which set the new state-of-
the-art performance for action recognition from MoCap data. Also, our approach
is similar to the case L = 1 in [8], where a L-layered temporal hierarchy of
covariance descriptors is proposed, but differently from us, the projection stage
onto the tangent space is not considered.

For both representations, we used the support vector machine1 (SVM) for
classification: when fed with COV, we normalized the data imposing zero mean
and unit variance and we then used a linear kernel. Instead, the negative dynamic
time warping kernel function [7] produced the training and testing Gram matri-
ces given in input to the SVM.

This will allow us to validate the testing strategies using the same basic
classification approach with two different descriptors.

3 Evaluation Strategies

We compare the following three testing modalities.
For testing, One-Subject-Out considers any action instance belonging to

one subject separately, the system being training on the remaining ones. The
final classification results average all the subject-out intermediate scores. This is
in line with the protocols of [3,11,18].

In the Cross-Validation strategy, we performed a subject-balanced shuf-
fling of data. Precisely, for each subject 2

3 of samples are used in training and the
remaining 1

3 in testing. To guarantee robustness, the final classification results
are averaged over 20 random choices for the aforementioned partitions2.

For the Personalization strategy, each model is trained on the action
instances of a single subject at a time. To do this, we fix a subject and, for
any action class, 2

3 of samples are used in training, testing on the remaining 1
3 .

Classification accuracies (in testing) are computed on each subject separately,
finally fusing the single scores. As previously done, we average the classification
results over 20 random splits of all the subject-specific instances.
1 In all experiments, for the SVM cost parameter, we fixed C = 10.
2 For the sake of clarity, please note that a test sample is never seen by the system in

training.
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4 Experimental Results and Discussion

In this Section, we compare One-Subject-Out, Cross-Validation and Personal-
ization, using the descriptors of Sect. 2: the results related to DTW and COV
are reported in Tables 1 and 2, respectively.

Table 1. DTW classification accuracies on the three MoCap datasets. Mean and stan-
dard deviation are reported in percentages for each testing strategies (best results are
in bold).

Testing strategy MSR-Action3D MSRC-Kinect12 HDM-05

One-Subject-Out 28.42 ± 12.76 51.73 ± 17.58 92.39 ± 3.60

Cross-Validation 57.90 ± 3.07 66.93 ± 1.81 96.93 ± 1.72

Personalization 81.75 ± 2.71 99.57 ± 0.16 97.59 ± 0.85

Table 2. COV classification accuracies on the three MoCap datasets. Mean and stan-
dard deviation are reported in percentages for each testing strategies (best results are
in bold).

Testing strategy MSR-Action3D MSRC-Kinect12 HDM-05

One-Subject-Out 70.49 ± 9.02 92.47 ± 6.01 87.78 ± 7.04

Cross-Validation 77.18 ± 3.59 98.57 ± 0.30 96.32 ± 1.97

Personalization 92.46 ± 1.09 99.65 ± 0.07 99.02 ± 0.98

In most case, the COV obtains higher performance with respect to DTW.
We can observe a common trend: the action classification performance grows
when switching from One-Subject-Out to Cross-Validation, reaching its peak
with Personalization. Since common to both DTW and COV, such behavior is
actually independent from the data representation.

It is worth noting that the ranking in the accuracies obtained with the three
different modalities is inversely depending on the number of the samples used in
the training phase.

Indeed, in both Tables 1 and 2, the lowest performance is always scored by
One-Subject-Out, although such modality adopts the larger amount of training
data if compared to either Cross-Validation or Personalization. The reason is
that One-Subject-Out has to extrapolate more from the data, finding action-
specific patterns which are also subject-invariant. Differently, the Personaliza-
tion strategy is required to find action-specific patterns, totally neglecting intra-
subject generalization. This helps explaining why Personalization obtains the
best results for all datasets. Note that the latter fact occurs despite the Person-
alization strategy exploits the least number of samples within One-Subject-Out
and Cross-Validation. In particular, by considering MSR-Action3D dataset (see
Sect. 2), very few trials (and sometimes only one) are available per each action
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class and subject. In spite of that, Personalization scores 92.46% and 81.75%
with COV and DTW respectively, and outperforms all the other two strategies.
Indeed, MSRC-Kinect12 and HDM-05 are almost saturated by Personalization:
e.g., 99.57 ± 0.16 of DTW and 99.02 ± 0.98 of COV respectively.

Cross-Validation deserves an own discussion. Indeed, such strategy can be
seen as a compromise between the two, since each subject is seen in both training
and testing (as in Personalization) but is required to generalize across agents (as
in One-Subject-Out). In terms of registered performance, Cross-Validation scores
intermediately with respect to the other two strategies. Precisely, with respect
to One-Subject-Out, Cross-Validation improves by margin: therefore, exploiting
the same subject in both training and testing appears to be effective.

However, all Cross-Validation accuracies are always lower than the Person-
alization one, although the gap between them is sometimes very small (e.g.,
Cross-Validation scores about 1% less with respect to Personalization on MSRC-
Kinect12 dataset, see Table 2). Actually, this can be interpreted in the following
manner: adding many training samples belonging to different subjects does not
always lead to an improvement, frequently confusing the (SVM) classifier.

Evidently, the quality of the data is superior to quantity for the sake of perfor-
mance. In the next Section, we will carry out a statistical analysis to characterize
the concept of “quality” in terms of inter - and intra-subject variability.

4.1 Quantitative Statistical Analysis

Let us define the following statistics.
1© psubject For all testing action instances a, which are correctly classi-

fied in Cross-Validation, consider the training action instance a which is closest
to a. We call psubject the (average) probability that both a and a belongs to the
same subject.
Clearly, psubject measures how often a good prediction is obtained by exploiting
the information exactly coming from the same subject. Hence, high/low psubject

values check if testing on the same subjects used for training gives a pros/cons
for the classification, respectively.

2© pinter For each action class c, and for any instance ac of that class,
consider the instance ac (still belonging to the same class) which is closest to
ac in the features space. While averaging on c, the frequency of that ac and ac

belonging to the same subject is denoted by pinter.
We can notice that pinter ≈ 0 when inter-subject variability is negligible.

3© pintra For any subject s and for any instance as, consider as which is
the closest to as within the ones in the dataset which belongs to the s-th subject.
pintra counts how frequently, as and as belong to a different action class.
From the definition, if pintra = 0, all the trials of a given action and a given
subject are almost identical and intra-subject variability is totally absent.

4© Δ For each action class c, compute dc as the maximal distance
between two c-labelled elements in the dataset. Similarly, dc,s is the maximal dis-
tance of two c-labelled instances from the same subjet s. Define Δc,s = |dc,s−dc|

dc
.
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We have 0 ≤ Δc,s ≤ 1, where the extremal case Δc,s = 0 correspond to a null
inter-subject variability : since dc,s = dc, within the trials of class c, subjects are
maximally shuffled (Fig. 2, left). Also, Δc,s = 1 implies dc,s = 0 which minimizes
the intra-subject variability since all instances of class c from subject s collapse
to a point (Fig. 2, right). We define Δ as the average of all Δc,s over c and s.
By construction, Δ quantifies the relative importance between inter- and intra-
subject variability, being the latter or the former preponderant on the other in
case of low or high Δ values, respectively.

Fig. 2. In the feature space, we surround the region referring to a single action. Within,
each point represents a trial and different colors relate to different subjects. Left: When
Δc,s ≈ 0, inter-subject variability is minimized since, in general, trials from different
subjects occupy nearby positions. Right: The case Δc,s ≈ 1 minimizes the intra-subject
variability because all the instances of the same subject are compactly clustered.

In the definition of psubject, pinter, pintra and Δ, a notion of “closeness”
is involved. The latter depends on the exploited data representation. For COV,
the distance is the Euclidean one, since induced by a linear kernel. Instead, for
DTW, we use the dynamic time warping distance δ, as introduced in Sect. 2.

Discussion. Table 3 shows the values of our statistics in all the considered
datasets. We only report the values related to COV since no remarkable differ-
ences are registered when moving to DTW3.

Table 3. Quantitative evaluation of inter and intra-subject variability.

Dataset psubject pinter pintra Δ

MSR-Action3D 0.78 0.86 0.19 0.71

MSRC-Kinect12 0.97 0.97 0.01 0.90

HDM-05 0.89 0.95 0.01 0.74

In all cases, psubject is extremely high (e.g., 0.89 for HDM-05). Therefore, in
Cross-Validation testing strategy, the performance is actually boosted by lever-
aging on how each subject perform a given action. Therefore, the scored psubject

values attest that the role of the subject is crucial in 3D action recognition.
3 For instance, the value of psubject for MSR-Actio3D is 0.77, for MSRC-Kinect12 is

0.97 and for HDM-05 is 0.85.
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Inter-subject variability is a problem (pinter > .85). Thus, the same action
is likely to be performed very differently by different subjects. This explains the
difficulty of One-Subject-Out strategy.

On MSR-Action3D pintra is low, being actually almost zero in the other cases.
Especially in MSRC-Kinect12 and HDM-05, each subject identically repeats
each action almost in the same way. As a consequence, intra-subject variability
is not remarkably affecting the classification. Hence, even knowing one only
action instance per subject can actually boost the recognition. This explains the
favorable Personalization performance, despite the small data regime embraced.

Inter-subject variability is the actual burden to tackle, being totally over-
whelming with respect to intra-subject one. The high values for Δ (e.g., 0.9 for
MSRC-Kinect12) certify that the gap to fill across subject is actually remarkable,
where the challenges related benchmark datasets analyzed can be intuitively
imagined as in Fig. 2, right.

Globally, if we can automatically recognize the subject’s identity of a train-
ing/testing instance, we can cast action recognition as an easier subproblem: we
do not have to fill huge inter-subjects gaps, but just learning how to discriminate
different actions of the same subjects (which are likely to be more separable). As
we will prove in the next Section, such divide et impera strategy is very effective.

5 Divide et Impera. Two-Stage Recognition Pipeline

In comparison to Cross-Validation and One-Subject-Out, the Personalization
strategy always achieves the best scores (Tables 1 and 2). As explained, this hap-
pens because inter-subject variability is highly problematic, being intra-subject
variability small as in MSR-Action3D and eventually absent in the other cases.
However, Personalization leverage on the unfavorable assumption: it requires
the subject’s identity to be known in order to classify the action.

Actually, in this Section we tackle this issue, obtaining an equivalently effec-
tive action recognition system, which is now able to operate in real-world con-
ditions. The key is learning the subject’s identity.

Inspired by our findings (Sect. 4.1), we posit that we can proficiently apply
features designed for action representation in order to recognize the subject’s
identity. This originate a divide et impera paradigm where, first the subject’s
identity is recognized and then action recognition is performed using a subject-
specific classifier, trained on the instance of a single subject only. Despite the
reduced amount of data, the task should be easier to train due to the better
separability of action classes when the subject’s identity is fixed. Precisely, we
propose the following two-stage pipeline (Fig. 1).

Stage 1. A unique SVM model (subject-SVM ) recognizes subject’s identity.
Stage 2. Within many subject-specific action classifiers (called action-SVMs),

the final action recognition step is performed by the one corresponding to the
subject identified in Stage 1.



478 A. Zunino et al.

For training subject-SVM and action-SVMs, we performed a 2
3/ 1

3 random
splitting for training and testing data related to any subject and any action.
Obviously, for each of the action-SVMs, we used only the training and testing
examples belonging to one subject at a time. During testing, the subject-SVM
scores is used to select one of the action-SVMs (actually the one corresponding
to the recognized subject): this is the model exploited for action classification.

To validate our proposed pipeline, both subject-SVM and action-SVMs are
fed with COV features, more powerful than DTW. The results in Tables 4, 5
provide the mean and standard deviation of the accuracies scored in the two
steps separately, over 20 different random partitions of the data.

Discussion. Since COV is designed for action recognition, it is suboptimal for
subjects’ identification. In fact, despite the classification performance we regis-
tered is still reliable (Table 4), when a subject is misclassified, the action classifier
corresponding to another subject is used and performance can deteriorate.

Nevertheless, we only registered a 2% the drop with respect to Personal-
ization strategy, which can be considered as our two-stage pipeline with perfect
subject recognition in the first stage. Such performance is remarkable since, after
all, Personalization requires the subjects’ identity to be known, whereas we are
effectively able to automatically learn it4.

Although a comparison of our simple approach with more sophisticated
approaches [3,8,18] is challenging, we score a favorable performance with respect
to the state-of-the-art. Despite the simplicity of our pipeline, we only pay 6% on
MSR-Action3D (96.9%, [18]). This is coherent with the fact that intra-subject
variability is not totally absent in such a case (pintra ≈ 0.2 in Table 3), therefore
mining the underlying assumption of our approach. Differently, we are scoring

Table 4. Two-stage recognition pipeline - subject identification accuracies.

MSR-Action3D MSRC-Kinect12 HDM-05

subject-SVM 90.74 ± 2.41 85.18 ± 0.55 85.67 ± 3.18

Table 5. Two-stage recognition pipeline - action classification accuracies compared to
SoA.

MSR-Action3D MSRC-Kinect12 HDM-05

action-SVMs 90.46 ± 1.17 97.14 ± 0.39 97.03 ± 1.36

SoA 96.9 [18] 95.0 [3] 98.1 [3]

4 To have a better insight of the importance of the knowledge of the subject who is
performing the action, we have conducted an experiment on MSRC-Kinect12 using
COV features where we assume that the correct action-SVM is not available. Using
the best action-SVMs belonging to all other subjects the performance drops from
97.14% to 80.68%.
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almost on par with respect to [3] (98.1%) on HDM-05, also improving the state-
of-the-art on MSRC-Kinect12 by about 2% (95.0%, [3]).

6 Conclusions

In this paper, we investigated the generalization capability of automatic activity
recognition systems analyzing the proposed Personalization strategy in compar-
ison with standard Cross-Validation and One-Subject-Out approaches. To this
aim, we exploit classical representations (DTW and COV), with basic a classifier
(linear SVM) on the MSR-Action3D, MSRC-Kinect12 and HDM-05 benchmark
datasets.

From the experiments, One-Subject-Out resulted the more challenging strat-
egy, although being able to ensure a better generalization. Differently, despite
Cross-Validation was actually boosted from the usage of the same subject in
both training and testing, the additional information relative to the other sub-
jects could mislead. The Personalization strategy, gave the highest performance,
despite the lowest number of instances used in training.

In addition, we also provided several quantitative statistics to measure inter
and intra-class variability on the considered datasets: as a result, the latter is
almost marginal, while the former is the actual burden that has to be tackled
when devising new techniques.

Finally, we proposed a two-step classification pipeline by first identifying the
subject and, second, by using subject-specific classifiers for action recognition.
This paradigm can be applied to general surveillance tasks, by monitoring the
activities of unknown subjects by means of the model corresponding to the most
similar training subject. Additionally, this opens to the design of custom human-
robotic systems and novel authentication procedures.
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Abstract. The advent of embedded stereo cameras based on low-power
and compact devices such as FPGAs (Field Programmable Gate Arrays)
has enabled to effectively address several computer vision problems. How-
ever, being the depth data generated by stereo algorithms affected by
errors, reliable strategies to detect wrong disparity assignments by means
of confidence measures are desirable. Recent works proved that confi-
dence measures are also a powerful cue to improve the overall accuracy
of stereo. Most approaches aimed at predicting match reliability rely
on cost volume analysis, an information seldom available as output of
most embedded depth sensors. Therefore, in this paper we analyze and
evaluate strategies compatible with the constraints of embedded stereo
cameras. In particular, we focus our attention on methods to infer match
reliability inside depth sensors based on highly constrained computing
architectures such as FPGAs. We quantitatively assess, on Middlebury
2014 and KITTI 2015 datasets, the impact of different design strategies
for 16 confidence measures from the literature, suited for implementa-
tion on such embedded systems. Our evaluation shows that, compared to
the confidence measures typically deployed in this context and based on
storing intermediate results, other approaches yield much more accurate
predictions with negligible computing requirements and memory foot-
print. This enables for their implementation even on highly constrained
architectures.

1 Introduction

The recent availability of embedded depth sensors paved the way to a variety of
computer vision applications for autonomous driving, robotics, 3D reconstruc-
tion and so on. In these application depth is crucial and several approaches
have been proposed to tackle this problem following two main strategies. On
one hand Active sensors infer depth by perturbing the sensed scene by means of
structured light, laser projection and so on. On the other hand, passive depth
sensors infer depth not altering at all the sensed environment. Although sensors
based on active technologies are quite effective they have some limitations. In
particular, some of them (e.g., Kinect) are not suited for outdoor environments
during daytime while others (e.g., LIDAR) provide only sparse depth maps and
are quite expensive, cumbersome and containing moving mechanical parts.
c© Springer International Publishing AG 2017
S. Battiato et al. (Eds.): ICIAP 2017, Part I, LNCS 10484, pp. 483–494, 2017.
https://doi.org/10.1007/978-3-319-68560-1_43
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Stereo vision is the most popular passive technique to infer dense depth data
from two or more images. Many algorithms have been proposed to solve the
stereo correspondence problem, some of them particularly suited for hardware
implementation, thus enabling the design of compact, low-powered and real-
time depth sensors [2,4,7,10,22,24,26]. Despite the vast literature in this field,
challenging conditions found in most practical applications represent a major
challenge for stereo algorithms. Popular benchmarks Middlebury 2014 [21] and
KITTI 2015 [11] clearly highlighted this fact. Therefore, regardless of the stereo
algorithm deployed, it is essential to detect its failures to filter-out wrong unreli-
able points that might lead to a wrong interpretation of the sensed scene. To this
aim, confidence measures have become a popular topic on recent works concern-
ing stereo. Some recent confidence measures combine multiple features within
random forest frameworks to obtain more reliable confidence scores while an
even more recent trend aims to infer confidence prediction leveraging on Convo-
lutional Neural Networks (CNN) [19,23]. Despite their effectiveness, the latter
strategies are often not compatible with the computing resources available inside
the depth sensor, typically a low cost FPGA or a System-On-Chip (SoC) based
on ARM CPU cores and an FPGA (e.g., Xilinx Zynq). Moreover, the features
required by most of these machine-learning frameworks are not available as out-
put of the embedded stereo cameras being in most cases computed from the cost
volume (often referred to as disparity space image (DSI) [20]).

Therefore, in this paper we consider a subset of confidence measures com-
patible with embedded devices evaluating their effectiveness, on two popular
challenging datasets and two algorithms typically deployed for real-time stereo
for embedded systems, focusing our attention on issues related to their FPGA
implementation. Our study highlights that some of the considered confidence
measures, appropriately modified to fit with typical hardware constraints found
in the target architectures, clearly outperform those currently deployed in most
embedded stereo cameras.

2 Related Work

Stereo represents a popular and effective solution for depth estimation. It exploits
epipolar geometry to find corresponding pixels on two or multiple synchronized
frames, thus enabling to infer distance of the observed points by means of trian-
gulation. According to the taxonomy by Scharstein and Szeliski [20], algorithms
can be grouped into local and global methods. Algorithms belonging to the
former group are usually very fast algorithms but typically less accurate than
global ones. The Semi-Global Matching (SGM) [6] algorithm represents a very
good trade-off between speed and accuracy and for this reason one of the most
popular approach to infer depth even with embedded devices. The core of SGM
algorithms consists of multiple and independent scanline optimization (SO) [20]
along different directions. Each SO is fast, but affected by streaking artifacts
near discontinuities. However, by combining multiple SOs as done by SGM sig-
nificantly softens this issue. Moreover its computational structure allows for dif-
ferent optimization strategies and simplifications that enabled to implement it on
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almost any computing architecture (e.g., CPUs, GPUs, SoC, FPGAs). In partic-
ular, low power and massively parallel devices such as FPGAs represents a very
good design choice for depth sensors with optimal performance/Watt. Examples
of stereo pipeline based on SGM mapped on FPGAs are [2,4,7,10,22,24,26].
Some of them deploy hardware-friendly implementations, based on census trans-
form [28] and 4 or 5 scanlines computed in a single image scan from top-left to
bottom-right. On FPGAs a smart design is crucial in order to achieve accurate
real-time results without violating the limited logic resource available.

Despite the good accuracy of SGM and state-of-the-art algorithms [29], stereo
is still an open problem, as witnessed by recent, challenging datasets [11,21].
Thus, detecting failures of the stereo algorithm is a desirable property to achieve
a more meaningful understanding of the sensed environments.

Several confidence measures have been proposed to tackle match reliability.
In [8] the authors highlighted how different cues available inside the pipeline
of general-purpose stereo algorithms implemented in software lead to different
degrees of effectiveness on well-known ill-conditions of stereo such as occlusions,
lack of texture and so on. Most recent proposals in this field proved that machine-
learning can be effectively deployed to infer more accurate confidence measures,
capable to better detect disparity errors. The very first work [5] trained a random
forest classifier on multiple measures or features extracted from the DSI. More
recent and effective proposals based on this strategy were proposed in [15,25],
while in [18] was shown that a confidence measure could be effectively inferred
by processing cues computed only from the disparity map. In [14] was proposed
a data generation process based on multiple view points and contradictions, to
select reliable labels to train confidence measures based on random forests. Latest
works on confidence measures rely on deep-networks: [19,23] address confidence
estimation by means of a CNN processing patches, respectively, from the left
disparity map and from both left and right disparity maps.

Finally, we conclude this section observing that confidence measures have
been deployed to detect occlusions [6,13] and sensors fusion [9,12]. Moreover,
they were also plugged inside stereo pipeline to improve the overall accuracy by
acting on the initial DSI [15,16,18,25].

3 Hardware Strategies for Confidence Implementation

When dealing with conventional CPU based systems confidence measures are
generally implemented in C, C++ and to maintain the whole dynamic range
single or double floating point data types are deployed. However, floating point
arithmetic is sometimes not available in embedded CPU and generally unsuited
to FPGAs. In particular, transcendental functions and divisions represent major
issues when dealing with such devices. To overcome these limitations, fixed
point arithmetic is usually deployed [1]. Fixed point represents an efficient and
hardware-friendly way to express and manipulate fractional numbers with a fixed
number of bits [1]. Indeed, fixed-point math can be represented with an integer
number split into two distinct parts: the integer content (I), and the fractional
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content (F). Through the simple use of integer operations, the math can be
efficiently performed with little loss of accuracy taking care to use a sufficient
number of bits. The steps required to convert a floating point value to the cor-
responding fixed representation with F bits - the higher, the better in terms of
accuracy - are the following:

1. Multiply the original value by 2F

2. Round the result to the closest integer value
3. Assign this value into the fixed-point representation

Fixed point encoding greatly simplifies arithmetic operations with non-
integer values, but integer divisions can be demanding - in particular on FPGAs -
except when dealing with divisors which are powers of 2. In fact, in this case divi-
sion requires almost negligibly hardware resources being carried out by means
of a simple right shift. Thus, a simplified method to avoid integer divisions con-
sists in rounding the dividing value to the closest power of 2, then shifting right
according to its log2. This strategy will be referred to as pow.

Although fixed point increases the overall efficiency, some confidence mea-
sures rely on transcendental functions (in particular, exponentials and loga-
rithms) which represent an a further major issue even when dealing with CPU
based systems. An effective strategy to deal with such functions consists in
deploying Look-Up Tables (LUTs) to store pre-computed results encoded with
fixed point arithmetic. That is, given a function F(x), with x assuming n possi-
ble values, a LUT of size n can store all the possible outcome of such function.
Of course, this approach is feasible only when the size of the LUT (proportional
to n) is compatible with the memory available in the device.

4 Confidence Measures Suited for Hardware
Implementation

In this section we describe the pool of confidence measures from the litera-
ture suited for implementation on target embedded devices. Figure 1 shows the
matching cost curve for a pixel of the reference image. Given a pixel p(x, y),
we will refer to its minimum cost as c1, the second minimum as c2 and the
second local minimum as c2m. The matching cost for any disparity hypothesis
d will be referred to as cd while the disparity corresponding to c1 as d1, the
one corresponding to c2 as d2 and so on. If not specified otherwise, costs and
disparities are referred to the reference left image (L) of the stereo pair. When
dealing with right image (R), we introduce the R symbol on costs (e.g., cR

1 ) and
disparities. We denote as p′(x′, y′) the homologous point of p according to d1
(i.e., x′ = x − d1, y′ = y). It is worth to note that, assuming the right image
as reference, the matching costs can be easily obtained by scanning in diagonal
the cost volume computed with reference the left image without any further new
computation. Nevertheless, adopting this strategy would require an additional
buffering of dmax·(dmax+1)

2 matching costs with dmax the disparity range deployed
by the stereo algorithm.
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Fig. 1. Example of cost curve, showing the matching cost c1, the second minimum c2
and the second local minimum c2m. On x axis the disparity range, on y magnitude of
the costs.

We distinguish the considered pool of confidence measures in two, mutually
exclusive, categories:

– Hardware friendly : confidence measures whose standard implementation is
fully compliant with embedded systems.

– Hardware challenging : confidence measures involving transcendental func-
tions and/or floating point divisions not well suited for embedded systems
in their conventional formulation.

4.1 Hardware Friendly

This category groups confidence measures involving simple math operations that
do not represent issues when dealing with implementation on embedded systems.
The matching score measure (MSM) [8] negates the minimum cost c1 assuming
it related to the reliability of a disparity assignment. Maximum margin (MM)
estimates match uncertainty by computing the difference between c2m and c1
while its variant maximum margin naive (MMN) [8] replaces c2m with c2. Given
two disparity maps computed by a stereo algorithm assuming as reference L
and R, the left-right consistency (LRC) [8] sets as confidence the negation of the
absolute difference between the disparity of a point in L and its homologous point
in R. This method represents one of the most widely adopted strategy by most
algorithms even for those implemented on embedded devices. Another popular
and more efficient strategy based on a single matching phase is the uniqueness
constraint (UC) [3]: it assumes as poorly confident those pixels colliding on the
same point of the target image (R) with the exception of the one having the
lowest c1. Curvature (CUR) [8] and local curve (LC) [27] analyze the behavior
of the matching costs in proximity of the minimum c1 and its two neighbors
at (d1 - 1) and (d1 + 1) according to two similar strategies. Finally, number of
inflections (NOI) [8] simply counts the number of local minima in the cost curve
assuming that the lower, the more confident is the disparity assignment.
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4.2 Hardware Challenging

Confidence measures belonging to this category can not be directly implemented
in embedded systems following their original formulation. We consider peak ratio
(PKR) [8] which computes the ratio between c2m and c1 and its variant peak ratio
naive (PKRN) [8] which replaces c2m with the second minimum c2. According to
the literature, these measures are quite effective but seldom deployed in embed-
ded stereo cameras. Another popular measure is winner margin measure (WMN)
[8] which normalizes the difference between c2m and c1 by the sum of all costs.
Its variant winner margin measure naive (WMNN) [8] follows the same strategy
replacing c2m with c2. The left-right difference measure (LRD) [8] computes the
difference between c2 and c1 divided by the absolute difference between c1 and
the minimum cost of the homologous point in R (cR

1 ). For these confidence mea-
sures the major implementation issue on embedded systems is represented by the
division. For the remaining confidence measures the main problem is represented
by transcendental functions: exponentials and logarithms. Maximum likelihood
measure (MLM) [8] and attainable maximum likelihood (AML) [8] infer from the
cost curve a probability density function (pdf) related to an ideal c1, respectively,
equal to zero for MLM and to c1 for AML. A more recent and less computa-
tional demanding approach perturbation (PER) [5], encodes the deviation of the
cost curve from a Gaussian function ant its implementation requires a division
by a constant value suited for a LUT-based strategy. Finally, we also mention
two very effective confidence measures based on distinctiveness, namely distinc-
tive similarity measure (DSM) and self-aware matching measure (SAMM) and
one negative entropy measure (NEM) [8] that infers the degree of uncertainty
of each disparity assignment from the negative entropy of c1. However, they
require additional cues (e.g., self-matching costs on both reference and target
images for SAMM) not well suited to embedded systems and thus not included
in our evaluation.

5 Experimental Results

In this section we evaluate the 16 confidence measures previously reviewed and
implemented following the design strategies outlined so far. We test their effec-
tiveness with the output of two popular stereo algorithms well-suited for imple-
mentation on embedded systems:

– AD-CENSUS: aggregates matching costs according to the Hamming distance
computed on 5× 5 patches with census transform [28]. A further aggregation
step is performed by a 5×5 box-filter. To reduce the amount of bits required by
the single matching cost, we normalized aggregated costs by the dimension of
the box-filter (to be more hardware-friendly, by 16), with negligible reduction
of accuracy according to [17].

– SGM [6]: four scanline implementation using as data term the same AD-
CENSUS aggregated costs and for parameters P1 and P2, respectively, 11
and 110. The four directions are those processed by scanning the image from
top-left to bottom-right as suggested in [2,10,17].
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We encode matching costs with, respectively, 6 and 8 bit integer values, being
this amount enough to encode the entire ranges. Regarding parameters of the
confidence measures: for LC, we set the normalization factor γ to 1 to avoid
division, while for PER, MLM and AML we set sPER to 1.2 and σaml, σmlm to
2 before initializing the LUTs. The other 12 confidence measures do not have
parameters.

For CUR, LRC, LC, MM, MMN, MSM, NOI and UC we provide experimental
results with the conventional implementation since their mapping on embedded
devices is totally equivalent. Moreover, regarding PER, we do not report results
concerned with division by the closest power of two being the divisor a constant
value and thus such operation can be addressed with a LUT. Finally, it is worth
observing that most embedded stereo vision systems rely on LRC [2,7] and UC
[2,10] for confidence estimation.

In Sect. 5.1 we describe the evaluation protocol and in Sect. 5.2 we report
experimental results on Middlebury 2014 (at quarter resolution) and KITTI
2015 datasets for AD-CENSUS and SGM algorithms.

5.1 Evaluation Protocol

The standard procedure to evaluate the effectiveness of a confidence measure is
the ROC curve analysis, proposed by Hu and Mordohai [8] and adopted by all
recent works [5,15,18,19,23,25] in this field. By extracting subsets of pixels from
the disparity map, according to descending order of confidence, a ROC curve is
depicted by computing the error rate, starting from a small subset of points
(i.e., 5% most confident) and then increasing the pool of pixels iteratively, up to
include all pixels. This leads to a non-monotonic ROC curve, whose area (AUC)
is an indicator of the effectiveness of the confidence measure. Given a disparity
map with ε% of pixels being erroneous, an optimal confidence measure should
draw a curve which is zero until ε% pixels have been sampled. The area of this
curve represents the optimal AUC achievable by a confidence measure and can
be obtained, according to [8], as:

AUCopt =
∫ ε

1−ε

p − (1 − ε)
p

dp = ε + (1 − ε) ln (1 − ε) (1)

As reported on Middlebury 2014 and KITTI 2015 benchmarks, ε is obtained
by fixing a threshold value on disparity error of, respectively 1 and 3 for the
two datasets following the guidelines. Confidence measures achieving lower AUC
values (closer to optimal) better identify wrong disparity assignments.

5.2 Experimental Evaluation on Middlebury 2014 and KITTI 2015

In this section we report results on Middlebury 2014 and KITTI 2015 datasets
in terms of average AUC values achieved by confidence measures implemented in
software. For hardware challenging measures of Sect. 4.2 we also report multiple
AUC obtained with increasing number of bits dedicated to fixed point operations
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(i.e., from 6 to 16 for AD-CENSUS and from 8 to 16 for SGM, so as to handle
the whole cost range). Moreover, for such measures, we also report the results
obtained by rounding to the closest power of 2 and, then, shifting right (referred
to as pow in the charts).

Table 1 shows for Middlebury 2014 that LRC and UC, confidence measures
typically deployed in embedded stereo cameras, are less effective than MM, LRD,
PKR, PKRN, WMN, WMNN with AD-CENSUS and MM, MSM, AML, MLM,
PER, PKR, WMN, WMN with SGM. We can notice that LRC provides poor
confidence estimation with SGM but achieves better results with AD-CENSUS
while UC has average performance with both algorithms. Considering the more
effective confidence measures in the table, we can notice that PKR and WMN,
as well as their naive formulations, performs pretty well with both algorithms
clearly providing much more accurate confidence estimation compared to LRC
and UC. Moreover, we can notice that PER achieves the best performance with
SGM but it does not perform as well with AD-CENSUS, yielding slightly bet-
ter confidence predictions with respect to UC. Specularly, LRD provides very
reliable predictions with AD-CENSUS but poor results with SGM. Finally, we
point our that top-performing confidence measures always belong to the hard-
ware challenging category.

Therefore, in Fig. 2 we report the performance of hardware challenging confi-
dence measures, on Middlebury 2014 with AD-CENSUS and SGM, with multiple
simplification settings. Observing the charts, PER is independent of the adopted
strategy, being based on a LUT. Moreover, excluding PER, we can notice that
the best performing ones (PKR, PKRN, WMN and WMNN at the right side of
the figure) are those less affected by the number of bits deployed for fixed-point
computations, thus resulting in reduced computational resources. In particu-
lar, we can observe that with only 8 bits, PKR and WMN achieve with both

Table 1. Experimental results, in terms of AUC, on Middlebury 2014 dataset with
AD-CENSUS (a) and SGM (b) algorithms for the 16 confidence measures using a
conventional software implementation. In red, top-performing measure. We also report
the absolute ranking.

measure standard
Opt. 0.08891
CUR 0.24377 (14)
LRC 0.19933 (7)
LC 0.24377 (15)
MM 0.17765 (6)
MMN 0.19933 (8)
MSM 0.23182 (13)
NOI 0.39053 (16)
UC 0.20974 (10)

measure standard
Opt. 0.08891
AML 0.21173 (11)
LRD 0.17004 (3)
MLM 0.22413 (12)
PER 0.20687 (9)
PKR 0.16250 (1)
PKRN 0.17185 (5)
WMN 0.16503 (2)
WMNN 0.17169 (4)

measure standard
Opt. 0.04367
CUR 0.11602 (11)
LRC 0.16853 (15)
LC 0.11602 (12)
MM 0.09371 (5)
MMN 0.12920 (14)
MSM 0.10181 (7)
NOI 0.32028 (16)
UC 0.10347 (9)

measure standard
Opt. 0.04367
AML 0.08843 (3)
LRD 0.11725 (13)
MLM 0.09567 (6)
PER 0.08766 (1)
PKR 0.08813 (2)
PKRN 0.10527 (10)
WMN 0.08898 (4)
WMNN 0.10232 (8)
)b()a(
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Fig. 2. Average AUC values on the Middlebury 2014 dataset for hardware challenging
measures, varying the implementation settings (i.e., pow and number of bits of fixed-
point arithmetic). (a) AD-CENSUS, (b) SGM algorithm.

algorithms results almost comparable to their conventional software implemen-
tation. A similar behavior can be observed, with slightly worse performance,
for their naive formulation PKRN and WMNN and for LRD that, excluding
PER, is the approach less dependent of the number of bits. On the other hand,
AML e MLM with both algorithms are significantly affected by the number of
bit deployed for their implementation achieving results comparable to their tra-
ditional software formulation, respectively, only with 13 and 16 bits. Finally,
excluding PER, we can observe that dividing by a power of 2 always provides
poor results with respect to other simplifications. However, we highlight that
even with this very efficient implementation strategy, PKR, WMN outperform
LRC and UC with both stereo algorithms. Thus, trading simplified computations
with memory footprint leads to design better alternatives to standard confidence
measures for embedded systems.

Table 2 reports the average AUCs for the two considered stereo algorithms on
KITTI 2015 for software implementation of the 16 confidence measures. Com-
pared to Table 1 we can notice a similar behavior with a notable difference. In
fact, observing Table 2 we highlight that LRC achieves almost optimal results
on AD-CENSUS but yields very poor performance with SGM. Looking at the
behavior of the hardware challenging measures, reported in Fig. 3, we observe
on KITTI 2015 a substantially similar behavior with respect to Fig. 2 concerned
with Middlebury 2014.
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Table 2. Experimental results, in terms of AUC, on KITTI 2015 dataset with AD-
CENSUS (a) and SGM (b) algorithms for the 16 confidence measures using a conven-
tional software implementation. In red, top-performing measure. We also report the
absolute ranking.

measure standard
Opt. 0.08055
CUR 0.30692 (14)
LRC 0.20018 (2)
LC 0.30692 (15)
MM 0.20601 (4)
MMN 0.24588 (11)
MSM 0.25571 (13)
NOI 0.31160 (16)
UC 0.22324 (8)

measure standard
Opt. 0.04367
AML 0.23053 (10)
LRD 0.20706 (5)
MLM 0.25180 (12)
PER 0.22575 (9)
PKR 0.19821 (1)
PKRN 0.20931 (7)
WMN 0.20221 (3)
WMNN 0.20795 (6)

measure standard
Opt. 0.01618
CUR 0.08585 (11)
LRC 0.10377 (15)
LC 0.08585 (12)
MM 0.06374 (8)
MMN 0.09549 (14)
MSM 0.05999 (5)
NOI 0.16308 (16)
UC 0.06310 (7)

measure standard
Opt. 0.01618
AML 0.05738 (2)
LRD 0.08744 (13)
MLM 0.05889 (3)
PER 0.05657 (1)
PKR 0.06003 (6)
PKRN 0.07611 (10)
WMN 0.05970 (4)
WMNN 0.07149 (9)
)b()a(
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Fig. 3. Average AUC values on the KITTI 2015 dataset for hardware challenging
measures, varying the implementation settings (i.e., pow and number of bits of fixed-
point arithmetic). (a) AD-CENSUS, (b) SGM algorithm.

6 Conclusions

In this paper we have evaluated confidence measures suited for embedded stereo
cameras. Our analysis shows that conventional approaches, LRC and UC, are
outperformed by other considered solutions, whose implementation on embedded
devices enables to achieve more accurate confidence predictions with a negligible
amount of hardware resources and/or computations. In particular, according to
our evaluation on Middlebury 2014 and KITTI 2015, PKR and WMN represent
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the overall best choice when dealing with two popular algorithms, AD-CENSUS
and SGM, frequently deployed for embedded stereo systems.
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Abstract. This paper proposed a method of three dimensions (3D)
reconstruction from a wide field of view(FoV) camera system. This cam-
era system consists of two fisheye cameras each with 180◦ FoV. The
fisheye cameras placed back to back to obtain a full 360◦ FoV. A stereo
vision camera is placed to estimate the depth information of anterior
view of the camera system. A novel calibration method using unified
camera model representation has been proposed to calibrate the multi-
ple camera systems. An effective fusion algorithm has been introduced to
fuse multi-camera images by exploiting the overlapping area. Moreover,
direct and fast 3D reconstruction of sparse feature matches based on the
spherical representation are obtained using the proposed system.

Keywords: Fisheye camera calibration · Unified spherical model · 3D
reconstruction · Interior Point Optimization algorithm

1 Introduction

Sensors that provide wider FoV are preferred in the robotic applications, as both
navigation and localization can benefit from the wide FoV [1–3]. This paper
presents a novel camera system which provides scenes of 360◦ FoV and the
depth information concurrently. The system minimizes the use of equipment,
image-data and it has the ability to acquire sufficient information of the scene.
The robotic applications of wide FoV camera system are mainly mapping [4,5],
object tracking [6], video surveillance [7–9], virtual reality [10] and structure
from motion [11,12].

1.1 Proposed System

The proposed vision system consists of two fisheye cameras (omnidirectional
camera) [13,14] with each has 185◦ FoV. The cameras are placed back to back
c© Springer International Publishing AG 2017
S. Battiato et al. (Eds.): ICIAP 2017, Part I, LNCS 10484, pp. 495–506, 2017.
https://doi.org/10.1007/978-3-319-68560-1_44
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so that they cover the whole 360◦ of the scene. A high-resolution stereo vision
camera, named ZED [16] is placed in front of the rig so that its baseline is in
parallel with the baseline of the fisheye cameras. Figure 1 shows the proposed
system and the predicted FoV from camera rig.

Fig. 1. The front view of the proposed vision system. The illustration (a) and (b) are
the predicted FoV viewed from top and right side of the camera rig. The gray color are
referred to the FoV of fisheye cameras. The red and green colour are referred to the
FoV of stereo vision camera. (Color figure online)

The major contributions of this paper are:

1. We proposed an omni-vision system alongside with a stereo-camera, which
offers immense information on 360◦ FoV of the environment as well as detailed
depth information.

2. A new camera calibration method taking the advantages of Unified Camera
Model representation has been proposed, which outperforms the state-of-the-
art methods.

3. An Interior Point Optimization algorithm (IPO) based on pure rotation
matrix estimation approaches has been proposed to fuse the two fisheye and
ZED images, which offers seamless images stitching results.

4. A projective distortion has been proposed to be added to the ZED image
before projecting onto the unit sphere, which results in enhancing the quality
of the overlapping image.

Fig. 2. Block acquisition contains the proposed camera system with the images of
fisheye and ZED cameras. Block calibration consists of calibration method to estimate
intrinsic and extrinsic parameters. Block fusion consists of the method to fuse all images
onto unit sphere. Block result consist of final result with image from fisheye and ZED
cameras fused together.
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2 Methodology

2.1 Unified Spherical Camera Model

The unified spherical camera model has been proposed by Geyer [14] and Barreto
[17]. The image formation of dioptric camera was effected by the radial distortion.
Due to that, the point on the scene is nonlinear with the point in the dioptric
image. The 3D points χ are projected to the image point x using the pin-hole
camera model representation. It is also considered the representation of a linear
and non linear transformation mapping function which is depending on the type
of camera. The model was extended by Mei [18] and an omnidirectional camera
calibration toolbox [23] has been developed. This model has been used as a
reference to map the image on the unified spherical model. All points m are
projected to the image plane using K, which is a generalized camera projection
matrix. The value of f and η should be also generalized to the whole system
(camera and lens).

p = Km =

⎡
⎣

f1η f1ηα u0

0 f2η v0
0 0 1

⎤
⎦m, (1)

where the [f1, f2]T are the focal length, (u0, v0) are the principal point and α
is the skew factor. By using the projection model, the point on the normalized
camera plane can be lifted to the unit sphere by the following equation:

�
−1(m) =

⎡
⎢⎢⎢⎣

ξ+
√

1+(1−ξ2)(x2+y2)

x2+y2+1
x

ξ+
√

1+(1−ξ2)(x2+y2)

x2+y2+1
y

ξ+
√

1+(1−ξ2)(x2+y2)

x2+y2+1
− ξ

⎤
⎥⎥⎥⎦ , (2)

where the parameter ξ quantifies the amount of radial distortion of the dioptric
camera.

2.2 Camera Calibration Using Zero-Degree Overlapping Constraint

A new multi-camera setup is proposed, where two 185◦ fisheye cameras are
rigidly attached in opposite direction to each other. Since the fisheye camera has
more than 180◦ of FoV, the proposed setup contributes an overlapping area along
the periphery of the two fisheye cameras. Taking the advantage of overlapping
FoV of the two fisheye cameras, we propose a new fisheye camera calibration
using the constraint on overlapping zero-degree with Unified Camera Model
under the following assumption:

– If ξ is estimated correctly, the 180◦ line of the fisheye camera should ideally
lay on the zero degree plane of the unit sphere. See Figs. 3 and 4.

– A correct calibration (registration) of multi-fisheye camera setup contributes
to a correct overlapping area.
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Fig. 3. Experimental setup to calibrate the value of ξ. The baseline of the camera rig,
noted as b (from left fisheye lens to right fisheye lens) is measured and two parallel
lines with the same distance to each other as well as a centre line is drawn on a pattern.
The rig is faced and aligned in front of the checkerboard pattern such that the centre
line touches the edges of both fisheye camera images.

Fig. 4. The left image was projected with initial estimate of ξ. The 180◦ lines should
ideally lay on the zero plane. After the iterative estimation of ξ, the 180◦ linear now
lay on the zero plane.

Pure Rotation Registration. One of the major objective of our setup is to
produce a high quality 360◦ FoV unit sphere which ables to handle the visual-
ization. A common way to do this is to calibrate the camera setup such that the
relative poses between the cameras are known. Let the features from the left and
right fisheye cameras (projected onto the unit sphere) be denoted as xLf and
xRf , respectively. The transformation between the two fisheye cameras is noted
as T ∈ R4×4, such that:

xLf = RxRf , (3)

The estimation of the transformation matrix, T as discussed in [19,21,22] con-
tains the rotation R and also the translation t.

In our method, we used a pure rotation matrix to solve this problem by
enforcing the transformation matrix contains zero translation [20], which repre-
sented as:

min
R

n∑

i=1

Ψ(‖xLf − RxRf‖), s.t. RRT = 1,det(R) = 1, (4)
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where R is the desired pure rotation matrix, Ψ(·) is the Huber-Loss function
for robust estimation. By solving the above equation, a pure rotation matrix
that minimizes the registration errors between fusion of the two fisheye cameras.
Here, we adopt the Interior Point Optimization algorithm (IPO) to solve the
system.

Fusion of Perspective Camera onto Unit Sphere. A new method has been
proposed to fuse perspective image onto the unit sphere. A major difference
between perspective and spherical images is the existence of distortion which
deforms the object on the scene. The direct matching point from the perspective
is deficient to match the features on the unit sphere. This due to the characteristic
of unit spheres which has several levels of distortion. The projective distortion
parameters have been proposed to be added to the perspective image plane
before projecting onto the unit sphere.

P = K−1 · H · I,

⎡
⎣

x
y
1

⎤
⎦ = K−1 · H · I, (5)

where, H is a projective distortion parameter. K is a camera matrix. I is an
image frame. ⎡

⎣
x
y
1

⎤
⎦ =

⎡
⎣

fx δ υo

0 fy νo

0 0 1

⎤
⎦ ·
⎡
⎣

h11 h12 h13

h21 h22 h23

h31 h32 h33

⎤
⎦ ·
⎡
⎣

υ
ν
1

⎤
⎦ , (6)

the value x, y and ξ (ξ = 0 for the perspective camera) are replaced into mapping
function (in Eq. (2)) for projecting onto the unit sphere.

Fusion of Multi-camera Images. In our multi-camera setup, the fusion of
fisheye cameras alongside with the ZED camera based on a unified model rep-
resentation can be achieved in a similar manner.

Let xz and xLf be the feature correspondences (mapped from χz and χLf )
on a Unified Sphere. The fusion of the ZED camera and the fisheye camera can
be framed as a minimization problem of the feature correspondences on a unified
sphere, which is defined as:

argmin
R

n∑

i=1

Ψ
(∥∥xLf − xZ(R)

∥∥
2

)
, (7)

where Ψ(·) is the Loss function for the purpose of robust estimation, while

χ(θx,y,z) = R(θx,y,z)

⎡
⎣

xs . . . . xn
s

ys . . . . yn
s

zs . . . . zn
s

⎤
⎦ , (8)

stands for the registration of ZED camera sphere points to the left fisheye cam-
era (the reference), where R(θx,y,z) is the desired pure rotation matrix with
estimated rotation angles θx,y,z. This can be solved on a similar manner solving
Eq. (4), by applying an IPO algorithm.
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2.3 Epipolar Geometry of Omnidirectional Camera

The epipolar geometry for an omnidirectional camera has been studied [17] and
it was originally used as a model for catadioptric camera. The study was then
extended to the dioptric or fisheye camera system. Figure 5 shows the epipolar
geometry of fisheye camera. Lets consider the two positions of a fisheye camera
observed from point P in the space. The points P1 and P2 are the projection
point P onto the unit sphere image in two different fisheye’s positions. The points
P , P1, P2, O1 and O2 are coplanar, such that:

O1O2 × O2P1 · O2P2 = 0, O2
1 × P 2

1 · P2 = 0, (9)

where, O2
1 and P 2

1 are the coordinates of O1 and P1 in coordinate system O2.
The transformation between system X1, Y1, Z1 and X2, Y2, Z2 can be described
by rotation R and translation t. The transformation equations are:

O2
1 = R · O1 + t = t, P 2

1 = R · O1 + t, (10)

O2
1 is the pure translation. By substituting (10) in (9) we get:

P T
2 EP1 = 0, (11)

where E = [t]×R is the essential matrix which consists of rotation and transla-
tion. In order to estimate the essential matrix, the points correspondence pairs
on the fisheye images are stacked into the linear system, thus the overall epipolar
constraint becomes:

Uf = 0 , where U = [u1, u2, . . . , un]T , (12)

and ui and f are vectors constructed by stacking column of matrices Pi and E
respectively.

Pi = PiP
′T
i , (13)

E =

⎡
⎣

f1 f4 f7
f2 f5 f8
f3 f6 f9

⎤
⎦ . (14)

The essential matrix can be estimated with linear least square by solving Eqs.
(12) and (13), where P i

′ is the projected point which corresponds to P2 of the
Fig. 5, U is n × 9 matrix and f is 9 × 1 vector containing the 9 elements of E.
The initial estimated essential matrix is then utilized for the robust estimation
of essential matrix. An iterative reweighted least square method [15] is proposed
to re-estimate the essential matrix of omnivision camera. This assigns minimal
weight to the outliers and noisy correspondences. The weight assignment is per-
formed by the residual ri for each point.

ri = f1x
′
ixi +f4x

′
iyi +f7x

′
izi +f2xiy

′
i +f5yiy

′
i +f8y

′
izi +f3xiz

′
i +f6yiz

′
i +f9ziz

′
i, (15)

err → min
f

n∑
i=1

(
wSif

T ui

)2
, (16)
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Fig. 5. The diagram of epipolar geometry of fisheye camera for 3D reconstruction.

wSi =
1

∇ri
, where ri = (r2xi + r2yi + r2zi + r2xi′ + r2yi′ + r2zi′)

1
2 , (17)

where wSi is the weight (known as Sampson’s weighting) that will be assigned to
each set of corresponding point and ∇ri is the gradient; rxi and so on are the partial
derivatives found from Eq. (15), as rxi = f1x

′
i + f2y

′
i + f3y

′
i.

Once all the weights are computed, U matrix is updated as follow: U = WU .
where W is a diagonal matrix of the weights computed using Eq. (16). The essential

matrix is estimated at each step and forced to be of rank 2 in each iteration. The
procrustean approach is adopted here and singular value decomposition is used for this
purpose.

3 Experimental Results

3.1 Estimation of Intrinsic Parameters

The unknown parameters f1, f2, u0, v0 and ξ of fisheye cameras are estimated using the
camera calibration toolbox provided by Mei [23]. The fisheye images are projected onto
the unit sphere using the Inverse Mapping Function defined in Mei’s projection model.
Figure 6(a) shows the two dimension(2D) images from a fisheye camera is projected
onto the unit sphere.

3.2 Estimation of Extrinsic Parameters

Rigid Transformation Between Two Fisheyes Image. The overlapping fea-
tures are taken along the periphery on the left and right fisheye images. The selected
points are projected onto the unit sphere. The rigid 3D transformation matrix are
estimated using the selected overlapping features. The IPO algorithm is used to esti-
mate the rotation between the set of projected points. Figure 6(b) shows the set of
projected points (green-left fisheye and red-right fisheye) aren’t aligned. After using
IPO algorithm, the selected points are aligned together as shown in Fig. 6(c).

The rotation matrix is parameterized in terms of Euler angles and cost function
is developed that minimize the Euclidean distance between the reference (point pro-
jections of left camera image) and the three dimensional points from the right camera
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Fig. 6. (a) The 2D fisheye image is projected onto unit sphere. (b) The selected points
(green and red point) aren’t aligned together. (c) After use IPO algorithm, the green
and red points are aligned with their respective point. (Color figure online)

image. The transformation results using Singular Value Decomposition (SVD) though
are very close to pure rotation. It assumed that translation is also as a parameter to
align the set of points. Figure 7 shows the fusion result. The points on the hemispheres
that are beyond the zero plane are first eliminated. Then the transformation is applied
on the hemisphere of the right fisheye camera and the point matrices are concatenated
to get a full unit sphere.

Fig. 7. (a) The image from fisheye and ZED cameras are fused together. (b) The
fusion result after applying the projective distortion on the ZED image. Focusing to
the border between ZED and unit sphere, the ZED image is perfectly over-lapped on
the unit sphere.

Rigid Transformation Between a Fisheyes and ZED Camera. The same
procedures are used to estimate the transformation matrix between the image from
ZED camera and two hemispheres.

As shown in Fig. 7(a), the RGB images from ZED camera are overlapped onto the
unit sphere. It is also recovered the scale between the ZED and fisheye cameras.

The fusion has been enhanced by adding the projective distortion to the ZED
image. Figure 7(b) shows that the result is much better after handling the distortion
on the fisheye images.

3.3 Estimation the Three Dimensional Registration Error

The computation of registration error during mapping on the unit sphere is done to
prove the registration method. The Root Means Square Error (RMSE) is used to
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Fig. 8. The registration error estimation used three different methods. The images
sequences have been taken inside and outside of the building. The average registration
error using proposed method is 0.1612 (inside building) and 0.1812 (outside building).

calculate the error. The rigid 3D transformation matrix and parameter ξ which was
obtained from calibration are used to determine the residual error of the point pairs
registration on the unit sphere. Three methods have been compared:

1. IPO: Our method - The pure rotation estimated using feature matches and IPO
algorithm.

2. SVD: The transformation matrix is estimated using features matches with SVD
[21].

3. CNOC: Calibration Non Overlapping Cameras, Lébraly [19].

The image sequences were taken in several different environments. The feature
points were selected on the overlapping area. The same data set are used in all three
methods. Figure 8 shows that the proposed method has the lowest registration errors.

3.4 3D Reconstruction Using the Camera Rig

The goal of triangulation is to minimize the distance between the two lines toward
point P in 3D the space. This problem can be expressed as a least square problem.

min
a,b

‖aP1 − bRP2 − t‖ , (18)
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[
a∗

b∗

]
=
(
AT A

)−1

AT t, A = [P1 − RP2] , (19)

By referring to Fig. 5, looking from the first pose, point P , the line passing through O1

and P1 can be written as aP and the line passing through O2 and P2 can be written
as bRP2 + t, where a, b ∈ R, P is a world coordinate point. O1 and O2 are the camera
center for pose 1 and 2. P1 and P2 are the point P on the unit sphere at pose 1 and 2.
R and t are the rotation and translation between the two poses.

The 3D point P is reconstructed by finding the middle point of the minimal distance
between the two lines. It can be computed by;

Pk =
a∗P1 + b∗RP2 + t

2
, where , k = 1, 2, 3, 4 (20)

Figure 9 shows the features matching points. All the points are selected manually. For
the future works, an automated features matching points algorithm will be developed
using the existing features descriptor. Figure 10 shows the results of feature matching
and scene reconstruction algorithm developed following the spherical model of the
camera.

Fig. 9. The features matching points between two different poses of fisheye cameras

Fig. 10. The front view (left) and top view (right) of the three dimensional reconstruc-
tion scenes

4 Conclusions

This paper proposed a new camera system which has 360◦ FoV and detail depth infor-
mation at anterior. The two fisheye cameras each 180◦ FoV are placed back to back to
obtain 360◦ FoV. A stereo vison camera is placed perpendicular to obtain depth infor-
mation at anterior. A novel camera calibration method taking advantages the Unified
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Spherical Model has been introduced to calibrate multi camera system. A pure rota-
tion matrix based-on IPO algorithm has been used to fuse images from multi camera
setup by exploiting the overlapping area. The result are reduced the registration error
and enhance the quality of image fusion. The 3D reconstruction based on the spherical
representation has been estimated using the proposed system.
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19. Lébraly, P., Ait-Aider, O., Royer, E., et al.: Calibration of non-overlapping cameras-
application to vision-based robotics. In: BMVC, pp. 10.1-10.12 (2010)

20. Othmani, A.A., Jiang, C.: A novel computer-aided tree species identification
method based on burst wind segmentation of 3D bark textures. MVA 27(5), 751–
766 (2016)

https://www.stereolabs.com/documentation/overview/getting-started/introduction.html
https://www.stereolabs.com/documentation/overview/getting-started/introduction.html


506 A.Z. Jamaluddin et al.

21. Llourakis, M.I.A., Deriche, R.: Camera self-calibration using the singular value
decomposition of the fundamental matrix: from point correspondences to 3D mea-
surements. Ph.D. thesis. INRIA (1999)

22. Jamaluddin, A.Z., Mazhar, O., Morel, O., et al.: Design and calibration of an
omni-RGB + D camera. In: URAI, pp. 386–387. IEEE (2016)

23. Mei, C.: Active Vision Group. http://www.robots.ox.ac.uk/cmei/Toolbox.html.
Accessed 15 June 2017

http://www.robots.ox.ac.uk/cmei/Toolbox.html


A Matrix Decomposition Perspective
on Calibrated Photometric Stereo

Luca Magri1(B), Roberto Toldo2, Umberto Castellani1, and Andrea Fusiello3
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Abstract. Leveraging on recent advances in robust matrix decompo-
sition, we revisit Lambertian photometric stereo as a robust low-rank
matrix recovery problem with both missing and corrupted entries, tai-
loring Grasta and R-GoDec to normal surface estimation. A method to
automatically detect shadows is proposed. The performance of differ-
ent robust matrix completion techniques are analyzed on the challenging
DiLiGenT datasets.

Keywords: Calibrated photometric stereo · Robust matrix factoriza-
tion

1 Introduction

Robust matrix decomposition and completion has been an active research topic
in recent years, and many methods exploiting low rank and sparsity constraints
have sprouted out in several fields of applications, such as pattern recognition,
machine learning, and signal processing just to name a few. In this work, we
explore the performances of these techniques on calibrated Lambertian photo-
metric stereo [9], i.e. the problem of estimating the surface normals of an object
by observing several intensity images captured by a fixed camera under different
known lighting conditions. In particular, we offer an overview on robust matrix
decomposition methods tailored to photometric stereo – using for the fist time
Grasta and R-GoDec for this scope – and a quantitative experimental evalua-
tion on the recently proposed DiLiGenT dataset. A simple yet effective shadow
detection method is also presented.

Notation: Matrix will be indicated in sans serif font A = [ai
j ], the i-th row of A

is denoted by Ai, while the j-th column of A is indicated by Aj .

2 The Geometry of Single-Light Images

Let I ∈ R
p be an image composed by p pixels stacked by column. Following

[3], under Lambertian assumption the proprieties of interest of an object Y can
c© Springer International Publishing AG 2017
S. Battiato et al. (Eds.): ICIAP 2017, Part I, LNCS 10484, pp. 507–517, 2017.
https://doi.org/10.1007/978-3-319-68560-1_45
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be encoded in matrix form as diag(R)N� ∈ R
p×3, where R = (ρ1, . . . , ρp)� is

the vector of pixels albedos, and N = [N1, . . . ,Np] ∈ R
3×p collects the unitary

normals of the object. Thus the image of Y illuminated by a distant point-light
source L ∈ R

3, is given by:

I = max(diag(R)N�L, 0). (1)

Varying L, one obtains the so-called illumination space of Y defined as L = {I :
I = diag(R)NL : L ∈ R

3} ⊂ R
p. Clearly dim(L) = rank(N�L) ≤ 3, therefore, if

the normals span R
3, the dimension of L is 3.

Belhumeur and Kriegman also observe that L intersect at most1 p(p− 1)+2
orthants of Rp. Let L0 = L ∩ R

p
+, where R

p
+ = {x ∈ R

p : xi > 0∀i}, and Li be
the intersection of L with the other orthants. By construction, Li are convex
cones, and correspond to different shading configuration of pixels. As instance,
L0 corresponds to images having all the pixels illuminated by a lighting source.
The space of all possible images of Y is obtained by adding to L0 the images
where not all the pixels are simultaneously illuminated, i.e. the projection of
the cones Li, i �= 0, on the boundary of R

p
+ via the map P : I �→ max(I, 0).

Therefore, the space of all the images of a convex Lambertian object, varying
the direction of a single light source is given by the union of at most p(p−1)+2
convex cones.

ν(ν−1)+2⋃

i=0

P (Li). (2)

Experimentally, it was demonstrated that this union of cones is “flat” and can
be approximated by a linear subspace of dimension 3.

3 Robust Matrix Completion and Decomposition

The linear property of light superposition inspired the use of matrix completion
and robust decomposition techniques to tackle the photometric stereo prob-
lem [10,11]. Given f images of the same object organized as a p × f matrix
X = [I1, . . . , If ], with images stacked as columns, the main intuition is to recover
the illumination space as a low-rank matrix A that models the diffusive Lam-
bertian observations, and to handle the non-Lambertian measurements as out-
liers. In particular, shadows, i.e. pixels outside L0, are treated as missing entries,
whereas a sparse error matrix S accounts for the corruptions produced by strong
specularities (highlights).

