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Foreword

Hosting the European Conference on Computer Vision (ECCV 2020) was certainly an
exciting journey. From the 2016 plan to hold it at the Edinburgh International
Conference Centre (hosting 1,800 delegates) to the 2018 plan to hold it at Glasgow’s
Scottish Exhibition Centre (up to 6,000 delegates), we finally ended with moving
online because of the COVID-19 outbreak. While possibly having fewer delegates than
expected because of the online format, ECCV 2020 still had over 3,100 registered
participants.

Although online, the conference delivered most of the activities expected at a
face-to-face conference: peer-reviewed papers, industrial exhibitors, demonstrations,
and messaging between delegates. In addition to the main technical sessions, the
conference included a strong program of satellite events with 16 tutorials and 44
workshops.

Furthermore, the online conference format enabled new conference features. Every
paper had an associated teaser video and a longer full presentation video. Along with
the papers and slides from the videos, all these materials were available the week before
the conference. This allowed delegates to become familiar with the paper content and
be ready for the live interaction with the authors during the conference week. The live
event consisted of brief presentations by the oral and spotlight authors and industrial
sponsors. Question and answer sessions for all papers were timed to occur twice so
delegates from around the world had convenient access to the authors.

As with ECCV 2018, authors’ draft versions of the papers appeared online with
open access, now on both the Computer Vision Foundation (CVF) and the European
Computer Vision Association (ECVA) websites. An archival publication arrangement
was put in place with the cooperation of Springer. SpringerLink hosts the final version
of the papers with further improvements, such as activating reference links and sup-
plementary materials. These two approaches benefit all potential readers: a version
available freely for all researchers, and an authoritative and citable version with
additional benefits for SpringerLink subscribers. We thank Alfred Hofmann and
Aliaksandr Birukou from Springer for helping to negotiate this agreement, which we
expect will continue for future versions of ECCV.

August 2020 Vittorio Ferrari
Bob Fisher

Cordelia Schmid
Emanuele Trucco



Preface

Welcome to the proceedings of the European Conference on Computer Vision (ECCV
2020). This is a unique edition of ECCV in many ways. Due to the COVID-19
pandemic, this is the first time the conference was held online, in a virtual format. This
was also the first time the conference relied exclusively on the Open Review platform
to manage the review process. Despite these challenges ECCV is thriving. The con-
ference received 5,150 valid paper submissions, of which 1,360 were accepted for
publication (27%) and, of those, 160 were presented as spotlights (3%) and 104 as orals
(2%). This amounts to more than twice the number of submissions to ECCV 2018
(2,439). Furthermore, CVPR, the largest conference on computer vision, received
5,850 submissions this year, meaning that ECCV is now 87% the size of CVPR in
terms of submissions. By comparison, in 2018 the size of ECCV was only 73% of
CVPR.

The review model was similar to previous editions of ECCV; in particular, it was
double blind in the sense that the authors did not know the name of the reviewers and
vice versa. Furthermore, each conference submission was held confidentially, and was
only publicly revealed if and once accepted for publication. Each paper received at least
three reviews, totalling more than 15,000 reviews. Handling the review process at this
scale was a significant challenge. In order to ensure that each submission received as
fair and high-quality reviews as possible, we recruited 2,830 reviewers (a 130%
increase with reference to 2018) and 207 area chairs (a 60% increase). The area chairs
were selected based on their technical expertise and reputation, largely among people
that served as area chair in previous top computer vision and machine learning con-
ferences (ECCV, ICCV, CVPR, NeurIPS, etc.). Reviewers were similarly invited from
previous conferences. We also encouraged experienced area chairs to suggest addi-
tional chairs and reviewers in the initial phase of recruiting.

Despite doubling the number of submissions, the reviewer load was slightly reduced
from 2018, from a maximum of 8 papers down to 7 (with some reviewers offering to
handle 6 papers plus an emergency review). The area chair load increased slightly,
from 18 papers on average to 22 papers on average.

Conflicts of interest between authors, area chairs, and reviewers were handled lar-
gely automatically by the Open Review platform via their curated list of user profiles.
Many authors submitting to ECCV already had a profile in Open Review. We set a
paper registration deadline one week before the paper submission deadline in order to
encourage all missing authors to register and create their Open Review profiles well on
time (in practice, we allowed authors to create/change papers arbitrarily until the
submission deadline). Except for minor issues with users creating duplicate profiles,
this allowed us to easily and quickly identify institutional conflicts, and avoid them,
while matching papers to area chairs and reviewers.

Papers were matched to area chairs based on: an affinity score computed by the
Open Review platform, which is based on paper titles and abstracts, and an affinity



score computed by the Toronto Paper Matching System (TPMS), which is based on the
paper’s full text, the area chair bids for individual papers, load balancing, and conflict
avoidance. Open Review provides the program chairs a convenient web interface to
experiment with different configurations of the matching algorithm. The chosen con-
figuration resulted in about 50% of the assigned papers to be highly ranked by the area
chair bids, and 50% to be ranked in the middle, with very few low bids assigned.

Assignments to reviewers were similar, with two differences. First, there was a
maximum of 7 papers assigned to each reviewer. Second, area chairs recommended up
to seven reviewers per paper, providing another highly-weighed term to the affinity
scores used for matching.

The assignment of papers to area chairs was smooth. However, it was more difficult
to find suitable reviewers for all papers. Having a ratio of 5.6 papers per reviewer with a
maximum load of 7 (due to emergency reviewer commitment), which did not allow for
much wiggle room in order to also satisfy conflict and expertise constraints. We
received some complaints from reviewers who did not feel qualified to review specific
papers and we reassigned them wherever possible. However, the large scale of the
conference, the many constraints, and the fact that a large fraction of such complaints
arrived very late in the review process made this process very difficult and not all
complaints could be addressed.

Reviewers had six weeks to complete their assignments. Possibly due to COVID-19
or the fact that the NeurIPS deadline was moved closer to the review deadline, a record
30% of the reviews were still missing after the deadline. By comparison, ECCV 2018
experienced only 10% missing reviews at this stage of the process. In the subsequent
week, area chairs chased the missing reviews intensely, found replacement reviewers in
their own team, and managed to reach 10% missing reviews. Eventually, we could
provide almost all reviews (more than 99.9%) with a delay of only a couple of days on
the initial schedule by a significant use of emergency reviews. If this trend is confirmed,
it might be a major challenge to run a smooth review process in future editions of
ECCV. The community must reconsider prioritization of the time spent on paper
writing (the number of submissions increased a lot despite COVID-19) and time spent
on paper reviewing (the number of reviews delivered in time decreased a lot pre-
sumably due to COVID-19 or NeurIPS deadline). With this imbalance the peer-review
system that ensures the quality of our top conferences may break soon.

Reviewers submitted their reviews independently. In the reviews, they had the
opportunity to ask questions to the authors to be addressed in the rebuttal. However,
reviewers were told not to request any significant new experiment. Using the Open
Review interface, authors could provide an answer to each individual review, but were
also allowed to cross-reference reviews and responses in their answers. Rather than
PDF files, we allowed the use of formatted text for the rebuttal. The rebuttal and initial
reviews were then made visible to all reviewers and the primary area chair for a given
paper. The area chair encouraged and moderated the reviewer discussion. During the
discussions, reviewers were invited to reach a consensus and possibly adjust their
ratings as a result of the discussion and of the evidence in the rebuttal.

After the discussion period ended, most reviewers entered a final rating and rec-
ommendation, although in many cases this did not differ from their initial recom-
mendation. Based on the updated reviews and discussion, the primary area chair then
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made a preliminary decision to accept or reject the paper and wrote a justification for it
(meta-review). Except for cases where the outcome of this process was absolutely clear
(as indicated by the three reviewers and primary area chairs all recommending clear
rejection), the decision was then examined and potentially challenged by a secondary
area chair. This led to further discussion and overturning a small number of preliminary
decisions. Needless to say, there was no in-person area chair meeting, which would
have been impossible due to COVID-19.

Area chairs were invited to observe the consensus of the reviewers whenever
possible and use extreme caution in overturning a clear consensus to accept or reject a
paper. If an area chair still decided to do so, she/he was asked to clearly justify it in the
meta-review and to explicitly obtain the agreement of the secondary area chair. In
practice, very few papers were rejected after being confidently accepted by the
reviewers.

This was the first time Open Review was used as the main platform to run ECCV. In
2018, the program chairs used CMT3 for the user-facing interface and Open Review
internally, for matching and conflict resolution. Since it is clearly preferable to only use
a single platform, this year we switched to using Open Review in full. The experience
was largely positive. The platform is highly-configurable, scalable, and open source.
Being written in Python, it is easy to write scripts to extract data programmatically. The
paper matching and conflict resolution algorithms and interfaces are top-notch, also due
to the excellent author profiles in the platform. Naturally, there were a few kinks along
the way due to the fact that the ECCV Open Review configuration was created from
scratch for this event and it differs in substantial ways from many other Open Review
conferences. However, the Open Review development and support team did a fantastic
job in helping us to get the configuration right and to address issues in a timely manner
as they unavoidably occurred. We cannot thank them enough for the tremendous effort
they put into this project.

Finally, we would like to thank everyone involved in making ECCV 2020 possible
in these very strange and difficult times. This starts with our authors, followed by the
area chairs and reviewers, who ran the review process at an unprecedented scale. The
whole Open Review team (and in particular Melisa Bok, Mohit Unyal, Carlos
Mondragon Chapa, and Celeste Martinez Gomez) worked incredibly hard for the entire
duration of the process. We would also like to thank René Vidal for contributing to the
adoption of Open Review. Our thanks also go to Laurent Charling for TPMS and to the
program chairs of ICML, ICLR, and NeurIPS for cross checking double submissions.
We thank the website chair, Giovanni Farinella, and the CPI team (in particular Ashley
Cook, Miriam Verdon, Nicola McGrane, and Sharon Kerr) for promptly adding
material to the website as needed in the various phases of the process. Finally, we thank
the publication chairs, Albert Ali Salah, Hamdi Dibeklioglu, Metehan Doyran, Henry
Howard-Jenkins, Victor Prisacariu, Siyu Tang, and Gul Varol, who managed to
compile these substantial proceedings in an exceedingly compressed schedule. We
express our thanks to the ECVA team, in particular Kristina Scherbaum for allowing
open access of the proceedings. We thank Alfred Hofmann from Springer who again
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serve as the publisher. Finally, we thank the other chairs of ECCV 2020, including in
particular the general chairs for very useful feedback with the handling of the program.

August 2020 Andrea Vedaldi
Horst Bischof
Thomas Brox

Jan-Michael Frahm
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Fig. 1. SIZER dataset of people with clothing size variation. (Left): 3D scans of people
captured in different clothing styles and sizes. (Right): T-shirt and short pants for sizes
small and large, which are registered to a common template.

Abstract. While models of 3D clothing learned from real data exist, no
method can predict clothing deformation as a function of garment size.
In this paper, we introduce SizerNet to predict 3D clothing conditioned
on human body shape and garment size parameters, and ParserNet to
infer garment meshes and shape under clothing with personal details in a
single pass from an input mesh. SizerNet allows to estimate and visualize
the dressing effect of a garment in various sizes, and ParserNet allows
to edit clothing of an input mesh directly, removing the need for scan
segmentation, which is a challenging problem in itself. To learn these
models, we introduce the SIZER dataset of clothing size variation which
includes 100 different subjects wearing casual clothing items in various
sizes, totaling to approximately 2000 scans. This dataset includes the
scans, registrations to the SMPL model, scans segmented in clothing
parts, garment category and size labels. Our experiments show better
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parsing accuracy and size prediction than baseline methods trained on
SIZER. The code, model and dataset will be released for research pur-
poses at: https://virtualhumans.mpi-inf.mpg.de/sizer/.

1 Introduction

Modeling how 3D clothing fits on the human body as a function of size has
numerous applications in 3D content generation (e.g., AR/VR, movie, video
games, sport), clothing size recommendation (e.g., e-commerce), computer vision
for fashion, and virtual try-on. It is estimated that retailers lose up to $600 billion
each year due to sales returns as it is currently difficult to purchase clothing
online without knowing how it will fit [2,3].

Predicting how clothing fits as a function of body shape and garment size
is an extremely challenging task. Clothing interacts with the body in complex
ways, and fit is a non-linear function of size and body shape. Furthermore,
clothing fit differences with size are subtle, but they can make a difference when
purchasing clothing online. Physics based simulation is still the most commonly
used technique because it generalizes well, but unfortunately, it is difficult to
adjust its parameters to achieve a realistic result, and it can be computationally
expensive.

While there exist several works that learn how clothing deforms as a function
of pose [30], or pose and shape [22,30,34,37,43], there are few works modeling
how garments drape as a function of size. Recent works learn a space of styles [37,
50] from physics simulations, but their aim is plausibility, and therefore they can
not predict how a real garment will deform on a real body.

What is lacking is (1) a 3D dataset of people wearing the same garments in
different sizes and (2) a data-driven model learned from real scans which varies
with sizing and body shape. In this paper, we introduce the SIZER dataset, the
first dataset of scans of people in different garment sizes featuring approximately
2000 scans, 100 subjects and 10 garments worn by subjects in four different sizes.
Using the SIZER dataset we learned a Neural Network model, which we refer
to as SizerNet, which given a body shape and a garment, can predict how the
garment drapes on the body as a function of size. Learning SizerNet requires
to map scans to a registered multi-layer meshes – separate meshes for body
shape, and top and bottom garments. This requires segmenting the 3D scans,
and estimating their body shape under clothing, and registering the garments
across the dataset, which we obtain using the method explained in [14,38]. From
the multi-layer meshes, we learn an encoder to map the input mesh to a latent
code, and a decoder which additionally takes the body shape parameters of
SMPL [33], the size label (S, M, L, XL) of the input garment, and the desired
size of the output, to predict the output garment as a displacement field to a
template.

Although visualizing how an existing garment fits on a body as a function of
size is already useful for virtual try-on applications, we would also like to change
the size of garments in existing 3D scans. Scans however, are just pointclouds,

https://virtualhumans.mpi-inf.mpg.de/sizer/
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and parsing them into a multi-layer representation at test time using [14,38]
requires segmentation, which sometimes requires manual intervention. There-
fore, we propose ParserNet, which automatically maps a single mesh registration
(SMPL deformed to the scan) to multi-layer meshes with a single feed-forward
pass. ParserNet, not only segments the single mesh registration, but it reparam-
eterizes the surface so that it is coherent with common garment templates. The
output multi-layer representation of ParserNet is powerful as it allows simula-
tion and editing meshes separately. Additionally, the tandem of SizerNet and
ParserNet allows us to edit the size of clothing directly on the mesh, allowing
shape manipulation applications never explored before.

In summary, our contributions are:

• SIZER dataset: A dataset of clothing size variation of approximately 2000
scans including 100 subjects wearing 10 garment classes in different sizes,
where we make available, scans, clothing segmentation, SMPL+G registra-
tions, body shape under clothing, garment class and size labels.

• SizerNet: The first model learned from real scans to predict how clothing
drapes on the body as a function of size.

• ParserNet: A data-driven model to map a single mesh registration into a
multi-layered representation of clothing without the need for segmentation or
non-linear optimization.

Fig. 2. We propose a model to estimate and visualize the dressing effect of a gar-
ment conditioned on body shape and garment size parameters. For this we introduce
ParserNet (fU

w , fL
w , fB

w ), which takes a SMPL registered mesh M(θ, β,D) as input
and predicts the SMPL parameters (θ, β), parsed 3D garments using predefined tem-
plates T g(β, θ,0) and predicts body shape under clothing while preserving the personal
details of the subject. We also propose SizerNet, an encoder-decoder (fenc

w , fdec
w ) based

network, that resizes the garment given as input with the desired size label (δin, δout)
and drapes it on the body shape under clothing.

2 Related Work

Clothing Modeling. Accurate reconstruction of 3D cloth with fine structures
(e.g., wrinkles) is essential for realism while being notoriously challenging. Meth-
ods based on multi-view stereo can recover global shape robustly but struggle
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with high frequency details in non-textured regions [6,16,32,44,47,51]. The pio-
neering work of [8,9] demonstrated for the first time detailed body and clothing
reconstruction from monocular video using a displacement from SMPL, which
spearheaded recent developments [7,10,23–25,42]. These approaches do not sep-
arate body from clothing. In [14,26,30,38], the authors propose to reconstruct
clothing as a layer separated from the body. These models are trained on 3D
scans of real clothed people data and produce realistic models. On the other
hand, physics based simulation methods have also been used to model cloth-
ing [21,22,35,37,43,45,46,48,49]. Despite the potential gap with real-world data,
they are a great alternative to obtain clean data, free of acquisition noise and
holes. However, they still require manual parameter tuning (e.g., time step for
better convergence, sheer and stretch for better deformation effects, etc.), and
can be slow or unstable. In [21,22,43] a pose and shape dependent clothing
model is introduced, and [37,50] also model garment style dependent clothing
using a lower-dimensional representation for style and size like PCA and garment
sewing parameters, however there is no direct control on the size of clothing gen-
erated for given body shape. In [53], authors model the garment fit on different
body shapes from images. Our model SizerNet automatically outputs realistic
3D cloth models conditioned on desired features (e.g., shape, size).

Shape Under Clothing. In [11,57,60], the authors propose to estimate body
shape under clothing by fitting a 3D body model to 3D reconstructions of people.
An objective function typically forces the body to be inside clothing while being
close to the skin region. These methods cannot generalize well to complex or
loose clothing without additional prior or supervision [17]. In [27–29,36,52,54],
the authors propose learned models to estimate body shape from 2D images of
clothed people, but shape accuracy is limited due to depth ambiguity. Our model
ParserNet takes as input a 3D mesh and outputs 3D bodies under clothing with
high fidelity while preserving subject identity (e.g., face details).

Cloth Parsing. The literature has proposed several methods for clothed human
understanding. In particular, efficient cloth parsing in 2D has been achieved
using supervised learning and generative networks [18–20,55,56,58]. 3D cloth-
ing parsing of 3D scans has also been investigated [14,38]. The authors propose
techniques based on MRF-GrabCut [41] to segment 3D clothing from 3D scans
and transfer them to different subjects. However the approach requires several
steps, which is not optimal for scalability. We extend previous work with SIZER,
a fully automatic data-driven pipeline. In [13], the authors jointly predict cloth-
ing and inner body surface, with semantic correspondences to SMPL. However,
it does not have semantic clothing information.

3D Datasets. To date, only a few datasets consist of 3D models of subjects
with segmented clothes. 3DPeople [40], Cloth3D [12] consists of a large dataset
of synthetic 3D humans with clothing. None of the synthetic datasets contains
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realistic cloth deformations like the SIZER dataset. THUman [61] consists of
sequences of clothed 3D humans in motion, captured with a consumer RGBD
sensor (Kinectv2), and are reconstructed using volumetric SDF fusion [59]. How-
ever, 3D models are rather smooth compared to our 3D scans and no ground
truth segmentation of clothing is provided. Dyna and D-FAUST [15,39] consist
of high-res 3D scans of 10 humans in motion with different shape but the subjects
are only wearing minimal clothing. BUFF [60] contains high-quality 3D scans of
6 subjects with and without clothing. The dataset is primarily designed to train
models to estimate body shape under clothing and doesn’t contain garments seg-
mentation. In [14], the authors create a digital wardrobe with 3D templates of
garments to dress 3D bodies. In [26], authors propose a mixture of synthetic and
real data, which contains garment, body shape and pose variations. However,
the fraction of real dataset (∼300 scans) is fairly small. DeepFahsion3D [62] is a
dataset of real scans of clothing containing various garment styles. None of these
datasets contain garment sizing variation. Unlike our proposed SIZER dataset,
no dataset contains a large amount of pre-segmented clothing from 3D scans at
different sizes, with corresponding body shapes under clothing.

3 Dataset

In this paper, we address a very challenging problem of modeling garment fitting
as a function of body shape and garment size. As explained in Sect. 2, one of the
key bottlenecks that hinder progress in this direction is the lack of real-world
datasets that contain calibrated and well-annotated garments in different sizes
draped on real humans. To this end, we present SIZER dataset, a dataset of over
2000 scans containing people in diverse body shapes in various garments styles
and sizes. We describe our dataset in Sects. 3.1 and 3.2.

3.1 SIZER Dataset: Scans

We introduce the SIZER dataset that contains 100 subjects, wearing the same
garment in 2 or 3 garment sizes (S, M, L, XL). We include 10 garment classes,
namely shirt, dress-shirt, jeans, hoodie, polo t-shirt, t-shirt, shorts, vest, skirt,
and coat, which amounts to roughly 200 scans per garment class. We capture
the subjects in a relaxed A-pose to avoid stretching or tension due to pose in
the garments. Figure 1 shows some examples of people wearing a fixed set of
garments in different sizes. We use a Treedy’s static scanner [5] which has 130+
cameras, and reconstruct the scans using Agisoft’s Metashape software [1]. Our
scans are high resolution and are represented by meshes, which have different
underlying graph connectivity across the dataset, and hence it is challenging to
use this dataset directly in any learning framework. We preprocess our dataset,
by registering them to SMPL [33]. We explain the structure of processed data
in the following section.
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3.2 SIZER Dataset: SMPL and Garment Registrations

To improve general usability of the SIZER dataset, we provide SMPL+G reg-
istrations [14,31] registrations. Registering our scans to SMPL, brings all our
scans to correspondence, and provides more control over the data via pose and
shape parameters from the underlying SMPL. We briefly describe the SMPL
and SMPL+G formulations below.

SMPL represents the human body as a parametric function M(·), of pose (θ)
and shape (β). We add per-vertex displacements (D) on top of SMPL to model
deformations corresponding to hair, garments, etc. thus resulting in the SMPL
model. SMPL applies standard skinning W (·) to a base template T in T-pose.
Here, W denotes the blend weights and Bp(·) and Bs(·) models pose and shape
dependent deformations respectively.

M(β,θ,D) = W (T (β,θ,D), J(β),θ,W) (1)

T (β,θ,D) = T + Bs(β) + Bp(θ) + D (2)

SMPL+G is a parametric formulation to represent the human body and
garments as separate meshes. To register the garments we first segment scans into
garments and skin parts [14]. We refine the scan segmentation step used in [14] by
fine-tuning the Human Parsing network [20] with a multi-view consistency loss.
We then use the multi-mesh registration approach from [14] to register garments
to the SMPL+G model. For each garment class, we obtain a template mesh which
is defined as a subset of the SMPL template, given by T g(β,θ,0) = IgT (β,θ,0),
where Ig ∈ Zmg×n

2 is an indicator matrix, with Igi,j = 1 if garment g vertex
i ∈ {1 . . . mg} is associated with body shape vertex j ∈ {1 . . . n}. mg and n
denote the number of vertices in the garment template and the SMPL mesh
respectively. Similarly, we define a garment function G(β,θ,Dg) using Eq. (3),
where Dg are the per-vertex offsets from the template

G(β,θ,Dg) = W (T g(β,θ,Dg), J(β),θ,W). (3)

For every scan in the SIZER dataset, we will release the scan, segmented
scan, and SMPL+G registrations, garment category and garment size label.

This dataset can be used in several applications like virtual try-on, character
animation, learning generative models, data-driven body shape under clothing,
size and(or) shape sensitive clothing model, etc. To stimulate further research
in this direction, we will release the dataset, code and baseline models, which
can be used as a benchmark in 3D clothing parsing and 3D garment resizing.
We use this dataset to build a model for the task of garment extraction from
single mesh (ParserNet) and garment resizing (SizerNet), which we describe in
the next section.

4 Method

We introduce ParserNet (Sect. 4.2), the first method for extracting garments
directly from SMPL registered meshes. For parsing garments, we first predict the
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underlying body SMPL parameters using a pose and shape prediction network
(Sect. 4.1) and use ParserNet to extract garment layers and personal features
like hair, facial features to create body shape under clothing. Next, we present
SizerNet (Sect. 4.3), an encoder-decoder based deep network for garment resiz-
ing. An overview of the method is shown in Fig. 2.

4.1 Pose and Shape Prediction Network

To estimate body shape under clothing, we first create the undressed SMPL
body for a given clothed input single layer mesh M(β,θ,D), by predicting θ,β
using fθ

w and fβ
w respectively. We train fθ

w and fβ
w with L2 loss over parameters

and per-vertex loss between predicted SMPL body and clothed input mesh, as
shown in Eqs. (4) and (5). Since the reference body under clothing parameters
θ,β obtained via instance specific optimization (Sect. 3.2) can be inaccurate,
we add an additional per-vertex loss between our predicted SMPL body vertices
M(θ̂, β̂,0) and the input clothed mesh M(β,θ,D). This brings the predicted
undressed body closer to the input clothed mesh. We observe more stable results
training fθ

w and fβ
w separately initially, using the reference β and θ respectively.

Since the β components in SMPL are normalized to have σ = 1, we un-normalize
them by scaling by their respective standard deviations [σ1, σ2, . . . , σ10] as given
in Eq. (5).

Lθ = wpose||θ̂ − θ||22 + wv||M(β, θ̂,0) − M(β,θ,D)|| (4)

Lβ = wshape

10∑

i=1

σi(β̂i − βi)
2 + wv||M(β̂,θ,0) − M(β,θ,D)|| (5)

Here, wpose, wshape and wv are weights for the loss on pose, shape and pre-
dicted SMPL surface. (θ̂, β̂) denote predicted parameters. The output is a smooth
(SMPL model) body shape under clothing.

4.2 ParserNet

Parsing Garments. Parsing garments from a single mesh (M) can be done by
segmenting it into separate garments for each class (Gg,k

seg), which leads to differ-
ent underlying graph connectivity (Gg,k

seg = (Gg,k
seg,E

g,k
seg)) across all the instances

(k) of a garment class g, shown in Fig. 3 (right). Hence, we propose to parse
garments by deforming vertices of a template T g(β,θ,0) with fixed connectivity
Eg, obtaining vertices Gg,k ∈ Gg,k, where Gg,k = (Gg,k,Eg), shown in Fig. 3
(middle).

Our key idea is to predict the deformed vertices Gg directly as a convex
combination of vertices of the input mesh M = M(β,θ,D) with a learned
sparse regressor matrix Wg, such that Gg = WgM. Specifically, ParserNet
predicts the sparse matrix (Wg) as a function of input mesh features (vertices
and normals) and a predefined per-vertex neighborhood (Ni) for every vertex i
of garment class g. We will henceforth drop (.)g,k unless required. In this way,
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Fig. 3. Left to right: Input single mesh (Mk), garment template (T g(β, θ,0) =
IgT (β, θ,0)), garment mesh extracted using Gg,k = IgMk, multi-layer meshes (Gg,k)
registered to SMPL+G, all with garment class specific edge connectivity Eg, and seg-
mented scan Gg,k

seg with instance specific edge connectivity Eg,k
seg .

the output vertices Gi ∈ R3, where i ∈ {1, . . . , mg}, are obtained as a convex
combination of input mesh vertices Mj ∈ R3 in a predefined neighborhood (Ni).

Gi =
∑

j∈Ni

WijMj . (6)

Parsing Detailed Body Shape Under Clothing. For generating detailed
body shape under clothing, we first create a smooth body mesh, using SMPL
parameters θ and β predicted from fθ

w, fβ
w (Sect. 4.1). Using the same afore-

mentioned convex combination formulation, Body ParserNet transfers the visi-
ble skin vertices from the input mesh to the smooth body mesh, obtaining hair
and facial features. We parse the input mesh into upper, lower garments and
detailed shape under clothing using 3 sub-networks (fU

w , fL
w , fB

w ) of ParserNet,
as shown in Fig. 2.

4.3 SizerNet

We aim to edit the garment mesh based on garment size labels such as S, M,
L, etc., to see the dressing effect of the garment for a new size. For this task,
we propose an encoder-decoder based network, which is shown in Fig. 2 (right).
The network f enc

w , encodes the garment mesh Gin to a lower-dimensional latent
code xgar ∈ Rd, shown in Eq. (7). We append (β, δin, δout) to the latent space,
where δin, δout are one-hot encodings of input and desired output sizing and β
is the SMPL β parameter for underlying body shape.

xgar = f enc
w (Gin), f enc

w (.) : Rmg×3 → Rd (7)

The decoder network, fdec
w (.) : R|β | × Rd × R2|δ | → Rmg×3 predicts the dis-

placement field Dg = fdec
w (β,xgar, δin, δout) on top on template. We obtain the

output garment Gout in the new desired size δout using Eq. (3).
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4.4 Loss Functions

We train the networks, ParserNet and SizerNet with training losses given by
Eqs. (8) and (9) respectively, where w3D, wnorm, wlap, winterp and ww are weights
for the loss on vertices, normal, Laplacian, interpenetration and weight regular-
izer term respectively. We explain each of the loss terms in this section.

Lparser = w3DL3D + wnormLnorm + wlapLlap + winterpLinterp + wwLw (8)

Lsizer = w3DL3D + wnormLnorm + wlapLlap + winterpLinterp (9)

• 3D vertex loss for garments. We define L3D as L1 loss between predicted
and ground truth vertices

L3D = ||GP − GGT||1. (10)

• 3D vertex loss for shape under clothing. For training fB
w (ParserNet

for the body), we use the input mesh skin as supervision for predicting per-
sonal details of subject. We define a garment class specific geodesic distance
weighted loss term, as shown in Eq. (11), where Is is the indicator matrix for
skin region and wgeo is a vector containing the sigmoid of the geodesic dis-
tances from vertices to the boundary between skin and non-skin regions. The
loss term is high when the prediction is far from the input mesh M for the
visible skin region, and lower for the cloth region, with a smooth transition
regulated by the geodesic term. Let absij(·) denote an element-wise absolute
value operator. Then the loss is computed as

Lbody
3D = ‖wT

geo · absij(G
s
P − IsM)‖1. (11)

• Normal Loss. We define Lnorm as the difference in angle between ground
truth face normal (Ni

GT) and predicted face normal (Ni
P ).

Lnorm =
1

Nfaces

Nfaces∑

i

(1 − (NGT,i)
TNP,i). (12)

• Laplacian smoothness term. This enforces the Laplacian of predicted
garment mesh to be close to the Laplacian of ground truth mesh. Let Lg ∈
Rmg×mg be the graph Laplacian of the garment mesh GGT, and Δinit =
LgGGT ∈ Rmg×3 be the differential coordinates of the GGT, then we compute
the Laplacian smoothness term for a predicted mesh GP as

Llap = ||Δinit − LgGP||2. (13)

• Interpenetration loss. Since minimizing per-vertex loss does not guarantee
that the predicted garment lies outside the body surface, we use the inter-
penetration loss term in Eq. (14) proposed in GarNet [22]. For every vertex
GP,j , we find the nearest vertex in the predicted body shape under clothing
(Bi) and define the body-garment correspondences as C(B,GP). Let Ni be
the normal of the ith body vertex Bi. If the predicted garment vertex GP,j

penetrates the body, it is penalized with the following loss
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Linterp =
∑

(i,j)∈C(B,GP)

1d(GP,j ,GGT,j)<dtol
ReLU(−Ni(GP,j − Bi))/mg, (14)

where notice that 1d(GP,j ,GGT,j)<dtol
activates the loss when the distance

between predicted garment mesh vertices and ground truth mesh vertices
is small i.e. < dtol.

• Weight regularizer. To preserve the fine details when parsing the input
mesh, we want the weights predicted by the network to be sparse and con-
fined in a local neighborhood. Hence, we add a regularizer which penalizes
large values for Wij if the distance between of Mj and the vertex Mk with
largest weight k = arg maxj Wij is large. Let d(·, ·) denote Euclidean distance
between vertices, then the regularizer equals

Lw =
mg∑

i=1

∑

j∈Ni

Wijd(Mk,Mj), k = arg maxj Wij . (15)

4.5 Implementation Details

We implement fθ
w and fβ

w networks with 2 fully connected and a linear output
layer. We implement ParserNet fU

w , fL
w , fB

w with 3 fully connected layers. We
use neighborhood (Ni) size of |Ni| = 50, for our experiments. We first train
the network for garment classes which share the same garment template and
then fine-tune separately for each garment class g. To speed up training for
ParserNet, we train the network to predict Wg = Ig, where Ig is the indicator
matrix for garment class g, explained in Sect. 3.2. This initializes the network to
parse the garment by cutting out a part of the input mesh based on the constant
per-garment indicator matrix, shown in Fig. 3.

For SizerNet we use d = 30 and we implement fenc
w , fdec

w with fully connected
layers and skip connections between encoder and decoder network. We held out
40 scans for testing in each garment class, which includes some cases with unseen
subjects and some with unseen garment size for seen subjects. For pose-shape
prediction network, ParserNet and SizerNet we use batch-size of 8 and learning
rate of 0.0001.

5 Experiments and Results

5.1 Results of 3D Garment Parsing and Shape Under Clothing

To validate the choice of parsing the garments using a sparse regressor matrix
(W), we compare the results of ParserNet with two baseline approaches: (1) A
linearized version of ParserNet implemented with LASSO, and (2) A naive FC
network, which has the same architecture as ParserNet. However, instead of pre-
dicting the weight matrix (W), the FC network directly predicts the deformation
(Dg) from the garment template (T g(β,θ,0)) for a given input (M).
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Fig. 4. Comparison of ParserNet with a FC network from front and lateral view.

We compare the per-vertex error of ParserNet with the aforementioned base-
lines in Table 1. Figure 4 shows that ParserNet can produce details, fine wrinkles,
and large garment deformations, which is not possible with a naive FC network.
This is attainable because ParserNet reconstructs the output garment mesh as
a localized sparse weighted sum of input vertex locations, and hence preserves
the geometry details present in the input mesh. However, in the case of naive FC
network, the predicted displacement field (Dg) is smooth and does not explain
large deformations. Hence, naive FC network is not able to predict loose gar-
ments and does not preserve fine details. We show results of ParserNet for more
garment classes in Fig. 5 and add more results in the supplementary material.

5.2 Results of Garment Resizing

Editing garment meshes based on garment size label is an unexplored problem
and, hence there are no well defined quantitative metrics. We introduce two
quantitative metrics, namely change in mesh surface area (Aerr) and per-vertex
error (Verr) for evaluating the resizing task. Surface area accounts for the scale
of a garment, which only changes with the garment size, and per-vertex error
accounts for details and folds created due to the underlying body shape and
looseness/tightness of the garment. Moreover, subtle changes in garment shape
with respect to size are difficult to evaluate. Hence, we use heat map visualiza-
tions for qualitative analysis of the results.
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Table 1. Average per-vertex error Verr of proposed method for parsing garment meshes
for different garment class (in mm).

Garment Linear model FC ParserNet Garment Linear model FC ParserNet

Polo 32.21 17.25 14.33 Shorts 29.78 20.12 16.07

Shirt 27.63 19.35 14.56 Pants 34.82 18.2 17.24

Vest 28.17 18.56 15.89 Coat 41.27 22.19 15.34

Hoodies 37.34 23.69 15.76 Shorts2 31.38 23.45 16.23

T-Shirt 26.94 15.98 13.77

Fig. 5. Input single mesh and ParserNet results for more garments.

Since there is no other existing work for garment resizing task to compare
with, we evaluate our method against the following three baselines.

1. Error margin in data: We define error margin as the change in per-vertex
location (Verr) and surface area (Aerr) between garments of two consecutive
size for a subject in the dataset. Our model should ideally produce a smaller
error than this margin.

2. Average prediction: For every subject in the dataset, we create the average
garment (Gavg), by averaging over all the available sizes for a subject.

3. Linear scaling + Alignment : We linearly scale the garment mesh, according
to desired size label, and then align the garment to the underlying body.

Table 2 shows the errors for each experiment. SizerNet results in lower errors, as
compared to the linear scaling method, which reflects the need for modelling the
non-linear relationship between garment shape, underlying body shape and gar-
ment size. We also see that network predictions yield lower error as compared
to average garment prediction, which suggests that the model is learning the
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size variation, even though the differences in the ground truth itself are subtle.
We present the results of SizerNet for common garment classes in Table 2,
Fig. 6, 7 and add more results in the supplementary material.

Fig. 6. (a) Input single mesh. (b) Parsed multi-layer mesh from ParserNet. (c), (d)
Resized garment in two subsequent smaller sizes. (e), (f) Heatmap of change in per
vertex error on original parsed garment for two new sizes.

Table 2. Average per vertex error (Verr in mm) and surface area error (Aerr in %) of
predicted of proposed method for garment resizing.

Garment Error-margin Average-pred Linear scaling Ours

Verr Aerr Verr Aerr Verr Aerr Verr Aerr

Polo t-shirt 33.25 24.56 23.86 3.63 35.05 8.45 16.42 1.79

Shirt 36.52 19.57 21.95 2.76 34.53 7.01 15.54 1.41

Shorts 43.21 27.21 24.79 5.41 35.77 4.99 16.71 2.38

Pants 30.83 15.15 21.54 4.73 38.16 7.13 19.26 2.43
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Fig. 7. Results of ParserNet + SizerNet, where we parse the garments from input
single mesh and change the size of garment to visualise dressing effect.

6 Conclusion

We introduce SIZER, a clothing size variation dataset and model, which is the
first real dataset to capture clothing size variation on different subjects. We
also introduce ParserNet : a 3D garment parsing network and SizerNet : a size
sensitive clothing model. With this method, one can change the single mesh
registration to multi-layer meshes of garments and body shape under clothing,
without the need for scan segmentation and can use the result for animation,
virtual try-on, etc. SizerNet can drape a person with garments in different sizes.

Since our dataset only consists of roughly aligned A-poses, we are limited
to A-pose. We only exploit geometry information (vertices and normals) for 3D
clothing parsing. In future work, we plan to use the color information in Parser-
Net via texture augmentation, to improve the accuracy and generalization of
the proposed method. We will release the model, dataset, and code to stimu-
late research in the direction of 3D garment parsing, segmentation, resizing and
predicting body shape under clothing.
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Abstract. In this paper, we advocate the adoption of metric preserva-
tion as a powerful prior for learning latent representations of deformable
3D shapes. Key to our construction is the introduction of a geometric
distortion criterion, defined directly on the decoded shapes, translating
the preservation of the metric on the decoding to the formation of linear
paths in the underlying latent space. Our rationale lies in the observa-
tion that training samples alone are often insufficient to endow generative
models with high fidelity, motivating the need for large training datasets.
In contrast, metric preservation provides a rigorous way to control the
amount of geometric distortion incurring in the construction of the latent
space, leading in turn to synthetic samples of higher quality. We further
demonstrate, for the first time, the adoption of differentiable intrinsic
distances in the backpropagation of a geodesic loss. Our geometric pri-
ors are particularly relevant in the presence of scarce training data, where
learning any meaningful latent structure can be especially challenging.
The effectiveness and potential of our generative model is showcased in
applications of style transfer, content generation, and shape completion.

Keywords: Learning shapes · Generative model · Metric distortion

1 Introduction

Constructing high-fidelity generative models for 3D shapes is a challenging prob-
lem that has met with increasing interest in recent years. Generative models are
applicable in many practical domains, ranging from content creation to shape
exploration, as well as in 3D reconstruction. As a new generation of methods,
they come to face a number of difficulties.

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-58580-8 2) contains supplementary material, which is avail-
able to authorized users.

c© Springer Nature Switzerland AG 2020
A. Vedaldi et al. (Eds.): ECCV 2020, LNCS 12348, pp. 19–35, 2020.
https://doi.org/10.1007/978-3-030-58580-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58580-8_2&domain=pdf
https://doi.org/10.1007/978-3-030-58580-8_2
https://doi.org/10.1007/978-3-030-58580-8_2
https://doi.org/10.1007/978-3-030-58580-8_2


20 L. Cosmo et al.

Fig. 1. Disentangled interpolation of FAUST shapes, obtained with our generative
model trained under metric preservation priors. The yellow shapes at the two corners
are given as input; the remaining shapes are generated by bilinearly interpolating the
latent codes of the input, and decoding the resulting codes. Our model allows to disen-
tangle pose from identity, illustrated here as different dimensions. (Color figure online)

Most existing approaches address the case of static or rigid geometry, for
example, man-made objects like chairs and airplanes, with potentially high intra-
class variability; see the ShapeNet [7] repository for such examples. In this set-
ting, the main focus has been on the abstraction capabilities of the encoder
and the generator, describing complex 3D models in terms of their core geomet-
ric features via parsimonious part-based representations. Shapes generated with
these techniques are usually designed to have valid part semantics that are easy
to parse. Concurrently, several recent efforts have concentrated on the defini-
tion of convenient representations for the 3D output; these methods find broader
application in multiple tasks, where they enable more efficient and high-quality
synthesis, and can be often plugged into existing generative models.

To date, relatively fewer approaches have targeted the deformable setting,
where the generated shapes are related by continuous, non-rigid deformations.
These model a range of natural phenomena, such as changes in pose and facial
expressions of human subjects, articulations, garment folding, and molecular
flexibility to name but a few. The extra difficulties brought by such non-rigid
deformations can be tackled, in some cases, by designing mathematical or para-
metric models for the deformation at hand; however, these models are often
violated in practice, and can be very hard to devise for general deformations –
hence the need for learning from examples.

The framework we propose is motivated by the observation that existing data-
driven approaches for learning deformable 3D shapes, and autoencoders (AE) in
particular, do not make use of any geometric prior to drive the construction of
the latent space, whereas they rely almost completely on the expressivity of the
training dataset. This imposes a heavy burden on the learning process, and further
requires large annotated datasets that can be costly or even impossible to acquire.
In the absence of additional regularization, limited training data leads to limited
generalization capability, which is manifested in the generated 3D shapes exhibit-
ing unnatural distortions. Variational autoencoders (VAE) provide a partial
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remedy by modeling a distributional prior on the data via a parametrized density
on the latent space. This induces additional regularization, but is still insufficient
to guarantee the preservation of geometric properties in the output 3D models.

In this paper, we introduce Latent Interpolation with Metric Priors (LIMP).
We propose to explicitly model the local metric properties of the latent space
by enforcing metric constraints on the decoded output. We do this by phras-
ing a metric distortion penalty that has the effect to promote naturally looking
deformations, and in turn to significantly reduce the need for large datasets at
training time. In particular, we show that by coupling the Euclidean distances
among latent codes (hence, along linear paths in the latent space) to the met-
ric distortion among decoded shapes, we obtain a strong regularizing effect in
the construction of the latent space. Another novel ingredient of the proposed
approach is the backpropagation of intrinsic (namely, geodesic) distances during
training, which is made possible by a recent geodesic computation technique.
Using geodesics makes our approach more flexible, and enables the successful
application of our generative model to style and pose transfer applications. See
Fig. 1 for an example of novel samples synthesized with our generative model.

2 Related Work

Our method falls within the class of AE-based generative models for 3D shapes.
In this Section we cover methods from this family that are more closely related
to ours, and refer to the recent survey [8] for a broader coverage.

In the 3D computer vision and graphics realms, generative models for part-
compositional 3D objects play the lion’s share. Such approaches directly exploit
the hierarchical, structural nature of 3D man-made objects to drive the con-
struction of encoder and generator [22,29,31,32]. These methods leverage on the
insight that objects can be understood through their components [26], making
an interpretable representation close to human parsing possible. In this setting,
a continuous exploration of the generated latent spaces is not always meaning-
ful; the mechanism underlying typical operations like sampling and interpolation
happen instead in discrete steps in order to generate plausible intermediate shape
configurations (e.g., for transitioning from a 4-legged chair to a 3-legged stool).
For this reason, with rigid geometry one usually deals with “structural blend-
ing” rather than continuous deformations. Structural blending has been real-
ized, for instance, by learning abstractions of symmetry hierarchies via spatial
arrangements of oriented bounding boxes [22], or by explicitly modeling part-
to-part relationships [29]; generative-adversarial modeling has been applied on
volumetric object representations [45]; structural hierarchies have been applied
for the generation of composite 3D scenes [23] and building typologies [28] as
well. Contributing to their success, is the fact that all these methods train on
ShapeNet-scale annotated datasets with >50K unique 3D models, and the recent
publication of dedicated benchmarks like PartNet [30] testify to the increasing
interest of data-driven models for structure-aware geometry processing. In this
paper, we address a different setting; we do not assume part-compositionality of
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the 3D models since we deal with deformable shapes, where continuous defor-
mations are well-defined, and where annotated datasets are not as prominent.

A second thread of research revolves around the definition of a meaningful
representation for the generated 3D output. While many approaches mostly use
polygonal meshes with predefined topology or directly synthesize point clouds
[1,41], the focus has been recently shifting towards more effective representations
in terms of overall quality, fidelity, and flexibility. These include approaches
that predict implicit shape representations at the output, requiring an ex-post
isosurface extraction step to generate a mesh at the desired resolution [16,27,33];
isosurfacing has been replaced by binary space partitioning in [9]; while in [18],
shapes are represented by a set of parametric surface elements. In this work, we
focus on learning a better latent representation for deformable shapes, rather
than on constructing a better representation for the output.

More closely related to ours are some recent methods from the area of geo-
metric deep learning. A graph-convolutional VAE with dynamic filtering con-
volutional layers [44] was introduced in [24] for the task of deformable shape
completion of human shapes. The method is trained on ∼7000 shapes from the
DFAUST dataset of real human scans [4]; due to the lack of any geometric prior,
the learned generator introduces large distortions around points in the latent
space that are not well represented in the training set. Geometric regularization
was injected in [17] in the form of a template that parametrizes the surface. The
method shows excellent performance in shape matching, however, it crucially
relies on a large and representative dataset of 230, 000 shapes, and performance
drops significantly with smaller training sets or bad initialization. More recently,
a geometric disentanglement model for deformable point clouds was introduced
in [2]. The proposed method uses Laplacian eigenvalues as a weak geometric
prior to promote the separation of intrinsic and extrinsic shape information,
together with several other de-correlation penalties, and a training set of >40K
shapes. In the absence of enough training examples, the approach tends to pro-
duce a “morphing” effect between point clouds that does not correspond to a
natural motion; a similar phenomenon was observed in [1]. Finally, in [43], a
time-dependent physical prior was used to regularize interpolations in the latent
space with the goal of obtaining a convincing simulation of moving tissues.

In particular, our approach bears some analogies with the theory of shape
spaces [20], in that we seek to synthesize geometry that minimizes a deformation
energy. For example, in [14] it was shown how to axiomatically modify a noisy
shape such that its intrinsic measures would fit a given prior in a different pose.
Differentiating the geodesic distances was done by fixing the update order in
the fast marching scheme [21]. Our energy is not minimized over a fixed shape
space, but rather, it drives the construction of a novel shape space in a data-
driven fashion.

In this paper, we leverage classical ideas from shape analysis and metric
geometry to ensure that shapes on the learned latent space correspond to plau-
sible (i.e., low-distortion) deformations of the shapes seen at training time, even
when only few training samples are available. We do this by modeling a geomet-
ric prior that promotes deformations with bounded distortion, and show that
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this model provides a powerful regularization for shapes within as well as across
different classes, e.g., when transitioning between different human subjects.

3 Learning with Metric Priors

Our goal is to learn a latent representation for deformable 3D shapes. We do
this by training a VAE on a training set S = {Xi} of |S| shapes, under a purely
geometric loss:

�(S) = �recon(S) + �interp(S) + �disent(S). (1)

The loss is composed of three terms. The first is a geometric reconstruction
loss on the individual training shapes, as in classical AE’s; the second one is
a pairwise interpolation term for points in the latent space; the third one is a
disentanglement term to separate intrinsic from extrinsic information.

The main novelty lies in (1) the interpolation loss, and (2) the disentangle-
ment loss not relying upon corresponding poses in the training set. The interpo-
lation term provides control over the encoding of each shape in relation to the
others. This induces a notion of proximity between latent codes that is explicitly
linked, in the definition of the loss, to a notion of metric distortion between the
decoded shapes. As we show in the following, this induces a strong regularization
on the latent space and rules out highly distorted reconstructions.

The disentanglement loss promotes the factorization of the latent space into
two orthogonal components: One that spans the space of isometries (e.g., change
in pose), and another that spans the space of non-isometric deformations (e.g.,
change in identity). As in the interpolation loss, for the disentanglement we also
exploit the metric properties of the decoded shapes.

3.1 Losses

We define z := enc(X) to be the latent code for shape X, and X′ := dec(z) to
be the corresponding decoding. During training, the decoder (dec) and encoder
(enc) are updated so as to minimize the overall loss of Eq. (1); see Sect. 3.3 for
the implementation details.

Geometric Reconstruction. The reconstruction loss is defined as follows:

�recon(S) =
|S|∑

i=1

‖DR3(X′
i) − DR3(Xi)‖2F , (2)

where DR3(X) is the matrix of pairwise Euclidean distances between all points in
X, and ‖·‖F denotes the Frobenius norm. Equation (2) measures the cumulative
reconstruction error (up to a global rotation) over the training shapes.

Metric Interpolation. This loss is defined over all possible pairs of shapes (Xi,Xj):
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�interp(S) =
|S|∑

i�=j

‖D(dec((1 − α)zi + αzj︸ ︷︷ ︸
interpolation of
latent codes

)) − ((1 − α)D(X′
i) + αD(X′

j)︸ ︷︷ ︸
interpolation of

geodesic or local distances

)‖2F , (3)

where α ∼ U(0, 1) is a uniformly sampled scalar in (0, 1), different for each pair
of shapes. In the equation above, the matrix D(X) encodes the pairwise dis-
tances between points in X. We use two different definitions of distance, giving
rise to two different losses which we sum up together. In one loss, D contains
geodesic distances between all pairs of points. In the second loss, we consider
local Euclidean distances from each point to points within a small neighborhood
(set to 10% of the shape diameter); the rationale is that local Euclidean dis-
tances capture local detail and tend to be resilient to non-rigid deformations,
as observed for instance in [39]. All distances are computed on the fly, on the
decoded shapes, at each forward step.

Since the error criterion in Eq. (3) encodes the discrepancy between pairwise
distance matrices, we refer to it as a metric preservation prior. We refer to
Sect. 3.2 for a more in-depth discussion from a continuous perspective.

Disentanglement. We split the latent codes into an intrinsic and an extrinsic
part, z := (zint|zext). The former is used to encode “style”, i.e., the space of
non-isometric deformations; the latter is responsible for changes in pose, and is
therefore constrained to model the space of possible isometries.

The loss is composed of two terms:

�disent(S) = �int(S) + �ext(S), with (4)

�int(S) =
|S|∑

i�=j
iso

‖DR3(dec((1 − α)zinti + αzintj︸ ︷︷ ︸
interpolation of

style

|zexti )) − DR3(Xi)‖2F (5)

�ext(S) =
|S|∑

i�=j
non-iso

‖Dg(dec(zinti | (1 − α)zexti + αzextj︸ ︷︷ ︸
interpolation of

pose

)) − Dg(Xi)‖2F (6)

The �int term is evaluated only on isometric pairs (i.e., just a change in pose),
for which we expect zinti = zintj . For a pair (Xi,Xj), it requires that Xi can be
reconstructed exactly even when its intrinsic part zinti is interpolated with that
of Xj . This enforces zinti = zintj , thus all the pose-related information is forced
to move to zext.

The �ext term is instead evaluated on non-isometric pairs. Here we require
that the geodesic distances of Xi are left untouched when we interpolate its pose
with that of Xj . This way, we force all the style-related information to be moved
to zint. We see that by having direct access to the metric on the decoded shapes,
we can phrase the disentanglement easily in terms of distances.
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Fig. 2. Our architecture is a standard VAE, with PointNet as the encoder and a fully
connected decoder. Our loss asks that the geodesic distances on the decoded convex
combination of latent codes (middle row) are equal to the convex combination of the
input distances.

The assumption that the metric is nearly preserved under pose changes is
widely used in many shape analysis applications such as shape retrieval [37],
matching [11,12,19,38] and reconstruction [5,10].

Relative Error. In practice, we always measure the error on the Euclidean dis-
tances (appearing in Eqs. (2), (3), (5)) in a relative sense. Let A be the “ground
truth” Euclidean distance matrix computed on the input shape, and let B be
its predicted reconstruction. Instead of taking ‖A−B‖2F =

∑
ij(Aij −Bij)2, we

compute the relative error
∑

ij
(Aij−Bij)

2

A2
ij

. In our experiments, this resulted in
better reconstruction of local details than by using the simple Frobenius norm.

3.2 Continuous Interpretation

In the continuous setting, we regard shapes as metric spaces (X , dX ), each
equipped with a distance function dX : X ×X → R+. Given two shapes (X , dX )
and (Y, dY), a map φ : X → Y is an isometry if it is surjective and preserves
distances, dX (x, x′) = dY(φ(x), φ(x′)) for all x, x′ ∈ X . Isometries play a fun-
damental role in 3D shape analysis, since they provide a mathematical model
for natural deformations like changes in pose. In practice, however, isometry is
rarely satisfied exactly.

Why Interpolation? Our approach is based on the insight that non-isometric
shapes are related by sequences of near-isometric deformations, which, in turn,
have a well defined mathematical model. In our setting, we do not require the
training shapes to be near-isometric. Instead, we allow for maps φ with bounded
metric distortion, i.e., for which there exists a constant K > 0 such that:

|dX (x, x′) − dY(φ(x), φ(x′))| ≤ K (7)



26 L. Cosmo et al.

for all x, x′ ∈ X . For K → 0 the map φ is a near-isometry, while for general
K > 0 we get a much wider class of deformations, going well beyond simple
changes in pose. We therefore assume that there exists a map with bounded
distortion between all shape pairs in the training set.

At training time, we are given a map φ : X → Y between two training
shapes (X , dX ) and (Y, dY). We then assume there exists an abstract metric
space (L, dL) where each point is a shape; this “shape space” is the latent space
that we seek to represent when training our generative model. Over the latent
space we construct a parametric sequence of shapes Zα = (X , dα), parametrized
by α ∈ (0, 1), connecting (X , dX ) to (Y, dY). By modeling the intermediate
shapes as (X , dα), we regard each Zα as a continuously deformed version of X ,
with a different metric defined by the interpolation:

dα(x, x′) = (1 − α)dX (x, x′) + αdY(φ(x), φ(x′)), (8)

for all x, x′ ∈ X . Each Zα in the sequence has the same points as X , but the
shape is different since distances are measured differently.

It is easy to see that if the training shapes X and Y are isometric, then
dα(x, x′) = dX (x, x′) for all x, x′ ∈ X and the entire sequence is isometric, i.e.,
we are modeling a change in pose. However, if φ : X → Y has bounded distortion
without being an isometry, each intermediate shape (X , dα) also has bounded
distortion with respect to (X , dX ), with Kα < K in Eq. (7); in particular, for
α → 0 one gets Kα → 0 and therefore a near-isometry. In other words, by using
the metric interpolation loss of Eq. (3), as α grows from 0 to 1 we are modeling
a general non-isometric deformation as a sequence of approximate isometries.

− + =

Flattening of the Latent Space. Taking a
linear convex combination of latent vec-
tors as in Eq. (3) implies that distances
between codes should be measured using
the Euclidean metric ‖ · ‖2. This enables
algebraic manipulation of the codes and
the formation of “shape analogies”, as shown in the inset (real example based
on our trained model). By the connection of Euclidean distances in the latent
space with intrinsic distances on the decoder’s output, our learning model per-
forms a “flattening” operation, in the sense that it requires the latent space to be
as Euclidean as possible, while absorbing any embedding error in the decoder.
A similar line of thought was followed, in a different context, in the purely
axiomatic model of [40].

3.3 Implementation

We design our deep generative model as a VAE (Fig. 2). The input data is a
set of triangle meshes; each mesh is encoded as a matrix of vertex positions
X ∈ R

n×3, together with connectivity encoded as a n × n adjacency matrix. We
anticipate here that mesh connectivity is never accessed directly by the network.
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Fig. 3. Interpolation example on a small training set of just 5 shapes, where the defor-
mation evolves from top (α = 0) to bottom (α = 1). Color encodes the per-point
metric distortion, growing from white to red; changes in pose as in this example should
have distortion close to zero. We show the results obtained by three different networks:
baseline VAE; ours with Euclidean metric regularization only; ours with Euclidean and
geodesic regularization (i.e., the complete loss). (Color figure online)

Architecture. The encoder takes vertex positions X as input, and outputs a d-
dimensional code z = enc(X). Similarly, the decoder outputs vertex positions
Y = dec(z) ∈ R

n×3. In order to clarify the role of our priors versus the sophisti-
cacy of the architecture, we keep the latter as simple as possible. In particular,
we adopt a similar architecture as in [2]; we use PointNet [34] with spatial trans-
form as the encoder, and a simple MLP as the decoder. We reserve 25% of the
latent code for the extrinsic part and the remaining 75% for the intrinsic rep-
resentation, while the latent space and layer dimensions vary depending on the
dataset size. A detailed description of the network is deferred to the Supplemen-
tary Material. We implemented our model in PyTorch using Adam as optimizer
with learning rate of 1e–4. To avoid local minima and numerical errors in gra-
dient computation, we start the training by optimizing just the reconstruction
loss for 104 iterations, and add the remaining terms for the remaining epochs.

Geodesic Distance Computation. A crucial ingredient to our model is the com-
putation of geodesic distances Dg(dec(z)) during training, see Eq. (3). We use
the heat method of [13] to compute these distances, based on the realization that
its pipeline is fully differentiable. It consists, in particular, of two linear solves
and one normalization step, and all the quantities involved in the three steps
depend smoothly on the vertex positions given by the decoder (we refer to the
Supplementary Material for additional details).

To our knowledge, this is the first time that on-the-fly computation of
geodesic distances appears in a deep learning pipeline. Previous approaches
using geodesic distances, such as [19], do so by taking them as pre-computed
input data, and leave them untouched for the entire training procedure.

Supervision. We train on a collection of shapes with known pointwise correspon-
dences; these are needed in Eq. (3), where we assume that the distance matrices
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Fig. 4. Top row: A 4D sequence from the real-world dataset DFAUST. We train our
generative model on the left- and right-most keyframes (indicated by the orange and
blue bar respectively), together with keyframes extracted from other sequences and
different individuals. Bottom row: The 3D shapes generated by our trained model.
Visually, both the generated and the real-world sequences look plausible, indicating
that geometric priors are well-suited for regularizing toward realistic deformations.
(Color figure online)

have compatible rows and columns. From a continuous perspective, we need maps
for the interpolated metric of Eq. (8) to be well defined. Known correspondences
are also needed by other approaches dealing with deformable data [17,24,25]. In
practice, we only need few such examples (we use <100 training shapes), since
we rely for the most part on the regularization power of our geometric priors.

Differently from [17,24] we do not assume the training shapes to have the
same mesh, since the latter is only used as an auxiliary structure for computing
geodesics in the loss; the network only ever accesses vertex positions. Further,
we do not require training shapes with similar poses across different subjects.

4 Results

4.1 Data

To validate our method, we performed experiments using 5 different datasets
(3 are obtained from real-world scans, 2 are fully synthetic). FAUST [3] is
composed of 10 different human subjects, each captured in 10 different poses. We
train our network on 8 subjects (thus, 80 meshes in total) and leave out the other
2 subjects for testing. DFAUST [4] is a 4D dataset capturing the motion of 10
human subjects performing 14 different activities, spanning hundreds of frames
each. As training data we only use 4 representative frames from each
subject/sequence pair. COMA [36] is another 4D dataset of human faces;
it is composed of 13 subjects, each performing 13 different facial expressions
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Table 1. Ablation study in terms of interpolation and disentanglement error on 4
datasets. Our full pipeline (denoted by ‘Ours Geo’) achieves the minimum error in all
cases, and is more than one order of magnitude better than the baseline VAE on
the interpolation. We do not report the disentanglement error for HANDS, since the
dataset only contains one hand style.

Interpolation error Disentanglement error

VAE Ours Euc Ours Geo VAE Ours Euc Ours Geo

FAUST 3.89e−2 5.08e−3 3.82e−3 7.16 4.04 3.48

DFAUST 9.82e–2 3.43e–3 2.89e−4 6.15 4.90 4.11

COMA 1.32e−3 1.03e−3 7.51e−4 1.55 1.30 1.22

HANDS 6.01e−3 8.12e−4 4.62e−4 – – –

Most similar training shapes

Fig. 5. Interpolation example on the cat shapes of TOSCA dataset [6]. On the left, we
show an interpolation sequence between two shapes of the training set (yellow shapes
on the right). On the right, we manually selected the most similar shapes present in
the training set, composed in total by just 11 shapes. You can appreciate how shapes
in the middle of the interpolated sequence significantly differ from the training shapes.

represented as a sequence of 3D meshes. As opposed to the test split proposed
in [36], where 90% of the data is used for training, we only select 14 frames for
each subject (one representative for each of the 13 expressions, plus one in a
neutral pose), thus training with less than 1% of the dataset. TOSCA
[6] is a synthetic dataset containing both animals and human bodies. In our
experiments we use only the cat class, containing 11 shapes in different poses.
The last dataset, which we refer to as HANDS, is also completely synthetic and
consists of 5 meshes depicting one hand in 5 different poses. For all the datasets,
we subsample the meshes to 2500 vertices by iterative edge collapse [15].

4.2 Interpolation

We first perform a classical interpolation experiment. Given two shapes X
and Y, we visualize the decoded interpolation of their latent codes, given by
dec((1 − α)enc(X) + αenc(Y)) for a few choices of α ∈ (0, 1). We measure the
interpolation quality via the interpolation error, defined as the average (over all
surface points) geodesic distortion of the interpolated shapes.

Two examples of interpolation are shown in Figs. 3 and 5. In these examples,
the training sets consist of just 5 and 11 shapes respectively, meaning that
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Intrinsic latent space Extrinsic latent space

Fig. 6. Plots on the left: Planar embedding of the intrinsic and extrinsic parts of the
latent codes from FAUST. Colors identify gender (left) and pose (ten different poses;
right). We observe cohesive clusters in either case, suggesting that the encoder has
generalized the projection onto each factor. The four small crosses are random samples.
Right: Decoded shapes from the four combinations of the random samples; the specific
combinations are illustrated by compatible colors between the crosses and the bars
below each shape.

the intermediate poses have never been seen before. In this few-shot setting,
proper regularization is crucial to get meaningful results. In the experiment
in Fig. 3, we also conduct an ablation study. We disable all the interpolation
terms from our complete loss, resulting in a baseline VAE; then we disable the
geodesic regularization only; finally we keep the entire loss intact, showing best
results. Quantitative results on 4 different datasets are reported in Table 1 (first
3 columns), showing that best results are obtained when our full loss is used.

As an additional qualitative experiment, in Fig. 4 we show the decoded shapes
in-between two keyframes of a 4D sequence from DFAUST. We remark that none
of the intermediate shapes were seen at training time, nor was any similar-looking
shape present in the training set. We then compare our reconstructed sequence
with the original sequence of real-world scans. The purpose of this experiment
is to show that our geometric priors are essential for the generation of realistic
motion; apart from a perceptual evaluation, any quantitative comparison here
would not be meaningful – there is not a unique “true” way to transition between
two given poses.

4.3 Disentanglement

Our second set of experiments is aimed at demonstrating the effectiveness of our
geometric priors for the disentanglement of intrinsic from extrinsic information.
We illustrate this in different ways.

In Fig. 6, we show disentanglement for a generator trained on the FAUST
dataset. For visualization purposes, for each vector z := (zint|zext) in the latent
space (here comprising both training and test shapes), we embed the zint and
zext parts separately onto the plane (via multidimensional scaling), and attribute
different colors to different gender and poses. We then randomly sample two new
zint and two new zext, and compose them into four latent codes by taking all
the combinations. The figure illustrates the four decoded shapes.
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Fig. 7. Disentanglement + interpolation examples on the COMA dataset; the source
shape is always the same. Each row presents a different scenario, with interpolation
happening left-to-right. Please refer to the color code below each shape as a visual aid;
for example, for the first column we have (style|pose).

In Fig. 7 we show the simultaneous action of disentanglement and interpo-
lation. Given a source and a target shape, we show the interpolation of pose
while fixing the style, and the interpolation of style while fixing the pose. We do
so with different combinations of source and target. In all cases, our generative
model is able to synthesize realistic shapes with the correct semantics, suggesting
high potential in style and pose transfer applications.

As we did with the case of interpolation, we also provide a notion of dis-
entanglement error, defined as follows. Given shapes Xi and Xj with latent
codes (zinti |zexti ) and (zintj |zextj ), we swap zexti with zextj and then measure the
average point-to-point distance between dec(zinti |zextj ) and the corresponding
ground-truth shape from the dataset. In Table 1 (last 3 columns) we report the
disentanglement error on all 4 datasets, together with the ablation study.

Finally, in Fig. 8 we show a qualitative comparison with the recent state-
of-the-art method [2] (using public code provided by the authors), which uses
Laplacian eigenvalues as a prior to drive the disentanglement, together with mul-
tiple other de-correlation terms. Similarly to other approaches like [24,42], the
quality of the interpolation of [2] mostly depends on the smoothness properties
of the VAE, on the complexity of the deep net, or on the availability of vast
training data. For this comparison, both generative models were trained on the
same 80 FAUST shapes.
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Fig. 8. Comparison of our method (top row) with the state-of-the-art method of [2]
(bottom row). Both generative models are trained on the same data. The leftmost
and rightmost shapes are from the training set, while the intermediate shapes are
decodings of a linear sequence in the latent space. Observe that source and target are
not isometric; according to our continuous interpretation of Sect. 3.2, our trained model
decomposes the non-isometric deformation into a sequence of approximate isometries.

5 Conclusions

We introduced a new deep generative model for deformable 3D shapes. Our
model is based on the intuition that by directly connecting the Euclidean dis-
tortion of latent codes to the metric distortion of the decoded shapes, one
gets a powerful regularizer that induces a well-behaved structure on the latent
space. Our idea finds a theoretical interpretation in modeling deformations with
bounded metric distortion as sequences of approximate isometries. Under the
manifold hypothesis, our metric preservation priors explicitly promote a flatten-
ing of the true data manifold onto a lower-dimensional Euclidean representation.
We demonstrated how having access to the metric of the decoded shapes during
training enables high-quality synthesis of novel samples, with practical implica-
tions in tasks of content creation and style transfer.

Perhaps the main limitation of our method, which we share with other geo-
metric deep learning approaches, lies in the requirement of labeled pointwise
correspondences between the training shapes. These can be hard to obtain in
certain settings, for example, when dealing with shapes from the same semantic
class but with high intra-class variability. Few interesting directions of future
work may consist in a self-supervised variant of our model, where dense corre-
spondences are not needed for the training, but are estimated during the learning
process or in the exploitation of spectral properties of the reconstructed shape,
that has been shown [10,35] to contain important information of the embedding
geometry.
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Finally, while in this paper we showed that even a simple prior such as metric
distortion can have a significant effect, we foresee that bringing techniques from
the areas of shape optimization and analysis closer to deep generative models
will enable a fruitful line of stimulating research.
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Abstract. Humans can envision a realistic photo given a free-hand
sketch that is not only spatially imprecise and geometrically distorted
but also without colors and visual details. We study unsupervised sketch
to photo synthesis for the first time, learning from unpaired sketch and
photo data where the target photo for a sketch is unknown during train-
ing. Existing works only deal with either style difference or spatial defor-
mation alone, synthesizing photos from edge-aligned line drawings or
transforming shapes within the same modality, e.g., color images.

Our insight is to decompose the unsupervised sketch to photo syn-
thesis task into two stages of translation: First shape translation from
sketches to grayscale photos and then content enrichment from grayscale
to color photos. We also incorporate a self-supervised denoising objec-
tive and an attention module to handle abstraction and style variations
that are specific to sketches. Our synthesis is sketch-faithful and photo-
realistic, enabling sketch-based image retrieval and automatic sketch gen-
eration that captures human visual perception beyond the edge map of
a photo.

1 Introduction

Sketches, i.e., rapidly executed freehand drawings, make an intuitive and power-
ful visual expression (Fig. 1). There is much research on sketch recognition [7,35],
sketch parsing [26,27], and sketch-based image or video retrieval [21,28,36]. We
study how to imagine a realistic photo given a sketch that is spatially imprecise
and missing colorful details, by learning from unpaired sketches and photos.

Sketch to photo synthesis is challenging for three reasons.
1) Sketches of objects often do not match their shapes in photos, since

sketches commonly drawn by amateurs have large spatial and geometrical distor-
tion. Translating a sketch to a photo thus requires shape rectification. However,
it is not trivial to rectify shape distortion in a sketch, as line strokes are only
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Fig. 1. Comparisons of image types and challenges of sketch to photo synthesis. Left:
A single object shape could have multiple distinctive colorings yet a common or similar
grayscale. Edges extracted by Canny and HED detectors lose colorful details but align
well with boundaries in the color photo, whereas sketches are more abstract lines drawn
with deformations and style variations. Row 2 shows their lines overlaid on the grayscale
photo. Right: Human vision can imagine a realistic photo given a free-hand sketch.
Our goal is to equip computer vision with the same imagination capability.

suggestive of the actual shapes and locations, and the extent of shape fidelity
varies widely between individuals. In Fig. 1, the three sketches for the same shoe
are very different both overall proportions and local stroke styles.

2) Sketches are color-less and lacking details. Drawn in black strokes on
white paper, sketches outline mostly object boundaries and characteristic interior
markings. To synthesize a photo, shading and colorful textures must be filled in
properly. However, it is not trivial to fill in details either. Since a sketch could
depict multiple photos, any synthesizer must have the capability to produce not
only realistic but also diverse photos for a single sketch.

3) Sketches may not have corresponding photos. Free-hand sketches can be
created from observation, memory, or pure imagination; they are not so widely
available as photos, and those with corresponding photos are even rarer. A
few sketch datasets exist in computer vision. TU-Berlin [6] and QuickDraw
[11] contain sketches only, with 20,000 and 50 million instances over 250 and
345 categories respectively. Contour Drawing [19] and Scenesketchy [39] have
sketch-photo image pairs at the scene level; their sketches are either contour
tracings or cartoon-style line drawings, neither representative of real-world free-
hand sketches. Sketchy [28] has only 500 sketches paired with 100 photos in each
of 125 categories. ShoeV2 and ChairV2 [36] contain 6,648/2,000 and 1,297/400
sketches/photos in a single semantic category of shoes and chairs respectively. To
enable data-driven learning of sketch to photo synthesis, we must handle limited
sketch data and unpaired sketches and photos.

Existing works focus on either shape or color translation alone (Fig. 2). 1)
Most image synthesis that deals with shape transfiguration tends to stay in the
same visual domain, e.g. changing the picture of a dog to that of a cat [15,22],
where visual details are comparable in the color image. 2) Sketches are a special
case of line drawings, and the most studied case of line drawings in computer
vision is the edge map extracted automatically from a photo. Such an edge map
based drawing to photo synthesis task does not have the spatial deformation
problem between sketches and photos, and realistic photos can be synthesized
with [16,31] or without [38] paired training data between drawings and photos.
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Fig. 2. Comparison of sketch to photo synthesis settings and results. Left: Three
training scenarios on whether line drawings and photos are provided as paired train-
ing instances and whether line drawings are spatially aligned with the photos. Edges
extracted from photos are aligned, whereas sketches are not. The bottom panel com-
pares synthesis results from representative approaches in each setting, indicated by the
same line/bracket color. Ours are superior to unsupervised edge map to photo methods
(cycleGAN [38], MUINT [15], UGATIT [18]) and even supervised methods (Pix2Pix
[16]) trained on paired data. Right: Our unsupervised sketch-to-photo synthesis model
has two separate stages handling spatial deformation and color enrichment respectively:
Shape translation learns to synthesize a grayscale photo given a sketch, from unpaired
sketch set and photo set, whereas color enrichment learns to fill the grayscale with
colorful details given an optional reference photo.

We will show that existing methods fail in sketch to photo synthesis when both
shape and color translations are needed simultaneously.

We consider learning sketch to photo synthesis from sketches and photos of
the same object category such as shoes. There is no pairing information between
individual sketches and photos; these two sets can be independently collected.

Our insight for unsupervised sketch to photo synthesis is to decompose the
task into two separate translations (Fig. 2). Our two-stage model performs first
shape translation in grayscale and then content fill-in in color. Stage 1) Shape
translation learns to synthesize a grayscale photo given a sketch, from unpaired
sketch set and photo set. Geometrical distortions are eliminated at this step.
To handle abstraction and drawing style variations, we apply a self-supervised
learning objective to noise sketch compositions, and also introduce an attention
module for the model to ignore distractions. Stage 2) Content enrichment learns
to fill the grayscale with details, including colors, shading, and textures, given
an optional reference image. It is designed to work with or without reference
images. This capability is enabled by a mixed training strategy. Our model can
thus produce diverse outputs on demand.

Our model links sketches to photos and can be used directly in sketch-based
photo retrieval. Another exciting corollary result from our model is that we can
also synthesize a sketch given a photo, even from unseen semantic categories.
Strokes in a sketch capture information beyond edge maps defined primarily on
intensity contrast and object exterior boundaries. Automatic photo to sketch
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generation could lead to more advanced computer vision capabilities and serve
as a powerful human-user interaction device.

Our work makes the following contributions. 1) We propose the first two-
stage unsupervised model that can generate diverse, sketch-faithful, and photo-
realistic images from a single free-hand sketch. 2) We introduce a self-supervised
learning objective and an attention module to handle abstraction and style vari-
ations in sketches. 3) Our work not only enables sketch-based image retrieval
but also delivers an automatic sketcher that captures human visual perception
beyond the edge map of a photo. See http://sketch.icsi.berkeley.edu.

2 Related Works

Sketch-Based Image Synthesis. While much progress has been made on
sketch recognition [6,35,37] and sketch-based image retrieval [9,13,20,21,28,36],
sketch-based image synthesis remains under-explored.

Prior to deep learning (DL), Sketch2Photo [4] and PhotoSketcher [8] compose
a new photo from photos retrieved for a sketch. Sketch2Photo [4] first retrieves
photos based on the class label, then uses the given sketch to filter them and
compose a target photo. PhotoSketcher [8] has a similar pipeline but retrieves
photos based on a rather restrictive sketch and hand-crafted features.

The first DL-based free-hand sketch-to-photo synthesis is SketchyGAN [5],
which trains an encoder-decoder model conditioned on the class label for sketch
and photo pairs. Contextual GAN [23] treats sketch to photo synthesis as an
image completion problem, using the sketch as a weak contextual constraint.
Interactive Sketch [10] focuses on multi-class photo synthesis based on incom-
plete edges or sketches. All of these works rely on paired sketch and photo data
and do not address the shape deformation problem.

Sketches are often used in photo editing [1,25,34], e.g., line strokes are drawn
on a photo to change the shape of a roof. Unlike our sketch to photo synthesis,
these works mainly address a constrained image inpainting problem.

Synthesis from the opposite direction, photo to sketch, has also been studied
[19,29]: The former proposes a hybrid model to synthesize a sketch stroke by
stroke given a photo, whereas the latter aims to generate boundary-like drawings
that capture the outline of the visual scene. Both models require paired data for
training. While photo to sketch is not our focus, our model trained only on shoes
can generate realistic sketches from photos in other semantic categories.

Generative Adversarial Networks (GAN). GAN has a generator (G) and
a discriminator (D): G tries to fake instances that fool D and D tries to detect
fakes from reals. GAN is widely used for realistic image generation [17,24] and
translation across image domains [15,16].

Pix2Pix [16] is a conditional GAN that maps source images to target images;
it requires paired (source,target) data during training. CycleGAN [38] uses a
pair of GANs to map an image from the source domain to the target domain
and then back to the source domain. Imposing a consistency loss over such a
cycle of mappings, it allows both models to be trained together on unpaired

http://sketch.icsi.berkeley.edu
http://sketch.icsi.berkeley.edu
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Fig. 3. Our two-stage model architecture (top) and three major technical components
(bottom) that tackle abstract and style-varying strokes: noise sketch composition for
training data augmentation, a self-supervised de-noising objective, and an attention
module to suppress distracting dense strokes.

source and target images in two different domains. UNIT [22] and MUNIT [15]
are variations of CycleGAN, both achieving impressive performance.

None of these methods work well when the source and target images are
spatially poorly aligned (Fig. 1) and across different appearance domains.

3 Unsupervised Two-Stage Sketch-to-Photo Synthesis

In our unsupervised learning setting, we are given two sets of data in the same
semantic category such as shoes, and no instance pairing is known or available.
Formally, all we have are n sketches {S1, . . . , Sn} and m color photos {I1, . . . , Im}
along with their grayscale versions {G1, . . . , Gm}.

Compared to photos, sketches are spatially imprecise and colorless. To syn-
thesize a photo from a sketch, we deal with these two aspects at separate stages:
We first translate a sketch into a grayscale photo and then translate the grayscale
into a color photo filled with missing details on texture and shading (Fig. 3).

3.1 Shape Translation: Sketch S → Grayscale G

Overview. We first learn to translate sketch S into grayscale photo G. The
goal is to rectify shape deformation in sketches. We consider unpaired sketch
and photo images, not only because paired data are scarce and hard to collect,
but also because heavy reliance on paired data could restrict the model from
recognizing the inherent misalignment between sketches and photos.

A pair of mappings, T : S −→ G and T ′ : G −→ S, each implemented with an
encoder-decoder architecture, are learned with cycle-consistency objectives: S ≈
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T ′(T (S)) and G ≈ T (T ′(G)). Similar to [38], we train two domain discriminators
DG and DS : DG tries to tease apart G and T (S), while DS teases apart S and
T ′(G) (Fig. 3). The predicted grayscale T (S) goes to content enrichment next.

The input sketch may exhibit various levels of abstraction and different draw-
ing styles. In particular, sketches containing dense strokes or noisy details (Fig. 3)
cannot be handled well by a basic CycleGAN model.

To deal with these variations, we introduce two strategies for the model
to extract style-invariant information only: 1) We compose additional noise
sketches to enrich the dataset and introduce a self-supervised objective; 2) We
introduce an attention module to help detect distracting regions.

Noise Sketch Composition. In a rapidly drawn sketch, strokes could be delib-
erately complex, or simply careless and distractive (Fig. 3). We augment limited
sketch data with more noise. Let Snoise = ϕ(S), where ϕ(.) represents composi-
tion. We detect dense strokes and construct a pool of noise masks. We randomly
sample from these masks and artificially generate complex sketches by insert-
ing these dense stroke patterns into original sketches. We generate distractive
sketches by adding a random patch from a different sketch on an existing sketch.
The noise strokes and random patches are used to simulate irrelevant details
in a sketch. We compose such noise sketches on the fly and feed them into the
network with a fixed occurrence ratio.

Self-supervised Objective. We introduce a self-supervised objective to work
with the synthesized noise sketches. For a composed noise sketch, the reconstruc-
tion goal of our model is to reproduce the original clean sketch:

Lss(T, T ′) =
∥
∥S − T ′ (T (Snoise)

)∥
∥
1

(1)

This objective is different from the cycle-consistency loss used on untouched
original sketches. It makes the model ignore irrelevant strokes and put more
efforts on style-invariant strokes in the sketch.

Ignore Distractions with Active Attention. To identify distracting strokes,
we also introduce an attention module. Since most areas of a sketch are blank, the
activation of dense stroke regions is stronger than others. We can thus locate
distracting areas and suppress the activation there accordingly. That is, the
attention module generates an attention map A to be used for re-weighting the
feature representation of sketch S (Eq. 2):

ffinal(S) = (1 − A) � f(S) (2)

where f(.) refers to the feature map and � denotes element-wise multiplication.
Our attention is used for area suppression instead of the usual area highlight.

Our total objective for training a shape translation model is:

min
T,T ′

max
DG,DS

λ1(Ladv(T,DG;S,G) + Ladv(T ′,DS ;G,S))

+λ2Lcycle(T, T ′;S,G) + λ3Lidentity(T, T ′;S,G) + Lss(T, T ′;Snoise).

We follow [38] to add an identity loss Lidentity, which slightly improves the
performance. See the details of each loss in the Supplementary.
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3.2 Content Enrichment: Grayscale G → Color I

Now that we have a predicted grayscale photo G, we learn a mapping C that
turns it into color photo I. The goal at this stage is to enrich the generated
grayscale photo G with missing appearance details.

Since a color-less sketch could have many colorful realizations, many fill-in’s
are possible. We thus model the task as a style transfer task and use an optional
reference color image to guide the selection of a particular style.

We implement C as an encoder (E) and decoder (D) network (Fig. 3). Given
a grayscale photo G as the input, the model outputs a color photo I. The input
G and the grayscale of the output I, specifically the L-channel in CIE Lab
color space of the output should be the same. Therefore we use a self-supervised
intensity loss (Eq. 3) to train the model:

Lit(C) = ‖G − grayscale (C (G))‖1 (3)

We train discriminator DI to ensure that I is also as photo-realistic as I1, . . . , Im.
To achieve the output diversity, we introduce a conditional module that takes

an optional reference image for guidance. We follow AdaIN [14] to inject style
information by adjusting the feature map statistics. Specifically, the encoder
E takes the input grayscale image G and generates a feature map x = E(G),
then the mean and variance of x are adjusted by the reference’s feature map
xref = E(R). The new feature map is xnew = AdaIN(x,xref ) (Eq. 4), which is
subsequently sent to the decoder D for rendering the final output image I:

AdaIN(x,xref) = σ(xref)(
x − μ(x)

σ(x)
) + μ(xref) (4)

Our model can work with or without reference images, in a single network,
enabled by a mixed training strategy. When there is no reference image, only
intensity loss and adversarial loss are used while σ(xref ) and μ(xref ) are set
to 1 and 0 respectively; otherwise, a content loss and style loss are computed
additionally. The content loss (Eq. 5) is used to guarantee that the input and
output images are consistent perceptually, whereas the style loss (Eq. 6) is to
ensure the style of the output is aligned with that of the reference image.

Lcont(C;G,R) = ‖E(D(t)) − t‖1 (5)

Lstyle(C;G,R)=
K∑

i=1

‖μ (φi(D(t)))−μ (φi(R))‖2+
K∑

i=1

‖σ (φi(D(t)))−σ (φi(R))‖2
(6)

where t = AdaIN(E(G), E(R)) (7)

φi(.) denotes a layer of a pre-trained VGG-19 model. In our implementation,
we use relu1 1, relu2 1, relu3 1, relu4 1 layers with equal weights to com-
pute the style loss. Equation 8 shows the total loss for training the content
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enrichment model. Network architectures and further details are provided in the
Supplementary.

min
C

max
DI

λ4Ladv(C, DI ; G, I) + λ5Lit(C) + λ6Lstyle(C; G, R) + λ7Lcont(C; G, R) (8)

4 Experiments and Applications

4.1 Experimental Setup and Evaluation Metrics

Datasets. We train our model on two single-category sketch datasets, ShoeV2
and ChairV2 [36], with 6,648/2,000 and 1,297/400 sketches/photos respectively.
Each photo has at least 3 corresponding sketches drawn by different individuals.
Note that we do not use pairing information at training. Compared to QuickDraw
[11], Sketchy [28], and TU-Berlin [6], sketches in ShoeV2/ChairV2 have more
fine-grained details. They demand like-kind details in synthesized photos and
are thus more challenging as a testbed for sketch to photo synthesis.

Baselines for Image Translation. 1) Pix2Pix [16] is our supervised learning
baseline which requires paired training data. 2) CycleGAN [38] is an unsu-
pervised bidirectional image translation model. It is the first to apply cycle-
consistency with GANs and allows unpaired training data. 3) MUNIT[15] is
also an unsupervised model that could generate multiple outputs given an input.
It assumes that the representation of an image can be decomposed into a content
code and a style code. 4) UGATIT [18] is an attention-based image translation
model, with the attention to help the model focus on the domain-discriminative
regions and thereby improve the synthesis quality.

Training Details. We train our shape translation network for 500 (400) epochs
on shoes (chairs), and train our content enrichment network for 200 epochs. The
initial learning rate is 0.0002, and the input image size is 128×128. We use Adam
optimizer with batch size 1. Following the practice by CycleGAN, we train the
first 100 epochs at the same learning rate and then linearly decrease the rate to
zero until the maximum epoch. We randomly compose complex and distractive
sketches with the possibility of 0.2 and 0.3 respectively. The random patch size
is 50 × 50. When training the content enrichment network, we feed reference
images into the network with possibility 0.2.

Evaluation Metrics. 1) Fréchet Inception Distance (FID). It evaluates
image quality and diversity according to the distance between synthesized and
real samples according to the statistics of activations in layer pool3 of a pre-
trained Inception-v3. A lower FID value indicates higher fidelity. 2) User study
(Quality). It evaluates subjective impressions in terms of similarity and realism.
As in [30], we ask the subject to compare two generated photos and select the one
better fitting their imagination for a given sketch. We sample 50 pairs for each
comparison (more details in Supplementary). 3) Learned perceptual image
patch similarity (LPIPS). It measures the distance between two images. As in
[15,38], we use it to evaluate the diversity of synthesized photos.
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Fig. 4. Our model can produce high-fidelity and diverse photos from a sketch. Top:
Result comparisons. Most baselines cannot handle this task well. While UGATIT can
generate realistic photos, our results are more faithful to the input sketch, e.g., the
three chair examples. Bottom: Results without (Column 2) or with (Column 3) the
reference image. Our single content enrichment model can work under both settings,
with or without a reference photo (shown in the top right corner).
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Table 1. Benchmarks on ShoeV2/ChairV2. ‘∗’ indicates paired data for training.

Model ShoeV2 ChairV2

FID ↓ Quality ↑ LPIPS ↑ FID ↓ Quality ↑ LPIPS ↑
Pix2Pix∗ 65.09 27.0 0.071 177.79 13.0 0.096

CycleGAN 79.35 12.0 0.0 124.96 20.0 0.0

MUNIT 92.21 14.5 0.248 168.81 6.5 0.264

UGATIT 76.89 21.5 0.0 107.24 19.5 0.0

Ours 48.73 50.0 0.146 100.51 50.0 0.156

Fig. 5. Left: With different references, our model can produce diverse outputs. Mid-
dle: Given sketches of similar shoes drawn by different users, our model can capture
their commonality as well as subtle distinctions. Each row shows input sketch, syn-
thesized grayscale image, synthesized RGB photo. Right: Our model even works for
sketches at different completion stages, delivering realistic closely looking shoes. (Color
figure online)

4.2 Sketch-Based Photo Synthesis Results

Table 1 shows that: 1) Our model outperforms all the baselines in terms of FID
and user studies. Note that all the baselines adopt one-stage architectures. 2) All
the models perform poorly on ChairV2, probably due to more shape variations
but far fewer training data for chairs than for shoes (1:5). 3) Ours outperforms
MUNIT by a large margin, indicating that our task-level decomposition strategy,
i.e., two-stage architecture, is more effective than feature-level decomposition for
this task. 4) UGATIT ranks the second on each dataset. It is also an attention-
based model, showing the effectiveness of attention in image translation tasks.

Comparisons in Fig. 4 and Varieties in Fig. 5 (Left). Our results are more
realistic and faithful to the input sketch (e.g., buckle and logo); our synthesis
with different reference images produces varieties.

Robustness and Sensitivity in Fig. 5 (Middle & Right). We test our
ShoeV2 model under two settings: 1) sketches corresponding to the same photo,
2) sketches at different completion stages. Given sketches of similar shoes drawn
by different users, our model can capture their commonality as well as subtle
distinctions and translate them into photos. Our model also works for sketches



46 R. Liu et al.

Input Grayscale RGB With ref. (a) (b) (c) (d)

Fig. 6. Left: Generalization across domains. Column 1 are sketches from two unseen
datasets, Sketchy and TU-Berlin. Columns 2–4 are results from our model trained on
ShoeV2. Right: Our shoe model can be used as a shoe detector and generator. It can
generate a shoe photo based on a non-shoe sketch. It can further turn the non-shoe
sketch into a more shoe-like sketch. (a) Input sketch; (b) synthesized grayscale photo;
(c) re-synthesized sketch; (d) Green (a) overlaid over gray (c). (Color figure online)

Table 2. Comparison of different architecture designs.

FID ↓ CycleGAN (1-stage) CycleGAN (2-stage) Edge Map Grayscale (Ours)

ShoeV2 79.35 51.80 96.58 48.73

ChairV2 124.96 109.46 236.38 100.51

at different completion stages (obtained by removing strokes according to their
orderings), synthesizing realistic closely-looking shoes for partial sketches.

Generalization Across Domains in Fig. 6 (Left). When sketches are ran-
domly sampled from different datasets such as TU-Berlin [6] and Sketchy [28],
which have greater shape deformation than ShoeV2, our model trained on ShoeV2
can still produce good results (see more examples in the Supplementary).

Sketches from Novel Categories in Fig. 6 (Right). While we focus on
a single category training, we nonetheless feed our model sketches from other
categories. When the model is trained on shoes, the shape translation network
has learned to synthesize a grayscale shoe photo based on a shoe sketch. For
a non-shoe sketch, our model translates it into a shoe-like photo. Some fine
details in the sketch become a common component of a shoe. For example, a
car becomes a trainer while the front window becomes part of a shoelace. The
superimposition of the input sketch and the re-shoe-synthesized sketch reveals
which lines are chosen by our model and how it modifies the lines for re-synthesis.
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(a) (b) (c) (d) (a) (b) (c) (d) (e) (f)

Fig. 7. Left: Synthesized results when the edge map is used as the intermediate goal
instead of the grayscale photo. (a) Input sketch; (b) Synthesized edge map, (c) Synthe-
sized RGB photo using the edge map; (d) Synthesized RGB photo using grayscale (Ours).
Right: Our model can successfully deal with noise sketches, which are not well handled
by another attention-based model, UGATIT. For an input sketch (a), our model pro-
duce an attention mask (b); (c) and (d) are grayscale images produced by vanilla and
our model. (e) and (f) compare ours with the result of UGATIT. (Color figure online)

Fig. 8. Comparisons of paired and unpaired training for shape translation. There are
four examples. For each example, the 1st one is the input sketch, the 2nd and the 3rd
are grayscale images synthesized by Pix2Pix and our model respectively. Note that for
each example, although the input sketches are different visually, Pix2Pix produces a
similar-looking grayscale image. Our results are more faithful to the sketch.

4.3 Ablation Study

Two-Stage Architecture. Two-stage architecture is the key to the success of
our model. This strategy can be easily adapted by other models such as cycle-
GAN. Table 2 compares the performance of the original cycleGAN and its two-
stage version (i.e., cycleGAN is used only for shape translation while the content
enrichment network is the same as ours). The two-stage version outperforms the
original cycleGAN by 27.55 (on ShoeV2) and 68.33 (on ChairV2), indicating the
significant benefits brought by this architectural design.

Edge Map vs. Grayscale as the Intermediate Goal. We choose grayscale
as our intermediate goal of translation. As shown in Fig. 1, edge maps could
be an alternative since it does not have shape deformation either. We can first
translate sketch to an edge map, and then fill the edge map with colorful details.

Table 2 and Fig. 7 show that using the edge map is worse than using the
grayscale. Our explanations are: 1) Grayscale images contain more visual details
thus can provide more learning signals for training shape translation network;
2) Content enrichment is easier for grayscale as they are closer to color photos
than edge maps. The grayscale is also easier to obtain in practice.

Deal with Abstraction and Style Variations. We have discussed the prob-
lem encountered during shape translation in Sect. 3.1, and further introduced 1)
a self-supervised objective along with noise sketch composition strategies and
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Table 3. Contribution of each proposed component. The FID scores are obtained based
on the results of shape translation stage.

FID ↓ Pix2Pix Vanilla w/o self-supervision w/o attention Ours

ShoeV2 75.84 48.30 46.88 47.0 46.46

ChairV2 164.01 104.0 93.33 92.03 90.87

Table 4. Exclude the effect of paired data. Although the paired information is not
used during training, they indeed exist in ShoeV2. We compose a new dataset where
pairing does not exist to train the model again. Results obtained on the same test set.

Dataset Paired exist? Use pair info. FID ↓
ShoeV2 Yes No 48.7

UT Zappos50K No No 48.6

2) an attention module to handle the problem. Table 3 compares FID achieved
at the first stage by different variants. Our full model can tackle the problem
better than the vanilla model, and each component contributes to the improved
performance. Figure 7 shows two examples and compares the results of UGATIT.

Paired vs. Unpaired Training. We train a Pix2Pix model for shape transla-
tion to see if paired information helps. As shown in Table 3 (Pix2Pix ) and Fig. 8,
It turns out the performance of Pix2Pix is much worse than ours (FID: 75.84
vs. 46.46 on ShoeV2 and 164.01 vs. 90.87 on ChairV2). It is most likely caused
by the shape misalignment between sketches and grayscale images.

Exclude the Effect of Paired Information. Although pairing information
is not used during training, they do exist in ShoeV2. To eliminate any potential
pairing facilitation, we train another model on a composed dataset, created by
merging all the sketches of ShoeV2 and 9,995 photos of UT Zappos50K [33].
These photos are collected from a different source than ShoeV2. We train this
model in the same setting. In Table 4, we can see this model achieves similar
performance with the one trained on ShoeV2, indicating the effectiveness of our
approach for learning the task from entirely unpaired data.

4.4 Photo-to-Sketch Synthesis Results

Synthesize a Sketch Given a Photo. As the shape translation network is
bidirectional (i.e., T and T ′), our model can also translate a photo into a sketch.
This task is not trivial, as users can easily detect a fake sketch based on its stroke
continuity and consistency. Figure 9 (Top) shows that our generated sketches
mimic manual line-drawings and emphasize contours that are perceptually sig-
nificant.

Sketch-Like Edge Extraction. Sketch-to-photo and photo-to-sketch synthesis
are opposite processes. We suspect that our model can create sketches from
photos in broader categories as it may require less class priors.
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Input Canny HED Contour Ours Input Canny HED Contour Ours

Fig. 9. Our results on photo-based sketch synthesis. Top: each sketch-photo pair: left:
input photo, right: synthesized sketch. Results obtained on ShoeV2 and ChairV2. Bot-
tom: Results obtained on ShapeNet [3]. The column 1 is the input photo, Column 2–5
are lines generated by Canny, HED, Photo-Sketching [19] (Contour for short), and our
model. Our model can generate line strokes with a hand-drawn effect, while HED and
Canny detectors produce edge maps faithful to the original photos. Ours emphasize
perceptually significant contours, not intensity-contrast significant as in edge maps.

Fig. 10. Sample retrieval results. Our synthesis model can map photo to sketch domain
and vice versa. Cross-domain retrieval task can thus be converted to intra-domain
retrieval. Left: All candidate photos are mapped to sketches, thus both query and
candidates are in the sketch domain. Right: The query sketch is translated to a photo,
so the matching is in the photo domain. Top right shows the original photo or sketch.

We test our shoe model directly on photos in ShapeNet [3]. Figure 9 (Bottom)
lists our results along with those from HED [32] and Canny edge detector [2].
We also compare with Photo-Sketching [19], a method specifically designed for
generating boundary-like drawing from photos. 1) Unlike HED and Canny pro-
ducing an edge map faithful to the photo, ours presents a hand-drawn style. 2)
Our model can dub as an edge+ extractor on unseen classes. This is an exciting
corollary product: A promising automatic sketch generator that captures human
visual perception beyond the edge map of a photo (more results in Supp.).

4.5 Application: Unsupervised Sketch-Based Image Retrieval

Sketch-based image retrieval is an important application of sketch. One of its
main challenges is the large domain gap. Existing methods either map sketches
and photos into a common space or use edge maps as the intermediate represen-
tation. However, our model enables direct mapping between these two domains.
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We thus conduct experiments in two possible mapping directions: 1) Trans-
late gallery photos to sketches, and then find the nearest sketches to the query
sketch (Fig. 10 (Left)); 2) Translate a sketch to a photo and then find its nearest
neighbors in the photo gallery (Fig. 10 (Right)). Two ResNet18 [12] models, one
is pretrained on the ImageNet while the other is on the TU-Berlin dataset, are
used as feature extractors for photos and sketches respectively (see Supplemen-
tary for further details). Figure 10 shows our retrieval results. Even without any
supervision, the results are already acceptable. In the second experiment, we
achieve an accuracy of 37.2% (65.2%) at top5 (top20) respectively. These results
are higher than the results from sketch to edge map, which are 34.5% (57.7%).

Summary. We propose the first unsupervised two-stage sketch-to-photo syn-
thesis model that can produce photos of high fidelity, realism, and diversity.
It enables sketch-based image retrieval and automatic sketch generation that
captures human visual perception beyond the edge map of a photo.
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Abstract. The human visual system is remarkably robust against a
wide range of naturally occurring variations and corruptions like rain
or snow. In contrast, the performance of modern image recognition
models strongly degrades when evaluated on previously unseen corrup-
tions. Here, we demonstrate that a simple but properly tuned training
with additive Gaussian and Speckle noise generalizes surprisingly well to
unseen corruptions, easily reaching the state of the art on the corruption
benchmark ImageNet-C (with ResNet50) and on MNIST-C. We build on
top of these strong baseline results and show that an adversarial train-
ing of the recognition model against locally correlated worst-case noise
distributions leads to an additional increase in performance. This reg-
ularization can be combined with previously proposed defense methods
for further improvement.

Keywords: Image corruptions · Robustness · Generalization ·
Adversarial training

1 Introduction

While Deep Neural Networks (DNNs) have surpassed the functional performance
of humans in a range of complex cognitive tasks [2,12,30,38,44], they still lag
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behind humans in numerous other aspects. One fundamental shortcoming of
machines is their lack of robustness against input perturbations. Even minimal
perturbations that are hardly noticeable for humans can derail the predictions
of high-performance neural networks.

For the purpose of this paper, we distinguish between two types of input
perturbations. One type are minimal image-dependent perturbations specifi-
cally designed to fool a neural network with the smallest possible change to
the input. These so-called adversarial perturbations have been the subject of
hundreds of papers in the past five years, see e.g. [11,21,35,39]. Another, much
less studied type are common corruptions. These perturbations occur naturally
in many applications and include simple Gaussian or Salt and Pepper noise;
natural variations like rain, snow or fog; and compression artifacts such as those
caused by JPEG encoding. All of these corruptions do not change the seman-
tic content of the input, and thus, machine learning models should not change
their decision-making behavior in their presence. Nonetheless, high-performance
neural networks like ResNet50 [12] are easily confused by small deformations [1].
The juxtaposition of adversarial examples and common corruptions was explored
in [8] where the authors discuss the relationship between both and encourage
researchers working in the field of adversarial robustness to cross-evaluate the
robustness of their models towards common corruptions.

We argue that in many practical applications, robustness to common corrup-
tions is often more relevant than robustness to artificially designed adversarial
perturbations. Autonomous cars should not change their behavior in the face of
unusual weather conditions such as hail or sand storms or small pixel defects in
their sensors. Not-Safe-For-Work filters should not fail on images with unusual
compression artifacts. Likewise, speech recognition algorithms should perform
well regardless of the background music or sounds.

Besides its practical relevance, robustness to common corruptions is also an
excellent target in its own right for researchers in the field of adversarial robust-
ness and domain adaptation. Common corruptions can be seen as distributional
shifts or as a weak form of adversarial examples that live in a smaller, constrained
subspace.

Despite their importance, common corruptions have received relatively little
attention so far. Only recently, a modification of the ImageNet dataset [34] to
benchmark model robustness against common corruptions and perturbations
has been published [13] and is referred to as ImageNet-C. Now, this scheme has
also been applied to other common datasets resulting in Pascal-C, Coco-C and
Cityscapes-C [25] and MNIST-C [29].

Our contributions are as follows:

– We demonstrate that data augmentation with Gaussian or Speckle noise
serves as a simple yet very strong baseline that is sufficient to surpass almost
all previously proposed defenses against common corruptions on ImageNet-C
for ResNet50. We further show that the magnitude of the additive noise is a
crucial hyper-parameter to reach optimal robustness.

– Motivated by our strong results with baseline noise augmentations, we intro-
duce a neural network-based adversarial noise generator that can learn
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Fig. 1. Outline of our approach. A: First, we train a generative network against a
vanilla trained classifier to find the adversarial noise. B: To achieve robustness against
adversarial noise, we train the classifier and the noise generator jointly. C: We measure
the robustness against common corruptions for a vanilla, adversarially trained (Adv.
Tr.), trained on Stylized ImageNet (SIN), trained via Gaussian data augmentation
(GNT) and trained with the means of Adversarial Noise Training (ANT). With our
methods, we achieve the highest accuracy on common corruptions, both on all and
non-noise categories.

arbitrary uncorrelated noise distributions that maximally fool a given recog-
nition network when added to their inputs. We denote the resulting noise
patterns as adversarial noise.

– We design and validate a constrained Adversarial Noise Training (ANT)
scheme through which the recognition network learns to become robust
against adversarial i.i.d. noise. We demonstrate that our ANT reaches state-
of-the-art robustness on the corruption benchmark ImageNet-C for the com-
monly used ResNet50 architecture and on MNIST-C, even surpassing the
already strong baseline noise augmentations. This result is not due to over-
fitting on the noise categories of the respective benchmarks since we find
equivalent results on the non-noise corruptions as well.

– We extend the adversarial noise generator towards locally correlated noise
thereby enabling it to learn more diverse noise distributions. Performing ANT
with the modified noise generator, we observe an increase in robustness for
the ‘snow’ corruption which is visually similar to our learned noise.

– We demonstrate a further increase in robustness when combining ANT with
previous defense methods.

– We substantiate the claim that increased robustness against regular or uni-
versal adversarial perturbations does not imply increased robustness against
common corruptions. This is not necessarily true vice-versa: Our noise trained
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recognition network has high accuracy on ImageNet-C and also slightly
improved accuracy on adversarial attacks on clean ImageNet compared to
a vanilla trained ResNet50.

We released our model weights along with the full training code on GitHub.1

2 Related Work

Robustness Against Common Corruptions. Several recent publications
study the vulnerability of DNNs to common corruptions.

Two recent studies compare humans and DNNs on recognizing corrupted
images, showing that DNN performance drops much faster than human perfor-
mance for increased perturbation sizes [5,10]. Hendrycks et al. introduce cor-
rupted versions of standard datasets denoted as ImageNet-C, Tiny ImageNet-C
and CIFAR10-C as standardized benchmarks for machine learning models [13].
Similarly, common corruptions have been applied to and evaluated on COCO-C,
Pascal-C, Cityscapes-C [25] and MNIST-C [29].

There have been attempts to increase robustness against common corrup-
tions. Zhang et al. integrate an anti-aliasing module from the signal processing
domain in the ResNet50 architecture to restore the shift-equivariance which can
get lost in deep CNNs and report an increased accuracy on clean data and
better generalization to corrupted image samples [45]. Concurrent work to ours
demonstrates that having more training data [22,43] or using stronger backbones
[18,25,43] can significantly improve model performance on common corruptions.

A popular method to decrease overfitting and help the network generalize
better to unseen data is to augment the training dataset by applying a set
of (randomized) manipulations to the images [26]. Furthermore, augmentation
methods have also been applied to make the models more robust against image
corruptions [9]. Augmentation with Gaussian [8,19] or uniform noise [10] has
been tried to increase model robustness. Conceptually, Ford et al. is the closest
study to our work, since they also apply Gaussian noise to images to increase
corruption robustness [8]. They use a different architecture (InceptionV3 versus
our ResNet50). Also, they train a new model from scratch solely on images per-
turbed by Gaussian noise whereas we fine-tune a pretrained model on a mixture
of clean and noisy images. They observe a low relative improvement in accuracy
on corrupted images whereas we were able to outperform all previous baselines
on the commonly used ResNet50 architecture.2 Lopes et al. restrict the Gaus-
sian noise to small image patches, which improves accuracy but does not yield
state-of-the-art performance on the ResNet50 architecture [19]. Geirhos et al.
train ImageNet classifiers against a fixed set of corruptions but find no general-
ized robustness against unseen corruptions [10]. However, they considered vastly
higher noise levels than us. Considering the efficacy of Gaussian or uniform data

1 github.com/bethgelab/game-of-noise.
2 To compare with Ford et al., we evaluate our approach for an InceptionV3 architec-

ture, see our results in Appendix H.

https://github.com/bethgelab/game-of-noise
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augmentation to increase model robustness, the main difference to our work is
that other works have used either munch larger [10] or smaller [8,19] values for
the standard deviation σ. A too large σ leads to an overfitting to the used noise
distribution whereas a too small σ leads to noise levels that are not different
enough from the clean images. We show that taking σ from the intermediate
regime works best for generalization both to other noise types and non-noise
corruptions.

Link Between Adversarial Robustness and Common Corruptions.
There is currently no agreement on whether adversarial training increases robust-
ness against common corruptions in the literature. Hendrycks et al. report a
robustness increase on common corruptions due to adversarial logit pairing on
Tiny ImageNet-C [13]. Ford et al. suggest a link between adversarial robustness
and robustness against common corruptions, claim that increasing one robust-
ness type should simultaneously increase the other, but report mixed results
on MNIST and CIFAR10-C [8]. Additionally, they also observe large drops in
accuracy for adversarially trained networks and networks trained with Gaussian
data augmentation compared to a vanilla classifier on certain corruptions. On
the other hand, Engstrom et al. report that increasing robustness against adver-
sarial �∞ attacks does not increase robustness against translations and rotations,
but they do not present results on noise [7]. Kang et al. study robustness transfer
between models trained against �1, �2, �∞ adversaries/elastic deformations and
JPEG artifacts [17]. They observe that adversarial training increases robustness
against elastic and JPEG corruptions on a 100-class subset of ImageNet. This
result contradicts our findings on full ImageNet as we see a slight decline in
accuracy on those two classes for the adversarially trained model from [42] and
severe drops in accuracy on other corruptions. Jordan et al. show that adversar-
ial robustness does not transfer easily between attack classes [16]. Tramèr et al.
[40] also argue in favor of a trade-off between different robustness types. For
a simple and natural classification task, they prove that adversarial robustness
towards l∞ perturbations does neither transfer to l1 nor to input rotations and
translations, and vice versa and support their formal analysis with experiments
on MNIST and CIFAR10.

3 Methods

3.1 Training with Gaussian Noise

As discussed in Sect. 2, several researchers have tried using Gaussian noise as a
method to increase robustness towards common corruptions with mixed results.
In this work, we revisit the approach of Gaussian data augmentation and increase
its efficacy. We treat the standard deviation σ of the distribution as a hyper-
parameter of the training and measure its influence on robustness.

To formally introduce the objective, let D be the data distribution over input
pairs (x, y) with x ∈ R

N and y ∈ {1, . . . , k}. We train a differentiable classifier
fθ(x) by minimizing the risk on a dataset with additive Gaussian noise
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E
x,y∼D

E
δ∼N (0,σ21)

[LCE (fθ(clip(x + δ)), y)] , (1)

where σ is the standard deviation of the Gaussian noise and x + δ is clipped
to the input range [0, 1]N . The standard deviation is either kept fixed or is
chosen uniformly from a fixed set of standard deviations. In both cases, the
possible standard deviations are chosen from a small set of nine values inspired
by the noise variance in the ImageNet-C dataset (cf. Sect. 3.3). To maintain high
accuracy on clean data, we only perturb 50% of the training data with Gaussian
noise within each batch.

3.2 Adversarial Noise

Learning Adversarial Noise. Our goal is to find a noise distribution
pφ(δ), δ ∈ R

N such that noise samples added to x maximally confuse the clas-
sifier fθ. More concisely, we optimize

max
φ

E
x,y∼D

E
δ∼pφ(δ)

[LCE (fθ(clip(x + δ)), y)] , (2)

where clip is an operator that clips all values to the valid interval (i.e. clip(x +
δ) ∈ [0, 1]N ) and restricts their norm ||δ||2 = ε.3

We follow the literature of implicit generative models [4,28] as we do not have
to explicitly model the probability density function pφ(δ) since optimizing Eq. (2)
only involves samples drawn from pφ(δ). We model the samples from pφ(δ) as
the output of a neural network gφ : R

N → R
N which gets its input from a

normal distribution δ = gφ(z) where z ∼ N (0,1). We enforce the independence
property of pφ(δ) =

∏
n pφ(δn) by constraining the network architecture of the

noise generator gφ to only consist of convolutions with 1× 1 kernels. Lastly,
the projection onto a sphere ||δ||2 = ε is achieved by scaling the generator
output with a scalar while clipping x + δ to the valid range [0, 1]N . This fixed
size projection (hyper-parameter) is motivated by the fact that Gaussian noise
training with a single, fixed σ achieved the highest accuracy.4

The noise generator gφ has four 1× 1 convolutional layers with ReLU acti-
vations and one residual connection from input to output. The weights of the
layers are initialized to small numbers; for this initialization, the input is passed
through the residual connection to the output. Since we use Gaussian noise
as input, the noise generator outputs Gaussian noise at initialization. During
training, the weights change and the generator learns to produce more diverse
distributions.

3 We apply the method derived in [32] and rescale the perturbation by a factor γ to
obtain the desired �2 norm; despite the clipping, the squared �2 norm is a piece-wise
linear function of γ2 that can be inverted to find the correct scaling factor γ.

4 We also experimented with an adaptive sphere radius ε which grows with the clas-
sifier’s accuracy. However, we did not see any improvements and followed Occam’s
razor.
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Adversarial Noise Training. To increase robustness, we now train the clas-
sifier fθ to minimize the risk under adversarial noise distributions jointly with
the noise generator

min
θ

max
φ

E
x,y∼D

E
δ∼pφ(δ)

[LCE (fθ(clip(x + δ)), y)] , (3)

where again x + δ ∈ [0, 1]N and ||δ||2 = ε. For a joint adversarial training, we
alternate between an outer loop of classifier update steps and an inner loop of
generator update steps. Note that in regular adversarial training, e.g. [21], δ is
optimized directly whereas we optimize a constrained distribution over δ.

To maintain high classification accuracy on clean samples, we sample every
mini-batch so that they contain 50% clean data and perturb the rest. The current
state of the noise generator is used to perturb 30% of this data and the remaining
20% are augmented with samples chosen randomly from previous distributions.
For this, the noise generator states are saved at regular intervals. The latter
method is inspired by experience replay from reinforcement learning [27] and is
used to keep the classifier from forgetting previous adversarial noise patterns.
To prevent the noise generator from being stuck in a local minimum, we halt
the Adversarial Noise Training (ANT) at regular intervals and train a new noise
generator from scratch. This noise generator is trained against the current state
of the classifier to find a current optimum. The new noise generator replaces the
former noise generator in the ANT. This technique has been crucial to train a
robust classifier.

Learning Locally Correlated Adversarial Noise. We modify the architec-
ture of the noise generator defined in Eq. 2 to allow for local spatial correlations
and thereby enable the generator to learn more diverse distributions. Since we
seek to increase model robustness towards image corruptions such as rain or
snow that produce locally correlated patterns, it is natural to include local pat-
terns in the manifold of learnable distributions. We replace the 1× 1 kernels in
one network layer with 3× 3 kernels limiting the maximum correlation length
of the output noise sample to 3× 3 pixels. We indicate the correlation length of
noise generator used for the constrained adversarial noise training as ANT1x1 or
ANT3x3.