More formally, the image formation model can be rephrased as

X = PΩ(A) + S (3)

where A = diag(R)N�L is low rank, L = [L1, . . . , Lf ] collects the known light
source vectors, Ω = {(i, j) : where N�L is nonzero} is the set of observed
1 More precisely, L intersects ν(ν − 1) + 2 orthants, where ν is the number of distinct

normal in B.
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Radiance at p pixels 
in f images albedo lights

directionsnormals

= +

Radiance at p pixels 
in f images albedo

lights
directionsnormals

=

shadow highlights

X N� L V SN� LX

Fig. 1. The factorization of the intensities of an ideal Lambertian object (left), the
same factorization in presence of shadow and highlights

entries, PΩ indicates a linear projection of matrices defined component-wise as
[PΩ(A)]ij = Ai

j if (i, j) ∈ Ω and 0 otherwise, and S is the matrix of sparse error.
A graphical representation of this model is depicted in Fig. 1, where the opera-
tor PΩ – which is the matrix counterpart of the projection P onto the positive
orthant – is represented in an equivalent fashion as the Hadamard (element-wise)
product between A and a matrix V defined component-wise as

Vi
j =

{
1 if (i, j) ∈ Ω,

0 otherwise.
(4)

In this way, photometric stereo becomes the problem of recovering a low-
rank matrix with both missing entries – the shadows – and corrupted entries
corresponding the unmodelled phenomena (e.g., non Lambertian). The rank of
A may vary according to the image formation model adopted, and for Lambertian
photometric stereo rank(A) = 3. Once the low rank matrix have been recovered,
in the calibrated scenario, the normals can be easily estimated in closed form by
normalizing the row of L+A, where L+ denotes the pseudo-inverse of L.

Decomposition into low-rank and sparse matrices has been developed in dif-
ferent formulation problems, hereinafter, we briefly review some of them that
can be profitably adopted to tackle the Problem (3), namely: Robust Principal
Component Analysis and L1-ALM (that have already been tailored to photo-
metric stereo problem), together with Grasta and R-GoDec that we are going to
apply to this scenario for the first time.

Robust Principal Component Analysis (RPCA) decomposes X into a low rank
and sparse terms, without being given rank(A). The cost function is:

arg min
A,S

rank(A) + λ‖S‖0 s.t. X = PΩ(A) + S. (5)

Unfortunately this problem turns to be intractable, therefore, instead of directly
minimizing the discontinuous rank function and the �0 norm, the above objective
function is relaxed to its convex surrogate; the rank of A is replaced with the
nuclear norm ‖A‖∗ – i.e. the sum of the singular values of A – and the �0 norm
is substituted for the �1 norm:

arg min
A,S

‖A‖∗ + λ‖S‖1 s.t. X = PΩ(A) + S. (6)
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Several technique can be used to minimize Eq. (6); in [10], e.g., an adaptation of
the augmented Lagrange multiplier method is used.

L1-ALM [11] proposes to find a solution to Problem (3) by enforcing exactly
the low rank constraint rank(A) = r, and leverages on the factorization of the
matrix A = HK as the product of a p × r matrix H and a r × f matrix K. As the
factorization is defined up to an invertible matrix, in order to shrink the solution
space, the matrix H is enforced to be column-orthogonal, i.e. H�H = Ir, where
Ir denotes the r × r identity matrix. The objective L1-ALM tries to minimize is

arg min
H,K

‖PΩ(X − HK)‖1 + λ‖K‖∗ s.t. H�H = Ir. (7)

where PΩ(X − HK) is the �1 norm of the sparse error matrix S = X − PΩ(A)
and ‖K‖∗ = ‖HK‖∗ = ‖A‖∗ is a trace-norm regularization term, which, due to
the orthogonality of H, is equivalent to the nuclear norm of A. This optimization
problem is resolved via inexact augmented Lagrange multiplier and Gauss-Seidel
iterations.

Grassmannian Robust Adaptive Subspace Tracking Algorithm (Grasta) [5] is an
online robust subspace tracking algorithm, that works in the presence of cor-
rupted and missing data. Given a sequence of incomplete vectors {v1, . . . , vt}
that lie on a r-dimensional subspace, Grasta estimates this subspace, by min-
imizing the �1 error between the recovered subspace and the observed partial
vector. This formulation can be casted to the problem of Eq. (3) as

min
S

‖S‖1 s.t.X = PΩ(HK) + S (8)

where, similarly to Eq. (7), A is expressed as the product of two factors H,K,
the first being an element of the Grassmanian Manifold G(r, p). The problem
is iteratively solved for H and K separately: fixed H, K is update via ADMM,
whereas, when K is fixed, H is updated performing incremental gradient descent
on the Grassmanian manifold. Even if the partial measurements of the matrix X
are required to be exactly fixed, nevertheless, in practice, it was demonstrated
that the algorithm is robust to small non sparse additive noise.

Robust Go Decomposition (R-GoDec) [2] proposes a robust approximate matrix
completion and decomposition technique that improves GoDec [12]. An addi-
tional sparse term S′ that has support on ΩC – the complementary of Ω – is
introduced to account for missing entries. In addition small sparse noise E is
explicitly introduced in the decomposition:

X = A + S + S′ + E. (9)

The corresponding minimization problem is

arg min
A,S

‖X − A − S − S′ ‖2F (10)

such that rank(A) ≤ r, S is sparse and S′ has support in ΩC . This problem
is solved using a block-coordinate minimization scheme. At first, the rank-r
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projection of the incomplete matrix given in input is computed through Bilateral
Random Projection – faster than SVD – and assigned to A. Then, the two sparse
terms S and S′ are updated separately. The outlier term S is computed via soft-
thresholding operator, and S′ is updated as −PΩC (A).

4 Detecting Shadows

This section is aimed at estimating the set ΩC of shadowed pixels, in order to
treat them as missing data and to reduce their influence in the low-rank matrix
recovery. For this purpose, it becomes necessary to reason about the visibility of
light source with respect to each image pixel in order to recognize which lights
shine on which points and to discard the pixels in shadow.

To this end, a commonly employed solution is intensity-based thresholding:
Pixels whose intensity lies below a certain threshold are considered in shadow.
While this heuristic in some cases is enough to recover the light-visibility infor-
mation, in general, the intensity of individual pixels depends on the variations
of the unknown albedo of the object, thus, the brightness alone turns to be an
unreliable cue.

In order to overcome this pitfall, other techniques have been proposed. For
example, [4] adopts a graph cuts based method to estimate light visibility in
a Markov Random Field formulation, where a per-pixels error, based on pho-
tometric stereo, is balanced by a smoothness constraints on shadows, aimed
at promoting spatial coherence. Sunkavalli et al. in [8] avoid to enforce spatial
coherence on shadows and present a method that works both in the calibrated
and uncalibrated scenario leveraging on subspace clustering. Pixels sharing the
same visibility configuration lie on linear subspaces, termed visibility subspaces,
that are extracted using Sequential Ransac. Once these subspaces are recov-
ered and the object surface is segmented accordingly, the set of lights that shine
on each region are identified analysing the magnitude of the subspace lighting
obtained via SVD.

The visibility information can be encoded in the n × f visibility matrix V
defined as in Eq. (4). Each row of V can be seen as the indicator function of the
subset of lights visible by each pixel.

In our calibrated scenario, we want to recover V given the intensity matrix X
and the lighting directions L. To this end, assuming that there are at leas f ≥ 4
images, we propose a simple approach based on Lmeds [6].

The main idea is to approximate at first the space of the possible visibility
configuration by randomly sampling triplets ω of lights. Fixed a pixel i, a ten-
tative normal vector is estimated via least square regression for every lighting
triplets. Hence, the normal N̂i which minimise the median of squared residuals
is retained as a solution. By scrutinising the residual vector Ii − max(0, N̂�

i L), a
binary weighting vector wi is defined setting its j-th entry equals 1, if the j-th
error is smaller of 2.5σ̂, and 0 otherwise, where σ̂ is a robust estimate of the
variance of the per pixels residuals defined by:

σ̂ = 1.4826(1 + 5/(f − 3))
√

median r2ω̂ (11)
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At the end, the normal estimate N̂i is refined using iteratively reweighted least
squares (IRLS) on the set of lights {Lj : wj

i = 1}.
The matrix W = [w1, . . . , wp]�, composed by the weight-vectors arranged by

row, could be used as a proxy for the visibility matrix, however here we take
light directions into account, and we obtain a visibility matrix V̂ setting:

V̂i
j =

{
1 if N̂�

i Lj > 0,

0 otherwise.
(12)

5 Evaluation the DiLiGenT Dataset

The methods presented in the previous section are here challenged on the
Directional Lightings, objects of General reflectance, and ground T ruth shapes
datasets (DiLiGenT) [7], a recently proposed benchmark of ten objects shown
in Fig. 2.
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d̂

Fig. 2. The ten object of the DiLiGenT datasets with the respective d̂ index.

This collection offers a great variety in terms of materials, appearances,
geometries and type of deviations from the Lambertian model – from sparse
specular spikes to broad specular lobes. This miscellany of non-diffusive phe-
nomena can be captured analyzing the behavior of the index
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ground-truth shadow mask lmeds shadow mask sunkavalli shadow mask 

ground truth lmeds visibility subspace ground truth lmeds visibility subspace

ball pot1

Fig. 3. Example of visibility masks on the ball and on the pot1 dataset. Visibility
patterns are color coded: same colors correspond to the same shadowing configurations.
(Color figure online)

d̂ = min
d

{∑f
i=d+1 σ2

i∑f
i=1 σ2

i

< τ

}
(13)

with respect to τ which represents the smallest number such that the fraction
of information discarded by the corresponding rank approximation is less than
a threshold τ : the last three objects are the ones that deviates more from the
rank-3 Lambertian approximation.

Visibility Mask. Sample results attained by this method on the DiLiGenT
dataset are shown in Fig. 3, where it can be appreciated that V̂ well approximates
the ground truth visibility – computed as in Eq. 4 using the ground truth nor-
mals. As a reference, we also compare the Lmeds approach with the one based
on visibility subspace [8]. Some differences can be pointed out. First, the extrac-
tion of visibility subspaces requires two parameters, namely the inlier threshold
of Ransac and a threshold on the magnitude of light. The inlier threshold is not
always an educated guess, as the subspace estimation may be strained by the
presence of highlighted pixels whose intensity profiles follow a different distribu-
tion with respect to shadowed points. Lmeds, on the contrary, is parameter-free
and avoids this difficulties.

Second, Lmeds estimates the visibility configuration locally per pixels, vis-
ibility subspace, on the other hand, are estimated globally and pixels that lie
in the intersections of multiple subspaces are not properly handled. Third, the
random sampling performed to extract the visibility subspace acts on pixels,
therefore the dimension of possible samples is

(
p
3

)
, which, as usually p > f is

higher than the upper bound on the number of samples of Lmeds
(
f
3

)
. Finally,

Lmeds procedure can be parallelized in a straightforward way.
The visibility masks estimated by Lmeds are fed to the matrix completion

algorithms to reduce the influence of shadowed pixels on the low rank estimation
step.

Normal Estimation. We randomly chose 9 different lighting configurations
for each dataset, and we compare the estimated normals with the ground truth
ones, averaging the results on 10 trials per dataset. The rank was fixed to 3 for
Grasta and R-GoDec, and the regualarization parameter to λ = 1/

√
p, whereas

for L1-ALM we used λ = 10−3 as suggested in the authors implementation [1].
The performances of the matrix factorization methods are recorded in Table 1
where the mean, the median and the standard deviation of angular errors were
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Table 1. Angular error on the DiLiGenT dataset

Least Square Lmeds RPCA L1-ALM Grasta R-Godec

mean med std mean med std mean med std mean med std mean med std mean med std

ball 4.38 2.53 0.74 3.59 2.40 0.86 5.23 3.77 0.53 5.20 2.53 0.87 2.70 2.28 0.92 2.86 2.35 0.80

cat 9.09 6.78 0.67 8.50 6.45 0.84 10.05 7.28 1.22 10.85 7.64 6.39 8.24 6.23 1.27 8.24 6.28 1.24

pot1 9.46 6.83 0.70 8.93 6.43 0.93 9.33 6.68 0.93 9.41 6.69 0.99 8.69 6.11 0.95 8.87 6.43 0.87

bear 10.49 8.16 1.15 9.90 7.77 1.21 10.13 8.28 0.99 10.32 8.08 1.31 9.39 7.50 1.50 9.36 7.55 1.48

pot2 15.89 12.02 1.12 15.46 11.35 1.13 12.37 10.21 0.88 15.88 11.77 1.03 15.38 10.88 1.05 15.57 11.41 1.10

buddha 15.45 10.25 0.87 14.34 9.46 1.00 15.37 10.96 1.30 14.28 9.33 1.35 14.37 9.20 1.39 14.19 9.24 1.28

goblet 19.43 15.72 0.71 18.65 14.76 0.75 17.26 13.96 0.91 20.82 16.21 5.51 18.43 14.03 0.81 18.39 14.05 0.83

reading 20.20 12.55 1.48 18.16 10.84 1.36 23.12 19.79 0.92 29.44 21.62 7.33 37.08 33.77 4.04 19.38 12.17 1.57

cow 26.48 26.87 0.75 25.63 25.75 0.84 15.00 13.95 1.37 33.02 28.16 8.78 31.83 31.15 2.43 26.66 26.58 0.61

harvest 31.19 25.59 0.61 30.34 24.16 0.59 27.74 22.37 1.61 35.75 29.57 3.18 33.88 27.59 2.55 32.31 24.73 0.96

reported for each method. As a reference we also detailed the errors attained by
Least Square and Lmeds. When the accuracy of a method is worse than Least
Square, we colored the corresponding cell with gray. Other colors are used to
highlights the best results achieving the minimum error.

Grasta performed well on those datasets that manifest a clear diffusive
component corrupted by local and sparse non-Lamberitan effects, whereas it
worsened the results of Least Square estimation with respect to the last three
sequences.

On the contrary RPCA achieved less accurate results on the first sequences
and performed better on those challenging datasets characterized by board spec-
ularity and complex BRDF (pot2, goblet,cow and harvest have a metal appear-
ance). R-GoDec behavior is similar to Grasta as can be sensed, looking at Fig. 4
– where the mean angular error is plotted for each sequence of the dataset.

Sample results of attained normals are shown in Fig. 5. One can also note
that Lmeds always improved the performance of LS.

ball cat pot1 bear pot2 buddha goblet reading cow harvest

m
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gu
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LS
LMEDS
RPCA
L1 alm
Grasta
R-GoDec

Fig. 4. Mean angular error on the diligent dataset (9 images, average on 10 trials)

Regularization Parameter. We recall that λ is a weighting parameter that is
used by L1-ALM, R-GoDec and RPCA to balance between the low-rank and the
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Fig. 5. Sample normal maps obtained on cat, buddha and harvest.

sparsity terms. In all the above experiments, this parameter was fixed. However,
with better choice, it is possible to correct larger amount of outliers, enhancing
the performance of the algorithms. Here we demonstrated the effect of λ on L1-
ALM, R-GoDec and RPCA with respect to different number of input images we
performed normal estimation on 4, 6, 12, 18, 24, 30, 36 randomly drawn images
using C 1√

p with C ∈ {0.05, 0.1, 0.2, 0.4, 0.8, 1, 1.2, 1.4, 1.6}. The corresponding
mean angular errors are shown in Fig. 6, where it can be appreciated that L1-
ALM and R-Godec benefit of the prior knowledge of rank being less sensitive to
the number of images and the choice of λ. The minimum mean angular error per
each datasets are reported in Table 2, where, for completeness, we also added the
performance of Grasta varying only the number of images (λ is not required).

Table 2. Minimum mean error in degree varying λ and the number of images

ball cat pot1 bear pot2 buddha goblet reading cow harvest mean median

RPCA 2.68 7.41 7.42 6.38 10.40 11.99 14.56 15.04 10.80 25.58 11.23 10.60

L1-ALM 2.11 7.14 7.89 6.10 12.74 12.41 16.65 14.30 24.09 29.49 13.29 12.58

Grasta 2.11 7.13 7.95 6.11 12.78 12.45 16.64 20.81 25.03 29.60 14.06 12.61

R-godec 2.11 7.08 7.90 6.09 12.74 12.41 16.65 14.29 23.96 29.51 13.27 12.58
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Fig. 6. Average angular error on the whole DiLiGenT dataset varying the number of
images and the regularization parameter λ. (the scale of the colorbar is different for
each methods) (Color figure online)

Distribution of Light Directions. In this experiment, we studied the effects
of the distribution of light sources. We considered three different light configu-
rations depicted in Fig. 7b: (A) 9 lights are randomly selected; (B) we choose
a central light and the reaming 8 are those maximizing their distance from it;
(C) we select 9 neighboring light sources. We run all the methods on the ball
dataset, which is the only convex object and therefore results are less affected
by the actual light orientations.

The summary of the experiment is that Grasta and R-GoDec preferred ran-
dom and spread distribution, whereas RPCA and L1-ALM take advantage of
the redundancy provided by the dense configuration.

Fig. 7. Varying the light configurations on the ball dataset

6 Conclusion

In this work, we tackle the problem of photometric stereo leveraging on robust
matrix factorization techniques. We showed that the proposed shadow estima-
tion based on Lmeds is able to produce accurate results, that, in turn, can
be profitably fed to matrix completion algorithms. Experiments on a challeng-
ing datasets demonstrate that, if the object of interest is mostly Lambertian
with strong and sparse non diffusive phenomena, it is advisable to adopt matrix
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approximation method with fixed rank. In this situation Grasta, followed by
R-GoDec, performs better than L1-ALM. On the other side, if one is interested
in recovering the normals of a surface that does not exhibit a strong diffusive
behavior, all the methods suffer of low precision, but RPCA attains the more
accurate results.
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Abstract. In this paper, we present a 3D reconstruction and enhance-
ment approach for high quality dynamic city scene reconstructions. We
first detect and segment the moving objects using 3D Motion Segmenta-
tion approach by exploiting the feature trajectories’ behaviours. Getting
the segmentations of both the dynamic scene parts and the static scene
parts, we propose an efficient point cloud registration approach which
takes the advantages of 3-point RANSAC and Iterative Closest Points
algorithms to produce precise point cloud alignment. Furthermore, we
proposed a point cloud smoothing and texture mapping framework to
enhance the results of reconstructions for both the static and the dynamic
scene parts. The proposed algorithms are evaluated using the real-world
challenging KITTI dataset with very satisfactory results.

Keywords: 3D reconstruction · 3D scene enhancement · Motion
segmentation · Point cloud registration

1 Introduction

For the past decades, 3D scene reconstruction has been widely studied due to
the need of many applications, such as city map modelling [1], robot navigation
[2], autonomous driving [3], etc. Among numerous works in this context, the
most representative approaches are: structure-from-motion of image sequence
[4], RGB-D data fusion [5], and laser scans registration [6]. These approaches
make use of the common assumptions that the environments are mostly static
or contain very few moving objects. However, such assumptions do not hold for
many practical scenarios, such as crowed campus and markets.

To address the problem of 3D reconstruction of dynamic environments, in
our previous works [7,8], we proposed to detect and extract the moving objects
prior to the scene reconstruction using a 2D-3D (RGB camera + 3D laser scan-
ner) mobile camera system. Followed by, the static parts of the scene and the
dynamic parts of the scene are independently reconstructed using a 3-point Ran-
dom Sample Consensus (RANSAC) registration approach. Consequently, high
quality static map and rigidly moving object reconstructions are achieved from
c© Springer International Publishing AG 2017
S. Battiato et al. (Eds.): ICIAP 2017, Part I, LNCS 10484, pp. 518–529, 2017.
https://doi.org/10.1007/978-3-319-68560-1_46
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highly dynamic environments. Since the 3-point RANSAC algorithm estimate
the 3D-to-3D rigid transformation between two corresponding point sets, the
accuracy of registration highly relies on the quality of corresponding sets. The
3D-to-3D feature correspondences are established by the tracking of their asso-
ciated 2D (image) features which is sensitive to noise, as detailed in Sect. 4 [7].
Moreover, point cloud registration from long term observations inherently suf-
fers from multi-layered problem due to the multiple scans of the same area. This
problem can largely decrease the quality of the registration while increase the
memory consumption. Building on top of [7,9], in this work, we propose a more
robust and effective algorithm, call Dual-Weighted Iterative Closest Point (DW-
ICP) algorithm, and a 3D reconstruction enhancement framework is presented
to produce photographic quality results of real outdoor scenes.

Point Cloud Registration: Iterative Closest Point (ICP) is one of the most
commonly used algorithm due to its simplicity and robustness. However, the
convergence of ICP algorithm requires a good initialization and rich geomet-
ric structures of the point clouds. For instance, ICP registration of two planar
objects can easily fall into a local minimum. To overcome these problems, we
exploit that an initialization using 3-point RANSAC registration algorithm is
very effective. Moreover, a DW-ICP algorithm is introduced to iteratively esti-
mate the rigid transformation by assigning different weights to the RANSAC
inlier point pairs and the ICP correspondences, as detailed in Sect. 4.

3D Reconstruction Enhancement: Due to the measurement noise of data,
the 3D registration from multiple observations has multi-layered artefacts. To
address this problem, we employ a 3D Thin Plane Spline algorithm which
smooths the object surface to a single layer. Furthermore, a ball pivoting surface
triangulation approach is applied to construct 3D meshes of the smoothed point
clouds. Finally, the textures of the 3D meshes are mapped and refined using
mutual information, as detailed in Sect. 5.

2 Related Work

State-of-the-art methods in 3D point cloud registration are categorized as: ICP-
based point cloud alignment [10–12], RANSAC-based [1,7,13,14] point cloud
registration, and volumetric representation-based point cloud fusion [5,15,16].
ICP-based methods are generally robust and accurate without prior knowledge
of point-to-point correspondences. However, when the geometric structure of the
point cloud is low, ICP registration yields to an ill-posed problem. RANSAC-
based approaches are robust and efficient while they require sufficient number of
precise 3D-to-3D matching pairs (at least 50% of them are inliers). Volumetric
representation-based algorithms utilize the Signed Distance Function to describe
the object surface using RGB-D camera. These methods work well for dense point
cloud registration of large scene, but they suffer from over-smoothing problems.
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3 Dynamic Scene 3D Reconstruction

In this section, we briefly revisit the principles of 3D reconstruction of dynamic
scenes using 3D-based Sparse Subspace Clustering (3D-SSC) algorithm, see
Fig. 1 Red Block. Given a mobile 2D-3D camera system, i.e. a car equipped
with a 2D camera and a 3D laser scanner, our objective is to detect and
extract the moving objects from a point cloud sequence, which yields to solve a
Motion Segmentation (MS) problem. For this purpose, the 3D-SSC analyses the
motion behaviours of the feature trajectories and segments them into indepen-
dent motions. The principle of 3D-SSC is to construct an affinity matrix which
encodes the similarity between the feature trajectories, followed by a spectral
clustering algorithm to group the trajectories into their corresponding motion
subspaces.

Fig. 1. Dynamic scene 3D reconstruction and enhancement framework: red block seg-
ments the point cloud into the dynamic and the static scene parts. Green block registers
the point cloud sequence using our DW-ICP algorithm. Blue block refines the registered
point cloud, followed by the texture mapping. (Color figure online)

Let X = [x1, · · · ,xF ]T be a vectorized 3D feature trajectory of F frames,
where xi = [x, y, z] ∈ IR3 is a 3D feature point at frame i. Let X = [X1, · · · ,XP ]
be the assembly of P feature trajectories belonging to k different motions. Note
that each independent motion determines a unique subspace. An element can
be approximated by the linear combination of other elements from the same
subspace, so called self-representation property. The self-representation model
of MS problem is defined as a minimization problem:

min‖C‖1,1 s.t. X = XC, diag(C) = 0, (1)

whereC = [C1, · · · ,CP ] is a square-sized sparse permutation matrix, and operator
‖ · ‖1,1 denotes the l1−norm of each column of C. The diagonal elements diag(C)
of C are constrained as zeros to avoid the trivial solution, so that Xi cannot be
used to represent Xi itself. More specifically, the sparse vector Ci ∈ IRP contains
a few of non-zero elements such that Xi = XCi. The sparsity of Ci constrains
that the least number of closest feature trajectories are selected, which contributes
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to its robustness to noise and outliers. By minimizing Eq. (1), the desired sparse
permutation matrix C∗ is obtained. Afterwards, a symmetric affinity matrix
A = |C∗|+|C∗|T is constructed to perform K-means spectral clustering to separate
the k independent motion subspaces. More details refer to [7].

4 Robust Point Cloud Registration

Point cloud registration from long term observations is a challenging problem.
To tackle, we formulate an optimization problem that jointly minimizes both
the feature matching energy and the nearest neighbour energy.

4.1 3-Point RANSAC Registration

Given a set of correspondences between two 3D point clouds, the rigid transfor-
mation parameters, i.e. R and t, can be estimated by solving a linear system. Let
x = [x, y, z]T and y = [x′, y′, z′]T be two corresponding points under rigid trans-
formation, denoted as x = Ry+ t. In which, R is a 3× 3 rotation matrix and t is
a 3 × 1 translation vector. Let g = [gx, gy, gz]

T be the Gibbs representation [17]
of the rotation matrix R, we have R = (I3 + G)−1(I3 − G), where G = [g]× is the
skew-symmetric matrix form of g and I3 is a 3 × 3 identity matrix.

By employing the Gibbs representation and the Cayley transform [18], the
3D registration problem is formulated as follow:

[−[x + y]× I3
]
[
g
t̃

]
= x − y, (2)

where [·]× denotes the skew-symmetric form of a vector and t̃ = (I3 + G)t. Since
each matching pair provides 2 independent equations, solving the 6 unknowns of
Eq. (2) requires minimum 3 pairs of correspondences. For the sake of robustness
to outliers, a RANSAC [19] framework is adopted, so called 3-Point RANSAC
registration. The 3-point RANSAC point cloud registration algorithm is efficient
and robust to outliers. However, in the presence of inaccurate correspondences,
the quality of RANSAC registration is usually not very satisfactory. Therefore,
we further propose to refine the registration by minimizing a dual-weighted
closet-point energy taking into account both the RANSAC inlier matches as
well as the full 3D point clouds.

4.2 Robust ICP Registration

When two overlapping point clouds of the same rigid object are given, the trans-
formation between them is generally obtained by minimizing the energy derived
from the closest-points distance. In most of the cases, this energy is minimized
using an iterative method – also known as Iterative Closest Point (ICP) algo-
rithm [20]. In each iteration, the ICP algorithm considers the closest points
across two point clouds, say the reference and the model, as the corresponding
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ones. Let X = {x1, · · · ,xn} be the reference point cloud, and Y = {y1, · · · ,ym}
be the new model, the robust method of ICP iteratively minimizes the following
energy:

EI(T̂) = min
T

n∑

i=1

ρ( min
j∈{1,··· ,m}

‖xi − Tyj‖2), (3)

where T̂ is the desired transformation matrix that relates the two point clouds.
Note that the energy term EI includes a robust cost function to handle noisy
and partial data. Our choice of robust cost, say ρ(x), is the Tukey’s biweight
function [21]:

ρ(x) =
{

(τ2/6)(1 − [1 − (x/τ)2]3) if |x| ≤ τ
(τ2/6) if |x| > τ

, (4)

and the weight of each corresponding pair is defined by:

w(x) =
1
x

dρ(x)
dx

=
{

[1 − (x/τ)2]2 if |x| ≤ τ
0 if |x| > τ

, (5)

where τ is the inlier threshold, such that outliers (|x| > τ) are assigned with
zero weights.

4.3 Dual-Weighted ICP Registration

While consensus-based registration method requires a subset of accurate cor-
respondences, closest-point-based method requires rich structure of the point
clouds. These prohibit us to make a choice of one method over another. There-
fore, we propose to minimize a combined energy function – one from consensus,
say ER, and the other from closest-point, say EI . We minimize the joint energy
function in an iterative manner, named as dual-weighted ICP.

First, we define an energy function that measures the quality of the inlier set
obtained from 3-point RANSAC. Note that due to the sparsity and noise, the
inlier set obtained from RANSAC is not precise. Let {xi ↔ yi}, i = 1, . . . , k be
the inlier correspondence set, the energy ER for matching consensus is expressed
as:

ER(T̂) = min
T

k∑

i=1

ρ̃(‖xi − Tyi‖2), (6)

where k ≤ m,n, and ρ̃(x) is the Huber’s weight function denoted as:

ρ̃(x) =
{

(x2/2) if |x| ≤ τ̃
τ̃ [|x| − (τ̃ /2)] if |x| > τ̃

, (7)

w̃(x) =
1
x

dρ̃(x)
dx

=
{

1 if |x| ≤ τ̃
(τ̃ /|x|) if |x| > τ̃

, (8)

where τ̃ is the threshold for inlier matches. The Huber loss function is selected
under the assumption that the provided inlier set is noisy without severe outlier



Dynamic 3D Scene Reconstruction and Enhancement 523

that needs to be completely discarded. In the spirit of Eqs. (3) and (6), we
formulate our combined energy function as follows:

E(T̂) = min
T̂

⎧
⎨

⎩
α

√√
√
√ 1

n

n∑

i=1

ρ( min
j∈{1,··· ,m}

‖xi − Tyj‖2) +

(1 − α)

√√
√
√1

k

k∑

i=1

ρ̃(‖yi − Tyi‖2)
⎫
⎬

⎭
,

(9)

where α is the regularization term to control the influence of the EI and ER energy
terms. Rather than optimizing the closest-point energy EI or matching consensus
energy ER independently, the DW-ICP aims to iteratively and simultaneously
optimize the joint energy E of Eq. (9).

4.4 Discussions

As summarized in Fig. 1 Green Block, our algorithm takes the 3-Point RANSAC
registration as initialization. Afterwards, the DW-ICP is applied to refine the
registration. Note that (also refer to Eq. (9)) the DW-ICP iteratively minimizes
the combined energy of ER and EI . On the one hand, EI minimizes the overall
registration error of the whole 3D point clouds. On the other hand, ER minimizes
the registration error of the inliers obtained form RANSAC. These two terms
are usually complementary to each other, which is the key to the success of
the proposed optimization framework. On top of the traditional ICP, there are
two main advantages of our DW-ICP: (a) Feature matching constraint promises
a proper registration regardless of the poor geometry structures of the point
clouds. (b) Robust estimation framework is preserved such that the algorithm is
generic and robust to outliers during a long term registration.

5 3D Reconstruction Enhancement

A complete pipeline for 3D reconstruction refinement is introduced to produce
photo-realistic high quality 3D models, as shown in Fig. 1 Blue Block. There are
three major steps involved, namely Moving Least Square (MLS) [22] point cloud
smoothing, Surface Reconstruction [23], and Weighted Blend Texture Mapping
[24]. Figure 2 depicts the evolutions of a car object from raw registered point
cloud to high quality textured mesh.

Fig. 2. Illustration of 3D reconstruction enhancement: from left to right are raw reg-
istration, smoothed point cloud, surface reconstruction, textured mesh in side view,
back view and top view, respectively.
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Point Cloud Smoothing: The registered point cloud from long term obser-
vation suffers from outliers and multi-layered effects due to the measurement
noise and imperfect registrations. Surface reconstruction using such point cloud
suffers from many visual artefacts, such as spiky surfaces and holes. Therefore, a
MLS algorithm, which smooths an unorganized point could using a polynomial
fitting, is applied due to its simplicity and effectiveness.

Surface Reconstruction: To avoid the redundant (overlapped) points caused
by multiple observations, a sub-sampling processing is performed based on the
points’ poisson-disk distribution [25]. Later on, a Ball Pivoting triangulation
(or Poisson triangulation) algorithm is utilized to establish the neighbour-points
relationships, followed by a dilation operation for hole closing. The Taubin Sur-
face Smoothing [26] method is adopted to smooth the reconstructed surface while
preserving the sharp edges. Finally, a Least Square Subdivision approach [27] is
performed to refine and produce high quality meshes.

Texture Mapping: We make use of the 2D images for texture mapping. During
this process, photographic alignment between the 3D mesh and the 2D images
are required. Since the 2D-3D camera system is calibrated, and the motion of
the camera is known, all the images are aligned with respect to the mesh recon-
structed frame. The camera poses (between the cameras and the reconstructed
mesh) are estimated by computing the inverse of the transformation matrices
(obtained from registration) and using the camera calibration parameters. Fur-
thermore, the blurring effect during the texture fusion from multiple images is
reduced by using a Weighted Blending algorithm.

6 Experiments

We conducted experiments on both synthetic and real data (KITTI benchmark
[28]). Since there is no ground truth data available for 3D reconstruction quan-
tification, we generated three sets of synthetic data to quantify the robustness
and accuracy of the proposed algorithms. Qualitative results of the proposed
framework is presented using real data. All the experiments are conducted in a
computer with Intel Quad Core i7-2640M, 2.80 GHz, 8 GB Memory. The algo-
rithm parameters were set as: α = 0.8, τ = 0.08 m, τ̃ = 0.03 m, rotation tolerance
εR = 10e−6, translation tolerance εT = 10e−6, and max iteration as 100.

Synthetic Datasets: The synthetic datasets were generated from three differ-
ent objects, namely the Van, Red Car, and Cola Truck, see Fig. 4 for example.
We simulate the motion behaviours the rigidly moving objects with smooth rota-
tion and translation of 100 frames. Practical scenarios, such as partial overlaps,
occlusions, and poor 3D geometric structures, are also taken into consideration.
We applied 10 different levels of Gaussian noise, from 0.005 to 0.050 in meters.
The maximum noise level is chosen as 2.5 times higher than the expected accu-
racy (0.02 m) of the Velodyne laser scanner. We compare the performances of
the algorithms using the averaged absolute rotation and translation errors.
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Fig. 3. High quality 3D reconstruction comparison: row 1 are selected images. Row
2 is the 3D reconstruction using [7]. Row 3 is the 3D reconstruction of the proposed
method, which is more accurate than [7]. Last row is the textured reconstructed 3D
mesh of static scene parts, where details of small objects are lost as shown in the
zoom-in region.
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Fig. 4. Synthetic Van object with left, back and right side views.

Figure 5 shows the performances of 4 different algorithms, namely 3-Point
RANSAC [7], RANSAC+ICP refinement [20], RANSAC+Robust-ICP [10] and
RANSAC+DW-ICP. The overall performance of the algorithms are ranked (from
top to down) as: DW-ICP, Robust-ICP, RANSAC+ICP and RANSAC. The
Robust-ICP (using M-Estimator) has significantly better performance against
that of traditional ICP. Most importantly, the proposed DW-ICP consistently
outperforms the other approaches, regardless of rotation or translation.

Fig. 5. Synthetic data quantification: top and bottom are averaged translation and
rotation errors on Van, Red Car, and Cola Truck dataset, respectively. (Color figure
online)

Real Datasets: Table 1 depicts the dataset information, where the 3D Error
(averaged Leave-One-Out Error) metric was used to quantify the registration
performance. The registration error of our method is consistently lower than [7],
although we have slightly more computation time. Moreover, the high quality
reconstructions of Figs. 2 and 6 were obtained using the proposed framework
of Fig. 1. Note that the objects are reconstructed from long-term and faraway
observations (see Table 1). The framework effectively overcomes the accumula-
tion errors during the registration process and products very satisfactory results.
Moreover, Figs. 3 and 6 demonstrates that significant better registration quality
of our method is achieved compared to [7].
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Table 1. Dataset Information: Col. Sides is number of object sides (left, right, back,
and front) being captured. Col. Dist. is the averaged distance from the camera to the
object. Col. 3-Point RANSAC [10] and Col. Ours show their respective averaged 3D
error and computation time.

Object # Frame Sides Dist. (m) 3-Point RANSAC [4] Ours

Error (m) Time (s) Error (m) Time (s)

Van 44 3 16.5 0.0150 3.1 0.0131 4.6

Red Car 60 3 10.8 0.0084 2.8 0.0080 4.3

Cola Truck 48 2 30.0 0.0234 3.7 0.0229 4.1

Fig. 6. Reconstructed Van and Cola truck: top are registered point clouds using [7];
bottom are our high quality meshes.

7 Conclusion and Future Work

We have proposed an effective high quality 3D reconstruction and enhance-
ment framework which is evaluated using both synaesthetic and realistic outdoor
dataset. The reconstructed 3D mesh of rigidly moving objects achieve photo-
realistic quality, while some small details of the large-scale 3D scene reconstruc-
tion are not well preserved. As future work, we expect to reconstruct the higher
quality 3D mesh of the static scene parts.
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Abstract. A large part of computer vision algorithms and tools rely
on feature points as an input data for the future computations. Given
multiple views of the same scene, the features, extracted from each of
the views can be matched, establishing correspondences between pairs
of points and allowing their use in higher-level computer vision applica-
tions, such as 3D scene reconstruction, camera pose estimation and many
others. Nevertheless, two matching features often do not represent the
same physical 3D point in the scene, which may have a negative impact
on the accuracy of all the further processing. In this work we suggest a
feature refinement technique based on a Harris corner detector, which
replaces a set of initially detected feature points with a more accurate
and dense set of matching features.

Keywords: Feature points · Densification · Dense · Reconstruction ·
SIFT · SURF · GFTT · KLT · Harris corners · FREAK

1 Introduction

Feature points extraction is a powerful tool, which has found multiple appli-
cations in the field of computer vision. Features are descriptive points, which,
being extracted from multiple views of the same scene, are to be matched and
further applied in higher-level algorithms, i.e. 3D reconstruction, camera pose
estimation, SfM and many others. The specific challenges while working with
feature points are improving the performance of the extraction task, minimizing
the number of incorrectly identified matches, ensuring localization accuracy of
the points in detected matches with respect to the 3D points of the captured
scene.

Among the most popular feature point detectors are Harris corner detector
[1] and GFTT (Good Features to Track) [2], which, however, do not provide the
scale and rotation invariance. Thus, often an additional data structure, called
a descriptor, is used for feature points comparison and matching. One of the
most well-known descriptor-based feature types is SIFT (Scale Invariant Feature
Transform) [3], which is providing invariance to a uniform scale, rotation and
partially to affine distortion. The SURF (Speeded up robust features) detector
and descriptor based on a fast Hessian detector approximation and a gradient-
based descriptor is presented in [4]. In the [5] FREAK (Fast Retina Keypoint)
keypoint descriptor inspired by the human retina has been presented, which
c© Springer International Publishing AG 2017
S. Battiato et al. (Eds.): ICIAP 2017, Part I, LNCS 10484, pp. 530–538, 2017.
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also provides rotation and scale invariance as well as an advantage in terms
of performance. The performance of several types of feature point descriptors
has been evaluated under different conditions in [6], confirming the advantages
and robustness of SIFT descriptor. The performance of a number of feature
detectors and descriptors has also been evaluated in [7] for the task of 3D object
recognition. The results of the comparison suggest that SIFT and affine rectified
[8] detectors the are the best choice for the task due to their robustness to change
of viewpoint as well as changes in lighting and scale.

A new type of scale-invariant feature points is presented in [9]. There the
Harris corner detector is combined with SIFT descriptor in order to obtain scale
invariance and achieve real-time performance for the tasks of tracking and object
recognition by skipping a time consuming scale space analysis. Recent works are
applying a deep learning approach to the task of feature extraction. The LIFT
(Learned Invariant Feature Transform) [10] presents a deep network architecture
trained using a sparse multi-view 3D reconstruction of a scene, which implements
three pipeline components, namely feature detection, feature orientation estima-
tion and descriptor extraction.

In this paper we are presenting a novel approach for replacing an initial set
of SIFT or other type of feature points with a new and more accurate set of
Harris corner matches, extracted from the local neighbourhoods of the matching
pairs of the initial set. We test the performance and demonstrate the efficiency
of the proposed approach for the tasks of camera pose estimation and sparse
point cloud reconstruction.

2 Feature Points Densification and Refinement

Typically, the task of scale-invariant feature extraction is performed on scaled-
down versions of original images in order to improve the performance, ensure
robustness of the algorithm and maximize the number of correctly detected
feature matches [11,12]. Feature points in a correct match, however, often do not
represent the same physical 3D point of the object. If the feature point in the
first image is considered a reference, the matching feature in the second image
may be displaced from a corresponding image point by a few pixels (Fig. 1),
which affects the accuracy of the further processing. The number of extracted
features may also be significantly reduced for the same reason. Moreover, for
the tasks of 3D scene reconstruction and representation, the most descriptive
and suitable points are corners, which may be naturally omitted by some of the
feature detectors [13].

The approach presented in this paper is aimed at handling these factors by
providing a new set of precise corner points, allowing for an accuracy improve-
ment for all the further computer vision applications. The proposed feature den-
sification pipeline is comprised of three steps, namely feature initialization, iter-
ative feature patch warp and tracking of new refined feature points.
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Fig. 1. SIFT features in the original images. Corresponding matching SIFT feature
points in the left and right images are having a noticeable displacement.

2.1 Initialization

The proposed algorithm requires an initial set of conventional feature points and
matches to be detected in the corresponding pairs of scaled-down images. In this
paper we are considering SIFT feature points, however, the approach can also
be adapted to the other types of features, such as SURF, FREAK or GFTT.

2.2 Feature Patches Warp

Each feature point depicts image content in its neighborhood, which can be
described by an image patch with its center coinciding with the feature point loca-
tion (Fig. 2(a)). Since two matching features represent the same 3D point of the

Fig. 2. A patch in the reference image (a) and the corresponding patch in the target
image (b), warped using the estimated homography H (c).
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captured scene, their corresponding image patches would represent the same area
of the scene. Therefore, a new search for matching feature points can be performed
locally in corresponding patches of each pair of initial matching features.

Nevertheless, in case of using scale and rotation invariant features (i.e. SIFT,
SURF), two image patches have to be transformed before a local feature search
can be performed in order to compensate the differences in the scale and orienta-
tion of their seed feature points. If one of the images is considered a reference and
second a target, for each feature match, it is possible to define a homography,
which is relating the reference image patch and the target image:

pt = H · ppr
, (1)

where pt = (xt, yt) and ppr
= (xpr

, ypr
) are the points in the target image

and the reference patch respectively. The size of the reference patch can be
defined with respect to the scale of the seed feature point using a user-defined
multiplication factor (1.3–2.7 in our experiments). The homography H can be
approximated using the positions of two matching feature points together with
their orientation, and scale parameters:

H = T2 · S2 ·R2 ·R−1
1 · S−1

1 · T−1
1 , (2)

where

T−1
1 =

⎡
⎣

0 0 −xr + xprc

0 0 −yr + yprc

0 0 0

⎤
⎦ , T2 =

⎡
⎣

0 0 −xt

0 0 −yt
0 0 0

⎤
⎦ , (3)

pprc
= (xprc

, yprc
) is the top left corner point of the feature patch in the reference

image, R1 and R2 are the rotation matrices built using orientation angles of the
features, S1 and S2 are the corresponding feature scale matrices.

Once the homography H is known, the target image (Fig. 2(b)) can be warped
and cropped to the target patch (Fig. 2(c)) representing the same part of the
scene as the reference, allowing for extraction and tracking of a new feature set.

2.3 Feature Densification and Refinement

The new set of feature points is first extracted from the reference patch using
the Harris corner detector [1]. The detected points are then tracked in the trans-
formed target image patch using an iterative Lucas-Kanade tracker [14] (Fig. 3).
It is important to mention, that the number of tracked point in the target patch
depends on the patch content as well as the size of the reference patch and the
quality of the initially detected feature match. Thus, one feature point in the
initial set may produce multiple feature points within one patch in a refined set.

The newly extracted and tracked features are then brought back to the ref-
erence and target image domains using the homography H:

{
xr = xpr

+ xprc
,

yr = ypr
+ yprc

(4)

and



534 A. Bushnevskiy et al.

Fig. 3. A reference patch with extracted corners (a) and a target patch with the tracked
points (b).

⎧
⎪⎪⎨
⎪⎪⎩

xt =
h00 · xpt

+ h01 · ypt
+ h02

h20 · xpt
+ h21 · ypt

+ h22
,

yt =
h10 · xpt

+ h11 · ypt
+ h12

h20 · xpt
+ h21 · ypt

+ h22

, (5)

where (xr, yr) are the coordinates of the new feature, extracted from the reference
patch, in the reference image and (xt, yt) are the coordinates of the matching
feature in the target image.

The points extracted from the reference image and their matches tracked in
the target image are then added to the new feature set and the next match from
the initial set is processed (Fig. 4).

Fig. 4. A set of refined feature points matches.
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3 Results

In order to provide a quantitative evaluation of the proposed approach, we have
created a dataset comprised of 30 stereo image pairs taken at a 12 MP resolution,
using a calibrated camera of a mobile device.

For each image pair, we have performed the tasks of SIFT and SURF features
extraction and matching using the scaled-down versions of the original images
with the maximum image width of 1024 px. The feature points of this initial
set then have been refined using the proposed method (Fig. 4). Each of two
feature sets has been used for estimation of the camera poses using the approach
described in [15] and triangulation of a sparse point cloud. The set of 3D points
has been reprojected back on the images using the corresponding camera poses
and camera model parameters. The error then has been evaluated as a pairwise
Euclidean distance in pixels between the originally detected feature points and
the backprojected point cloud (Fig. 6).

Fig. 5. A feature match from the refined set. Localization error is practically
non-existent.

The results, presented in the Table 1, show that the proposed method allows
for a significant increase in localization accuracy of the detected feature matches
(Fig. 5). This accuracy improvement allows for a more precise estimation of the
camera poses as well as a point cloud triangulation. A sample dataset image
and the triangulated sparse point cloud, estimated using a refined feature set
are shown in Fig. 7.
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Table 1. Evaluation results. Number of detected feature matches and the 80th per-
centile of the backprojection error histogram for the initial and refined feature sets.

Type Number of features Backproj. error, [px]

Dataset 1

SIFT 1214 0.60

Refined (SIFT) 1264 0.25

SURF 549 0.84

Refined (SURF) 1109 0.22

Dataset 2

SIFT 702 1.84

Refined (SIFT) 675 1.06

SURF 215 3.57

Refined (SURF) 384 1.09

Dataset 3

SIFT 290 0.84

Refined (SIFT) 256 0.67

SURF 65 2.36

Refined (SURF) 102 1.57

Dataset 4

SIFT 319 2.23

Refined (SIFT) 305 1.02

SURF 103 4.59

Refined (SURF) 223 0.86

Dataset 5

SIFT 841 0.94

Refined (SIFT) 891 0.54

SURF 178 2.20

Refined (SURF) 492 0.26

Dataset 6

SIFT 1065 1.05

Refined (SIFT) 1051 0.92

SURF 212 2.42

Refined (SURF) 441 1.08

Fig. 6. Error histogram for the refined (a) and the initial SIFT features (b).
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Fig. 7. A reference image and the corresponding sample sparse 3D reconstruction using
the feature points from the refined set.

4 Conclusions

The paper presents a new approach for refinement of an initial set of SIFT, SURF
or other types feature points. The initial set of matching features is replaced by a
new set, obtained by performing a search for Harris corners in the corresponding
patches, representing neighborhoods of the original feature points. In contrast
to the original one, the new set features an improved localization accuracy as
well as a smaller number of incorrectly identified matches. These two factors
combined allow for a significant accuracy improvement for the computer vision
applications, which are using feature points as an input.

The experimental results prove the efficiency of the proposed approach and
demonstrate an accuracy improvement for the tasks of camera pose estimation
and a 3D point cloud triangulation using a refined set of matching feature points.

References

1. Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings of
the 4th Alvey Vision Conference, pp. 147–151 (1988)

2. Shi, J., Tomasi, C.: Good features to track. Technical report, Ithaca, NY, USA
(1993)

3. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Com-
put. Vis. 60(2), 91–110 (2004)

4. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF).
Comput. Vis. Image Underst. 110(3), 346–359 (2008)

5. Ortiz, R.: FREAK: fast retina keypoint. In: Proceedings of the 2012 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), CVPR 2012,
Washington, DC, pp. 510–517. IEEE Computer Society (2012)

6. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE
Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)

7. Moreels, P., Perona, P.: Evaluation of features detectors and descriptors based on
3D objects. Int. J. Comput. Vis. 73(3), 263–284 (2007)



538 A. Bushnevskiy et al.

8. Mikolajczyk, K., Schmid, C.: An affine invariant interest point detector. In: Heyden,
A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp.
128–142. Springer, Heidelberg (2002). doi:10.1007/3-540-47969-4 9

9. Azad, P., Asfour, T., Dillmann, R.: Combining Harris interest points and the SIFT
descriptor for fast scale-invariant object recognition. In: 2009 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 11–15 October 2009, St.
Louis, MO, USA, pp. 4275–4280 (2009)

10. Yi, K.M., Trulls, E., Lepetit, V., Fua, P.: LIFT: learned invariant feature transform.
In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910,
pp. 467–483. Springer, Cham (2016). doi:10.1007/978-3-319-46466-4 28

11. Aly, M.: Face recognition using SIFT features (2006)
12. Yoshioka, M., Maeda, Y., Omatu, S.: Criterion for optimal image resolution using

SIFT. Artif. Life Robot. 14(1), 24–28 (2009)
13. Peng, K., Chen, X., Zhou, D., Liu, Y.: 3D reconstruction based on SIFT and Harris

feature points. In: IEEE International Conference on Robotics and Biomimetics,
pp. 960–964 (2009)

14. Bouguet, J.Y.: Pyramidal implementation of the Lucas Kanade feature tracker
description of the algorithm (2000)

15. Sorgi, L., Bushnevskiy, A.: Two view geometry estimation by determinant mini-
mization. In: Magnenat-Thalmann, N., Richard, P., Linsen, L., Telea, A., Battiato,
S., Imai, F.H., Braz, J. (eds.) VISIGRApp, vol. 3, pp. 592–596. SciTePress (2016)

http://dx.doi.org/10.1007/3-540-47969-4_9
http://dx.doi.org/10.1007/978-3-319-46466-4_28


Fast and Accurate Facial Landmark Localization
in Depth Images for In-Car Applications

Elia Frigieri, Guido Borghi(B), Roberto Vezzani, and Rita Cucchiara

University of Modena and Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy
{elia.frigieri,guido.borghi,roberto.vezzani,rita.cucchiara}@unimore.it

Abstract. A correct and reliable localization of facial landmark enables
several applications in many fields, ranging from Human Computer Inter-
action to video surveillance. For instance, it can provide a valuable input
to monitor the driver physical state and attention level in automotive
context. In this paper, we tackle the problem of facial landmark localiza-
tion through a deep approach. The developed system runs in real time
and, in particular, is more reliable than state-of-the-art competitors spe-
cially in presence of light changes and poor illumination, thanks to the
use of depth images as input. We also collected and shared a new realistic
dataset inside a car, called MotorMark, to train and test the system. In
addition, we exploited the public Eurecom Kinect Face Dataset for the
evaluation phase, achieving promising results both in terms of accuracy
and computational speed.

Keywords: Facial landmarks localization · Depth maps · Convolutional
Neural Networks · Automotive

1 Introduction

The autonomous driving of on-road vehicles is one of the most challenging and
actual problems for both research and industrial communities. In recent years,
it is gathering the attention of numerous researchers from different disciplines,
with a strong involvement of the ICT community. Among the others, Computer
Vision is playing a leading role in two main aspects.

First, Computer Vision and Pattern Recognition disciplines are applied to
assist or even replace traditional sensors in the perception of the surround con-
text, i.e., the outside world.

Second, the ability to monitor the behavior of passengers and drivers is fun-
damental, for example as a safety aid to enable full or semi-autonomous driving:
the intervention of the driver or, at least, his/her attention can be requested
by the automatic system in exceptional cases of need. In this case, vision-based
systems must operate on images provided by internal cameras, installed and
configured to monitor the passengers and the driver.

A reliable localization of facial landmarks – i.e., the ability to infer the
position of prominent face elements relative to the view of the acquisition
c© Springer International Publishing AG 2017
S. Battiato et al. (Eds.): ICIAP 2017, Part I, LNCS 10484, pp. 539–549, 2017.
https://doi.org/10.1007/978-3-319-68560-1_48
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device – is one of the basic component to conduct driver physical state investiga-
tion, through eyes or mouth direct monitoring [23], facial expressions recognition
[19,27], head pose estimation [21], all fundamental elements also for driver atten-
tion analysis, as reported in literature [15].

Facial landmark localization is also an important task in Computer Vision,
and a key element for many other fields, such as age estimation [14], sign language
recognition [4] and various applications in biometrics [1].

Many solutions of facial landmark localization have been proposed in the last
decades. However, the automotive context is characterized by specific issues such
as strong occlusions, dramatic light changes, high head pose variability. More-
over, additional requirements like non-intrusivity of the acquisition device (no
physiological signals, like EEG, ECG, EMG) and the avoidance of initialization
or on-user training are preferable.

In this paper, we present a deep-based approach specifically designed for
real time facial landmarks localization in the automotive context, through a
regression manner approach. Proposed method is rely only on depth data to
achieve a good reliability in presence of illumination changes. Moreover, a new
challenging and deep-oriented dataset is collected to train and test the entire
proposed system (Fig. 1).

Fig. 1. Some visual samples of facial landmark localization on depth images. (a) input
RGB frame, (b) input depth frame and (c) the depth frame with landmark annotation
(green for eye pupils, blue for the nose tip and red for mouth corners). (Color figure
online)

2 Related Work

Most of the systems for facial landmark localization in the literature are based on
RGB images. However, these methods are prone to failure in case of illumination
and pose changes. Only few works are based on depth images, even though
the recent availability and diffusion of cheap and small sized depth acquisition
devices.

Two main approaches are generally used in 3D landmark localization [10]:
heuristic approaches and statistical methods.

Heuristic approaches rely on the properties of the face, like its symmetry or
specific known shapes. In [1] the curvature information of the face is exploited to
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locate the nose tip and eye corners. In [35] facial features are exploited to build an
automatic emotion annotation solution on depth maps and the solution consists
of a facial landmarking method and a facial expression recognition technique.
Also Active Appearance Models and their extensions have been proposed to tackle
the problem of landmark localization task [3,29,33].

Statistical approaches exploit features directly extracted from the face and
fed into a discriminative model. In [13] a Linear Discriminant Analysis and
AdaBoost are exploited to perform landmarking on 3D facial models. In [25] land-
mark localization is performed in presence of occlusions and expression changes.
A Gappy Principal Component Analysis is used in [2] to restore missing land-
mark coordinates. Fanelli et al. [16] used a Random Forest technique to place
landmark on depth images. The Supervised Descent Method (SDM) is success-
fully exploited both with 2D and 3D data. For the case of 3D data, in [7,10] SDM
achieves a good accuracy, relying on SIFT descriptor and HOG features. A global
SDM is used in [32]. Besides, employing a cascade of regression functions good
accuracy can be achieved [28,36].

Only recent works combine the use of Convolutional Neural Networks (CNN)
and facial landmark localization task. In [22] a CNN is exploited for simultaneous
face detection, landmark localization, pose estimation and gender recognition,
starting from RGB images. In [34] landmark detection and localization is per-
formed through a CNN in combination with logistic regressors. A cascade of
CNN is used in [26] and requires a pre-partition of dataset faces in different
parts. Each part is processed by a different network.

Very few works in the literature exploit on CNN and raw depth images as
input. In the head pose estimation research field, there are some example [5,
6,30,31] in which normalized depth images acquired through Microsoft Kinect
device are fed into a deep model that produces in output 3D head Euler angles.

The proposed method is one of the few works that combine depth images,
also known as 2.5D images, and a deep architecture to localize facial landmark in
a regression manner: this explains the lack of database and competitors for the
presented work. This works aims to merge the CNN power in regression tasks,
the use of depth maps and real time performance.

3 Proposed Method

The goal of the whole system is a reliable estimation of the facial landmark
coordinates. Due to the limited spatial resolution of available depth images, we
focus on a selection of five principal facial landmarks: eye pupils, mouth corners
and the nose tip. Accordingly, the system outputs 10 coordinates, i.e., the x and
y values for each facial landmark.

The core of the method is a deep architecture that works in regression and
receives a stream of depth images as input. The ground truth annotation of the
landmark positions is required during the network training step and is used as
a comparison during the test.
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3.1 Image Pre-processing

Image pre-processing is an important step to reach high performance with deep
approaches, as reported in [18]. All input images are equalized in an adaptive way,
to enhance visual details: specifically, we have exploited the Contrast Limited
Adaptive Histogram Equalization algorithm described in [37]. Besides, image
values are scaled so that the mean and the variance of the values are 0 and 1,
respectively. Head detection and localization are out of the scope of this paper;
thus, we exploited the provided annotation during the experiments. However,
the center of the driver head could be estimated with a face detector directly
working on depth images [6,9,11] or locked to a predefined mean position. A
fixed window containing the head as well as a small portion of background is
cropped and, finally, all the cropped images are resized to 64 × 64 pixels. A
visual example is provided in Fig. 2. Ground truth coordinates are normalized
in the range [−1, 1], accordingly to the specific activation function of the output
network layer (Sect. 3.2).

Fig. 2. Visual examples of the pre-processing step: (a) raw depth frame; (b) depth
frame after the adaptive equalization. Facial landmarks are reported with green circles,
the elaborated centroid in red and the square crop for face extraction is depicted with
a red rectangle. (Color figure online)

3.2 Model Architecture

The model architecture is designed to deal with two main issues: low memory
requirements and real time performance. The model is composed of 5 convo-
lutional layers followed by three fully connected layers, composed by 120, 84
and 10 neurons, respectively. Between the fully connected layers are inserted 2
dropout layers (with p = 0.5). Due the limited input size, only the first three
convolutional layers are followed by a max pooling layer of size (2 × 2). Hyper-
bolic tangent is exploited as activation function; as a consequence, the network
outputs continuous values as required. We adopt Adam solver [17] with a initial
learning rate set to 10−4. Finally, a L2 loss function is used:

L2 =
n∑

i

||yi − f(xi)||22
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where yi is the i − th coordinate from the ground-truth and f(xi) is the corre-
sponding network output.

3.3 Training

The network has been trained with a decay value of 5−4 and a momentum value
of 9−1. The learning rate is automatically changed by the Adam solver.

A data augmentation procedure is implemented in order to increase the
amount and the variety of input data. As outcome, the network is less prone
to over fitting behaviors and its generalization capability are increased [18]. To
this aim, random rotations, zoom-in and translations along x and y axis are
applied to each input image. Moreover, a Gaussian noise is added (jittering).

4 Experimental Results

To train and test the proposed method and to collect experimental results, a
new dataset has been defined, namely MotorMark, due to the lack of a public
dataset containing high quality depth images, accurate landmark annotations
and a sufficient amount of training data for a deep-based approach. We also
exploit the publicly available Eurecom Kinect Face Dataset [20], that consists
of multimodal facial images of 52 people (14 females, 38 males), obtained with
the first version of the Microsoft Kinect device. Its limited size (around 700
frame in total) makes it not sufficient to train our deep architecture and thus we
exploited it during the testing phase only.

Other existing datasets (e.g., [8,12]) are not deep oriented or provide the
annotation of facial landmarks only for the first frame or a subset of key frames.

4.1 MotorMark Dataset

We collected a dataset that includes RGB and the corresponding depth images,
annotated with facial landmark coordinates on RGB and depth images. Frames
are acquired through a Microsoft Kinect One. This Time-of-Flight depth device
guarantees high quality images [24]. The dataset is publicly available1. The main
features of MotorMark are:

– Deep oriented: is composed by more than 30k frames. A variety of subjects
is guaranteed (35 subjects in total);

– Automotive context: we recreate an automotive context. The subject is
standing in a real car dashboard (see Fig. 3) and performs real inside-car
actions, like rotating steering wheel, shifting gears and so on;

– Variety: subjects are asked to follow a constrain path (4 led are placed in
correspondence with the speedometer, the rev counter, infotainment system
and the left wing mirror), to rotate their head in fixed position or to freely
move their head. Besides, subjects can wear glasses, sun glasses and a scarf,
to generate partial face and landmark occlusions;

1 http://imagelab.ing.unimore.it/landmarkdepth.

http://imagelab.ing.unimore.it/landmarkdepth
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– Landmark annotations: the annotation of 68 landmark positions on both
RGB and depth frames is available, following the ISO MPEG-4 standard.
The ground truth has been manually generated. The user was provided with
an initial estimation done by means of the algorithm included in the dLib
libraries2, which gives landmark positions on RGB images. The projection of
the landmark coordinates on the depth images is carried out exploiting the
internal calibration tool of the Microsoft Kinect SDK.

– High quality: RGB and depth images are acquired with a spatial resolution
of 1280 × 720 HD and 515 × 424, respectively;

Fig. 3. Sample frames from MotorMark dataset. Like in a real automotive context,
subjects speak at the phone, drink, wear sunglasses or cap and perform different facial
expressions.

4.2 Quantitative Evaluation

As previously described, input images are cropped around the head center. For
our experiments, given the coordinates (xi, yi) of the i− th facial landmark, we
elaborate a face centroid of coordinates xc, yc computed as:

xc =
∑k

i xi

k
, yc =

∑k
i yi
k

(1)

where in our case k = 5. Based on xc, yc final square windows of 100×100 pixels
are obtained. The dataset has been split in test (27 subjects) and train (all the
remaining subjects) subsets.

Different tests, here referred as baselines, have been carried out and compared
with the proposed pipeline:

1. A smaller window of 60 × 60 (instead of 100 × 100) is cropped in order to
include less portions of background; all the extracted windows are then resized
to 64 × 64 (baseline 1 in Fig. 4);

2 www.dlib.net.

www.dlib.net
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2. Final cropped input images are resized to 128 × 128, instead of 64 × 64, to
enhance visual facial cues (baseline 2 in Fig. 4);

3. Background suppression is applied, through a threshold on depth values (base-
line 3 in Fig. 4).

The results about previous three baselines and the presented method are
reported in Fig. 4. In particular, we achieve a final average mean error of 0.97
pixel with a standard deviation of 0.84 pixel for all five facial landmarks on
MotorMark dataset.

Fig. 4. (a) Mean and standard deviation of localization error on every facial landmark
and for each test conducted; (b) landmark localization accuracy.

The experimental results show that the proposed system reaches good per-
formance on MotorMark dataset. Moreover, we compare our system on Eure-
com Kinect Face Dataset with the work of Zhao et al. [35]: Table 1 depicts the
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Table 1. Results on Eurecom Kinect Face dataset, expressed as the mean error and the
standard deviation in pixels w.r.t the ground truth, normalized by the interpupillary
distance.

Method Nose tip Mouth right Mouth left Eye right Eye left Avg err

Zhao et al. [35] 4.4± 2.2 5.4± 3.2 5.4± 3.2 4.2± 2.1 4.2± 2.2 4.7± 2.6

Our 3.3± 4.5 3.5± 3.7 3.4± 3.9 3.5± 4.1 3.4± 4.0 3.4± 4.0

Fig. 5. The final output of the proposed system. RGB frames are reported in the first
and third rows, while in the others are shown the corresponding depth maps. Ground
truth landmark locations (green) and network predictions (red) are superimposed. [best
on screen] (Color figure online)

mean and standard deviation errors, normalized by the interpupillary distance,
in terms of the distance in pixels from the ground truth annotations. Results
confirm a good accuracy and robustness also on expression variations contained
in Eurecom dataset, sufficient for a real world monitoring system.

Real time performances are achieved with more than 30 fps in test phase. The
system is tested on two platforms equipped with different GPUs, Nvidia Quadro
k2200 and NVidia GTX 860m, and requires less than 1 GB of video RAM.
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All these elements allow to have an enabling technology for a real world mon-
itoring system inside a car. Figure 5 shows an example of the working framework:
the first and third rows contains the acquired RGB images, while in the second
and fourth rows are reported the corresponding depth images with the landmark
predictions from the described network.

5 Conclusions and Future Work

We have presented a CNN architecture to tackle the facial landmark localization
task, with a good accuracy and real time performance. Due to the lack of deep
oriented dataset for his dataset, a new and manually refined dataset is collected
and publicly released. The proposed method deals with some requirements of
the automotive context, like light changes in-variance, low computational load,
no personal initialization and reliability to occlusions.

A variety of extensions and improvements are planned, to create a end-to-end
pipeline for landmark localization, useful in an automotive context: for this goal,
a embedded implementation of the deep model and a module for head detection
are required. Finally, the output of the system can be exploited to elaborate
indicators, like gaze direction, eyes tracking and so on.
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Abstract. Emotion recognition is attracting great interest for its poten-
tial application in a multitude of real-life situations. Much of the Com-
puter Vision research in this field has focused on relating emotions to
facial expressions, with investigations rarely including more than upper
body. In this work, we propose a new scenario, for which emotional states
are related to 3D dynamics of the whole body motion. To address the
complexity of human body movement, we used covariance descriptors
of the sequence of the 3D skeleton joints, and represented them in the
non-linear Riemannian manifold of Symmetric Positive Definite matri-
ces. In doing so, we exploited geodesic distances and geometric means
on the manifold to perform emotion classification. Using sequences of
spontaneous walking under the five primary emotional states, we report
a method that succeeded in classifying the different emotions, with com-
parable performance to those observed in a human-based force-choice
classification task.

Keywords: Emotion recognition · Symmetric Positive Definite matrices

1 Introduction

Automatic analysis of human motion has been an active research topic for several
years, with outcomes that have been beneficial to a number of different applica-
tions, including security surveillance, health-care at home, athletes training and
natural interfaces, to say a few. The variety in human body (size, height, corpu-
lence), in the way different people perform an action, and even in the way a same
person performs one action at different times, makes the task of human motion
analysis very challenging. In the last decades, a consolidated line of research
has analyzed the human motion from RGB and depth data enabling tasks such
as action and gesture recognition [8]. However, body movements carry a multi-
tude of information, also indicative of our intentions, inter-personal attitudes,
c© Springer International Publishing AG 2017
S. Battiato et al. (Eds.): ICIAP 2017, Part I, LNCS 10484, pp. 550–560, 2017.
https://doi.org/10.1007/978-3-319-68560-1_49
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expectations and emotions. Of particular interest are basic emotions (i.e., anger,
disgust, fear, happiness, sadness, and surprise) that are innate in all humans
and are cross-culturally recognizable. These basic emotions can be further clus-
tered in active (anger, happiness, surprise) and passive (fear, sadness, disgust).
Recently, the study of computational models for human emotion recognition has
gained increasing attention not only for commercial applications (to get feedback
on the effect of advertising material), but also for gaming and monitoring of the
emotional state of operators that act in risky contexts such as aviation. Most of
these studies have focused on the analysis of facial expressions, but important
clues can be derived by the analysis of the dynamics of body parts as well.

The first rigorous investigation on the expression of emotions through the
body dates back to Darwin’s seminal work on “The expression of the emotions in
man and animals”. Since then, research in the field of Emotional Body Language
(EBL) has addressed this subject from both a bio-mechanical and a psychological
perspective. The recognition of emotions from the analysis of body movements
entails a higher level of complexity; indeed, since the body is primarily used
to perform manipulative actions and enable motion, emotional clues can only
be detected as secondary signatures on top of those ongoing actions. Hence,
most EBL studies have addressed only the question of what aspects of 3D body
kinematics are impacted by emotional states. Such studies have reported that
body rhythmicity is slower for low energy emotions (sadness and fright) and
faster for high-energy emotions (anger); these patterns have been confirmed
across a variety of natural actions, e.g., door knocking, walking, and dancing.
Nevertheless, such behavioral findings are not sufficient to tackle the difficult
question of emotion classification through body motion observation.

Finding a compact and effective representation of body movement is a dif-
ficult task when considering the complexity of temporal dynamics. In addition,
measuring the similarity between two temporal sequences for the purpose of
classification is complicated in itself. In fact, the Euclidean distance is unsuit-
able for comparing temporal sequences, and Dynamic Time Warping is often
used as an alternative [15]. To address these issues, there is a recent trend that
investigates matrix based solutions. The idea of these methods is to embed the
non-linearity of the sequence into a matrix representation, then exploit the geo-
metric properties of the space (manifold) the matrices lay in to perform distance
measurement and classification. Examples are the block Hankel matrix [3], and
the Gram matrix [19]. Along this line of research, covariance matrices have found
success in several computer vision applications, including activity recognition,
visual surveillance and diffusion tensor imaging. Recently, several properties of
the covariance matrices have been popularized by investigating the related Rie-
mannian manifold of Symmetric Positive Definite matrices (SPD) [10].

Based on the above considerations, in this paper we propose a new solution to
perform human emotion recognition from the analysis of the temporal dynamics
of the joints of the body skeleton in the 3D space. Human motion is captured
by the evolution across time of the 3D position of the joints in an appropriate
reference system. Then, a covariance matrix descriptor is extracted from the
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features across the sequence frames. Exploiting the properties of the covariance
matrix, this descriptor is mapped to the non-linear Riemannian manifold of
SPD matrices. Finally, emotion classification is performed on the manifold by
computing geodesic distances between test sequences and template emotions
obtained as the average on the manifold of training examples. Experiments show
the potential of the proposed solution, which obtains comparable results to those
scored by human evaluators. In summary, the contributions of this work are:
(i) Analysis of the dynamics of the full-body movement to understand human
emotions over long sequences, while most of existing works use body-parts and
short time; (ii) A representation of the body movement that uses the covariance
descriptor to capture the dynamics of the skeleton joints, and analyzes these
descriptors in the related Riemannian manifold of SPD matrices. This is obtained
by the adoption of a suitable distance measure and mean computation to perform
classification on the manifold.

The rest of the paper is organized as follows: Previous work related to the
proposed method is summarized in Sect. 2; In Sect. 3, we present the mathemat-
ical background for the non-linear Riemannian manifold of SPD matrices; In
Sect. 4, the adopted representation of the joints of the skeleton and its move-
ment is presented; The classification approach on the manifold is discussed in
Sect. 5; Results and a comparative evaluation are reported in Sect. 6; Finally,
conclusions and future work directions are drawn in Sect. 7.

2 Related Work

The decreasing cost of whole-body sensing technology and its increasing reli-
ability, make it possible to investigate the role played by body expressions as
a powerful affective communication channel. Kapur et al. [11] were among the
first to address these aspects in 3D. Using a Vicon Motion Capture system, they
collected gestural sequence data depicting sadness, joy, anger, and fear emotions
of five subjects. The 3D position of 14 markers, plus their velocity and accel-
eration were calculated, and the mean values of velocity and acceleration and
the standard deviation values of position, velocity and acceleration across the
sequence were considered as descriptors. Finally, classification was performed
comparing five different classifiers. Gong et al. [6], addressed the problem of
recognizing affect from non-stylized human body motion using 3D joints of the
skeleton. Motion capture data were represented by a descriptor based on the
shape of signal probability density function, and SVM were used for classifi-
cation. Experiments were performed on a dataset of 30 individuals performing
knocking, throwing, lifting and walking motions in four affective states (i.e.,
neutral, happy, angry and sad). Karg et al. [13] analyzed the human gait to
reveal persons affective state, comparing inter-individual versus person depen-
dent recognition. The dynamics of the body was captured by measuring features
such as the stride length, cadence, velocity, minimum mean and maximum val-
ues of angles between body parts. Then, these features were reduced using PCA,
kernel PCA, LDA and GDA techniques, while classification was performed with
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NN, Naive-Bayes and SVM. Results showed that recognition is highly affected
by individual walking styles and individual expressions of affect (accuracy of
69% and 95% were reported for the inter-individual and person dependent case,
respectively, based on the observation of a single stride). They also observed
that automatic recognition based on gait patterns tends to better recognize
active than passive emotional states. For a comprehensive coverage of the topic,
we refer to the survey by Kleinsmith and Bianchi-Berthouze [14] that reviewed
the literature on affective body expression perception and recognition, and the
survey by Karg et al. [12] that summarized methods to recognize affective expres-
sions from body movements, and the converse problem of generating movements
for virtual agents or robots, which convey affective expressions.

Several works used the special Riemannian manifold of SPD matrices. One
typical case for which such matrices arise in practice is when covariance descrip-
tors are used to model image sets or temporal frame sequences in videos. Covari-
ance features were first introduced by Tuzel et al. [18] for texture matching and
classification. Several studies have extended the use of covariance descriptors to
the temporal dimension, with application to human action and gesture recogni-
tion. Sanin et al. [16], proposed an action and gesture recognition method from
videos based on spatio-temporal covariance descriptors. Prior to classification,
points on the manifold were mapped to an Euclidean space, through Riemannian
Locality Preserving Projection [7]. Bhattacharya et al. [4] constructed covariance
matrices, which capture joint statistics of both low-level motion and appearance
features extracted from a video. To facilitate the classification task, matrices
were mapped to an equivalent vector space obtained by the matrix logarithm
operation, which approximates the tangent space of the original SPSD space
of covariance matrices. Then, human action recognition was formulated as a
sparse linear approximation problem, in which these mapped features are used
to construct an overcomplete dictionary of the covariance based descriptors built
from labeled training samples. In [5], Faraki et al. noted that when covariance
descriptors are used to represent image sets, the result is often rank-deficient.
Most of the existing methods solve this problem by accepting small perturba-
tions to avoid null eigenvalues and thus, employ standard inference tools. What
they proposed, instead, were novel similarity measures specifically designed for
the particular case where symmetric matrices are not full-rank (i.e., Symmetric
Positive Semi-Definite matrices, SPSD).

3 Manifold of Symmetric Positive Definite Matrices

Let f (f ∈ R
d) be a d-dimensional feature vector of landmarks, and Dd×n =

[f1, · · · , fn] denote a set containing the d-dimensional feature descriptors of n
images of an image set. The covariance matrix C of the set is defined by:

C =
1

(n − 1)

n∑

i=1

(fi − µ)(fi − µ)T , (1)
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where µ is the sample mean. A non-singular covariance matrix of size d × d
belongs to the set of symmetric positive-definite (SPD) matrices. These do not
form a vector space (the space is not closed under matrix subtraction), rather
they form a connected Riemannian manifold Sym+

d [2]. As such, the distance
between SPD matrices is not accurately captured by the Euclidean distance.
Covariance matrix has recently received increasing attention in Computer Vision
by leveraging Riemannian geometry of SPD matrices.

Indeed, several distance measures on Sym+
d have been proposed. The most

widely used is the Log-Euclidean Riemannian Metric (LERM) [1]. Given two
covariance matrices C1 and C2, their LERM is computed as:

d(C1,C2) = ‖ log(C1) − log(C2)‖F, (2)

where ‖ · ‖F is the Frobenius norm, and log(C) is the matrix logarithm of C.

4 Representation of Body Movement

The dynamics of body movements is expressed by a sequence of observation
vectors capturing the position of body joints across time. More specifically, the
human body is approximated by a skeleton composed of NJ joints. Accordingly,
the posture of the body at a generic observation time t is expressed by a vector
p ∈ R

3NJ composed of the (X,Y,Z) coordinates of body joints at time t:

p(t) = [x1, y1, z1, . . . , xNJ
, yNJ

, zNJ
] . (3)

In order to also keep track of the body dynamics at each observation time,
the posture vector is augmented with the velocity vector that is composed of the
(X,Y,Z) components of the velocity of body joints at time t:

v(t) =
[
vx1 , vy1 , vz1 , . . . , vxNJ

, vyNJ
, vzNJ

]
. (4)

The velocity of a generic joint at time t is computed by finite difference of
joint positions at time t and t − 1, assuming zero velocity at t = 0.

In order to make the position and velocity vectors invariant to the orientation
of the body with respect to the camera, coordinate values (X,Y,Z) are normal-
ized by expressing them in a skeleton centered coordinate system (XS , YS , ZS).
This is computed as the orthonormal basis resulting from the PCA of the posi-
tions of the torso joints at t = 0. A compact yet representative description
of the dynamics of body movements across a temporal observation window
[0, T ] is extracted by computing the covariance matrix of the concatenated pos-
ture/velocity vectors. This results into a symmetric 6NJ × 6NJ square matrix.

Figure 1 shows the idea of capturing the body movement in a sequence
through a covariance matrix which, in turn, is a point on the SPD manifold.
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Fig. 1. Each body motion sequence is represented through a covariance matrix, which
is a point on the Riemannian manifold of SPD matrices. Distance between sequences
is then evaluated as the geodesic between points on the manifold

5 Emotion Classification

The covariance matrix computed from skeleton data observed across a temporal
window [0, T ] retains a signature of the emotional state of the observed per-
son. To perform emotion recognition, in the proposed approach, the covariance
matrix computed from an unknown observation is compared with the Prototype
Emotional Matrices (PEMs) representative of the target emotions (in the experi-
ments reported in Sect. 6, five basic emotions are considered, namely, anger, fear,
joy, neutral, sadness). The unknown sequence is classified according to the emo-
tion associated with the closest PEM. Computation of PEMs relies on extraction
of representative examples from training data. It should be noted that, according
to what is described in Sect. 3, the computation of the distance to PEMs as well
as the identification of PEMs from training data should both take into account
the fact that covariance matrices lie on the Riemannian manifold of SPD matri-
ces Sym+

d . This prevents the use of common tools adopted in Euclidean spaces
to compute distances between points and cluster them.

Let {Ci, li}i=1...N be a training set of labeled samples composed of covariance
matrices Ci and corresponding emotion labels li ∈ {l1, . . . , lE}. The emotion
classification task acts like a function that associates with a generic element of
Sym+

d its classification label l ∈ {l1, . . . , lE}. A possible solution would be to
adopt a nearest-neighbor (k-NN) approach by comparing the covariance matrix
to be classified to all the labeled covariance matrices in the training, and assign-
ing to it the same label of the closest matrix (for instance, the LERM distance
in (2) can be used for the comparison). A better solution, both in terms of
computation and of generalization of training examples is to extract some repre-
sentative prototypes from the training examples. Then, it would be possible to
compare the covariance matrix to classify to these prototypes, instead of using
all training examples. Following this idea, we extract a PEM from each emotion
class. This is achieved by computing, for each emotion class li the Riemannian



556 M. Daoudi et al.

Center of Mass of all the training examples with label li. Given a set of covari-
ance matrices {Ci}i=1...N on the Riemannian manifold Sym+

d , the Riemannian
Center of Mass, also referred to as Karcher mean in the literature, is the point
on Sym+

d that minimizes the sum of squared Riemannian distances:

µ = arg min
C∈Sym+

d

N∑

i=1

d2 (C,Ci) , (5)

being d(·) a suitable distance measure on the manifold.
It should be noted that, in case the LERM distance in (2) is used, the Rie-

mannian Center of Mass can be computed in closed form through the following
expression [19]:

µ = exp

(
1
N

N∑

i=1

log (Ci)

)
, (6)

being exp(·) and log(·) the matrix exponential and logarithm operators, respec-
tively. In this way, for the emotion corresponding to label li, the Prototype
Emotional Matrix Pemli is computed as the Riemannian center of mass of all
training samples {Ck, lk}, such that lk = li. A generic covariance matrix to be
classified is assigned the label corresponding to the closest Pemli . In doing so,
the identification of Prototype Emotional Matrices as well as the classification
of the emotion to be associated to a new covariance matrix rely on a measure of
distance that preserves the inherent structure of the manifold.

6 Experiments

Experiments have been performed on the Body Motion-Emotion dataset (P-
BME), that has been acquired at the Cognitive Neuroscience Laboratory
(INSERM U960 - Ecole Normale Supérieure) in Paris [9]. It includes Motion
Capture (MoCap) 3D data sequences recorded at a high frame rate (120 frames
per second) by an Opto-electronic Vicon V8 MoCap system wired to 24 cameras.
The body movement is captured by using 43 landmarks that are positioned at
joints and other parts of the body as illustrated in Fig. 2. To create the dataset, 8
subjects (professional actors) were instructed to walk following a predefined “U”
shaped path that includes forward-walking, turn, and coming back (Fig. 2). For
each acquisition, actors move along the path performing one emotion out of a set
of five different emotions, namely, anger, fear, joy, neutral, and sadness. So, each
sequence is associated with one emotion label. In doing so, the emotional gait
patterns show to be characterized by different walking velocity, wrist velocity
and acceleration, body and head postures. Each actor performed at maximum
five repetitions of a same emotional sequence for a total of 156 instances. Though
there is some variation from subject to subject, the number of examples is well
distributed across the different emotions: 29 anger, 31 fear, 33 joy, 28 neutral,
35 sadness.
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Fig. 2. Frames from a MoCap skeleton sequence of the P-BME dataset. In this example,
an actor moves following a “U” shaped trajectory showing an anger emotion. In the
top row, the subject advances towards the turning point (plots from left-to-right); in
the bottom row, the subject moves away from the turning point (plots from right-
to-left). The changes in the moving direction at the turning point can be observed
in the rightmost frame of both top and bottom rows. In each frame, the skeleton is
represented by 43 joints. Connections between joints are shown (except for the four
joints of the head) to evidence the silhouette of the body and the limbs

6.1 Results and Comparative Evaluation

Experiments on the P-BME dataset were performed by using a leave-one-subject-
out cross validation protocol. With this solution, iteratively, all the emotion
sequences of a subject are used for test, while all the sequences of the remaining
subjects are used for training. As discussed in Sect. 5, the training sequences
are used to perform supervised clustering in the five emotional classes. This is
obtained by first computing the Riemannian center of mass of each emotion class
and retaining it as representative element of the class. Then, nearest-neighbor
classification of the test sequence is performed by computing the LERM distance
to these representative elements. A confusion matrix is thus computed for each
fold. Averaging such matrices across the eight folds (also weighting each matrix
according to the relative number of test examples, which is different from subject
to subject) we obtain the overall results reported in Table 1. It can be observed
the diagonal dominance of the matrix (average positive classification of about
71%), with the best results scored by neutral and anger (about 80%), followed
by sadness and fear (about 68%), with the lowest accuracy for joy (about 58%).

We also performed experiments by using nearest-neighbor (NN) classification
with respect to all the training sequences, without reducing them with any clus-
tering operation. In addition to be much more computational demanding, this
classification scores substantially lower results as reported in Table 2 (the average
of the diagonal values decreases to about 51%). This confirms us the intuition
that performing the Riemannian center of mass on the training sequences can
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Table 1. P-BME dataset: Emotion recognition accuracy obtained using the Rie-
mannian center of mass (results in percentage). Average accuracy is 71.12%

Anger Fear Joy Neutral Sadness

Anger 79.31 3.45 13.79 0.00 3.45

Fear 3.57 67.86 10.71 0.00 17.86

Joy 3.23 6.45 58.06 9.68 22.58

Neutral 6.06 0.00 0.00 81.82 12.12

Sadness 2.86 20.00 2.86 5.71 68.57

Table 2. P-BME dataset: Emotion recognition accuracy obtained using a nearest-
neighbor approach (results in percentage). Average accuracy is 50.74%

Anger Fear Joy Neutral Sadness

Anger 41.38 0.00 3.45 31.03 24.14

Fear 0.00 67.86 7.14 3.57 21.43

Joy 0.00 3.23 16.13 32.26 48.39

Neutral 0.00 0.00 0.00 45.45 54.55

Sadness 2.86 11.43 0.00 2.86 82.86

reduce the effects induced by outliers included in the training examples that
were provided for each emotion.

To also validate the importance of measuring distances between covariance
matrices using geodesic distances on the manifold, compared to standard matrix
norm computation, we performed NN-classification using the Frobenius norm
of the difference between covariance matrices. This resulted in an average clas-
sification of 43.4% which is more than 7% less than the result obtained using
LERM in Table 2.

Finally, we performed a user based test in order to evaluate the performance
of the proposed classification method in comparison with a human-based judg-
ment. In this test, thirty-two naive individuals (with heterogeneous age and
no experience in human emotion classification) were asked to perform a force-
choice task. Participants were seated in front of a computer screen, and videos
were presented following a semi-randomized block design, with nature of emo-
tion randomly presented for each actor. The order of the presentations of the
video clips for each actor was also counter-balanced. Participants were required
to categorize the observed motion sequences in one of the five emotional cat-
egories within 5secs after the end of the video presentation, using the Geneva
Emotional Wheel (GEW) [17]. The task was a force choice situation in which
the participants had to choose between one of five emotions: anger, fear, joy,
sadness or neutral. Table 3 reports the scores obtained for emotion classification
based on RGB videos by the human evaluators. The results reveal an average
value of about 74%, which is just 3% over the average result found in Table 1.
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It is relevant to note that the user based test being based on RGB videos pro-
vides to the users much more information for evaluation, including the actor’s
face. Notably, our method is capable to score comparable results based on the
skeleton joints only.

Table 3. P-BME dataset: emotion recognition of body motion by human evaluator

Anger Fear Joy Neutral Sadness Average

84.0 81.5 73.5 65.0 67.0 74.2

7 Conclusions

In this work, we focus on 3D dynamic sequences of the body skeleton and propose
a new method to relate automatically human body movements to inner sensorial
emotion. This is obtained by first representing the 3D evolution of the skeleton
joints across time by using a covariance matrix. Then, we account for the fact
that these matrices lay in the non-linear Riemannian manifold of SPD matrices.
Exploiting geodesic distances and geometric average computation on the man-
ifold, emotion classification is performed. Results obtained in the experiments
show an average recognition of about 71% for the proposed method, which is
comparable with the average score produced by human evaluation. Notably, our
results have been obtained using only joints information, while humans evalu-
ators exploited the richer RGB video channel. The covariance matrix captures
the dependence of locations of different joints on one another during the perfor-
mance of an human action. The covariance matrix does not capture the order of
motion in time. Future work will address more advanced approaches for model-
ing the temporal evolution and machine learning and classification methods on
a non-linear manifold. We will also investigate the generalization of the method
by applying it to other types of voluntary motor actions besides walking (e.g.,
cycling, running, or cooking a meal).
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Abstract. We present two new methods based on Interval Analysis and
Computational Geometry for estimating the 3D occupancy and position
of objects from image sequences. Given a calibrated set of images, the
proposed frameworks first detect objects using off-the-shelf object detec-
tors and then match bounding boxes in multiple views. The 2D semantic
information given by the bounding boxes are used to efficiently recover
3D object position and occupancy using solely geometrical constraints in
multiple views. We also combine further constraints to obtain a solution
even when few images are available. Experiments on three different real-
istic datasets show the applicability and the potentials of the approaches.

Keywords: Object localisation · Object detection · Interval Analysis

1 Introduction

Despite strong efforts in the Computer Vision community, object detection has
been mostly restricted in 2D, even if multiple exposures of the same scene are
present. In this paper we are trying to tackle instead this appealing question:
“If multiple images of a rigid scene are available, is it possible to recover the 3D
location and occupancy of the objects only having 2D bounding boxes returned
by any object detectors?”. This question is becoming impelling given the recent
advancements in object detection, boosted by the advent of deep net architec-
tures. Indeed, it is now possible to have accurate and repeatable 2D localisations
of several object class instances in generic image scenes. An approach that would
be able to leverage such 2D detections in 3D would make easier the geometri-
cal interpretation of images, nowadays necessary for applications such as human
robot interaction, visual question and answering, and navigation.

Object detections are, in general, represented as 2D bounding boxes contain-
ing the object image shape. This coarse representation was dictated by annota-
tion easiness when tracing the box while labelling large datasets as in the Pascal
VOC challenge [8]. Although some works leverage finer object shape annotations
(e.g. [26]), only few methods can provide a detailed silhouette of the detected
objects [14,27]. Object detections in 3D have been mainly tackled using RGBD
c© Springer International Publishing AG 2017
S. Battiato et al. (Eds.): ICIAP 2017, Part I, LNCS 10484, pp. 561–572, 2017.
https://doi.org/10.1007/978-3-319-68560-1_50
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data [16] in single images. This is a direct extension of the 2D case, where anno-
tations are directly extracted from the depth data by using ellipsoids. Gupta et
al. [13] use labelled 3D dataset as the NYUD2 dataset [20] to retrain a region-
based convolutional network (R-CNN [24]), proposing candidate 2.5D regions.

Even if these works show that it is feasible to localise 3D objects just from
a single RGBD image, there are less examples showing that object localisation
is possible from just image sequences without any depth information. To this
extent we present two new approaches that, using geometrical reasoning only,
can extract the localisation of objects in a calibrated image sequence as a set
of polyhedra in 3D. The first approach is inspired by [10] and it is based on a
computational geometry (CG) method which has been applied to estimate, for
each object, the polyhedra given by the intersections of all the pyramids, having
the vertex on each camera centre and passing through the bounding boxes of the
object detections. The second approach is based on Interval Analysis (IA), and
following [9] solves a similar problem based on stereo triangulations. These two
methods can be readily applied to any calibrated image sequence with matched
bounding boxes detections. In particular, in Sect. 4 we show results on a subset of
the ScanNet dataset [6] comprising more than 1250 image sequences in realistic
indoor environments. To show further the flexibility of the proposed approach in
different scenarios, we also show performance on two datasets (ACCV [15] and
TUW [1]) with available ground truth.

2 Related Work

In this review we will restrict to single or multiple views methods for 3D object
localisation, to which our approach is more closely related. As the most chal-
lenging scenario, strong efforts have been devoted to the study of single image
pose estimation problems. This led to the necessity to learn image to object rela-
tions in order to generalise pose estimation in 3D to several classes of objects. In
many cases a training phase is performed using images of a specific category of
objects from different viewpoints. Many works have exploited 3D object models
to get a 3D interpretation of the scene. Zia et al. [28] used the CAD models
of cars to reconstruct the scene and the objects, including additional informa-
tion about the ground plane. Pepik et al. [21] reformulated the model as a 3D
deformable part model by learning the part appearances according to the CAD
model. Recently, Mousavian et al. [19] used two networks to regress the orienta-
tion and the dimension of cars and bikes, then applied geometrical constraints
to 2D detections to obtain the 3D bounding boxes.

When multiple images are available, recent works have tried to include geo-
metrical reasoning to explicitly use constraints given by the multiple views. Bao
et al. [3] tried to deduce both the viewpoint motion between multiple images
and the pose of the objects using a part-based object detector. To reach the
same goal a monocular SLAM approach was used by Dame et al. [7], combining
it with shape priors-based 3D tracking and 3D reconstruction approaches, while
Fidler et al. [11] reduced all the objects to 3D bounding boxes with each side
being a planar approximation of the object.
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Differently from these methods that use strong semantics and heuristics, our
approaches are based exclusively on geometrical reasoning, using directly the 2D
bounding boxes to define a polyhedra reconstruction problem, indicating where
the objects are located in 3D. Unlike the Visual Hull of Laurentini [17] where the
siluettes of the objects are used, we used bounding box detections as 2D input.
An approach to infer the location of the objects was presented by Crocco et
al. [5], estimating the occupancy of the objects through a quadric reconstruction
problem. Differently to our work, they apply the simpler orthographic camera
model. Furthermore, our approach is resilient if some of the detections are miss-
ing, since [5] solves the problem using the factorisation of a complete matrix
containing the ellipses parametrisation for every object at every frame.

3 Lifting 2D Bounding Boxes to 3D

Our approach first extracts object detections from every frame of a generic image
sequence. Given all the detections in each frame, we use a modified tracking-by-
detection method [12] to associate the bounding boxes among different frames.
This algorithm computes a distance matrix using patch appearance and associate
detections using the Hungarian method for bipartite matching. We relaxed the
part associated to the smoothness of the object trajectory because we might
not have consistent camera motion among consecutive frames thus causing the
corresponding consecutive bounding boxes to be far apart. Notice that, it is
common that bounding boxes might not be precisely aligned with the true object
centre and often they include a portion of background.

We then assume that the object is bounded by a rectangular region Bi in
image i. In 3D space, each region Bi defines a semi-infinite pyramid Qi with
its apex in the camera center (see Fig. 1), which bounds the possible locus of
the object. In the case of two views, assuming that the object’s projections are
bounded by rectangles B1 and B2 in the images respectively, the object in space
must lie within a polyhedron D as in Fig. 1. Geometrically, D is obtained by
intersecting the two semi-infinite pyramids defined by the two rectangles B1 and
B2 and the respective centres of projection C1 and C2.

In the general case of n views, the object is localised inside the polyhedron
formed by the intersection of the n semi-infinite pyramids generated by the
rectangles B1, . . . ,Bn:

D = Q1 ∩ Q2 · · · ∩ Qn. (1)

Analytically, the polyhedron D is defined as the following set:

D = {X ∈ R
3 : ∃xi ∈ Bi, i = 1 . . . n s.t. ∀i : xi = Πi(X)} (2)

where Π is the known perspective projection onto the i-th image.

3.1 Vertex Enumeration Solution

The semi-infinite pyramid Qi can be written as the intersection of the four
negative half-spaces Hi

1,Hi
2,Hi

3,Hi
4 defined by its supporting planes. Thus, the

solution set D can be expressed as the intersection of 4n negative half-spaces:
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Fig. 1. Bounding the object in 3D from 2D detections. Here a graphical example with
two images, where the semi-infinite pyramid is defined from the centre of projection
and the bound Bi.

D =
⋂

i=1...n
�=1...4

Hi
�. (3)

Implicitly these equations represent the polyhedron D, and indeed this is
also called the H-representation of D. However, we aim at an explicit descrip-
tion of D in terms of vertices and edges, also called a V-representation. The
problem of producing a V-representation from an H-representation is called the
VertexEnumeration problem, in Computational Geometry. The vertices and
the faces of D can be enumerated in O(n log n) time, being n the number of
cameras [22]. In particular we used the implementation of the reverse search
vertex enumeration algorithm described in [2] and available on the web1.

In the following, this approach based on Computational Geometry (proposed
in [10]) will be referred to as the “CG approach”. In the next section, following
[9], we shall describe how the solution set can be enclosed with an axis-aligned
box using an approach based on Interval Analysis, henceforth dubbed “IA app-
roach”.

3.2 Bounded Computational Geometry Method

The polyhedron generated by the CG approach can approximate effectively the
3D volume occupied by a detected object if several images of the object with
a large baseline between cameras are available. Otherwise, when there are few
images with a narrow baseline between cameras, the computed polyhedron can
easily overestimate the occupancy volume. To reduce this effect, we bounded
the estimated volume by including a prior over its maximum elongation. This is
done by first finding the centroid of the object using triangulation between the
centres of the bounding boxes in different views [4]. Then, the final polyhedron
1 http://cgm.cs.mcgill.ca/∼avis/C/lrs.html.

http://cgm.cs.mcgill.ca/~avis/C/lrs.html
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is obtained by cutting the pyramid, generated by CG with two planes, with a
distance before and after the object 3D centroid equal to half of the maximum
size of the object2, and with the normal aligned to the optical axis of the camera.
We will henceforth refer to this variation as the CGb method.

3.3 Interval Analysis

Interval Analysis [18] is an arithmetic defined on intervals, rather than on real
numbers. It was firstly introduced for bounding the measurement errors of phys-
ical quantities for which no statistical distribution was known. In the sequel of
this section we shall denote intervals with boldface. Underscores and overscores
will represent respectively lower and upper bounds of intervals. IR stands for
the set of real intervals. If f(x) is a function defined over an interval x then
range(f,x) denotes the range of f(x) over x.

If x = [x, x] and y =
[
y, y

]
, a binary operation between x and y is defined

in interval arithmetic as:

x ◦ y = {x ◦ y | x ∈ x ∧ y ∈ y} ,∀ ◦ ∈ {+,−,×,÷} .

Operationally, interval operations are defined by the min-max formula:

x ◦ y =
[
min

{
x ◦ y, x ◦ y, x ◦ y, x ◦ y

}
, max

{
x ◦ y, x ◦ y, x ◦ y, x ◦ y

}]
(4)

Interval division x/y is undefined when 0 ∈ y.
In general, for arbitrary functions, interval computation cannot produce the

exact range, but only approximate it.

Definition 1 (Interval extension [23]). A function f : IR → IR is said to
be an interval extension of f : R → R provided that range(f,x) ⊆ f(x) for all
intervals x ⊂ IR within the domain of f .

Such a function is also called an inclusion function. So, given a function f
and a domain x, the inclusion function yields a rigorous bound (or enclosure)
on range(f,x). This property is particularly suited for error propagation: If
x bounds the input error on the variable x, f(x) bounds the output error.
Therefore, if the exact value is contained in interval data, the exact value will
be contained in the interval result.

Definition 2 (Natural interval extension [23]). Let us consider a function f
computable as an arithmetic expression f, composed of a finite sequence of opera-
tions applied to constants, argument variables or intermediate results. A natural
interval extension of such a function, denoted by f(x), is obtained by replacing
variables with intervals and executing all arithmetic operations according to the
rules above.

2 An upper bound for the size of several object classes has been extracted from the
ShapeNet dataset: https://www.shapenet.org/.

https://www.shapenet.org/
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Please note how different expressions for the same function yield different
natural interval extensions. For instance, f1(x) = x2 − x, and f2(x) = x(x − 1)
are both natural interval extensions of the same function. For example, consider
the expression f(x) = x − x which is equivalent to 0. However evaluating the
expression with the interval [1,2], gives f([1, 2]) = [1, 2]− [1, 2] = [−1, 1], because
the piece of information that the two intervals represent the same variable is lost.
In general, although the ranges of interval arithmetic operations are exact, this
is not so if operations are composed. For example, if x = [0, 1] we have f2(x) =
[0, 1] ([0, 1]−1) = [0, 1] [−1, 0] = [−1, 0] , which strictly includes range(f, [0, 1]) =
[−1/4, 0].

It is well-known that Interval Analysis systematically overestimates the
bound on the results of a computation: this is the price to pay for its simplicity.

3.4 Interval-Based Triangulation

Let us assume that we can write a closed form expression that relates the 3D
point X to its projections x1 = Π1(X) and x2 = Π2(X) in two images (see [9]):

X = f(x1, x2) (5)

If we let x1 and x2 in Eq. (5) vary in B1 and B2 respectively, then range(f,B1×B2)
describes the polyhedron D that contains the object. Interval Analysis gives us a
way to compute an axis-aligned bounding box containing D by simply evaluating
f(x1,x2), the natural interval extension of f, with B1 = x1 and B2 = x2.

The 3D interval f(x1,x2) encloses the polyhedron D, and, in general, it is an
overestimate. In fact, intervals can model only axis-aligned rectangular boxes;
moreover, as seen in the examples, interval evaluation inevitably introduces over-
estimation.

The approach is easily extensible to the general n-views case. As defined in
Sect. 3, the sought polyhedron D is formed by the intersection of the semi-infinite
pyramids generated by back-projecting in space the sets B1, . . . ,Bn. Thanks to
the associativity of intersection, (D) can be obtained by first intersecting pairs
of such pyramids and then intersecting the results. Let D2

i,j be the solution set
of the triangulation between view i and view j. Then:

D =
⋂

i=1,...,n
j=i+1,...,n

D2
i,j . (6)

An enclosure of the solution set D is obtained by intersecting the n(n − 1)/2
enclosures of D2

i,j computed with the IA method described above. Since each
enclosure contains the respective solution set D2

i,j , their intersection contains D.
In summary, the IA approach yields a rectangular axis-aligned bounding box
f(x1,x2) that contains the polyhedron D. This method is faster and easier to
implement (basing on an interval arithmetic library, such as INTLAB [25]) than
the CG one, but the enclosure is – in general – an overestimate.
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4 Experiments

We tested our methods on three datasets: ACCV [15], TUW [1] and ScanNet [6].
These datasets present different imaging conditions related to camera motion,
number of frames for each sequence, number of objects and their distance from
the camera. In total we tested 1240 different image sequences with an overall
number of 42, 000 frames.

All the datasets provide the camera parameters and the annotated ground
truth (GT) point clouds of the objects inside the scene. For each object, we
evaluated the GT 3D bounding box by enclosing the given 3D point clouds.
For each frame and each object we also generated a set of 2D bounding boxes
to simulate the output of an object detector. This is done by fitting with a
box the 2D reprojections of the labelled point clouds associated to each object.
Additionally, we have also evaluated oriented bounding boxes, by aligning the
box with respect to the orientation of the objects onto the 2D image frames.
The alignment is performed by considering the orientation of an image mask
associated to the reprojected points, returned by the function regionprops in
MATLAB (Fig. 2).

Fig. 2. A frame with oriented bounding boxes (red) and bounding boxes aligned to
the axes (green) of Seq. “Iron” of the ACCV dataset, Seq. 7 of the TUW dataset and
scene0000 of the ScanNet dataset. (Color figure online)

Results have been evaluated by computing the 3D Intersection over Union
(IoU) between the bounding boxes associated to the GT and to the reconstruc-
tion. Our methods perform very well for the ACCV dataset since the sequences
have a high number of images taken from a camera that performs a large rota-
tion around the objects. Differently, the TUW and ScanNet datasets have a
reduced number of frames and a limited motion of the camera, thus reducing
drastically the performance of the proposed methods. The computational costs
of both methods can be deduced by [9,10].

4.1 ACCV Dataset Evaluation

The ACCV dataset [15] contains 15 sequences, each of them depicting a single
object laying on a table at different camera viewpoints (from 100 to 1000 per
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Fig. 3. Results for 2 ACCV sequences. In the figures we show the GT point clouds of
the objects and in green the estimated 3D bounding box. On the left are displayed the
results by using the CG, where the red wire-frame represents the estimated polyhedron.
On the right are shown the results of the IA method. (Color figure online)

sequence). We used 9 sequences for which the 3D point cloud of the object is
provided, and limited the number of views to 100 for each sequence. The number
of view and the motion affect positively the CG approach, as shown in the left
image of Fig. 3: The larger the angle spanned by the viewpoints around the
object, the better the performances of the method. As shown in Table 1, the
results are remarkable for CG, with an average IoU of 0.85. Unlike the CG one,
the IA approach does not reach high results in term of IoU (average IoU: 0.37)
because of its tendency to overestimate the volume, as can be seen in Fig. 3 and
as already explained in Sect. 3.3. Table 2 shows results using oriented bounding
boxes with an average IoU of all the sequences similar to the average IoU given
by bounding boxes aligned to the image axis. By analysing each sequence, there
is a net improvement in the “Driller” and “Can” because the oriented bounding
boxes can describe better objects with an anisotropic shape.

Table 1. Estimated IoU for 9 sequences from ACCV dataset, by using CG and IA
with bounding boxes aligned to the image axis.

Iron Duck Ape Can Driller Vise Glue Cat Lamp Avg.

IA 0.34 0.14 0.27 0.39 0.33 0.63 0.50 0.18 0.53 0.37

CG 0.81 0.85 0.89 0.87 0.77 0.85 0.90 0.75 0.87 0.84

Table 2. Estimated IoU for 9 sequences from ACCV dataset, by using CG with bound-
ing boxes aligned to the point cloud reprojections.

Iron Duck Ape Can Driller Vise Glue Cat Lamp Avg.

CG 0.80 0.84 0.73 0.92 0.90 0.82 0.93 0.70 0.87 0.83
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4.2 TUW Dataset Evaluation

The TUW dataset [1] contains 15 annotated sequences showing a table with
different sets of objects deployed on it. The number of frames per sequence
ranges from 6 to 20, therefore fewer frames are available with respect to the
ACCV dataset. Moreover, the objects in the images are not centred in the 3D
scene as in the previous case.

We used both the CG and IA on these sequences, and the results are displayed
in Table 4. In this case, it is clear a drop of performance for the CG approach,
on average 0.27, while the IA approach fails to provide usable localisations by
overestimating the volume when there are few frames available (Table 3).

We also performed an evaluation by considering the 2D bounding boxes
aligned with the objects and we also evaluated the performance of the CGb

method. As expected, the results (reported in Table 4) outperform the original
CG method in terms of IoU, reaching an average precision of 0.40. Indeed, if few
frames are present, the constraint on the volume of the polyhedra is fundamental
for not obtaining excessively overestimated volumes.

Table 3. Estimated IoU for 15 sequences from TUW dataset, by using CG and IA
with bounding boxes aligned to the image axis.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg.

IA 0.00 0.00 0.03 0.02 0.00 0.01 0.01 0.00 0.00 0.02 0.01 0.01 0.01 0.01 0.03 0.01

CG 0.17 0.05 0.53 0.25 0.32 0.29 0.23 0.25 0.12 0.41 0.24 0.23 0.23 0.38 0.33 0.27

Table 4. Estimated IoU for 15 sequences from TUW dataset, by using CGb with
bounding boxes oriented to the point cloud reprojections.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg.

CGb 0.45 0.09 0.34 0.37 0.39 0.33 0.42 0.57 0.28 0.57 0.43 0.45 0.39 0.33 0.52 0.40

4.3 ScanNet Dataset

ScanNet is a RGB-D dataset of real-world indoor environments proposed by
[6] and it is the most challenging tested dataset. ScanNet main advantage is
the high number of annotated sequences, 1513 in total. This dataset provides,
for each sequence, all the camera parameters and a dense 3D reconstruction of
the environment. Several objects and regions in the 3D point cloud are labelled,
thereby providing ground truth for object localisation and occupancy estimation.
We selected a subset of 1215 image sequences that have a minimum of 3 frames.
We also did not consider all the sequences with a poor estimation of the motion
of the camera, which can heavily affect objects localisation (Fig. 4).
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Fig. 4. Results for Seq. 7 of the TUW dataset. In the figures we show the GT point
clouds of the objects and in green the estimated 3D bounding box. In (a) is displayed the
result by using the CG, where the red wire-frame represents the estimated polyhedron.
In (b) is shown the results of the CGb with oriented bounding boxes, while in (c) the
estimation performed by using the IA [9] method.
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Fig. 5. Distribution of the IoU results for the 1215 selected sequences of the ScanNet
dataset with the CG (left) and with the CGb (right) approaches.

Fig. 6. Results for scene0000 of the ScanNet dataset. On the left is displayed the recon-
struction by using only the CG approach, with the polyhedrons coloured differently to
distinguish each reconstructed objects; on the right the estimation by using oriented
bounding boxes and the CGb approach, with the estimated polyhedrons in red and the
associated bounding box in green. (Color figure online)
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In this case the average results for the CG method is 0.04, while IA fails the
reconstruction. The reason of this poor performance is mainly due the short base-
line and small camera rotation. We also applied the CGb to the ScanNet dataset
by considering as input the oriented 2D bounding boxes. since the inclusion of
two extra planes in the CGb helps to limit the volume of the reconstruction as
can be seen in Fig. 5(b), especially when motion of the camera is reduced and
the polyhedron computed by the CG is unlimited, as in Fig. 5(a). In Fig. 5 we
included some statistical information about the estimations, like the distribution
among the sequences of the IoU results by using both the CG Fig. 6(a) and with
the CGb Fig. 6(b) approaches.

5 Conclusion

We have presented two approaches based on two already existing methods to
perform the localisation (position and occupancy) of detected objects by using
as input 2D bounding boxes associated to the objects and the camera parameters.
Extensive experiments on real datasets confirm that the problem of estimating
3D localisation and occupancy from 2D bounding boxes is solvable. Between the
two proposed approaches, IA tends to overestimate the enclosure with respect
to CG. It is also clear that higher performance are obtained with higher number
of frames and camera motion. Further improvements can still be obtained by
including more data-driven priors about the surrounding environment and on
the objects sizes and appearance. In particular, the ScanNet dataset performance
can be further improved, representing a new challenge for the community.
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Abstract. In this paper we describe a system for beverage product
recognition through the analysis of cooler shelf images. The extreme
objects occlusion, the strong light influence and the poor quality of the
images make this task a challenging one. To overcome these limitations,
we rely on simple computer vision algorithms, like chamfer and color
histogram matching and we introduce simple 3D modeling techniques.
In our experiments, we demonstrate the effectiveness of our approach in
terms of both detection accuracy and computational time.

Keywords: Cooler inventory · Image segmentation · Chamfer match-
ing · Object recognition

1 Introduction

This paper describes a computer vision system for the automatic inventory of a
commercial cooler. The goal is to count, for each brand, the number of beverage
products (bottles and cans) contained in the cooler at any given moment in order
to efficiently schedule a refill if necessary. This is done through the continuous
analysis of the images of the cooler’s shelves taken by (low-cost) wide-angle
cameras.

Although at first glance the task looks trivial, as the objects to be recognized
are clearly distinguishable, rigid and in a well-known static environment, it is
in fact a challenging one due to a combination of several factors. In particular,
a first difficulty arises from the severe occlusion conditions under which the
system has to work. In fact, in a typical scenario involving densely packed shelves,
visibility decreases row by row, the rear products being almost completely hidden
from the front ones (see Fig. 1 for some typical examples). The items are also
typically very close to each other and this makes segmentation and detection
more difficult. Recognition is also complicated by the lighting conditions: light
is not uniform in the images, not only due to the shadows generated by the
shelves and by the products themselves, but also due to the influence of external
light. As a result, our images have typically poorly defined edges and distorted
c© Springer International Publishing AG 2017
S. Battiato et al. (Eds.): ICIAP 2017, Part I, LNCS 10484, pp. 575–585, 2017.
https://doi.org/10.1007/978-3-319-68560-1_51
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color representation, thereby making segmentation and brand classification more
difficult. Also, the system has to be flexible enough to recognize new products
after software installation. These difficulties are exacerbated by the need to cut
off production costs and by the consequent use of low-quality cameras and limited
computational resources. Indeed the whole system has to run on an embedded
low-performance computer and this poses serious limitations as to the kind of
algorithms that can be used, as computationally intensive techniques are clearly
not feasible.

Fig. 1. Typical images analyzed by our system.

Fig. 2. Flow-chart of the proposed system.

The proposed system uses a combination of simple techniques to address
these limitations. It is implemented into a pipeline of simple modules, as shown
in Fig. 2. The pipeline begins with an edge detector which extracts the features
that will be used by the distance transform module to construct a distance image.
The next step in the pipeline is chamfer matching [1], which detects the shape of
beverage products by shifting their templates at various locations of the distance
image. A matching measure is used to detect a candidate beverage shape, which
is then checked by a false positive elimination module. Finally, the brand of
the beverage products is recognized using simple color histogram matching. The
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color histogram of the pixels which lie under a detected shape is compared with
the color histograms build from the images of reference products. Despite the
simplicity of the used techniques, preliminary results show the effectiveness of
the proposed system in terms of both detection accuracy and computational
time.

2 The Pipeline

The proposed pipeline is based on simple techniques applied in a cascaded way to
enhance the recognition accuracy and to provide robustness. As previously men-
tioned, the pipeline begins with a learning-based edge detector [4] which extracts
the most useful product edges that will be used to construct a distance image.
This is used by the chamfer matching module [1] in order to detect candidate
product shapes which will be checked by the false positive elimination module.
The last module is the histogram matching that allows brand recognition. The
algorithm is optimized by using 3D modeling techniques for template genera-
tion and by a space management system which allows faster image scan and
avoids the need of a non-maximum suppression. Further accuracy is achieved by
splitting a beverage into its main characterizing parts, processing them indepen-
dently and considering the results as a whole. Occlusion is dealt by building an
occlusion mask which keeps track of the image portions occupied by the detected
beverages and masks the templates occluded parts. Figure 2 shows the flow chart
of the proposed pipeline.

2.1 Edge Detection

Edge detection is the preprocessing stage of the pipeline. It relies on the OpenCV
3.2.0 [7] implementation of the fast edge detector proposed by Dollár and Zitnick
[4], which is inspired by the work of Kontschieder et al. [8]. It exploits the high
interdependence of the edges in a local image patch. In particular, edges exhibit
well-known patterns that can be used to train a structured learning model.
Dollár and Zitnick’s algorithm segments an image into local patches used to
train a structured random forest model. This model provides a local edge mask
which is applied to extract edges in an accurate and efficient way. Figure 3 shows
edge detection results obtained from Dollár and Zitnick’s algorithm.

2.2 Shape Detection

Template matching is the first stage of the proposed system in which beverage
candidates are evaluated and discarded if they do not satisfy the shape require-
ments. It relies on a chamfer template matching [6] for the shape detection, on
a 3D modeling for the template generation, on a smart sliding window for the
space management and on a simple yet essential mechanism for the occlusion
management.
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Fig. 3. Example of the edge detection results: the original shelf image on the left and
the edge image on the right.

Chamfer matching is a simple template matching algorithm which offers high
performance and a robust detection as it is very flexible and more tolerant to
low quality edges than other algorithms of the same kind. First, a morphological
transformation, known as distance transform [5], is applied to the previously
extracted edges. The resulting picture will be a gray-scale image in which each
pixel will have the value of the distance from that pixel to the nearest edge.
Finally, a query template is slided onto the distance image. At each position,
a matching measure is computed by summing the pixel values of the distance
transform image which lie under the edge pixels of the template. If the computed
matching measure lies below a certain threshold, the target beverage shape
is considered detected. The template threshold should be chosen to achieve a
desired trade-off between false positives and false negatives.

Chamfer matching is very inefficient as all beverage templates of varying
shape and size have to be tested at each locations of the distance image. Thus, a
3D model of the shelf is introduced to speed-up the matching process. It allows
to check only one template per product at each location of the distance image
avoiding to check, for each products, a bunch of templates of varying shape and
size. To achieve this aim, we exploit the available information related to the
objects, the cooler and the camera in order to render the shelf and to build
the template for the shape matching. In particular, each object is accurately
measured as follows: first the bottom diameter is measured, then, going up, for
each change in the shape the value of the height and the corresponding diameter
are collected. In this way we sum up the product contour as a collection of
diameter discontinuities and their relative heights. The beverage partition into
contour and horizontal parts can reproduce well most of the bottles and cans,
even those which are not circular based, with a little error. Furthermore, cameras
intrinsic parameters are collected, while real position of the camera and rotation
angles are measured. For this purpose we introduce an artificial reference points
in the picture: a special sheet of paper with a printed grid is laid on the shelf,
while the same grid is rendered in a 3D representation of that shelf, using the
cooler information. At the beginning the virtual grid is in a random position
but, using special buttons on the keyboard, a user is able to modify the camera
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position and the rotation angles in order to match as close as possible the virtual
grid with the real grid. When the grids match, we obtain the camera position
and the orientation with a good accuracy. This whole process should be done
only once, when the camera is installed. Figure 4 shows the calibration process.
Finally, after the calibration step, the template of each product is rendered at
any desired point of the shelf (Fig. 5).

Fig. 4. Calibration procedure: the goal is to match the grid on the shelf. (1): Real grid
in the shelf. (2): Starting virtual grid with predefined camera position and orientation.
(3): Close match of the grids. (4): Good grid match; now the camera parameters are
known.

Fig. 5. Examples of templates generated by the 3D modeling.

To further speed-up the matching process, a smart sliding window for the
space management, named smart scan module, is introduced. It relies on a 3D
shelf model which allows to switch from virtual coordinates (pixels of the image)
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to physical ones (millimeters of the real shelf) (Fig. 6). The scan is then per-
formed referring to the physical shelf position (x, z) so that the spatial infor-
mation can be exploited to avoid points in which the template cannot fit due
to the lack of space. In particular, the scan starts from the lowest right angle
(x = maxLength, z = 0) and goes up column-wise: at each detection step we
keep the x fixed and we increase the z by stepz, until the innermost part is
reached; then we reset z to 0, we shift left by stepx (x = x − stepx) and we start
increasing the z again; this procedure goes over until the left highest corner is
reached. Thus, the 3D model and the smart scan allow to check only one tem-
plate per product at each permissible position (x, z) speeding up the template
matching phase.

Fig. 6. Real shelf and camera coordinate systems.

To deal with the occlusion conditions, a binary image, called occlusion mask
(see Fig. 7), keeps track of the detections found at every step. The occlusion
mask has the same size of the shelf image, and it can be thought as a sort of
shelf shadow doublet: each time a detection is confirmed in an image point, the
occlusion mask is updated accordingly by setting to zero all the pixels belonging
to the filled template shape at that same point. In this way the occlusion mask
will be a binary image in which black pixels denote the scan image space occupied
by the products found until that moment, while white pixels denote the free space
left. We then update the query template by masking it with the occlusion mask,
so that only the visible template portion is used in the subsequent matching.
If the remaining template portion is under a certain threshold, it is discarded
as not reliable enough. This solution offers good performance while keeping the
problem at a very simple level, but it is not always accurate enough as it is based
on a strong assumption which sometimes does not hold: products are considered
to be picked in order from the visible ones to the most occluded.

Finally, to achieve better accuracy, a procedure known as false positive elim-
ination is performed: each beverage part of a candidate detection is compared
against the results achieved by the chamfer matching applied to a reference back-
ground image. If the results are too close to each other, the algorithm states that
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Fig. 7. Example of the mask image during an ongoing detection. The source image
is on the left, the occlusion mask is in the middle and the objects found until that
moment are on the right. (Color figure online)

the match is a fake one (the match is a part of the background which is wrongly
detected as a real object).

2.3 Color Classification

Histogram matching is the second and last stage of the proposed pipeline in
which the brand of a previously detected shape is recognized. In particular, the
histogram matching module exploits all the elements defining a visual beverage,
i.e. shape and color, to enhance the correctness of the shape detection and to
recognize the brand of previously detected shapes.

This module relies on the same distinction between the product parts done
in the template matching one: a product is split into its main components (cap,
bottle liquid and logo for the bottles, the top part of the can and the can surface
for the cans) so that it is possible to focus on simple algorithms while keeping the
spatial color information (as an example, the cap should be blue while the liquid
is green, and not the opposite). It is worth nothing that in the same product
part the color is often uniform, so there is no need to split the objects further.

The color analysis is based on simple color histograms [2,3,9] guided by the
3D model: only the image portion under the filled template is used to build
the histogram. The color space is divided into n sub-parts, called bins, covering
specific color ranges. Three normalized color histograms, one for each channel,
are then computed. Finally, the histogram of each product part is compared
against histograms build from the products database in order to decide the
fitness of the detection.

The product database contains reference photos of each product the algo-
rithm should recognize. In particular, for each product, a series of photos are
snapped in controlled conditions: the middle shelf of the reference fridge is
divided into 9 zones and for each zone four pictures are snapped using 90◦

rotation.
Histogram comparison is based on the following measure:

d(H(I),H(I ′)) = dmode(H(I),H(I ′))(1 − H(I) ∩ H(I ′)) (1)
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where H(I) and H(I ′) is a pair of normalized histograms, each containing n
bins; dmode is the distance between the bins of each histogram having the highest
frequency indexes and H(I) ∩ H(I ′) is the sum of the smallest corresponding
bins between two histograms, i.e. the histogram intersection.

The measure (1) is a weighted distance which is robust against color distor-
tion because of the modes, while keeping a deeper histogram comparison because
of the intersection.

3 Experimental Results

We have performed a series of experiments to verify the performances and the
accuracy level that can be obtained by our system. All the module of the pipelines
have been implemented using GNU C++ and have been run on dual core CPU
with 1.6 GHz/core and 1 GB of RAM.

The results here presented are divided into two sections:

– the first section shows examples of products placed at random in the shelf;
– the second section shows examples of real cooler cases, where a shelf is filled

by columns and each column will contain only bottles/cans of the same brand.

The experiments have been conducted in a 654 × 594 mm cooler shelf with 10
beverage brands. For each test it is shown: the original shelf image (on the
left); the beverage edge image where detected caps are highlighted in red (in the
middle) and, finally, the 3D rendering of the products detected by the pipeline
(on the right).

3.1 Random Shelf Configurations

Figure 8 shows some examples of products randomly placed in the shelf and a
few products placed at the rear. The recognition is high, even if some Lipton cans
are seen as Kickstarter, since they are very similar; we can also note that the
difference between the cans themselves is very little, as just a little part of the
logo is different. It is worth to note that Gatorade are detected despite having
a different shape from the one in our database: this highlights the algorithm is
flexible enough to recognize even unknown products sharing similar properties
to the known ones. As for the cans, the Lipton bottle brands (brown bottles)
are so similar that it is almost impossible to distinguish between them. Finally,
Pepsi and MtnDew (green bottles) have a distinctive color, hence we can achieve
a good accuracy on them.

3.2 Ordered Shelf Configurations

Figure 9 shows some examples of real cooler cases, where a shelf is filled by
columns and each column will contain only bottles/cans of the same brand. In
the first row there are two tea bottles placed in the rear of an almost empty fridge
which are correctly recognized, while the second row there are two Gatorade and



A Computer Vision System for the Automatic Inventory of a Cooler 583

Fig. 8. Examples of products randomly placed in the shelf and a few products placed
at the rear.

three Lipton cans which are correctly recognized too. The cooler is recognized
to be almost empty in both cases. In the third row there are some missed Pepsi.
This is due to weak edges which are not recognized by the template matching.
In the last row, there is a shelf full of bottles and, in this case, some products
are missed.