Combining Adversarial Noise Training with Stylization. As demon-
strated by [9], using random stylization as data augmentation increases the accu-
racy on ImageNet-C due to a higher shape bias of the model. We combine our
ANT and the stylization approach to achieve robustness gains from both in the
following way: we split the samples in each batch into clean data (25%), stylized
data (30%) and clean data perturbed by the noise generator (45%).
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3.3 Evaluation on Corrupted Images

Evaluation of Noise Robustness. We evaluate the robustness of a model by
sampling a Gaussian noise vector δ (covariance 1). We then do a line search along
the direction δ starting from the original image x until it is misclassified. We
denote the resulting minimal perturbation as δmin. The robustness of a model is
then denoted by the median5 over the test set

ε∗ = median
x,y∼D

||δmin||2, (4)

with fθ(x + δmin) �= y and x + δmin ∈ [0, 1]N . Note that a higher ε∗ denotes
a more robust classifier. To test the robustness against adversarial noise, we
train a new noise generator at the end of the Adversarial Noise Training until
convergence and evaluate it according to Eq. (4).

ImageNet-C. The ImageNet-C benchmark6 [13] is a conglomerate of 15 diverse
corruption types that were applied to the validation set of ImageNet. The corrup-
tions are organized into four main categories: noise, blur, weather, and digital.
The MNIST-C benchmark is created similarly to ImageNet-C with a slightly
different set of corruptions [29]. We report the Top-1 and Top-5 accuracies as
well as the ‘mean Corruption Error’ (mCE) on both benchmarks. We evaluate all
proposed methods for ImageNet-C on the ResNet50 architecture for better com-
parability to previous methods, e.g. [9,19,45]. The clean ImageNet accuracy of
the used architecture highly influences the results and could be seen as an upper
bound for the accuracy on ImageNet-C. Note that our approach is independent
of the used architecture and could be applied to any differentiable network.

4 Results

For our experiments on ImageNet, we use a classifier that was pretrained on
ImageNet. For the experiments on MNIST, we use the architecture from [21]
for comparability. All technical details, hyper-parameters and the architectures
of the noise generators can be found in Appendix A–B. We use various open
source software packages for our experiments, most notably Docker [24], scipy
and numpy [41], PyTorch [31] and torchvision [23].

5 Samples for which no �2-distance allows us to manipulate the classifier’s decision
contribute a value of ∞ to the median.

6 For the evaluation, we use the JPEG compressed images from
github.com/hendrycks/robustness as is advised by the authors to ensure repro-
ducibility. We note that Ford et al. report a decrease in performance when the
compressed JPEG files are used as opposed to applying the corruptions directly in
memory without compression artifacts [8].

https://github.com/hendrycks/robustness
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(In-)Effectiveness of Regular Adversarial Training to Increase Robust-
ness Towards Common Corruptions. In our first experiment, we evaluate
whether robustness against regular adversarial examples generalizes to robust-
ness against common corruptions. We display the Top-1 accuracy of vanilla and
adversarially trained models in Table 1; detailed results on individual corrup-
tions can be found in Appendix C. For all tested models, we find that regular
�∞ adversarial training can strongly decrease the robustness towards common
corruptions, especially for the corruption types Fog and Contrast. Universal
adversarial training [37], on the other hand, leads to severe drops on some cor-
ruptions but the overall accuracy on ImageNet-C is slightly increased relative
to the vanilla baseline model (AlexNet). Nonetheless, the absolute ImageNet-C
accuracy of 22.2% is still very low. These results disagree with two previous stud-
ies which reported that (1) adversarial logit pairing7 (ALP) increases robustness
against common corruptions on Tiny ImageNet-C [13], and that (2) adversarial
training can increase robustness on CIFAR10-C [8].

Table 1. Top-1 accuracy on ImageNet-C and ImageNet-C without the noise category
(higher is better). Regular adversarial training decreases robustness towards common
corruptions; universal adversarial training seems to slightly increase it.

Model IN-C IN-C w/o noises

Vanilla RN50 39.2% 42.3%
Adv. training [36] 29.1% 32.0%
Vanilla RN152 45.0% 47.9%
Adv. training [42] 35.0% 35.9%
Vanilla AlexNet 21.1% 23.9%
Universal adv. training [37] 22.2% 23.1%

We evaluate adversarially trained models on MNIST-C and present the
results and their discussion in Appendix E. The results on MNIST-C show the
same tendency as on ImageNet-C: adversarially trained models have lower accu-
racy on MNIST-C and thus indicate that adversarial robustness does not transfer
to robustness against common corruptions. This corroborates the results of Ford
et al. [8] on MNIST who also found that an adversarially robust model had
decreased robustness towards a set of common corruptions.

Effectiveness of Gaussian Data Augmentation to Increase Robustness
Towards Common Corruptions. We fine-tune ResNet50 classifier pretrained
on ImageNet with Gaussian data augmentation from the distribution N (0, σ21)
and vary σ. We try two different settings: in one, we choose a single noise level σ

7 Note that ALP was later found to not increase adversarial robustness [6].
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while in the second, we sample σ uniformly from a set of multiple possible values.
The Top-1 accuracy of the fine-tuned models on ImageNet-C in comparison to a
vanilla trained model is shown in Fig. 2. Each black point shows the performance
of one model fine-tuned with one specific σ; the vanilla trained model is marked
by the point at σ = 0. The horizontal lines indicate that the model is fine-
tuned with Gaussian noise where σ is sampled from a set for each image. For
example, for the dark green line, as indicated by the stars, we sample σ from the
set {0.08, 0.12, 0.18, 0.26, 0.38} which corresponds to the Gaussian corruption of
ImageNet-C. Since Gaussian noise is part of the test set, we show both the results
on the full ImageNet-C evaluation set and the results on ImageNet-C without
noises (namely blur, weather and digital). To show how the different σ-levels
manifest themselves in an image, we include example images in Appendix G.

There are three important results evident from Fig. 2:
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Fig. 2. Top-1 accuracy on ImageNet-C (left) and ImageNet-C without the noise corrup-
tions (right) of a ResNet50 architecture fine-tuned with Gaussian data augmentation
of varying σ. Each dot or green line represents one model. We train on Gaussian noise
sampled from a distribution with a single σ (black dots) and on distributions where
σ is sampled from different sets (green lines with stars). We also compare to a vanilla
trained model at σ = 0. (Color figure online)

1. Gaussian noise generalizes well to the non-noise corruptions of the ImageNet-
C dataset and is a powerful baseline. This is surprising as it was shown in
several recent works that training on Gaussian or uniform noise does not
generalize to other corruption types [10,19] or that the effect is weak [8].

2. The standard deviation σ is a crucial hyper-parameter and has an optimal
value of about σ = 0.5 for ResNet50.

3. If σ is chosen well, using a single σ is enough and sampling from a set of σ
values is detrimental for robustness against non-noise corruptions.

In the following Results sections, we will compare Gaussian data augmen-
tation to our Adversarial Noise Training approach and baselines from the lit-
erature. For this, we will use the models with the overall best-performance:
The model GN0.5 that was trained with Gaussian data augmentation with
a single σ = 0.5 and the model GNmult where σ was sampled from the set
{0.08, 0.12, 0.18, 0.26, 0.38}.
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Evaluation of the Severity of Adversarial Noise as an Attack. In this
section, we focus on the question: Can we learn the most severe uncorrelated
additive noise distribution for a classifier? Following the success of simple uncor-
related Gaussian noise data augmentation (Sect. 4) and the ineffectiveness of
regular adversarial training (Sect. 4) which allows for highly correlated patterns,
we restrict our learned noise distribution to be sampled independently for each
pixel.

To measure the effectiveness of our adversarial noise, we report the median
perturbation size ε∗ that is necessary for a misclassification for each image in the
test set as defined in Sect. 3.3. We find ε∗

GN = 39.0 for Gaussian noise, ε∗
UN = 39.1

for uniform noise and ε∗
AN = 15.7 for adversarial noise (see Fig. 1 for samples of

each noise type). Thus, we see that our AN is much more effective at fooling the
classifier compared to Gaussian and uniform noise.

Table 2. Accuracy on clean data and robustness of differently trained models as
measured by the median perturbation size ε∗. A higher ε∗ indicates a more robust
model. We compute standard deviations for ε∗

AN for differently initialized generator
networks. To provide an intuition for the perturbation sizes indicated by ε∗, we show
example images for Gaussian noise below and a larger Figure for different noise types
in Appendix I.

Model Clean acc. ε∗
GN ε∗

UN ε∗
AN1x1

Vanilla RN50 76.1% 39.0 39.1 15.7 ± 0.6
GNTσ0.5 75.9% 74.8 74.9 31.8 ± 3.9
GNTmult 76.1% 130.1 130.7 24.0 ± 2.2
ANT1x1 76.0% 136.7 137.0 95.4±5.7

∗=15.0 ∗=30.0 ∗=60.0 ∗=120.0

Evaluation of Adversarial Noise Training as a Defense. In the previous
section, we established a method for learning the most adversarial noise distri-
bution for a classifier. Now, we utilize it for a joint Adversarial Noise Training
(ANT1x1) where we simultaneously train the noise generator and classifier (see
Sect. 3.2). This leads to substantially increased robustness against Gaussian,
uniform and adversarial noise, see Table 2. The robustness of models that were
trained via Gaussian data augmentation also increases, but on average much
less compared to the model trained with ANT1x1. To evaluate the robustness
against adversarial noise, we train four noise generators with different random
seeds and measure ε∗

AN1x1. We report the mean value and the standard deviation
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over the four runs. To visualize this effect, we visualize the temporal evolution of
the probability density function pφ(δn) of uncorrelated noise during ANT1x1 in
Fig. 3A. This shows that the generator converges to different distributions and
therefore, the classifier has been trained against a rich variety of distributions.

Comparison of Different Methods to Increase Robustness Towards
Common Corruptions. We now revisit common corruptions on ImageNet-C
and compare the robustness of differently trained models. Since Gaussian noise
is part of ImageNet-C, we train another baseline model with data augmentation
using the Speckle noise corruption from the ImageNet-C holdout set. We later
denote the cases where the corruptions present during training are part of the
test set by putting corresponding accuracy values in brackets. Additionally, we
compare our results with several baseline models from the literature:

Fig. 3. A: Examples of learned probability densities over the grayscale version of the
noise δn during ANT1x1 where each density corresponds to one local minimum; B:
Example images with sampled uncorrelated adversarial noise; C: Example patches of
locally correlated noise with a size of 28 × 28 pixels learned during ANT3x3; D: Example
images with sampled correlated adversarial noise.

1. Shift Inv: The model is modified to enhance shift-equivariance using anti-
aliasing [45].8

2. Patch GN: The model was trained on Gaussian patches [19].9
3. SIN+IN: The model was trained on a stylized version of ImageNet [9].10
4. AugMix: [14] trained their model using diverse augmentations.11 They use

image augmentations from AutoAugment [3] and exclude contrast, color,
brightness, sharpness, and Cutout operations to make sure that the test set
of ImageNet-C is disjoint from the training set. We would like to highlight
the difficulty in clearly distinguishing between the augmentations used dur-
ing training and testing as there might be a certain overlap. This can be
seen by the visual similarity between the Posterize operation and the JPEG
corruption (see Appendix J).

8 Weights were taken from github.com/adobe/antialiased-cnns.
9 Since no model weights are released, we include the values reported in their paper.

10 Weights were taken from github.com/rgeirhos/texture-vs-shape.
11 Weights were taken from github.com/google-research/augmix.

https://github.com/adobe/antialiased-cnns
https://github.com/rgeirhos/texture-vs-shape/tree/master/models
https://github.com/google-research/augmix
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The Top-1 accuracies on the full ImageNet-C dataset and ImageNet-C with-
out the noise corruptions are displayed in Table 3; detailed results on individ-
ual corruptions in terms of accuracy and mCE are shown in Tables 3 and 4,
Appendix D. We also calculate the accuracy on corruptions without the noise
category since we observe that the generated noise can sometimes be close to the
i.i.d. corruptions of ImageNet-C raising concerns about overfitting. Additionally,
the expressiveness of the generated i.i.d. noise is quite limited compared to nat-
ural corruptions like ‘snow’. We hence extend the ANT1x1 procedure to include
spatially correlated noise over 3× 3 pixels. Samples are shown in Fig. 3C and
Fig. 3D.

The results on full ImageNet-C are striking (see Table 3): a very simple base-
line, namely a model trained with Speckle noise data augmentation, beats almost
all previous baselines reaching an accuracy of 46.4% which is larger than the
accuracy of SIN+IN (45.2%) and close to AugMix (48.3%). The GNσ0.5 sur-
passes SIN+IN not only on the noise category but also on almost all other
corruptions, see a more detailed breakdown in Table 3, Appendix D.

Table 3. Average accuracy on clean data, average Top-1 and Top-5 accuracies on
ImageNet-C and ImageNet-C without the noise category (higher is better); all values
in percent. We compare the results obtained by the means of Gaussian (GNT) and
Speckle noise data augmentation and with Adversarial Noise Training (ANT) to several
baselines. Gray numbers in brackets indicate scenarios where a corruption from the test
set was used during training.

Model IN IN-C IN-C w/o noises
Clean acc. Top-1 Top-5 Top-1 Top-5

Vanilla RN50 76.1 39.2 59.3 42.3 63.2
Shift Inv [45] 77.0 41.4 61.8 44.2 65.1
Patch GN [19] 76.0 (43.6) (n.a.) 43.7 n.a.
SIN+IN [9] 74.6 45.2 66.6 46.6 68.2
AugMix [14] 77.5 48.3 69.2 50.4 71.8
Speckle 75.8 46.4 67.6 44.5 65.5
GNTmult 76.1 (49.2) (70.2) 45.2 66.2
GNTσ0.5 75.9 (49.4) (70.6) 47.1 68.3
ANT1x1 76.0 (51.1) (72.2) 47.7 68.8
ANT1x1+SIN 74.9 (52.2) (73.6) 49.2 70.6
ANT1x1 w/o EP 75.7 (48.9) (70.2) 46.5 67.7
ANT3x3 76.1 50.4 71.5 47.0 68.1
ANT3x3+SIN 74.1 52.6 74.4 50.6 72.5
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The ANT3x3+SIN model produces the best results on ImageNet-C both with
and without noises. Thus, it is slightly superior to Gaussian data augmentation
and pure ANT3x3. Comparing ANT1x1 and ANT3x3, we observe that ANT3x3

performs better than ANT1x1 on the ‘snow’ corruption. We attribute this to
the successful modeling capabilities of locally correlated patterns resembling
snow of the 3 × 3 noise generator. We perform an ablation study to investigate
the necessity of experience replay and note that we lose roughly 2% without
it (ANT1x1 w/o EP vs ANT1x1). We also test how the classifier’s performance
changes if it is trained against adversarial noise sampled randomly from pφ(δn).
The accuracy on ImageNet-C decreases slightly compared to regular ANT1x1:
51.1%/71.9% (Top-1/Top-5) on full ImageNet-C and 47.3%/68.3% (Top-1/Top-
5) on ImageNet-C without the noise category. We include additional results for
ANT1x1 with a DenseNet121 architecture [15] and for varying parameter counts
of the noise generator in Appendix K.

For MNIST, we train a model with Gaussian data augmentation and via
ANT1x1. We achieve similar results with both approaches and report a new
state-of-the-art accuracy on MNIST-C: 92.4%, see Appendix E for details.

Table 4. Adversarial robustness on �2 (ε = 0.12) and �∞ (ε = 0.001) compared to a
Vanilla ResNet50 on ImageNet.

Model Clean acc. [%] �2 acc. [%] �∞ acc.[%]

Vanilla RN50 76.1 41.1 18.1
GNTσ0.5 75.9 49.0 28.1
ANT1x1 76.0 50.1 28.6
Adv. training [36] 60.5 58.1 58.5

Robustness Towards Adversarial Perturbations. As regular adversarial
training can decrease the accuracy on common corruptions, it is also interesting
to check what happens vice-versa: How does a model which is robust on common
corruptions behave under adversarial attacks?

Both our ANT1x1 and GNT models have slightly increased �2 and �∞ robust-
ness scores compared to a vanilla trained model, see Table 4. We tested this using
the white-box attacks PGD [20] and DDN [33]. Expectedly, an adversarially
trained model has higher adversarial robustness compared to ANT1x1 or GNT.
In this experiment, we only verify that we do not unintentionally reduce adver-
sarial robustness compared to a vanilla ResNet50. For details, see Appendix E
for MNIST and Appendix F for ImageNet.

5 Conclusions

So far, attempts to use simple noise augmentations for general robustness
against common corruptions have produced mixed results, ranging from no
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generalization from one noise to other noise types [10] to only marginal robust-
ness increases [8,19]. In this work, we demonstrate that carefully tuned additive
noise patterns in conjunction with training on clean samples can surpass almost
all current state-of-the-art defense methods against common corruptions. By
drawing inspiration from adversarial training and experience replay, we addi-
tionally show that training against simple uncorrelated or locally correlated
worst-case noise patterns outperforms our already strong baseline defense, with
additional gains to be made in combination with previous defense methods like
stylization [9].

There are still a few corruption types (e.g. Motion or Zoom blurs) on which
our method is not state of the art, suggesting that additional gains are possible.
Future extensions of this work may combine noise generators with varying cor-
relation lengths, add additional interactions between noise and image (e.g. mul-
tiplicative interactions or local deformations) or take into account local image
information in the noise generation process to further boost robustness across
many types of image corruptions.
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Abstract. Point clouds are often the default choice for many appli-
cations as they exhibit more flexibility and efficiency than volumetric
data. Nevertheless, their unorganized nature – points are stored in an
unordered way – makes them less suited to be processed by deep learning
pipelines. In this paper, we propose a method for 3D object completion
and classification based on point clouds. We introduce a new way of orga-
nizing the extracted features based on their activations, which we name
soft pooling. For the decoder stage, we propose regional convolutions, a
novel operator aimed at maximizing the global activation entropy. Fur-
thermore, inspired by the local refining procedure in Point Completion
Network (PCN), we also propose a patch-deforming operation to simu-
late deconvolutional operations for point clouds. This paper proves that
our regional activation can be incorporated in many point cloud architec-
tures like AtlasNet and PCN, leading to better performance for geomet-
ric completion. We evaluate our approach on different 3D tasks such as
object completion and classification, achieving state-of-the-art accuracy.

1 Introduction

Point clouds are unorganized sparse representations of a 3D point set. Compared
to other common representations for 3D data such as 3D meshes and voxel
maps, they are simple and flexible, while being able to store fine details of a
surface. For this reason, they are frequently employed for many applications
within 3D perception and 3D computer vision such as robotic manipulation
and navigation, scene understanding, and augmented/virtual reality. Recently,
deep learning approaches have been proposed to learn from point clouds for 3D
perception tasks such as point cloud classification [4,14,18,19] or point cloud
segmentation [11,13,14,17,23]. Among them, one of the key breakthroughs in
handling unorganized point clouds was proposed by PointNet [18], introducing
the idea of a max pooling in the feature space to yield permutation invariance.
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Fig. 1. This paper proposes a method that reconstructs 3D point cloud models with
more fine details.

An interesting emerging research trend focusing on 3D data is the so-called
3D completion, where the geometry of a partial scene or object acquired from a
single viewpoint, e.g. through a depth map, is completed of the missing part due
to (self-)occlusion as visualized in Fig. 1. This can be of great use to aid standard
3D perception tasks such as object modeling, scene registration, part-based seg-
mentation and object pose estimation. Most approaches targeting 3D completion
have been proposed for volumetric approaches, since 3D convolutions are natu-
rally suited to this 3D representation. Nevertheless, such approaches bring in the
limitations of this representation, including loss of fine details due to discretiza-
tion and limitations in scaling with the 3D size. Recently, a few approaches have
explored the possibility of learning to complete a point cloud [9,25,26].

This paper proposes an encoder-decoder architecture called SoftPoolNet,
which can be employed for any task that processes a point cloud as input in
order to regress another point cloud as output. One of the tasks and a main
focus for this work is 3D object completion from a partial point cloud.

The theoretical contribution of SoftPoolNet is twofold. We first introduce soft
pooling, a new module that replaces the max-pooling operator in PointNet by
taking into account multiple high-scoring features rather than just one. The intu-
ition is that, by keeping multiple features with high activations rather than just
the highest, we can retain more information while keeping the required permuta-
tion invariance. A second contribution is the definition of a regional convolution
operator that is used within the proposed decoder architecture. This operator
is designed specifically for point cloud completion and relies on convolving local
features to improve the completion task with fine details.

In addition to evaluating SoftPoolNet for point cloud completion, we also
evaluate on the point cloud classification to demonstrate its applicability to
general point cloud processing tasks. In both evaluations, SoftPoolNet obtains
state of the art results on the standard benchmarks.

2 Related Work

Volumetric Completion. Object [7] and scene completion [20,22] are typically
carried out by placing all observed elements into a 3D grid with fixed res-
olution. 3D-EPN [7] completes a single object using 3D convolutions while
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3D-RecGAN [24] further improves the completion performance by using dis-
criminative training. As scene completion contains objects in different scales
and more random relative position among all of them, SSCNet [20] proposes
a 3D volumetric semantic completion architecture using dilated convolutions
to recognize objects with different scales. ForkNet [22] designs a multi-branch
architecture to generate realistic training data to supplement the training.

Point Cloud Completion. Object completion based on point cloud data change
partial geometries without using a 3D fixed grid. They represent completed
shapes as a set of points with 3D coordinates. For instance, FoldingNet [25]
deforms a 2D grid from a global feature such as PointNet [18] feature to an
output with a desirable shape. AtlasNet [9] generates an object with a set of
local patches to simulate mesh data. But overlaps between different local patches
makes the reconstruction noisy. MAP-VAE [10] predicts the completed shape by
joining the observed part with the estimated counterpart.

CNNs for Point Clouds. Existing works like PointConv [23] and PointCNN [13]
index each point with k-nearest neighbour search to find local patches, where
they then apply the convolution kernels on those local patches. Regarding point
cloud deconvolutional operations, FoldingNet [25] uses a 2D grid to help generate
a 3D point cloud from a single feature. PCN [26] further uses local FoldingNet
to obtain a fine-grained output from a coarse point cloud with low resolution
which could be regarded as an alternative to point cloud deconvolution.

3 Soft Pooling for Point Features

Given the partial scan of an object, the input to our network is a point cloud
with Nin points written in the matrix form as Pin = [xi]Nin

i=1 where each point is
represented as the 3D coordinates xi = [xi, yi, zi]. We then convert each point
into a feature vector fi with Nf elements by projecting every point with a point-
wise multi-layer perceptron [18] (MLP) Wpoint with three layers. Thus, similar
to Pin, we define the Nin × Nf feature matrix as F = [fi]Nin

i=1. Note that we
applied a softmax function to the output neuron of MLP so that the elements
in fi ranges between 0 and 1.

The main challenge when processing a point cloud is its unstructured arrange-
ment. This implies that changing the order of the points in Pin describes the
same point cloud, but generates a different feature matrix that flows into our
architecture with convolutional operators. To solve this problem, we propose
to organize the feature vectors in F so that their k-th element are sorted in a
descending order, which is denoted as F′

k. Note that k should not be larger than
Nf . A toy example of this process is depicted in Fig. 2(a) where we assume that
there are only five points in the point cloud and arrange the five feature vectors
from F = [fi]5i=1 to F′

k = [fi]i={3,5,1,2,4} by comparing the k-th element of each
vector. Repeating this process for all the Nf elements in fi, all F′

k together result
to a 3D tensor F′ = [F′

1,F
′
2, . . .F

′
Nf

] with the dimension of Nin × Nf × Nf . As
a result, any permutation of the points in Pin generate the same F′.
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Fig. 2. Toy examples of (a) sorting the the k-th element of the vectors in the feature
matrix F to build F′

k and consequently F′ and (b) concatenation of the first Nr rows
of F′

k to construct the 2D matrix F∗ which corresponds to the regions with high
activations.

Sorting the feature vectors in a descending order highlights the ones with the
highest activation values. Thus, by selecting the first Nr feature vectors from
all the F′

k as shown in Fig. 2(b), we assemble F∗ that accumulates the features
with the highest activations. Altogether, the output of soft pooling is the Nf ·Nr

point features. Since each feature vector corresponds to a point in Pin, we can
interpret the first Nr feature vectors as a region in the point cloud. The effects
of the activations on the 3D reconstruction are illustrated in Fig. 3, where the
point cloud is divided into Nf regions. Later in Sect. 6, we discuss on how to
learn Wpoint by incorporating these regions. That section introduces several loss
functions which optimize towards entropy, Chamfer distance and earth-moving
distance such that each point is optimized to fall into only one region and to be
selected for F∗ by maximizing the k-th element of the feature vector associated
to the same region.

Similar to PointNet [18], we also rely on MLP to build the feature matrix
F. However, PointNet directly applies max-pooling on F to produce a vector
while we try to generalize this approach and sort the feature vectors in order to
assemble a matrix F∗ as illustrated in Fig. 2. Considering the distinction between
the two approaches, we refer our approach as soft pooling. Fundamentally, in
addition to the increased amount of information from our feature vectors, the
advantage of our method is the ability to apply regional convolutional operations
to F∗, as discussed in Sect. 4. The differences are evident in Fig. 4, where the

Fig. 3. Deconstructing the learned regions (unsupervised) that correspond to different
parts of the car.
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(a) Input (b) Ground Truth (d) Ours(c) PointNet 

Fig. 4. Comparison of our method and PointNet [18] where PointNet reconstructs the
more typical four-leg table instead of six in (c).

proposed method achieves detailed results on reconstructing all the six legs while
PointNet follows the more generic structure of the table with four. This proves
that soft pooling makes our decoder able to take all observable geometries into
account to complete the shape, while the max-pooled PointNet feature cannot
reveal the rarely seen geometry.

4 Regional Convolution

Operating on F∗, we introduce the convolutional kernel Wconv that transforms
F∗ to a new set of points Pconv by taking several point features into considera-
tion. We structure Wconv with a dimension of Np × Nf × 3 where Np represent
the number of points which are taken into consideration such that

Pconv(i, j) =
Nf∑

l=1

Np∑

k=1

F∗(i + k, l)Wconv(j, k, l) . (1)

Here, the kernel slides only inside each region of features without taking features
from two different regions in one convolutional operation. As the kernel size
allows it to cover Np features, we pad each region with Np−1 duplicated samples
at the end of each region in order to keep the output resolution the same as Nin.
Experimentally, we tried different numbers of Np ranging from 4 to 64 and
evaluated that 32 generates the best results. Learning the values in Wconv is
discussed in Sect. 6.

In addition, we use a convolution stride which is set as a value smaller than
Np to change the output resolution in terms of the number of point features.
With a stride of S, we then take samples every S point feature in F∗. Notice
that, by using a stride which is smaller than 1, we can also upsample F∗ by
interpolating 1

S − 1 new points between two points then apply the convolution
kernel again. This is an essential tool in reconstructing the object from a partial
scan.

5 Network Architecture

We build an encoder-decoder architecture which consists of MLP and our
regional convolutions, respectively. Serving as the input to our network, we per-
mutate the input scans and resample 1,024 points. If the partial scans have less
than 1,024 points, we then duplicate the missing samples.
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Fig. 5. Decoder architecture of SoftPoolNet with two regional convolution that converts
the features from the regions to point clouds and interpolates from the coarse 256 points
to a higher resolution with 16,384 points.

Our encoder is a point-wise MLP that generates the output neuron with a
dimension of [512, 512, 8]. We then perform soft pooling as described in Sect. 3
that produces F∗ with the size of [256, 8] by setting Nr to 32 and Nf to 8,
resulting an output of Nf · Nr = 256 features.

Finally, for the decoder, we propose a two-stage point cloud completion archi-
tecture which is trained end-to-end. The output of the first is used as the input
of the second point cloud completion network. Both of them produces the com-
pleted point cloud but with different resolutions. Illustrated in Fig. 5, we con-
struct the decoder with two regional convolutions from Sect. 4. The first output
P′

out is fixed at 256 while the second Pout produces a maximum resolution of
16,384.

6 Loss Functions

During learning, we evaluate whether the predicted point feature Pout matches
the given ground truth Pgt through the Chamfer distance. Similar to [9,25,26],
we use the regression loss function for the shape completion from a point cloud

Lcomplete(Wpoint,Wconv) = Chamfer(Pout,Pgt) . (2)

We observed that there are two major drawbacks in using this loss function alone
– the reconstructed surface tends to be either curved on the sharp edges such
FoldingNet [25] or having noisy points appear on flat surfaces such as AtlasNet [9]
and PCN [26]. In this work, we tackle these problems by finding local regions
first, then by optimizing the inter- and intra-regional relationships.

Moreover, while FoldingNet [25] sacrifices local details to present the entire
model with a single mesh having smooth surface, AtlasNet [9] and PCN [26] use
local regions (or patches) to increase the details in the 3D model. However, both
of them [9,26] have severe overlapping effects between adjacent regions which
makes the generated object noisy and the regions discontinuous. To solve this
problem, we aim at reducing the overlaps between two adjacent regions.

6.1 Learning Activations Through Regional Entropy

Considering that the dimension of a single feature is Nf , we can directly define
Nf regions for all features. Given the probabilities of regions to which the feature
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fi belong, we want to optimize the inter- and intra-regional relationships among
the features. We directly present the probability of the feature fi belonging to
all Nf regions by applying the softmax function to fi as

P (fk, i) =
fk[i]∑Nf

j=1 fk[j]
. (3)

Since the information entropy evaluates both the distribution and the confidence
of the probabilities of a set of data, we define the feature entropy and the regional
entropy based on the regional probability of the feature.

The goal of the inter-regional loss function is to similarly distribute the num-
ber of points throughout the regions. We define the regional entropy as

Er = − 1
B

B∑

j=1

R∑

i=1

[(
1
N

N∑

k=1

P (fk, i)

)
· log

(
1
N

N∑

k=1

P (fk, i)

)]
(4)

where B is the batch-size. Here, we want to maximize Er. Considering that the
upper-bound of Er is − log 1

R = log(R), we can then define the inter-regional loss
function as

Linter(Wpoint) = log(R) − Er (5)

in order to acquire a positive loss function. Once Er is close to log(R), each region
would contain similar amount of point features. Interestingly, we can select the
number of regions by evaluating how much the regional entropy Er differs from
its upper-bound. The best number of regions should be the one with a small
Linter. This is evaluated later in Table 6.

On the other hand, the goal of the intra-regional loss function is to boost
the confidence of each feature to be in a single region. The intra-regional loss
function then minimize the feature entropy

Lintra(Wpoint) = − 1
N

1
B

N∑

k=1

B∑

j=1

Nf∑

i=1

P (fk, i) log P (fk, i) . (6)

The optimum case of the feature entropy is for each feature to be a one-hot code,
i.e. when only one element is 1 while the others are zero.

6.2 Reducing the Overlapping Regions

Although Lintra tries to make each point feature confident about the region to
which it belongs, instances exist where many adjacent points would fall under
different regions. For example, we observe in Fig. 6 that patches from differ-
ent regions are stacked on top of each other, producing noisy reconstructions.
Notably, this introduces unexpected results when fitting a mesh to the point
cloud. Thus, we want to minimize region overlap by optimizing the network to
restrict the connection between adjacent regions to their boundaries.
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(a) without (b) with

Fig. 6. Effects of without and with Lboundary where the wings are not planar and the
engines are less visible in (a). Note that the colors represent different regions.

(a) Input (b) Ground Truth
(c) Ours without 

(d) Ours

Fig. 7. Effects of without and with Lpreserve where the seat is missing in (c).

First, each point is assigned to a region with the highest activation. All points
that belong to region i but has activation for region j larger than a threshold
τ are included in the set Bj

i . Inversely, the points that belong to region j but
have activation for region i larger than τ are added in the set Bi

j . Note that,
if both sets Bj

i and Bi
j are not empty, the regions i and j are then adjacent.

Thus, by minimizing the Chamfer distance between Bj
i and Bi

j , we can make the
overlapping sets of points smaller such that the optimal result is a line. We then
define the loss function for the boundary as

Lboundary(Wpoint,Wconv) =
Nf∑

i=1

Nf∑

j=i

Chamfer(Bj
i ,Bi

j) (7)

where both Wpoint and Wconv are optimized. After experimenting on different
values of τ from 0.1 to 0.9, we set τ to be 0.3.

6.3 Preserving the Features from MLP

After sorting and filtering the features to produce F∗, some feature vectors in
F∗ are duplicated while some vectors from F are missing in F∗. To avoid these,
we introduce the loss function

Lpreserve(Wpoint) = Earth-moving(F∗,F) . (8)

Since the earth moving distance [12] is not efficient when the size of the samples
is large, we then randomly select 256 vectors from F and F∗. Considering that
the feature dimensions in F and F∗ are both Nf , the earth moving distance
then takes features with Nf dimension as input. In practice, Fig. 7 visualizes
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the effects of Lpreserve in the reconstruction, where removing this loss produce
a large hole on the seat while incorporating this loss builds a well-distributed
point cloud.

7 Experiments

For all evaluations, we train our model with an NVIDIA Titan V and param-
eterize it with a batch size of 8. Moreover, we apply the Leaky ReLU with a
negative slope of 0.2 on the output of each regional convolution output.

7.1 Object Completion on ShapeNet

We evaluate the performance of the geometric completion of a single object
on the ShapeNet [5] database where training data are paired point clouds of
the partial scanning and the completed shape. To make it comparable to other
approaches, we adopt the standard 8 category evaluation [26] for a single object
completion. As rotation errors are common in the partial scans, we further eval-
uate our approach against other works on the ShapeNet database with rotations.
We also evaluate the performance on both high and low resolutions which contain
16,384 and 2,048 points, respectively.

We compare against other point cloud completion approaches such as
PCN [26], FoldingNet [25], AtlasNet [9] and PointNet++ [19]. To show the
advantages over volumetric completion, we also compare against 3D-EPN [24]
and ForkNet [22] with an output resolution of 64× 64× 64. Notably, we achieve
the best results on most objects and in all types of evaluations as presented in
Table 1, Table 2 and Table 3.

An interesting hypothesis is the capacity of Lboundary to be integrated in
other existing approaches. Thus, Table 1 and Table 2 also evaluate this hypothesis
and prove that this activation helps FoldingNet [25], PCN [26] and AtlasNet [9]
perform better. Nevertheless, even with such improvements, the complete version
of the proposed method still outperforms them.

Table 1. Completion evaluated by means of the Chamfer distance (multiplied by 103)
with the output resolution of 16,384.

Output resolution = 16,384

Method Plane Cabinet Car Chair Lamp Sofa Table Vessel Avg.

3D-EPN [7] 13.16 21.80 20.31 18.81 25.75 21.09 21.72 18.54 20.15

ForkNet [22] 9.08 14.22 11.65 12.18 17.24 14.22 11.51 12.66 12.85

PointNet++ [19] 10.30 14.74 12.19 15.78 17.62 16.18 11.68 13.52 14.00

FoldingNet [25] 5.97 10.80 9.27 11.25 12.17 11.63 9.45 10.03 10.07

FoldingNet + Lboundary 5.79 10.61 8.62 10.33 11.56 11.05 9.41 9.79 9.65

PCN [26] 5.50 10.63 8.70 11.00 11.34 11.68 8.59 9.67 9.64

PCN + Lboundary 5.13 9.12 7.58 9.35 9.40 9.31 7.30 8.91 8.26

Our method 4.01 6.23 5.94 6.81 7.03 6.99 4.84 5.70 5.94
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Table 2. Completion evaluated using the Chamfer distance (multiplied by 103) with
the output resolution of 2,048.

Output resolution = 2,048

Method Plane Cabinet Car Chair Lamp Sofa Table Vessel Avg.

FoldingNet [25] 11.18 20.15 13.25 21.48 18.19 19.09 17.80 10.69 16.48

FoldingNet + Lboundary 11.09 19.95 13.11 21.27 18.22 19.06 17.62 10.10 16.30

AtlasNet [9] 10.37 23.40 13.41 24.16 20.24 20.82 17.52 11.62 17.69

AtlasNet + Lboundary 9.25 22.51 12.12 22.64 18.82 19.11 16.50 11.53 16.56

PCN [26] 8.09 18.32 10.53 19.33 18.52 16.44 16.34 10.21 14.72

PCN + Lboundary 6.39 16.32 9.30 18.61 16.72 16.28 15.29 9.00 13.49

TopNet [21] 5.50 12.02 8.90 12.56 9.54 12.20 9.57 7.51 9.72

Our method 4.76 10.29 7.63 11.23 8.97 10.08 7.13 6.38 8.31

– without Linter 10.82 20.45 15.21 20.19 18.05 18.58 15.65 8.81 15.97

– without Lintra 5.23 16.10 12.49 14.62 13.90 12.37 12.96 5.72 11.67

– without Linter, Lintra 10.91 20.54 15.27 20.28 18.16 18.66 15.75 8.91 16.06

– without Lboundary 5.46 10.98 8.27 11.95 9.51 10.92 7.78 7.40 9.03

– without Lpreserve 10.29 19.75 14.13 19.35 17.88 18.21 15.23 8.11 15.37

Table 3. Completion results using the Earth-Moving distance (multiplied by 102) with
the output resolution of 1,024. We report the values of DeepSDF [16] from their original
paper by rescaling according to the difference of point density.

Output resolution = 1,024

Method Plane Cabinet Car Chair Lamp Sofa Table Vessel Avg.

3D-EPN [7] 6.20 7.76 8.70 7.68 10.73 8.08 8.10 8.17 8.18

PointNet++ [19] 5.96 11.62 6.69 11.06 18.58 10.26 8.61 8.38 10.14

FoldingNet [25] 15.64 22.13 17.46 29.74 32.00 24.57 18.99 21.88 22.80

PCN [26] 3.88 7.07 5.50 6.81 8.46 7.24 6.01 6.27 6.40

DeepSDF [16] 3.88 − − 5.63 − 4.68 − − −
LGAN [3] 3.32 − − 5.59 − − − − −
MAP-VAE [10] 3.23 − − 5.57 − − − − −
Our method 2.52 5.49 4.08 5.20 6.17 5.25 4.61 5.80 4.89

7.2 Car Completion on KITTI

The KITTI [8] dataset present partial scans of real-world cars using Velodyne
3D laser scanner. We adopt the same training and validating procedure for car
completion as proposed by PCN [26]. We train a car completion model based on
the training data generated from ShapeNet [5] and test our completion method
on sparse point clouds generated from the real-world LiDAR scans. For each
sample, the points within the bounding boxes are extracted with 2,483 partial
point clouds. Each point cloud is then transformed to the box’s coordinates to
be completed by our model then transformed back to the world frame. PCN [26]
proposed three metrics to evaluate the performance of our model: (1) Fidelity,
i.e. the average distance from each point in the input to its nearest neighbour in
the output (i.e. measures how well the input is preserved); (2) Minimal Matching
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Table 4. Car completion on LiDAR scans from KITTI.

Method Fidelity MMD Consistency

FoldingNet [25] 0.03155 0.02080 0.01326

AtlasNet [9] 0.03461 0.02205 0.01646

PCN [26] 0.02800 0.01850 0.01163

Our method 0.02171 0.01465 0.00922

PCN [26] (rotate) 0.03352 0.02370 0.01639

Our method (rotate) 0.02392 0.01732 0.01175

Distance (MMD), i.e. the Chamfer distance between the output and the car’s
point cloud nearest neighbor from ShapeNet (i.e. measures how much the output
resembles a typical car); and, (3) Consistency, the average Chamfer distance
between the completion outputs of the same instance in consecutive frames (i.e.
measures how consistent the network’s outputs are against variations in the
inputs).

Table 4 shows that we achieve state of the art on the metrics compared to
FoldingNet [25], AtlasNet [9] and PCN [26]. When we introduce random rotations
on the bounding box in order to simulate errors in the initial stages, we still
acquire the lowest errors.

7.3 Classification on ModelNet and PartNet

We evaluate the performance of the features in term of classification on Mod-
elNet10 [27], ModelNet40 [27] and PartNet [15] datasets. ModelNet40 contains
12,311 CAD models in 40 categories. Here, the training data contains 9,843
samples and the testing data contains 2,468 samples. Following RS-DGCNN [2],
a linear Support Vector Machine [6] (SVM) is trained on the representations
learned in an unsupervised manner on the ShapeNet dataset. RS-DGCNN [2]
divides the point cloud of the objects into several regions by positioning the
object in a pre-defined voxel grid, then use the regional information to help train
latent feature. In Table 5, the proposed method outperforms RS-DGCNN [2] by
1.64% accuracy on ModelNet40 dataset, which shows that our feature contains
better categorical information. Notably, similar results are also acquired from
ModelNet10 [27] and PartNet [15] with their respective evaluation strategy.

7.4 Ablation Study

Loss Functions. In the reconstruction and classification experiments, Table 2 and
Table 5 also include the ablation study that investigates the effects of the loss
functions from Sect. 6. For both experiments, we notice all loss functions are
critical to achieve good results since each of them focuses on different aspects.
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Table 5. Object classification on ModelNet40 [27], ModelNet40 [27] and PartNet [15]
datasets in terms of accuracy.

Method ModelNet40 [27] ModelNet10 [27] PartNet [15]

VConv-DAE 75.50% 80.50% −
3D-GAN 83.30% 91.00% 74.23%

Latent-GAN 85.70% 95.30% −
FoldingNet 88.40% 94.40% −
VIP-GAN 90.19% 92.18% −
RS-PointNet [2] 87.31% 91.61% 76.95%

RS-DGCNN [2] 90.64% 94.52% −
KCNet [1] 91.0% 94.4% −
Our method 92.28% 96.14% 84.32%

– without Linter 89.40% 95.75% 81.13%

– without Lintra 83.70% 90.21% 79.28%

– without Linter, Lintra 82.97% 90.02% 78.41%

– without Lboundary 88.26% 95.01% 80.86%

– without Lpreserve 86.09% 92.27% 79.05%

Activations. Since the number of regions is one of the hyper-parameters in our
approach, we evaluate on the performance with different number of regions quan-
titatively in Table 6. These results demonstrate that the accuracy for the shape
completion is increasing as the number of regions increases from 2 to 8, then
the performance gradually drops as the number of regions continues to increase
from 8 to 32. By observing Linter at the same time, we find that it achieves the
minimum value of 0.20 when there are 8 regions as well. This proves that Linter

can be used as an indicator for whether the expected number of regions could
be used or not.

Moreover, Fig. 8 shows the regional activations when we shuffle the sequence
of points in the partial scan. We can see that both the reconstructed geometry
relative sub-regions are identical. So, it illustrates that, by using the proposed
regional activations, our model is permutation invariant, which indicates that
the reordered point cloud is suitable to perform convolutions.

Table 6. Influence of Nf and Nr on the Chamfer distance (multiplied by 103) and
Linter.

(Nf , Nr) (2, 128) (4, 64) (8, 32) (16, 16) (32, 8)

Chamfer distance 7.80 6.31 5.94 6.27 6.75

Linter 0.41 0.67 0.20 0.49 1.33
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1 2 3 4 5 6

Fig. 8. With identical results, this evaluation shows the robustness of the reconstruc-
tion when we randomly shuffle the input point cloud.

Point Cloud Versus Volumetric Data. In addition to achieving worse numeri-
cal results in Sect. 7.1, volumetric approaches have smaller resolutions than the
point cloud approaches due to the memory constraints. The difference becomes
more evident in Fig. 9, where ForkNet [22] is limited by a 64 × 64 × 64 grid.
Nevertheless, both the volumetric and point cloud approaches have difficulty
in reconstructing thin structures. For instance, the volumetric approach tends
to ignore the joints between the wheels and car chassis in Fig. 9 while Fold-
ingNet [25] and AtlasNet [9] only use large surface to cover the area of wheels.
In contrast, our approach is capable of reconstructing the thin structures quite
well. Moreover, in Table 7, we also achieve the lowest inference time compared
to all point cloud and volumetric approaches.

Table 7. Overview of the object completion methods. The inference time is the amount
of time to conduct inference on a single sample.

Method Size (MB) Inference time (s) Closed surface Type of data

3D-EPN [7] 420 − Yes Volumetric

ForkNet [22] 362 − Yes Volumetric

FoldingNet [25] 19.2 0.05 Yes Points

AtlasNet [9] 2 0.32 No Points

PCN [26] 54.8 0.11 No Points

DeepSDF [16] 7.4 9.72 Yes SDF

Our method 37.2 0.04 Yes Points
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Fig. 9. Evaluated on ShapeNet [5], comparison of shape completion based on
ForkNet [22], FoldingNet [25], AtlasNet [9] and PCN [26] against our method.

8 Conclusion

This paper introduced the SoftPool idea as a novel and general way to extract
rich deep features from unordered point sets such as 3D point clouds. Also,
it proposed a state-of-the-art point cloud completion approach by designing a
regional convolution network for the decoding stage. Our numerical evaluation
reflects that our approach achieves the best results on different 3D tasks, while
our quantitative results illustrate the reconstruction and completion ability of
our method with respect to ground truth.
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Abstract. Current age datasets lie in a long-tailed distribution, which
brings difficulties to describe the aging mechanism for the imbalance
ages. To alleviate it, we design a novel facial age prior to guide the aging
mechanism modeling. To explore the age effects on facial images, we pro-
pose a Disentangled Adversarial Autoencoder (DAAE) to disentangle the
facial images into three independent factors: age, identity and extraneous
information. To avoid the “wash away” of age and identity information
in face aging process, we propose a hierarchical conditional generator by
passing the disentangled identity and age embeddings to the high-level
and low-level layers with class-conditional BatchNorm. Finally, a disen-
tangled adversarial learning mechanism is introduced to boost the image
quality for face aging. In this way, when manipulating the age distribu-
tion, DAAE can achieve face aging with arbitrary ages. Further, given an
input face image, the mean value of the learned age posterior distribu-
tion can be treated as an age estimator. These indicate that DAAE can
efficiently and accurately estimate the age distribution in a disentangling
manner. DAAE is the first attempt to achieve facial age analysis tasks,
including face aging with arbitrary ages, exemplar-based face aging and
age estimation, in a universal framework. The qualitative and quantita-
tive experiments demonstrate the superiority of DAAE on five popular
datasets, including CACD2000, Morph, UTKFace, FG-NET and AgeDB.
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1 Introduction

Facial age analysis, including face aging, exemplar-based face aging and age
estimation, is one of the crucial components in modern face analysis for enter-
tainment and forensics. Face aging aims to aesthetically render the facial appear-
ance based on the given age, while exemplar-based face aging aims to render the
facial appearance according to the age of the exemplar face. In recent years, with
the developments of the generative adversarial network (GAN) [8], impressive
progress [17,18,20,32,35,40] has been made on face aging. Since all the existing
age datasets, such as CACD2000, Morph and UTKFace, perform a long-tailed
age distribution, it is difficult for current methods to describe the aging mech-
anism for the imbalanced age distribution. Researchers often employ the time
span of 10 years as the age clusters for face aging. This age cluster strategy
potentially limits the diversity of aging patterns, especially for the younger with
the large inter-class appearance variance.

Fig. 1. Continuous face aging results on UTKFace. The first column are the inputs
and the rest columns are the synthesized faces from 5 to 90 years old.

Recently, Variational Auto-Encoder (VAE) [15] shows the promising ability in
discovering the underlying data distribution in the latent space [2,12,34]. Con-
ditional Adversarial Autoencoder (CAAE) [40] proposes to learn a face mani-
fold in the latent space. With the given age label and the learned face manifold,
CAAE achieves continuous face aging. However, there are still four limitations
with CAAE: 1) It only focuses on the learning of the image representation and
ignores the age representation. The possibility of utilizing it to handle more age-
related analysis, such as age estimation and exemplar-based face aging, is lim-
ited. 2) CAAE conducts face aging on the cropped faces and reckons without the
extraneous information, such as hair. 3) The identity and age embeddings are only
injected into the input layer of the generator, which leads to the “wash away” of
them during generation. 4) It still adopts a group-based training strategy.

To address the mentioned issues in CAAE, we propose a Disentangled Adver-
sarial Autoencoder (DAAE). We first design a facial age distribution as the facial
age prior to directly learn the age representation from the image. A well-trained
identity classifier is also employed to supervise the identity feature learning in
a knowledge distilling way [10]. Besides, we discover it is also important to
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disentangle the extraneous information, including hairstyle and pose, from the
given image. Following most VAE based methods, we introduce the Gaussian
distribution as the prior for extraneous information. Supervised by the vari-
ational evidence lower bound (ELBO) [15,25] and identity knowledge distil-
lation, the facial images are disentangled into three independent factors: age,
identity and extraneous information. This disentangling manner makes DAAE
more flexible and controllable for facial age analysis. To avoid the “wash away”
of identity and age information during generation, we propose a hierarchical
aging architecture by passing the disentangled identity and age vectors to the
high-level and low-level layers with class-conditional BatchNorm. To synthesize
photo-realistic facial images, a disentangled adversarial learning mechanism is
introduced to optimize the inference network and the generator jointly and adver-
sarially. Inspired by IntroVAE [12], DAAE is expected to have the capability to
self-estimate the age accuracy, identity preserving and generation quality of the
synthesized images.

Finally, by manipulating the mean value of age distribution, DAAE can easily
realize facial face aging with arbitrary ages, whether the age exists or not in the
training dataset. Further, by extracting age information from an exemplar facial
image, DAAE can achieve exemplar-based face aging. Moreover, given a face
image as input, we can easily obtain its age representation, which indicates the
ability of DAAE to achieve age estimation. As stated above, we can implement
three different facial age analysis tasks in a universal framework. To the best
of our knowledge, DAAE is the first attempt to achieve facial age analysis,
including face aging, exemplar-based face aging and age estimation, in a universal
framework. The main contributions of DAAE are as follows:

– We propose a novel Disentangled Adversarial Autoencoder (DAAE) for facial
age analysis tasks, including face aging, exemplar-based face aging and age
estimation. We design two different priors as well as identity knowledge distil-
lation to assist disentangling the facial images into three independent factors:
age, identity and extraneous information.

– To fully utilize the disentangled low-level age, high-level identity and mixed-
level extraneous information, we propose a hierarchical conditional generator
with class-conditional BatchNorm.

– We propose a disentangled adversarial learning mechanism by training the
encoder and generator with age preserving regularization and identity knowl-
edge distillation in an introspective adversarial manner.

– Extensive qualitative and quantitative experiments demonstrate that DAAE
successfully formulates the facial age prior in a disentangling manner, obtain-
ing state-of-the-art results on the five popular datasets.

2 Related Work

2.1 Face Aging

Recently, deep conditional generative models have shown considerable ability
in face aging [17,18,32,40]. Zhang et al. [40] propose a Conditional Adversarial
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Fig. 2. Overview of the architecture and training flow of our approach. Our model
contains two components, the inference network E and the hierarchical generative
network G. X, Xr and Xs denote the real sample, the reconstruction sample and the
new sample, respectively. Please refer to Sect. 3 for more details.

Autoencoder (CAAE) to transform an input facial image to the target age.
Yang et al. [35] propose a pyramid GAN to simulate the aging effects in a finer
manner. To capture the rich textures in the local facial parts, Li et al. [18]
propose a Global and Local Consistent Age Generative Adversarial Network
(GLCA-GAN). Meanwhile, Identity-Preserved Conditional Generative Adver-
sarial Networks (IPCGAN) [32] introduces an identity-preserved term and an
age classification term into face aging. Liu et al. [20] imposes attribute informa-
tion to guide the aging process and proposes a wavelet-based discriminator to
encourage generation quality. Although these methods have achieved promising
visual results, they have limitations in discovering the disentangled factors in
face aging. Besides, the image and age label are only injected into the input
layer of the generator, leading to the “wash away” of image and age informa-
tion during generation. For non-deep learning methods, [28] demonstrates that
disentangling the common and individual components in facial images is cru-
cial for face aging. [22] proposes Multi-Attribute Robust Component Analysis
(MA-RCA) that incorporates knowledge from age and identity for age progres-
sion. In this paper, benefiting from the proposed VAE-based method, we focus
on disentangling facial images into three independent factors: age, identity and
extraneous information.

2.2 Variational Autoencoder

Variational Autoencoder (VAE) [15,25] consists of two networks: an inference
network qφ (z|x) maps the data x to the latent variable z, which is assumed as
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a gaussian distribution, and a generative network pθ (x|z) reversely maps the
latent variable z to the visible data x. The object of VAE is to maximize the
variational lower bound (or evidence lower bound, ELBO) of log pθ (x):

log pθ (x) ≥ Eqφ(z|x) log pθ (x|z) − DKL (qφ (z|x) ||p (z)) (1)

VAE has shown promising ability to generate complicated data, including
faces [12], natural images [9], text [29] and segmentation [11,30]. Inspired by
IntroVAE [12], we propose a disentangled adversarial learning mechanism, which
self-estimates the age accuracy, identity preserving and generation quality of the
synthesized images.

2.3 Age Estimation

Age estimation aims to automatically label a given face with an exact age or age
group [19]. Ranking-CNN and label distribution learning (LDL) based age esti-
mation achieve state-of-the-art performance. Ranking-CNN consists of a series
of CNNs, each of which learns a binary classification. Then these binary values
are aggregated for the final result [4]. To model the correlations among different
ages, label distribution learning [6] utilizes a specific distribution to formulate
the aging mechanism. Inspired by it, we design a new age distribution as the
facial age prior to directly learn the age information from the image. In this
way, the mean value of the learned age posterior distribution can be treated as
an age estimator.

3 Approach

In this paper, we propose a Disentangled Adversarial Autoencoder (DAAE) for
face aging, examplar-based aging and age estimation. The key idea is to dis-
entangle the facial image into three independent factors, i.e., age, identity and
extraneous information. A hierarchical aging generator is introduced to produce
photo-realistic images by transferring the identity and age information sequen-
tially. As depicted in Fig. 2, two different priors as well as identity distillation are
assigned to regularize the inferred representations. The inference network E and
the generator network G are trained in an introspective disentangling manner.

3.1 Disentangled Variational Representations

In the original VAE [15], a probabilistic latent variable model is learned by max-
imizing the variational lower bound to the marginal likelihood of the observable
variables. However, the latent variable z is difficult to interpret and control, since
each element of z is treated equally in training. To alleviate this, we manually
split z into three parts, i.e., zA representing the age information, zI representing
the identity information, and zE representing the extraneous information.

Assume that zA, zI and zE are independent on each other, then the posterior
distribution can be written as: qφ (z|x) = qφ (zA|x) qφ (zI |x) qφ (zE |x). The prior
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distribution p (z) = pA (zA) pI (zI) pE (zE), where pA (zA), pI (zI) and pE (zE)
are the prior distributions for zA, zI and zE , respectively. According to Eq. (1),
the optimization objective for the modified VAE is to maximize the lower bound
of log pθ (x):

log pθ (x) ≥ Eqφ(zA,zI ,zE |x) log pθ (x|zA, zI , zE)

− DKL (qφ (zA|x) ||pA (zA))
− DKL (qφ (zI |x) ||pI (zI))
− DKL (qφ (zE |x) ||pE (zE)) ,

(2)

where the first item regularizes the reconstruction accuracy, and the last three
regularize the latents, i.e., zA, zI and zE , to learn different types of facial infor-
mation.

To capture facial aging characteristics, the prior pA (zA) for zA is designed as
a facial aging-specific distribution. It is set to be a centered isotropic multivariate
Gaussian, i.e., pA (zA) = N (y, I), where y is a vector filled by the age label y of x.
We assume the posterior qφ (zA|x) also follows a centered isotropic multivariate
Gaussian, i.e., qφ (zA|x) = N

(
zA;μA, σ2

A

)
. As depicted in Fig. 2, μA and σA are

the output vectors of the inference network E. The input zA for the generator
G is sampled from N

(
zA;μA, σ2

A

)
using a reparameterization trick, i.e., zA =

μA + εA � σA, where εA ∼ N (0, I). The negative version of the second term in
Eq. (2) can be formed as

L
(age)
kl =

1
2

CA∑

i=1

((μi
A − y)2 + (σi

A)2 − log((σi
A)2) − 1), (3)

where y is the age label of the input x and CA denotes the dimension of zA.
Noted that (μi

A − y)2 in Eq. (3) can be viewed as an L2 constraint between the
predicted μA and the age label y, which leads to the capability of the proposed
method to estimate facial age.

For the difficulty in modeling the identity space with a simple distribu-
tion, the prior pI (zI) is obtained through a well-pretrained identity classifier
C. Assume that for each z ∈ pI (zI), there exists a facial image x satisfying that
z = F (x), where F (x) is the extracted feature before the softmax layer in C.
We employ a paired L1 loss function between the predicted zI and the extracted
feature F (x) to describe the relations between the posterior qφ(zI |x) and the
prior pA(zA). The paired L1 loss distills the identity knowledge from the iden-
tity classifier C to the inference network E, where C and E can be regarded as
the teacher net and student net in knowledge distilling [10], respectively. This
loss function is formed as

L
(id)
kd =

CI∑

i=1

|zi
I − F (x)|, (4)

where zI and F (x) are extracted from the same image x by the inference network
E and the identity classifier C, and CI denotes the dimension of zI .
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Following the original VAE [15], we set the prior pE (zE) = N (0, I) and the
posterior qφ (zE |x) = N

(
zE ;μE , σ2

E

)
. Similar to Eq. (3), the negative version of

the last term in Eq. (2) can be reformed as

L
(ext)
kl =

1
2

CE∑

i=1

((μi
E)2 + (σi

E)2 − log((σi
E)2) − 1), (5)

where μE and σE are the output vectors of E, CE denotes the dimension of zE .
The reconstruction term in Eq. (2) can be optimized by the following form

Lrec =
1
2
‖x − xr‖2F , (6)

where x and xr are the input and output images, respectively.
In summary, the optimization object in Eq. (2) can be rewritten in the neg-

ative version:
Lvae = Lrec + L

(age)
kl + L

(id)
kd + L

(ext)
kl . (7)

3.2 Hierarchical Conditional Generator

In order to effectively utilize the disentangled low-level age, high-level identity
and mixed-level extraneous information (e.g., pose, skin color), we propose a
hierarchical conditional generator, borrowing from Conditional Batch Normal-
ization (CBN) [5] literature. We regard all of the age, identity and most extra-
neous information as the conditions for face aging.

We first split the extraneous information into several parts and the first part
is regarded as the input of the generator. Since extraneous information contains
both high-level (e.g., pose) and low-level (e.g., skin color) information, the rest
parts are concatenated with identity or age information and used as the condition
information at each residual block. As shown in Fig. 2, identity with extraneous
information is passed into the first few layers for high-level identity generation,
while age with another extraneous information is passed into the last few lay-
ers for low-level texture generation. With the proposed hierarchical conditional
generator, the proposed DAAE enables higher intuition and interpretability.

3.3 Disentangled Adversarial Learning

To further disentangle the inferred representations, i.e., zA, zI and zE , and
improve the quality of generation, a disentangled adversarial learning mecha-
nism is proposed to optimize the inference network E and the generator network
G jointly and adversarially. Inspired by IntroVAE [12], the model is expected
to have the capability to self-estimate the age accuracy, identity preserving and
image quality of the produced images.

As illustrated in Fig. 2, there exist two types of generated images, i.e.,
the reconstructed image xr = G(zA, zI , zE) and the sampled image xs =
G(ẑA, ẑI , ẑE). zA, zI and zE are the inferred representations of the input x,
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while ẑA, ẑI and ẑE are sampled from three marginal product distribution, i.e.,
pA(ẑA) = pA(zA)qφ(zA|x), pI(ẑI) = pI(zI)qφ(zI |x), pE(ẑE) = pE(zE)qφ(zE |x),
respectively. This sampling strategy makes a random combination of age, identity
and extraneous information from different sources. Along with the introduced
constraints in the following, the learned representations zA, zI and zE can be
well disentangled.

To preserve the aging and identity characteristics accurately, two regulariza-
tion terms are introduced for the generator G. They are computed as

L(age)
reg =

1
CA

CA∑

i=1

‖z
′i
A − zA‖ +

1
CA

CA∑

i=1

‖z
′′i
A − ẑA‖ (8)

L(id)
reg =

1
CI

CI∑

i=1

‖z
′i
I − zI‖ +

1
CI

CI∑

i=1

‖z
′′i
I − ẑI‖ (9)

where z
′
A and z

′
I are the inferred representations from the generated images xr,

while z
′′
A and z

′′
I are inferred from the generated images xs.

To alleviate the problem of generating blurry samples in VAEs, the KL dis-
tance in Eq. (5) is employed as the adversarial signal to train the inference net-
work E and the generator G adversarially [12]. When training E, the model
minimizes the KL-distance of the posterior qφ (zE |x) from its prior pE (zE) for
the real data and maximize it for the generated samples. When training G, the
model minimizes this KL-distance for the generated samples. The adversarial
training objects for E and G are defined as below:

L
(adv)
E = L

(ext)
kl (μE , σE) + α{

[
m − L

(ext)
kl (μ′

E , σ′
E)

]+

+
[
m − L

(ext)
kl (μ′′

E , σ′′
E)

]+
},

(10)

L
(adv)
G = L

(ext)
kl (μ′

E , σ′
E) + L

(ext)
kl (μ′′

E , σ′′
E) , (11)

where m is a positive margin, α is a weighting coefficient, (μE , σE), (μ′
E , σ′

E) and
(μ′′

E , σ′′
E) are computed from the real data x, the reconstruction sample xr and

the new samples xs, respectively. []+ = max(0, .), which has the same meaning
in hinge loss.

The total objective function is a weighted sum of the above losses, defined as

LE = Lrec + λ1L
(age)
kl + λ2L

(id)
kd + λ3L

(adv)
E , (12)

LG = Lrec + λ4L
(age)
reg + λ5L

(id)
reg + λ6L

(adv)
G , (13)

where λ1∼6 are the weighted parameters to balance the importance of each loss.
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3.4 Inference and Sampling

By regularizing the disentangled representations with the age prior pA (zA) =
N (y, I), identity knowledge prior pR (zI) and extraneous prior pE (zE) = N (0, I),
DAAE is thus a universal framework for face aging, exemplar-based face aging
and age estimation.

Face Aging. We concatenate the identity variable zI , the extraneous variable
zE and a target age variable ẑA as the input of the generator G, where zI and
zE are the inferred identity and extraneous information from the input x, while
ẑA is sampled from a distribution pA (zA) = N (y, I). The face aging result x̂ is
written as:

x̂ = G (ẑA, zI , zE) (14)

Exemplar-Based Face Aging. We remain the identity and extraneous infor-
mation unchanged, and transfer the age information from the given exemplar
xe. Specifically, we concatenate the identity variable zI , the extraneous variable
zE and the age variable zA e as the input of G, where zA, zI and zA e are from
the posterior distribution qφ(zA|x), qφ(zI |x) and qφ(zA e|xe), respectively. The
exemplar-based face aging result is formulated as:

x̂ = G (zA e, zI , zE) (15)

Age Estimation. We calculate the mean value of C-dimension vector μA as
the age estimation result, defined as:

ŷ = 1
C

C∑

i=1

μi
A (16)

where μA is one of the output vectors of the inference network E.

4 Experiments

4.1 Datasets and Settings

Datasets. We conduct experiments on five popular datasets. CACD2000 [3]
consists of 163,446 color facial images of 2,000 celebrities, where the ages range
from 14 to 62 years old. However, there are many dirty data in it, which leads to a
challenging model training. Morph. [26] is the largest publicly available dataset
collected in the constrained environment. It contains 55,349 color facial images
of 13,672 subjects with ages ranging from 16 to 77 years old. UTKFace [38] is
a large-scale facial age dataset with a long age span, which ranges from 0 to
116 years old. It contains over 20,000 facial images in the wild. We employ clas-
sical 80-20 split on CACD2000, Morph and UTKFace. FG-NET. [16] contains
1,002 facial images of 82 subjects. We employ it as the testing set to evaluate the
generalization of DAAE. AgeDB. [21] is a manually collected database, which
consists of 16,488 images of 568 subjects from 0 to 101 years old.
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Fig. 3. Face aging results on CACD2000 (the first two rows) and Morph (the last two
rows). For each subject, the first column is the input and the rest four columns are the
synthesized results in 30, 40, 50 and 60 years old, respectively.

Experimental Settings. Following [17], we employ the multi-task cascaded
CNN [37] to detect the faces. All the facial images are cropped and aligned into
224 × 224. Our model is implemented with Pytorch. During training, we choose
Adam optimizer [14] with β1 of 0.9, β2 of 0.99, a fixed learning rate of 2 × 10−4

and batch size of 16. The trade-off parameters λ1∼6 are all set to 1, 100, 1, 100,
100, 1, respectively. Besides, m is set to 200 and α is set to 0.5. More details of the
network architectures and training processes are provided in the supplementary
materials.

4.2 Qualitative Evaluation of DAAE

Face Aging. By manipulating the mean value μA and sampling from age dis-
tribution, the proposed DAAE can generate facial images with arbitrary ages
based on the input. Figure 3 presents the face aging results on CACD2000 and
Morph, respectively. We observe that the synthesized faces are getting older and
older with ages growing. Specifically, the face contours become longer, the beards
turn white and the nasolabial folds are deepened. Since both CACD2000 and
Morph lack of images of children, we conduct face aging on UTKFace. Figure 4
(a) describes the aging results on UTKFace from 0 to 110 years old. Obviously,
from birth to adulthood, the aging effect is mainly shown on craniofacial growth,
while the aging effect from adulthood to elder is reflected on the skin aging, which
is consistent with human physiology. To evaluate the model generalization, we
train our DAAE on UTKFace and test it on FG-NET. The aging results are
shown in Fig. 4 (b). The left image of each subject is the input and the rest
seven are the generated results from 5 to 100 years old.

The comparison results with previous works, including IAAP [13], RFA [31],
RJIVE [28], MA-RCA [22], IPCGANs [32], CAAE [38], Yang et al. [35], GLCA-
GAN [18], waveletGLCA-GAN [17] and Liu et al. [20] are depicted in Fig. 5. We
can see that our DAAE generates more obvious or comparable age effects on the
input. Besides, previous face aging methods roughly divide the data into four or
nine age groups to four or nine times increase the training data for specific age
groups, while our DAAE is trained with original age labels.
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Fig. 4. Face aging results on UTKFace and FG-NET. (a) shows the aging results on
UTKFace from 0 to 110 years old. The first image (top left) is the input, the rest are
the synthesized results. (b) shows cross-dataset face aging results on FG-NET.

Fig. 5. Comparison with the previous works. The first row is the input face. The second
row are the synthesized results of previous methods. The last row are the synthesized
results by our DAAE.

4.3 Quantitative Evaluation of DAAE

Aging accuracy is an essential quantitative metric for face aging. Following [18,
35], we utilize the online face analysis tool of Face++ [1] to evaluate the ages
of the synthesized results on Morph and CACD2000. We divide the testing data
of the two datasets into four age groups: 30-(AG0), 31-40(AG1), 41-50(AG2),
51+(AG3). We choose AG0 as the input and synthesize images in AG1, AG2
and AG3. Then we estimate the ages of the synthesized images and calculate
the average ages for each group. As shown in Table 1, we compare the DAAE
with previous works on Morph and CACD2000. We observe that the generated
ages by DAAE are closer to the real data than by CAAE [40] as well as GLCA-
GAN [18], and comparable to [20,35]. Note that [20,35] need to train a specific
model for each age group, while DAAE trains a unified model for arbitrary age
synthesis, as well as other tasks.

Identity Preserving. Identity preserving is another important quantitative
metric for face aging. We evaluate this performance of DAAE by face verification.
We also choose AG0 as the input and synthesize images in AG1, AG2 and AG3.
For each testing face in AG0, we evaluate the verification rates between it and
its corresponding aging results: [testing face → Age1], [testing face → Age2]
and [testing face → Age3]. We adopt Light-CNN [33] as the identity extractor.
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Table 1. Comparisons of the aging accuracy on Morph and CACD2000.

Method (a) on Morph (b) on CACD2000

Input AG1 AG2 AG3 Input AG1 AG2 AG3

CAAE [40] – 28.13 32.50 36.83 – 31.32 34.94 36.91

Yang et.al [35] – 42.84 50.78 59.91 – 44.29 48.34 52.02

GLCA-GAN [18] – 43.00 49.03 54.60 – 37.09 44.92 48.03

Liu et al. [20] – 38.47 47.55 56.57 – 38.88 47.42 54.05

Ours – 37.46 49.40 59.67 – 39.21 46.38 51.66

Real Data 28.19 38.89 48.10 58.22 30.73 39.08 47.06 53.68

Table 2. Comparisons of the face verification results (%) on Morph and CACD2000.

Method (a) on Morph (b) on CACD2000

Input AG1 AG2 AG3 Input AG1 AG2 AG3

CAAE [40] – 15.07 12.02 8.22 – 4.66 3.41 2.40

Yang et al. [35] – 100.00 98.91 93.09 – 99.99 99.81 98.28

GLCA-GAN [18] – 97.66 96.67 91.85 – 97.72 94.18 92.29

Liu et al. [20] – 100.00 100.00 98.26 – 99.76 98.74 98.44

Ours – 99.48 99.36 99.36 – 99.24 99.19 99.19

Following [20,35], we adopt thresholds = 76.5 and FAR = 1e−5 in our face
verification experiments. The comparison results on Morph and CACD2000 are
reported in Table 2. It is worth noting that it is unfair to directly compare DAAE
with [20]. Because [20] utilizes extra attribute labels, including gender and race,
to improve aging performance. Besides, [20,35] need to train a specific model for
each age group.

Age-Invariant Face Verification. Following the testing protocol in [28], we
evaluate our method on AgeDB. As shown in Table 3, DAAE achieves promising
performance of face verification on AgeDB. The qualitative results are reported
in the supplementary materials.

4.4 More Facial Age Analysis by DAAE

The previous face aging methods [17,18,32,40] directly concatenate an age label
to control the aging process, which are limited in handling various age analysis.
Benefiting from the disentangling and modeling of age, identity and extraneous
representations in the latent space, the proposed DAAE is able to realize more
age-related tasks, such as exemplar-based face aging and age estimation.
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Table 3. Comparisons of mean AUC and accuracy on AgeDB.

5 years 10 years 20 years 30 years

RJIVE [28] AUC 0.686 0.654 0.633 0.584

Accuracy 0.637 0.621 0.598 0.552

Ours AUC 0.989 0.988 0.986 0.981

Accuracy 0.969 0.969 0.956 0.953

Fig. 6. Exemplar-based face aging results on Morph. For each image group, the first
row are the input and the second row are the aging results with age information zA
exchanged in the group.

Exemplar-Based Face Aging. Given an exemplar image xe, the DAAE first
extracts its age information zA e and then transfers it to the input x. Figure 6
presents some results under this situation on Morph. We observe that the identity
and extraneous information are preserved across rows, and the age information,
such as wrinkles and beards, is changed according to the given exemplar. This
demonstrates that our DAAE effectively disentangles age and age-irrelevant rep-
resentations in the latent space.

Age Estimation. To further demonstrate the disentangling ability of DAAE,
we conduct age estimation on Morph. We detail the evaluation metrics in the sup-
plementary materials. Following [24], we report the mean absolute error (MAE).
As shown in Table 4, the age estimation result of DAAE on Morph is nearly as

Table 4. Comparisons with state-of-the-art methods on Morph. Lower MAE is better.

Methods Pre-trained Morph

OR-CNN [23] – 3.34

DEX [27] IMDB-WIKI 2.68

Ranking [4] Audience 2.96

Posterior [39] – 2.87

SSR-Net [36] IMDB-WIKI 2.52

M-V Loss [24] – 2.51

ThinAgeNet [7] MS-Celeb-1M 2.35

Ours – 2.23
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good as the state-of-the-arts, which demonstrates that the age representation is
well learned from the given image.

4.5 Ablation Study

Table 5. Face verification results (%) of the ablation study on Morph.

Testing face AG1 AG2 AG3

w/oLadv 95.74 95.61 95.60

w/oL
(age)
reg 97.84 97.89 97.89

w/oL
(id)
reg 96.21 93.01 93.09

Setting I 89.04 87.35 87.35

Setting II 76.10 72.20 72.15

Ours 99.48 99.36 99.36

We report face verification results of DAAE and its five variants for a comprehen-
sive comparison as the ablation study. Table 5 presents the comparison results.
For the setting I, age with extraneous information is passed into the first few
layers of the generator, while identity with another extraneous information is
passed into the last few layers. For the setting II, we concatenate the age, iden-
tity and extraneous vectors and send it to the input layer of the generator. We
observe that the face verification accuracy will decrease when one of the three
losses is removed or the generator’s architecture is changed. These phenomena
indicate that each component in our method is essential for face aging.

5 Conclusion

This paper proposes a Disentangled Adversarial Autoencoder (DAAE) for facial
age analysis. Specifically, we assign two different priors as well as identity dis-
tillation to assist disentangling the facial images into three independent factors:
age, identity and extraneous information. A hierarchical conditional generator
is introduced to produce photo-realistic images by transferring the identity and
age information layer-by-layer. Finally, we propose a disentangled adversarial
learning mechanism by training encoder and generator with age preserving reg-
ularization and identity knowledge distillation in an introspective adversarial
manner. To the best of our knowledge, DAAE is the first attempt to achieve facial
age analysis, including face aging, exemplar-based face aging and age estimation
in a universal framework. This indicates that DAAE can efficiently formulate
the facial age prior, which contributes to interpretable facial age manipulation.
The qualitative and quantitative experiments demonstrate the superiority of the
proposed DAAE on five popular datasets.
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Abstract. Open set recognition requires a classifier to detect samples
not belonging to any of the classes in its training set. Existing methods
fit a probability distribution to the training samples on their embedding
space and detect outliers according to this distribution. The embedding
space is often obtained from a discriminative classifier. However, such
discriminative representation focuses only on known classes, which may
not be critical for distinguishing the unknown classes. We argue that the
representation space should be jointly learned from the inlier classifier
and the density estimator (served as an outlier detector). We propose the
OpenHybrid framework, which is composed of an encoder to encode the
input data into a joint embedding space, a classifier to classify samples
to inlier classes, and a flow-based density estimator to detect whether a
sample belongs to the unknown category. A typical problem of existing
flow-based models is that they may assign a higher likelihood to outliers.
However, we empirically observe that such an issue does not occur in our
experiments when learning a joint representation for discriminative and
generative components. Experiments on standard open set benchmarks
also reveal that an end-to-end trained OpenHybrid model significantly
outperforms state-of-the-art methods and flow-based baselines.

Keywords: Flow-based model · Density estimation · Image
classification

1 Introduction

Image classification is a core problem in computer vision. However, most of
the existing research is based on the closed-set assumption, i.e., training set is
assumed to cover all classes that appear in the test set. This is an unrealistic
assumption. Even with a large-scale image dataset, such as ImageNet [15], it
is impossible to cover all scenarios in the real world. When a closed-set model
encounters an out-of-distribution sample, it is forced to identify it as a known
class, which can cause issues in many real-world applications. We instead study
the “open-set” problem where the test set is assumed to contain both known and
unknown classes. So the model has to classify samples into either known (inlier)
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Fig. 1. Decision boundaries of a closed set classifier (a) and an open set classifier (b).
Green symbols indicate known samples (different shapes represent different classes),
and orange question marks indicate unknown samples. Dashed lines indicate the deci-
sion boundaries. (a) Closed set leads to unbounded decision boundaries of a typical
4-class classifier. Unknown samples are forced to be classified into one of known classes.
(b) open set results in bounded decision boundaries for a 5-class classifier, which can
classify both known and unknown samples.

classes or the unknown (outlier) category. Figure 1 illustrates the difference of
classification decision boundaries under open set and closed set assumptions.

Identifying unknown samples is naturally challenging because they are not
observed during training. Existing approaches fit a probability distribution of the
training samples at their embedding space, and detect unknown samples accord-
ing to such distribution. Since the feature representation of unknown classes
is unknown, most of the methods operate on a discriminative feature space
obtained from a supervised classifier trained on known classes. A thresholding on
this probability distribution is then used to detect samples from unknown classes.
A common approach along this direction is to threshold on SoftMax responses,
but [2] has conducted experiments to show that it reaches only sub-optimal solu-
tions to open set recognition. Some variants have been proposed to better utilize
the SoftMax scores [7,22,33]. These methods modify the SoftMax scores to per-
form both unknown detection while maintaining its classification accuracy. It is
extremely challenging to find a single score measure on the SoftMax layer, that
can perform well on both the generative and discriminative tasks. We believe
the discriminative feature space learned by classification of inlier classes may not
be sufficiently effective for identifying outlier classes. So we propose to employ a
flow-based generative model for outlier detection, and learn a joint feature space
in an end-to-end manner from both the classifier and the density estimator.

Flow-based models have recently emerged [1,4–6,13], allowing a neural net-
work to be invertible. They can fit a probability distribution to training samples
in an unsupervised manner via maximum likelihood estimation. The flow mod-
els can predict the probability density of each example. When the probability
density of an input sample is large, it is likely to be part of the training distri-
bution (known classes). And the outlier samples (unknown class) usually have
a small probability density value. The advantage of flow-based models is that
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they do not require the intervention of a classifier when fitting a probability dis-
tribution, and one can directly apply a thresholding model on these probability
values without modifying the scores of any known classes.

Flow-based models have been adopted to solve out-of-distribution detection
[10,19,20], but have not yet been considered the open set recognition problem.
Most related to our approach, [20] proposed a deep invertible generalized linear
model (DIGLM), which is comprised of a generalized linear model (GLM) stacked
on top of flow-based model. They use the model’s natural rejection rule based
on the probability generated by flow-based model to detect unknown inputs, and
directly classify known samples with the features used to fit the probability distri-
bution. Our work differs in that instead of adding a classifier on top of flow model’s
embedding, we propose to learn a joint embedding for both the flow model and the
classifier. Our insight is that the embedding space learned from only flow-based
model may not have sufficient discriminative expressiveness.

We empirically observe in our experiments that learning a joint embedding
space resolves a common issue in flow-based model that the flow-based model
may assign higher likelihood to OOD inputs (mentioned in [10,19,26]). This
issue was considered in [12], the underlying factor of which is believed to be
to the inconsistency between a uni-modal prior distribution and a multi-modal
data distribution. In our framework, the deep network can well represent the
multi-modal distribution of the input data, which is probably the reason for the
improved performance of flow models.

We perform extensive experiments on various benchmarks including MNIST,
SVHN, CIFAR10 and TinyImageNet. The proposed OpenHybrid model outper-
forms both state-of-the-art methods [2,7,22,24,37] and hybrid model baselines
[10,20] in these benchmarks. We further compare our method with an additional
baseline which uses a pre-trained encoder and the result suggests the importance
of jointly training both the classifier and the flow-based model.

Contribution. The contribution of this paper can be summarized as follows:

1. To the best of our knowledge, we are the first to incorporate a generative flow-
based model with a discriminative classifier to address open set recognition,
while most of the existing open set approaches focus on either using the
softmax logits or adversarial training.

2. We propose the OpenHybrid model that learns a joint representation between
the classifier and flow density estimator. Our approach ensures that the inlier
classification is unaffected by outlier detection. We find joint training an
important contributing factor, according to the ablation study.

3. A known issue of flow-based models is that they may assign higher likelihood
to unknown inputs. However, we do not observe such phenomenon in Open-
Hybrid, possibly because our encoder fits the multi-modal input distribution
to a latent space suitable to the unimodal assumption of flow models.

4. We conducted extensive experiments on various open set image classifica-
tion datasets and compared our approach against state-of-the-art open set
methods and flow-based baseline models. Our approach achieves significant
improvement over these baseline methods.
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2 Related Work

2.1 Open Set Recognition

Open set recognition has been surprisingly overlooked, though it has more practi-
cal value than the common closed set setting. Existing methods on this topic can
be broadly classified into two categories: discriminative and generative models.

Discriminative Methods. Before the deep learning era, most of the approaches
[11,30,31,38] are based on traditional classification models such as Support Vec-
tor Machines (SVMs), Nearest Neighbors, Sparse Representation, etc. These
methods usually do not scale well without careful feature engineering. Recently,
deep learning based models have shown more appealing results. The first among
them is probably [2], which introduced Weibull-based calibration to augment
the SoftMax layer of a deep network, called OpenMax. Since then, the Open-
Max is further developed in [7,27]. [37] presented the classification-reconstruction
learning algorithm for open set recognition (CROSR), which utilizes latent rep-
resentations for reconstruction and enables robust unknown detection without
harming the known classification accuracy. [24] proposed the C2AE model for
open set recognition, using class conditioned auto-encoders with novel training
and testing methodology. Open set recognition principles have been applied to
text classification [33,35], and semantic segmentation [3].

Generative Methods. Unlike discriminative models, generative approaches gen-
erate unknown samples based on Generative Adversarial Network (GAN) [9] to
help the classifier learn decision boundary between known and unknown sam-
ples. [7] proposed the Generative OpenMax (G-OpenMax) algorithm, which uses
a conditional GAN to synthesize mixtures of known classes and finetune the
closed-set classification model. G-OpenMax improves the performance of both
SoftMax and OpenMax based deep network. Although G-OpenMax effectively
detects unknowns in monochrome digit datasets, it fails to produce significant
performance improvement on natural images. Different from G-OpenMax, [22]
introduced a novel dataset augmentation technique, called counterfactual image
generation (OSRCI). OSRCI adopts an encoder-decoder GAN architecture to
generate the synthetic open set examples which are close to knowns. They fur-
ther reformulated the open set problem as classification with one additional class
containing those newly generated samples. GAN-based methods also have been
used to solve open set domain adaptation problem recently [29,39].

Out-of-Distribution Detection. The open set recognition is naturally related to
some other problem settings such as out-of-distribution detection [18,32,36],
outlier detection [28], and novelty detection [25], etc. They can be incorporated in
the concept of open set classification as an unknown detector. However, they do
not require open-set classifiers because those models does not have discriminative
power within known classes. We focus in this paper on the broader open set
recognition problem.
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2.2 Flow-Based Methods

Flow-Based (also called invertible) models have shown promises in density esti-
mation. The original representative models are NICE [5], RealNVP [6] and Glow
[13]. The design ideas of these flow-based models are similar. Through the inge-
nious design, the inverse transformation of each layer of the model is relatively
simple, and the Jacobian matrix is a triangular matrix, so the Jacobian deter-
minant is easy to be calculated. Such models are elegant in theory, but there
exists an issue in practice, i.e., the nonlinear transformation ability of each layer
becomes weak. Apart from these flow-based models, [1] proposed an Invert-
ible Residual Network (I-ResNet), which adds some constraints to the ordinary
ResNet structure to make the model invertible. The I-ResNet model still retains
the basic structure of a ResNet and most of its original fitting ability. So previous
experience in ResNet design can basically be re-used. Unfortunately, the density
evaluation requires computing an infinite series. The choice of a fixed truncation
estimator used by [1] leads to substantial bias which is tightly coupled with the
expressiveness of the network. It cannot be used to perform maximum likeli-
hood because the bias is introduced in the objective and gradients. [4] improved
I-ResNet, and introduced the Residual Flows, a flow-based generative model
that produces an unbiased estimate of the log density. Residual Flows allows
memory-efficient backpropagation through the log density computation. This
allows model to use expressive architectures and train via maximum likelihood
in many tasks, such as classification, density estimation and generation, etc.
Our work differs from existing flow-based models in that we explicitly address a
broader open-set problem, where the flow model is a sub-component.

2.3 Flow-Based Methods for Out-of-Distribution Detection

Flow based models have been applied to out-of-distribution (OOD) detection,
which is relevant to open set problem. Nalisnick et al. [20] presented a neural
hybrid model created by combining deep invertible features and GLMs to filter
out-of-distribution (OOD) inputs, using the model’s natural “reject” rule based
on the density estimation of the flow-based component. However, this rejection
rule is not guaranteed to work in all settings. The main reason is that deep gen-
erative models can assign higher likelihood to OOD inputs. Nalisnick et al. [19]
find that the density learned by flow-based models cannot distinguish images
of common objects such as dogs, trucks, and horses (i.e. CIFAR-10) from those
of house numbers (i.e. SVHN), assigning a higher likelihood to the latter when
the model is trained on the former. [26] also observed that likelihood learned
from deep generative models can be confounded by background statistics (e.g.
OOD input with the same background but different semantic component). [10]
proposed a simple technique that uses out-of-distribution samples to teach a
network heuristics to detect out-of-distribution examples, namely Outlier Expo-
sure (OE). But this improvement is limited and sensitive to the selection of OE
dataset. [12] showed that a factor underlying this phenomenon is a mismatch
between the nature of the prior distribution and that of the data distribution.
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Fig. 2. Proposed architecture for open set recognition. During the training phase (left),
images are mapped into a latent feature space by the encoder, then the encoded features
are fed into two branches for learning: One is typical classification learning with a
classifier via cross entropy loss, and the other is density estimation with a flow-based
model via its log likelihood. The whole architecture is trained in an end-to-end manner.
In testing phase (right), the log p(x) of each image is computed and then compared
with the lowest log p(x) taken over the training set. If it is greater than the threshold
τ , it is sent to the classifier to identify its specific known class, otherwise it is rejected
as an unknown sample.

They proposed the use of a mixture distribution as a prior to make likelihoods
assigned by deep generative models sensitive to out-of-distribution inputs. [21]
explained the phenomenon through typicality and proposed a typicality test
based on batches of inputs which solves many of the failure modes. While we
also follow the same hybrid modeling direction, our work differs from [20] in that
we choose to share a common visual representation for both the classifier and
the flow model and [20] uses the output of the flow model as the input to the
classifier. It is observed from our experiments that the proposed representation
sharing approach is effective in our setup.

3 Our Approach

We start this section by defining the open set problem and introducing the
notations. Following this is an overview of our proposed approach which we call
“OpenHybrid”. After an explanation to details of each module, we introduce
how to achieve open set recognition using OpenHybrid.

3.1 Problem Statement and Notation

For open set recognition, given a labeled training set of instances X ∈ R
m×n

and their corresponding labels y ∈ {1, . . . , k}n where k is the number of known
classes, n is the total number of instances and m is the dimension of each
instance, we learn a model f : X → {1, . . . , k + 1}n such that the model accu-
rately classify an unseen instance (in test set, not in X) to one of the k classes
or an unknown class (or the “none of the above” class) indexed using k + 1.
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3.2 Overview

Figure 2 overviews the training and testing procedures for the proposed method.
The OpenHybrid framework consists of three modules: an encoder F for learning
latent representations with parameters Θf , a classifier C for classifying known
classes with parameters Θc, and a flow-based module D for density estimation
with parameters Θd. Existing flow-based models and their hybrid variants, which
directly feed as input the original image data into the flow-based model for den-
sity estimation. Different from these works, our OpenHybrid framework directly
uses the latent representation (the output of encoder F) as the input to the flow
model D. The reason for this is that density estimation directly on the origi-
nal image is susceptible to the population level background statistics (e.g., in
MNIST, the background pixels that account for most of the image are similar),
which makes it hard to detect unknown samples via exact marginal likelihood.
Even in some settings with different backgrounds, unknown samples are assigned
higher likelihoods than known samples, and this behavior still exists and has not
been explained so far. We propose to estimate the density of latent representa-
tions instead of the original input. We find our method to be effective in all of our
experimental benchmarks and we do not observe the “higher outlier likelihood”
issue using such framework.

For classification, the classifier C is directly connected to the output of the
encoder F instead of the output of the invertible transformation D. We choose
to remove the dependency of the classifier on the flow model because we believe
the output of the invertible transform loses the discriminative power. We find
this approach allows both the detection of unknown classes and the classification
of known classes are effective.

3.3 Training

We define the training loss function in this section.

Classification Loss. Given images in a batch {X1,X2, . . . , XN} and their corre-
sponding labels {y1, y2, . . . , yN}. Here N is the batch size and ∀yi ∈ {1, 2, . . . , k}.
Encoder F and classifier C are trained using the following cross entropy loss.

LC({Θf , Θc}) = − 1
N

N∑

i=1

k∑

j=1

Iyi
(j) log p(yj |xi;Θf , Θc) (1)

where Iyi
is an indicator function for label yi, and p(yj |xi;Θf , Θc) is the proba-

bility of the jth class from the probability score vector predicted by C(F(xi)).

Density Estimation Loss. For unknown detection, unlike general open set
methods, flow-based models directly fit the distribution of the training set, and
compute the probability p(xi;Θd) of each training sample from the training
distribution (also can be treated as the distribution of known classes) through
the maximum likelihood estimation. Then, they use the model’s natural reject
rule based on p(xi;Θd) to filter unknown inputs. Although this is intuitively
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feasible, there are still problems as mentioned above. We suspect the problems
come from the difficulty of flow models representing the original input space. So
we instead estimate the density of learned latent representations F(xi).

Flow-based model are the first key building block in our approach. These are
simply high-capacity, bijective transformations with a tractable Jacobian matrix
and inverse. The bijective nature of these transforms is crucial as it allows us to
employ the change-of-variables formula for exact density evaluation:

log p(xi;Θf , Θd) = log p(F(xi;Θf );Θd)

= log p(D(F(xi;Θf );Θd)) + log
∣∣∣∣det

∂D(F(xi;Θf );Θd)
∂F(xi;Θf )

∣∣∣∣ .
(2)

Please note here we slightly abuse the notation for simplicity since the output
of the flow model is not exactly the density of input x but instead the density
of its latent embedding F(x;Θf ). A simple base distribution such as a standard
normal distribution is often used for p(D(F(xi;Θf );Θd)). Tractable evaluation
of Eq. 2 allows flow-based models to be trained using the maximum likelihood
with the loss function:

LD({Θf , Θd}) = − 1
N

N∑

i=1

log p(xi;Θf , Θd). (3)

In training, we map the loss LD({Θf , Θd}) to bits per dimension results by
normalizing the loss by the dimensionality of the flow input. In our OpenHybrid
framework, there are multiple choices for the flow-based module. Considering
the stability of the density estimation, we use a tractable unbiased estimate of
the log density, called residual flow [4].

Full Loss. The complete loss function of our method is:

L({Θf , Θc, Θd}) = LC({Θf , Θc}) + λLD({Θf , Θd}) (4)

where λ is a scaling factor on the contribution of p(x). In all of our experiments
in this paper, we empirically set it to 1.

3.4 Inference

Outlier Threshold. At test time, we use the probability density estimated by
flow-based module to detect unknown samples from probability distributions.
This value corresponds to the probability of a sample being generated from the
distribution of the training classes (known classes). Theoretically, the minimum
boundary of this probability distribution in the training set is the maximum value
of the outlier threshold. We assume that the known samples of the training set
and the test set are from the same domain, then the outlier threshold is calculated
as τ = minxi∈X log p(xi;Θf , Θd)+ s, where s is a free parameter providing slack
in the margin. We estimate the outlier threshold using training samples without
data augmentation.
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Open Set Recognition. Open set recognition is a classification over k+1 class
labels, where the first k labels are from the known classes the classifier C is trained
on, and the k + 1-st label represents the unknown class that signifies that an
instance does not belong to any of the known classes. This is performed using the
outlier threshold τ and the score estimated in Eq. 2. The outlier threshold is first
calculated on training data. If the estimated probability is smaller than outlier
threshold, the test instance is classified as k + 1, which in our case corresponds
to the unknown class, otherwise the appropriate class label is assigned to the
instance from among the known classes. More formally, the prediction of a sample
x is define as

pred(x) =
{

k + 1, D(F(xi;Θf );Θd) < τ,
arg maxj∈{1,...,k} p(yj |x;Θf , Θc), otherwise. (5)

4 Experiments

We evaluate our OpenHybrid framework and compare it with the state-of-the-
art non-flow-based and flow-based open set methods. We follow other methods’
protocols for fair comparisons. That is, we compare with non-flow-based open
set methods without considering operating threshold while we set an unified
threshold value during the comparison with flow-based methods.

4.1 Experiment Setups

Implementation. In our experiments, the encoder, decoder, and classifier archi-
tectures are similar to those used in [22]. The last layer of encoder in [22] maps
512d to 100d. We moved this layer in our model to the classifier since we do
not want the input dimension of flow model to be too small. So the output of
our encoder is 512d instead. For flow-based model, we use the standard setup of
passing the data through a logit transform [6], followed by 10 residual blocks.
We use activation normalization [13] before and after every residual block. Each
residual connection consists of 6 layers (i.e., LipSwish [4] → InducedNormLin-
ear → LipSwish → InducedNormLinear → LipSwish → InducedNormLinear)
with hidden dimensions of 256 (the first 6 blocks) and 128 (the next 4 blocks)
[20]. We use the Adam optimizer with a learning rate 0.0001 for the encoder
and flow-based module to learn log probability distribution. For training clas-
sification, we use the Stochastic Gradient Descent (SGD) with momentum 0.9
and learning rate 0.01 for TinyImageNet data, 0.1 for other data. Gradients are
updated alternatively between the flow model and the classifier. The parameter s
is empirically set to 80. Another important factor affecting open-set performance
is openness of the problem. we define the openness based on the ratio of the num-
bers of unique classes in training and test sets, i.e., openness = 1−√

ktrain/ktest
where ktrain and ktest are the number of classes in the training set and the test
set, respectively. In following experiments, we will evaluate performance over
multiple openness values depending on different dataset settings.
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Datasets. We evaluate open set classification using multiple common bench-
marks, such as MNIST [17], SVHN [23], CIFAR10 [14], CIFAR+10, CIFAR+50
and TinyImageNet [16] datasets. We reuse the data splits provided by [22].

– MNIST, SVHN, CIFAR10 : All three datasets contain 10 categories. MNIST
are monochrome images with hand-written digits, and it has 60k 28×28 gray
images for training and 10k for testing. SVHN are street view house numbers,
consisting of ten digit classes each with between 9981 and 11379 32×32 color
images. To validate our method on non-digital images, we apply the CIFAR10
dataset, which has 50k 32×32 natural color images for training and 10k for
testing. Each dataset is partitioned at random into 6 known and 4 unknown
classes. In these settings, the openness score is fixed to 22.54%.

– CIFAR+10, CIFAR+50 : To test the method in a range of greater openness
scores, we perform CIFAR+U experiments using CIFAR10 and CIFAR100
[14]. 4 known classes are sampled from CIFAR10 and U unknown classes are
drawn randomly from the more diverse CIFAR100 dataset. Openness scores
of CIFAR+10 and CIFAR+50 are 46.54% and 72.78%, respectively.

– TinyImageNet : For the larger TinyImagenet dataset, which is a 200-class sub-
set of ImageNet, we randomly sampled 20 classes as known and the remaining
classes as unknown. In this setting, the openness score is 68.37%.

The out-of-distribution (OOD) detection community often evaluates methods
on cross-dataset setups [10,20,21,26], such as training on CIFAR10 and testing
on CIFAR100. So we perform extra experiments on two such settings between
CIFAR10 and CIFAR100 and report results comparable to OOD literature.

Metrics. Open set classification performance can be characterized by F-score or
AUROC (Area Under ROC Curve) [8]. AUROC is commonly reported by both
open set recognition and out-of-distribution detection literature. So we mainly
use AUROC to compare with existing methods. We adopt F-score in some of our
experiments as it also measures the in-distribution classification performance.
For both metrics, higher values are better.

4.2 Results

Comparison with Non-flow-based Methods. We compare OpenHybrid
against the following non-flow-based baselines:

1. SoftMax : A standard confidence-based method for open-set recognition by
using SoftMax score of a predicted class.

2. OpenMax [2]: This approach augments the baseline classifier with a new
OpenMax layer replacing the SoftMax at the final layer of the network.

3. G-OpenMax [7]: A direct extension of OpenMax method, which trains net-
works with synthesized unknown data by using a Conditional GAN.

4. OSRCI [22]: An improved version of G-OpenMax work, which uses a specific
data augmentation technique called counterfactual image generation to train
the classifier for the k + 1-st class.



112 H. Zhang et al.

Table 1. AUROC for comparisons of our method with recent open set methods. Results
averaged over 5 random class partitions. The best results are highlighted in bold.

Method MNIST SVHN CIFAR10 CIFAR+10 CIFAR+50 TinyImageNet

SoftMax 0.978 0.886 0.677 0.816 0.805 0.577

OpenMax [2] 0.981 0.894 0.695 0.817 0.796 0.576

G-OpenMax [7] 0.984 0.896 0.675 0.827 0.819 0.580

OSRCI [22] 0.988 0.910 0.699 0.838 0.827 0.586

C2AE [24] 0.989 0.922 0.895 0.955 0.937 0.748

CROSR [37] 0.991 0.899 0.883 0.912 0.905 0.589

OpenHybrid (ours) 0.995 0.947 0.950 0.962 0.955 0.793

5. C2AE [24]: This approach uses class conditioned auto-encoders with novel
training and testing methodologies for open set recognition.

6. CROSR [37]: A deep open set classifier augmented by latent representation
learning which jointly classifies and reconstructs the input data.

Table 1 presents the open set recognition performance of our method and
non-flow-based baselines on six datasets. Our approach OpenHybrid outper-
forms all of the baseline methods, which demonstrates the effectiveness of our
approach. It is interesting to note that our method on MNIST dataset produces
a minor improvement compared to the other methods. The main reason is that
the MNIST is relatively simple, and the results of all methods on it are almost
saturated. But for other relatively complex databases, our method performs sig-
nificantly better than the baseline methods, especially for natural images, such
as CIFAR (6% better than the second best) and TinyImageNet (5% better than
the second best).

Comparison with Flow-Based Methods. We compare our approach against
our implementations of the following flow-based approaches:

1. DIGLM [20]: A neural hybrid model consisting of a linear model defined on
a set of features computed by a deep invertible transformation. It uses the
model’ natural reject rule based on the generative component p(x) to detect
unknown inputs. The threshold is setted as minx∈X p(x; θ) − c, where the
minimum is taken over the training set and c is a free parameter providing
slack in the margin.

2. OE [10]: A training method leveraging an auxiliary dataset of unknown sam-
ples to improve unknown detection. The framework is the same as DIGLM,
except that during training, a margin ranking loss on the log probabilities
of training and outlier exposure samples is used to update the flow-based
model. In this experiment, we use counterfactual images generated by [22]
from training samples as its outlier exposure dataset.

Table 2 shows the AUROC of our method and the flow-based baselines in
different datasets. We observe that our method consistently outperforms the
baseline methods significantly under all open set benchmarks. The same trend is
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Table 2. AUROC for our methods and flow-based baselines. Results are averaged over
5 random class partitions. The best results are highlighted in bold.

Method MNIST SVHN CIFAR10 CIFAR+10 CIFAR+50 TinyImageNet

DIGLM 0.643 0.559 0.583 0.590 0.594 0.520

DIGLM + OE 0.721 0.643 0.655 0.670 0.671 0.596

OpenHybrid (ours) 0.995 0.947 0.950 0.962 0.955 0.793

Table 3. AUROC for cross-dataset
out-of-distribution detection between
CIFAR-10 and CIFAR-100.

Train → Test (OOD) OE [10] Ours

CIFAR10 → CIFAR100 0.933 0.951

CIFAR100 → CIFAR10 0.757 0.856

Table 4. F-scores (For readers who are inter-
ested in classification accuracy: Our approach
achieves overall accuracy 0.947 in MNIST,
0.929 in SVHN and 0.868 in CIFAR10. How-
ever, we believe F-score is a better mea-
surement which considers data imbalance.) of
the proposed OpenHybrid models using pre-
trained encoder and joint training.

Method MNIST SVHN CIFAR10

Pretrained encoder 0.847 0.842 0.791

Joint training 0.942 0.912 0.865

observed for the f-score metric, e.g., we achieved 0.865 in CIFAR10 while DIGLM
achieves only 0.673 and DIGLM+OE achieves 0.701) (Table 3).
Cross-Dataset OOD Settings. We further evaluate our approach on two
cross-dataset settings: training on CIFAR10 and testing on CIFAR100 and
vice versa. We compare the AUROC of our method directly with the num-
bers reported in [10]. The results suggest that our approach is still competitive
in such settings. It is worth noting that training on CIFAR100 and testing on
CIFAR10 is a harder task, probably due to the higher number of training classes.
Our approach achieves higher gains (+10%) in this setting.

4.3 Discussion

The Benefit of Joint Training. We further compare the end-to-end trained
OpenHybrid with a different training strategy based on alternative training.
The framework is still the same. However, during training, the encoder and
classifier are pretrained first on the training data. The flow-based model was then
trained separately with both encoder and classifier being frozen. Table 4 shows
a comparison between the two methods using F-score. The slack parameter s
is chosen to be 80 for all datasets. We observe that joint training consistently
outperforms OpenHybrid with a fixed pretrained encoder.

A Study on the Parameters. Our loss function contains a trade-off parameter
λ. We varied this value among 0.5, 1 and 2 in the MNIST dataset and observed
AUROC scores 0.993, 0.995, and 0.998, respectively. The model seems not sen-
sitive to this variable but it is a parameter that can be tuned to further improve
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Fig. 3. Left: Histograms of log-likelihoods for MNIST (0–5 as known classes and 6–9
as unknown classes) made by (a) DIGLM, (b) DIGLM + OE, (c) OpenHybrid with
pretrained encoder and end-to-end OpenHybrid. The blue color indicates training sam-
ples, the pink indicates known samples in the test, and the green is unknown samples.
Right (e): t-SNE visualization of the latent space by end-to-end OpenHybrid. Differ-
ent colors represent different classes. Brown color represents the unkown digits (6–9)
(Color figure online).

performance. Another important parameter is the number of residual blocks in
the flow model. We varied this value among 4, 8, 10 and 16 in CIFAR10 bench-
mark. Surprisingly, we still observe stable AUROC results (0.945, 0.948, 0.950,
0.958). So, for practitioners who may have resource constraints, it is advised to
consider a smaller flow-based network when using the OpenHybrid framework.

A Visualization of the Estimated Density. Figure 3 (left) shows the his-
tograms of log-likelihoods for MNIST (0–5 as known classes and 6–9 as unknown
classes) made by DIGLM, OE, OpenHybrid with pretrained encoder and Open-
Hybrid with joint training. For DIGLM (a), the three histograms almost overlap
so it is impossible to detect the unknown class by setting a threshold. The den-
sity estimation is improved with the help of OE (b), however, there is still a
large area of overlap. The distribution overlap becomes further smaller but still
not ideal when using OpenHybrid with pretrained encoder (c). In contrast, we
observed the end-to-end OpenHybrid (d) produces the histogram of unknown
samples well separated from those of known samples.

A Visualization of the Latent Space. Figure 3(e) shows a t-SNE [34] plot of
the latent space learned by end-to-end OpenHybrid. The brown color represents
the unkonwn classes (digit 6, 7, 8, 9) which is well separated from other color
(known classes from 0 to 5). Interestingly, the model also learns to separate digits
6–9, which is in an unsupervised fashion. Although the MNIST dataset is simple
compared to other real datasets, this result shows the potential of representation
learning using hybrid models as a promising research direction.

A Disappeared Issue of Flow-Based Models. Nalisnick et al. [19] raised
the issue that the flow-based model trained on CIFAR10 will assign a higher
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Fig. 4. Histograms of log-likelihoods for CIFAR10 (known samples) and SVHN
(unknown samples) made by (a) DIGLM, (b) DIGLM + OE and (c) the proposed
OpenHybrid. The blue color indicates training samples, the pink indicates known sam-
ples in the test, and the green is unknown samples (Color figure online).

log-likelihood value to SVHN. So we further conduct an experiment on this set-
ting, where we use the full 10 classes of the CIFAR10 as known classes, and
the SVHN as an unknown class. Our approach achieves 0.998 AUROC on this
setting. Figure 4 shows the histograms of log-likelihoods under this setting. Sim-
ilar to the observation made by [19], in Fig. 4(a), the histogram of unknown
samples (green) is shifted more to the right than that of known samples (blue
and pink), i.e., unknown samples are assigned a larger log-likelihood value than
known samples. In Fig. 4(b), OE seems to help but it does not fully address the
problem as well. Our method is shown in Fig. 4(c) which clearly distinguish the
two distributions. The histogram of unknown samples is almost entirely to the
left of known samples. We believe a potential reason is that the original input
space is a multimodal distribution and our method projects the input data into
a latent space which is probably more suitable to the unimodal assumption of
flow-based models. While we are unable to prove this theoretically, we hope our
results could inspire future works on deeper understanding of flow-based models.

5 Conclusion

We presented the OpenHybrid framework for open set recognition. Our app-
roach is built upon a flow-based model for density estimation and a discrimi-
native classifier, with a shared latent space. Extensive experiments show that
our approach achieves the state of the art. A common issue of flow-based mod-
els is that they often assign larger likelihood to out-of-distribution samples. We
empirically observe on various datasets that this issue disappear by learning a
joint feature space. Ablation study also suggests that joint training is another
key contributing factor to the superior open set recognition performance.
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Abstract. Existing generative adversarial networks (GANs) focus on
generating realistic images based on CNN-derived image features, but
fail to preserve the structural properties of real images. This can be fatal
in applications where the underlying structure (e.g.., neurons, vessels,
membranes, and road networks) of the image carries crucial semantic
meaning. In this paper, we propose a novel GAN model that learns the
topology of real images, i.e., connectedness and loopy-ness. In particular,
we introduce a new loss that bridges the gap between synthetic image
distribution and real image distribution in the topological feature space.
By optimizing this loss, the generator produces images with the same
structural topology as real images. We also propose new GAN evaluation
metrics that measure the topological realism of the synthetic images. We
show in experiments that our method generates synthetic images with
realistic topology. We also highlight the increased performance that our
method brings to downstream tasks such as segmentation.

Keywords: Topology · Persistent homology · Generative Adversarial
Network

1 Introduction

Generative adversarial networks (GANs) [20] have been very successful in gen-
erating realistic images. GANs train a generator to synthesize images that are
similar to real images, and at the same time, a discriminator to distinguish these
fake images from real ones. Through a minimax game, the generator converges
to a network that generates synthetic images sampled from a distribution that
matches the distribution of the real images.

When designing GANs, a key question is how to bridge the gap between
the synthetic and real image distributions not only in appearance, but also in
semantics. As shown [38,44], widely-used GANs [5,20,22,34,47,56] only match
the first order moments of the distributions within a CNN-based image feature
space. Newer methods match the synthetic/real image distributions using higher
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Fig. 1. Sample images in which the structures are neuron membranes and road net-
works from satellite images. From top to bottom: neuron images (CREMI [15]), neu-
ron images (ISBI12 [4]) and satellite images (Google Maps [30]). From left to right:
real images, images synthesized by TopoGAN, WGAN-GP and WGAN-SN. Each
real/synthetic mask is paired with a textured image. For synthetic images, texture
is added by a separately-trained pix2pix [30] network.

order statistics, e.g. second order statistics of the image features [43,44]. Kos-
saifi et al. [32] explicitly add a statistical shape prior for face images into the
generator. The intuition is that the more high order information a generator can
learn, the more semantically realistic the synthesized images will be.

In this paper, we pay attention to the structural information of an image. In
many applications, images contain structures with rich topology, e.g., biomed-
ical images with membrane, neuron or vessel structures, and satellite images
with road maps (Fig. 1). These structures and their topology, i.e., connectivity
and loopy-ness, carry important semantic/functionality information. Structural
fidelity becomes crucial if we want to use the synthetic images to train down-
stream methods that hinge on the structural information, e.g., diagnosis algo-
rithms based on the structural richness of retinal vessels, navigation systems
based on road network topology, or neuron classifiers based on neuron morphol-
ogy and connectivity.

In this paper, we propose TopoGAN, the first GAN model that learns topol-
ogy from real data. Topology directly measures structural complexity, such as
the numbers of connected components and holes. This information is very dif-
ficult to learn, due to its global nature. The conventional GAN discriminator
distinguishes synthetic and real images in terms of CNN-based features, but is
agnostic to topological dissimilarity. Thus, the generator cannot learn real image
topology. In Fig. 1, structures synthesized by conventional GANs (WGAN-GP
and WGAN-SN) tend to be broken and disconnected.

Our main technical contribution is a novel topological GAN loss that explic-
itly matches the synthetic and real image distributions in terms of their topology.
Based on persistent homology theory [16], we map both synthetic and real images
into a topological feature space, where their topological dissimilarity can be mea-
sured as a loss. We show that our loss is differentiable and can be minimized
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through backpropagation. Our topological GAN loss complements the existing
discriminator and teaches the generator to synthesize images that are realistic
not only in CNN-based image features but also in topological features (Fig. 1).
Note that TopoGAN only focuses on generating binary images (i.e. masks) delin-
eating the underlying structures. Once we have synthesized realistic topology
structures, we can add texture with existing techniques such as pix2pix [30].

To the best of our knowledge, TopoGAN is the first generative model that
learns topology from real images. We demonstrate the efficacy of TopoGAN
through comprehensive experiments on a broad spectrum of biomedical, satellite
and natural image datasets. We measure the success of our method in terms of
a conventional GAN performance measure, FID [24]. Furthermore, we propose
two novel topology-aware GAN measures, based on persistent homology and the
Betti number. We show that TopoGAN outperforms baseline GAN models by
a large margin in these topology-aware measures. Finally, we show that synthe-
sized images with learnt topology can improve performance in downstream tasks
such as image segmentation. In summary, our contributions are three-fold:

– We propose a topological GAN loss that measures the distance between syn-
thetic and real image distributions in the space of topological features. Com-
pared to previous topological loss that is applied to individual instances [28],
our loss is the first to enforce topological similarity between distributions.

– We show that this loss is differentiable and incorporate it into GAN training.
– We propose novel topology-aware measures to evaluate generator performance

in topological feature space.

2 Related Work

Generative Adversarial Nets (GANs) [20] are very popular for modeling data
distributions. However, GAN training is very unstable. WGAN [5], WGAN-GP
[22], WGAN-TS [37], WGAN-QC [36] and others, use the Wasserstein distance
to train GANs. Different gradient penalty strategies [22,36,40,60] can stabilize
GAN training effectively. Apart from the gradient penalty, Spectral Normaliza-
tion (SN) [41] is also widely used for GAN training [7,65]. PatchGAN [30] applies
a GAN to local patches instead of the whole image in order to capture high
frequency signals. Such local/high frequency signals are very useful in various
generative models, such as Pix2pix [30,63], CycleGAN [68] and SinGAN [57].

Several geometry-related GANs exploit geometric information on images.
The geometricGAN [35] adopts the large margin idea from SVMs [14] to learn the
discriminator and generator. The Localized GAN (LGAN) [50] uses local coor-
dinates to parameterize the local geometry of the data manifold. The Geometry-
Aware GAN (GAGAN) [32] is tailored for generating facial images using face
shape priors. The Geometry-Consistent GAN (GcGAN) [18] uses a geometry-
consistency constraint to preserve the image’s semantic structure. Geometric
transformations are restricted to image flipping and rotation.

We note that high-order structural information has been used in adversarial
networks for semantic segmentation. Existing methods [19,29,39] use adversarial
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losses in the semantic segmentation space as they encode high-order structural
information. However, these methods do not explicitly preserve topology.

Topological Information for Image Analysis. Many methods have been
proposed to directly use persistent homology as a feature extraction mecha-
nism. The extracted topological feature can be vectorized [3], and used as input
to kernel machines [9,33,54] or deep neural networks [26]. For fully supervised
image segmentation tasks, topological information has been explicitly used as a
constraint/loss to improve segmentation quality [11,28,64]. Mosinska et al. [42]
model topology implicitly with feature maps from pretrained VGG networks
[58], but the method does not generalize to structures of unseen geometries. We
also refer to methods developed for retinal vessels [23] and lung airways [51].
These methods only focus on connectivity (0-dimensional topology) and cannot
generalize to high-dimensional topology. In machine learning, topological infor-
mation has been used to analyze data manifold topology [10,25,46,53] and to
leverage advanced structural information for graph learning [66,67].