From the analysis of 100 experiments we can state that:

– the overall average accuracy level we have obtained is over 80%. In particular,
an empty shelf can be identified with 100% precision, while the accuracy
decreases to 70% if the shelf is almost full, because of the product occlusion
that forces the algorithm to rely only on the top part of the product instead
of considering it in its entirety.

– Since the system should send a cooler inventory every 10 min, the perfor-
mances are quite satisfactory, as the whole scan of a 654 × 594 mm cooler
shelf takes approximatively 100 s.

– Some products are more easily detectable than others since the colors of
beverages like Pepsi, MtnDew, Gatorade create a well defined contrast with
the background and are very different from the colors of other products. By



584 M. Fiorucci et al.

Fig. 9. Examples of real cooler cases.

contrast, Aquafina is very difficult to be identified because of its transparent
bottle and its white cap which blends into the background.

4 Conclusions

We have described a simple yet effective system for monitoring the content of
a commercial cooler through the visual analysis of the shelves’ images taken
with low-cost wide-angle cameras. The difficulty of this task lies mainly in the
challenging set-up in which it has to be carried out, such as severe or almost
complete occlusion, uneven lighting conditions, poor image quality, and low-cost
hardware. The proposed solution combines simple techniques which effectively
work under these challenging conditions.

Despite the simplicity of the used techniques, we achieved a satisfactory accu-
racy level, being able to detect from 70% to 95% of the whole shelf in 100 images.
Since the system should send a cooler inventory every 10 min, the computational
performances are acceptable as a full shelf scan takes approximately 100 s using
limited computational resources. Finally, the system is very flexible, as it needs
just a simple and quick learning phase to add new products.
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In future, we are planning to better handle irregular light intensity and color
distortion in order to improve the recognition accuracy.
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Abstract. There are several measures for the convexity of digital images
that extend the basic binary decision of the classic geometrical convexity.
Some algorithms measure the convexity of a binary image using intensity
profiles from horizontal and vertical directions. In this paper, we gener-
alize the idea of binary, directional convexity and evaluate the proposed
algorithm on gray-scale images. Furthermore, instead of a single convex-
ity value, a vector can be formed using our approach, which provides a
more prominent feature for various applications, such as computer vision,
classification, retrieval, or medical image processing. The proposed fea-
ture can also be used locally on image parts, which makes that applicable
as a shape descriptor.

Keywords: Convexity measure · Digital geometry · hv-convexity ·
Gray-scale convexity

1 Introduction

Convexity is a widely studied and applied shape descriptor in image analysis and
classification. On digital shapes, there are various measures that approximate
the continuous convexity, like area based [6,19,20] and boundary-based ones
[22]. It shall be noted that many convexity measures produce continuous output
[15,17,18], unlike the classic, geometrical approach, which gives a binary decision
whether or not the observed shape is convex.

In case of digital images, directional convexity is a common alternative for
the convexity for continuous shapes, due to the pixel-based representation of the
image. Mostly horizontal and vertical convexity is used (shortly, hv-convexity),
which means that the convexity measure is defined by the aggregation of the
convexity degree along horizontal and vertical sweeping lines. The property of
hv-convexity is deeply studied in Binary Tomography [14], where one problem in
focus is to reconstruct binary images (matrices) from their row and column sums
according to geometrical constraints. Several reconstruction methods utilize the
preliminary information of hv-convexity about the binary image to be recon-
structed [3,8,11]. Enforcing compactness of the image to reconstruct can also
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result in binary images which are (almost) hv-convex [12]. In [21] the authors
introduced a measure of directional convexity and proved it to be useful in binary
tomographic reconstruction. However, they also showed that a 2D extension of
this measure is not straightforward [2]. Later, immediate 2D convexity measures
were also proposed in [1,9], while in [5] an upgrade of the measure of [2] was
published.

The aim of this paper is to generalize the directional convexity measure from
binary to gray-scale images, that can be used with existing binary convexity mea-
sures [1,5,21]. The structure of the paper is the following. In Sect. 2 we describe
the proposed gray-scale convexity measure. In Sect. 3 we present experimental
results. Section 4 is for the conclusion.

2 The Proposed Gray-Scale Convexity Measure

2.1 Preliminaries

A digital image M is a matrix having m rows and n columns (where m,n ∈ N).
Numbering of rows and columns start with 1 from top to bottom and left to
right, respectively. If M is a digital image then MT is the image we get by
interchanging the rows and columns of M . Let I = {i0, . . . , il} be the set of
possible intensity values of the image such that ik < ik+1 (k = 0, . . . , l − 1) and
M(r, c) ∈ I denote the intensity value corresponding to the position (r, c). A
typical choice is I = {0, . . . , 255} (8-bit images) or I = {0, . . . , 65535} (16-bit
images).

For binary images I = {0, 1}. In this case, a run of object (background)
points within a row or column is a sequence of consecutive pixels, all of them
being object (resp. background) points, such that it cannot be expanded by
further neighboring pixels of the same color. Obviously, each row and column of
the image can be expressed by an alternating sequence of object and background
runs. The length of an arbitrary run a will be denoted by |a|.

2.2 Measure of hv-Convexity for Binary Images

Originally, we follow the idea of hv-convexity measuring on binary images in [5]
which is a modified version of [2]. According to that paper, first, the convexity
defect ϕbin

h (r) for each row r = 1, . . . , m is calculated in the following way (bin
stands for “binary”).

Let R be the pixel sequence of an arbitrary row. To compute the non-
convexity of R, we split it into a list of object and background runs. If the
first or last run is a background run then we omit them. Thus the rest of the
row can be encoded as R = b1w1b2w2 . . . wn−1bn, where each bi is an object run
(i = 1, . . . , n) and each wi (i = 1, . . . , n − 1) is a background run.

Let OR be the ordered set of object runs in row r, i.e., OR = {b1, b2, . . . , bn}.
The sum of object pixels in R is NR = |b1|+ |b2|+ · · ·+ |bn|. Now, let bi, bj ∈ OR

such that i < j. We select one random point from both, say, the k-th from
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bi Wi,j bj

bik bi k + 1 l bjl

dik,jl

Fig. 1. Calculation of the non-convexity between two object points from different object
runs, proposed in [5].

left in bi denoted by bik and the l-th from left in bj denoted by bjl . The section
connecting these two points is characterized by the non-convexity measure, which
value depends on the number of background pixels between bi and bj . Let Wi,j =
∑j−1

l=i |wl|, Bi,j =
∑j−1

l=i+1 |bl| and dik,jl denote the distance of the two chosen
points. This distance is partially made up of the points of bi to the right of bik ,
the points of bj to the left of bjl . There are, |bi|−k+1 and l such points (including
the chosen points, too), respectively. Additionally, the section contains the Wi,j

background points, and further object point runs (Bi,j), if j > i + 1. That is,
dik,jl = |bi| − k + 1 + Wi,j + Bi,j + l (Fig. 1 illustrates the calculation). The
normalized non-convexity measure for this section is

Wi,j

dik,jl
, (1)

and the cumulated non-convexity of R is

∑
bi,bj∈OR,i<j

∑|bi|
k=1

∑|bj |
l=1

Wi,j

dik,jl

Cr
, (2)

where Cr is the number of combinations to select the two object points from
different object point runs, computed as

Cr =
(

NR

2

)

−
∑

b∈OR

( |b|
2

)

. (3)

The horizontal convexity of M is defined as

Ψ bin
h (M) = 1 −

∑m
r=1 ϕbin

h (r)
m

. (4)

The vertical convexity Ψ bin
v (M) can be calculated analogously by the obser-

vation that Ψ bin
v (M) = Ψ bin

h (MT ). Finally, the hv-convexity is the algebraic
mean of the horizontal and vertical convexity, i.e.,

Ψ bin
hv (M) =

Ψ bin
h (M) + Ψ bin

h (MT )
2

. (5)
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2.3 Extension of the Convexity Measure to Gray-Scale Images

The aforementioned approach only measures convexity of binary images, since
we need to define sequences of object and background pixels. In most cases,
binarization is solved by thresholding (for example, with Otsu’s method [16]),
which leads to loss of information. To overcome this, we propose to aggregate the
convexity using all possible thresholds. Let T (M, t) denote the binary image we
get by thresholding M at level t. For the continuous case, convexity is computed
as

Ψhv(M) =
1

il − i0

∫ il

i0

Ψ bin
hv (T (M, t))dt . (6)

This calculation theoretically takes infinite time, however, it collapses to a
factor of O(|I|) when the input is quantized. Assuming that the image is in the
positive intensity range, convexity is computed as

Ψhv(M) =
1
|I|

il∑

t=i0

Ψ bin
hv (T (M, t)) . (7)

The aforementioned approach calculates the convexity of the same binary
image multiple times if the intensity value t does not occur within the original
one. Exploiting this, the calculation of T (M, t) is only necessary where t ∈ J with
J = {j0, j1, . . . , j|J|−1} ⊆ I being the ordered set of distinct intensity values of I.
For the sake of technical simplicity we assume that the maximal element il of I is
always contained in J even if it is not present in the image. Each Ψ bin

hv (T (M, t))
can be assigned a weight, reflecting how many times we could have calculated
that. Let W (t) be a weight corresponding to t. We perform thresholding at
all intensity levels of J and aggregate the results of binary convexity measures
(Algorithm 1) as

Ψhv(M) =
1
|I|

|J|−1∑

t=0

Ψ bin
hv (T (M, jt))W (t) (8)

with

W (t) =

{
j0 + 1 if t = 0
jt − jt−1 otherwise

. (9)

The weight values W (t) would be 1 for all t input, if all intensities occur in the
image within the full intensity range. For an other example, if I = {0, 1, 2, 3, 4}
and the ordered set of intensities in the image is J = {0, 1, 4}, then the corre-
sponding weights are {1, 1, 3}. It shall be noted that the sum of weights is always
equal to the size of the intensity range in which the image is represented.
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Algorithm 1. Convexity calculation for gray-scale images using binary hv-
convexity measure Ψ bin

hv (M).
1: function Convexity(M) � convexity for gray-scale image M
2: J ← il � Set of distinct intensity values
3: for i ← 1. . .m × j ← 1. . .n do
4: if M(i, j) /∈ J then J ← J ∪ M(i, j)
5: end for
6: W ← [] � Array of weights
7: W[0] ← J [0]+1
8: for t ← 1. . . |J | − 1 do
9: W[t] ← J [t] − J [t − 1]

10: end for
11: c ← 0
12: for t ← 0. . . |J | − 1 do
13: Mt ← T (M, J [t]) � Thresholding at level t
14: c ← c + Ψ bin

hv (Mt) * W[t] � Convexity calculation with existing method
15: end for
16: c ← c / |I| � Normalization
17: return c
18: end function

3 Evaluation and Experiments

Our first experiment is about to show the basic difference between the original
binary convexity [5] and the proposed one. In Fig. 2, binary thresholding leads
to the same result for both squares. On the other hand, the proposed algorithm
forms the weighted sum of thresholds on all occurring gray levels, and can dif-
ferentiate between the two images. It gives a convexity value of 0.8940 for the
gray-scale image and 0.5975 to its binarized version.

Ψ bin
hv 0.5975 0.5975

Ψhv 0.5975 0.8940

Fig. 2. Images of two empty square objects and their corresponding convexity values.
The gray square is intuitively more “full”, which attribute is also supported by the
proposed gray-scale convexity value.

We also examined the proposed algorithm on a real gray-scale image (Fig. 3).
We thresholded the image at 50% of the intensity range, produced another image
using 16 quantization levels, and finally, measured the hv-convexity of the orig-
inal 8-bit image. According to this example, the quantization levels may be
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reduced for 8-bit images in order to achieve faster run-time of the algorithm,
however, that only gives an approximation of the original convexity.

Levels 2 16 256

Ψ bin
hv 0.6924 0.6924 0.6924

Ψhv 0.6924 0.7954 0.7864

Fig. 3. The proposed approach on a real 8-bit image.

It shall be noted that not only a scalar value can be derived from this app-
roach. If desired, the convexity values can be used for each occurring intensity
(Figs. 4 and 5). Thus, two vectors can be formed for each image, one containing
the convexity values for each threshold level, and another with the corresponding
weights. Both vectors have the same length (the number of distinct intensities of
the source image). Those vectors can also be computed locally on image parts,
which renders them applicable as a shape descriptor for computer vision, classi-
fication and object recognition.
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Fig. 4. Convexity values for the 8-bit real image (represented in Fig. 3) and its 16-level
quantized version w.r.t. threshold level. The vector of individual convexities may give
a more prominent feature for classification tasks than a single convexity value.
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t 0 17 34 51 68 85 102 119

Ψ bin
h 1.0000 0.9360 0.9363 0.9165 0.9219 0.9305 0.8872 0.8033

Ψ bin
v 1.0000 0.9638 0.9500 0.9096 0.9178 0.9521 0.8741 0.7200

Ψ bin
hv 1.0000 0.9499 0.9431 0.9130 0.9199 0.9413 0.8806 0.7616

t 136 153 170 187 204 221 238 255

Ψ bin
h 0.7227 0.6640 0.5953 0.5822 0.5865 0.7172 0.7888 0.8600

Ψ bin
v 0.6623 0.6250 0.6074 0.5712 0.5840 0.7053 0.7969 0.9063

Ψ bin
hv 0.6925 0.6445 0.6014 0.5767 0.5853 0.7112 0.7928 0.8832

Fig. 5. The thresholded versions of the image represented on Fig. 3, quantized to 16
levels, and its corresponding values of h-, v-, and hv-convexity.

The proposed generalization of the binary convexity measure has the same
behavior w.r.t. rotation and scale invariance than the original convexity measure
we generalize. While this paper only evaluates the convexity measure of [5], the
proposed idea can be used with other binary convexity measures as well [1].

4 Conclusion

In this paper, we presented a gray-scale generalization of an hv-convexity mea-
sure for binary images. Using this approach, the loss of information at the thresh-
olding step is avoided, while all existing convexity measures that work on binary
images [1,2,5] can be adapted to work on gray-scale images, too. Having only a
few distinct intensity levels in an image, the calculation can be performed rapidly.
If less precise calculation is acceptable and speed is more desired, intensity levels
of the image may be further quantized.

The descriptor can be also computed locally to an image part, therefore it
may also be used as an additional shape descriptor in applications, such as com-
puter vision, classification, object recognition, image retrieval, or medical image
processing. A further perspective is to use the single gray-scale convexity mea-
sure as prior information in multivalued discrete tomography. The reconstruction
of multicolor images (i.e., containing at least 3 different gray intensity values) is
in general an NP-hard problem, however, for certain image classes and/or with
appropriate heuristics it can be effectively solved [4,7,10,13]. It needs a further
investigation whether gray-level convexity measures can also facilitate such kind
of reconstruction problems.
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Abstract. In this paper we present an approach for the georeferencing
of historical World War II images by registering the images to present-
day satellite imagery, with the aim of supporting the risk assessment
of unexploded ordnances. We propose to exploit the local geometry of
corresponding interest points in a Hough voting scheme to identify the
most likely transformation parameters between the images. Our method
combines the evidences from local as well as global correspondences and
uses a spatial zoning rule to establish solutions with preferably uniformly
distributed correspondences. An experimental evaluation is conducted
on a set of 42 pairs of historical and present-day images and reveals
the outstanding performance of our method compared to state-of-the-art
image matching and registration algorithms, including commonly used
hypothesize-and-verify and graph matching methods.

Keywords: Historical image registration · Georeferencing ·
Hough voting

1 Introduction

Assessing the risk of UneXploded Ordnances (UXOs) is an important concern
for public safety [20]. Nowadays, a particular risk still comes from World War II
bombing, as it is assumed that 10–30% of bombs remained unexploded [4]. UXO
risk assessment involves the analysis of aerial photographs taken after bomb-
ing [17]. Indications of past bombardment such as craters can be used by ana-
lysts to derive such risk maps, but demands for a tedious prior georeferencing
process by manually registering the images with modern satellite imagery.

In this paper we present an approach to register old World War II images
with modern satellite images for automatic georeferencing. While being a typical
image registration problem [25], this task poses specific challenges that demand
for a well-adapted solution. First and foremost, the time spans of over 70 years
lead to changes in image content of varying degrees, as shown in Fig. 1. Fur-
thermore, the historical images are grayscale only and are affected by over- or
underexposure, uneven illumination, low spatial resolution, blurring, sensor noise
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or cloud coverage. Due to this challenges, existing solutions for registering his-
torical aerial photographs rely on manual interaction steps like line and point
feature detection [18], prior rough alignment [7] or registration of a reference
image [1,10].

(a) (b)

Fig. 1. Examples of image changes between World War II aerial images and present-day
satellite imagery; (a) Vienna’s 3rd district, (b) Vienna airport in Schwechat, Austria.

In image registration, commonly feature-based registration techniques are
exploited due to their ability to ground the registration only on a few salient
image parts, which makes them robust against occlusions and other image dete-
rioration effects and allows to handle complex spatial transformation between
the images [25]. These techniques consist of a feature matching step followed by
a spatial verification step, where outlier correspondences are filtered out and the
transformation with highest support from the set of putative matches is iden-
tified. A dominant example for spatial verification are hypothesize-and-verify
methods such as RANSAC [8] and similar techniques [21], where transformation
model hypotheses are created from randomly chosen correspondence samples and
evaluated by means of congruence with the remaining correspondences. However,
these estimators are only effective if the extracted local features are discrimina-
tive enough to deliver a certain inlier ratio in the set of putative matches. For
weaker local features the feature matching step can be coupled with the spatial
verification step to increase the inlier ratio, as done by graph matching meth-
ods [6,22]. Here feature matching is cast as an optimization problem involving
both the similarities of the local feature vectors as well as pairwise or higher-
order geometric consistencies of matches. However, graph matching is only com-
putationally tractable for extracted feature sets in the order of 101–103 [6], thus
allowing only a small set of initial candidate matches resulting in low recall.

The method presented in this paper builds upon the idea of using Hough
voting in the transformation space, as used for object recognition [14], image
retrieval [11] or image co-segmentation [5]. Due to the available local geometry
of interest points, each single correspondence is able to cast a weighted vote
based on feature similarity. Although a single correspondence gives only a weak
evidence about the image transformation, stronger evidences are produced the
higher the number of correspondences, and false votes can be effectively ruled
out. As adding new correspondences has only linear costs, we can rely the trans-
formation estimation on much more correspondences (in our case in the order of
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105). This is especially effective for high-resolution remote sensing image data, as
all small local structures in the comparatively large earth surface areas covered
are possibly useful for image registration. Hence, we transfer the idea of Hough
voting from single correspondences to our problem of old-to-new image aerial
registration and propose two reasonable extensions to improve the performance:
the combination of local and global image similarities and the use of a corre-
spondence zoning scheme to favor solutions with spatially evenly distributed
correspondences.

The remainder of this paper is organized as follows. Section 2 reviews related
work in the registration of remote sensing images in general and aerial WWII
images in particular. Our methodology is described in Sect. 3. In Sect. 4, quan-
titative results are reported and discussed. Concluding remarks are given in
Sect. 5.

2 Related Work

Registration of Remote Sensing Images: Image registration plays a major
role in various remote sensing applications, such as image fusion, change detec-
tion and georeferencing [12]. Depending on the specific scenario, the effectiveness
of an algorithm is mainly determined by weather it uses the global image infor-
mation or rather focuses on local parts of the image [24]. Global techniques aim
at optimizing the transformation parameters based on a global similarity metric
of pixel intensities, e.g. mutual information [13]. They are usually favored when
the detection of salient structures in the image is not possible and accurate sub-
pixel registration is privileged, but suffer from high computational load and local
minima trapping and are thus limited to registration problems with a bounded
search space of transformation parameters, e.g. the fine registration of roughly
aligned image pairs [13]. Therefore, local techniques are more prominently used
in general scenarios [15,16], as here the registration is based on a few salient
features, which makes them also more robust against dissimilar, non-matchable
image parts and other types of appearance changes. Typical appearance changes
that are considered between remote sensing images are different modalities [16],
illumination effects or disaster damages [3]. Automatic multitemporal image reg-
istration is also followed [9,19,23], but commonly not for such long time-spans
as in our case of historical-to-modern image registration.

Registration of WWII Aerial Images to Present-Day Satellite
Imagery: only a few works consider the problem addressed in our paper, with
Murino et al. [18] being the first to provide a semi-automatic solution. In their
approach, all possible matches between interactively selected line and point fea-
tures are included for a RANSAC homography estimation. Automatic alignment
of aerial images from WWII was also addressed in the GeoMemories project [1],
but only between the historical images, whereas the actual georeferencing is
achieved by selecting a reference historical image with known coordinates. The
same principle is followed by Jao et al. [10], as historical-to-historical image
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registration has to deal with much less image variations and thus spatially ver-
ified SIFT feature matching is a suitable choice. Another solution to simplify
the problem is presented by Cléry et al. [7]. Here a coarse initial registration
is assumed, which can then be automatically refined by matching line features
to a topographic map of the area. In contrast, our method does not make such
assumption and represents, to the best of our knowledge, the first fully auto-
matic approach to register aerial WWII images to present-day satellite imagery
with a-priori unknown orientation and translation relation.

3 Methodology

In our application scenario, historical aerial images cover an area of 2.5–16 km2

and are registered to regions-of-interest in modern satellite imagery with a size of
1.5–10 times the size of the aerial image. We exploit the already known approx-
imate image scale of the historical images derived from the recorded aircraft
altitude and camera focal length to scale-normalize both images and limit the
Hough parameter space to translation and rotation only. A preliminary inspec-
tion of our test data revealed an error of the estimated image scales of only
4.7%, with the maximum being at 30%. Hence, neglecting scale differences in
local feature extraction and the Hough transformation space is a justified choice,
whereas the small scale differences are respected in the final estimation of the
image transformation from the correspondences responsible for the global peak
in Hough space.

3.1 Hough Voting from Corresponding Local Interest Point
Geometry

Extraction of local image features, e.g. SIFT features [14], from an image deliv-
ers descriptor vectors di as well as local feature frames fi = (xi, yi, σi, θi). Here,
(xi, yi) is the feature location relative to the image center, σi is its scale and
θi is the orientation. When registering image I ′ to image I ′′, we first compute
similarities between all features d′

i and d′′
j as si,j = (‖d′

i − d′′
j ‖2)−1. For com-

putation of the Hough space, we take the subset M containing the N matches
with highest similarity, mi,j = (f ′

i , f
′′
j ) ∈ M. Each mi,j ∈ M votes for a rigid

transformation in the 3D Hough Space H(xmi,j
, ymi,j

, θmi,j
), with
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H is initialized with zeros and updated as

H(xmi,j
, ymi,j

, θmi,j
) = H(xmi,j

, ymi,j
, θmi,j
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for each mi,j = (f ′
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j ) ∈ M.
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After the N votes are cast, the transformation parameters x∗, y∗ and θ∗ are
identified at the maximum value in H. We then select the matches M∗ that
voted for a similar transformation by thresholding the translation and rotation
differences, i.e.

M∗ = {m |
∥∥∥∥
(

xm

ym

)
−

(
x∗

y∗

)∥∥∥∥
2

< Tt ∧ π − ||θm − θ∗| − π| < Tθ} (4)

with Tt and Tθ being the thresholding values for translation and orientation,
respectively. From all correspondences in M∗, we estimate the final similarity
transformation to account also for small scale differences between the images.

3.2 Combination of Votes from Local and Global Features

The strong appearance changes between old and new images not only decreases
the discriminative power of the extracted features, but also affects the repeata-
bility of interest point detection. Therefore, we rather apply a dense feature
extraction scheme where local features are sampled on a regular grid with a
fixed feature scale.

In this case, the selection of feature scale is influential to the performance
of feature matching as it decides the level of image details to be compared.
For multitemporal remote sensing data, both smaller and larger structures are
potentially helpful: while smaller scales capture finer details like buildings, larger
scales capture rougher structures like the courses of rivers and streets, which are
likely less affected by changes over time. Therefore, we combine evidences from
correspondences of both local and global image features by constructing two
Hough spaces Hl and Hg and join them to the combined Hough space Hc as

Hc = λ · Hl + (1 − λ) · Hg, (5)

where λ serves as weighting parameter.

3.3 Correspondence Zoning

Dense feature extraction ensures that features are uniformly distributed in both
images, but the feature points belonging to correspondences responsible for a
certain peak in Hough space might be concentrated on very few image parts
with high appearance similarity. However, spatially uniform distributed corre-
spondences should be preferred over clustered ones, since the estimation of the
global image transformation is more robust and the final result is more trustable
as it is grounded on evidences from different image parts.

Therefore, we utilize a zoning procedure that ensures that only one vote is
allowed between two image regions, and consequently gives preference to solu-
tions with spatially uniformly distributed correspondences. For this purpose, we
set up an indicator function Z(x′

i, y
′
i, x

′′
j , y′′

j ) ∈ {0, 1} that defines if a correspon-
dence between the points (x′

i, y
′
i) and (x′′

j , y′′
j ) has already been used. The Hough
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space update of Eq. 3 for Hl is applied only if Z(x′
i, y

′
i, x

′′
j , y′′

j ) = 0 and after an
update with the match mi,j , Z(x′, y′, x′′, y′′) is set to 1 for all (x′, y′) ∈ Nx′

i,y
′
i

and all (x′′, y′′) ∈ Nx′′
j ,y′′

j
, with Nx,y specifying a neighborhood system of the

point (x, y).
The effect of correspondence zoning is exemplarily shown in Fig. 2. When no

correspondence zoning is applied, nearby erroneous matches produce a global
peak in Hough space, resulting in a wrong registration result (Fig. 2a). How-
ever, with correspondence zoning the influence of nearby matches is reduced
and the final matches of the global Hough peak are correct and more uniformly
distributed over the image (Fig. 2b).

(a) (b)

Fig. 2. Image matches chosen based on global Hough peak; (a) without correspondence
zoning; (b) with correspondence zoning.

3.4 Implementation Details

In our implementation, we use SIFT features [14] to describe both the local
and global image patches. For the local Hough space Hl, features are extracted
on a regular grid with an interval of 40 m and a patch size of 120 m, based on
empirical tests. For each feature the orientation θi is determined from the dom-
inant gradient direction within the patch [14]. For the global Hough space Hg,
we extract a SIFT feature over the whole historical image area for 18 regularly
spaced orientations. Features of the same size are extracted from the present-day
satellite image with a fixed orientation and an interval of 100 m.

For the discretization of the Hough space, we use a step size of one pixel
for the translation parameters and 2π

18 for the orientation. Due to the rougher
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discretization of the orientation parameter, we use bilinear interpolation to dis-
tribute the value of θi to adjacent bins. For the correspondence zoning, a circular
neighborhood with a radius of 80 m is used. Other parameters of our method
are empirically set as follows: we equally weight the contribution of the local
and global Hough space (λ = 0.5 in Eq. 5), take the N = 105 best correspon-
dences to fill the Hough space, and set the thresholding values for the final inlier
correspondences in Eq. 4 to Tt = 100 m and Tθ = 2π

36 .

4 Experiments

In this section we report quantitative results of our method on annotated test
data and compare it to other image matching and registration algorithms pro-
posed in literature.

Dataset and Evaluation Protocol: Our dataset consists of 8 reference satel-
lite images from urban and non-urban areas in Austria. For each reference image,
3–11 historical aerial images are available, leading to a total of 42 image pairs. All
images have been scale-normalized to a spatial resolution of 1 m prior to process-
ing. Manually selected ground truth correspondences are used to measure the
root mean squared error (RMSE) [2] of the image transformations determined
by the different evaluated algorithms.

Algorithms: We compare our method to the following algorithms:

SIFT+RANSAC: standard SIFT feature matching [14] with RANSAC [8] for
spatial verification serves as baseline performance for the comparison. For a
fair comparison, we again use a dense feature extraction with fixed scale, set
to 360 m in this case for best performance. Putative matches are achieved by
SIFT matching with an inlier ratio threshold of 1.3 [14]. Additionally, RANSAC
solutions of the similarity transform are validated only if the scale difference Δs
is within the bounds (1/TΔs) ≤ Δs ≤ TΔs, with TΔs set to 1.4.

Locally Linear Transforming (LLT) [15]: similar to RANSAC, LLT is a method
for the simultaneous transformation estimation and outlier removal from a set
of putative matches, but embedded in a maximum-likelihood framework with a
locally linear constraint. The method is included in the evaluation as it showed
an outstanding performance compared to other robust estimators on remote
sensing data [15]. In our evaluation, we applied the rigid transformation LLT
version to the same set of putative matches as for SIFT+RANSAC. We used
the parameter settings reported in [15], but changed the uniform distribution
parameter from 10 to 5 due to a better performance (see [15] for details).

Position-Scale-Orientation-SIFT (PSO-SIFT) [16]: PSO-SIFT is another
recently proposed method for remote sensing image registration. Like our
method, it is also based on statistical evidences from the local geometry of cor-
respondences. However, transformation parameters are treated individually and
their modes are only used for an enhanced distance metric of local descriptors.
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Progressive Graph Matching (PGM) [6]: PGM is a general image matching algo-
rithm based on graph matching. Starting with a set of initial matches, graph
matching results are iteratively enriched with correspondences and re-matched.
We use the SIFT matching results from SIFT+RANSAC to initialize PGM and
apply RANSAC to its final matching results for transformation estimation.

Additionally, we report results on various versions of our Hough voting (HV)
method in order to demonstrate the effects of the proposed improvements of
local-global feature combination and correspondence zoning: a version with local
Hough voting only (HVlocal), global Hough voting only (HVglobal), combined
Hough voting according to Eq. 5 (HVlocal+global), and the full method with cor-
respondence zoning (HVlocal+global,CZ).

Results and Discussion: In Fig. 3 the number of correct registration results
achieved with the various algorithms are plotted. Correctness of a result is deter-
mined by comparing its RMSE with the threshold on the logarithmically scaled
x-axis of the plot. It can be seen that the competing methods perform poorly
on the test data set compared to the proposed methods. SIFT+RANSAC and
LLT have a similar low correct registration rate which demonstrates the limits of
outlier removal methods when weak feature descriptions produce too low inlier
ratios in the set of putative matches. PGM has a slightly higher correct regis-
tration rate for higher acceptable errors due to its correspondence enrichment,
but still does not reach the performance of our method.
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Fig. 3. Number of correct registration results as a function of max. RMSE in meters
for the competing methods (left) and different versions of our method (right).

The results shown in Fig. 3 also verify the effectiveness of combining local and
global correspondences as well as zoning the local correspondences. HVlocal+global

shows a better performance than HVlocal and HVglobal, and the full method
HVlocal+global,CZ with correspondence zoning gives another significant perfor-
mance boost. Examples of correct registration results are shown in Fig. 4. For
these examples, HVlocal+global,CZ is the only method able to achieve a correct
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(a) RMSE = 23.4m (b) RMSE = 121.7m (c) RMSE = 30.5m

Fig. 4. Example results of image registration with HVlocal+global,CZ; top: reference
satellite image; bottom: registration result (zoom of red area shown in reference image).
(Color figure online)

registration. Nevertheless, it is evident from the results that correctly registering
images with such a high time distance is an enormously challenging problem, as
even the best performing method HVlocal+global,CZ is only able to register around
45 % of the cases with an error of less than 350 m.

The generally low precision of our Hough voting methods is primarily a result
of the regular feature sampling with a step size of 40 m. This is a necessary com-
promise as feature detection has shown to have very unreliable repeatability, but
on the other hand regular sampling prevents a precise localization of correspond-
ing features. As part of future research, we plan to investigate fine registration
as postprocessing step with a flexible transformation model, also to account for
the actually non-linear spatial transformation between the images.

Runtime Analysis: In Table 1 we compare the average runtimes of our MAT-
LAB implementation of Hough voting to the runtimes of the competing methods
on the same machine. The tests for the competing methods have been performed
with the original MATLAB implementations provided by the authors. Due to
the high number of matches to be processed (N = 105), the better registra-
tion performance of our method comes at the price of an considerably longer

Table 1. Comparison of average registration runtimes per image pair, including feature
extraction.

SIFT+RANSAC LLT PSO-SIFT PGM HVlocal+global HVlocal+global,CZ

12.7 s 11.0 s 55.7 s 156.7 s 32.8 s 30.2 s
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runtime than the outlier removal methods SIFT+RANSAC and LLT. It can
also be seen that correspondence zoning does not only give a boost in registra-
tion performance, but also saves around 8% of computation time as not all of
the N matches have to be evaluated for their local transformation and included
in the Hough space.

5 Conclusions

Registration of aerial images from the times of WWII to modern satellite imagery
proves to be a challenging problem due to the severe changes between images.
Therefore, previously published approaches rely on strong initial assumptions
about the geometric relation of images or have to make use of a manual step in
the processing pipeline. In this paper, we introduced a Hough voting strategy
that allows for the fully automatic historical-to-modern aerial image registration
with a-priori unknown translation and orientation differences.

Although our method outperforms state-of-the-art methods for this kind of
problem, it offers much potential for further improving the performance. For
instance, our voting strategy can be easily extended to combined Hough spaces
leveraging multiple descriptors for matching. The encoded evidences about rel-
ative geometric relations between images can also be integrated to reason about
the overall geometric relations of images in a groupwise registration scenario.
Additionally, a final fine registration step can be used to obtain a more precise
solution. These issues, besides adapting the methodology to other domains, will
be investigated for future research.
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Abstract. A modern tool for age-related macular degeneration (AMD)
investigation is Optical Coherence Tomography (OCT) that can pro-
duce high resolution cross-sectional images about retinal layers. AMD is
one of the most frequent reasons of blindness in economically advanced
countries. AMD means degeneration of the macula which is responsi-
ble for central vision. Since AMD affects only this specific part of the
retina, unattended patients lose their fine shape- and face recognition,
reading ability, and central vision. We present a novel algorithm to local-
ize subretinal fluid and cyst segments and extract quantitative measures
thereof. Since, these algorithms are fully automated, the doctor does
not need to perform extremely time-consuming manual contouring and
human inaccuracies can be also eliminated.

Keywords: Optical Coherence Tomography · SD-OCT · Age-related
macular degeneration · AMD · Subretinal fluid · Cyst

1 Introduction

Age-related macular degeneration is one of the most frequent reasons of acquired
blindness in economically advanced countries. The constant growing of AMD
patient population is more and more challenging. AMD means degeneration of
the macula which is the region of the retina responsible for central vision. Since
AMD affects only this specific part of the retina, unattended patients lose their
fine shape- and face recognition, reading ability, and central vision [9].

Basically, AMD has two forms: dry and wet form, and the latter causes
rapid and serious visual impairment in 10% of the cases [13]. In this type of the
disease, abnormal angiogenesis starts from the choroid under the macula. Fluid
and blood leak out of the neovascularized membrane into retina layers that ruins
the photoreceptors.

Experiments have demonstrated that the vascular endothelial growth factor
(VEGF) plays a vital role in the formation of choroidal neovascularization [4].
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Currently, the most common and effective clinical treatment for wet AMD is
anti-VEGF therapy, which is a periodic intravitreal (into the eye) injection [11].

In the last decade, Optical Coherence Tomography (OCT) has been widely
used in the diagnosis of AMD and follow-up therapy. Spectral domain OCT (SD-
OCT) produces 3D volumes of data, which have been useful in clinical practice.
Existing OCT systems are partially suited to monitoring the progress of the
disease, but OCT shows many features about AMD such as hyper-reflective
dots (HRD), subretinal fluid and cysts. Figure 1 illustrates an SD-OCT B-scan
with biomarkers of AMD.

Fig. 1. Original Optical Coherence Tomography (SD-OCT) image with biomarkers of
AMD in inverted display (as our medical experts use it in daily routine).

A large number of publications in the scientific literature deal with the prob-
lem of detecting retinal layers based on various techniques. One approach is the
automatic segmentation procedure using graph theory [1,2,6]. In this approach,
the graph nodes usually relate to image pixels, the graph edges are assigned
to pairs of pixels, the edge weights depend on the intensity differences between
the node pixels, and also may depend on the spatial distance between the pixels.
Image segmentation then becomes a graph cutting problem, which can be solved
via dynamic programming. These approaches are less tolerant to noise, that is
a disadvantage, because real images are often very noisy. Another idea relies on
the well-known energy-minimizing active contour method which, unfortunately,
also has problems in handling low contrast and noise. Yazdanpanah et al. [18]
suggested a multi-phase framework with a circular shape prior in order to model
the boundaries of retinal layers and estimate the shape parameters. They used
a contextual scheme to balance the weight of different terms in the energy func-
tional. Machine learning is widely used in recent years, also for retinal image
analysis. Lang et al. [12] used random forest classifier to segment retinal layers.
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The random forest classifier learns the boundary pixels between layers and pro-
duces an accurate probability map for each boundary, which is further processed
to finalize boundaries. Procedures based on active contour or machine learning
provide effective solution, but these methods are too time-consuming. Hassan
et al. [8] used a structure tensor approach combined with a nonlinear diffusion
process for layer detection. A structure tensor is a second-moment matrix that
shows similarities and prominent orientations of the image gradient. Some other
approaches use optimized boundary tracking [5] or polynomial smoothing [14].
These algorithms are rather complex. We have developed an algorithm which
uses simple operations to localize subretinal areas. It is based on vertical profile
analysis [10].

Relatively few publications deal with the problem of automatically detecting
cysts. Gonzalez et al. [7] described a method based on watershed segmentation
and different machine learning classifiers. They focused on feature extraction
which can help to eliminate false regions. Other approaches can also be found
in the literature, two of which are discussed in Sect. 2.1.

In this study, we deal with the automatic localization of subretinal fluid
areas and cysts and also analyze major retinal layers, since layer information
can help localizing and distinguishing fluid and cyst regions. We present an
algorithm that automatically delineates the ILM (inner-limiting membrane) and
RPE (retinal pigment epithelium) retinal layers. We also describe a method to
detect subretinal fluid and cyst segments and distinguish them from each other.
We compare our results with some other algorithms from literature.

2 Methods

In this section, we present several algorithms that use different approaches
to determine cyst and subretinal fluid. First, we briefly describe two existing
approaches that we re-implemented according to the original papers for compar-
ison. Then, we describe our novel approach in more detail. The procedures first
delineate the inner and outer boundary layers (ILM and RPE, resp.) for easier
determination of the important areas.

2.1 Literature Procedures

Firstly, we describe Wieclawek’s [16] algorithm. First, the input image is nor-
malized to the [0 1] interval, because images can be made with different settings,
so that their intensity range may vary. The OCT images are affected by distor-
tions like noise, so the authors used a non-linear filtering to reduce this effect.
Next, they applied a spatial averaging filtering technique which is based on
the real product of complex diffusion. The tools of mathematical morphology
was used to delineate specific cystic areas, based on the observation that cysts
appear as darker segments in the images. Among other operations, they used
H-minima transform to highlight important regions. The single control parame-
ter is a threshold value. This value has been fixed experimentally to 30% of the
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maximum brightness in the image. The next step was the binarization of the
obtained image with a given threshold value. Since the result may still contain
false regions, they filtered all objects that are above ILM and below RPE layers.

Wilkins et al. [17] investigated the problem from another point of view. They
discarded color information in the first step of the algorithm and determined the
major layer boundaries. To improve image quality and filter noise, they used the
combination of a median filter and a bilateral filter during preprocessing. After
binarization, the method determined the boundaries of the remaining possible
cyst segments and they defined three conditions based on empirical studies.
They investigated the extent of the objects, the degree of scattering between the
intensity of the pixels in the segment, and whether the object is located between
the ILM and RPE layers.

2.2 Proposed Method

OCT images are affected by distortions like “shadowing” by blood vessels, that
may yield to false detections. In the first step of our proposed algorithm, we
improve the image quality by noise filtering and contrast enhancement using a
fuzzy operator [3]. This operation can highlight major retinal layers. We analyze
vertical profiles of the filtered image and large intensity steps in pixel density
are assumed to correspond to the change of tissue. The used fuzzy function is
defined as

κ∗
ν =

1

1 + 1−ν
ν

(
1−x

x
ν

1−ν

)λ
, (1)

where ν is a threshold, x is pixel intensity and λ denotes the sharpness of the
filtering. The function κ∗

ν can highlight boundary layers while suppressing noise.
We determine dynamically the input parameter ν in a simple way. We sample
from the top range of the image and calculated average intensity for this ROI.
The parameter λ was set to 3 empirically. Figure 2 shows an example of applying
the function κ∗

ν .

)b()a(

Fig. 2. Sample OCT image before (a) and after (b) applying the function κ∗
ν . It fil-

ters out the noise outside the retina and highlights boundary layers, so it is easier to
delineate them.



610 M. Katona et al.

After filtering, we divide the image into bars with fixed width. A bar consists
of 10 contiguous pixel columns and we calculate horizontal projections of each
bar to determine boundaries. One of the main steps of our proposed method is
to analyze the vertical profiles. This signal is usually noisy, so there is a need
for filtering the data. We use the Savitzky-Golay filter [15] which is a smoothing
digital filter. This filter is effective in preserving the relevant high frequency
components of the signal, which is an important aspect for our detection method.

Determining the outer layer boundary is harder than that of the inner bound-
ary, because Choriocapillaris and Chorodoidal vessels are located under the RPE
layer. The intensity of these regions vary, so several peaks appear in the projec-
tions. Fortunately, in most cases, these minimum points are not prominent, and
do not cause problem in choosing the right locations. The algorithm chooses the
most important local minimum from the projected data to identify the possible
inner and outer layer. In the next step, we filter out the outliers and we fit a
curve to the remaining points.

After we determined the boundary layers, the next step is the segmentation
of fluid and cyst areas. It can be observed that these regions appear as spots
with brighter intensity in the image. For processing, we use the inverse of the
signals, because our medical colleagues used the inverted presentation of images
for visual assessment and also exported the image data for us in this format.
The zones of the disease and the intensity of the vitreous body of the eye are
almost within the same range (if distortions are not considered). Anisotropic
diffusion is used to eliminate various errors from imaging or blood shadows.
Using the filter, it is more apparent that some parts of the retina are within
a given intensity range, so we quantize the grayscale image into five intensity
levels. Our observations showed that the layers of the retina are only in some
intensity ranges, so this operation facilitates the separation of the 8–10 main
retinal layers. During the binarization, we keep the brightest points, because
we know that the reflectivity of the cyst similar to that of the vitreous body.
By this step, we create a mask for the active contour process. To achieve the
appropriate segmentation result, the input parameters of the model were given
based on empirical studies. After that, there may be holes in some objects, so
we use hole filling. Figure 3 illustrates these steps.

(a) (b) (c) (d)

Fig. 3. Intermediate stages of the proposed algorithm. (a) Anisotropic diffusion, (b)
Quantization, (c) Binarization, (d) Result of active contour.
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So far we have identified possible important segments. Next, we need to
separate cyst, fluid and false segments from each other. This step may be omitted
in some cases, when there is no object in the picture that would be detected as a
pathological mutation. We developed a condition set for filtering cysts and fluid
regions. We test the fulfillment of the four criteria for classification at the object
level.

The greater distortion of layers was observed in those parts where these
symptoms appear, so firstly, we examine whether the actual layer is distorted or
not. This plays an important role in distinguishing between cysts and fluid areas.
To determine whether the layers are creased or not, we use the top layer boundary
points. We calculate the minimal y coordinate of the top points. For this, the
method does not take into account the left and right 25% of the image. The sides
of the image may not contain information, because of the image registration,
and large distortions also may appear in these parts of the images. In Fig. 4
we illustrate these mentioned effects. Next, we search the minimal y coordinate
of the top points, divide this image into two parts along the established peak,
and we investigate the maximal y point on both sides. We estimate the degree
of creasing. Sometimes there is no change in the middle of the image, so we
determined a threshold to decide if there is any crease in the slice or not. The
threshold for the minimum y point and the given maximum y point was defined
in 5 pixels experimentally.

Fig. 4. Example of distortion in consecutive slices.

Various a priori information can be used to distinguish between cysts and
fluid areas, and to filter out the false segments. We investigated a condition
system and we considered where the object is located within the retina, what is
the extent and the shape of the object, and whether the layer is distorted or not.
Fluid areas have larger extent and they are located close to the bottom layer
boundary or may appear in the distorted area. In the case of higher distortion
of the retina, they may also appear on the left or right side. When determining
fluid regions, it is also important to examine the cases where there is no creasing
in the layer. In the case of cysts, we need to find objects with oval shapes and
the observations show that these segments are in the increased zone. Contrary
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to fluid regions, cysts are found in higher layers. We distinguish the symptoms
based on these characteristics. False segments may also appear in the image,
but these are small objects, so we can remove them easily with an area-based
filtering. The key stages of the procedure are summarized in Fig. 5.

Fig. 5. Flowchart of the proposed algorithm.

3 Evaluation

3.1 Image Data

Our evaluation dataset contained 11 Heidelberg Spectralis OCT scans of wet age
related macular degeneration patients treated with anti-VEGF intravitreal injec-
tions. The scanning parameters are: 49 scan pattern, pattern size: 5.8× 5.8 mm,
distance between B-scans: 121 μm, size X: 512 pixel, size Z: 496 pixel, the pixel
size is 11.44 μm and 3.87 μmm in X and Z direction, respectively.

Manual ILM and RPE layer segmentation was performed by ophthalmologists
for 7 image sequences. This was considered as a ground truth for evaluating the
boundary layer detection method on these 7 image volumes.

3.2 Results and Discussion

We implemented our proposed method in MATLAB, using the Image Processing
Toolbox. We evaluated our retinal layer detection algorithm in two different
ways. We compared the results of our algorithm against the manual delineations
and we also compared the proposed method for automatic detection of subretinal
fluid and cyst with some published methods from the literature.

Firstly, we consider the result of localization of major layers. We calculated
the mean, maximum and standard deviation of boundary errors for every surface.
The 7 curves shown in Fig. 6 depict the error histogram for those OCT volumes
where manual annotation was available. Each curve aggregates the boundary
errors in the 49 scans (slices) of a study. It can be observed that the largest error
is between 1 and 4 pixels in most cases and Table 1 asserts to this statement.
As presented in Table 1, the maximal distance between manually segmented and
automatically detected layer boundary is 19 pixels (ca. 73.5μm). This deflection
comes from two sources, namely, the substantial jumping between B-scans and
layer distortions due to the disease. Unfortunately, we could not exploit 3D infor-
mation directly to segment the retina layers, because there are some anomalies
among slices of the OCT volume, due to the image acquisition and registration
process (within the device’s software).
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Fig. 6. Error histogram of 7 image sequences.

Table 1. Summary of mean, standard deviation and maximum error (in pixels) between
manually segmented and automatically detected layers in 7 annotated OCT image
sequence.

Seq 02 Seq 03 Seq 04 Seq 05 Seq 06 Seq 07 Seq 08 All

Mean Wilkins 1.90 1.86 2.90 1.88 9.00 1.22 10.91 4.24

Wieclawek 6.86 10.34 11.20 17.82 6.88 5.42 7.11 9.38

Proposed 2.01 2.10 1.44 1.96 2.39 2.17 1.83 1.98

Std. dev. Wilkins 3.34 2.05 2.67 1.62 2.73 0.18 2.93 2.28

Wieclawek 7.92 5.59 5.92 6.31 5.97 4.78 5.39 5.98

Proposed 1.56 0.69 0.65 0.80 1.63 0.64 0.65 0.94

Maximum Wilkins 26 19 17 17 25 11 25 20

Wieclawek 35 31 24 22 21 20 19 24.57

Proposed 17 15 15 19 18 15 17 16.57

In Sect. 2, we have presented two methods from the literature for the seg-
mentation of cysts, as well as our proposed method, which is also suitable for
delineating fluid areas. Unfortunately, expert annotation was not yet available
to evaluate segmentation results, so we compare visually the outputs of the algo-
rithms.

Figure 7 illustrates segmentation results by the algorithms in some slices. The
method developed by Wieclawek detected fewer possible cyst regions, which may
be due to the fact that the given threshold only keeps the actual light points. The
disadvantage of this is, that important areas may be lost during processing. The
other method from literature by Wilkins yields almost the same segmentation
results, but in many cases it holds false objects, because the thresholds are not
dynamically defined. In contrary, our method uses dynamic requirements based
on a priori information.

We tested the re-implemented earlier published methods on images in which
cysts and fluids may also appear. They can also detect these regions because
these segments are also lighter object in the image. Our algorithm, however, as
it can be seen in Fig. 7(c), can also distinguish these two types of structures from
each other.
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(a) (b) (c)

Fig. 7. Illustration of detected cyst (red curve) and subretinal fluid (blue curve) regions
by the described algorithms. Columns: (a) Wilkins et al., (b) Wieclawek, (c) Proposed
method. Top three rows contain only cysts, while the bottom two scans also have fluid
areas. (Color figure online)
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4 Conclusion

We presented a novel algorithm for the detection of subretinal fluid areas and
cysts and we compared it with two methods from the literature for cyst local-
ization. After having seen the results, the medical colleagues believe that digital
image processing can help the quantitative assessment of the OCT features of
AMD by providing automatic tools to detect abnormalities and to describe by
objective metrics the current state and longitudinal changes during disease evo-
lution and treatment. Using SD-OCT to follow up changes of subretinal fluid
and cysts volume will become a useful tool in detecting subtle changes during
the treatment process. Further studies are planned to evaluate these new tools
in a cohort of AMD patients.

Acknowledgments. This work was supported by the NKFIH OTKA [grant number
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for the image preprocessing step.
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Abstract. Tuberculosis (TB) is one the leading killers in the world, and
its early detection at scale is a challenge that remains. Computer Aided
Detection of Tuberculosis is an important possibility for the world due
to the mismatch in the incidences of this disease with the number of
trained human readers for its identification. In this paper, we propose
novel features for the detection of one of the symptoms observed in cases
of TB, Pleural Effusion (PE). We begin by segmenting the lung regions,
followed by creation of a novel feature set. We achieve an ROC of 0.961
on discriminating PE against Chest X-Rays (CXRs) without incidences
of TB. To validate that our system discriminates against PE, we achieve
an ROC of 0.864 against CXRs showing incidences of TB but a lack of
PE. These features are then tested on two publicly available datasets
(One collected from the United States, and the other from China). Due
to the lack of other work for detection of PE on these datasets, a direct
comparison is unfortunately not possible. However, the results obtained
surpass those of work on PE detection on other private datasets.

Keywords: Tuberculosis · Pleural Effusion · Computer Aided Diagnosis

1 Introduction

Tuberculosis (TB) is one of the world’s leading killers, with a mortality rate of
1.2 million people in 2010 [1]. While being curable, identifying it in its early
stages on scale is a challenge that remains. While the gold-standard tests for TB
are slow, Chest X-Rays (CXRs) form the first phase of test for TB, and work as
an inexpensive preliminary screening method [2]. However, the interpretation of
the CXR depends on the skill of the reader, and is subject to human error and
biases. As a result, computer aided detection of tuberculosis through analysis of
CXRs seems like a promising idea. This will result in a more easily accessible
preliminary screening, and reduce the possibility of errors.

Over the years, much work has been done towards detection of abnormalities
in CXRs, but only a few have been geared towards specifically detecting TB.
Kuo et al. [3] propose a method for detection of abnormalities (including TB) in
CXRs, through the use of novel roughness and symmetry measures for parts of
the lung. For specifically discriminating against TB, Jaeger et al. [4] identify TB

c© Springer International Publishing AG 2017
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through a combination of shape and texture descriptors along with the features
based on the Lucene Image Retrieval Library. Ginneken et al. [5] begin off by
subdividing the lung into smaller regions followed by texture analysis. More
information on TB screening systems can be found in the survey by Jaeger et
al. [6].

In this paper, we use a different approach to work towards identifying TB
in CXRs. We plan to look at the symptoms radiologists tend to look at while
reading CXRs, and build classifiers for them individually. Here, we look at the
challenge of identifying pleural effusion (PE). While PE by no means is a phe-
nomenon exclusive to TB, it sits in line with our larger aim of building a system
to automatically detect TB through analysis of CXRs. This approach would
allow a more thorough diagnosis where not only will the overall system assign a
score of TB, it will also diagnose the CXR with the correct symptoms.

PE is characterized by the buildup of pleural fluid in the lung regions. This
fluid tends to accumulate near the bottom of the lungs and the chest cavity
[7]. Refer to Fig. 1 to view the manifestations of PE at different severity lev-
els. Limited research has been done on automated detection of PE. Avni et al.
[8] proposed a bag of visual words approach to discriminate between various
pathologies in CXRs, including a very small dataset of PE. Maduskar et al. [9]
work towards identifying the costophrenic point with great accuracy followed
by building features around that point. In this paper, we capture the signature
of PE using novel features we define after consulting with radiologists on their
methods of reading CXRs.

(a) Normal (b) Minor (c) Severe

Fig. 1. Chest Radiographs as labeled by a radiologist (a) normal CXR (b) minor PE
in the left lung (c) severe PE in the right lung

The rest of the paper is structured as follows. In Sect. 2 we explain the process
of segmentation of lungs, creation of the features, and details of the classifier.
In Sect. 3, the details of the dataset being used are mentioned. Section 4 talks
about the results of the experiments. Section 5 deals with the conclusion of the
paper.
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2 Method

This section talks about our implemented methods for lung segmentation, feature
computation, and classification. The system uses a graph cut method to segment
the lung, computes the novel features proposed in this work, and then feeds them
to a random forest classifier which identifies thresholds around which to classify
CXRs.

2.1 Lung Segmentation

The first task of PE detection method is to segment the region of lungs from
the CXRs. Since the manifestations of PE occur near the lower boundaries of
the lung, it places high requirements on the quality of the segmentation. We
initially tried methods based on multilevel thresholding and region growing. Post
this, we used a graph cut based segmentation method mentioned in [10]. The
method consists of three main steps. It begins with content based image retrieval
using a training set along with its defined masks. Post this, the initial patient
specific anatomical model is created using SIFT-flow for deformable registration
of training masks for the patient CXR. In the final step, a graph cuts optimization
procedure with a custom energy function is used. The code made available by
Candemir et al. [10] was used for the segmentation process, and hence further
details may be inferred from their work. The results of the lung segmentation
were good enough to allow us to proceed to the feature designing stage. Figure 2
shows an example of a CXR before and after segmentation.

(a) Before Segmentation (b) After Segmentation

Fig. 2. Chest Radiographs before and after segmentation
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2.2 Features

The second stage involved crafting features which can discriminate PE. Through
consultation with various radiologists, we arrived at a set of visual features they
would look for and worked on translating them into their mathematical counter-
parts. The one valuable insight we gained was that radiologists tend to compare
the left and right lung to identify anomalies. The effect of this insight influenced
our design of the features.

Another important point to note is that PE is the accumulation of pleural
fluid in the lungs, which accumulates in the bottom portion of the lung. This
manifests itself as a white region in the CXR, which if large enough, is ignored by
the segmentation process as not a part of the lung. We exploit this ‘shortcoming’
to design some of our features.

Fig. 3. Height difference post segmentation due to PE

Height Difference. If the accumulation of the fluid is severe enough, the size
of the affected lung is reduced due to its fluid filled part being ignored by the
segmentation process. This can be observed in Fig. 3. Hence we take the differ-
ence in the heights of the left and right lungs as one of the features. The height
of a lung is defined as the distance between the top and bottom pixel of the lung
after segmentation. Let Hl and Hr be defined as the heights of the left and right
lung respectively. Then the feature Hdiff is defined as:
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Hdiff =
|Hl −Hr|

max(Hl,Hr)
(1)

We normalise by the maximum of the two heights to account for the fact that
people have different sized lungs, and we don’t want the difference to be magni-
fied or reduced solely on the basis of lung size (or even the size of the CXR).

A possible issue which might arise is that the patient might have manifesta-
tions of PE in both of his lungs, which results in no height difference. However,
such a case is extremely unlikely as a height reduction is observed in severe
cases of PE, and such a manifestation in both lungs would be rare. Even if it
did occur, such an occurrence of PE would also show up in the other features
defined below.

Lung Bottom Curvature. The fluid accumulated at the bottom of the lung
settles due to gravity with a flat horizontal surface. This manifests itself as a
nearly horizontal white line in the CXR. This affects the segmentation of the
lungs, and results in a less curved cut at the bottom after segmentation than
normal.

Let Br denote the row indexes of the bottom most pixels of columns con-
taining the right lung. It should be noticed that while most of the bottommost
pixels of each column will actually be the bottom of the lung, some of them
might be the sides of the lung owing to the curvature of the lung. As a result,
we disregard 10% of the values on each end of the Br array. This figure of 10%
was experimentally determined and it may need tuning for other datasets.

Let Bl denote the row indexes of the bottom most pixels of half the columns
on the left side (i.e. only use the left half of the left lung to find row indexes)
which contain the left lung. The reason we disregard the right half of the left
lung is that a great variation is observed in the row indexes on this end during
segmentation due to the presence of the heart, which results in a wide variance
of the row indexes which may possibly hide the lack of variance which might be
there due to pleural effusion. We also disregard 10% of the values on the other
end for reasons similar to case of the right lung.

The feature Vr is defined as:

Vr =
var(Br)
len(Br)

(2)

where the numerator is the variance of the elements in Br and the denominator
is the number of elements in Br. The normalisation by the length of Br prevents
the variance from being increased or decreased due to individual variation in
lung sizes. Vl is similarly defined for the left lung. These two features are fed to
the classifier.

Lower Lung Intensity Variation. In non-severe cases of pleural effusion, a
marginal deposition of the fluid in the bottom corners of the lungs is observed,
which manifests itself into whiteness in the CXRs. A horizontal scan of the pixel
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values for each lung starting from the bottom is done, and the mean intensity
of the first 7% pixels is calculated. The figure of 7% was arrived at by the desire
to capture a large portion of the bottom part of lungs, but at the same time not
include too much of the higher portions. The exact number was experimentally
determined, and might needed to be tuned for other datasets. The mean intensity
of the rest of the pixels is also calculated, and the ratio of the former with respect
to the latter is taken. Let Il and Ir denote these values for the right and left
lung respectively.

Im is one of the features fed to the classifier and is defined as:

Im = max(Il, Ir) (3)

Id is the other feature used and is defined as:

Id = |Il − Ir| (4)

These two features don’t need to be normalised unlike other features because
the normalisation is inherent in the calculation of the Il and Ir itself.

2.3 Classification

After constructing the features, we ended up with a 5 dimensional feature vector
for each CXR. These feature vectors were then fed into a random forest classifier
[11]. The standard MATLAB implementation of random forest was used for the
purpose of the experiments [12].

A random forest classifier is an ensemble learning method which works by
constructing multiple decision trees. Each of the decision trees is trained on
a different subset on the whole training data, a method known as bootstrap
aggregating. The output of the classifier system is taken as the mode of the
output of the individual trees which constitute the random forest.

There are a few advantages of random forests which led to this being our
classifier of choice. It can learn complex relationships between variables and
requires minimal tuning, as opposed to some other classifiers such as SVM. It
doesn’t require too much data for learning, unlike neural networks. Additionally,
the ensemble of trees help avoid the issue of over-fitting to the data.

While we currently look to classify CXRs on whether they have PE or not,
it is also possible in future work to recognise the area where PE has occurred.
Since PE mainly occurs near the bottom of the lungs, we need to identify which
lungs are affected by PE. This can be done by designing similar features to those
above but which aren’t agnostic to the right and left lung. However, this would
require a greater amount of data for learning due to increased dimensionality of
the features, and hence not explored here.

3 Data

The datasets used in this study were two publicly available CXR dataset pro-
vided by the US National Library of Medicine [13]. The first dataset (Mont-
gomery Dataset) contained 138 CXRs with 58 of them showing instances of TB.
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Each CXR had a dimension of 4020 × 4892 pixels. The second dataset (China
Dataset) contained 662 CXRs with 336 of them showing instances of TB. The
CXRs in this set had varying dimensions, but were roughly in the range of
3000 × 3000 pixels.

While the sets came with information regarding the presence of TB or not
in the CXRs, they did not specifically talk about PE. For the ground truth
regarding PE, the dataset was curated by an eminent radiologist. The data
was partitioned into three sets. The first set consisted of CXRs which showed
instances of TB along with manifestations of PE. The second set consisted of
normal CXRs which showed no instances of TB. The third set consisted of CXRs
which showed instances of TB but not any manifestations of PE. The number
of CXRs showing instances of PE were limited to 63 CXRs, which were a mix
from the China and Montgomery dataset. The other two sets were also kept the
same size to this to prevent unbalanced classes, which could affect the training
of the classifier.

Owing to the less amount of data available, it would not be a good idea
to partition the entire data into separate testing and training sets. However,
at the same time, it is not feasible to have any common data in the testing
and training sets. So, leave-one-out-cross-validation was the preferred method of
choice to avoid this issue during classification. It has the advantage of effectively
increasing the amount of data for testing purposes, preventing overfitting, and
avoiding the excessive computation issue faced in leave-out-p-cross-validation.

4 Results

The performance of the proposed PE detection system was analysed in terms
of area (AUC) under the receiver operating characteristics (ROC) curve. As
mentioned before, random forests were the classifiers used in the evaluation of
performance. The classification accuracy on the PE set is measured against two
sets, normal CXRs and those CXRs with manifestations of TB but not PE.

The results of classifying normal CXRs v/s those with PE can be seen in
Fig. 4a. We report and AUC of 0.961. Since it is important to not miss TB,
we would err on the side of caution and aim for higher sensitivity. The optimal
operating point is shown in the ROC curve with a red circle, suggesting we
operate at 100% sensitivity and 80.95% specificity. Sensitivity, also known as
recall, is the true positive rate of the classifier. Specificity is the true negative
rate. This corresponds to a precision (positive predictive value) of 84%.

To ensure that the classifier was learning pleural effusion specific features
and not just tuberculosis, we also tested the classifier on the dataset which
contained CXRs with manifestations of TB without instances of pleural effusion
and the dataset which contained CXRs with manifestations of TB resulting in
symptoms of pleural effusion. Even in this case, the classifier achieved an AUC
of 0.864 and the ROC characteristics can be seen in Fig. 4b. The optimum point
for operation here is at a sensitivity (recall) of 80.95% with a specificity of 77.8%.
This corresponds to a precision of 78.4%. If we were to look for 100% sensitivity
so as not to miss any manifestation of PE, our precision would fall to around 65%.
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(a) (b)

Fig. 4. ROC curves for Pleural Effusion detection. (a) For the dataset containing CXRs
with no instance of TB v/s those showing PE. (b) For the dataset containing CXRs
with TB but no instance of PE v/s those showing PE.

The latest work against which we evaluate our results is of Maduskar et al. [9].
They built a system to identify PE by creating features around the costrophrenic
point. They evaluate the performance of the system independently for the left
and right lungs. However, due to the dataset constraints on our side, this is
not a feasible option for us. Their system returns an AUC of 0.84 and 0.90 for
PE detection in the left and right lung respectively. This is lower than our AUC
reported above. They also evaluate the performance of their system against cases
of PE they classify as severe, a level above obvious. They report AUC of 0.88
and 0.94 for the left and right lungs respectively. This is again lower than the
AUC of our system.

5 Conclusion

In this study, we have presented a system to detect PE in CXRs. We began by
discussing with radiologists their methodology of reading CXRs, and looked to
transform this into mathematical formulations. Before extracting features based
on these formulations, the left and right lung were separated from the CXR
based on a three step segmentation method. Post extracting the features, they
were fed into a random forest classifier to arrive on decision boundaries to decide
on whether a particular CXR shows instances of PE.

The AUCs of 0.961 and 0.864 are quite encouraging. They are better than the
results we have seen in other papers. However, a direct comparison is not possible
due to them being based on different datasets, and results being dependent on
the datasets. In further work, one can look to build systems to identify other
symptoms which manifest in the presence of TB, and then finally look to combine
them into one main system.
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Abstract. Light Microscopy (LM) represents the method by which pathologists
study histological sections; the observations by LM can be considered the gold
standard for making diagnosis and for its diagnostic accuracy. The classes that can
be defined through the observation of LM images of the liver are: normal,
steatosis, fibrosis, cirrhosis and hepatocarcinoma (HCC). Normally, a pathologist
has to examine by LM many histological sections to perform a complete and
accurate diagnosis. For this reason, an automatic system for the analysis of LM
images of the liver would be particularly useful. Goal of this paper is to propose an
automatic multi-stage procedure to classify the normal tissue, and the pathologic
ones from human liver microphotographs. Due to the articulated nature of the
examined images, the analysis will first assess if steatosis is present, by using
objects analysis, and then determine whether the image belongs to a normal tissue
or to one of the other pathologic ones, by using a machine learning based tech-
nique. To this aim some texture features are calculated, and the Principal Com-
ponent Analysis is applied to derive the best representation of the data. Four
binary Support Vector Machines classifiers are trained, one for each kind the four
classes of liver conditions to be identified. Experimental results show the clas-
sification capability of the proposed system, with promising theoretical and
experimental basis for developing a fully automatic decision support system.
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1 Introduction

Liver diseases may be roughly divided into two categories, focal diseases, where the
abnormality is concentrated in small area, and diffused diseases, where the abnormality
is distributed all over the whole liver volume [1]. Different, noninvasive (in the sense
that they do not require surgery for the patient), diagnostic imaging techniques, such as
Magnetic Resonance Imaging (MRI), Computer Tomography (CT) or Ultrasound
Tomography (UT), can be effectively used for preliminary diagnosis and for planning
surgery interventions or pharmacological treatments. However, Light Microscopy
(LM) represents the method by which pathologists study and review histological
sections and the observations by LM can be considered the gold standard for making
diagnosis and for its diagnostic accuracy, in particular regarding the possibility of
defining the heaviness of a given pathology at a very high resolution. The classes that
can be defined through the observation of LM images of the liver are: normal, steatosis,
fibrosis, cirrhosis and hepatocarcinoma. Normally, a pathologist has to examine by LM
many histological sections to perform a complete and accurate diagnosis. For this
reason, an automatic system for the analysis of LM images of the liver would be
particularly useful. Aim of this paper is to define a complete procedure for automatic
classification of LM images presenting different pathologies affecting liver par-
enchyma. The problem considered in this paper has been addressed by many
researchers [2]. Combination of methods from traditional image analysis and sophis-
ticated machine learning and pattern recognition techniques has yielded interesting
texture based information and effective quantitative characterization for a number of
applications of practical interest, including medical image analysis [3–5]. Since the
possible textures of interest may be very different, several methods can suit for different
kind of medical images. Basically we may distinguish between statistical, spectral and
structural analysis of textures; in particular, in texture analysis, one of the most difficult
aspects is to define a set of features that adequately describe the characteristics of a
texture [6].

Wavelet transform and Fisher Linear Discrimination Analysis are efficiently used in
[7] in color medical images for liver fibrosis identification. A wavelet multi resolution
analysis on the three color image components is applied to reduce the liver slice
background noise, thus increasing the discrimination power of the Fisher algorithm in
segmenting the liver fibrotic tissue from the other tissues on pathological section
images. In [8] focal lesions in ultrasound images of the liver are automatically assigned
to four classes (normal, cyst, benign and malignant masses). The texture features are
extracted by four procedures (grey level co-occurrence and run length matrices for the
statistical properties, Gabor wavelets and 2D Laws for the local spectral content). The
two sets of textures features are reduced by either a manual or a PCA based selection.
The former reduced set is classified by neural networks and the latter by k-means. The
neural network achieves a higher correct classification rate than the k-means in this
experiment. In [9] fractal dimension and M-band wavelet transform are used for
composing the feature vector in the classification of ultrasonic liver images. Three
conditions of normal, cirrhosis, and hepatoma are recognized with a high classification
rate.
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In [10] statistical methods of texture analysis are applied on microscopic liver
images, in particular of liver fibrosis; the sensitivity of texture analysis is tested when
fibrotic and normal tissues are stained with different fibrosis biomarkers. The texture
analysis is performed by using the co-occurrence matrix and the run-length matrix; a
classification using agglomerative hierarchical clustering and linear discriminant
analysis with cross validation is applied on different biomarkers that in some cases
influenced the results. In [11] an interesting review on machine learning techniques
combined with image processing methods for automatic segmentation of liver CT and
MRI images is presented; a particular attention is devoted to SVM based techniques
[12, 13] that assumed as input texture descriptors. In [14] region-based shape
descriptors, gray level and co-occurrence matrix (GLCM) features are adopted for
automatic CT image classification, by SVM, of specific liver diseases like cysts,
hepatoma, and cavernous hemangioma.

In this paper, LM liver images are analyzed to distinguish different tissue types:
normal, steatosis, fibrosis, cirrhosis and hepatocarcinoma, [15–18]. A classification
method is designed to assign a sample image to one of the five classes. The color
images are first reduced to grey level scale and then a first level classification is
accomplished to identify the steatosis liver tissue; to this aim a suitable segmentation
algorithm is applied along with an object analysis to detect the roundish, smooth edge,
fat droplets. The ratio of fat droplets area over the total image area determines a quite
robust indicator to reliably distinguish the steatosis class from the others. Images of the
remaining four classes are characterized by texture analysis by considering two groups
of features: statistical properties of the grey level value (contrast, uniformity, entropy),
and statistical features of the grey level spatial distribution as obtained by the
co-occurrence matrix (contrast, correlation, homogeneity, energy). Any sample image
of the given class is partitioned into tiles of suitable size, and the average and standard
deviation of the texture descriptors are computed over the set of tiles of each image of
the training set. Fourteen textures features are obtained with a good separation between
classes (strong correlation within classes, and weak correlation between classes). It is
worth noting that the tiling procedure strengthens the local character of the texture
parameters in order to better capture the local parenchyma structure in the different
tissues (that is sometimes very subtle as between fibrosis and cirrhosis tissue). The set
of features is processed by PCA to obtain a more efficient representation of the
information content used to train four SVMs binary classifiers. High correct classifi-
cation rates are obtained for each class, and the ROC curves denote a quite satisfactory
behavior of the classifiers over a repeated random selection of the training set. The
result is a very flexible and general purpose approach for the classification of the LM
images of the human liver. In a future work, by using a richer image dataset, the
proposed approach will also be applied to images where multiple kinds of tissue are
present.

The paper is organized as follows. In Sect. 2, the LM structure of the liver par-
enchyma, for the considered five classes, is described and the features extraction and
classification procedure is proposed. In Sect. 3 the numerical results are presented and
discussed. Conclusions and future developments are outlined in Sect. 4.

628 L. Cinque et al.



2 Materials and Methods

In this paper microscopic images of different kind of liver tissue are observed under
light microscope. Two independent pathologists examined various histological sections
of the hepatic parenchyma and, on the basis on specific structures, they placed samples
in different groups and described the relevant and specific shapes they considered to
define the allowance to different groups. The considered images may be grouped into
five classes: normal (N), steatosis (S), fibrosis (F), cirrhosis (C), HCC (H) see Fig. 1,
though the transition from one class to the other is often gradual and different states
could be contemporary present (steatosis aspects are interleaved with normal tissue;
fibrotic structures can be also present in an early cirrhosis; focal steatosis sis present in
alcoholic cirrhosis; etc.). The automatic analysis of this kind of samples may present a
number of technical issues due to the contemporary presence of different states. In fact,
irregular regions that can be easily detected by LM may represent pathologies com-
pletely different and not so well distinguishable (for example, fibrotic tissue can be
easily present in mainly cirrhotic images).

For each class, a binary classifier simply labels the test image as belonging or not to
a given class. Then, the overall classification process consists in the application of five
binary classifiers, according to the block diagram of Fig. 2, one for each class (N, S, F,
C and H), due to the fact that images belonging to different classes can be very
different, even if, in some cases, different pathologic states could be contemporary
present. The result is a binary string containing 1 where the answer for a specific class
is positive and 0 in the case of negative answer. Each of the five binary classifiers is
structured for the specificity of the tissue to be recognized.

As a matter of fact, a fatty liver tissue is mainly characterized by the presence of
roundish fat droplets spread over the liver surface, therefore a steatosis can be easily
classified by object segmentation and evaluating shape and size of bright items over the
background; a fat presence indicator can be defined and a suitable threshold value
determined to discriminate easily between a steatosis/non steatosis condition. The other
kinds of tissue present diffused abnormalities that can be described by texture analysis:
the grey level texture features and the grey level spatial distribution texture features
computed by the co-occurrence matrix.

Therefore the first result that must be assessed is whether a tissue is a steatotic one
or not. If the answer is negative a set of features, adequately transformed by the PCA,
are used to train SVMs classifiers, as will be described in the following.

a) b) c) d) e) 

Fig. 1. The microphotographs show different classes of liver parenchyma (Haematoxylin &
Eosin, original magnification 4X). (a) normal liver; (b) steatosis; (c) fibrosis; (d) cirrhosis;
(e) HCC.
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2.1 Steatosis Characterization

An image binarization is sufficient to distinguish the fat droplets (typical of steatosis) as
the brightest objects over the background. We applied the discrete level set approach
proposed in [19]. On the binarized image, the brighter objects are isolated and, between
them, the fat droplets are identified by filtering the size and the shape, preserving only
the non-eccentric non-ragged objects with a significant area. On the selected set of
items, the Percentage of Fatness (PoF) is computed as the total area of fat droplets
(number of white pixels) over the image size.

An image is classified as a steatosis one if the PoF is above a chosen threshold; by
analysing the data of all the classes it was noted that generally there is a difference of an
order of magnitude between the PoF of an S image and the others.

2.2 Feature Extraction for Non-steatosis Aspect

The liver images not belonging to class S denote an appearance that is difficult to
characterize as objects over a background. Even though some structures are detectable
(as described above), the very difference between the classes N, C, F and H is mainly
due to the texture structure. The considered texture features belong to two groups: the
first group is related to the grey level, the second to the grey level spatial distribution as
characterized by the co-occurrence matrix. The features are computed on a training set
of Ntr images by the Matlab Image Processing Toolbox standard functions; each class
contributes with the same number of sample images.

For the grey level texture features, each image of size m� n is partitioned assuming
tiles T of size ‘� ‘ (a part of each rectangular image is left out). The grey level texture
features considered are the Contrast, the Uniformity and the Entropy. The contrast CT is
a measure of the variability of the grey level within the tile, the higher the contrast the
better the details are identified over the background. The uniformity UT and the entropy
ET describe the degree of regularity of the grey level values in a tile: if all the pixels have

Fig. 2. Block diagram of the classification process.
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the same grey level it would be UT ¼ 1 and ET ¼ 0, meaning that the tile is maximally
uniform (it has constant grey value indeed) and maximally ordered (all the pixels are
equal). On the contrary an unstructured noise, would have the grey values all different
and maximally disordered (UT ¼ 1=L and ET ¼ log2 L). The image features are then
computed as average and standard deviation over the set of tiles, obtaining six features.

The grey level spatial distribution texture features may be characterized by defining
some relations between the grey level values of neighbouring pixels, and by computing
the frequency of the occurrence of any such a relation in the whole image domain.
These frequencies for all the pairs of grey level values gi; gj

� �
define the

co-occurrence matrix GCO. Quantities like Contrast, Correlation, Homogeneity and
Energy are computed as averages over the whole image weighted with the entries of
GCO, so that the local spatial distribution constraint at different scales s ¼ 1; 2; . . .;�s;
and directions d ¼ 1; 2; . . .; �d is taken into account. These quantities have similar
meaning of the ones previously defined but their values depend of the given scale and
direction. For each image of the training set, eight features are obtained by the average
and standard deviation of the contrast, the correlation, the homogeneity and the energy
for each pair of scale-direction values.

2.3 Feature Analysis and Principal Component Analysis

Fourteen features are computed for the Ntr images of the training set and are collected
in the matrix U of dimension Ntr � 14. A correlation analysis of these features among
the Ntr images showed that the features are highly correlated within each class but
substantially uncorrelated between classes. This in turn suggests that the selected set of
features is suitable for classifying liver images belonging to the chosen four classes.
Nevertheless, numerical experiments showed that in the space of these features the
images are not linearly separable, therefore the use of the correlation analysis would
deliver a classification system with poor performances. Therefore a more efficient
representation of the data is advisable; this could obtained by principal components
analysis, choosing, for any class training set of images, p� principal components
maintaining the P% of the information content.

2.4 Binary Classifier Training

So far, for any of the four classes N, F, C, and H, a set of p� principal components is
selected. For any class, a binary classifier is trained to recognize a test image either
belonging to the class or not; the procedure is briefly outlined for a single class, being
the same for all classes. Consider the class N and let ~EN be the selected p� principal
components. Compute now the coordinates ~LN;N of the features vectors MFN of the
Ntr;N images of the training set of class N: for any row vector of ~LN;N the response
variable of the class N classifier is set to 1. Now repeat the process for the training set
images of the remaining classes determining ~LN;C, ~LN;F , ~LN;H and set the classifier
response variable to 0 for these set of coordinates. The perfect classifier would separate
the points with response equal to 1 from the points with response equal to 0. Such a
task can be accomplished by training a SVM, [12]: it is a well-established method

Design of a Classification Strategy for LM Images of the Human Liver 631



aiming at the determination of the best hyperplane (in general a manifold) able to
separate a set of response points into two classes. The parameters of the SVM are
determined by using the ten-fold cross validation [20] and the classification is per-
formed by LIBSVM 3.18 [21].

Four classifiers Ci i = 1, 2, 3, 4 are trained to determine if the image belongs to the
class N, F, C or H respectively; it means that, for example, the classifier C1 is trained to
identify the normal images, i.e. it is able to distinguish normal tissues versus F, C or
H ones, assigning label 1 if the image is classified as belonging to the N class or label 0
if not. When a fibrotic image X is tested with the classifier C1 trained to identify the
normal images N versus all the other, the classifier should identify the X image as
“not-normal” and assign label “0”, whereas when one uses the “right classifier” C2

(trained to identify the type of images like the X data), the classifier should assign
label “1”.

3 Numerical Results and Discussion

The classification procedure proposed in this paper considered a set of 120 images of
size m� n; pixels, m ¼ 543; n ¼ 780, 24 for each of the five classes N, S, F, C, H.

The set of 24 steatosis images is used to tune and validate the steatosis classifier.
The remaining group of 96 images is divided into two sets, with images for each class
in the proportion of 60% and 40%: the first set, Ntr, is used to train the classifiers
whereas the latter, Ntest, is used for testing the classifiers over data not used for the
training.

The described classification procedure starts with the decision whether the image
could be in the S class or not. The steatotic images are characterized by the presence of
circular white elements; as already said, they can be easily determined by a binarization
procedure that allows the recognition of white objects. To identify only the fat droplets,
a morphological filtering is performed, preserving only objects with area larger than 6
pixels, with eccentricity lower than 0.6. Moreover, to avoid too ragged objects, only
white objects whose ratio between their area and the area of the ellipse circumscribing
the objects is greater than 0.5 are considered.

The analysis of the percentage of fat droplets in all the images yields an evident
difference, see Table 1:

If a sample image has a percentage of fat less than 1% it can be assumed that the
tissue is not in the S class. The fat droplets identification method has provided con-
vincing results approved by pathologists that evaluated by themselves the fat per-
centage and compared their results with the ones obtained by applying the described
automatic method.

Table 1. Mean values and standard deviations of the percentage of fat in liver tissues images

Fat percentage N F C H S
Mean value 0.27 0.29 0.05 0.32 4.85
Standard deviation 0.08 0.32 0.05 0.81 2.69
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To determine the grey level texture features each image is partitioned considering
tiles of size l ¼ n=10. This tiling resolution yields good results to the subsequent
classifiers training phase. To determine the Uniformity and the Energy also the number
of bins must be fixed and L ¼ 4 appeared a good choice, allowing a simplification of
the data and the preservation of interesting structures. Therefore, from this analysis six
features are computed as average and standard deviation over the set of tiles.

As far as the grey level spatial distribution texture features is concerned, four scales
s ¼ 1; 2; 3; 4 and four directions d ¼ 0; 45�; 90�; 135� for L ¼ 4 grey level values are
considered, thus obtaining a co-occurrence matrix GCO of size 4� 4� 16. From the
co-occurrence matrix GCO the Contrast, Correlation, Homogeneity and Energy are
evaluated, yielding the eight features obtained as their average and standard deviation.

To classify if an image belongs to one of the N, F, C or H class the analysis based
on feature classification is performed and four different classifier Ci, i = 1, 2, 3, 4 are
designed.

Once the fourteen features are calculated for all the images of the Ntr set, the
principal component analysis is applied; to preserve the percentage P = 99% of
information, after the evaluation of the eigenvalues of the covariance matrix, the first
p ¼ 8 principal components are retained. For the classification, the chosen kernel
function is the radial basis function. Each classifier Ci is trained to assign the label “1”
to the i-th class and the label “0” to all the others; more precisely, C1 assigns 1 to the
class of normal tissues and 0 to all the others, C2 assigns 1 to the class of fibrotic tissues
and 0 to all the others, C3 assigns 1 to the class of cirrhotic tissues and 0 to all the others
and C4 assigns 1 to the class of HCC tissues and 0 to all the others. The accuracy in the
training phase relies in the percentage of success in assigning the labels “1” and “0”.

The obtained classifiers are tested on the test set of Ntest = 10 images of each class
N, F, C, H; in this case we assumed to ignore the nature of the data X to be classified,
and by default we initially assign it the label “1”. Therefore the generic classifier should
confirm label “1” if it is the classifier trained to identify the class of the specific
unknown image X, otherwise the classifier should assign label “0” (meaning that the
image belongs to one of the other classes). The mean value of the results over the 10
test images of each class are reported in Table 2. The results reported are obtained as
mean values of the results of each classifiers after randomly choosing the training set
and the test set, in order to avoid lucky choices of the test images.

From Table 2 it could be noted that the percentages of identification are high on the
diagonal of the table (default label “1” identified correctly as label “1”), whereas if the

Table 2. Results of the test: mean value of the percentage of success of the classifiers.

C1 C2 C3 C4
Test images of class N 95% 6.25% 16.25% 1.25%
Test images of class F 0% 96.67% 6.67% 10%
Test images of class C 7.5% 1.25% 95% 7.5%
Test images of class H 0% 13.75% 25% 86.25%
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test image is tested with a classifier trained to identify with label “1” a different kind of
image the percentage of success must be low (default label “1” identified correctly as
label “0”).

The results are encouraging; it could be noted in fact that only the 6.25% of test
images of normal parenchyma could be confused with a fibrotic one, 16.25% could be
confused with cirrhotic aspect and only 1.25% could be wrongly classified as HCC.

As far as test images of class F, when tested versus all the classifiers, they appear
clearly identifiable; they are not confused with normal tissues, a percentage of 10%
could be wrongly classified as HCC and only 6.67% could be confused with cirrhotic
parenchyma. A cirrhotic test image could be confused (percentage of 7.5%) with a
normal tissue or with an HCC one and only a 1.25% could be wrongly classified as
fibrotic tissue.

The less robust results appear to be the ones connected with the HCC images; for
example, a percentage of 25% could be identified as image of the cirrhotic class C.
Trying to analyse the motivations of this result, one has to take into account that
cirrhosis can be lead to HCC and the latter can appear as a multiple nodules that
resemble cirrhotic nodules and for this reason the two histological aspects could be
confused by the automatic system.

The classifiers have been further tested by choosing randomly the training and the
test set, thus obtaining 10 trials for each classifier. In each trial the true positive rate
(TRP, the rate of the images correctly classified), and the false positive rate (FPR, the
rate of the images misclassified) were computed. All the trials show a score above the
intercept (random classifier) and the most part of them have score between 0.8 and 1
(and therefore confirming the average score reported in Table 2), thus denoting good
performances.

It is worth noting that the proposed algorithm is tuned to classify the unknown
images into each of the 5 classes by considering the possibility of the contemporary
presence of more than one aspects at once. This comes from the overall adopted
procedure. However, in the images used therein each tissue can be assigned to a single
specific class: in this way it has been possible to tune unambiguously the parameters of
the different classifiers. Nevertheless it may happen that on a given sample image
different classifiers yield a positive identification, i.e. the method classifies the image as
belonging to different classes. These preliminary data of our investigation would only
suggest the presence in the liver parenchyma of different pathologies. In this case, the
image should be classified as referred to the heaviest pathology between those rec-
ognized and the other observed features should additional give information about the
possible contemporary presence of different hepatopaties in the same sample.

4 Conclusions and Future Developments

In this paper the classification of different hepatopathies is addressed by proposing an
automatic multi-stage procedure. We combine a textural based segmentation method
with a support vector machine supervised pattern recognition procedure for automatic
classification of microscopic images of liver in order to detect the presence of abnormal
regions of a given family of pathologies, thus supporting medical diagnosis. The liver
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specimen is classified into one of the five following classes: normal, steatosis, fibrosis,
cirrhosis and HCC, by considering both object analysis and a machine learning
approach. More precisely, the former is used to determine first if the tissue is a steatosis
one, by using the presence of the fat bright circular structures as a useful indicator; the
machine learning approach is applied to determine if the tissue belongs to one of the
other four classes. Suitable features are evaluated considering texture properties of the
images and a principal component analysis is applied to derive the best representation
of the data to be submitted to the support vector machine. Four distinct binary clas-
sifiers are trained providing promising results with good capability in separating the
considered data. In this early investigation the selected texture features allowed the
training of binary classifiers with encouraging performances that could be further
improved by a better description of the spatial distribution of the grey level in the LM
liver images; to this aim a richer set of scales and directions values to compute the
co-occurrence matrix could be considered, along with some differential characteristics
of the image signal. Moreover the overall classifying process will be applied on images
containing more than a single pathology in order to establish the nature of the
pathology and/or its heaviness. An effort will be done in order to indicate also the
percentage of image occupied by different classes. This generalization will be inves-
tigated by enriching the data set with LM images containing also mixtures of the
discussed five aspects of the human liver parenchyma.
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Abstract. Re-Identification aims to detect the presence of a subject
spotted in one video in other videos. Traditional methods use informa-
tion extracted from single frames like color, clothes, etc. A sequence
in time domain of consecutive subject images could contain a greater
amount of information compared with a single image of the same sub-
ject. Typically, these sequences are taken from surveillance cameras at
very poor resolution. Even with modern cameras the resolution can be
a problem when dealing with a subject who is far from the camera. A
possible way of handling low resolution images is by using a multi-frame
super-resolution algorithm. Multi-frame super-resolution image recon-
struction aims at obtaining a high-resolution image by fusing a set of
low-resolution images. Low-resolution images are usually subject to some
degradation which causes substantial information loss. Therefore, con-
tiguous images in a sequence could be viewed as a degraded version (SR
image) of an image at higher resolution (HR image). Using a multi-frame
SR algorithm could achieve a restoration of the HR image. This work
aims to investigate the possibility of using a multi-frame super-resolution
algorithm to enhance the performance of a classic re-identification sys-
tem by exploiting information provided by video sequences made avail-
able by a video surveillance system. In the case that the SR technique
employed results in an effective performance enhancement, we intend
to show empirically how many match frames are required to have an
effective improvement.

1 Introduction

The creating, broadcasting and archiving of information in a video format is a
growing phenomenon that is a direct consequence of the reduction in the cost of
technology and the increase of the available network bandwidth. The availability
of adsl/vdsl home connections with a large bandwidth has opened up a new class
of services, such as IPTV, with the consequence that a large number of data
streams need to be managed and organised. This is particularly true for video-
surveillance systems, where a large amount of video data needs to be analysed,
a requirement which has in the last few years stimulated research in the area
of video analytics. In the field of video-surveillance a very important topic is
c© Springer International Publishing AG 2017
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face recognition, both for the identification of the person in the scene, and for
the re-identification of subjects from among different video footage captured at
different times and/or places. The two problems have very different objectives.
The former aims at assigning an identity to a subject detected in the scene.
The target of the latter is to decide whether it is the same subject appearing in
different videos, without considering the subject’s identity. Despite the increase
in camera resolution and video quality which has occurred over the last few
years, the problem of image resolution in the context of face recognition is still
an open topic of research. Many video surveillance systems do not use state-of-
the-art technology and even the most modern systems are unable to recognize a
face when the distance of the subject from the camera is great, with respect to
the camera resolution. In this case, the face can occupy just a very small portion
of the acquired image, with an effective resolution that is not sufficient for the
recognition task.

Super-resolution methods can give a valid support to face-recognition sys-
tems that use low resolution video equipment, and can solve this problem fully, or
partially. In the literature many different methods have been proposed [5,8,17],
covering a wide range of activities. We can divide the different algorithms into
two main macro-categories: single image methods, and multi-frame methods.
The techniques falling into the first group try to increase the image resolution
by using structures contained in the image itself; conversely, the techniques in
the second group aim at obtaining an image with greater informative content by
combining many observations of the same scene taken at different moments. A
natural benchmark for all these algorithms is the classic technique of zooming
(e.g., linear interpolation), which does not need any assumption on the image
content. It is worth mentioning that a zoomed image obtained from an interpo-
lation method has merely a larger number of pixels than the original, but this
does not correspond necessarily to a greater informative content. However, it is
the obtaining of better informative content that can be a key element for the
improvement of the performance of a pattern recognition task, such as, in this
case, face recognition. This paper introduces a super-resolution method in the
pipeline of a biometric face-recognition task. In particular, it provides various
innovative contributions compared to similar proposals already present in liter-
ature. First and foremost, two different super-resolution methods are compared:
the first operating on a single image, the second based on the combination of
consecutive frames. The second contribution is the analysis of the performance of
the two super-resolution methods on two different face-recognition frameworks:
the first is based on local feature extraction computed at pixel level, while the
second works on patches of greater size with respect to a 3 × 3 mask.

The goal is to show how super-resolution techniques can have a better per-
formance when using global recognition methods. Finally, the super-resolution
method [14] adopted in this work does not require any face registration, which is
a typical limitation of the majority of the techniques proposed in the literature.
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The paper is structured as follows. Related works are briefly reviwed in the
next section, Sect. 2. The architecture proposed is described in Sect. 3, and the
experimental results are reported in Sect. 4. Section 5 concludes the paper with
the final remarks.

2 Related Work

Over the last few years Person Re-identification has posed a significant challenge.
One of the main difficulties is the low resolution of old cameras that can make
every traditional technique to improve image quality unworkable. Person re-
identification methods can be divided into two main groups:

– single frame methods, that aim to extract information about a person by
analysing a single image;

– multi-frame methods, that use multiple images of the same person (usually
obtained from one or more sequences) to build his/her signature.

For the first class, color and histogram-like methods have proved to be well suited
for the retrieval of images with similar content, as in [6,8,11]; the main drawback
of histogram based methods is the lack of any geometric or spatial information.
In [5] the silhouettes of people are segmented into multiple horizontal stripes,
and then color features are computed to characterize each segment. In [16] color
features, together with a set of SURF points of interest, are extracted from
the images and used to build a person’s descriptor. Other techniques exploit
the availability of other sources of information, such as the color of the clothes
the subject is wearing, biometrics or collateral features, such as gait [15]. Such
methods suffer from several drawbacks, like enlightenment sensitivity or pose
changes, in addition to possible occlusions in the field of view.

On the other hand, multi-frame methods, like [10], collect several views from
different cameras and build feature based on a variant of the SURF points.
Authors in [1] adopt a cascade of grids of common region descriptors (e.g., SURF,
SIFT). In [4] the use of a sequence of frames from a video instead of single still
frames provides a significant increase in the performance.

In recent years the progress in camera technology, that can now record videos
at a high resolution, has opened up the possibility of exploring unexploited
paths in this research field, like the adoption of super-resolution algorithms in
the face recognition [3,9,18] and re-identification pipeline. For the latter, pre-
vious works that try to take advantage of the SR algorithm include [2], that
proposes a procedure for the recognition of low-resolution faces by using the
features extracted from a high-resolution training employed as prior information
in a super-resolution algorithm, and [13] that learns a pair of HR and LR dictio-
naries to generate a mapping function from the features of HR and LR training
images. With the learned dictionary pair and mapping function, the features of
LR images can be converted into discriminating HR features.
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3 System Architecture

In a traditional video-surveillance system, different sequences taken from cam-
eras are used to verify which identities declared for a set of people are true.
Usually, the system is based on the individual biometric keys used to identify
a single person; the key signatures are not invariant to sequence conditions and
the image quality can be a factor that can affect the correctness of the identifica-
tion. We aim to show how the introduction of a super-resolution algorithm in a
classic face-based recognition framework can improve the performance. For this
purpose, we add a super-resolution algorithm to a classic recognition pipeline
(see Fig. 1), obtaining the following configuration:

1. two (or more) low-resolution cameras, each observing different not overlap-
ping areas;

2. a super-resolution algorithm;
3. a bio-metric key producer (in our case a feature extractor);
4. a score function S(k1, k2) → R used to indicate if the identification proposed

is accepted or rejected by the system.

So, instead of using raw images taken from image sequences produced by
cameras, we compute a higher quality image constructed by sequence fragments.
More formally, given a gallery set G taken from image sequences of a set of people
at a given resolution rG, and a probe set P taken from image sequences at a
given resolution rP , our approach is based on extrapolating n contiguous frames
from every sequence in G and generating a higher resolution image for each of
them by using a given multi-frame super resolution algorithm. We indicate as
Gn

SR the image set obtained. Subsequently, the same process is applied to P
taking m contiguous frames from each sequence, and we indicate the resulting
set as Pm

SR.
This process can be repeated varying m and n in order to compare perfor-

mances. The resulting GSR and PSR sets are then used in a re-identification
task with the two different matching schemes described in Sect. 3.2. The objec-
tive of this work is to show not only how SR can improve the performances of

Fig. 1. Architecture of the system proposed.
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a generic re-identification system, but also how the temporal information taken
from different frames of the same sequence can affect the results.

3.1 Super-Resolution Algorithm

Our framework requires a multi-frame SR algorithm to synthesize the infor-
mation provided by multiple frames of the same sequence in a single shot at
a higher resolution. Super-resolution addresses the problem of reconstructing
high-resolution data from a single or multiple low resolution observations. The
key idea is based on the observation that every low-resolution image can contain
different information on the same subject and that the fusion of these images can
make it possible to extract subpixel information from the low-resolution image.
Although the main focus of super-resolution methods is to obtain higher resolu-
tion images from low-resolution sequences, techniques of image restoration and
image enhancement are also under consideration. SR techniques can be classified
by using two parameters:

– methods that work in different domains (spatial/frequency)
– methods that work on the number of frames used in the restoration process

(single/multiple)

Single frame methods can be considered equivalent to image interpolation,
where the information in the image can be taken from the image itself. In our
opinion, the state-of-the-art has been achieved by [12]; briefly, this study aims to
search for similar patches in one image and computes the best homography which
can generate the same image at a higher resolution. The following sequence of
steps can clarify how it works:

Given an image IO, to obtain an image IH of a higher resolution of a k factor;

1. downsample the image of a k factor obtaining IL image at a lower resolution
2. split images IO and IL in patches
3. for every patch PO of IO, compute a homography T s.t. QL = T (PO) where

QL is the best patch matching IL using a distance measure.
4. extract from IO the QO patch that matches to QL in IL
5. compute the inverse transformation T−1

6. use T−1 to obtain PH from QO, which is the patch in IH that matches the
position of PO.

This first method is used to obtain SR single frame images.
Instead, multi-frame resolution enhancement is used when the information

is taken from multiple frames. We can suppose that every image of the same
subject owns inside it a certain information load; by contrast, multi.frame algo-
rithms require a more complex pipeline to obtain significant results consisting
of crucial intermediate steps like the registration between images; multi-frame
methods often involve auxiliary algorithms taken from object detection or image
registration. The authors in [14] propose a Bayesian method that seems to obtain
good results, for which reason we have used it in our experiments. It aims to
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estimate the best high resolution image that can generate a set of low-resolution
images of the same scene using a probabilistic approach. In our experiments, we
have compared the performances using a single-frame SR algorithm (i.e. [12])
and a multi-frame SR algorithm (i.e. [14]).

In Fig. 2 we show the output from both algorithms relative to a frame of a
video sequence.

Original frame interpolation SR 1 frame SR 5 frames

SR 9 frames SR 15 frames SR 20 frames SR 25 frames

Fig. 2. Results of the SR algorithms considered. Top left to bottom right: orginal full
resolution frame, result obtained using bi-linear interpolation, single frame SR, and
multi-frame results using from 5 to 25 frames.

3.2 Feature Extraction and Matching Scheme

Once we have the SR images, we need a biometric key in order to discriminate
in a unique manner a single face; our experiments have been performed with
two different set-ups: the former using as the picture key-signature LBP features
[2], a well-known type of global descriptor used in computer vision and face
recognition, and the latter using the spatial correlation index [7].

– LBP: given an image I, the LBP operator assigns a label to every pixel by
thresholding the 3×3-neighbourhood of each pixel with the central pixel value
and considering the result as a binary number. Then, the labels histogram can
be used as a descriptor. The facial image is divided into local regions and each
descriptor is extracted from each region independently. All the descriptors are
then concatenated to form a unique global face description LBP (I).

Once we have the keys for every SRP and SRG set, we need a matching
scheme to compare the extracted bio-metric key; The similarity between two
images I1 and I2 can be computed as the cosine similarity between LBP (I1)
and LBP (I2).
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– Spatial Correlation: the matching is performed by a localized version of the
Spatial Correlation index. Given two images I1, I2 and the respective means
E(I1),E(I2), defining S as

s(I1, I2) =

∑

i

∑

j

(I1(i, j) − E(I1))(I2(i, j) − E(I2))
√∑

i

∑

j

(I1(i, j) − E(I1))2(I2(i, j) − E(I2))2

In our case, we divide all the images into subregions; for each subregion
r1 ∈ I1 we search, in a subwindow around the same position in I2, the region
r2 ∈ I2 that maximizes S(r1, r2). The global correlation is then obtained as

Sg =
∑

r1

s(r1, (arg max
r2

s(r1, r2))).

The similarity between the two images I1 and I2 can be computed as
Sg(I1, I2).

4 Experimental Assessment

We decided to conduct an experimental evaluation of our proposed method on
the publicly available ChokePoint video dataset1: this consists of videos of 29
subjects (23 male and 6 female) taken from different cameras. The videos in the
dataset have a frame rate of 30 fps, and the frame resolution is 800× 600 pixels.
In total, the dataset consists of 48 video sequences, and 64, 204 face images. In
all the sequences, only one subject is present in every image at any one time.

4.1 Description of Experiments

The ChokePoint dataset gives us a set of contiguous frame sequences taken from
a camera at a fixed resolution of 800 × 600; every sequence contains images of
a moving person the face of whom can be enclosed in a bounding box of about
80 × 80; this resolution is too high for our purposes, so we resize every face
to 40 × 40, obtaining what we consider our face-gold or Original Set Soriginal.
Next, we randomly select a subset of 25 subjects and, for each of them, we
take two distinct sequences, forming respectively the Gallery set Goriginal and
the Probe set Poriginal. We perform two sets of experiments, the former using
the SR single-frame approach, the latter using the SR multi-frame approach.
The performances are evaluated with the Genuine Acceptance Rate vs False
Acceptance Rate (GAR-FAR) curves, and Cumulative Matching Curves (CMC).
We subsample Goriginal of a given factor d obtaining a set of low resolution
sequences G↓d

LR. Next, we aim to restore the original resolution by applying an
up-sample of the same factor using a standard interpolation algorithm obtaining
the G↑d

HR set. So, we can now use the SR algorithms to obtain our test-cases.

1 Available from http://arma.sourceforge.net/chokepoint/.

http://arma.sourceforge.net/chokepoint/
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The SR Single-Frame Approach: For every sequence in G↓d
LR, we select a

frame where the face appears close to the camera and in a frontal pose, and
choose this as a single frame. We then use the SR algorithm proposed by [12] to
obtain a first set of super-resolved images G1

SR. Analogously, we build P 1
SR.

The SR Multi-frame Approach: For every sequence in G↓d
LR, we select a

sub-sequence (close to the conditions used for selecting the frame for the single-
frame case) of the nG contiguous frame that we want to combine together using
the SR algorithm proposed by [14]; nG is taken alternatively with values of
5, 9, 15 and 20, obtaining G5

SR, G
9
SR, G

15
SR and G20

SR sets. Analogously, we build
P 5
SR, P

9
SR, P

15
SR and P 20

SR sets.

Our objective is to evaluate how the identification performance changes when
using

– SR images (PSR, GSR);
– images at low resolution (PLR, GLR);
– direct high-resolution images (Poriginal, Goriginal).

We use the distances discussed in Sect. 3.2, and we compare the GSR sets
versus the PSR sets.

4.2 Results

As a first experiment we compared the performance when using the multi-frame
SR with a different number of frames. Figures 3 and 4 show the results for the
Spatial Correlation and LBP, respectively. The graphs show that using 5 frames
gives, in general, the best performance. This is reasonable if we consider that
the more frames we use, the more the pose of the subject can change, making
the information fusion between the frames less coherent.

Fig. 3. Performance when using spatial correlation and the multi-frame SR algorithm
with a different number of frames. Left: CMC curves. Right: GAR-FAR curves.
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Fig. 4. Performance when using LBP and the multi-frame SR algorithm with a different
number of frames. Left: CMC curves. Right: GAR-FAR curves.

Fig. 5. Performance of the two SR algorithms against original HR images and inter-
polated images. Left: CMC curves. Right: GAR-FAR curves. Spatial correlation was
used for this experiment.

Fig. 6. Performance of the two SR algorithms against original HR images and inter-
polated images. Left: CMC curves. Right: GAR-FAR curves. LBP was used for this
experiment.
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In the next experiment we compared the performance of the multi-frame and
single frame SR algorithms against the ones obtained from the original high
resolution images. Moreover, in order to verify if the SR algorithm really does
produce a positive result, we also measured the performance of the system when
using images with a super-resolution with a simple interpolation procedure. In
accordance with the results of the previous experiment, we used 5 frames for
the multi-frame SR in this experiment. The results are shown in Figs. 5 and
6 for the Spatial Correlation and LBP, respectively. The results show a better
performance when using spatial correlation. As for the resolution we can notice
a slightly better performance when using the multi-frame SR than when the
single-frame SR or the image interpolation is used. It can be also noted that, in
general, the single-frame SR gives worse results than the image interpolation.

5 Conclusions

The work presented in this paper investigates the use of super-resolution in a face
re-identification system. To achieve this objective we compared the performance
of two different super-resolution methods, the former using only one frame for the
super-resolution, the latter fusing the information from a sequence of frames. The
performances have been measured using two different face-recognition frame-
works: spatial correlation and LBP. The results obtained so far show that using
a multi-frame super-resolution algorithm can give slightly better results. The
experiments presented here also show a better performance when using spatial
correlation. In the future our system needs to be tested on more difficult datasets
than the one used for this study, and the experiments should be extended to a
wider range of features.
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Abstract. Both color and depth information may be deployed to seek
by content through RGB-D imagery. Previous works dealing with global
descriptors for RGB-D images advocate a decision level fusion whereby
independently computed color and depth representations are juxtaposed
to pursue similarity search. Differently, in this paper we propose a
learning-to-rank paradigm aimed at weighting the two information chan-
nels according to the specific traits of the task and data at hand, thereby
effortlessly addressing the potential diversity across applications. In par-
ticular, we propose a novel method, referred to as kNN-rank, which
can learn the regularities among the outputs yielded by similarity-based
queries. A further novel contribution of this paper concerns the Hyper-
RGBD framework, a set of tools conceived to enable seamless aggregation
of existing RGB-D datasets in order to obtain new data featuring desired
peculiarities and cardinality.

Keywords: RGB-D image search · Compact descriptors ·
Learning-to-rank

1 Introduction

Encoding image content into compact though distinctive representations is key
to retrieval performance in large-scale visual search. To pursue visual search
one would typically match the query image against those stored in a database
by comparing global image representations, so as to receive the digital content
linked to the most similar one. In this realm, numerous works, such as [4,14,18],
address how to represent images by short binary codes conducive to efficient
matching and storage when dealing with large-size databases.

Reliance on compact binary representations is an essential trait in mobile
visual search alike. Here, the image acquired by a mobile device’s camera is
encoded and transmitted via a wireless network to a remote server undertaking
database search. Therefore, bandwidth constraints mandate the images sent to
the server to be represented as compactly as possible. How to design an effective
mobile visual search architecture leveraging on compact image representations has
been addressed in several research papers [4,7,9] as well as in the recently defined
Compact descriptors for visual search (CDVS) standard by the MPEG group.
c© Springer International Publishing AG 2017
S. Battiato et al. (Eds.): ICIAP 2017, Part I, LNCS 10484, pp. 648–659, 2017.
https://doi.org/10.1007/978-3-319-68560-1_58
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Similar technology trends and research challenges are likely to become
increasingly relevant in the field of RGB-D imagery. Indeed, broad diffusion of
consumer depth cameras has enabled the creation of a few relatively large-size
RGB-D datasets comprising thousands or tens of thousands images. Moreover,
mobile devices start being endowed with the ability to sense depths, either by
mountable cameras, like Structure by Occipital, or fully integrated sensors, e.g.
as provided by Google’s Project Tango technology which, in particular, is on the
verge of deployment in off-the-shelf smartphones. Hence, one might be lead to
foresee more and more large RGD-D datasets to become available as well as the
emergence of applications performing Visual Search via RGB-D images taken by
mobile devices. The above trends, thus, are likely to foster considerable research
efforts towards the novel topic of compact binary representations for RGB-D
visual search.

The work described in [15,16] proposes the first investigation on how to
globally represent RGB-D images by compact binary codes. The experimental
analyses reveal that encoding of depths is key to recognize object categories,
whereas object instances are mainly told apart based on RGB information. More
interestingly, though, the authors highlight how different tasks and datasets
exhibit different peculiarities, so that, in general, naively chaining together the
binary codes associated with color and depth yields sub-optimal performance.
Rather, an effective approach to RGB-D visual search should pursue automatic
learning of the relative prominence of color and depth in the addressed scenario.

In information retrieval, the learning-to-rank paradigm provides a sound
framework to combine different strategies by learning a model that fuses into
a joint ranking the individual rankings yielded independently by the different
strategies. Learning-to-rank approaches perform a supervised learning aimed at
discovering which strategies produce better rankings in the addressed scenario
and, accordingly, learn how to weight properly the individual rankings into the
final one. Such paradigm has been deployed in Content-Based Image Retrieval1

to weight the contributions of different feature kinds extracted from RGB images.
In this paper, we propose the first investigation dealing with application

of the learning-to-rank paradigm to RGB-D visual search by binary codes. In
particular, we propose and apply to the architecture described in [16] a novel
learning-to-rank approach, dubbed kNN-rank. This approach tries to obtain a
joint ranking for the given query by learning the regularities within the k-NNs
retrieved by matching color and depth codes, such regularities concerning both
the types of object found as neighbors as well as the associated distances. Intu-
itively, if we query by a yellow cup we might retrieve cups based on depth and
bananas based on color, so that we would wish to learn to ignore the color
channel when aiming at category recognition while positively weighting it when
willing to recognize that specific cup.

Although a few relatively large RGB-D datasets are available nowadays,
their size is far smaller than that of state-of-the-art RGB datasets. To facilitate

1 Here, unlike visual search, the task is to provide the user several images similar to
the query.
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experimentation with larger and diverse datasets, a second novel contribution
of this paper concerns a software framework, referred to as HyperRGBD, that
allows researchers to create straightforwardly new data with desired traits and
peculiarities by mixing arbitrarily and seamlessly images drawn from different
RGB-D datasets.

2 Previous Work

In the last few years, many papers have addressed the task of object recognition
from RGB-D images. Most of them [2,8,17] fuse color and depth data at feature
level through either hand-crafted descriptors or deep learning approaches. Such
rich representations are then fed to a classifier (e.g. a SVM) trained to recognize
the content of the query image. Differently, in [3] depth and color information are
fused at decision level. Indeed, both color and depth are represented by eight
different descriptors and a specific SVM is trained for each feature type and
object category. The final decision is taken by a neural network presented with
the output of all these SVMs.

Other works are focused on how to weight the contribution of color and depth
as well as of diverse shape cues. [11] adopts an AdaBoost learning procedure to
weight color and depth for the task of face recognition, whereas [13] analyzes
different strategies for weighting five different 3D descriptors on the Princeton
Shape Benchmark. In [1], Bar-Hillel et al. propose the O2NBNN framework that
describes images through multiple channels encoding intensity, depth informa-
tion or a feature level fusion of the two contributions. At training time, an
optimization allows for learning the proper weights for each class and channel
that are, then, used to predict the object class from the query image. However,
all the above mentioned methods rely on rich, high-dimensional descriptors and
leverage on classifiers, while in the realm of visual search one would typically rely
on compact representations and perform a similarity search across the database.

Learning-to-rank has been effectively applied in RGB-based image retrieval.
[12] quantitatively compares three different approaches (pointwise, pairwise and
listwise) on four datasets. The work in [6] applies and compare Ranking SVM,
Genetic algorithms and Association Rules for ranking eighteen types of descrip-
tors (color, texture and shape based) on two RGB datasets. To the best of our
knowledge, the only work that exploits a learning-to-rank paradigm to fuse color
and depth data has been recently described in [5]. The method measures the sim-
ilarity between a query and a reference image by means of an ensemble of dense
matchings that weight differently the features extracted from color and depth
data. Then, the scores obtained by dense matchings are ranked through Ranking
SVM [10]. However, this approach is not conceived for large-scale visual search
but to re-rank a set of candidates priorly identified by a classifier, such as the
algorithm proposed in [17]. Moreover, it would not be applicable to mobile sce-
narios due to the requirement of sending to the remote server the full RGB-D
image rather than just a compact binary code.
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3 Visual Search Architecture

In this section we outline the visual search architecture proposed in [16] and
deployed in this paper to apply learning-to-rank methods for RGB-D image
search. First, a set of patches are extracted densely from the query RGB-D
image and described through Kernel Descriptors. In particular, the appearance
information associated with each patch is represented by kernels dealing with
intensity gradients (KDI) and color (KDC), while 3D shape information is cap-
tured by kernels encoding depth gradients (KDD) and Spin Images descriptors
(KDS). Then, these local features are aggregated into a global image description
by Fisher Kernel. Finally, the Spherical hashing algorithm provides the compact
binary code used to carry out similarity search within the image database. The
experimental analysis in [16] highlights that the information extracted from the
depth and color images should better be aggregated at decision rather than fea-
ture level. Accordingly, the four Kernel Descriptors (KDI , KDC , KDD, KDS)
are computed, aggregated and hashed separately, so as to end up with four
binary codes, referred to as BI , BC , BD and BS , that are simply juxtaposed to
create the final tag, B, deployed to seek for the most similar image within the
database. Then, an object instance (category) gets recognized correctly if the
most similar database image retrieved by matching the binary tag comes from
the same instance (category) as the query image. Comparison between binary
tags is achieved by the fast Hamming distance and the search performed effi-
ciently by indexing the database through the multi-probe LSH scheme. Finally,
the matching process is robustified by the weighted k -NN classifier (k = 9).

However, as highlighted in [15,16], simple juxtaposition of the binary codes
hardly succeeds in capturing the diverse distinctiveness that the deployed fea-
ture channels may convey in different tasks and datasets. Accordingly, the next
section describes an approach aimed at learning to weight the relative contribu-
tions of the individual binary codes in order to seamlessly adapt the pipeline to
the peculiarities of the addressed scenario.

4 The kNN-rank Approach

Figure 1 allows for visualizing the results of a query carried out on the Washing-
ton dataset by the visual search architecture proposed in [16]. It can be observed
that the binary codes dealing with depth information (BD, BS) succeed in iden-
tifying the correct category, whilst this is not the case of those extracted from
the RGB image (BI , BC). In particular, matching based on color (BC) mistakes
the bowl for a cup due to the very similar texture patterns. This, in turn, hin-
ders the final matching based on the juxtaposed codes, B, which returns a wrong
category (i.e. cup).

However, had we be presented with these results and been told to trust depth
much more than color, we would have been able to pick the correct category.
Similar observations drawn from analyzing the results of several queries lead
us to the intuition that the information conveyed by retrieved images contains
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Fig. 1. Result of a query on the Washington dataset. The first row reports the query
RGB-D image together with its associated category (“bowl”). The next four rows show
the k = 9 most similar images according to the four binary codes (BI , BC , BD and
BS). The last row shows the k = 9 images retrieved by the binary tag, B. The category
and Hamming distance from the query image are shown below each retrieved image.

regularities that may be exploited in order to learn how to make decisions aware
of the specific scenario and data.

Accordingly, this section describes a novel learning-to-rank method, dubbed
kNN-rank, that, given the results of a query, defines a set of feature vectors
based on both the labels (either instance or category labels, depending on the
recognition task) and distances of retrieved images. In particular, a feature vector
is created for each different retrieved label, such feature vectors used at training
time to learn a ranking function while at test time to rank the label with respect
to the query.

More in detail, the labels relevant to a query are those retrieved either by
each of the individual binary codes or by juxtaposing them. For example, for
the query illustrated in Fig. 1, the relevant labels are “cup”, “food”, “plate”
and “bowl”. Then, given a relevant label, li, an associated feature vector, xi, is
assembled by computing a pair of features for each retrieved image. The first
feature in the pair encodes whether the corresponding image is labeled as li
or not: in the former case, it is “fired” and equal to the measured Hamming
distance, in the latter it is set to zero. Considering the exemplar query of Fig. 1
and label “cup”, the first feature of the pair for each retrieved image is shown in
blue on the left side of Fig. 2. Conversely, the second feature is fired, i.e. equal
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Fig. 2. Feature vector produced by the kNN-rank method for label “cup” according
to the query results depicted in Fig. 1. Each row deals with the images retrieved based
on a different code (i.e. BI , BC , BD, BS , B) and consists of 2 × k elements. “Blue”
features encode the Hamming distance for “cup” images whereas “green” features the
Hamming distance for “non-cup” images. (Color figure online)

to the measured Hamming distance, for all the retrieved images showing labels
other than li. Considering again the query of Fig. 1 and label “cup”, the second
feature of the pair for each retrieved image is shown in green on the right side
of Fig. 2.

Similarly to the Ranking SVM approach [10], we solve a binary classification
problem. More precisely, at training time we randomly select N images from the
database to be treated as queries. For each query, we apply a k-nn search in the
database based on BI , BC , BD, BS and B. As described, we create a feature
vector for each relevant label, li, and then assign either +1 or −1 to each feature
vector based on whether li is correct or wrong for the query. These samples are
normalized to similarity scores in the interval [0, 1] and used to train a linear
SVM. In particular, denoted as xi (d) , d ∈ {I, C,D, S}, the Hamming distances
associated with the four binary codes, the corresponding normalized features are
given by

x̃i(d) =
max

i
xi(d) − xi(d)

max
i

xi(d)
(1)

At test time, given a query, each relevant label li is ranked with respect to
the query according to the score computed by the trained SVM:

f(li) =< w, xi > (2)

5 The HyperRGBD Framework

This section outlines a C++ software framework, referred to as HyperRGBD,
devised to enable researchers and practitioners to build effortlessly new datasets
by aggregating images from different existing RGB-D datasets. For example, one
might wish to experiment with datasets larger than existing ones, which would
seamlessly be attainable by deploying HyperRGBD to aggregate the images
belonging to existing datasets into a larger data corpus. Furthermore, should
a dataset be biased towards certain abundant categories with others featur-
ing a few samples only, it would be just as seamless to build a more balanced
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dataset by using HyperRGBD to draw samples for the rare categories from other
datasets. Another example may deal with changing the granularity of categories,
e.g. aggregating “chair”, “table” and “couch” into a broader “furniture” cate-
gory or splitting “fruit” into more specific categories like “apple”, “orange” and
“banana”. At present, we have integrated in the framework the main existing
RGB-D datasets for object recognition, i.e. Washington, CIN 2D+3D, BigBIRD
and MV-RED, that are briefly described in a project page2 we make available,
along with the source code of the framework, so to foster research activity on
perception from RGB-D imagery and enable researchers to integrate their data.

We exploited HyperRGBD to obtain two new RGB-D datasets used in our
experiments besides the main existing ones. We aggregated the above four
datasets to create two new datasets and tested both in instance as well as cat-
egory recognition scenarios. The former, HyperRGBD, merges all the available
images. The latter, HyperRGBD - Balanced, addresses the wide differences in
size between existing datasets by balancing them upon aggregation. More pre-
cisely, for instance recognition scenario, we identify the dataset with the fewest
instances (BigBIRD comprising 114 instances) and level down the others by ran-
domly selecting 114 instances per dataset. In the case of category recognition,
instead, for each of the categories of the aggregated dataset, we search for the
dataset providing the smallest amount of instances and, accordingly, populate
the category by randomly selecting that amount of instances from each dataset.
Once the datasets are gathered, both for category and instance recognition, a
tenth of the dataset is used as test set and the remaining to perform the training.
The procedure is repeated 10 times on different randomly generated test sets so
to obtain 10 different trials.

6 Experimental Evaluation

To assess the ability of the novel kNN-rank method to properly weight color
and depth channels across different tasks and data, our experimental evaluation
compares it against the SVMrank approach proposed in [10], a Ranking SVM
formulation that has proved to be effective in a variety of real settings. As a
baseline, we also include in the evaluation the matching of juxtaposed binary
codes encoding depth and color information, as delineated in previous work
dealing with RGB-D visual search [15,16].

In the experiments reported in this section, queries and database images are
encoded by allocating 512 bits to each of the four binary codes (BI , BC , BD, BS),
so that the final tag, B, gets as large as 2048 bits. Indeed, extensive experimen-
tal investigation showed that longer descriptions would not provide significant
improvement in the recognition capability of the architecture. Furthermore, even
though recognition rates decrease as the description length decreases, the rank-
ing between the approaches considered in this section remains identical. We also
report the recognition performance achieved by individually matching binary

2 http://www.vision.disi.unibo.it/research/78-cvlab/107-hyperrgbd.

http://www.vision.disi.unibo.it/research/78-cvlab/107-hyperrgbd
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codes BI , BC , BD, BS , which in these kinds of experiment are given the same
length (2048 bits) as B.

In the SVMrank approach settings, the feature vectors xi are four-dimensional
and consist of the four Hamming distances between the binary codes BI , BC , BD,
BS computed from query and database images as described in Sect. 3. To per-
form the training we randomly select N images from the database to be treated as
queries; then, for each query, we randomly pick 500 relevant images (i.e. for which
the category/instance is the same of the query image) and equally many irrelevant
ones, so as to create pairs of feature vectors xi, xj dealing with the same query
in which one is associated to a relevant image and the other to an irrelevant one.
Thereby, the binary classifier can be provided with training samples according to
the standard formulation of the Ranking SVM approach. At query time we avoid
the computation of the ranking score for all database images and instead rank only
a subset of candidates. Purposely, we individually match the four binary codesBI ,
BC , BD, BS to identify, for each, the k most similar images. Moreover, we match
the tag given by juxtaposing the four binary codes, B, to retrieve equally many
images. The final set of candidates is the union of these retrieved images (i.e., at
most k × 5 images).

Both for SVMrank and kNN-rank, to perform training, we extract N = 2000
images treated as queries and, as suggested in [16], similarity searches have been
performed by setting k = 9 for all the methods.

6.1 Results

Table 1 summarizes all the results obtained by our quantitative evaluation on
all the available datasets in both category and instance recognition tasks. We
evaluate performance based on the recognition rate, i.e. top-1 accuracy, as this
is the standard metric concerning visual search scenarios, where one would wish

Table 1. Recognition rates obtained on the considered datasets by matching the binary
codes BI , BC , BD, BS , B, by a learning-to-rank approach (SVMrank) and by our novel
proposal (kNN-rank).
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to receive information linked to image content3. This is the metric adopted in
[15,16] as well as in most previous work related to instance/category recognition
from RGB-D imagery [2,5,8,17]. Each row reports the recognition rates obtained
by the considered approaches on a different dataset and type of experiment
(i.e. either category or instance recognition). The adopted color code allows for
perceiving clearly the differences in performance as higher recognition rates are
denoted by darker background colors within cells.

The comparison between the results obtained by separate deployment of the
different cues (BI , BC , BD, BS) and concatenation of descriptors, B, confirms
the findings already discussed in Sect. 3. As a matter of fact, fusing descrip-
tions is clearly beneficial for category recognition, whereas, in general, much less
effective to tell apart specific object instances. In the latter task, indeed, perfor-
mance depends quite significantly on the specific type of data, with juxtaposi-
tion providing higher recognition rate in the CIN 2D+3D dataset and turning
out useless with the type of objects included in the Washington dataset, where
description based on color (BC) suffices in delivering the highest performance.
On the remaining datasets, juxtaposing representations (B) is even detrimental
with respect to allocating all the available bits to color (BC). Thus, although the
simple recognition strategy based on matching juxtaposed descriptors delineated
in [15,16] is overall effective, as vouched by the average figures across the first
five columns (BI , BC , BD, BS , B) reported in the last row of Table 1, it turns
out clearly sub-optimal in many relevant settings.