In generative models, Khrulkov and Oseledets [31] use data manifold topology
to compare synthetic and real data distributions as a qualitative measure of
generative models. However, their measure still focuses on the standard image
feature space, and cannot really evaluate whether the generator has learned
the real image topology. Brüel-Gabrielsson et al. [8] use a loss to enforce the
connectivity constraint in the generated images. However, enforcing hand-crafted
topological constraints (e.g., connectedness) does not help the generator to learn
the true topological distribution from real data. TopoGAN is the first generative
model that automatically learns topological properties from real images.

3 Method

Our TopoGAN matches synthetic and real image distributions for both image
and topology features. For this purpose, in addition to the conventional dis-
criminator and generator losses, we introduce a new loss term for the generator,
Ltopo(Pdata, G). This loss term, called the topological GAN loss, measures how
close the images generated by G are to the real images in terms of topology.
Minimizing it forces the synthetic images to have similar topology as the real
images. The discriminator loss is shown in Eq. (1). The generator loss (Eq. (2))
is a sum of the conventional generator loss and the new loss. Formally, we have

arg maxD

[
Ex∼Pdata

log D(x) + Ez∼Pz
log(1 − D(G(z)))

]
, (1)

arg minG

[
Ez∼Pz

log(1 − D(G(z)))︸ ︷︷ ︸
conventional generator loss

+λ Ltopo(Pdata, G)︸ ︷︷ ︸
topological GAN loss

]
, (2)

where λ controls the weight of the topological GAN loss.
We focus on generating binary images, i.e., masks delineating structures such

as vessels, neuron membranes, road networks, etc. The generator outputs a real-
valued grey-scale image as the synthetic mask. The discriminator treats the input
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Fig. 2. Illustration of persistent homology. Top row from left to right: the input mask,
padded with a frame (so that all branches form holes), the distance transform and the
output persistence diagram. Bottom row: the sequence of sublevel sets with different
threshold values. Different holes are born and filled. The original holes are all born at
t = 0. The almost-hole (red region, red bar, red dot) is born at a later time (t = 15).
(Color figure online)

image (real or synthetic) as a real-valued grey-scale image ranging between 0
and 1. After mask synthesis, a separately-trained pix2pix [30] network fills in
the textures based on each mask.

The rest of this section describes how to define and optimize the topological
GAN loss. In Sect. 3.1, we explain how to extract the topological feature (called
persistence diagram) of an input mask using the theory of persistent homology.
In Sect. 3.2 and 3.3, we formalize the topological GAN loss by comparing the
distributions of persistence diagrams computed from synthetic and real images
respectively. Minimizing this loss practically moves a synthetic persistence dia-
gram toward its matched real persistence diagram. This diagram modification
effectively grows the structure/mask to complete almost-loops. This teaches the
generator to synthesize images without incomplete loops.

As a separate technical contribution, we propose two new topology-aware
metrics to compare the distributions in the topological feature space in Sect. 3.4.

3.1 Persistent Homology: From Images to Topological Features

We explain how to extract the topological feature of an input mask using the the-
ory of persistent homology. We compute a persistence diagram capturing not only
holes/loops, but also almost-holes/almost-loops (structures that almost form a
hole or a loop) (Fig. 2). We describe the basic concepts, leaving technical details
to supplemental material and a classic topological data analysis reference [16].

Given a topological space, y ⊆ R
2, the holes and connected components are

its 1- and 0-dimensional topological structures respectively. We mainly focus on
1-dimensional topology in this paper. The number of holes is the Betti number,
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βy. In Fig. 2, we show a sample mask from the CREMI dataset, delineating
a neuron membrane structure. We add a frame around the patch so that all
structures are accounted for via 1-dimensional homology. In algebraic topology
[45], we are effectively computing the relative homology.

We observe 5 holes (Betti number βy = 5) in the figure and the Betti number
is only able to capture the complete holes. The dangling branch in the middle of
the image almost creates a new hole. But this almost-hole is not captured by the
Betti number. To effectively account for these almost-holes in our computations,
we leverage the distance transform and the theory of persistent homology [16].
We review the distance transform:

Definition 1. The Distance Transform (DT) [17] generates a map D for each
pixel p on a binary image I: D(p) = minq∈Ω{||p − q|| | I(q) = 0}, in which Ω is
the image domain.

Instead of only looking at the original function, we apply a distance transform
to the mask and get a non-negative scalar function defined on the whole image
domain, fy : Ω → R

+. We define the sublevel set of fy as the domain thresholded
by a particular threshold t, formally, Ωt

fy
= {x ∈ Ω|fy(x) ≤ t}. We notice

that one can take different sublevel sets with different thresholds. For certain
threshold values, the almost-hole becomes a complete hole. The sequence of all
possible sublevel sets, formally called the filtration induced by fy, essentially
captures the growing process of the initial mask.

Persistent homology takes the whole filtration and inspects its topological
structures (holes, connected components, and higher dimensional topological
structures). Each topological structure lives during an interval of threshold val-
ues. In Fig. 2, the five original holes are born at t = 0 and filled at different
times, when they are filled up by the growing mask. The almost-hole (in red) is
born at t = 15, when the purple hole is split into two. It dies at t = 25. All the
holes (with life spans drawn as horizontal bars) are recorded as a 2D point set
called a persistence diagram. The birth time and death time of each hole become
the two coordinates of its corresponding point. In this diagram, we have 5 points
with birth = 0 and a red point with a non-zero birth time, for the almost-hole1.

3.2 Distance Between Diagrams and Topological GAN Loss

In this section, we formalize our topological GAN loss. Using the distance trans-
form and persistent homology, we transform each input binary image y into its
corresponding persistence diagram, dgm(fy), which we call the topological fea-
ture of y. We first introduce the distance between any two persistence diagrams,
which measures the topological dissimilarity between two images. Next, we define
our topological GAN loss as the distance between two sets of diagrams, computed
from synthetic masks and real masks respectively. We use optimal transport [62]
to match the two sets of diagrams, and then define the loss as the total distance
1 The persistence diagram definition does not require the input to be a distance trans-

form. It can be an arbitrary scalar function defined on a topological space.
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Fig. 3. Our topology-processing component. The input is a batch of real masks and
synthetic masks. Each real or synthetic mask goes through the distance transform and
persistent homology computation. We get its persistent diagram, a set of 2D points. We
compare the two diagrams using the 1-Wasserstein distance only on birth times. The
loss is defined as the matching distance between the two sets of diagrams (synthetic
and real), computed using optimal transport.

between the matched diagram pairs. An illustration of the topological GAN loss
can be found in Fig. 3.

The distance between persistence diagrams has been well studied. One
can treat two diagrams as two point sets on a 2D plane and measure their p-
Wasserstein distance. This distance is well-behaved [12,13].

In this paper, we use a modified version of the classic p-Wasserstein distance
between diagrams. In particular, we only focus on the birth time, and drop
their death time. The reason is that we are mainly focusing on the gaps one
needs to close to complete an almost-hole (depending on birth time) and not
particularly concerned with the size of the hole (corresponding to death time).
Formally, we project all points of the two diagrams to the birth axis and compute
their 1-Wasserstein distance, i.e., the optimal matching distance between the two
point sets within the birth axis, as illustrated in Fig. 3. We note that points in
the diagrams of the synthetic and real images are mostly paired with nearby
points. The only exception is the red point corresponding to the almost-hole.
The matching distance essentially measures the gap of the almost-hole. The
diagram distance measures how easy it is to fix the synthetic image so it has
the same number of holes as the real one. Formally, the distance between two
diagrams dgm1 and dgm2 is

W1(dgm1,dgm2) = min
σ∈Σ

∑
x∈dgm1

|bx − bσ(x)| =
∑

x∈dgm1

|bx − bσ∗(x)|, (3)

in which Σ is the set of all possible one-to-one correspondences between the
two diagrams, and σ∗ is the optimal matching one can choose. Here bx denotes
the birth time of a point x in dgm1. Similarly, bσ(x) and bσ∗(x) are the birth
times of x’s match σ(x) and optimal match σ∗(x) in dgm2. The matching may
not exist when there are different numbers of points from the two diagrams.
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To this end, we can add infinitely many points to the diagonal line (b = d) so
the unmatched points can be matched to the diagonal line.2 In practice, our
algorithm for matching computation is very similar to the sliced Wasserstein
distance [6] for persistence diagrams, except that we only use one of the infinitely
many slices, i.e., d = 0.

Topological GAN Loss Defined via Matching Persistence Diagrams.
Next, we define our loss, which measures the difference between two diagram
distributions. The loss should be (1) simple to compute; and (2) efficient in
matching the two distributions. Due to these constraints, it is not straightforward
to use other approaches such as the kernel mean embedding (which is used in
Sect. 3.4 to define GAN metrics). See supplemental material for discussion.

We propose a loss that is easy to compute and can be efficiently optimized.
We find a pairwise matching between synthetic and real diagrams and sum up
the diagram distance between all matched pairs as the loss. Let Dsyn and Dreal

be the two sets of persistence diagrams generated from synthetic and real images.
Suppose we have an optimal matching between the two diagram sets, π∗. Our
loss is the total matching distance between all matched synthetic-real diagram
pairs. Recall W1 is the diagram distance (Eq. (3)). We have

Ltopo =
∑

dgmi∈Dsyn

W1

(
dgmi, π

∗(dgmi)
)
. (4)

To find the optimal matching π∗ between synthetic and real diagram sets, we
use the optimal transport technique. Denote dgms

i ∈ Dsyn and dgmr
j ∈ Dreal.

Let nsyn and nreal be the size of Dsyn and Dreal. We solve Monge-Kantorovich’s
primal problem [62] to find the optimal transport plan:

γ∗ =min
γ∈Γ

nsyn∑
i=1

nreal∑
j=1

W1(dgms
i ,dgmr

j) · γij (5)

where Γ = {γ ∈ R
nsyn×nreal

+ |γ1nreal
= 1/nsyn ·1nsyn

, γᵀ1nsyn
= 1/nreal ·1nreal

}.
1n is an n-dimensional vector of all ones. Denote by γ∗ the optimal solution to
Eq. (5). We compute the optimal matching (π∗) by mapping the i-th synthetic
dgms

i to the best matched real diagram w.r.t. the optimal transportation plan,
i.e., dgmr

h(i) such that h(i) = arg maxj γ∗
ij [49]. Formally, π∗(dgms

i ) = dgmr
h(i).

3.3 Gradient of the Loss

We derive the gradient of the topological GAN loss (Eq. (4)). The loss can be
decomposed into the sum of the loss terms for individual synthetic diagrams,
Ltopo =

∑
i Li

topo, in which the i-th loss term Li
topo = W1(dgmi, π

∗(dgmi)). Here
the i-th synthetic diagram is generated from the distance transform of the i-th
synthetic mask, yi, dgmi = dgm(fyi

). Meanwhile, yi is a binary mask computed

2 There are more technical reasons for adding the diagonal line into the diagram,
related to the stability of the metric. See [12].



126 F. Wang et al.

Fig. 4. From top to bottom: the same synthetic image being fixed at different iterations,
their distance transforms, landscape views of distance transforms, and persistence dia-
grams. The red marker s is the saddle point, whose function value is the birth time of
the almost-hole x. (Color figure online)

by thresholding the generated image G(zi). It suffices to calculate the gradient
of Li

topo with regard to the generator G.
Before deriving the gradient, we illustrate the intuition of the gradient descent

in Fig. 4. For a particular synthetic image, we show how the mask is modified
at different iterations and how the persistence diagram changes accordingly.
As the gradient descent continues, the almost-hole in the synthetic image is
slowly closed up to form a complete hole. At each iteration, the mask y grows
toward the saddle point s of the distance transform f . The distance transform
function value at the saddle s, f(s), decreases toward zero. In the persistence
diagram, the corresponding dot, x, moves toward left because its birth time bx =
f(s) decreases. This reduces the 1-Wasserstein distance between the synthetic
diagram and its matched real diagram.

Formally, by chain rule, we have ∂Li
topo

∂G = ∂Li
topo

∂ dgmi
· ∂ dgmi

∂fyi
· ∂fyi

∂G(zi)
· ∂G(zi)

∂G . Next,
we calculate each of the multiplicands.

Derivative of the Loss w.r.t. Persistence Diagrams. Recall that by Eqs. (3)
and (4), we can rewrite the i-th loss term as Li

topo =
∑

x∈dgmi
|bx − bσ∗(x)| =∑

x∈dgmi
sign(bx − bσ∗(x))(bx − bσ∗(x)). The equation depends on two optimal

matchings, π∗ and σ∗. The first one, π∗ : Dsyn → Dreal, is calculated by optimal
transport between two sets of diagrams, Dsyn and Dreal. The second optimal
matching, σ∗ : dgmi → π∗(dgmi), is calculated by 1D optimal transport between
points of the two matched diagrams. Without loss of generality, we assume for
all x ∈ dgmi and x′ ∈ π∗(dgmi), their birth time differences (bx − bx′)’s are
distinct nonzero values.
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While the optimal transport plan (γ∗ in Eq. (5)) changes continuously as we
change the input synthetic diagrams, the matchings π∗ and σ∗ only change at
singularities (a measure-zero set). Within a small neighborhood of the input, we
can assume constant optimal mappings π∗ and σ∗, and constant sign(bx −bσ∗(x))
and bσ∗(x) as well. The gradient can be formally written as the partial derivative
of the loss with regard to the birth and death times of each point x ∈ dgmi:
∂Li

topo

∂bx
= sign

(
bx − bσ∗(x)

)
, ∂Li

topo

∂dx
= 0.

Intuitively, the negative gradient direction −∂Li
topo

∂ dgmi

∂ dgmi

∂G moves each point
x in the synthetic diagram dgmi toward its matched point in the matched real
diagram, σ∗(x), horizontally (but not vertically). See Fig. 4 for an illustration.

Derivative of the Persistence Diagram w.r.t. the Distance Transform.
The derivative of the loss w.r.t. death time is zero. Therefore, we only need to
care about the derivative of the birth time bx w.r.t. the distance transform fyi

,
∂bx
∂fyi

. An important observation is that the birth time of any almost-hole in a
filtration is the function value of the saddle point of fyi

sitting right in the middle
of the gap, denoted as sx. Formally, bx = 〈δsx

, fyi
〉, in which δsx

is the Dirac
delta function at the saddle point sx. Taking the gradient, we have ∂bx

∂fyi
= δsx

.

Intuitively, −∂Li
topo

∂bx
∂bx
∂fyi

∂fyx

∂G , the negative gradient w.r.t. the bx of the dia-
gram, moves the saddle point function value bx = fyi

(sx) up or down so it gets
closer to the matched real diagram point’s birth time, bσ∗(x). See Fig. 4.

Derivative of the Distance Transform w.r.t. the Synthetic Image G(zi).
Finally, we compute the derivative of fyi

with regard to the i-th synthetic image
G(zi). Intuitively, focusing on the saddle point sx, to increase or decrease its
distance transform fyi

(sx), the gradient needs to grow the mask yi at its nearest
boundary point to sx, called r. This is achieved by changing the synthetic image
values of the few pixels near r. As seen in Fig. 4, as we proceed, the mask grows
toward the saddle point. More derivation details are in supplemental material.

3.4 Topology-Aware Metrics for GAN Evaluation

We introduce two novel metrics that can evaluate GAN performance in terms
of topology. Conventionally, generator quality has been evaluated by compar-
ing synthetic and real image distributions in the space of CNN-based image
features. For example, both the Inception score (IS) [56] and the Fréchet Incep-
tion distance (FID) [24] use an Inception network pre-trained on ImageNet to
map images into a feature space. The topological properties of images are not
guaranteed to be preserved in such CNN-based image feature space.

In this paper, for the first time, we propose metrics that directly measure
the topological difference between synthetic and real image distributions. The
first metric, called the Betti score, is directly based on the topology of the mask,
measured by the Betti number. Recall the Betti number counts the number of
holes in a given synthetic or real mask. A Betti score computes a histogram for
all synthetic masks and another histogram for all real masks. Then it compares
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the two histograms using their χ2 distance. The definition can easily extend to
zero-dimensional topology, i.e., counting the number of connected components.

Our second score is based on persistence diagrams which account for both
holes and almost holes. We use the kernel mean embedding method [21]. Assume
a given kernel for persistence diagrams, we can define an implicit function,
Φ, mapping all synthetic/real persistence diagrams into a Hilbert space, H.
In such space, it becomes easy to compute the mean of each diagram set,
Φ(Dsyn) := 1

nsyn

∑nsyn

i=1 Φ(dgms
i ) and Φ(Dreal) := 1

nreal

∑nreal

i=1 Φ(dgmr
i ). We

measure the difference between the synthetic and real diagram sample sets using
maximum mean discrepancy (MMD),

MMD(Dsyn,Dreal) := ‖ Φ(Dsyn) − Φ(Dreal) ‖H .

It was proven that this sample-based MMD will converge to its continuous ana-
log. We propose to use the unbiased MMD [21] (details are in the supplemen-
tal material). In terms of the kernel for persistence diagrams, there are many
options [9,33]. Here we use the Gaussian kernel based on the 1-Wasserstein dis-
tance between diagrams, kW1(dgmi,dgmj) = exp

(
−W1(dgmi,dgmj)

σ2

)
.

Our two metrics are generally useful to evaluate GAN results w.r.t. topology.
We will evaluate TopoGAN using FID, unbiased MMD and Betti score.

4 Experiments

TopoGAN is built on top of WGAN-GP with deep convolutional generative
adversarial networks [52] (DCGANs) as backbone network architectures. Details
of TopoGAN’s implementation, training, and computation cost are in Sec. B of
the supplemental material. We compare TopoGAN against two baseline GANs:
Wasserstein GAN with gradient penalty (WGAN-GP) and Wasserstein GAN
with Spectral Normalization (WGAN-SN). These methods are best known for
stabilizing GAN training and avoiding mode collapse. To demonstrate the poten-
tial of TopoGAN in practice, we showcase it in a downstream task: segmentation.

Datasets. TopoGAN is evaluated on five datasets: CREMI [15], ISBI12 [4],
Google Maps scraped by [30], CMP Facade Database [61], and Retina dataset.
The first two are neuron image segmentation datasets and we randomly sam-
ple 7500 and 1500 patches of size 64 × 64 respectively from their segmenta-
tion masks. Google Maps (aerial photos ↔ maps) and CMP Facade Database
(facades ↔ labels) consist of paired RGB images. THe RGB images of maps and
labels are converted into grayscale images. We extract 4915 patches of size 64 ×
64 from the converted maps and resize all 606 facade labels to 128 × 128. The
Retina dataset consists of 98 retina segmentations we collected from 4 datasets:
IOSTAR (40) [1,2], DRIVE (20) [59], STARE (20) [27], and CHASE DB1 (28)
[48]. All retina images are cropped and resized to 128 × 128 resolution.

Quantitative and Qualitative Results. In Table 1, we report the perfor-
mance of TopoGAN and two baselines w.r.t. three metrics: FID, unbiased MMD,
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Table 1. Comparisons against baseline GANs on FID, unbiased MMD, and Betti score
across five datasets. The standard deviations are based on 3 runs. We omit reporting
unbiased MMD and Betti score of WGAN-SN on Retina as WGAN-SN fails to produce
reasonable results.

CREMI ISBI12 Retina Maps Facade

FID

WGAN-GP 21.64±0.138 83.90±0.718 179.69±19.008 72.00±0.469 122.13±0.822

WGAN-SN 34.15±0.153 78.61±0.411 269.12±2.276 175.52±0.217 126.10±1.901

TopoGAN 20.96±0.195 31.90±0.248 169.21±21.976 60.48±0.467 119.11±0.874

Unbiased MMD

WGAN-GP 0.142±0.014 0.558±0.010 1.735±0.050 0.482±0.007 0.137±0.004

WGAN-SN 0.326±0.016 0.602±0.006 − 0.724±0.005 0.166±0.005

TopoGAN 0.134±0.019 0.405±0.003 1.602±0.114 0.471±0.010 0.080±0.002

Betti score

WGAN-GP 0.236±0.003 0.908±0.104 0.541±0.188 0.223±0.010 0.176±0.006

WGAN-SN 0.125±0.002 1.775±0.039 − 0.255±0.020 0.142±0.017

TopoGAN 0.015±0.001 0.802±0.058 0.457±0.144 0.177±0.004 0.124±0.002

and Betti score. TopoGAN outperforms the two baselines significantly in the
two topology-aware metrics proposed in Sect. 3.4: unbiased MMD and Betti
score. The superior performance of TopoGAN proves that the topological GAN
loss successfully enforced the structural/topological faithfulness of the gener-
ated images, as desired. Further comparisons of the topological quality of the
synthesized images at different training epochs can be found in the supplemen-
tal material. Meanwhile, we observe that TopoGAN is also better in FID. This
suggests that topological integrity could serve as an important visual cue when
deciding image quality by human standards.

Qualitative results are in Fig. 5. For fair comparison, we use the same set
of noise inputs to generate data for each GAN method. We observe that the
masks produced by TopoGAN have more clear boundaries and complete cycles.
They are topologically more similar to the real data (i.e., having similar Betti
numbers). TopoGAN also shows better performance in texture images (details
of how these textures are generated will be explained later). On the contrary,
baselines WGAN-GP and WGAN-SN tend to generate broken structures. The
Retina dataset is challenging for all GAN models. This is due to the small train-
ing set (98) and the heterogeneity of the dataset; its images are from multiple
datasets with different geometry, resolutions, aspect ratios, and contrasts.

Segmentation Application. We demonstrate that TopoGAN improves per-
formance in a downstream binary segmentation task. For each dataset, we train
a segmentation network with real training data, synthetic data, and real data
augmented with synthetic data. The networks trained with synthetic data from
TopoGAN are compared against networks trained with data from baseline GANs
and with real training data. The segmentation networks are evaluated on test
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data with three segmentation metrics: (1) pixel accuracy, (2) Dice score, and (3)
Adapted Rand Index (ARI). We report the results on dice score in Table 2, and
leave the results on other scores to the supplemental material.
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Fig. 5. Qualitative comparisons of TopoGAN to WGAN-GP and WGAN-SN on 5
datasets. From left to right: real masks from training set, generated masks from
TopoGAN, WGAN-GP, and WGAN-SN. For each dataset, the third row shows texture
images corresponding to the masks on the second row.
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Table 2. Dice score of segmentation networks on real test data. For each dataset, we
train a total of 21 segmentation networks with real training data, synthetic data from
TopoGAN and two baselines, and real data augmented with synthetic data. We report
mean and standard deviation of a 3-fold cross validation.

CREMI ISBI12 Retina

Real data 0.896±0.004 0.932±0.011 0.883±0.010

WGAN-GP 0.820±0.018 0.927±0.005 0.891±0.012

WGAN-SN 0.827±0.019 0.902±0.008 −
TopoGAN 0.851±0.011 0.933±0.006 0.892±0.013

WGAN-GP+real data 0.897±0.008 0.943±0.007 0.899±0.010

WGAN-SN+real data 0.900±0.004 0.905±0.054 −
TopoGAN+real data 0.902±0.006 0.944±0.008 0.906±0.014

To produce synthetic pairs (fake masks ↔ textured masks), a pix2pix [30]
network is first trained with real data pairs. The trained pix2pix network takes
as inputs the GAN-generated masks and produces textured masks on which a
segmentation network can be trained on. We use U-Net [55] as our segmenta-
tion network. We use a three-fold cross validation and report both the mean
and standard deviation of the Dice score for all datasets. Note that only we
only segment CREMI, ISBI12, and Retina, as the other two datasets are not
segmentation datasets and have no ground truth training data.

Segmentation results are summarized in Table 2. TopoGAN with pure syn-
thetic data achieves comparable results to segmentation networks trained with
real data on dataset ISBI12 and Retina. Segmentations augmented with syn-
thetic data always perform better than real data or synthetic data alone.
TopoGAN plus real data produces the best results followed closely by WGAN-
GP plus real data. Details of evaluation metrics, segmentation networks training
procedure and full result table can be found in supplementary.

5 Conclusion

This paper proposed TopoGAN, the first GAN method explicitly learning image
topology of the image from real data. We proposed a topological GAN loss
and showed that this loss is differentiable and can be easily incorporated into
GAN training. In addition, we proposed novel metrics to measure topological
differences between synthesized and real images. Empirically, we have shown
that TopoGAN generates images with better topological features than state-of-
the-art GANs both quantitatively and qualitatively.
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Abstract. With the knowledge of action moments (i.e., trimmed video
clips that each contains an action instance), humans could routinely
localize an action temporally in an untrimmed video. Nevertheless, most
practical methods still require all training videos to be labeled with tem-
poral annotations (action category and temporal boundary) and develop
the models in a fully-supervised manner, despite expensive labeling
efforts and inapplicable to new categories. In this paper, we introduce a
new design of transfer learning type to learn action localization for a large
set of action categories, but only on action moments from the categories
of interest and temporal annotations of untrimmed videos from a small
set of action classes. Specifically, we present Action Herald Networks
(AherNet) that integrate such design into an one-stage action localization
framework. Technically, a weight transfer function is uniquely devised to
build the transformation between classification of action moments or
foreground video segments and action localization in synthetic contex-
tual moments or untrimmed videos. The context of each moment is learnt
through the adversarial mechanism to differentiate the generated features
from those of background in untrimmed videos. Extensive experiments
are conducted on the learning both across the splits of ActivityNet v1.3
and from THUMOS14 to ActivityNet v1.3. Our AherNet demonstrates
the superiority even comparing to most fully-supervised action localiza-
tion methods. More remarkably, we train AherNet to localize actions
from 600 categories on the leverage of action moments in Kinetics-600
and temporal annotations from 200 classes in ActivityNet v1.3.
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1 Introduction

With the tremendous increase in Internet bandwidth and the power of the cloud,
video data is growing explosively and video-based intelligent services are becom-
ing gradually accessible to ordinary users. This trend encourages the development
of recent technological advances, which facilitates a variety of video understand-
ing applications [3,25,26,34]. In between, one of the most fundamental challenges
is the process of temporal action localization [7,11,24,29,46,59], which is to pre-
dict the temporal boundary of each action in an untrimmed video and categorize
each action according to visual content as well. Most existing action localization
systems still perform “intensive manual labeling” to collect temporal annotations
(action category and temporal boundary) of actions in untrimmed videos and then
train localization models in a fully-supervised manner. Such paradigm requires
strong supervision, which is expensive to annotate for new categories and thus
limits the number of action categories. In the meantime, there are various datasets
(e.g., Kinetics [12]) which include expert labeled data of trimmed action moments
for action recognition. A valid question then emerges as is it possible to achieve
action localization for a large set of categories, with only trimmed action moments
from these categories and temporal annotations from a small set of action classes?
If possible, it is readily to adapt state-of-the-art action localization methods to
support thousands of action categories in real-world deployment.

Fig. 1. Action localization modeling for a large set of categories based on only action
moments of these categories (e.g., Kinetics [12]) and untrimmed videos from a small
set of categories with temporal annotations (e.g., ActivityNet [17]).

With this motivation, Fig. 1 conceptually depicts the pipeline of action local-
ization in our work. Given a large set of categories which have only trimmed
action moments (e.g., Kinetics [12]) and a small set of classes which have fully
temporal annotations on untrimmed videos (e.g., ActivityNet [17]), we aim for
a model that enables to temporally localize and recognize actions from the large
set of categories. Note that the categories in the two sets could be completely
different. The main difficulties inherently originate from two aspects: 1) how to
build the connection between classification and localization? 2) how to halluci-
nate the context or background of an action moment in training? We propose
to mitigate the first issue through the design of weight transfer. In view that
action localization generally consists of temporal action proposal and temporal
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action classification, the network weights for temporal action classification could
be derived from those for action recognition of trimmed videos. In our case, the
trimmed videos are either foreground video segments in untrimmed videos or
action moments. As such, the weight transfer is considered as a bridge between
classification and localization. We utilize the recipe of adversarial learning to
alleviate the second issue. A discriminator is devised to differentiate the gener-
ated context features from those of background in untrimmed videos.

By consolidating the idea of learning action localization models on a mixture
of action moments and fully temporal annotations, we present a new Action Her-
ald Networks (AherNet) in an one-stage localization framework. AherNet mainly
includes two modules, i.e., weight transfer between classification and localization
on untrimmed videos with temporal annotations, and localization modeling on
action moments with synthetic contexts. On one hand, the first module naturally
constructs a correspondence between action localization in an untrimmed video
and action classification of “action moment”, i.e., the foreground video segment
extracted from the untrimmed video. Technically, we learn a weight transfer
function which transforms network parameters for foreground segment classifi-
cation to those for temporal action classification in localization on untrimmed
videos. On the other hand, to simulate action localization on action moments
data, we hallucinate the features of context or background of an action moment
via adversarial learning. The connection between action moment classification
and localization of the action from the context is also built by the weight trans-
fer function, whose parameters are shared. The whole AherNet is end-to-end
optimized by minimizing proposal loss, classification loss and adversarial loss.

The main contribution of this work is a new paradigm between supervised and
weakly-supervised training, that enables action localization models to support
thousands of action categories, with only trimmed action moments from these
categories and temporal annotations from a small set of classes. This also leads
to the elegant view of how to bridge the task of classification and localization,
and how to produce the context of action moments to simulate localization in
training, which are problems not yet fully understood.

2 Related Work

Temporal Action Localization. We briefly group the temporal action local-
ization into two categories: two-stage and one-stage action localization. Two-stage
action localization approaches [16,43,45,55,58,59] first detect temporal action
proposals [3,6,9,10,29,33,39,49,57] and then classify [40,41] the proposals into
known action classes. For instance, Buch et al. [3] develop a recurrent GRU-based
action proposal model followed by a S-CNN [46] classifier for localization. To fur-
ther facilitate action localization by uniting separate optimization of two stages,
there have been several one-stage techniques [2,4,27,32,56] being proposed. All
these methods require the training data with fully temporal annotations. Instead,
our AherNet models action localization for a large set of categories based on only
action moments of these categories and untrimmed videos from a small set of cat-
egories with temporal annotations.
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Parameter Prediction. Parameter prediction in neural networks is capable
of building the connections between the related tasks. Several weight adapta-
tion methods [18,23,50] learn specific matrix to adapt the image classification
weights for object detection. Most recently, Hu et al. [19] explore the direction
of parameter transferring from object detection to instance segmentation by a
general function, which enables the transformed Mask R-CNN [15] to segment
3000 visual concepts. In our work, we utilize the parameter prediction to bridge
the task of classification and localization.

Adversarial Learning. Inspired by the Generative Adversarial Networks
(GAN) [14], the adversarial learning has been widely used in various vision
tasks, e.g., image translation [20] and domain adaptation [8,51]. The training
processing of GAN [14] corresponds to a minimax two-player game to make the
distribution of fake data close to the real data distribution. In the context of
our work, we simulate action localization on action moments with generated
action contexts. Through adversarial learning, the generated contextual features
become indiscriminative from real background features of untrimmed video.

Weakly-Supervised Action Localization. The weakly-supervised action
localization approaches [31,37,38,42,44,52] only utilize the category supervision
of untrimmed videos for localization, whose setting and scenario are different from
our paradigm. Most of them build an attention mechanism to detect actions.

In short, our work mainly focuses on a new learning paradigm of scaling
action localization to a large set of categories. The proposal of AherNet con-
tributes by studying not only bridging action classification and localization
through weight transfer, but also how the generated context of action moments
should be better leveraged to support action localization learning.

3 Action Herald Networks

In this section we present the proposed Action Herald Networks (AherNet) in
detail. Figure 2 illustrates an overview of our architecture. It consists of two mod-
ules, i.e., weight transfer between classification and localization, and localization
modeling on action moments. Given an untrimmed video, the foreground video
segment is extracted as the “action moment.” A 3D ConvNet is exploited as the
base network to extract a sequence of clip-level features for the untrimmed video
and foreground segment, respectively. Each feature sequence is concatenated into
a feature map, followed by a cascaded of 1D temporal convolutional layers to
output feature maps on different scales. For action classification of foreground
segment, global pooling is employed on the features of all the cells in each feature
map to produce the features on each scale, which are projected via a matrix for
segment-level classification. Such matrix is adapted by a weight transfer func-
tion to that used in action localization for the untrimmed video. In that case,
we perform the adapted matrix on each feature map to obtain the projection of
the features of every cell (anchor) in that map for temporal action classification.
Similar processes are implemented on action moments and the extensions with
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Fig. 2. An overview of our Action Herald Networks (AherNet) architecture. The fore-
ground segments of untrimmed videos are first extracted as “action moments.” The
input untrimmed video and foreground segment is encoded into a series of clip-level
features via a 3D ConvNet, which are sequentially concatenated as a feature map,
respectively. A cascaded of 1D convolutional layers is applied to generate multiple fea-
ture maps on different scales. For classification of foreground segment, global pooling
is exploited on all cells of feature map to produce the features on each scale, which
are projected via a matrix for segment-level classification. The matrix is adapted by a
weight transfer function (orange box) to that used in action localization for untrimmed
video. In localization, the adapted matrix is performed on each cell in the feature map
to obtain the projection for temporal action classification. Similar process are imple-
mented on action moments and the extensions with generated context. The synthetic
contexts of moments are confused with the background of untrimmed videos via adver-
sarial learning (green box) and the parameters of weight transfer function are shared.
Our AherNet is jointly optimized with proposal loss, classification loss and adversarial
loss. In the inference stage, only the localization part (blue box) learnt on the moments
with contexts is utilized to predict action instances (Color figure online).

contexts. The features of contexts are hallucinated through adversarial learning
and the parameters of the weight transfer function are shared. The network is
jointly optimized with proposal loss, classification loss and adversarial loss.

3.1 Base Backbone

We build our action localization model on a weight-sharing 1D convolutional
networks. Given an input untrimmed video or action moment, a sequence of
clip-level features are extracted from a 3D ConvNet. We concatenate all the
features into one feature map and then feed the map into a cascaded of 1D
convolutional layers (anchor layers) to generate multiple feature maps on eight
temporal scales. These feature maps are further exploited for action classification
of the action moment or temporal action localization of the untrimmed video.
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3.2 Weight Transfer Between Classification and Localization

Given the feature maps of an untrimmed video in 1D ConvNet, temporal bound-
ary regression and action classification can be optimized for each anchor in the
feature maps. For an action moment or foreground segment, the representa-
tion of global pooling on each feature map is able to be used for segment-level
classification. In view that action localization task decomposes into temporal
action proposal and classification, the parameters of temporal action classifi-
cation in localization to predict the score of a specific action category could
be derived from the weights of moments recognition for the same category. To
build the connection between the two tasks, we extract the foreground segment
of untrimmed video as moment and learn a generic weight transfer function to
transform parameters for foreground segment classification to those for temporal
action classification in localization.

Specifically, in j-th feature map of foreground segment, global pooling is
first employed on that map to produce a feature vector. Then a matrix Wj

regv,c

is utilized to project the feature vector into the probability of category c for
segment-level classification. As for localization on untrimmed video, we adopt a
1D convolutional layer with stride of 1 to obtain the score of each cell (anchor) in
that map for anchor-level classification. The parameters in that 1D convolutional
layer to predict score of category c are denoted as Wj

clsa,c. To bridge classification
and localization for the specific category c, a generic weight transfer function T
is introduced to predict Wj

clsa,c from Wj
regv,c as follows:

Wj
clsa,c = T (Wj

regv,c; θ
j), (1)

where θj are the learnt parameters irrespective of action category. T can be
implemented with one or two fully-connected layers activated by different func-
tions. Through sharing θj with the transfer module in j-th anchor layer between
classification and localization on moments, T is generalized to the categories
of action moments. The weights of segment-level classification for those cate-
gories can be transferred to the weights of anchor-level classification. As such,
the weight transfer function is considered as a bridge to leverage the knowledge
encoded in the action classification weights for action localization learning.

3.3 Localization Modeling on Action Moments

With the obtained anchor-level classification weights predicted by weight trans-
fer function on action moments, we still can not perform action localization
training since there is no background for optimizing temporal action proposal.
To leverage action moments data for training localization model, a natural way
is to hallucinate the background of moment to synthetize a complete action
video. We therefore propose to generate action moment contextual features for
localization modeling in an adversarial manner.

Figure 3 illustrates the process of action context generation for action
moments. We denote the concatenated feature map of action moment and
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Fig. 3. Action context generation through adversarial learning. (BG: background)

untrimmed video extracted by 3D ConvNet as fm and fu. Taking fm as prior
knowledge, two generators (G1 and G2) with the structure of two 1D convo-
lutional layers are followed to synthesize the starting and ending contextual
feature, respectively. The synthetic moments feature f̃m is generated by concate-
nating fm with the two generated contextual features as follows:

f̃m = A(G1(fm), fm, G2(fm)), (2)

where A denotes the concatenation operation. By feeding the synthetic feature
f̃m and the original feature fu of untrimmed videos into the 1D convolutional
networks of localization model, multiple feature maps are produced on different
scales. Each cell (anchor) in the j-th feature map reflects an action proposal,
and the default temporal boundary of the t-th cell is defined as:

mc = (t + 0.5)/T j , mw = rd/T j , (3)

where mc and mw are the center location and width. T j and rd represents
the temporal length and scale ratio, respectively. For each cell, we denote the
intersection over union (IoU) between the corresponding proposal and it’s closest
ground truth as giou. If the giou is larger than 0.8, we regard the cell as foreground
cell. If the giou is lower than 0.3, it will be set as background cell. In each
feature map, a discriminator is introduced to differentiate the background cells
of synthetic moments from those of untrimmed videos. The simulation of action
localization is employed on the concatenated synthetic feature.

Through adversarial learning, the contextual features of synthetic moments
tend to be real through the guidance from those of untrimmed videos. Meanwhile,
the anchor-level classification loss in localization modeling serves as a conditional
constraint for adversarial training. The loss alleviates the generation of trivial
background features and regularizes the generated context of each moment to
preserve semantic information of action category.

3.4 Network Optimization

Given the global pooling feature vector f j
p of j-th feature map, the segment-level

classification loss (Lreg) for foreground segment or action moment is formulated
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Algorithm 1. AherNet Optimization
Input:

Localization model M pre-trained on untrimmed videos;
Maximum number of iteration N ;

Output:
Localization model M̃ for action categories from moment set;

1: Initialize the 1D ConvNet with M, the iterative count n = 1;
2: for n = 1 to N do
3: Optimize Lreg for foregrounds and moments to learn Wregv and W̃regv;
4: Fix Wregv, optimize Lcls and Lprop of untrimmed videos to learn θ;
5: Apply θ to W̃regv and obtain W̃clsa for synthetic moments classification;
6: Fix 1D ConvNet, optimize context generators through LadG

, Lcls and
Lprop of synthetic moments. Then fix context generators, optimize 1D
ConvNet through LadD

, Lcls and Lprop of synthetic moments;
7: end for
8: return M̃

via softmax loss:

Lreg = −
C−1∑

n=0

In=c log(pjn), (4)

where C represents the total number of action categories in untrimmed video
set or moment set. The indicator function In=c = 1 if n equals to ground truth
label c, otherwise In=c = 0. The probability pjn is projected by Wj

regv on f j
p .

For the optimization of action localization, three 1D-conv layers are uti-
lized on each feature map of untrimmed video or synthetic moment to predict
anchor-level classification scores, offset parameters and overlap parameter for
each cell (anchor). The anchor-level classification scores are predicted by trans-
formed weights Wclsa and the formulation of loss function Lcls is the same
with Eq. (4). The offset parameters (Δc,Δw) denote temporal offsets relative to
default center location mc and width mw, which are leveraged to adjust temporal
coordinate:

ϕc = mc + α1mwΔc and ϕw = mw exp (α2Δw) , (5)

where ϕc, ϕw are refined center location and width of the corresponding proposal.
α1 and α2 are used to balance the impact of temporal offsets. The offset loss is
devised as Smooth L1 loss [13] (SL1) between the foreground proposal and the
closest ground truth, which is computed by

Lof = SL1(ϕc − gc) + SL1(ϕw − gw), (6)

where gc and gw represents the center location and width of the proposal’s
closest ground truth instance, respectively. Furthermore, we define an overlap
parameter yov to regress IoU between the proposal and it’s closest ground truth
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for proposal re-ranking in localization. The mean square error (MSE) loss is
adopted to optimize it as follows:

Lov = (yov − giou)2. (7)

Since both of the offset loss (Lof ) and overlap loss (Lov) are optimized for
temporal action proposal, the sum of the two is regarded as the proposal loss
(Lprop).

In the moment context generation stage, we define G as context generators
of action moments, while D represents the discriminator of background cell on
the feature map. We denote Fu and Fm as the set of extracted feature maps of
untrimmed video and moment set, respectively. After producing the background
cells bu and bm of each set, the adversarial loss is formulated as

LadD
= −Efu∼Fu

[log(D(bu; fu))] − Efm∼Fm
[log(1 − D(bm;G(fm)))],

LadG
= −Efm∼Fm

[log(D(bm;G(fm)))].
(8)

The overall training objective of our AherNet is formulated as a multi-task
loss by integrating classification loss in segment-level (Lreg) and anchor-level
(Lcls), proposal loss (Lprop) and adversarial loss (Lad). The weight-sharing 1D
convolutional networks of localization model are first pre-trained on untrimmed
videos for initialization. Then we propose an alternating training strategy in each
iteration to optimize the whole networks in an end-to-end manner. Algorithm1
details the optimization strategy of our AherNet.

3.5 Inference and Post-processing

During prediction of action localization on action moment set, the context gen-
erators have been removed. The final ranking score sf of each candidate action
proposal is calculated by anchor-level classification scores p = [p0, p1, ..., pC−1]
and overlap parameter yov with sf = max(p) · yov. Given the predicted action
instance φ = {ϕc, ϕw, Ca, sf} with refined boundary (ϕc, ϕw), predicted action
label Ca, and ranking score sf , we employ the non-maximum suppression (NMS)
for post-processing.

4 Experiments

We empirically verify the merit of our AherNet by conducting the experiments
of temporal action localization across three different settings with three popular
video benchmarks: ActivityNet v1.3 [17], THUMOS14 [21] and Kinetics-600 [12].

4.1 Datasets

The ActivityNet v1.3 dataset contains 19,994 videos in 200 classes collected
from YouTube. The dataset is divided into three disjoint subsets: training, vali-
dation and testing, by 2:1:1. All the videos in the dataset have temporal anno-
tations. The labels of testing set are not publicly available and the performances
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of action localization on ActivityNet dataset are reported on validation set. The
THUMOS14 dataset includes 1,010 videos for validation and 1,574 videos for
testing from 20 classes. Among all the videos, there are 220 and 212 videos with
temporal annotations in validation and testing set, respectively. The Kinetics-
600 is a large-scale action recognition dataset which consists of around 480K
videos from 600 action categories. The 480K videos are divided into 390K, 30K,
60K for training, validation and test sets, respectively. Each video in the dataset
is a 10-s clip of action moment annotated from raw YouTube video.

4.2 Experimental Settings

Data Splits. For each setting, our AherNet involves two datasets, untrimmed
video set with temporal annotations and action moment set with only category
labels. In the first setting, we split the classes of ActivityNet v1.3 into two parts
according to the dataset taxonomy. The untrimmed video set (ANet-UN) con-
tains 87 classes and the action moment set (ANet-AM) consists of the remaining
113 classes. We extract the foreground segments of training videos from 113
classes as the training data and take the original videos in the validation set
from 113 classes as the validation data. In view that we aim to transfer action
localization capability on the categories in ANet-UN to those in ANet-AM, this
setting is named as ANet-UN→ANet-AM. The second setting treats all the 220
validation videos in THUMOS14 (TH14) as untrimmed video set and the fore-
ground segments of all the training videos in ActivityNet v1.3 as action moment
set (ANet-FG). All the validation videos in ActivityNet v1.3 are exploited as
the validation data. Similarly, we name this setting as TH14→ANet-FG. In the
third setting, we utilize ActivityNet v1.3 (ANet) and Kinetics-600 (K600) as
untrimmed video set and action moment set, respectively. To verify action local-
ization on 600 categories in Kinetics-600, we crawled at least 10 raw YouTube
videos of action moments in validation set for each class. In total, the validation
data contains 6,459 videos. This setting is namely ANet→K600 for short.

Implementations. We utilize Pseudo-3D [40] network as our 3D ConvNet for
clip-level feature extraction. The network input is a 16-frame clip and the sample
rate of frames is set as 8. The 2,048-way outputs from pool5 layer are extracted
as clip-level features. During training, we choose three temporal scale ratios
{rd}3d=1 = [20, 21/3, 22/3] derived from [30]. The parameter α1 and α2 are set
as 1.0 by cross validation. The threshold of NMS is set as 0.90. We implement
our AherNet on Tensorflow [1] platform. In all the experiments, our networks
are trained by utilizing adaptive moment estimation optimizer (Adam) [22]. The
initial learning rate is set as 0.0001, and decreased by 10% after every 5k on first
two data split settings and 15k on the final setting. The mini-batch size is 16.

Evaluation Metrics. On all the three settings, we employ the mean average
precision (mAP) values with IoU thresholds between 0.5 and 0.95 (inclusive)
with a step size 0.05 as the metric for comparison.
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4.3 Evaluation on Weight Transfer

We first examine the module of weight transfer between classification and local-
ization in our AherNet. We compare several implementations of the weight
transfer function T , e.g., different number of fully-connected layers plus vari-
ous activation functions (ReLU, LeakyReLU [35] and ELU [5]), and three base-
line approaches of AherNet0, AherNet− and AherNet∗. AherNet0 is a purely
classification-based model which learns a snippet-level classifier to predict the
action score sequentially and splits action instances with multi-threshold strat-
egy on the score sequence. As such, AherNet0 is regarded as the lower bound.
AherNet− deploys a “proposal+classification” scheme without weight transfer
module. The action proposal model in AherNet− is learnt on untrimmed video
set and directly performed on validation videos to output temporal action pro-
posals. The classifier trained on action moment set is employed to predict the
category of each action proposal. AherNet∗ is an oracle run that exhaustively
exploits the original videos of moment and trains a localization model in a fully-
supervised manner. From this view, AherNet∗ is considered as the upper bound.

Table 1 summarizes the average mAP performances over all IoU thresholds of
different methods on the first two settings. AherNet with weight transfer func-
tion of two fully-connected layers plus ELU activation consistently exhibits bet-
ter performance than other implementations across the two settings. As expected,
AherNet0 performs worst since the method solely capitalizes on classification for
localization problem without any knowledge of temporal action proposal. With
the use of action proposal model learnt on untrimmed video set, AherNet− sur-
passes AherNet0 by 2.6% and 1.1% on the settings of ANet-UN→ANet-AM and
TH14→ANet-FG. AherNet further boosts up the average mAP from 12.8% and
10.4% of AherNet− to 17.2% and 24.3%, respectively. The results verify the merit
of weight transfer in AherNet for bridging classification and localization, and

Table 1. Exploration of differ-
ent implementations of the weight
transfer function in our AherNet.
(fc means fully-connected layer).

Approach ANet-UN →
ANet-AM

TH14 →
ANet-FG

AherNet0 10.2 9.3

AherNet− 12.8 10.4

AherNet,1-fc,none 16.1 23.2

AherNet,1-fc,

ReLU

16.4 23.4

AherNet,1-fc,

LeakyReLU

16.5 23.5

AherNet,1-fc,ELU 16.7 23.9

AherNet,2-fc,

LeakyReLU

16.9 24.2

AherNet,2-fc,ELU 17.2 24.3

AherNet,3-fc,ELU 16.8 24.1

AherNet∗ 22.6 28.9

Fig. 4. Action classification accuracy of
AherNet− and AherNet in different anchor
layer on (a) ANet-UN→ANet-AM and (b)
TH14→ANet-FG.
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Table 2. The evaluations of local-
ization modeling of AherNet.

Approach ANet-UN→
ANet-AM

TH14 →
ANet-FG

AUC mAP AUC mAP

AherNet0 41.8 10.2 11.2 9.3

AherNet− 52.6 12.8 16.4 10.4

AherNetM 53.5 13.2 49.7 17.3

AherNetA− 54.6 14.7 51.0 19.1

AherNet 58.3 17.2 55.5 24.3

AherNet∗ 61.1 22.6 63.4 28.9

Fig. 5. Feature visualization of AherNet: (a)
ANet-UN→ANet-AM and (b)TH14→ANet-FG.

scaling action localization to a large set of categories with only action moments. In
practice, AherNet has great potential to support localization for thousands of cat-
egories. More importantly, when evaluating action localization model on the cate-
gories with full temporal annotation in the training, AherNet slightly outperforms
AherNet∗, e.g., 25.4% vs. 25.2% and 27.7% vs. 26.9% on the actions in ANet-UN
and TH14. This also demonstrates the advantage of leveraging action moments
data in AherNet training to enhance action localization model.

Figure 4 further details the average classification accuracy over all proposals
in each anchor layer. Specifically, we feed the same proposals generated by Aher-
Net into the classifier of AherNet− for accuracy computation on the same scale.
Because most proposals in ActivityNet range over about 40% of the whole videos
and such receptive field is nicely characterized by each anchor in the 7th layer, it
is not a surprise that both AherNet and AherNet− achieve the highest accuracy
on that layer. Benefited from the capture of contexts in joint optimization with
temporal action proposal, AherNet leads to better and more stable performances
than AherNet−. The results again validate the weight transfer module.

4.4 Evaluation on Localization Modeling

Next, we study how localization modeling with context generation in Aher-
Net influences the performances of both temporal action proposal and temporal
action localization. We design two additional runs of AherNetM and AherNetA−
for comparison. AherNetM capitalizes on only action moment set and directly
learns an anchor-based action localization network by considering the start-
ing/ending points of each moment as the time stamps of the action. AherNetA−
is a variant of AherNet by removing adversarial learning. The context generator
is pre-trained on untrimmed video set through minimizing L2 loss between the
converted background from foreground and the real background.

Table 2 shows the measure of area under Average Recall vs. Average Num-
ber of proposals per video curves (AUC) for action proposal and mAP perfor-
mances for action localization. Overall, AherNetM leads to a performance boost
against AherNet− on both settings. In particular, AherNetM improves the AUC
value from 16.4% to 49.7% on TH14→ANet-FG. Such results basically indi-
cate that AherNetM is a practical choice for learning action localization directly
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Table 3. Temporal action detec-
tion performances on Activi-
tyNet v1.3, measured by mAP at
different IoU thresholds α.

ActivityNet v1.3, mAP@α

Approach 0.5 0.75 0.95 Average

Fully-supervised localization

Wang

et al. [53]

45.11 4.11 0.05 16.41

Singh

et al. [47]

26.01 15.22 2.61 14.62

Singh

et al. [48]

22.71 10.82 0.33 11.31

CDC [43] 45.30 26.00 0.20 23.80

TAG-D

[54]

39.12 23.48 5.49 23.98

Lin

et al. [28]

48.99 32.91 7.87 32.26

BSN [29] 52.50 33.53 8.85 33.72

Weakly-supervised localization

STPN [37] 29.30 16.90 2.60 –

Nguyen

et al. [38]

36.40 19.20 2.90 –

Partially-supervised localization

AherNet 40.33 25.04 3.92 24.31

Fig. 6. Average mAP comparisons of AherNet∗

learnt with different ratio of temporal annotation
and AherNet, on (a) ANet-UN→ANet-AM and (b)
TH14→ANet-FG.

on moment data. AherNetA− is benefited from context generation for action
moment set and the gain of mAP over AherNetM is 1.5% and 1.8%, respec-
tively. Moreover, the upgrade of context generator from pre-training solely on
untrimmed videos in AherNetA− to adversarial learning across the two video
sets in AherNet contributes a mAP increase of 2.5% and 5.2%.

To examine the generated features of background, we further visualize the
features of foreground, synthetic and real background for action moments by
using t-SNE [36]. Specifically, we randomly select 500 anchors of foreground,
synthetic and real background from 200 moments and the original videos in
validation data, respectively. The first 256 principal components of the features
of each anchor are extracted by PCA and projected into 2D space using t-SNE
as shown in Fig. 5. It is clear that the generated features of background by
AherNet are indistinguishable from those of real background on both ANet-AM
and ANet-FG sets, that confirms the effectiveness of context generation.

4.5 Evaluation on Model Capacity of AherNet

We discuss our AherNet with several state-of-the-art fully-supervised and
weakly-supervised action localization methods. Table 3 lists the mAP perfor-
mances under different IoU thresholds on ActivityNet v1.3 and such evaluation
corresponds to the second setting of TH14→ANet-FG for AherNet. The goal
of weakly-supervised methods is to train action localization models for a set of
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Fig. 7. Example of two action localization results on Kinetics-600.

Table 4. Performance comparisons of temporal action localization on Kinetics-600,
measured by mAP at different IoU thresholds α.

ANet→K600, Kinetics-600, mAP@α

Approach 0.5 0.75 0.95 Average

AherNet0 19.26 16.72 0.88 14.18
AherNet− 21.76 17.85 1.71 15.96
AherNetM 28.98 20.71 2.95 19.05
AherNetA− 32.71 23.04 5.08 21.68
AherNet 36.19 26.96 6.55 24.43

categories which have untrimmed videos with only video-level labels. Instead,
our AherNet enables the training of localization model for the categories of
interest with action moments from these categories (e.g., ANet-FG) and tem-
poral annotations from a small set of classes (e.g., TH14). Compared to the
most recent advance [38] in weakly-supervised localization, AherNet leads to
a mAP boost of 3.9% and 5.8% under the IoU of 0.5 and 0.75, respectively.
AherNet is also comparable or even superior to several fully-supervised local-
ization models, e.g., [43,54], which rely on full temporal annotations for all the
categories. More importantly, the partially-supervised learning paradigm of our
AherNet extends action localization to potentially thousands of categories in a
more deployable way.

To further quantitatively analyze the capability of AherNet, we compare
AherNet with the fully-supervised version of AherNet∗ trained on different pro-
portions of temporal annotations as shown in Fig. 6. As expected, the average
mAP performances of AherNet∗ constantly improve with respect to the increase
of temporal annotations in training on both datasets. The results are desirable
in the way that AherNet∗ starts to surplus the performance of AherNet till more
than 50% temporal annotations are leveraged.
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4.6 Large-Scale Action Localization of AherNet

We finally take a step further to learn action localization model for 600 actions in
Kinetics-600 dataset, which refers to the third setting of ANet→K600. Since the
temporal annotations are not available for the validation videos of Kinetics-600,
we collected the raw YouTube videos of action moments in our validation set
and invited ten evaluators to label annotations. Table 4 summarizes the mAP at
different IoU thresholds on the setting of ANet→K600. The performance trends
are similar with those on the first two settings. AherNet boosts up the average
mAP from 14.18% to 24.43%, indicating the impact of AherNet on the gener-
alization of action localization for a large set of categories. Figure 7 showcases
localization results of two videos from Kinetics-600, showing that AherNet nicely
models the temporal dynamics and predicts accurate temporal boundaries.

5 Conclusions

We have presented Action Herald Networks (AherNet) which scale action local-
ization to a large set of categories. Particularly, we study the problem from
a new learning paradigm of training localization model with only trimmed
action moments from the large set of categories plus temporal annotations on
untrimmed videos from a small set of action classes. To materialize our idea, we
have devised an one-stage action localization framework which consists of two
key modules: weight transfer between classification and localization, and local-
ization modeling on action moments. The former extracts foreground segments
from untrimmed videos as action moments, and learns a weight transfer function
between foreground segment classification and temporal action classification in
localization. The latter simulates action localization on action moments data
by hallucinating the background features of an action moment via adversarial
learning. Experiments conducted on two settings, i.e., across the splits of Activ-
ityNet v1.3 and from THUMOS14 to ActivityNet v1.3, validate our proposal.
More remarkably, we build a large-scale localization model for 600 categories in
Kinetics-600.
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Abstract. We present a ForkGAN for task-agnostic image translation
that can boost multiple vision tasks in adverse weather conditions. Three
tasks of image localization/retrieval, semantic image segmentation, and
object detection are evaluated. The key challenge is achieving high-
quality image translation without any explicit supervision, or task aware-
ness. Our innovation is a fork-shape generator with one encoder and
two decoders that disentangles the domain-specific and domain-invariant
information. We force the cyclic translation between the weather con-
ditions to go through a common encoding space, and make sure the
encoding features reveal no information about the domains. Experimen-
tal results show our algorithm produces state-of-the-art image synthesis
results and boost three vision tasks’ performances in adverse weathers.

Keywords: Light illumination · Image-to-image translation · Image
synthesis · Generative adversarial networks

1 Introduction

Data bias is a well-known challenge for deep learning methods. An AI algo-
rithm trained on one dataset often has to pay a performance deficit in a differ-
ent dataset. Take an example of image recognition on a rainy night. An object
detector trained on a day time dataset could suffer 30–50% accuracy drop on
rainy night images. One solution is simply collecting more labeled data in those
adverse weather conditions [7,8,10,19,24]. This is expensive and more funda-
mentally does not address the data bias issue.

Domain adaptation [13,23,28] is a general solution to this data bias problem.
Our work is related to a sub-branch of this approach focusing on image-to-image
translation techniques to explicitly synthesize images in uncommon domains. In
the context of day and night domain change, two strategies have been explored
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Fig. 1. Our ForkGAN can boost performance for multiple vision tasks with night to
day image translation: localization (by SIFT point matching between daytime and
nighttime images), semantic segmentation and object detection (by data augmentation)
in autonomous driving (results are all shown on the nighttime images).

recently: one is day-to-night approach [22], which transfers annotated daytime
data to nighttime so that the annotations can be reused through data augmenta-
tion; the other [1] uses a night-to-day translator to generate images suitable for
existing models trained on daytime data. The two strategies both demonstrated
that the precise domain translation methods can boost the other vision tasks. In
this paper, we look into a far more challenging case of a rainy night. Our exper-
iments show that existing approaches perform poorly in this case, particularly
when we have no supervised data annotation on the rainy night images.

The fundamental challenge is that what makes an image looks good to a
human might not improve computer vision algorithms. A computer vision algo-
rithm can handle certain types of lighting change surprisingly well, while minor
artifacts invisible to human could be harmful to vision algorithms.

A straightforward method is to introduce task-specific supervision on the
new domain to ensure the image translation is task aware. We believe task-aware
approaches only shift the data bias problem to a task bias problem. Instead, we
ask if we can create a task agnostic image-to-image translation algorithm that
improves computer vision algorithms without any supervision or task informa-
tion. Figure 1 shows our solution can achieve this goal on three untrained tasks:
image localization, semantic segmentation, and object detection.

Problem Analysis. Domain translation between adverse conditions (e.g. night-
time) and standard conditions (e.g. daytime) is inherently a challenging unsuper-
vised or weakly-supervised learning problem, as it is impossible to get precisely
aligned ground-truth image pairs captured at a different time for dynamic driv-
ing scenes where a lot of moving objects exist. Many objects (e.g. the vehicles and
street lamps) look totally differently across different weather conditions. There
are global scene level texture differences such as raindrops, as well as regional
changes such as cars’ reflection on the wet road. There is a common semantic
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and geometrical level similarity between the adverse and normal domain, as well
as vast differences. Precisely disentangling the invariant and variant features,
without any supervision or task knowledge, is our key objective.

Proposed Solution. An ideal task-agnostic image translation preserves the
image contents at all scale levels: scene level layout to object details such as
letters on a traffic sign, while automatically adjusting to the illumination and
weather conditions. For CycleGAN-based models that mainly rely on cycle-
consistency losses, altering the global conditions can be done effectively, but
faithfully maintaining the informative content details is not guaranteed. We first
‘tie’ the two encoding space of the CycleGAN together, to make sure we have kept
only the necessary invariant information in both domains. We further explicitly
check this encoding is domain agnostic: by looking at the encoded features, we
cannot tell the domain they come from. This step can potentially remove much
invariant information. We add a ‘Fork’ branch to check if we have encoded suf-
ficient information to reconstruct the original image data in both domains. The
model is called ForkGAN. It has the following main contributions.

– We propose a Fork-shaped Cyclic generative module that can decouple
domain-invariant content and domain-specific style during domain transla-
tion. We force both encoders to go through a common encoding space and
explicitly use an anti-contrastic loss to ensure necessary invariant information
is produced in the disentanglement.

– We introduce a Fork-branch on each generator stage, to ensure sufficient
information is kept for image recognition tasks in both domains.

– We boost the performance of localization, semantic segmentation and object
detection in adverse conditions using our ForkGAN.

2 Related Work

2.1 Unpaired Image-to-Image Translation

Many models have been proposed for unpaired image-to-image translation task,
which aims to translate images from source domain to the corresponding desired
images in target domain without corresponding image pairs for training. Intro-
duced by Zhu et al. [28], CycleGAN is a classical and elegant solution for
unpaired image-to-image translation. The cycle-consistency loss provides a nat-
ural and nice way to regularize the image translation, and it has become a widely
used base. However, it does not enforce the translated image to share the same
semantic space as the source image, and therefore its disentanglement ability is
rather weak. UNIT [17] added a shared latent space assumption and enforced
weight sharing between the two generators. However, weight sharing does not
always guarantee that the network will learn to disentangle the images from
different domains. To improve the diversity of generated results, models such as
MUNIT [12], DRIT [16] were proposed to better decompose visual information
into domain-invariant content and domain-specific style. To handle the trans-
lation among multiple domains, StarGAN [5] was developed by combining an
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additional classification loss. One drawback of those models is that the user
will need to specify a Etyle code Eor label to sample from. For application in
autonomous driving, we want the model to translate the image in adverse weath-
ers to an appropriate condition without any human guidance during inference
time.

2.2 Low-Light Image Enhancement

Besides translating images from adverse conditions (e.g. night domain) to stan-
dard conditions, another possible approach to tackle the lack of visibility at night
is to use low-light image enhancement models. Those models aim to improve the
visual quality of underexposed photos by manipulating the color, brightness and
contrast of the image. Recently, more deep learning based models have been pro-
posed to solve underexposure problem. EnlightenGAN [14] can perform low-light
enhancement without paired training data. The model increases the luminosity
of an image while preserving the texture and structure of objects. However, with-
out emphasis on foreground objects, EnlightenGAN provides limited details that
are helpful for driving purposes. Different from these low-light image enhance-
ment methods, we target to translate the whole image to day time and enhance
the weak object signals in the dark.

2.3 Bad Weather Vision Tasks

Adverse weathers and undesirable illumination conditions pose challenges to
common vision tasks such as localization, semantic segmentation and object
detection. Visual localization and navigation allow the vehicle or robot to esti-
mate its location and orientation in the real world. One efficient approach for
this task is to use image retrieval techniques [1] and feature matching meth-
ods [2,18]. However, these methods suffer from performance degradation when
the query image is sampled from different illumination and weather conditions as
compared with the labelled database. ToDayGAN [1] modified the image trans-
lation model to improve image retrieval performance for localisation task. Porav
et al. [21] proposed a system that translates input images to a desired domain
to optimize feature-matching results.

For semantic segmentation, Porav et al. [20] proposed a system that uses
light-weight adapters to transform images of different weather and lighting con-
ditions to an ideal condition for training off-the-shelf computer vision models.
To train the adapters, they chose a sequence of reference images under ideal
condition, and use CycleGAN [28] to synthesize images in different weathers
while preserving the geometry and structure of the reference images. They then
trained adapters to transform images from specific domains so using the new
images can achieve better performance on related vision tasks.

Object detection, despite its importance, has received less attention in recent
works on driving in adverse weathers. A related work in this direction is from He
et al. [8], where the authors developed a multi-adversarial Faster R-CNN frame-
work for domain-adaptive object detection in driving scenario. Their source and
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Fig. 2. The framework of ForkGAN. (a) shows the training stage while (b) represents
the testing inference. Ix and Iy denote random image from night domain X and day
domain Y, separately. Ex and Ey are the encoders to encode the night and day images,
separately. Gt

x and Gt
y are responsible to achieve domain translation based on the

domain-invariant representations z and z̃. Gr
x and Gr

y aim to reconstruct the input
images based on the representations. Dx and Dy are the discriminators of X and Y,
while Dd is the domain adversarial classifier.

target domain pairs involve regular and foggy Cityscapes, synthetic and real
data from two different driving datasets with similar weather conditions. Aug-
GAN [11] aims to combine an image parsing network to enhance object detection
performance in nighttime images through day-to-night translation on synthetic
datasets. However, it requires paired auxiliary annotations (e.g. semantic seg-
mentation maps), which are sometimes expensive or hard to acquire, to regularize
the image parsing network. Our ForkGAN addresses object detection under more
challenging weather conditions - driving scenes at nighttime with reflections and
noise from rain and even storms, without any auxiliary annotations.

3 Proposed Method

3.1 ForkGAN Overall Framework

Our ForkGAN performs image translation with unpaired data using a novel
fork-shape architecture. The fork-shape module contains one encoder and two
decoders. Take night-to-day translation in Fig. 2 as an example, first we feed a
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nighttime image Ix to the encoder Ex and obtain the domain-invariant represen-
tation zx. Then the two decoders Gr

x (reconstruction decoder) and Gt
x (transla-

tion decoder) have the same input zx. Gr
x aims to synthesize the original night-

time image Irx from the invariant representation and we perform a pixel-level
l1-norm based reconstruction loss Lrec between Irx and Ix. Gt

x is responsible
to generate plausible image Ĩy that looks like night images but under daytime
illumination. We leverage adversarial training through one domain-specific dis-
criminator Dy and compute the adversarial loss Ladv (same as the one in Cycle-
GAN [28]), which aims to distinguish the random real night image Iy and the
synthesized night image Ĩy. Then Ey extracts the domain-invariant feature z̃x
from Ĩy. Here, we perform a perceptual loss Lper (to be detailed in Sect. 3.2)
between z̃x and zx to force Ix and Ĩy to have similar content representation.
Finally we obtain the reconstructed night image Îx using the translation decoder
Gt

x. The cycle-consistency loss Lcyc is computed between Îx and Ix. Note, here
we omit the reconstruction decoder Gr

y, which is used to reconstruct the day
image based on the domain-invariant feature zy. Moreover, we adopt one addi-
tional adversarial domain classifier Dd, which has two branch outputs: one for
adversarial training and another for domain classification to obtain the cross-
entropy classification loss Lcls based on the content representations. The total
loss of ForkGAN is a weighted sum of all the losses mentioned above:

L(E,Gr, Gt) = Ladv + Lcls + Lper + γLcyc + εLrec, (1)

and we set γ = ε = 10 in our experiments. With the total loss, the three com-
ponents E, Gr, and Gt are optimized together so that the learned model is
unbiased and can disentangle the domain-invariant content and domain-specific
style. During inference time, our ForkGAN provides a two-stage translation pro-
cedure as shown in Fig. 2. Take night-to-day translation as an example, the input
night image is translated to a daytime image using Ex and Gt

y, and the output
is regarded as input of the refinement stage. Ey and Gr

y synthesize more precise
translation output, which gives the final output of our ForkGAN.

3.2 ForkGAN - Disentanglement Stage

Previous Cycle-GAN based methods target to preserve the appearance of input
images through an indirect pixel-level cycle-consistency loss and generate plau-
sible translated image by leveraging adversarial loss to the translated images.
However, some weak but informative domain-invariant characteristics are usu-
ally ignored during translation stage. Sometimes, the generator F : X −→ Y

can fool the discriminator and minimize the adversarial loss by changing the
global conditions that dominate more pixels, while ignoring local features such
as cars and pedestrians. This leads to a trivial translation solution that throws
away some informative signals. In the opposite direction, G : Y −→ X has a
strong ability to remap the translated image to the original domain under a
strong pixel-level cycle-consistency loss. In the two stages, there is no guarantee
that the domain-invariant and domain-specific feature can be disentangled. Our
fork-shape generator can achieve better disentanglement because:
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(1) E aims to extract the domain-invariant content and discard the domain-
specific style. Gr and Gt target to reload the style representation of the
source and target domain separately. The three components have same
parameter quantity, which ensures comparable network capacity so that
there is no explicit bias or dependency among the three components. If E is
too weak and fails to extract the informative content, the reconstruction loss
Lrec is large. If the domain-invariant representation zx is still mixed with
the domain-specific information, the translation decoder will fail to generate
reasonable translated output.

(2) We impose a perceptual loss as

Lper = τ(
N∑

n=1

λn||Φn(z̃x)) − Φn(zx)||1), (2)

which makes z̃x perceptually similar to zx (designed according to the per-
ceptual loss in [4]). Here, Φn denotes the feature extractor at the nth level
of the pre-trained VGG-19 network on ImageNet. The hyper-parameter λn

controls the influence of perceptual loss at different levels and here we set
λn all 1. Different from the way perceptual loss is typically used (feeding
image data to the VGG network), we rearrange the feature maps of zx and
z̃x through bilinear interpolation to fit into only the last three layers of
VGG. Such a modification enables an effective perceptual consistency check
between zx and z̃x at the feature level. If Ex and Ey fail to eliminate the
domain-specific information completely, the perceptual loss between zx and
z̃x will be large. The perceptual loss can also help preserve the content
information during translation stage.

(3) The adversarial domain classifier targets to distinguish the real/fake distri-
bution and classify the content representation. We aim to match the dis-
tribution of z and z̃ through adversarial training. Specifically, we assign an
opposite label to z and z̃ to implement an classification training to obtain
Lcls. We perform the classification loss using both z and z̃. If the classi-
fier could not distinguish which domain the content representation is from,
it indicates that the extracted representation does not carry any domain-
specific style information.

Based on above reasons, the design of our model and training objectives can
provide strong constraints to achieve disentanglement.

3.3 ForkGAN - Refinement Stage

In the fork-shape module, the generator has two branches: the translation branch
and the reconstruction branch. We apply an additional refinement stage to the
translated output using autoencoder Ey and reconstructions decoder Gr

y. This
pair is trained during disentanglement stage and therefore the refinement does
not introduce new parameters. During this stage, the reconstruction branch Gr

y
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can refine the fake outputs (Ĩx and Ĩy) by knowledge learned from reconstruct-
ing the real images, thus generating more realistic images and strengthening
weak signals. We adopt additional pixel-wise Gaussian noise disturbance to
the domain-invariant content representation z to improve the robustness of the
reconstruction branch and make it less input-sensitive. We also hope that the
reconstructed decoder can generate complementary information from additional
noise even if some domain-invariant content feature is missed. In this way, the
two-stage translation shown in Fig. 2 can obtain better translation performance
even in adverse environment.

3.4 Dilated Convolution and Multi-scale Discriminator Architecture

Considering the occlusion and reflection of images captured in adverse weathers,
it is difficult to recognize the objects essential to the task of navigation (e.g.
traffic signs, lanes and other vehicles). A possible solution is to adopt a large
receptive field to alleviate the occlusion issue. To do that, we use dilated residual
networks [26] for the generator with fewer parameters. The dilated convolution
can help the three components of our generator understand the relationship of
different parts. To achieve high-resolution image-to-image translation, we adopt
the multi-scale discriminator architecture [12,16,25] to improve the ability to
distinguish the fake images and real images. The proposed architecture could
fuse the information from multiple scales and generate more realistic outputs.

4 Experiments

4.1 Datasets and Evaluation Metrics

Datasets: Alderley is originally proposed for the SeqSLAM algorithm [19],
which collected the images for the same route twice: once on a sunny day and
another time on a stormy rainy night. Every frame in the dataset is GPS-tagged,
and thus each nighttime frame has a corresponding daytime frame. The images
collected at nighttime are blurry with a lot of reflections, which render the front
vehicles, lanes and traffic signs difficult to be recognized. For this dataset, we use
the first consecutive four fifths for training and others for evaluation. Since this
dataset has day-night correspondences, we use it for quantitative evaluation on
image localization task. Unfortunately, it doesn’t provide ground-truth annota-
tions for semantic segmentation and object detection, so we use another dataset
instead for those two tasks. BDD100K [27] is a large scale high-resolution
autonomous driving dataset, which collected 100,000 video clips in multiple
cities and under various conditions. For each video, it selects a key frame to
provide detailed annotations (such as the bounding box of various objects, the
dense pixel annotation, the daytime annotation and so on). We reorganized this
dataset according to the annotation, and obtained 27,971 night images for train-
ing and 3,929 night images for evaluation. We obtained 36728/5258 train/val
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split for day images. We inherit the data split from the BDD100K dataset. We
perform semantic segmentation and object detection on this dataset.

Image Quality Metric: FID [9] evaluates the distance between the real sample
distribution and the generated sample distribution. Lower FID score indicates
higher image generation quality.

Vision Task Metrics: For Localization: SIFT [18] is good measure to find the
feature matching points between two images. We measure the localization per-
formance by the SIFT interesting points matching. Semantic Segmentation:
Intersection-over-Union(IoU) is a commonly used metric for semantic segmenta-
tion. For each object class, the IoU is the overlap between predicted segmenta-
tion map and the ground truth, divided by their union. In the case of multiple
classes, we take the average IoU of all classes (i.e., mIoU) to indicate the overall
performance of the model. Object Detection: We use mean average precision
(mAP) to evaluate the performance and also report the average precision scores
for individual classes to have a more thorough evaluation.

4.2 Experiment Settings and Implementation Details

We compare our proposed method with other state-of-the-art image transla-
tion methods such as UNIT [17], CycleGAN [28], MUNIT [12], DRIT [16],
UGATIT [15] and StarGAN [1]. Additionally, we also compare with low-light
enhancement methods such as EnlightenGAN [14] and ToDayGAN [1]. We fol-
low the instructions of those methods and make a fair setting for comparison.

The encoder E contains 3 Conv-Ins-ReLU modules and 4 dilated residual
blocks, while both reconstructed decoder Gr and the translated decoder Gt have
4 dilated residual blocks and 3 Deconv-Ins-ReLU modules followed by a Tanh
activity function. All the domain-specific discriminators adopt the multi-scale
discriminator architecture and we set the number of scales as 2. For the adver-
sarial domain classifier, the backbone has 4 Conv-Ins-ReLU blocks, the adversar-
ial branch has one additional convolution layer to get adversarial output, while
the classification branch has one more fully-connected layer to obtain a domain
classification output. We adopt Adam optimizer and set learning rate to 0.0002.

4.3 Localization by SIFT Point Matching

We aim to perform translation at an extremely difficult setting on Alderley
dataset. Figure 3 shows the qualitative translation result comparisons. UNIT and
MUNIT fail to perform reasonable translation and generate plausible objects.
DRIT has lost the detailed information and missed some objects after domain
translation. The result of EnlightenGAN fails to provide meaningful visual infor-
mation and it only changed the illumination slightly. ToDayGAN and UGATIT
obtain better translation results and have captured the visual objects in the
darkness. But they cannot preserve the visual objects (e.g., traffic signs and
cars) well. In contrast, our method has stronger ability to capture these weak
signals and preserve them better. For this dataset, we perform experiments using
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512 * 256 resolution. We compute the number of SIFT matching points between
the translated daytime images and the corresponding natural daytime images.
Table 1 reports the quantitative comparison. Our ForkGAN obtains the best
SIFT result through precise night-to-day image translation. It has also achieved
the best image generation quality with lowest FID score. By improving the abil-
ity to maintain and enhance the SIFT matching, it can benefit place recognition
and visual localization.

Ablation Studies. Several experiments are designed for ablation studies.
Firstly, we remove the Fork-shape architecture (denoted as w/o Fork-shape) of the
generator, and follow the setting of Cycle-GAN methods to optimize the model.
The result generated by the vanilla generator has artifacts on cars as there is
no guarantee on the disentanglement between the domain-invariant and domain-
specific information. Then we investigate the effectiveness of the Fork-shape gen-
erator itself only (with a name of “Fork-shape”). Note, we do not compute Lper

and the adversarial domain classification loss Lcls in this setting. Due to the

Fig. 3. The visual/qualitative translation result comparison of different methods.
Please zoom in to check more details on the content and quality. The parts covered
by red and green boxes show the enlarged cropped region in the corresponding image.
(Color figure online)

Table 1. Evaluation metric results of different methods for night → day translation
task on Alderley dataset [19]. The original denotes the scores of the original real night
images. FID reports the visual image quality (lower is better) while SIFT reports the
localization performance (higher is better).

Method EnlightenGAN [14] UNIT [17] MUNIT [12] CycleGAN [28] DRIT [16]

FID/SIFT 249/2.00 155/2.68 138/2.75 167/3.36 145/3.71

Method StarGAN [5] UGATIT [15] ToDayGAN [1] ForkGAN Original

FID/SIFT 117/3.28 170/2.51 104/4.14 61.2/12.1 210/3.12
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Table 2. Quantitative comparisons for ablation studies on Alderley dataset [19].

Method w/o Fork-shape Fork-shape Fork-shape+DRB

FID/SIFT 146/4.26 131/7.12 113/8.12

Fork-shape+DRB+MSD w/o refinement w/ shared decoders ForkGAN

95.3/9.14 70.7/11.5 73.8/9.29 61.2/12.1

Fig. 4. Visual results for ablation studies on Alderley. Red boxes highlight some details.
(Color figure online)

reconstruction loss, the synthesized images have fewer artifacts having all but the
Fork-shape. Based on this, we aim to explore the improvement from the dilated
residual blocks (DRB for abbreviation) by evaluating “Fork-shape+DRB”. A
larger receptive field can help the generator to better capture the objects in the
dark. Then we adopt a multi-scale discriminator architecture (MSD for abbrevia-
tion), here we set n = 2. As reported in Table 2, the MSD architecture can also lead
to the improvement on FID and SIFT matching (as shown by the results of “Fork-
shape+DRB+MSD”). In the next experiment, we use everything we have covered
for training ForkGAN, and just exclude the refinement stage when we use it for
testing, which is denoted by “w/o refinement”. As shown in Fig. 4 and Table 2,
adding Lper and Lcls to “Fork-shape+DRB+MSD” can achieve better disentan-
glement, which leads to significantly better translation outputs. Finally, we apply
the “ForkGAN” with the refinement stage at the testing stage and observe that
the refinement can greatly improve the detailed part generation. Last but not the
least, we also evaluate a twisted version of ForkGAN by letting the translation
decoder and reconstruction decoder of the same domain (e.g., Gt

y and Gr
y) share

the same parameters (basically using the same decoder instead of two different
ones), and have it denoted by “w/ shared decoders”. As showed, it results in a sig-
nificant performance drop when compared with “ForkGAN” which doesn’t have
shared decoders. The two decoders for the same domain look similar, but they
are constrained by different losses and thus have different duties, which comple-
ment each other. Putting the loads on one single decoder makes it much harder
to achieve the goal and leads to inferior model. All the quantitative comparisons
of above different settings are listed in Table 2 and qualitative ones are given in
Fig. 4.
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4.4 Semantic Segmentation

Moreover, we perform high-resolution (1024×512) night-to-day image translation
to boost the semantic segmentation performance. Figure 5 presents the trans-
lated results and corresponding segmentation outputs of various methods. For
semantic segmentation, we use a pre-trained Deeplab-v3 model1 on Cityscapes
dataset [6]. The BDD100K dataset provides segmentation ground truth of 137
night images. So we compute the IOU metric between the segmentation outputs
of the 137 translated daytime images and corresponding segmentation ground
truth. The quantitative comparison is listed in Table 3. Since there is no night
image on Cityscapes dataset, the segmentation performance of night image has a
drastic performance drop shown in Table 3. The mIoU is only 7.03% if we directly
perform the semantic segmentation on the real night images. Night-to-day trans-
lation model provides a powerful tool to improve segmentation performance,
where stronger translation model should lead to larger performance boost. As
shown, our ForkGAN achieves the highest mIoU among all the methods, almost
doubling the original night image segmentation result. We also observe that the
synthesized daytime images produced by some comparative translation methods
obtain worse segmentation performance than the original night images. MUNIT
and DRIT methods both fail to synthesize plausible outputs from challenging
night images and thus obtain poor mIoU scores. ToDayGAN, while achieving rea-
sonable night-to-day translation, obtains higher mIoU score than original night
images. Our ForkGAN preserves detailed information during night-to-day image
translation, especially the small traffic signs and pedestrians. So our method can
boost the segmentation performance by preserving and enhancing the crucial

Fig. 5. The visual translation (the first row) and segmentation performance (the second
row) comparison of different methods, with models pre-trained on Cityscapes [6].

1 https://github.com/srihari-humbarwadi/DeepLabV3 Plus-Tensorflow2.0.

https://github.com/srihari-humbarwadi/DeepLabV3_Plus-Tensorflow2.0
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detailed information. To quantitatively compare the translation quality, we also
compute the FID score to measure the distance between the generated sample
distribution and the real image distribution in Table 3.

Table 3. Quantitative comparison of different methods for night → day translation task
on BDD100K dataset [27]. The original denotes the outputs of the original real night
images. FID reports the visual image quality (lower is better) while mIoU (percentage)
reports the segmentation performance (higher is better).

Method EnlightenGAN [14] UNIT [17] MUNIT [12] CycleGAN [28] DRIT [16]

FID/mIoU 90.3/6.03 62.1/2.47 61.1/2.44 51.7/1.88 53.1/2.45

Method StarGAN [5] UGATIT [15] ToDayGAN [1] ForkGAN Original

FID/mIoU 68.3/6.63 72.2/3.83 43.8/8.19 37.6/14.4 101/7.03

4.5 Object Detection with Data Augmentation

In autonomous driving, it is laborious and sometimes difficult to collect abun-
dant data with annotations in a wide variety of weather and illumination condi-
tions for object detection. Most of available datasets contain images mostly from
daytime driving. Models trained on those datasets are subject to performance
degradation once they are tested on a different domain such as nighttime. One
possible solution is to augment nighttime data with annotated daytime images
through domain translation such that we can make the most use of available
annotations. Our ForkGAN can also perform day-to-night translation to aid off-
the-shelf detection model to adapt to different domains. We compare our Fork-
GAN with the most related ToDayGAN on BDD100K dataset in two settings.
In both settings, we have unlabelled images from both day and night domains
for training image translation network, as well as bounding box annotations for
daytime images for training detection network, either with real or translated
images:

(1) Day Labels Only - No nighttime labeled image is available at training
time: We use ForkGAN to translate daytime images to night images and
preserve the corresponding bounding boxes. Then we train an object detec-
tion network on those translated nighttime images. For comparison, we also
train two separate detection networks using raw daytime images (Day Real)
and translated nighttime images by ToDayGAN. The quantitative results
are shown in Table 4. We observe that ForkGAN can improve the detection
performance on night images. Visualization of detection results are shown
in Fig. 6. The ability to detect small traffic signs in dark has been improved
through domain adaptation.

(2) Day + Night Labels - Both nighttime and daytime labeled images
are available for training: We again apply ForkGAN to translate the
daytime images to night images for data augmentation. The detection
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network is trained on both real and translated night images. We also
report the performance of the detection network trained only on real
night images ‘(Night Real) and night image augmentation with ToDayGAN
(Night+ToDayGAN ). Figure 6 and Table 4 show the visual and quantitative
comparison. By combining with translated night images, the detection per-
formance has been improved, which indicates the detection task can benefit
from domain translation.

Table 4. Comparisons for object detection on 3,929 validation nighttime images. The
first three rows show the results from setting (1), while the rest are from setting (2). We
apply faster-rcnn-r50-fpn-1x detector based on MMDetection [3] in all the experiments.

Method mAP Person Rider Car Bus Truck Bike Motor Traffic light Traffic sign

Day(Real) 22.1 26.1 14.3 37.5 29.8 30.7 18.5 16.3 14.6 33.1

+ToDayGAN 19.5 23.5 10.4 35.9 32.5 29.4 16.0 11.0 9.0 26.7

+ForkGAN 22.9 26.3 13.0 41.2 33.3 32.1 16.4 15.9 16.2 34.5

Night(Real) 23.9 26.6 13.0 42.0 33.8 35.0 16.7 16.9 18.2 36.0

Night+ToDayGAN 24.2 26.9 14.1 42.3 36.5 36.8 20.2 19.1 17.6 35.7

Night+ForkGAN 26.2 28.1 16.1 42.5 37.8 38.7 22.1 21.9 18.3 36.2

Fig. 6. Visual comparison of detection results on BDD100K, where “Day”/“Night”
denotes training with daytime/nighttime images. Areas pointed by yellow arrows are
worth attention. ForkGAN can improve the detection of small objects. We show all
the results of person, rider, car, bus, truck, bike, motor, traffic light and traffic signs.
(Color figure online)

5 Conclusion and Future Work

We propose a novel framework ForkGAN to achieve unbiased image transla-
tion, which is beneficial to multiple vision tasks: localization/retrieval, seman-
tic segmentation and object detection in adverse conditions. It disentangles
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domain-invariant and domain-specific information through a fork-shape module,
enhanced by an adversarial domain classifier and an across-translation percep-
tual loss. Extensive experiments have demonstrated its superiority and effec-
tiveness. Possible future works include designing a multi-task learning network
to share the backbone of different vision tasks and performing object detection
in the domain-invariant content space, which can be more compact and more
efficient.

Acknowledgement. This work was supported by a MSRA Collaborative Research
2019 Grant.
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Abstract. Fusing data from multiple modalities provides more informa-
tion to train machine learning systems. However, it is prohibitively expen-
sive and time-consuming to label each modality with a large amount of
data, which leads to a crucial problem of semi-supervised multi-modal
learning. Existing methods suffer from either ineffective fusion across
modalities or lack of theoretical guarantees under proper assumptions. In
this paper, we propose a novel information-theoretic approach - namely,
Total Correlation Gain Maximization (TCGM) – for semi-supervised
multi-modal learning, which is endowed with promising properties: (i) it
can utilize effectively the information across different modalities of unla-
beled data points to facilitate training classifiers of each modality (ii) it
has theoretical guarantee to identify Bayesian classifiers, i.e., the ground
truth posteriors of all modalities. Specifically, by maximizing TC-induced
loss (namely TC gain) over classifiers of all modalities, these classifiers
can cooperatively discover the equivalent class of ground-truth classi-
fiers; and identify the unique ones by leveraging limited percentage of
labeled data. We apply our method to various tasks and achieve state-
of-the-art results, including the news classification (Newsgroup dataset),
emotion recognition (IEMOCAP and MOSI datasets), and disease pre-
diction (Alzheimer’s Disease Neuroimaging Initiative dataset).
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1 Introduction

Learning with data from multiple modalities has the advantage to facilitate
information fusion from different perspectives and induce more robust models,
compared with only using a single modality. For example, as shown in Fig. 1, to
diagnose whether a patient has a certain disease or not, we can consult to its
X-ray images, look into its medical records, or get results from clinical pathology.
However, in many real applications, especially in some difficult ones (e.g. medical
diagnosis), annotating such large-scale training data is prohibitively expensive
and time-consuming. As a consequence, each modality of data may only con-
tain a small proportion of labeled data from professional annotators, leaving a
large proportion of unlabeled. This leads to an essential and challenging prob-
lem of semi-supervised multi-modality learning: how to effectively train accurate
classifiers by aggregating unlabeled data of all modalities?

To achieve this goal, many methods have been proposed in the literature,
which can be roughly categorized into two branches: (i) co-training strategy
[6]; and (ii) learning joint representation across modalities in an unsupervised
way [25,27]. These methods suffer from either too strong assumptions or loss
of information during fusing. Specifically, the co-training strategy relies largely
on the “compatible” assumption that the conditional distributions of the data
point labels in each modality are the same, which may not be satisfied in the real
settings, as self-claimed in [6]; while the latter branch of methods fails to capture
the higher-order dependency among modalities, hence may end up in learning a
trivial solution that maps all the data points to the same representation.

Fig. 1. Multiple modalities are independent conditioning on the ground truth; Ground
truth is the “information intersection” of all of the modalities.

A common belief in multi-modality learning [6,13,20,22] is that conditioning
on ground truth label Y , these modalities are conditionally independent, as
illustrated in Fig. 1. For example, to diagnose if one suffers from a certain disease,
an efficient way is to leverage as many as modalities that are related to the
disease, e.g., X-ray image, medical records and the clinical pathology. Since each
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modality captures the characteristics of the disease from different aspects, the
information extracted from these modalities, in addition to the label, are not
necessarily correlated with each other. This suggests that the ground truth label
can be regarded as the “information intersection” across all the modalities, i.e.,
the amount of agreement shared by all the modalities.

Inspired by such an assumption and the fact that the Total Correlation [28]
can measure the amount of information shared by M (M ≥ 2) variables, in
this paper, we propose Total Correlation Gain (TCG), which is a function of
classifiers of all the modalities, as a surrogate goal for maximization of mutual
information, in order to infer the ground-truth labels (i.e., information inter-
section among these modalities). Based on the proposed TCG, we devise an
information-theoretic framework called Total Correlation Gain Maximiza-
tion (TCGM) for semi-supervised multi-modal learning. By maximizing TCG
among all the modalities, the classifiers for different modalities cooperatively
discover the information intersection across all the modalities. It can be proved
that the optimal classifiers for such a Total Correlation Gain are equivalent to
the Bayesian posterior classifiers given each modality under some permutation
function. With further leverage of labeled data, we can identify the Bayesian
posterior classifiers. Furthermore, we devise an aggregator that employs all the
modalities to forecast the labels of data. A simulated experiment is conducted
to verify this theoretical result.

We apply TCGM on various tasks: (i) News classification with three pre-
processing steps as different modalities, (ii) Emotion recognition with videos,
audios, and texts as three modalities and (iii) disease prediction on medical
imaging with the Structural magnetic resonance imaging (sMRI) and Positron
emission tomography (PET) modalities. On these tasks, our method consistently
outperforms the baseline methods especially when a limited percentage of labeled
data are provided. To validate the benefit of jointly learning, we visualize that
some cases of Alzheimer’s Disease whose label are difficult to be predicted via
supervised learning with single modality; while our jointly learned single modal
classifier is able to correctly classify such hard samples.

The contributions can be summarized as follows: (i) We propose a novel
information-theoretic approach TCGM for semi-supervised multi-modality learn-
ing, which can effectively utilize information across all modalities. By maximiz-
ing the total correlation gain among all the modalities, the classifiers for differ-
ent modalities cooperatively discover the information intersection across all the
modalities - the ground truth. (ii) To the best of our knowledge, TCGM is the
first in the literature that can be theoretically proved that, under the conditional
independence assumption, it can identify the ground-truth Bayesian classifier
given each modality. Further, by aggregating these classifiers, our method can
learn the Bayesian classifier given all modalities. (iii) We achieve the state-of-
the-art results on various semi-supervised multi-modality tasks including news
classification, emotion recognition and disease prediction of medical imaging.
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2 Related Work

Semi-supervised Multi-modal Learning. It is commonly believed in the literature
that information of label is shared across all modalities. Existing work, which can
be roughly categorized into two branches, suffers from either stronger but not
reasonable assumptions or failure to capture the information (i.e., label) shared
by all modalities. The first branch applies the co-training algorithm proposed
by Blum et al. [6]. [3,11,12,17,21] use weak classifiers trained by the labeled
data from each modality to bootstrap each other by generating labels for the
unlabeled data. However, the underlying compatible condition of such a method,
which assumes the same conditional distributions for data point labels in each
modality, may not be consistent with the real settings.

The second branch of work [9,10,18,25,27,31] centers on learning joint repre-
sentations that project unimodal representations all together into a multi-modal
space in an unsupervised way and then using the labeled data from each modal-
ity to train a classifier to predict the label of the learned joint representation. A
representative of such a framework is the soft-Hirschfeld-Gebelein-Rényi (HGR)
framework [31], which proposed to maximize the correlation among non-linear
representations of each modality. However, HGR only measures the linear depen-
dence between pair modalities, since it follows the principle of maximizing the
correlation between features of different modalities. In contrast, our framework,
i.e., Total Correlation Gain Maximization can pursue information about higher-
order dependence. Due to the above reasons, both branches can not avoid learn-
ing a naive solution that classifies all data points into the same class.

To overcome these limitations, we propose an information-theoretic loss func-
tion based on Total Correlation which can not only require the assumption in the
first branch of work but also can be able to identify the ground-truth label, which
is the information intersection among these modalities. Therefore, our method
can avoid the trivial solution and can learn the optimal, i.e., the Bayesian Pos-
terior classifiers of each modality.

Total Correlation/Mutual Information Maximization. Total Correlation [28], as
an extension of Mutual Information, measures the amount of information shared
by M (M ≥ 2) variables. There are several works in the literature that have
combined Mutual Information (M = 2) with deep learning algorithms and have
shown superior performance on various tasks. Belghazi et al. [4] presents a mutual
information neural estimator, which is utilized in a handful of applications based
on the mutual information maximization (e.g., unsupervised learning of repre-
sentations [14], learning node representations within graph-structured data [30]).
Kong and Schoenebeck [19] provide another mutual information estimator in the
co-training framework for the peer prediction mechanism, which has been com-
bined with deep neural networks for crowdsourcing [8]. Xu et al. [32] proposes an
alternative definition of information, which is more effective for structure learn-
ing. However, those three estimators can only be applied to two-view settings.
To the best of our knowledge, there are no similar studies that focus on a general
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number of modalities, which is very often in real applications. In this paper, we
propose to leverage Total Correlation to fill in such a gap.

3 Preliminaries

Notations. Given a random variable X, X denotes its realization space and
x ∈ X denotes an instance. The PX denotes the probability distribution function
over X and p(x) := dPX (x) denotes the density function w.r.t. the Lebesgue
measure. Further, given a finite set X , ΔX denotes the set of all distributions
over X . For every integer M , [M ] denotes the set {1, 2, . . . ,M}. For a vector v,
vi denotes its i-th element.

Total Correlation. The Total Correlation (TC), as an extension of mutual infor-
mation, measures the “amount of information” shared by M (≥2) random vari-
ables:

TC(X1, . . . , Xm) =
M∑

i=1

H(Xi) − H(X1, . . . , XM ), (1)

where H is the Shannon entropy. As defined, the TC degenerates to mutual infor-
mation when M = 2. The

∑M
i=1 H(Xi) measures the total amount of information

when treating X1, . . . , XM independently; while the H(X1, . . . , XM ) measures
the counterpart when treating these M variables as a whole. Therefore, the dif-
ference between them implies the redundant information, i.e., the information
shared by these M variables.

Similar to mutual information, the TC is equivalent to the Kullback-Leibler
(KL)-divergence between PX 1×...×XM and product of marginal distribution
⊗M

m=1PXm :

TC(X
1
, . . . , X

M
) = DKL

(
dPX1×...×XM || d ⊗M

m=1 PXm

)
= EPX1×...×XM

log
dPX1×...×XM

d ⊗M
m=1 PXm

,

(2)

where DKL(P || Q) = EP log dP
dQ . Intuitively, larger KL divergence between joint

and marginal distribution indicates more dependence among these M variables.
To better characterize such a property, we give a formal definition of “Point-wise
Total Correlation” (PTC):

Definition 1 (Point-wise Total Correlation). Given M random variables
X1, . . . , XM , the Point-wise Total Correlation on (x1, . . . , xm) ∈ X 1 × . . .×X M ,
i.e., PTC(x1, . . . , xM ) is defined as PTC(x1, . . . , xM ) = log p(x1,...,xM )

p(x1)...p(xM )
. Further,

the R(x1, . . . , xM ) := p(x1,...,xM )
p(x1)...p(xM )

is denoted as the joint-margin ratio.

Remark 1. The Point-wise Total Correlation can be understood as the point-
wise distance between joint distribution and the marginal distribution. In more
details, as noted from [15], by applying first-order Taylor-expansion, we have
log p(x)

q(x) ≈ log 1 + p(x)−q(x)
q(x) = p(x)−q(x)

q(x) . Therefore, the expected value of PTC(·)
can well measure the amount of information shared among these variables, which
will be shown later in detailed.
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For simplicity, we denote p[M ](x) := p(x1, . . . , xM ) and q[M ](x) :=
∏M

i=1 p(xi).
According to dual representation in [26], we have the following lower bound for
KL divergence between p and q, and hence TC.

Lemma 1 (Dual version of f-divergence [26])

DKL

(
p[M ] || q[M ]

)
≥ sup

g∈G
Ex∼p[M] [g(x)] − Ex∼q[M]

[
eg(x)−1

]
(3)

where G is the set of functions that maps X 1 ×X 2 ×· · ·×X M to R. The equality
holds if and only if g(x1, x2, . . . , xM ) = 1+PTC(x1, . . . , xM ), and the supremum
is DKL

(
p[M ] || q[M ]

)
= Ep[M](PTC).

The Lemma 1 is commonly utilized for estimation of Mutual information [4]
or optimization as variational lower bound in the machine learning literature.
Besides, it also informs that the PTC is the optimal function to describe the
amount of information shared by these M variables. Indeed, such shared infor-
mation is the information intersection among these variables, i.e., conditional on
such information, these M variables are independent of each other. To quanti-
tatively describe this, we first introduce the conditional total correlation (CTC).
Similar to TC, CTC measures the amount of information shared by these M
variables conditioning on some variable Z:

Definition 2 (Conditional Total Correlation (CTC)). Given M +
1 random variables X1, . . . , XM , Z, the Conditional Total Correlation
(CTC(X1, . . . , XM |Z)) is defined as CTC(X1, . . . , XM |Z) =

∑M
i=1 H(Xi|Z) −

H(X1, . . . , XM |Z).

4 Method

Problem Statement. In the semi-supervised multi-modal learning scenario, we
have access to an unlabeled dataset Du = {x

[M ]
i }i and a labeled dataset

Dl = {(x[M ]
i , yi)}i. Each label yi ∈ C, where C denotes the set of classes. Each

datapoint x
[M ]
i := {x1

i , x
2
i , . . . , x

M
i |xm

i ∈ X m} consists of M modalities, where
X m denotes the domain of the m-th modality. Datapoints and labels in Dl are
i.i.d. samples drawn from the joint distribution UX[M],Y (x1, x2, . . . , xM , y) :=
Pr(X1 = x1,X2 = x2, . . . , XM = xM , Y = y). Data points in Du

are i.i.d. samples drawn from joint distribution UX[M](x1, x2, . . . , xM ) :=∑
c∈C UX[M],Y (x1, x2, . . . , xM , y = c). Denote the prior of the ground truth labels

by p∗ = (Pr(Y = c))c. Upon the labeled and unlabeled datasets, our goal is
to train M classifiers h[M ] := {h1, h2, . . . , hM} and an aggregator ζ such that
∀m,hm : X m → ΔC predicts the ground truth y based on a m-th modality xm

and ζ : X 1 × X 2 × · · · × X M → ΔC predicts the ground truth y based on all of
the modalities x[M ].
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Outline. We will first introduce the assumptions regarding the ground truth
label Y and prior distribution on (X1, . . . , XM , Y ) in Sect. 4.1. In Sect. 4.2, we
will present our method, i.e., maximize the total correlation gain on unlabeled
dataset Du. Finally, we will introduce our algorithm for optimization in Sect. 4.3.

4.1 Assumptions for Identification of Y

In this section, we first introduce two basic assumptions to ensure that the
ground-truth label can be identified. According to Proposition 2.1 in [1], the label
Y can be viewed as the generating factor of data X. Such a result can be extended
to multiple variables (please refer supplementary for details), which implies that
Y is the common generating factor of X1, . . . , XM . Motivated by this, it is
natural to assume that the ground truth label Y is the “information intersection”
among X1, . . . , XM , i.e., all of the modalities are independent conditioning on
the ground-truth:

Assumption 1 (Conditional Independence). Conditioning on Y , X1,X2, . . . ,
XM are independent, i.e., ∀x1, . . . , xM , Pr(X [M ] = x[M ]|Y = c) =∏

m Pr(Xm = xm|Y = c), for anyc ∈ C.

On the basis of this assumption, one can immediately get the conditional
total correlation gain CTC(X1, . . . , XM |Y ) = 0. In other words, conditioning
on Y , there is no extra information shared by these M modalities, which is
commonly assumed in the literature of semi-supervised learning [6,13,20,22].
However, the Y may not be the unique information intersection among these
M modalities. Specifically, the following lemma establishes the rules for such
information intersection to hold:

Lemma 2. Given Assumption 1, R(x1, . . . , xM ) (Joint-marginal ratio Defini-
tion 1) has R(x1, . . . , xM ) =

∑
c∈C

∏
m Pr(Y =c|Xm=xm)

(Pr(Y =c))M−1 . Further, the optimal g

in Lemma 1 satisfies g(x1, . . . , xM ) = 1+ log
∑

c∈C
∏

m Pr(Y =c|xm)

(Pr(Y =c))M−1 .

In other words, in addition to {Pr(Y = c|Xm = xm)}m,p∗
c , there are other

solutions {ax1 , . . . , axM }, r with axi ∈ ΔC (for i ∈ C) and r ∈ ΔC that can make
the g optimal, as long as its joint-marginal ratio is equal to the ground-truth
one: ∑

c∈C

∏
m axm

(ra
c )M−1

= R(x1, . . . , xM ) (4)

To make {Pr(Y = c|Xm = xm)}m,p∗
c identifiable w.r.t. a trivial permutation,

we make the following trivial assumption on Pr(X1, . . . , XM , Y ).

Assumption 2 (Well-defined Prior). The solutions {ax1 , . . . , axM }, ra and
{bx1 , . . . , bxM }, rb for Eq. (4) are equivalent under the permutation

∏
on C:

axm =
∏

bxm , ra =
∏

rb.
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4.2 Total Correlation Gain Maximization (TCGM)

Assumption 1 indicates that the label Y is the generating factor of all modalities,
and Assumption 2 further ensures its uniqueness under permutation. Our goal is
to learn the ground-truth label Y which is the information intersection among
M modalities. In this section, we propose a novel framework, namely Total
Correlation Gain Maximization (TCGM) to capture such an information
intersection, which is illustrated in Fig. 2. To the best of our knowledge, we
are the first to theoretically prove the identification of ground truth classifiers
on semi-supervised multi-modality data, by generalizing [8,19] that can only
handle two views in multi-view scenario. The high-level spirit is designing TC-
induced loss over classifiers of every modality. By maximizing such a loss, these
classifiers can converge to Bayesian posterior, which is the optimal solution of
TC as expectation of the loss. First, we introduce the basic building blocks for
our method.

Classifiers h[M ]. In order to leverage the powerful representation ability of deep
neural network (DNN), each classifier hm(xm; Θm) is modeled by a DNN with
parameters Θm. For each modality m, we denote the set of all such classifiers by
Hm and H [M ] := {H1,H2, . . . , HM}.

Modality Classifiers-Aggregator ζ. Given M classifiers for each modality h[M ]

and a distribution p = (pc)c ∈ ΔC , the aggregator ζ which predicts the
ground-truth label by aggregating classifiers of all modalities, is constructed by
ζ(x[M ];h[M ],p) = Normalize

((∏
m hm(xm

i )c
(pc)M−1

)

c

)
, where Normalize(v) := v∑

c vc

for all v ∈ ΔC .

Reward Function R. We define a reward function R :
M︷ ︸︸ ︷

ΔC × . . . × ΔC → R that
measures the “amount of agreement” among these classifiers. Note that the
desired classifiers should satisfy Eq. (4).

Inspired by Lemma 1, we can take the empirical total correlation gain of N
samples, i.e., the lower bound of Total Correlation as our maximization func-
tion. Specifically, given a reward function R, the empirical total correlation with
respect to classifiers h[M ], a prior p ∈ ΔC measures the empirical “amount of
agreement” for these M classifiers at the same sample (x1

i , . . . , x
M
i ) ∈ Du, with

additionally a punishment of them on different samples: x1
i1

∈ X 1, . . . , xM
iM

∈ X M

with i1 �= i2 �= . . . �= iM :

TCg[R]({x[M ]
i }Ni=1;h

[M ], p) :=
1

N

∑

i

R(h1(x1
i ), . . . , h

M (xM
i ))

− 1

N !/(N −M)!

∑

i1 �=i2 �=···�=iM

e
R(h1(x1

i1
),...,hM (xM

iM
))−1

(5)

for simplicity we denote TCg[R]({x
[M ]
i }N

i=1;h
[M ], p) as TCg(N). Intuitively, we

expect our classifiers to be consistent on the same sample; on the other hand, to
disagree on different samples to avoid learning a trivial solution that classifies
all data points into the same class.
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Definition 3 (Bayesian posterior classifiers/aggregator). The h
[M ]
∗ and

ζ∗ are called Bayesian posterior classifiers and Bayesian posterior aggregator if
they satisfy

∀m,hm
∗ (xm)c = Pr(Y = c|Xm = xm); ζ∗(x[M ])c = Pr(Y = c|X [M ] = x[M ]).

Note that from Eq. (5) that our maximization goal, i.e., TCg(N) relies on the
form of reward function R. The following Lemma tells us the form of optimal
reward function, with which we can finally give an explicit form of TCg(N).

Lemma 3. The R∗ that maximizes the expectation of TCg(N) can be rep-
resented as the Point-wise Total Correlation function, which is the func-
tion of Bayesian classifiers and the prior of ground truth labels (p∗

c)c:
R∗(h1(x1), . . . , hM (xM )) = 1 + PTC(x1, . . . , xM ) = 1 + log

∑
c∈C

∏
m hm

∗ (xm)c
(p∗

c)
M−1 .

Total Correlation Gain. Bring R∗ to Eq. (5), we have:

TCg({x
[M ]
i }N

i=1;h
[M ], p) :=1 +

1
N

∑

i

log
∑

c∈C

∏
m hm(xm

i )c

(pc)M−1

− 1
N !/(N − M)!

∑

i1 �=i2 �=···�=iM

∑

c∈C

∏
m hm(xm

im
)c

(pc)M−1
. (6)

As inspired by Lemma 3, we have that these Bayesian posterior classifiers are
maximizers of the expected total correlation gain. Therefore, we can identify the
equivalent class of Bayesian posteriors by minimizing −TCg(N) on unlabeled
dataset Du. By additionally minimize expected cross entropy (CE) loss on Dl,
we can identify the unique Bayesian classifiers since they are respectively the
minimizers of CE loss.

Theorem 1 (Main theorem). Define the expected total correlation gain
eTCg(h[M ], p):

eTCg(h1, . . . , hM , p) := E
x
[M]
i ∼U

X[M]

(
TCg(x[M ]

i ;h[M ], p)
)

Given the conditional independence Assumption 1 and well-defined prior Assump-
tion 2, we have that the maximum value of eTCg is Total Correlation of M
modalities, i.e., TC(X1, . . . , XM ). Besides,

Ground-truth → Maximizer(h[M ]
∗ ,p∗) is a maximizer of eTCg(h[M ], p).

In other words, ∀h[M ] ∈ H [M ], p ∈ ΔC, eTCg(h1
∗, . . . , h

M
∗ ,p∗) ≥ eTCg(h1, . . . ,

hM , p). The corresponding optimal aggregator is ζ�, i.e., ζ�(x[M ])c = Pr(Y =
c|X [M ] = x[M ]).

Maximizer → (Permuted) Ground-truth. If the prior is well defined,
then for any maximizer of eTCg, (h̃[M ], p̃), there is a permutation

∏̃
: C → C

such that:

h̃m(xm)c = P(Y =
∏̃

(c)|Xm = xm), p̃c = P(Y =
∏̃

(c)) (7)
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The proof is in Appendix A. Note from our main theorem that by maximizing
the eTCg, we can get the total correlation of M modalities, which is the ground-
truth label Y , and also the equivalent class of Bayesian posterior classifier under
permutation function. In order to identify the Bayesian posterior classifiers, we
can further minimize cross-entropy loss on labeled data Dl since the Bayesian
posterior classifiers are the only minimizers of the expected cross-entropy loss.
On the other hand, compared with only using Dl to train classifiers, our method
can leverage more information from Du, which can be shown in the experimental
result later.

4.3 Optimization

Since eTCg is intractable, we alternatively maximize the empirical total corre-
lation gain, i.e., TCg(N) to learn the optimal classifiers. To identify the unique
Bayesian posteriors, we should further utilize labeled dataset Dl in a supervised
way. Our whole optimization process is shown in Appendix, which adopts iter-
atively optimization strategy that is roughly contains two steps in each round:
(i) We train the M classifiers using the classic cross entropy loss on the labeled
dataset Dl and (ii) using our information-theoretic loss function LTC on the unla-
beled dataset Du. To learn the Bayesian posterior classifiers more accurately, the
(ii) can help to learn the equivalent class of Bayesian Posterior Classifiers and (i)
is to learn the correct and unique classifiers. As shown in Fig. 2, by optimizing
L(B)
TC (Eq. (5) with B denoting the number of samples in each batch), we reward

the M classifiers for their agreements on the same data point and punish the M
classifiers for their agreements on different data points.

Loss Function LCE for Labeled Data. We use the classic cross entropy loss
for labeled data. Formally, for a batch of data points {x

[M ]
i }B

i=1 drawn from
labeled data Dl, the cross entropy loss LCE for each classifier hm is defined as
LCE({(x[M ]

i , yi)}B
i=1;h

m) := 1
B

∑
i − log(hm(xm

i )yi
).

Loss Function L(B)
TC for Unlabeled Data. For a batch of data points {x

[M ]
i }B

i=1

drawn from unlabeled data Du, our loss function L(B)
TC := −TCg(B) that is

defined in Eq. (6) with N replaced by number of batch size B. When N is large,
we only sample a fixed number of samples from product of marginal distribution
to estimate the second term in Eq. (6), which makes training more amenable.

Fig. 2. Empirical Total Correlation Gain TCg(N)
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Prediction. After optimization, we can get the classifiers {hm}m. The prior pc

can be estimated from data, i.e., pc =
∑

i∈[N] 1(yi=c)

N . Then based on Eq. (7), we
can get the aggregator classifier ζ for prediction. Specifically, given a new sample
x̃[M ], the predicted label is ỹ := arg maxc ζ(x̃[M ])c.

Time Complexity. The overall time complexity for optimizing our TCGM is
linear scale to the number of modalities, i.e., O(M). Please refer to appendix for
detailed analysis.

5 Preliminary Experiments

Fig. 3. Clustering and classification
accuracy.

We first conduct a simulated experiment on
synthetic data to validate our theoretical
result of TCGM. Specifically, we will show
the effectiveness of Total Correlation Gain
TCg for unsupervised clustering of data. Fur-
ther, with few labeled data, our TCGM can
give accurate classification. In more detail, we
synthesize the data of three modalities from
a specific Gaussian distribution P (Xi|y) (i =
1, 2, 3). The clustering accuracy is calculated
as classification accuracy by assuming the
label is known. As shown in Fig. 3, our
method TCGM has competitive performance compared to well established clus-
tering algorithms K-means++ [2] and spectral clustering [24]. Based on the
promising unsupervised learning result, as shown by the light blue line (the top
line) in Fig. 3, our method can accurately classify the data even with only a
small portion of labeled data. In contrast, HGR [31] degrades since it can only
capture the linear dependence and fail when higher-order dependency exists.