The SVMrank approach partly addresses such issue by providing, generally,
higher recognition rates, as reported by the average recognition rate in the last
row. Nonetheless, even if the method properly deals with instance recognition
tasks by providing top recognition rates on all the datasets, a comparison limited
to the category recognition task between SVMrank and B shows slightly better
results in favor of the latter. Such behaviour could be ascribed to the large intra-
class variability of the objects belonging to a category which renders the task
more challenging than telling apart a specific object from others. SVMrank may
not be powerful enough to learn the regularities that tie the objects of a same
category.

That is not the case of the novel kNN-rank method introduced in this paper,
that, as vouched by the last column of Table 1, can yield recognition rates higher
than B also in category recognition experiments, behaves effectively on both the
tasks and correctly adapts to all the datasets. The background color code permits
to catch at a glance that our proposal provides the highest recognition rates on
most of the datasets and ties on the others. Again, the average figures on the
last row show the overall superiority of kNN-rank. Hence, we can conclude that
learning the regularities underlying retrieved images is an effective strategy for
obtaining correct rankings.

Table 1 reports also the results on the two new datasets created through the
HyperRGBD framework. The results are coherent with those obtained on the

3 Differently, in image retrieval, one is interested in receiving several images and there-
fore top-n accuracy is adopted.
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individual datasets and highlight the good scalability of learning-to-rank meth-
ods to larger datasets. It is worth showing that HyperRGBD and HyperRGBD
- Balanced are genuinely new datasets and not plain aggregations of the con-
stituent datasets. As evidence of that, Fig. 3 reports three examples of queries
performed on the HyperRGBD - Balanced dataset by matching the binary tag,
B. The retrieved images belong to different datasets. Furthermore, in the first
two examples, even though the query images belong to the Washington dataset,
two images from the CIN 2D+3D are returned as top-1 result. These examples
show that the HyperRGBD framework mixes datasets effectively and prove that
the recognition rates reported in Table 1 for the HyperRGBD and HyperRGBD -
Balanced are not the mere averages of the results already obtained on the other
datasets.

MV-RED

CIN 2D+3D

Washington

MV-RED

Washington

Washington

Washington Washington Washington Washington Washington WashingtonCIN 2D+3D

CIN 2D+3D CIN 2D+3D CIN 2D+3D

MV-RED MV-RED MV-RED MV-RED MV-RED MV-RED

Washington Washington Washington Washington Washington

Washington Washington Washington

Fig. 3. Result of three queries on the HyperRGBD - Balanced dataset. On the left we
show the query images, whereas on the right the k = 9 images retrieved by matching
the binary tag, B. Each image is labeled with the dataset it comes from.

7 Final Remarks

This paper shows that applying the learning-to-rank paradigm for weighting
color and depth cues in RGB-D visual search does improve performance signif-
icantly and, in particular, allows for handling seamlessly diverse datasets and
tasks. This is achieved by applying the novel kNN-rank method, that analyses
the regularities in the retrieved images so as to learn the contribution conveyed
by the different cues. The approach provides top performance on all the exper-
iments we performed, both on the main existing RGB-D datasets as well as on
two new datasets we created by means of the proposed HyperRGBD framework.

Although the kNN-rank method has been applied to Hamming distances of
binary codes encoding color and depth cues, nothing indicates that the approach
could not be successfully deployed in other contexts. So far, learning to rank
methods have been applied in Content-Based Image Retrieval wherein large-
scale RGB databases are encoded by numerous color, shape and texture features.
Thus, we plan to test and evaluate our proposal in these settings so as to assess
the ability of kNN-rank to scale to databases comprising million of images and
to properly weight a larger number of cues.
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Abstract. In this paper, we propose a new method for underwater mine
detection. This detection strategy is based on the use of the Adaboost
algorithm with a Polynomial Image Decomposition (PID). PID splits a
given image into two components the geometrical component (cartoon)
and the textural one (small scale). This decomposition is based on the
use of a polynomial transform. The use of PID reduces the noise and tur-
bidity of underwater images, which results a consequent improvements
on the visibility of underwater objects. As a result, our detector achieves
a high detection rate and good efficiency. It also shows better perfor-
mance against the use of a simple adaboost algorithm for underwater
mine detection.

Keywords: Underwater mine · Object recognition · Polynomial
transform · Anisotropic diffusion

1 Introduction

The high resolution photogrammetric surveys in underwater environment has
taken an operational turn with the automation of processing and their inte-
gration in a tele-operated machines. This new type of data opens numerous
perspectives for operational exploitation in various sectors of activities, from
ecology to civil engineering, to oil-related applications and, of course, to the spe-
cific needs of mine warfare. For the mine detection application, the underwater
images sequence that is captured with remotely operated vehicles could have
some specificities. It could have more or less accentuated, such as light absorp-
tion and diffusion which leads to noisy images, less contrast or unusable color
information. For these reasons, and because detection is sensitive to these prob-
lems, the images need pre-processing before any recognition of underwater mine.
After this step, the object recognition is intended to extract automatically and
efficiently interesting content. Our research focuses on a system that recognizes
and locates mines.

The rest of this paper is organized as follows: Sect. 2 gives a summary of
related works. Section 3 gives brief introduction to image decomposition with a
polynomial transform, and describes our proposed adaboost techniques. Section 4
c© Springer International Publishing AG 2017
S. Battiato et al. (Eds.): ICIAP 2017, Part I, LNCS 10484, pp. 660–670, 2017.
https://doi.org/10.1007/978-3-319-68560-1_59
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presents the detection results that obtained from the samples of underwater
images and shows the superior performance of our underwater mine detection
method.

2 Related Work

Object detection is a central problem in computer vision domain. Most object
detection systems are based on the use one of the two main approaches, either
the use of global or local image features.

For the local features approaches, we can cite LBP [1], Haar [2,3] and HOG
[4]. For underwater object detection, the most commonly used methods are LBP
and HOG due to the satisfactory detection results [1,5,6].

The LBP was introduced in 1996 by Ojala et al. to characterize the neigh-
borhood of a point within a given image. This is done by calculating the gray
level difference between a given pixel and its neighbors. This feature is widely
used for recognition purposes such as by [2], and in object recognition by [1]. The
disadvantage of this descriptor is the number of parameters to be fixed according
to the fixed value N corresponding to the number of neighboring pixels and the
chosen radius R. The other commonly used feature is the HOG which is used
to calculate the occurrences of the orientations of gradients orientations in a
localized portion of the image. They were introduced by Dalal and Triggs [4] to
recognize pedestrians in a given image. This descriptor is also used for underwa-
ter object detection such as underwater fish [5] or underwater plan images [6].

For global features, the image is represented by one feature vector which
describe the information in the whole image. In other words, global feature rep-
resentation produces a single multidimensional vector with values that measure
various aspects of the image, such as texture or shape. These feature vectors may
be used with different classification strategies for object detection. Our objective
is the detection of underwater mines, where images resulting from the acquisition
step are very noisy, with non uniform lighting, muted colors, and low contrast.
For this case, we found that image decomposition is effective to separate the
geometrical component of the image. The use of geometric component enable
the reduction of noise to obtain a usable image. In our context, we used the
image decomposition approach as pre-processing for mine detection.

The literature on image decomposition is very rich. Many methods were
proposed among which two categories are closely related to this work: those based
on the study of image by variational methods and partial differential equations
(PDE) and those based on signal processing that perform frequency analysis
of images, such as morphological component analysis (MCA), and polynomial
transforms. For the first category, we can mention [7–9].

In Buades et al. [7] work, they derived a non-linear filter pair to decompose
image into cartoon and texture parts based on the theory given by Meyer [8].
Each image can be decomposed into geometrical component (u) and texture
component (v). For each pixel, a decision is made whether it belongs to the
geometric part or to the texture part. This decision is made by computing a
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local total variation of the image around the point and comparing it to the local
total variation after the application of a low-pass filter. Zhang et al. [9] proposed
a method that is easy to implement and had low computational complexity. This
method is based on Rudin-Osher-Fatemi (ROF) model by using split Bregman
algorithm [10] as a first step. Then, the salient features are selected from the
cartoon and texture components respectively to form a composite feature space.
Finally, the salient information presented by the local features of the source
images are integrated to construct the fused image.

Another common approach consists of decomposing image by using the PDE.
This method demonstrated powerful tools to decompose a given image into its
structure, texture and noise components [11,12]. In this context, Hiremath et
al. [11] proposed a novel method that uses PDE and local directional binary
patterns for texture analysis. Based on their approach [13], they introduced a
method for texture analysis using wavelet transform. This method is based on
four basic steps. The first step consists in calculating the information about
direction from the image by using a Haar wavelet transform. Then, in the sec-
ond step, the texture is approximated by applying an anisotropic diffusion on
horizontal, vertical and diagonal components resulting from the first step. The
third step consists on the extraction of statistical features from approximation
texture image and the optimization of feature sets by using a linear discrimi-
nant analysis. The fourth and last step is the classification of feature sets from
textural images using KNN classifier [11].

For the second category, many approaches are dealing with the problem of
image decomposition by using MCA. This method was very successful in sepa-
rating various components in many practical applications [13,14]. The cartoon
and texture components are represented by well-chosen dictionaries, such as dic-
tionaries corresponding to represent Discrete Cosine Transform (DCT) or the
Discrete Sine Transform (DST) for texture component representation, and dic-
tionaries corresponding to wavelet, curvelet or shearlet for geometric component
representation. However, one of the limitations of this approach is that some
textures found in many practical applications cannot be modeled by DCT or
DST dictionaries which tend to produce a poor decomposition.

For the same purpose, some new methods were proposed to extract and
describe the texture by using a Polynomials transform. Among these methods,
we may mention Bordei et al. [15] who proposed a method based on the projec-
tions of images on a complete polynomial basis. The proposed method consists
of replacing the texture representation model by polynomial projections on a
complete orthonormal basis. In the same context, El Moubtahij et al. [16,17]
proposed a method that describe the texture, and decompose an image into geo-
metric and texture component. Their method is based on the projection of the
image on a complete polynomial basis, while considering anisotropic diffusion
in their decomposition equation. In this paper, we use this method of image
decomposition to reduce the noise in order to obtain a usable image. As a result,
we will have a cartoon image (using the equation proposed in [16,17]), where
only the image contrasted shapes appear (without texture).
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3 Adaboost Based Polynomial Image Decomposition

3.1 Complete Basis

In our previous work [16,17], we proposed to decompose image as a linear combi-
nation of polynomials from orthogonal basis, and we make anisotropic diffusion
to find texture approximation from directional information.

Let a Bivariate Polynomial (BP) of degree d is a function of x = (x1, x2) ∈ R
2

defined as:
P (x) =

∑

(i,j)∈[0;d]2

i+j≤d

ai,j xi
1 xj

2 (1)

where i,j ∈ R
+ are the maximum degrees of variables x1,x2 and {ai,j} ∈ R

are the coefficients of the polynomial. The overall degree of the polynomials is
d = i + j.

Considering a finite set of pairs D = {(i, j)} ⊂ N
2, we represent by ED the

space of all BP such as ai,j ≡ 0 if (i, j) /∈ D and by KD the subset of monomials

KD =
{

Kd1,d2(x) = xi
1 xj

2

}

(i,j)∈D
(2)

Obviously KD satisfies the linear independence and spanning conditions and so,
KD is a basis of ED, the canonical basis. In our context of color image decompo-
sition, we look for bases with more suitable properties such as orthogonality or
normality. So, to construct a discrete orthonormal BP finite basis we first have
to consider the underlying discrete domain

Ω =
{
x(i,j) =

(
x1,(i,j), x2,(i,j)

)}
(i,j)∈D

(3)

where D will now represent the set of pairs associated to Ω.
Starting from KD we intend to construct a new orthonormal basis applying

the Gram-Schmidt process. This implies that we need some product and norm
for functions defined on Ω. Given two bivariate functions, F and G, their discrete
extended scalar product is defined by

〈F |G〉 =
∑

ω

F (x) G(x) ω(x) (4)

with ω a real positive function over Ω (Legendre, Chebichev, Hermite, . . . ).
Then, the actual construction process of an orthonormal basis

BD,ω = {Bi,j}(d1,d2)∈D (5)

is a recurrence upon (i, j)

Ti,j(x) = Ki,j(x) −
∑

(l1,l2)≺2(i,j)

〈Ki,j |Bl1,l2〉ωBl1,l2(x) (6)

Bi,j(x) =
Ti,j(x)
|Ti,j |ω

(7)



664 R. El Moubtahij et al.

where ≺2 is the lexicographical order and | |ω the norm induced by 〈 | 〉ω. The
resulting set of B polynomials verifies

〈Bi,j |Bl1,l2〉ω =
{

0 if (i, j) �= (l1, l2)
1 if (i, j) = (l1, l2)

(8)

and so BD,ω is effectively an orthonormal basis with respect to a weighting
function ω. A complete basis is the orthonormal basis whose domain Ω and
related to the discrete extended inner product (4) is defined by the family:

{Bi,j(x)}i=0···n1j=0···n2 (9)

with the number of polynomials in the complete polynomial basis is given by
the size (n1 + 1) × (n2 + 1).

3.2 Polynomial Image Decomposition (PID)

Given an image I, the geometrical component is given by a partial reconstruction
Ĩ of I in an overlapped polynomial transform context (El Moubtahij et al. [16,
17]). The procedure of image decomposition follows this scheme:

1. Construction of a complete polynomial basis of degree d and sub-domain
M = S1 × S2.

2. Performing a polynomial approximation of image I.
3. Performing a partial reconstruction with brutal restriction or restriction based

on energies. For example, by using the normality of the basis to assimilate the
absolute value of its coefficients to a part of the energy of a subdomain, then
sort the coefficients, and finally retain a fixed number of these coefficients or
those satisfying a certain condition (c.f., principal component analysis).

4. Applying the redundancy equation:

Ĩ(x) =
1

c(x)

∑

{ΩM�x}

⎛

⎝Ψ(ΩM )ω(xM )
∑

(i,j)∈PM

bi,j(IM ) Bi,j(xM )

⎞

⎠ (10)

with:

– Ĩ: reconstructed image, in our case, it is the geometric image.
– X: a point referring to Ω, XM same point referring to sub-domain ΩM .
– IM : restriction of I to sub-domain ΩM .
– PM : selected polynomials for IM approximation.
– m(x): sum of contributions from point X.
– Ψ(ΩM ): degree of anisotropy assign to sub-domain ΩM .

The texture component IT is simply deduced from the partial reconstruction of
the redundancy equation as: IT = I − Ĩ.

The function Ψ(ΩM ) plays a very important role in this equation, thanks to
it, one can control the amount of contour extraction in the image. It is evaluated
as follow:
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Ψ(ΩM ) =
1

1 + λr
(11)

with λ is the largest eigenvalue of a tensor structure composed with the approxi-
mations of partial derivatives (El Moubtahij et al. [16,17]). The balance between
isotropic and anisotropic diffusion is adjusted by the parameter r that controls
the degree of anisotropy. A small value of r induces a uniform blur effect on
the image, this is known as the isotropic diffusion effect. However, if r increases,
rather than blur, the contours will become very contrasted. The complexity of
this approach in terms of time/memory is cited in [17].

We present in Fig. 1 the underwater mine image decomposition result from
this process with a varied value of r. From this figure, image representing the
geometric component is very smooth, while all that is texture, contour and noise
are in the texture component.

(a) (b) (c) (d) (e)

Fig. 1. Mine image decomposition by polynomial approach: (a) original image, (b) and
(c) are respectively geometrical component and texture component with r = 0.75. (d)
and (e) are respectively geometrical component and texture component with r = 4.

3.3 Adaboost Based PID

In this paper, a novel classification scheme based on the use of adaboost with
the geometrical component of images is proposed. This classification scheme is
detailed in Fig. 2. The traditional adaboost algorithm introduced by Viola and
Jones [2] is composed of two stages that are the training and the detection
process. The basic idea is to integrate the geometrical component extracted by
polynomial transform as input for adaboost algorithm in a combination with
LBP and HOG to train underwater mine detector. The noise and texture are
treated as high frequency components. However, there is a probability of hav-
ing noise contents in the geometrical image. To adaptively attenuate noise, the
generated geometrical components are extracted based on the isotropic and
anisotropic diffusions.

From Fig. 2(b), it can be seen that the algorithm starts by decomposing orig-
inal images into geometrical positive and negative samples, extracting the LBP
and HOG features from these samples, and then, training the adaboost in order
to generate our mine classifier. Once the classifier is trained, the detection process
will be launched. For this purpose, the LBP and HOG features are calculated for
all geometrical test images and then, the adaboost detection process is applied
on these images to detect the mines, the adaboost algorithm can distinguish
objects that correspond to mines by separating the high frequencies (noise and
texture) from underwater images.
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Fig. 2. (a) Traditional adaboost algorithm (Alg.1), (b) AdaBoost procedure based on
PID adapted for mine detection (Alg.2)

4 Experimental Result and Analysis

4.1 Parameters Setting

In order to evaluate our mine detection, we used different values of r ranging
from isotropic to anisotropic diffusions. However, to achieve a stable and reliable
detection, the parameters are set as: Scale factor = 1.1, Mine size = 30 × 30,
r = 0.75, 3 and 4, where scale factor is the ratio of the sliding window of adaboost
algorithm in the two successive scans, mine size is the minimum size region
containing an object of adaboost algorithm, and r is the parameter that adjust
isotropic and anisotropic diffusion.

4.2 Mine Detection

After decomposing images with our polynomial method, we used the adaboost
algorithm to train a binary classifier with both LBP and HOG features that have
been extracted from positive and negative samples. These samples are obtained
using Remotely Operating Underwater Vehicle (ROUV). They were taken on
various maritime sites close to Marseille, France. These samples were taken with
different view angles, illuminations and noise densities. Many unnecessary images
are provided by ROUV. The number of images that contain mines is minimal.
These samples (a few examples are shown in Fig. 3) constitute the images data set
that is used for mine detection. The images data set contains 184 positive samples
and 398 negative samples. The positive samples are mines in different angles and
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the negative samples are the non-mines areas selected from background. On these
high-resolution images 1936×1456, we selected the regions of interest to build a
well-varied set of positive and negative samples. To perform training and evaluate
the detection performance, two sub-sets of positive and negative samples were
selected. For this, we took 80% of images as a training set and the remaining 20%
as a test set for both positive and negative samples. After decomposing images
and using the geometrical components for the positive and negative samples, we
use the LBP and HOG features with a cascade classifier. The used classifier is
a 20 stages strong classifiers, where each stage is an set of weak classifiers. For
detection, the trained classifier is used with a sliding window on test images to
localize windows containing the object of interest. The size of the window varies
to detect objects at different scales, but its aspect ratio remains fixed.

Fig. 3. The positive and negative samples: the first row show the positive samples, and
the second row show the negative samples.

4.3 Results

To evaluate our algorithm, we used three criteria which are the detection rate,
the false detection rate, and the true negative rate. The detection rate is the
ratio between the number of true detection and the total number of positive and
negative samples, and the false detection rate is the ratio between the number
of negative samples wrongly classified as positive (false positives) and the total
number of actual negative samples. Whereas the true negative rate is the propor-
tion of negatives that are correctly identified. Table 1 shows the results of mine
detection using Alg.1, and Table 2 shows the same results but this time using
Alg.2. Alg.1 uses original images without any pre-processing whereas Alg.2 uses
pre-processed images. From Table 2, we can see an improvement in performance
with our proposed algorithm, the detection rate has achieved up to 96% with
LBP feature and r = 0.75 much better than Alg.1 where the detection rate has
achieved 51% with LBP features.

Example of mine detection results are shown in Fig. 4.
From the above results, we can see the geometrical information based polyno-

mial image decomposition helps our descriptor to correctly detect the mine. The
application of LBP features on the geometrical images are more effective than
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Table 1. The mine detection results with Alg.1

Method Alg.1

Feature LBP HOG

Number of tested mines/non-mines 40/78 40/78

Detected mines 32 30

False detection rate 21.6% 8%

True negative rate 78% 87%

Detected rate 51% 87%

Table 2. The mine detection results with Alg.2

Method Alg.2

Feature LBP HOF

Number of tested mines/non-mines 40/78 40/78

r = 0.75 r = 3 r = 4 r = 0.75 r = 3 r = 4

Detected mines 38 34 37 21 15 16

False detection rate 2.5% 8% 4% 19% 24% 23%

True negative rate 97.4% 91.6% 95.1% 80.4% 75.7% 76.4%

Detected rate 95.7% 84.7% 81% 81% 78.8% 79%

(a) (b) (c)

(d) (e) (f)

Fig. 4. Detection results with our proposed adaboost algorithm: by comparing the
results shown on (a–d) and those shown on (e–f), we can see that most are detected
except those positioned in dark regions. There are also some other mines are not
detected due to hard noise on images

HOG features. It implies that characterizing textures of mines with LBP features
on geometric images gives better detection compared to the use of traditional
features on original images.
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5 Conclusion

In this paper, a novel method for mine detection in underwater images has been
proposed. This method is based on the use of Viola and Jones cascade classifier
that is widely used in computer vision for object detection. In addition to the
local features such as LBP and HOG, a geometrical component extracted by
polynomial transform is proposed and used as input for adaboost algorithm
to train underwater mine detector. Although the input underwater images are
noisy; with our approach, the noise is reduced from the geometrical component,
and our classifier can properly detect mines by using LBP and HOG features.
The proposed approach has been tested on a set of underwater real images.
Experimental results show that the proposed method has a high accuracy in
detection and identification of underwater mine compared with Viola and Jones
classifier cascade, which is indicate the effectiveness of our method.
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Abstract. The paper presents a method for color quantization (CQ)
which uses visual contrast for determining an image-dependent color
palette. The proposed method selects image regions in a hierarchical
way, according to the visual importance of their colors with respect to the
whole image. The method is automatic, image dependent and requires a
moderate computational effort. Preliminary results show that the qual-
ity of quantized images, measured in terms of Mean Square Error, Color
Loss and SSIM, is competitive with some existing CQ approaches.

Keywords: Human Visual System · Visual contrast · Color quantiza-
tion · RGB color space

1 Introduction

Although the Human Visual System (HVS) is able to distinguish a large num-
bers of colors, it behaves as an imperfect sensor. It tends to group colors with
similar tonality since few colors are generally enough for image representation
and understanding. A color quantization (CQ) method attempts to emulate this
perceptual behavior by selecting a suitable reduced number of representative
colors and by producing a quantized image which still is visually similar to the
original one with minimum distortion.

A number of CQ methods are available in the literature [1,3,13]. The stan-
dard approach is based on the interpretation of CQ as a clustering problem in
the 3D color space. Colors are grouped into clusters, by using any clustering
technique, and the representative color for each cluster is generally obtained as
the average of the colors in the cluster. Most CQ methods belong to the category
of image dependent clustering methods. Usually, they can be categorized into
two families: preclustering methods [3,8,9,18] and postclustering methods [6].
Methods in the former class are based on a hierarchical structure and recursively
find nested cluster either in a top-down or bottom-up manner; on the contrary,
methods in the second class find all clusters simultaneously as a partition of the
data.

Visual perception is mediated by a collection of individual mechanisms in
the visual cortex due to the neuron response to stimuli above a certain con-
trast. Hence, to integrate the properties of the HVS in the quantization step,
c© Springer International Publishing AG 2017
S. Battiato et al. (Eds.): ICIAP 2017, Part I, LNCS 10484, pp. 671–681, 2017.
https://doi.org/10.1007/978-3-319-68560-1_60
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a perceptual-based method should exploit the spatio-temporal masking proper-
ties and establish thresholds based on psychophysical contrast phenomena. This
contrast sensitivity varies with spatial frequency, temporal frequency and orien-
tation and can be used to indicate the threshold at which a spatial frequency just
becomes visible under certain viewing conditions. Some perceptual-based meth-
ods based on contrast sensitivity have been proposed in the literature [5,12,15],
especially for image compression purposes. However, a contrast-based analy-
sis, which allows an integration of the perceptual mechanisms of the HVS in the
quantization step to achieve the best possible visual quality, has still not received
the adequate attention.

In this paper we propose a CQ method which selects quantization bins accord-
ing to measures related to contrast sensitivity in order to reach a good visual
quality. The proposed model, named perception-based color quantization (PCQ),
aims at applying some basic rules which guide human perception in the selec-
tion of the most K representative colors in an image, when K is given. It mainly
consists of a 3D extension of the model proposed by the same authors in [2] for
dermoscopic images processing. Specifically, the quantities used for measuring
contrast variations have been generalized to the color space. They allow an auto-
matic selection of the threshold to use for selecting those image pixels which con-
tribute to the definition of representative image colors. PCQ is automatic since
perceptive thresholds are automatically tuned according to the analyzed image.
It can be framed in the preclustering method category and can be considered as
context adaptable, since the resulting CQ is image-dependent.

PCQ has been compared with some representative methods belonging to the
same class in terms of some well known objective measures. Experimental results
show that the simple use of basic quantities related to human vision allows us to
reach results that are comparable to some reference methods in the literature,
with a very good subjective visual quality.

The outline of the paper is the following. Section 2 gives a detailed description
of the general perceptual model extended to the three color channels. As well
as a through description of the main steps of the whole quantization procedure.
Experimental results, discussions and concluding remarks are in Sect. 3.

2 The Proposed CQ Model

Color contrast is one of the main property of vision and plays a key role in
object detection and discrimination. It has a direct connection with two of the
main rules of primary vision, like chromatic adaptation and color constancy.
Chromatic adaptation is the ability of the HVS to discount the color of a light
source and to approximately preserve the appearance of an object. Color con-
stancy is the property by which objects tend to appear with the same color
under changes in illumination. The strength of chromatic contrast is influenced
by several factors including relative illumination, spatial scale, spatial configu-
ration and context as well as object dimension and background variability. More
precisely, the perception of an object with a given color (foreground) depends
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on the color of its background as well as on the chromatic variability of the
same background. Based on this consideration, we are interested in quantify-
ing: (i) how the visual contrast of the foreground changes if its background is
gradually modified and (ii) how the perception of the same object changes if its
color is modified while its background is leaved unchanged. The combination of
these two quantities provides a sort of visual distortion curve where the optimal
quantization bin can be determined.

More precisely, by denoting with Iij(k) the image I at point with coordinates
(i, j) ∈ Ω, where Ω is the image domain, and color channel k (for example,
in the RGB color space, k = 1, 2, 3 respectively denote red, green and blue
components), with R the reference color (R is a vector having three components)
and with B the color which represents the background, it is possible to define
the following quantity

D1(i, j) =
∣
∣
∣
∣

‖Iij − B‖22
‖B‖22

− ‖R − B‖22
‖B‖22

∣
∣
∣
∣
, ∀ (i, j) ∈ Ω (1)

where

Cij =
‖Iij − B‖22

‖B‖22
(2)

is the square of the contrast of the object having color Iij with respect to a
background whose color is B – ‖R−B‖2

2
‖B‖2

2
has a similar meaning; ‖∗‖2 denotes the

euclidean distance. D1 quantifies the variation of the contrast of an object with
respect to a fixed background having average color B if the object changes its
color (from Ii,j to R). It is worth noticing that Eq. (2) is a generalization of the
classical Weber’s contrast for monochromatic images [17].

Similarly, it is possible to define a quantity which works in the opposite way:
the color of the object is fixed (Iij), while its background changes (from B to
BR). It is defined as follows

D2(i, j) =
∣
∣
∣
∣

‖Iij − B‖22
‖B‖22

− ‖Iij − BR‖22
‖BR‖22

∣
∣
∣
∣
. (3)

D1 and D2 can be then combined to define a pointwise distortion as follows

D(i, j) =
√

D1(i, j)D2(i, j), (4)

which accounts for the two competing phenomena. In order to use D for deter-
mining the optimal detection threshold, it is necessary to define the spatial
domain where those measures have to be defined. The latter depends on the rule
used for the estimation of R and BR in Eqs. (1) and (3). This rule can depend
of the specific kind of application and purposes and it will be presented in the
following section.

2.1 Representative Color Selection

The aim of this section is to separate image foreground and background in an
iterative manner. At each iteration, the foreground represents the object of inter-
est, while the background consists of the remaining part of the image. The object
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of interest is a region of the image whose color is perceived as homogeneous. Since
we are interested in finding perceptual representative colors in the image, in this
paper the foreground is determined starting from the color which occurs more
in the image and enlarging the color region by including tones having increasing
distance from it. The chromatic region growing process stops when the variation
of contrast becomes clearly visible to a human observer—this contrast threshold
determines the amplitude of the bin which gives a color in the final palette as
well as the region of interest to which assign this color. This process is then
iterated on the remaining part of the image. The number of iterations is the
number of colors K to be used for image quantization, which is an input value.

More precisely, if c = [c1, c2, c3] is the color having more occurrences in the
image I, we define the domain

Ωm = {(i, j) ∈ Ω : |Iij(k) − ck| ≤ mδk, k = 1, 2, 3}, m ≥ 1, m ∈ N, (5)

where δk is the minimum allowed bin for the k-th color channel and it is estimated
separately from each color component, as explained in the next subsection. Ωm

contains pixels having colors close to c. R is then defined as the average color
of I in the region Ωm, BR as the average color of I in Ω − Ωm while B as the
average color of I in Ω.

The extension of Eq. (4) to the domain Ωm is then

D(Ωm) =
1

|Ωm|
∑

(i,j)∈Ωm

D(i, j), (6)

where |Ωm| is the cardinality of Ωm.
Regions of interest in I are selected using a threshold value that has to

correspond to the point of maximum visibility of the foreground with respect
to its background, which represents an optimal point of D(Ωm) as a function
of |Ωm|—see Fig. 1. More precisely, the region of interest is selected as the one
which realizes the maximum curvature of D. This point can be approximated as
follows

m̄ :
δ2D

δ|Ωm|2 |m=m̄ = 0 (7)

with δ3D
δ|Ωm|3 |m=m̄ < 0 . This optimal point represents the frontier between image

foreground and background, i.e. from that point on pixels of the background
would be confused with foreground.

Finally, the mean value of the colors (in the RGB color space) of points
belonging to Ωm̄ is considered as the dominant color of the region and represents
the first value c1 of the color palette to be used in the quantization step.

The procedure is iterated by considering only the remaining image domain,
i.e. Ω − Ωm̄, till the number of desired colors is reached.

2.2 Estimation of the Least Allowed Bin Size

In the preattentive phase, human eye acts as a low pass filter [17] since it is
not interested in the detection of image details in this phase. As a result non-
homogeneous colored image regions are usually perceived at the first glance as
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Fig. 1. Original Parrots image (left); distortion curve D(Ωm) versus the size of Ωm, as
in Eq. (6) (middle) (the optimal point is marked); selected region in the original image
which is estimated from the optimal point of the distortion curve (right).

uniform areas. This visual resolution also gives the minimum allowed bin width
(i.e. the one to which human eye is almost insensitive at first glance). This
visual resolution, namely δ, corresponds to a precise scale level of a pyramid
decomposition of the image. For example, in the dyadic case, δ = 2J , where J is
a fixed positive integer number. It means that a variation h in color components,
reduces to h

2J−1 at level J of the pyramid. In particular, if h = 2J−1, it vanishes
(less than 1) at level J—in other words, differences in amplitude greater than
2J−1 are hard to be perceived and then a bin size greater than 2J−1 can be
considered. For the estimation of the “visual resolution”, the method in [2] has
been adopted. It computes the contrast between two successive low-pass filtered
versions of the analysed image (where filters have increasing support) and selects
δ as the resolution which gives the minimum perceivable contrast. This procedure
is independently applied to the three color channels in this paper.

2.3 PCQ Algorithm

1. Compute the 3D histogram H(r, g, b) of the RGB image I.
2. For each color channel I(k) (k = 1, 2, 3), estimate the minimum bandwidth

(respectively δ1, δ2, δ3
1) as in Sect. 2.2 as well as the mean value Mav(k) and

the mode Mo(k). Let Mav,Mo and δ be the corresponding 3D vectors.
3. Compute the correction parameter σ = 1

3K ‖ |Mav−Mo|
Mav ‖1 and the parameter

Δ = 128
‖δ‖∞

.
4. Repeat the following steps K times (for l = 1, 2, . . . ,K)

– Compute the average color B of I in the domain Ω and correct it using
the following rule: B = B (1 − lσ).

– Set c = argmaxr,g,bH(r, g, b) and m = 1.
– For each integer m ∈ [1,Δ]:

• Find Ωm using in Eq. (5).
• Compute the average color R in Ωm and the average color BR in

Ω − Ωm.
• Evaluate D(Ωm) using in Eq. (6).

1 They are given as power of 2.
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– Extract the optimal m̄ as in Eq. (7) and the corresponding region Ωm̄.
– Compute the average color cl of I in Ωm̄ and put it in the palette and

set H(Iij(1), Iij(2), Iij(3)) = −1, ∀ (i, j) ∈ Ωm̄.
– Set Ω = Ω − Ωm̄ and I = I(Ω) (the latter denotes I restricted to the

domain Ω).
5. Assign to each pixel in the original image the closest color in the selected

color palette {c1, c2, . . . , cK , } and let IQ the quantized image.

The correction parameter σ is used for adapting the algorithm to the number
of desired colors. In fact, the detection algorithm can be less sensitive to some
details as K decreases; while it is the opposite as K increases. That is why, the
value B, which represents the image background, is defined as a correction of
the actual average value of the image to be analysed. It is also worth observing
that for K ≤ 16 the algorithm is applied to the low pass filtered version of I at
resolution log2(min{δr, δg, δb}).

3 Experimental Results and Concluding Remarks

PCQ has been tested on several color images having different features. In order to
perform a comparative study, in this section results achieved on 21 images taken
from some public available databases (such as [19–23]) and the 8 images used
in [3] will be shown and discussed. The first dataset has been used for a direct
comparison with some standard CQ methods. Specifically, the following methods
have been considered: (i) the Median-cut (MC) [9], which recursively split boxes
obtained using a uniformly quantized image along the longest axis at the median
point. At each step, the split is applied to the box that contains the greatest
number of colors; (ii) the Octree (OCT) [8], which merges colors represented in
a tree data structure by pruning the tree until the desired number of colors is
obtained; (iii) the greedy orthogonal bipartitioning (WU) [18], which uses the
minimum SSE (sum of squared error) for boxes splitting; (iv) self-organizing map
(SOM) [6], which uses a one-dimensional self-organizing map with K neurons
and the weights of the final neurons define the color palette.

Table 1 contains the results achieved using no more than 16 colors (K = 16).
They have been measured in terms of Mean Square Error (MSE) and Color Loss
(CL), since commonly used measures for the evaluation of color image quality. We
have also evaluated the structural similarity index (SSIM) as a measure which is
more consistent with visual perception, even though it has not been specifically
defined for color images. For two images v and w of dimension H × K,

– MSE [14] is computed as: MSE(v, w) = 1
HK

∑H
i=1

∑K
j=1

∑3
k=1(vij(k) −

wij(k))2, where i, j denote pixel location while k is the color channel;
– CL [4,10,11] is the average color loss between v and w, i.e. CL(v, w) =

1
HK

∑H
i=1

∑K
k=1

√
∑3

k=1(vij(k) − wij(k))2;
– SSIM [7,16], for two gray-level images v and w is defined as: SSIM(v, w) =

(2μvμw+c1)(2σvw+c2)
(μ2

v+μ2
w+c1)(σ2

v+σ2
w+c2)

, where μ∗ is the average of ∗; σ2
∗ is the variance of ∗;
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Table 1. SSIM, MSE and CL results achieved on the images in Fig. 2 by Median
Cut (MC) [9], the Octree (OCT) [8], Greedy orthogonal bipartitioning (WU) [18],
Self-organizing map (SOM) [6] and the proposed perception-based color quantization
method (PCQ) using 16 colors. For each metric, the average values (Avg) computed
on the whole dataset are also given. Finally, for each method, the number of used colors
K is provided.
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Fig. 2. Images used for the comparative studies in Table 1.

Table 2. MSE and MAE results achieved by PCQ and the two methods proposed in
[3] (VC and VCL). The set of images is the same used in [3].

Image Method (K = 32) MSE MAE Image Method (K = 32) MSE MAE

Fish PCQ 179.8 17.6 Goldhill PCQ 199.9 19.7

VC 168.1 17.2 VC 174.8 17.8

VCL 169.9 17.1 VCL 169.3 17.3

Motocross PCQ 283.4 22.8 Lena PCQ 156.4 16.9

VC 253.2 20.5 VC 145.6 16.5

VCL 240.6 19.4 VCL 146.3 16.5

Parrots PCQ 287.4 22.0 Peppers PCQ 292.0 22.9

VC 290.6 22.4 VC 294.8 22.9

VCL 263.7 21.6 VCL 261.1 22.9

Baboon PCQ 452.3 29.1 Pills PCQ 251.7 21.3

VC 450.6 29.4 VC 234.4 20.9

VCL 425.6 28.5 VCL 229.8 20.5

σvw is the covariance of v and w; c1 and c2 are two stabilizing constants. For
RGB images, SSIM is computed for the three color channels independently
and the quality value is obtained by averaging the three indexes.

As it can be observed in Table 1, PCQ provides, on average, results close to Wu
and SOM, while it outperforms MC and OCT. It is worth observing that PCQ
does not start from a rigid and prefixed uniform quantization of image colors.
It adaptively quantizes the image according to the estimated resolution of each
color channel; in addition, each bin is determined by evaluating the visibility of
image regions having the assigned representative color with respect to a changing
image background and fixes the size of the bins as the ones which provides a
not negligible contrast. However, the computation of the optimal point of the
distortion curve, as defined in Eq. (7), suffers from some numerical instability
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Fig. 3. (Left) Original image; (Right) quantized image by the proposed PCQ method
with K = 32. (Color figure online)
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that can influence the right selection of the optimal threshold, especially if K is
low. Even though the correction of the numerical instability is able to further
improve results in Table 1, this refinement has not been considered here, since
out of the scope of the paper.

The second dataset, has been used for a direct comparison with the vari-
ance cut (VC) method in [3] and its refined version VCL. VC is a divisive CQ
method which employs a binary splitting strategy. It starts from a 32 × 32 × 32
color histogram obtained from a 5 bits/channel uniform quantization. At each
iteration, the method splits the partition with the greatest SSE along the coor-
dinate axis with the greatest variance at the mean point. The centroids of the
resulting K sub-partitions define the color palette. VCL uses a few Lloyd-Max
iterations for a local optimization of the two sub-partitions obtained at each
step. In the same paper the authors compare their method with the ones consid-
ered in the first dataset and then they will be not reported in Table 2. MSE and
MAE (Mean Absolute Error) are the two metrics used for comparing quantized
image quality, as in [3]. The Mean Absolute Error MAE [14] is computed as:
MAE(v, w) = 1

HK

∑H
i=1

∑K
j=1

∑3
k=1 |vi,j(k) − wij(k)|. As it can be observed in

Table 2, PCQ, in its present and not optimized version, approaches and some-
times outperforms VC method. In addition the quality of quantized image is
good, as it is shown in Fig. 3. Textured regions are well recovered, as for exam-
ple the plumage of the Parrots, or in Lena hat or in Baboon. In addition, there
is a good match between image region and assigned representative color.

These results show that PCQ is promising and the use of simple rules of
human vision allows us to reach the results of some optimized methods which
are based on statistical image features. In addition, using this kind of approach,
some of the adopted measures and criteria could be embedded and interpreted
in this new way of facing the problem. For example, the SSE is strictly related
to the variability of the background which is used in the computation of image
contrast. In addition, the definition of contrast measures allows us to simply
embed some locality and spatial constraints which definitely would contribute
to improve CQ, enabling the method to be more image content and perception
dependent. Finally, the computational effort of PCQ is moderate since few simple
operations are required. In fact, the most expensive step of the method is the
iterative construction of the distortion curve. Future research will be devoted
to define a more robust numerical scheme able to detect the optimal threshold,
without constructing the whole curve.
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Abstract. The arrangement of products in store shelves is carefully
planned to maximize sales and keep customers happy. Verifying compli-
ance of real shelves to the ideal layout, however, is a costly task currently
routinely performed by the store personnel. In this paper, we propose a
computer vision pipeline to recognize products on shelves and verify com-
pliance to the planned layout. We deploy local invariant features together
with a novel formulation of the product recognition problem as a sub-
graph isomorphism between the items appearing in the given image and
the ideal layout. This allows for auto-localizing the given image within
aisles of the store and improves recognition dramatically.

1 Introduction

Management of a grocery store or supermarket is a challenging task entailing
personnel busy in supervising shelves and the whole sale point. In order to coor-
dinate human resources more effectively, technology advances may be deployed
to provide more reliable information in real time to the store manager. Such nov-
elties, however, should turn out viable from a cost perspective, modify current
practices moderately and not affect customer experience adversely. Computer
vision techniques may fulfill the above requirements due to potential reliance on
cheap cameras either mounted non-invasively in the store or embedded within
the hand-held computers routinely used by sales clerks.

The problem addressed in this paper is visual shelf monitoring through
computer vision techniques. The arrangement of products on supermarket
shelves is planned very carefully in order to maximize sales and keep customers
happy. The planned layout of products within shelves is called planogram: it
specifies where each product should be placed within shelves and how many
facings it should cover, that is how many packages of the same product should
be visible in the front row of the shelf. A synthetic visual representation of a
planogram can be observed in the middle column of Fig. 1. Thus far, planogram
compliance is pursued by having sales clerks visually inspecting aisles during the
quieter hours of the day, we propose, instead, to solve the task using computer
vision techniques as planogram compliance can be seen as a very challenging
object recognition task. As vouched by recently published patents [8,13], jour-
nal articles [11] and emerging companies (such as Planorama, Vispera, Simble
c© Springer International Publishing AG 2017
S. Battiato et al. (Eds.): ICIAP 2017, Part I, LNCS 10484, pp. 682–693, 2017.
https://doi.org/10.1007/978-3-319-68560-1_61
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Robotics)1, major corporations are investigating as well on how to solve this
task.

In this paper, we propose a computer vision pipeline that, given the
planogram, an image of the observed shelve and one reference image for each
item, can correctly localize each product, check whether the real arrangement
is compliant to the planned one and detect missing or misplaced items. Key
to our approach is a novel formulation of the problem as a sub-graph isomor-
phism between the product detected in the given image and those that should
ideally be found therein given the planogram. Accordingly, our pipeline relies on
a standard feature-based object recognition step, followed by our novel graph-
based consistency check and a final localized image search to improve the overall
product recognition rate.

2 Related Work

As pointed out by Merler et al. [12], dealing with grocery products on shelves
exhibits peculiarities that render the task particularly challenging. Firstly to
model each product one can rely only on a single or a few ideal views (ren-
derings or taken in ideal studio-like condition) making it awkward to deploy
directly object recognition methods that demand a large corpus of labelled train-
ing examples, such as deep convolutional neural networks. Moreover, as notice-
able in Fig. 1, verifying planogram compliance calls for detecting and localizing
each individual product instance within a shelves image crowded with lots of
remarkably similar objects, distracting elements and nuisance. Merler et al. [12]
in their seminal work, propose a public dataset and develop an assistive tool for
visually impaired customers, pursuing products recognition without additional
information concerning products layout. However, the performance of the pro-
posed systems turned out quite unsatisfactory in terms of both precision and
efficiency.

Further research has then been undertaken to ameliorate the performance of
automatic visual recognition of grocery products [4,17,19]. In particular, Cotter
et al. [4] report significant performance improvements deploying a machine learn-
ing based detector for each product. Such solution, however, requires many train-
ing images for each item and makes the system slow both at test and training
time. The approach proposed in [4] was then extended in [1] through a con-
textual correlation graph between products that can be queried at test time to
predict the products more likely to be seen given the last k detections, thereby
reducing the number of detectors computed at test time and speeding up the
whole system. Similarly in [3] the authors exploit machine learning classifier and
statistically computed context information with good results in some product
categories. In contrast with those works our solution deploys context constraints
as well but does not require a huge corpus of annotated data as training.

1 http://www.planorama.com/, http://vispera.co/, http://www.simberobotics.com/.
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Another relevant work is due to George and Floerkemeier [7]. They carry
out an initial classification to infer the categories of observed items, then, fol-
lowing detection, they run an optimization step based on a genetic algorithm
to detect the most likely products from a series of proposals obtaining precision
below 30%. The paper proposes also a publicly available dataset, referred to as
Grocery Products, comprising 8350 product images classified into 80 hierarchical
categories together with 680 high resolution images of shelves. We have used
part of this public dataset as the main test bench for our method.

Marder et al. in [11] addressed the planogram compliance problem through
detecting and matching SURF features [2] followed by visual and logical dis-
ambiguation between similar products. The paper reports a good 87.4% prod-
uct recognition rate on a publicly unavailable dataset of cereal boxes and hair
care products, though precision figures are not highlighted. To improve prod-
uct recognition the authors deploy information dealing with the known product
arrangement through specific hand-crafted rules, such as e.g. ‘conditioners are
placed on the right of shampoos’. Differently, we propose to deploy automatically
these kinds of constraints by modelling the problem as a sub-graph isomorphism
between the items detected in the given image and the planogram.

Systems to tackle the planogram compliance problem are described also in [6]
and [10]. These papers delineate solutions relying either on large sensor/camera
networks or mobile robots monitoring shelves while patrolling aisles. In contrast,
our proposal would require just an off-the-shelf device, such as a smartphone,
tablet or hand-held computer.

3 Proposed Pipeline

As depicted in Fig. 1, we propose to accomplish the planogram compliance
check by a visual analysis pipeline consisting of three steps. We provide here
an overview of the functions performed by the three steps.

The first step operates only on model images and the given shelves image
without any additional information (e.g. location of acquisition or portion of the
aisle pictured). Accordingly, the first step cannot deploy any constraint deal-
ing with the expected product disposition, and is thus referred to as Uncon-
strained Product Recognition. As most product packages consist of richly
textured piecewise planar surfaces, we obtained promising result through a stan-
dard object recognition pipeline based on local invariant features (as described,
e.g., in [9]). Yet, the previously highlighted nuisances cause both missing prod-
uct items as well as false detections due to similar products. In the following,
using the set of detections (see Fig. 1) produced as output from the first step
and despite the mistakes, our second step will identify the observed portion of
the aisle to deploy constraint based on the expected product layout.

From the second step, dubbed Graph-based Consistency Check, we start
leveraging on the information about products and their relative disposition con-
tained in planograms. We choose to represent a planogram as a grid-like fully
connected graph where each node corresponds to a product facing and is linked
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Fig. 1. Overview of our pipeline. For each step we highlight the inputs and outputs
through red and yellow boxes. Product detections throughout stages are highlighted
by green boxes, while blue lines show the edges between nodes in both the Reference
and Observed planograms. (Color figure online)

to at most 8 neighbours at 1-edge distance, i.e. the closest facings along the
cardinal directions. We rely on a graph instead of a rigid grid to allow for a
more flexible representation; an edge between two nodes does not represent a
perfect alignment between them but just proximity along that direction. This
abstract representation, referred to as Reference Planogram, encodes informa-
tion about the relative positions of products on shelves and can be visualized in
Fig. 1. The detections provided by the first step are used in the second to build
automatically another grid-like graph having the same structure as the Reference
Planogram and referred to as Observed Planogram. Then, we find the sub-graph
isomorphism between the Observed and Reference planograms, so as to identify
sets of products placed in the same relative position in both graphs. As a result,
the second step ablates away inconsistent nodes from the Observed Planogram,
i.e. false detections yielded by the first step, and localizes the observed scene
within the aisles by matching the Observed Planogram that concerns the shelves
seen in the current image whit the Reference Planogram that models the whole
aisle.2

After the second step the Observed Planogram should contain true detections
only. Hence, those nodes that are missing compared to the Reference Planogram
highlight items that appear to be missing wrt the planned product layout. The
task of the third step, referred to as Product Verification, is to verify whether
these items are really missing in the scene or not. Should the verification process

2 More generally, matching the Observed to a set of Reference planograms does localize
seamlessly the scene within a set of aisles or, even, the whole store.
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highlight the presence of the product, a corresponding node would be added to
the Observed Planogram; otherwise, a planogram compliance issue related to the
checked node is reported (i.e. missing/misplaced item). The process is iterated till
all the facings in observed shelves are either associated with detected instances
or flagged as compliance issues.

3.1 Unconstrained Product Recognition

As already mentioned, we rely on the classical multi-object and multi-instance
object recognition pipeline based on local invariant features presented in [9],
which is effective with planar textured surfaces (e.g. product facings) and scales
well to database comprising several hundreds or a few thousands models, i.e. the
number of different products typically sold in grocery stores and supermarkets.
Accordingly, we proceed through feature detection, description and matching,
then cast votes into a pose space by a Generalized Hough Transform that can
handle multiple peaks associated with different instances of the same model
in order to cluster correspondences and filter out outliers. In our settings, it
turns out reasonable to assume the input image to represent an approximately
frontal view of shelves, so that both in-plane and out-of-plane image rotations
are small. Therefore, we estimate a 3 DOF pose (image translation and scale
change). Being the object recognition pipeline able to be deployed seamlessly
with different local feature it turns out just as straightforward to rely on mul-
tiple types of features jointly to pursue higher sensitivity. Purposely, our imple-
mentation of the standard object recognition pipeline can run in parallel several
detection/description/matching processes based on different features and have
them eventually cast vote altogether within the same pose space. As reported in
Sect. 4, we have carried out an extensive experimental investigation to establish
which features would yield the best performance on the supermarket scenario.

3.2 Graph-Based Consistency Check

To build the Observed Planogram we instantiate a node for each item detected
in the previous step and perform a search along 8 cardinal directions (N, S, E,
W, NW, NE, SW, SE); if another bounding box is found at a distance less than
a dynamically determined threshold, an edge is created between the two nodes.
In the given node the edge is labelled according to the search direction (e.g. N),
oppositely in the found neighbour node (i.e. S). The graph is kept self-coherent,
e.g. if node B is the North node of A, then A must be the South node of B. In
case of ambiguity, e.g. both A and C found to be the South node of B, we retain
the edge between the two closest bounding boxes only.

Once built, we formulate our problem as follows: given I (Reference
Planogram) and O (Observed Planogram), find an isomorphism between a subset
of nodes in I and a subset of nodes in O such that the former subset has the max-
imum feasible cardinality given product placements constraints. Each node in I
can be associated with a node in O only if they both refer to the same product
and exhibit coherent neighbours. In theoretical computer science this problem



Product Recognition as a Sub-Graph Isomorphism 687

is referred to as subgraph isomorphism and known to be NP-complete [18]. A
general formulation may read as follows: given two graphs G an H, determine
whether G contains a sub-graph for which does exist a bijection between the
vertex sets of G and H. We choose not to rely on one of the many general algo-
rithms, like e.g. [16], and, devised an ad-hoc heuristic algorithm that produces in
a single run the isomorphism between observed and reference planograms while
discarding wrongly detected products. Conversely, a general algorithm like [16]
would yield either the isomorphism or a failure in case of wrong detection (i.e.
no isomorphism) requiring an extensive search eventually speedable with some
ad-hoc heuristic.

Algorithm 1. Find sub-graph isomorphism between I and O
Cmax ← 0
Sbest ← ∅
H ← CreateHypotheses(I,O)
while H �= ∅ do

C, S, h0 ← FindSolution(H, Cmax, τ)
if C > Cmax then

Sbest, Cmax ← S, C
end if
H ← H − h0

end while
return Sbest, Cmax

Algorithm 1 outline our method. We starts with procedure CreateHypothe-
ses, which establishes the initial set of hypotheses, H = {. . . hi . . .}, hi =
{nI , nO, c(nI , nO)}, with nI and nO denoting, respectively, a node in I and O
related to the same product and c(nI , nO) = nnc

nnt
with nnc number of coherent

neighbours (e.g. referring to the same product both in O and I) and nnt number
of neighbours for that node in I. CreateHypotheses iterates over all nI ∈ I so to
instantiate all possible hypotheses. An example of the hypotheses set is shown
in the first row of Fig. 2. Then, procedure FindSolution finds a solution, S, by
iteratively picking the hypothesis featuring the highest score (e.g. Fig. 2a). Suc-
cessively, H is updated by removing the hypotheses containing either of the two
nodes in the best hypothesis and increasing the scores of hypotheses associated
with coherent neighbours (Fig. 2b). Procedure FindSolution returns also a confi-
dence score for the current solution, C, which takes into account the cardinality
of S, together with a factor which penalizes the presence in O of disconnected
sub-graphs that exhibit relative distances different than those expected given
the structure of I3 which instead is always fully connected. FindSolution takes
as input the score of the current best solution, Cmax, and relies on a branch-
and-bound scheme to accelerate the computation. In particular, as illustrated
in Fig. 2c), after updating H (Fig. 2b), FindSolution calculates an upper-bound

3 In the toy example in Fig. 2, O does not contain disconnected sub-graphs.
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for the score, BC , by adding to the cardinality of S the number of hypotheses
in H that are not mutually exclusive, so as to early terminate the computation
when the current solution can not improve Cmax. The iterative process continues
with picking the new best hypothesis until H is found empty or containing only
hypotheses with confidence lower then a certain threshold τ (Fig. 2d). In the last
step (Fig. 2e), the procedure computes C and returns also the first hypothesis,
h0, that was added into S. Upon returning from FindSolution, the algorithm
checks whether or not the new solution S improves the best one found so far
and removes h0 from H (see Algorithm 1) to allow evaluation of another solution
based on a set of different initial hypotheses.

Fig. 2. Toy example concerning two small graphs with 4 nodes used to describe pro-
cedure FindSolution. The colour of each node denotes the product the numbers within
squares identify the different nodes in the text. (Color figure online)

Algorithm 1 finds self-consistent nodes in O given I, thereby removing incon-
sistent (i.e. likely false) detections and localizing the observed image wrt to the
planogram. Accordingly, the output of the second steps contains information
about which items appear to be missing given the planned product layout and
where they ought to be located within the image.
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3.3 Product Verification

We use an iterative procedure whereby each iteration tries to fill the observed
planogram with one seemingly missing object through three stages. We start with
the missing element featuring the highest number of already detected neighbours.
The position and size of each neighbour, together with the average edge length
in the Observed Planogram, provide an estimation of both the center and dimen-
sion4 of the missing element: averaging estimations across the neighbours yields
a good approximation. Thus, we define a coarse image ROI, allowing for some
margin on account of possible localization inaccuracies, to find and localize the
specific missing product therein. To accomplish this task we have experimented
with template matching techniques as well as with a similar pipeline based on
local features as deployed in Subsect. 3.1. Both approaches would provide a series
of Detection Proposals filtered in the last stage of an iteration by first discard-
ing those featuring bounding boxes that overlap with already detected items
and then scoring the remaining ones according to the coherence of the position
within the Observed Planogram and the detection confidence. Based on such a
score, we pick the best proposal and add it to the Observed Planogram, so as to
enforce new constraints that may be deployed throughout successive iterations.
If either all detection proposals are discarded due to the overlap check or the
best one exhibits too low a score, our pipeline reports a planogram compliance
issue related to the currently analysed missing product.

4 Experimental Results

To assess the performance of our pipeline we rely on a subset of shelve pictures
from the Grocery Products dataset [7] that we enrich with item-specific bounding
boxes, the originals concerning only product categories (see Fig. 3(a) and (b)).
For each image we also create an ideal planograms that encode in our graph
like representation the perfect disposition of items on shelve (e.g. if the actual
image contains voids or misplaced products they will not be encoded on the

(a) (b) (c) (d)

Fig. 3. Qualitative samples: (a) ground-truth annotations provided with the Gro-
cery Products dataset, (b) our instance-specific annotations, (c) (d) qualitative results
obtained by our methods.

4 Store databases contain product sizes: the image size of a missing product can be
estimated from those of the detected neighbors and the known metric sizes.
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ideal planogram that instead will model only the correct disposition). Our cho-
sen subset consists of 70 images featuring box-like packages and dealing with 181
different products belonging to different categories such as rice, coffee, cereals,
tea. . . ; each image depicts ≈12 visible products. We judge a detection as correct
if the intersection over union between the detected and ground-truth bounding
boxes is >0.5. For each image we compute Precision (number of correct detec-
tions over total detections), Recall (number of correctly detected products over
products visible in the image) and F-Measure (harmonic mean of Precision and
Recall); in the following we report average figures across the dataset.

As regards comparative evaluation with respect to previous work, it is worth
highlighting that the only work addressing exactly the same task as ours is [11],
but neither their dataset nor their implementation are publicly available. Indeed,
their system is quite complex and tailored for their specific use case so we judge
that it would have been unfair to reproduce their results on our dataset by our
own implementation. We have instead investigated on the use of region proposals,
such as [15], followed by classification (e.g. by a CNN). Unfortunately, we found
that this approach does not suit to the addressed task because in such a highly
textured environment proposals tend to isolate logos and very colourful details
from the underlying boxes while joining similarly colored regions belonging to
different nearby products. We think that the most reasonable baseline to compare
with is given by the first step of our pipeline, i.e. the standard object instance
recognition approach based on local invariant features that has been proven to
work effectively in a variety of diverse premises.

We will follow the processing flow along our pipeline starting with evaluating
the Unconstrained Product Recognition step. To find the best suitable
local features to be used in this scenario we have tested all the detectors and
descriptors available in OpenCV (SIFT, SURF, ORB, BRISK, KAZE, AKAZE,
STAR, MSD, FREAK, DAISY, LATCH, Opponent Color Space Descriptors),
as well as the line segments features BOLD [14] (original code distributed by the
authors for research purposes). We have considered features providing both the
detector and descriptor (e.g. SIFT) as well as many different detector/descriptor
pairs (e.g. MSD/FREAK) and multiple feature processes voting altogether in the
same pose space (e.g. BRISK+SURF). A summary of the best results is reported
in Fig. 4. As it can be observed, binary descriptors, such as BRISK and FREAK
perform fairly well yielding the highest Precision and best F-Measure scores.
SURF features provide good results alike, in particular as concerns Recall. It is
also worth noticing how the use of multiple features, such as BRISK+SURF,
to capture different image structures may help increasing the sensitivity of the
pipeline, as vouched by the highest Recall. ORB features may yield a comparably
high Recall, but at expense of a lower Precision. The use of color descriptors
(Opponent SURF), instead, does not seem to provide significant benefits. As
the second step is meant to prune out the false detections provided by the first,
one would be lead to prefer those features yielding higher Recall. Yet, it may
turn out hard for the second step to solve the sub-graph isomorphism problem
in presence of too many false positives. A good balance between the two types
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of detection errors turns out preferable, therefore we will consider both BRISK
and BRISK+SURF features within the first step in order to further evaluate the
results provided by our pipeline after the Graph-based Consistency Check.

Fig. 4. Evaluation of different features for Unconstrained Product Recognition.
Results ordered from left to right with increasing F-Measure scores.

For the second step we fixed τ = 0.25 and deployed the algorithm proposed
in Subsect. 3.2, the results are displayed in the left part of Fig. 5. First, the
boost in Precision attained with both types of features compared to the out-
put provided by the first step (Fig. 4) proves the effectiveness of the sub-graph
isomorphism to remove false detections arising in unconstrained settings. In par-
ticular, when using BRISK features, Precision raises from ≈78 to ≈98% and with
BRISK+SURF from ≈66 to ≈97%. Alongside, though, we observe a decrease
in Recall, such as from ≈75 to ≈74% with BRISK and from ≈81 to ≈74% with
BRISK+SURF. This is mostly due to items that, although detected correctly in
the first step, cannot rely on enough self-coherent neighbours to be validated (i.e.
c(nI , nO) < τ). Overall, the Graph-based Consistency Check does improves
performance significantly, as vouched by the increase of F-Measure.

)petsIII()petsII(

Fig. 5. Left: results after Graph-based Consistency Check using either BRISK or
BRISK+SURF in the first step. Right: different choices for the final Product Verifi-
cation step, using BRISK features in the first step.

Given that BRISK slightly outperforms BRISK+SURF according to all the
performance indexes and requires less computation, we pick the former features
for the fist step and evaluate different design choices as regards the final Product
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Verification. (i.e. different template matching and feature-based approaches).
The best results, summarized in the right part of Fig. 5, concern template match-
ing by the ZNCC (Zero-mean Normalized Cross Correlation) in the HSV color
space, the Best-buddies Similarity method (BB) [5] in the RGB color space and
a feature-based approach deploying the same features as in the first step, that
is BRISK. As shown, using BRISK features in both the first and last step does
provide the best results, all the three performance indexes getting now as high
as ≈90%.