6 Applications

In this section, we evaluate our method on various multi-modal classification
tasks: (i) News classification (Newsgroup) (ii) Emotion recognition: IEMOCAP,
MOSI and (iii) Disease prediction of Alzheimer’s Disease on 3D medical Imag-
ing: Alzheimer’s Disease Neuroimaging Initiative (ADNI). Our method
TCGM is compared with: CE separately trains classifiers for each modality
by minimizing cross entropy loss of only labeled data; HGR [31] learns repre-
sentation by maximizing correlation of different modalities; and LMF [23] per-
forms multimodal fusion using low-rank tensors. The optimal hyperparameters
are selected according to validation accuracy, among which the learning rate is
optimized from {0.1, 0.01, 0.001, 0.0001}. All experiments are repeated five times
with different random seeds. The mean test accuracies and standard deviations
of single classifiers the aggregator (ζ) are reported.
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6.1 News Classification

Dataset. Newsgroup [5]1 is a group of news classification datasets. Follow-
ing [16], each data point has three modalities, PAM, SMI and UMI, collected
from three different preprocessing steps2. We evaluate TCGM and the baseline
methods on 3 datasets from Newsgroup: News-M2, News-M5, News-M10. They
contain 500, 500, 1000 data points with 2, 5, 10 categories respectively. Following
[33], we use 60% for training, 20% for validation and 20% for testing for all of
these three datasets.

Implementation Details. We synthesize two different label rates (the percent-
age of labeled data points in each modality): {10%, 30%} for each dataset.
We follow [33] for classifiers. Adam with default parameters and learning rate
γu = 0.0001, γl = 0.01 is used as the optimizer during training. Batch size is
set to 32. We further compare with two additional baselines: VAT [29] uses
adversarial training for semi-supervised learning; PVCC [33] that considers the
consistency of data points under different modalities.

Fig. 4. Test accuracies (mean ± std. dev.) on newsgroups datasets

As shown in Fig. 4, TCGM achieves the best classification accuracy for both
single classifier and aggregators, especially when the label rate is small. This
shows the efficacy of utilizing the cross-modal information during training as com-
pared to others that are unable to utilize the cross-modal information. Moreover,
we can achieve further improvement by aggregating classifiers on all modalities,
which shows the benefit of aggregating knowledge from different modalities.

6.2 Emotion Recognition

Dataset. We evaluate our methods on two multi-modal emotion recognition
datasets: IEMOCAP dataset [7] and MOSI dataset [34]. The goal for both
datasets is to identify speaker emotions based on the collected videos, audios

1 http://qwone.com/∼jason/20Newsgroups/.
2 PAM (Partitioning Around Medöıds preprocessing), SMI (Supervised Mutual Infor-

mation preprocessing) and UMI (Unsupervised Mutual Information preprocessing).

http://qwone.com/~jason/20Newsgroups/
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and texts. The IEMOCAP consists of 151 sessions of recorded dialogues, with 2
speakers per session for a total of 302 videos across the dataset. The MOSI is
composed of 93 opinion videos from YouTube movie reviews. We follow the set-
tings in [23] for the data splits of training, validation and test set. For IEMOCAP,
we conduct experiments on three different emotions: happy, angry and neutral
emotions; for MOSI dataset we consider the binary classification of emotions:
positive and negative.

Implementation Details. We synthesize three label rates for each dataset (the
percentage of labeled data points in each modality): {0.5%, 1%, 1.5%} for IEMO-
CAP and {1%, 2%, 3%} for MOSI. For a fair comparison, we follow architecture
setting in [23]. We adopt the modality encoder architectures in [23] as the single
modality classifiers for CE and TCGM, while adopting the aggregator on the
top of modality encoders for LMF and HGR. Adam with default parameters and
learning rate γu = 0.0001, γl = 0.001 is used as the optimizer. The batch size is
set to 32.

We report the AUC (Area under ROC curve) for the aggregators on all the
modalities and single modality classifiers by different methods. We only report
the AUC of LMF and HGR on all modalities since they do not have single
modality classifiers. For single modality classifiers, we show results on the text
modality on happy emotion (d), audio modality on neutral emotion (e) the
video modality on angry emotion on IEMOCAP; and (h) the video modality
(i) the audio modality on MOSI. Please refer to supplementary material for
complete experimental result. As shown in Fig. 5, aggregators trained by TCGM
outperform all the baselines given only tiny fractions of labeled data. TCGM
improves the AUC of the single modality classifiers significantly, which shows
the efficacy of utilizing the cross-modal information during the training of our
method. As label rates continue to grow, the advantage of our method over CE
decreases since more information is provided for CE to learn the ground-truth
label.

Our method also outperforms other methods in terms of the prediction based
on all the modalities, especially when the label rate is small. This shows the
superiority of our method when dealing with a limited amount of annotations.

6.3 Disease Prediction of Alzheimer’s Disease

Dataset. Early prediction of Alzheimer’s Disease (AD) is attracting increasing
attention since it is irreversible and very challenging. Besides, due to privacy
issues and high collecting costs, an efficient classifier with limited labeled data is
desired. To validate the effectiveness of our method on this challenging task, we
only keep labels of a limited percentage of data, which is obtained from the most
popular Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset3,
with 3D images sMRI and PET. DARTEL VBM pipeline [2] is implemented
to pre-process the sMRI data, and then images of PET were reoriented into

3 www.loni.ucla.edu/ADNI.

www.loni.ucla.edu/ADNI
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Fig. 5. (a, b, c) AUC of Aggregators on happy, angry and neutral emotion
recognition on IEMOCAP data: (d, e, f) AUC on text, audio and video
modality classifiers on IEMOCAP: AUC of other composition of (modality, emo-
tion) are listed in supplementary material. (g, h, i) AUC on MOSI data: AUC of
(g) Aggregators on all modalities and single classifiers on (h) Video modality (i) Audio
modality.

a standard 91 × 109 × 91 voxel image grid in MNI152 space, which is same
with sMRIs’. To limit the size of images, only the hippocampus on both sides
are extracted as input in the experiments. We denote subjects that convert to
Alzheimer’s disease (MCIc) as AD, and subjects that remain stable (MCIs) as
NC (Normal Control). Our dataset contains 300 samples in total, with 144 AD
and 156 NC. We randomly choose 60% for training, 20% for validation and 20%
for testing stage.

Implementation Details. We synthesize two different label rates (the percentage
of labeled data points): {10%, 50%}. DenseNet is used as the classifier. Two 3D
convolutional layers with the kernel size 3 × 3 × 3 are adopted to replace the
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first 2D convolutional layers with the kernel size 7× 7. We use four dense blocks
with the size of (6, 12, 24, 16). To preserve more low-level local information, we
discard the first max-pooling layer that follows after the first convolution layer.
Adam with default parameters and learning rate γu = γl = 0.001 are used as
the optimizer during training. We set Batch Size as only 12 due to the large
memory usage of 3D images. Random crop of 64 × 64 × 64, random flip and
random transpose are applied as data augmentation.

Fig. 6. Test accuracies (mean ± std.) on ADNI dataset

Figure 6 shows the accuracy of classifiers for each modality and the aggre-
gator. Our method TCGM outperforms the baseline methods in all settings
especially when the label rate is small, which is desired since it is costly to label
data.

Fig. 7. Volume (sMRI, top line) and SUV (PET, bottom line) of MCI1c , MCI2c , AD
and NC. Darker color implies smaller volume and SUV, i.e., more probability of being
AD.

To further illustrate the advantage of our model over others in terms of
leveraging the knowledge of another modality, we visualize two MCIcs, denoted
as MCI1c and MCI2c , which are mistakenly classified as NC by CE’s classifier
for sMRI and PET modality, respectively. The volume and standardized uptake
value (SUV) (a measurement of the degree of metabolism), whose information
are respectively contained by sMRI and PET data, are linearly mapped to the
darkness of the red and blue. Darker color implies smaller volume and SUV, i.e.,
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more probability of being AD. As shown in Fig. 7, the volume (SUV) of MCI1c
(MCI2c) is similar to NC, hence it is reasonable for CE to mistakenly classify
it by only using the information of volume (SUV). In contrast, TCGM for
each modality can correctly classify both cases as AD, which shows the better
learning of the information intersection (i.e., the ground truth) during training,
facilitated by the leverage of knowledge from another modality.

7 Conclusion

In this paper, we propose an information-theoretic framework on multi-modal
data, Total Correlation Gain Maximization (TCGM), in the scenario of semi-
supervised learning. Specifically, we learn to infer the ground truth labels shared
by all modalities by maximizing the total correlation gain. Conditioning on a
common assumption that all modalities are independent given the ground truth
label, it can be theoretically proved our method can learn the Bayesian poste-
rior classifier for each modality and the Bayesian posterior aggregator for all
modalities. Extensive experiments on Newsgroup, IEMOCAP, MOSI and ADNI
datasets are conducted and achieve promising results, which demonstrates the
benefit and utility of our framework.
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Abstract. Retrieving content relevant images from a large-scale fine-
grained dataset could suffer from intolerably slow query speed and highly
redundant storage cost, due to high-dimensional real-valued embeddings
which aim to distinguish subtle visual differences of fine-grained objects.
In this paper, we study the novel fine-grained hashing topic to generate
compact binary codes for fine-grained images, leveraging the search and
storage efficiency of hash learning to alleviate the aforementioned prob-
lems. Specifically, we propose a unified end-to-end trainable network,
termed as ExchNet. Based on attention mechanisms and proposed atten-
tion constraints, ExchNet can firstly obtain both local and global features
to represent object parts and the whole fine-grained objects, respectively.
Furthermore, to ensure the discriminative ability and semantic meaning’s
consistency of these part-level features across images, we design a local
feature alignment approach by performing a feature exchanging opera-
tion. Later, an alternating learning algorithm is employed to optimize
the whole ExchNet and then generate the final binary hash codes. Val-
idated by extensive experiments, our ExchNet consistently outperforms
state-of-the-art generic hashing methods on five fine-grained datasets.
Moreover, compared with other approximate nearest neighbor methods,
ExchNet achieves the best speed-up and storage reduction, revealing its
efficiency and practicality.
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Feature alignment · Large-scale image search

Q. Cui, Q.-Y. Jiang—Equal contribution.

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-58580-8 12) contains supplementary material, which is
available to authorized users.

c© Springer Nature Switzerland AG 2020
A. Vedaldi et al. (Eds.): ECCV 2020, LNCS 12348, pp. 189–205, 2020.
https://doi.org/10.1007/978-3-030-58580-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58580-8_12&domain=pdf
https://doi.org/10.1007/978-3-030-58580-8_12
https://doi.org/10.1007/978-3-030-58580-8_12
https://doi.org/10.1007/978-3-030-58580-8_12


190 Q. Cui et al.

Artic Tern

Common Tern

Green Jay

In
tra

-c
la

ss
 

va
ria

nc
e

Inter-class 
variance

Artic Tern

Common Tern

Green Jay

Feature
Extractor

Similar
Binary
Codes

: 1 : 0

Dissimilar
Binary
CodesHashing

Network

Fig. 1. Illustration of the fine-grained hashing task. Fine-grained images could share
large intra-class variances but small inter-class variances. Fine-grained hashing aims to
generate compact binary codes with tiny Hamming distances for images of the same
sub-category, as well as distinct codes for images from different sub-categories.

1 Introduction

Fine-Grained Image Retrieval (FGIR) [19,26,31,36,41,42] is a practical but chal-
lenging computer vision task. It aims to retrieve images belonging to various
sub-categories of a certain meta-category (e.g., birds, cars and aircrafts) and
return images with the same sub-category as the query image. In real FGIR
applications, previous methods could suffer from slow query speed and redun-
dant storage costs due to both the explosive growth of massive fine-grained data
and high-dimensional real-valued features.

Learning to hash [3,6,7,10,14,16,17,21,22,34,35] has proven to be a promis-
ing solution for large-scale image retrieval because it can greatly reduce the
storage cost and increase the query speed. As a representative research area of
approximate nearest neighbor (ANN) search [1,6,13], hashing aims to embed
data points as similarity-preserving binary codes. Recently, hashing has been
successfully applied in a wide range of image retrieval tasks, e.g., face image
retrieval [18], person re-identification [5,43], etc. We hereby explore the effec-
tiveness of hashing for fine-grained image retrieval.

To the best of our knowledge, this is the first work to study the fine-grained
hashing problem, which refers to the problem of designing hashing for fine-
grained objects. As shown in Fig. 1, the task is desirable to generate compact
binary codes for fine-grained images sharing both large intra-class variances and
small inter-class variances. To deal with the challenging task, we propose a uni-
fied end-to-end trainable network ExchNet to first learn fine-grained tailored
features and then generate the final binary hash codes.

In concretely, our ExchNet consists of three main modules, including rep-
resentation learning, local feature alignment and hash code learning, as shown
in Fig. 2. In the representation learning module, beyond obtaining the holistic
image representation (i.e., global features), we also employ the attention mech-
anism to capture the part-level features (i.e., local features) for representing
fine-grained objects’ parts. Localizing parts and embedding part-level cues are
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Fig. 2. Framework of our proposed ExchNet, which consists of three modules. (1)
The representation learning module, as well as the attention mechanism with spatial
and channel diversity learning constraints, is designed to obtain both local and global
features of fine-grained objects. (2) The local feature alignment module is used to align
obtained local features w.r.t. object parts across different fine-grained images. (3) The
hash codes learning module is performed to generate the compact binary codes.

crucial for fine-grained tasks, since these discriminative but subtle parts (e.g.,
bird heads or tails) play a major role to distinguish different sub-categories.
Moreover, we also develop two kinds of attention constraints, i.e., spatial and
channel constraints, to collaboratively work together for further improving the
discriminative ability of these local features. In the following, to ensure that these
part-level features can correspond to their own corresponding parts across differ-
ent fine-grained images, we design an anchor based feature alignment approach
to align these local features. Specifically, in the local feature alignment module,
we treat the anchored local features as the “prototype” w.r.t. its sub-category
by averaging all the local features of that part across images. Once local features
are well aligned for their own parts, even if we exchange one specific part’s local
feature of an input image with the same part’s local feature of the prototype,
the image meanings derived from the image representations and also the final
hash codes should be both extremely similar. Inspired by this motivation, we
perform a feature exchanging operation upon the anchored local features and
other learned local features, which is illustrated in Fig. 3. After that, for effec-
tively training the network with our feature alignment fashion, we utilize an
alternating algorithm to solve the hashing learning problem and update anchor
features simultaneously.

To quantitatively prove both effectiveness and efficiency of our ExchNet, we
conduct comprehensive experiments on five fine-grained benchmark datasets,
including the large-scale ones, i.e., NABirds [11], VegFru [12] and Food101 [23].
Particularly, compared with competing approximate nearest neighbor methods,
our ExchNet achieves up to hundreds times speedup for large-scale fine-grained
image retrieval without significant accuracy drops. Meanwhile, compared with
state-of-the-art generic hashing methods, ExchNet could consistently outperform
these methods by a large margin on all the fine-grained datasets. Additionally,
ablation studies and visualization results justify the effectiveness of our tailored
model designs like local feature alignment and proposed attention approach.
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The contributions of this paper are summarized as follows:

– We study the novel fine-grained hashing topic to leverage the search and
storage efficiency of hash codes for solving the challenging large-scale fine-
grained image retrieval problem.

– We propose a unified end-to-end trainable network, i.e., ExchNet, to first learn
fine-grained tailored features and then generate the final binary hash codes.
Particularly, the proposed attention constraints, local feature alignment and
anchor-based learning fashion contribute well to obtain discriminative fine-
grained representations.

– We conduct extensive experiments on five fine-grained datasets to validate
both effectiveness and efficiency of our proposed ExchNet. Especially for the
results on large-scale datasets, ExchNet exhibits its outperforming retrieval
performance on either speedup, memory usages and retrieval accuracy.

2 Related Work

Fine-Grained Image Retrieval. Fine-Grained Image Retrieval (FGIR) is an
active research topic emerged in recent years, where the database and query
images could share small inter-class variance but large intra-class variance. In
previous works [36], handcrafted features were initially utilized to tackle the
FGIR problem. Powered by deep learning techniques, more and more deep learn-
ing based FGIR methods [19,26,31–33,36,41,42] were proposed. These deep
methods can be roughly divided into two parts, i.e., supervised and unsupervised
methods. In supervised methods, FGIR is defined as a metric learning problem.
Zheng et al. [41] designed a novel ranking loss and a weakly-supervised attrac-
tive feature extraction strategy to facilitate the retrieval performance. Zheng
et al. [42] improved their former work [41] with a normalize-scale layer and de-
correlated ranking loss. As to unsupervised methods, Selective Convolutional
Descriptor Aggregation (SCDA) [31] was proposed to localize the main object
in fine-grained images firstly, and then discard the noisy background and keep
useful deep descriptors for fine-grained image retrieval.

Deep Hashing. Hashing methods can be divided into two categories, i.e.,
data-independent methods [6] and data-dependent methods [10,17], based on
whether training points are used to learn hash functions. Generally speaking,
data-dependent methods, also named as Learning to Hash (L2H) methods, can
achieve better retrieval performance with the help of the learning on training
data. With the rise of deep learning, some L2H methods integrate deep feature
learning into hash frameworks and achieve promising performance. As previous
work, many deep hashing methods [2,3,7,14,16,17,21,22,30,35,38,39] for large-
scale image retrieval have been proposed. Compared with deep unsupervised
hashing methods [7,14,21], deep supervised hashing methods [14,16,17,35] can
achieve superior retrieval accuracy as they can fully explore the semantic infor-
mation. Specifically, the previous work [35] was essentially a two-stage method
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Fig. 3. Key idea of our local feature alignment approach: given an image pair of a
fine-grained category, exchanging their local features of the same object parts should
not change their corresponding hash codes, i.e., these hash codes should be the same as
those generated without local feature exchanging and their Hamming distance should
be still close also.

which tried to learn binary codes in the first stage and employed feature learning
guided by the learned binary codes in the second stage. Then, there appeared
numerous one-stage deep supervised hashing methods, including Deep Pairwise
Supervised Hashing (DPSH) [17], Deep Supervised Hashing (DSH) [22], and
Deep Cauchy Hashing (DCH) [3], which aimed to integrate feature learning and
hash code learning into an end-to-end framework.

3 Methodology

The framework of our ExchNet is presented in Fig. 2, which contains three
key modules, i.e., the representation learning module, local feature alignment
module, and hash code learning module.

3.1 Representation Learning

The learning of discriminative and meaningful local features is mutually cor-
related with fine-grained tasks [9,15,20,37,40], since these local features can
greatly benefit the distinguishing of sub-categories with subtle visual differences
deriving from the discriminative fine-grained parts (e.g., bird heads or tails). In
consequence, as shown in Fig. 2, beyond the global feature extractor, we also
introduce a local feature extractor in the representation learning module. Specif-
ically, by considering model efficiency, we hereby propose to learn local features
with the attention mechanism, rather than other fine-grained techniques with
tremendous computation cost, e.g., second-order representations [15,20] or com-
plicated network architectures [9,37,40].

Given an input image xi, a backbone CNN is utilized to extract a holistic
deep feature Ei ∈ R

H×W×C , which serves as the appetizer for both the local
feature extractor and the global feature extractor.
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It is worth mentioning that the attention is engaged in the middle of the
feature extractor. Since, in the shallow layers of deep neural networks, low-level
context information (e.g., colors and edges, etc.) are well preserved, which is
crucial for distinguish subtle visual differences of fine-grained objects. Then, by
feeding Ei into the attention generation module, M pieces of attention maps
Ai ∈ R

M×H×W are generated and we use Aj
i ∈ R

H×W to denote the attentive
region of the j-th (j ∈ {1, . . . , M}) part cues for xi. After that, the obtained
part-level attention map Aj

i is element-wisely multiplied on Ei to select the
attentive local feature corresponding to the j-th part, which is formulated as:

Êj
i = Ei ⊗ Aj

i , (1)

where Êj
i ∈ R

H×W×C represents the j-th attentive local feature of xi, and
“⊗” denotes the Hadamard product on each channel. For simplification, we use
Êi = {Ê1

i , . . . , ÊM
i } to denote a set of local features and, subsequently, Êi is fed

into the later Local Features Refinement (LFR) network composed of a stack
of convolution layers to embed these attentive local features into higher-level
semantic meanings:

Fi = fLFR(Êi), (2)

where the output of the network is denoted as Fi = {F 1
i , . . . ,FM

i }, which
represents the final local feature maps w.r.t. high-level semantics. We denote
f j

i ∈ R
C′

as the local feature vector after applying global average pooling (GAP)
on F j

i ∈ R
H′×W ′×C′

as:

f j
i = fGAP(F

j
i ). (3)

On the other side, as to the global feature extractor, for xi, we directly
adopt a Global Features Refinement (GFR) network composed of conventional
convolutional operations to embed Ei, which is presented by:

F global
i = fGFR(Ei). (4)

We use F global
i ∈ R

H′×W ′×C′
and fglobal

i ∈ R
C′

to denote the learned global
feature and the corresponding holistic feature vector after GAP, respectively.

Furthermore, to facilitate the learning of localizing local feature cues (i.e.,
capturing fine-grained parts), we impose the spatial diversity and channel diver-
sity constraints over the local features in Fi.

Specifically, it is a natural choice to increase the diversity of local features by
differentiating the distributions of attention maps [40]. However, it might cause a
problem that the holistic feature can not be activated in some spatial positions,
while the attention map has large activation values on them due to over-applied
constraints upon the learned attention maps. Instead, in our method, we design
and apply constraints on the local features. In concretely, for the local feature
F j

i , we obtain its “aggregation map” Âj
i ∈ R

H′×W ′
by adding all C ′ feature

maps through the channel dimension and apply the softmax function on it for
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converting it into a valid distribution, then flat it into a vector âj
i . Based on the

Hellinger distance, we propose a spatial diversity induced loss as:

Lsp(xi) = 1 − 1√
2
(
M
2

)
M∑

l,k=1

∥
∥
∥
∥

√
âl

i −
√
âk

i

∥
∥
∥
∥
2

, (5)

where
(
M
2

)
is used to denote the combinatorial number of ways to pick 2

unordered outcomes from M possibilities. The spatial diversity constraint drives
the aggregation maps to be activated in spatial positions as diverse as possible.
As to the channel diversity constraint, we first convert the local feature vector
f j

i into a valid distribution, which can be formulated by

pj
i = softmax(f j

i ), ∀j ∈ {1, . . . , M}. (6)

Subsequently, we propose a constraint loss over {pj
i}M

j=1 as:

Lcp(xi) =

⎡

⎣t − 1√
2
(
M
2

)
M∑

l,k=1

∥
∥
∥
∥

√
pl

i −
√

pk
i

∥
∥
∥
∥
2

⎤

⎦

+

, (7)

where t ∈ [0, 1] is a hyper-parameter to adjust the diversity and [·]+ denotes
max(·, 0). Equipping with the channel diversity constraint could benefit the net-
work to depress redundancies in features through channel dimensions. Overall,
our spatial diversity and channel diversity constraints can work in a collaborative
way to obtain discriminative local features.

3.2 Learning to Align by Local Feature Exchanging

Upon the representation learning module, the alignment on local features is
necessary for confirming that they represent and more importantly correspond
to common fine-grained parts across images, which are essential to fine-grained
tasks. Hence, we propose an anchor-based local features alignment approach
assisted with our feature exchanging operation.

Intuitively, local features from the same object part (e.g., bird heads of a
bird species) should be embedded with almost the same semantic meaning. As
illustrated by Fig. 3, our key idea is that, if local features were well aligned,
exchanging the features of identical parts for two input images belonging to the
same sub-category should not change the generated hash codes. Inspired by that,
we propose a local feature alignment strategy by leveraging the feature exchang-
ing operation, which happens between learned local features and anchored local
features. As a foundation for feature exchanging, a set of dynamic anchored local
features Cyi

= {c1yi
, . . . , cM

yi
} for class yi should be maintained, in which the j-th

anchored local feature cj
yi

is obtained by averaging all j-th part’s local features
of training samples from class yi. At the end of each training epoch, anchored
local features will be recalculated and updated. Subsequently, as shown in Fig. 4,
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Fig. 4. Our feature exchanging and hash codes learning in the training phase. Accord-
ing to the class indices (i.e., yi and yj), we first select categorical anchor features Cyi

and Cyj for samples xi and xj , respectively. Then, for each input image, the feature
exchanging operation is conducted between its learned and anchored local features.
After that, hash codes are generated with exchanged features and the learning is driven
by preserving pairwise similarities of hash codes ui and vj .

for a sample xi whose category is yi, we exchange a half of the learned local fea-
tures in Gi = {f1

i , . . . ,fM
i } with its corresponding anchored local features in

Cyi
= {c1yi

, . . . , cM
yi

}. The exchanging process can be formulated as:

∀j ∈ {1, . . . ,M}, f̂ j
i �

{
f j

i , if ξj ≥ 0.5,

cj
yi

, otherwise,
(8)

where ξj ∼ B(0.5) is a random variable following the Bernoulli distribu-
tion for the j-th part. The local features after exchanging are denoted as
Ĝi = {f̂1

i , . . . , f̂M
i } and fed into the hashing learning module for generating

binary codes and computing similarity preservation losses.

3.3 Hash Code Learning

After obtaining both global features and local features, we concatenate them
together and feed them into the hashing learning module. Specifically, the hash-
ing network contains a fully connected layer and a sign(·) activation function
layer. In our method, we choose an asymmetric hashing for ExchNet for its flex-
ibility [25]. Concretely, we utilize two hash functions, defined as g(·) and h(·),
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to learn two different binary codes for the same training sample. The learning
procedure is as follows:

ui = g([Ĝi;f
global
i ]cat) = sign(W (g)[Ĝi;f

global
i ]cat), (9)

vi = h([Ĝi;f
global
i ]cat) = sign(W (h)[Ĝi;f

global
i ]cat), (10)

where [; ]cat denotes the concatenation operator, and ui,vi ∈ {−1,+1}q denote
the two different binary codes of the i-th sample. q represents the code length.
W (g) and W (h) present the parameters of hash functions g(·) and h(·)1, respec-
tively. We denote U = {ui}n

i=1 and V = {vi}n
i=1 as learned binary codes.

Inspired by [14], we only keep binary codes vi and set hash function h(·) implic-
itly. Hence, we can perform feature learning and binary codes learning simulta-
neously.

To preserve the pairwise similarity, we adopt the squared loss and define the
following objective function:

Lsq(ui,vj ,C) =
(
u�

i vj − qSij

)2
, (11)

where ui = g([Ĝi;f
global
i ]cat), Sij is the pairwise similarity label and C = {Ci}M

i=1.
We use Θ to denote the parameters of deep neural network and hash layer. The
aforementioned process is generally illustrated by Fig. 4.

Due to the zero-gradient problem caused by the sign(·) function, Lsq(·, ·, ·)
becomes intractable to optimize. In this paper, we relax g(·) = sign(·) into
ĝ(·) = tanh(·) to alleviate this problem. Then, we can derive the following loss
function:

L̂sq(ûi,vj ,C) =
(
û�

i vj − qSij

)2
, (12)

where ûi = ĝ([Ĝi;f
global
i ]cat) and U is relaxed as Û = {ûi}n

i=1.
Then, given a set of image samples X = {x1, . . . ,xn} and their pairwise

labels S = {Sij}n
i,j=1, we can get the following objective function by combining

Eqs. (5), (7) and (12):

min
V ,Θ,C

L(X ) =
n∑

i,j=1

L̂sq(ûi,vj ;Sij) + λ
n∑

i=1

Lsp(xi) + γ
n∑

i=1

Lcp(xi) (13)

s.t.∀i ∈ {1, . . . , n}, ûi = ĝ([Ĝi;f
global
i ]cat),vj ∈ {−1,+1}q,

where Sij represents the similarity between the i-th and j-th samples, q denotes
the code length, λ and γ are hyper-parameters.

3.4 Learning Algorithm

To solve the optimization problem in Eq. (13), we design an alternating algorithm
to learn V , Θ, and C. Specifically, we learn one parameter with the others fixed.
1 We omit the bias term for simplicity.
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Learn Θ with V and C Fixed. When V , C fixed, we use back-propagation (BP)
to update the parameters Θ. In particular, for input sample xi, we first calculate
the following gradient:

∇ΘL(X) =
n∑

i,j=1

∇ΘLsq(ûi,vj) + λ

n∑

i=1

∇ΘLsp(xi) + γ

n∑

i=1

∇ΘLcp(xi). (14)

Then, we use the back-propagation algorithm to update Θ.

Learn V with Θ and C Fixed. When Θ, C are fixed, we rewrite L(V ) as
follows:

L(V ) =
n∑

i,j=1

(
û�

i vj − qSij

)2 = ‖ŨV � − qS‖2F (15)

= ‖ŨV �‖2F − 2qtr(S�ŨV �) + const. (16)

Because V is defined over {−1,+1}n×q, we learn V column by column as
that in ADSH [14]. Specifically, we can get the closed-form solution for the k-th
column V∗k as follows:

V∗k = sign(V/kŨ
�
/kŨ∗k − qQ∗k), (17)

where Q = S�Ũ and V/k denotes the matrix excluding the k-th column.

Learn C with V and Θ Fixed. When Θ, V fixed, we use the following equation
to update each Ci ∈ C:

∀k, ck
i =

1
ni

ni∑

i=1

fk
i , (18)

where ni denotes the number of samples in class yi.

3.5 Out-of-Sample Extension

When we finish the training phase, we can generate the binary code for the
sample xi by ui = sign(W (g)[Gi;f

global
i ]cat).

4 Experiments

4.1 Datasets

For comparisons, we select two widely used fine-grained datasets, i.e., CUB [29]
and Aircraft [24], as well as three popular large-scale fine-grained datasets, i.e.,
NABirds [11], VegFru [12], and Food101 [23], to conduct experiments.

Specifically, CUB is a bird classification benchmark dataset containing
11, 788 images from 200 bird species. It is officially split into 5, 994 for training
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and 5, 794 for test. Aircraft contains 10, 000 images from 100 kinds of aircraft
model variants with 6667 for training and 3333 for test. Moreover, for large-
scale datasets, NABirds has 555 common species of birds in North America with
23, 929 training images and 24, 633 test images. VegFru is a large-scale fine-
grained dataset covering vegetables and fruits from 292 categories with 29, 200
for training and 116, 931 for test. Food101 contains 101 kinds of foods with
101, 000 images. For each class, 250 test images are manually reviewed for cor-
rectness while 750 training images still contain some amount of noises.

4.2 Baselines and Implementation Details

Baselines. For comparisons with other ANN algorithms, we select two tree-
based ANN methods, i.e., BallTree [8] and KDTree [1], and one production quan-
tization based ANN method, i.e., Product Quantization (PQ) [13]. The linear
scan means that we directly perform exhaustive search based on the learned real-
valued features. For comparisons with other hashing baselines, we choose eight
state-of-the-art generic hashing methods. They are LSH [6], SH [34], ITQ [10],
SDH [28], DPSH [17], DSH [22], HashNet [4], and ADSH [14]. Among these
methods, DPSH, DSH, HashNet and ADSH are based on deep learning and
others are not.

Implementation Details. For comparisons with other ANN algorithms, we
carry out experiments on Food101 in which the database is the largest. We first
utilize the triplet loss [27] to learn 512-D and 1024-D feature embeddings for its
frequent usages in fine-grained retrieval tasks. Then, the performance of linear
scan is tested on the learned features. More experimental settings about Ball-
Tree [8], KDTree [1] and PQ [13] can be found in the supplementary materials.
For our ExchNet, the retrieval procedure is divided into coarse ranking to select
top N as candidates and re-ranking to return top K (K < N) from top N can-
didates. We adopt the real-valued features learned with the triplet loss directly.
As presented in Table 1, we report results including precision at top K (P@K),
wall clock time (WC time), speed up ratio, and memory cost.

Our backbone employs the first three stages of ResNet50 and the attention
generation module is the fourth stage of ResNet50 without downsample convo-
lutions. The LFR and GFR of ExchNet are independent networks, sharing the
same architecture with the fourth stage of ResNet50. The optimizer is standard
mini-batch stochastic gradient descent with weight decay 1 × 10−4. The mini-
batch size M is set to 64 and the iteration times Tmax is 100. Learning rate is
set to 0.001, which is divided by 10 at the 60-th and 80-th iteration, respectively.
The hyper-parameter t is set to 0.4. The number of training epochs is 20. For
efficient training, we randomly sample a subset of the training set in each epoch.
Specifically, for CUB , Aircraft , Food101 , we sample 2,000 samples per epoch,
while 4,000 samples are randomly selected for other datasets. To provide reliable
local features for our local feature alignment strategy, in the first 50 iterations,
since both local and global features are not well learned, the part-level feature
exchanging operation is disabled for avoiding aligning meaningless local features.
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Table 1. Retrieval performance comparisons on the Food101 dataset.

Method 512-dim 1024-dim

P@10 (↑) WCtime (↓) Speedup (↑) Memory (↓) P@10 (↑) WCtime (↓) Speedup (↑) Memory (↓)
Linear 80.05% 9,481.03 1× 207.2MB 80.28% 22,377.96 1× 414.1MB

BallTree 77.22% 236.23 40.13× 28.1MB 77.74% 213.88 104.62× 28.1MB

KDTree 77.42% 70.16 135.13× 28.8MB 77.73% 73.57 304.14× 28.7MB

PQ 77.12% 43.49 217.99× 524.5KB 77.18% 72.47 308.74× 1.0MB

Ours 77.69% 40.54 233.85× 404.0KB 78.06% 56.57 395.53× 404.0KB

Table 2. Comparisons of retrieval accuracy (MAP) on all the fine-grained datasets.

Method #Bits LSH SH ITQ SDH DPSH DSH HashNet ADSH Ours

CUB 12bits 2.26% 5.55% 6.80% 10.52% 8.68% 4.48% 12.03% 20.03% 25.14%

24bits 3.59% 6.72% 9.42% 16.95% 12.51% 7.97% 17.77% 50.33% 58.98%

32bits 5.01% 7.63% 11.19% 20.43% 12.74% 7.72% 19.93% 61.68% 67.74%

48bits 6.16% 8.32% 12.45% 22.23% 15.58% 11.81% 22.13% 65.43% 71.05%

Aircraft 12bits 1.69% 3.28% 4.38% 4.89% 8.74% 8.14% 14.91% 15.54% 33.27%

24bits 2.19% 3.85% 5.28% 6.36% 10.87% 10.66% 17.75% 23.09% 45.83%

32bits 2.38% 4.04% 5.82% 6.90% 13.54% 12.21% 19.42% 30.37% 51.83%

48bits 2.82% 4.28% 6.05% 7.65% 13.94% 14.45% 20.32% 50.65% 59.05%

NABirds 12bits 0.90% 2.12% 2.53% 3.10% 2.17% 1.56% 2.34% 2.53% 5.22%

24bits 1.68% 3.14% 4.22% 6.72% 4.08% 2.33% 3.29% 8.23% 15.69%

32bits 2.43% 3.71% 5.38% 8.86% 3.61% 2.44% 4.52% 14.71% 21.94%

48bits 3.09% 4.05% 6.10% 10.38% 3.20% 3.42% 4.97% 25.34% 34.81%

VegFru 12bits 1.28% 2.36% 3.05% 5.92% 6.33% 4.60% 3.70% 8.24% 23.55%

24bits 2.21% 4.04% 5.51% 11.55% 9.05% 8.91% 6.24% 24.90% 35.93%

32bits 3.39% 5.65% 7.48% 14.55% 10.28% 11.23% 7.83% 36.53% 48.27%

48bits 4.51% 6.56% 8.74% 16.45% 9.11% 17.12% 10.29% 55.15% 69.30%

Food101 12bits 1.57% 4.51% 6.46% 10.21% 11.82% 6.51% 24.42% 35.64% 45.63%

24bits 2.48% 5.79% 8.20% 11.44% 13.05% 8.97% 34.48% 40.93% 55.48%

32bits 2.64% 5.91% 9.70% 13.36% 16.41% 13.10% 35.90% 42.89% 56.39%

48bits 3.07% 6.63% 10.07% 15.55% 20.06% 17.18% 39.65% 48.81% 64.19%

4.3 Comparisons with Other ANN Methods

To prove the practicality and effectiveness of our proposed method, comparisons
with other ANN methods are presented in this section. All experiments are
conducted based on hash codes of 32bits generated by our model.

In Table 1, we present the retrieval performance on the Food101 dataset.
Specifically, we present the P@10, WC time, speedup, and memory cost for all
methods. We can observe that, compared with the linear search, our method
can achieve up to 233× and 395× acceleration on features of 512-D and 1024-D,
respectively. The memory cost of our method is also much less than tree-based
methods. The best speed-up and the lowest storage usage prove the practicality
of our proposed method. Meanwhile, our method can achieve state-of-the-art
retrieval accuracies, which demonstrates that our ExchNet is the most effective
one compared with other ANN methods. Above results illustrate our ExchNet
deserves to be the optimal choice for fine-grained image retrieval.
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4.4 Comparisons with State-of-the-Art Hashing Methods

In Table 2, we present the mean average precision (MAP) results for comparisons
with state-of-the-art hashing methods on all datasets. From Table 2, we can
observe that our method can achieve the best retrieval performance in all cases.
On fine-grained datasets (CUB and Aircraft) of relatively small size, almost all
the generic hashing methods (except for ADSH) can not achieve a satisfactory
performance, i.e., a relatively low MAP. Also, our ExchNet outperforms the most
powerful baseline ADSH considerably. It can verify that given limited training
data, our proposed method could still perform well. As to large-scale fine-grained
datasets, the improvements become more significant. Particularly, comparing
with the most powerful baselines, we achieve 12% and 14% MAP improvements
on the 32 bits and 48 bits evaluation experiments of the large-scale VegFru
dataset. Meanwhile, we achieve 14% and 16% MAP improvements on the 32 bits
and 48 bits experiments of the Food101 dataset. It shows that, with sufficient
training data, we can get better retrieval results with our ExchNet on large-scale
fine-grained datasets.

4.5 Ablation Studies

Effectiveness of the Exchanging-Based Feature Alignment. We verify
the effectiveness of the local feature alignment approach (cf. Sect. 3.2) in this
section. The retrieval accuracy are present in Fig. 5, where “Ours w/o Exchange”
means that we do not perform the feature exchanging operation (i.e., the local
feature alignment) during training. Note that “Ours w/o Exchange” is degener-
ated to the ADSH [14] learned with our proposed representation learning archi-
tecture instead of ResNet50. Hence, we also present the results of ADSH.

It can be observed that our method can achieve the best accuracy thanks to
the feature exchanging operation. Specifically, on CUB and Aircraft datasets, our
proposed method with the exchanging operation performs considerably better
than that without exchanging. The performance improvement on the large-scale
fine-grained datasets (e.g., Food101 ) becomes more significant. Above results
illustrate that our proposed local features alignment strategy is effective, espe-
cially on large-scale datasets. Moreover, even if bits of hash codes are limited,
our feature alignment strategy could still benefit fine-grained retrieval greatly.

Sensitivity to Hyper Parameter M . In our ExchNet, we use M to denote
the number of local features, which is also the number of attention maps. In this
section, we present the influence of the hyper-parameter M by ablation studies.

As presented in Fig. 6, we vary M as 2, 4 and 6. From that figure, it is
observed that satisfactory retrieval accuracies are achieved regardless of different
M values, and the best fine-grained retrieval accuracy is obtained when M = 4.
As analyzed, redundant local features (i.e., overmuch object parts when M is
large) might cause redundancies in local feature representations, while the lack
of local features (i.e., scant object parts when M is small) may result in that fine-
grained images are under-represented for distinguishing subtle visual differences.
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Fig. 5. Effectiveness of our feature exchanging operation.

Fig. 6. Influence of hyper parameter M which denotes the number of local features.

Those might be the reasons why M is too small or large will cause slightly
accuracy drops. Moreover, comparable retrieval results of different M values
show that our ExchNet is not sensitive to M .

5 Conclusions

In this paper, we studied the practical but challenging fine-grained hashing task,
which aims to solve large-scale FGIR problems by leveraging the search and stor-
age efficiency of compact hash codes. Specifically, we proposed a unified network
ExchNet to obtain representative fine-grained local and global features by per-
forming our attention approach equipped with the tailored attention constraints.
Then, ExchNet utilized its local feature alignment to align these local features
to their corresponding object parts across images. Later, an alternating learning
algorithm was employed to return the final fine-grained binary codes. Compared
with ANN methods and competing generic hash methods, experiments validated
both effectiveness and efficiency of our ExchNet. In the future, we would like to
explore a more challenging unsupervised fine-grained hashing topic.
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Abstract. We introduce a simple and versatile framework for image-to-
image translation. We unearth the importance of normalization layers,
and provide a carefully designed two-stream generative model with newly
proposed feature transformations in a coarse-to-fine fashion. This allows
multi-scale semantic structure information and style representation to be
effectively captured and fused by the network, permitting our method to
scale to various tasks in both unsupervised and supervised settings. No
additional constraints (e.g., cycle consistency) are needed, contributing
to a very clean and simple method. Multi-modal image synthesis with
arbitrary style control is made possible. A systematic study compares
the proposed method with several state-of-the-art task-specific baselines,
verifying its effectiveness in both perceptual quality and quantitative
evaluations. GitHub: https://github.com/EndlessSora/TSIT.

1 Introduction

Image-to-image translation [16] aims at translating one image representation
to another. Recent advances [10,21,22,30,32], especially Generative Adversarial
Networks (GANs) [10], have made remarkable success in various image-to-image
translation tasks. Previous studies usually present specialized solutions for a
specific form of application, ranging from arbitrary style transfer [13,14,24,27,
44,49,53] in the unsupervised setting, to semantic image synthesis [4,16,28,33,
34,41] in the supervised setting.

In this study, we are interested in devising a general and unified framework
that is applicable to different image-to-image translation tasks without degrada-
tion in synthesis quality. This is non-trivial given the different natures of different
tasks. For instance, in certain conditional image synthesis tasks (e.g., arbitrary
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Fig. 1. Our framework is simple and versatile for various image-to-image translation
tasks. For unsupervised arbitrary style transfer, diverse scenarios (e.g., natural images,
real-world scenes, artistic paintings) can be handled. For supervised semantic image
synthesis, our method is robust to different scenes (e.g., outdoor, street scene, indoor).
Multi-modal image synthesis is feasible by a single model with controllable styles.

style transfer), paired data are usually not available. Under this unsupervised
setting, translation task demands additional constraints on cycle consistency
[19,27,44,53], semantic features [39], pixel gradients [1], or pixel values [36]. In
semantic image synthesis (i.e., translation from segmentation labels to images),
training pairs are available. This task is more data-dependent and typically needs
losses to minimize per-pixel distance between the generated sample and ground
truth. In addition, specialized structures [4,28,33,41] are required to maintain
spatial coherence and resolution. Due to the different needs, existing methods
exploit their own specially designed components. It is difficult to cross-use these
components or integrate them into a unified framework.

To address the aforementioned challenges, we propose a Two-Stream Image-
to-image Translation (TSIT) framework, which is versatile for various image-to-
image translation tasks (see Fig. 1). The framework is simple as it is based purely
on feature transformation. Unlike previous approaches [13,33] that only consider
either semantic structure or style representation, we factorize both the structure
and style in multi-scale feature levels via a symmetrical two-stream network.
The two streams jointly influence the new image generation in a coarse-to-fine
manner via a consistent feature transformation scheme. Specifically, the content
spatial structure is preserved by an element-wise feature adaptive denormaliza-
tion (FADE) from the content stream, while the style information is exerted by
feature adaptive instance normalization (FAdaIN) from the style stream. Stan-
dard loss functions such as adversarial loss and perceptual loss are used, without
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additional constraints like cycle consistency. The pipeline is applicable to both
unsupervised and supervised settings, easing the preparation of data.

The contributions of our work are summarized as follows. We propose
TSIT, a simple and versatile framework, which is effective for various image-
to-image translation tasks. Despite the succinct design, our network is read-
ily adaptable to various tasks and achieves compelling results. The good per-
formance is achieved by (1) multi-scale feature normalization (FADE and
FAdaIN) scheme that captures coarse-to-fine structure and style information,
and (2) a two-stream network design that integrates both content and style
effectively, reducing artifacts and making multi-modal image synthesis possi-
ble (see Fig. 1). In comparison to several state-of-the-art task-specific baselines
[4,14,28,33,34,41,49], our method achieves comparable or even better results in
both perceptual quality and quantitative evaluations.

2 Related Work

Image-to-Image Translation. Existing methods can be classified into two
categories: unsupervised and supervised. With only unpaired data, unsuper-
vised image-to-image translation problem is inherently ill-posed. Additional con-
straints are needed on e.g., cycle consistency [19,27,44,53], semantic features
[39], pixel gradients [1], or pixel values [36]. In contrast, supervised methods, such
as pix2pix [16], are more data-dependent, requiring well-annotated paired train-
ing samples. Subsequent approaches [4,28,33,34,41] extend the supervised prob-
lem for generating high-resolution images or keeping effective semantic meaning.

Limited by learning only one-to-one mapping between two domains, some of
the GAN-based methods [19,27,44,53] suffer from generating images with low
diversity. Recent studies explore more deeply into both multi-domain translation
[6,26] and multi-modal translation [14,24,48], significantly increasing genera-
tion diversity. MUNIT [14] is a representative method that disentangles domain-
invariant content and domain-specific style representation, enriching the synthe-
sized images. Multi-mapping translation is defined in a very recent work, DMIT
[49], which is designed to capture multi-modal image nature in each domain.

Existing image-to-image translation methods lack the scalability to adapt to
different tasks under diverse difficult settings. Different demands of unsupervised
and supervised settings oblige previous methods to exploit customized modules.
Cross-using these components will be suboptimal due to either degradation in
quality or introduction of additional constraints. It is non-trivial to integrate
them into a single framework and improve robustness. In this study, we design
a two-stream network with newly proposed feature transformations inspired by
[33] and [13]. Our method is succinct yet able to link various tasks.

Arbitrary Style Transfer. Style transfer is closely relevant to image-to-image
translation in the unsupervised setting. Style transfer aims at retaining the con-
tent structure of an image, while manipulating its style representation adopted
from other images. Classical methods [3,8,9,17] gradually improve this task from
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optimization-based to real-time, allowing multiple style transfer during infer-
ence. Huang et al. introduce AdaIN [13], an effective normalization strategy for
arbitrary style transfer. Several studies [5,23,29,38,43,45,51] improve styliza-
tion via wavelet transforms [45], graph cuts [51], or iterative error-correction
[38]. Besides, most collection-guided [14] style transfer methods are GAN-based
[14,24,27,44,49,53], showing impressive results.

Previous works usually consider either content or style information. In con-
trast, our framework succeeds in seeking a balance between content and style,
and adaptively fuses them well. The proposed method achieves user-controllable
multi-modal style manipulation by only a single model. Compared to customized
style transfer methods, our approach achieves better synthesis quality in many
scenarios including natural images, real-world scenes, and artistic paintings.

Semantic Image Synthesis. We define semantic image synthesis as in [33],
aiming at synthesizing a photorealistic image from a semantic segmentation
mask. Semantic image synthesis is a special form of supervised image-to-image
translation. The domain gap of this task is large. Therefore, keeping effective
semantic information to enhance fidelity without losing diversity is challenging.

Pix2pix [16] first adopts conditional GAN [30] in the semantic image syn-
thesis task. Pix2pixHD [41] contains a multi-scale generator and multi-scale dis-
criminators to generate high-resolution images. SPADE [33] takes a noise map
as input, and resizes the semantic label map for modulating the activations in
normalization layers by a learned affine transformation. CC-FPSE [28] employs
a weight prediction network for generator. A semantics-embedding discriminator
is used to enhance fine details and semantic alignments between the generated
samples and the input semantic layouts. In addition to these GAN-based meth-
ods, CRN [4] applies a cascaded refinement network with regression loss as the
supervision. SIMS [34] is a semi-parametric method, retrieving fragments from
a memory bank and refining the canvas by a refinement network.

Different from prior works, we design a symmetrical two-stream framework.
The network learns feature-level semantic structure information and style repre-
sentation instead of directly resizing the input mask like SPADE [33]. Coarse-to-
fine feature representations are learned by neural networks, adaptively keeping
high fidelity without diminishing diversity.

3 Methodology

We consider three key requirements in formulating a robust and scalable method
to link various tasks: (1) Both semantic structure information and style repre-
sentation should be considered and fused adaptively. (2) The content and style
information should be learned by networks in feature level instead of in image
level to fit the nature of diverse semantic tasks. (3) The network structure and
loss functions should be simple for easy training without additional constraints.
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3.1 Network Structure

Based on the aforementioned considerations, we design a Two-Stream Image-
to-image Translation (TSIT) framework, as illustrated in Fig. 2. TSIT consists
of four components: content stream, style stream, generator, and discriminators
(omitted in Fig. 2). The first three main components are fully convolutional and
symmetrically designed. The details of the submodules, including content/style
residual block, FADE residual block, FADE module in the FADE residual block,
are as shown in Fig. 3. We will discuss them separately in this section.

Fig. 2. The proposed Two-Stream Image-to-image Translation (TSIT) framework. The
multi-scale patch-based discriminators are omitted. A Gaussian noise map is taken as
the latent input for the generator. The feature representations of the content and style
images are extracted by the corresponding streams for multi-scale feature transforma-
tions. The symmetrical networks fuses semantic structure and style representation in
an end-to-end training. Submodules of our network are shown in Fig. 3.

Content/Style Stream. Unlike the traditional conditional GAN [30], we place
the two-stream networks, i.e., content stream and style stream, on each side of
the generator (see Fig. 2). These two streams are symmetrical with the same
network structure, aiming at extracting corresponding feature representations
in different levels. We construct content/style stream based on standard resid-
ual blocks [11]. We call them content/style residual blocks. As shown in Fig. 3(a),
each block has three convolutional layers, one of which is designed for the learned
skip connection. The activation function is Leaky ReLU. The function of con-
tent/style stream is to extract features and feed them to the corresponding
feature transformation layers in the generator. Multi-scale content/style repre-
sentation in feature levels can be learned by content/style stream, adaptively
fitting different feature transformations.
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Fig. 3. Submodules of our framework. (a) is a content/style residual block in the sym-
metrical content/style streams. (b) is a FADE residual block in the generator. (c) is a
FADE module in the FADE residual block. It performs element-wise denormalization
by modulating the normalized activation using a learned affine transformation defined
by the modulation parameters γ and β.

Generator. The generator has a completely inverse structure w.r.t. the con-
tent/style stream. This is intentionally designed to consistently match the level
of semantic abstraction at different feature scales. A noise map is sampled from
a Gaussian distribution as the latent input, and the feature maps from corre-
sponding layers in content/style stream are taken as multi-scale feature inputs.
The proposed feature transformations are implemented by a FADE residual block
(Fig. 3(b)) and a FAdaIN module. In the FADE residual block, we use an inverse
architecture w.r.t. the content/style residual block and replace the batch normal-
ization [15] layer with the FADE module (Fig. 3(c)). The FADE module performs
element-wise denormalization by modulating the normalized activation using a
learned affine transformation defined by the modulation parameters γ and β.
The FAdaIN module is used to exert style information through feature adaptive
instance normalization. More discussions are given in Sect. 3.2.

The entire image generation process is performed in a coarse-to-fine man-
ner. In particular, multi-scale content/style features are injected to refine the
generated image constantly from high-level latent code to low-level image repre-
sentation. Semantic structure and style information are learnable and effectively
fused in an end-to-end training.

Discriminators. We exploit the standard multi-scale patch-based discrimina-
tors (omitted in Fig. 2) in [33,41]. Three regular discriminators with an identical
architecture are included to discriminate images at different scales. Despite the
same structure, patch-based training allows the discriminator operating at the
coarsest scale to have the largest receptive field, capturing global information of
the image. Whereas the one operating at the finest scale has the smallest recep-
tive field, making the generator produce better details. Multi-scale patch-based
discriminators further improve the robustness of our method for image-to-image
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translation tasks in different resolutions. Besides, the discriminators also serve
as feature extractors for the generator to optimize the feature matching loss.

3.2 Feature Transformation

We propose a new feature transformation scheme, considering both semantic
structure information and style representation, and fusing them adaptively. Let
xc be the content image and xs be the style image. CS, SS, G, D denote content
stream, style stream, generator, and discriminators, respectively. Sampled from a
Gaussian distribution, z0 ∈ Z is a noise map as the latent input for the generator
(Fig. 2). Let zi ∈ {z0, z1, z2, ..., zk} be the feature map after i-th residual block in
the generator, with k denoting the the total number of residual blocks (i.e., the
upsampling times in the generator). Let fc

i ∈ {fc
0 , fc

1 , fc
2 , ..., fc

k} represent the
corresponding feature representations extracted by the content stream (Fig. 2),
fs
i ∈ {fs

0 , fs
1 , fs

2 , ..., fs
k} with the similar meaning in the style stream.

Feature Adaptive Denormalization (FADE). Our method is inspired by
spatially adaptive denormalization (SPADE) [33]. Different from SPADE that
resizes a semantic mask as its input, we generalize the input to multi-scale feature
representation fc

i of the content image xc. In this way, we fully exploit semantic
information captured by the content stream CS.

Formally, we define N as the batch size, Li as the number of feature map
channels in each layer. Hi and Wi are height and width, respectively. We first
apply batch normalization [15] to normalize the generator feature map zi in a
channel-wise manner. Then, we modulate the normalized feature by using the
learned parameters scale γi and bias βi. The denormalized activation (n ∈ N ,
l ∈ Li, h ∈ Hi, w ∈ Wi) is:

γl,h,w
i · zn,l,h,wi − μl

i

σl
i

+ βl,h,w
i , (1)

where μl
i and σl

i are the mean and standard deviation, respectively, of the gen-
erator feature map zi before the batch normalization [15] in channel l:

μl
i =

1
NHiWi

∑

n,h,w

zn,l,h,wi , (2)

σl
i =

√
1

NHiWi

∑

n,h,w

(
zn,l,h,wi

)2

− (
μl
i

)2
. (3)

The denormalization operation is element-wise, and the parameters γl,h,w
i

and βl,h,w
i are learned by one-layer convolutions from fc

i in the FADE module
(see Fig. 3(c)). Compared to previous conditional normalization methods [8,13,
33], FADE experiences more perceptible influence from coarse-to-fine feature
representations, thus it can better preserve semantic structure information.
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Feature Adaptive Instance Normalization (FAdaIN). To better fuse
style representation, we introduce another feature transformation, named feature
adaptive instance normalization (FAdaIN). This method is inspired by adaptive
instance normalization (AdaIN) [13], with a generalization to enable the style
stream SS to learn multi-scale feature-level style representation fs

i of the style
image xs more effectively.

We use the same notation zi to represent the feature map after i-th FADE
residual block in the generator. FAdaIN adaptively computes the affine param-
eters from the corresponding style feature fs

i with the same scale from SS:

FAdaIN (zi, fs
i ) = σ (fs

i )
(

zi − μ (zi)
σ (zi)

)
+ μ (fs

i ) , (4)

where μ (zi) and σ (zi) are the mean and standard deviation, respectively, of zi.
Exploiting FAdaIN, coarse-to-fine style features at different layers can be

fused adaptively with the corresponding semantic structure features learned by
FADE, allowing our framework to be trained end-to-end and versatile to different
tasks. Furthermore, owing to the effectiveness of FAdaIN in capturing multi-scale
style feature representations, multi-modal image synthesis is made possible with
arbitrary style control.

3.3 Objective

We use standard losses in our objective function. Following [28,33], we adopt a
hinge loss term [25,31,50] as our adversarial loss. For the generator, we apply
hinge-based adversarial loss, perceptual loss [17], and feature matching loss [41].
For the multi-scale discriminators, only hinge-based adversarial loss is used to
distinguish whether the image is real or fake. The generator and discriminator
are trained alternately to play a min-max game. The generator loss LG and the
discriminator loss LD can be written as:

LG = −E [D (g)] + λPLP (g, xc) + λFMLFM (g, xs) , (5)

LD = −E [min (−1 + D (xs) , 0)] − E [min (−1 − D (g) , 0)] , (6)

where g = G (z0, xc, xs) denotes the generated image, z0, xc, xs denote the input
noise map in latent space, the content image, and the style image, respectively.
LP is the perceptual loss [17] that minimizes the difference between the feature
representations extracted by VGG-19 [17] network. LFM is the feature matching
loss [41] that matches the intermediate features at different layers of multi-scale
discriminators. λP and λFM are the corresponding weights.

The simple objective functions make our framework stable and easy to train.
Thanks to the two-stream network, the typical KL loss [21,28,33,49] for multi-
modal image synthesis becomes optional. Despite the simplicity, TSIT is a highly
versatile tool, readily adaptable to various image-to-image translation tasks.
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4 Settings

Implementation Details. We use Adam [20] optimizer and set β1 = 0,
β2 = 0.9. Two time-scale update rule [12] is applied, where the learning rates
for the generator (including two streams) and the discriminators are 0.0001 and
0.0004, respectively. We exploit Spectral Norm [31] for all layers in our network.
We adopt SyncBN and IN [40] for the generator and the multi-scale discrim-
inators, respectively. For the perceptual loss [17], we use the feature maps of
relu1 1, relu2 1, relu3 1, relu4 1, relu5 1 layers from a pretrained VGG-19
[37] model, with the weights [1/32, 1/16, 1/8, 1/4, 1]. For the feature matching
loss [41], we select features of three layers from the discriminator at each scale.
All the experiments are conducted on NVIDIA Tesla V100 GPUs. Please refer
to our supplementary material for additional implementation details.

Applications. The proposed framework is versatile for various image-to-image
translation tasks. We consider three representative applications of conditional
image synthesis: arbitrary style transfer (unsupervised), semantic image synthe-
sis (supervised), and multi-modal image synthesis (enriching generation diver-
sity). Please refer to our supplementary material for details of our application
exploration.

Datasets. For arbitrary style transfer, we consider diverse scenarios. We use
Yosemite summer → winter dataset (natural images) provided by [53]. We clas-
sify BDD100K [47] (real-world scenes) into different times and perform day →
night translation. Besides, we use Photo → art dataset (artistic paintings) in
[53]. For semantic image synthesis, we select several challenging datasets (i.e.,
Cityscapes [7] and ADE20K [52]). For multi-modal image synthesis, we further
classify BDD100K [47] into different time and weather conditions, and perform
controllable time and weather translation. The details of the datasets can be
found in the supplementary material.

Evaluation Metrics. Besides comparing perceptual quality, we employ the
standard evaluation protocol in prior works [2,14,18,28,33] for quantitative eval-
uation. For arbitrary style transfer, we apply Fréchet Inception Distance (FID,
evaluating similarity of distribution between the generated images and the real
images, lower is better) [12] and Inception Score (IS, considering clarity and
diversity, higher is better) [35]. For semantic image synthesis, we strictly fol-
low [28,33], adopting FID [12] and segmentation accuracy (mean Intersection-
over-Union (mIoU) and pixel accuracy (accu)). The segmentation models are:
DRN-D-105 [46] for Cityscapes [7], and UperNet101 [42] for ADE20K [52].

Baselines. We compare our method with several state-of-the-art task-specific
baselines. For a fair comparison, we mainly employ GAN-based methods. In the
unsupervised setting, MUNIT [14] and DMIT [49] are included, with the strong



TSIT: A Simple and Versatile Framework for Image-to-Image Translation 215

ability to capture the multi-modal nature of images while keeping quality. In
the supervised setting, we compare against CRN [4], SIMS [34], pix2pixHD [41],
SPADE [33], and CC-FPSE [28].

5 Results

Arbitrary Style Transfer. The results of Yosemite summer → winter season
transfer are shown in Fig. 4. Baselines [14,49] tend to impose the color of the
style image (winter) to the whole content image (summer). Besides, MUNIT
sometimes introduces unnecessary artistic effects, and DMIT generates some
grid-like artifacts. In comparison, our generated results are clearer and more
semantics-aware spatially. The results of BDD100K day → night time transla-
tion are shown in Fig. 5. Some objects (e.g., road sign, car) generated by MUNIT
are too dark, and the whole image tends to have some unnatural colors. DMIT
introduces obvious artifacts to the car or sky. In contrast, our method produces
more photorealistic samples in this task. In photo → art style transfer, we choose
some hard cases to make a clear comparison (see Fig. 6) due to the very strong
ability of all the methods in this task. Our method can transfer the styles well
while effectively keeping the content structure. MUNIT tends to impose a homo-
geneous color to the image. Although DMIT achieves slightly better stylization
than our method in certain cases (in Row 3 of Fig. 6), it also brings some grid-like
distortions.

Fig. 4. Yosemite summer → winter season transfer results compared to baselines.

The quantitative evaluation results are shown in Table 1. Our approach
achieves better performance than baselines [14,49] in all the tasks. We also note
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Fig. 5. BDD100K day → night time translation results compared to baselines.

Fig. 6. Photo → art style transfer results compared to baselines.

Table 1. The FID and IS scores of our method compared to state-of-the-art methods in
arbitrary style transfer tasks. A lower FID and a higher IS indicate better performance.

Methods Summer → winter Day → night Photo → art

FID ↓ IS ↑ FID ↓ IS ↑ FID ↓ IS ↑
MUNIT [14] 118.225 2.537 110.011 2.185 167.314 3.961

DMIT [49] 87.969 2.884 83.898 2.156 166.933 3.871

Ours 80.138 2.996 79.697 2.203 165.561 4.020
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that the gap is relatively small in photo → art style transfer, in line with the
close qualitative performance in this task (see Fig. 6).

Semantic Image Synthesis. We choose two state-of-the-art baselines, SPADE
[33] and CC-FPSE [28], to show some qualitative comparison results of seman-
tic image synthesis (Fig. 7). Our method demonstrates better perceptual quality
than these task-specific baselines. In street scene (Column 1), our method gen-
erates better details on key objects (car, pedestrian). In road scene (Column
2), SPADE generates atypical colors on the roads, while CC-FPSE produces
unnatural edges on the cars, hardly fitting the background (road). For outdoor
natural images (Column 3), all the methods share a similar generation quality.
Our method is slightly better due to less distortions on the grass. In indoor scene
(Column 4 and 5), SPADE and CC-FPSE produce obvious artifacts in some cases
(Column 5). In contrast, our method is more robust to diverse scenarios.

The quantitative evaluation results are shown in Table 2 (the values used
for comparison are taken from [28,33]). The proposed method achieves compa-
rable performance with the very strong specialized methods [4,28,33,34,41] for
semantic image synthesis. Note that SIMS [34] yields the best FID score but poor
segmentation performance on Cityscapes, because it stitches image patches from

Fig. 7. Semantic image synthesis results compared to baselines.



218 L. Jiang et al.

Table 2. The mIoU, pixel accuracy (accu) and FID scores of our method compared to
state-of-the-art methods in semantic image synthesis tasks. A higher mIoU, a higher
pixel accuracy (accu) and a lower FID indicate better performance.

Methods Cityscapes ADE20K

mIoU ↑ accu ↑ FID ↓ mIoU ↑ accu ↑ FID ↓
CRN [4] 52.4 77.1 104.7 22.4 68.8 73.3

SIMS [34] 47.2 75.5 49.7 N/A N/A N/A

pix2pixHD [41] 58.3 81.4 95.0 20.3 69.2 81.8

SPADE [33] 62.3 81.9 71.8 38.5 79.9 33.9

CC-FPSE [28] 65.5 82.3 54.3 43.7 82.9 31.7

Ours 65.9 94.4 59.2 38.6 80.8 31.6

a memory bank of training set while not keeping the exactly consistent position
in the synthesized image. Our approach achieves state-of-the-art segmentation
performance on Cityscapes and the best FID score on ADE20K, suggesting its
robustness to fit the nature of different image-to-image translation tasks.

Multi-modal Image Synthesis. We perform multi-modal image synthesis
for time and weather image-to-image translation (see Fig. 8) on BDD100K [47].
Training only a single model, we translate the images of weather sunny to dif-
ferent times and weathers (i.e., night, snowy, cloudy, rainy). Our method effec-
tively adapts to different style control and keeps photorealistic generation quality.
Although the weather snowy is not very obvious in BDD100K [47], our approach
successfully introduces some snow-like effects on trees and grounds (Column 2).

Fig. 8. BDD100K multi-modal image synthesis for different time and weather
translation results by a single model.
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Fig. 9. Cross validation of ineffectiveness of task-specific methods in inverse settings.

Cross Validation. We also conduct experiments to evaluate the performance of
existing specialized methods in inverse settings (i.e., using unsupervised methods
to do semantic image synthesis/using supervised methods to perform arbitrary
style transfer). We selected two representative methods, MUNIT [14] and SPADE
[33]. Without modifying the architecture, we tuned the loss weights and tried
to get the best generation results. To ensure a fair comparison, we also tried to
compute perceptual loss with the content (day) image for SPADE to match the
setting of TSIT. Representative results of cross validation are shown in Fig. 9.
The proposed method shows much better results than baseline methods. MUNIT
fails to adapt to semantic image synthesis. SPADE loses details of key objects
and introduces very strong artifacts despite translating the color correctly.

Fig. 10. Ablation studies of key modules (i.e., content stream (CS), style
stream(SS)) and feature transformations in multi-modal image synthesis task.

Ablation Studies. We present ablation studies of key modules (i.e., content
stream (CS), style stream (SS)) and the proposed feature transformations (see
Fig. 10. More ablation study results can be found in the supplementary material).
We perform multi-modal image synthesis to show the effectiveness of different
components. Our full model generates high-quality results (Column 3). When
we directly inject the resized content image without CS, the semantic structure
information becomes weak, leading to several artifacts in the sky (Column 4).
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Without SS, the model cannot perform multi-modal image synthesis at all (Col-
umn 5). The style representation is dominated by the night style. When we
concatenate the feature maps of CS with the ones of the generator instead of
using FADE, the concatenation introduces too much content information, lead-
ing to several failure cases (e.g., sunny → night in Column 6). If we discard
FAdaIN by concatenating the feature maps of SS with the ones of the genera-
tor, the style becomes too strong, causing serious style regionalization problem
(Column 7).

6 Conclusion

We propose TSIT, a simple and versatile framework for image-to-image transla-
tion. The proposed symmetrical two-stream network allows the image generation
to be effectively conditioned on the multi-scale feature-level semantic structure
information and style representation via feature transformations. A systematic
study verifies the effectiveness of our method in diverse tasks compared to state-
of-the-art task-specific baselines. We believe that designing a unified and versa-
tile framework for more tasks is an important direction in the image generation
area. Incorporating unconditional image synthesis tasks and introducing more
variability into the two streams/latent space can be interesting future works.
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Abstract. Training Binarized Neural Networks (BNNs) is challenging
due to the discreteness. In order to efficiently optimize BNNs through
backward propagations, real-valued auxiliary variables are commonly
used to accumulate gradient updates. Those auxiliary variables are then
directly quantized to binary weights in the forward pass, which brings
about large quantization errors. In this paper, by introducing an appro-
priate proxy matrix, we reduce the weights quantization error while cir-
cumventing explicit binary regularizations on the full-precision auxiliary
variables. Specifically, we regard pre-binarization weights as a linear com-
bination of the basis vectors. The matrix composed of basis vectors is
referred to as the proxy matrix, and auxiliary variables serve as the coef-
ficients of this linear combination. We are the first to empirically identify
and study the effectiveness of learning both basis and coefficients to con-
struct the pre-binarization weights. This new proxy learning contributes
to new leading performances on benchmark datasets.

Keywords: Binarized Neural Networks · Proxy matrix

1 Introduction

Binary embedding is a fundamental technique in machine learning applications,
such as retrival [12,16], clustering [3,19], matching [8,38] and classification [9,
20]. The popular signum function quantizes data points to ±1, which enables
compact storage (i.e., 32× compression than floating point) and efficient bitwise
operations (i.e., replacing time-consuming inner-product with xnor-popcnt) [32].
However, sgn(·) is non-smooth with derivative 0 everywhere except at 0, which
makes gradient-driven optimizations incapable, especially for training BNNs.
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Pioneer works present constructive training algorithms according to the sense
of growth of networks [30] and verify the information capacity of binary weights
[21]. Variational Bayes methods [43,44] propose to train discrete multilayer
neural networks using Expectation Propagation (EP). Recent gradient-based
methods with Straight-Through-Estimator (STE) show that a linear backprop
function for the non-linear activation surprisingly leads to promising results on
CIFAR-10 [9,20,49]. XNOR-Net [37] further introduces a scaling factor to relax
the binary constraint and show notable improvements on ImageNet dataset.
Regardless of their differences, a real-valued auxiliary variable is commonly used
to accumulate gradient updates and then binarized to ±1 at inference time
[6,20,28,37]. To minimize the weights binarization error, recent BNNs impose
explicit binary regularizations on the auxiliary variables that lead to the bimodal
distribution [10,13,14,45]. Though bimodality that encourages auxiliary vari-
ables to be around binary values may facilitate binarization intuitively, it can be
hard to change positive auxiliary variables to negative by small gradient steps
and vice versa (Note that large gradient steps can be risky for BNNs training
since there are no accurate gradients for binary weights but approximations).

In this paper, we try to reduce weights quantization errors while avoiding the
explicit constraint that forces the full-precision auxiliary variables to be around
±1. To this end, we investigate the following question: is there a latent parameter
space which can serve our goal, to bridge full-precision auxiliary variables and
binary weights? We introduce proxy matrix R as a basis of the latent parameter
space. Every filter before binarization can be written as a linear combination of
basis vectors. The coefficients of this linear combination are referred to as the
auxiliary variables. Since the basis can be the key component in proxy learn-
ing, we conduct empirical studies on the construction of R, based on the view
of minimizing both weights quantization errors and the global cost function. It
is shown that a well-designed proxy matrix leads to smooth optimization land-
scapes with superior performances. Exhaustive experiments show that our proxy
learning strategy notably outperforms the state-of-the-art on ImageNet dataset.

2 Related Works

Binarized neural network has been a long-standing topic in machine learning
community [32,33]. Due to its high memory and computing efficiency, it becomes
an ideal solution to the deployment of computation-intensive deep convolutional
neural networks on low-power devices [4,51]. Previous literatures prove that the
manual-designed backpropagation of binarization/ternarization still performs
well on small datasets, not only for weights compression but activations quan-
tization [9,20,26,49]. DoReFa [52] further presents low-bit weights, activations
and gradients to accelerate both training and inference on customized devices.

To narrow the gap between BNNs and full-precision networks on the challeng-
ing ImageNet, XNOR-Net [37] proposes scaling factors for both weights and acti-
vation functions to minimize the quantization error. The following works further
develop various regularization functions that encourage training weights around
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Fig. 1. Overview of the proxy learning for 3 × 3 binary weights

binary values [10,13,14] and controls the range of activations [11]. In light of the
success of scaling factors, XNOR++ [6] improves the performances by learned
both spatial and channel-wise scaling factors. To compensate for the informa-
tion loss of binarization, Bi-Real [28] proposes double residual connections with
full-precision downsampling layers and [6] replaces ReLU by PReLU. Due to
the gradient mismatch, [10,28,48] formulate quantization forward/backward as
differentiable non-linear mapping functions. More recently, probabilistic training
methods [35,41] circumvent the need to approximate the gradient of sign() by
sampling from the weight distribution. Since BNN training is not well-founded,
there are still tremendous efforts on the study of BNNs’ optimizations [1,5,17,29]
and how to explain the effectiveness of BNNs [2]. All those methods pave the
way for a better understanding of binarized neural networks.

3 Methodology

3.1 Formulation

We quickly revisit the popular gradient-based method proposed in BinaryCon-
nect [9], which maintains real-valued latent variables W for gradient updates. In
the forward pass, W are binarized to ±1 by

Wb = sgn(W ) (1)

to perform binary convolutions Wb ⊗sgn(X), where X is the input feature map.
Given a basis R of the latent parameter space, we decompose the previous

W into R and coordinates (or components) W ′. Thus, we present a new pattern
of learning binary weights

sgn(Z) = sgn(W ′R), W ′ = φ(W ) (2)

where W ∈ R
[h×w×n]×c, R ∈ R

c×c1 and φ(·) is a nonlinear mapping. As illus-
trated in Fig. 1, during gradient descent ProxyBNN learns coordinate repre-
sentations W ′ and updates the manual-designed basis R simultaneously. For
1 h, w, n and c are kernel height, width, kernel number and input channel number,

respectively. For 1×1 convolutions and FC layers, [h×w×n]×c degrades into n×c.
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binary activations, we assume that semantic information mainly distributed
along channel dimension (i.e., different channels may respond to different cate-
gories). Hence, we split each filter in spatial dimension (i.e., “reshape” in Fig.1).
In this way, every column of Z corresponding to the same input channel is con-
structed by the same basis vector Ri ∈ R

c. Inspired by the common [−1, 1]-clip
in BNNs [9,20], we introduce the hyperbolic tangent as the activation function
φ to cancel the gradients when W are too large. Note that W and R work as
high-precision temporal variables. The extra computing and storage cost of the
basis and coordinates only exist during training. At inference time, we utilize
the well-trained B which is the same as previous BNNs.

3.2 Proxy Learning Procedure

To optimize the global objective of deep neural networks with binary constraints,
we formulate the n layers BNN training to a constrained optimization problem

min
Z

�(Z), s.t. Zi = αiBi, Bi ∈ {+1,−1}[h×w]×c, i = 1, · · · , n (3)

where αi ∈ R is a real-valued scaling factor to relax the binary constraint on Zi

[37] and �(·) is cross-entropy loss. Note that we introduce αi and Bi as indepen-
dent variables, which will be used in binary convolutions after training. If the
first equation constraint is brought to the objective via a regularization param-
eter γ, we show that the resulting form can be solved by updating Bi, αi and
Zi iteratively,

Lγ = min
α,Z,B

�(ψ(Z)) + γ

n∑

i=1

||Zi − αiBi||2F , s.t. Bi ∈ {+1,−1}[h×w]×c, (4)

where ψ(·) is a binary mapping that relaxes Z to R
[h×w×n]×c and guarantees

binary weights in the forward pass.

Fix Zi, αi, update Bi. In this step, we treat Zi and αi as constants and update
Bi to minimize Lγ . Since Bi only exists in the second term, we have

Bt+1
i = arg min ||Zt

i − αt
iBi||2F = arg max tr(αt

iB
T
i Zt

i ) (5)

where tr(αBT Z) =
∑c

m=1

∑h·w
n=1 = αBn,mZn,m. Given the binary constraint on

Bi, the solution is simply Bt+1
i = sgn(αt

iZ
t
i ).

Fix Zi, Bi, update αi. Here we use the updated Bt+1
i and minimize Lγ in terms

of αi. Since Zt
i and Bt+1

i are fixed in this step, problem (4) becomes independent
subtasks

min
αi

||Zt
i − αiB

t+1
i ||2F = min

αi

(hwc)α2
i − 2tr(Bt+1

i

T
Zt

i )αi + const. (6)

Note that αi is a full-precision scalar and (6) is quadratic, the optimum can be

easily obtained as αt+1
i = tr(Bt+1

i

T
Zt

i )

hwc .
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Fix αi, Bi, update Zi. To update the latent variable Zi, we perform a gradient
descent step since the objective function �(·) for BNN is differentiable and the
second term in (4) is a quadratic regularization term, which is differentiable and
convex. Following the rule of SGD, the derivative of Zt

i is calculated as follow

∂Lγ

∂Zt
i

=
∂�

∂ψ(Zt
i )

∂ψ(Zt
i )

∂Zt
i

+ 2γ(Zt
i − αt+1

i Bt+1
i ). (7)

Given the optimal solution of αi and Bi at each step, we obtain the binary
mapping ψ(Zi) = ||Zi||1

c×h×wsgn(Zi) in vector form (i.e., Zi ∈ R
[h×w×c]×1). Then,

the gradient with respect to the k-th element in Zi is defined as2

∂�

∂Zi,k
:=

sgn(Zi,k)
h · w · c

hwc∑

j=1

∂�

∂ψ(Zi)j
sgn(Zi,j) +

∂�

∂ψ(Zi)k
. (8)

Combining Eq. (7) and Eq. (8), we obtain the derivative to W ′, R as

∂Lγ

∂R
=

∂Lγ

∂Z

T

W ′,
∂Lγ

∂W ′ =
∂Lγ

∂Z
RT . (9)

Following the standard gradient update step in [22], W t+1 ← W t − β1∇W Lγ

and Rt+1 ← Rt − β2∇RLγ where β1 and β2 are the learning rates, we have the
updated Zt+1 = φ(W t+1)Rt+1.

3.3 The Construction of Basis

Although the basis R can be trained end-to-end as shown in the previous section,
we empirically prove that the construction of the initial basis matters in Prox-
yBNN training.

Random Matrix. The most intuitive choice is a random initialization where
every element Ri,j ∼ N (0, 1). We include it as a baseline scheme to conduct fair
comparisons.

Minimizing Square Error (MSE) Matrix. In light of the empirical suc-
cess of minimizing weights quantization error [10,13,14,24,37], we consider the
following square object

min
R

||W ′R − sgn(W ′R)||2F . (10)

Beginning with the identity matrix initialization of R, we adopt an iterative opti-
mization procedure to find a local minimum of (10). In each iteration, W ′Rt is
first assigned to the binary codewords, and then Rt+1 is updated to minimize the
square error, i.e., calculating the Moore-Penrose inverse of W ′ then multiplied
by sgn(W ′Rt). Since the pseudo-inverse relies on Singular Value Decomposition
(SVD), which is time-consuming for large matrix, we conduct MSE construction
only once and notice no accuracy improvement (even result in worse perfor-
mance) with more re-construction during training.
2 Further details in appendix 1.
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Fig. 2. Toy examples of the effects of different proxy matrices. (a) shows the original
distribution of W ′. (b-d) illustrate the distributions of W ′R, i.e., Z

Orthogonal Matrix. The main idea of introducing orthogonal matrix is simply
that: similar coordinates w′

i, w
′
j ∈ R

1×c may correspond to similar representa-
tions zi, zj ∈ R

1×c in Euclidean space, given zi = w′
iR. That is, we try to pre-

serve the similarity relationship (locality structure) between coordinates while
minimizing the quantization error. In this case, an orthogonal matrix R with
||w′

i − w′
j ||2 = ||w′

iR − w′
jR||2 becomes an ideal solution. Then, we reformulate

problem (10) as

min
R

||W ′R − sgn(W ′R)||2F , s.t. RT R = I. (11)

The rows of coordinate matrix W ′ ∈ R
[h×w×n]×c can be seen as a set of h×w×n

data points {w′
1, w

′
2, · · · , w′

h·w·n}, w′
i ∈ R

1×c, and (11) forms the classical hashing
problem. Here we use ITQ proposed in [12] for solving hashing codes to obtain
the optimal R. The alternating update is similar to MSE. We first binarize W ′R
in each step, then the objective function corresponds to the classic Orthogonal
Procrustes problem [40],

UΣV T = svd(sgn(W ′R)T W ′R), R = V UT . (12)

Before alternating optimization, we use a random orthogonal matrix to initialize
R and train 10 epochs to warm up W ′. We only conduct the construction once
and then update R with small gradient steps.

3.4 The Effect of Proxy Learning

Toy Example. To better understand the proposed proxy learning, we first
show a 2D toy example then analyze the experimental phenomenon in real net-
works. As shown in Fig. (2b, 2c), both random matrix and MSE matrix change
the original data structure, especially MSE minimizes quantization errors at the
cost of ruining the 2-dimensional Gaussian distribution, which approximates uni-
form distributions. Figure 2d shows the orthogonal matrix serves as a similarity-
preserving rotation, which not only quantizes weights with small errors but main-
tains the structure of W ′.
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Fig. 3. Histograms of W ′ of WRN22 on CIFAR-100 (best viewed in color) (Color figure
online)

Fig. 4. Histograms of the variance of
Z ∈ R

h·w·n·c in the channel dimen-
sion (To be specific, we compute the
variance of Zi ∈ R

h·w·n, i = 1, · · · , c
then visualize the distribution of c
samples. The more concentrated dis-
tribution indicates the more balanced
variance.)

Besides, the variance of W ′ in each
direction is different. Directly quantizing
both low-variance directions and high-
variance directions (with more informa-
tion) to 1-bit can be suboptimal. An
orthogonal matrix balances the vari-
ance of different directions (e.g., different
channels in real networks), which facili-
tates the binary encoding.

Similar phenomena exist in practi-
cal WRN22 network. As shown in Fig. 4,
MSE matrix leads to the largest vari-
ance in the channel dimension among
three candidates, which is consistent with
Fig. 2. For the random matrix, it has a wider distribution interval of variances
than the orthogonal matrix, which reflects imbalanced variances across differ-
ent channels, as shown in Fig. 2b (e.g., high variance in x-dimension and low
variance in y-dimension).

Weights Distribution. To clearly verify the effectiveness of the proxy matrix
R, we visualize the distributions of W ′ and W ′R. Figure 3 illustrates that all
schemes’ W ′ are approximate Gaussian distributions similar to weights in full-
precision counterparts. We further demonstrate Z in Fig. 5. The baseline random
matrix (i.e., the first row) illustrates a bimodal distribution, which is a sensible
result for pre-binarization weights to minimize quantization error. Since MSE
matrix is based on min ||W ′R − sgn(W ′R)||F , the initial MSE basis naturally
makes two peaks move towards ±1, as shown in the second row of Fig. 5. How-
ever, it seems counterintuitive, the orthogonal scheme still generates a unimodal
distribution. Here is the question: Does either the unimodal distribution or the
bimodal distribution contribute to “accurate” binary networks?

Quantization Error v.s. Classification Error. Table 1 details the trade-off
between layer-wise quantization error and the final accuracy. Here we define the
quantization error as: Q(Z,α,B) = 1

h·w·n·c
∑n

i=1 ||Zi − αiBi||2F . All proxy learn-
ing schemes obtain smaller average quantization errors compared with baseline
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Fig. 5. Histograms of Z of WRN22 on CIFAR-100, i.e., the distributions of W ′R

Table 1. WRN-22 layer-wise weights quantization error and final accuracy. “Average”
refers to the mean quantization error, averaged across all elements

Layer ProxyBNN Orthogonal ProxyBNN Random ProxyBNN MSE Bi-Real [28]

Conv2 0.0473 0.0834 0.0695 0.1797

Conv3 0.0108 0.0248 0.0072 0.1022

Conv5 0.0081 0.0139 0.0021 0.0664

Conv6 0.0071 0.0114 0.0014 0.0086

Conv7 0.0043 0.0031 0.0011 0.0003

Conv8 0.0043 0.0006 0.0009 0.0001

Conv9 0.0043 0.0070 0.0073 0.0670

Conv10 0.0065 0.0036 0.0029 0.0390

Conv12 0.0039 0.0007 0.0018 0.0029

Conv13 0.0023 0.0005 0.0010 0.0002

Conv14 0.0014 0.0004 0.0007 0.0001

Conv15 0.0017 0.0003 0.0017 0.0001

Conv16 0.0031 0.0089 0.0079 0.0397

Conv17 0.0068 0.0076 0.0037 0.0374

Conv19 0.0060 0.0069 0.0035 0.0373

Conv20 0.0057 0.0068 0.0029 0.0331

Conv21 0.0055 0.0058 0.0035 0.0277

Conv22 0.0056 0.0055 0.0026 0.0235

Average 0.0054 0.0061 0.0035 0.0294

Acc. (%) 71.61 69.10 59.32 69.73

Bi-Real-Net [28]. To be specific, ProxyBNN minimizes the binarization loss in
the first and last few layers, which may facilitate feature extraction and seman-
tic analysis. Note that MSE focuses on how to quantize weights locally, which
generates over 8× smaller average loss than Bi-Real, yet results in poor per-
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Fig. 6. Analysis of the “effective” β-smoothness [39] of WRN22 network. For a layer
we measure the maximum �2-norm difference in gradient. The lower the values indicate
the smoother loss landscape (best viewed in color) (Color figure online)

formance. The orthogonal scheme presents a better trade-off between weights
binarization loss and the global cost function, and achieves the highest perfor-
mance. It is shown that unimodal weights distributions (i.e., the third row in
Fig.5) can be another group of solutions to minimizing quantization error, when
jointly optimized with cross-entropy loss �(·).
Optimization Landscape. If pre-binarization variables are close to zero, a
small gradient step can change binary weights from positive to negative and
vice versa, which may make the training easier. Motivated by this hypothesis,
we analyze the optimization landscape of different bases and observe the supe-
riority of the orthogonal scheme. Following [39], we measure the stability and
smoothness of the landscape by Lipschitzness and “effective” β-smoothness of
the loss function. As shown in Fig. 6, we observe consistent differences between
these schemes. The improved Lipschitzness encourages us to take a step in the
direction of a computed gradient, which provides a fairly accurate estimate of
the real gradient [39]. Figure 7 also demonstrates the effect of different bases on
the stability/Lipschitzness of the gradients. No matter how weights quantization
loss changes (Conv8/16/21 correspond to three cases in Table 1), the orthogonal
scheme still outperforms other candidates.

4 Experiments

To verify the effectiveness of the proposed approach, in this section, we intro-
duce three benchmark datasets: CIFAR-10, CIFAR-100, and ImageNet. We com-
prehensively evaluate our method on the mainstream deep CNN architectures,
including AlexNet [23], VGG [42], ResNet [15] and Wide ResNet [50].
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Fig. 7. Analysis of the gradient predictiveness [39] of WRN22 network. The shaded
region corresponds to the variation in �2-norm changes in gradient over the distance.
The thinner shade in plots show the smoother loss landscape and thus less training
difficulty (best viewed in color) (Color figure online)

4.1 Experimental Setup

Network Structure. Since modified network structures can be the game-
changer for training BNNs, we follow the same settings as prior works to make
fair comparisons. For AlexNet, we use the same architecture from XNOR-Net
[37] where batch normalization layers are added before activations and LRN lay-
ers are omitted. ResNet-18/34 refer to the original structure introduced in [15],
unless specified. In binary weights experiments, we simply replace full-precision
convolution layers with binary weights counterparts without any bells and whis-
tles. When both activations and weights are quantized to 1-bit (including 1 × 1
downsample layers), we use batch-normalization before each activation function
[10,37]. The modified ResNet/WRN [13,14,27,28] consist of double skip con-
nections [28], PReLU activations [7] and real-valued downsampling layers [28].
The operations are reordered as Batch-Normalization → Binarization → Binary-
Convolution → Activation, as proposed in XNOR-Net [37]. VGG9 is a VGG-like
structure with six convolutional layers and three fully-connected layers, first
described in BinaryConnect [9]. We use the same modification as [37,46]. As in
almost all previous works, the first and last layers in all experiments are kept
real.
Activation Binarization. There have been tremendous efforts on exploiting
binary activations [10,28,37,46,48]. To verify the robustness of ProxyBNN, we
consider two simple settings in our experiments: the signum function proposed
in BinaryNet [20] and round(clip(x)) introduced in DoReFa [52]. We conduct
the first setting in CIFAR experiments then we apply the second technique to
the ImageNet networks.
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Table 2. Performances of ProxyBNN trained with different bases. Top-1 accuracies on
benchmark datasets are reported (single stage, trained from scratch)

Model #Param Dataset Orthogonal Random MSE

ResNet18 2.80M Cifar10 91.87 (±0.36) 88.36 (±0.49) 67.88 (±0.38)

2.82M Cifar100 67.17 (±0.73) 53.58 (±1.08) 30.69 (±0.84)

WRN22 4.30M Cifar10 92.96 (±0.11) 91.24 (±0.22) 86.77 (±0.72)

4.33M Cifar100 71.57 (±0.14) 68.93 (±0.29) 58.00 (±0.57)

ResNet-18 11.70M ImageNet 58.7 53.7 36.8

Table 3. Error rates (%) on CIFAR-100 using WRN22

(a) Ablation studies on penalty factor γ

γ Error (%)

0.001 30.28 (±0.11)
0.0001 28.51 (±0.10)
1e−5 28.43 (±0.14)
1e−6 29.94 (±0.50)
1e−7 31.33 (±0.47)

(b) Effect of using different initial
learning rates for R

init. lrR Error (%)

lrw 30.77 (±0.29)
lrw × 0.1 28.43 (±0.14)
lrw × 0.01 30.35 (±0.05)
lrw × 0.001 31.44 (±0.30)

Ablation Study. In this section, we first evaluate the effects of the penalty
weight γ and different learning rates for the proxy matrix. Table 3a indicates that
a proper γ matters in the balance between cross-entropy loss and the penalty
term. We also observe that the basis should be updated a little slower than
the coordinates, as shown in Table 3b. To further verify the superiority of the
orthogonal scheme, we evaluate different bases on benchmarks (Table 2). The
performance gap is consistent with that in Table 1. Besides, Fig. 8 shows that
the property of the orthogonal basis roughly remains after training, i.e., RT

i Rj ≈
0 ∀i 
= j (for clarity, we normalize the max value to 1). Based on Table 3, we
apply the best settings to the following experiments without finetuning.

4.2 Results

CIFAR-10/100. The CIFAR-10/100 dataset consist of 50,000 train images and
a test set of 10,000 across 10/100 classes. Unless specified, the images are padded
by 4 pixels on each side then randomly cropped to 32 × 32 [13,14,27]. We use
a batch size of 128 for training, optimized by Adam [22] with cosine scheduler.
The initial learning rate for W is set to 0.005 and the weight decay is 1e−6 (same
for both R and W ). All networks are trained for 310 epochs.
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(a) Layer2 (b) Layer3 (c) Layer9 (d) Layer10 (e) Layer16 (f) Layer17

Fig. 8. Visualizations of RTR, where R is the learned proxy matrix

Table 4. Test accuracies on CIFAR-10/100, comparison with different 1-bit methods.
† indicates modified architectures [28] (details in Sect. 4.1). “MS” refers to the multi-
stage training strategy, e.g., binarizing the activations first, and then using the model
as initialization to train fully binarized networks. “Center” means using center loss [47]
during stage-2. “FP32” is the full-precision baseline. “Aug” indicates 32 × 32 random
cropping with 4 pixels padding

Model Kernel-Stage Method Cifar10 (%) Cifar100 (%) MS Center Aug

ResNet18† 16-16-32-64 PCNN [13] 78.93 41.41 � – �
GBCN [27] 81.22 47.96 � � �
ProxyBNN 84.53 52.07 – – �
FP32 90.77 65.15 – – �

WRN22† 64-64-128-256 PCNN [13] 91.37 69.98 � – �
GBCN [27] 92.72 71.85 � � �
BONN [14] 92.36 – � � �
ProxyBNN 92.96 71.57 – – �
FP32 95.75 77.34 – – �

VGG9 128-256-512 BNN [20] 89.9 – – – –

XNOR [37] 89.8 – – – –

SiBNN [46] 90.2 – – – –

ProxyBNN 90.5 63.23 – – –

FP32 91.7 67.01 – – –

ResNet18† 32-64-128-256 PCNN [13] 87.76 60.29 � – �
GBCN [27] 87.69 62.01 � � �
ProxyBNN 91.87 67.17 – – �
FP32 93.88 72.51 – – �

We compare our results with prior state-of-the-arts, as shown in Table 4.
Both over-parameterized architectures, such as VGG/WRN with the kernel stage
of 64-64-128-256, and compact ResNet-18 are considered. Our method in the
worst case is still competitive with recent works (results reported in the original
papers), without other techniques.
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Table 5. Comparison with state-of-the-art methods on ResNets. “MS” refers to the
multi-stage training strategy, e.g., binarizing the activations first, and then using the
model as initialization to train fully binarized networks. For binary weights experi-
ments, “MS” is fine-tuning from full-precision weights. † indicates modified architec-
tures [28] (details in Sect. 4.1)

Model Method Weight Activation Top-1 (%) Top-5 (%) MS

ResNet-18 XNOR [37] 1 1 51.2 73.2 –

BNN+ [10] 1 1 53.0 72.6 �
QNet [48] 1 1 53.6 75.3 �
XNOR++ [6] 1 1 57.1 79.9 –

ProxyBNN 1 1 58.7 81.2 –

BWN [37] 1 32 60.8 83.0 –

BWHN [18] 1 32 64.3 85.9 �
ADMM [24] 1 32 64.8 86.2 –

IR-Net [36] 1 32 66.5 86.8 –

ProxyBNN 1 32 67.3 87.2 –

FP32 32 32 69.3 89.2 –

ResNet-18† Bi-Real [28] 1 1 56.4 79.5 �
PCNN [13] 1 1 57.3 80.0 �
GBCN [27] 1 1 57.8 80.9 �
IR-Net [36] 1 1 58.1 80.0 –

BONN [14] 1 1 59.3 81.6 �
SiBNN [46] 1 1 59.7 81.8 –

ProxyBNN 1 1 63.3 84.3 –

ProxyBNN 1 1 63.7 84.8 �
PCNN [13] 1 32 63.5 85.1 –

ProxyBNN 1 32 67.7 87.7 –

FP32 32 32 68.5 88.3 –

ResNet-34 ProxyBNN 1 32 70.7 89.6 –

FP32 32 32 73.3 91.3 –

ResNet-34† ABC [25] 1 1 52.4 76.5 –

WRPN [31] 1 1 60.5 – –

Bi-Real [28] 1 1 62.2 83.9 �
IR-Net [36] 1 1 62.9 84.1 –

SiBNN [46] 1 1 63.3 84.4 –

ProxyBNN 1 1 66.3 86.5 –

FP32 32 32 70.4 89.3 –

ImageNet. ImageNet (ILSVRC2012) is one of the most challenging image clas-
sification benchmarks with over 1.2 million training images and 50K validation
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Table 6. Comparison with state-of-the-art methods on AlexNet. “MS” refers to the
multi-stage training strategy. For binary weights experiments, “MS” is fine-tuning from
full-precision weights, otherwise, training from scratch

Model Method Weight Activation Top-1 (%) Top-5 (%) MS

AlexNet DoReFa [52] 1 1 43.6 – –

XNOR [37] 1 1 44.2 69.2 –

RAD [11] 1 1 47.8 71.5 –

QNet [48] 1 1 47.9 72.5 �
SiBNN [46] 1 1 50.5 74.6 –

ProxyBNN 1 1 51.4 75.5 –

DoReFa [52] 1 32 53.9 76.3 –

BWN [37] 1 32 56.8 79.4 –

ADMM [24] 1 32 57.0 79.7 –

QNet [48] 1 32 58.8 81.7 �
ProxyBNN 1 32 59.3 81.3 –

FP32 32 32 61.8 83.5 –

images, that cover 1000 object classes. As in [13,14,27,28], we conduct the stan-
dard PyTorch [34] data preprocessing for both training and inference, i.e., ran-
dom resized 224×224 (227×227 for AlexNet) crop with the standard horizontal
flip. We follow the settings in CIFAR experiments, except that the initial learning
rate is set to 0.001 and the training time is 110 epochs.

For binary weights and further activation binarization, we compare the pro-
posed algorithm with the state-of-the-art approaches. Table 5 shows the per-
formance gap between binary weights networks and full-precision counterparts
have been narrowed to less than three points. The performance improvement in
Table 6 is consistent with ResNet. When comparing to multi-bit methods such as
5 bases ABC-ResNet18 [25] with 85.9% Top-5 accuracy, our approach achieves
25× less computing cost, yet suffers only −1.1% accuracy loss.

5 Conclusions

In this paper, we present a new technique for training binarized neural net-
works, that decomposes pre-binarization weights into the basis and coordinates.
We consider different construction schemes for the basis and empirically analyze
the superiority of the orthogonal scheme. When jointly optimized by weights
quantization error and cross-entropy loss, the orthogonal scheme preserves the
unimodal distribution while minimizing the binarization error. Our experiments
demonstrate that ProxyBNN has a better generalization capacity than previous
methods on benchmark datasets. These results show that mainstream architec-
tures can generally benefit from the proposed proxy learning, which enables the
deployment of deep binarized neural networks on low-power devices.
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Abstract. Remarkable progress has been made in 3D human pose esti-
mation from a monocular RGB camera. However, only a few studies
explored 3D multi-person cases. In this paper, we attempt to address the
lack of a global perspective of the top-down approaches by introducing a
novel form of supervision - Hierarchical Multi-person Ordinal Relations
(HMOR). The HMOR encodes interaction information as the ordinal
relations of depths and angles hierarchically, which captures the body-part
and joint level semantic and maintains global consistency at the same
time. In our approach, an integrated top-down model is designed to lever-
age these ordinal relations in the learning process. The integrated model
estimates human bounding boxes, human depths, and root-relative 3D
poses simultaneously, with a coarse-to-fine architecture to improve the
accuracy of depth estimation. The proposed method significantly out-
performs state-of-the-art methods on publicly available multi-person 3D
pose datasets. In addition to superior performance, our method costs
lower computation complexity and fewer model parameters.

Keywords: 3D human pose · Ordinal relations · Integrated model

1 Introduction

Estimating 3D human poses from a monocular RGB camera is fundamental
and challenging. It has found applications in robotics [13,72], activity recogni-
tion [32,50], human-object interaction detection [15,28,29,51], and content cre-
ation for graphics [1,4]. With deep neural networks [19,43,44,57] and large scale
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publicly available datasets [3,21,23,31,33,36,38,56], significant improvement has
been achieved in the field of 3D pose estimation. Most of the works [9,17,35,47,
59,60,64,71] focus on estimating the single-person pose. Recently, some meth-
ods [38,39,48,52,53,66,67] start to deal with multi-person cases. However, recov-
ering absolute 3D poses in the camera-centered coordinate system is quite a chal-
lenge. Since multi-person activities take place in cluttered scenes, inherent depth
ambiguity and occlusions make it still difficult to estimate the absolute position
of multiple instances.

Recently, top-down approaches [39,52,53] achieve noticeable improvements
in estimating multi-person 3D poses. These approaches first perform human
detection and estimate the 3D pose of each person by a single-person pose esti-
mator. However, the pose estimator is applied to each bounding box separately,
which raises the doubt that the top-down models are not able to understand
multi-person relationships and handle complex scenes. Without a broad view of
the input scenario, it is challenging to get rid of inherent depth ambiguity and
occlusion problems. In this paper, the relationship among multiple persons is
fully considered to address this limitation of top-down approaches.

We propose a novel form of supervision for 3D pose estimation - Hierarchical
Multi-person Ordinal Relations (HMOR). HMOR explicitly encodes the interac-
tion information as ordinal relations, supervising the networks to output 3D poses
in the correct order. Different from previous works [46,54,61] that only use rela-
tive depth information, HMOR considers both depths and angles relations and
expresses the ordinal information hierarchically, i.e., instance → part → joint,
which makes up for the lack of a global perspective of the top-down approaches.

Further, we propose an integrated top-down model to learn this knowledge
by encoding it into the learning process. The integrated model can be end-to-end
trained with back-propagation and performs human detection, pose estimation,
and human-depth estimation simultaneously. Since metric depth from a single
image is fundamentally ambiguous, estimating absolute 3D pose suffers from
inaccurate human-depth estimation. To improve the accuracy, we take a coarse-
to-fine approach to estimate human depth: i) initializes a global depth map, and
ii) finetunes the human depths by estimating the correction residual.

We evaluate our method on two multi-person [23,38] and one single-person 3D
pose datasets [21]. Our method significantly outperforms previous multi-person
3D pose estimation methods [26,37–39,52,67] by 12.3 PCKabs improvement on
the MuPoTS-3D [38] dataset, and 20.5mm improvement on CMU Panoptic [23]
dataset, with lower computation complexity and fewer model parameters. Com-
pared to state-of-the-art single-person methods [17,59,60,68], our method does
not need ground-truth bounding-box in the inference phase and still achieves com-
parable performance. Additionally, our proposed method is compatible with 2D
pose annotations, which allows the 2D-3D mixed training strategy.

The contributions of this paper can be summarized as follows:

• We propose HMOR, a novel form of supervision, to explicitly leverage the
relationship among multiple persons for pose estimation. HMOR divides
human relations into three levels: instance, part and joint. This hierarchical
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manner ensures both the global consistency and the fine-grained accuracy of
the predicted results.

• An integrated end-to-end top-down model is proposed for multi-person 3D
pose estimation from a monocular RGB input. We design a coarse-to-fine
architecture to improve the accuracy of human-depth estimation. Our model
jointly performs human detection, human-depth estimation, and 2D/3D pose
estimation.

2 Related Work

Multi-person 2D Pose Estimation. Most of the multi-person 2D pose esti-
mation methods can be divided into two categories: bottom-up and top-down
approaches. Bottom-up approaches localize the body joints and group them into
different persons. Traditional top-down approaches first detect human bounding
boxes in the image and then estimate single-person 2D poses separately.

Representative works [5,22,25,42] of the bottom-up approaches are reviewed.
Cao et al. [5] propose part affinity fields (PAFs) to model human bones. Complete
skeletons are assembled by detected joints with PAFs. Newell et al. [42] introduce
a pixel-wise tag to assign joints to a specific person. Kocabas et al. [25] assign
joints to detected persons by a pose residual network.

Top-down approaches [10,16,18,27,58,62,63] achieve impressive accuracy in
multi-person 2D pose estimation. Mask R-CNN [18] is an end-to-end model to
estimate multiple human poses but still process multiple persons separately. Fang
et al. [16] propose a two-stage framework (RMPE) to reduce the effect of the
inaccurate human detector. Sun et al. [58] propose the HRNet that maintains
high-resolution representations through the whole process.

Single-person 3D Pose Estimation. There are two approaches to the prob-
lem of single-person 3D pose estimation from monocular RGB: single-stage and
two-stage approaches.

Single-stage approaches [24,36,47,59,60] directly locate 3D human joints
from the input image. For example, Pavlakos et al. [47] propose a coarse-to-fine
approach to estimate a 3D heatmap for pose estimation. Kanazawa et al. [24]
recover 3D pose and body mesh by minimizing the reprojection loss. Sun et al.
[60] operate an integral operation as soft-argmax to obtain 3D pose coordinates
in a differentiable manner.

Two-stage approaches [2,7,17,35,40,45,64,65,71] first estimate 2D pose or
utilize the off-the-shelf accurate 2D pose estimator, and then lift them to the 3D
space. Martinez et al. [35] propose a simple baseline to regress 3D pose from 2D
coordinates directly. Moreno-Noguer [40] obtains more precise pose estimation
by the distance matrix representation. Yang et al. [64] utilize a multi-source
discriminator to generate anthropometrically valid poses.

Multi-person 3D Pose Estimation. A few works explore the problem of
multi-person 3D pose estimation from a monocular RGB. Rogez et al. [52,53]
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propose LCR-Net and LCR-Net++. They locate human bounding boxes and
classify those boxes into a set of K anchor-poses. A regression module is pro-
posed to refine the anchor-pose to the final prediction. Instead of using a learning-
based manner, they obtain the human depth by minimizing the distance between
the projected 3D pose and the estimated 2D pose. Mehta et al. [38] propose a
bottom-up method. Their proposed occlusion-robust pose-map (ORPM) enables
full body pose inference even under strong partial occlusions. Zanfir et al. [67]
propose MubyNet, a bottom-up model. MubyNet integrates a limb scoring model
and formulates the person grouping problem as an integer program. Moon
et al. [39] propose a top-down two-stage model. They utilize the off-the-shelf
human detection model and then perform single-person 3D pose estimation and
root-joint localization. Those top-down approaches are not able to utilize multi-
person relations since they estimate individual 3D pose separately. The bottom-
up approaches are still suffering from limited accuracy. Our method combines
the advantages of both approaches and boosts multi-person absolute 3D pose
estimation by leveraging the multi-person relations in the integrated end-to-end
top-down model.

Ordinal Relations. In the context of computer vision, several works learn
ordinal apparent depth [8,73] or reflectance [41,69] relationship as weak super-
vision. They motivated by the fact that ordinal relations are easier for humans to
annotate. In the case of single-person 3D pose estimation, [46,54,55] use depth
relations of body joints to generate 3D pose from 2D pose.

3 Method

We propose a novel representation, Hierarchical Multi-person Ordinal Rela-
tion (HMOR), to explicitly leverage ordinal relations among multiple persons
and improve the performance of 3D pose estimation. Compared with previous
works [46,54,61] that use ordinal relation in 3D pose estimation, HMOR extends
this idea in three dimensions: i) single-person to multi-persons, ii) joint level
to hierarchical instance-part-joint levels, iii) depth relations to angle relations.
Further, we develop an integrated model to aggregate HMOR into the end-to-
end training process. In this section, we first describe the unified representation
of the absolute multi-person 3D pose recovery under the top-down framework
(Sect. 3.1). Then we detail the encoding and training schemes of the proposed
HMOR (Sect. 3.2). Finally, the integrated model with a coarse-to-fine depth esti-
mation design is elaborated (Sect. 3.3).

3.1 Representation

Our task is to recover multiple absolute 3D human poses P = {Pabs
m }Nm=1 in the

camera-centered coordinate system, where N denotes the number of persons in
the input RGB image. We assume that there are J joints in a single 3D pose
skeleton. The mth absolute 3D pose can be formulated as:

Pabs
m = {km,j : (xabs

m,j , y
abs
m,j , z

abs
m,j)

T}Jj=1, (1)
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Fig. 1. Illustration of the proposed HMOR. (a) Definition of skeletal parts. (b) Monoc-
ular input image. (c–e) Hierarchical Multi-person Ordinal Relations. HMOR supervises
the ordinal relations among multiple persons

where km,j is the jth joint position of the mth absolute pose.
Human bounding boxes {B̂m}Nm=1, root-relative 3D poses {P̂rel

m }Nm=1, and
absolute depth of the root-joint {ẑabsm,R}Nm=1 are needed to estimate the absolute
3D poses. We term root-joint’s absolute depth as human depth, corresponding
to the pelvis bone position (the Rth joint of the body skeleton). We use ˆ to
denote the predicted values. The mth human bounding box B̂m and root-relative
3D pose P̂rel

m are formulated as:

B̂m = (ûtop
m , v̂top

m , ŵm, ĥm)T, (2)

P̂rel
m = {(ûm,j , v̂m,j , ẑ

rel
m,j)

T}Jj=1, (3)

where ûm,j and v̂m,j represent pixel coordinates of the estimated body joint with
respect to the bounding box. ẑrelm,j denotes the estimated depth of joint j relative
to the root-joint. ûtop

m , v̂top
m , ŵm, and ĥm are the top left corner coordinates,

the width, and the height of the predicted bounding box, respectively. With
the intrinsic matrix M, the final absolute 3D pose P̂abs

m can be obtained via
back-projection, where each joint is calculated by:

⎛
⎝

x̂abs
m,j

ŷabs
m,j

ẑabsm,j

⎞
⎠ = (ẑrelm,j + ẑabsm,R)M−1

⎛
⎝

ûm,j + ûtop
m

v̂m,j + v̂top
m

1

⎞
⎠ . (4)

3.2 Hierarchical Multi-person Ordinal Relations

Our initial goal is to leverage multi-person interaction relations to improve the
performance of 3D pose estimation. Traditional top-down methods [39,52,53]
lack a global perspective because they estimate single human poses in each
bounding box separately. Therefore, they are vulnerable to truncation, self-
occlusions, and inter-person occlusions. Here, we develop a novel form of super-
vision named Hierarchical Multi-person Ordinal Relations (HMOR) to model
human relations explicitly. Basically, given an image of human activities, we
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divide the relationship into three levels: i) instance-level depth relations, ii)
part-level angle relations, iii) joint-level depth relations. In each level, HMOR
formulates pair-wise ordinal relations and punishes the wrong-order pairs. In the
following, we detail our HMOR formulations that reflect interpretable relations
of human activities.

Instance-Level Depth Relations. In a given camera view, for two persons
(p1,p2), we denote the instance depth-relation function as Rins(p1,p2;n⊥), tak-
ing the value:

• +1, if p1 is closer than p2 in the n⊥ direction,
• −1, if p2 is closer than p1 in the n⊥ direction,
• 0, if the depths of two person are equal,

where n⊥ is the camera normal vector. We define the position of a person as the
arithmetic mean of its body joints, i.e. pm = 1

J

∑J
j k̂m,j . The ordinal error of a

pair of instances is denoted as:

err ins(p̂1, p̂2) = log(1 + max(0, Rins(p̂1, p̂2;n⊥) ∗ [(p̂1 − p̂2) · n⊥])). (5)

This differentiable instance ranking expression will punish the wrong-order
instance pairs and ignore the correct results. For example, if p1 is closer than p2,
and the prediction relation is correct, i.e., (p̂1 − p̂2) · n⊥ < 0, the multiplication
result will be smaller than 0 and ignored by the maximum operation.

Supervising the instance-level depth relations is to help the network build a
global understanding of the input scenario. Ablative study in Sect. 4.4 reveals
that the accuracy of human-depth estimation benefits a lot from instance-level
depth relations.

Part-Level Angle Relations. As shown in Fig. 1(a), we divide the body skele-
ton into S = 14 parts according to the kinematically connected joints. Each part
t is a vector defined by start-joint kstart and end-joint kend , i.e., t = kend−kstart .
Since body-parts are a set of 3D vectors with direction and length values, we
can not directly compare their depths. Here, we utilize a unique attribute of
body-part – direction, and compare their angle relations. To simplify the ordinal
relation of angles, we first project the body-part vector tm,s onto the camera
plane:

tn⊥
m,s = tm,s − (tm,s · n⊥)n⊥, (6)

where m is the person index, and s is the body-part index. In a given cam-
era view, for a pair of body parts (tm1,s1 , tm2,s2), we denote the angle-relation
function as Rarg(tm1,s1 , tm2,s2 ;n⊥), taking the value:

• +1, if Arg(tn⊥
m1,s1) < Arg(tn⊥

m2,s2),• −1, if Arg(tn⊥
m1,s1) > Arg(tn⊥

m2,s2),• 0, if Arg(tn⊥
m1,s1) = Arg(tn⊥

m2,s2),
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where Arg(tn⊥) computes the principal value of the argument of the projection
vector. The ordinal error of a pair of body-parts is:

errpart(t̂m1,s1 , t̂m2,s2) = [Rarg(t̂m1,s1 , t̂m2,s2 ;n⊥)∗ [(t̂m1,s1 × t̂m2,s2) ·n⊥]]+. (7)

With the cross-product operation ×, we supervise the direction of the angle
between a pair of body-parts. If the angle between t̂m1,s1 and t̂m2,s2 is in the
correct direction, the projection of the cross-product (t̂m1,s1 × t̂m2,s2) · n⊥ will
have an opposite sign of Rarg(·). Therefore, the negative multiplication results
will be ignored by the [·]+ operation.

Another intuitive way is to express body-parts as particles and supervise
their depth relations, using the average position of its two endpoints. To compare
vector and particle representations, we conduct ablative experiments and find
out vector is superior to particle representation. We suspect this is because the
depth relations have been fully utilized in the other two levels, supervising depths
of body-part is redundant. More experimental details are reported in Sect. 4.4.

Joint-Level Depth Relations. The definition of body joint depth-relation
function Rjt(km1,s1 ,km2,s2 ;n⊥) is similar to Rins :

• +1, if km1,s1 is closer than km2,s2 in the n⊥ direction,
• −1, if km2,s2 is closer than km1,s1 in the n⊥ direction,
• 0, if the depths of two joints are equal.

The ordinal error of a pair of joints is denoted as:

err jt(k̂m1,s1 , k̂m2,s2) = log(1+[Rjt(k̂m1,s1 , k̂m2,s2 ;n⊥]+∗[(k̂m1,s1−k̂m2,s2)·n⊥])).
(8)

Denoting the set of estimated persons, body-parts, and joints pairs as Iins , Ipart ,
and Ijt , respectively, the HMOR loss is computed as follows:

LHMOR =
1

|Iins |
∑
p̂1,p̂2

err ins +
1

|Ipart |
∑

t̂1,t̂2

errpart +
1

|Ijt|
∑

k̂1,k̂2

err jt (9)

Augmented Training Scheme. As mentioned before, HMOR computes the
ordinal relations with respect to a vector n⊥. Initially, this vector is set as the
camera normal vector. However, we notice that annotations from 3D human pose
datasets (Human3.6M, MuPoTS-3D, and CMU Panoptic) are mostly captured
in an laboratory environment, limited to the fixed viewing angle. To alleviate
camera restrictions, we sample virtual views to improve the generalization ability.

In the training phase, we generate a virtual view vector nv by rotating the
camera normal vector n⊥ randomly. We adapt the uniform sphere sampling
strategy from Marsaglia et al. [34]:

nv = (
√

1 − u2 cos θ,
√

1 − u2 sin θ, u)T, (10)

where θ ∼ U [0, 2π) and u ∼ U [0, 1]. In this way, HMOR can calculate the
ordinal relations with respect to an arbitrary viewing angle. The effectiveness of
the sampled view is validated in Sect. 4.4.
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Δẑ

Fig. 2. Architecture of the integrated model. The ResNet-50 based backbone network
extract RoI features and initial depth map. PoseHead and DetHead perform root-
relative 3D pose estimation and human detection, respectively. DepthHead retrieves
initial depths from the depth map and predicts refined human depths by correction
residual Δẑ. This architecture allows the 2D-3D mixed training strategy

Additionally, a mixed datasets training strategy is utilized for a fair compar-
ison with previous methods in experiments. HMOR is compatible with 2D pose
datasets and single-person 3D pose datasets. Given an image only with 2D pose
annotations, we can define the part-level angle relations, since the 2D pose skele-
tons are the projections of body-parts with respect to n⊥. As for single-person
cases, HMOR only supervises the joint and body-part relations of an individual
person and ignore instance-level relations.

3.3 Integrated End-to-end Model

In our approach, an integrated end-to-end top-down model is designed to
aggregate HMOR into the end-to-end training process. Although the disjoint
model [39] can use different strong networks for different tasks (e.g., human
detection, pose estimation, depth estimation), an integrated model has three
advantages over the disjoint learning model: 1) Fewer model parameters. 2) Only
an integrated model can leverage the multi-person relations since the disjoint
learning methods train their model with single person annotations separately.
3) The multi-task training strategy of the integrated model can benefit each
task. In our experiments, the integrated model is found to have much better
performance than the disjoint learning methods.

The overall architecture of our model is summarized in Fig. 2. Our model
consists of two stages. In the first stage, the backbone network extracts RoIs
and the initial depth map. PoseHead and DetHead estimate root-relative 3D
poses and human bounding boxes from RoIs, respectively. In the second stage,
we retrieve the initial depths of root-joints from the depth map. The DepthHead
takes the RoI features and initial depth as input and outputs the correction
residual Δẑ. The residual is added to the initial depth to obtain refined human
depths. Aggregating the outputs from DetHead, PoseHead, and DepthHead, the
absolute 3D poses P̂abs are estimated via back-projection as Eq. 4.
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Human Detection. The architecture for human detection and the loss function
Ldet follow the design in Mask R-CNN [18]. Region Proposal Network (RPN) pro-
poses candidate human bounding boxes, and the DetHead predicts class labels and
bounding-box offsets. RoiAlign is used to extract feature maps from each RoI.

Root-Relative 3D Pose Estimation. PoseHead is proposed to estimate the
root-relative 3D pose P̂rel from an input RoI feature. We use 3D heatmaps as
the representations of 3D poses. The soft-argmax operation [60] is adopted to
extract P̂rel from the 3D heatmap. �1 regression loss is applied to root-relative
coordinates P̂rel

m :

Lpose =
1
N

1
J

N∑
m

‖P̂rel
m − Prel

m ‖1. (11)

RoIAlign extracts 14 × 14 RoI features, which are fed into the PoseHead subse-
quently. We adopt a simple network as PoseHead, including three residual blocks
for feature extraction, a transposed convolution [14] for upsampling, a batch nor-
malization layers [20], a ReLU activation function, and a 1× 1 convolution. The
size of an output heatmap is 28 × 28 × 28.

Human Depth Estimation. Direct human-depth regression from an input
RoI is challenging. Part of the challenges comes from the variety of camera
parameters and human body shapes. Furthermore, the inputs of DepthHead are
fixed-size RoI features, which erase the information of projected body shapes
and sizes. Inspired by the idea of iterative error feedback (IEF) from previous
works [6,12,24], we design a coarse-to-fine estimation approach to enhance the
accuracy of human-depth regression. The model will first predict an initial depth
of root-joint ẑinit . Then the DepthHead takes the RoI features and the initial
depth ẑinit as an input and outputs the residual Δz. Ideally, the refined depth
is updated by adding this residual to the initial estimate ẑrefine = ẑinit + Δz.

Depth Initialize. To estimate the initial depths of root-joints, we directly regress
an initial depth map. During training, we first normalize the absolute depth value
by focal lengths and then calculate the loss Linit between the ground truth and
the initial depth map in the area around the root-joint’s 2D pixel location:

znormR = zabsR /
√

fx · fy. (12)

Linit =
1
N

N∑
m

‖znormm,R − ẑinitm,R‖1, (13)

Depth Refinement. In the refinement step, we retrieve the initial-depth values
of root-joints from the depth map according to their 2D pixel locations. Because
the input features are resized by RoIAlign, we first need to transfer the original
depth to the equivalent depth of the resized person. According to the pinhole
camera model:
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zeq,normR = znormR ·
√

ABox

ARoI
, (14)

ẑeq,initR = ẑinitR ·
√

ABox

ARoI
, (15)

where ABox denotes the area of the bounding box, and ARoI denotes the area
of RoI. DepthHead extracts 1D features from RoIs. Then the equivalent initial-
depth values ẑeq,initm,R are concatenated with the extracted features and fed into
an fc layer to predict the residual Δẑ. The loss function of the refinement step
Lrefine is defined as:

Lrefine =
1
N

N∑
m

‖zeq,normm,R − ẑeq,initm,R − Δẑm‖1. (16)

In the testing phase, we can recover the absolute depth of root-joint ẑabsm,R as:

ẑabsm,R = (Δẑm + ẑeq,initm,R ) ·
√

fx · fy · ARoI

ABox
. (17)

The DepthHead uses three residual blocks (following ResNet [19]) and an
average pooling layer to extract 1D features. The FC layer contains 512 neurons.

The end-to-end training loss is formulated as:

L = Ldet + Lpose + Linit + Lrefine + LHMOR. (18)

4 Experiment

In this section, we first introduce the datasets employed for quantitative eval-
uation and elaborate implementation details. Then we report our results and
compare the proposed method with state-of-the-art methods. Finally, ablation
experiments are conducted to evaluate our contributions and show how each
choice contributes to our state-of-the-art performance.

4.1 Datasets

MuCo-3DHP and MuPoTS-3D: MuCo-3DHP is a multi-person composited
3D human pose training dataset. MuPoTS-3D is the real-world scenes test set.
Following [38,39], 400K composited frames are utilized for training.

CMU Panoptic: CMU Panoptic [23] is a multi-person 3D pose dataset cap-
tured in an indoor dome with multiple cameras. Here we follow the evaluation
protocol of [66,67].

3DPW: 3D Poses in the Wild (3DPW) [33] is a recent challenging dataset,
captured mostly in outdoor conditions. It contains 60 video sequences (24 train,
24 test, and 12 validation).

Human3.6M: Human3.6M [21] is an indoor benchmark for single-person 3D
pose estimation. A total of 11 professional actors (6 male, 5 female) perform 15
activities in a laboratory environment.
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Table 1. Quantitative comparisons with state-of-the-art methods on the MuPoTS-3D
dataset. “-” shows the results that are not available

Method AUCrel↑ 3DPCKrel↑ 3DPCKabs↑
LCRNet [52] - 53.8 -

Single Shot [38] - 66.0 -

LCRNet++ [53] - 70.6 -

Xnect [37] - 70.4 -

Moon et al. [39] 39.8 81.8 31.5

Ours 43.5 82.0 43.8

Table 2. Quantitative comparisons of MPJPE on the CMU Panoptic dataset

Method Haggling Mafia Ultimatum Pizza Mean↓
Popa [49] 217.9 187.3 193.6 221.3 203.4

Zanfir [66] 140.0 165.9 150.7 156.0 153.4

Zanfir [67] 72.4 78.8 66.8 94.3 72.1

Ours 50.9 50.5 50.7 68.2 51.6

4.2 Implementation Details

Our method is implemented in PyTorch. We adopt a ResNet-50 [19] based
FPN [30] as our model backbone. The backbone is initialized with the Ima-
geNet [11] pre-trained model. The settings of each network head are reported in
Sect. 3.3. We resize the image to 1333 × 800 and feed into the network. SGD is
used for optimization, with a mini-batch size of 32. All tasks are trained simul-
taneously. We adopt the linear learning rate warm-up policy. The learning rate
is set to 0.2/3 at first and gradually increases to 0.2 after 2.5 k iterations. We
reduce the learning rate by a factor of 10 at the 10th and 20th epochs. In each
experiment, our model is trained for 30 epochs with 16 NVIDIA 1080 Ti GPUs.
We perform data augmentations including horizontal flip and multi-scale train-
ing. Additional COCO [31] 2D pose estimation data are used in the training
phase. For evaluation, we report the flip-test results. All reported numbers have
been obtained with a single model without ensembling.

4.3 Compare with Prior Art

MuPoTS-3D. We compare our method against state-of-the-art methods under
three protocols. PCKabs is used to evaluate absolute camera-centered coordinates
of 3D poses. Additionally, PCKrel and AUCrel are used to evaluate root-relative
3D poses after root alignment. Quantitative results are reported in Table 1. With-
out bells and whistles, our method surpasses state-of-the-art methods by 12.3
PCKabs (39.0% relative improvement). Our method demonstrates a clear advan-
tage for handling multi-person 3D poses.
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As for root-relative results, our method achieves 82.0 PCKrel and 43.5
AUCrel. Note that the PCK result relies on the threshold value. AUC can reflect
a more reliable result since it computes the area under the PCK curve from var-
ious thresholds. Our method outperforms the previous methods by 3.7 AUCrel.

CMU Panoptic. Following previous works [66,67], we evaluate our method
under MPJPE after root alignment. Table 2 provides experimental results. In
this dataset, the activities take place in a small room. Thus, the scenarios are
severely affected by the occlusion problem. Our method effectively reduces the
interference of occlusion and outperforms state-of-the-art methods by 20.5 mm
MPJPE (28.4% relative improvement).

Human3.6M. We conduct experiments on Human3.6M dataset to evaluate
the performance of root-relative 3D pose estimation. Two experimental proto-
cols are widely used. Protocol 1 uses PA MPJPE and Protocol 2 uses MPJPE
as evaluation metrics. As most of the previous methods use the ground-truth
bounding box, our method does not require any ground-truth information at
inference time. Quantitative results are reported in Table 3. Our method achieves
comparable performance with single-person methods and outperforms previous
multi-person 3D pose estimation methods.

4.4 Ablation Study

In this study, we evaluate the effectiveness of the proposed HMOR and integrated
model. We evaluate on 3DPW dataset that contains in-the-wild complex scenes
to demonstrate the strength of our model. We further propose ABS-MPJPE to
evaluate the absolute 3D pose estimation results without root alignment.

Effect of Hierarchical Multi-person Ordinal Relations. In this experi-
ment, we study the effectiveness of using HMOR supervision. We first implement

Table 4. Ablative study on the effects of HMOR

Settings 3DPW

MPJPE↓ PA- ↓ ABS- ↓
(a) baseline 95.7 63.6 169.3

+ Labs 94.6 61.1 158.2

+ jt 89.9 59.7 132.8

+ part 90.2 60.3 143.2

+ instance 93.3 61.2 128.3

+ jt + part 89.1 58.3 125.9

+ jt + instance 89.2 58.5 122.3

+ part + instance 89.5 59.5 123.6

+ jt + part + instance 88.3 57.8 119.6

(b) + jt + particle-part + instance 89.0 58.2 119.5

(c) + jt + part + instance + sample views (Final) 87.7 57.4 118.5

(d) w/o refine depth 88.4 58.1 133.6
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a vanilla baseline without HMOR supervision. Moreover, we implement another
baseline by directly supervising the predicted absolute 3D poses with an �1 loss
Labs . Intuitively, since the human poses are evaluated in the camera coordinate
system, the local optimum for Labs is consistent with the evaluation metrics.

The experimental results are shown in Table 4(a). The model trained with
Labs supervision has better performance than the vanilla baseline, but is still infe-
rior to HMOR supervision. HMOR supervision brings 7.4 mm MPJPE improve-
ment. By removing three types of relations separately, we can observe that
instance relation affects the absolute pose accuracy (ABS-MPJPE) most, while
part and joint relations mainly affect the root-relative pose accuracy.

Variants of HMOR. In this experiment, we examine a variant of HMOR.
When handling the part relations, we represent a body part as a particle rather
than a vector. The position of a body part is defined as the average of its two
endpoints. Similar to joint and instance, we supervise the depth relations of
the particle body-parts. The experimental results are shown in Table 4(b). The
particle representation produces inferior performance than the vector represen-
tation.

Effect of Sampled Views. Table 4(c) reports the result of training with sam-
pled views. Compare with the results in Table 4(a) that only use the original
camera normal vector n⊥, sampled views provide 0.6 mm MPJPE improvement.

Effect of Coarse-to-Fine Depth Surpervision. In this experiment, we study
the effectiveness of the coarse-to-fine design for human depth estimation. We
remove the refinement step and output the initial value directly. The experimen-
tal results are shown in Table 4(d). We observe that the coarse-to-fine design is
necessary to produce accurate human depth.

Fig. 3. Qualitative results of our proposed method on COCO validation set (left) and
MuPoTS-3D test set (right)

Table 5. Ablative study on computation complexity and model parameters

Method #Params↓ GFLOPs↓ AUCrel ↑ PCKrel ↑ PCKabs ↑
Moon [39] 167.7M 547.8 39.8 81.8 31.5

Ours 45.0M 320.2 43.5 82.0 43.8
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Computation Complexity. The experimental results of computation com-
plexity and model parameters are listed in Table 5. We compare our method
with Moon et al. [39], which is the only open-source multi-person 3D pose esti-
mation method. Our approach obtains superior results to the state-of-the-art
3D pose estimation method (both absolute pose and root-relative pose), with
significantly lower computation complexity and fewer model parameters.

5 Conclusion

In this paper, we proposed a novel form of supervision - HMOR, to learn multi-
person 3D poses from a monocular RGB image. HMOR supervises the multi-
person ordinal relations in a hierarchical manner, which captures fine-grained
semantics and maintains global consistency at the same time. To end-to-end
learn the ordinal relations, we further proposed an integrated model with a
coarse-to-fine depth-estimation architecture. We demonstrate the effectiveness of
our proposed method on standard benchmarks. The proposed method surpasses
state-of-the-art multi-person 3D pose estimation methods, with lower computa-
tion complexity and fewer model parameters. We believe the idea of leveraging
multi-person relations can be further explored to improve 3D pose estimation,
e.g., exploit the relations via network design.

Acknowledgements. This work is supported in part by the National Key R&D Pro-
gram of China, No. 2017YFA0700800, National Natural Science Foundation of China
under Grants 61772332Shanghai Qi Zhi Institute.
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Abstract. Object recognition has seen significant progress in the image
domain, with focus primarily on 2D perception. We propose to leverage
existing large-scale datasets of 3D models to understand the underlying
3D structure of objects seen in an image by constructing a CAD-based
representation of the objects and their poses. We present Mask2CAD,
which jointly detects objects in real-world images and for each detected
object, optimizes for the most similar CAD model and its pose. We con-
struct a joint embedding space between the detected regions of an image
corresponding to an object and 3D CAD models, enabling retrieval of
CAD models for an input RGB image. This produces a clean, lightweight
representation of the objects in an image; this CAD-based representa-
tion ensures a valid, efficient shape representation for applications such
as content creation or interactive scenarios, and makes a step towards
understanding the transformation of real-world imagery to a synthetic
domain. Experiments on real-world images from Pix3D demonstrate the
advantage of our approach in comparison to state of the art. To facilitate
future research, we additionally propose a new image-to-3D baseline on
ScanNet which features larger shape diversity, real-world occlusions, and
challenging image views.

1 Introduction

Object recognition and localization in images has been a core task of computer
vision with a well-studied history. Recent years have shown incredible progress
in identifying objects in RGB images by predicting their bounding boxes or
segmentation masks [10,17,27]. Although these advances are very promising,
recognizing 3D attributes of objects such as shape and pose is crucial to many
real-world applications. In fact, 3D perception is fundamental towards human
understanding of imagery and real-world environments – from a single RGB
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image a human can easily perceive geometric structure, and is paramount for
enabling higher-level scene understanding such as inter-object relationships, or
interaction with an environment by exploration or manipulation of objects.

At the same time, we are now seeing a variety of advances in understanding
the shape of a single object from image view(s), driven by exploration of various
geometric representations: voxels [7,41,44], points [11,45], meshes [9,15,42], and
implicit surfaces [31,33]. While these generative approaches have shown signifi-
cant promise in inferring the geometry of single objects, these approaches tend
to generate geometry that may not necessarily represent a valid shape, with ten-
dency towards noise or oversmoothing, and excessive tessellation. Such limita-
tions render these results unsuitable for many applications, for instance content
creation, real-time robotics scenarios, or interaction in mixed reality environ-
ments. In addition, the ability to digitize the objects of real world images to
CAD models opens up new possibilities in helping to bridge the real-synthetic
domain gap by transforming real-world images to a synthetic representation
where far more training data is available.

In contrast, we propose Mask2CAD to join together the capabilities of 2D
recognition and 3D reconstruction by leveraging CAD model representations
of objects. Such CAD models are now readily available [4] and represent valid
real-world object shapes, in a clean, compact representation – a representation
widely used by existing production applications. Thus, we aim to infer from a
single RGB image object detection in the image as well as 3D representations of
each detected object as CAD models aligned to the image view. This provides
a geometrically clean, compact reconstruction of the objects in an image, and a
lightweight representation for downstream applications.

Input Inst. Seg. Shape Embed.

Object Center

Output

Fig. 1. Mask2CAD aims to predict object mask, and 3D shape in the scene. We achieve
this by formulating an image-shape embedding learning problem. Combined with pose
and object center prediction, Mask2CAD outputs realistic 3D shapes of objects from
a single RGB image input. The entire system is differentiable and learned end-to-end.

Our Mask2CAD approach jointly detects object regions in an image and
learns to map these image regions and CAD models to a shared embedding space
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(See Fig. 1). At train time we learn a joint embedding which brings together
corresponding image-CAD pairs, and pushes apart other pairs. At test time,
we retrieve shapes by their renderings from the embedding space. To align the
shapes to the image, we develop a pose prediction branch to classify and refine
the shape alignment. We train our approach on the Pix3D dataset [39], achieving
more accurate reconstructions than state of the art. Importantly, our retrieval-
based approach allows adaptation to new domain by simply adding CAD models
to the CAD model set without any re-training. Experiments on unseen shapes
of the Pix3D dataset [39] show notable improvement when we have access to
all CAD models at test time (but no access to corresponding RGB images of
the unseen models and no re-training). By leveraging CAD models as shape
representation, we are able to predict multiple distinct 3D objects per image
efficiently (approximately 60 ms per image).

In addition to Pix3D, we also apply Mask2CAD on ScanNet and propose the
first single-image to 3D object reconstruction baseline. Compared to Pix3D, this
dataset contains 25K images, an order of magnitude more 3D shapes, complex
real-world occlusions, diverse views and lighting conditions. Despite these chal-
lenges, Mask2CAD still manages to place appropriate CAD models that match
the image observation (see Fig. 5). We hope Mask2CAD could serve as a bench-
mark for future retrieval methods and reference for generative methods.

Mask2CAD opens up possibilities for object-based 3D understanding of
images for content creation and interactive scenarios, and provides an initial
step towards transforming real images to a synthetic representation (Fig. 2).

RGB Input

Shape Input

Encoder

Mask

    Shape

Pose

   Center

Encoder

ROI

̂δ = ( ̂δx, ̂δy)

Lcenter = Huber( ̂δ, δgt)

Lpose = CE( ̂qcls, qcls) + Huber( ̂qreg, qreg)

p = ( ̂qcls, ̂qreg)

Lshape = − ∑
p∈Ph

log
D( f im, f obj

p )
D( f im, f obj

p ) + C∑n∈Nh
D( f im, f obj

n )

f obj
p

f obj
n

f im

f im = [ f0, f1, . . . , fd]

Image-Shape 
Embedding

X

Fig. 2. Overview of our Mask2CAD approach for joint object segmentation and shape
retrieval from a single RGB image. At train time, object detection is performed on an
RGB image to produce a bounding box, segmentation mask, and feature descriptor for
each detected object. The object feature descriptor is then used to train for an image-
CAD embedding space for shape retrieval, as well as pose regression for the object
rotation and center regression for its location. The embedding space is constructed
through a triplet loss with corresponding and non-corresponding shapes to a detected
object region of an image.
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2 Related Work

Object Recognition in Images. Our work draws inspiration from the suc-
cess of 2D object detection and segmentation in the image domain, where myr-
iad methods have been developed to predict 2D object bounding boxes and
class labels from a single image input [12,27,29,34,35]. Recent approaches have
focused on additionally predicting instance masks for each object [17,23]. We
build from this 2D object detection and segmentation to jointly learn to predict
shape as well.

Single-View Object Reconstruction. In recent years, a variety of approaches
have been developed to infer 3D shape from a single RGB image observation,
largely focusing on the single object scenario and exploring a variety of shape
representations in the context of learning-based methods. Regular voxel grids
are a natural extension of the 2D image domain, and have been shown to
effectively predict global shape structures [7,44], but remain limited by com-
putational and memory constraints when scaling to high resolutions, as well
as uneconomical in densely representing free space. Thus methods which focus
representation power on surface geometry have been developed, including hier-
archical approaches on voxels such as octrees [36,41], or point-based represen-
tations [11,45]. More recently, methods have been developed to predict triangle
meshes, largely based on strong topological assumptions such as deforming an
existing template mesh [42] while free-form generative approaches tend to remain
limited by computational complexity to very small numbers of vertices [9].
Implicit reconstruction approaches have also shown impressive shape reconstruc-
tion results at relatively high resolution by predicting the occupancy [31] or
signed distance field value [33] for point sampled locations.

Mesh R-CNN [13] pioneered an approach to extend such single object recon-
struction to jointly detect and reconstruct shape geometry for each detected
object in an RGB image. Mesh R-CNN extends upon the object recognition
pipeline of Mask R-CNN [17] to predict initial voxel-based occupancy of an
object, which is then refined by a graph convolutional network to produce an
output mesh for each object.

While these approaches for object reconstruction have shown significant
promise in predicting general, structural shape properties, due to the low-level
nature of the reconstruction approaches (generating on a per-voxel/per-point
basis), the reconstructed objects tend to be noisy or oversmoothed, may not rep-
resent valid real-world shapes (e.g., disconnected in thin regions, missing object
symmetries), and inefficiently represented in geometry (e.g., over-tessellated to
achieve higher resolutions). In contrast, our Mask2CAD approach leverages exist-
ing CAD models of objects to jointly segment and retrieve the 3D shape for each
object in an image, producing both an accurate reconstruction and clean, com-
pact geometric representation.

CAD Model Priors for 3D Reconstruction. Leveraging geometric model-
based priors for visual understanding has been established near the inception
of computer vision and robotic understanding [3,6,37], although constrained by
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the geometric models available. With increasing availability of larger-scale CAD
model datasets [4,39], we have seen a rejuvenation in understanding the objects
of a scene by retrieving and aligning similar CAD models. Most methods focus
on aligning CAD models to RGB-D scan, point cloud geometry, or 2D-3D surface
mapping though various geometric feature matching techniques [1,2,14,20,22,
25,38]. Izadinia and Seitz [21] and Huang et al. [18] propose to optimize for
both scene layouts and CAD models of objects from image input, leveraging
analysis-by-synthesis approaches; these methods involve costly optimization for
each input image (minutes to hours).

From single image views of a object, Li et al. [26] propose a method to con-
struct a joint embedding space between RGB images and CAD models by first
constructing the space based on handcrafted shape similarity descriptors, and
then optimizing for the image embeddings into the shape space. Our approach
also optimizes for a joint embedding space between image views and CAD models
in order to perform retrieval; however, we construct our space by jointly learn-
ing from both image and CAD in an end-to-end fashion without any explicit
encoding of shape similarity.

3 Mask2CAD

3.1 Overview

From a single RGB image, Mask2CAD detects and localizes objects by recogniz-
ing similar 3D models from a candidate set, and inferring their pose alignment
to the image. We focus on real-world imagery and jointly learn the 2D-3D rela-
tions in an end-to-end fashion. This produces an object-based reconstruction
and understanding of the image, where each object by nature is characterized
by a valid, complete 3D model with a clean, efficient geometric representation.

Specifically, from an input image, we first detect all objects in the image
domain by predicting their bounding boxes, class labels, and segmentation
masks. From these detected image regions, we then learn to construct a shared
embedding space between these image regions and 3D CAD models of objects,
which enables retrieving a geometrically similar model for the image observation.
We simultaneously predict the object alignment to the image as 5 dof pose opti-
mization (z-depth translation given), yielding a 3D understanding of the objects
in the image.

Object Detection. For object detection, we build upon ShapeMask [23], a state-
of-the-art instance segmentation approach. ShapeMask takes as input an RGB
image and outputs detected objects characterized by their bounding boxes,
class labels, and segmentation masks. The one-stage detection approach of Reti-
naNet [27] is leveraged to generate object bounding box detections, which are
then refined into instance masks by a learned set of shape priors. We modify
it to leverage the learned features for our 3D shape prediction. Each bounding
box detection is used to crop features from the corresponding level of feature
pyramid to produce a feature descriptor Fi for the instance mask prediction Mi
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(e.g. 32 × 32) of object i; we then take the product Mi ◦Fi as the representative
feature map for object i as seen in the image. This is then used to inform the
following CAD model retrieval and pose alignment.

3.2 Joint Embedding Space for Image-CAD Retrieval

The core of our approach lies in learning to seamlessly map between image views
of an object and 3D CAD models, giving an association between image and
3D geometry. The CAD models represent an explicit prior on object geometry,
providing an inherently clean, complete, and compact 3D representation of an
object. We learn this mapping between image-CAD by constructing a shared
embedding space – importantly, as we show in Sect. 4, our approach to jointly
learn this embedding space constructs a space that is robust to new, unseen
CAD models at test time.

Constructing a joint embedding space between image regions and 3D object
geometry requires mapping across two very different domains, where in contrast
to a geometric CAD model, an image is view-dependent and composed of the
interaction of scene geometry with lighting and material. To facilitate the con-
struction of this shared space between, we thus represent each object similar to
a light field descriptor [5], rendering a set of k views Ii

0, ..., I
i
k for an object Oi.

For all our experiments, we use k = 16; the set of canonical views for each object
is determined by K-medoid clustering of the views seen of the object category
in the training set. In addition, we augment the pool of anchor-positive pairs by
using slightly jittered groundtruth views of the objects.

The embedding space is then established between the image region features
Mi◦Fi from the detection, and the 3D object renderings Ij

0 , ..., I
j
k. Representative

features for the image region descriptions and object renderings are extracted by
a series of convolutional layers applied to each input. The convolutional networks
to extract these features are structured symmetrically, although we do not share
weights due to the different input domains (See Sect. 3.4 for more details). We
refer to the resulting extracted feature descriptors as f im and fobj for the image
regions and object views, respectively. The f im come from the regions of interest
(ROI) shared with the 2D detection and segmentation branch. More specifically,
the encoder backbone is a ResNet feature pyramid network and the decoder is
a stack of 3 × 3 convolution layers on the ROI features.

We guide the construction of the embedding space with a noise contrastive
estimation loss [32] for f im describing a detected image region

Lc = −
∑

p∈Ph

log
D(f im, fobj

p )

D(f im, fobj
p ) + C

∑
n∈Nh

D(f im, fobj
n )

(1)

where fobj
p represents the feature descriptor of a corresponding 3D object to

the image region, fobj
n the feature descriptor of a non-corresponding object, C a

weighting parameter, and D the cosine distance function:

D(x, y) :=
1
τ

(
x

||x|| )
T (

y

||y|| ) (2)
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where τ is the temperature. Ph and Nh denote the set of hard positive and nega-
tive examples for the image region. Details of hard-example mining are provided
in the next section. The positively corresponding objects are determined by the
CAD annotations to the images, and negatively corresponding objects are the
non-corresponding CAD renderings in the training batch.

Since the object detection already provides class of the object, the negatives
are only sampled from the shapes under the same class; that is, our embedding
spaces are constructed for each class category although the weights are shared
among them.

Empirically, we find it important to place more sampling weights on the rare
classes because the number of valid pairs scale quadratically with the number
of same-class examples in the batch. We apply the inverse square root method
as in [16] to enhance the rare class examples with a threshold t = 0.1, which
leads to improved performance on rare classes without compromising dominant
classes.

Hard Example Mining. Hard example mining is known to be crucial for
embedding learning, as most examples are easy and do not contain much infor-
mation to improve the model. We employ both hard positive and hard negative
mining in Mask2CAD as follows. For each image region (anchor), we sample top-
Ph positive object views and top-Nh negative object views by their distances to
anchor. Similar to [23], we sample Q objects for each image during the training
(Q = 8). Since the number of objects in a batch scales linearly with Q, we set
Ph = 4Q = 32 and Nh = 16Q = 128. Summation over hard examples allows the
loss to focus on difficult cases and perform better.

Shape Retrieval. Once this embedding space is constructed, we can then per-
form shape retrieval at test time to provide a 3D understanding of the objects
in an image. An input image at test time is processed by the 2D detection to
provide a bounding box, segmentation mask, and feature descriptor for each
detected object. We then use a nearest neighbor retrieval into the embedding
space with Nk = 1 based on cosine distance to find the most similar CAD
model for each detected object. We have tried larger Nk values and majority
vote schemes but did not see any performance gain.

3.3 Pose Prediction

We additionally aim to predict the pose of the retrieved 3D object such that it
aligns best to the input image. We thus propose a pose prediction branch which
outputs the rotation and translation of the object. Starting with the Mi ◦ Fi

feature map for a detected object, the object translation is directly regressed
with a Huber loss [19] as follows:

Lδ(x) =

{
1
2x2 for |x| ≤ δ,

δ(|x| − 1
2δ), otherwise.

(3)

The object rotation is simultaneously predicted; the rotation is first classified to
a set of K discretized rotation bins using cross entropy loss; this coarse estimate



Mask2CAD 267

is then refined through a regression step using a Huber loss. This coarse-to-
fine approach helps to navigate the non-euclidean rotation space, and enables
continuous rotation predictions.

For rotation prediction, we represent the rotation as a quaternion, and com-
pute the set of rotation bins by K-medoid clustering based on train object rota-
tions. To further refine this coarse prediction, we then predict a refined rota-
tion by estimating the delta from the classified bin using a Huber loss. The
delta is represented as a R4 quaternion. We initialize the bias of the last layer
with (0.95, 0, 0, 0) such that the quaternion is close to identity transform at the
beginning. Note that during training, we only train the refinement for classified
rotations within θ to avoid regressing to dissimilar targets.

To obtain full prediction in the camera space, we need to predict the transla-
tion of the object in addition to the shape and rotation. A naive approach is to
use the bounding box center as the object center in 2D and cast a ray through
the center to intersects with the given groundtruth z-plane. Unfortunately, the
bounding boxes tend to be unstable against the rotation and their centers can
end up far from the actual object center.

We thus regress the object center as a bounding regression problem. More
specifically, for each ROI, we task the network with predicting (δx, δy), where
the δs are the shift between bounding box center and actual object center as a
ratio of object width and height. At train time, we optimize (δx, δy) with the
aforementioned Huber loss. At test time, we apply (δx, δy) to the box center to
obtain the object 3D translations (assuming groundtruth depth is given [13]).

3.4 Implementation Details

We use ShapeMask [23] as the instance segmentation backbone. The model back-
bone is initialized from COCO-pretrained checkpoint and uses ResNet-50 archi-
tecture so as to be comparable to Mesh R-CNN in our experiments. The shape
rendering branch uses a lightweight ResNet-18 backbone initialized randomly.

We freeze the weights of the backbone ResNet-50 layers after initialization
and optimize both branches jointly for 48K iterations until convergence (about
1000 epochs for Pix3D), which takes approximately 13 h. The learning rate is
set to be 0.08 and decays by 0.1 at 32K and 40K iterations. The losses for
the retrieval and pose estimation are weighted with 0.5, 0.25, and 5.0 for the
embedding loss, pose classification loss, and pose regression loss. We use C = 1.5
and τ = 0.15 in our contrastive loss, and Huber loss margin of δ = 0.15 for the
pose and center regression. For pose prediction, we set K = 16 bins, and θ = π/6.

For each example, we randomly sample 3 out of k = 16 canonical view
renderings and one jittered groundtruth view rendering to add to the contrastive
learning pool. Similar to ShapeMask, we apply ROI jittering to the image region
for training the segmentation, embedding, and pose estimation branches. The
noise is set to 0.025 following ShapeMask. We also apply data augmentation by
horizontal image flips with 50% probability. For such image flips, the pose labels
were also adjusted accordingly.
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4 Experiments

We evaluate our approach on the Pix3D dataset [39], which comprises 10, 069
images annotated with corresponding 3D models of the objects in the images.
We aim to jointly detect and predict the 3D shapes for the objects in the images.
We evaluate on the train/test split used by Mesh R-CNN [13] for the same task.
Additionally, we propose the first single-image 3D object reconstruction baseline
on the ScanNet dataset [8], which tends to contain more cluttered, in-the-wild
views of objects.

Evaluation Metric. We adopt the popular metrics from 2D object recognition,
and similar to Mesh R-CNN [13], evaluate APbox and APmask on the 2D detec-
tions, and APmesh on the 3D shape predictions for the objects. Similar to Mesh
R-CNN, we evaluate APmesh using the precision-recall for F10.3. However, note
that while Mesh R-CNN evaluate these metrics at IoU 0.5 (AP50), we adopt
the standard COCO object detection protocol of AP50-AP95 (denoted as AP),
averaging over 10 IoU thresholds of 0.5 : 0.05 : 0.95 [28]. This enables charac-
terization of high-accuracy shape reconstructions captured at more strict IoU
thresholds, demonstrating a more comprehensive description of the accuracy of
the shape predictions. In addition to AP, we also report individual APmesh scores
for IoU thresholds of 0.5 and 0.75 following Mask R-CNN [17]. For better repro-
ducibility, we report every metric as an average of 5 independent runs throughout
this paper.

Comparison to State of the Art. We compare our Mask2CAD approach for
3D object understanding from RGB images by joint segmentation and retrieval
to Mesh R-CNN [13], who first propose this task on Pix3D [39]. Table 1 shows
our shape prediction results in comparison to Mesh-RCNN on their S1 split of
the Pix3D dataset. We evaluate APmesh, averaged over all class categories, as
well as per-category. In contrast to Mesh R-CNN, whose results show effective
coarse predictions but suffer significantly at AP75, our shape and pose predic-
tions maintain high-accuracy reconstructions. We show qualitative comparisons
in Fig. 3.

Table 1. Performance on Pix3D [39] S1. We report mean APmesh as well as per category
APmesh. AP is averaged from AP50-AP95 following the COCO detection protocol. All
AP performances are in %. We outperform the state-of-the-art approach on all AP
metrics. This improvement mostly derives from maintaining more robust performance
in the high AP regime above AP50. Additionally, we observe that Mask2CAD performs
well on furniture categories and not so well on tools and miscellaneous objects which
exhibit highly irregular shapes.

Pix3D S1 AP AP50 AP75 chair sofa table bed desk bkcs wrdrb tool misc
Mesh R-CNN [13] 17.2 51.2 7.4 17.6 30.0 11.0 20.0 21.0 10.1 14.3 6.5 24.5
Mask2CAD 33.2 54.9 30.8 19.6 55.8 29.2 39.4 31.6 42.4 60.3 4.2 15.9
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Fig. 3. Mask2CAD predictions on Pix3D [39]. The detected object is highlighted on
the lefthand side of each column, with shape predictions denoted in purple, and ground
truth in green. In contrast to Mesh R-CNN [13], our approach can achieve more accu-
rate shape predictions with geometry in a clean, efficient representation. (Color figure
online)

Table 2. Performance on Pix3D [39] with ground truth object bounding boxes given.
We report Chamfer distance, Normal consistency and F1 scores. Note that for these
experiments, the Mesh R-CNN-based approaches are additionally provided the ground
truth scale in the depth dimension of the object.

Pix3D S1 gt Chamfer ↓ Normal ↑ F10.1 ↑ F10.3 ↑ F10.5 ↑
Mask R-CNN + Pixel2Mesh [13] 1.30 0.70 16.4 51.0 68.4

Mesh R-CNN (Voxel-Only) [13] 1.28 0.57 9.9 37.3 56.1

Mesh R-CNN (Sphere-Init) [13] 1.30 0.69 16.8 51.4 68.8

Mesh R-CNN [13] 1.11 0.71 18.7 56.4 73.5

Mask2CAD (Ours) 0.99 0.74 25.6 66.4 79.3
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Additionally, we compare to several state-of-the-art single object reconstruc-
tion approaches on Pix3D S1 in Table 2; for each approach we provide ground
truth 2D object detections, i.e. perfect bounding boxes. We evaluate various
characteristics of the shape reconstruction. We also evaluate the Chamfer dis-
tance, normal consistency, and F1 at thresholds 0.1, 0.3, 0.5, using randomly
sampled points on the predicted and ground truth meshes, where meshes are
scaled such that the longest edge of the ground-truth mesh’s bounding box has
length 10. Chamfer distance and normal consistency provide more global mea-
sures of shape consistency with the ground truth, but can tend towards favoring
averaging, while F1 scores tend to be more robust towards outliers, and F1 at
lower thresholds in particular indicates the ability to predict highly-accurate
shapes. Note the competing approaches have been provided the ground truth
scale in the depth dimension at test time, while our approach directly retrieves
it from the training set. Nonetheless, our approach can provide higher-accuracy
predictions as seen in the F1 scores at 0.1 and 0.3.

Implicit Learning of Shape Similarity. In Fig. 4, we visualize our learned
embedding space by t-SNE [30], for image regions and CAD models of the sofa
and bookcase class categories (we refer to the supplemental material for addi-
tional visualizations of the learned embedding spaces). We find that not only
do the images and shapes mix together in this embedding space, despite that
it is constructed without any knowledge of shape similarity – only image-CAD
associations –, geometrically similar shapes tend to cluster together.

Can the Image-Shape Embedding Space Generalize to New 3D Mod-
els? Our joint image-CAD model embedding space constructed during train
time leverages ground truth annotations of CAD models to images, which can
be costly to acquire. During inference time, however, we can still embed new 3D
models into the space without training, by using our trained model to compute
their feature embeddings. Our embedding approach generalizes well in incorpo-
rating these new models.

We demonstrate this on the S2 split of Pix3D, training on a subset of the 3D
CAD models, with test images comprising views of a disjoint set of objects than
those in the training set. Generalization under this regime is difficult, particularly
for a retrieval-based approach. However, in Table 3 we show clear improvements
when using all available CAD models at test time in comparison to only the
CAD models in the train set, despite not having seen any of the new objects nor
their corresponding image views.

To help the model generalize better, we apply more data augmentation than
the S1 split, including HSV-space jittering, random crop and resize of the render-
ings, and augmenting the box and image jittering magnitude as used in Shape-
Mask [23].

Comparison with ShapeNet Reconstruction Methods. In Table 4, we
compare the Pix3D S1 model on the validation set with the other methods that
train on ShapeNet with real data augmentation. The evaluation protocol and
implementation follows [39]. Mask2CAD results are reported on 1165 chairs in
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Fig. 4. t-SNE embeddings of Mask2CAD for the sofa (top) and bookcase (bottom)
classes. More visualizations can be found in the Supp. Materials. Red points corre-
spond to images, and blue to shapes. Both images and shapes mix well together in
the embedding space. Note that despite lack of shape similarity information during
training, clusters tend to form together in geometric similarity, e.g., L-shaped sofas
(yellow), single seat sofas without armrests (orange), single seat sofas with armrests
(blue), double seat sofas (green). This stands in contrast to the embedding space con-
struction of [26] which explicitly enforces shape similarity in its light field descriptors.
(Color figure online)

Table 3. Test-time generalization on Pix3D [39] S2. The performance improves on all
categories with the addition 139 of CAD models at test time without re-training.

Pix3D S2 AP AP50 AP75 chair sofa table bed desk bkcs wrdrb tool misc

Mask2CAD (Ours) 6.5 17.3 3.8 3.2 35.4 1.2 14.0 0.2 2.2 1.6 0.6 0.0

Mask2CAD (Ours) + CAD 8.2 20.7 4.8 4.5 37.8 3.6 16.9 2.7 2.2 5.3 0.9 0.1
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Fig. 5. Example Mask2CAD predictions on ScanNet [8] images. Our approach shows
encouraging results in its application to the more diverse set of image views, lighting,
occlusions, and object categories of ScanNet.

the S1 test split of Mesh R-CNN [13], as an average over 5 independent runs.
Surprisingly, Mask2CAD achieves significantly better shape predictions than the
state-of-the-art methods (0.288 IoU, and 0.013 Chamfer Distance), showing the
capability of retrieval.
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Table 4. Mask2CAD on Pix3D [39] S1 test split in comparison with other methods
that train on ShapeNet models with real data augmentation.

Mask2CAD (Ours) FroDO [24] Sun et al. [39] MarrNet [43] 3D-R2N2 [7]

IoU 0.613 0.325 0.282 0.231 0.136

Chamfer 0.086 0.099 0.119 0.144 0.239

Baseline on ScanNet Dataset. We additionally apply Mask2CAD to real-
world images from the ScanNet dataset [8], which contains RGB-D video data
of 1513 indoor scenes. We use the 25K frame subset provided by the dataset for
training and validation. The train/val split contains 19387/5436 images respec-
tively, and the images come from separate scenes with distinct objects. Compared
to Pix3D, this dataset has an order of magnitude more shapes, as well as many
more occlusions, diverse image views, lighting conditions, and importantly, met-
ric 3D groundtruth of the scene. We believe this could be a suitable benchmark
for object 3D prediction from a real single image.

We use the CAD labels from Scan2CAD [1] by projecting the CAD models
to each image view and use the amodal box, mask, pose, and shape for training.
We additionally remove the objects whose centers are out of frame from training
and evaluation. We also remove the object categories that appear less than 1000
times in the training split, resulting in eight categories: bed, sofa, chair (inc.
toilet), bin, cabinet (inc. fridge), display, table, and bookcase. Regarding shape
similarity, we adopt F score = 0.5 as the threshold for Mesh AP computation,
because the Scan2CAD annotations come from ShapeNet and do not provide
exact matches to the images. As Scan2CAD provides 9-DoF annotation for each
object, we apply the groundtruth z depth and (x, y, z) scale to the predicted
shape before computing the shape similarity metrics. We trained Mask2CAD for
72000 iterations with HSV-color, ROI, and image scale jittering using the same
learning rate schedule as Pix3D. The quantitative results are reported in Table 5.
Despite the complexity of ScanNet data, Mask2CAD manages to recognize the
object shapes in these images, as shown in Fig. 5. Our CAD model retrieval
and alignment shows promising results and a potential for facilitating content
creation pipelines.

Runtime. At test time Mask2CAD is efficient and runs at approximately 60 ms
per 640 by 640 image on Pix3D, including 2D detection and segmentation as
well as shape retrieval and pose estimation.

Table 5. Performance on ScanNet [8]. We report mean APmesh as well as per category
APmesh following Pix3D protocol.

ScanNet 25K AP AP50 AP75 bed sofa chair cab bin disp table bkcs

Mask2CAD(Ours) 8.4 23.1 4.9 14.2 13.0 13.2 7.5 7.8 5.9 2.9 3.1
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Limitations. While Mask2CAD shows promising progress in attaining 3D under-
standing of the objects from a single image, we believe there are many avenues for
further development. For instance, our retrieval-based approach can suffer in the
case of objects that differ too strongly from the existing CAD model database,
and we believe that mesh-based approaches to deform and refine geometry [40,42]
have significant potential to complement our approach. Additionally, we believe
a holistic 3D scene understanding characterizing not only the objects in an envi-
ronment but all elements in the scene is a promising direction for 3D perception
and semantic understanding.

5 Conclusion

We propose Mask2CAD, a novel approach for 3D perception from 2D images.
Our method leverages a CAD model representation, and jointly detects objects
for an input image and retrieves and aligns a similar CAD model to the detected
region. We show that our approach produces accurate shape reconstructions and
is capable of generalizing to unseen 3D objects at test time. The final output
of Mask2CAD is a CAD-based object understanding of the image, where each
object is represented in a clean, lightweight fashion. We believe that this makes
a promising step in 3D perception from images as well as transforming real-
world imagery to a synthetic representation, opening up new possibilities for
digitization of real-world environments for applications such as content creation
or domain transfer.

Acknowledgements. We would like to thank Georgia Gkioxari for her advice on
Mesh R-CNN and the support of the ZD.B (Zentrum Digitalisierung.Bayern) for Angela
Dai.

References

1. Avetisyan, A., Dahnert, M., Dai, A., Savva, M., Chang, A.X., Nießner, M.:
Scan2CAD: learning cad model alignment in RGB-D scans. In: CVPR (2019)

2. Bansal, A., Russell, B., Gupta, A.: Marr revisited: 2D–3D alignment via surface
normal prediction. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 5965–5974 (2016)

3. Binford, T.O.: Survey of model-based image analysis systems. Int. J. Robot. Res.
1(1), 18–64 (1982)

4. Chang, A.X., et al.: ShapeNet: an information-rich 3D model repository. Technical
report. arXiv:1512.03012 [cs.GR], Stanford University – Princeton University –
Toyota Technological Institute at Chicago (2015)

5. Chen, D.Y., Tian, X.P., Shen, Y.T., Ouhyoung, M.: On visual similarity based 3D
model retrieval. In: Computer Graphics Forum, vol. 22, pp. 223–232. Wiley Online
Library (2003)

6. Chin, R.T., Dyer, C.R.: Model-based recognition in robot vision. ACM Comput.
Surv. (CSUR) 18(1), 67–108 (1986)

http://arxiv.org/abs/1512.03012


Mask2CAD 275

7. Choy, C.B., Xu, D., Gwak, J.Y., Chen, K., Savarese, S.: 3D-R2N2: a unified app-
roach for single and multi-view 3D object reconstruction. In: Leibe, B., Matas, J.,
Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 628–644. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46484-8 38

8. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: Scan-
Net: richly-annotated 3D reconstructions of indoor scenes. In: Proceedings of the
Computer Vision and Pattern Recognition (CVPR). IEEE (2017)

9. Dai, A., Nießner, M.: Scan2Mesh: from unstructured range scans to 3D meshes. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 5574–5583 (2019)

10. Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., Tian, Q.: CenterNet: keypoint triplets
for object detection. In: Proceedings of the IEEE International Conference on
Computer Vision, pp. 6569–6578 (2019)

11. Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3D object recon-
struction from a single image. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 605–613 (2017)

12. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference
on Computer Vision, pp. 1440–1448 (2015)

13. Gkioxari, G., Malik, J., Johnson, J.: Mesh R-cnn. arXiv preprint arXiv:1906.02739
(2019)

14. Grabner, A., Roth, P.M., Lepetit, V.: Location field descriptors: single image 3D
model retrieval in the wild. In: 2019 International Conference on 3D Vision (3DV),
pp. 583–593. IEEE (2019)

15. Groueix, T., Fisher, M., Kim, V.G., Russell, B.C., Aubry, M.: A papier-mâché app-
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Abstract. We introduce UniLoss, a unified framework to generate sur-
rogate losses for training deep networks with gradient descent, reducing
the amount of manual design of task-specific surrogate losses. Our key
observation is that in many cases, evaluating a model with a perfor-
mance metric on a batch of examples can be refactored into four steps:
from input to real-valued scores, from scores to comparisons of pairs of
scores, from comparisons to binary variables, and from binary variables
to the final performance metric. Using this refactoring we generate differ-
entiable approximations for each non-differentiable step through inter-
polation. Using UniLoss, we can optimize for different tasks and metrics
using one unified framework, achieving comparable performance com-
pared with task-specific losses. We validate the effectiveness of UniLoss
on three tasks and four datasets. Code is available at https://github.
com/princeton-vl/uniloss.

Keywords: Loss design · Image classification · Pose estimation

1 Introduction

Many supervised learning tasks involve designing and optimizing a loss function
that is often different from the actual performance metric for evaluating models.
For example, cross-entropy is a popular loss function for training a multi-class
classifier, but when it comes to comparing models on a test set, classification
error is used instead.

Why not optimize the performance metric directly? Because many metrics or
output decoders are non-differentiable and cannot be optimized with gradient-
based methods such as stochastic gradient descent. Non-differentiability occurs
when the output of the task is discrete (e.g. class labels), or when the output is
continuous but the performance metric has discrete operations (e.g. percentage
of real-valued predictions within a certain range of the ground truth).
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To address this issue, designing a differentiable loss that serves as a surrogate
to the original metric is standard practice. For standard tasks with simple output
and metrics, there exist well-studied surrogate losses. For example, cross-entropy
or hinge loss for classification, both of which have proven to work well in practice.
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Fig. 1. Computation graphs for conventional losses and UniLoss. Top: (a) testing
for conventional losses. The decoder and evaluator are usually non-differentiable. (b)
training for conventional losses. To avoid the non-differentiability, conventional meth-
ods optimize a manually-designed differentiable loss function instead during training.
Bottom: (a) refactored testing in UniLoss. We refactor the testing so that the non-
differentiability exists only in Sign(·) and the multi-variant function. (b) training in
UniLoss with the differentiable approximation of refactored testing. σ(·) is the sigmoid
function. We approximate the non-differentiable components in the refactored testing
pipeline with interpolation methods.

However, designing surrogate losses can sometimes incur substantial manual
effort, including a large amount of trial and error and hyper-parameter tuning.
For example, a standard evaluation of single-person human pose estimation—
predicting the 2D locations of a set of body joints for a single person in an
image—involves computing the percentage of predicted body joints that are
within a given radius of the ground truth. This performance metric is non-
differentiable. Existing work instead trains a deep network to predict a heatmap
for each type of body joints, minimizing the difference between the predicted
heatmap and a “ground truth” heatmap consisting of a Gaussian bump at the
ground truth location [17,28]. The decision for what error function to use for
comparing heatmaps and how to design the “ground truth” heatmaps are man-
ually tuned to optimize performance.

This manual effort in conventional losses is tedious but necessary, because a
poorly designed loss can be misaligned with the final performance metric and lead
to ineffective training. As we show in the experiment section, without carefully-
tuned loss hyper-parameters, conventional manual losses can work poorly.

In this paper, we seek to reduce the efforts of manual design of surrogate losses
by introducing a unified surrogate loss framework applicable to a wide range of
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tasks. We provide a unified framework to mechanically generate a surrogate loss
given a performance metric in the context of deep learning. This means that we
only need to specify the performance metric (e.g. classification error) and the
inference algorithm—the network architecture, a “decoder” that converts the
network output (e.g. continuous scores) to the final output (e.g. discrete class
labels), and an “evaluator” that converts the labels to final metric—and the rest
is taken care of as part of the training algorithm.

We introduce UniLoss (Fig. 1), a unified framework to generate surrogate
losses for training deep networks with gradient descent. We maintain the basic
algorithmic structure of mini-batch gradient descent: for each mini-batch, we
perform inference on all examples, compute a loss using the results and the
ground truths, and generate gradients using the loss to update the network
parameters. Our novelty is that we generate all the surrogate losses in a unified
framework for various tasks instead of manually designing it for each task.

The key insight behind UniLoss is that for many tasks and performance met-
rics, evaluating a deep network on a set of training examples—pass the examples
through the network, the output decoder, and the evaluator to the performance
metric—can be refactored into a sequence of four transformations: the train-
ing examples are first transformed to a set of real scores, then to some real
numbers representing comparisons (through subtractions) of certain pairs of the
real-valued scores, then to a set of binary values representing the signs of the
comparisons, and finally to a single real number. Note that the four transforms
do not necessarily correspond to running the network inference, the decoder, and
the evaluator.

Take multi-class classification as an example, the training examples are first
transformed to a set of scores (one per class per example), and then to pairwise
comparisons (subtractions) between the scores for each example (i.e. the argmax
operation), and then to a set of binary values, and finally to a classification
accuracy.

The final performance metric is non-differentiable with respect to network
weights because the decoder and the evaluator are non-differentiable. But this
refactoring allows us to generate a differentiable approximation of each non-
differentiable transformation through interpolation.

Specifically, the transformation from comparisons to binary variables is non-
differentiable, we can approximate it by using the sigmoid function to interpolate
the sign function. And the transformation from binary variables to final metric
may be nondifferentiable, we can approximate it by multivariate interpolation.

The proposed UniLoss framework is general and can be applied to various
tasks and performance metrics. Given any performance metric involving discrete
operations, to the best of our knowledge, the discrete operations can always
be refactored to step functions that first make some differentiable real-number
comparisons non-differentiable, and any following operations, which fit in our
framework. Example tasks include classification scenarios such as accuracy in
image classification, precision and recall in object detection; ranking scenarios
such as average precision in binary classification, area under curve in image
retrieval; pixel-wise prediction scenarios such as mean IOU in segmentation,
PCKh in pose estimation.
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To validate its effectiveness, we perform experiments on three representa-
tive tasks from three different scenarios. We show that UniLoss performs well
on a classic classification setting, multi-class classification, compared with the
well-established conventional losses. We also demonstrate UniLoss’s ability in
a ranking scenario that evolves ranking multiple images in an evaluation set:
average precision (area under the precision-recall curve) in unbalanced binary
classification. In addition, we experiment with pose estimation where the output
is structured as pixel-wise predictions.

Our main contributions in this work are:

– We present a new perspective of finding surrogate losses: evaluation can be
refactored as a sequence of four transformations, where each nondifferentiable
transformation can be tackled individually.

– We propose a new method: a unified framework to generate losses for various
tasks reducing task-specific manual design.

– We validate the new perspective and the new method on three tasks and four
datasets, achieving comparable performance with conventional losses.

2 Related Work

2.1 Direct Loss Minimization

The line of direct loss minimization works is related to UniLoss because we share
a similar idea of finding a good approximation of the performance metric. There
have been many efforts to directly minimize specific classes of tasks and metrics.

For example, [26] optimized ranking metrics such as Normalized Discounted
Cumulative Gain by smoothing them with an assumed probabilistic distribution
of documents. [11] directly optimized mean average precision in object detec-
tion by computing “pseudo partial derivatives” for various continuous variables.
[18] explored to optimize the 0–1 loss in binary classification by search-based
methods including branch and bound search, combinatorial search, and also
coordinate descent on the relaxations of 0–1 losses. [16] proposed to improve
the conventional cross-entropy loss by multiplying a preset constant with the
angle in the inner product of the softmax function to encourage large margins
between classes. [7] proposed an end-to-end optimization approach for speech
enhancement by directly optimizing short-time objective intelligibility (STOI)
which is a differentiable performance metric.

In addition to the large algorithmic differences, these works also differ from
ours in that they are tightly coupled with specific tasks and applications.

[9] and [24] proved that under mild conditions, optimizing a max-margin
structured-output loss is asymptotically equivalent to directly optimizing the
performance metrics. Specifically, assume a model in the form of a differentiable
scoring function S(x, y;w) : X × Y → R that evaluates the compatibility of
output y with input x. During inference, they predict the yw with the best
score:

yw = argmax
y

S(x, y;w). (1)
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During training, in addition to this regular inference, they also perform the
loss-augmented inference [9,29]:

y† = argmax
y

S(x, y;w) + εξ(yw, y), (2)

where ξ is the final performance metric (in terms of error), and ε is a small
time-varying weight. [24] generalized this result from linear scoring functions to
arbitrary scoring functions, and developed an efficient loss-augmented inference
algorithm to directly optimize average precision in ranking tasks.

While above max-margin losses can ideally work with many different per-
formance metrics ξ, its main limitation in practical use is that it can be highly
nontrivial to design an efficient algorithm for the loss-augmented inference, as it
often requires some clever factorization of the performance metric ξ over the com-
ponents of the structured output y. In fact, for many metrics the loss-augmented
inference is NP-hard and one must resort to designing approximate algorithms,
which further increases the difficulty of practical use.

In contrast, our method does not demand the same level of human ingenuity.
The main human effort involves refactoring the inference code and evaluation
code to a particular format, which may be further eliminated by automatic code
analysis. There is no need to design a new inference algorithm over discrete
outputs and analyze its efficiency. The difficulty of designing loss-augmented
inference algorithms for each individual task makes it impractical to compare
fairly with max-margin methods on diverse tasks, because it is unclear how to
design the inference algorithms.

Recently, some prior works propose to directly optimize the performance
metric by learning a parametric surrogate loss [6,8,13,22,30]. During training,
the model is updated to minimize the current surrogate loss while the parametric
surrogate loss is also updated to align with the performance metric.

Compared to these methods, UniLoss does not involve any learnable param-
eters in the loss. As a result, UniLoss can be applied universally across different
settings without any training, and the parametric surrogate loss has to be trained
separately for different tasks and datasets.

Reinforcement Learning inspired algorithms have been used to optimize per-
formance metrics for structured output problems, especially those that can be
formulated as taking a sequence of actions [4,15,21,31,33]. For example, [15] use
policy gradients [25] to optimize metrics for image captioning.

We differ from these approaches in two key aspects. First, we do not need to
formulate a task as a sequential decision problem, which is natural for certain
tasks such as text generation, but unnatural for others such as human pose
estimation. Second, these methods treat performance metrics as black boxes,
whereas we assume access to the code of the performance metrics, which is a
valid assumption in most cases. This access allows us to reason about the code
and generate better gradients.
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2.2 Surrogate Losses

There has been a large body of literature studying surrogate losses, for
tasks including multi-class classification [1,3,5,19,20,27,32], binary classification
[3,19,20,32] and pose estimation [28]. Compared to them, UniLoss reduces the
manual effort to design task-specific losses. UniLoss, as a general loss framework,
can be applied to all these tasks and achieve comparable performance.

3 UniLoss

3.1 Overview

UniLoss provides a unified way to generate a surrogate loss for training deep
networks with mini-batch gradient descent without task-specific design. In our
general framework, we first re-formulate the evaluation process and then approx-
imate the non-differentiable functions using interpolation.

Original Formulation. Formally, let x = (x1, x2, . . . , xn) ∈ Xn be a set of
n training examples and y = (y1, y2, . . . , yn) ∈ Yn be the ground truth. Let
φ(·;w) : X → Rd be a deep network parameterized by weights w that outputs
a d-dimensional vector; let δ : Rd → Y be a decoder that decodes the network
output to a possibly discrete final output; let ξ : Yn × Yn → R be an evalu-
ator. φ and δ are applied in a mini-batch fashion on x = (x1, x2, . . . , xn); the
performance e of the deep network is then

e = ξ(δ(φ(x;w)),y). (3)

Refactored Formulation. Our approach seeks to find a surrogate loss to min-
imize e, with the novel observation that in many cases e can be refactored as

e = g(h(f(φ(x;w),y))), (4)

where φ(·;w) is the same as in Eq. 3, representing a deep neural network, f :
Rn×d × Yn → Rl is differentiable and maps outputted real numbers and the
ground truth to l comparisons each representing the difference between certain
pair of real numbers, h : Rl → {0, 1}l maps the l score differences to l binary
variables, and g : {0, 1}l → R computes the performance metric from binary
variables. Note that h has a restricted form that always maps continuous values
to binary values through sign function, whereas g can be arbitrary computation
that maps binary values to a real number.

We give intermediate outputs some notations:

– Training examples x,y are transformed to scores s = (s1, s2, . . . , snd), where
s = φ(x;w).

– s is converted to comparisons (differences of two scores) c = (c1, c2, . . . , cl),
where c = f(s,y).
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– c is converted to binary variables b = (b1, b2, . . . , bl) representing the binary
outcome of the comparisons, where b = h(c).

– The binary variables are transformed to a single real number by e = g(b).

This new refactoring of a performance metric allows us to decompose the
metric e with g, h, f and φ, where φ and f are differentiable functions but h
and g are often non-differentiable. The non-differentiability of h and g causes e
to be non-differentiable with respect to network weights w.

Differentiable Approximation. Our UniLoss generates differentiable approx-
imations of the non-differentiable h and g through interpolation, thus making
the metric e optimizable with gradient descent. Formally, UniLoss gives a differ-
entiable approximation ẽ

ẽ = g̃(h̃(f(φ(x;w),y))), (5)

where f and φ are the same as in Eq. 4, and h̃ and g̃ are the differentiable approx-
imation of h and g. We explain a concrete example of multi-class classification
and introduce the refactoring and interpolation in detail based on this example
in the following sections.

3.2 Example: Multi-class Classification

We take multi-class classification as an example to show how refactoring works.
First, we give formal definitions of multi-class classification and the performance
metric: prediction accuracy.

Input is a mini-batch of images x = (x1, x2, . . . , xn) and their corresponding
ground truth labels are y = (y1, y2, . . . , yn) where n is the batch size. yi ∈
{1, 2, . . . , p} and p is the number of classes, which happens to be the same value
as d in Sect. 3.1. A network φ(·;w) outputs a score matrix s = [si,j ]n×p and si,j
represents the score for the i-th image belongs to the class j.

The decoder δ(s) decodes s into the discrete outputs ỹ = (ỹ1, ỹ2, . . . , ỹn) by

ỹi = argmax
1≤j≤p

si,j , (6)

and ỹi represents the predicted label of the i-th image for i = 1, 2, . . . , n.
The evaluator ξ(ỹ,y) evaluates the accuracy e from ỹ and y by

e =
1
n

n∑

i=1

[yi = ỹi], (7)

where [·] is the Iverson bracket.
Considering above together, the predicted label for an image is correct if and

only if the score of its ground truth class is higher than the score of every other
class:

[yi = ỹi] = ∧
1≤j≤p

j �=yi

[si,yi
− si,j > 0], for all1 ≤ i ≤ n,

(8)

where ∧ is logical and.
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We thus refactor the decoding and evaluation process as a sequence of f(·)
that transforms s to comparisons—si,yi

− si,jfor all1 ≤ i ≤ n, 1 ≤ j ≤ p, and j �=
yi (n× (p−1) comparisons in total), h(·) that transforms comparisons to binary
values using [· > 0], and g(·) that transforms binary values to e using logical and.
Next, we introduce how to refactor the above procedure into our formulation and
approximate g and h.

3.3 Refactoring

Given a performance metric, we refactor it in the form of Eq. 4. We first trans-
form the training images into scores s = (s1, s2, . . . , snd). We then get the score
comparisons (differences of pairs of scores) c = (c1, c2, . . . , cl) using c = f(s,y).
Each comparison is ci = sk1

i
−sk2

i
, 1 ≤ i ≤ l, 1 ≤ k1

i , k
2
i ≤ nd. The function h then

transforms the comparisons to binary values by b = h(c). h is the sign function,
i.e. bi = [ci > 0], 1 ≤ i ≤ l. The function g then computes e by e = g(b), where
g can be arbitrary computation that converts binary values to a real number. In
practice, g can be complex and vary significantly across tasks and metrics.

Given any performance metrics involving discrete operations in function ξ
and δ in Eq. 3 (otherwise the metric e is differentiable and trivial to be han-
dled), the computation of function ξ(δ(·)) can be refactored as a sequence of
continuous operations (which is optional), discrete operations that make some
differentiable real numbers non-differentiable, and any following operations. The
discrete operations always occur when there are step functions, which can be
expressed as comparing two numbers, to the best of our knowledge.

This refactoring is usually straightforward to obtain from the specification
of the decoding and evaluating procedures. The only manual effort is in iden-
tifying the discrete comparisons (binary variables). Then we simply write the
discrete comparisons as function f and h, and represent its following operations
as function g.

In later sections we will show how to identify the binary variables for three
commonly-used metrics in three scenarios, which can be easily extended to other
performance metrics. On the other hand, this process is largely a mechanical
exercise, as it is equivalent to rewriting some existing code in an alternative
rigid format.

3.4 Interpolation

The two usually non-differentiable functions h and g are approximated by inter-
polation methods individually.

Scores to Binaries: h. In b = h(c), each element bi = [ci > 0]. We approx-
imate the step function [·] using the sigmoid function. That is, b̃ = h̃(c) =
(b̃1, b̃2, . . . , b̃l), and each element

b̃i = sigmoid(ci), (9)

where 1 ≤ i ≤ l. We now have h̃ as the differentiable approximation of h.
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Binaries to Performance: g. We approximate g(·) in e = g(b) by multivariate
interpolation over the input b ∈ {0, 1}l. More specifically, we first sample a set
of configurations as “anchors” a = (a1,a2, . . . ,at), where ai is a configuration
of b, and compute the output values g(a1), g(a2), . . . , g(at), where g(ai) is the
actual performance metric value and t is the number of anchors sampled.

We then get an interpolated function over the anchors as g̃(·;a). We finally
get ẽ = g̃(b̃;a), where b̃ is computed from h̃, f and φ.

By choosing a differentiable interpolation method, the g̃ function becomes
trainable using gradient-based methods. We use a common yet effective interpo-
lation method: inverse distance weighting (IDW) [23]:

g̃(u;a) =

⎧
⎨

⎩

∑t
i=1

1
d(u,ai)

g(ai)
∑t

i=1
1

d(u,ai)
, d(u,ai) �= 0for1 ≤ i ≤ t;

g(ai), d(u,ai) = 0for somei.
(10)

where u represents the input to g̃ and d(u,ai) is the Euclidean distance between
u and ai.

We select a subset of anchors based on the current training examples. We
use a mix of three types of anchors—good anchors with high performance values
globally, bad anchors with low performance values globally, and nearby anchors
that are close to the current configuration, which is computed from the cur-
rent training examples and network weights. By using both the global informa-
tion from the good and bad anchors and the local information from the nearby
anchors, we are able to get an informative interpolation surface. On the contrast,
a naive random anchor sampling strategy does not give informative interpolation
surface and cannot train the network at all in our experiments.

More specifically, we adopt a straightforward anchor sampling strategy for
all tasks and metrics: we obtain good anchors by flipping some bits from the best
anchor, which is the ground truth. The bad anchors are generated by randomly
sampling binary values. The nearby anchors are obtained by flipping some bits
from the current configuration.

4 Experimental Results

To use our general framework UniLoss on each task, we refactor the evaluation
process of the task into the format in Eq. 4, and then approximate the non-
differentiable functions h and g using the interpolation method in Sect. 3.

We validate the effectiveness of the UniLoss framework in three representa-
tive tasks in different scenarios: a ranking-related task using a set-based metric—
average precision, a pixel-wise prediction task, and a common classification task.
For each task, we demonstrate how to formulate the evaluation process to our
refactoring and compare our UniLoss with interpolation to the conventional
task-specific loss. More implementation details and analysis can be found in the
material.
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4.1 Tasks and Metrics

Average Precision for Unbalanced Binary Classification. Binary clas-
sification is to classify an example from two classes—positives and negatives.
Potential applications include face classification and image retrieval. It has unbal-
anced number of positives and negatives in most cases, which results in that a
typical classification metric such as accuracy as in regular classification cannot
demonstrate how good is a model properly. For example, when the positives to
negatives is 1:9, predicting all examples as negatives gets 90% accuracy.

On this unbalanced binary classification, other metrics such as precision,
recall and average precision (AP), i.e. area under the precision-recall curve, are
more descriptive metrics. We use AP as our target metric in this task.

It is notable that AP is fundamentally different from accuracy because it is
a set-based metric. It can only be evaluated on a set of images, and involves not
only the correctness of each image but also the ranking of multiple images. This
task and metric is chosen to demonstrate that UniLoss can effectively optimize
for a set-based performance metric that requires ranking of the images.

PCKh for Single-Person Pose Estimation. Single-person pose estimation
predicts the localization of human joints. More specifically, given an image, it
predicts the location of the joints. It is usually formulated as a pixel-wise predic-
tion problem, where the neural network outputs a score for each pixel indicating
how likely is the location can be the joint.

Following prior work, we use PCKh (Percentage of Correct Keypoints wrt
to head size) as the performance metric. It computes the percentage of the
predicted joints that are within a given radius r of the ground truth. The radius
is half of the head segment length. This task and metric is chosen to validate
the effectiveness of UniLoss in optimizing for a pixel-wise prediction problem.

Accuracy for Multi-class Classification. Multi-class classification is a com-
mon task that has a well-established conventional loss—cross-entropy loss.

We use accuracy (the percentage of correctly classified images) as our metric
following the common practice. This task and metric is chosen to demonstrate
that for a most common classification setting, UniLoss still performs similarly
effectively as the well-established conventional loss.

4.2 Average Precision for Unbalanced Binary Classification

Dataset and Baseline. We augment the handwritten digit dataset MNIST
to be a binary classification task, predicting zeros or non-zeros. Given an image
containing a single number from 0 to 9, we classify it into the zero (positive) class
or the non-zero (negative) class. The positive-negative ratio of 1:9. We create a
validation split by reserving 6k images from the original training set.

We use a 3-layer fully-connected neural network with 500 and 300 neurons
in each hidden layer respectively. Our baseline model is trained with a 2-class
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cross-entropy loss. We train both baseline and UniLoss with a fixed learning rate
of 0.01 for 30 epochs. We sample 16 anchors for each anchor type in our anchor
interpolation for all of our experiments except in ablation studies.

Formulation and Refactoring. The evaluation process is essentially ranking
images using pair-wise comparisons and compute the area under curve based
on the ranking. It is determined by whether positive images are ranked higher
than negative images. Given that the output of a mini-batch of n images is
s = (s1, s2, . . . , sn), where si represents the predicted score of i-th image to be
positive. The binary variables are b = {bi,j = [ci,j > 0] = [si − sj > 0]}, where i
belongs to positives and j belongs to negatives.

Results. UniLoss achieves an AP of 0.9988, similarly as the baseline cross-
entropy loss (0.9989). This demonstrates that UniLoss can effectively optimize
for a performance metric (AP) that is complicated to compute and involves a
batch of images.

4.3 PCKh for Single-Person Pose Estimation

Dataset and Baseline. We use MPII [2] which has around 22K images for
training and 3K images for testing. For simplicity, we perform experiments on
the joints of head only, but our method could be applied to an arbitrary number
of human joints without any modification.

We adopt the Stacked Hourglass [17] as our model. The baseline loss is the
Mean Squared Error (MSE) between the predicted heatmaps and the manually-
designed “ground truth” heatmaps. We train a single-stack hourglass network
for both UniLoss and MSE using RMSProp [12] with an initial learning rate
2.5e−4 for 30 epochs and then drop it by 4 for every 10 epochs until 50 epochs.

Formulation and Refactoring. Assume the network generates a mini-batch of
heatmaps s = (s1, s2, . . . , sn) ∈ Rn×m, where n is the batch size, m is the number
of pixels in each image. The pixel with the highest score in each heatmap is
predicted as a key point during evaluation. We note the pixels within the radius r
around the ground truth as positive pixels, and other pixels as negative and each
heatmap sk can be flatted as (skpos,1, s

k
pos,2, . . . , s

k
pos,mk

, skneg,1, . . . , skneg,m−mk
),

where mk is the number of positive pixels in the k-th heatmap and skpos,j (skneg,j)
is the score of the j-th positive (negative) pixel in the k-th heatmap.

PCKh requires to find out if a positive pixel has the highest score among
others. Therefore, we need to compare each pair of positive and negative pixels
and this leads to the binary variables b = (bk,i,j)for1 ≤ k ≤ n, 1 ≤ i ≤ mk,
1 ≤ j ≤ m − mk, where bk,i,j = [skpos,i − skneg,j > 0], i.e. the comparison between
the i-th positive pixel and the j-th negative pixel in the k-th heatmap.
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Table 1. PCKh of Stacked Hourglass with MSE and UniLoss on the MPII validation.

Loss MSE σ = 0.1 σ = 0.5 σ = 0.7 σ = 1 σ = 3 σ = 5 σ = 10 UniLoss

PCKh 91.31 95.13 93.06 95.71 95.74 94.99 92.25 95.77

Table 2. Accuracy of ResNet-20 with CE loss and UniLoss on the CIFAR-10 and
CIFAR-100 test set.

Loss CIFAR-10 CIFAR-100

CE (cross-entropy) loss 91.49 65.90

UniLoss 91.64 65.92

Table 3. Ablation study for mini-batch sizes on CIFAR-10.

Batch size 8 16 32 64 128 256 512 1024

Accuracy 87.89 90.05 90.82 91.23 91.64 90.94 89.10 87.20

Results. It is notable that the manual design of the target heatmaps is a part of
the MSE loss function for pose estimation. It heavily relies on the careful design
of the ground truth heatmaps. If we intuitively set the pixels at the exact joints
to be 1 and the rest of pixels as 0 in the heatmaps, the training diverges.

Luckily, [28] proposed to design target heatmaps as a 2D Gaussian bump
centered on the ground truth joints, whose shape is controlled by its variance σ
and the bump size. The success of the MSE loss function relies on the choices of
σ and the bump size. UniLoss, on the other hand, requires no such design.

As shown in Table 1, our UniLoss achieves a 95.77 PCKh which is comparable
as the 95.74 PCKh for MSE with the best σ. This validates the effectiveness of
UniLoss in optimizing for a pixel-wise prediction problem.

We further observe that the baseline is sensitive to the shape of 2D Gaussian,
as in Table 1. Smaller σ makes target heatmaps concentrated on ground truth
joints and makes the optimization to be unstable. Larger σ generates vague train-
ing targets and decreases the performance. This demonstrates that conventional
losses require dedicated manual design while UniLoss can be applied directly.

4.4 Accuracy for Multi-class Classification

Dataset and Baseline. We use CIFAR-10 and CIFAR-100 [14], with 32 × 32
images and 10/100 classes. They each have 50k training images and 10k test
images. Following prior work [10], we split the training set into a 45k-5k train-
validation split.

We use the ResNet-20 architecture [10]. Our baselines are trained with cross-
entropy (CE) loss. All experiments are trained following the same augmentation
and pre-processing techniques as in prior work [10]. We use an initial learning
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Table 4. Ablation study for number of anchors on the three tasks.

Task #Anchors in each type Performance

Bin. classification (AP) 5 0.9988

10 0.9987

16 0.9988

5 91.55%

Classification (Acc) 10 91.54%

16 91.64%

5 94.79%

Pose estimation (PCKh) 10 94.95%

16 95.77%

rate of 0.1, divided by 10 and 100 at the 140th epoch and the 160th epoch, with
a total of 200 epochs trained for both baseline and UniLoss on CIFAR-10. On
CIFAR-100, we train baseline with the same training schedule and UniLoss with
5x training schedule because we only train 20% binary variables at each step.
For a fair comparison, we also train baseline with the 5x training schedule but
observe no improvement.

Formulation and Refactoring. As shown in Sect. 3.2, given the output of a
mini-batch of n images s = (s1,1, s1,2.., sn,p), we compare the score of the ground
truth class and the scores of other p−1 classes for each image. That is, for the i-
th image with the ground truth label yi, bi,j = [si,yi

−si,j > 0], where 1 ≤ j ≤ p,
j �= yi, and 1 ≤ i ≤ n. For tasks with many binary variables such as CIFAR-100,
we train a portion of binary variables in each update to accelerate training.

Results. Our implementation of the baseline method obtains a slightly better
accuracy (91.49%) than that was reported in [10]—91.25% on CIFAR-10 and
obtains 65.9% on CIFAR-100. UniLoss performs similarly (91.64% and 65.92%)
as baselines on both datasets (Table 2), which shows that even when the con-
ventional loss is well-established for the particular task and metric, UniLoss still
matches the conventional loss.

4.5 Discussion of Hyper-parameters

Mini-Batch Sizes. We also use a mini-batch of images for updates with
UniLoss. Intuitively, as long as the batch size is not extremely small or large, it
should be able to approximate the distribution of the whole dataset.

We explore different batch sizes on the CIFAR-10 multi-class classification
task, as shown in Table 3. The results match with our hypothesis—as long as the
batch size is not extreme, the performance is similar. A batch size of 128 gives
the best performance.
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Number of Anchors. We explore different number of anchors in the three
tasks. We experiment with 5, 10, 16 as the number of anchors for each type of
the good, bad and nearby anchors. That is, we have 15, 30, 48 anchors in total
respectively. Table 4 shows that binary classification and classification are less
sensitive to the number of anchors, while in pose estimation, fewer anchors lead to
slightly worse performance. It is related to the number of binary variables in each
task: pose estimation has scores for each pixel, thus has much more comparisons
than binary classification and classification. With more binary variables, more
anchors tend to be more beneficial.

5 Conclusion and Limitations

We have introduced UniLoss, a framework for generating surrogate losses in a
unified way, reducing the amount of manual design of task-specific surrogate
losses. The proposed framework is based on the observation that there exists a
common refactoring of the evaluation computation for many tasks and perfor-
mance metrics. Using this refactoring we generate a unified differentiable approx-
imation of the evaluation computation, through interpolation. We demonstrate
that using UniLoss, we can optimize for various tasks and performance metrics,
achieving comparable performance as task-specific losses.

We now discuss some limitations of UniLoss. One limitation is that the inter-
polation methods are not yet fully explored. We adopt the most straightforward
yet effective way in this paper, such as the sigmoid function and IDW interpo-
lation for simplicity and an easy generalization across different tasks. But there
are potentially other sophisticated choices for the interpolation methods and for
the sampling strategy for anchors.

The second limitation is that proposed anchor sampling strategy is biased
towards the optimal configuration that corresponds to the ground truth when
there are multiple configurations that can lead to the optimal performance.

The third limitation is that ranking-based metrics may result in a quadratic
number of binary variables if pairwise comparison is needed for every pair of
scores. Fortunately in many cases such as the ones discussed in this paper, the
number of binary variables is not quadratic because many comparisons does not
contribute to the performance metric.

The fourth limitation is that currently UniLoss still requires some amount
of manual effort (although less than designing a loss from scratch) to analyze
the given code of the decoder and the evaluator for the refactoring. Combining
automatic code analysis with our framework can further reduce manual efforts
in loss design.
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Abstract. We present a deep learning approach to reconstruct scene
appearance from unstructured images captured under collocated point
lighting. At the heart of Deep Reflectance Volumes is a novel volumetric
scene representation consisting of opacity, surface normal and reflectance
voxel grids. We present a novel physically-based differentiable volume
ray marching framework to render these scene volumes under arbitrary
viewpoint and lighting. This allows us to optimize the scene volumes
to minimize the error between their rendered images and the captured
images. Our method is able to reconstruct real scenes with challeng-
ing non-Lambertian reflectance and complex geometry with occlusions
and shadowing. Moreover, it accurately generalizes to novel viewpoints
and lighting, including non-collocated lighting, rendering photorealis-
tic images that are significantly better than state-of-the-art mesh-based
methods. We also show that our learned reflectance volumes are editable,
allowing for modifying the materials of the captured scenes.

Keywords: View synthesis · Relighting · Appearance acquisition ·
Neural rendering

1 Introduction

Capturing a real scene and re-rendering it under novel lighting conditions and
viewpoints is one of the core challenges in computer vision and graphics. This
is classically done by reconstructing the 3D scene geometry, typically in the
form of a mesh, and computing per-vertex colors or reflectance parameters, to
support arbitrary re-rendering. However, 3D reconstruction methods like multi-
view stereo are prone to errors in textureless and non-Lambertian regions [37,47],
and accurate reflectance acquisition usually requires dense, calibrated capture
using sophisticated devices [5,55].
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(a) Sample input images

(b) Normal volume (c) Albedo volume (d) Roughness volume

(e) Rendering under novel viewpoints and lightings

Fig. 1. Given a set of images taken using a mobile phone with flashlight (sampled
images are shown in (a)), our method learns a volume representation of the captured
object by estimating the opacity volume, normal volume (b) and reflectance volumes
such as albedo (c) and roughness (d). Our volume representation enables free navigation
of the object under arbitrary viewpoints and novel lighting conditions (e).

Recent works have proposed learning-based approaches to capture scene
appearance. One class of methods use surface-based representations [15,20]
but are restricted to specific scene categories and cannot synthesize photo-
realistic images. Other methods bypass explicit reconstruction, instead focusing
on relighting [58] or view synthesis sub-problems [31,56].

Our goal is to make high-quality scene acquisition and rendering practical
with off-the-shelf devices under mildly controlled conditions. We use a set of
unstructured images captured around a scene by a single mobile phone camera
with flash illumination in a dark room. This practical setup acquires multi-
view images under collocated viewing and lighting directions—referred to as
photometric images [56]. While the high-frequency appearance variation in these
images (due to sharp specular highlights and shadows) can result in low-quality
mesh reconstruction from state-of-the-art methods (see Fig. 3), we show that
our method can accurately model the scene and realistically reproduce complex
appearance information like specularities and occlusions.

At the heart of our method is a novel, physically-based neural volume ren-
dering framework. We train a deep neural network that simultaneously learns
the geometry and reflectance of a scene as volumes. We leverage a decoder-like
network architecture, where an encoding vector together with the correspond-
ing network parameters are learned during a per-scene optimization (training)
process. Our network decodes a volumetric scene representation consisting of
opacity, normal, diffuse color and roughness volumes, which model the global
geometry, local surface orientations and spatially-varying reflectance parame-
ters of the scene, respectively. These volumes are supplied to a differentiable
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rendering module to render images with collocated light-view settings at train-
ing time, and arbitrary light-view settings at inference time (see Fig. 2).

We base our differentiable rendering module on classical volume ray marching
approaches with opacity (alpha) accumulation and compositing [24,52]. In par-
ticular, we compute point-wise shading using local normal and reflectance prop-
erties, and accumulate the shaded colors with opacities along each marching ray
of sight. Unlike the opacity used in previous view synthesis work [31,62] that is
only accumulated along view directions, we propose to learn global scene opacity
that can be accumulated from both view and light directions. As shown in Fig. 1,
we demonstrate that our scene opacity can be effectively learned and used to com-
pute accurate hard shadows under novel lighting, despite the fact that the training
process never observed images with shadows that are taken under non-collocated
view-light setups. Moreover, different from previous volume-based works [31,62]
that learn a single color at each voxel, we reconstruct per-voxel reflectance and
handle complex materials with high glossiness. Our neural rendering framework
thus enables rendering with complex view-dependent and light-dependent shad-
ing effects including specularities, occlusions and shadows. We compare against
a state-of-the-art mesh-based method [37], and demonstrate that our method is
able to achieve more accurate reconstructions and renderings (see Fig. 3). We also
show that our approach supports scene material editing by modifying the recon-
structed reflectance volumes (see Fig. 8). To summarize, our contributions are:

– A practical neural rendering framework that reproduces high-quality geome-
try and appearance from unstructured mobile phone flash images and enables
view synthesis, relighting, and scene editing.

– A novel scene appearance representation using opacity, normal and reflectance
volumes.

– A physically-based differentiable volume rendering approach based on deep
priors that can effectively reconstruct the volumes from input flash images.

2 Related Works

Geometry Reconstruction. There is a long history in reconstructing 3D
geometry from images using traditional structure from motion and multi-view
stereo (MVS) pipelines [13,25,47]. Recently deep learning techniques have also
been applied to 3D reconstruction with various representations, including vol-
umes [18,45], point clouds [1,42,51], depth maps [16,59] and implicit functions
[10,35,40]. We aim to model scene geometry for realistic image synthesis, for
which mesh-based reconstruction [23,32,38] is the most common way in many
applications [6,37,44,61]. However, it remains challenging to reconstruct accurate
meshes for challenging scenes where there are textureless regions and thin struc-
tures, and it is hard to incorporate a mesh into a deep learning framework [26,30];
the few mesh-based deep learning works [15,20] are limited to category-specific
reconstruction and cannot produce photo-realistic results. Instead, we leverage a
physically-based opacity volume representation that can be easily embedded in a
deep learning system to express scene geometry of arbitrary shapes.



Deep Reflectance Volumes 297

Reflectance Acquisition. Reflectance of real materials is classically measured
using sophisticated devices to densely acquire light-view samples [12,33], which is
impractical for common users. Recent works have improved the practicality with
fewer samples [39,57] and more practical devices (mobile phones) [2,3,17,28];
however, most of them focus on flat planar objects. A few single-view techniques
based on photometric stereo [4,14] or deep learning [29] are able to handle arbi-
trary shape, but they merely recover limited single-view scene content. To recover
complete shape with spatially varying BRDF from multi-view inputs, previous
works usually rely on a pre-reconstructed initial mesh and images captured under
complex controlled setups to reconstruct per-vertex BRDFs [7,21,53,55,63].
While a recent work [37] uses a mobile phone for practical acquisition like ours,
it still requires MVS-based mesh reconstruction, which is ineffective for challeng-
ing scenes with textureless, specular and thin-structure regions. In contrast, we
reconstruct spatially varying volumetric reflectance via deep network based opti-
mization; we avoid using any initial geometry and propose to jointly reconstruct
geometry and reflectance in a holistic framework.

Relighting and View Synthesis. Image-based techniques have been exten-
sively explored in graphics and vision to synthesize images under novel lighting
and viewpoint without explicit complete reconstruction [8,11,27,43]. Recently,
deep learning has been applied to view synthesis and most methods lever-
age either view-dependent volumes [49,56,62] or canonical world-space volumes
[31,48] for geometric-aware appearance inference. We extend them to a more
general physically-based volumetric representation which explicitly expresses
both geometry and reflectance, and enables relighting with view synthesis. On
the other hand, learning-based relighting techniques have also been developed.
Purely image-based methods are able to relight scenes with realistic speculari-
ties and soft shadows from sparse inputs, but unable to reproduce accurate hard
shadows [19,50,58,60]; some other methods [9,44] propose geometry-aware net-
works and make use of pre-acquired meshes for relighting and view synthesis,
and their performance is limited by the mesh reconstruction quality. A work [36]
concurrent to ours models scene geometry and appearance by reconstructing a
continuous radiance field for pure view synthesis. In contrast, Deep Reflectance
Volumes explicitly express scene geometry and reflectance, and reproduce accu-
rate high-frequency specularities and hard shadows. Ours is the first comprehen-
sive neural rendering framework that enables both relighting and view synthesis
with complex shading effects.

3 Rendering with Deep Reflectance Volumes

Unlike a mesh that is comprised of points with complex connectivity, a volume
is a regular 3D grid, suitable for convolutional operations. Volumes have been
widely used in deep learning frameworks for 3D applications [54,59]. However,
previous neural volumetric representations have only represented pixel colors;
this can be used for view synthesis [31,62], but does not support relighting or
scene editing. Instead, we propose to jointly learn geometry and reflectance (i.e.
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material parameters) volumes to enable broader rendering applications including
view synthesis, relighting and material editing in a comprehensive framework.
Deep Reflectance Volumes are learned from a deep network and used to render
images in a fully differentiable end-to-end process as shown in Fig. 2. This is
made possible by a new differentiable volume ray marching module, which is
motivated by physically-based volume rendering. In this section, we introduce
our volume rendering method and volumetric scene representation. We discuss
how we learn these volumes from unstructured images in Sect. 4.

3.1 Volume Rendering Overview

In general, volume rendering is governed by the physically-based volume ren-
dering equation (radiative transfer equation) that describes the radiance that
arrives at a camera [34,41]:

L(c,ωo) =
∫ ∞

0

τ(c,x)[Le(x,ωo) + Ls(x,ωo)]dx, (1)

This equation integrates emitted, Le, and in-scattered, Ls, light contributions
along the ray starting at camera position c in the direction −ωo. Here, x rep-
resents distance along the ray, and x = c − xωo is the corresponding 3D point.
τ(c,x) is the transmittance factor that governs the loss of light along the line
segment between c and x:

τ(c,x) = e− ∫ x
0 σt(z)dz, (2)

where σt(z) is the extinction coefficient at location z on the segment. The in-
scattered contribution is defined as:

Ls(x,ωo) =
∫

S
fp(x,ωo,ωi)Li(x,ωi)dωi, (3)

in which S is a unit sphere, fp(x,ωo,ωi) is a generalized (unnormalized) phase
function that expresses how light scatters at a point in the volume, and Li(x,ωi)
is the incoming radiance that arrives at x from direction ωi.

In theory, fully computing L(c,ωo) requires multiple-scattering computa-
tion using Monte Carlo methods [41], which is computationally expensive and
unsuitable for deep learning techniques. We consider a simplified case with a
single point light, single scattering and no volumetric emission. The transmit-
tance between the scattering location and the point light is handled the same
way as between the scattering location and camera. The generalized phase func-
tion fp(x,ωo,ωi) becomes a reflectance function fr(ωo,ωi,n(x), R(x)) which
computes reflected radiance at x using its local surface normal n(x) and the
reflectance parameters R(x) of a given surface reflectance model. Therefore,
Eq. 1 and Eq. 3 can be simplified and written concisely as [24,34]:

L(c,ωo) =
∫ ∞

0

τ(c,x)τ(x, l)fr(ωo,ωi,n(x), R(x))Ll(x,ωi)dx, (4)
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Fig. 2. We propose Deep Reflectance Volume representation to capture scene geometry
and appearance, where each voxel consists of opacity α, normal n and reflectance
(material coefficients) R. During rendering, we perform ray marching through each pixel
and accumulate contributions from each point xs along the ray. Each contribution is
calculated using the local normal, reflectance and lighting information. We accumulate
opacity from both the camera αc→s and the light αl→t to model the light transport loss
in both occlusions and shadows. To predict such a volume, we start from an encoding
vector, and decode it into a volume using a 3D convolutional neural network; thus the
combination of the encoding vector and network weights is the unknown variable being
optimized (trained). We train on images captured with collocated camera and light by
enforcing a loss function between rendered images and training images.

where l is the light position, ωi corresponds to the direction from x to l, τ(c,x)
still represents the transmittance from the scattering point x to the camera c,
the term τ(x, l) (that was implicitly involved in Eq. 3) is the transmittance from
the light l to x and expresses light extinction before scattering, and Ll(x,ωi)
represents the light intensity arriving at x without considering light extinction.

3.2 A Discretized, Differentiable Volume Rendering Module

To make volume rendering practical in a learning framework, we further approx-
imate Eq. 4 by turning it into a discretized version, which can be evaluated by
ray marching [24,34,52]. This is classically expressed using opacity compositing,
where opacity α is used to represent the transmittance with fixed ray marching
step size Δx. Points are sequentially sampled along a given ray, ωo from the
camera position, c as:

xs = xs−1 − ωoΔx = c − sωoΔx. (5)

The radiance Ls and opacity αc→s along this path, c → s, are recursively accu-
mulated until xs exits the volume as:

Ls = Ls−1 + [1 − αc→(s−1)][1 − αl→(t−1)]α(xs)L(xs), (6)
αc→s = αc→(s−1) + [1 − αc→(s−1)]α(xs), (7)
L(xs) = fr(ωo,ωi,n(xs), R(xs))Ll(xs,ωi). (8)

Here, L(xs) computes the reflected radiance from the reflectance function and
the incoming light, αc→s represents the accumulated opacity from the camera
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c to point xs, and corresponds to τ(c,x) in Eq. 4. αl→t represents the accu-
mulated opacity from the light l—i.e., τ(x, l) in Eq. 4—and requires a separate
accumulation process over samples along the l → xs ray, similar to Eq. 7:

xs = xt = xt−1 − ωiΔx = l − tωiΔx, (9)
αl→t = αl→(t−1) + [1 − αl→(t−1)]α(xt). (10)

In this rendering process (Eq. 5–10), a scene is represented by an opacity vol-
ume α, a normal volume n and a BRDF volume R; together, these express the
geometry and reflectance of the scene, and we refer to them as Deep Reflectance
Volumes. The simplified opacity volume α is essentially one minus the transmis-
sion τ (depending on the physical extinction coefficient σt) over a ray segment
of a fixed step size Δx; this means that α is dependent on Δx.

Our physically-based ray marching is fully differentiable, so it can be easily
incorporated in a deep learning framework and backpropagated through. With
this rendering module, we present a neural rendering framework that simulta-
neously learns scene geometry and reflectance from captured images.

We support any differentiable reflectance model fr and, in practice, use the
simplified Disney BRDF model [22] that is parameterized by diffuse albedo and
specular roughness (please refer to the supplementary materials for more details).
Our opacity volume is a general geometry representation, accounting for both
occlusions (view opacity accumulation in Eq. 7) and shadows (light opacity accu-
mulation in Eq. 10). We illustrate our neural rendering with ray marching in
Fig. 2. Note that, because our acquisition setup has collocated camera and light-
ing, αl→t becomes equivalent to αc→s during training, thus requiring only one-
pass opacity accumulation from the camera. However, the learned opacity can
still be used for re-rendering under any non-collocated lighting with two-pass
opacity accumulation.

Note that while alpha compositing-based rendering functions have been used
in previous work on view synthesis, their formulations are not physically-based
[31] and are simplified versions that don’t model lighting [49,62]. In contrast,
our framework is physically-based and models single-bounce light transport with
complex reflectance, occlusions and shadows.

4 Learning Deep Reflectance Volumes

4.1 Overview

Given a set of images of a real scene captured under multiple known viewpoints
with collocated lighting, we propose to use a neural network to reconstruct a
Deep Reflectance Volume representation of a real scene. Similar to Lombardi
et al. [31], our network starts from a 512-channel deep encoding vector that
encodes scene appearance; in contrast to their work, where this volume only
represents RGB colors, we decode a vector to an opacity volume α, normal
volume n and reflectance volume R for rendering. Moreover, our scene encoding
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vector is not predicted by any network encoder; instead, we jointly optimize for
a scene encoding vector and scene-dependent decoder network.

Our network infers the geometry and reflectance volumes in a transformed 3D
space with a learned warping function W . During training, our network learns
the warping function W , and the geometry and reflectance volumes αw, nw, Rw,
where the subscript w refers to a volume in the warped space. The corresponding
world-space scene representation is expressed by V (x) = Vw(W (x)), where V is
α, n or R. In particular, we use bilinear interpolation to fetch a corresponding
value at an arbitrary position x in the space from the discrete voxel values. We
propose a decoder-like network, which learns to decode the warping function
and the volumes from the deep scene encoding vector. We use a rendering loss
between rendered and captured images as well as two regularizing terms.

4.2 Network Architecture

Geometry and Reflectance. To decode the geometry and reflectance volumes
(αw, nw, Rw), we use upsampling 3D convolutional operations to 3D-upsample
the deep scene encoding vector to a multi-channel volume that contains the opac-
ity, normal and reflectance. In particular, we use multiple transposed convolu-
tional layers with stride 2 to upsample the volume, each of which is followed by a
LeakyRelu activation layer. The network regresses an 8-channel 128 × 128 × 128
volume that includes αw, nw and Rw—one channel for opacity αw, three chan-
nels for normal nw, and four channels for reflectance Rw (three for albedo and
one for roughness). These volumes express the scene geometry and reflectance in
a transformed space, which can be warped to the world space for ray marching.

Warping Function. To increase the effective resolution of the volume, we learn
an affine-based warping function similar to [31]. The warping comprises a global
warping and a spatially-varying warping. The global warping is represented by
an affine transformation matrix Wg. The spatially varying warping is modeled in
the inverse transformation space, which is represented by six basis affine matrices
{Wj}16j=1 and a 32×32×32 16-channel volume B that contains spatially-varying
linear weights of the 16 basis matrices. Specifically, given a world-space position
x, the complete warping function W maps it into a transformed space by:

W (x) = [
16∑

j=1

Bj(x)Wj ]−1Wgx, (11)

where Bj(x) represents the normalized weight of the jth warping basis at x.
Here, each global or local basis affine transformation matrix W∗ is composed of
rotation, translation and scale parameters, which are optimized during the train-
ing process. Our network decodes the weight volume B from the deep encoding
vector using a multi-layer perceptron network with fully connected layers.
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4.3 Loss Function and Training Details

Loss Function. Our network learns the scene volumes using a rendering loss
computed using the differentiable ray marching process discussed in Sect. 3. Dur-
ing training, we randomly sample pixels from the captured images and do the
ray marching (using known camera calibration) to get the rendered pixel colors
Lk of pixel k; we supervise them with the ground truth colors L̃k in the captured
images using a L2 loss. In addition, we also apply regularization terms from addi-
tional priors similar to [31]. We only consider opaque objects in this work and
enforce the accumulated opacity along any camera ray αck→s′ (see Eq. 7, here k
denotes a pixel and s′ reflects the final step that exits the volume) to be either
0 or 1, corresponding to a background or foreground pixel, respectively. We also
regularize the per-voxel opacity to be sparse over the space by minimizing the
spatial gradients of the logarithmic opacity. Our total loss function is given by:
∑

k

‖Lk − L̃k‖2 + β1

∑
k

[log(αck→s′) + log(1 − αck→s′)] + β2

∑
‖∇x log α(x)‖

(12)
Here, the first part reflects the data term, the second regularizes the accumulated
α and the third regularizes the spatial sparsity.

Training Details. We build our volume as a cube located at [−1, 1]3. During
training, we randomly sample 128 × 128 pixels from 8 captured images for each
training batch, and perform ray marching through the volume using a step size
of 1/64. Initially, we set β1 = β2 = 0.01; we increase these weights to β1 =
1.0, β2 = 0.1 after 300000 iterations, which helps remove the artifacts in the
background and recover sharp boundaries.

5 Results

In this section we show our results on real captured scenes. We first introduce our
acquisition setup and data pre-processing. Then we compare against the state-
of-the-art mesh-based appearance acquisition method, followed by a detailed
analysis of the experiments. We also demonstrate material editing results with
our approach. Please refer to the supplementary materials for video results.

Data Acquisition. Our approach learns the volume representation in a scene
dependent way from images with collocated view and light; this requires ade-
quately dense input images well distributed around a target scene to learn com-
plete appearance. Such data can be practically acquired by shooting a video
using a handheld cellphone; we show one result using this practical handheld
setup in Fig. 4. For other results, we use a robotic arm to automatically capture
more uniformly distributed images around scenes for convenience and thorough
evaluations; this allows us to evaluate the performance of our method with dif-
ferent numbers of input images that are roughly uniformly distributed as shown
in Fig. 5. In the robotic arm setups, we mount a Samsung Galaxy Note 8 cell-
phone to the robotic arm and capture about 480 images using its camera and
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the built-in flashlight in a dark room; we leave out a subset of 100 images for
validation purposes and use the others for training. We use the same phone to
capture a 4-min video of the object in Captain and select one image for training
for every 20 frames, which effectively gives us 310 training images.

Data Pre-processing. Our captured objects are roughly located around the
center of the images. We select one fixed rectangular region around the center
that covers the object across all frames and use it to crop the images as input
for training. The resolution of the cropped training images fed to our network
ranges from 400×500 to 1100×1100. Note that we do not use a foreground mask
for the object. Our method leverages the regularization terms in training (see
Sect. 4.3), which automatically recovers a clean background. We calibrate the
captured images using structure from motion (SfM) in COLMAP [46] to get the
camera intrinsic and extrinsic parameters. Since SfM may fail to register certain
views, the actual number of training images varies from 300 to 385 in different
scenes. We estimate the center and bounding box of the captured object with
the sparse reconstructions from SfM. We translate the center of the object to
the origin and scale it to fit into the [−1, 1]3 cube.

Implementation and Timing. We implement our system (both neural net-
work and differentiable volume rendering components) using PyTorch. We train
our network using four NVIDIA 2080Ti RTX GPUs for about two days (about
450000 iterations; though 200000 iterations for 1 day typically already converges
to good results, see Fig. 7). At inference time, we directly render the scene from
the reconstructed volumes without the network. It takes about 0.8 s to render a
700 × 700 image under collocated view and light. For non-collocated view and
light, the rendering requires connecting each shading point to the light source
with additional light-dependent opacity accumulation, which is very expensive
if done naively. To facilitate this process, we perform ray marching from the
light’s point of view and precompute the accumulated opacity at each spatial
position of the volume. During rendering, the accumulated opacity for the light
ray can be directly sampled from the precomputed volume. By doing so, our
final rendering under arbitrary light and view takes about 2.3 s.

Comparisons with Mesh-Based Reconstruction. We use a practical acqui-
sition setup where we capture unstructured images using a mobile phone with its
built-in flashlight on in a dark room. Such a mildly controlled acquisition setup is
rarely supported by previous works [7,21,55,56,58,63]. Therefore, we compare
with the state-of-the-art method proposed by Nam et al. [37] for mesh-based
geometry and reflectance reconstruction, that uses the same cellphone setup as
ours to reconstruct a mesh with per-vertex BRDFs, and supports both relight-
ing and view synthesis. Figure 3 shows comparisons on renderings under both
collocated and non-collocated view-light conditions. The comparison results are
generated from the same set of input images, and we requested the authors of [37]
run their code on our data and compared on the rendered images provided by
the authors. Please refer to the supplementary materials for video comparisons.
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Fig. 3. Comparisons with mesh-based reconstruction. We show renderings of the cap-
tured object under both collocated (column 2, 3) and non-collocated (column 4, 5)
camera and light. We compare our volume-based neural reconstruction against a state-
of-the-art method [37] that reconstructs mesh and per-vertex BRDFs. Nam et al. [37]
fails to handle such challenging cases and recovers inaccurate geometry and appearance.
In contrast our method produces photo-realistic results.

As shown in Fig. 3, our results are significantly better than the mesh-based
method in terms of both geometry and reflectance. Note that, Nam et al. [37]
leverage a state-of-the-art MVS method [47] to reconstruct the initial mesh from
captured images and performs an optimization to further refine the geometry;
this however still fails to recover the accurate geometry in texture-less, specular
and thin-structured regions in those challenging scenes, which leads to seriously
distorted shapes in Pony, over-smoothness and undesired structures in House,
and degraded geometry in Girl. Our learning-based volumetric representation
avoids these mesh-based issues and models the scene geometry accurately with
many details. Moreover, it is also very difficult for the classical per-vertex BRDF
optimization in [37] to recover high-frequency specularities, which leads to over-
diffuse appearance in most of the scenes; this is caused by the lack of constraints
for the high-frequency specular effects, which appear in very few pixels in limited
input views. In contrast, our optimization is driven by our novel neural rendering
framework with deep network priors, which effectively correlates the sparse spec-
ularities in different regions through network connections and recovers realistic
specularities and other appearance effects.
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Fig. 4. Additional results on real scenes. We show renderings under novel view and
lighting conditions. Our method is able to handle scenes with multiple objects (top
two rows) and model the complex occlusions between them. Our method can also
generate high-quality results from casual handheld video captures (third row), which
demonstrates the practicability of our approach.

25 50 100 200 385

PSNR 25.33 26.36 26.95 27.85 28.13
SSIM 0.70 0.73 0.75 0.80 0.81

Fig. 5. We evaluate the performance of our
method on the House scene with different
numbers of training images. Although we
use all 385 images in our final experiments,
our method is able to achieve comparable
performance with as few as 200 images for
this challenging scene.

House Cartoon

[48] 0.786/25.81 0.532/16.34
Ours 0.896/30.44 0.911/29.14

Fig. 6. We compare against DeepVoxels
on synthesizing novel views under collo-
cated lights and report the PSNR/SSIM
scores. The results show that our method
generates more accurate renderings. Note
that we retrain our model with a resolu-
tion of 512 × 512 for a fair comparison.

Comparison on Synthesizing Novel Views. We also make a comparison on
synthesizing novel views under collocated lights against a view synthesis method
DeepVoxels [48], which encodes view-dependent appearance in a learnt 3D-aware
neural representation. Note that DeepVoxels does not support relighting. As
shown in Fig. 6, our method is able to generate renderings of higher quality with
higher PSNR/SSIM scores. In contrast, DeepVoxels fails to reason about the
complex geometry in our real scenes, thus resulting in degraded image quality.
Please refer to the supplementary materials for visual comparison results.
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Fig. 7. We compare our deep prior based
optimization against direct optimization of
the volume and warping function with-
out using networks. Direct optimization
converges significantly slower than our
method, which demonstrates the effective-
ness of regularization by the networks.

Before editing After editing

Fig. 8. Our approach supports intuitive
editing of the material properties of a cap-
tured object. In this example we decrease
the roughness of the object to make it
look like glossy marble instead of plastic.

Additional Results. We show additional relighting and view synthesis results
of complex real scenes in Fig. 4. Our method is able to handle scenes with multi-
ple objects, as shown in scene Cartoon and Animals. Our volumetric represen-
tation can accurately model complex occlusions between objects and reproduce
realistic cast shadows under novel lighting, which are never observed by our
network during the training process. In the Captain scene, we show the result
generated from handheld mobile phone captures. We select frames from the video
at fixed intervals as training data. Despite the potential existence of motion blur
and non-uniform coverage, our method is able to generate high-quality results,
which demonstrates the robustness and practicality of our approach. Please refer
to the supplementary materials for video results.

Evaluation of the Number of Inputs. Our method relies on an optimization
over adequate input images that capture the scene appearance across different
view/light directions. We evaluate how our reconstruction degrades with the
decrease of training images on the House scene. We uniformly select a subset of
views from the full training images and train our model on them. We evaluate
the trained model on the test images, and report the SSIMs and PSNRs in Fig. 5.
As we can see from the results, there is an obvious performance drop when there
are fewer than 100 training images due to insufficient constraints. On the other
hand, while we use the full 385 images for our final results, our method in fact
achieves comparable performance with only 200 for this scene, as reflected by
their close PSNRs and SSIMs.

Comparison with Direct Optimization. Our neural rendering leverages a
“deep volume prior” to drive the volumetric optimization process. To justify the
effectiveness of this design, we compare with a naive method that directly opti-
mizes the parameters in each voxel and the warping parameters using the same
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loss function. We show the optimization progress in Fig. 7. Note that, the naive
method converges significantly slower than ours, where the independent voxel-
wise optimization without considering across-voxel correlations cannot properly
disentangle the ambiguous information in the captured images; yet, our deep
optimization is able to correlate appearance information across the voxels with
deep convolutions, which effectively minimizes the reconstruction loss.

Material Editing. Our method learns explicit volumes with physical meaning
to represent the reflectance of real scenes. This enables broad image synthesis
applications like editing the materials of captured scenes. We show one example
in Fig. 8, where we successfully make the scene glossier by decreasing the learned
roughness in the volume. Note that, the geometry and colors are still preserved
in the scene, while novel specularities are introduced which are not part of the
material appearance in the scene. This example illustrates that our network dis-
entangles the geometry and reflectance of the scene in a reasonable way, thereby
enabling sub-scene component editing without influencing other components.

Limitations. We reconstruct the deep reflectance volumes with a resolution
of 1283, which is restricted by available GPU memory. While we have applied
a warping function to increase the actual utilization of the volume space, and
demonstrated that it is able to generate compelling results on complex real
scenes, it may fail to fully reproduce the geometry and appearance of scenes
with highly complex surface normal variations and texture details. Increasing
the volume resolution may resolve this issue. In the future, it would also be
interesting to investigate how to efficiently apply sparse representations such
as octrees in our framework to increase the capacity of our volume representa-
tion. The current reflectance model we are using is most appropriate for opaque
surfaces. Extensions to other materials like hair, fur or glass could be poten-
tially addressed by applying other reflectance models in our neural rendering
framework.

6 Conclusion

We have presented a novel approach to learn a volume representation that models
both geometry and reflectance of complex real scenes. We predict per-voxel opac-
ity, normal, and reflectance from unstructured multi-view mobile phone captures
with the flashlight. We also introduce a physically-based differentiable rendering
module to enable renderings of the volume under arbitrary viewing and lighting
directions. Our method is practical, and supports novel view synthesis, relighting
and material editing, which has significant potential benefits in scenarios such
as 3D visualization and VR/AR applications.
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Abstract. The objective of this paper is self-supervised learning from
video, in particular for representations for action recognition. We make
the following contributions: (i) We propose a new architecture and learn-
ing framework Memory-augmented Dense Predictive Coding (MemDPC)
for the task. It is trained with a predictive attention mechanism over
the set of compressed memories, such that any future states can always
be constructed by a convex combination of the condensed representa-
tions, allowing to make multiple hypotheses efficiently. (ii) We inves-
tigate visual-only self-supervised video representation learning from
RGB frames, or from unsupervised optical flow, or both. (iii) We thor-
oughly evaluate the quality of the learnt representation on four differ-
ent downstream tasks: action recognition, video retrieval, learning with
scarce annotations, and unintentional action classification. In all cases,
we demonstrate state-of-the-art or comparable performance over other
approaches with orders of magnitude fewer training data.

1 Introduction

Recent advances in self-supervised representation learning for images have
yielded impressive results, e.g. [11,26–28,34,50,57,70], with performance match-
ing or exceeding that of supervised representation learning on downstream tasks.
However, in the case of videos, although there have been similar gains for multi-
modal self-supervised representation learning, e.g. [2,4,39,47,52,56], progress on
learning only from the video stream (without additional audio or text streams)
is lagging behind. The objective of this paper is to improve the performance of
video only self-supervised learning.1

Compared to still images, videos should be a more suitable source for self-
supervised representation learning as they naturally provide various augmen-
tation, such as object out of plane rotations and deformations. In addition,
1 Code is available at http://www.robots.ox.ac.uk/∼vgg/research/DPC.

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-58580-8 19) contains supplementary material, which is
available to authorized users.

c© Springer Nature Switzerland AG 2020
A. Vedaldi et al. (Eds.): ECCV 2020, LNCS 12348, pp. 312–329, 2020.
https://doi.org/10.1007/978-3-030-58580-8_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58580-8_19&domain=pdf
http://orcid.org/0000-0002-1874-9664
http://orcid.org/0000-0003-3804-2639
http://orcid.org/0000-0002-8945-8573
http://www.robots.ox.ac.uk/~vgg/research/DPC
https://doi.org/10.1007/978-3-030-58580-8_19
https://doi.org/10.1007/978-3-030-58580-8_19
https://doi.org/10.1007/978-3-030-58580-8_19


Memory-Augmented Dense Predictive Coding 313

videos contain additional temporal information that can be used to disambiguate
actions e.g. open vs. close. The temporal information can also act as a free super-
visory signal to train a model to predict the future states from the past either
passively by watching videos [24,45,59] or actively in an interactive environ-
ment [16], and thereby learn a video representation.

Fig. 1. Can you predict the next frame? Future prediction naturally involves
challenges from multiple hypotheses, e.g. the motion of each leaf, reflections on the
water, hands and the golf club can be in many possible positions

Unfortunately, the exact future is indeterministic (a problem long discussed
in the history of science, and known as “Laplace’s Demon”). As shown in Fig. 1,
this problem is directly apparent in the stochastic variability of scenes, e.g. try-
ing to predict the exact motion of each leaf on a tree when the wind blows, or
the changing reflections on the water. More concretely, consider the action of
‘playing golf’ – once the action starts, a future frame could have the hands and
golf club in many possible positions, depending on the person who is playing.
Learning visual representation by predicting the future therefore requires design-
ing specific training schemes that simultaneously circumvents the unpredictable
details in exact frames, and also handles multiple hypotheses and incomplete
data – in particular only one possible future is exposed by the frames of one
video.