5 Conclusion and Future Work

We have shown that using our pipeline with BRISK features both for step one
and three and deploying product arrangement constraints formulating the prod-
uct recognition problem as a sub-graph isomorphism deals satisfactory perfor-
mance on our test set. Accordingly, our proposed pipeline can work effectively in
realistic scenarios in which just one model image per product and the planogram
are available and the given image is not a priory localized with respect to
the aisle. Our pipeline works quite well when applied to textured piece-wise
planar products, however, grocery stores and supermarkets usually sells many
different categories of products (e.g. bottles, deformable bags. . . ) where local
invariant features are likely to fail. To address this more challenging scenario,
we plan to devise a preliminary product categorization step based on machine
(deep) learning to segment the image into regions corresponding to different
categories (e.g. piece-wise planar packages, bottles, jars, cans kitchenware. . . ).
Then, each detected segment may be handled by a specific approach to establish
upon planogram compliance, the method described in this paper being applicable
within segments labeled as piece-wise planar products.
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Abstract. In the last decade, the use of small-scale Unmanned Aer-
ial Vehicles (UAVs) is increased considerably to support a wide range
of tasks, such as vehicle tracking, object recognition, and land monitor-
ing. A prerequisite of many of these systems is the construction of a
comprehensive view of an area of interest. This paper proposes a small-
scale UAV based system for real-time creation of incremental and geo-
referenced mosaics of video streams acquired at low-altitude. The system
presents several innovative contributions, including the use of A-KAZE
feature extractor in aerial images, a Region Of Interest (ROI) to speed-
up the stitching stage, as well as the use of the rigid transformation to
build a mosaic at low-altitude mitigating in part the artifacts due to
the parallax error. To prove the correctness of the proposed system at
low-altitude, the public UMCD dataset and a simple metric based on
the difference between image regions are presented. Instead, to show the
overall effectiveness of the system, the public NPU Drone-Map dataset
and a correlation measure are used. The latter metric evaluates the sim-
ilarity between mosaics generated by the proposed method and those
provided by a reference work of the current literature. Finally, the per-
formance of the system compared with that of different modern solutions
is also discussed.

Keywords: UAVs · Incremental mosaicking · Real-time mosaicking ·
ROI · UMCD dataset · NPU dataset · Rigid transformation · A-KAZE

1 Introduction

In recent years, the use of small-scale UAV based systems to support a wide
range of application domains has increased considerably. In particular, these
systems are especially useful in all those tasks in which a frequent, or even con-
tinuous, monitoring of an area of interest is required [16]. In military field, for
c© Springer International Publishing AG 2017
S. Battiato et al. (Eds.): ICIAP 2017, Part I, LNCS 10484, pp. 694–705, 2017.
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example, a typical use of these systems regards the land monitoring for security
purposes [14]. In fact, in many operative contexts, a large number of interesting
areas has to be continually checked to detect the unexpected presence of peo-
ple and vehicles, which can represent a possible danger [19,22]. Another typical
example regards the frequent monitoring of strategic areas near military bases,
refugee camps, and connecting roads, to detect the presence of objects (e.g.,
Improvised Explosive Devices, IEDs) that can threaten the crossing of humani-
tarian and military convoys. In civilian field, these systems can be suitably used
for monitoring restricted areas after catastrophic events, such as earthquakes,
tsunamis, damage to nuclear power plants, and so on. A prerequisite of many of
the above introduced systems is the construction of a comprehensive view of an
area of interest. The video sequence that represents the area is often acquired
at low-altitude for several reasons, including the need to have a high spatial
resolution for classifying objects [8,15], to safeguard the UAV, to hide the UAV,
and many others.

This paper presents a small-scale UAV based system for real-time creation
of incremental and geo-referenced mosaics of areas of interest acquired at low-
altitude. The only input required by the system is a set of GPS coordinates
that specifies one or more areas that have to be mosaicked. The proposed
mosaicking algorithm presents several innovative contributions compared to the
current state-of-the-art. First, to speed-up the feature extraction and match-
ing processes, it adopts the A-KAZE extractor [1]. The recent literature [1–3]
has shown that A-KAZE features are faster to compute than SIFT [13] and
SURF [4], moreover they exhibit much better performance in detection and
description than ORB [24]. Second, the mosaicking algorithm implements an
automatic method to optimize the acquisition rate of the RGB camera based on
the telemetry (i.e., speed and height). Third, to speed-up all steps involved in
the stitching process, the mosaicking algorithm implements a ROI through which
the computation required for the stitching of each new frame on the mosaic is
reduced. Fourth, unlike the majority of the mosaicking algorithms known in lit-
erature that use RANSAC [7] to perform the geometric transformation stage,
the proposed algorithm adopts the rigid transformation [18] that allows the
building of mosaics at low-altitude mitigating in part the artifacts due to the
parallax error [9]. Currently, public datasets for testing mosaicking algorithms
contain video sequences acquired at high-altitude, for this reason we have imple-
mented and made available the UAV Mosaicking and Change Detection (UMCD)
dataset1. Instead, to test the algorithm at high-altitudes we have used the NPU
Drone-Map dataset2.

The rest of the paper is structured as follows. Section 2 presents some selected
works near to that proposed. Section 3 introduces the architecture of the pro-
posed mosaicking algorithm and discusses the different algorithmic choices,
including the feature extraction by the A-KAZE extractor, the stitching process
by the rigid transformation, and the implementation of the ROI. Section 4 reports

1 http://www.umcd-dataset.net/.
2 http://zhaoyong.adv-ci.com/downloads/npu-dronemap-dataset/.

http://www.umcd-dataset.net/
http://zhaoyong.adv-ci.com/downloads/npu-dronemap-dataset/
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the experimental results obtained by using both UMCD and NPU Drone-Map
datasets. Finally, Sect. 5 concludes the paper.

2 Related Work

Regardless the specific size of the UAVs (e.g., small, medium, large), in the last
years a wide range of tasks has been supported by their use, such as urban mon-
itoring [23], vegetation analysis [17], surveillance [10], and others. Anyway, the
pipeline of these systems is similar and includes specific main stages: extraction
of salient points from frames (i.e., feature extraction), find image transformation
values (i.e., rotation, scale, and translation), and merge frames together.

Several works in the literature produce a mosaic in off-line mode, i.e., when
all the frames are available for the processing. Two examples are reported in [20]
and [11], respectively, where the authors present a robust system that uses SIFT
extractor and homography transformation based on RANSAC. Similar steps are
used in [27], where the authors, first, utilize a transformation between frames
based on an iterative threshold to find the edges and, subsequently, apply a cor-
relation phase to merge them. From a performance point of view, the mosaicking
of a high number of frames is a time-consuming duty that requires a wide avail-
ability of resources. A possible solution to this issue is reported in [21], where
a fast algorithm using little amount of resources is presented. In particular, the
proposed algorithm works by doing pairwise image registration, then it projects
the resulting points to the ground and produces a new set of control points by
moving these points closer to each other. Then, it fits image parameters to these
new control points and repeats the process to convergence. Regarding the real-
time processing, in [12] the authors use ORB as feature extractor and provide
a spatial and temporal filter for removing the majority of the outlier points.
In [28], the authors use SIFT as feature extractor and Euclidean distance with a
threshold for matching the frames. Finally, in [26], the authors adopt an incre-
mental technique and more UAVs to cover an area of interest and to build a
qualitative mosaic. Inspired by several of these works, but unlike them, the pro-
posed mosaicking algorithm uses A-KAZE and ROI to speed-up the stitching
process. Moreover, the use of the rigid transformation allows to obtain mosaics
whose video sequences are acquired at low-altitude.

3 The Mosaicking Algorithm

The logical architecture of the small-scale UAV based system and the pipeline of
the proposed mosaicking algorithm are shown in Fig. 1. The algorithm consists
of four main stages each of which is discussed below. The system is designed to
work with standalone and client-server architectures. However, the latter is used
to explain properly how the system works.
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Fig. 1. The proposed mosaicking algorithm. f t and φt are the frames and the linked
GPS coordinates provided to the algorithm at each second t, respectively.

3.1 Background

In the following, let:

UAVpath = {φt+i(xt+i, yt+i) | t ∈ N ∧ i ∈ [1, . . . , n] ⊂ N} (1)

be the set of GPS coordinates that defines the area of interest that needs to be
mosaicked, where, t is the amount of seconds required by the UAV to reach the
area, and n is the seconds of flight duration within the area. Besides, for each
i ∈ [1, . . . , n], φt+i(xt+i, yt+i) is the t + ith coordinate and (xt+i, yt+i) is the pair
(latitude, longitude). Without loss of generality, we can define φstart and φend

when i = t + 1 and i = t + n, respectively. In addition, let:

FTRS = {f t+i | t ∈ N ∧ i ∈ [1, . . . , n] ⊂ N} (2)

be the set of frames transmitted from the UAV to the processing unit (local
or remote) within the UAVpath, where t and n are defined as above. For each
i ∈ [1, . . . , n], f t+i = {f t+i

1 , f t+i
2 , . . . , f t+i

FPS} is the set of frames transmitted by
the UAV at the second i. The set depends on frame per second (FPS) of the RGB
camera. The UAV starts the transmission to the processing unit from the take-
off up to the landing. In general, each second k ∈ N of transmission is composed
of a GPS coordinate, φk(xk, yk), and a set of frames, fk = {fk

1 , fk
2 , . . . , fk

FPS}.

3.2 Frame Selection and Correction

Since the aim of the algorithm is to build the mosaic of the area of interest defined
by the UAVpath, all the frames transmitted outside of this path (i.e., fk /∈ FTRS

for each k ∈ N) are discarded by the processing unit. The rest of the frames
transmitted by the UAV (i.e., fk ∈ FTRS for each k ∈ [t + 1, . . . , t + n] ⊂ N)
are used in part to create the mosaic, while the remaining are discarded again.
This is due to the fact that at each second the UAV tends to transmit more
frames than ones necessary to create a proper mosaic. The proposed algorithm
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implements a two-step approach to select a suitable number of frames. In the
first, the system adopts the telemetry of the UAV. The main idea is that hight
and speed of the UAV can derive the number of frames required to construct a
mosaic without disjunctions (FSTEP1). This step can be defined as follows:

FSTEP1 = fMAX
1

(1 + c)
with c =

FoV ∗ h

v
(3)

where, fMAX is the FPS of the sensor, FoV (i.e., Field of View) is the width of
the angle of view of the sensor expressed in degree, h is the flight height of the
UAV expressed in meters and, finally, v is the speed of the UAV expressed in
meters per second. The frames selected by the first step can be further thinned
out by means of a user parameter (FSTEP2) that defines the amount of overlap
between a current frame and the linked part of the mosaic. Although it is not
a focus of the paper, it should be observed that the system implements also a
layer in which the calibration parameters of the camera can be stored to correct
the possible lens-distortion introduced by the RGB camera.

3.3 Feature Extraction and Matching

Let Mj be the mosaic built up to the second j and let f̂ j+1
s , with j + 1 ∈

[t + 1, . . . , t + n] ⊂ N and s ∈ [1, . . . , FPS] ⊂ N, the current selected frame, at
the second j + 1, to be added to the mosaic. The main steps to built the new
mosaic, Mj∪f̂ j+1

s , are the feature extraction and matching processes. In general,
the features extracted from each current frame should be compared with those
extracted from the whole mosaic to establish where the current frame has to
be placed. Since the size of the mosaic grows over time, the comparison stage
tends to become unmanageable after a certain period of time. With the aim to
avoid such a issue, the proposed system uses a ROI to extract the features from
the mosaic. The ROI tracks the last frame added to the mosaic and delimits,
to a region surrounding it, the feature extraction process. A ROI centred on
the last frame and sized three times than the size of a frame is sufficient to
ensure the proper execution of the mosaicking algorithm. By the ROI the adding
of a new frame takes a constant-time, no more dependent on the increasing
size of the mosaic. Notice that the ROI concept is not new, but it is worth
describing it due to the its effectiveness in increasing the system performance.
The proposed algorithm uses A-KAZE, instead of the most popular extractors,
such as SIFT, SURF or ORB. This is due to the fact that A-KAZE adopts both
the Fast Explicit Diffusion (FED) embedded in a pyramidal framework and
the Modified-Local Difference Binary (M-LDB) descriptor in order to speed-up
feature detection in non-linear scale space and to exploit gradient information
from the non-linear scale space, respectively. These aspects make A-KAZE an
optimal compromise between speed and performance with respect to the current
literature [1].

The keypoints extracted from Mj and f̂ j+1
s are used to detect the overlapping

region between them. Let XMj
= {α1, . . . , αh} and Xf̂j+1

s
= {β1, . . . , βt} be the
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set of keypoints extracted by A-KAZE from Mj and f̂ j+1
s , respectively. With

the aim of finding the correspondence between the keypoints in XMj
with those

in Xf̂j+1
s

a simple Brute Force Matcher (BFM) algorithm is used [25]. This
algorithm performs an exhaustive search between the two sets of keypoints and
matches only those keypoints that have an identical pattern (i.e., local structure
of the pixels). Formally, at the end of the process, the algorithm generates two
sub-sets X̂Mj

= {αh1 , . . . , αhm
} ⊆ XMj

and X̂f̂j+1
s

= {βt1 , . . . , βtm} ⊆ Xf̂j+1
s

where for each k ∈ {h1, . . . , hm} exists a single j ∈ {t1, . . . , tm} such that αk ≡
βj . As well-known, the two sub-sets have the same cardinality.

3.4 Transformation and Perspective Computation

Once obtained the corresponding keypoints (i.e., X̂Mj
and X̂f̂j+1

s
) between the

two frames, the system must compute the geometrical transformation by which
the keypoints of the current frame, f̂ j+1

s , are collimated with ones of the mosaic,
XMj

, within the reference system of the latter. This transformation is subse-
quently used on each pixel of the frame to stitch it over the mosaic. In literature,
the RANSAC algorithm to calculate the homography transformation is consid-
ered the reference approach. It consists in using the corresponding keypoints to
iteratively estimate the parameters of a mathematical model by which to per-
form the geometric projection of each pixel between the two images. Despite this,
as shown in Fig. 2a, the homography transformation can produce a high level of
distortions especially when it is applied on images acquired a low-altitude. In
particular, the mosaic can present an unreal curvature. This is due to the fact
that the homography transformation matrix has 8 degrees of freedom, hence at
least 4 corrected correspondences are required to build a proper mosaic. In the
proposed mosaicking algorithm, the acquired images can be considered as a lin-
ear scanning of the ground surface, therefore a transformation with less degrees
of freedom can be adopted. For this reason, the rigid transformation matrix
that has only 4 degrees of freedom is implemented [18]. The reference example
reported in Fig. 2b shows the goodness of the obtained results. The majority
of the UAV based systems treat video sequences acquired at high altitude, or
propose a orthorectification pre-processing step at the expense of the real-time

Fig. 2. Geometric transformation: (a) homography transformation by RANSAC algo-
rithm, (b) rigid transformation.



700 D. Avola et al.

processing [29] thus avoiding this type of issue. The last step of the module is to
merge the pixels of the mosaic, XMj

, with the transformed pixels of the frame,
Γ (f̂ j+s

1 ), to obtain a new pixel matrix, XMj
∪ Γ (f̂ j+1

s ).

3.5 Stitching and GPS Association

The acquisition of the GPS coordinates is performed following the NMEA3 for-
mat, one of the most widespread standards for the transmission of position data.
Current commercial GPS transmitters provide one or more position data per sec-
ond, however in the latter case a good practice is to derive a single information
per second to reduce the intrinsic error due to the acquisition process. Since the
construction of a mosaic can require more frames per second, this means that
only the first of the n frames for second acquired by the RGB camera is associ-
ated to a GPS coordinate, the rest of the n − 1 frames, if added to the mosaic,
has to be associated to coordinates inferred by ones previously acquired. Actu-
ally, once obtained two coordinates of the first frame of two consecutive seconds,
then the coordinates of the remaining frames of the first second can be derived
by adopting a simple linear interpolation. Let φj(xj , yj) and φj+1(xj+1, yj+1)
be the GPS coordinates acquired and associated with the frames f̂ j

1 and f̂ j+1
1 ,

respectively (s = 1 in both cases since they are the first frames of each second).
In addition, considering f̂ j

1 belonging to the mosaic Mj and f̂ j+1
1 the current

frame. Then, the coordinate of any frame added to the mosaic between them
can be derived as follows:

xk = xj +
k

FPS
(xj+1 − xj), yk = yj +

k

FPS
(yj+1 − yj) (4)

where, xk and yk are the interpolated latitude and longitude, respectively, of
the new GPS coordinate φk(xk, yk) associated to the frame f̂ j

k . Moreover, k
specifies the coordinate of which frame needs to be computed, finally, FPS is the
frames per second of the sensor. The current version of the system performs the
mosaicking algorithm in on-line mode. This means that when the system acquires
a new GPS coordinate, it also considers the previous acquired one, computes the
interpolation process and associates the interpolated coordinates to the linked
frames within the mosaic. Each GPS coordinate (acquired or interpolated) is
anchored to the barycentre of the linked frame. This last is a main aspect to
enable the system with a wide range of tasks. Once that the GPS coordinate has
been linked to the new frame, the gain compensation between this latter and
the mosaic is performed by using the multi-band blending [5]. This assures that
there will be no seams when the new frame is added to the current mosaic.

4 Experimental Results and Discussion

For testing the mosaicking algorithm, two recent public datasets were used. The
first is the UMCD dataset, that contains a collection of aerial video sequences
3 http://www.nmea.org/.

http://www.nmea.org/


Real-Time Incremental and Geo-Referenced Mosaicking 701

acquired at low-altitudes. The second is the NPU Drone-Map dataset, that con-
tains a collection of aerial video sequences acquired at high-altitude. In both
cases, the sequences are acquired by small-scale UAVs. Regarding the first
dataset, we tested the algorithm on 40 challenging video sequences and mea-
sured the quality of the obtained mosaics by a simple metric based on the dif-
ference between image regions. Regarding the second dataset, we compared the
proposed mosaicking algorithm with that presented in [6]. The latter is one of
the few works in the literature that makes available source code, video sequences
(i.e., the NPU Drone-Map dataset), and obtained mosaics to support a concrete
comparison with other approaches. In particular, 4 challenging video sequences
were selected from the second dataset and a correlation measure was adopted to
quantify the similarity between mosaics pairs.

4.1 Low-Altitude and High-Altitude Mosaicking

In this sub-section, key considerations about the quality of the obtained mosaics
are reported and discussed. Regarding the low-altitude, the adopted 40 video
sequences had an average acquisition height of about 15 meters. In Fig. 3a an
example is shown. In order to measure the quality of the mosaics derived by
these video sequences the image difference process presented in [3] is adopted.
The main idea is that each part of the mosaic must have the same spatial and
colour resolution with respect to the original frames that have generated it. For

Fig. 3. Experimental results: (a) example of mosaic at low-altitude. The three minia-
tures are the frame extracted from the mosaic (up), one of the original frames used
to build the mosaic (middle), the difference between the overlapped regions (bottom),
(b) examples of mosaics at high-altitude by the proposed method (up), the method
proposed in [6] (bottom).
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this reason, the difference between each portion of the mosaic and the linked
original frames is computed. Subsequently, a simple histogram is calculated on
each image difference to evaluate the degree of deviation. Anyway, this simple
but effective process has shown that each part of the mosaic generated by the
proposed method is quite similar to the linked frames. On average, the difference
images shown a deviation of about 15%. This can be considered a real good result
taking into account all the geometrical distortion and error propagations that
occur during the complex mosaicking process. Moreover, it should be considered
that the incremental real-time mosaicking process at low-altitude is a topic that
needs to be further investigated. By the implemented UMCD dataset and the
provided results, the aim is to provide a concrete first contribute for the compar-
ison of these algorithms. In Fig. 3b, examples of high-altitude mosaics are shown.
In particular, the mosaic on the top of the Fig. 3b is generated with the proposed
approach, while the mosaic on the bottom is generated with the method proposed
in [6]. Both mosaics were created by using the same video sequence contained in
the NPU Drone-Map dataset (named: phantom3-centralPark). How it is possible
to observe, some visual differences are present. This is due to the fact that the
proposed method applies only basic transformations, such as translation, rota-
tion, and scale change, while the method with which we compare performs the
orthorectification of the frames. Despite this, the degree of correlation between
the two types of mosaic is impressive. To verify the similarity between them the
following metric was adopted:

corr =
∑

m

∑
n(Amn − Ā)(Bmn − B̄)

√
(
∑

m

∑
n(Amn − Ā)2)(

∑
m

∑
n(Bmn − B̄)2)

(5)

where A, B are the two mosaics, and Ā, B̄ are the means of the mosaics pix-
els. On average, considering all the 4 video sequences reported in Table 1, we
obtained a correlation value of about 80% among the mosaics. It should be
considered that due to the different image processing, such as geometric trans-
formation, orthorectification, stitching, and so on, it is not possible to obtain
a perfect overlap between the mosaics. In particular, the different perspectives
of the obtained mosaics are seen as significant differences by the metric. In any
case, the degree of correlation can be considered a very high value.

Table 1. Time needed for generating the mosaics. The unit is in minutes.

Sequence Frames KFs Proposed Bu et al. [6] Pix4D Photoscan

phantom3-npu 19,983 457 7.2 9.32 140.08 538.38

phantom3-centralPark 12,744 471 6.01 8.49 127.73 563.57

phantom3-village 16,969 406 10.4 11.31 132.07 360.70

phantom3-huangqi 14,776 393 8 10.36 102.83 462.32
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4.2 Mosaicking Performance

In this sub-section, the performance of the proposed method is presented. All the
experiments were performed on a laptop equipped with an Intel i7 6700HQ CPU,
16 GB DDR3 RAM and a nVidia GTX960 GPU. In Table 1, the time needed for
generating the mosaics is reported. More specifically, we compared the proposed
method with the algorithm reported in [6] and with two commercial software,
Pix4D4 and Photoscan5, also reported in the same work. The proposed method
stitches 1 frame per second, while the method proposed in [6] requires the stitch-
ing of 10 frames per second. Both Pix4D and Photoscan, instead, use only the
keyframes to produce the final mosaic (i.e., similar to the proposed algorithm).
Since all methods, with the exception of that proposed, use the GPU, a resize
to the half of HD resolution (i.e., the original size of the frames) to be stitched
is performed. In Table 1, the comparison is shown. As it is possible to observe,
both the proposed and [6] algorithms take much less time than the commercial
software. The proposed method show low processing times even with respect to
the work proposed [6] and the generated mosaics by the two approaches result
quite similar. Anyway, we are currently developing an approach to perform the
orthorectification frame by frame.

5 Conclusions

This paper propose a small-scale UAV based system for the real-time creation
of incremental and geo-referenced mosaics of video streams acquired at low-
altitude. The system presents several innovative contributions, including the use
of A-KAZE feature extractor in aerial images, a ROI to speed-up the stitch-
ing stage, as well as the use of the rigid transformation to build a mosaic at
low-altitude mitigating in part the artifacts due to the parallax error. We imple-
mented the UMCD dataset and used the NPU Drone-Map dataset to test the
algorithm at low-altitude and high-altitude, respectively. The adopted metrics
have shown remarkable results, in time and quality, compared with selected solu-
tions of the current state-of-the-art.
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Abstract. In this paper an automatic multi-seed detection method for
magnetic resonance (MR) breast image segmentation is presented. The
proposed method consists of three steps: (1) pre-processing step to locate
three regions of interest (axillary and sternal regions); (2) processing
step to detect maximum concavity points for each region of interest; (3)
breast image segmentation step. Traditional manual segmentation meth-
ods require radiological expertise and they usually are very tiring and
time-consuming. The approach is fast because the multi-seed detection
is based on geometric properties of the ROI. When the maximum con-
cavity points of the breast regions have been detected, region growing
and morphological transforms complete the segmentation of breast MR
image. In order to create a Gold Standard for method effectiveness and
comparison, a dataset composed of 18 patients is selected, accordingly
to three expert radiologists of University of Palermo Policlinico Hospi-
tal (UPPH). Each patient has been manually segmented. The proposed
method shows very encouraging results in terms of statistical metrics
(Sensitivity: 95.22%; Specificity: 80.36%; Precision: 98.05%; Accuracy:
97.76%; Overlap: 77.01%) and execution time (4.23 s for each slice).

Keywords: Automatic segmentation · Breast MR · Maximum
concavity points · Seed detection

1 Introduction

Nowadays, medical research focuses on the optimization of the workflow from the
acquisition to final report of detected lesions [1] and for volumetric measurements
from preoperative staging and evaluation after neo-adjuvant chemotherapy [2].
In last decades the scientific community has shown a growing interest towards
the analysis of breast images. As a matter of fact, nowadays the CAD (computer
aided diagnostic) systems are representing a second reader to help radiologist
in interpretation task. Breast imaging is an effective tool for detection of suspi-
cious regions in breast tissue, contributing to a noticeable decrease of mortality
c© Springer International Publishing AG 2017
S. Battiato et al. (Eds.): ICIAP 2017, Part I, LNCS 10484, pp. 706–717, 2017.
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associated with breast cancer [3,4]. Breast MRI is a medical imaging technique
used for the analysis of breast tissue. MRI acquires a set of volumetric data with
a high contrast between fatty tissue and fibroglandular tissue [5]. This imaging
modality is excellent for measurement of volumetric breast density. In last decade
several CAD (computer aided diagnostic) methods have been developed to allow
the radiologists and physicians in advanced analysis and inspection of breast tis-
sue properties such as breast density [6]. Furthermore CAD methods allow to
detect breast lesions useful for prevent breast cancer. Breast MRI is increasing its
popularity as a screening modality for high-risk patients or patients with dense
breasts. A fundamental role in Computer Aided Diagnostic methods is played by
segmentation of the breast. A good breast segmentation allows to avoid process-
ing irrelevant features, such as background and the tissue not belonging to the
breast regions. A good breast segmentation on MRI confines the CAD systems to
focus on the breast tissue, improving the specificity by eliminating false positives
outside the ROI (region of interest) i.e. the breast tissue. Generally, the first step
in CAD systems is the segmentation of the breast area on MR images, then, the
second step is the detection and the exclusion of the chest wall muscle. A key
challenge for medical imaging is to measure the volume of fibroglandular tissue
and the density in MRI by normalizing to the breast volume. It is not easy to
design approaches for automatic breast segmentation because of the large variety
of breast in shape and pattern. In more detail, the major issue is to delineate the
lateral posterior and the chest wall muscle boundaries. The radiologists observed
that in MRI of dense breasts, the visual properties of fibroglandular tissue can
be quite similar to the chest wall muscle [7]. Thus, as consequence of the afore-
mentioned remarks, it increases the technical difficulty to delineate and exclude
the muscle while preserving the dense breast tissue.

In this paper an automatic multi-seed detection method for magnetic res-
onance (MR) breast image segmentation is proposed. The method shows very
encouraging results compared to the gold standard in terms of statistical metrics
(Sensitivity: 95.22%; Specificity: 80.36%; Precision: 98.05%; Accuracy: 97.76%;
Overlap: 77.01%) and execution time (4.23 s for each slice). The implementa-
tion of the proposed method has been running on a general purpose PC with a
2,3 GHz Intel Core i5 processor, 8 GB 1333 Mhz DDR3 memory, and Mac OS x
10.8.5 version. The article is organized as follows: In Sect. 2 the meaningful works
on images segmentation are described; In Sect. 3 the breast MRI dataset used for
development, test, and evaluation of the proposed system is described; In Sect. 4,
the proposed system is discussed; In Sect. 5 depicts results and discussion; The
final considerations are treated in Sect. 6.

2 Related Works

In breast MRI, several elements are required to perform automatic analysis.
Many examples of medical imaging require an initial segmentation phase: multi-
modal breast image registration, computer aided analysis of DCE (dynamic con-
trast enhanced) MRI [8], and breast density assessment [5,6]. In [8] the authors
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detected the left side and the right side of the breast and the center of mass
in each side is used as the seed points for region growing. The region detection
and extraction from the anatomical regions are very difficult tasks. Complicat-
ing factors are the large shape variations of pectoral muscles across different
patients, the similarity between intensity distributions and texture descriptors
of the breast MR in muscle and fibroglandular tissues.

In last few years, many researches appears in medical imaging and precise
segmentations of relevant anatomical structures such as breast region and fibrog-
landular tissue are required. Most of state of the art methods for breast segmen-
tation on MRI are semi or fully automated, furthermore they can be grouped in
contour-based, region-based and atlas-based approaches [9]. Generally, on Breast
MRI, the following operations precede the breast segmentation task: Pectoralis
muscle boundary segmentation, breast-air boundary segmentation, In [10] the
authors proposed a method based on the observation that the pectoralis muscle
and breast-air boundaries exhibit smooth sheetlike surfaces in 3D. This surfaces
which can be simultaneously enhanced by a Hessian-based sheetness filter. The
authors in [11] proposed a method for breast segmentation, but it needs manual
intervention. In [12] breast segmentation was based on a semiautomated model
that accounting for partial volume effects.

In [13] the authors proposed an automatic segmentation method based on the
second derivative information represented by the Hessian matrix. Koenig et al.
[14] performed a method to detect the most important strutctural elements of
the breast by using BI-RADS criteria. Nie et al. [15] proposed a method for
the analysis of breast density based on three-dimensional breast MRI: they first
performed breast segmentation including an initial segmentation based on body
landmarks of each individual woman, then they used fuzzy C-mean classifica-
tion to exclude air and lung tissue, last they performed B-spline curve fitting
to exclude chest wall muscle. Xiaoua et al. [16] proposed a method within a
Bayesian framework, based on a maximum a posteriori estimation method. In
[17] Guberna-Mérida et al. performed breast segmentation by using a framework
based on Atlas (a technique for automatic delineation of anatomical structures
in different 3D image modalities). In [18] the authors extended the method [18]
by adding a combination of image processing techniques such as signal inten-
sity inhomogeneities correction and probabilistic analysis as Expectation Max-
imization. In [19] Gallego-Ortiz et al. performed breast segmentation on MRI
by combining a 3-D edge detection method with a probabilistic atlas of the
breast. In [20] the authors focused the attention on fibroglandular tissue seg-
mentation on Breast MRI: a fully automated segmentation algorithm, to esti-
mate the volumetric amount of fibroglandular tissue in breast MRI. To optimize
the computational cost of image segmentations, a lot of approaches are applied.
PCA [21], unsupervised classification [22], and fuzzy c-means [23] reduces the
dimensionality of the data therefore reduces the computational cost of analyzing
new data [21].
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3 Materials

The dataset consists of 18 patients from UPPH. The patient were divided in two
groups according to their age: group 1 (25/35 years old, glandular/fibroglandular
tissue) and group 2 (45/55 years old, fibrofatty/fatty tissue). A GE signa
excite1.5 T HD 23 scanner was used to acquire T1 FSE axial sequences with
the following technical parameters: 4 channels coil; TR/TE = 525; echo train = 2;
image slices = 40; slice thickness = 5 mm; slice gap = 0; FOV = 160× 320; band-
width = 41.67 Hz; imaging matrix = 512× 256.

3.1 Gold Standard

Three medical doctors, one resident and two radiologists, with progressively
increasing knowledge level of breast imaging, performed the manual segmen-
tation by using DICOM viewer Osirix [24] and following these criteria: breast
parenchyma and cutaneous surface were isolated from external air basing on its
lower intensity; lower boundary of breast region was delimited by using pec-
toral muscle as landmark; lateral bounds were represented by axillary cavities.
The radiologists usually do not agree with each other, then the results from
several observers are used to define a consolidated reference to compare the
inter-observer variance, as in [25].

4 Methods

The proposed method consists of three steps: (1) pre-processing step to locate
three regions of interest (axillary and sternal regions); (2) processing step to
detect maximum concavity points for each region of interest; (3) breast image
segmentation step. Eighteen patients have been manually segmented accordingly
to three expert Radiologists to generate Gold Standard ground-truth used to
evaluate the effectiveness of the proposed method. The acquisition parameters
and characteristics are depicted in the next section. The algorithms used in the
proposed segmentation method are briefly described in the next sections.

The proposed system consists of three main steps, as depicted in Fig. 1:

Fig. 1. Block scheme of the proposed method: pre-processing, processing, and segmen-
tation.
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– The pre-processing output as depicted in Fig. 2;
– The processing output as depicted in Fig. 3;
– The segmentation output as depicted in Fig. 4.

4.1 Pre-processing

The pre-processing step is as follows:

1. A breast MRI study is loaded. It contains, more or less 30 slices with thickness
5.00 mm (a single slice as shown in Fig. 2a);

2. A first binarization step is required to extract the boundary of the breast
as shown in Fig. 2b, an adaptive thresholding is applied to the image by
analyzing the trimodal distribution of intensity histogram;

3. An image crop containing the breast regions is considered (approximatively
2/3 of the whole image) as shown in Fig. 2c;

4. The holes are filled in the image, as shown in Fig. 2d;
5. The Largest Connected Component is found in the MRI and all other com-

ponents are removed, as shown in Fig. 2e;
6. The objective is to find the coordinates of three pairs of points (A, B, C, D,

E, F as shown in Fig. 2f), each pair of points includes a concave region of
the breast boundary. The first and the third pair of points correspond to the
vertices of axillary regions, the second pair of points correspond to the sternal
region. The task is find a n-by-2 matrix that specifies the convex hull including
the Breast Region and each row includes the coordinates of the convex hull
corners. We notice that the larger side of the convex hull correspond to our
regions of interest i.e. the axillary and stern regions (as suggested by the
radiologists). In few words we find the three pairs of points by detecting and
sorting the larger sides of the aforementioned convex hull. The first three
sides of the convex polygon respectively correspond to the axillary (A, B, E,
F see in Fig. 2f) and the sternal regions (C, D see in Fig. 2f). We sort the
vector including the distances between the consecutive vertices of the convex
polygon, in descend order, then we select the first three pairs of coordinates as
the vertices of our regions of interest (axillary and sternal regions), as shown
in Fig. 2f;

7. The convex hull of the binary regions found in step 5 is computed, as shown
in Fig. 2g;

8. The boundary of image obtained in item 5 is extracted with the canny filter,
as shown in Fig. 2h;

4.2 Processing

The coordinates of the points A–F (see in Fig. 2f) are grouped in three pairs:
A and B belong to the first side of the convex hull (axillary region), C and D
belong to the second side of the convex hull (stern region), E and F belong to the
third side of the convex hull (axillary region). To detect the maximum concavity
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Fig. 2. Pre-processing: (a) a breast MRI is loaded; (b) the adaptive thresholding is
applied in the MRI to emphasize the contours of the breast; (c) image crop containing
the breast regions is considered; (d) the holes are filled in the image obtained in (c);
(e) the Largest Connected Component is found in the MRI and all other components
are removed; (f) the coordinates of three pairs of green points (A, B, C, D, E, F) are
found; (g) the convex hull is computed in the image obtained in Figure e and it is
returned a binary convex hull image; (h) the boundary of image obtained in Figure e
is extracted with the canny filter. (Color figure online)

points (in breast image, see green points G, H, I in Fig. 3c) we process three
regions of interest i.e. the axillary regions and the stern region. We highlight
that the maximum concavity points correspond to the landmarks identified by
the radiologists. To accomplish the detection of the maximum concavity points,
each region of interest is processed as it follows:
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Fig. 3. Processing: (a) the boundary points between the two vertices A–B (yellow
dots) are plotted; (b) Delaunay Triangulation is applied between the two vertices of
each region of interest (in first instance A–B) and all the boundary points between
the two vertices (yellow dots in (a); (c) for each concavity to detect the maximum
concavity points (in breast image, see green points G, H, I); an additional margin
is computed by measuring the vertical distance between G and the inner boundary
extracted by filtering with canny algorithm, as depicted by red points in (c); (d) when
the extraction of concavity points stage is complete, a line is drawn to join these points.
All components above this line are removed. (Color figure online)

1. To detect the maximum concavity, we first apply Delaunay Triangulation
between the two vertices of each region of interest (in first instance A–B in
Fig. 2f) and all the boundary points between the two vertices (yellow dots in
Fig. 3a);

2. The area of each triangles is computed;
3. The triangles are sort in descend order with respect to area value;
4. The first triangle is selected, it includes the larger area in the concave region

of interest;
5. The maximum concavity point of the region is the third vertex of the triangle

selected in the previous step (see green point G in Fig. 3c);
6. To avoid the exclusion of some region of interest including important features

such as Skin, subcutaneous fat pad, and chest fat pad we add and additional
margin to the G coordinates;
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7. The additional margin is computed by measuring the vertical distance
between G and the inner boundary extracted by filtering with canny algo-
rithm. The same technique is applied to the other maximum concavity points,
as depicted in Fig. 3c by red points;

8. When the maximum concavity points are detected, a line is drawn to join
these points. All the elements located above the line are deleted, as shown in
Fig. 3d.

4.3 Segmentation

The segmentation phase consists of three steps:

1. First, a region growing algorithm [26] with standard parameters (threshold)
is applied to the image processed as described in the previous section. Region
Growing algorithm needs a seed point to be executed. The maximum con-
cavity points are then used as seed points for region growing. The result is
shown in Fig. 4a;

2. In second step, morphological close operation has been used to fill the holes
emerged from region growing. The structuring element of morphological oper-
ations is a disk with radius of 20 pixels so that the largest hole gets filled.
The disk structuring element is used to preserve the circular nature of the
object. The result is shown in Fig. 4b;

Fig. 4. Segmentation: (a) the region growing is applied to the image obtained in the
end of processing step Fig. 3d; (b) the holes emerged form region growing are filled by
applying the morphological close operations.

5 Results and Discussion

The proposed method has been tested on the dataset described in the materials
section. The results showed that the proposed method achieves excellent results,
as depicted in Table 1. Performance measures are then calculated regarding cor-
rect/incorrect segmentation.

The following measures are computed: Sensitivity, Specificity, Negative Pre-
dictive Value, Precision, Accuracy, and Error scores:
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– Sensitivity: It is defined as the percentage of effective positives that are cor-
rectly identified as such:

Sensitivity :
TP

TP + FN
(1)

– Specificity: It is defined as the percentage of effective negatives that are not
classified as such:

Specificity :
TN

TN + FP
(2)

– Precision: It is defined as, related to reproducibility and repeatability, the
degree to which repeated segmentations under unchanged conditions show
the same results:

Precision :
TP

TP + FP
(3)

– Accuracy: It is defined as the degree of closeness of unsupervised segmenta-
tions of a breast to that manual segmentation:

Accurancy :
TP + TN

(TP + TN + FP + FN)
(4)

– Overlap: It is defined as the index to quantify agreement between the unsu-
pervised segmentation and manual segmentation:

Overlap :
TP

(TP + FP + FN)
(5)

Furthermore, our method has been compared with a state of the art app-
roach [8] to evaluate the effectiveness and the accuracy in breast segmentation.
The results are depicted in Table 1. The proposed method shows very encour-
aging results in terms of statistical metrics (Sensitivity: 95.22%; Specificity:
80.36%; Precision: 98.05%; Accuracy: 97.76%; Overlap: 77.01%) and execution
time (4.23 s for each slice).

Table 1. Experimental results

Methods

Segmentation Proposed method Template-based method [6]

Sensitivity Eq. (1) 95,22% 88,47%

Specificity Eq. (2) 80,36% 78,12%

Precision Eq. (3) 98,05% 92,99%

Accuracy Eq. (4) 97,76% 92,54%

Overlap Eq. (5) 77,01% 73,84%
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6 Conclusions

In this paper an automatic multi-seed detection method for magnetic resonance
(MR) breast image segmentation is presented. The multi-seed detection has
been focused because of its importance in regional segmentation technique as
the region growing. The maximum concavity points have been proposed as the
seed points for the breast MR image segmentation. The detection of this points
is based on the identification of three ROI of the breast MR image: the axil-
lary regions and the sternal region. The Gold Standard, described in materials
section, is used to compute the effectiveness and the performance of the proposed
method. The preliminary results are very encouraging in terms of statistical met-
rics and execution time. In future works we are interested to extend the number
of cases study and to develop a CAD (computer aided diagnostic) to detect sus-
picious regions on breast MRI: the first step is to detect the region of interest
by using our proposed method (segmentation phase), than a further analysis
and investigation should be conducted to detect suspicious regions by analyzing
several features such as texture descriptors, statistical descriptors, histogram of
gradients and others state of the art techniques.

References

1. Giannini, V., Vignati, A., Morra, L., Persano, D., Brizzi, D., Carbonaro, L., Bert,
A., Sardanelli, F., Regge, D.: A fully automatic algorithm for segmentation of
the breasts in DCE-MR images. In: 2010 Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3146–3149. IEEE
(2010)

2. Mann, R.M., Balleyguier, C., Baltzer, P.A., Bick, U., Colin, C., Cornford, E.,
Evans, A., Fallenberg, E., Forrai, G., Fuchsjäger, M.H., et al.: Breast MRI: EUSOBI
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Abstract. In graph-based image segmentation, the arc weights are
given by a local edge indicator function based on image attributes and
prior object information. In boundary tracking methods, an edge integra-
tion process combines local edges into meaningful long edge curves, inter-
connecting a set of anchor points, such that a closed contour is computed
for segmentation. In this work, we show that multiple short-range edge
integrations can extract curvilinear features all over the image to improve
seeded region-based segmentation. We demonstrate these results using
edge integration by Live Wire (LW), combined with Oriented Image
Foresting Transform (OIFT), due to their complementary strengths. As
result, we have a globally optimal segmentation, that can be tailored to
a given target object, according to its localized curvilinear features.

Keywords: Live wire · Image foresting transform · Boundary tracking

1 Introduction

Image segmentation can be interpreted as a graph partition problem subject
to hard constraints, given by seed pixels selected in the image domain [3,9,12].
The min-cut/max-flow algorithm, also known simply as Graph Cut (GC) [3], and
some methods that can be described according to Image Foresting Transform
(IFT) [13], such as Watersheds [12] and Fuzzy Connectedness [9], correspond to
the ε1- and ε∞-minimization problems, respectively, within a common frame-
work, sometimes referred to as Generalized Graph Cut (GGC) [4,8].

Each class of methods has its own drawbacks. While methods from the ε∞
family have problems related to irregular boundaries and “leaking” through
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badly defined borders, the ε1 methods suffer from metrication error (“blocki-
ness”), shrinking bias, and higher computational time1 [8].

Methods based on multiple energy minimizations, using iterations of differ-
ent energy classes to address distinct image parts [2,10] or iterated merging
the results of a single energy class over recomputed subgraphs [28], tend to
alleviate the above mentioned problems, but they lose global optimality, since
they do not perform a single energy minimization over all image elements. As
consequence, it is harder to incorporate high-level priors for object segmen-
tation in these approaches. On the other hand, methods like Oriented Image
Foresting Transform (OIFT) [20,26] are very versatile, supporting several high-
level priors, including global properties such as connectedness of the segmented
object [19,22], shape constraints [21,27] and boundary polarity [20,26], which
allow the customization of the segmentation to a given target object [18]. How-
ever, as an extension of the ε∞-minimization problem to directed graphs, OIFT
inherits its drawbacks.

In graph-based image segmentation, including the ε1- and ε∞-minimization
problems, arc weights are given by a local edge indicator function from image
attributes and prior object information [5,6,25]. In boundary tracking, an edge
integration process, usually based on a path-cost function, combines local edges
(arc weights) into meaningful long edge curves, interconnecting a set of anchor
points, such that a closed contour is computed for segmentation [14,17].

Seeded region-based segmentation and boundary tracking methods are usu-
ally presented as different competing approaches, with the former being easier
to extend to multidimensional images, while the latter is more sensitive to seed
positioning errors [3]. In this work, we show that multiple short-range edge inte-
grations can be used to extract curvilinear features all over the image in order
to improve seeded region-based segmentation.

Our proposed method differs from [33]’s work and from hybrid approaches,
such as the Live Markers paradigm [31], because our method does not require
the specification of boundary constraints (anchor points or other point-based soft
constraints [16]), while Live Markers requires the selection of anchor points over
the object boundary to compute optimum boundary segments, which are turned
into internal and external markers for region-based delineation. In our approach,
the boundary tracking method is applied locally over the image inside circular
regions to extract curvilinear features without the need of any user intervention.
It improves the arc-weight assignment from a local edge indicator function to a
more general short-range edge integration function. As advantages we have:

– Segments by local boundary tracking with inconsistent boundary polarity can
be penalized.

– We can favor the segmentation of objects with more regular and smoothed
forms by penalizing arcs in segments with accentuated curvature.

1 The ε∞-minimization methods have complexity O(N · logN) with respect to the
image size N (linear-time implementations O(N) can be achieved for some instances,
depending on the data structure of the priority queue [7]), while the run time for
the ε1-minimization problem is O(N2.5) for sparse graphs [3].
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– We can fill boundary gaps at weak edge points to avoid leaking problems in
the segmentation.

– We keep the user interface simple to use without the need for multiple types
of user input.

The short-range edge integration helps to circumvent the main problems of the
ε∞ family (irregular boundaries and “leaking”). We demonstrate these results
using edge integration by Live Wire (LW) [14], combined with OIFT [20,26],
due to their complementary strengths, since live wire can be seen as a boundary-
based version of the ε1-minimization problem on a dual graph [3,24]. As result,
we have a globally optimal segmentation by OIFT, that can be tailored to a given
target object, according to its localized curvilinear features, and other high-level
priors already supported by OIFT [19,21,22,27].

For the sake of completeness in presentation, Sect. 2 includes an overview of
concepts on image graph and a revision of OIFT and live wire. Section 3 shows
the proposed algorithm to compute the localized curvilinear features. In Sect. 4,
we evaluate the proposed method, named OIFT with Localized Curvilinear Fea-
tures (OIFT-LCF) and our conclusions are stated in Sect. 5.

2 Background

An image can be interpreted as a weighted digraph G = 〈V,A, ω〉, whose nodes
V are the image pixels in its image domain V ⊂ Z

n, and whose arcs are the
ordered pixel pairs 〈s, t〉 ∈ A. For example, one can take A to consist of all pairs
of ordered pixels 〈s, t〉 in the Cartesian product V ×V such that ‖s− t‖ ≤ ρ and
s �= t, where ρ is a specified constant (e.g., 4-neighborhood, when ρ = 1, and
8-neighborhood, when ρ =

√
2, in case of 2D images). Each arc 〈s, t〉 ∈ A has a

weight ω(s, t) ≥ 0. The digraph G is symmetric if for any of its arcs 〈s, t〉 ∈ A,
the pair 〈t, s〉 is also an arc of G.

For a given image graph G = 〈V,A, ω〉, a path π = 〈t1, t2, . . . , tn〉 is a
sequence of adjacent pixels (i.e., 〈ti, ti+1〉 ∈ A, i = 1, 2, . . . , n − 1) with no
repeated vertices (ti �= tj for i �= j). A path πt = 〈t1, t2, . . . , tn = t〉 is a path
with terminus at a pixel t. When we want to explicitly indicate the origin of
a path, the notation πs�t = 〈t1 = s, t2, . . . , tn = t〉 may also be used, where
s stands for the origin and t for the destination node. A path is trivial when
πt = 〈t〉. A path πt = πs · 〈s, t〉 indicates the extension of a path πs by an arc
〈s, t〉, and πr�t = πr�s · πs�t indicates the concatenation of two paths.

2.1 Live Wire (LW)

A connectivity function computes a value f(πt) for any path πt, usually based
on arc weights. A path πt is optimum if f(πt) ≤ f(τt) for any other path τt in
G. By selecting to each pixel t ∈ V one optimum path with terminus at t, we
obtain the optimum-path value Vopt(t), which is uniquely defined by Vopt(t) =
min∀πt in G{f(πt)}.
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The live-wire function is given by:

fLW (〈t〉) =
{

0 if t ∈ S
+∞ otherwise

fLW (πs · 〈s, t〉) = fLW (πs) + ω(s, t) (1)

where S is a seeds set, usually composed by a single starting anchor point.
The optimum path interconnecting two consecutive anchor points can be

computed by a generalization of Dijkstra’s algorithm to more general path-cost
functions, known as Image Foresting Transform (IFT) [13]. In the IFT frame-
work, the paths are stored in backward order in a predecessor map P : V →
V ∪{nil}, such that for any pixel t ∈ V, a path πP

t is recursively defined as 〈t〉 if
P (t) = nil, and πP

s · 〈s, t〉 if P (t) = s �= nil, according to the following algorithm:

Algorithm 1 – IFT Algorithm

Input: Image graph G = 〈V, A, ω〉, and function f .
Output: Predecessor map P and the path-cost map V , which may converge to

Vopt depending on f .
Auxiliary: Priority queue Q, variable tmp, and set F .

1. For each t ∈ V, do
2. Set P (t) ← nil, V (t) ← f(〈t〉) and F ← ∅.
3. If V (t) �= +∞, then insert t in Q.
4. While Q �= ∅, do
5. Remove s from Q such that V (s) is minimum.
6. Add s to F .
7. For each pixel t such that 〈s, t〉 ∈ A and t /∈ F , do
8. Compute tmp ← f(πP

s · 〈s, t〉).
9. If tmp < V (t), then
10. If V (t) �= +∞, then remove t from Q.
11. Set P (t) ← s, V (t) ← tmp.
12. Insert t in Q.

In user-steered image segmentation [14,17,24], the computed path from the
previous anchor point to the current mouse position is shown to the user, as he
moves the cursor, so that the user can interactively select the desired path, that
best matches the object boundary, and start a new path search from that point.
All previous selected paths are kept unchanged (frozen) during the algorithm,
so that their nodes cannot be revisited.

2.2 Oriented Image Foresting Transform (OIFT)

Let X = {O : O ⊆ V} be the space of all possible binary segmented objects
O. A seed-based segmentation uses seeds S = So ∪ Sb ⊆ V, where So and
Sb are object (So ⊆ O) and background (Sb ⊆ V \ O) seed sets, respectively.
They restrict X to X (So,Sb) = {O ∈ X : So ⊆ O ⊆ V \ Sb}. A cut is defined as
C(O) = {〈s, t〉 ∈ A : s ∈ O and t /∈ O}. We can associate an energy value ε(O) to
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an object (and its cut), and restrict the set of solutions to those which minimizes
it. Let energy εq(O) = (

∑
〈s,t〉∈C(O) ω(s, t)q)

1
q . The original Graph Cut algorithm

minimizes ε1(O), while OIFT minimizes ε∞(O) = max〈s,t〉∈C(O) ω(s, t) [8,20].
In this work, we will present OIFT in its equivalent dual form as a max-

imization problem of the energy ε̄∞(O) = min〈s,t〉∈C(O) ω′(s, t), in a strongly
connected and symmetric digraph G = 〈V,A, ω′〉, where the weights ω′(s, t) are
a combination of an undirected dissimilarity measure δ(s, t) between neighboring
pixels s and t, multiplied by an orientation factor, as follows:

ω′(s, t) =

⎧⎨
⎩

δ(s, t) × (1 + α) if I(s) > I(t)
δ(s, t) × (1 − α) if I(s) < I(t)
δ(s, t) otherwise

(2)

where α ∈ [−1, 1] and I(t) is the image intensity at pixel t. In this work, we
consider α = 50% in order to get a more balanced solution. Different procedures
can be adopted for δ(s, t), as discussed in [5,25], such as the mean gradient
magnitude (i.e., δ(s, t) = ‖∇I(s)‖+‖∇I(t)‖

2 ). Note that we usually have ω′(s, t) �=
ω′(t, s) when α �= 0. For colored images, a reference map should be considered
for I(t) in Eq. 2, or α must be set to zero [20]. OIFT is build upon the IFT
framework by considering the following path function [20]:

f♂(〈t〉) =
{−1 if t ∈ So ∪ Sb

+∞ otherwise

f♂(πr�s · 〈s, t〉) =
{

ω′(s, t) if r ∈ So

ω′(t, s) otherwise (3)

The segmented object O by OIFT is defined from the forest P computed
by Algorithm 1, with f♂, by taking as object pixels the set of pixels that were
conquered by paths rooted in So. For α > 0, the segmentation by OIFT favors
transitions from bright to dark pixels, and α < 0 favors the opposite orienta-
tion [20,26].

3 OIFT with Localized Curvilinear Features (OIFT-LCF)

In OIFT with Localized Curvilinear Features, the live-wire method for bound-
ary tracking is applied locally over the image inside circular regions to extract
curvilinear features without the need of any user intervention. For each pixel c
of the image, we consider a circular disc D(c) = {t ∈ Z

n | ‖t − c‖ ≤ R} of radius
R centered at c. The optimum path πa�c from a pixel a in the disc bound-
ary B(c) = {s ∈ D(c) | ∃t /∈ D(c) such that ‖s − t‖ ≤ 1} to the central pixel c is
computed by Algorithm 1 with the live-wire function fLW , using S = B(c) and
the local edge indicator function ω(s, t) defined by:

ω(s, t) =

⎧⎪⎨
⎪⎩

( Ḡ(s)+Ḡ(t)
2 × (1 + γ))β + ‖s − t‖ if I(r) > I(l)

( Ḡ(s)+Ḡ(t)
2 × (1 − γ))β + ‖s − t‖ if I(r) < I(l)

( Ḡ(s)+Ḡ(t)
2 )β + ‖s − t‖ otherwise

(4)
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where Ḡ(t) is the complement of the magnitude of some gradient like image G(t)
at pixel t, l and r are the neighboring left and right pixels of the arc 〈s, t〉 (Fig. 1)
and we usually have γ = 50%. The parameter γ is used to penalize segments with
inconsistent boundary polarity, by favoring a particular boundary orientation.
For example, γ = 50% improves arcs with the right pixel being darker than its
left pixel (Fig. 2).

We then compute the optimum path from c to the disc boundary B(c), such
that we end with a composite path πa�b = πa�c · πc�b = 〈p1 = a, p2, . . . , pk =
c, . . . , pm = b〉, connecting two boundary points of the disc and passing through
its center. In this short-range edge integration, the live-wire segments attach to
the objects’ boundaries, so that we can extract important contour information
from the underlying objects all over the image (Fig. 3a).

For each pixel c, we can extract curvilinear features from the composite path
πa�c · πc�b, such as the following mean curvature measure:

Curv(〈p1, .., pm〉) =
1

(L/2)
·

L−1∑
i=L/2

‖pk−i − 2 · c + pk+i‖
‖pk−i − c‖ + ‖c − pk+i‖ (5)

where L = min{Length(πa�c),Length(πc�b)} + 1 = min{k − 1,m − k} + 1.
We can then improve the arc-weight assignment for the OIFT method from

a local edge indicator function δ(s, t) = G(s)+G(t)
2 to a more general short-range

edge integration function δ(s, t) = GLCF (s)+GLCF (t)
2 , where ḠLCF (t) = Ḡ(t) ×

(1+Curv2(〈p1, . . . , pm〉)). This OIFT with localized curvilinear features (OIFT-
LCF) helps to circumvent the irregular boundaries of the original OIFT (Figs. 3
and 4). Curvature regularity for region-based image segmentation usually results
in an NP-hard problem, and linear programming relaxation with thresholding
is used to obtain an approximate solution [30]. In our method, the curvilinear
features can be fast computed using localized live-wire executions, which can be
calculated in parallel for different regions of the image. Since both live wire and
OIFT take linearithmic time in worst-case scenarios and live wire is computed
only in circular discs of fixed size, the complexity of OIT-LCF is linearithmic.

Fig. 1. The neighboring left and right pixels for each arc.

Another possibility is to consider in OIFT-LCF:

ḠLCF (t) =
(

fLW (πa�c) + fLW (πc�b)
Length(πa�c · πc�b)

)1/β

× (1 + Curv2) (6)

which helps to circumvent “leaking” problems of the original OIFT (Fig. 5).
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Fig. 2. Boundary tracking with boundary polarity. The arcs with the desired orienta-
tion (right pixels darker than their left pixels) are shown with thicker lines, while arcs
with incorrect orientation are shown with dashed lines. (a) Segments by live wire with
the correct boundary orientation. (b) Segments with inconsistent polarity.

(a) localized LW (b) OIFT (c) OIFT-LCF

(d) localized LW (e) OIFT (f) OIFT-LCF

Fig. 3. (a) Curvilinear features can be extract by computing localized live wire seg-
ments. (b–c) We can favor the segmentation of objects with more regular and smoothed
forms by penalizing arcs in segments with accentuated curvature. (d–f) An example
using MR images of the brain.

(a) OIFT (b) OIFT-LCF

Fig. 4. The segmentation of the brain external surface in a MR-T1 image. OIFT-
LCF gives the most regular contour, following more closely the dura mater, due to its
curvature analysis.
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(a) Ground truth (b) OIFT (c) OIFT-LCF

(d) Input seeds (e) OIFT (f) OIFT-LCF

Fig. 5. The segmentation of: (a–c) A bone of the human foot and (d–f) the liver.

4 Experimental Results

We conducted quantitative experiments, using a total of 40 image slices of 10
thoracic CT studies to segment the liver, and 40 slice images from real MR
images of the foot to segment the calcaneus bone. Several different gradients
with and without the usage of localized curvilinear features, were assessed for
accuracy employing the mean performance curve (Dice coefficient) and ground
truth data obtained from an expert of the radiology department at the University
of Pennsylvania for different seed sets.

In the first experiment, we used the second version of OIFT-LCF to avoid
“leaking” problems, with R = 3 and β = 2, and considered different seed sets
automatically obtained by eroding and dilating the ground truth at different
radius values. By varying the radius value, we can compute the segmentation for
different seed sets and trace accuracy curves using the Dice coefficient of simi-
larity. However, in order to generate a more challenging situation, we considered
a larger radius of dilation for the external seeds (twice the value of the inner
radius), resulting in an asymmetrical arrangement of seeds. In order to demon-
strate the versatility of OIFT-LCF and OIFT, which support several high-level
priors, we considered these methods with shape constraints by Geodesic Star
Convexity (GSC) [21], leading to the GSC-OIFT-LCF and GSC-OIFT methods.

Figures 6a–b show the mean accuracy curves for all the images of the first
experiment, using different input gradients indicated by a superscript index, for
each method. For the sake of simplicity, we only considered gradient like images
from local image attributes without resorting to more sophisticated techniques
by supervised learning [32]. The superscript index 1 is used to indicate G(t) as
the Sobel gradient magnitude. The superscript index 2 denotes the image-based
weight by Miranda et al. [25], which is based on image smoothing at four different
scales by a sequences of opening by reconstruction and closing by reconstruction.
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The superscript index 3 corresponds to the morphological gradient with a radius
of 1.5 pixels, that is, the difference between the dilation and the erosion of
the image. The superscript index 4 describes the brightness gradient features
from [23], where for each pixel, a circle of radius r is drawn and divided along
the diameter at orientation θ. The half-disc regions are described by histograms,
which are compared by the chi-squared distance. A large difference between
the disc halves indicates a discontinuity in the image along the disc’s diameter.
The histograms (with 12 bins) are computed by a kernel density estimation
using a Gaussian kernel with σ = 10.0. We considered r = 4 and four different
orientations. The gradient with superscript 5 was inspired by the work from
Rauber et al. [29], where superpixel graphs were shown to improve interactive
segmentation, by exploring the mean color/intensity inside superpixels. We tried
to reproduce similar results at the pixel level, by using the average of brightness
inside superpixels of size 5×5 computed by IFT-SLIC [1] as input image for the
Sobel operator. From the results (Figs. 6a–b) it is clear that GSC-OIFT-LCF
outperformed GSC-OIFT for all corresponding indexes (i.e., GSC-OIFT-LCFi

better than GSC-OIFTi, for i = 1, . . . , 5).
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Fig. 6. The mean accuracy curves (Dice) using different gradients with and without
the usage of localized curvilinear features. (a–b) First experiment for the segmentation
of (a) calcaneus bone and (b) liver. (c) Calcaneus mean accuracy curve by a robot user.

In the second experiment, we used the first version of OIFT-LCF to cir-
cumvent irregular boundaries, with R = 4 and β = 5. Figure 6c shows the
experimental curve using a robot user [15], which confirms similar results.