Various approaches have been developed to deal with the multiple possible
futures for an action. Vondrick et al. [59] explicitly generates multiple hypothe-
ses, and only the hypothesis that is closest to the true observation is chosen dur-
ing optimization, however, this approach limits the number of possible future
states. Another line of work [24,50] circumvents this difficulty by using con-
trastive learning – the model is only asked to predict one future state that
assigns higher similarity to the true observation than to any distractor observa-
tion (from different videos or from elsewhere in the same video). Recalling the
‘playing golf’ example, the embedding must capture the hand movement for this
action, but not necessarily the precise position and velocity, only sufficiently to
disambiguate future frames.

In this paper, we continue the idea of contrastive learning, but improve it by
the addition of a Compressive Memory, which maps “lifelong” experience to a set
of compressed memories and helps to better anticipate the future. We make the
following four contributions: First, we propose a novel Memory-augmented Dense
Predictive Coding (MemDPC) architecture. It is trained with a predictive attention
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mechanism over the set of compressed memories, such that any future states can
always be constructed by a convex combination of the condensed representations,
allowing it to make multiple hypotheses efficiently. Second, we investigate visual
only self-supervised video representation learning from RGB frames, or from
unsupervised optical flow, or both. Third, we argue that, in addition to the
standard linear probes and fine-tuning [56,69], that have been used for evaluating
representation from self-supervised learning, a non-linear probe should also be
used, and demonstrate the difference that this probe makes. Finally, we evaluate
the quality of learnt feature representation on four different downstream tasks:
action recognition, learning under low-data regime (scarce annotations), video
retrieval, and unintentional action classification; and demonstrate state-of-the-
art performance over other approaches with similar settings on all tasks.

2 Related Work

Self-supervised Learning for Images has undergone rapid progress in visual
representation learning recently [11,26–28,34,50,57,70]. Generally speaking, the
success can be attributed to one specific training paradigm, namely contrastive
learning [12,23], i.e. contrast the positive and negative sample pairs.

Self-supervised Learning for Videos has explored various ideas to learn
representations by exploiting spatio-temporal information [1,2,8,15,20,21,30–
33,35,37,42–45,48,59,60,62–64,66]. Of more relevance here is the line of research
using contrastive learning, e.g. [2,4,5,39,51,52] learn from visual-audio corre-
spondence, [47] learns from video and narrations, and our previous work [24]
learns video representations by predicting future states.

Memory Models have been considered as one of the fundamental building
blocks towards intelligence. In the deep learning literature, two different lines of
research have received extensive attention, one is to build networks that involve
an internal memory which can be implicitly updated in a recurrent manner,
e.g. LSTM [29] and GRU [13]. The other line of research focuses on augmenting
feed-forward models with an explicit memory that can be read or written to
with an attention-based procedure [6,14,22,41,55,58,61,67]. In this work, our
compressive memory falls in the latter line, i.e. an external memory module.

3 Methodology

The proposed Memory-augmented Dense Predictive Coding (MemDPC), is a con-
ceptually simple model for learning a video representation with contrastive pre-
dictive coding. The key novelty is to augment the previous DPC model with
a Compressive Memory. This provides a mechanism for handling the multiple
future hypotheses required in learning due to the problem that only one possible
future is exposed by a particular video.

The architecture is shown in Fig. 2. As in the case of DPC, the video is
partitioned into 8 blocks with 5 frames each, and an encoder network f generates
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an embedding z for each block. For inference, these embeddings are aggregated
over time by a function g into a video level embedding c. During training, the
future block embeddings ẑ are predicted and used to select the true embedding
in the dense predictive coding manner. In MemDPC, the prediction of ẑ is from a
convex combination of memory elements (rather from c directly as in DPC), and
it is this restriction that also enables the network to handle multiple hypotheses,
as will be explained below.

memory 
module memory module

Fig. 2. Architecture of the Memory-augmented Dense Predictive Coding (MemDPC).
Note, the memory module is only used during the self-supervised training. The ct
embedding is used for downstream tasks

3.1 Memory-Augmented Dense Predictive Coding (MemDPC)

Video Block Encoder. As shown in Fig. 2, we partition the input video
sequence into multiple blocks x1, ..., xt, xt+1, ..., where each block is composed of
multiple video frames. Then a shared feature extractor f(.) (architecture details
are given in the supplementary material) extracts the video features zi from each
video block xi:

zi = f(xi) (1)

Temporal Aggregation. After acquiring block representations, multiple block
embeddings are aggregated to obtain a context feature ct, summarizing the infor-
mation over a longer temporal window. Specifically,

ct = g(z1, z2, ..., zt) (2)

in our case, we simply adopt Recurrent Neural Networks (RNNs) for g(.), but
other auto-regressive model should also be feasible for temporal aggregation.

Compressive Memory. In order to enable efficient multi-hypotheses estima-
tion, we augment the predictive models with an external common compressive
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memory. This external memory bank is shared for the entire dataset during
training, and is accessed by a predictive addressing mechanism that infers a
probability distribution over the memory entries, where each memory entry acts
as a potential hypothesis.

In detail, the compressed memory bank is written M = [m1,m2, ...,mk]� ∈
R

k×C , where k is the memory size and C is the dimension of each compressed
memory. During training, a predictive memory addressing mechanism (Eq. 3) is
used to draw a hypothesis from the compressed memory, and the predicted future
states ẑt+1 is then computed as the expectation of sampled hypotheses (Eq. 4):

pt+1 = Softmax
(
φ(ct)

)
(3)

ẑt+1 =
k∑

i=1

p(i,t+1) · mi = pt+1M (4)

where p(i,t+1) ∈ R
k refers to the contribution of i-th memory slot for the future

representation at time step t. A future prediction function φ(.) projects the
context representation to p(i,t+1), in practice, φ(.) is learned with a multilayer
perceptron. The softmax operation is applied on the k dimension.

Multiple Hypotheses. The dot product of the predicted and desired future
pairs can be rewritten as:

ψ(ẑ�, z) =
( k∑

i=1

pi · m�
i

)
z =

k∑

i=1

pi · (
m�

i z
)

(5)

where m�
i z refers to the dot product (i.e. similarity) between a single memory

slot and the feature states from the observation. The objective of φ(.) is to predict
a probability distribution over k hypotheses in the memory bank, such that the
expectation of m�

i z for a positive pair is larger than that of negative pairs. Since
the future is uncertain, the desired future feature z might be similar to one of
the multiple hypotheses in the memory bank, say either mp or mq, for instance.
To handle this uncertainty, the future prediction function φ(.) just needs to put
a higher probability on both the p and q slots, such that Eq. 5 is always large no
matter which state the future is. In this way, the burden of modelling the future
uncertainly is allocated to the memory bank M and future prediction function
φ(.), thus the backbone encoder f(.) and g(.) can save capacity and capture the
high-level action trajectory.

Memory Mechanism Discussion. Note, in contrast to the memory mecha-
nism in Wu et al. [65] and MoCo [26], which has the goal of storing more data
samples to increase the number of negative samples during contrastive learn-
ing, our Compressive Memory has the goal of aiding learning by compressing all
the potential hypotheses within the entire dataset, and allowing access through
the predictive addressing mechanism. The memory mechanism shares similar-
ity with NetVLAD [3], which represents a feature distribution with “trainable
centroids”. However, in NetVLAD the goal is for compact and discriminative
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feature aggregation, and it encodes a weighted sum of residuals between feature
vectors and the centroids. In contrast, our goal with φ(.) is to predict attention
weights for the entries in the memory bank M, in order to construct the future
state as a convex combination these entries. The model can also sequentially
predict further into the future with the same memory bank.

3.2 Contrastive Learning

Contrastive Learning generally refers to the training paradigm that forces the
similarity scores of positive pairs to be higher than those of negatives.

Fig. 3. Details of the contrastive loss. Contrastive loss is computed densely, i.e. over
both spatial and temporal dimension of the feature

Specifically, in MemDPC, we predict the future states recursively, ending up
with a sequence of predicted features ẑt+1, ẑt+2, . . . , ẑend and the video feature
from the true observations zt+1, zt+2, . . . , zend. As shown in Fig. 3, each pre-
dicted ẑ in practise is a dense feature map. To simplify the notation, we denote
temporal index with i and denote other indexes including spatial index and
batch-wise index as k, where batch-wise index means the index in the current
mini-batch, k ∈ {(1, 1, 1), (1, 1, 2), ..., (B,H,W )}. The objective function to min-
imize becomes:

L = −E

⎡

⎣
∑

i,k

log
eψ(ẑ�

i,k,zi,k)

eψ(ẑ�
i,k,zi,k) +

∑
(j,m) �=(i,k) eψ(ẑ�

i,k,zj,m)

⎤

⎦ (6)

where ψ(·) is acting as a critic function, in our case, we simply use dot product
between the two vectors (we also experiment with L2-normalization, and find
it gives similar performance on downstream tasks). Essentially, the objective
function acts as a multi-way classifier, and the goal of optimization is to learn
the video block encoder that assigns the highest values for (ẑi,k, zi,k) i.e. higher
similarity between the predicted future states and that from true observations
originating from the same video and spatial-temporal aligned position.
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3.3 Improving Performance by Extensions

As MemDPC is a general self-supervised learning framework, it can be com-
bined with other ‘modules’ like two-stream networks and bi-directional RNN
to improve the quality of the visual representations.

Two-Stream Architecture. We represent dense optical flow as images by
stacking the x and y displacement fields and another zero-valued array to make
them 3-channel images. There is no need to modify the MemDPC framework, and
it can be directly applied to optical flow inputs by simply replacing the input
xt from RGB frames to optical flow frames. We use late fusion like [19,53] to
combine both streams.

Bi-directional MemDPC. From the perspective of human perception, where
only the future is actively predicted, MemDPC is initially designed to be single-
directional. However, when passively taking the videos as input, predicting back-
wards becomes feasible. Bi-directional MemDPC has a shared feature extractor
f(.) to extract the features z1, z2, ..., zt, but has two identical aggregators gf (.)
and gb(.) denoting forward and backward aggregation. They aggregate the bi-
directional context features cf

t and cb
t . Then MemDPC predicts the past and the

future features with the shared φ(.) and shared memory bank M, and constructs
contrastive losses for both directions, namely Lf and Lb. The final loss is the
average of the losses from both directions.

4 How to Evaluate Self-supervised Learning?

The standard way to evaluate the quality of the learned representation is to
assess the performance on downstream tasks using two protocols: (i) a linear
probe – freezing the network and only train a linear head for the downstream
task; or (ii) fine-tuning the entire network for the downstream task. For example,
in (i) if the downstream task is classification, e.g. of UCF101, then a linear
classifier is trained on top of the frozen base network. In (ii) the self-supervised
training of the base network only provides the initialization. However, there
is no particular reason why self-supervision should lead to features that are
linearly separable, even if the representation has encoded semantic information.
Consequently, in addition to the two protocols mentioned above, we also evaluate
the frozen features with non-linear probing, e.g. in the case of a classification
downstream task, a non-linear MLP head is trained as the final classifier. In the
experiments we evaluate the representation on four different downstream tasks.

Action Classification is a common evaluation task for self-supervised learn-
ing on videos and it allows us to compare against other methods. After self-
supervised training, our MemDPC can be evaluated on this task under two set-
tings: (i) linear and non-linear probing with a fixed network (here the entire
backbone network, namely f(.), g(.)); and (ii) fine-tuning the entire network
end-to-end with supervised learning. For the embedding, as shown in Fig. 4, we
take the input video blocks x1, x2, ..., xt in the same way as MemDPC and extract
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the context feature ct using the feature extractor f(.) for each block and tempo-
ral aggregator g(.); then we spatially pool the context feature ct to obtain the
embedding. We describe the training details in Sect. 5.3. The detailed experiment
can be found in Sect. 5.4.

Fig. 4. Architecture of the action classification framework

Data Efficiency and Generalizability are reflected by the effectiveness of
the representation under a scarce-annotation regime. For this task, we take the
MemDPC representation and finetune it for action classification task, but limit the
model to only use 10%, 20% and 50% of the labelled training samples, then
we report the accuracy on the same testing set. The classifier has the identical
training pipeline as shown in Fig. 4, and training details are explained in Sect. 5.3.
The detailed experiment can be found in Sect. 5.5.

Video Action Retrieval directly evaluates the quality of the representation
without any further training, aiming to provide a straightforward understand-
ing on the quality of the learnt representation. Here, we use the simplest non-
parametric classifier, i.e. k-nearest neighbours, to determine whether semanti-
cally similar actions are close in the high-dimensional space. Referring to Fig. 4,
for each video, we truncate it into blocks x1, x2, ..., xt and extract the context
feature ct with the f(.) and g(.) trained with MemDPC. We spatially pool ct to get
a context feature vector, which is directly used as a query vector for measuring
the similarity with other videos in the dataset. The detailed experiment can be
found in Sect. 5.6.

Unintentional Actions is a straightforward application for a predictive frame-
work like MemDPC. We evaluate our representation on the task of unintentional
event classification that is proposed in the recent Oops dataset [17]. The core
of unintentional events detection in video is a problem of anomaly detection.
Usually, one of the predicted hypotheses tends to match true future relatively
well for most of the videos. The discrepancy between them yields a measurement
of future predictability, or ‘surprise’ level. A big surprise or a mismatched pre-
diction can be used to locate the failing moment. In detail, we design the model
as follows: first, we compute both the predicted feature ẑi and the corresponding
true feature zi, and let a function ξ(.) to measure their discrepancy. We train
the model with two settings: (i) freezing the representation and only train the
classifier ξ(.); (ii) finetuning the entire network. The detailed structure for the
classification task can be found in Sect. 5.7.
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5 Experiments

5.1 Datasets

For the self-supervised training, two video action recognition datasets are used,
but labels are dropped during training: UCF101 [54], containing 13k videos span-
ning over 101 human actions; and Kinetics400 (K400) [36] with 306k 10-second
video clips covering 400 human actions. For the downstream tasks we also use
UCF101, and additionally we use: HMDB51 [40] containing 7k videos spanning
over 51 human actions; and Oops [17] containing 20k videos of daily human
activities with unexpected failed moments, among them 14k videos have the
time stamps of the failed moments manually labelled.

5.2 Self-supervised Training

In our experiment, we use a (2+3D)-ResNet, following [18,24], as the encoder
f(.), where the first two residual blocks res2 and res3 have 2D convolutional
kernels, and only res4 and res5 have 3D kernels. Specifically, (2+3D)-ResNet18
and (2+3D)-ResNet34 are used in our experiments, denoted as R18 and R34
below. For the temporal aggregation, g(·), we use an one-layer GRU with kernel
size 1 × 1, with the weights shared among all spatial positions on the feature
map. The future prediction function, φ(.), is a two-layer convolutional network.
We choose the size of the memory bank M to be 1024 based on experiments in
Table 1. Network architecture are given in the supplementary material.

For the data, raw videos are decoded at a frame rate 24–30 fps, and each
data sample consists of 40 consecutive frames, sampled with a temporal stride
of 3 from the raw video. As input to MemDPC, they are divided into 8 video
clips – so that each encoder f(.) inputs 5 frames, covering around 0.5 s, and the
40 frames around 4 s. For optical flow, in order to eliminate extra supervisory
signals in the self-supervised training stage, we use the un-supervised TV-L1
algorithm [68], and follow the same pre-processing procedures as [10], i.e. trun-
cating large motions with more than ±20 in both channels, appending a third
0s channel, and transforming the values from [−20, 20] to [0, 255]. For data aug-
mentation, we apply clip-wise random crop and horizontal flip, and frame-wise
color jittering and random greyscale, for both the RGB and optical flow streams.
We experiment with both 128×128 and 224×224 input resolution. The original
video resolution is 256×256 and it is firstly cropped to 224×224 then rescaled if
needed. Self-supervised training uses the Adam [38] optimizer with initial learn-
ing rate 10−3. The learning rate is decayed once to 10−4 when the validation
loss plateaus. We use a batch size of 16 samples per GPU.



Memory-Augmented Dense Predictive Coding 321

5.3 Supervised Classification

For all action classification downstream tasks, the input follows the same frame
sampling procedure as when the model is trained with self-supervised learn-
ing, and then we train the classifier with cross-entropy loss as shown in Fig. 4.
A dropout of 0.9 is applied on the final layer. For data augmentation, we use
clip-wise random crop, random horizontal flip, and random color jittering. The
classifier is trained with Adam with a 10−3 initial learning rate, and decayed
once to 10−4 when the validation loss plateaus. During testing, we follow the
standard pipeline, i.e. ten-crop (center and four corner crops, w/o horizontal
flip), take the same sequence length as training from the video, and average the
prediction from the sampling temporal moving window.

5.4 Evaluation: Action Classification

We conduct two sets of experiments: (i) ablation studies on the effectiveness
of the different modules in the MemDPC, by self-supervised learning on UCF101,
(ii) to compare with other state-of-the-art approaches, we run MemDPC on K400
with self-supervised learning. For both settings, the representation quality is
evaluated on UCF101 and HMDB51 with linear probing, non-linear probing,
and end-to-end finetuning.

Ablations on UCF101. In this section, we conduct extensive experiments to
validate the effectiveness of compressive memory, bidirectional aggregation, and
self-supervised learning on optical flow. Note that, in each experiment, we keep
the settings identical, and only vary one variable at a time.

As shown in Table 1, the following phenomena can be observed: First, com-
paring experiment C2 against B1 (68.2 vs. 61.8), networks initialized with
self-supervised MemDPC clearly present better generalization than a randomly
initialized network; Second, comparing with a strong baseline (A), the pro-
posed compressive memory boost the learnt representation by around 5% (68.2
vs. 63.6), and the optimal memory size for UCF101 is 1024; Third, MemDPC acts
as a general learning framework that can also help to boost the generalizability of
motion representations, a 7.3% boost can be seen from D1 vs. B2 (81.9 vs. 74.6);
Fourth, the bidirectional aggregation provides a small boost to the accuracy by
about 1% (E1 vs. C2, E2 vs. D1, E3 vs. D2). Lastly, after fusing both streams, D2
achieves 84% classification accuracy, confirming our claim that self-supervised
learning with only the video stream (without additional audio or text streams)
can also end up with strong action recognition models.
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Table 1. Ablation studies. We train MemDPC on UCF101 and evaluate on UCF101
action classification by finetuning the entire network. We group rows for clarity: A is
the reimplementation of DPC, B are random initialization baselines, C for different
memory size, D incorporates optical flow, E incorporates a bi-directional RNN

# Network Self-sup. Sup. (top1)

Dataset Input Resolution Memory size UCF101(ft)

A R18 UCF101 RGB 128 × 128 - (DPC [24]) 63.6

B1 R18 -(rand. init.) RGB 128 × 128 – 61.8

B2 R18 -(rand. init.) Flow 128 × 128 – 74.6

B3 R18×2 -(rand. init.) RGB+F 128 × 128 – 78.7

C1 R18 UCF101 RGB 128 × 128 512 65.3

C2 R18 UCF101 RGB 128 × 128 1024 68.2

C3 R18 UCF101 RGB 128 × 128 2048 68.0

D1 R18 UCF101 Flow 128 × 128 1024 81.9

D2 R18×2 UCF101 RGB+F 128 × 128 1024 84.0

E1 R18-bd UCF101 RGB 128 × 128 1024 69.2

E2 R18-bd UCF101 Flow 128 × 128 1024 82.3

E3 R18-bd×2 UCF101 RGB+F 128 × 128 1024 84.3

Comparison with Others. In this section, we train MemDPC on K400 and
evaluate the action classification performance on UCF101 and HMDB51. Specif-
ically, we evaluate three settings: (1) finetuning the entire network (denoted
as Freeze = ✗); (2) freeze the backbone and only train a linear classifier,
i.e. linear probe (denoted as Freeze = ✓); (3) freeze the backbone and only
train a non-linear classifier, i.e. non-linear probe (denoted as ‘n.l.’).

As shown in Table 2, for the same amount of data (K400) and visual-only
input, MemDPC surpasses all previous state-of-the-art self-supervised methods on
both UCF101 and HMDB51 (although there exist small differences in architec-
ture, e.g. for 3DRotNet, ST-Puzzle, DPC, SpeedNet). When freezing the rep-
resentation, it can be seen that a non-linear probe gives better results than a
linear probe, and in practice a non-linear classifier is still very cheap to train.

Other self-supervised training methods on the same benchmarks are not
directly comparable, even ignoring the architecture differences, due to the dura-
tion of videos used or to the number of modalities used. For example, CBT [56]
uses a longer version of K600 (referred to as K600+ in the table), the size is
about 9 times that of the standard K400 that we use, and CBT requires Rot-
Net [35] initialization while MemDPC can be trained from scratch. Nevertheless,
our performance exceeds that of CBT. Other works use additional modalities
for pre-text tasks like audio [2,39,51,52], or narrations [47], and train on larger
datasets. Despite these disadvantages, we demonstrate that MemDPC trained with
only visual inputs, can achieve competitive results on the finetuning protocol.
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Table 2. Comparison with state-of-the-art approaches. In the left columns, we show the
pre-training setting, e.g. dataset, resolution, architectures with encoder depth, modal-
ity. In the right columns, the top-1 accuracy is reported on the downstream action
classification task for different datasets, e.g. UCF, HMDB, K400. The dataset paren-
thesis shows the total video duration in time (d for day, y for year). ‘Frozen ✗’ means
the network is end-to-end finetuned from the pretrained representation, shown in the
top half of the table; ‘Frozen ✓’ means the pretrained representation is fixed and clas-
sified with a linear layer, ‘n.l.’ denotes a non-linear classifier. For input,

, ‘A’ is audio, ‘T’ is text narration. MemDPC models with †
refer to the two-stream networks, where the predictions from RGB and Flow networks
are averaged

5.5 Evaluation: Data Efficiency

In Fig. 5, we show the data efficiency of MemDPC on both RGB input and optical
flow with action recognition on the UCF101 dataset. As we reduce the labelled
training samples, action classifier trained on MemDPC representation generalize
significantly better than the classifier trained from scratch. Also, to match the
performance of a random initialized classifier trained on 100% labelled data, a
classifier trained on MemDPC initialization only requires less than 50% labelled
data for both RGB and optical flow input.
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Fig. 5. Data efficiency of MemDPC representations. Left is RGB input and right is optical
flow input. The MemDPC is trained on UCF101 and it is evaluated on action classifica-
tion (finetuning protocol) on UCF101 with a reduced number of labels

5.6 Evaluation: Video Retrieval

In this protocol, we evaluate our representation with nearest-neighbour video
retrieval, features are extracted from the model, which is only trained with self-
supervised learning, no further finetuning is allowed.

Experiments are shown on two datasets: UCF101 and HMDB51. For both
datasets, within the training set or within the testing set, multiple clips could
be from the same source video, hence they are visually similar and make the
retrieval task trivial. We follow the practice of [46,66], and use each clip in the
test set to query the k nearest clips in the training set.

For each clip, we sample multiple 8 video blocks with a sliding window, and
extract the context representation ct for each window. We spatial-pool each ct

and take the average over all the windows. For distance measurement, we use
cosine distance. We report Recall at k (R@k) as the evaluation metric. That is,
as long as one clip of the same class is retrieved in the top k nearest neighbours,
a correct retrieval is counted.

Table 3. Comparison with others on Nearest-Neighbour video retrieval on UCF101
and HMDB51. Testing set clips are used to retrieve training set videos and R@k is
reported, where k ∈ [1, 5, 10, 20]. Note that all the models reported were only pretrained
on UCF101 with self-supervised learning except SpeedNet

Method Date Dataset UCF HMDB

R@1 R@5 R@10 R@20 R@1 R@5 R@10 R@20

Jigsaw [49] 2016 UCF 19.7 28.5 33.5 40.0 – – – –

OPN [44] 2017 UCF 19.9 28.7 34.0 40.6 – – – –

Buchler [9] 2018 UCF 25.7 36.2 42.2 49.2 – – – –

VCOP [66] 2019 UCF 14.1 30.3 40.4 51.1 7.6 22.9 34.4 48.8

VCP [46] 2020 UCF 18.6 33.6 42.5 53.5 7.6 24.4 36.3 53.6

SpeedNet [7] 2020 K400 13.0 28.1 37.5 49.5 – – – –

MemDPC-RGB UCF 20.2 40.4 52.4 64.7 7.7 25.7 40.6 57.7

MemDPC-Flow UCF 40.2 63.2 71.9 78.6 15.6 37.6 52.0 65.3
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In Table 3, we show the retrieval performance on UCF101 and HMDB51.
Note that the MemDPC benchmarked here is only trained on UCF101, the same as
[46,66]. For fair comparison, MemDPC in this experiment uses a R18 back-
bone, which has the same depth but less parameters than the 3D-ResNet used
in [46,66]. With RGB inputs, our MemDPC gets state-of-the-art performance on
all the metrics except R@1 in UCF101, where the method from Buchler et al. [9]
specializes well on R@1. While for Flow inputs, MemDPC significantly outper-
forms all previous methods by a large margin. We also qualitatively show video
retrieval results in the supplementary material.

5.7 Evaluation: Unintentional Actions

We evaluate MemDPC on the Oops dataset on unintentional action classification.
In Oops, there is one failure moment in the middle of each video. When cutting
the video into short clips, the clip overlapping the failure moment is defined as
a ‘transitioning’ action, the clips before are ‘intentional’ actions, and the clips
afterwards are ‘unintentional’ actions. The core task is therefore to classify each
short video clip into one of three categories,

In this experiment, we use a R18 based MemDPC model that takes 128 × 128
resolution video frames as input. After MemDPC is trained on K400 and the Oops
training set videos with self-supervised learning, we further train it for unin-
tentional action classification with a linear probe, and end-to-end finetuning (as
shown in Table 4). The training details are given in the supplementary material.
State-of-the-art performance is demonstrated by our MemDPC on this uninten-
tional action classification task, even outperforming the model pretrained on
K700 with full supervision with finetuning.

Table 4. MemDPC on unintentional action classification tasks. Note that our backbone
2+3D-ResNet18 has the same depth as 3D-ResNet18 used in [17] but with less parame-
ters. MemDPC model is trained on K400 and the OOPS training set without using labels,
and the network is then finetuned with supervision from the OOPS training set

Task Method Backbone Freeze Finetune

Classification K700 supervision 3D-ResNet18 53.6 64.0

Video Speed [17] 3D-ResNet18 53.4 61.6

MemDPC R18 53.0 64.4

6 Conclusion

In this paper, we propose a new architecture and learning framework (MemDPC)
for self-supervised learning from video, in particular for representations for action
recognition. With the novel compressive memory, the model can efficiently han-
dle the nature of multiple hypotheses in the self-supervised predictive learning
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procedure. In order to thoroughly evaluate the quality of the learnt representa-
tion, we conduct experiments on four different downstream tasks, namely action
recognition, video retrieval, learning with scarce annotations, and unintentional
action classification. In all cases, we demonstrate state-of-the-art or competitive
performance over other approaches that use orders of magnitude more train-
ing data. Above all, for the first time, we show that it is possible to learn
high-quality video representations with self-supervised learning, from the visual
stream alone (without additional audio or text streams).
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4. Arandjelović, R., Zisserman, A.: Look, listen and learn. In: Proceedings of the
ICCV (2017)
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Abstract. This paper introduces data augmentation for point clouds
by interpolation between examples. Data augmentation by interpolation
has shown to be a simple and effective approach in the image domain.
Such a mixup is however not directly transferable to point clouds, as we
do not have a one-to-one correspondence between the points of two dif-
ferent objects. In this paper, we define data augmentation between point
clouds as a shortest path linear interpolation. To that end, we intro-
duce PointMixup, an interpolation method that generates new examples
through an optimal assignment of the path function between two point
clouds. We prove that our PointMixup finds the shortest path between
two point clouds and that the interpolation is assignment invariant and
linear. With the definition of interpolation, PointMixup allows to intro-
duce strong interpolation-based regularizers such as mixup and manifold
mixup to the point cloud domain. Experimentally, we show the potential
of PointMixup for point cloud classification, especially when examples
are scarce, as well as increased robustness to noise and geometric trans-
formations to points. The code for PointMixup and the experimental
details are publicly available (Code is available at: https://github.com/
yunlu-chen/PointMixup/).

Keywords: Interpolation · Point cloud classification · Data
augmentation

1 Introduction

The goal of this paper is to classify a cloud of points into their semantic cate-
gory, be it an airplane, a bathtub or a chair. Point cloud classification is chal-
lenging, as they are sets and hence invariant to point permutations. Building
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on the pioneering PointNet by Qi et al. [15], multiple works have proposed
deep learning solutions to point cloud classification [12,16,23,29,30,36]. Given
the progress in point cloud network architectures, as well as the importance
of data augmentation in improving classification accuracy and robustness, we
study how could data augmentation be naturally extended to support also point
cloud data, especially considering the often smaller size of point clouds datasets
(e.g.ModelNet40 [31]). In this work, we propose point cloud data augmentation
by interpolation of existing training point clouds.

Fig. 1. Interpolation between point clouds. We show the interpolation between
examples from different classes (airplane/chair, and monitor/bathtub) with multiple
ratios λ. The interpolants are learned to be classified as (1 − λ) the first class and λ
the second class. The interpolation is not obtained by learning, but induced by solving
the optimal bijective correspondence which allows the minimum overall distance that
each point in one point cloud moves to the assigned point in the other point cloud.

To perform data augmentation by interpolation, we take inspiration from
augmentation in the image domain. Several works have shown that generating
new training examples, by interpolating images and their corresponding labels,
leads to improved network regularization and generalization, e.g., [8,24,26,34].
Such a mixup is feasible in the image domain, due to the regular structure of
images and one-to-one correspondences between pixels. However, this setup does
not generalize to the point cloud domain, since there is no one-to-one correspon-
dence and ordering between points. To that end, we seek to find a method to
enable interpolation between permutation invariant point sets.

In this work, we make three contributions. First, we introduce data augmen-
tation for point clouds through interpolation and we define the augmentation as
a shortest path interpolation. Second, we propose PointMixup, an interpolation
between point clouds that computes the optimal assignment as a path function
between two point clouds, or the latent representations in terms of point cloud.
The proposed interpolation strategy therefore allows usage of successful regular-
izers of Mixup and Manifold Mixup [26] on point cloud. We prove that (i) our
PointMixup indeed finds the shortest path between two point clouds; (ii) the
assignment does not change for any pairs of the mixed point clouds for any inter-
polation ratio; and (iii) our PointMixup is a linear interpolation, an important
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property since labels are also linearly interpolated. Figure 1 shows two pairs of
point clouds, along with our interpolations. Third, we show the empirical benefits
of our data augmentation across various tasks, including classification, few-shot
learning, and semi-supervised learning. We furthermore show that our approach
is agnostic to the network used for classification, while we also become more
robust to noise and geometric transformations to the points.

2 Related Work

Deep Learning for Point Clouds. Point clouds are unordered sets and hence
early works focus on analyzing equivalent symmetric functions which ensures per-
mutation invariance. [15,17,33]. The pioneering PointNet work by Qi et al. [15]
presented the first deep network that operates directly on unordered point sets. It
learns the global feature with shared multi-layer perceptions and a max pooling
operation to ensure permutation invariance. PointNet++ [16] extends this idea
further with hierarchical structure by relying on a heuristic method of farthest
point sampling and grouping to build the hierarchy. Likewise, other recent meth-
ods follow to learn hierarchical local features either by grouping points in various
manners [10,12,23,29,30,32,36]. Li et al. [12] propose to learn a transformation
from the input points to simultaneously solve the weighting of input point fea-
tures and permutation of points into a latent and potentially canonical order.
Xu et al. [32] extends 2D convolution to 3D point clouds by parameterizing a
family of convolution filters. Wang et al. [29] proposed to leverage neighborhood
structures in both point and feature spaces.

In this work, we aim to improve point cloud classification for any point-based
approach. To that end, we propose a new model-agnostic data augmentation.
We propose a Mixup regularization for point clouds and show that it can build
on various architectures to obtain better classification results by reducing the
generalization error in classification tasks. A very recent work by Li et al. [11]
also considers improving point cloud classification by augmentation. They rely
on auto-augmentation and a complicated adversarial training procedure, whereas
in this work we propose to augment point clouds by interpolation.

Interpolation-Based Regularization. Employing regularization approaches
for training deep neural networks to improve their generalization performances
have become standard practice in deep learning. Recent works consider a reg-
ularization by interpolating the example and label pairs, commonly known as
Mixup [8,24,34]. Manifold Mixup [26] extends Mixup by interpolating the hidden
representations at multiple layers. Recently, an effort has been made on apply-
ing Mixup to various tasks such as object detection [35] and segmentation [7].
Different from existing works, which are predominantly employed in the image
domain, we propose a new optimal assignment Mixup paradigm for point clouds,
in order to deal with their permutation-invariant nature.

Recently, Mixup [34] has also been investigated from a semi-supervised
learning perspective [2,3,27]. Mixmatch [3] guesses low-entropy labels for unla-
belled data-augmented examples and mixes labelled and unlabelled data using
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Mixup [34]. Interpolation Consistency Training [27] utilizes the consistency con-
straint between the interpolation of unlabelled points with the interpolation of
the predictions at those points. In this work, we show that our PointMixup can
be integrated in such frameworks to enable semi-supervised learning for point
clouds.

3 Point Cloud Augmentation by Interpolation

3.1 Problem Setting

In our setting, we are given a training set {(Sm, cm)}M
m=1 consisting of M point

clouds. Sm = {pm
n }N

n=1 ∈ S is a point cloud consisting of N points, pm
n ∈ R

3 is
the 3D point, S is the set of such 3D point clouds with N elements. cm ∈ {0, 1}C

is the one-hot class label for a total of C classes. The goal is to train a function
h : S �→ [0, 1]C that learns to map a point cloud to a semantic label distribution.
Throughout our work, we remain agnostic to the type of function h used for the
mapping and we focus on data augmentation to generate new examples.

Data augmentation is an integral part of training deep neural networks, espe-
cially when the size of the training data is limited compared to the size of the
model parameters. A popular data augmentation strategy is Mixup [34]. Mixup
performs augmentation in the image domain by linearly interpolating pixels, as
well as labels. Specifically, let I1 ∈ R

W×H×3 and I2 ∈ R
W×H×3 denote two

images. Then a new image and its label are generated as:

Imix(λ) = (1 − λ) · I1 + λ · I2, (1)
cmix(λ) = (1 − λ) · c1 + λ · c2, (2)

where λ ∈ [0, 1] denotes the mixup ratio. Usually λ is sampled from a beta dis-
tribution λ ∼ Beta(γ, γ). Such a direct interpolation is feasible for images as
the data is aligned. In point clouds, however, linear interpolation is not straight-
forward. The reason is that point clouds are sets of points in which the point
elements are orderless and permutation-invariant. We must, therefore, seek a
definition of interpolation on unordered sets.

3.2 Interpolation Between Point Clouds

Let S1 ∈ S and S2 ∈ S denote two training examples on which we seek to
perform interpolation with ratio λ to generate new training examples. Given a
pair of source examples S1 and S2, an interpolation function, fS1→S2 : [0, 1] �→ S
can be any continuous function, which forms a curve that joins S1 and S2 in
a metric space (S, d) with a proper distance function d. This means that it is
up to us to define what makes an interpolation good. We define the concept of
shortest-path interpolation in the context of point cloud:

Definition 1 (Shortest-path interpolation). In a metric space (S, d), a
shortest-path interpolation f∗

S1→S2
: [0, 1] �→ S is an interpolation between the
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given pair of source examples S1 ∈ S and S2 ∈ S, such that for any λ ∈ [0, 1],
d(S1, S

(λ))+d(S(λ), S2)) = d(S1, S2) holds for S(λ) = f∗
S1→S2

(λ) being the inter-
polant.

We say that Definition 1 ensures the shortest path property because the triangle
inequality holds for any properly defined distance d : d(S1, S

(λ))+d(S(λ), S2)) ≥
d(S1, S2). The intuition behind this definition is that the shortest path property
ensures the uniqueness of the label distribution on the interpolated data. To
put it otherwise, when computing interpolants from different sources, the inter-
polants generated by the shortest-path interpolation is more likely to be discrim-
inative than the ones generated by a non-shortest-path interpolation (Fig. 2).

Fig. 2. Intuition of shortest-path interpolation. The examples lives on a metric
space (S, d) as dots in the figure. The dashed lines are the interpolation paths between
different pairs of examples. When the shortest-path property is ensured (left), the
interpolation paths from different pairs of source examples are likely to be not intersect
in a complicated metric space. While in non-shortest path interpolation (right), the
paths can intertwine with each other with a much higher probability, making it hard
to tell which pair of source examples does the mixed data come from.

To define an interpolation for point clouds, therefore, we must first select
a reasonable distance metric. Then, we opt for the shorterst-path interpolation
function based on the selected distance metric. For point clouds a proper distance
metric is the Earth Mover’s Distance (EMD), as it captures well not only the
geometry between two point clouds, but also local details as well as density
distributions [1,5,13]. EMD measures the least amount of total displacement
required for each of the points in the first point cloud, xi ∈ S1, to match a
corresponding point in the second point cloud, yj ∈ S2. Formally, the EMD for
point clouds solves the following assignment problem:

φ∗ = arg minφ∈Φ

∑

i

‖xi − yφ(i)‖2, (3)

where Φ = {{1, . . . , N} �→ {1, . . . , N}} is the set of possible bijective assign-
ments, which give one-to-one correspondences between points in the two point
clouds. Given the optimal assignment φ∗, the EMD is then defined as the average
effort to move S1 points to S2:
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dEMD =
1
N

∑

i

‖xi − yφ∗(i)‖2. (4)

3.3 PointMixup: Optimal Assignment Interpolation for Point
Clouds

We propose an interpolation strategy, which can be used for augmentation that
is analogous of Mixup [34] but for point clouds. We refer to this proposed Point-
Mixup as Optimal Assignment (OA) Interpolation, as it relies on the optimal
assignment on the basis of the EMD to define the interpolation between clouds.
Given the source pair of point clouds S1 = {xi}N

i=1 and S2 = {yj}N
j=1, the Opti-

mal Assignment (OA) interpolation is a path function f∗
S1→S2

: [0, 1] �→ S. With
λ ∈ [0, 1],

f∗
S1→S2

(λ) = {ui}N
i=1, where (5)

ui = (1 − λ) · xi + λ · yφ∗(i), (6)

in which φ∗ is the optimal assignment from S1 to S2 defined by Eq. 3. Then the
interpolant S

S1→S2,(λ)
OA (or S

(λ)
OA when there is no confusion) generated by the

OA interpolation path function f∗
S1→S2

(λ) is the required augmented data for
point cloud Mixup.

S
(λ)
OA = {(1 − λ) · xi + λ · yφ∗(i)}N

i=1. (7)

Under the view of f∗
S1→S2

being a path function in the metric space (S, dEMD),
f is expected to be the shortest path joining S1 and S2 since the definition of
the interpolation is induced from the EMD.

3.4 Analysis

Intuitively we expect that PointMixup is a shortest path linear interpolation.
That is, the interpolation lies on the shortest path joining the source pairs, and
the interpolation is linear with regard to λ in (S, dEMD), since the definition of
the interpolation is derived from the EMD. However, it is non-trivial to show the
optimal assignment interpolation abides to a shortest path linear interpolation,
because the optimal assignment between the mixed point cloud and either of the
source point cloud is unknown. It is, therefore, not obvious that we can ensure
whether there exists a shorter path between the mixed examples and the source
examples. To this end, we need to provide an in-depth analysis.

To ensure the uniqueness of the label distribution from the mixed data, we
need to show that the shortest path property w.r.t. the EMD is fulfilled. More-
over, we need to show that the proposed interpolation is linear w.r.t the EMD, in
order to ensure that the input interpolation has the same ratio as the label inter-
polation. Besides, we evaluate the assignment invariance property as a prereq-
uisite knowledge for the proof for the linearity. This property implies that there
exists no shorter path between interpolants with different λ, i.e., the shortest
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path between the interpolants is a part of the shortest path between the source
examples. Due to space limitation, we sketch the proof for each property. The
complete proofs are available in the supplementary material.

We start with the shortest path property. Since the EMD for point cloud is a
metric, the triangle inequality dEMD(A,B)+dEMD(B,C) ≥ dEMD(A,C) holds
(for which a formal proof can be found in [19]). Thus we formalize the shortest
path property into the following proposition:

Property 1 (shortest path). Given the source examples S1 and S2, ∀λ ∈
[0, 1], dEMD(S1, S

(λ)
OA) + dEMD(S(λ)

OA, S2) = dEMD(S1, S2).

Sketch of Proof. From the definition of the EMD we can derive dEMD(S1,

S
(λ)
OA) + dEMD(S2, S

(λ)
OA) ≤ dEMD(S1, S2). Then from the triangle inequity of the

EMD, only the equality remains. 
�
We then introduce the assignment invariance property of the OA Mixup as an

intermediate step for the proof of the linearity of OA Mixup. The property shows
that the assignment does not change for any pairs of the mixed point clouds with
different λ. Moreover, the assignment invariance property is important to imply
that the shortest path between the any two mixed point clouds is part of the
shortest path between the two source point clouds.

Property 2 (assignment invariance). S
(λ1)
OA and S

(λ2)
OA are two mixed point

clouds from the same given source pair of examples S1 and S2 as well as the mix
ratios λ1 and λ2 such that 0 ≤ λ1 < λ2 ≤ 1. Let the points in S

(λ1)
OA and S

(λ2)
OA

be ui = (1 − λ1) · xi + λ1 · yφ∗(i) and vk = (1 − λ2) · xk + λ2 · yφ∗(k), where φ∗ is
the optimal assignment from S1 to S2. Then the identical assignment φI is the
optimal assignment from S

(λ1)
OA to S

(λ2)
OA .

Sketch of Proof. We first prove that the identical mapping is the optimal
assignment from S1 to S

(λ1)
OA from the definition of the EMD. Then we prove

that φ∗ is the optimal assignment from S
(λ1)
OA to S2. Finally we prove that the

identical mapping is the optimal assignment from S
(λ1)
OA to S

(λ2)
OA similarly as the

proof for the first intermediate argument. 
�
Given the property of assignment invariance, the linearity follows:

Property 3 (linearity). For any mix ratios λ1 and λ2 such that 0 ≤ λ1 < λ2 ≤
1, the mixed point clouds S

(λ1)
OA and S

(λ2)
OA satisfies that dEMD(S(λ1)

OA , S
(λ2)
OA ) =

(λ2 − λ1) · dEMD(S1, S2).

Sketch of Proof. The proof can be directly derived from the fact that the
identical mapping is the optimal assignment between S

(λ1)
OA and S

(λ2)
OA . 
�

The linear property of our interpolation is important, as we jointly interpolate
the point clouds and the labels. By ensuring that the point cloud interpolation
is linear, we ensure that the input interpolation has the same ratio as the label
interpolation.

On the basis of the properties, we find that PointMixup is a shortest path
linear interpolation between point clouds in (S, dEMD).
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3.5 Manifold PointMixup: Interpolate Between Latent Point
Features

In standard PointMixup, only the inputs, i.e., the XYZ point cloud coordinates
are mixed. The input XYZs are low-level geometry information and sensitive
to disturbances and transformations, which in turn limits the robustness of the
PointMixup. Inspired by Manifold Mixup [26], we can also use the proposed
interpolation solution to mix the latent representations in the hidden layers
of point cloud networks, which are trained to capture salient and high-level
information that is less sensitive to transformations. PointMixup can be applied
for the purpose of Manifold Mixup to mix both at the XYZs and different levels
of latent point cloud features and maintain their respective advantages, which is
expected to be a stronger regularizer for improved performance and robustness.

We describe how to mix the latent representations. Following [26], at each
batch we randomly select a layer l to perform PointMixup from a set of lay-
ers L, which includes the input layer. In a point cloud network, the inter-
mediate latent representation at layer l (before the global aggregation stage
such as the max pooling aggregation in PointNet [15] and PointNet++ [16]) is
Z(l) = {(xi, z

(x)
i )}Nz

i=1, in which xi is 3D point coordinate and z
(x)
i is the corre-

sponding high-dimensional feature. For the mixed latent representation, given
the latent representation of two source examples are Z(l),1 = {(xi, z

(x)
i )}Nz

i=1 and
Z(l),2 = {(yi, z

(y)
i )}Nz

i=1, the optimal assignment φ∗ is obtained by the 3D point
coordinates xi, and the mixed latent representation then becomes

Z
(λ)
(l),OA = {(xmix

i , zmix
i )}, where

xmix
i = (1 − λ) · xi + λ · yφ∗(i),

zmix
i = (1 − λ) · z

(x)
i + λ · z

(y)
φ∗(i).

Specifically in PointNet++, three layers of representations are randomly selected
to perform Manifold Mixup: the input, and the representations after the first and
the second SA modules (See appendix of [16]).

4 Experiments

4.1 Setup

Datasets. We focus in our experiments on the ModelNet40 dataset [31]. This
dataset contains 12,311 CAD models from 40 man-made object categories, split
into 9,843 for training and 2,468 for testing. We furthermore perform experiments
on the ScanObjectNN dataset [25]. This dataset consists of real-world point
cloud objects, rather than sampled virtual point clouds. The dataset consists
of 2,902 objects and 15 categories. We report on two variants of the dataset,
a standard variant OBJ ONLY and one with heavy permutations from rigid
transformations PB T50 RS [25].
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Following [12], we discriminate between settings where each dataset is pre-
aligned and unaligned with horizontal rotation on training and test point cloud
examples. For the unaligned settings, we randomly rotate the training point
cloud along the up-axis. Then, before solving the optimal assignment, we perform
a simple additional alignment step to fit and align the symmetry axes between
the two point clouds to be mixed. Through this way, the point clouds are better
aligned and we obtain more reasonable point correspondences. Last, we also
perform experiments using only 20% of the training data (Fig. 3).

Fig. 3. Baseline interpolation variants. Top: point cloud interpolation through
random assignment. Bottom: interpolation through sampling.

Network Architectures. The main network architecture used throughout
the paper is PointNet++ [16]. We also report results with PointNet [15] and
DGCNN [29], to show that our approach is agnostic to the architecture that is
employed. PointNet learns a permutation-invariant set function, which does not
capture local structures induced by the metric space the points live in. Point-
Net++ is a hierarchical structure, which segments a point cloud into smaller
clusters and applies PointNet locally. DGCNN performs hierarchical operations
by selecting a local neighbor in the feature space instead of the point space,
resulting in each point having different neighborhoods in different layers.

Experimental Details. We uniformly sample 1,024 points on the mesh faces
according to the face area and normalize them to be contained in a unit sphere,
which is a standard setting [12,15,16]. In case of mixing clouds with different
number of points, we can simply replicate random elements from the each point
set to reach the same cardinality. During training, we augment the point clouds
on-the-fly with random jitter for each point using Gaussian noise with zero mean
and 0.02 standard deviation. We implement our approach in PyTorch [14]. For
network optimization, we use the Adam optimizer with an initial learning rate
of 10−3. The model is trained for 300 epochs with a batch size of 16. We follow
previous work [26,34] and draw λ from a beta distribution λ ∼ Beta(γ, γ). We
also perform Manifold Mixup [26] in our approach, through interpolation on
the transformed and pooled points in intermediate network layers. In this work,
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we opt to use the efficient algorithm and adapt the open-source implementation
from [13] to solve the optimal assignment approximation. Training for 300 epochs
takes around 17 h without augmentation and around 19 h with PointMixup or
Manifold PointMixup on a single NVIDIA GTX 1080 ti.

Baseline Interpolations. For our comparisons to baseline point cloud aug-
mentations, we compare to two variants. The first variant is random assignment
interpolation, where a random assignment φRA is used, to connect points from
both sets, yielding:

S
(λ)
RA = {(1 − λ) · xi + λ · yφRA(i)}.

The second variant is point sampling interpolation, where random draws with-
out replacement of points from each set are made according to the sampling
frequency λ:

S
(λ)
PS = S

(1−λ)
1 ∪ S

(λ)
2 ,

where S
(λ)
2 denotes a randomly sampled subset of S2, with λN� elements. (·�

is the floor function.) And similar for S1 with N − λN� elements, such that
S
(λ)
PS contains exactly N points. The intuition of the point sampling variant is

that for point clouds as unordered sets, one can move one point cloud to another
through a set operation such that it removes several random elements from set
S1 and replace them with same amount of elements from S2.

4.2 Point Cloud Classification Ablations

We perform four ablation studies to show the workings of our approach with
respect to the interpolation ratio, comparison to baseline interpolations and
other regularizations, as well robustness to noise.

Fig. 4. Effect of interpolation
ratios. MM denotes Manifold Mixup.

Effect of Interpolation Ratio. The first
ablation study focuses on the effect of the
interpolation ratio in the data augmenta-
tion for point cloud classification. We per-
form this study on ModelNet40 using the
PointNet++ architecture. The results are
shown in Fig. 4 for the pre-aligned setting.
We find that regardless of the interpolation
ratio used, our approach provides a boost
over the setting without augmentation by
interpolation. PointMixup positively influ-
ences point cloud classification. The inclu-
sion of manifold mixup adds a further boost
to the scores. Throughout further experiments, we use γ = 0.4 for input mixup
and γ = 1.5 for manifold mixup in unaligned setting, and γ = 1.0 for input
mixup and γ = 2.0 for manifold mixup in pre-aligned setting.
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Comparison to Baseline Interpolations. In the second ablation study, we
investigate the effectiveness of our PointMixup compared to the two interpolation
baselines. We again use ModelNet40 and PointNet++. We perform the evalua-
tion on both the pre-aligned and unaligned dataset variants, where for both we
also report results with a reduced training set. The results are shown in Table 1.
Across both the alignment variants and dataset sizes, our PointMixup obtains
favorable results. This result highlights the effectiveness of our approach, which
abides to the shortest path linear interpolation definition, while the baselines do
not.

Table 1. Comparison of PointMixup to baseline interpolations on ModelNet40
using PointNet++. PointMixup compares favorable to excluding interpolation and to
the baselines, highlighting the benefits of our shortest path interpolation solution.

Manifold mixup No mixup Random assignment Point sampling PointMixup

× × � × � × �
Full dataset

Pre-aligned 91.9 91.6 91.9 92.2 92.5 92.3 92.7

Unaligned 90.7 90.8 91.1 90.9 91.4 91.3 91.7

Reduced dataset

Pre-aligned 86.1 85.5 87.3 87.2 87.6 87.6 88.6

Unaligned 84.4 84.8 85.4 85.7 86.5 86.1 86.6

Table 2. Evaluating our approach to other data augmentations (left) and its
robustness to noise and transformations (right). We find that our approach with
manifold mixup (MM) outperforms augmentations such as label smoothing and other
variations of mixup. For the robustness evaluation, we find that our approach with
strong regularization power from manifold mixup provides more robustness to random
noise and geometric transformations.
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PointMixup with Other Regularizers. Third, we evaluate how well Point-
Mixup works by comparing to multiple existing data regularizers and mixup
variants, again on ModelNet40 and PointNet++. We investigate the following
augmentations: (i) Mixup [34], (ii) Manifold Mixup [26], (iii) mix input only
without target mixup, (iv) mix latent representation at a fixed layer (manifold
mixup does so at random layers), and (v) label smoothing [22]. Training is per-
formed on the reduced dataset to better highlight their differences. We show the
results in Table 2 on the left. Our approach with manifold mixup obtains the
highest scores. The label smoothing regularizer is outperformed, while we also
obtain better scores than the mixup variants. We conclude that PointMixup is
forms an effective data augmentation for point clouds.

Robustness to Noise. By adding additional augmented training examples,
we enrich the dataset. This enrichment comes with additional robustness with
respect to noise in the point clouds. We evaluate the robustness by adding ran-
dom noise perturbations on point location, scale, translation and different rota-
tions. Note that for evaluation of robustness against up-axis rotation, we use the
models which are trained with the pre-aligned setting, in order to test also the
performance against rotation along the up-axis as a novel transform. The results
are in Table 2 on the right. Overall, our approach including manifold mixup pro-
vides more stability across all perturbations. For example, with additional noise
(σ = 0.05), we obtain an accuracy of 56.5, compared to 35.1 for the baseline.
We similar trends for scaling (with a factor of two), with an accuracy of 72.9
versus 59.2. We conclude that PointMixup makes point cloud networks such as
PointNet++ more stable to noise and rigid transformations.

Fig. 5. Qualitative examples of PointMixup. We provide eight visualizations of
our interpolation. The four examples on the left show interpolations for different con-
figurations of cups and tables. The four examples on the right show interpolations for
different chairs and cars.
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Qualitative Analysis. In Fig. 5, we show eight examples of PointMix for point
cloud interpolation; four interpolations of cups and tables, four interpolations
of chairs and cars. Through our shortest path interpolation, we end up at new
training examples that exhibit characteristics of both classes, making for sen-
sible point clouds and mixed labels, which in turn indicate why PointMixup is
beneficial for point cloud classification.

4.3 Evaluation on Other Networks and Datasets

With PointMixup, new point clouds are generated by interpolating existing point
clouds. As such, we are agnostic to the type of network or dataset. To highlight
this ability, we perform additional experiments on extra networks and an addi-
tional point cloud dataset.

Table 3. PointMixup on other networks (left) and another dataset (right). We
find our approach is beneficial regardless the network or dataset.

PointMixup on Other Network Architectures. We show the effect of Point-
Mixup to two other networks, namely PointNet [15] and DGCNN [29]. The exper-
iments are performed on ModelNet40. For PointNet, we perform the evaluation
on the unaligned setting and for DGCNN with pre-aligned setting to remain con-
sistent with the alignment choices made in the respective papers. The results are
shown in Table 3 on the left. We find improvements when including PointMixup
for both network architectures.

PointMixup on Real-World Point Clouds. We also investigate PointMixup
on point clouds from real-world object scans, using ScanObjectNN [25], which
collects object from 3D scenes in SceneNN [9] and ScanNet [4]. Here, we rely on
PointNet++ as network. The results in Table 3 on the right show that we can
adequately deal with real-world point cloud scans, hence we are not restricted to
point clouds from virtual scans. This result is in line with experiments on point
cloud perturbations.

4.4 Beyond Standard Classification

The fewer training examples available, the stronger the need for additional exam-
ples through augmentation. Hence, we train PointNet++ on ModelNet40 in both
a few-shot and semi-supervised setting.

Semi-supervised Learning. Semi-supervised learning learns from a dataset
where only a small portion of data is labeled. Here, we show how PointMixup
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directly enables semi-supervised learning for point clouds. We start from Inter-
polation Consistency Training [27], a state-of-the-art semi-supervised approach,
which utilizes Mixup between unlabeled points. Here, we use our Mixup for point
clouds within their semi-supervised approach. We evaluate on ModelNet40 using
400, 600, and 800 labeled point clouds. The result of semi-supervised learning
are illustrated in Table 4 on the left. Compared to the supervised baseline, which
only uses the available labelled examples, our mixup enables the use of addi-
tional unlabelled training examples, resulting in a clear boost in scores. With
800 labelled examples, the accuracy increases from 73.5% to 82.0%, highlighting
the effectiveness of PointMixup in a semi-supervised setting.

Table 4. Evaluating PointMixup in the context of semi-supervised (left) and
few-shot learning (right). When examples are scarce, as is the case for both settings,
using our approach provides a boost to the scores.

Few-Shot Learning. Few-shot classification aims to learn a classifier to
recognize unseen classes during training with limited examples. We follow
[6,18,20,21,28] to regard few-shot learning a typical meta-learning method,
which learns how to learn from limited labeled data through training from a
collection of tasks, i.e., episodes. In an N -way K-shot setting, in each task, N
classes are selected and K examples for each class are given as a support set,
and the query set consists of the examples to be predicted. We perform few-shot
classification on ModelNet40, from which we select 20 classes for training, 10 for
validation, and 10 for testing. We utilize PointMixup within ProtoNet [20] by
constructing mixed examples from the support set and update the model with
the mixed examples before making predictions on the query set. We refer to
the supplementary material for the details of our method and the settings. The
results in Table 4 on the right show that incorporating our data augmentation
provides a boost in scores, especially in the one-shot setting, where the accuracy
increases from 72.3% to 77.2%.

5 Conclusion

This work proposes PointMixup for data augmentation on point clouds. Given
the lack of data augmentation by interpolation on point clouds, we start by
defining it as a shortest path linear interpolation. We show how to obtain Point-
Mixup between two point clouds by means of an optimal assignment interpola-
tion between their point sets. As such, we arrive at a Mixup for point clouds,
or latent point cloud representations in the sense of Manifold Mixup, that can
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handle permutation invariant nature. We first prove that PointMixup abides to
our shortest path linear interpolation definition. Then, we show through various
experiments that PointMixup matters for point cloud classification. We show
that our approach outperforms baseline interpolations and regularizers. More-
over, we highlight increased robustness to noise and geometric transformations,
as well as its general applicability to point-based networks and datasets. Lastly,
we show the potential of our approach in both semi-supervised and few-shot set-
tings. The generic nature of PointMixup allows for a comprehensive embedding
in point cloud classification.
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Abstract. Existing alignment-based methods have to employ the pre-
trained human parsing models to achieve the pixel-level alignment, and
cannot identify the personal belongings (e.g., backpacks and reticule)
which are crucial to person re-ID. In this paper, we propose the identity-
guided human semantic parsing approach (ISP) to locate both the human
body parts and personal belongings at pixel-level for aligned person re-
ID only with person identity labels. We design the cascaded clustering on
feature maps to generate the pseudo-labels of human parts. Specifically,
for the pixels of all images of a person, we first group them to foreground
or background and then group the foreground pixels to human parts. The
cluster assignments are subsequently used as pseudo-labels of human
parts to supervise the part estimation and ISP iteratively learns the
feature maps and groups them. Finally, local features of both human
body parts and personal belongings are obtained according to the self-
learned part estimation, and only features of visible parts are utilized
for the retrieval. Extensive experiments on three widely used datasets
validate the superiority of ISP over lots of state-of-the-art methods. Our
code is available at https://github.com/CASIA-IVA-Lab/ISP-reID.

Keywords: Person re-ID · Weakly-supervised human parsing ·
Aligned representation learning

1 Introduction

Person re-identification (re-ID), which aims to associate the person images cap-
tured by different cameras from various viewpoints, has attracted increasing
attention from both the academia and the industry. However, the task of person
re-ID is inherently challenging because of the ubiquitous misalignment issue,
which is commonly caused by part occlusions, inaccurate person detection,
human pose variations or camera viewpoints changing. All these factors can
significantly change the visual appearance of a person in images and greatly
increase the difficulty of this retrieval problem.
c© Springer Nature Switzerland AG 2020
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Fig. 1. The alignment-based methods. From (a) to (d): AlignedReID [50], MSCAN
[20], DPL [49], MHN [3]. The extra semantic in the second row is predicted by the
pre-trained parsing model [21], which exclude the personal belongings and are error-
prone when one person is occluded by another. Our method is the first extra semantic
free method which can locate both the human body parts and personal belongings at
pixel-level, and explicitly identify the visible parts in an occluded image

In recent years, plenty of efforts have been made to alleviate the misalignment
problem. The extra semantic free methods try to address the misalignment issue
through a self-learned style. However, they can only achieve coarse alignment
at region-level. These methods could be roughly summarized to the following
streams: (1) The rigid stripe based methods, which directly partition the person
image into fixed horizontal stripes [36,41,50,53]. (2) The auto-localization based
methods, which try to locate human parts through the learned grids [20,49,52].
(3) The attention based methods, which construct the part alignment through
enhancing the discriminative regions and suppressing the background [3,23,48,
56]. Most of the above methods are coarse with much background noise in their
located parts and do not consider the situation that some human parts disappear
in an image due to occlusion. The first row of Fig. 1 illustrates these streams.

The extra semantic based methods inject extra semantic in terms of part/pose
to achieve the part alignment at pixel-level [18,24,31,51]. Their success heavily
counts on the accuracy of the extra pre-trained human parsing models or pose
estimators. Most importantly, the identifiable personal belongings (e.g., back-
packs and reticule), which are the potentially useful contextual cues for identi-
fying a person, cannot be recognized by these pre-trained models and discarded
as background. The failure cases of the extra semantic based methods are shown
in the second row of Fig. 1.

In this paper, we propose an extra semantic free method, Identity-guided
Semantic Parsing (ISP), which can locate both human body parts and potential
personal belongings at pixel-level only with the person identity labels. Specifically,
we design the cascaded clustering on feature maps and regard the cluster assign-
ments as the pseudo-labels of human parts to supervise the part estimation. For
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the pixels of all images of a person, we first group them to foreground or back-
ground according to their activations on feature maps, basing on the reasonable
assumption that the classification networks are more responsive to the foreground
pixels than the background ones [40,45,46]. In this stage, the foreground parts are
automatically searched by the network itself rather than manually predefined, and
the self-learned scheme can capture the potentially useful semantic of both human
body parts and personal belongings.

Next, we need to assign the human part labels to the foreground pixels.
The difficulty of this stage lies in how to guarantee the semantic consistency
across different images in terms of the appearance/pose variations, and espe-
cially the occlusion, which has not been well studied in previous extra semantic
free approaches. To overcome this difficulty, we cluster the foreground pixels of
all the images with the same ID, rather than those of a single image, into human
parts (e.g., head, backpacks, upper-body, legs and shoes), so that the number of
assigned semantic parts of a single image can adaptively vary when the instance
is occluded. Consequently, our scheme is robust to the occlusion and the assigned
pseudo-labels of human parts across different images are ensured to be semanti-
cally consistent. The second row of Fig. 1 shows the assigned pseudo-labels.

We iteratively cluster the pixels of feature maps and employ the cluster
assignments as pseudo-labels of human parts to learn the part representations.
In this iterative mechanism, the generated pseudo-labels become finer and finer,
resulting in the more and more accurate part estimation. The predicted prob-
ability maps of part estimation are then used to conduct the part pooling for
partial representations of both human body parts and personal belongings. Dur-
ing matching, we only consider local features of the shared-visible parts between
probe and gallery images. Besides, ISP is a generally applicable and backbone-
agnostic approach, which can be readily applied in popular networks.

We summarize the contributions of this work as follows:

– In this paper, we propose the identity-guided human semantic parsing app-
roach (ISP) for aligned person re-ID, which can locate both the human body
parts and personal belongings (e.g., backpacks and reticule) at pixel-level only
with the image-level supervision of person identities.

– To the best of our knowledge, ISP is the first extra semantic free method
that can explicitly identify the visible parts from the occluded images. The
occluded parts are excluded and only features of the shared-visible parts
between probe and gallery images are considered during the feature matching.

– We set the new state-of-the-art performance on three person re-ID datasets,
Market-1501 [55], DukeMTMC-reID [57] and CUHK03-NP [22,58].

2 Related Work

2.1 Semantic Learning with Image-Level Supervision

To the best of our knowledge, there is no previous work to learning human seman-
tic parsing with image-level supervision but only weakly-supervised methods for
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semantic segmentation [11,12,16,19,32,42,45,60], which aim to locate objects
like person, horse or dog at pixel-level with image-level supervision. However,
all these methods cannot be used for the weakly-supervised human parsing task
because they focus on different levels. Besides, their complex network structures
and objective functions are not suitable for the end-to-end learning of person
re-ID. Therefore, we draw little inspiration from these methods.

2.2 Alignment-Based Person Re-ID

The alignment-baed methods can be roughly summarized to the four streams:

Rigid Stripe Based Approaches. Some researchers directly partition the
person image into rigid horizontal stripes to learn local features [36,41,50,53].
Wang et al. [41] design a multiple granularity network, which contains horizontal
stripes of different granularities. Zhang et al. [50] introduce a shortest path loss
to align rigidly divided local stripes. However, the stripe-based partition is too
coarse to well align the human parts and introduces lots of background noise.

Auto-Localization Based Approaches. A few works have been proposed to
automatically locate the discriminative parts by incorporating a regional selec-
tion sub-network [20,49]. Li et al. [20] exploit the STN [17] for locating latent
parts and subsequently extract aligned part features. However, the located grids
of latent parts are still coarse and with much overlap. Besides, they produce a
fixed number of latent parts, which cannot handle the occluded images.

Attention Based Approaches. Attention mechanism constructs alignment by
suppressing background noise and enhancing the discriminative regions [3,23,30,
39,48,56]. However, these methods cannot explicitly locate the semantic parts
and the consistency of focus area between images is not guaranteed.

Extra Semantic Based Approaches. Many works employ extra semantic in
terms of part/pose to locate body parts [6,26,28,29,31,33,38,44,47,54] and try
to achieve the pixel-level alignment. Kalayeh et al. [18] propose to employ pre-
trained human parsing model to provide extra semantic. Zhang et al. [51] further
adopt DensePose [1] to get densely semantic of 24 regions for a person. However,
the requiring of extra semantic limits the utility and robustness of these methods.
First, the off-the-shelf models can make mistakes in semantic estimation and
these methods cannot recorrect the mistakes throughout the training. Second,
the identifiable personal belongings like backpacks and reticule, which are crucial
for person re-ID, cannot be recognized and ignored as background.

In this paper, we adopt the clustering to learn the human semantic parsing
only with person identity labels, which can locate both human body parts and
personal belongings at pixel-level. Clustering is a classical unsupervised learn-
ing method that groups similar features, while its capability has not been fully
explored in the end-to-end training of deep neural networks. Recently, Mathilde
et al. [2] adopt clustering to the end-to-end unsupervised learning of image classi-
fication. Lin et al. [25] also use clustering to solve the unsupervised person re-ID
task. Different from them, we go further by grouping pixels to human parts to



350 K. Zhu et al.

Fig. 2. The overview of ISP. The solid line represents the training phase and the
dotted line represents the clustering phase. The two stages are iteratively done until
the network converges. ISP is a generally applicable and backbone-agnostic approach.

generate the pseudo-part-labels at pixel-level, which is more challenging due to
various noises. Moreover, the results of clustering must guarantee the semantic
consistency across images.

3 Methodology

The overview of ISP is shown in Fig. 2. There are mainly two processes in
our approach, i.e., pseudo-part-labels generation and part-aligned representa-
tion learning. We repeat the above two processes until the network converges.

3.1 Pixel-Level Part-Aligned Representation Learning

Given n training person images {Xi}n
i=1 from nid distinct people and their iden-

tity labels {yi}n
i=1 (where yi ∈ {1, ..., nid}), we could learn the human semantic

parsing to obtain the pixel-level part-aligned representations for person re-ID.
For image xi, the backbone mapping function (defined as fθ) will output the
global feature map:

M c×h×w
g = fθ(xi) (1)

where θ is the parameters of backbone, and c, h, w is the channel, height and
width. For clear exposition, we omit the channel dimension and denote by
Mg(x, y) the feature at spatial position (x, y), which is a vector of c-dim.

The main idea of our pixel-level part-aligned representations is to represent
human parts with the representations of pixels belonging to that part, which is
the aggregation of the pixel-wise representations weighted by a set of confidence
maps. Each confidence map is used to surrogate a human part. Assuming there
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are K − 1 human parts and one background part in total, we need to estimate
K confidence maps of different semantic parts for every person image. It should
be noted that we treat the personal belongings as one category of human parts.
The K confidence maps is defined as P0, P1, ..., PK−1, where each confidence map
Pk is associated with a semantic part. We denote by Pk(x, y) the confidence of
pixel (x, y) belonging to semantic part k. Then the feature map of part k can be
extracted from the global feature map by:

Mk = Pk ◦ Mg (2)

where k ∈ {0, ...,K − 1} and ◦ is the element-wise product. Adding Mk from
k = 1 to k = K − 1 in element-wise will get the foreground feature map Mf .
Ideally, for the occluded part k in an occluded person image, ∀(x,y)Pk(x, y) = 0
should be satisfied, which is reasonable that the network should not produce
representations for the invisible parts.

3.2 Cascaded Clustering for Pseudo-Part-Labels Generation

Existing studies integrate human parsing results to help capture the human body
parts at pixel-level [18,24,31]. However, there are still many useful contextual
cues like backpacks and reticule that do not fall into the scope of manually
predefined human body parts. We design the cascaded clustering on feature
maps Mg to generate the pseudo-labels of human parts, which includes both
human body parts and personal belongings.

Specifically, in the first stage, for all Mg of the same person, we group their
pixels into the foreground or background according to the activation, basing on
the conception that the foreground pixels have a higher response than back-
ground ones [40,45,46]. In this stage, the discriminative foreground parts are
automatically searched by the network and the self-learned scheme could apply
both the human body parts and the potential useful personal belongings with
high response. We regard the l2-norm of Mg(x, y) as the activation of pixel (x, y).
For all pixels of a Mg, we normalize their activations with their maximum:

a(x, y) =
||Mg(x, y)||2

max(i,j) ||Mg(i, j)||2 (3)

where (i, j) is the positions in the Mg and the maximum of a(x, y) equals to 1.
In the second stage, we cluster all the foreground pixels assigned by the first

clustering step into K − 1 semantic parts. The number of semantic parts for
a single image could be less than K − 1 when the person is occluded because
the cluster samples are foreground pixels of all Mg from the images of the same
person, rather than Mg of a single image. Therefore, the clustering is robust to
the occlusion and the part assignments across different images are ensured to be
semantically consistent. In this stage, we focus on the similarities and differences
between pixels rather than activation thus l2-normalization is used:

D(x, y) =
Mg(x, y)

||Mg(x, y)||2 (4)
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The cluster assignments are then used as the pseudo-labels of human parts,
which contain the personal belongings as one foreground part, to supervise the
learning of human semantic parsing. We assign label 0 to background and the
body parts are assigned to label {1, ...,K − 1} according to the average position
from top to down. ISP iteratively does the cascade clustering on feature maps and
uses the assignments as pseudo-part-labels to learn the partial representations.
In this iterative mechanism, the generated pseudo-labels become finer and finer,
resulting in more and more accurate part estimation for aligned person re-ID.

Optimization. For part prediction, we use a linear layer followed by softmax
activation as the classifier, which is formulated as:

Pk(x, y) = softmax(WT
k Mg(x, y)) =

exp(WT
k Mg(x, y))

∑K−1
i=0 exp(WT

i Mg(x, y))
(5)

where k ∈ {0, ...,K − 1} and W is the parameters of linear layer.
We assign the probability Pk(x, y) as the confidence of pixel (x, y) belonging

to the semantic part k and employ cross-entropy loss to optimize the classifier:

Lparsing =
∑

x,y

− log Pki
(x, y) (6)

where ki is the generated pseudo-label of human parts for pixel (x, y).

3.3 Objective Function

The representation for semantic part k is obtained by Fk = GAP (Mk), where
GAP means global average pooling. We concatenate all Fk except k = 0 and
regard the outcome as a whole representation of local parts for training. Besides,
the representations for foreground and global image are directly obtained by
Ff = GAP (Mf ), Fg = GAP (Mg). In fact, the probability map product together
with the GAP is the operation of weighted pooling as indicated in Fig. 2.

In the training phase, we employ three groups of basic losses for the represen-
tations of local part, foreground and global image separately, which are denoted
as Lp, Lf and Lg. For each basic loss group, we follow [27] to combine the triplet
loss [10] and cross-entropy loss with label smoothing [37]. Therefore, the overall
objective function is:

Lreid = Lp + Lf + Lg + αLparsing (7)

where α is the balanced weight and is set to 0.1 in our experiments.

3.4 Aligned Representation Matching

As illustrated in Fig. 3, the final distance between query and gallery images
consists of two parts. One is the distance of global and foreground features,
which always exist. The other is the distance of the partial features between the
shared-visible human parts. The matching strategy is inspired by [28], but [28]
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Fig. 3. The matching strategy of ISP. The distance between probe and gallery images
are measured by features of the global image and foreground part, which always exist,
and the features of shared-visible parts.

utilizes extra pose information and only achieves stripe-level alignment, while we
do not require any extra semantic and could identify the visible parts at pixel-
level. As the argmaxiPi(x, y) indicates the semantic part of pixel (x, y) belonging
to, we could easily obtain the label of whether part k is visible lk ∈ {0, 1} by:

lk =

{
1, if ∃(x, y) ∈ {(x, y)|argmaxiPi(x, y) = k}
0, else

(i = 0, ...,K − 1) (8)

Now the distance dk of the kth part between query and gallery images is:

dk = D(F q
k , F g

k ) (k = 1, ...,K − 1) (9)

where D() denotes the distance metric, which is cosine distance in this paper.
F q

k , F g
k denote the kth partial feature of the query and gallery image, respec-

tively. Similarly, the measure distance between global and foreground features
are formulated as: dg = D(F q

g , F g
g ), df = D(F q

f , F g
f ). Then, the final distance d

could be obtained by:

d =
∑K−1

k=1 (lqk · lgk)dk + (dg + df )
∑K−1

k=1 (lqk · lgk) + 2
(10)

If the kth parts of both the query and gallery images are visible, lqk · lgk = 1. Else,
lqk · lgk = 0. To the best of our knowledge, ISP is the first extra semantic free
method that explicitly addresses the occlusion problem.

4 Experiments

4.1 Datasets and Evaluation Metrics

Holistic Person Re-ID Datasets. We select three widely used holistic person
re-ID benchmarks, Market-1501 [55] which contains 32668 person images of 1501
identities, DukeMTMC-reID [57] which contains 36411 person images of 1402
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identities and CUHK03-NP (New Protocol) [22,58] which contains 14097 person
images of 1467 identities for evaluation. Following common practices, we use the
cumulative matching characteristics (CMC) at Rank-1, Rank-5, and the mean
average precision (mAP) to evaluate the performance.

Occluded Person Re-ID Datasets. We also evaluate the performance of
ISP in the occlusion scenario. Occluded-DukeMTMC [28], which contains 15618
training images, 17661 gallery images, and 2210 occluded query images, is by
far the largest and the only occluded person re-ID datasets that contains train-
ing set. It is a new split of DukeMTMC-reID [57] and the training/query/gallery
set contains 9%/100%/10% occluded images, respectively. Therefore, we demon-
strate the effectiveness of ISP in occluded scenario on this dataset.

4.2 Implementation Details

Data Preprocessing. The input images are resized to 256 × 128 and the global
feature map Mg is 1/4 of the input size. As for data augmentation, we adopt the
commonly used random cropping [43], horizontal flipping and random erasing
[39,43,59] (with a probability of 0.5) in both the baseline and our schemes.

Optimization. The backbone network is initialized with the pre-trained param-
eters on ImageNet [4]. We warm up the model for 10 epochs with a linearly
growing learning rate from 3.5 × 10−5 to 3.5 × 10−4. Then, the learning rate is
decreased by a factor of 0.1 at 40th and 70th epoch. We observe that 120 epochs
are enough for model converging. The batch size is set to 64 and adam method is
adopted to optimize the model. All our methods are implemented on PyTorch.

Clustering for Reassignment. We adopt k-means as our clustering algo-
rithm and reassign the clusters every n epochs, which is a tradeoff between
the parameter updating and the pseudo-label generation. We find out that sim-
ply setting n = 1 is nearly optimal. We do not define any initial pseudo-labels
for person images and the first clustering is directly conducted on the feature
maps output by the initialized backbone. As for the time consumption, to train
a model, the overall clustering time is about 6.3 h/5.4 h/3.1 h for datasets of
DukeMTMC-reID/Market1501/CUHK03-NP through multi-processes with one
NVIDIA TITAN X GPU. Most importantly, the testing time is not increased
at all.

4.3 Comparison with State-of-the-Art Methods

We compare our method with the state-of-the-art methods for holistic and
occluded person re-ID in Table 1 and Table 2, respectively.

DukeMTMC-reID. ISP achieves the best performance and outperforms others
by at least 0.5%/1.6% in Rank-1/mAP. On this dataset, the semantic extracted
by pre-trained model is error-prone [51], which leads to significant performance
degradation for extra semantic based methods. This also proves the learned
semantic parts are superior to the outside ones in robustness.
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Table 1. Comparison with state-of-the-art methods of the holistic re-ID problem. The
1st/2nd results are shown in italic/bold, respectively. The methods in the 1st group are
rigid stripe based. The methods in the 2nd group are auto-localization based. The 3rd
group is attention based methods. The methods in the 4th group are extra semantic
based. The last line is our method

Methods Ref DukeMTMC Market1501 CUHK03-NP

R-1 R-5 mAP R-1 R-5 mAP R-1 mAP R-1 mAP

AlignedReID [50] Arxiv18 – – – 91.8 97.1 79.3 – – – –

PCB+RPP [36] ECCV18 83.3 – 69.2 93.8 97.5 81.6 – – 63.7 57.5

MGN [41] MM18 88.7 – 78.4 95.7 – 86.9 68.0 67.4 66.8 66.0

MSCAN [20] CVPR17 – – – 80.8 – 57.5 – – – –

PAR [52] ICCV17 – – – 81.0 92.0 63.4 – – – –

DuATM [30] CVPR18 81.8 90.2 64.6 91.4 97.1 76.6 – – – –

Mancs [39] ECCV18 84.9 – 71.8 93.1 – 82.3 69.0 63.9 65.5 60.5

IANet [13] CVPR19 87.1 – 73.4 94.4 – 83.1 – – – –

CASN+PCB [56] CVPR19 87.7 – 73.7 94.4 – 82.8 73.7 68.0 71.5 64.4

CAMA [48] CVPR19 85.8 – 72.9 94.7 98.1 84.5 70.1 66.5 66.6 64.2

MHN-6 [3] ICCV19 89.1 94.6 77.2 95.1 98.1 85.0 77.2 72.4 71.7 65.4

SPReID [18] CVPR18 84.4 – 71.0 92.5 – 81.3 – – – –

PABR [34] ECCV18 84.4 92.2 69.3 91.7 96.9 79.6 – – – –

AANet [38] CVPR19 87.7 – 74.3 93.9 – 83.4 – – – –

DSA-reID [51] CVPR19 86.2 – 74.3 95.7 - 87.6 78.9 75.2 78.2 73.1

P 2-Net [6] ICCV19 86.5 93.1 73.1 95.2 98.2 85.6 78.3 73.6 74.9 68.9

PGFA [28] ICCV19 82.6 – 65.5 91.2 – 76.8 – – – –

ISP (ours) ECCV20 89.6 95.5 80.0 95.3 98.6 88.6 76.5 74.1 75.2 71.4

Market1501. ISP achieves the best performance on mAP accuracy and the sec-
ond best on Rank-1. We further find that the improvement of mAP score brought
by ISP is larger than that of Rank-1, which indicates ISP effectively advances
the ranking positions of misaligned person images as mAP is a comprehensive
index that considers all the ranking positions of the target images.

CUHK03-NP. ISP achieves the second best results. In CUHK03-NP, a great
many of images contain incomplete person bodies and some human parts even
disappear from all the images of a person. But ISP requires at least every seman-
tic part appears once for a person to guarantee a high consistency on seman-
tic. Even so, ISP still outperforms all other approaches except DSA-reID [51]
which employs extra supervision by a pre-trained DensePose model [1], while
our method learns the pixel-level semantic without any extra supervision.

Occluded-DukeMTMC. ISP sets a new state-of-the-art performance and out-
performs others by a large margin, at least 11.2%/14.3% in Rank-1/mAP. ISP
could explicitly identify the visible parts at pixel-level from the occluded images
and only the shared-visible parts between query and gallery images are consid-
ered during the feature matching, which greatly improves the performance. As
shown in Table 2, the aligned representation matching strategy brings consider-
able improvement, e.g., 3.3% of Rank-1 and 0.9% of mAP.
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Table 2. Comparison with state-of-the-art methods of the occluded re-ID problem on
Occluded-DukeMTMC. Methods in the 1st group are for the holistic re-ID problem.
Methods in the 2nd group utilize extra pose information for occluded re-ID problem.
The methods in the 3rd group do not adopt extra semantic. The last line is our method

Methods Rank-1 Rank-5 Rank-10 mAP

HACNN [23] 34.4 51.9 59.4 26.0

Adver Occluded [15] 44.5 – – 32.2

PCB [36] 42.6 57.1 62.9 33.7

Part Bilinear [34] 36.9 – – –

FD-GAN [5] 40.8 – – –

PGFA [28] 51.4 68.6 74.9 37.3

DSR [8] 40.8 58.2 65.2 30.4

SFR [9] 42.3 60.3 67.3 32.0

ISPw/oarm 59.5 73.5 78.0 51.4

ISP (ours) 62.8 78.1 82.9 52.3

4.4 The Performance of the Learned Human Semantic Parsing

As there are no manual part labels for the person re-ID datasets, we adopt the
state-of-the-art parsing model SCHP [21] pre-trained on Look into Person (LIP)
[24] to create the “ground-truth” of four parts.1 Then we adopt segmentation
Intersection over Union (IoU) to evaluate both the accuracy of the pseudo-part-
labels of the training set and that of the semantic estimation on the testing
set, which are detailed in Table 3, and the results are high enough for the IoU
evaluation metric. We also find an interesting phenomenon that the accuracy of
the predicted semantic estimation on testing set is mostly higher than that of
the pseudo-part-labels for the training set, which indicates that, with the person
re-ID supervision, our part estimator is robust to the false pseudo-labels and
obtains an enhanced generalization capability.

Table 3. The human semantic parsing performance (%) of ISP (K = 6)

IoU Datasets Foreground Head Legs Shoes

Pseudo-labels accuracy DukeMTMC 65.66 68.17 61.83 58.89

Market1501 65.45 54.74 67.02 55.25

CUHK03-NP-Labeled 51.26 68.21 52.24 57.60

Prediction accuracy DukeMTMC 66.94 71.35 68.02 62.60

Market1501 63.44 55.78 69.10 56.32

CUHK03-NP-Labeled 53.51 59.96 50.14 59.08

1 The parts of hat, hair, sunglass, face in LIP is aggregated as the “ground-truth” for
Head; the parts of left-leg, right-leg, socks, pants are aggregated as Legs; the parts
of left-shoe and right-shoe are aggregated as Shoes.
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We further conduct three visualization experiments to show the effect of
ISP. First, we visualize our pseudo-part-labels under different K and show the
comparison with SCHP [21] in Fig. 4, which validates that ISP can recognize the
personal belongings (e.g. backpacks and reticule) as one human part while the
pre-trained parsing model cannot. The first row of Fig. 4 shows our capability
of explicitly locating the visible parts in occluded images. Moreover, Fig. 4 also
validates the semantic consistency in ISP.

Fig. 4. The assigned pseudo-labels of human parts. From left to right: input images,
semantic estimation by SCHP [21], the assigned pseudo-labels with different K.

Second, to validate the necessity of the cascaded clustering, we compare the
pseudo-part-labels by cascaded clustering with Variant 1 which directly clusters
the semantic in one step, and Variant 2 which removes the l2 normalization.
Figure 5 indicates that the alignment of Variant 1 is coarse and error-prone, and
Variant 2 assigns an unreasonable semantic part with sub-response surround
human bodies, which indicates the clustering is influenced by the activation.

Fig. 5. The necessity of the operations of cascaded clustering (K = 6).

Finally, Fig. 6 shows the evolution process of the pseudo-part-labels (K = 6),
which presents a clear process of coarse-to-fine. The first clustering is directly
conducted on feature maps output by the initialized network.

4.5 Ablation Studies on Re-ID Performance

Choice of K Clustering Categories. Intuitively, the number of clustering
centers K determines the granularity of the aligned parts. We perform the quan-
titative ablation studies to clearly find the most suitable K. As detailed in Table 4,
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Fig. 6. The evolution process of pseudo-labels, which is a gradual process of refinement.

Table 4. The ablation studies of K. The results show ISP is robust to different K

K DukeMTMC Market1501 CUHK03-NP

Labeled Detected

R-1 R-5 mAP R-1 R-5 mAP R-1 mAP R-1 mAP

4 89.6 95.2 79.2 95.3 98.6 88.6 75.9 72.9 73.5 71.3

5 88.6 95.0 79.1 94.4 98.2 87.7 73.9 72.4 73.1 71.0

6 89.0 95.1 78.9 95.2 98.4 88.4 75.9 73.8 75.2 71.4

7 89.6 95.5 80.0 95.0 98.2 88.4 76.5 74.1 73.6 70.8

8 88.9 94.7 78.4 94.9 98.5 88.6 75.9 73.1 74.0 71.4

the performance of ISP is robust to different K. Besides, we also find that K = 5
is always the worst, which is consistent with its lowest accuracy of semantic pars-
ing. For example, K = 5 only obtains the pseudo-labels accuracy (IoU) of 64.25%,
53.23% and 54.83% for foreground, legs and shoes on DukeMTMC-reID.

Learned Semantic vs. Extra Semantic. We further conduct experiments to
validate the superiority of the learned semantic over extra semantic. HRNet-W32
[35] is set as our baseline model. “+extra info” means adopting the extra seman-
tic information extracted by SCHP [21] as the human part labels while “ISP”
adopts the learned semantic. The results are list in Table 5, which show ISP con-
sistently outperforms “+extra info” method by a considerable margin. We think
this is mainly because: (1) ISP can recognize the identifiable personal belongs
while “+extra info” cannot. (2) “+extra info” cannot recorrect the semantic
estimation errors throughout the training while ISP can recorrect its mistakes
every epoch, thus ISP is less likely to miss the key clues.

Choice of Backbone Architecture. As ISP is a backbone-agnostic approach,
we show the effectiveness of ISP with different backbones including ResNet [7],
SeResNet [14] and HRNet [35]. A bilinear upsample layer is added to scale up
the final feature maps of ResNet50 and SeResNet50 to the same size of HRNet-
W32. As Table 6 shows, HRNet-W32 obtains the highest performance. We think
it is because HRNet maintains high-resolution representations throughout the
network, which could contain more semantic information.
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Table 5. The comparison of learned semantic and extra semantic

Model DukeMTMC Market1501 CUHK03-NP

Labeled Detected

R-1 R-5 mAP R-1 R-5 mAP R-1 mAP R-1 mAP

Baseline 87.7 94.3 77.2 94.0 97.9 85.9 71.9 68.5 67.6 64.7

+extra info 88.6 94.7 79.1 94.8 98.4 87.7 73.3 71.9 72.2 69.6

ISP 89.6 95.5 80.0 95.3 98.6 88.6 76.5 74.1 75.2 71.4

Table 6. The ablation studies of different backbone networks on DukeMTMC-reID.

Backbone #params R-1 R-5 mAP

HRNet-W32 28.5M 89.6 95.5 80.0

ResNet50 25.6M 88.7 94.9 78.9

SeResNet50 28.1M 88.8 95.2 79.2

The Matching Results. We compare the ranking results of baseline and ISP in
Fig. 7, which indicates ISP can well overcome the misalignment problem includ-
ing part occlusions, inaccurate person detection, and human pose variations.
Besides, we can also observe the benefit of identifying the personal belongings.

Fig. 7. The ranking results of baseline (the first row) and ISP (the second row).

5 Conclusion

In this paper, we propose the identity-guided human semantic parsing method for
aligned person re-identification, which can locate both human body parts and
personal belongings at pixel-level only with image-level supervision of person
identities. Extensive experiments validate the superiority of our method.
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Abstract. In this work, we propose a novel technique to generate shapes
from point cloud data. A point cloud can be viewed as samples from a
distribution of 3D points whose density is concentrated near the sur-
face of the shape. Point cloud generation thus amounts to moving ran-
domly sampled points to high-density areas. We generate point clouds
by performing stochastic gradient ascent on an unnormalized probabil-
ity density, thereby moving sampled points toward the high-likelihood
regions. Our model directly predicts the gradient of the log density field
and can be trained with a simple objective adapted from score-based
generative models. We show that our method can reach state-of-the-art
performance for point cloud auto-encoding and generation, while also
allowing for extraction of a high-quality implicit surface. Code is avail-
able at https://github.com/RuojinCai/ShapeGF.

Keywords: 3D generation · Generative models

1 Introduction

Point clouds are becoming increasingly popular for modeling shapes, as many
modern 3D scanning devices process and output point clouds. As such, an
increasing number of applications rely on the recognition, manipulation, and
synthesis of point clouds. For example, an autonomous vehicle might need to
detect cars in sparse LiDAR point clouds. An augmented reality application
might need to scan in the environment. Artists may want to further manipu-
late scanned objects to create new objects and designs. A prior for point clouds
would be useful for these applications as it can densify LiDAR clouds, create
additional training data for recognition, complete scanned objects or synthesize
new ones. Such a prior requires a powerful generative model for point clouds.
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Fig. 1. To generate shapes, we sample points from an arbitrary prior (depicting the
letters “E”, “C”, “C”, “V” in the examples above) and move them stochastically along
a learned gradient field, ultimately reaching the shape’s surface. Our learned fields also
enable extracting the surface of the shape, as demonstrated on the right.

In this work, we are interested in learning a generative model that can sample
shapes represented as point clouds. A key challenge here is that point clouds
are sets of arbitrary size. Prior work often generates a fixed number of points
instead [1,16,17,48,64]. This number, however, may be insufficient for some
applications and shapes, or too computationally expensive for others. Instead,
following recent works [31,52,60], we consider a point cloud as a set of samples
from an underlying distribution of 3D points. This new perspective not only
allows one to generate an arbitrary number of points from a shape, but also
makes it possible to model shapes with varying topologies. However, it is not
clear how to best parameterize such a distribution of points, and how to learn
it using only a limited number of sampled points.

Prior research has explored modeling the distribution of points that repre-
sent the shape using generative adversarial networks (GANs) [31], flow-based
models [60], and autoregressive models [52]. While substantial progress has been
made, these methods have some inherent limitations for modeling the distribu-
tion representing a 3D shape. The training procedure can be unstable for GANs
or prohibitively slow for invertible models, while autoregressive models assume
an ordering, restricting their flexibility for point cloud generation. Implicit rep-
resentations such as DeepSDF [44] and OccupancyNet [36] can be viewed as
modeling this probability density of the 3D points directly, but these models
require ground truth signed distance fields or occupancy fields, which are diffi-
cult to obtain from point cloud data alone without corresponding meshes.

In this paper, we take a different approach and focus on the end goal – being
able to draw an arbitrary number of samples from the distribution of points.
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Working backward from this goal, we observe that the sampling procedure can be
viewed as moving points from a generic prior distribution towards high likelihood
regions of the shape (i.e., the surface of the shape). One way to achieve that is
to move points gradually, following the gradient direction, which indicates where
the density grows the most [57]. To perform such sampling, one only needs to
model the gradient of log-density (known as the Stein score function [34]). In
this paper, we propose to model a shape by learning the gradient field of its
log-density. To learn such a gradient field from a set of sampled points from the
shape, we build upon a denoising score matching framework [27,50]. Once we
learn a model that outputs the gradient field, the sampling procedure can be done
using a variant of stochastic gradient ascent (i.e. Langevin dynamics [50,57]).

Our method offers several advantages. First, our model is trained using a
simple L2 loss between the predicted and a “ground-truth” gradient field esti-
mated from the input point cloud. This objective is much simpler to optimize
than adversarial losses used in GAN-based techniques. Second, because it models
the gradient directly and does not need to produce a normalized distribution, it
imposes minimal restrictions on the model architecture in comparison to flow-
based or autoregressive models. This allows us to leverage more expressive net-
works to model complicated distributions. Because the partition function need
not be estimated, our model is also much faster to train. Finally, our model
is able to furnish an implicit surface of the shape, as shown in Fig. 1, without
requiring ground truth surfaces during training. We demonstrate that our tech-
nique can achieve state-of-the-art performance in both point cloud auto-encoding
and generation. Moreover, our method can retain the same performance when
trained with much sparser point clouds.

Our key contributions can be summarized as follows:

– We propose a novel point cloud generation method by extending score-based
generative models to learn conditional distributions.

– We propose a novel algorithm to extract high-quality implicit surfaces from
the learned model without the supervision from ground truth meshes.

– We show that our model can achieve state-of-the-art performance for point
cloud auto-encoding and generation.

2 Related Work

Point Cloud Generative Modeling. Point clouds are widely used for representing
and generating 3D shapes due to their simplicity and direct relation to common
data acquisition techniques (LiDARs, depth cameras, etc.). Earlier generative
models either treat point clouds as a fixed-dimensional matrix (i.e. N × 3 where
N is predefined) [1,16,17,48,52,55,63,64], or relies on heuristic set distance func-
tions such as Chamfer distance and Earth Mover Distance [5,11,17,23,61]. As
pointed out in Yang et al. [60] and Sect. 1, both of these approaches lead to
several drawbacks. Alternatively, we can model the point cloud as samples from
a distribution of 3D points. Toward this end, Sun et al. [52] applies an autore-
gressive model to model the distribution of points, but it requires assuming an
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ordering while generating points. Li et al. [31] applies a GAN [3,24] on both this
distribution of 3D points as well as the distribution of shapes. PointFlow [60]
applies normalizing flow [43] to model such distribution, so sampling points
amounts to moving them to the surface according to a learned vector field. In
addition to modeling the movement of points, PointFlow also tracks the change
of volume in order to normalize the learned distribution, which is computation-
ally expensive [8]. While our work applies a GAN to learn the distribution of
latent code similar to Li et al. and Achilioptas et al., we take a different approach
to model the distribution of 3D points. Specifically, we predict the gradient of
log-density field to model the non-normalized probability density, thus circum-
venting the need to compute the partition function and achieves faster training
time with a simple L2 loss.

Generating Other 3D Representations. Common representations emerged for
deep generative 3D modeling include voxel-based [21,59], mesh-based [2,18,25,
33,45,53], and assembly-based techniques [32,38]. Recently, implicit represen-
tations are gaining increasing popularity, as they are capable of representing
shapes with high level of detail [10,36,37,44]. They also allow for learning a
structured decomposition of shapes, representing local regions with Gaussian
functions [19,20] or other primitives [26,49,54]. In order to reconstruct the mesh
surface from the learned implicit field, these methods require finding the zero iso-
surface of the learned occupancy field (e.g. using the Marching Cubes algorithm
[35]). Our learned gradient field also allows for high-quality surface reconstruc-
tion using similar methods. However, we do not require prior information on
the shape (e.g., signed distance values) for training, which typically requires a
watertight input mesh. Recently, SAL [4] learns a signed distance field using
only point cloud as supervision. Different from SAL, our model directly outputs
the gradients of the log-density instead field of the signed distance, which allows
our model to use arbitrary network architecture without any constraints. As a
result, our method can scale to more difficult settings such as train on larger
dataset (e.g. ShapeNet [6]) or train with sparse scanned point clouds.

Energy-Based Modeling. In contrast to flow-based models [8,12,22,28,46,60] and
auto-regressive models [40–42,52], energy-based models learn a non-normalized
probability distribution [29], thus avoid computation to estimate the partition
function. It has been successfully applied to tasks such as image segmentation
[14,15], where a normalized probability density function is hard to define. Score
matching was first proposed for modeling energy-based models in [27] and deals
with “matching” the model and the observed data log-density gradients, by
minimizing the squared distance between them. To improve its performance
and scalability, various extensions have been proposed, including denoising score
matching [56] and sliced score matching [51]. Most recently, Song and Ermon [50]
introduced data perturbation and annealed Langevin dynamics to the original
denoising score matching method, providing an effective way to model data
embedded on a low dimensional manifold. Their method was applied to the
image generation task, achieving performance comparable to GANs. In this work,
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we extend this method to model conditional distributions and demonstrate its
suitability to the task of point cloud generation, viewing point clouds as samples
from the 2D manifold (shape surface) in 3D space.

3 Method

In this work, we are interested in learning a generative model that can sample
shapes represented as point clouds. Therefore, we need to model two distribu-
tions. First, we need to model the distribution of shapes, which encode how
shapes vary across an entire collection of shapes. Once we can sample a par-
ticular shape of interest, then we need a mechanism to sample a point clouds
from its surface. As previously discussed, a point cloud is best viewed as samples
from a distribution of 3D (or 2D) points, which encode a particular shape. To
sample point clouds of arbitrary size for this shape, we also need to model this
distribution of points.

Specifically, we assume a set of shapes X = {X(i)}N
i=1 are provided as input.

Each shape in X is represented as a point cloud sampled from its surface, defined
by X(i) = {xi

j}Mi
j=1. Our goal is to learn both the distribution of shapes and

the distribution of points, conditioned on a particular shape from the data. To
achieve that, we first propose a model to learn the distribution of points encoding
a shape from a set of points X(i) (Sect. 3.1– 3.5). Then we describe how to model
the distribution of shapes from the set of point clouds (i.e. X ) in Sect. 3.6.

3.1 Shapes as a Distribution of 3D Points

We would like to define a distribution of 3D points P (x) such that sampling from
this distribution will provide us with a surface point cloud of the object. Thus,
the probability density encoding the shape should concentrate on the shape
surface. Let S be the set of points on the surface and PS(x) be the uniform
distribution over the surface. Sampling from PS(x) will create a point cloud
uniformly sampled from the surface of interest. However, this distribution is
hard to work with: for all points that are not in the surface x /∈ S, PS(x) = 0.
As a result, PS(x) is discontinuous and has usually zero support over its ambient
space (i.e. R3), which impose challenges in learning and modeling. Instead, we
approximate PS(x) by smoothing the distribution with a Gaussian kernel:

Qσ,S(x) =
∫

s∈R3
PS(s)N (x; s, σ2I)ds. (1)

As long as the standard deviation σ is small enough, Qσ,S(x) will approximate
the true data distribution PS(x) whose density concentrates near the surface.
Therefore, sampling from Qσ,S(x) will yield points near the surface S.

As discussed in Sect. 1, instead of modeling Qσ,S directly, we will model the
gradient of the logarithmic density (i.e. ∇x log Qσ,S(x)). Sampling can then be
performed by starting from a prior distribution and performing gradient ascent
on this field, thus moving points to high probability regions.
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In particular, we will model the gradient of the log-density using a neural
network gθ(x, σ), where x is a location in 3D (or 2D) space. We will first analyze
several properties of this gradient field ∇x log Qσ,S(x). Then we describe how we
train this neural network and how we sample points using the trained network.

3.2 Analyzing the Gradient Field

In this section we provide an interpretation of how ∇x log Qσ,S(x) behaves with
different σ’s. Computing a Monte Carlo approximation of Qσ,S(x) using a set of
observations {xi}m

i=1, we obtain a mixture of Gaussians with modes centered at
xi and radially-symmetric kernels:

Qσ,S(x) = Es∼PS

[N (x; s, σ2I)
] ≈ 1

m

m∑
i=1

N (x;xi, σ
2I) � Aσ(x, {xi}m

i=1).

The gradient field can thus be approximated by the gradient of the logarithmic
of this Gaussian mixture:

∇x log Aσ(x, {xi}m
i=1) =

1
σ2

(
−x +

m∑
i=1

xiwi(x, σ)

)
, (2)

where the weight wij(x, σ) is computed from a softmax with temperature 2σ2:

wi(x, σ) =
exp

(− 1
2σ2 ‖x − xi‖2

)
∑m

j=1 exp
(− 1

2σ2 ‖x − xj‖2
) . (3)

Since
∑

i wi(x, σ) = 1,
∑

i xiwi(x, σ) falls within the convex hull created by
the sampled surface points {xi}m

i=1. Therefore, the direction of this gradient of
the logarithmic density field points from the sampled location towards a point
inside the convex hull of the shape. When the temperature is high (i.e. σ is large),
then the weights wi(x, σ) will be roughly the same and

∑
i xiwi(x, σ) behaves

like averaging all the xi’s. Therefore, the gradient field will point to a coarse
shape that resembles an average of the surface points. When the temperature
is low (i.e. σ is small), then wi(x, σ) will be close to 0 except when xi is the
closest to x. As a result,

∑
i xiwi(x, σ) will behave like an argminxi

‖xi − x‖.
The gradient direction will thus point to the nearest point on the surface. In this
case, the norm of the gradient field approximates a distance field of the surface
up to a constant σ−2. This allows the gradient field to encode fine details of
the shape and move points to the shape surface more precisely. Figure 2 shows
a visualization of the field in the 2D case for a series of different σ’s.

3.3 Training Objective

As mentioned in Sect. 3.1, we would like to train a deep neural network gθ(x, σ) to
model the gradient of log-density: ∇x log Qσ,S(x). One simple objective achieving
this is minimizing the L2 loss between them [27]:

�direct(σ, S) = Ex∼Qσ,S(x)

[
1
2

‖gθ(x, σ) − ∇x log Qσ,S(x)‖22
]

. (4)
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However, optimizing such an objective is difficult as it is generally hard to com-
pute ∇x log Qσ,S(x) from a finite set of observations.

Inspired by denoising score matching methods [50,56], we can write Qσ,S(x)
as a perturbation of the data distribution PS(x), produced with a Gaussian
noise with standard deviation σ. Specifically, Qσ,S(x) =

∫
PS(s)qσ(x̃|s)dx, where

qσ(x̃|s) = N (x̃|s, σ2I). As such, optimizing the objective in Eq. 4 can be shown
to be equivalent to optimizing the following [56]:

�denoising(σ, S) = Es∼PS ,x̃∼qσ(x̃|s)

[
1
2
‖gθ(x̃, σ) − ∇x̃ log qσ(x̃|s)‖22

]
. (5)

Since ∇x̃ log qσ(x̃|s) = s−x̃
σ2 , this loss can be easily computed using the observed

point cloud X = {xj}m
j=1 as following:

�(σ,X) =
1

|X|
∑

xi∈X

‖gθ(x̃i, σ) − xi − x̃i

σ2
‖22, x̃i ∼ N (xi, σ

2I). (6)

Multiple Noise Levels. One problem with the abovementioned objective is
that most x̃i will concentrate near the surface if σ is small. Thus, points far away
from the surface will not be supervised. This can adversely affect the sampling
quality, especially when the prior distribution puts points to be far away from
the surface. To alleviate this issue, we follow Song and Ermon [50] and train
gθ for multiple σ’s, with σ1 ≥ · · · ≥ σk. Our final model is trained by jointly
optimizing �(σi,X) for all σi. The final objective is computed empirically as:

L({σi}k
i=1,X) =

k∑
i=1

λ(σi)�(σi,X), (7)

where λ(σi) are parameters weighing the losses �(σi,X). λ(σi) is chosen so that
the weighted losses roughly have the same magnitude during training.

3.4 Point Cloud Sampling

Sampling a point cloud from the distribution is equivalent to moving points from
a prior distribution to the surface (i.e. the high-density region). Therefore, we
can perform stochastic gradient ascent on the logarithmic density field. Since
gθ(x, σ) approximates the gradient of the log-density field (i.e. ∇x log Qσ,S(x)),
we could thus use gθ(x, σ) to update the point location x. In order for the points
to reach all the local maxima, we also need to inject random noise into this
process. This amounts to using Langevin dynamics to perform sampling [57].

Specifically, we first sample a point x0 from a prior distribution π. The prior
is usually chosen to be simple distribution such as a uniform or a Gaussian dis-
tribution. We empirically demonstrate that the sampling performance won’t be
affected as long as the prior points are sampled from places where the perturbed
points would reach during training. We then perform the following recursive
update with step size α > 0:

xt+1 = xt +
α

2
gθ(xt, σ) +

√
αεt, εt ∼ N (0, I). (8)
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Under mild conditions, p(xT ) converges to the data distribution Qσ,S(x) as T →
∞ and ε → 0 [57]. Even when such conditions fail to hold, the error in Eq. 8 is
usually negligible when α is small and T is large [9,13,39,50].

Fig. 2. Log density field with different σ (biggest to smallest) and a Langevin Dynamic
point update step with that σ. Deeper color indicates higher density. The ground truth
shape is shown in the upper left corner. Dotted line indicated Gaussian noise and solid
arrows indicates gradient step. As sigma decreases, the log-density field changes from
coarse to fine, and points are moved closer to the surface.

Prior works have observed that a main challenge for using Langevin dynamics
is its slow mixing time [50,58]. To alleviate this issue, Song and Ermon [50]
propose an annealed version of Langevin dynamics, which gradually anneals
the noise for the score function. Specifically, we first define a list of σi with
σ1 ≥ · · · ≥ σk, then train one single denoising score matching model that could
approximate qσi

for all i. Then, annealed Langevin dynamics will recursively
compute the xt while gradually decreasing σi:

x′
t+1 = xt +

√
ασiεt

σk
, εt ∼ N (0, I), (9)

xt+1 = x′
t+1 +

ασ2
i

2σ2
k

gθ(x′
t+1, σi). (10)

Figure 2 demonstrates the sampling across the annealing process in a 2D
point cloud. As discussed in Sect. 3.3, larger σ’s correspond to coarse shapes while
smaller σ’s correspond to fine shape. Thus, this annealed Langevin dynamics can
be thought of as a coarse-to-fine refinement of the shape. Note that we make the
noise perturnbation step before the gradient update step, which leads to cleaner
point clouds. The supplementary material contains detailed hyperparameters.

3.5 Implicit Surface Extraction

Next we show that our learned gradient field (e.g. gθ) also allows for obtaining
an implicit surface. The key insight here is that the surface is defined as the set
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of points that reach the maximum density in the data distribution PS(x), and
thus these points have zero gradient. Another interpretation is that when σ is
small enough (i.e. Qσ,S(x) approximates the true data distribution p(x)), the
gradient for points near the surface will point to its nearest point on the surface,
as described in Sect. 3.2:

Fig. 3. Illustration of training pipe for shape auto-encoding and generation.

gθ(x, σ) ≈ 1
σ2

(−x + argmins∈S ‖x − s‖) . (11)

Thus, for a point near the surface, its norm equals zero if and only if x ∈ S
(provided the arg min is unique). Therefore, the shape can be approximated by
the zero iso-surface of the gradient norm:

S ≈ {x | ‖gθ(x, σ)‖ = δ}, (12)

for some δ > 0 that is sufficiently small. One caveat is that points for which the
arg min in Eq. 11 is not unique may also have a zero gradient. These correspond
to local minimas of the likelihood. In practice, this is seldom a problem for
surface extraction, and it is possible to discard these regions by conducting the
second partial derivative test.

Also as mentioned in Sect. 3.2, when the σ is small, the norm of the gradient
field approximates a distance field of the surface, scaled by a constant σ−2. This
allows us to retrieval the surface S efficiently using an off-the-shelf ray-casting
technique [47] (see Figs. 1, 4 and 5).

3.6 Generating Multiple Shapes

In the previous sections, we focused on learning the distribution of points that
represent a single shape. Our next goal is to model the distribution of shapes.
We, therefore, introduce a latent code z to encode which specific shape we want
to sample point clouds from. Furthermore, we adapt our gradient decoder to be
conditional on the latent code z (in addition to σ and the sampled point).
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As illustrated in Fig. 3, the training is conducted in two stages. We first train
an auto-encoder with an encoder fφ that takes a point cloud and outputs the
latent code z. The gradient decoder is provided with z as input and produces a
gradient field with noise level σ. The auto-encoding loss is thus:

LAE(X ) = E
X∼X

⎡
⎣ 1

2|X|
∑

x∈X,σi

λ(σi)
∥∥∥∥gθ(x̃, fφ(X), σi) − x − x̃

σ2
i

∥∥∥∥
2

2

⎤
⎦ , (13)

where each x̃j is drawn from a N (xj , σ
2
i I) for a corresponding σi. This first stage

provides us with a network that can model the distribution of points representing
the shape encoded in the latent variable z. Once the auto-encoder is fully trained,
we apply a latent-GAN [1] to learn the distribution of the latent code p(z) =
p(fφ(X)), where X is a point cloud sampled from the data distribution. Doing so
provides us with a generator hξ that can sample a latent code from p(z), allowing
us control over which shape will be generated. To sample a novel shape, we first
sample a latent code z̃ using hξ. We can then use the trained gradient decoder gθ

to sample point clouds or extract an implicit surface from the shape represented
as z. For more details about hyperparameters and model architecture, please
refer to the supplementary material.

4 Experiments

In this section, we will evaluate our model’s performance in point cloud auto-
encoding (Sect. 4.1), up-sampling (Sect. 4.1), and generation (Sect. 4.2) tasks.
Finally, we present an ablation study examining our model design choices
(Sect. 4.3). Implementation details will be shown in the supplementary materials.

Datasets. Our experiments focus mainly on two datasets: MNIST-CP and
ShapeNet. MNIST-CP was recently proposed by Yifan et al. [62] and consists of
2D contour points extracted from the MNIST [30] dataset, which contains 50K
and 10K training and testing images. Each point cloud contains 800 points. The
ShapeNet [7] dataset contains 35708 shapes in training set and 5158 shapes in
test set, capturing 55 categories. For our method, we normalize all point clouds
by centering their bounding boxes to the origin and scaling them by a constant
such that all points range within the cube [−1, 1]3 (or the square in the 2D case).

Evaluation Metrics. Following prior works [1,23,60], we use the symmetric
Chamfer Distance (CD) and the Earth Mover’s Distance (EMD) to evaluate the
reconstruction quality of the point clouds. To evaluate the generation quality, we
use metrics in Yang et al. [60] and Achlioptas et al. [1]. Specifically, Achilioptas
et al. [1] suggest using Minimum Matching Distance (MMD) to measure fidelity
of the generated point cloud and Coverage (COV) to measure whether the set of
generated samples cover all the modes of the data distribution. Yang et al. [60]
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Fig. 4. Shape auto-encoding test results. Our model can accurately reconstruct shapes
given 2048 points (left) or only 256 points (right) describing the shape. Output point
clouds are illustrated in the center and implicit surfaces on the left.

propose to use the accuracy of a k-NN classifier performing two-sample tests.
The idea is that if the sampled shapes seem to be drawn from the actual data
distribution, then the classifier will perform like a random guess (i.e. results in
50% accuracy). To evaluate our results, we first conduct per-shape normalization
to center the bounding box of the shape and scale its longest length to be 2,
which allows the metric to focus on the geometry of the shape and not the scale.

4.1 Shape Auto-encoding

In this section, we evaluate how well our model can learn the underlying dis-
tribution of points by asking it to auto-encode a point cloud. We conduct the
auto-encoding task for five settings: all 2D point clouds in MNIST-CP, 3D point
clouds on the whole ShapeNet, and three categories in ShapeNet (Airplane, Car,
Chair). In this experiment, our method is compared with the current state-of-the-
art AtlasNet [23] with patches and with sphere. Furthermore, we also compare
against Achilioptas et al. [1] which predicts point clouds as a fixed-dimensional
array, and PointFlow [60] which uses a flow-based model to represent the distri-
bution. We follow the experiment set-up in PointFlow to report performance in
both CD and EMD in Table 1. Since these two metrics depend on the scale of the
point clouds, we also report the upper bound in the “oracle” column. The upper
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Table 1. Shape auto-encoding on the MNIST-CP and ShapeNet datasets. The best
results are highlighted in bold. CD is multiplied by 104 and EMD is multiplied by 102.

Dataset Metric l-GAN [1] AtlasNet [23] PF [60] Ours Oracle

CD EMD Sphere Patches

MNIST-CP CD 8.204 − 7.274 4.926 17.894 2.669 1.012

EMD 40.610 − 19.920 15.970 8.705 7.341 4.875

Airplane CD 1.020 1.196 1.002 0.969 1.208 0.96 0.837

EMD 4.089 2.577 2.672 2.612 2.757 2.562 2.062

Chair CD 9.279 11.21 6.564 6.693 10.120 5.599 3.201

EMD 8.235 6.053 5.790 5.509 6.434 4.917 3.297

Car CD 5.802 6.486 5.392 5.441 6.531 5.328 3.904

EMD 5.790 4.780 4.587 4.570 5.138 4.409 3.251

ShapeNet CD 7.120 8.850 5.301 5.121 7.551 5.154 3.031

EMD 7.950 5.260 5.553 5.493 5.176 4.603 3.103

bound is produced by computing the error between two different point clouds
with the same number of points sampled from the same underlying meshes.

Our method consistently outperforms all other methods on the EMD metric,
which suggests that our point samples follow the distribution or they are more
uniformly distributed among the surface. Note that our method outperforms
PointFlow in both CD and EMD for all datasets, but requires much less time
to train. Our training for the Airplane category can be completed in about less
than 10 h, yet reproducing the results for PointFlow’s pretrained model takes
at least two days. Our method can even sometimes outperform Achilioptas et
al.and AtlasNet in CD, which is the loss they are directly optimizing at.

Table 2. Auto-encoding sparse point clouds. We randomly sample N points from each
shape (in the Airplane dataset). During training, the model is provided with M points
(the columns). CD is multiplied by 104 and EMD is multiplied by 102.

N CD EMD

2048 1024 512 256 128 2048 1024 512 256 128

10K 0.993 1.057 0.999 1.136 1.688 2.463 2.608 2.589 3.042 3.715

3K 1.080 1.059 1.003 1.142 1.753 2.533 2.586 2.557 2.997 3.878

1K − − 1.021 1.149 1.691 − − 2.565 2.943 3.633

Point Cloud Upsampling. We conduct a set of experiments on subsampled
ShapeNet point clouds. These experiments are primarily focused on showing that
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(i) our model can learn from sparser datasets, and that (ii) we can infer a dense
shape from a sparse input. In the regular configuration (reported above), we
learn from N = 10K points which are uniformly sampled from each shape mesh
model. During training, we sample M = 2048 points (from the 10K available
in total) to be the input point cloud. To evaluate our model, we perform the
Langevin dynamic procedure (described in Sect. 3.4) over 2048 points sampled
from the prior distribution and compare these to 2048 points from the reference
set.

To evaluate whether our model can effectively upsample point clouds and
learn from a sparse input, we train models with N = [1K, 3K, 10K] and M =
[128, 256, 512, 1024, 2048] on the Airplane dataset. To allow for a fair comparison,
we evaluate all models using the same number of output points (i.e. 2048 points
are sampled from the prior distribution in all cases). As illustrated in Table 2, we
obtain comparable auto-encoding performance while training with significantly
sparser shapes. Interestingly, the number of points available from the model (i.e.
N) does not seem to affect performance, suggesting that we can indeed learn
from sparser datasets. Several qualitative examples auto-encoding shapes from
the regular and sparse configurations are shown in Fig. 4. We also demonstrate
that our model can also provide a smooth iso-surface, even when only a sparse
point cloud (i.e. 256 points) is provided as input.

sruOFPeerTNGCNAG-r

Fig. 5. Generation results. We shown results from r-GAN, GCN, TreeGAN (Tree), and
PointFlow (PF) are illustrated on the left for comparison. Generated point clouds are
illustrated alongside the corresponding implicit surfaces.

4.2 Shape Generation

We quantitatively compare our method’s performance on shape generation with
r-GAN [1], GCN-GAN [55], TreeGAN [48], and PointFlow [60]. We use the same
experiment setup as PointFlow except for the data normalization before the
evaluation. The generation results are reported in Table 3. Though our model
requires a two-stage training, the training can be done within one day with a
1080 Ti GPU, while reproducing PointFlow’s results requires training for at least
two days on the same hardware. Despite using much less training time, our model
achieves comparable performance to PointFlow, the current state-of-the-art. As
demonstrated in Fig. 5, our generated shapes are also visually cleaner.
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Table 3. Shape generation results. ↑ means the higher the better, ↓ means the lower
the better. MMD-CD is multiplied by 103 and MMD-EMD is multiplied by 102.

Category Model MMD (↓) COV (%, ↑) 1-NNA (%, ↓)

CD EMD CD EMD CD EMD

Airplane r-GAN [1] 1.657 13.287 38.52 19.75 95.80 100.00

GCN [55] 2.623 15.535 9.38 5.93 95.16 99.12

Tree [48] 1.466 16.662 44.69 6.91 95.06 100.00

PF [60] 1.408 7.576 39.51 41.98 83.21 82.22

Ours 1.285 7.364 47.65 41.98 85.06 83.46

Train 1.288 7.036 45.43 45.43 72.10 69.38

Chair r-GAN [1] 18.187 32.688 19.49 8.31 84.82 99.92

GCN [55] 23.098 25.781 6.95 6.34 86.52 96.48

Tree [48] 16.147 36.545 40.33 8.76 74.55 99.92

PF [60] 15.027 19.190 40.94 44.41 67.60 72.28

Ours 14.818 18.791 46.37 46.22 66.16 59.82

Train 15.893 18.472 50.45 52.11 53.93 54.15

Table 4. Ablation study comparing auto-encoding performance on the Airplane
dataset. CD is multiplied by 104 and EMD is multiplied by 102.

Metric Single noise level Prior distribution

0.1 0.05 0.01 Uniform Fixed Gaussian

CD 2.545 1.573 1009.357 0.993 0.993 0.996

EMD 4.400 8.455 36.715 2.463 2.476 2.475

4.3 Ablation Study

We conduct an ablation study quantifying the importance of learning with multi-
ple noise levels. As detailed in Sects. 3.3–3.4, we train sθ for multiple σ’s. During
inference, we sample point clouds using an annealed Langevin dynamics proce-
dure, using the same σ’s seen during training. In Table 4 we show results for
models trained with a single noise level and tested without annealing. As illus-
trated in the table, the model does not perform as well when learning using a
single noise level only. This is especially noticeable for the model trained on the
smallest noise level in our model (σ = 0.01), as large regions in space are left
unsupervised, resulting in significant errors.

We also demonstrate that our model is insensitive to the choice of the prior
distribution. We repeat the inference procedure for our auto-encoding exper-
iment, initializing the prior points with a Gaussian distribution or in a fixed
location (using the same trained model). Results are reported on the right side
of Table 4. Different prior configurations don’t affect the performance, which is
expected due to the stochastic nature of our solution. We further demonstrate
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our model’s robustness to the prior distribution in Fig. 1, where the prior depicts
3D letters.

5 Conclusions

In this work, we propose a generative model for point clouds which learns the
gradient field of the logarithmic density function encoding a shape. Our method
not only allows sampling of high-quality point clouds, but also enables extraction
of the underlying surface of the shape. We demonstrate the effectiveness of our
model on point cloud auto-encoding, generation, and super-resolution. Future
work includes extending our work to model texture, appearance, and scenes.
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Abstract. Unsupervised image-to-image translation intends to learn a
mapping of an image in a given domain to an analogous image in a
different domain, without explicit supervision of the mapping. Few-shot
unsupervised image-to-image translation further attempts to generalize
the model to an unseen domain by leveraging example images of the
unseen domain provided at inference time. While remarkably successful,
existing few-shot image-to-image translation models find it difficult to
preserve the structure of the input image while emulating the appear-
ance of the unseen domain, which we refer to as the content loss problem.
This is particularly severe when the poses of the objects in the input and
example images are very different. To address the issue, we propose a
new few-shot image translation model, COCO-FUNIT, which computes
the style embedding of the example images conditioned on the input
image and a new module called the constant style bias. Through exten-
sive experimental validations with comparison to the state-of-the-art, our
model shows effectiveness in addressing the content loss problem. Code
and pretrained models are available at https://nvlabs.github.io/COCO-
FUNIT/.

Keywords: Image-to-image translation · Generative Adversarial
Networks

1 Introduction

Image-to-Image translation [18,44] concerns learning a mapping that can trans-
late an input image in one domain into an analogous image in a different domain.
Unsupervised image-to-image translation [5,21,25,26,28,39,47] attempts to
learn such a mapping without paired data. Thanks to the introduction of novel
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Fig. 1. Given as few as one style example image from an object class unseen during
training, our model can generate a photorealistic translation of the input content image
in the unseen domain.

network architectures and learning objective terms, the state-of-the-art has
advanced significantly in the past few years. However, while existing unsuper-
vised image-to-image translation models can generate realistic translations, they
still have several drawbacks. First, they require a large amount of images from
the source and target domains for training. Second, they cannot be used to gen-
erate images in unseen domains. These limitations are addressed in the few-shot
unsupervised image-to-image translation framework [27]. By leveraging example-
guided episodic training, the few-shot image translation framework [27] learns
to extract the domain-specific style information from a few example images in
the unseen domain during test time, mixes it with the domain-invariant content
information extracted from the input image, and generates a few-shot translation
output as illustrated in Fig. 2 (Fig. 1).

However, despite showing encouraging results on relatively simple tasks such
as animal face and flower translation, the few-shot translation framework [27] fre-
quently generates unsatisfactory translation outputs when the model is applied
to objects with diverse appearance, such as animals with very different body
poses. Often, the translation output is not well-aligned with the input image.
The domain invariant content that is supposed to remain unchanged disappears
after translation, as shown in Fig. 3. We will call this issue the content loss prob-
lem. We hypothesize that solving the content loss problem would produce more
faithful and photorealistic few-shot image translation results.

But why does the content loss problem occur? To learn the translation in
an unsupervised manner, Liu et al. [27] rely on inductive bias injected by the
network design and adversarial training [10] to transfer the appearance from the
example images in the unseen domain to the input image. However, as there is no
supervision, it is difficult to control what to be transferred precisely. Ideally, the
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Fig. 2. Few-shot image-to-image translation. Training. The training set consists of
many domains. We train a model to translate images between these domains. Deploy-
ment. We apply the trained model to perform few-shot image translation. Given a
few examples from a test domain, we aim to translate a content image into an image
analogous to the test class.

transferred appearance should contain just the style. In reality, it often contains
other information, such as the object pose.

In this paper, we propose a novel network architecture to counter the con-
tent loss problem. We design a style encoder called the content-conditioned style
encoder, to hinder the transmission of task-irrelevant appearance information
to the image translation process. In contrast to the existing style encoders, our
style code is computed by conditioning on the input content image. We use
a new architecture design to limit the variance of the style code. We conduct
an extensive experimental validation with a comparison to the state-of-the-art
method using several newly collected and challenging few-shot image translation
datasets. Experimental results, including both automatic performance metrics
and user studies, verify the effectiveness of the proposed method in dealing with
the content loss problem.

2 Related Works

Image-to-Image Translation. Most of the existing models are based on the
Generative Adversarial Network (GAN) [10] framework. Unlike unconditional
GANs [10,12,19,20,30], which learn to map random vectors to images, exist-
ing image-to-image translation models are mostly based on conditional GANs
where they learn to generate a corresponding image in the target domain condi-
tioned on the input image in the source domain. Depending on the availability of
paired input and output images as supervision in the training dataset, image-to-
image translation models can be divided into supervised [4,18,29,33,35,40,41,
43,44,46,48,49] or unsupervised [1,3,5,9,16,21,23,25,26,28,34,37,39,47]. Our
work falls in the category of unsupervised image-to-image translation. However,
instead of learning a mapping between two specific domains, we aim at learning
a flexible mapping that can be used to generate images in many unseen domains.
Specifically, the mapping is only determined at test time, via example images.
When using example images from a different unseen domain, the same model
can generate images in the new unseen domain.
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Fig. 3. Illustration of the content loss problem. The images generated by the base-
line [27] fail to preserve domain invariant appearance information in the content image.
The animals’ bodies are sometimes merged with the background (column 3, & 4), scales
of the generated body parts are sometimes inconsistent with the input (column 5), and
some body parts absent in the content image show up (column 1 & 2). Our proposed
method solves this “content loss” problem.

Multi-domain Image Translation. Several works [2,5,6,17] extend the unsu-
pervised image translation to multiple domains. They learn a mapping between
multiple seen domains, simultaneously. Our work differs from the multi-domain
image translation works in that we aim to translate images to unseen domains.

Few-Shot Image Translation. Several few-shot methods are proposed to gen-
erate human images [13,38,41,42], scenes [41], or human faces [11,42,45] given a
few instances and semantic layouts in a test time. These methods operate in the
supervised setting. During training, they assume access to paired input (layout)
and output data. Our work is most akin to the FUNIT work [27] as we aim to
learn to generalize the translation to unseen domain without paired input and
output data. We build on top of the FUNIT work where we first identify the
content loss problem and then address it with a novel content-conditioned style
encoder architecture.

Example-Guided Image Translation refers to methods that generate a
translation of an input conditioning on some example images. Existing works
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in this space [16,27,33] use a style encoder to extract style information from the
example images. Our work is also an example-guided image translation method.
However, unlike the prior works where the style code is computed independent of
the input image, our style code is computed by conditioning on the input image,
where we normalize the style code using the content to prevent over-transmission
of the style information to the output.

Neural Style Transfer studies approaches to transfer textures from a paint-
ing to a real photo. While existing neural style transfer methods [8,15,24] can
generalize to unseen textures, they cannot generalize to unseen shapes, neces-
sary for image-to-image translation. Our work is inspired by these works, but we
focus on generalizing the generation of both unseen shapes and textures, which
is essential to few-shot unsupervised image-to-image translation.

3 Method

In this section, we start with a brief explanation of the problem setup, introduce
the basic architecture, and then describe our proposed architecture. Throughout
the paper, the two words, “class” and “domain”, are used interchangeably since
we treat each object class as a domain.

Problem Setting. Figure 2 provides an overview of the few-shot image trans-
lation problem [27]. Let X be a training set consists of images from K different
domains. For each image in X, the class label is known. Note that we oper-
ate in the unsupervised setting where corresponding images between domains
are unavailable. The few-shot image-to-image translation model learns to map
a “content” image in one domain to an analogous image in the domain of the
input “style” examples. In the test phase, the model sees a few example images
from an unseen domain and performs the translation.

During training, a pair of content and style images xc, xk is randomly sam-
pled. Let xk denote a style image in domain k. The content image xc can be
from any domains in K. The generator G translates xc into an image of class k
(x̄k) while preserving the content information of xc.

x̄k = G(xc, xk) (1)

In the test phase, the generator takes style images from a domain unseen
during training, which we call the target domain. The target domain can be any
related domain, not included in K.

FUNIT Baseline. FUNIT uses an example-guided conditional generator archi-
tecture as illustrated in the top-left of Fig. 4. It consists of three modules, 1) con-
tent encoder Ec, 2) style encoder Es, and 3) image decoder F . Ec takes content
image xc as input and outputs content embedding zc. Es takes style image xs

as input and output style embedding zs. Then, F generates an image using zc
and zs, where zs is used to generate the mean and scale parameters of adaptive
instance normalization (AdaIN) layers [15] in F . The AdaIN design is based on
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Fig. 4. Top. The FUNIT baseline [27] vs. our COCO-FUNIT. To highlight, we use
a novel style encoder called the content-conditioned style encoder where the content
image is also used in computing the style code for few-shot unsupervised image-to-
image translation. Bottom. Detail design of the content-conditioned style encoder.
Please refer to the main text for more details.

the assumption that the domain-specific information can be governed by the
first and second order statistics of the activation and has been used in several
GAN frameworks [16,20,27]. We further note that when multiple example/style
images are present. FUNIT extracts a style code from each image and uses the
average style code as the final input to F . To sum up, in FUNIT the image
translation is formalized as follows,

zc = Ec(xc), zs = Es(xs), x̄ = F (zc, zs). (2)

Content Loss. As illustrated in Fig. 3, the FUNIT method suffers from the
content loss problem—the translation result is not well-aligned with the input
image. While a direct theoretical analysis is likely elusive, we conduct an empir-
ical study, aiming at identify the cause of the content loss problem. As shown
in Fig. 5, we compute different translation results of a content image based on
a different style image where each of the style images is cropped from the same
original style image. In the plot, we show variations of the deviation of the
extracted style code due to different crops. Ideally, the plot should be constant
as long as the crop covers sufficient appearance signature of the target class
since that should be all required to generate a translation in the unseen domain.
However, the FUNIT style encoder produces very different style codes as using
different crops. Clearly, the style code contains other information about the style
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image such as the object pose. We hypothesize this is the cause of the content
loss problem and revisit the translator network design for addressing it.

Content-Conditioned Style Encoder (COCO). We hypothesize that the
content loss problem can be mitigated if the style embedding is more robust to
small variations in the style image. To this end, we design a new style encoder
architecture, called the COntent-COnditioned style encoder (COCO). There are
several distinctive features in COCO. The most obvious one is the conditioning
in the content image as illustrated in the top-right of Fig. 4. Unlike the style
encoder in FUNIT, COCO takes both content and style image as input. With this
content-conditioning scheme, we create a direct feedback path during learning
to let the content image influence how the style code is computed. It also helps
reduce the direct influence of the style image to the extract style code.

The bottom part of Fig. 4 details the COCO architecture. First, the content
image is fed into encoder ES,C to compute a spatial feature map. This content
feature map is then mean-pooled and mapped to a vector ζc. Similarly, the style
image is fed into encoder ES,S to compute a spatial feature map. The style
feature map is then mean-pooled and concatenated with an input-independent
bias vector, which we refer to as the constant style bias (CSB). Note that while
the regular bias in deep networks is added to the activations, in CSB, the bias is
concatenated with the activations. The CSB provides a fixed input to the style
encoder, which helps compute a style code that is less sensitive to the variations
in the style image. In the experiment section, we show that the CSB can also
be used to control the type of appearance information that is transmitted from
the style image. When the CSB is activated, mostly texture-based appearance
information is transferred. Note that the dimension of the CSB is set to 1024
through the paper.

The concatenation of the style vector and the CSB is mapped to a vector
ζs via a fully connected layer. We then perform an element-wise product opera-
tion to ζc and ζs, which is our final style code. The style code is then mapped
to produce the AdaIN parameters for generating the translation. Through this
element-wise product operation, the resulting style code is heavily influenced by
the content image. One way to look at this mechanism is that it produces a
customized style code for the input content image.

We use the COCO as a drop-in replacement for the style encoder in FUNIT.
Let φ denote the COCO mapping. The translation output is then computed via

zc = Ec(xc), zs = φ(Es,s(xs), Es,c(xc)), x̄ = F (zc, zs). (3)

As shown in Fig. 5, the style code extracted by the COCO is more robust to
variations in the style image. Note that we set ES,C ≡ EC to keep the number
of parameters in our model similar to that in FUNIT.

We note that the proposed COCO architecture shows only one way to gener-
ate the style code conditioned on the content and to utilize the CSB. Certainly,
there exist other design choices that could potentially lead to better translation
performance. However, since this is the first time these two components are used
for the few-shot image-to-image translation task, we focus on analyzing their
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contribution in one specific design, i.e., our design. An exhaustive exploration is
beyond the scope of the paper and is left for future work.

Fig. 5. We compare variations of the computed style codes due to variations in the
style images for different methods. Note that for a fair comparison, in addition to the
original FUNIT baseline [27], we create an improved FUNIT method by using our
improved design for the content encoder, image decoder, and discriminator, which is
termed “Ours w/o COCO”. “Ours” is our full algorithm where we use COCO as a
drop-in replacement for the style encoder in the FUNIT framework. In the bottom
part of the figure, we plot the variations of the style code due to using different crops
of a style image. Specifically, the style code for each style image is first extracted for
each method. We then compute the mean of the style codes for each method. The
magnitudes of the deviations from the mean style code are then plotted. Note that
to calibrate the network weights in different methods, all the style codes are first
normalized by the mean extracted from 500 style images for each method. As shown
in the figure, “Ours” produces more consistent translation outputs, which is a direct
consequence of a more consistent style code extraction mechanism.

In addition to the COCO, we also improve the design of the content encoder,
image decoder, and discriminator in the FUNIT work [27]. For the content
encoder and image decoder, we find that replacing the vanilla convolutional
layers in the original design with residual blocks [14] improves the performance
so does replacing the multi-task adversarial discriminator with the project-based
discriminator [32]. In Appendix D of our full technical report [36], we report their
individual contribution to the few-shot image translation performance.



390 K. Saito et al.

Learning. We train our model using three objective terms. We use the GAN
loss (LGAN(D,G)) to ensure the realism of the generated images given the class
of the style images. We use the image reconstruction loss (LR(G)) to encourage
the model to reconstruct images when both the content and the style are from
the same domain. We use the discriminator feature matching loss (LFM(G)) to
minimize the feature distance between real and fake samples in the discriminator
feature space, which has the effect of stabilizing the adversarial training and
contributes to generating better translation outputs as shown in the FUNIT
work. In Appendix B of our full technical report [36], we detail the computation
of each loss. Overall the objective is

min
D

max
G

LGAN(D,G) + λRLR(G) + λFLFM(G), (4)

Fig. 6. Results on one-shot image-to-image translation. Column 1 & 2 are from the
Carnivores dataset. Column 3 & 4 are from the Birds dataset. Column 5 & 6 are from
the Mammals dataset. Column 7 & 8 are from the Motorbikes dataset.

Table 1. Results on the benchmark datasets.

Dataset Method mFID ↓ PAcc ↑ mIoU ↑ User style User content

Preference ↑ Preference ↑
Carnivores FUNIT 147.8 59.8 44.6 16.5 11.9

Ours 107.8 66.5 52.1 83.5 88.1

Mammals FUNIT 245.8 35.3 23.3 23.6 27.8

Ours 109.3 48.8 35.5 76.4 72.2

Birds FUNIT 89.2 52.4 37.2 38.5 37.5

Ours 74.6 53.3 38.3 61.5 62.5

Motorbikes FUNIT 275.0 85.6 73.8 17.8 17,4

Ours 56.2 94.6 90.3 82.2 82.6
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where λR and λF denote trade-off parameters for two losses. We set λR 0.1 and
λF 1.0 in all of the experiments.

Fig. 7. Two-shot image translation results on the Carnivores dataset.

Fig. 8. Two-shot image translation results on the Birds dataset.
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4 Experiments

We evaluate our method on challenging datasets that contain large pose varia-
tions, part variations, and category variations. Unlike existing few-shot image-to-
image translation works, which focus on translations between reasonably-aligned
images or simple objects, our interest is in the translations between likely mis-
aligned images of highly articulate objects. Throughout the experiments, we use
256 × 256 as our default image resolution for both inputs and outputs.

Fig. 9. Two-shot image translation results on the Mammals dataset.

Implementation. We use Adam [22] with lr = 0.0001, β1 = 0.0, and β2 = 0.999
for all methods. Spectral normalization [31] is applied to the discriminator. The
final generator is a historical average version of the intermediate generators [19]
where the update weight is 0.001. We train the model for 150,000 iterations
in total. For every competing model, we compute the scores every 10,000 iter-
ations and report the scores of the iteration that achieves the smallest mFID.
Each training batch consists of 64 content images, which are evenly distributed
on a DGX machine with 8 V100 GPUs, each with 32 GB RAM.

Datasets. We benchmark our method using 4 datasets. Each of the dataset
contains objects with diverse poses, parts, and appearances.

• Carnivores. We build the dataset using images from the ImageNet dataset[7].
We pick up images from the 149 carnivorous animals and used 119 as the
source/seen classes and 30 as the target/unseen classes.
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Table 2. Ablation study on the Carnivores and Birds dataset. “Ours w/o CC” repre-
sents a baseline where the content conditioning part in COCO is removed. “Ours w/o
CSB” represents a baseline where the CSB is removed. Detailed architecture of these
baselines are given in Appendix A of our full technical report [36].

Method Carnivores Birds

mFID↓ PAcc↑ mIou ↑ mFID↓ PAcc↑ mIou ↑
Ours w/o COCO 99.6 62.5 47.8 68.8 52.8 37.9

Ours w/o CSB 107.1 61.8 46.9 74.1 52.5 37.7

Ours w/o CC 110.0 66.7 52.1 75.3 52.8 37.9

Ours 107.8 66.5 52.1 74.6 53.3 38.3

• Mammals. We collect 152 classes of herbivore animal images using Google
image search and combine them with the Carnivores dataset to build the
Mammals dataset. Out of the 301 classes, 236 classes are used for the
source/seen and the rest is used for the target/unseen.

• Birds. We collect 205 classes of bird images using Google image search. 172
classes are used for training and the rest is used for the testing.

• Motorbikes. We also collected 109 classes of motorbike images in the same
way. 92 classes are used as the source and the rest is used for the target.

Evaluation Protocol. For each dataset, we train a model using the source
classes mentioned above and test the performance on the target classes for
each competing methods. In the test phase, we randomly sample 25,000 con-
tent images and pair each of them with a few style images from a target class to
compute the translation. Unless specified otherwise, we use the one-shot setting
for performance evaluation as it is the most challenging few-shot setting. We
evaluate the quality of the translated images using various metrics as explained
below.

Performance Metrics. Ideally, a translated image should keep the structure of
the input content image, such as the pose or scale of body parts, unchanged when
emulating the appearances of the unseen domain. Existing work mainly focused
on the style transfer evaluation because the experiments are performed on well-
aligned images or images of simple objects. To consider both the style translation
and content preservation, we employ the following metrics. First, we evaluate the
style transfer by measuring distance between the distribution of the translated
images and the distribution of the real images in the unseen domain. Second,
the content preservation is evaluated by measuring correspondence between a
content and a translated image. Third, we conduct a user study to compute
human preference scores on both the style transfer and content preservation
of the translation results. The details of the performance metrics are given in
Appendix C of our technical report [36].

Baseline. We compare our method with the FUNIT method because it out-
performs many baselines with a large margin as described in Liu et al. [27].
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Therefore, a direct comparison with this baseline can verify the effectiveness of
the proposed method for the few-shot image-to-image translation task.

Main Results. The comparison results is summarized in Table 1. As shown, our
method outperforms FUNIT by a large margin in all the datasets on both auto-
matic metrics and human preference scores. This validates the effectiveness of
our method for few-shot unsupervised image-to-image translation. Figure 6 and 3
compare the one-shot translation results computed by the FUNIT method and
our approach. We find images generated by the FUNIT method contain many
artifacts while our method can generate photorealistic and faithful translation
outputs. In Fig. 7, 8, and 9, we further visualize two-shot translation results.
More visualization results are provided in the supplementary materials (Fig. 10).

Fig. 10. By changing the amplification factor λ of the CSB, our model generates dif-
ferent translation outputs for the same pair of content and style images.

Fig. 11. We interpolate the style codes from two example images from two different
unseen domains. Our model can generate photorealistic results using these interpolated
style codes. More results are in the supplementary materials.



COCO-FUNIT 395

Ablation Study. In Table 2, we ablate modules in our architecture and measure
their impact on the few-shot translation performance using the Carnivores and
Birds datasets. Now, let us walk through the results. First, we find using the CSB
improve content preservation scores (“Ours w/o CSB” vs “Ours”), reflected by
the better PAcc and mIoU scores achieved. Second, using content conditioning
improves style transferring (“Ours w/o CC” vs “Ours”), reflected by the better
mFID scores achieved. We also note that despite “Ours w/o COCO” achieves a
better mFID, it is in the expense of large content loss.

Effect of the CSB. We conduct an experiment to understand how the CSB
designed added to our COCO influences the translation results. Specifically,
during testing, we multiply the CSB with a scalar λ. We then change the λ value
to visualize its effect as shown in Fig. reffig:csbspsmanipulation. Interestingly,
different values of λ generate different translation results. When the value is
small, the model mostly changes the texture of the content image. With a large
λ value, both the shape and texture are changed.

Unseen Style Blending. Here, we show an application where we combine
two style images from two unseen domains to create a new unseen domain.
Specifically, we first extract two style codes from two images from two different
unseen domains. We then mix their styles by linear interpolating the style codes.
The results are shown in Fig. 11 where the leftmost image is the content and
row indicated by s1 and s2 are the two style images. We find the intermediate
style codes render plausible translation results.

Failure Cases. While our approach effectively addresses the content loss prob-
lem, it still have several failure modes. We discuss these failure modes in the
supplementary materials.

5 Conclusion

We introduced the COCO-FUNIT architecture, a new style encoder for few-
shot image-to-image translation that extracts the style code from the example
images from the unseen domain conditioning on the input content image and
uses a constant style bias design. We showed that the COCO-FUNIT can effec-
tively address the content loss problem, proven challenging for few-shot image-
to-image-translation.
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Abstract. The goal of object detection is to determine the class and
location of objects in an image. This paper proposes a novel anchor-free,
two-stage framework which first extracts a number of object proposals by
finding potential corner keypoint combinations and then assigns a class
label to each proposal by a standalone classification stage. We demon-
strate that these two stages are effective solutions for improving recall
and precision, respectively, and they can be integrated into an end-to-end
network. Our approach, dubbed Corner Proposal Network (CPN), enjoys
the ability to detect objects of various scales and also avoids being con-
fused by a large number of false-positive proposals. On the MS-COCO
dataset, CPN achieves an AP of 49.2% which is competitive among state-
of-the-art object detection methods. CPN also fits the scenario of com-
putational efficiency, which achieves an AP of 41.6%/39.7% at 26.2/43.3
FPS, surpassing most competitors with the same inference speed. Code
is available at https://github.com/Duankaiwen/CPNDet.

Keywords: Object detection · Anchor-free detector · Two-stage
detector · Corner keypoints · Object proposals

1 Introduction

Powered by the rapid development of deep learning [21], in particular deep con-
volutional neural networks [13,18,35], researchers have designed effective algo-
rithms for object detection [11]. This is a challenging task since objects can
appear in any scale, shape, and position in a natural image, yet the appearance
of objects of the same class can be very different.

The two keys to a detection approach are to find objects with different
kinds of geometry (i.e., high recall) as well as to assign an accurate label to
each detected object (i.e., high precision). Existing object detection approaches
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are roughly categorized according to how objects are located and how their
classes are determined. For the first issue, early research efforts are mostly
anchor-based [3,6,10,24,27,34,46], which involved placing a number of size-
fixed bounding boxes on the image plane, while this methodology was later chal-
lenged by anchor-free [8,17,19,39,42,50] methods which suggested depicting
each object with one or few keypoints and the geometry. These potential objects
are named proposals, and for each of them, the class label is either inherited
from a previous output or verified by an individual classifier trained for this
purpose. This brings a debate between the so-called two-stage and one-stage
approaches, in which people tend to believe that the former works slower but
produces higher detection accuracy.

Fig. 1. Typical errors by existing object detection approaches (best viewed in color).
Top: an anchor-based method (e.g., Faster R-CNN [34]) may have difficulty in finding
objects with a peculiar shape (e.g., with a very large size or an extreme aspect ratio).
Bottom: an anchor-free method (e.g., CornerNet [19]) may mistakenly group irrelevant
keypoints into an object. Green, blue and red bounding-boxes indicate true positives,
false positives and false negatives, respectively. (Color figure online)

This paper provides an alternative opinion on the design of object detection
approaches. There are two arguments. First, the recall of a detection approach is
determined by its ability to locate objects of different geometries, especially those
with rare shapes, and anchor-free methods (in particular, the methods based
on locating the border of objects) are potentially better in this task. Second,
anchor-free methods often incur a large number of false positives, and thus an
individual classifier is strongly required to improve the precision of detection,
see Fig. 1. Therefore, we inherit the merits of both anchor-free and two-stage
object detectors and design an efficient, end-to-end implementation.

Our approach is named Corner Proposal Network (CPN). It detects an
object by locating the top-left and bottom-right corners of it and then assigning a
class label to it. We make use of the keypoint detection method of CornerNet [19]
but, instead of grouping the keypoints with keypoint feature embedding, enu-
merate all valid corner combinations as potential objects. This leads to a large
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number of proposals, most of which are false positives. We then train a classifier
to discriminate real objects from incorrectly paired keypoints based on the cor-
responding regional features. There are two steps for classification, with the first
one, a binary classifier, filtering out a large part of proposals (i.e., that do not
correspond to objects), and the second one, with stronger features, re-ranking
the survived proposals with multi-class classification scores.

The effectiveness of CPN is verified on the MS-COCO dataset [25], one of
the most challenging object detection benchmarks. Using a 104-layer stacked
Hourglass network [30] as the backbone, CPN reports an AP of 49.2%, which
outperforms the previously best anchor-free detectors, CenterNet [8], by a sig-
nificant margin of 2.2%. In particular, CPN enjoys even larger accuracy gain in
detecting objects with peculiar shapes (e.g., very large or small areas or extreme
aspect ratios), demonstrating the advantage of using anchor-free methods for
proposal extraction. Last but not least, CPN can also fit scenarios that desire
for network efficiency. Working on a lighter backbone, DLA-34 [43], and switch-
ing off image flip in inference, CPN achieves an AP of 41.6% at 26.2 FPS or
39.7% at 43.3 FPS, surpassing most competitors with the same inference speed.

2 Related Work

Object detection is an important yet challenging task in computer vision. It aims
to obtain a tight bounding-box as well as a class label for each object in an image.
In recent years, with the rapid development of deep learning, most powerful
object detection methods are based on training deep neural networks [10,11].
According to the way of localizing objects, existing detection approaches can be
roughly categorized into anchor-based and anchor-free methods.

An anchor-based approach starts with placing a large number of anchors,
which are regional proposals with different but fixed scales and shapes, and are
uniformly distributed on the image plane. These anchors are then considered as
object proposals and an individual classifier is trained to determine the object-
ness as well as the class of each proposal [34]. Beyond this framework, researchers
made efforts in two aspects, namely, improving the basic quality of regional fea-
tures extracted from the proposal, and arriving at a better alignment between
the proposals and features. For the first type of efforts, typical examples include
using more powerful network backbones [13,14,36] and using hierarchical fea-
tures to represent a region [23,27,34]. Regarding the second type, there exist
methods to align anchors to features [46,47], align features to anchors [5,7], and
adjust the anchors after classification has been done [3,27,34].

Alternatively, an anchor-free approach does not assume the objects to
come from uniformly distributed anchors. Early efforts including DenseBox [15]
and UnitBox [44] proved that the detectors can achieve the detection task with-
out anchors. Recently, anchor-free approaches have been greatly promoted by the
development of keypoint detection [29] and the assist of the focal loss [24]. The
fundamental of anchor-free approaches is usually one or few keypoints. Depend-
ing on how keypoints are used for object depiction, anchor-free approaches
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can be roughly categorized into point-grouping detectors and point-vector
detectors. Point-grouping detectors, including CornerNet [19], CenterNet [8],
ExtremeNet [49], etc., group more than one keypoints into an object, while
the point-vector detectors such as FCOS [39], CenterNet [48], FoveaBox [17],
SAPD [50], etc., use a keypoint and a vector of object geometry (e.g., the width,
height, or its distance to the borders) to determine the shape of objects.

Based on the object proposals, it remains to determine whether each proposal
is an object and what class of object it is. There is also discussion on using two-
stage and one-stage detectors for object detection. A two-stage detector [3,12,
22,31,34] refers to an individual classifier is trained for this purpose, while a one-
stage detector [5,24,27,33,46] mostly uses classification cues from the previous
stage. Two-stage detectors are often more accurate but slower, compared to one-
stage detectors. To accelerate it, an efficient method is to partition classification
into two steps [3,6,12,23,31], with the first step filtering out most easy judged
false positives, and the second step using heavier computation to assign each
survived proposal a class label.

3 Our Approach

Object detection starts with an image I denoted by raw pixels, on which a
few rectangles, often referred to as bounding-boxes, that tightly covers the
objects are labeled with a class label. Denote a ground-truth bounding-box as
b�

n, n = 1, 2, . . . , N , the corresponding class label as c�
n, and I�

n represents the
image region within the corresponding bounding-box. The goal is to locate a few
bounding-boxes, bm, m = 1, 2, . . . ,M , and assign each one with a class label,
cm, so that the sets of {b�

n, c�
n}N

n=1 and {bm, cm}M
m=1 are as close as possible.

3.1 Anchor-Based or Anchor-Free? One-Stage or Two-Stage?

We focus on two important choices of object detection, namely, whether to use
anchor-based or anchor-free methods for proposal extraction, and whether to use
one-stage or two-stage methods for determining the class of proposals. Based on
these discussions, we present a novel framework in the next subsection.

We first investigate anchor-based vs. anchor-free methods. Anchor-based
methods first place a number of anchors on the image as object proposals and
then use an individual classifier to judge the objectness and class of each pro-
posal. Most often, each anchor is associated with a specific position on the image
and its size is fixed, although the following process named bounding-box regres-
sion can slightly change its geometry. Anchor-free methods do not assume the
objects to come from anchors of relatively fixed geometry, and instead, locate one
or few keypoints of an object and determine its geometry and/or class afterward.

Our core opinion is that anchor-free methods have better flexibility of
locating objects with arbitrary geometry, and thus a higher recall. This
is mainly due to the design nature of anchors, which is mostly empirical (e.g.,
to reduce the number of anchors and improve efficiency, only common object
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sizes and shapes are considered), the detection algorithm is potential of lower
flexibility and objects with a peculiar shape can be missing. Typical examples
are shown in Fig. 1, and a quantitative study is provided in Table 1. We evaluate
four object proposal extraction methods as well as our work on the MS-COCO
validation dataset and show that anchor-free methods often have a higher overall
recall, which is mainly due to their advantages in two scenarios. First, when the
object is very large, e.g., larger than 4002 pixels, Faster R-CNN, an anchor-
based approach, does not report a much higher recall. This is not expected
because large objects should be easier to detect, as the other three anchor-free
methods suggest. Second, Faster R-CNN suffers a very low recall when the
aspect ratio of the object becomes peculiar, e.g., 5:1 and 8:1, in which cases the
recalls are significantly lower than CornerNet [19] and CenterNet [8], because no
pre-defined anchors (also used in other variants [3,27,31]) can fit these objects.
A similar phenomenon is also observed in FCOS, an anchor-free approach which
represents an object by a keypoint and the distance to the border, because it is
difficult to predict an accurate distance when the border is far from the center.
Since CornerNet and CenterNet group corner (and center) keypoints into an
object, they somewhat get rid of this trouble. Therefore, we choose anchor-free
methods, in particular, point-grouping methods (CornerNet and CenterNet),
to improve the recall of object detection. Moreover, we report the corresponding
results of CPN, the method proposed in this paper, which demonstrates that
CPN inherits the merits of CenterNet and CornerNet and has better flexibility
of locating objects, especially with peculiar shapes.

Table 1. Comparison among the average recall (AR) of anchor-based and anchor-free
detection methods. Here, the average recall is recorded for targets of different aspect
ratios and different sizes. To explore the limit of the average recall for each method, we
exclude the impacts of bounding-box categories and sorts on recall, and compute it by
allowing at most 1000 object proposals. AR1+, AR2+, AR3+ and AR4+ denote box area
in the ranges of

(
962, 2002

]
,

(
2002, 3002

]
,

(
3002, 4002

]
, and

(
4002, +∞)

, respectively.
‘X’ and ‘HG’ stand for ResNeXt and Hourglass, respectively.

Method Backbone AR AR1+ AR2+ AR3+ AR4+ AR5:1 AR6:1 AR7:1 AR8:1

Faster R-CNN [34] X-101-64 × 4d 57.6 73.8 77.5 79.2 86.2 43.8 43.0 34.3 23.2

FCOS [39] X-101-64 × 4d 64.9 82.3 87.9 89.8 95.0 45.5 40.8 34.1 23.4

CornerNet [19] HG-104 66.8 85.8 92.6 95.5 98.5 50.1 48.3 40.4 36.5

CenterNet [8] HG-104 66.8 87.1 93.2 95.2 96.9 50.7 45.6 40.1 32.3

CPN (this work) HG-104 68.8 88.2 93.7 95.8 99.1 54.4 50.6 46.2 35.4

However, anchor-free methods free the constraints of finding object proposals,
it encounters a major difficulty of building a close relationship between keypoints
and objects, since the latter often requires richer semantic information. As shown
in Fig. 1, lacking semantics can incur a large number of false positives and thus
harms the precision of detection. We take CornerNet [19] and CenterNet [8] with
potentially high recalls as examples. As shown in Table 2, the CornerNets with
52-layer and 104-layer Hourglass networks achieved APs of 37.6% and 41.0% on
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Table 2. Anchor-free detection methods such as CornerNet and CenterNet suffer a
large number of false positives and can benefit from incorporating richer semantics
for judgment. Here, APoriginal, APrefined, and APcorrect indicate the AP of the original
output, after non-object proposals are removed, and after the correct label is assigned
to each survived proposal. Both APrefined and APcorrect require ground-truth labels.

Method Backbone APoriginal APrefined APcorrect AR100
original AR100

refined AR100
correct

CornerNet [19] HG-52 37.6 53.8 60.3 56.7 65.3 69.2

CornerNet [19] HG-104 41.0 56.6 61.6 59.1 67.0 70.4

CenterNet [8] HG-52 41.3 51.9 56.6 59.5 61.1 64.2

CenterNet [8] HG-104 44.8 55.3 59.9 62.2 65.1 68.4

the MS-COCO validation dataset, while many of the detected ‘objects’ are false
positives. Either when we remove the non-object proposals or assign each pre-
served proposal with a correct label, the detection accuracy goes up significantly.
This observation also holds on CenterNet [8], which added a center point to filter
out false positives but obviously did not remove them all. To further alleviate
this problem, we need to inherit the merits of two-stage methods, which extract
the features within proposals and train a classifier to filter out false positives.

3.2 The Framework of Corner Proposal Network

Motivated by the above, the goal of our approach is to integrate the advantages
of anchor-free methods and alleviate their drawbacks by leveraging the mech-
anism of discrimination from two-stage methods. We present a new framework
named Corner-Proposal-Network (CPN). It uses an anchor-free method to
extract object proposals followed by efficient regional feature computation and
classification to filter out false positives. Figure 2 shows the overall framework
which contains two stages, and details of the two stages are elaborated as follows.
• Stage 1: Anchor-free Proposals with Corner Keypoints

The first stage is an anchor-free proposal extraction process, in which we
assume that each object is located by two keypoints determining its top-left and
bottom-right corners. We follow CornerNet [19] to locate an object with a pair of
keypoints located in its top-left and bottom-right corners, respectively. For each
class, we compute two heatmaps (i.e., the top-left heatmap and the bottom-
right heatmap, each value on a heatmap indicates the probability that a corner
keypoint occurs in the corresponding position) with a 4×-reduced resolution
compared to the original image. The heatmaps are equipped with two loss terms,
namely, a focal loss Lcorner

det to locate the keypoint on the heatmap and a offset loss
Lcorner

offset to learn its offset to the accurate corner position. Then, a fixed number
of keypoints (K top-left and K bottom-right) are extracted from all heatmaps.
This implies that each corner keypoint is equipped with a class label.

Next, each valid pair of keypoints defines an object proposal. Here by valid
we mean that two keypoints belong to the same class (i.e., extracted from the
top-left heatmap and the bottom-right heatmap of the same class), and the x
and y coordinates of the top-left point are smaller than that of the bottom-right
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Corner Heatmaps 
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Fig. 2. The overall framework of proposed CPN. It first predicts corners to compose a
number of object proposals, and then applies two-step classification to filter out false
positives and assign a class label for each survived proposal.

point, respectively. This leads to a large number of false positives (incorrectly
paired corner keypoints) on each image, and we leave the task of discriminating
and classifying these proposals in the second stage.

As a side comment, we emphasize that although we extract object proposals
based on CornerNet, the follow-up mechanism of determining objectness and
class is quite different. CornerNet generates objects by projecting the keypoints
to a one-dimensional space, and grouping keypoints with closely embedded num-
bers into the same instance. We argue that the embedding process, while neces-
sary under the assumption that no additional computation can be used, can incur
significant errors in pairing keypoints. In particular, there is no guarantee that
the embedding function (assigning a number to each object) is learnable, and
more importantly, the loss function only works in each training image to force
the embedded numbers of different objects to be separated, but this mechanism
often fails to generalize to unseen scenarios, e.g., even when multiple training
images are simply concatenated together, the embedding function that works
well on separate images can fail dramatically. Differently, our method deter-
mines object instances using an individual classifier, which makes full use of the
internal features to improve accuracy. Please refer to Table 6 for the advantage
of an individual classifier over instance embedding.
• Stage 2: Two-step Classification for Filtering Proposals

Thanks to the high resolution of the keypoint heatmap and a flexible mecha-
nism of grouping keypoints, the detected objects can be of an arbitrary size, and
the upper-bound of recall is largely improved. However, this strategy increases
the number of proposals. For example, we follow CenterNet [8] to set K to be 70,
which results in an average of 2,500 object proposals on each image. Most of these
proposals are false positives, and individually validating and classifying each of
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them is computationally expensive. To solve this issue, an efficient, two-step
classification method is designed for the second stage, which first removes 80%
of proposals with a light-weighted binary classifier, and then applies a fine-level
classifier to determine the class label of each survived proposal.

The first step involves training a binary classifier to determine whether each
proposal is an object. We first adopt RoIAlign [12] with a kernel size of 7 × 7
to extract the features for each proposal on the box feature map (see Fig. 2).
Then, a 32 × 7 × 7 convolution layer is followed to obtain the classification score
for each proposal. A binary classifier is built, with the loss function being:

Lprop = − 1
N

M∑

m=1

{
(1 − pm)α log (pm) , if IoUm � τ

pα
m log (1 − pm) , otherwise

, (1)

where M is the total number of object proposals, N denotes the number of
positive samples, pm denotes the objectness score for the m-th proposal, pm ∈
[0, 1], and IoUm denotes the maximum IoU value between the m-th proposal
and all the ground-truth bounding-boxes. τ is the IoU threshold, set to be 0.7
throughout this paper. This is to sample a few positive examples to avoid training
data imbalance [24]. α = 2 is a hyper-parameter that smoothes the loss function.
According to [24], we use π = 0.1, so the value of the biases is around −2.19.

The second step follows to assign a class label for each survived proposal.
This step is very important, since the class labels associated to the corner key-
points are not always reliable. Although we rely on the corner classes to reject
invalid corner pairs, the consensus between them may be incorrect due to the
lack of information from the ROI regions, so we need a more powerful classifier
that incorporates the ROI features to make the final decision. To this end, we
train another classifier with C outputs where C is the number of classes in the
dataset. This classifier is also built upon the RoIAlign-features extracted in the
first step, but instead extract the features from the category feature map (see
Fig. 2) to preserve more information and a C dimensional vector is obtained
using a 256×7×7 convolution layer, for each of the survived proposals. Then, a
C-way classifier is built with a similar loss function considering the class label:

Lclass = − 1
N̂

M̂∑

m=1

C∑

c=1

{
(1 − qm,c)

β log (qm,c) , if IoUm,c � τ

qβ
m,c log (1 − qm,c) , otherwise

, (2)

where M̂ and N̂ denote the number of survived proposals and the number of
positive samples within them, respectively. IoUm,c denotes the maximum IoU
value between the m-th proposal and all the ground-truth bounding-boxes of the
c-th class, and the IoU threshold, τ , remains unchanged. qm,c is the classification
score for the c-th class of the m-th object, and β plays a similar role as α, and
we also fix it to be 2 in this paper.

Here we emphasize the differences between DeNet [40] and our method,
although they are similar in the idea level. First, we equip each corner keypoint
with a multi-class label rather than a binary label, thus we can make use of the
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class labels to reject the unnecessary invalid corner pairs to save the computa-
tional costs of the overall framework. Second, we use an extra lightweight binary
classification network to first reduce the number of proposals to be processed by
the classification network, which improves the efficiency of our approach, while
DeNet used one-step classification. Finally, we design a novel variant of the focal
loss for the two classifiers, which is different from the maximum likelihood func-
tion in DeNet. This is mainly designed to solve the significant imbalance between
the positive and negative proposals during the training process.

3.3 The Inference Process

The inference process simply repeats the training process but uses thresholds to
filter out clearly low-quality proposals. Note that even with augmented positive
training data, the predicted scores, pm and qm,c, are biased towards 0. So, in
the inference stage, we use a relatively low threshold (0.2 in this paper) in the
first step to allow more proposals to survive. For each proposal, provided the
RoIAlign-features, the computational cost of the first classifier is about 10%
of that of the second one. Under the threshold of 0.2, the average fraction of
survived proposals is around 20%, making the overheads of these two stages
comparable.

For each proposal survived to the second step, we assign it with up to 2 class
labels, corresponding to the dominant class of the corner keypoints and that
of the proposal (two classes may be identical, if not, the proposal becomes two
proposals with potentially different scores). For each candidate class, we denote
s1 as the corner classification score (the average of two corner keypoints, in the
range of (0, 1)), and s2 as the regional classification score (the probability of the
proposal class label, predicted by the multi-class classifier, also in the range of
(0, 1)). We assume that both scores contribute to the final score, and a positive
evidence should be added if either score is larger than 0.5. Therefore, we com-
pute the score by sc = (s1 + 0.5) (s2 + 0.5), then we will apply normalization
to rescale this score into the [0, 1]. We finally preserve 100 proposals with high-
est scores into evaluation. In Table 4, we will show that two classifiers provide
complementary information and boost the detection accuracy.

4 Experiments

4.1 Dataset and Evaluation Metrics

We evaluate our approach on the MS-COCO dataset [25], one of the most pop-
ular object detection benchmarks. It contains a total of 120K images with more
than 1.5 million bounding boxes covering 80 object categories, making it a very
challenging dataset. Following the common practice [23,24], we train our model
using the ‘trainval35k’, which is the union set of 80K training images and 35K
(a subset of) validation images. We report evaluation results on the standard
test-dev set, which has no public annotations, by uploading the results to the
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evaluation server. For the ablation studies and visualization experiments, we use
the 5K validation images remained in the validation set.

We use the average precision (AP) metric defined in MS-COCO to character-
ize the performance of our approach as well as other competitors. AP computes
the average precision over ten IoU thresholds (i.e., 0.5:0.05:0.95), for all cat-
egories. Meanwhile, we follow the convention to report some other important
metrics, e.g., AP50 and AP75 are computed at single IoU thresholds of 0.50
and 0.75 [9], and APsmall, APmedium, and APlarge are computed under different
object scales (i.e., small for area < 322, medium for 322 < area < 962, and large
for area > 962), respectively. All metrics are computed by allowing at most 100
proposals preserved on each testing image.

4.2 Implementation Details

We implement our method using Pytorch [32], and refer to some codes from
CornerNet [19], mmdetection [4] and CenterNet [48]. We use CornerNet [19] and
CenterNet [8] as our baselines. The stacked Hourglass networks [30] with 52
and 104 layers are trained for keypoint extraction, with all modifications made
by CornerNet preserved. In addition, we experiment another backbone named
DLA-34 [43]. We follow the modifications made by CenterNet [48], but replace
the deformable convolutional layers with normal layers.

Training. All networks are trained from scratch, except the DLA-34, which is
initialized with ImageNet pretrain. Cascade corner pooling [8] is used to help
the network better detect corners. The input image is resized into 511 × 511,
and the output resolutions for the four feature maps (the top-left and bottom-
right heatmaps, the proposal and class feature maps) are all 128×128. The data
augmentation strategy presented in [19] is used. The overall loss function is

L = Lcorner
det + Lcorner

offset + Lprop + Lclass, (3)

which we use an Adam [16] optimizer to train our model. On eight NVIDIA
Tesla-V100 (32 GB) GPUs, we use a batch size of 48 (6 samples on each card)
and train the model for 200K iterations with a base learning rate of 2.5×10−4 fol-
lowed by another 50K iterations with a reduced learning rate of 2.5 × 10−5. The
training lasts about 9 days, 5 days and 3 days for the backbones of Hourglass-
104, Hourglass-52 and DLA-34, respectively.

Inference. Following [19], both single-scale and multi-scale detection processes
are performed. For single-scale testing, we feed the image with the original res-
olution into the network, while for multi-scale testing, the image is resized into
different resolutions (0.6×, 1×, 1.2×, 1.5×, and 1.8×) and then fed into the net-
work. Flip argumentation is added to both single-scale or multi-scale evaluation.
For multi-scale evaluation, the predictions for all scales (including the flipped
variants) are fused into the final result. we use soft-NMS [2] to suppress the
redundant bounding-boxes, and preserve 100 top-scored boxes for evaluation.
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4.3 Comparisons with State-of-the-Art Detectors

We report the inference accuracy of CPN on the MS-COCO test-dev set and
compare with the state-of-the-art detectors, as shown in Table 3. CPN obtains
a significant improvement compared to CornerNet [19] and CenterNet [8], two
direct baselines. Specifically, CPN-52 (indicating that the backbone is Hourglass-
52) reports a single-scale testing AP of 43.9% and a multi-scale testing AP
of 45.8%, which surpasses CornerNet-104, with a deeper backbone, by 3.4%
and 3.7%, respectively. The best performance of CPN reaches an AP of 49.2%,
surpassing all published anchor-free approaches to the best of our knowledge.
Meanwhile, CPN is also competitive among anchor-based detectors, e.g., CPN-
52 reports a single-scale testing AP of 43.9% which is comparable to 44.1% of
AlignDet [5], and CPN-104 reports a single-scale testing AP of 47.0% which is
comparable 47.4% of PANet [26].

CPN also takes the lead in other metrics. For example, AP50 and AP75 reflect
the accuracy of proposal localization and class prediction. Compared to Center-
Net, CPN reports higher AP scores especially for AP75 (e.g., CPN-104 reports
a single-scale testing AP75 of 51.0%, claiming an improvement of 2.9% over
CenterNet). This suggests that some inaccurate bounding boxes with IoU value
between 0.5 and 0.7 are difficult for CenterNet to filter out with merely center
information incorporated. APS, APM and APL reflect the detection accuracy
for objects with different scales. CPN improves more for APM and APL than
APS (e.g., CPN-104 reports single-scale testing APS, APM and APL of 26.5%,
50.2% and 60.7%, which improves by 0.9%, 2.8% and 3.3% from CenterNet,
respectively). This is because medium and large objects require richer semantic
information to be extracted from the proposal, which is not likely to be handled
well with a center keypoint.

4.4 Classification Improves Precision

We investigate the improvement of precision brought by the classification stage.
Note that there are two classifiers, with the first one (binary) determines the
objectness of each proposal, and the second one (multi-class) providing comple-
mentary information of the class label. We perform ablation study in Table 4 to
analyze the contribution of individual classifiers – in the scenarios that the multi-
class classifier is missing, we directly use the class label of the corner keypoints
as the final prediction. On the one hand, both classifiers can improve the AP
of the basic model (one-stage corner keypoint grouping) significantly (3.4% and
3.8% absolute gains). On the other hand, two classifiers provide complementary
information, so that combining them can further improve the AP by more than
1%. This indicates that the semantic information required for determining the
objectness and class label of a proposal is slightly different.

We have discussed the importance of the incorrect bounding box suppression
for the improvement of detection accuracy and recall in Sect. 3.1. For a more
intuitive analysis of false positives, we adopt the average false discovery rate
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Table 3. Inference accuracy (%) of CPN and state-of-the-art detectors on the COCO
test-dev set. CPN ranks among the top of state-of-the-art detectors. ‘R’, ‘X’, ‘HG’,
‘DCN’ and ‘†’ denote ResNet, ResNeXt, Hourglass, Deformable Convolution Net-
work [7], and multi-scale training or testing, respectively.

Method Backbone Input SizeAP AP50AP75APS APMAPL

Anchor-based:

Faster R-CNN [23] R-101 600 36.2 59.1 39.0 18.2 39.0 48.2

RetinaNet [24] R-101 800 39.1 59.1 42.3 21.8 42.7 50.2

Cascade R-CNN [3] R-101 800 42.8 62.1 46.3 23.7 45.5 55.2

Libra R-CNN [31] X-101-64x4d 800 43.0 64.0 47.0 25.3 45.6 54.6

Grid R-CNN [28] X-101-64x4d 800 43.2 63.0 46.6 25.1 46.5 55.2

YOLOv4 [1] CSPDarknet-53 608 43.5 65.7 47.3 26.7 46.7 53.3

AlignDet [5] X-101-32x8d 800 44.1 64.7 48.9 26.9 47.0 54.7

AB+FSAF [51] † X-101-64x4d 800 44.6 65.2 48.6 29.7 47.1 54.6

FreeAnchor [47] † X-101-32x8d ≤1280 47.3 66.3 51.5 30.6 50.4 59.0

PANet [26] † X-101-64x4d 840 47.4 67.2 51.8 30.1 51.7 60.0

TridentNet [22] † R-101-DCN 800 48.4 69.7 53.5 31.8 51.3 60.3

ATSS [45] † X-101-64x4d-DCN800 50.7 68.9 56.3 33.2 52.9 62.4

EfficientDet [38] EfficientNet [37] 1536 53.772.4 58.4 – – –

Anchor-free:

GA-Faster-RCNN [41]R-50 800 39.8 59.2 43.5 21.8 42.6 50.7

FoveaBox [17] R-101 800 42.1 61.9 45.2 24.9 46.8 55.6

ExtremeNet [49] † HG-104 ≤1.5× 43.2 59.8 46.4 24.1 46.0 57.1

FCOS [39] w/ imprv X-101-64x4d 800 44.7 64.1 48.4 27.6 47.5 55.6

CenterNet [48] † HG-104 ≤1.5× 45.1 63.9 49.3 26.6 47.1 57.7

RPDet [42] † R-101-DCN 800 46.5 67.4 50.9 30.3 49.7 57.1

SAPD [50] X-101-64x4d 800 45.4 65.6 48.9 27.3 48.7 56.8

SAPD [50] X-101-64x4d-DCN800 47.4 67.4 51.1 28.1 50.3 61.5

CornerNet [19] HG-104 ori. 40.5 56.5 43.1 19.4 42.7 53.9

CornerNet [19] † HG-104 ≤1.5× 42.1 57.8 45.3 20.8 44.8 56.7

CenterNet [8] HG-104 ori. 44.9 62.4 48.1 25.6 47.4 57.4

CenterNet [8] † HG-104 ≤1.8× 47.0 64.5 50.7 28.9 49.9 58.9

CPN DLA-34 ori. 41.7 58.9 44.9 20.2 44.1 56.4

CPN HG-52 ori. 43.9 61.6 47.5 23.9 46.3 57.1

CPN HG-104 ori. 47.0 65.0 51.0 26.5 50.2 60.7

CPN † DLA-34 ≤1.8× 44.5 62.3 48.3 25.2 46.7 58.2

CPN † HG-52 ≤1.8× 45.8 63.9 49.7 26.8 48.4 59.4

CPN † HG-104 ≤1.8× 49.267.4 53.7 31.051.9 62.4
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Table 4. The detection performance (%) of different classification options on CPN.

Backbone B-Classifier M-Classifier AP AP50 AP75 APS APM APL AR100

HG-52 38.6 54.5 41.4 19.0 40.6 54.4 57.4

� 42.0 59.7 45.1 24.2 45.0 56.6 60.5

� 42.4 60.2 45.7 23.3 44.7 58.6 59.0

� � 43.8 61.4 47.4 24.7 46.5 60.0 60.9

Table 5. We report the average false discovery rates (%, lower is better) for CornerNet,
CenterNet and CPN on the MS-COCO validation dataset. The results show that our
approach generates fewer false positives. Under the same corner keypoint extractor,
this is the key to outperform the baselines in the AP metrics.

Method Backbone AF AF5 AF25 AF50 AFS AFM AFL

CornerNet [19] HG-52 40.4 35.2 39.4 46.7 62.5 36.9 28.0

CenterNet [8] HG-52 35.1 30.7 34.2 40.8 53.0 31.3 24.4

CPN HG-52 33.4 29.5 32.5 38.6 52.0 29.2 21.0

CornerNet [19] HG-104 37.8 32.7 36.8 43.8 60.3 33.2 25.1

CenterNet [8] HG-104 32.4 28.2 31.6 37.5 50.7 27.1 23.0

CPN HG-104 30.6 26.9 29.7 35.5 48.8 25.7 19.2

(AF) metric1 [8] to quantify the fraction of incorrectly grouped proposals for
different detectors. Results are shown in Table 5. CPN-52 and CPN-104 report
AF of 33.4% and 30.6%, respectively, which are lower than the direct baselines,
CornerNet and CenterNet.

Table 6. The detection performance (%) of using different ways (instance embedding
and binary classification) to determine the validity of a proposal.

Method Backbone Objectness AP AP50 AP75 APS APM APL AR100

CornerNet [19] HG-52 Embedding 38.3 54.2 40.5 18.5 39.6 52.2 56.7

B-Classifier 42.3 59.5 45.4 24.6 45.4 57.6 59.9

CenterNet [8] HG-52 Embedding 41.3 59.2 43.9 23.6 43.6 53.6 59.0

B-Classifier 42.6 59.8 45.8 25.1 45.7 57.7 60.1

Note that these three methods share a similar way of extracting corner key-
points, but CornerNet suffers large AF values due to the lack of validation
beyond the proposals. CenterNet, by forcing a center keypoint to be detected,

1 AF = 1 − ÃP, where ÃP is computed over IoU thresholds of [0.05 : 0.05 : 0.5] for

all categories. AFτ = 1 − ÃPτ , where ÃPτ is computed at the IoU threshold of τ%,
AFscale = 1 − ÃPscale, where scale ∈ {small, medium, large} indicates the object size.
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was believed effective in filtering out false positives, and our approach, by reeval-
uating the proposal based on regional features, performs better than CenterNet.
More importantly, by inserting an individual classification stage, CPN alleviates
the false positives produced by instance embedding, as shown in Table 6.

4.5 Inference Speed

To show that CPN can generate high-quality bounding boxes with small compu-
tational costs, we report the inference speed for CPN on the MS-COCO valida-
tion dataset under different settings and compare the results to state-of-the-art
efficient detectors, as shown in Table 7. For fair comparison, we test the infer-
ence speed for all detectors on an NVIDIA Tesla-V100 GPU. CPN-104 reports
an FPS/AP of 7.3/46.8%, which is both faster and better than CenterNet-104
(5.1/44.8%) under the same setting. With a lighter backbone of Hourglass-52,
CPN-52 reports an FPS/AP of 9.9/43.8%, which outperforms both CornerNet-
52 and CenterNet-52. This indicates that two-stage detectors are not necessarily
slow – our solution, by sharing a large amount of computation between the first
(for keypoint extraction) and the second (for feature extraction) stage, achieves
a good trade-off between inference speed and accuracy.

In the scenarios that require faster inference speed, CPN can be further
accelerated by replacing with a lighter backbone and not using flip augmenta-
tion at the inference stage. For example, with the backbone of DLA-34 [43], CPN
reports FPS/AP of 43.3/39.7% and 26.2/41.6% with and without flip augmen-
tation, surpassing other competitors with the similar computational cost.

Table 7. Inference speed of CPN under different conditions vs. other detectors on
the MS-COCO validation dataset. FPS is measured on the on an NVIDIA Tesla-V100
GPU. CPN achieves a good trade-off between accuracy and speed.

Method Backbone Input Size Flip AP FPS

FCOS [39] X-101-64 × 4d 800 × 42.6 8.1

Faster R-CNN [34] X-101-64 × 4d 800 × 41.1 8.2

CornerNet-lite [20] HG-Squeeze ori � 36.5 22.0

CornerNet [19] HG-104 ori � 41.0 5.8

CenterNet [8] HG-104 ori � 44.8 5.1

CPN HG-104 ori � 46.8 7.3

CPN HG-52 ori � 43.8 9.9

CPN HG-104 0.7×ori × 40.5 17.9

CPN DLA-34 ori � 41.6 26.2

CPN DLA-34 ori × 39.7 43.3
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5 Conclusions

In this paper, we present an anchor-free, two-stage object detection framework.
It starts with extracting corner keypoints and composing them into object pro-
posals, and applies two-step classification to filter out false positives. With the
above two stages, the recall and precision of detection are significantly improved,
and the final result ranks among the top of existing object detection methods.
We have also achieved a satisfying trade-off between accuracy and complexity.

The most important take-away is that anchor-free methods are more flexible
in proposal extraction, while an individual discrimination stage is required to
improve precision. When implemented properly, such a two-stage framework
can be efficient in evaluation. Therefore, the debate on using one-stage or two-
stage detectors seems not critical, but the importance of accurately localizing
and recognizing instances becomes more significant.
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Abstract. Existing interactive object segmentation methods mainly
take spatial interactions such as bounding boxes or clicks as input.
However, these interactions do not contain information about explicit
attributes of the target-of-interest and thus cannot quickly specify what
the selected object exactly is, especially when there are diverse scales
of candidate objects or the target-of-interest contains multiple objects.
Therefore, excessive user interactions are often required to reach desir-
able results. On the other hand, in existing approaches attribute infor-
mation of objects is often not well utilized in interactive segmentation.
We propose to employ phrase expressions as another interaction input to
infer the attributes of target object. In this way, we can 1) leverage spa-
tial clicks to locate the target object and 2) utilize semantic phrases to
qualify the attributes of the target object. Specifically, the phrase expres-
sions focus on “what” the target object is and the spatial clicks are in
charge of “where” the target object is, which together help to accurately
segment the target-of-interest with smaller number of interactions. More-
over, the proposed approach is flexible in terms of interaction modes and
can efficiently handle complex scenarios by leveraging the strengths of
each type of input. Our multi-modal phrase+click approach achieves new
state-of-the-art performance on interactive segmentation. To the best of
our knowledge, this is the first work to leverage both clicks and phrases
for interactive segmentation.

Keywords: Interactive segmentation · Click · Phrase · Flexible ·
Attribute

1 Introduction

Interactive object segmentation (or interactive object selection) aims to accu-
rately segment the image into foreground and background given a minimal
amount of user interactive inputs. It allows user to gradually refine the pre-
diction with further interaction inputs if any mistakes are made in prediction.
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Click

Phrase: the cow

Or? Or?

Or? Or?

Click is better on “where”       Phrase is better on “what”

what is the target-of-interest?

where is “the cow”?

Fig. 1. (Best viewed in color) As interaction inputs, both the click and phrase have
their advantages and disadvantages. Here we show ambiguities that exist when using
only click or phrase interactions. We propose to utilize both interaction types to make
selection flexible and robust to handle complex scenarios.

These inputs usually come in the form of user clicks/strokes [5,28,34,41,51,58] or
bounding boxes [16,29,49,57]. This form of input gives hard constraints regard-
ing the location of the object of interest. With the recent advances in deep learn-
ing such methods can now often select familiar objects with a small amount of
input. Alternately, systems have been proposed that instead use language-based
input to drive the selection [24,35,50,61]. Natural language phrases can be used
by a neural network to infer high-level attribute information about what the
object of interest looks like that can then be used to select the objects.

While great strides have been made in interactive selection, each of these
interaction approaches may still fall short and require additional and excessive
user interaction. For example, click-based methods are required to infer the tar-
get object given only spatial constraints and usually are trained to select entire
objects. However, the region of user interest may instead be an object part or
a combination of multiple objects. For example, the first row in Fig. 1, the click
on the boy may indicate the trousers, the boy, or the whole foreground (boy
and chair). This leads to ambiguities that must be overcame with additional
user inputs, which directly runs counter to the goal of minimizing user interac-
tion. Click-based methods also generally assume accurate input, but with mobile
devices it can be difficult for users to accurately click on objects, especially given
that the user’s finger is occluding the object of interest. It remains a significant
challenge to accurately segment a target-of-interest with a few clicks.

On the other hand, language-driven segmentation methods learn the overall
appearance of objects and must infer their location. A language phrase naturally
and easily overcomes ambiguities such as whether the target is an object, object
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part, or collection of objects. A phrase can also provide rough spatial information
(“the woman on the left”). Besides, for mobile devices like smartphones, speech
is a natural and desired interface and easier than precise touching on a small
phone screen. However, in many cases an object name and rough location is not
sufficient to produce a desired result. For example, in images where there are
multiple objects with similar appearance (an image of dozens of cows, see Fig. 1)
it can be very difficult to articulate using language a single target instance.
In such cases, directly clicking on the object is much easier for a user. It can
also be difficult to verbally articulate some required corrections that do not
correspond to an entire semantically-meaningful region. Further, due to the long
tail distribution of objects in images, it is difficult to obtain labels and training
data for all possible objects.

The strengths and weaknesses of click-based and phrase-based inputs are
complementary with clicks giving hard spatial constraints and phrases giving
high-level attribute information. An effective combination of these inputs may
reduce the amount of user interactions needed for accurately selecting objects of
interest. Given this observation, we propose to build a versatile interactive seg-
mentation network that accepts both clicks and phrases as interaction input. We
use a convolutional neural network (CNN) to process the input image and clicks,
and employ the bi-directional LSTM (bi-LSTM) to encode the phrases and infer
language features. To bridge click-based spatial constraints with phrase-based
attribute constraints, we introduce a novel attribute guided feature attention
module to effectively integrate language and vision features together. Our app-
roach can better handle complex scenarios via utilizing advantages of these two
interactions.

The main contributions of this paper can be summarized as follows: 1) To the
best of our knowledge, this is the first work to leverage both clicks and phrases for
interactive segmentation. The proposed approach allows the user the flexibility of
using the interaction method that is most suitable for a given task, making the sys-
tem more practical than past approaches. 2) We propose an attribute guided fea-
ture attention module to bring clicks and phrases information together. It extracts
discriminative attribute clues from interactions and integrate the vision and lan-
guage attribute clues. 3) Extensive experimental results have demonstrated that
phrase expressions are indeed effective at boosting the performance of interactive
segmentation, especially in some complex scenarios and with few clicks.

2 Related Work

2.1 Interactive Object Segmentation

Many interactive segmentation methods have been proposed in the past decades
using many different interaction types such as bounding boxes [16,29,49,57],
contours [1,6,26,45], strokes [5,31,51,53] and clicks [25,28,34,40,41,58]. There
are also some language-based segmentation methods [24,35,61], but they only
provide an initial result and cannot further refine the result to correct mistakes.
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Early methods rely on low-level features, such as color similarity or boundary
properties [26,45]. For example, [5,31,49] adopt graphical models, [18] employs
random walker and [3,11,47] are based on geodesic approaches. However, low-
level features are not robust and hence excessive user interactions are required
for these methods to achieve desirable segmentation results. Recently, thanks
to the great success of convolution neural networks (CNN) [36,44,55,56,63–70],
CNN-based interactive segmentation methods have achieved exciting progress.
For example, Xu et al. [58] concatenate Euclidean distance maps to user fore-
ground and background clicks with the image as input to a fully convolutional
network (FCN) [39]. Hu et al. [25] employ a two-stream network to deal with
image and user clicks separately to make the user interaction impact the result
more directly. Le et al. [28] introduce boundary clicks to perform object selec-
tion. Besides the clicks, bounding boxes have also been used in CNN-based meth-
ods [57]. As a variant to using bounding boxes, Papadopoulos et al. [46] propose
extreme points and Maninis et al. [41] use extreme points to generate Gaus-
sian heatmap and crop the image to achieve instance segmentation. Agustsson
et al. [2] further segment all regions jointly with extreme points and scrib-
bles. As these methods receive only spatial constraints, they cannot provide
high-level attribute information to the method and thus may require additional
user input to overcome this drawback in challenging cases. Different from these
methods, our approach receives both spatial constraints and high-level attribute
information.

2.2 Semantic/Instance Segmentation

Semantic segmentation and instance segmentation are closely related with inter-
active segmentation. Driven by the significant success of CNN, many deep-
learning-based works have been proposed for semantic segmentation [8,12–15,
22,52,71] and instance segmentation [7,20,23,37]. For example, Long et al. [39]
propose the FCN to train the segmentation network end-to-end. He et al. [20]
propose to add an instance-level segmentation mask branch on the top of
Faster R-CNN [48]. However, it is not reasonable to directly transform seman-
tic/instance segmentation to interactive segmentation [58]. Interactive object
segmentation methods respond to user’s inputs instead of predefined labels, thus
the ability to segment any unseen objects is required and this is impractical in
current segmentation approaches. In this work, we modify the semantic seg-
mentation framework [9] to have it accept interaction inputs, and re-train the
modified framework on interactive object segmentation datasets.

2.3 Referring Expression Comprehension

Referring expression comprehension methods [27,35,38,54,60–62] detect a spe-
cific object in an image given a referring expression. Some comprehension meth-
ods can be used to segment the referential object [24,35,59,61]. However, these
methods only compute an initial segmentation and cannot further correct the
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Fig. 2. The proposed approach accepts clicks and phrases as interaction input, but it
is not necessary to enter both types of interactions at the same time.

segmentation mask, which is required for interactive segmentation if any mis-
takes are made. For example, MAttNet [61] depends on the instance segmenta-
tion results of Mask R-CNN [20]. MAttNet first scores and ranks the similarity
between phrase embedding and instance objects generated by Mask R-CNN, and
then outputs the mask of best matched object. These methods cannot further
improve the segmentation mask even with new additional phrase input. Thus,
they cannot meet the requirement of practical application for interactive segmen-
tation. In contrast, our approach enables users to add interactive information
until the segmentation results meets the users’ requirements.

3 Approach

In this work, we propose to build a versatile interactive segmentation network
that can take both clicks and phrases as interaction input. Compared with previ-
ous approaches that accept only one type of interaction, the proposed approach
1) is more flexible in terms of interaction ways and 2) can better handle complex
scenarios via utilizing advantages of these two interactions.

3.1 Network Architecture

The overall architecture of our approach is shown in Fig. 2, the proposed app-
roach accepts both clicks and phrases as interaction input. We use the ResNet-
101 [21] based DeepLabv3+ [9] as the backbone of vision part. The clicks are
transformed to distance maps and concatenated with original image to form a
5-channel input for the CNN as in [58]. For the language part, the phrase is
processed by a word-to-vector model and then a bi-directional LSTM to extract
the language clues. During testing, we employ graph cut [5] as a post-processing
tool to refine the final segmentation mask.
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3.2 Click Interaction

Click-based input is commonly used to provide location information and give
spatial constraints about a target of interest. We also use clicks to provide spatial
information about the object.

Click Input Transformation. Click information is usually introduced at the
beginning of a network. As in [58], the user provides a set of sequential clicks
to segment the target region. The interactions contain positive clicks C+ on the
target region and negative clicks C− on “background”. We employ a Euclidean
distance transformation to transform the positive clicks C+ and negative clicks
C− to two Euclidean distance maps D+ and D−. These two distance maps are
truncated to the same spatial size as the original input image I. We concatenate
the 3 channels of the input image I and the two distance maps (D+,D−) to
form the 5 channel input:

X = I ⊕ D+ ⊕ D− (1)

where ⊕ denotes concatenation and X is the 5-channel input to the network.

Click Simulation Protocol. We follow the simulation strategies proposed
in [58] to form a set of synthetic positive and negative clicks. Furthermore,
to encourage the model to learn to generate correct prediction from ambiguous
clicks, we follow [33] and introduce another sampling strategy that samples clicks
on the overlapped foreground and overlapped background of different object
masks, for example, the positive and negative clicks in Fig. 2.

3.3 Phrase Interaction

While clicks as a kind of spatial interaction can indicate the position of target
object, such spatial interactions cannot explicitly express the semantic attributes
of a target object. A language phrase naturally and easily expresses attributes
of objects and is commonly used in referring segmentation [10,24,27,54,60–62].
However, referring segmentation methods only compute an initial segmenta-
tion mask and cannot further improve the segmentation mask even with new
additional phrase input, which does not agree with the goal of interactive
segmentation.

Bringing Click and Phrase Together. In this work, we explore using phrase
expressions as another interaction input to express the attributes of a target-of-
interest and quickly narrow the range of candidates, which can assist the click
interaction process and decrease the user interaction times. For regions that are
difficult to articulate, such as small mistakes that need correction or objects that
do not have easily identifiable attributes that will separate them from surround-
ing objects, clicks provide a strong spatial constraint to supplement the attribute
information.

Phrase Expression Annotation. The interactive segmentation datasets have
no phrase annotation. To train the proposed network, corresponding phrase
annotation for each segmentation mask is required. Therefore, we annotate
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phrase expressions for every image in Grabcut [49] and Berkeley [43], some exam-
ples are shown in Fig. 3.

3.4 Attribute Feature Attention Module

To uniformly integrate click and phrase interactions in a single network, we
propose an attribute attention module. CNN features contain rich attributes
information like color or shape, which are preserved in different feature channels
[10]. Based on this observation, we explore to infer attribute clues of target-of-
interest from vision features of X (in Eq. 1) and language features of phrases.
The attribute clues of the target object are changed with user’s interaction,
i.e.phrases and clicks in this work. We employ the attribute clues to compute
channel-wise attribute attention, and then leverage this attribute attention to
emphasize some specific channels and suppress others in order to help the net-
work to determine the object of interest.

The man in black suit Red flowers The man in red Green snake Woman in purple dress

Fig. 3. Examples of our annotated phrase-segmentation pairs for Grabcut [49] and
Berkeley [43].

First, to process language input, we use a word-to-vector model to embed
each word wt ∈ {w1, ..., wT }, vt = word2vec(wt). Next, we employ the bi-
directional LSTM (bi-LSTM) to encode the holistic context of phrase expression:

→
h t =

−−−−→
LSTM(vt,

→
h t−1),

←
h t=

←−−−−
LSTM(vt,

←
h t+1) (2)

Besides the context from phrase expression, we also extract visual context vector
from CNN features, f = pooling(F ), where pooling is a global average pooling
operation, F with size of H × W × #C is the high-level feature of CNN, f with
size of 1×1×#C is visual context vector that preserves visual clues in channels.
Then we concatenate the visual context vector and the bi-directional context
vectors of phrase to generate final attribute context representation:

C =
→
h ⊕ ←

h ⊕f (3)
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where
→
h = (

→
h1, ...,

→
h t, ...,

→
hT ) and

←
h=(

←
h1, ...,

←
h t, ...,

←
hT ), and C is the attribute

context vector. Next we adapt the attribute context vector to make it have the
same number of channels (#C = 512 in our experiments) with features in CNN,
and normalize the values to range of [−1, 1] by:

A = tanh(Adapt(C, Θ)) (4)

where tanh(x) = (ex − e−x)/(ex + e−x), Adapt is Conv+BN and Θ is its learnable
parameters. Now we get the attribute attention weight A, in which different
attribute channels have different attention weights in range of [−1, 1]. Finally,
as shown in Fig. 4, we apply the attribute attention weights on feature maps in
CNN:

*Click
Image

Phrase }
}

*
 channel-wise
 multiplication

Language

Vision

Fig. 4. Attribute Attention: It emphasizes feature channels that have larger
response in semantic attribute learning, which is based on the phrase interaction, click
interaction and visual patterns.

F̂ = βA ∗ F + F (5)

where β is a learnable weight and ∗ denotes channel-wise multiplication. To
have our approach more flexible in terms of interaction methods, the phrase
interaction is not compulsory. When there is no phrase interaction input, the

→
h

and
←
h are set to 0.

The attribute attention module helps to bridge the clicks and phrases infor-
mation together. These two interaction inputs work together to reduce the inter-
action times for improved performance.

3.5 Training Loss

The proposed approach is a unified framework that brings vision part and lan-
guage part together. To train such a network end-to-end and balance the effect
of two different interactions, we carefully design its loss function. First, we use
the binary cross-entropy loss for the segmentation branch training. Given the
segmentation ground truth t and the segmentation branch output s, the seg-
mentation loss is:

Lm = −tlog(σ(s)) − (1 − t)log(1 − σ(s)) (6)

where σ(x) = 1/(1 + e−x) is sigmoid function.
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Table 1. Ablation study of the proposed approach on testA of RefeCOCO.

Interaction inputs Phrase Click Graph cut IoU

Phrase-only � 50.98

Click-only � 77.93

PhraseClick � � 83.94

PhraseClick � � � 85.02

Additionally, in order to help the network optimize the attribute learning
process and catch meaningful visual and phrasal attributes, we introduce an
attribute loss for the attribute learning module. We first generate the attribute
label {ai}Ni=1 following [27], ai ∈ {0, 1} indicates whether the i-th attribute word
exists in the input phrase. Denoting the output of attribute learning module as
pi, the objective function for attribute module is defined as:

La =
N∑

i=1

wi(ailog(σ(pi)) + (1 − ai)log(1 − σ(pi)) (7)

where wi is a weighting factor to address the unbalance of different attributes,
and ai indicates whether the i-th attribute word exists in the input phrase. The
final loss for the proposed network is L = ωmLm + ωaLa, where ωm and ωa are
used to balance the contributions of the segmentation and attribute loss.

4 Experiments

4.1 Implementation Details

The network and all the experiments are implemented based on the public
Pytorch platform. We use ResNet-101 [21] based DeepLabv3+ [9] as the back-
bone of the segmentation branch. The first convolution layer is modified to
5×64×7×7 to deal with the 5-channel input. The proposed attribute attention
module is placed after ASPP. The parameters of newly added layers are ran-
domly initialized from a Gaussian distribution with standard variance of 10−2.
The network is trained by SGD with batch size set to 10. For batch processing,
we resize the inputs to 512 × 512 pixels during training. We adopt random hori-
zontal flipping to augment the training data. The learning rate is set to 1×10−8

and the parameters of the new layers are trained with a higher learning rate
1 × 10−7. Momentum and weight decay are fixed to 0.99 and 1 × 10−4 respec-
tively. We empirically set ωm and ωa to 1 and 10. The network is evaluated with
Intersection-over-Union (IoU) [39]. To jointly train the attribute learning branch
and segmentation branch, we train our network on RefCOCO [27] first, which
contains referring phrase expressions and segmentation masks for every instance
objects in each of 19994 images. Then, for interactive segmentation datasets like
PASCAL VOC, we take the name of categories as the phrase input, like person
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and car. We annotate phrase expressions for the Grabcut and Berkeley datasets,
as shown in Fig. 3.

4.2 Ablation Studies

We conduct the ablation studies on RefCOCO [27], as shown in Table 1. First,
to verify the effectiveness of the proposed attribute attention module, we discard
the click interaction and only take the phrase as input. With Phrase-only input,
our network can achieve an acceptable IoU of 50.98%. We also display some visu-
alized segmentation score maps in Fig. 6. Both the quantitative and qualitative
results demonstrate that the attribute attention module does help the network
to select the target-of-interest according to referential phrase expression.
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Fig. 5. Segmentation accuracy with different number of interaction times.

Phrase: manPhrase: player in yellow hat

Phrase: girl squatting on skateboard

Phrase: woman in blue

Phrase: skier in blue vest Phrase: left giraffe

Fig. 6. Examples of segmentation score maps (soft value from 0 to 1) of Phrase-only.

We also conduct a Click-only experiment in which the
→
h and

←
h in Eq. (3) are

set to 0. This achieves 77.93% IoU by 3 clicks, which is much higher than phrase
only. It shows the advantage of click interaction for interactive object segmen-
tation. Next, we verify whether the phrase interaction can speed up the click-
based interactive segmentation process and improve the segmentation perfor-
mance. To this end, we first compare the segmentation performance of Click-only
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Table 2. Comparison with previous state-of-the-art interactive object segmentation
methods. We demonstrate the number of interactions that each method needed to
reach a certain segmentation performance.

Methods PASCAL VOC (85% IoU) GrabCut (90% IoU) Berkeley (90% IoU)

GraphCut [5] 15.06 11.10 14.33

Geodesic Matting [4] 14.75 12.44 15.96

Random Walker [18] 11.37 12.30 14.02

Geodesic Convexity [19] 11.73 8.38 12.57

iFCN [58] 6.88 6.04 8.65

RIS-Net [34] 5.12 5.00 6.03

ITIS [40] 3.80 5.60 –

LDN [32] – 4.79 –

FCTSFN [25] 4.58 3.76 6.49

PhraseClick (Ours) 3.12 2.06 3.26

vs. PhraseClick. As shown in Table 1, compared with Click-only without phrase,
PhraseClick achieves 6.01% better performance on IoU. This demonstrates that
the phrase expression and attribute attention module visibly enhances the per-
formance of click-based interactive segmentation. Note, in Table 1, the interac-
tion inputs for PhraseClick are one phrase and two clicks (one positive and one
negative). For fair comparison, there is one more positive click for Click-only
than PhraseClick in Table 1, i.e.the number of interaction inputs for Click-only
and PhraseClick is the same. Next, we show the segmentation performance with
different number of interaction times in Fig. 5. We start with an initial positive
click, then gradually add a phrase/click as the next interaction according to the
current segmentation prediction. As shown in Fig. 5, to reach a specific IoU per-
formance, the network taking the PhraseClick as interaction inputs is faster than
the network that only takes Click input. This shows the phrase expression helps
to speed up the interaction process and improve the segmentation performance.
During the inference, we employ the graph cut [5] as post-processing method
to refine the segmentation mask, which improve the performance by 1.08% IoU.
The performance gain is brought by the refinement in boundary regions.

4.3 Results on Benchmarks

Interactive Object Segmentation
We first compare the proposed approach with previous state-of-the-art inter-
active segmentation methods. Interactive object segmentation enables users to
add interactive information until the desired selection is reached. We conduct the
interactive segmentation experiments on three public benchmarks with instance
object annotations: PASCAL VOC [17], Grabcut [49], Berkeley [43].

To evaluate the performance of interactive object segmentation, the standard
process is: 1) starting with an initial positive click at the center of the target-
of-interest, the network generates an initial segmentation mask for the target
object; 2) then a succeeding positive/negative click is added at the center of
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Image PredictionInteractions

Click Click

Fig. 7. Existing click-based methods’ interaction process: click first, then grad-
ually refine with more clicks.

Table 3. User study. PhraseClick requires less interactions than Click-only.

Methods User#1 User#2 User#3 User#4 User#5 User#6 User#7 Average

Click-only 4.38 4.41 4.65 4.52 4.33 4.59 4.57 4.49

PhraseClick 3.02 3.13 3.17 3.14 3.00 3.07 3.12 3.09

the largest wrongly predicted piece to add/remove this piece; 3) the 2nd step is
repeated again and again until the desirable accuracy is reached or the maximum
number (set to 20 as [58]) of clicks is reached. Different from existing interac-
tive segmentation methods that only use clicks as input, the proposed approach
accepts both the clicks and phrases as interaction input. Therefore, to evaluate
our approach and compare with existing state-of-the-art works, we input the
phrase for the target-of-interest after the initial click in the first step, which
together are counted as two interaction times. Then the subsequent interactions
only use clicks. Table 2 shows the number of interactions that each approach
requires to reach a certain IoU. We achieve new state-of-the-art performance on
the three benchmarks, which shows the advantage of the proposed approach.

Furthermore, comparing to existing methods that accept a single type of
interaction (as shown in Fig. 7), the proposed approach is more flexible in terms
of interaction and can better handle complex scenarios via utilizing advantages
of both clicks and phrases. Although we fix the order of phrase input to be
the second interaction after the initial positive click in Table 2, this is just for
convenience of evaluation. In practice, users can input the phrase at any time
and in any order, e.g.phrase first and then refine with clicks. We show some
interaction examples in Fig. 8. In the first row in Fig. 8, we start with a phrase
to get the initial segmentation prediction, then refine the initial prediction with
clicks. It demonstrates the advantages of clicks at locating “where” the object is
when there are multiple objects with the similar appearance. In the second row
in Fig. 8, phrases are employed to disambiguate the confused results of clicks,
which shows the advantages of phrases at describing “what” the object of inter-
est is. The first two rows show how the integration of clicks and phrases help to
improve the performance of interactive segmentation and better handle complex
scenarios. Our model can also take only clicks similar to previous click-based seg-
mentation methods, as shown in the last row in Fig. 8, which shows the abilities
of clicks to correct mistakes and refine details.
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Image

Phrase: 15 player

Prediction

Click

Click Phrase: little child

Interactions

Interaction case 1: phrase first, then refine with clicks

Interaction case 2: click first, then refine with phrase

Interaction case 3: click first, then refine with clicks
Click Click

Fig. 8. Our interaction process is more flexible. The user can choose either click or
phrase in each interaction step, making the system more practical than past approaches.
Furthermore, our approach can better handle complex scenarios via utilizing advan-
tages of these two interactions.

To justify the robustness and effectiveness of the proposed PhraseClick with
different real users, we conduct a user study in Table 3. We randomly choose 50
images from PASCAL VOC, RefCOCO, and Berkeley for this testing. Seven
users participated in this study. We record the number of interactions they
required to reach 85% IoU segmentation performance. As shown in Table 3, our
PhraseClick requires less interactions than Click-only. In practical applications,
the amount of time to input a phrase depends greatly on implementation and
the input device. Given a strong voice-to-text algorithm, the time to input a
phrase could be close to click. In our specific case, we do not have a sophisti-
cated voice-to-text system, so we allow the user to type in the desired phrase.
This will be slower than using voice and likely slower than clicks.

Referential Object Segmentation
Although the proposed network is designed for interactive object segmentation,
it can also be used for referential object segmentation. Existing referential object
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Table 4. Comparison with state-of-the-art referring segmentation methods.

Methods RMI [35] DMN [42] RNN [30] MAttNet [61] CMSA [60] Phrase PhraseClick

IoU 45.18 49.78 55.33 56.51 58.32 50.42 80.02

Table 5. Comparison with our modified referring segmentation methods.

# of interactions Phrase*1 Phrase*1 + Click*1 Phrase*1 + Click*2

DMN (5-channel) [42] 49.78 60.32 62.08

RNN (5-channel) [30] 55.33 63.41 65.02

CMSA (5-channel) [60] 58.32 67.10 70.02

PhraseClick (Ours) 50.42 80.02 84.56

segmentation methods only compute an initial segmentation and cannot further
correct the mistakes, thus they cannot meet the requirement of practical appli-
cation for interactive segmentation. The proposed approach can gradually refine
the segmentation result until it meets the user’s requirement.

We compare with referential object segmentation methods on the validation
set of RefCOCO [27]. As shown in Table 4, although our Phrase is proposed as
part of a network design that includes clicking, it achieves competitive results
with phrase-only methods. With only one click (PhraseClick), the proposed app-
roach significantly outperforms the state-of-the-arts by a very large margin, illus-
trating the utility of adding clicks to phrase-based selection. For fair comparison,
we also transform some referring segmentation methods into interactive segmen-
tation by replacing their RGB input with the same five-channel input our method
uses (Sect. 3.2) and compare their performance with different number of inter-
actions, as shown in Table 5. Our approach significantly outperform others as
interaction times increase, showing that a naive transformation of referential
object segmentation methods is not as effective as our model that integrates the
phrase information in an attribute guided feature attention module.

5 Conclusion

In this work, we propose an interactive segmentation network that can take
either clicks or phrases or both as interaction input, which utilizes the comple-
mentary merits of these two interactions. Besides the commonly used spatial
constraints like clicks, we introduce phrase expression as another interaction
input to infer semantic attributes and propose an attribute attention module to
integrate such attributes information into the network. Specifically, the language
phrases focuses on “what” the target-of-interest is and the spatial clicks are in
charge of “where” the target-of-interest is. Extensive experimental results have
shown that the proposed approach is flexible in terms of interaction and can
handle complex scenarios well.
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Abstract. In this paper, we introduce a new problem, named audio-
visual video parsing, which aims to parse a video into temporal event
segments and label them as either audible, visible, or both. Such a prob-
lem is essential for a complete understanding of the scene depicted inside
a video. To facilitate exploration, we collect a Look, Listen, and Parse
(LLP) dataset to investigate audio-visual video parsing in a weakly-
supervised manner. This task can be naturally formulated as a Mul-
timodal Multiple Instance Learning (MMIL) problem. Concretely, we
propose a novel hybrid attention network to explore unimodal and cross-
modal temporal contexts simultaneously. We develop an attentive MMIL
pooling method to adaptively explore useful audio and visual content
from different temporal extent and modalities. Furthermore, we discover
and mitigate modality bias and noisy label issues with an individual-
guided learning mechanism and label smoothing technique, respectively.
Experimental results show that the challenging audio-visual video pars-
ing can be achieved even with only video-level weak labels. Our proposed
framework can effectively leverage unimodal and cross-modal temporal
contexts and alleviate modality bias and noisy labels problems.

Keywords: Audio-visual video parsing · Weakly-supervised · LLP
dataset

1 Introduction

Human perception involves complex analyses of visual, auditory, tactile, gus-
tatory, olfactory, and other sensory data. Numerous psychological and brain
cognitive studies [3,20,46,51] show that combining different sensory data is cru-
cial for human perception. However, the vast majority of work [9,26,48,64] in
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Fig. 1. Our audio-visual video parsing model aims to parse a video into different audio
(audible), visual (visible), and audio-visual (audi-visible) events with correct categories
and boundaries. A dog in the video visually appears from 2nd second to 5th second and
make barking sounds from 4th second to 8th second. So, we have audio event (4 s–8 s),
visual event (2 s–5 s), and audio-visual event (4 s–5 s) for the Dog event category.

scene understanding, an essential perception task, focuses on visual-only meth-
ods ignoring other sensory modalities. They are inherently limited. For example,
when the object of interest is outside of the field-of-view (FoV), one would rely
on audio cues for localization. While there is little data on tactile, gustatory, or
olfactory signals, we do have an abundance of multimodal audiovisual data, e.g.,
YouTube videos.

Utilizing and learning from both auditory and visual modalities is an emerg-
ing research topic. Recent years have seen progress in learning representations [1,
2,19,23,37,38], separating visually indicated sounds [8,10–13,65,66,70], spatially
localizing visible sound sources [37,45,55], and temporally localizing audio-visual
synchronized segments [27,55,63]. However, past approaches usually assume
audio and visual data are always correlated or even temporally aligned. In prac-
tice, when we analyze the video scene, many videos have audible sounds, which
originate outside of the FoV, leaving no visual correspondences, but still con-
tribute to the overall understanding, such as out-of-screen running cars and a nar-
rating person. Such examples are ubiquitous, which leads us to some basic ques-
tions: what video events are audible, visible, and “audi-visible,” where and when
are these events inside of a video, and how can we effectively detect them?

To answer the above questions, we pose and try to tackle a fundamental prob-
lem: audio-visual video parsing that recognizes event categories bind to sensory
modalities, and meanwhile, finds temporal boundaries of when such an event
starts and ends (see Fig. 1). However, learning a fully supervised audio-visual
video parsing model requires densely annotated event modality and category
labels with corresponding event onsets and offsets, which will make the label-
ing process extremely expensive and time-consuming. To avoid tedious labeling,
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we explore weakly-supervised learning for the task, which only requires sparse
labeling on the presence or absence of video events. The weak labels are easier
to annotate and can be gathered in a large scale from web videos.

We formulate the weakly-supervised audio-visual video parsing as a Multi-
modal Multiple Instance Learning (MMIL) problem and propose a new frame-
work to solve it. Concretely, we use a new hybrid attention network (HAN)
for leveraging unimodal and cross-modal temporal contexts simultaneously. We
develop an attentive MMIL pooling method for adaptively aggregating useful
audio and visual content from different temporal extent and modalities. Fur-
thermore, we discover modality bias and noisy label issues and alleviate them
with an individual-guided learning mechanism and label smoothing [42], respec-
tively.

To facilitate our investigations, we collect a Look, listen, and Parse (LLP)
dataset that has 11, 849 YouTube video clips from 25 event categories. We label
them with sparse video-level event labels for training. For evaluation, we label a
set of precise labels, including event modalities, event categories, and their tem-
poral boundaries. Experimental results show that it is tractable to learn audio-
visual video parsing even with video-level weak labels. Our proposed HAN model
can effectively leverage multimodal temporal contexts. Furthermore, modality
bias and noisy label problems can be addressed with the proposed individual
learning strategy and label smoothing, respectively. Besides, we make a discus-
sion on the potential applications enabled by audio-visual video parsing.

The contributions of our work include: (1) a new audio-visual video parsing
task towards a unified multisensory perception; (2) a novel hybrid attention net-
work to leverage unimodal and cross-modal temporal contexts simultaneously;
(3) an effective attentive MMIL pooling to aggregate multimodal information
adaptively; (4) a new individual guided learning approach to mitigate the modal-
ity bias in the MMIL problem and label smoothing to alleviate noisy labels; and
(5) a newly collected large-scale video dataset, named LLP, for audio-visual video
parsing. Dataset, code, and pre-trained models are publicly available in https://
github.com/YapengTian/AVVP-ECCV20.

2 Related Work

In this section, we discuss some related work on temporal action localization,
sound event detection, and audio-visual learning.

Temporal Action Localization. Temporal action localization (TAL) methods
usually use sliding windows as action candidates and address TAL as a classi-
fication problem [9,25,29,47,48,67] learning from full supervisions. Recently,
weakly-supervised approaches are proposed to solve the TAL. Wang et al. [60]
present an UntrimmedNet with a classification module and a selection module
to learn the action models and reason about the temporal duration of action
instances, respectively. Hide-and-seek [49] randomly hides certain sequences
while training to force the model to explore more discriminative content. Paul et
al. [40] introduce a co-activity similarity loss to enforce instances in the same

https://github.com/YapengTian/AVVP-ECCV20
https://github.com/YapengTian/AVVP-ECCV20
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Fig. 2. Some examples from the LLP dataset.

class to be similar in the feature space. Inspired by the class activation map
method [68], Nguyen et al. [36] propose a sparse temporal pooling network
(STPN). Liu et al. [28] incorporate both action completeness modeling and
action-context separation into a weakly-supervised TAL framework. Unlike
actions in TAL, video events in audio-visual video parsing might contain motion-
less or even out-of-screen sound sources and the events can be perceived by either
audio or visual modalities. Even though, we extend two recent weakly-supervised
TAL methods: STPN [36] and CMCS [28] to address visual event parsing and
compare them with our model in Sect. 6.2.

Sound Event Detection. Sound event detection (SED) is a task of recognizing
and locating audio events in acoustic environments. Early supervised approaches
rely on some machine learning models, such as support vector machines [7], Gaus-
sian mixture models [17] and recurrent neural networks [39]. To bypass strongly
labeled data, weakly-supervised SED methods are developed [6,22,31,62]. These
methods only focus on audio events from constrained domains, such as urban
sounds [44] and domestic environments [32] and visual information is ignored.
However, our audio-visual video parsing will exploit both modalities to parse not
only event categories and boundaries but also event perceiving modalities towards
a unified multisensory perception for unconstrained videos.

Audio-Visual Learning. Benefiting from the natural synchronization between
auditory and visual modalities, audio-visual learning has enabled a set of
new problems and applications including representation learning [1,2,19,23,35,
37,38], audio-visual sound separation [8,10–13,65,66,70], vision-infused audio
inpainting [69], sound source spatial localization [37,45,55], sound-assisted action
recognition [14,21,24], audio-visual video captioning [41,53,54,61], and audio-
visual event localization [27,55,56,63]. Most previous work assumes that tem-
porally synchronized audio and visual content are always matched conveying
the same semantic meanings. However, unconstrained videos can be very noisy:
sound sources might not be visible (e.g., an out-of-screen running car and a
narrating person) and not all visible objects are audible (e.g., a static motorcy-
cle and people dancing with music). Different from previous methods, we pose
and seek to tackle a fundamental but unexplored problem: audio-visual video
parsing for parsing unconstrained videos into a set of video events associated
with event categories, boundaries, and modalities. Since the existing methods
cannot directly address our problem, we modify the recent weakly-supervised
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audio-visual event localization methods: AVE [55] and AVSDN [27] adding addi-
tional audio and visual parsing branches as baselines.

3 LLP: The Look, Listen and Parse Dataset

To the best of our knowledge, there is no existing dataset that is suitable for our
research. Thus, we introduce a Look, Listen, and Parse dataset for audio-visual
video scene parsing, which contains 11,849 YouTube video clips spanning over 25
categories for a total of 32.9 h collected from AudioSet [15]. A wide range of video
events (e.g., human speaking, singing, baby crying, dog barking, violin playing,
and car running, and vacuum cleaning etc.) from diverse domains (e.g., human
activities, animal activities, music performances, vehicle sounds, and domestic
environments) are included in the dataset. Some examples in the LLP dataset
are shown in Fig. 2.

Videos in the LLP have 11,849 video-level event annotations on the presence
or absence of different video events for facilitating weakly-supervised learning.
Each video is 10 s long and has at least 1 s audio or visual events. There are 7,202
videos that contain events from more than one event categories and per video has
averaged 1.64 different event categories. To evaluate audio-visual scene parsing
performance, we annotate individual audio and visual events with second-wise
temporal boundaries for randomly selected 1,849 videos from the LLP dataset.
Note that the audio-visual event labels can be derived from the audio and visual
event labels. Finally, we have totally 6,626 event annotations, including 4,131
audio events and 2,495 visual events for the 1,849 videos. Merging the individual
audio and visual labels, we obtain 2,488 audio-visual event annotations. To do
validation and testing, we split the subset into a validation set with 649 videos
and a testing set with 1,200 videos. Our weakly-supervised audio-visual video
parsing network will be trained using the 10,000 videos with weak labels and the
trained models are developed and tested on the validation and testing sets with
fully annotated labels, respectively.

4 Audio-Visual Video Parsing with Weak Labels

We define the Audio-Visual Video Parsing as a task to group video segments
and parse a video into different temporal audio, visual, and audio-visual events
associated with semantic labels. Since event boundary in the LLP dataset
was annotated at second-level, video events will be parsed at scene-level not
object/instance level in our experimental setting. Concretely, given a video
sequence containing both audio and visual tracks, we divide it into T non-
overlapping audio and visual snippet pairs {Vt, At}T

t=1, where each snippet is
1s long and Vt and At denote visual and audio content in the same video snip-
pet, respectively. Let y t = {(ya

t , yv
t , yav

t )|[yt
a]c, [yt

v]c, [yt
av]c ∈ {0, 1}, c = 1, ..., C}

be the event label set for the video snippet {Vt, At}, where c refers to the c-th
event category and ya

t , yv
t , and yav

t denote audio, visual, and audio-visual event
labels, respectively. Here, we have a relation: yav

t = ya
t ∗ yv

t , which means that
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Fig. 3. The proposed audio-visual video parsing framework. It uses pre-trained CNNs
to extract snippet-level audio and visual features and leverages multimodal temporal
contexts with the proposed hybrid attention network (HAN). For each snippet, we will
predict both audio and visual event labels from the aggregated features by the HAN.
Attentive MMIL pooling is utilized to adaptively predict video-level event labels for
weakly-supervised learning (WSL) and individual guided learning is devised to mitigate
the modality bias issue.

audio-visual events occur only when there exists both audio and visual events
at the same time and from the same event categories.

In this work, we explore the audio-visual video parsing in a weakly-supervised
manner. We only have video-level labels for training, but will predict precise
event label sets for all video snippets during testing, which makes the weakly-
supervised audio-visual video parsing be a multi-modal multiple instance learn-
ing (MMIL) problem. Let a video sequence with T audio and visual snippet pairs
be a bag. Unlike the previous audio-visual event localization [55] that is formu-
lated as a MIL problem [30] where an audio-visual snippet pair is regarded as
an instance, each audio snippet and the corresponding visual snippet occurred
at the same time denote two individual instances in our MMIL problem. So, a
positive bag containing video events will have at least one positive video snippet;
meanwhile at least one modality has video events in the positive video snippet.
During training, we can only access bag labels. During inference, we need to
know not only which video snippets have video events but also which sensory
modalities perceive the events. The temporal and multi-modal uncertainty in
this MMIL problem makes it very challenging.

5 Method

First, we present the overall framework that formulates the weakly-supervised
audio-visual video parsing as an MMIL problem in Sect. 5.1. Built upon this
framework, we propose a new multimodal temporal model: hybrid attention
network in Sect. 5.2; attentive MMIL pooling in Sect. 5.3; addressing modality
bias and noisy label issues in Sect. 5.4.

5.1 Audio-Visual Video Parsing Framework

Our framework, as illustrated in Fig. 3, has three main modules: audio and visual
feature extraction, multimodal temporal modeling, and attentive MMIL pooling.
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Given a video sequence with T audio and visual snippet pairs {Vt, At}T
t=1, we

first use pre-trained visual and audio models to extract snippet-level visual fea-
tures: {f t

v}T
t=1 and audio features: {f t

a}T
t=1, respectively. Taking extracted audio

and visual features as inputs, we use two hybrid attention networks as the multi-
modal temporal modeling module to leverage unimodal and cross-modal temporal
contexts and obtain updated visual features {f̂ t

v}T
t=1 and audio features {f̂ t

a}T
t=1.

To predict audio and visual instance-level labels and make use of the video-level
weak labels, we address the MMIL problem with a novel attentive MMIL pooling
module outputting video-level labels.

5.2 Hybrid Attention Network

Natural videos tend to contain continuous and repetitive rather than isolated
audio and visual content. In particular, audio or visual events in a video usually
redundantly recur many times inside the video, both within the same modality
(unimodal temporal recurrence [34,43]), as well as across different modalities
(audio-visual temporal synchronization [23] and asynchrony [59]). The observa-
tion suggests us to jointly model the temporal recurrence, co-occurrence, and
asynchrony in a unified approach. However, existing audio-visual learning meth-
ods [27,55,63] usually ignore the audio-visual temporal asynchrony and explore
unimodal temporal recurrence using temporal models (e.g., LSTM [18] and
Transformer [58]) and audio-visual temporal synchronization using multimodal
fusion (e.g., feature fusion [55] and prediction ensemble [21]) in a isolated way.
To simultaneously capture multimodal temporal contexts, we propose a new
temporal model: Hybrid Attention Network (HAN), which uses a self-attention
network and a cross-attention network to adaptively learn which bimodal and
cross-modal snippets to look for each audio or visual snippet, respectively.

At each time step t, a hybrid attention function g in HAN will be learned
from audio and visual features: {f t

a, f t
v}T

t=1 to update f t
a and f t

v, respectively.
The updated audio feature f̂ t

a and visual feature f̂ t
v can be computed as:

f̂ t
a = g(f t

a,fa,fv) = f t
a + gsa(f t

a,fa) + gca(f t
a,fv) , (1)

f̂ t
v = g(f t

v,fa,fv) = f t
v + gsa(f t

v,fv) + gca(f t
v,fa) , (2)

where fa = [f1
a ; ...; fT

a ] and fv = [f1
v ; ...; fT

v ]; gsa and gca are self-attention and
cross-modal attention functions, respectively; skip-connections can help preserve
the identity information from the input sequences. The two attention functions
are formulated with the same computation mechanism. With gsa(f t

a,fa) and
gca(f t

a,fv) as examples, they are defined as:

gsa(f t
a,fa) =

T∑

t=1

wsa
t f t

a = softmax(
f t

af
′
a√

d
)fa , (3)

gca(f t
a,fv) =

T∑

t=1

wca
t f t

v = softmax(
f t

af
′
v√

d
)fv , (4)
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Fig. 4. Attentive MMIL Pooling. For event category c, temporal and audio-visual atten-
tion mechanisms will adaptively select informative event predictions crossing temporal
and modality axes, respectively, for predicting whether there is an event at the category.

where the scaling factor d is equal to the audio/visual feature dimension and (·)′

denotes the transpose operator. Clearly, the self-attention and cross-modal atten-
tion functions in HAN will assign large weights to snippets, which are similar to
the query snippet containing the same video events within the same modality and
cross different modalities. The experimental results show that the HAN mod-
eling unimodal temporal recurrence, multimodal temporal co-occurrence, and
audio-visual temporal asynchrony can well capture unimodal and cross-modal
temporal contexts and improves audio-visual video parsing performance.

5.3 Attentive MMIL Pooling

To achieve audio-visual video parsing, we predict all event labels for audio and
visual snippets from temporal aggregated features: {f̂ t

a, f̂ t
v}T

t=1. We use a shared
fully-connected layer to project audio and visual features to different event label
space and adopt a sigmoid function to output probability for each event category:

pt
a = sigmoid(FC(f̂ t

a)) , (5)

pt
v = sigmoid(FC(f̂ t

v)) , (6)

where pt
a and pt

v are predicted audio and visual event probabilities at timestep
t, respectively. Here, the shared FC layer can implicitly enforce audio and visual
features into a similar latent space. The reason to use sigmoid to output an event
probability for each event category rather than softmax to predict a probability
distribution over all categories is that a single snippet may have multiple labels
rather than only a single event as assumed in Tian et al. [55].

Since audio-visual events only occur when sound sources are visible and their
sounds are audible, the audio-visual event probability pt

av can be derived from
individual audio and visual predictions: pt

av = pt
a ∗ pt

v. If we have direct supervi-
sions for all audio and visual snippets from different time steps, we can simply
learn the audio-visual video parsing network in a fully-supervised manner. How-
ever, in this MMIL problem, we can only access a video-level weak label ȳ for
all audio and visual snippets: {At, Vt}T

t=1 from a video. To learn our network
with weak labels, as illustrated in Fig. 4, we propose a attentive MMIL pooling
method to predict video-level event probability: p̄ from {pt

a, pt
v}T

t=1. Concretely,
the p̄ is computed by:
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p̄ =
T∑

t=1

M∑

m=1

(Wtp � Wav � P )[t,m, :] , (7)

where � denotes element-wise multiplication; m is a modality index and M =
2 refers to audio and visual modalities; Wtp and Wav are temporal attention
and audio-visual attention tensors predicted from {f̂ t

a, f̂ t
v}T

t=1, respectively, and
P is the probability tensor built by {pt

a, pt
v}T

t=1 and we have P (t, 0, :) = pt
a and

P (t, 1, :) = pt
v. To compute the two attention tensors, we first compose an input

feature tensor F , where F (t, 0, :) = f̂ t
a and F (t, 1, :) = f̂ t

v. Then, two different
FC layers are used to transform the F into two tensors: Ftp and Fav, which has
the same size as P . To adpatively select most informative snippets for predicting
probabilities of different event categories, we assign different weights to snippets
at different time steps with a temporal attention mechanism:

Wtp[:,m, c] = softmax(Ftp[:,m, c]) , (8)

where m = 1, 2 and c = 1, . . . , C. Accordingly, we can adaptively select most
informative modalities with the audio-visual attention tensor:

Wav[t, :, c] = softmax(Fav[t, :, c]) , (9)

where t = 1, . . . , T and c = 1, . . . , C. The snippets within a video from dif-
ferent temporal steps and different modalities may have different video events.
The proposed attentive MMIL pooling can well model this observation with the
tensorized temporal and multimodal attention mechanisms.

With the predicted video-level event probability p̄ and the ground truth label
ȳ, we can optimize the proposed weakly-supervised learning model with a binary
cross-entropy loss function: Lwsl = CE(p̄, ȳ) = −∑C

c=1 ȳ[c]log(p̄[c]).

5.4 Alleviating Modality Bias and Label Noise

The weakly supervised audio-visual video parsing framework only uses less
detailed annotations without requiring expensive densely labeled audio and
visual events for all snippets. This advantage makes this weakly supervised learn-
ing framework appealing. However, it usually enforces models to only identify
discriminative patterns in the training data, which was observed in previous
weakly-supervised MIL problems [49,50,68]. In our MMIL problem, the issue
becomes even more complicated since there are multiple modalities and dif-
ferent modalities might not contain equally discriminative information. With
weakly-supervised learning, the model tends to only use information from the
most discriminative modality but ignore another modality, which can probably
achieve good video classification performance but terrible video parsing per-
formance on the events from ignored modality and audio-visual events. Since
a video-level label contains all event categories from audio and visual content
within the video, to alleviate the modality bias in the MMIL, we propose to use
explicit supervisions to both modalities with a guided loss:

Lg = CE(p̄a, ȳa) + CE(p̄v, ȳv) , (10)
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where ȳa = ȳv = ȳ, and p̄a =
∑T

t=1(Wtp � P )[t, 0, :] and p̄v =
∑T

t=1(Wtp �
P )[t, 1, :] are video-level audio and visual event probabilities, respectively.