5 Conclusions

In conclusion, we developed extensions to the OIFT algorithm [26], by incorpo-
rating localized curvilinear constraints in its formulation, helping to circumvent
irregular boundaries of OIFT. As future work, we intend to extend OIFT-LCF
to 3D and test it with other boundary-based methods [11].
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Abstract. In this paper we present an innovative technique to semi-
automatically index handwritten word images. The proposed method is
based on HOG descriptors and exploits Dynamic Time Warping tech-
nique to compare feature vectors elaborated from single handwritten
words. Our strategy is applied to a new challenging dataset extracted
from Italian civil registries of the XIX century. Experimental results,
compared with some previously developed word spotting strategies, con-
firmed that our method outperforms competitors.

Keywords: Word spotting · Handwriting recognition · Indexing

1 Introduction

The transition from handwritten to digitalized historical documents establishes
a great challenge, due to the huge amount of documents, the peculiarity of this
kind of data, and the noise on manuscripts: generally, automatic handwriting
recognizers, also called Optical Character Recognizers (OCRs), or standard text
analyzers fail.
In this context, we develop a new word spotting technique, or rather the ability to
create word collections grouped into clusters containing all instances of the same
word. The creation of these clusters is based on image matching results [10]. In
this way, it is possible to semi-automatically index the content of handwritten
historical documents. Manual transcription and index generation is extremely
expensive and time-consuming in these cases and thus not always feasible for
voluminous manuscripts.

In this paper we propose a method to extract features from historical docu-
ment words and to match them exploiting the Dynamic Time Warping (DTW)
technique, which compares and aligns feature vectors elaborated from single
handwritten words. We collect a new dataset that is publicly available and it
is acquired through a previously developed system of image dewarping [1]. This
system starts from a curled page, usually taken by a digital scanner or digital

c© Springer International Publishing AG 2017
S. Battiato et al. (Eds.): ICIAP 2017, Part I, LNCS 10484, pp. 729–738, 2017.
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camera, and outputs an image constituted only of horizontal straight text lines,
without any distortion due to perspective, lenses and page warping. In particular,
through this approach, a great amount of documents from Italian civil registries
of the XIX century are available for our scope.

The paper is organized as follows. Section 2 presents an overall description
of related literature works. In Sect. 3, the proposed method is detailed. The
proposed dataset is described in Sect. 4. Section 5 reports experimental results.
Finally, in Sect. 6 conclusions are drawn.

2 Related Work

The original idea of word spotting for handwritten manuscripts was initially
presented in [8,9]. In these works, matching techniques and pruning methods are
described: given a word’s bounding box, unlikely matches are quickly discarded
and similar words are clustered.

Generally, word spotting methods can be divided in two main classes: line-
segmentation and word-segmentation based approaches.

Line-segmentation based methods rely on the hypothesis that each line in
the document is separated and word segmentation techniques are not strictly
required. Terasawa et al. [13,14] presented a word spotting method based on line
segmentation, sliding window, continuous dynamic programming and a gradient-
distribution-based feature with overlapping normalization and redundant expres-
sions, also known as “slit style HOG features”. In [6] a line-oriented process is
applied to avoid the problem of segmenting cursive script into individual words.
This approach exploits pattern matching techniques and dynamic programming
algorithms. The presented system is tested on old Spanish manuscripts, show-
ing a high recognition rate. Even the adoption of a number of heuristic to limit
the search along document lines, this approach is expensive since words have
to be searched for every possible position. Besides, DTW is separately applied
on each feature vector and results are heuristically merged, producing different
alignment for the same word-line pair.

On the other hand, word-segmentation approaches are based on the hypothe-
sis that each word in the document images is separately clipped. A word-by-word
mapping between a scanned document and a manual transcript is proposed in
[15]: in this way, it is possible to exactly locate words in document pages. This
method relies on a OCR used as a recognizer for multiple word segmentation
hypothesis generated for each line of the document. Results shown that OCR is
not a useful and feasible solution for historical manuscript recognition. In [11]
a local descriptor, inspired by the SIFT [7] key-point descriptor, is proposed.
Significant improvements are achieved exploiting two different word spotting
systems, based on the well-known Hidden Markov Models and DTW.

In [10] a range of features suitable for DTW has been analyzed: this work is
described in detail because we use it as a touchstone. Speed and precision have
achieved as result of combining different text features which are extracted from
pre-processed rectangular word images and that do not contain ascenders from
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other words. Moreover, inter-word variations such as skew and slant angles are
detected and normalized. Investigated features include projection profile, partial
projection profile, upper and lower word profile, background to ink transitions,
gray scale variance, and feature sets containing horizontal and vertical partial
derivatives applied through a Gaussian kernel. Best performance in terms of
average precision are achieved by the combination of projection profile, upper
and lower profile and ink transitions. In order to compare this strategy with
our proposal, we produce an implementation of this algorithm, maintaining all
details described in the corresponding paper.

3 Proposed Word Spotting Method

The method proposed in this paper is word-oriented, thus we describe it starting
from single word image as the one reported in Fig. 1a (see Sect. 4 for extrac-
tion details). Before proceeding with feature extraction all word images are pre-
processed as described in the following section.

(a) (b) (c)

(d) (e)

(f) (g)

Fig. 1. Example of pre-processing steps applied to an handwritten word image. (a)
is the raw input grayscale word image, (b) the result after binarization process, (c)
the graphical output of the RLSA algorithm. Connected components are then labeled
(d) and the bounding box of the biggest component is extracted (e) and (f). In (g) is
reported the output of Canny algorithm applied on (e).

3.1 Word Image Pre-processing

All input images are binarized through an adaptive threshold [12] which deal
with the light changes that occur in the original manuscripts (Fig. 1b). Then, we
exploit the horizontal Run Length Smoothing Algorithm (RLSA) [16] to ensure
that all pixels belonging to the word contained in the binary image are connected
(Fig. 1c). The threshold used for RLSA is equal to text height that is calculated
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as described in [4]. Thanks to the Connected Components Labeling (CCL) [5] we
are able to extract the word using the bounding box of the biggest component
(see Fig. 1d, e and f for instance). We aim, through the combination of RLSA
and CCL algorithms, to filter out all the graphical contents that do not belong
to the handwritten word which are represented by remainders of other words
in the original document. After these steps, it is possible to remove background
from the image.

Moreover, images are vertically and horizontally resized to a fixed window
of 352 × 90 pixels. This operation could be viewed as a normalization of hand-
written word’s width and height, and it is also a fundamental step for next
elaborations.

Finally, Canny [2] algorithm is applied on the binarized and resized image in
order to make our algorithm invariant to ink thickness.

Graphical result is reported in Fig. 1g.

3.2 Feature Extraction and Word Matching

In order to compare different word images through DTW, HOG descriptors [3]
are computed follow a sliding windows approach. According to [14] we divide
each input image in windows of fixed size 16 × 90. Windows are then split into
blocks of 4 × 2 cells each composed by 4 × 4 pixels (see Fig. 2b). Finally, 12 bins
of the signed gradient histogram are used in orientation binning. Signed gradient
produces better results in this scenario because it is generally not possible to have
some characters brighter and some other darker than the background mixed in
the same manuscript.

The defined block has the same width of the window so no horizontal over-
lapping is allowed during HOG features extraction, instead, they are vertically
overlapped with a stride of two pixels for a total of 4032 descriptors per window.
In our experiments we test the proposed approach using overlapped windows in
horizontal direction with different strides.

As said before, DTW is exploited to compute and align the similarity dis-
tance between two given word images. The Dynamic Time Warping matching
algorithm is based on the recurrence equation

DTW (i, j) = min

⎧
⎨

⎩

DTW (i− 1, j)
DTW (i, j)

DTW (i, j − 1)

⎫
⎬

⎭
+ d(i, j) (1)

where d(i, j) is the distance between the i−th and j−th feature vectors (respec-
tively called x and y and both of length N) of the two images to match:

d(i, j) =
N∑

k=1

|xik − yjk| (2)

In Fig. 2c is reported an example of DTW distance matrix calculated with
Formula 1. In this example, HOG feature vectors are obtained with window stride
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Fig. 2. (a) example of sliding window on a XDOCS’s word image for HOG descriptors
calculation; (b) details of the adopted windows; (c) example of DTW matrix obtained
for two XDOCS’s word images.

equal to window width (i.e. non overlapped windows). The green path, usually
called warping path, represents the optimal match between the two words. This
approach let us to determine a measure of word similarity independently from
certain non-linear variations in the time dimension.

4 Dataset

As mentioned above, we collect a new challenging dataset. The dataset consists
of a collection of handwritten month names extracted from Italian civil registries
of the XIX century. We extract word images employing a template approach:
given a rectified image of a whole page of the historical document, we directly
extract month names placed in fixed position of the page. In this way, we can
automatically collect a number of high quality and easy to annotate samples.

Specifically, the obtained dataset consists of around 1200 words and all 12
months are available. Moreover, the variety of handwritten words is guaranteed
by three different official state writers. The dataset is publicly available1.

The dataset creation approach relies on the assumption that rectified pages
are available. These are obtained by the use of the dewarping technique described
in [1]. The entire pipeline could be summarized in these steps:

– Image pre-processing : in this step document and page noise is filtered out;
this is mainly due to the digitization process and to the intrinsic nature of
the original images;

1 http://imagelab.ing.unimore.it/XDOCS.

http://imagelab.ing.unimore.it/XDOCS
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Fig. 3. Example of dewarped document and word extraction leaded by template. A
template approach for word extraction is possible due to the prearranged structure in
these particular historical registries.

– Projection extraction: this step aims to find the curved surface projection
represented by two almost vertical straight lines and by two third degree
polynomial curves surrounding the document page. This is required by the
implemented dewarping method.

– Dewarping phase: this step is the core of the image rectification and dataset
creation phases. During this phase, the projection of the curved surface is
mapped into a rectangular normalized area.

At the end of this process, input images are correctly rectified and they do not
suffer of any distortion effects. The result is depicted in Fig. 3 where colored
bounding boxes show word of interest automatically extracted by image coordi-
nates. In the following we will refer to the described dataset as XDOCS dataset.

5 Experimental Results

We test our system on the XDOCS dataset divided into three different group, one
for each handwriting style. We refer to each group with the name of the munici-
pality from which original documents belong, i.e. Vignola, Carpi, and Formigine.
This approach let us to perform both intra and inter dataset evaluation.
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Following a common practice for word spotting task, we exploit the Mean
Averages Precision (MAP) with cut-off at C = {5, 10, 15} (i.e. MAP@5,
MAP@10, and MAP@15) to evaluate and compare different algorithms. Given a
couple of datasets the first (with a word elements) is used to create queries that
are then performed on the second one (with b word elements). For each query
the average precision is calculated using the following formula:

ap@n =
∑n

k=1 P (k)
min(m,n)

(3)

In Eq. 3, P (k) is the precision at cut-off k in the item list, i.e., the ratio of
the number of correct word matches, up to position k, over the number k; n is
the cut-off chosen from C and m is the total number of word images that match
with the query in the second dataset.

Table 1. Results (on the XDOCS dataset) of the proposed method with different
window strides (a), (b), and (c) and of the algorithm described by Rath et al. (d).

Vignola Carpi Formig.

V
ig
n
o
la

MAP@05 0.528 0.100 0.181
MAP@10 0.380 0.086 0.144
MAP@15 0.306 0.093 0.132

CMF 75.25% 17.82% 26.73%

C
a
rp
i

MAP@05 0.135 0.466 0.095
MAP@10 0.101 0.434 0.078
MAP@15 0.079 0.414 0.072

CMF 14.53% 63.25% 15.38%

F
o
rm

ig
. MAP@05 0.192 0.127 0.644

MAP@10 0.156 0.114 0.541
MAP@15 0.135 0.121 0.476

CMF 24.69% 19.25% 77.82%

(a) Our - 16 pixels stride.

Vignola Carpi Formig.

V
ig
n
o
la

MAP@05 0.634 0.108 0.206
MAP@10 0.465 0.098 0.168
MAP@15 0.376 0.101 0.156

CMF 83.17% 18.32% 25.25%

C
a
rp
i

MAP@05 0.145 0.534 0.112
MAP@10 0.110 0.489 0.093
MAP@15 0.086 0.485 0.086

CMF 17.10% 66.67% 17.95%

F
o
rm

ig
. MAP@05 0.268 0.150 0.775

MAP@10 0.209 0.133 0.662
MAP@15 0.173 0.138 0.582

CMF 36.82% 21.34% 89.96%

(b) Our - 8 pixels stride.

Vignola Carpi Formig.

V
ig
n
o
la

MAP@05 0.665 0.102 0.222
MAP@10 0.493 0.093 0.189
MAP@15 0.400 0.098 0.170

CMF 87.13% 14.85% 27.22%

C
a
rp
i

MAP@05 0.159 0.578 0.125
MAP@10 0.117 0.536 0.101
MAP@15 0.091 0.527 0.096

CMF 19.66% 73.50% 17.95%

F
o
rm

ig
. MAP@05 0.309 0.177 0.823

MAP@10 0.235 0.152 0.708
MAP@15 0.194 0.153 0.621

CMF 40.59% 26.77% 94.14%

(c) Our - 2 pixels stride.

Vignola Carpi Formig.

V
ig
n
o
la

MAP@05 0.468 0.042 0.077
MAP@10 0.347 0.034 0.057
MAP@15 0.276 0.028 0.050

CMF 68.32% 9.90% 13.37%

C
a
rp
i

MAP@05 0.086 0.445 0.087
MAP@10 0.060 0.411 0.067
MAP@15 0.050 0.382 0.058

CMF 13.78% 51.70% 15.34%

F
o
rm

ig
. MAP@05 0.097 0.053 0.557

MAP@10 0.071 0.045 0.413
MAP@15 0.060 0.042 0.342

CMF 19.25% 9.21% 80.33%

(d) Rath et al. [10].
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Once the ap@n is calculated for every query the MAP@n is given by Eq. 4.

MAP@n =
∑Q

i=1 ap@ni

N
(4)

where Q = a is the number of queries and ap@ni is the average precision for the
i-th query.

Moreover, an additional metric is included in our evaluation: for every test
among two different datasets we store the number of queries that return a correct
match as first. This value is reported in tables with the acronyms CMF (Correct
Match First) and in percentage with respect off the total number of queries.

We compare our method with the one described by Rath and Manmatha
[10] that is one of the state-of-the-art algorithms for word spotting task. This
method is chosen because it uses a comparable approach based on DTW which
exploits different features to perform matching between different words. As we
said in Sect. 2, we implemented Rath’s algorithm because, from our knowledge,
a public implementation is not available. According to [10], we included in our
code only the combination of features which achieve better performance in the
original paper.

In Table 1a, b, and c the performance of the proposed method, using a stride
ranging from 2 to 16 for HOG windows, is presented. The MAP increase when the
stride size decrease and as consequence the best results are obtained with stride 2.
Unfortunately, the computational cost of the process increase with lower strides.
According to the application in which word spotting has to be applied, a com-
promise between accuracy and computation time can be selected. Even thought
HOG descriptors can be calculated off-line during words extraction process, the
DTW suffers with very long feature vectors such as the one obtained by HOG.

On the other hand, in Table 1d results achieved by our designed competitors
on the same datasets are reported. As depicted, our method achieves better
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Fig. 4. Average query execution time for the algorithm by Rath and Manmatha [10]
and our proposal with different window strides (i.e. 16, 8, 4). The time required by
windows stride 2 (139.2 × 103 s) is not reported to facilitate the readability of the
chart. Query search space is composed by almost 1200 samples (i.e. the entire XDOCS
dataset).
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accuracy in all tests also with 8 pixels stride. Moreover, CMF reveals that our
proposal can be used as enabling technology for real word applications.

In Fig. 4 average query execution time required by the experimented word
spotting algorithms is reported. All average times are computed considering the
entire XDOCS dataset, thus the search space counts almost 1200 word images.
No code optimizations are involved neither in the word spotting algorithm nor
in the DTW implementation, so Fig. 4 serve only as comparison between time
performance of the described algorithms.

6 Conclusions

In this paper two main contributions are described. Firstly, a new and challeng-
ing dataset of handwritten historical documents from Italian civil registries is
publicly released. Secondly, a novel method to tackle the problem of word spot-
ting task is presented: it is based on HOG descriptors and exploits the Dynamic
Time Warping technique to compare feature vectors elaborated from single hand-
written words. The system is able to achieve a good accuracy in terms of MAP
and overcomes a literature competitor.
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12. Sauvola, J., Pietikäinen, M.: Adaptive document image binarization. Pattern
Recogn. 33(2), 225–236 (2000)

13. Terasawa, K., Nagasaki, T., Kawashima, T.: Eigenspace method for text retrieval
in historical document images. In: Proceedings of Eighth International Conference
on Document Analysis and Recognition, pp. 437–441. IEEE (2005)

14. Terasawa, K., Tanaka, Y.: Slit style hog feature for document image word spotting.
In: 10th International Conference on Document Analysis and Recognition, ICDAR
2009, pp. 116–120. IEEE (2009)

15. Tomai, C.I., Zhang, B., Govindaraju, V.: Transcript mapping for historic hand-
written document images. In: Proceedings of Eighth International Workshop on
Frontiers in Handwriting Recognition, pp. 413–418. IEEE (2002)

16. Wahl, F.M., Wong, K.Y., Casey, R.G.: Block segmentation and text extraction
in mixed text/image documents. Comput. Graph. Image Process. 20(4), 375–390
(1982)



Incremental Support Vector Machine for
Self-updating Fingerprint Presentation Attack

Detection Systems

Pierluigi Tuveri(B), Mikel Zurutuza, and Gian Luca Marcialis

Department of Electrical and Electronic Engineering,
University of Cagliari, Cagliari, Italy

{pierluigi.tuveri,marcialis}@diee.unica.it, mikelzuru@gmail.com

Abstract. In this years Fingerprint Presentation Attack Detection
(FPAD) had an increasing interest and the performances became accept-
able, especially thanks to the LivDet protocols into the International
Fingerprint Liveness Detection competition. A security issue arose from
LivDet2015: the FPAD systems are not invariant towards the materi-
als for fabricating spoofs. In other words, some previous works pointed
out the vulnerability of these systems when an attackers uses unex-
pected materials. In this paper, we proposed a solution that exploit the
self-update abilities of the classifier to adapt itself to never-seen-before
attacks over the time. Experimental results on four LivDet data sets
showed that the proposed method allowed to manage this vulnerability.

1 Introduction

In real world scenarios, one can attempt to circumvent a biometric sensor by
using a copy of a certain required biometry. The artifact that is used as a counter-
feit biometric is called spoof. Presentation attack detection (PAD) is the method
which distinguishes genuine living biometric traits from spoof ones [4].

Despite the fact that currently several mature methods exist to distinguish
impostors from genuine in fingerprint verification, the fingerprint PAD (FPAD)
remains unsolved owing to the continuous evolution in the technology, materials
for artificial fingerprint fabrication and cleverness of the attacker, as a sort of
cops and robbers game. The use of novel (never-seen-before) materials, unknown
when the PAD system was designed, is a constant challenge. A survey on FPAD
is given in [6,7]. Attempting to propose a taxonomy for the present field, Coli
et al. [8] distinguished two main categories for detection methods: hardware
and software-based. Hardware-based detection of presentation attacks in the
fingerprint can be made by using temperature, blood pressure, pulse or other
methods. Conversely, PAD capabilities can also be added to the system by using
software-based approaches. The procedure consists on extracting features from
the fingerprint images acquired by the given sensors [13]. These measurements
embed the information to determine the liveness degree of the targeted finger-
print. For example, a method for quantifying the perspiration phenomenon in a
c© Springer International Publishing AG 2017
S. Battiato et al. (Eds.): ICIAP 2017, Part I, LNCS 10484, pp. 739–749, 2017.
https://doi.org/10.1007/978-3-319-68560-1_66
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single image was developed by Tan e Schuckers in [14] through wavelet transform.
Additionally, a curvelet transform approach for FPAD was proposed in [9,13],
which allows representing singularities along curves in a more efficient way.

Besides the PAD method itself, it is also important to know the modus
operandi for generating a spoof, and usually classified as cooperative and non-
cooperative approaches. Within the cooperative method, the finger of the tar-
get individual must be placed into certain ductile material. Instead, the non-
cooperative approach is the process to be performed when the subject left a
latent fingerprint on a surface and it needs to be enhanced.

Given the even finer fabrication techniques and the discovering of high qual-
ity materials, a presentation attack attempted by using never-seen-before spoof
materials becomes an endless challenge. Based on the LivDet2015 competition
results, in [11], Ghiani et al. remark that it is still difficult being able to gener-
alize against unexpected spoof attacks. On the basis of what they reported, the
need arises for a PAD system able to self-update its recognition capacity.

In this sense, Rattani et al. highlighted in [3] the problem of encountering
spoofs that were not considered or unobserved within the training stage. Based
on the open set theory, they present a W-SVM-based novel material detector in
order to cope with this scenario.

In accordance with the same working line, we present an alternative, incre-
mental SVM system which adapts to unknown materials using the Stochastic
Gradient Descent (Sect. 2). We compared the performance of our system against
the W-SVM one, used as a sort of ground truth. Very competitive results for
most of the scanner/feature method/spoof material combinations were attained.
The experimental protocol is discussed in Sect. 3 as well as obtained results in
Sect. 3.3. Section 4 draws conclusions and suggests future research works.

2 The Proposed Method

One of the key researches related to facing presentation attacks with novel mate-
rials was accomplished by Tan et al. [1] where the spoof material dependency
was investigated. This pointed out that when the classifier is trained with spe-
cific spoof materials, it can misclassify spoofs made with materials that are not
present in the training set. Marasco and Sansone proposed a comparison among
FPAD state-of-the-art algorithms in order to find the most robust algorithm
towards the introduction of new materials in the test set [2].

Since very different algorithms were used in the works above, we can claim
that the problem seems to be independent of the algorithm type; on the other
hand, all these algorithms cannot generalize the never-seen-before materials
problem. The International Fingerprint Liveness (LivDet) competition, in the
2015 edition [11], took into consideration the problem of bias related to the
material. As a matter of fact, the conclusion reported in [11] was that the per-
formance decays when attacking the system with a material that is not present
in the train set (never-seen-before); in a few of cases, this can be argued from
the visual inspection of obtained images. This issue was partially addressed in
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the previously cited and other papers, and could be an interesting matter of
research for the future.

Therefore, updating the PAD system is a solution which appears as necessary
to avoid the performance decay. Updating could be done manually and offline,
but it is a not trivial problem to detect a good spoof by visual inspection. An
alternative is to add samples derived from novel materials when available, but
this did not assure that a better performance will be obtained over never-seen-
before materials.

In this paper, we focused on the semi-supervised update concept. It is com-
mon to refer to them as “self update” systems [12]. These use the data collected
while they are in operation in order to re-train the classification parameters.
Usually, these systems tend to become more robust over time as they adapt in
the new working conditions (this have been observed in other applications [12]).
In this case, the goal is to re-train the system especially if a novel material is
used to attack it.

Therefore, we propose a statistical classifier that updates itself in order to
adapt the estimated conditional distributions when there are novel materials. In
particular, we explore the so-called incremental Support Vector Machine (SVM)
[12]. This choice is motivated by the fact that the majority of PAD systems
achieved the highest performance, given the feature set, when the classifier is a
SVM, as reported in [12].

2.1 Incremental SVM for Fingerprint Presentation Attacks
Detection

A linear SVM learns the function f(x) = ωT x + b using the train set where the
samples are a tuple in the form (xi, li). xi ∈ �n and li = ±1. In the test phase,
if f(x) > 0 then the label value is +1 otherwise the label value is −1.

The parameter ω is the slope of the hyperplane and b is the intercept. In
this way, two subspaces, one for the patterns with positive labels, and one for
negative labels, are computed.

In order to find the best function f(x), that is, the parameters ω e b, we use
the following error function:

E(ω, b) =
1
n

n∑

i=1

L(yi, f(xi)) + α
1
2

n∑

i=1

ω2
i (1)

Where L is the hinge loss function, and α > 0 is the hyperparameter.
In order to minimize the error function, we use a Stochastic Gradient Descent

[15]1.
Let us introduce the sets Bt0 , ..., Btm , each Bti is composed by a collection

of Live and Fake fingerprint representations. Each component (xi, li) of Bti is
made up by two parts, one is xi, that is the feature vector, and other one li is
the label of the sample.

1 We use the python library http://scikit-learn.org/stable/modules/sgd.html.

http://scikit-learn.org/stable/modules/sgd.html
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For updating, a novel set of data Bti is collected, the gradient continues
seeking the minimum from the previous point.In our approach, updating is per-
formed off-line, that is, when the system is not operating. Basically, we train the
SVM with initial data Bt0 , and we update the classifier with new data Bti in
order to adapt the system’s parameters.

The updating algorithm is given in Algorithm1. The prediction function
f(x) ∝ P (c | X) outputs an estimation of P (c = Live | X), the so-called ”live-
ness score” S. It represents the liveness degree of the pattern. We can estimate
the probability density p(S | c = Live), that is, the distribution of Live samples
based on the liveness score. We introduce FRR(s) =

∫ s

0
p(S | Live)dS as the

percentage of the misclassified Live samples at liveness score value s. In order to
reduce the probability of using misclassified patterns, we select FRR(s) = 0.1,
in fact we want to insert in the update stage only 10% of misclassified patterns.
The value s ranges in [0, 1] and defines threshold such that FRR(s) = thrFRRti

related to Bti . When we update the SVM with new data, if a certain sample
follows the thrFRRti condition, it is used to update the classifier.

Algorithm 1. Incremental SVM

– Let us indicate our classifier with C.
– Let Bt0 , Bt1 , ..., Btm be m + 1 sets of samples collected over time, and called

batches.
– Bt0 = {(x1, l1), ..., (xN0 , lN0)}, where xi is a feature vector and li is the related

class (Live/Fake). The first is labeled, that means, the class are known for each
sample.

– For t ∈ [t1, ..., tm], Bt = {x1, ..., xNt}, where xi is a feature vector.
– Let s be the estimated value of P (c = Live|X = x), as output of C, being x a

feature vector. s is also called “liveness score”.
– Let p(S|c = Live) be the so-called live fingerprints distribution of liveness scores.

B ← Bt0

C ← TrainSV M(B), that is, train the SVM classifier by estimating the gradients
on the data set B.
Estimate P (c = Live|X = x), p(S|c = Fake) over B.
for t ∈ [t1, ..., tm] do

thrFRRt ← argmaxs(P (s | c = Live) ≤ 0.1).
H ← ∅
for x ∈ Bt do

if s ≤ thrFRRt then
l ← Fake
H ← H ∪ {(x, l)}

end if
end for
C ← UpdateSV M(C, H)
B ← B ∪ H
Estimate P (c = Live|X), p(S|c = Live) over B.

end for
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2.2 Prior Work

Rattani et al. [3] proposed a self update system for facing with the same
problem. They used the open set theory in order to re-train the system. Let
M = {m0,m1, ...,mk} where m0 is the class of Live samples and mi i �= 0
is a generic spoof material. In order to find the open set, they used 1-Class
RBF SVM, thus instantiating a 1-Class classifier f0

i for each material mi ∈ M .
A 1-Class RBF SVM constructs a decision boundary that encloses all the positive
elements. It is needed a calibration stage in order to calculate the P0(l | f0(x)),
that is the inclusion probability of a sample to that class (the updating stage).
If the P0(l | f0(x)) ≤ δτ

2 for a pattern, it is classified as a never-seen-before
material. Basically a 1-Class classifier might suffer from the overfitting problem
because it was only trained with positive samples. Therefore, a binary SVM
in order to generalize the classification was used. In this case, the binary RBF
classifier was trained using the positive and negative patterns. There was not a
division per material, but there is only the class Fake. Let si = f(xi) be the out-
put (score) of the binary RBF SVM where xi is a sample of the train set. Fake
and Live samples were fitted by the Weibull distribution. In this way, the value
Pη(l | f(x)) is obtained which describes the probability that the score belongs to
the Live class. Equally, Pψ(l | f(x)) describes the distribution of Fake scores.
In order to detect the never-seen-before material, they used:

ly∗ = argmaxl∈Y Pη,l × Pψ,l × tl
subject to Pη,l∗ × Pψ,l∗ ≥ δR

tl = 1 if P0(l | x) ≥ δτ otherwise tl = 0
(2)

In order to detect spoof materials already known:

l = +1 ⇔ Pη,+1 × Pψ,+1 × t+1 ≥ δR

t+1 = 1 if P0(y | x) ≥ δτ otherwise t+1 = 0 (3)

The δR parameter is the threshold used to find the Equal Error Rate (EER)
point, where FAR=FRR. δR is not a constant but varied. The details of Rattani’s
algorithm is in Algorithm 2.

We compared our approach with Ref. [3] because it is the only one, to the
best of our knowledge, that proposed a self updating system to deal with never-
seen-before materials, thus treating the FPAD problem as a cops and robbers
game, where a “patch” is constantly applied to the existing system in order to
adapt itself over time.

The method in [3] relied on the number of materials (one SVM per material),
and every time all of them need a complete re-training because they are consid-
ered as a unique system (therefore it is not possible to use incremental SVM for
each of them). Our proposed method relies on the linear SVM that self-updates
by the stochastic gradient descent theory. The system is more scalable due to the
fact that its size in terms of classifiers is independent of the number of materials
involved. Only one linear SVM is necessary, without the need of both old and
new data.
2 δτ is a threshold and in all experiments is set to 0.001.
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Algorithm 2. Rattani (W-SVM)

– Let us indicate our classifiers with C1, C2.
– Let Bt0 , Bt1 , ..., Btm be m + 1 sets of samples collected over time.
– Let M = {m0, m1, ..., mk} where m0 is the class of Live samples and mi i �= 0

is a generic spoof material that are present in Bt0

– Bt0 = {(x1, l1), ..., (xN0 , lN0)}, where xi is a feature vector and li is the related
class (Live/Fake). The first is labeled, that means, the class are known for each
sample.

– Let P0(l | f0(x)), that is the inclusion probability of the class.
– Let Pη(l | f(x)), that is the Live distribution
– Let Pψ(l | f(x)), that is the Fake distribution
– For t ∈ [t1, ..., tm], Bt = {x1, ..., xNt}, where xi is a feature vector.

B ← Bt0

C1 ← 1 − Class RBF SV M(B), that is an ensemble a SVM for each mi where is
i = 1, .., k
C2 ← RBF SV M(B)
Estimate P0(l | f0(x)), Pη(l | f(x)), Pψ(l | f(x)) over B.
for t ∈ [t1, ..., tm] do

H = B
for x ∈ Bt do

Estimate the novel material using Eq. 2 as Known Negative KnownN .
Estimate the spoof material using Eq. 3 as Known Negative KnownN .
H = H ∪ KnowN

end for
C2 ← RBF SV M(C2, H)
Estimate Pη(l | f(x)), Pψ(l | f(x)) over B.

end for

3 Experimental Results

3.1 Dataset

We tested our approach on the datasets publicly available and related to the
second Liveness Detection Competition 2011 (LivDet 2011) [11]. They were col-
lected in order to ascertain the current state of the art in FPAD systems. These
datasets are based on images captured from four different sensors: Biometrika,
Digital Persona, Italdata and Sagem. For each of these scanners, 4000 images
were acquired in total, being 2000 Live and 2000 Fake images. Each dataset has
a set M of n materials M = {m1, ...,mn}; without loss of generality we indicate
m0 the Live patterns. Remaining artificial materials are distributed as follows:
for Digital Persona and Sagem spoofs materials are Latex, PlayDoh, Gelatine,
Silicone and Wood Glue. Instead, for Biometrika and ItalData datasets there are
image samples of Latex, Ecoflex (platinum-catalysed silicone), Gelatine, Silgum
and Wood Glue.
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3.2 Experimental Protocol

In the LivDet competition, each data set is splitted into two parts, training set for
computing the system’s parameter, and test set for evaluating its performance.
In order to verify the performance under never-seen-before materials, we followed
the experimental protocol described by Rattani et al. [3]. It basically consists of
three steps: training, adaptation and testing.

1. Training: Each train set is splitted in 1,000 Live images and 2 sets of 200 Fake
images each one, that is, Bt0 . These sets are grouped into the following Mt0 =
{m0,ml,mk} combinations, where l, k = {1, .., n}; l �= k are considered as
known spoof materials. We must split the train set with all combinations of
m1, ..mn materials according to their corresponding sensor described above.

2. Adaptation: Each test set is divided into two non-overlapping partitions called
T1 and T2. Both partitions require 500 Live and 500 Fake samples. Ti i =
{1, 2} is composed by 200 Fake samples with the same materials of Mt0 , and
300 samples of 3 novel materials that are not present in Mt0 , called unknown
materials. Those partitions are separately used to either adapt the system
with novel spoofs as well as for testing purposes. When using for updating
purposes, we call them Bti in order to incrementally adapt the system as
previously described in Sect. 2.

3. Testing: T1 and T2 have also the role of testing the performance of the system.
In particular, we update the system with Ti, i ∈ {1, 2} and test with Tj , j ∈
{1, 2}, j �= i. In order to see the benefits of the self-update system, we also
compare its performance without the adaptation stage.

3.3 Results

The goal of the experiment is to compare our algorithm with results reported in
Rattani et al. Thus we used the same textural features, namely, LBP, LPQ and
BSIF [10,16,17].

Reported results are averaged over the cross-test using T1 and T2 data sets.
Figures 1(a), (b), (c) and (d) showed the performance of the system in terms

of Equal Error Rate (EER), defined as the error rate where the false positive
and false negative rates are equal. The x-axis represents the materials present
in the training set. Thus, the remaining artificial materials according to each
sensor are considered as never-seen-before spoofs. The y-axis is divided in two
parts, where the upper part represents the results of Rattani et al.’s system and
the one in the bottom represent results of the proposed system. For each system
the contour plot represents the performance for LPQ, LBP and BSIF feature
extraction methods. As indicated above, for each method, averaged EER values
for non adapted and adapted protocols are shown. The not adapted system is
trained using the same algorithms (W-SVM and incremental SVM), and there is
not the adaptation phase, but only the testing step. We compare the performance
in order to evaluate the benefits of the adapting strategy.
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(a) Average EER (%) of Biometrika (b) Average EER (%) of Italdata

(c) Average EER (%) of Digital Persona (d) Average EER (%) of Sagem

Fig. 1. EER plots. Each chart is divided being the approach of Rattani et al. in
the upper part and our approach below. x-axis represents materials used in train-
ing stage. Their acronyms are EF (Ecoflex), SG (Silgum), GT (Gelatine), LT (Latex),
WG (WoodGlue), SC (Silicone), PD (Playdoh), that indicate (Color figure online).

We can observe the influence of each artificial material depending on whether
they are known or unknown materials, that is, depending on whether the dis-
played material was present during the initial training stage or not. In these
plots, the averaged EER value scale appears as a legend on the right column
of the image, going from red (high) to green (low) values of EER. In order to
keep certain coherence among the 4 plots, we maintain the same red-green scale:
colors represent equal EER values within different plots. The highest existing
EER value (52.05% when using LPQ with DigitalPersona samples and being
Gelatine and Playdoh known materials, achieved by Rattani et al.) among all
scanners and material combinations is represented as absolute red color whereas
the lowest value (8.45% when using BSIF with Biometrika samples and being
Latex and EcoFlex known materials, achieved by our method) represents the
absolute green color.

Overall, the obtained results support the idea that through adapting the
system with novel materials we may achieve a better performance against never-
seen-before scenarios, for both W-SVM and incremental SVM. By following the
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above described convention, Fig. 1(a) clearly shows a poorer performance of Bio-
metrika samples when avoiding adaptation through LPQ features for almost
every material combinations. On the other hand, avoiding adaptation with LBP
features may lead to differences in performance depending on the material com-
binations. This means that the role of the features set adopted may help in
detecting never-seven-before materialis, due to ”generalization” abilities that
should be better investigated in future works. The W-SVM system performs
worse when EcoFlex+Silgum, Silgum+Gelatine and WoodGlue+Silgum mate-
rial combinations appear within the training set. Conversely, the incremental
SVM seems to behave better with previous materials but performs worse when
Gelatine+Latex, Latex+EcoFlex or Silgum+Latex pairs are known spoofs. Fur-
thermore, BSIF features are generally less effective for the non adapted version
of Rattani et al. than for our approach. Only WoodGlue+EcoFlex materials
characterize a worse performance for our non adapted procedure. However, we
also observe that once having adapted our classifier, it has a better performance
than adapted BSIF from Rattani et al.

Table 1. EER values averaged from T1 and T2 (both Rattani and our approach)

Average EER LBP

Rattani Ours

(not adapted) (adapted) (not adapted) (adapted)

Biometrika 16.45 10.69 15.97 12.78

Italdata 29.23 24.53 24.81 22.56

Digital persona 37.49 26.08 26.62 25.05

Sagem 21.79 17.63 17.22 15.46

Average EER LPQ

Rattani Ours

(not adapted) (adapted) (not adapted) (adapted)

Biometrika 16.41 12.32 20.32 17.25

Italdata 21.81 17.43 19.50 17.22

Digital Persona 38.86 15.22 21.75 19.74

Sagem 26.315 17.03 26.34 23.06

Average EER BISF

Rattani Ours

(not adapted) (adapted) (not adapted) (adapted)

Biometrika 17.27 11.82 13.9 11.34

Italdata 29.82 27.34 19.73 18.87

Digital persona 25.43 21.68 19.94 16.65

Sagem 25.43 18.46 20 15.17
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Summarizing, our approach gives similar or even better results compared to
Rattani’s work. In fact, all the results achieved with BSIF features are better
for our method, as well as almost every scanner with LBP. By focusing on the
lowest performance obtained by incremental SVM, the deficiency generally lies
on the LPQ features for Biometrika, Sagem and Digital Persona sensors and also
on LBP features for Biometrika sensor. Similarly, special attention must be paid
to which materials are present within the training set or novel spoofs set. Overall
Biometrika and Italdata systems perform worse when Latex and WoodGlue are
considered as never-seen-before materials. Instead, for DigitalPersona and Sagem
scanners WoodGlue and Playdoh seem to cause the poorest classification rate.

In order to complement the plots with numerical results, in Table 1 we can
observe that after adaptation, our system overcomes the W-SVM-based novel
material detector in 8 out of 12 different cases (4 sensors times 3 feature extrac-
tion methods). Specifically, the samples obtained through Italdata, Digital Per-
sona and Sagem scanners are better classified with our approach by using LBP
method (22.56%, 25.05% and 15.46% respectively). Same thing occurs for aver-
age EER values from Italdata samples by using LPQ (17.22%) and also with
every sensor when using BSIF features (11.34%, 18.87%, 16.65% and 15.17%
respectively), thus suggesting the important role of the adopted feature set to
distinguish among materials characteristics.

4 Conclusions

The obtained results confirm that a self-adaptation algorithms may greatly help
in dealing with the never-seen-before materials problem in FPAD. Both W-SVM
and our proposed system appear to be effective from the point of view of classifi-
cation improvement through adaptive methods. It is remarkable that our system
achieves a very competitive performance through a less complex and easier-to-
implement approach. Nevertheless, generally speaking, it obtains weaker results
with LPQ features in comparison to the W-SVM method. This fact suggests a
different behaviour of LPQ with respect to LBP and BSIF. Regarding to the
difference in performance when exchanging spoof materials between train and
test datasets, obtained results support the existence of a general trend: facing
against Latex or Gelatine as novel materials results in poorer performance of the
system before having adapted it. Again, this can be a limitation of the feature
sets adopted. Consequently, it means that facing high quality artificial mate-
rials leads to a big challenge. In spite of this, our method has demonstrated
to be flexible through a simpler and scalable algorithm. In the future, we will
continue investigating the differences related to feature extraction methods and
algorithms. Additionally, we will extend these experiments to already available
LivDet 2013 and LivDet 2015 datasets in order to deepen into the image quality
(scanners) and spoof quality (materials) tradeoff, which was explicitly dealt with
in those editions of LivDet.
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Abstract. Verifying the authenticity of an image on social networks is
crucial to limit the dissemination of false information. In this paper, we
propose a system that provides information about tampering localization
on such images, in order to help either the user or automatic methods
to discriminate truth from falsehood. These images may be subjected to
a large number of possible forgeries, which calls for the use of generic
methods. Image forensics methods based on local features proved to be
effective for the specific case of copy-move forgery. By taking advantage
of the number of images available on the internet, we propose a generic
system based on image retrieval, followed by image comparison based
on local features to localize any kind of tampering in images from social
networks. We also propose a large and challenging adapted database of
real case images for evaluation.

Keywords: Tampering detection and localization · Tweet image
analysis · Image forgery · Copy-move and splicing detection ·
Matching

1 Introduction

Massive amounts of information are spread over social networks, and among
them a large quantity of fake information is conveyed. Messages are often com-
posed of images or videos associated with text. Cases of misinformation take
many forms: images can be modified for malicious purpose, or original images
can be reused in a wrong context. Detecting such manipulations is now a key
issue, and such process usually requires to examine the several modalities to get
some contextual information about the transmission channel as well as informa-
tion from the web. In this work, we focus on the visual aspect of this problem,
and we are interested in automatically providing clues about images exchanged
on the social networks.

Images may have undergone different types of modifications: some of them
are malicious, like duplication of some parts of the image (known as copy-move
attack), inserting a region from another image (copy-paste or splicing attack),
or deleting some regions (thanks to techniques as in painting or seam carving);

c© Springer International Publishing AG 2017
S. Battiato et al. (Eds.): ICIAP 2017, Part I, LNCS 10484, pp. 750–761, 2017.
https://doi.org/10.1007/978-3-319-68560-1_67
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Fig. 1. Examples of images in social networks

but images posted on social networks can also typically be submitted to editing
process, such as combination of several images into one, adding of text or shapes
(arrows, circles, etc.), aesthetic filters, or simply cropped or re-compressed, see
Fig. 1. Rather than only classifying an image as modified or pristine, we are
interested in detecting and localizing any type of modifications.

Many studies in the image forensics field tackle the problem of assessing the
authenticity of digital images. In the traditional forensics paradigm, no external
information but the image is available. This is a difficult task, and forensics
methods can usually only cope with copy-move attacks, and are evaluated on
clean dedicated databases. We adopt a different paradigm as we rely on the
access to external information such as image databases, or Web reverse image
search. Indeed, one of the first step in manual checking of image integrity is to
search it (or modified versions) on the Web1, and there’s no reason to refuse
this information, in particular in the context of social network use. The problem
is thus assimilated to a comparison task between pairs of images, which can
handle various tampering operations, at a lower cost and faster than tampering
detection methods based on a single image. These previous methods can be seen
as an alternative approach, when no similar images are retrieved.

Difficulties lie in the wide variety of possible modifications. In this work, we
propose a unified framework to detect and localize a large variety of forgeries
in an image, by detecting inconsistencies between two images. The image to
analyze is compared to the most similar images retrieved by a Content-Based
Image Retrieval (CBIR) system. Such a system could be a reverse image search
tool, but in our work we query our own database. Thus, we can evaluate the
performance of our CBIR system when dealing with the particular class of images
considered here, where strong editing process may trouble the recognition. Once
similar images are retrieved, a local descriptor based approach is used to identify
and localize differences. We also build two datasets containing various types of
forgeries to evaluate our system.

In the next section, we discuss related studies on image forensics, image
retrieval and social networks analysis. Our approach is described in Sect. 3, while
datasets for evaluation and results are detailed in Sect. 4. Concluding remarks
are presented in Sect. 5.

1 http://www.stopfake.org/en/13-online-tools-that-help-to-verify-the-authenticity-
of-a-photo/.

http://www.stopfake.org/en/13-online-tools-that-help-to-verify-the-authenticity-of-a-photo/
http://www.stopfake.org/en/13-online-tools-that-help-to-verify-the-authenticity-of-a-photo/
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2 Related Work

Image forensics. The identification of tampered images has been largely stud-
ied in the field of image forensics. Various forms of image manipulation exist
such as objects deletion, retouching objects, copy-moving parts of an image,
or inserting elements taken from a different source, i.e. splicing or copy-paste.
Such diverse scenarios require specific approaches and techniques. Traditionally
in image forensics scenarios, the decision (tampered or not) must be made solely
on the basis of the image to be analyzed, without using any external informa-
tion. Most passive forgery detection techniques aim at revealing alteration of the
underlying statistics of the forged image. However, almost all existing forensics
methods detect only one type of image processing operations or are based on
some assumptions regarding the image format or the camera used. Among these
techniques, pixel-based approaches are the most related to our context. Indeed,
for images transmitted on social networks, we have neither information about
camera (as EXIF informations are erased), nor prior about format.

Pixel-based methods widely address the problem of copy-move forgery detec-
tion (CMFD) [24]. These methods, also called Local Descriptor-based forgery
detection techniques, are typically based on feature matching. Block-based
approaches split the image into overlapping blocks and extract features, such
as DCT, DWT, histogram of co-occurrences on the image residual [11], Zernike
moments, or Local Binary Pattern (LBP) [9]. Keypoints-based approaches com-
pute features, usually SIFT or SURF [1,10], on local regions characterized by
a high entropy. Features are then matched to detect similar regions, as a cue
for copy-move forgery. Generally, it is shown that techniques based on dense
fields provide a higher accuracy [7]. Also, some methods propose not only the
detection but also the localization of the modified regions. We note that deep
Convolutional Neural Networks (CNN) have been recently introduced in image
forensics [5,17]. The general idea is to restrict the first convolutional layer to a
set of high-pass filters in order to suppress image content. However, the CNNs
are used either only for image binary classification (authentic/forged), without
localization [17], or to identify some manipulations such as median filtering or
Gaussian blurring, excluding copy-move or splicing attacks [5].

Content-Based Image Retrieval (CBIR). For several years state-of-the-art meth-
ods in image retrieval consisted in aggregating local descriptors, such as SIFT,
into a global representation. These last years, the use of pre-trained CNN [13]
became the new reference for global descriptors. [4] first showed that using fully
connected layers of a pre-trained deep network as global descriptors can out-
perform descriptors based on SIFT features, even without fine-tuning. Similar
conclusions were shared by [18,23] with region-based descriptors. Also, [3] pro-
posed to aggregate deep local features, while [20] proposed new fusing schemes
for compact descriptions.

Social networks information analysis. Analysis of information on social net-
works raises a growing interest, in particular detecting false information. This
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is illustrated by an increasing number of projects on this topic2, and the emer-
gence of a task dedicated to tweet classification on true or false at the Mediaeval
benchmark, named Verifying Multimedia Use3. Usually the methods are inter-
ested in the multimodal nature of the messages to make a decision (text, social
networks, image). It was also shown that the use of external knowledge is of
great importance in the success of the proposed methods [15,16].

3 Proposed Method

We propose a unified approach to detected a large variety of forgeries, which
is composed of two main steps. First, the image to analyze is used to query
a database. The system searches for the most similar image. If an image is
retrieved, it is then compared to the query image to detect and localize the
forged areas; Otherwise, the process ends.

3.1 Content-Based Image Retrieval System

Initial Ranking. A CBIR system is used to retrieve candidate images, suffi-
ciently similar to a query (the image to be analyzed), even if the images are
different one from another due to tampering operations.

First, images are described using CNN-based representations. Following the
recent works of [21,23], we choose to build descriptors using the seventh fully
connected layer fc7 of the VGG vd19 CNN [22] trained on ImageNet. Images
are first scaled to the standard 224 × 224 input size. Then, �2-normalization is
performed and we obtain a 4096-dimensional vector.

Once all images descriptors are obtained, cosine similarity is computed
between the query and images from the database. The nearest neighbors are
retrieved using a KD-Tree to accelerate the search. Only images whose similar-
ity exceeds a given threshold T , which is further evaluated in the experimental
section, are considered as relevant. Otherwise no image is considered similar.

Filtering. A geometric verification step, i.e. filtering, is then employed to filter
the false positives from the short list of top ranked images returned by the CBIR.
Filtering is based on the number of inlier matches after estimating the spatial
transformation between the query and each candidate images. Finally, only the
image with the highest similarity is considered for further processing.

The proposed approach is based on SURF features matching, similarly to
several reranking process used in CBIR systems. Specifically, dense SURF fea-
tures are first extracted in both images and matched [19]. RANSAC algorithm
is then applied to estimate the affine transformation H between the two images.
To further decrease the number of false matches, only a subset S of points in

2 See for example Reveal project (https://revealproject.eu/), InVID project (http://
www.invid-project.eu/), or Pheme project (https://www.pheme.eu/).

3 http://www.multimediaeval.org/mediaeval2016/verifyingmultimediause.

https://revealproject.eu/
http://www.invid-project.eu/
http://www.invid-project.eu/
https://www.pheme.eu/
http://www.multimediaeval.org/mediaeval2016/verifyingmultimediause
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the query are kept as candidate matches for the RANSAC algorithm. These are
points that match another point with a distance d ≤ 2×dmin, where dmin is the
minimum distance found between 2 descriptors of the pair of images.

After RANSAC estimation, we further apply H to each point of S and classify
them as inlier if the distance d∗ between the projected position and its match is
lower than 0.15 × diag, where diag is the length of the image diagonal in terms
of pixels. Images with a majority of outliers in the set S are discarded as false
positives. Among the remaining images, the one with the highest ratio of inliers
over outliers of the set S is selected and given to the following localization part.

3.2 Tampering Localization

Once a pair of images is given by the CBIR system, the tampering localiza-
tion step consists in identifying potential inconsistencies between them. The
process should be robust to various transformations, such as rotation, illumi-
nation changes, crop, or translation, and is then based on local descriptors. In
our case, we are interested in detecting outlier matches spatially close to one
another, as a cue of tampering.

Having the homography H computed previously, we apply H to all keypoints
of the query to identify inliers and outliers, as detailed in the previous section.
Note that the matching criteria considered at this step (1-nn) is weaker than the
one used to estimate the homography, in order to enforce a one-to-one matching
of keypoints. Since this process is not symmetric, both images are used in turn
as query. The image containing the most outliers is selected for the localization
step, see Fig. 2(d).

(a) (b) (c)

(d) (e)

Fig. 2. (a) Query image; (b) candidate image returned by the CBIR (d) outliers com-
puted from query to candidate image; (c) density map; (e) binary mask.
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Finally, we identify the areas with high density of outliers and remove the
isolated points. These two operations are carried out by a Kernel Density Esti-
mation (KDE) technique. We compute a density map D on the set of out-
liers by applying a Gaussian kernel with bandwidth selected by Scott’s Rule
of thumb, see Fig. 2(c). This density map is then thresholded to obtain a binary
mask B of the suspicious regions. Only points p of the density map verifying
D(p) ≥ 1/2 maxp∈D(D(p)) are retained in the final segmentation, see Fig. 2(e).

4 Experiments

We evaluate our approach on challenging datasets exhibiting a large variety of
modifications. We first give an overview of the datasets involved and describe
the different characteristics of the data. The CBIR is further evaluated using all
these datasets and the tampering localization is finally tested.

4.1 Datasets

Many datasets of various size and difficulty have been proposed in image foren-
sics to evaluate forgery detection methods. They differ by the realism of their
construction (from simple artificial insertion to realistic complex objects with
post-processing), by the types of attacks they address, and by the presence of
the modification masks allowing the evaluation of the tampering localization.

Most existing datasets focus on copy-move attacks, thus we build two new
datasets. Reddit is built from real data with every type of forgery especially copy-
paste, which are almost not occurring in the other datasets. Similarly, Synthetic
is artificially built with various and precise forgeries to better understand how
our system copes with each type of attack. Also, we are interested in datasets
allowing tampering localization and for which the original images are available.

MICC-F600 [1] is a dataset from image forensics. It contains 600 images: 440
original images from the 1, 300 images of the MICC-F2000 dataset [2], and 160
forged images from the SATS-130 dataset [6]. Forged images contain realistic
and challenging multiple copy-move attacks.

MediaEval (ME) is composed of 316 images associated to the tweets used
in the Verifying Multimedia Use task of Mediaeval 2016. We use 40 images as
queries: 17 fake images particularly challenging, which have their original image
in the database, and 23 images with typical collage, cropping, or insertion of
text and geometrical shapes (see Fig. 3). These last modifications are generally
not achieved in a malicious purpose, but are challenging for the CBIR system.
The groundtruth maps were manually constructed for these queries.

Reddit is a collection of 129 original images and their photoshopped versions
from the Photoshop challenge on the Reddit website4, totalling 383 images. 106
images are used as query and were manually annotated by up to three annotators,

4 http://www.reddit.com.

http://www.reddit.com
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(a) (b) (c) (d)

Fig. 3. Some examples of challenging images from the ME dataset.

(a) (b) (c)

Fig. 4. Examples of different kinds of attacks in Reddit : (a) copy-paste; (b) text inser-
tion; (c) copy-move. Blue: unmodified regions; Red: tampered regions. (Color figure
online)

with an inter-annotator agreement of 75.12% in terms of Jaccard’s score. The
tampering operations are mainly splicing of various size, which is not addressed
by MICC-F600. Some examples are given in Fig. 4.

Synthetic is an artificially generated dataset of 3, 500 forged images, including
both copy-move and copy-paste attacks and different processing of the alien.
For each 7 original images, we generate 500 forged versions. Each forged image
is created by combining a random selection of different parameters among the
number of modifications (between 0 and 3), the size of the alien (10, 20, 30, 40,
or 50% of the host image), the rotation applied (0, 45, 90, 135, 180, 225, 270, or
315 degrees), a blurring or not of the alien, and the type of attack, i.e. copy-move
or copy-paste. Note that we can find both copy-move and copy-paste attacks in
a forged image, and that a blur attack can be applied on the whole host image
(even without any attack). This dataset is not evaluated with the CBIR.

Distractors. Additionally, we collect distractors when evaluating the CBIR sys-
tem. We use 8, 035 images collected from 5 websites dedicated to hoax detection5.
We further add 82, 543 unique images from Twitter, corresponding to the top
tweets during January and February 2017, for a total of 170 different topics.

4.2 CBIR System

Most CBIR systems are evaluated on benchmark databases composed of several
views of a same object. However, we want to test whether our system is capable

5 hoaxbuster.com, hoax-busters.org, urbanlegends.about.com, snopes.com, and
hoax-slayer.com.

http://www.hoaxbuster.com/
http://www.hoaxbusters.org/
http://urbanlegends.about.com/
http://www.snopes.com/
http://www.hoax-slayer.com/
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(a) Accuracy of the CBIR system according to
the cosine similarity threshold T .

(b) Example of true positive

(c) Example of false positive

Fig. 5. CBIR evaluation results.

of returning a quasi-copy of a query at first rank and none if no copy exists. We
further evaluate the behaviour of our system with tampered and noisy images.

The query set is composed of diverse tampered and pristine images and the
database contains original images as well as distractors. Specifically, the database
to query is composed of 93,121 images: 82,543 images from Twitter, 8,035 images
from hoax websites, 316 images from ME, 129 original images from Reddit, 98
images from the SATS-130 dataset and 2,000 images from the MICC-F2000
dataset which contain the original images of MICC-F600.

Then, we use a set of 2,151 queries, both positives and negatives (meaning
having or not a correspondence in the database): 600 images from MICC-F600,
106 photoshopped images from Reddit, and 40 tampered images from ME are
positive examples. Amongst them, 440 images from MICC-F600 are not tam-
pered. 1,405 images from Holidays dataset [12] are used as negative queries.

Results. Unlike most CBIR measuring ranking performance in terms of pre-
cision (P@k, mAP, etc.), we evaluate our system in terms of mean accuracy,
computed over all the queries. Indeed, we wish our CBIR-based system to out-
put either the most similar image or no image, if no quasi-copy is found in the
database.

Figure 5(a) shows the accuracy of the CBIR system for various threshold
values T . We observe that the best threshold is T = 0.9 with an accuracy of
91.91% with filtering and 81.08% without filtering. The value T = 0.9 is kept
for the tampering localization step.

Table 1 shows the performance with respect to each set of queries for given
thresholds T . We observe a gain in accuracy for lower T on Reddit, MICC-F600,
and ME (positive queries). However, Holidays performs best for a high T , as it
only contains negative queries. Indeed, a low threshold allows to list all relevant
images, while generating a lot of false positives.

As an insight, we observe that the CBIR mainly fails when the forged area
is very large with respect to the image. This is particularly illustrated by poor



758 C. Maigrot et al.

Table 1. CBIR accuracy per datasets for different threshold values T

T Reddit MICC-F600 ME Holidays

0.75 73.62% 99.83% 32.50% 74.68%

0.80 73.23% 99.83% 32.50% 80.58%

0.85 71.65% 99.50% 32.50% 88.41%

0.90 64.57% 98.50% 20.00% 96.09%

0.95 37.80% 94.00% 15.00% 100.00%

Table 2. Tampering localization results per datasets.

Dataset Synthetic Synthetic unblurred MICC-F600 Reddit ME

FP 12.41% 0.93% 10.82% 37.11% 24.37%

FN 15.05% 9.90% 20.93% 24.82% 29.82%

TPR 100.00% 100.00% 95.61% 100.00% 100.00%

FPR 49.64% 0.00% 9.10% 0.00% 0.00%

performances on ME. This small set of queries was specially chosen to challenge
the CBIR system, which is disturbed by overly large insertions (more than 50% of
the image size), or border/banners insertions. Figure 3 shows such queries whose
original image has not been retrieved. Examples of successful match despite a
quite large forgery and false positive are given in Fig. 5(b) and 5(c).

4.3 Tampering Localization

We evaluate the tampering localization on Synthetic, and on the pairs of real
forged images returned by the CBIR, from MICC-F600 (copy-move attacks),
Reddit (various attacks, mainly copy-paste), and ME (various modifications).
For the Synthetic dataset, image pairs are directly given.

The performance on patch localization is computed at the pixel level as the
percentage of erroneously detected pixels FP (i.e. false positives) and erroneously
missed pixels FN (i.e. false negatives). To compare with other methods, we also
measure the detection performance at the image level in terms of True Positive
Rate (TPR) and False Positive Rate (FPR), where TPR is the fraction of tam-
pered images correctly identified, while FPR is the fraction of original images
that are not correctly identified.

Results. Table 2 shows the localization results per datasets. We observe on
Synthetic that the localization method is robust to the size, rotation or number
of inserted aliens, but unsurprisingly sensitive to blurring of the whole image. The
high FPR corresponds to blurred original images classified as forged. Discarding
the blurred images (Synthetic Unblurred), attacks are precisely detected.
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Table 3. Results on MICC-F600 (best settings for each method, in %)

Method Fan2016 [10] Cozzolino2015 [8] Li2016 [14] Ours

TPR 88.13% 96.25% 96.25% 95.00%

FPR 6.82% 5.91% 4.77% 9.10%

Generally, the pixel-level localization is altered by two factors: (i) our pre-
dicted area is often smaller than the alien, which increases FN . However, we do
not focus on having the most accurate localization at the pixel level but rather
precisely detecting whether a tampering is detected or not; (ii) when the image
is wrongly matched by the CBIR with a false positive, the tampering localization
failed, resulting in an increase of FP . This doesn’t concern MICC-F600, which
offer cleaner and smaller attacks, and for which the accuracy of the CBIR is the
highest, with no false positives.

At the image level, the detection of tampering in Reddit, and ME offers
perfect results. The null FPR is due to the fact all queries are forged for
these datasets. When not all queries are forged, as in MICC-F600, performance
remains very high. In fact, we compute FPR and TPR for the sake of comparison
with the state of the art on MICC-F600, as most of methods (except [8]) only
deal with detection. Comparison with the state of the art is given in Table 3.
We note that the CBIR is not applied there (whole images of MICC-F600 are
processed) to allow the comparison. Our system performs on par with recent
state of the art methods, with a higher FPR.

Regarding the entire process and all the datasets (including Holidays as neg-
ative examples), we measure a TPR of 81.37% and a FPR of 5.14%. Errors are
mainly due to the CBIR performance, as false positives at the retrieval step
generate false positives for the tampering detection, while false negatives result
in missed tampering detections.

5 Conclusion

In this paper, we address the problem of verifying the authenticity of images from
social networks. Moreover, we built two complete dataset for the evaluation. We
propose a system that detect and localize tampering on such images, based on
image retrieval, followed by image comparison based on local features. Unlike
methods from the literature, our system is generic and can handle a large variety
of modifications. We evaluated our system on diverse datasets, and shown that
the proposed method performs on par with the state of the art for copy-move.
We also observed that images from social networks are challenging for state of
the art CBIR, and there is room for improvement to deal with this particular
type of images. Future work will be directed in this direction.
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