However, not all video events are audio-visual events, which means that an
event occurred in one modality might not occur in another modality and then
the corresponding event label will be label noise for one of the two modalities.
Thus, the guided loss: Lg suffers from noisy label issue. For the example shown
in Fig. 3, the video-level label is {Speech, Dog} and the video-level visual event
label is only {Dog}. The {Speech} will be a noisy label for the visual guided loss.
To handle the problem, we use label smoothing [52] to lower the confidence of
positive labels with smoothing ȳ and generate smoothed labels: ȳa and ȳv. They
are formulated as: ȳa = (1−εa)ȳ+ εa

K and ȳv = (1−εv)ȳ+ εv
K , where εa, εv ∈ [0, 1)

are two confidence parameters to balance the event probability distribution and a
uniform distribution: u = 1

K (K > 1). For a noisy label at event category c, when
ȳ[c] = 1 and real ȳa[c] = 0, we have ȳ[c] = (1−εa)ȳ[c]+εa > (1−εa)ȳ+ εa

K = ȳa[c]
and the smoothed label will become more reliable. Label smoothing technique
is commonly adopted in a lot of tasks, such as image classification [52], speech
recognition [5], and machine translation [58] to reduce over-fitting and improve
generalization capability of deep models. Different from the past methods, we
use smoothed labels to mitigate label noise occurred in the individual guided
learning. Our final model is optimized with the two loss terms: L = Lwsl + Lg.

6 Experiments

6.1 Experimental Settings

Implementation Details. For a 10-second-long video, we first sample video
frames at 8 fps and each video is divided into non-overlapping snippets of the
same length with 8 frames in 1 s. Given a visual snippet, we extract a 512-D
snippet-level feature with fused features extracted from ResNet152 [16] and 3D
ResNet [57]. In our experiments, batch size and number of epochs are set as 16
and 40, respectively. The initial learning rate is 3e-4 and will drop by multiplying
0.1 after every 10 epochs. Our models optimized by Adam can be trained using
one NVIDIA 1080Ti GPU.

Baselines. Since there are no existing methods to address the audio-visual video
parsing, we design several baselines based on previous state-of-the-art weakly-
supervised sound detection [22,62], temporal action localization [28,36], and
audio-visual event localization [27,55] methods to validate the proposed frame-
work. To make [27,55] possible to address audio-visual scene parsing, we add
additional audio and visual branches to predict audio and visual event proba-
bilities supervised with an additional guided loss as defined in Sect. 5.4. For fair
comparisons, the compared approaches use the same audio and visual features
as our method.

Evaluation Metrics. To comprehensively measure the performance of differ-
ent methods, we evaluate them on parsing all types of events (individual audio,
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Table 1. Audio-visual video parsing accuracy (%) of different methods on the LLP
test dataset. These methods all use the same audio and visual features as inputs for a
fair comparison. The top-1 results in each line are highlighted.

Event type Methods Segment-level Event-level

Audio Kong et al. 2018 [22] 39.6 29.1

TALNet [62] 50.0 41.7

AVE [55] 47.2 40.4

AVSDN [27] 47.8 34.1

Ours 60.1 51.3

Visual STPN [36] 46.5 41.5

CMCS [28] 48.1 45.1

AVE [55] 37.1 34.7

AVSDN [27] 52.0 46.3

Ours 52.9 48.9

Audio-Visual AVE [55] 35.4 31.6

AVSDN [27] 37.1 26.5

Ours 48.9 43.0

Type@AV AVE [55] 39.9 35.5

AVSDN [27] 45.7 35.6

Ours 54.0 47.7

Event@AV AVE [55] 41.6 36.5

AVSDN [27] 50.8 37.7

Ours 55.4 48.0

visual, and audio-visual events) under both segment-level and event-level met-
rics. To evaluate overall audio-visual scene parsing performance, we also compute
aggregated results, where Type@AV computes averaged audio, visual, and audio-
visual event evaluation results and Event@AV computes the F-score considering
all audio and visual events for each sample rather than directly averaging results
from different event types as the Type@AV. We use both segment-level and event-
level F-scores [33] as metrics. The segment-level metric can evaluate snippet-wise
event labeling performance. For computing event-level F-score results, we extract
events with concatenating positive consecutive snippets in the same event cate-
gories and compute the event-level F-score based on mIoU = 0.5 as the threshold.

6.2 Experimental Comparison

To validate the effectiveness of the proposed audio-visual video parsing network,
we compare it with weakly-supervised sound event detection methods: Kong
et al. 2018 [22] and TALNet [62] on audio event parsing, weakly-supervised action
localization methods: STPN [36] and CMCS [28] on visual event parsing, and
modified audio-visual event localization methods: AVE [55] and AVSD [27] on



Weakly-Supervised Audio-Visual Video Parsing 447

T
a
b
le

2
.
A

b
la

ti
o
n

st
u
d
y

o
n

le
a
rn

in
g

m
ec

h
a
n
is

m
,
a
tt

en
ti

v
e

M
M

IL
p
o
o
li
n
g
,
h
y
b
ri

d
a
tt

en
ti

o
n

n
et

w
o
rk

,
a
n
d

h
a
n
d
li
n
g

n
o
is

y
la

b
el

s.
S
eg

m
en

t-
le

v
el

a
u
d
io

-v
is

u
a
l
v
id

eo
p
a
rs

in
g

re
su

lt
s

a
re

sh
ow

n
.
T

h
e

b
es

t
re

su
lt

s
fo

r
ea

ch
a
b
la

ti
o
n

st
u
d
y

a
re

h
ig

h
li
g
h
te

d
.

L
o
ss

M
M
IL

P
o
o
li
n
g

T
em

p
o
ra
l
N
et

H
a
n
d
le

N
o
is
y
L
a
b
el

A
u
d
io

V
is
u
a
l

A
u
d
io
-V

is
u
a
l

T
y
p
e@

A
V

E
v
en

t@
A
V

L w
s
l

A
tt
en

ti
v
e

×
×

5
6
.9

1
6
.4

1
7
.2

3
0
.2

4
3
.3

L g
A
tt
en

ti
v
e

×
×

4
2
.3

4
3
.9

3
4
.5

4
0
.3

4
2
.0

L w
s
l
+

L g
A
tt
en

ti
v
e

×
×

4
5
.1

5
1
.7

3
5
.0

4
4
.0

4
8
.9

L w
s
l
+

L g
M
a
x

×
×

3
1
.6

4
3
.6

2
2
.5

3
2
.6

3
9
.1

L w
s
l
+

L g
M
ea

n
×

×
4
0
.2

4
3
.2

3
5
.0

3
9
.5

3
9
.7

L w
s
l
+

L g
A
tt
en

ti
v
e

×
×

4
5
.1

5
1
.7

3
5
.0

4
4
.0

4
8
.9

L w
s
l
+

L g
A
tt
en

ti
v
e

×
×

4
5
.1

5
1
.7

3
5
.0

4
4
.0

4
8
.9

L w
s
l
+

L g
A
tt
en

ti
v
e

G
R
U

[4
]

×
5
2
.0

4
9
.4

3
9
.0

4
6
.8

5
1
.0

L w
s
l
+

L g
A
tt
en

ti
v
e

T
ra
n
sf
o
rm

er
[5
8
]

×
5
3
.4

5
3
.8

4
1
.8

4
9
.7

5
3
.3

L w
s
l
+

L g
A
tt
en

ti
v
e

H
A
N

×
5
8
.4

5
2
.8

4
8
.4

5
3
.2

5
4
.5

L w
s
l

A
tt
en

ti
v
e

H
A
N

×
3
9
.6

4
0
.5

2
0
.1

3
3
.4

4
4
.9

L g
A
tt
en

ti
v
e

H
A
N

×
5
7
.5

5
2
.5

4
7
.4

5
2
.5

5
3
.8

L w
s
l
+

L g
A
tt
en

ti
v
e

H
A
N

×
5
8
.4

5
2
.8

4
8
.4

5
3
.2

5
4
.5

L w
s
l
+

L g
M
a
x

H
A
N

×
5
5
.7

5
2
.0

4
8
.6

5
2
.1

5
1
.8

L w
s
l
+

L g
M
ea

n
H
A
N

×
5
6
.0

5
1
.9

4
6
.3

5
1
.4

5
2
.9

L w
s
l
+

L g
A
tt
en

ti
v
e

H
A
N

×
5
8
.4

5
2
.8

4
8
.4

5
3
.2

5
4
.5

L w
s
l
+

L g
A
tt
en

ti
v
e

H
A
N

×
5
8
.4

5
2
.8

4
8
.4

5
3
.2

5
4
.5

L w
s
l
+

L g
A
tt
en

ti
v
e

H
A
N

B
o
o
ts
tr
a
p
[4
2
]

5
9
.0

5
2
.6

4
7
.8

5
3
.1

5
5
.2

L w
s
l
+

L g
A
tt
en

ti
v
e

H
A
N

L
a
b
el

S
m
o
o
th

in
g
[5
2
]

6
0
.1

5
2
.9

4
8
.9

5
4
.0

5
5
.4



448 Y. Tian et al.

audio, visual, and audio-visual event parsing. The quantitative results are shown
in Table 1. We can see that our method outperforms compared approaches on all
audio-visual video parsing subtasks under both the segment-level and event-level
metrics, which demonstrates that our network can predict more accurate snippet-
wise event categories with more precise event onsets and offsets for testing videos.

Individual Guided Learning. From Table 2, we observe that the model with-
out individual guided learning can achieve pretty good performance on audio
event parsing but incredibly bad visual parsing results leading to terrible audio-
visual event parsing; w/ only Lg model can achieve both reasonable audio and
visual event parsing results; our model trained with both Lwsl and Lg out-
performs model train without and with only Lg. The results indicate that the
model trained only Lwsl find discriminative information from mostly sounds and
visual information is not well-explored during training and the individual learn-
ing can effectively handle the modality bias issue. In addition, when the network
is trained with only Lg, it actually models audio and visual event parsing as
two individual MIL problems in which only noisy labels are used. Our MMIL
framework can learn from clean weak labels with Lwsl and handle the modality
bias with Lg achieves the best overall audio-visual video parsing performance.
Moreover, we would like to note that the modality bias issue is from audio and
visual data unbalance in training videos, which are originally from an audio-
oriented dataset: AudioSet. Since the issue occurred after just 1 epoch training,
it is not over-fitting.

Attentive MMIL Pooling. To validate the proposed Attentive MMIL Pool-
ing, we compare it with two commonly used methods: Max pooling and Mean
pooling. Our Attentive MMIL Pooling (see Table 2) is superior over the both
compared methods. The Max MMIL pooling only selects the most discriminative
snippet for each training video, thus it cannot make full use of informative audio
and visual content. The Mean pooling does not distinguish the importance of
different audio and visual snippets and equally aggregates instance scores in a
bad way, which can obtain good audio-visual event parsing but poor individual
audio and visual event parsing since a lot of audio-only and visual-only events
are incorrectly parsed as audio-visual events. Our attentive MMIL pooling allows
assigning different weights to audio and visual snippets within a video bag for
each event category, thus can adaptively discover useful snippets and modalities.

Hybrid Attention Network. We compare our HAN with two popular tempo-
ral networks: GRU and Transformer and a base model without temporal mod-
eling in Table 2. The models with GRU and Transformer are better than the
base model and our HAN outperforms the GRU and Transformer. The results
demonstrate that temporal aggregation with exploiting temporal recurrence is
important for audio-visual video parsing and our HAN with jointly exploring
unimodal temporal recurrence, multimodal temporal co-occurrence, and audio-
visual temporal asynchrony is more effective in leveraging the multimodal tem-
poral contexts. Another surprising finding of the HAN is that it actually tends
to alleviate the modality bias by enforcing cross-modal modeling.
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Fig. 5. Potential applications of audio-visual video parsing. (a) Temporally asyn-
chronous visual events detected by audio-visual video parsing highlighted in blue boxes
can provide related visual information to separate Cello sound from the audio mixture
in the red box. (b) Parsed scenes can provide important cues for audio-visual scene-
aware video dense captioning and question answering.

Noisy Label. Table 2 also shows results of our model without handling the
noisy label, with Bootstrap [42] and label smoothing-based method. We can find
that Bootstrap updating labels using event predictions even decreases perfor-
mance due to error propagation. Label smoothing-based method with reducing
confidence for potential false positive labels can help to learn a more robust
model with improved audio-visual video parsing results.

7 Limitation

To mitigate the modality bias issue, the guided loss is introduced to enforce that
each modality should also be able to make the correct prediction on its own.
Then, a new problem appears: the guide loss is not theoretically correct because
some of the events only appear in one modality, so the labels are wrong. Finally,
the label smoothing is used to alleviate the label noise. Although the proposed
methods work at each step, they also introduce new problems. It is worth to
design a one-pass approach. One possible solution is to introduce a new learning
strategy to address the modality bias problem rather than using the guided loss.
For example, we could perform modality dropout to enforce the model to explore
both audio and visual information during training.

8 Conclusion and Future Work

In this work, we investigate a fundamental audio-visual research problem: audio-
visual video parsing in a weakly-supervised manner. We introduce baselines
and propose novel algorithms to address the problem. Extensive experiments
on the newly collected LLP dataset support our findings that the audio-visual
video parsing is tractable even learning from cheap weak labels, and the pro-
posed model is capable of leveraging multimodal temporal contexts, dealing with
modality bias, and mitigating label noise. Accurate audio-visual video parsing
opens the door to a wide spectrum of potential applications, as discussed below.
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Asynchronous Audio-Visual Sound Separation. Audio-visual sound sep-
aration approaches use sound sources in videos as conditions to separate the
visually indicated individual sounds from sound mixtures [8,11–13,65,66]. The
underlying assumption is that sound sources are visible. However, sounding
objects can be occluded or not recorded in videos and the existing methods
will fail to handle these cases. Our audio-visual video parsing model can find
temporally asynchronous cross-modal events, which can help to alleviate the
problem. For the example in Fig. 5(a), the existing audio-visual separation mod-
els will fail to separate the Cello sound from the audio mixture at the time step
t, since the sound source Cello is not visible in the segment. However, our model
can help to find temporally asynchronous visual events with the same semantic
label as the audio event Cello for separating the sound. In this way, we can
improve the robustness of audio-visual sound separation by leveraging tempo-
rally asynchronous visual content identified by our audio-visual video parsing
models.

Audio-Visual Scene-Aware Video Understanding. The current video
understanding community usually focuses on the visual modality and regards
information from sounds as a bonus assuming that audio content should be asso-
ciated with the corresponding visual content. However, we want to argue that
auditory and visual modalities are equally important and most natural videos
contain numerous audio, visual, and audio-visual events rather than only visual
and audio-visual events. Our audio-visual scene parsing can achieve a unified
multisensory perception, therefore it has the potential to help us build an audio-
visual scene-aware video understanding system regarding all audio and visual
events in videos(see Fig. 5(b)).
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Abstract. In this paper, we propose a novel method called Residual
Steps Network (RSN). RSN aggregates features with the same spatial
size (Intra-level features) efficiently to obtain delicate local representa-
tions, which retain rich low-level spatial information and result in precise
keypoint localization. Additionally, we observe the output features con-
tribute differently to final performance. To tackle this problem, we propose
an efficient attention mechanism - Pose Refine Machine (PRM) to make a
trade-off between local and global representations in output features and
further refine the keypoint locations. Our approach won the 1st place of
COCO Keypoint Challenge 2019 and achieves state-of-the-art results on
both COCO and MPII benchmarks, without using extra training data and
pretrained model. Our single model achieves 78.6 on COCO test-dev, 93.0
on MPII test dataset. Ensembled models achieve 79.2 on COCO test-dev,
77.1 on COCO test-challenge dataset. The source code is publicly avail-
able for further research at https://github.com/caiyuanhao1998/RSN/.

Keywords: Human pose estimation · COCO · MPII · Feature
aggregation · Attention mechanism

1 Introduction

The goal of multi-person pose estimation is to locate keypoints of all persons
in a single image. It is a fundamental task for human motion recognition, kine-
matics analysis, human-computer interaction, animation etc. For years, human
pose estimation was based on handcraft features. Recently, It has made great
progress with the development of deep convolutional neural network. The task
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Fig. 1. Comparison of intra-level feature fusion and inter-level feature fusion. (a) Back-
bone. “1/4 size” means 1/4 size of input image. (b) Intra-level feature fusion of level
1. (c) Inter-level feature fusion. (d) Local Representations. (e) Global representations.

of human pose estimation concerns both keypoint localization and classification.
Spatial information benefits the localization task, while semantic information
is good for the classification task. To extract these two kinds of information,
current methods mainly focus on aggregating inter-level features. For instance,
HRNet [23] maintains spatial information in high-resolution sub-network and
gradually adds semantic information to it from low-resolution sub-networks. In
this way, features of different levels are fully aggregated. In CPN [2], features of
four different spatial levels are extracted by the backbone, and they are com-
bined by a head network. Although these methods are different in the ways of
feature fusion, the features to be aggregated are always from different levels. On
the contrast, the feature fusion within the same level stays less explored in the
task of human pose estimation.

The comparison of intra-level feature fusion (level 1) and inter-level feature
fusion is illustrated in Fig. 1. The feature maps are continuously downsampled
to 1/4, 1/8, 1/16, 1/32 size of input image in Fig. 1(a). We define consecutive
feature maps with the same spatial size as one level. As Fig. 1(c) depicts, there is
a big gap between the receptive fields of features from different levels, which are
indicated by light blue bounding boxes. As a result, representations learned by
inter-level feature fusion are relatively coarse, which impede the localization of
human pose from precise. As Fig. 1(b) shows, the gap between the receptive fields
of intra-level features which are indicated by red bounding boxes is relatively
small. As shown in Fig. 1(d), fusing intra-level features can extract much more
delicate local representations retaining more precise spatial information, which
is critical to keypoint localization.

To learn better local representations, we propose a novel network archi-
tecture - Residual Steps Network (RSN). The Residual Steps Block (RSB) of
RSN fuses features inside each level using dense element-wise sum operations,
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which is shown in Fig. 2(c). The inner structure of RSB is deeply connected
and motivated by DenseNet [10], which has a good performance for human pose
estimation owing to retaining rich low-level features by deep connections. How-
ever, deep connections bring about explosion of the network capacity as it goes
deeper. Thus, DenseNet performs poorly when the network becomes large. RSN
is motivated by DenseNet but is quite different in that RSN uses element-wise
sum rather than concatenation to circumvent network capacity explosion. RSN
is modestly less dense connected in the block than DenseNet, which further
promotes the efficiency. Additionally, we observe that the output features con-
taining both global and local representations contribute differently to final per-
formance. In light of this observation, we propose an attention module - Pose
Refine Machine (PRM) to rebalance the output features of the network. The
architecture of PRM is illustrated in Fig. 3 and analyzed in Sect. 3.3. To better
illustrate the advantages of our approach, we analyze the differences between
RSN and current methods in Sect. 2.2.

In conclusion, our contributions can be summarized as three points:

1. We propose a novel network - RSN, which aims to learn delicate local repre-
sentations by efficient intra-level feature fusion.

2. We propose an attention mechanism - PRM, which goes further to make
a trade-off between local and global representations, and benefits the final
performance.

3. Comprehensive experiments demonstrate that Our approach outperforms the
state-of-the-art methods on both COCO and MPII datasets without using
extra training data and pretrained model. Moreover, the proposed approach
is much faster than HRNet with comparable performance on both GPU and
CPU platforms.

2 Related Work

2.1 Multi-person Pose Estimation

Current methods of human pose estimation fall into two categories: top-down
methods [2,5,8,11,17,19–23,28] and bottom-up methods [1,14,18,27]. Top-down
methods first detect the positions of all persons, then estimate the pose of each
person. Bottom-up methods first detect all the human keypoints in an image and
then assemble these points into groups to form different individuals. Since this
paper mainly concentrates on feature fusion strategies, we discuss these methods
in terms of feature fusion.

2.2 Feature Fusion

Recently, many methods [2,17,23,28,30] of human pose estimation use inter-level
feature fusion to extract more spatial and semantic information. Newell et al.
[17] propose a U-shape convolutional neural network (CNN) named Hourglass.
In a single stage of hourglass, high-level features are added to low-level features



458 Y. Cai et al.

RSN RSN RSN

(b) RSN: Residual Steps Network (c) RSB: Residual Steps Block

RSB

C
on

v1

RSB… RSB RSB… RSB RSB… RSB RSB…

Conv blockFeature map Heatmap

1x
1

3x
3

3x
3

3x
3

3x
3

3x
3

3x
3

3x
3

3x
3

3x
3

3x
3

co
nc

at

1x
1

f1

1x
1

1x
1

1x
1

f2

f3

f4

y1

y2

y3

y4

…

(a) Multi-Stage Residual Steps Network

L2 loss L2 loss

L2 loss

level-1 level-2 level-3 level-4

1x
1 Conv1×1Pose Refine Machine

Fig. 2. Our pipeline. (a) is the multi-stage network architecture. It is cascaded by sev-
eral Residual Steps Networks (RSNs). (b) is the backbone of RSN. (c) is the structure
of Residual Steps Block (RSB), which is the basic block of RSN. RSB is designed for
learning delicate local representations through dense element-wise sum connections. A
Pose Refine Machine (PRM) is used in the last stage and it is analyzed in Sect. 3.4.

after upsampling. Later works such as Yang et al. [30] show great performance
of using inter-level feature fusion. Chen et al. [2] combines inter-level features
using a RefineNet. Sun et al. [23] set up four parallel sub-networks. The features
of these four sub-networks aggregate with each other through high-to-low or
low-to-high way.

Though many methods have validates the effectiveness of inter-level feature
fusion, intra-level feature fusion is rarely explored in human pose estimation.
However, it has extensive applications in other tasks such as semantic segmen-
tation and image classification [4,7,10,24,29,33]. In a block of Inception [24],
features pass through several convolutional layers with different kernels sepa-
rately and then added up. DenseNet [10] fuses intra-level features using continu-
ous concatenating operations. This implementation retains low-level features to
improve the performance. However, when the network goes deeper, the capac-
ity increases sharply and much redundant information appears in the network,
resulting in poor efficiency. Different from DenseNet, RSN uses element-wise
sum rather than concatenation to circumvent network capacity explosion. In
addition, RSN is modestly less densely connected in the constituent unit, which
further promotes the efficiency.

Res2Net [7] and OSNet [33] focus on multi-scale representations. Both of
them lack dense connections between adjacent branches. The dense connections
contribute sufficient gradients and make low-level features better supervised.
Therefore, lack of dense connections between adjacent branches results in less
precise spatial information, which is essential to keypoint localization. Suffering
from this limitations, both Res2Net and OSNet are inferior to RSN in the task
of human pose estimation. In Sect. 4.1, we validate the efficiency of DenseNet,
Res2Net and RSN.
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2.3 Attention Mechanism

Attention mechanism [6,9,13,22,26,31,32] is almost used in all areas of com-
puter vision. Current methods of attention mechanism mainly fall into two cate-
gories: channel attention [9,22,26,31] and spatial attention [6,13,22,26,32]. Woo
et al. [26] propose a channel attention module with global average pooling and
max pooling. Kligvasser et al. [13] propose a spatial activation function with
depth-wise separable convolution. Other works such as Hu et al. [9] show the
advantages of using attention mechanism. However, most prior attention mod-
ules are lack of representing capacity and focus on optimizing the backbone.
We design PRM to make a trade-off between local and global representations in
output features by using powerful while computation-economical operations.

3 Proposed Method

The overall pipeline of our method is illustrated in Fig. 2. The multi-stage net-
work architecture is cascaded by several single-stage modules - Residual Steps
Network (RSN), shown in Fig. 2(a). As Fig. 2(b) shows, RSN differs from ResNet
in the architecture of constituent unit. RSN consists of Residual Steps Blocks
(RSBs) while ResNet is comprised of “bottleneck” blocks. Figure 2(c) illustrates
the structure of RSB. A Pose Refine Machine (PRM) is used in the last stage
and it is analyzed in Sect. 3.3.

3.1 Delicate Local Representations Learning

Residual Steps Network is designed for learning delicate local representations by
repeatedly enhancing efficient intra-level feature fusion inside RSB, which is the
constituent unit of RSN. As shown in Fig. 2(c), RSB firstly divides the features
into four splits fi (i = 1, 2, 3, 4), then implements a conv1× 1 (convolutional layer
with kernel size 1 × 1) separately. Each feature output from conv1× 1 undergoes
incremental numbers of conv3× 3. The output features yi (i = 1, 2, 3, 4) are then
concatenated to go through a conv1 × 1. An identity connection is employed as
the ResNet bottleneck. Because the incremental numbers of conv3 × 3 look like
steps, the network is therefore named Residual Steps Network.

The receptive fields of RSB range across several values, and the max one is 15.
Compared with a single receptive field in ResNet bottleneck as shown in Table 1,
RSB indicates more delicate information viewed in the network. In addition, it is
deeply connected inside RSB. On the ith branch, the front i−1 conv3 × 3 receive
the features output from the (i−1)th branch. The ith conv3 × 3 is then designed
to refine the fusion of the features output from the (i − 1)th conv3 × 3. Benefit
from the dense connection structure, small-gap receptive fields of features are
fully fused resulting in delicate local representations, which retain precise spatial
and semantic information. Additionally, during the training process, the deeply
connected structure contributes sufficient gradients, so the low-level features are
better supervised, which benefits the keypoint localization task. We investigate
how the branch number of RSB influences the prediction results in Sect. 4.1.
Four-branch architecture has the best performance.
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Table 1. The receptive field comparison between RSB and other methods.

Architecture y1 y2 y3 y4

ResNet 3 3 3 3

OSNet 3 5 7 9

Res2Net 1 3 3,5 3,5,7

RSN 3 5,7 7,9,11 9,11,13,15

3.2 Receptive Field Analysis

In this part, we analyze the receptive fields in RSB and other methods. Firstly,
the formula for calculating the receptive field of the kth convolutional layer is
written as Eq. 1

lk = lk−1 + [(fk − 1) ∗
k−1∏

i=1

si] (1)

lk denotes the size of the receptive field corresponding to the kth layer, fk
denotes the kernel size of the kth layer and si denotes the stride of the ith layer.
In this part, we only focus on the change of relative receptive fields in a block.
Every fk is 3 and si is 1. Thus, Eq. 1 can be simplified to Eq. 2

lk = lk−1 + 2 (2)

Using this formula, we calculate the relative receptive fields of RSB and other
methods, as shown in Table 1. It indicates that RSN has a wider range of scales
than ResNet, Res2Net and OSNet. The scale of each human joint varies a lot.
For instance, the scale of eye is small while that of hip is large. For this rea-
son, architecture with wider range of receptive fields is more fit for extracting
features relating to different joints. Also, wider range of receptive fields helps to
learn more discriminant semantic representations, which benefits the keypoint
classification task. More importantly, RSN builds dense connections between the
features with small-gap receptive fields inside RSB. The deeply connected archi-
tecture contributes to learning delicate local representations, which are essential
to precise human pose estimation.

3.3 Pose Refine Machine

In the last module of multi-stage network (Fig. 2(a)), an attention mechanism -
Pose Refine Machine (PRM) is used to reweight the output features, as shown
in Fig. 3. The first component of PRM is a conv3× 3, then the features are
input into three paths. The top path is an identity connection. The middle one,
motivated by SENet [9], passes through a global pooling, two conv1× 1 and a
sigmoid activation to get a weight vector α. The bottom path passes through
a conv1 × 1, a depth-wise separable conv9 × 9 and a sigmoid activation to get
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Fig. 3. Architecture of Pose Refine Machine (PRM). GP denotes global pooling. DW
denotes depth-wise separable convolution. α denotes the weight vector. β denots the
attention map. The top path is an identity connection, the middle path is designed to
reweight features in channel wise and the bottom path is proposed for spatial attention.

an attention map β. Element-wise sum and multiplication are conducted among
the three paths to get the output features. Define the input features of PRM
as fin, the output features as fout, the first conv3 × 3 as K(·) and element-wise
multiplication as �. Then PRM can be formulated as Eq. 3.

fout = K(fin) � (1 + β � α) (3)

As for the output of RSN, features after intra-level and inter-level aggre-
gation are mixed together containing both low-level precise spatial information
and high-level discriminant semantic information. Spatial information is good
for keypoint localization while semantic information benefits keypoints classifi-
cation. These features contribute differently to the final prediction. Therefore,
to tackle this imbalance problem, PRM is designed to make a trade-off between
local and global representations in output features of RSN. Compared to prior
work of attention mechanism, we use powerful while computation-economical
operations, e.g. conv3 × 3, conv1 × 1 and DW conv9 × 9. The top identity map-
ping in PRM is good for retaining local features which benefits precise keypoint
localization. The middle path is designed to reweight the features in channel
wise and the bottom path is proposed for spatial attention.

4 Experiments

4.1 COCO Keypoints Detection

Datasets, Evaluation Metric, Human Detection. COCO dataset [16]
includes over 200K images and 250K person instances labeled with 17 joints.
We use only COCO train2017 dataset for training (including about 57K images
and 150K person instances). We evaluate our method on COCO minival dataset
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(5K images) and the testing datasets including test-dev (20K images) and test-
challenge (20K images). We use standard OKS-based AP score as the evaluation
metric. We use MegDet and MegDet-v2 as human detecor on COCO val and
test sets respectively.

Training Details. The network is trained on 8 V100 GPUs with mini-batch
size 48 per GPU. There are 140k iterations per epoch and 200 epochs in total.
Adam optimizer is adopted and the linear learning rate gradually decreases from
5e−4 to 0. The weight decay is 1e−5. Each image goes through a series of data
augmentation operations including cropping, flipping, rotation and scaling. The
range of rotation is −45◦ ∼ +45◦. The range of scaling is 0.7–1.35. The size of
input image is 256 × 192 or 384 × 288.

Testing Details. We apply a post-Gaussian filter to the estimated heatmaps.
Following the strategy of hourglass [17], we average the predicted heatmaps of
original image with the results of corresponding flipped image. Then we imple-
ment a quarter offset from the highest response to the second highest one to
get the locations of keypoints. The same with CPN [2], the pose score is the
multiplication of the average score of keypoints and the bounding box score.

Table 2. Results of ResNet, Res2Net, Baseline1,2 and RSN on COCO val set

Backbone Input size AP Δ GFLOPs

ResNet-18 256× 192 70.7 0 2.3

Res2Net-18 256× 192 71.3 +0.6 2.2

Baseline1-18 256× 192 72.9 +2.1 2.5

Baseline2-18 256× 192 72.1 +1.4 2.5

RSN-18 256× 192 73.6 +2.9 2.5

ResNet-50 256× 192 72.2 0 4.6

Res2Net-50 256× 192 72.8 +0.6 4.5

Baseline1-50 256× 192 73.7 +1.5 6.4

Baseline2-50 256× 192 72.7 +0.5 6.4

RSN-50 256× 192 74.7 +2.5 6.4

ResNet-101 256× 192 73.2 0 7.5

Res2Net-101 256× 192 73.9 +0.7 7.5

RSN-101 256× 192 75.8 +2.5 11.5

4×ResNet-50 256× 192 76.8 0 20.6

4×Res2Net-50 256× 192 77.0 +0.2 20.1

4× RSN-50 256× 192 78.6 +1.8 27.5

4×ResNet-50 384× 288 77.5 0 46.4

4×Res2Net-50 384× 288 77.6 +0.1 45.2

4× RSN-50 384× 288 79.2 +1.7 61.9
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Fig. 4. Illustrating how the performances of ResNet, Res2Net, DenseNet and RSN are
affected by GFLOPs. The results are reported on COCO minival dataset.

Ablation Study of RSN Improvement. In Sect. 2.2, we analyze the dif-
ferences between RSN and current methods. In this part, we validate the
effectiveness of intra-level feature fusion method in RSN. Since it is known divid-
ing the network into branches, e.g., Inception and ResNetXt [29], can improve
the recognition performance, we add two baselines into comparison. Baseline
1: remove the intra-level fusion (i.e., the vertical arrows) from Fig. 2(c). This
baseline can reveal whether the proposed intra-level fusion is important. Base-
line 2: replace f1-f4 in Baseline 1 with 4 f3’s respectively, which is more like the
conventional branching strategy. We keep the same GFLOPs of Baseline1, Base-
line2 with RSN by adapting channels. Ablation experiments are implemented on
ResNet, Res2Net, Bseline1, Baseline2, and RSN based networks. PRM is left out
for more strong comparison. The results on COCO val are reported in Table 2.

As Table 2 shows, RSN boosts the performance by relatively larger extent
with acceptable computation cost addition, while Res2Net can only obtain lim-
ited gain. For instance, RSN-18 is 2.9 points AP higher than ResNet-18 adding
only 0.2 GFLOPs and 2.3 points AP higher than Res2Net-18 adding only 0.3
GFLOPs. However, Res2Net-18 obtains only 0.6 AP gain than ResNet-18. RSN
always works much better than ResNet and Res2Net with comparable GFLOPs.
In addition, it is worth noting that when model complexity is relatively low,
RSN still has a remarkable performance, which indicates that RSN is more com-
pact and efficient. For instance, compared with ResNet-101 and Res2Net-101,
RSN-18 has a similar AP, however, with only a third of computation cost. On
the other hand, RSN achieves higher AP than Baseline1 and Baseline2 with the
same GFLOPs, e.g., RSN-50 is 1 AP higher than Baseline1-50 and 2 AP higher
than Baseline2-50. This observation strongly demonstrate the superiority of the
intra-level feature fusion mode of RSN.
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Ablation Study of RSN Efficiency. The dense connection principle of RSN
comes form DenseNet. However, it is not efficient for DenseNet when too many
concatenating operations are implemented. To circumvent the network capacity
explosion, RSN uses element-wise sum to connect adjacent branches. To val-
idate the efficiency of our approach, we respectively adopt ResNet, Res2Net,
DenseNet and RSN as the backbone in the same multi-stage architecture as
shown in Fig. 2(a) to compare the performance. PRM is left out for fair com-
parison. The results are shown in Fig. 4. For relatively small models, RSN and
DenseNet based networks can both achieve good results, while Res2Net only gets
a minor improvement than ResNet. However, as the model capacity increases,
the improvements of DenseNet and Res2Net based network decrease dramati-
cally. Both of them can only get a inferior result close to ResNet when the model
size becomes large, while RSN can keep its superiority to the end.

DenseNet has a high AP score at a low complexity owing to the deep connec-
tions and frequent feature aggregations inside the same level by continuous con-
catenating operations. This makes the low-level features sufficiently supervised
resulting in satisfactory delicate spatial texture information, which benefits the
keypoint localization. However, as the computation cost raises, the concatenat-
ing operations of DenseNet become redundant. It combines quite a large range of
less utilized information. As for Res2Net, narrower range of receptive fields and
lack of efficient intra-level feature fusion to extract delicate local representations
make it much inferior than RSN.

(a) Res2Net (b) DenseNet (c) RSN

Fig. 5. The average absolute filter weights of the last conv1 × 1 layers of each level in
trained Res2Net-50 (a), DenseNet-169(b) and RSN-50(c). Larger weights means higher
utilization. The weights of Res2Net are smaller than those of RSN. Most weights in
DenseNet have values close to zero. While RSN can utilize most channels better.

In order to embody the differences of Res2Net, DenseNet and RSN more
essentially, we show the average absolute filter weights of the last conv1 × 1 layers
of each level in trained Res2Net-50, DenseNet-169 and RSN-50 in Fig. 5. The
highly used weights become less from level 1 to level 4 in DenseNet. The overall
useful weights of DenseNet are less than those of RSN, which can be deduced
from Fig. 5 (b) and (c) that the red area in each level of DenseNet is much smaller
than that of RSN. According to the analysis in Sect. 3.2, RSN can enhance the
efficient fusion of intra-level features with dense element-wise sum connections.
There are not accumulative concatenating operations like DenseNet. Thus, RSN
is less occupied by the redundant features with low utilization. On the other
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(a) Input Images (c) Heatmaps

(b) High-level Features (d) Final Predictions

Res2Net

DenseNet RSNRes2Net

DenseNet RSN Res2Net DenseNet RSN

Res2Net DenseNet RSN

Fig. 6. Visual analysis of Res2Net-50, DenseNet-169 and RSN-50. (a) Input images, (b)
High-level feature maps (level 4), (c) Low-level heatmaps (level 1), (d) Final predictions.

hand, compared with Res2Net, the more densely connected architecture and
wider range of receptive fields make the intra-level feature fusion of RSN more
effective, that is why the red area of RSN is much larger than that of Res2Net
and the weights of RSN are more fully used, just as shown in Fig. 5(a) and
(c). As a result, the RSN model can keep its high efficiency and considerable
improvement from the beginning to the end, just as shown in Fig. 4.

Additionally, to highlight the advantages of RSN more intuitively, we conduct
visual analysis of Res2Net-50, DenseNet-169 and RSN-50, as shown in Fig. 6.
In Fig. 6(b), the high-level response to human body of Res2Net and DenseNet
either covers incomplete body area or too large area of background. Only RSN
has a relatively complete and appropriate response area to the human body. As
a result, in final prediction, Res2Net is easily misled by the background informa-
tion, DenseNet ignores some keypoints such as shoulders, while RSN can locate
the keypoints better and reduce the interference of background information. As
Fig. 6(c) shows, the heatmaps of RSN are much clearer and the locations of the
responses are much more accurate.

Ablation Study of RSN Architecture. When designing RSN, we firstly
deploy the dense connection principle of DenseNet. Then, for a break-down abla-
tion, we set different branch number as variants to discuss the designing of RSN
and explore a best trade-off between branch representing capacity and the degree
of intra-level fusion. experiments are done on RSN-18 and RSN-50. We increase
branch numbers from 2 to 6 while keeping the model capacity unchanged by
adapting channels. As Table 3 shows, the performance firstly becomes better
and attains its peak when there are 4 branches. However, when the branch num-
ber continues growing, the results get worse. Thus, 4 is the best choice.
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Table 3. Illustrating how the performance of RSN affected by the branch number.

Backbone Input size 2-branch 3-branch 4-branch 5-branch 6-branch

RSN-18 256× 192 73.1 73.0 73.6 73.2 72.9

RSN-50 256× 192 73.9 74.2 74.7 74.3 74.0

Ablation Study of Pose Refine Machine. In Sect. 3.3, we have analyzed
the architecture of PRM and the differences between PRM and prior attention
mechanism. To validate the improvement of PRM, we perform ablation experi-
ments on both single-stage and multi-stage network architecture. Additionally,
We validate the impact of SENet and CBAM by replacing PRM. The results
are shown in Table 4. SE-block and CBAM decrease the performance of human
pose estimation, which implies vanilla attention mechanisms are not suitable for
rebalancing output features. In contrast, when the model capacity is small, PRM
has a considerable improvement. As for relatively high AP baseline, PRM still
obtains 0.4 AP gain. These observations demonstrate the robustness of PRM.

Results on COCO Test-Dev and Test-Challenge. We validate our app-
roach on COCO test-dev and test-challenge sets. The results are shown in Table 5
and Table 6. For fair comparison, we pay attention to the performances of single
models with comparable GFLOPs, without using extra training data. In Table 5,

Table 4. Ablation experiments of Pose Refine Machine on COCO minival dataset.

Backbone Attention Input size AP Δ GFLOPs

ResNet-18 None 256× 192 70.7 0 2.3

ResNet-18 SE-block 256× 192 70.5 −0.2 2.3

ResNet-18 CBAM 256× 192 69.9 −0.8 2.3

ResNet-18 PRM 256× 192 72.2 +1.5 4.1

ResNet-50 None 256× 192 72.2 0 4.6

ResNet-50 SE-block 256× 192 72.1 −0.1 4.6

ResNet-50 CBAM 256× 192 71.1 −1.1 4.6

ResNet-50 PRM 256× 192 73.4 +1.2 6.4

4×ResNet-50 None 256× 192 76.8 0 20.6

4×ResNet-50 SE-block 256× 192 76.6 −0.2 20.6

4×ResNet-50 CBAM 256× 192 76.1 −0.7 20.6

4×ResNet-50 PRM 256× 192 77.2 +0.4 22.4

4×RSN-50 None 256× 192 78.6 0 27.5

4×RSN-50 SE-block 256× 192 78.6 0 27.5

4×RSN-50 CBAM 256× 192 78.0 −0.6 27.5

4×RSN-50 PRM 256× 192 79.0 +0.4 29.3
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our method outperforms HRNet by 2.5 AP (78.0 v.s. 75.5), and outperforms
SimpleBaseline by 4.3 AP on COCO test-dev dataset. Additionally, as Table 6
shows, our approach outperforms MSPN (winner of COCO kps Challenge 2018)
by 0.7 AP on test-challenge set. Note that we don’t even use pretrained model.

Inference Speed. Current methods of human pose estimation mainly focus on
promoting the performance while deploying resource-intensive networks with
large depth and width. This leads to inefficient inference. Interestingly, we
observe RSN can make a better trade-off between accuracy and inference speed
than prior work. For fair comparison, we train RSN and HRNet under the same
settings in Sect. 4, with 256 × 192 input size. Both use MegDet as human detec-
tor when testing. We use pps to measure inference speed, i.e., Persons inferred
Per Second. On the same GPU (RTX 2080ti), results of COCO val are reported,
HRNet-w16 with 1.9 G and 7.2 M achieves 71.9 AP and 31.8 pps, RSN-18 with
2.5G and 12.5 M achieves 73.6 AP and 64.9 pps, HRNet-w32 with 7.1 G and
28.5M achieves 74.6 AP and 26.5 pps, RSN-50 with 6.4 G and 25.7 M achieves
74.7 AP and 42.6 pps. HRNet-w48 with 14.6G and 63.6M achieves 75.5 AP and
24.7 pps, 2 ×RSN-50 with 13.9 G and 54.0 M achieves 77.4 AP and 20.2 pps.
In addition, the inference speed on CPU (Intel(R) Xeon(R) Gold6013@2.1GHZ)
also shows, RSNs with higher performances are faster than HRNet by all sizes.
These results suggest that RSN is more accurate, compact and efficient.

Effect of Human Detection. We use MegDet as human detector in ablation
study, which achieves 49.4 AP on COCO val. For test sets, we use MegDet-v2,
which has 59.8 AP on COCO val. As human detection has an influence on the
final performance of top-down approach, We perform ablations to investigate
the impact of human detector on COCO test-dev. 4×RSN-50 at input size of
256 × 192 achieves 77.3 AP using MegDet, and 78.0 using MegDet-v2. 4× RSN-
50 at input size of 384 × 288 achieves 77.9 using MegDet, and 78.6 using MegDet-
v2.

4.2 MPII Human Pose Estimation

We validate RSN on MPII test set, a single-person pose estimation benchmark.
As shown in Table 7, RSN boosts the SOTA performance by 0.7 in PCKh@0.5,
which demonstrates the superiority and generalization ability of our method.
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Table 7. PCKh@0.5 results on MPII test dataset.

Method Hea Sho Elb Wri Hip Kne Ank Mean

Chen et al. [3] 98.1 96.5 92.5 88.5 90.2 89.6 86.0 91.9

Yang et al. [30] 98.5 96.7 92.5 88.7 91.1 88.6 86.0 92.0

Ke et al. [12] 98.5 96.8 92.7 88.4 90.6 89.3 86.3 92.1

Tang et al. [25] 98.4 96.9 92.6 88.7 91.8 89.4 86.2 92.3

Sun et al. [23] 98.6 96.9 92.8 89.0 91.5 89.0 85.7 92.3

ours(4×RSN-50) 98.5 97.3 93.9 89.9 92.0 90.6 86.8 93.0

Fig. 7. Prediction results on COCO (top line) and MPII (bottom line) val sets.

5 Conclusion

In this paper, we propose a novel method, Residual Steps Network, which aims
to learn delicate local representations by efficient intra-level feature fusion. To
make a better trade-off between local and global representations in output fea-
tures, we design Pose Refine Machine. Our method yields the best results on two
benchmarks, COCO and MPII. Some prediction results are visualized in Fig. 7.
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Abstract. We train an agent to navigate in 3D environments using a
hierarchical strategy including a high-level graph based planner and a
local policy. Our main contribution is a data driven learning based app-
roach for planning under uncertainty in topological maps, requiring an
estimate of shortest paths in valued graphs with a probabilistic struc-
ture. Whereas classical symbolic algorithms achieve optimal results on
noise-less topologies, or optimal results in a probabilistic sense on graphs
with probabilistic structure, we aim to show that machine learning can
overcome missing information in the graph by taking into account rich
high-dimensional node features, for instance visual information available
at each location of the map. Compared to purely learned neural white
box algorithms, we structure our neural model with an inductive bias
for dynamic programming based shortest path algorithms, and we show
that a particular parameterization of our neural model corresponds to
the Bellman-Ford algorithm. By performing an empirical analysis of our
method in simulated photo-realistic 3D environments, we demonstrate
that the inclusion of visual features in the learned neural planner out-
performs classical symbolic solutions for graph based planning.

Keywords: Visual navigation · Topological maps · Graph neural
networks

1 Introduction

A critical part of intelligence is navigation, memory and planning. An animal
that is able to store and recall pertinent information about their environment is
likely to exceed the performance of an animal whose behavior is purely reactive.
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Fig. 1. An agent navigates to a goal location with a hierarchical planner. A high-level
planner proposes target nodes in a topological map, which are used as an objective for
a local point-goal policy. The graph is estimated from an explorative rollout and, as
such, uncertain: the opacities of the edges correspond to estimations of connectivity
between nodes (darker lines = higher confidence). We observe a low probability of
connection between the node at the agent’s position and its nearest neighbor, whereas
from the visual observation associated to the node we can see there is a traversable
space between the two nodes.

Many control and navigation problems in partially observed 3D environments
involve long term dependencies and planning. It has been shown that humans
and other animals navigate through the use of waypoints combined with a local
locomotion policy [22,55]. In this work, we mimic this strategy by proposing
a hierarchical planner, which performs high-level long term planning using an
uncertain topological map (a valued graph including visual features) combined
with a local RL-based policy navigating between high-level waypoints proposed
by the graph planner. Our main contribution is a way to combine symbolic
planning with machine learning, and we look to structure a neural network
architecture to incorporate landmark based planning in unseen 3D environments.

When solving visual navigation tasks, biological or artificial agents require
an internal representation of the environment if they want to solve more com-
plex tasks than random exploration. We target a scenario where an agent is
trained on a large-scale set of 3D environments to learn to reason on planning
and navigation. When faced with a previously unseen environment, the agent is
given the opportunity to build a representation by doing an explorative rollout
from a previously learned explorative policy. It can then exploit this internal
representation in subsequent visual navigation tasks. This corresponds to many
realistic situations, where robots are deployed to indoor environments and are
allowed to familiarize themselves before performing their tasks [43].

Our agent constructs an imperfect topological map of its environment, where
nodes correspond to places and valued edges to connections. Edges are assigned
two different values, spatial distances and probabilities indicating whether it
is possible to navigate between the two nodes. Nodes are also assigned rich
visual features extracted from images taken at the corresponding places in the
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environment. After deployment, the agent faces visual navigation tasks requiring
it to find a specific location in the environment provided by a set of images
corresponding to different viewpoints, extending the task proposed in [63]. The
objective is to identify the goal location in the internal representation, and to
provide an estimate for the shortest path to it. The main difficulty we address
here is the fact that this path is an estimate only, since the ground truth path
is not available during testing.

Whilst planning in graphs with known connectivity has been solved for many
decades [7,15], planning under uncertainty remains an ongoing area of research.
Whereas optimal results in a probabilistic sense exist for graphs with probabilis-
tic connectivity, we aim to show that machine learning can overcome missing
information in the graph by taking into account rich high-dimensional node
features extracted from image observations associated with specific nodes. We
train a graph neural network in a fully supervised way to predict estimates of
the shortest path, using vision to overcome uncertainty in the connectivity infor-
mation. We present a new variant of graph neural networks imbued with specific
inductive bias, and we show that this structure can be parameterized to fallback
to the classical Bellman-Ford algorithm.

Figure 1 illustrates the hierarchical planner: a neural graph based planner
runs an outer loop providing estimates for next way-point on a graph, which
are used as target nodes for a local RL-based policy running an inner loop and
providing feedback to high-level planner on reached locations. Both planners take
into account visual features, either stored in the graph (graph based planner),
or directly as observations provided by the environment (local policy). The two
planners are trained separately—the graph based planner in a fully supervised
way from ground truth graphs, the local policy with RL and a point-goal strategy.
This work makes the following contributions:

– A hierarchical model combining high-level graph based planning with a local
point goal policy for robot navigation;

– A neural planner that combines an uncertain topological map with node fea-
tures to learn to estimate shortest paths in noisy and unknown environments.

– A variant of graph networks encoding inductive bias inspired by dynamic
programming-based shortest path algorithms.

– We evaluate this method in challenging and visually realistic 3D environments
and show it outperforms symbolic planning on noisy topological maps.

2 Related Work

Classical Planning and Graph Search—A large body of work is available
on classical planning on graphs, notable references include [31,42]. In robotics,
there have been a number of works applying classical planning in topological
maps for indoor robot navigation, for instance [48,54].

Planning Under Imperfect Information—In many realistic robotic prob-
lems, the current state of the world is unknown. Though sensor observations
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Fig. 2. Illustration of the different types of solutions to the high-level graph planning
problem: (a) the ground truth graph (unavailable during testing) with the shortest path
from node S to node T in red; (b) the uncertain graph available during test time. This
graph is fully connected and for each edge a connection probability is available. For
clarity we here show only edges where the connection probability is above a threshold.
The edge from A→B is wrongly estimated as not connected; (c) an “optimal” path
taking into account both probabilities and distances; (d) A learned shortest path, where
the visual features at node A indicate passage to node B. We supervise a network to
predict the GT path (a). (Color figure online)

provide measurements about the current state of the world, these measure-
ments are usually incomplete or noisy because of disturbances that distort
their values. Planning problems that face these issues are referred to as plan-
ning problems under imperfect information. Research on this topic has a long
history, starting with the seminal work by [2] presenting the first non-trivial
exact dynamic programming algorithm for partially observable Markov decision
processes (POMDPs). While there are other models [31, chap 12], POMDPs
emerged as the standard framework to formalize and solve (single-agent) sequen-
tial decision-making problems with imperfect information about the state of the
world [26]. As the agent does not have access to the actual state of the world, it
acts based solely on its entire history of actions and observations, or the corre-
sponding belief state, i.e., the posterior probability distribution over the states
given the history [2,50]. Approaches for finding optimal solutions have been
investigated in the 2000s, ranging from dynamic programming [26] to heuristic
search methods [30,51]. Key to these approaches is the idea that one can recast
the original problem into a continuous-state fully observable Markov decision
process, where states are belief states or histories [2]. Doing so allows theory
and algorithm that applies for MDPs to also apply to POMDPs, albeit in much
larger (and possibly continuous) state space. Another significant result of this
literature is proof that the optimal value function is a piece-wise linear and
convex function of the belief states, which allows the design of algorithms with
faster rates of convergence [50]. For a thorough discussion on existing solvers for
POMDPs, the reader can refer to [47].

Deep Reinforcement Learning—The field of Deep Reinforcement Learning
(RL) has gained attention with successes on board games [49] and Atari games
[37]. Recent works have applied Deep RL for the control of an agent in 3D envi-
ronments [24,36], exploring the use of auxiliary tasks such as depth prediction,
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loop detection and reward prediction to accelerate learning. Other recent work
uses street-view scenes to train an agent to navigate in city environments [35].
To infer long term dependencies and store pertinent information about the par-
tially observable environment, network architectures typically incorporate recur-
rent memory such as Gated Recurrent Units [13] or Long Short-Term Memory
[23]. Extensions to memory based neural approaches began with Neural Turing
Machines [19] and Differentiable Neural Computers [20], and have since been
adapted to expand the capacity of Deep RL agents [56]. Spatially structured mem-
ory architectures have been shown to augment an agent’s performance in 3D envi-
ronments and are broadly split into two categories: metric maps which discretize
the environment into a grid based structure and topological maps which produce
node embeddings at key points in the environment. Research in learning to use
a metric map is extensive and includes spatially structured memory [40], Neural
SLAM based approaches [61] and approaches incorporating projective geometry
and neural memory [8,21], these techniques are combined, extended and evalu-
ated in [6]. Other works include that of Value Iteration Networks (VIN) [53] which
approximate the value iteration algorithm with a CNN, applied planning in small
fully observable state spaces (grid worlds). While VIN and our work structure
planners, VINs use convolutions to approximate classical value iteration, while we
use a graph representation and a novel GNN architecture with recurrent updates
to approximate the Bellman-Ford algorithm. [27] plans under uncertainty in par-
tially observable gridworld environments. Here uncertainty refers to POMPs, the
classical QMDP algorithm is used as inductive bias for a neural network, whereas
in our work uncertainty is over node connectivity in a graph constructed in a pre-
viously unseen environment. [52] is applied in observable state spaces to learn a
forward model in a latent space to plan appropriate actions; they are not hierar-
chical, are not graph-based and do not appear to plan under uncertainty.

Research combining learning, navigation in 3D environments and topological
representations has been limited in recent years with notable works being [43] who
create graph a through random exploration in ViZDoom RL environment [28].
[16] performs planning in 3D environments on a graph-based structure created
from randomly sampled observations, with node distances estimated with value
estimates. The downside of these approaches is that to generalize to an unseen
environment, many random samples must be taken to populate the graph.

Graph Neural Networks—Graph Neural Networks (GNN) are deep networks
that operate on graphs directly. They have recently shown great promise in
domains such as knowledge graphs [44], chemical analysis [18], protein interac-
tions [17], physics simulations [3] and social network analysis [29]. These types
of architectures enable learning from both node features and graph connectiv-
ity. Several review papers have covered graph neural networks in great detail
[4,9,57,62]. GNNs have been applied to shortest path planning in travelling
salesmen problems [25,33] and it has been reasoned that they can approximate
optimal symbolic planning algorithms such as the Bellman-Ford algorithm [60].
This work applies a novel variant of GNN in order to solve approximate planning
problems, where classical methods may struggle to deal with uncertainty.
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3 Hierarchical Navigation with Uncertain Graphs

We train an agent to navigate in a 3D visual environment and to exploit an
internal representation, which it is allowed to obtain from an explorative rollout
before the episode. Our objective is image goal, i.e. target-driven navigation
to a location which is provided through a (visual) image. We extend the task
introduced in [63] by generalizing to unseen environment configurations without
the need to retrain the agent for a novel environment.

From the explorative rollout obtained with an agent trained with RL, which
is further described in Sect. 3.3, we create an uncertain topological map covering
the environment, i.e. a valued graph G = {V,V ,E,L,D}, where V = {1, . . . N}
is a set of nodes, V is a K ×N matrix of rich visual node features of dimensions
K, E ∈ [0, 1]N×N is a set of edge probabilities where Ei,j is the probability of
having an edge between nodes i and j, L is a matrix of node locations and D is a
distance matrix, where Di,j is a distance between nodes i and j. While D encodes
a distance in a path planning sense, E encodes the probability of j being directly
accessible from i with obstructions. The uncertainty encoded by this probability
can be considered to be a combination of aleatory variability, i.e. uncertainty
associated with natural randomness of the environment, as well as epistemic
uncertainty, i.e. uncertainty associated with variability in computational models
for estimating the graph, in our case the explorative policy trained with RL and
taking into account visual observations.

Once the topological map is obtained, the objective of the agent at each episode
is to navigate to a location given an image, which is provided as additional obser-
vation at each time step. The agent acts in 3D environments like Habitat[34]
(see Sect. 5), receiving images of the environment as observations and predicting
actions from a discrete space (forward, turn left 10 ◦, turn right 10 ◦). We propose
a hierarchical planner performing actions at two different levels:

A high-level graph based planner that operates on longer time scale τ and
iteratively proposes new point-goals nodes pτ

g that are predicted, by a Graph
Neural Network, to be on the shortest path from the agent to the estimated
location of the target image.

A local policy that has been trained to navigate to a local point-goal pτ
g ,

which has been provided by the high-level policy. The local policy operates
for a maximum of m time-steps, where m is a hyper-parameter, set to 10.
The agent has been trained with an additional STOP action, so that it can
learn to terminate the local policy in the case that it reaches pτ

g in under m
steps.

The two planners communicate through estimated locations, the graph plan-
ner indicating the next waypoint to the local policy as a location, and the local
policy providing an estimate of its location back to the high-level planner. The
planner updates its current node estimate as the nearest node and planning
continues.
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3.1 High-Level Planning with Uncertain Graphs

The objective of the high-level planner is to estimate the shortest path from the
current position S ∈V in the graph to a terminal node T ∈ V, whose identity
is estimated as the node whose visual features are closest to the target image
in cosine distance. Planning takes into account the distances between nodes
encoded in D as well as estimated edge connectivity encoded in E. As an edge
(i, j) may have a large connection probability Ei,j but still be obstructed in
reality, the goal is to learn a trainable planner parameterized by parameters θ,
which takes into account visual features V to overcome the uncertainty in the
graph connectivity. To this end, we assume the ground truth connectivity E∗

available during training only. Figure 2 illustrates the different types of solutions
this problem admits: the optimal shortest path is only available on ground truth
data (Fig. 2a), the objective is to use the noisy uncertain graph (Fig. 2b) and
provide an estimate of the optimal solution taking into account visual features
(Fig. 2d). This is unlike the optimal solution in a probabilistic sense calculated
from a symbolic algorithm (Fig. 2c).

We propose a trainable planner, which consists of a novel graph neural net-
work architecture with dedicated inductive bias for planning. Akin to graph net-
works [5], the node embeddings are updated with messages over the edges, which
propagate information over the full graph. While it has been shown that graph
networks can be trained to perform planning [59], we aim to closely mimic the
structure of the Bellman-Ford algorithm and we embue the planner with addi-
tional inductive bias and a supervised objective to explicitly learn to calculate
shortest paths from data. To this end, each node i of the graph is assigned an
embedding xi = [vi ,ei , ti,di , si ] where vi are visual features from the memory
matrix V , ti is a boolean value indicating if the node is the target, ei are the
edge connection probabilities from node i to all other nodes, di are the distances
for node i to all other nodes, si is a one hot vector identifying the node.

We motivate our neural model with the following objective: the planner should
be able to exploit information contained in the graph connectivity, but also in the
visual features, to be able to find the shortest path from a given current node to
a target node. As with classical planning algorithms, it will thus be required to
keep for each node a latent representation of the bound di on the shortest dis-
tance as well as information on the identity of the outgoing edge to the neighbor
on the shortest path, the predecessor function Π(i). Known algorithms (Dijstra,
Bellman-Ford) perform iterative updates of these variables (di,Πi) by comparing
them with neighboring nodes and their inter-node distances, updating the bound
di and Πi when a shorter path is found than the current one. This is usually done
by iterating over the successors of a given node i.

In our trained model, these variables are not made explicit, but they are
supposed to be learned as a unique vectorial latent representation for each node
i in the form of an internal state ri , which generally holds current information
on the reasoning of the agent. The input to each iteration of the graph network
is, for each node i, the node embedding xi , and the node state ri, which we
concatenate to form a single node vector ni = [xi, ri] = [vi ,ei , ti,di , si , ri ].
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Fig. 3. (a) An example graph; (b) One iteration of the neural planner’s message passing
and bound update. Messages from neighbors are serialized and fed through a GRU, an
inductive bias for learning minima necessary for bound updates.

As classically done in graph neural networks, this representation is updated
iteratively by exchanging messages between nodes in the form of trainable func-
tions. The messages and trainable functions of our model are given as follows,
illustrated in Fig. 3, and will be motivated in detail further below.

mi,j = W1[ni,nj ] � σ(W2[ni,nj ]) (1)

r′
i = φr←h({mi,j}∀j ,hi) (2)

Here, � is the Hadamard product, W. are weight matrices, and r′
i is the updated

latent representation. The features xi do not change during these operations.
Equation (1) is inspired from gated linear layers [14], and enables each node

to identify whether it is the target, and update its representation of the bound.
We use gated linear layers in order to provide the network with the capacity to
update bound estimates for its neighbors.

Equation (2) integrates messages from all neighbors j of node i, updating
its latent representation. Since planning requires this step to update internal
bounds on shortest paths, akin to shortest path algorithms that rely on dynamic
programming, we serialize the updates from different neighbors into a sequence
of updates, which allows the network to learn to calculate minimum functions
on bound estimates. In particular, we model this through a Gated Recurrent
Unit [12], using a hidden state vector hi associated to each node i. The step is
structured to mimic the min operation of the Bellman-Ford algorithm (see Sect.
3.2 for details on this equivalence).

Equation (2) can thus be rewritten in more detail as follows: Going sequen-
tially over the different neighbors j of node i, the hidden state hi is updated as
follows:

h
[j]
i = W3mi,j + W4h

[j−1]
i (3)

For simplicity, we omitted the gating equations of GRUs and presented a single
layer GRU. In practice we include all gating operations and use a stacked GRU
with two layers. The output of the recurrent unit is a non-linear function of the
last hidden state, providing the new latent value r′

i = MLP (hN
i ).

The above messages are exchanged and accumulated for k steps where k is
a hyper-parameter which should be at least the largest span of the graphs in
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the dataset. The action distribution is then estimated for each node as a linear
mapping of the node embeddings followed by a softmax activation function.

3.2 Relations to Optimal Symbolic Planners

As mentioned before, our neural planner could in theory be instantiated with a
specific set of network parameters such that it corresponds to a known symbolic
planner calculating an optimal path in a certain sense. To illustrate the relation-
ship of the network structure, in particular the recurrent nature of the graph
updates, we will layout details for the case where the planner performs the esti-
mation of a shortest path given the distance matrix and ignoring the uncertainty
information—an adaptation to an optimal planner in the probabilistic sense can
be done in a straightforward manner. To avoid misunderstandings, we insist that
the reasoning developed in this sub section is for illustration and general under-
standing of the chosen inductive network bias only, the real network parameters
are fully trained with supervised learning as explained in Sect. 4.

Handcrafting a parameterization requires imposing a structure on the node
state ri, which otherwise is a learned representation. In our case, the node state
will be composed of the bound bi on the shortest path from the given node to the
target node (a scalar), and the current estimate Πi of the identity of predecessor
node of node i w.r.t. the shortest path, which can be represented as a 1-in-
K encoded vector indicating a distribution over nodes. Standard Bellman-Ford
iteratively updates the bound for a given node i by examining all its neighbors
j and checking whether a shorter path can be found passing through neighbor
j. This can be written in a sequential form s.t. the bound gets updated iterating
through the neighbors j = 1. . .Ji of node i:

b
[0]
i = bi

b
[j]
i = min(b[j−1]

i , bj + dij)
b′
i = b

[Ji]
i

(4)

where bi and b′
i are the bounds before and after the round of updates for node i.

In our neural formulation, the message updates given in Eq. (2), further
developed in (3), mimic the Bellman-Ford bound update given in Eqs. (4). This
provided motivation for our choice of a recurrent neural network in the graph
neural network, as we require the update of the recurrent state hj

i in Eq. (3) to be
able to perform a minimum operation and an arg min operation (or differentiable
approximations of min and arg min).

3.3 Graph Creation from Explorative Rollouts

Graphs were generated during the initial rollout from an exploratory policy
trained with Reinforcement Learning. During training, the agent interacts with
training environments and receives RGB-D image observations calculated as a
projection from the 3D environment. The agent is trained to explore the envi-
ronment and to maximize coverage, similar to [10,11].
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To learn to estimate the graph connectivity, we add an auxiliary loss to the
agent’s objective function, flink(oi ,oj ,hi) which is trained to classify whether
two locations are in line of sight of each other, conditioned on the visual features
oi ,oj from the two locations and the agent’s hidden state hi . Node features
were calculated with a CNN [32]. Ground truth line of sight measurements were
computed by 2D ray tracing on an occupancy map of each environment. In
order to limit the size of the graph to a maximum number of nodes k, we aim
to maximize each node’s coverage of the environment using a Gaussian kernel
function. At each time step a new node is observed by the agent, previous node
positions are compared with a Gaussian kernel function (Eq. 5) in order to
identify the index of the most redundant node r, which is removed from the
graph and replaced with the new node, node connectivities are then recomputed
with flink(.), where Li is the location of node i.

r = arg min
i

∑

j

K(Li,Lj), K(v,v′) = exp(
−‖v − v′‖2

2σ2
), (5)

4 Training

The High-Level Graph Based Planner—is trained in a purely supervised
way. We generate ground truth labels by running a symbolic algorithm (Dijkstra
[15]) on a set of valued ground truth training graphs described with the method
detailed in Sect. 3.3. In particular, the supervised training algorithm takes as
input uncertain/noisy graphs, which include visual features, and is supervised
to learn to produce paths, which are calculated from known ground truth graphs
unavailable during test time. During training we treat path planning as a classifi-
cation problem where for a given target, each node must learn to predict the sub-
sequent node on the optimal path to the target. Formally for each node i we pre-
dict a distribution Ai and aim to match a ground-truth distribution A∗

i , which
is a one-hot vector, minimizing cross entropy loss L(A,A∗) = −∑n

i=1 A
∗
i logAi.

We augment training with a novel version of mod-drop [39], an algorithm
for multi-modal data, which drops modalities probabilistically during training.
During training we extend the node connection probabilities with the ground
truth node adjacencies and mask either the probabilities or the adjacencies with
a probability of 50%, during training we linearly taper the masking probabil-
ity from 50% to 100% over the first 250 epochs. Ensuring that the final model
requires only connection probabilities, but the reasoning performed during mes-
sage passing and recurrent updates can be bootstrapped from the ground truth
adjacencies. Training curves on unseen validation data are shown in Fig. 5.

The Local Policy—is a recurrent version of AtariNet [38] with two output
heads for the action distribution and value estimates. The network was trained
with a reinforcement learning algorithm Proximal Policy Optimization (PPO)
[45] to navigate with discrete actions to a local point-goal. Point-goals were
generated to be within 5 m of the spawn location of agent. A dense reward was
provided that corresponds to a decrease in geodesic distance to the target, a
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Fig. 4. Left: Symbolic baselines Dijkstra on thresholded probs. & cost function (5.1).
Right: Average return & Acc. of line of sight predictions.

Table 1. H-SPL and acc. of the neural planner’s predictions.

large reward (10.0) was provided when the agent reached the target and the
STOP action was used. The episode was terminated when either the STOP
action was used or after 500 time-steps. A negative reward of −0.01 was given
at each time-step .

The Explorative Policy for Graph Creation—is trained with PPO [46].
We aim to maximize coverage that is within the field of view of the agent. We
create an occupancy grid of the environment with a grid spacing of 10 cm. The
first time a cell is observed the agent receives a reward of 0.1. A cell is considered
to observable if it is free space, within 3 m of the agent and in the field of view
of the agent. Agent performance is shown in Fig. 4.

5 Experiments

We evaluated our method in simulated 3D environments in the Habitat [34] sim-
ulator with the visually realistic Gibson dataset [58]. During training, the agent
interacts with 72 different environments, where each environment corresponds
to a different home. We evaluate on a set of 16 held out environments.

5.1 High-Level Graph-Based Planner

The neural planner was implemented in PyTorch [41]. We compare two metrics,
accuracy of prediction of the next way-point along the optimal path and the
SPL metric [1], both for paths of length two or greater. As we evaluate SPL for
both the high level planner and the hierarchical planner-controller, we refer to
the high-level planner’s SPL as H-SPL to avoid ambiguity.

Symbolic Baselines—We compare the neural planner to two symbolic base-
lines, which reason on the uncertain graph only, without taking into account



484 E. Beeching et al.

Fig. 5. Left & centre: Accuracy and H-SPL with increasing size of data when training
with and without visual features. Right: Modality mixing.

Fig. 6. Time-steps from a rollout of the hierarchical planner (graph+local).
For each time-step: left – RGB-D obs., right – map of the environment
(unseen) with graph nodes, source node, target node, agent position (black), agent’s
nearest neighbour, local point-goal provided by the planner and planned path. (Color
figue online)

rich node features. While these baselines are “optimal” with respect to their
respective objective functions, they are optimal with respect to the amount of
information available to them, which is uncertain: (i) Thresholding—In order
to generate non-probabilistic edge connections, we threshold the connection
probabilities with values ranging from 0–1 in steps of 0.1. After threshhold-
ing the graph, path planning was performed with Dijkstra’s algorithm; (ii) A
custom cost function for Dijkstra’s algorithm weighting distances and probabili-
ties: cost(i, j) = Di,j −λ log(Ei,j) . We vary λ in order to control the trade-off of
distance and connection probability. When λ is 0, the graph is a fully connected
graph, whereas high values of λ would lead to finding the most probable path.

Results of both symbolic baselines are shown in Fig. 4, we observe that they
perform poorly under uncertainty. We evaluate the accuracy of their predictions
with respect to the symbolic baseline on the ground truth graph. We report
accuracy on source-target pairs separated by at least 2 steps.
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Table 2. Performance of the hierarchical graph planner and local policy

Method: Planner + Local policy Success rate SPL

Graph oracle (optimal point-goals, not comparable) 0.963 0.882

Random 0.152 0.111

Recurrent image-goal agent 0.548 0.248

Symbolic (threshold) 0.621 0.527

Symbolic (custom cost) 0.707 0.585

Neural planner (sampling) 0.966 0.796

Neural planner (deterministic) 0.983 0.877

Image Driven Recurrent Baseline—We also compare to an end-to-end RL
approach where the current obs. and target are provided to a CNN based RL
agent. The architecture is a siamese CNN with a recurrent GRU. We train with
a dense reward of improvement in geodesic dist. and provide a reward of 10 when
the agent reaches the goal. We train with PPO for 200 M frames.

In Table 1, we compare the neural planner with the baselines. We can see,
that even without visual features, the neural planner is able to outperform the
“optimal” symbolic baselines. This can be explained with the fact, that the base-
lines optimize a fixed criterion, whereas the neural planner can learn to exploit
patterns in the connection probability matrix E to infer valuable information on
shortest ground truth path. The gap further increases when the neural planner
can use visual features. Results of modality mixing (see Sect. 4) are shown in Fig.
5. As a sanity check, Table 1b compares the optimal symbolic planner against
the neural planner trained with ground truth adjacencies provided as input. The
results of the neural planner are close to optimum in this case.

We evaluated our approach on dataset sizes ranging from 8,000 graphs to
74,000 graphs (Fig. 5). One graph contains 32× 32 possible source-target com-
binations, leading to a maximum amount of 75,000,000 training instances.

5.2 Hierarchical Planning and Control (Topological and Local
Policy)

We evaluated the neural graph planner coupled with the local policy. For a given
episode, the graph planner estimates the next node in the path to a target image
and provides its location to the local policy, which executes for m time-steps. The
planner then re-plans from the nearest neighbor to the agent’s current position,
this back and forth process of planning and navigating continues until either
the agent reaches the target or 500 low-level time-steps have been conducted.
We report accuracy as percentage of runs completed successfully and SPL in
Table 2, albeit measured on low-level trajectories as opposed to graph space.
We combine the local policy with various graph planners, and can see that the
neural graph planners greatly outperform the symbolic baselines. We perform
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Fig. 7. Ablation of a GRU for the accumulation of incoming messages. The GRU was
added to ensure that the model could represent the Bellman-Ford algorithm.

two evaluations of the neural planner; a deterministic evaluation where point-
goals are chosen with the argmax of the A distribution and a non-deterministic
one by sampling from A. The motivation is that by sampling, the planner can
escape from local minima and loops created by errors in approximation. This
is confirmed when studying rollouts from the agents, and also quantitatively
through the performances shown in Table 2. A visualization of steps from an
episode is shown in Fig. 6, where in step 10 we can see that navigation is robust
w.r.t. local errors in planning.

5.3 Ablation: Effect of Chosen Inductive Bias

As developed in Sects. 3.1 and 3.2, our graph based planner includes a particular
inductive bias, which allows it to represent the Bellman-Ford algorithm for the
calculation of shortest or best paths. This bias is implemented as a recurrent
model (a GRU) running sequentially over the message passing procedures, as
illustrated in Fig. 3. Figure 7 ablates the effect of this additional bias as a
function of data sizes ranging from 8,000 to 74,000 example graphs, each one
evaluated with 322 = 1,024 different combinations of starting and end points.

The differences are substantial, we can see that our model is able to exploit
increasing amounts of data and translate them into gains in performance,
whereas standard graph convolutional networks do not—we conjecture that they
lack in structure allowing them to pick up the required reasoning.

6 Conclusion

We demonstrated that path planning can be approximated with learning when
structured in a manner that is akin to classical path planning algorithms. We
have performed an empirical analysis of the proposed solution in photo-realistic
3D environments and have shown that in uncertain environments graph neu-
ral networks can outperform their symbolic counterparts by incorporating rich
visual features. Our method can be used to augment a vision based agent with
the ability to form long term plans under uncertainty in novel environments,
without a priori knowledge of the particular environment. We have analysed the
empirical performance of the neural planning algorithm with a variety of dataset
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sizes, shown that the high-level planner can be coupled with a low-level policy
and evaluated the hierarchical performance on an image-goal task.
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Abstract. Graphic design is essential for visual communication with
layouts being fundamental to composing attractive designs. Layout gen-
eration differs from pixel-level image synthesis and is unique in terms
of the requirement of mutual relations among the desired components.
We propose a method for design layout generation that can satisfy user-
specified constraints. The proposed neural design network (NDN) con-
sists of three modules. The first module predicts a graph with complete
relations from a graph with user-specified relations. The second module
generates a layout from the predicted graph. Finally, the third module
fine-tunes the predicted layout. Quantitative and qualitative experiments
demonstrate that the generated layouts are visually similar to real design
layouts. We also construct real designs based on predicted layouts for a
better understanding of the visual quality. Finally, we demonstrate a
practical application on layout recommendation.

1 Introduction

Graphic design surrounds us on a daily basis, from image advertisements, movie
posters, and book covers to more functional presentation slides, websites, and
mobile applications. Graphic design is a process of using text, images, and sym-
bols to visually convey messages. Even for experienced graphic designers, the
design process is iterative and time-consuming with many false starts and dead
ends. This is further exacerbated by the proliferation of platforms and users with
significantly different visual requirements and desires.

In graphic design, layout – the placement and sizing of components (e.g., title,
image, logo, banner, etc.) – plays a significant role in dictating the flow of the
viewer’s attention and, therefore, the order by which the information is received.
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Fig. 1. Graphic layout generation with user constraints. We present realis-
tic use cases of the proposed model. Given the desired components and partial user-
specified constraints among them, our model can generate layouts following these
constraints. We also present example designs constructed based on the generated
layouts.

Creating an effective layout requires understanding and balancing the complex
and interdependent relationships amongst all of the visible components. Varia-
tions in the layout change the hierarchy and narrative of the message.

In this work, we focus on the layout generation problem that places compo-
nents based on the component attributes, relationships among components, and
user-specified constraints. Figure 1 illustrates examples where users specify a col-
lection of assets and constraints, then the model would generate a design layout
that satisfies all input constraints, while remaining visually appealing. Genera-
tive models have seen a success in rendering realistic natural images [7,17,27].
However, learning-based graphic layout generation remains less explored. Exist-
ing studies tackle layout generation based on templates [3,12] or heuristic
rules [25], and more recently using learning-based generation methods [16,22,33].
However, these approaches are limited in handling relationships among compo-
nents. High-level concepts such as mutual relationships of components in a layout
are less likely to be captured well with conventional generative models in pixel
space. Moreover, the use of generative models to account for user preferences
and constraints is non-trivial. Therefore, effective feature representations and
learning approaches for graphic layout generation remain challenging.

In this work, we introduce neural design network (NDN), a new approach of
synthesizing a graphic design layout given a set of components with user-specified
attributes and constraints. We employ directional graphs as our feature repre-
sentation for components and constraints since the attributes of components
(node) and relations among components (edge) can be naturally encoded in a
graph. NDN takes as inputs a graph constructed by desired components as well
as user-specified constraints, and then outputs a layout where bounding boxes
of all components are predicted. NDN consists of three modules. First, the rela-
tion prediction module takes as input a graph with partial edges, representing
components and user-specified constraints, and infers a graph with complete
relationships among components. Second, in the layout generation module, the
model predicts bounding boxes for components in the complete graph in an iter-
ative manner. Finally, in the refinement module, the model further fine-tunes
the bounding boxes to improve the alignment and visual quality.
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We evaluate the proposed method qualitatively and quantitatively on three
datasets under various metrics to analyze the visual quality. The three exper-
imental datasets are RICO [4,24], Magazine [33], and an image banner adver-
tisement dataset collected in this work. These datasets reasonably cover several
typical applications of layout design with common components such as images,
texts, buttons, toolbars and relations such as above, larger, around, etc. We
construct real designs based on the generated layouts to assess the quality. We
also demonstrate the efficacy of the proposed model by introducing a practical
layout recommendation application.

To summarize, we make the following contributions in this work:

– We propose a new approach that can generate high-quality design layouts for
a set of desired components and user-specified constraints.

– We validate that our method performs favorably against existing models in
terms of realism, alignment, and visual quality on three datasets.

– We demonstrate real use cases that construct designs from generated layouts
and a layout recommendation application. Furthermore, we collect a real-
world advertisement layout dataset to broaden the variety of existing layout
benchmarks.

2 Related Work

Natural Scene Layout Generation. Layout is often used as the intermediate
representation in the image generation task conditioned on text [9,11,31] or scene
graph [15]. Instead of directly learning the mapping from the source domain
(e.g., text and scene graph) to the image domain, these methods model the
operation as a two-stage framework. They first predict layouts conditioned on the
input sources, and then generate images based on the predicted layouts. Recently,
Jyothi et al. propose the LayoutVAE [16], which is a generative framework that
can synthesize scene layout given a set of labels. However, a graphic design layout
has several fundamental differences to a natural scene layout. The demands for
relationship and alignment among components are strict in graphic design. A few
pixels offsets of components can either cause a difference in visual experience or
even ruin the whole design. The graphic design layout does not only need to look
realistic but also needs to consider the aesthetic perspective.

Graphic Design Layout Generation. Early work on design layout or docu-
ment layout mostly relies on templates [3,12], exemplars [21], or heuristic design
rules [25,30]. These methods rely on predefined templates and heuristic rules,
for which professional knowledge is required. Therefore, they are limited in cap-
turing complex design distributions. Other work leverages saliency maps [1] and
attention mechanisms [26] to capture the visual importance of graphic designs
and to trace the user’s attention. Recently, generative models are applied to
graphic design layout generation [22,33]. The LayoutGAN model [22] can gener-
ate layouts consisting of graphic elements like rectangles and triangles. However,
the LayoutGAN model generates layout from input noises and fails to handle
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Fig. 2. Framework Illustration. Neural design network consists of three modules:
relation prediction, bounding box prediction, and refinement. We illustrate the process
with a three-component example. In relation prediction module, the model takes
as inputs a graph with partial relations along with a latent vector (encoded from the
graph with complete relations during training, sampled from prior during testing),
and outputs a graph with complete relations. Only the graph with location relations is
shown in the figure for brevity. In layout generation module, the model takes a graph
with complete relations as inputs, and predicts the bounding boxes of components in
an iterative manner. In refinement module, the model further fine-tune the layout.

layout generation given a set of components with specified attributes, which is
the common setting in graphic design. The Layout Generative Network [33] is a
content-aware layout generation framework that can render layouts conditioned
on attributes of components. While the goals are similar, the conventional GAN-
based framework cannot explicitly model relationships among components and
user-specified constraints.

Graph Neural Networks in Vision. Graph Neural Networks (GNNs) [6,8,29]
aim to model dependence among nodes in a graph via message passing. GNNs
are useful for data that can be formulated in a graph data structure. Recently,
GNNs and related models have been applied to classification [20], scene graph
[2,15,23,32,34], motion modeling [13], and molecular property prediction [5,14],
to name a few. In this work, we model a design layout as a graph and apply
GNNs to capture the dependency among components.

3 Graphic Layout Generation

Our goal is to generate design layouts given a set of design components with user-
specified constraints. For example, in image ads creation, the designers can input
the constraints such as “logo at bottom-middle of canvas”, “call-to-action button
of size (100px, 500px)”, “call-to-action-button is below logo”, etc. The goal is to
synthesize a set of design layouts that satisfy both the user-specified constraints
as well as common rules in image ads layouts. Unlike layout templates, these
layouts are dynamically created and can serve as inspirations for designers.
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We introduce the neural design network using graph neural network and con-
ditional variational auto-encoder (VAE) [19,28] with the goal of capturing better
representations of design layouts. Figure 2 illustrates the process of generating a
three-component design with the proposed neural design network. In the rest of
this section, we first describe the problem overview in Sect. 3.1. Then we detail
three modules in NDN: the relation prediction (Sect. 3.2) and layout generation
modules (Sect. 3.3), and refinement module (Sect. 3.4).

3.1 Problem Overview

The inputs to our network are a set of design components and user-specified
constraints. We model the inputs as a graph, where each design component is
a node and their relationships are edges. In this paper, we study two common
relationships between design components: location and size.

Define G = {Gloc, Gsize} = (O,Eloc, Esize), where O = {o0, o1, ..., on} is a set
of n components with each oi ∈ C coming from a set of categories C. We use o0
to denote the canvas that is fixed in both location and size, and oi to denote
other design components that need to be placed on the canvas, such as logo,
button. Eloc = {l1 ..., lml

} and Esize = {s1 ..., sms
} are sets of directed edges with

lk = (oi, rl, oj) and sk = (oi, rs, oj), where rl ∈ Rloc and rs ∈ Rsize. Here, Rsize

specifies the relative size of the component, such as smaller or bigger, and rl can
be left, right, above, below, upper-left, lower-left, etc. In addition, if anchoring on
the canvas o0, we extend the Rloc to capture the location that is relative to the
canvas, e.g., upper-left of the canvas.

Furthermore, in reality, designers often do not specify all the constraints.
This results in an input graph with missing edges. Figure 2 shows an example
of a three-component design with only one specified constraint “(A, above, B)”
and several unknown relations “?”. To this end, we augment Rloc and Rsize

to include an additional unknown category, and represent graphs that contain
unknown size or location relations as Gp

size and Gp
loc, respectively, to indicate

they are the partial graphs. In Sect. 3.2, we describe how to predict the unknown
relations in the partial graphs.

Finally, we denote the output layout of the neural design network as a set
of bounding boxes {bb1, ..., bb|O|}, where bbi = {xi, yi, wi, hi} represents the
location and shape.

In all modules, we apply the graph convolutional networks on graphs. The
graph convolutional networks take as the input the features of nodes and edges,
and outputs updated features. The input features can be one-hot vectors repre-
senting the categories or any embedded representations.

More implementation details can be found in the supplementary material.

3.2 Relation Prediction

In this module, we aim to infer the unknown relations in the user-specified
constraints. Figure 2 shows an example where a three-component graph is given
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and we need to predict the missing relations between A, B, and C. For brevity,
we denote the graphs with complete relations as G, and the graphs with partial
relations as Gp, which can be either Gp

size or Gp
loc. Note that since the augmented

relations include the unknown category, both Gp and G are complete graphs in
practice. We also use ei to refer to either li or si depending on the context.

We model the prediction process as a paired graph-to-graph translation task:
from Gp to G. Since the translation is multimodal, i.e., a graph with partial rela-
tions can be translated to many possible graphs with complete relations. There-
fore, we adopt a similar framework to the multimodal image-to-image transla-
tion [35] and treat Gp as the source domain and G as the target domain. Similar
to [35], the translation is a conditional generation process that maps the source
graph, along with a latent code, to the target graph. The latent code is encoded
from the corresponding target graph G to achieve reconstruction during training,
and is sampled from a prior during testing. The conditional translation encoding
process is modeled as:

z = gc(G) z ∈ Z,

{hi} = gp(Gp, z) i = 1, ..., |Ẽ|,
{êi} = hpred({hi}) i = 1, ..., |E|,

(1)

where gc and gp are graph convolutional networks, and hpred is a relation pre-
dictor. In addition, Ẽ is the set of edges in the target graph. Note that |Ẽ| = |E|
since the graph is a complete graph.

The model is trained with the reconstruction loss Lcls = CE({êi}, {ei}) on the
relation categories, where the CE indicates cross-entropy function, and a KL loss
on the encoded latent vectors to facilitate sampling at inference time: LKL1 =
E[DKL((z)‖N (0, 1))], where DKL(p‖q) = − ∫

p(z) log p(z)
q(z)dz. The objective of

the relation prediction module is:

Lrel = λclsLcls + λKL1LKL1 . (2)

The reconstruction loss captures the knowledge that the predicted relations
should agree with the existing relations in Gp, and fill in any missing edge with
the most likely relation discovered in the training data.

3.3 Layout Generation

Given a graph with complete relations, this module aims to generate the design
layout by predicting the bounding boxes for all nodes in the graph.

Let G be the graph with complete relations constructed from Gsize and Gloc,
the output of the relation prediction module. We model the generation process
using a graph-based iterative conditional VAE model. We first obtain the features
of each component by

{fi}i=1∼|O| = genc(G), (3)

where genc is a graph convolutional network. These features capture the relative
relations among all components. We then predict bounding boxes in an iterative
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manner starting from an empty canvas (i.e., all bounding boxes are unknown).
As shown in Fig. 2, the prediction of each bounding box is conditioned on the
initial features as well as the current canvas, i.e., predicted bounding boxes from
previous iterations. At iteration k, the condition can be modeled as:

tk = ({fi}i=1∼|O|, {bbi}i=1∼k−1),
ck = gupdate(tk),

(4)

where gupdate is another graph convolutional network. tk is a tuple of features
and current canvas at iteration k, and ck is a vector. Then we apply conditional
VAE on the current bounding box bbk conditioned on ck.

z = henc
bb (bbk, ck),

b̂bk = hdec
bb (z, ck),

(5)

where henc
bb and hdec

bb represent encoders and decoders consisting of fully connected
layers. We train the model with conventional VAE loss: a reconstruction loss

Lrecon =
|O|∑

i=1

‖b̂bi − bbi‖1 and a KL loss LKL2 = E[DKL(p(z|ck, bbk)‖p(z|ck))].
The objective of the layout generation module is:

Llayout = λreconLrecon + λKL2LKL2 . (6)

The model is trained with teacher forcing where the ground truth bounding box
at step k will be used as the input for step k + 1. At test time, the model will
use the actual output boxes from previous steps. In addition, the latent vector z
will be sampled from a conditional prior distribution p(z|ck), where p is a prior
encoder.

Bounding Boxes with Predefined Shapes. In many design use cases, it is often
required to constrain some design components to fixed size. For example, the
logo size needs to be fixed in the ad design. To achieve this goal, we aug-
ment the original layout generation module with an additional VAE encoder
h̄enc
bb to ensure the encoded latent vectors z can be decoded to bounding boxes

with desired widths and heights. Similar to 5, given a ground-truth bound-
ing box bbk = (xk, yk, wk, hk), we obtain the reconstructed bounding box
b̂bk = (x̂k, ŷk, ŵk, ĥk) with h̄enc

bb and hdec
bb . Then, instead of applying reconstruc-

tion loss on whole bounding boxes tuples, we only enforce the reconstruction of
width and height with

Lsize
recon =

|O|∑

i=1

‖ŵi − wi‖1+‖ĥi − hi‖1. (7)

The objective of the augmented layout generation module is given by:

L′
layout = λsize

reconL
size
recon + Llayout. (8)
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3.4 Layout Refinement

We predict bounding boxes in an iterative manner that requires to fix the pre-
dicted bounding boxes from the previous iteration. As a result, the overall bound-
ing boxes might not be optimal, as shown in the layout generation module in
Fig. 2. To tackle this issue, we fine-tune the bounding boxes for better alignment
and visual quality in the final layout refinement module. Given a graph G with
ground-truth bounding boxes {bbi}, we simulate the misalignment by randomly
apply offsets δ ∼ U(−0.05, 0.05) on {bbi}, where U is the uniform distribution.
We obtain misaligned bounding boxes {b̄bi} = {bbi + δi}. We apply a graph
convolutional network gft for finetuning:

{b̂bi} = gft(G, {b̄bi}). (9)

The model is trained with reconstruction loss Lft =
∑

i‖{b̂bi} − {bbi}‖1.

4 Experiments and Analysis

Datasets. We perform the evaluation on three datasets:

– Magazine [33]. The dataset contains 4k images of magazine pages and 6
categories (texts, images, headlines, over-image texts, over-image headlines,
backgrounds).

– RICO [4,24]. The original dataset contains 91k images of the Android apps
interface and 27 categories. We choose 13 most frequent categories (toolbars,
images, texts, icons, buttons, inputs, list items, advertisements, pager indica-
tors, web views, background images, drawers, modals) and filter the number
of components within an image to be less than 10, totaling 21k images.

– Image banner ads. We collect 500 image banner ads of the size 300 × 250
via image search using keywords such as “car ads”. We annotate bounding
boxes of 6 categories: images, regions of interest, logos, brand names, texts,
and buttons.

Evaluated Methods. We evaluate and compare the following algorithms:

– sg2im [15]. The model is proposed to generate a natural scene layout from a
given scene graph. The sg2im method takes as inputs graphs with complete
relations in the setting where all constraints are provided. When we compare
with this method in the setting where no constraint is given, we simplify the
input scene graph by removing all relations. We refer the simplified model as
sg2im-none.

– LayoutVAE [16]. This model takes a label set as input, and predicts the
number of components for each label as well as the locations of each compo-
nent. We compare with the second stage of the LayoutVAE model (i.e., the
bounding box prediction stage) by giving the number of components for each
label. In addition, we refer to LayoutVAE-loo as the model that predicts the
bounding box of a single component when all other components are provided
and fixed (the leave-one-out setting).
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– Neural Design Network. We refer to NDN-none when the input
contains no prior constraint, NDN-all in the same setting as sg2im
when all constraints are provided, and NDN-loo in the same setting as
LayoutVAE-loo.

We do not compare our method with LayoutGAN [22] since LayoutGAN
generates outputs in an unconditional manner (i.e., generation from sampled
noise vectors). Even in the no-constraint setting, it is difficult to conduct fair
comparisons as multiple times of resampling are required to generate the same
combinations of components.

4.1 Implementation Details

In this work, henc
bb , hdec

bb , and hpred consists of 3 fully-connected layers. In addition,
gc, gp, genc, and gupdate consist of 3 graph convolution layers. The dimension of
latent vectors z in the relation prediction and layout generation module is 32. The
input features of nodes and edges are obtained from a dictionary mapping, which
is trained along with the model. For training, we use the Adam optimizer [18]
with batch size of 512, learning rate of 0.0001, and (β1, β2) = (0.5, 0.999). In
all experiments, we set the hyper-parameters as follows: λcls = 1, λKL1 = 0.005,
λrecon = λKL2 = 1, and λrecon = 10. We use a predefined order of component
sets in all experiments.

For the relation prediction module, the graphs with partial constraint are gen-
erated from the ground-truth graph with 0.2 − 0.9 dropout rate. For the layout
generation module, the input graphs with complete relations are constructed
from the ground-truth layouts. The location and size relations are obtained
by ground-truth bounding boxes. The corresponding outputs are the bounding
boxes from the ground-truth layouts.

Since the location relations are discretized and mutually exclusive, there
might be some ambiguity. For example, a component is both “above” and “right”
of another component when it is in the upper-right direction to the other. To
handle the ambiguity, we predefine the order when conflicts occur. Specifically,
“above” and “below” have higher priority than “left of” and “right of”.

More implementation details can be found in the supplementary material.

4.2 Quantitative Evaluation

Realism and Accuracy. We evaluate the visual quality following Fréchet
Inception Distance (FID) [10] by measuring how close the distribution of gen-
erated layout is to the real ones. We train a binary layout classifier to discrimi-
nate between good and bad layouts. The bad layouts are generated by randomly
moving component locations of good layouts. The classifier consists of four graph
convolution layers and three fully connected layers. The binary classifier achieves
classification accuracy of 94%, 90, and 95% on the Ads, Magazine, and RICO
datasets, respectively. We extract the features of the second from the last fully
connected layer to measure FID.
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Table 1. Quantitative comparisons. We compare the proposed method to other
works on three datasets using three settings: no-constraint setting that no prior con-
straint is provided (first row), all-constraint setting that all relations are provided
(second row), and leave-one-out setting that aims to predict the bounding box of a
component with ground-truth bounding boxes of other components provided. The FID
metric measures the realism and diversity, the alignment metric measures the alignment
among components, and the prediction error metric measures the prediction accuracy
in the leave-one-out setting.

Datasets Ads Magazine RICO

FID ↓ Align. ↓ FID ↓ Align. ↓ FID ↓ Align. ↓
sg2im-none 116.63 0.63 95.81 0.97 269.60 0.14

LayoutVAE 138.11± 38.91 1.21± 0.08 81.56± 36.78 .314± 0.11 192.11± 29.97 1.19± 0.39

NDN-none 129.68± 32.12 0.91± 0.07 69.43 ± 32.92 2.51± 0.09 143.51 ± 22.36 0.91± 0.03

sg2im 230.44 0.0069 102.35 0.0178 190.68 0.007

NDN-all 168.44 ± 21.83 0.61 ± 0.05 82.77 ± 16.24 1.51 ± 0.09 64.78 ± 11.60 0.32 ± 0.02

Pred. error ↓ Align. ↓ Pred. error ↓ Align. ↓ Pred. error ↓ Align. ↓
LayoutVAE-loo 0.071± 0.002 0.48± 0.01 0.059± 0.002 1.41± 0.02 0.045± 0.0021 0.39± 0.02

NDN-loo 0.043 ± 0.001 0.36 ± 0.01 0.024 ± 0.0002 1.30 ± 0.01 0.018 ± 0.002 0.14 ± 0.01

Real data - 0.0034 - 0.0126 - 0.0012

We measure FID in two settings. First, a model predicts bounding boxes with-
out any constraints. That is, only the number and the category of components
are provided. We compare with LayoutVAE and sg2im-none in this setting. Sec-
ond, a model predicts bounding boxes with all constraints provided. We compare
with sg2im in this setting since LayoutVAE cannot take constraints as inputs.
The first two rows in Table 1 present the results of these two settings. Since
LayoutVAE and the proposed method are both stochastic models, we generate
100 samples for each testing design in each trial. The results are averaged over
5 trials. In both no-constraint and all-constraint settings, the proposed method
performs favorably against the other schemes.

We also measure the prediction accuracy in the leave-one-out setting, i.e., pre-
dicting the bounding box of a component when bounding boxes of other com-
ponents are provided. We measure the accuracy by the L1 error between the
predicted and the ground-truth bounding boxes. The third row of Table 1 shows
the comparison to the LayoutVAE-loo method in this setting. The proposed
method gains better accuracy with statistical significance (≥95%), indicating
that the graph-based framework encodes better relations among components.

Alignment. Alignment is an important principle in design creation. In most
good designs, components need to be either in center alignment or edge align-
ment (e.g., left- or right-aligned). Therefore, in addition to realism, we explicitly
measure the alignment among components using:

1
ND

∑

d

∑

i

min
j,i�=j

{min(l(cdi , c
d
j ),m(cdi , c

d
j ), r(c

d
i , c

d
j )}), (10)



Neural Design Network: Graphic Layout Generation with Constraints 501

Table 2. Ablation on partial constraints and the refinement module. We
measure the FID and alignment of the proposed method taking different percentages
of prior constraints as inputs using the RICO dataset. We also show that the refinement
module can further improve the visual quality as well as the alignment.

Unary size (%) Binary size (%) Unary location (%) Binary location (%) Refinement FID ↓ Align. ↓
0 0 0 0 ✓ 143.51 ± 22.36 0.91 ± 0.03

20 20 0 0 ✓ 141.64 ± 20.01 0.87 ± 0.03

0 0 20 20 ✓ 129.92 ± 23.76 0.81 ± 0.03

20 20 20 20 126.18 ± 23.11 0.74 ± 0.02

20 20 20 20 ✓ 125.41 ± 21.68 0.70 ± 0.02

100 100 100 100 70.55 ± 12.68 0.36 ± 0.02

100 100 100 100 ✓ 64.78 ± 11.60 0.32 ± 0.02

Table 3. Components order. We com-
pare the performance of our model using
different strategies of deciding orders of
components. We evaluate the FID score on
the RICO dataset.

Order Size Occurrence Random

FID 132.84 136.22 143.51

Pred. error 1.08± 0.04 1.02± 0.04 0.91± 0.03

Table 4. Constraint consistency.
We measure the consistency of the
relations among generated components
and the user-specified constraints.

Dataset Ads Magazine RICO

Constraint
consistency (%)

96.8 95.9 98.2

where ND is the number of generated layouts, cdk is the kth component of the
dth layout. In addition, l, m, and r are alignment functions where the distances
between the left, center, and right of components are measured, respectively.

Table 1 presents the results in the no-constraint, all-constraint, and leave-one-
out settings. The results are also averaged over 5 trials. The proposed method
performs favorably against other methods. The sg2im-none method gets better
alignment score since it tends to predict bounding boxes in several fixed locations
when no prior constraint is provided, which leads to worse FID. For similar
reasons, the sg2im method gains a slightly higher alignment score on RICO.

Partial Constraints. Previous experiments are conducted under the settings
of either no constraints or all constraints provided. Now, we demonstrate the
efficacy of the proposed method on handling partial constraints. Table 2 shows
the results of layout prediction with different percentages of prior constraints
provided. We evaluate the partial constraints setting using the RICO dataset,
which is the most difficult dataset in terms of diversity and complexity. Ideally,
the FID and alignment scores should be similar regardless of the percentage of
constraints given. However, in the challenging RICO dataset, the prior informa-
tion of size and location still greatly improves the visual quality, as shown in
Table 2, The location constraints contribute to more improvement since they
explicitly provide guidance from the ground-truth layouts. As for the alignment
score, layouts in all settings perform similarly. Furthermore, the refinement mod-
ule can slightly improve the alignment score as well as FID.
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Fig. 3. Qualitative comparison. We evaluate the proposed method with the Lay-
outVAE and Sg2im methods in both no-constraint and all-constraint setting. The pro-
posed method can better model the relations among components and generate layouts
of better visual quality.

User Constraint Consistency. The major goal of the proposed model is to
generate layouts according to user-specified constraints. Therefore, we explicitly
measure the consistency between the relations among generated components and
the original user-specified constraints. Table 4 shows that the generated layouts
reasonably conform to the input constraints.

Order of Components. Since the proposed model predicts layouts in an iter-
ative manner, the order of the components plays an important role. We evaluate
our method using three different strategies of defining orders: ordered by size,
ordered by occurrences, and random order. We show the comparisons in Table 3.
We have a similar finding as in LayoutVAE that the order of components affects
the generation results. However, we use the random order in all our experiments
since our goal is not only to generate layouts, but also enable flexible user con-
trol. In user cases such as leave-one-out prediction and layout recommendation,
using random order can better align the training and testing scenarios.

4.3 Qualitative Evaluation

We compare the proposed method with related work in Fig. 3. In the all-
constraint setting, both the sg2im method and the proposed model can generate
reasonable layouts similar to the ground-truth layouts. However, the proposed
model can better tackle alignment and overlapping issues. In the no-constraint
setting, the sg2im-none method tends to place components of the same categories
at the same location, like the “text”s in the second row and the “text”s and “text
button”s in the third row. The LayoutVAE method, on the other hand, cannot
handle relations among components well without using graphs. The proposed
method can generate layouts with good visual quality, even with no constraint
provided.
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Fig. 4. Layout generation with partial user-specified constraints. We generate
layouts according to different user-specified constraints on location and size. Further-
more, we construct designs with real assets based on the generated layouts to better
visualize the quality of our model.

Partial Constraints. In Fig. 4, we present the results of layout generation given
several randomly selected constraints on size and location. Our model generates
design layouts that are both realistic and follows user-specified constraints. To
better visualize the quality of the generated layouts, we present designs with
real assets generated from the predicted layouts. Furthermore, we can constrain
the size of specific components to desired shapes (e.g., we fix the image and logo
size in the first row of Fig. 4.) using the augmented layout generation module.

Layout Recommendation. The proposed model can also help designers decide
the best locations of a specific design component (e.g., logo, button, or headline)
when a partial design layout is provided. This can be done by building graphs
with partial location and size relations based on the current canvas and set the
relations to target components as unknown. We then complete this graph using
the relation prediction module. Finally, conditioned on the predicted graph as
well as current canvas, we perform iterative bounding boxes prediction with the
layout generation module. Figure 5 shows examples of layout recommendations.

Failure Cases. Several reasons may lead to undesirable generation. First, due
to the limited amount of training data, the sampled latent vectors used for gen-
eration might locate in undersampled spaces that are not fully exploited during
training. Second, the characteristic of the set of components is too different from
the training data. For example, the lower-left image in Fig. 6 demonstrates a gen-
eration requiring three buttons and two logos, which are less likely to exist in
real designs.
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Fig. 5. Layout recommendation.
We show examples of layout recom-
mendations where locations of desired
components are recommended given
the current layouts.

Fig. 6. Failure cases. Generation
may fail when the sampled latent
vectors locate in under-sample spaces
or the characteristics of inputs differ
greatly from that in the training data.

5 Conclusion and Future Work

In this work, we propose a neural design network to handle design layout gen-
eration given user-specified constraints. The proposed method can generate lay-
outs that are visually appealing and follow the constraints with a three-module
framework, including a relation prediction module, a layout generation module,
and a refinement module. Extensive quantitative and qualitative experiments
demonstrate the efficacy of the proposed model. We also present examples of
constructing real designs based on generated layouts, and an application of lay-
out recommendation.

Visual design creation is an impactful but understudied topic in our com-
munity. It is extremely challenging. Our work is among one of the first works
tackling graphic design in a well-defined setting that is reasonably close to the
real use case. However, graphic design is a complicated process involving con-
tent attributes such as color, font, semantic labels, etc. Future directions may
include content-aware graphic design or fine-grained layout generation beyond
the bounding box.

Acknowledgements. This work is supported in part by the NSF CAREER Grant
#1149783.
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Abstract. Open set recognition is an emerging research area that aims
to simultaneously classify samples from predefined classes and identify
the rest as ‘unknown’. In this process, one of the key challenges is to
reduce the risk of generalizing the inherent characteristics of numerous
unknown samples learned from a small amount of known data. In this
paper, we propose a new concept, Reciprocal Point, which is the poten-
tial representation of the extra-class space corresponding to each known
category. The sample can be classified to known or unknown by the
otherness with reciprocal points. To tackle the open set problem, we
offer a novel open space risk regularization term. Based on the bounded
space constructed by reciprocal points, the risk of unknown is reduced
through multi-category interaction. The novel learning framework called
Reciprocal Point Learning (RPL), which can indirectly introduce the
unknown information into the learner with only known classes, so as to
learn more compact and discriminative representations. Moreover, we
further construct a new large-scale challenging aircraft dataset for open
set recognition: Aircraft 300 (Air-300). Extensive experiments on mul-
tiple benchmark datasets indicate that our framework is significantly
superior to other existing approaches and achieves state-of-the-art per-
formance on standard open set benchmarks.

1 Introduction

Recent error rate for classification task by Deep Convolutional Neural Network
has surpassed the human-level performance [9]. Such a significant improvement
promotes its attempts in real-world applications. However, a robust recognition
system should not only be able to identify all test instances of the seen or known
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Fig. 1. (a): How to identify a cat in open set problem? Most methods focus on learn-
ing the representative potential feature of cats as prototypes. In contrast, Reciprocal
Points, representative potential feature of non-cat, identify the cat by otherness. (b):
(1) Focusing only on known information, it is hard to reduce open space risk without
unknown information. (2) The extra-class space represented by Reciprocal Points can
bring more connections with unknown.

classes, but also be able to handle unknown samples or novel events that have not
been seen. Recent works on open set recognition [23] have formalized the process
for performing recognition in the setting that labels the input as one of the known
classes or as unknown. Apart from returning the most likely category, the robust
recognition system must also support the rejection of unseen/unknown. An open
set scenario has classes in testing phase that are not seen during training, which
brings great difficulties to solve open set recognition.

In the majority of deep neural networks, the last layer for multiclass recogni-
tion is the SoftMax function which produces a probability distribution over the
known classes. However, the SoftMax layer brings a significant difficulty to open
set recognition because of its closed nature. Bendale et al. [2] improves SoftMax
to OpenMax to estimate the probability of unknown classes but does not opti-
mize for unknown classes during the training phase. Potential solutions to the
open set recognition should optimize for unknown classes, as well as the known
classes [23]. More knowledge of unknown information can facilitate reducing of
open space risk. Many methods [8,19,21,26] utilize generative models for gen-
erating samples as unknown. However, Nalisnick et al. [18] finds the instability
of the mainstream generation models to the open set problem. How to model
open space risk with only known training data is still an urgent problem to be
solved. For example, as shown in Fig. 1(a), how to identify a cat in open set
problem. Most classification methods pay attention to “what is a cat?”. They
look for a more representative feature of the cat. Yang et al. [25] proposes con-
volutional prototype learning (CPL) to solve the multiclass recognition problem
in the open world. For neural networks, each known class k exists in its own way.
Although focusing only on known samples can reduce the intra-class distance, it
is still inevitable that it will bring open space risks because the dark information
in the unknown space cannot be considered at all. In addition, for each known
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category k, most unknown samples obviously belong to the space of non-k and
their features should be more similar to the representation of non-k correspond-
ingly for neural networks, which means that the corresponding unknown infor-
mation is more implicit in each non-k embedding space. Therefore, we further
focus on “what is not a cat?” to learn representations in the form of one more
latent vector of non-cat data. The new representation is called Reciprocal Point,
which can bring more connections with unknown by exploring each extra-class
space.

Based on the exploration of the extra-class space, we propose a novel frame-
work, termed as Reciprocal Point Learning (RPL), which can effectively reduce
the open space risk by bounded space while learning reciprocal points of each
known class, and the whole framework of the proposed method is shown in Fig. 2.
Specifically, we extract the feature of each sample with a deep Convolutional
Neural Network model. Since the reciprocal point is the learnable representa-
tion of the extra-class space, we classify the input by the otherness between the
embedding feature and the reciprocal point. Then we extend the model to cap-
ture the risk of the unknown based on reciprocal points by a novel open space risk
regularization term. The extra-class embedding space of each known class is lim-
ited to a bounded range through the reciprocal point and the learnable margin.
When multiple classes interact with each other in the training stage, all known
classes are not only pushed to the periphery of the space by the corresponding
reciprocal point but also pulled in a certain bounded range by other reciprocal
points. Finally, the embedding space of the network is limited to a bounded
range. All known classes are distributed around the periphery of the embed-
ding space, and the unknown samples are limited to the internal bounded space.
The bounded domain by RPL can prevent the neural network from generating
arbitrarily high confidence for unknown [10]. Although only known samples are
available during the training stage, the interval between known and unknown
classes is separated by reciprocal points indirectly. The advantage of RPL is
that it can shrink unknown space while considering the known space classifica-
tion and form a good bouned feature space distribution in which the magnitudes
of unknown samples are lower than those of known samples.

Moreover, in order to facilitate the research of open set recognition in the
real visual world, we further construct a new large-scale aircraft dataset from
the Internet: Aircraft 300 (Air-300), which contains 320,000 annotated colored
images from 300 different classes in total. Note that each category contains 100
images at least, and a maximum of 10,000 images, which leads to the long tail
distribution of our proposed dataset. Compared with the existing benchmark
datasets, the tailored Air-300 dataset maintains a long tail distribution to sim-
ulate the real visual world, and can also be utilized to perform fine-grained
classification and object recognition.

To summarize our contributions: (1) we propose a new concept, Reciprocal
Point, which is the potential representation of the extra-class space correspond-
ing to each known category. (2) Meanwhile, we offer a novel framework for learn-
ing open set network. Through introducing unknown information by reciprocal
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Fig. 2. An overview of the proposed Reciprocal Point Learning (RPL) approach to open
set recognition. The extra-class embedding space of each known class is limited to a
bounded range through the reciprocal point and the learnable margin. With interaction
of multiple classes, the known classes are pushed to the periphery of the feature space,
and the unknown classes are limited in the bounded space.

points, the neural network can learn more compact and robust feature space,
and separate known space and unknown space effectively. (3) Then, we further
introduce a new challenging large-scale dataset with long-tailed distribution, Air-
300, which is a new dataset to tailor for open set recognition. (4) The results on
multiple benchmark datasets show that our approach significantly outperforms
other existing state-of-the-art deep open set classifiers.

2 Related Work

Open Set Recognition. Inspired by a classifier with rejection option [1,3,27],
Scheirer et al. [23] define the open set recognition problem for the first time
and propose a base framework to perform training and evaluation. The deep
neural network has achieved great success in many areas and is introduced to
open set recognition by Bendale et al. [2]. They prove threshold on SoftMax
probability does not yield a robust model for open set recognition. Openmax
[2] detects unknown classes by modeling distance of activation vectors, which
are from the mean penultimate vector of each class with EVT. Ge et al. [8]
propose G-Openmax, a direct extension of Openmax, which trains deep neural
networks with unknown samples generated by generative models. However, this
method does not extend to tasks that generate modeling difficulties. Yoshihashi
et al. [26] addresses deep reconstruction-based representation learning in open
set recognition by adding image reconstructed as a regularizer. However, this
method introduces auxiliary decoder network for training, which brings addi-
tional overhead to training.

Out-of-Distribution Detection. Based on the concern for safety of AI sys-
tems, the detection of out-of-distribution (OOD) examples, one of the concerns
regarding the distribution shift, is first introduced by Hendrycks et al. in [11].
OOD is the detection of samples that do not belong to the training set but



Learning Open Set Network with Discriminative Reciprocal Points 511

can appear during testing [11]. Several works [11,12,15,16] seek to address these
problems by giving deep neural network classifiers a means of assigning anomaly
scores to inputs, which are used for detecting OOD. Hendrycks et al. [11] demon-
strated that anomalous samples had a lower maximum softmax probability than
in-distribution samples based on a deep, pre-trained classifier. Liang et al. [16]
propose ODIN to allow more effective detection by using temperature scaling
and adding small perturbations to the input. Similar with G-Openmax, De Vries
et al. [12] utilize generative models for generating most effective samples from
out-of-distribution and deriving a new OOD score form this branch. Hendrycks
et al. [12] propose Outlier Exposure, which uses an auxiliary dataset in order
to teach the network better representations for anomaly detection. Detecting
out-of-distribution (OOD) is related to the rejection of unknown classes in open
set recognition (OSR). They all are studying separating in-distribution (known)
and out-of distribution (unkown) [11,23].

Prototype Learning. Prototypes are learnable representations in the form of
one or more latent vector per class. Wen et al. [24] proposed a center loss to
learn centers for deep features of each identity and used the centers to reduce
intra-class variance. It can enhance the discrimination power of features. Yang
et al. in [25] propose Convolutional Prototype Learning (CPL) for robust classifi-
cation. Moreover, a Generalized CPL (GCPL) with prototype loss was proposed
as a regularization to improve the intra-class compactness of the feature repre-
sentation. However, center loss and GCPL only explicitly encourage intra-class
compactness. Conversely, the reciprocal point limits the embedding space outside
each known class to bounded space. Known and unknown classes are separated
by maximizing otherness between known and corresponding reciprocal points.

3 Reciprocal Point Learning

3.1 Preliminaries

We first establish preliminaries related to open set learning, following which we
formally formulate the proposed idea. Suppose we are given a set of n labeled
samples DL = {(x1, y1), . . . , (xn, yn)} where yi ∈ {1, . . . , N} is the label of xi

and a larger amount of test data DT = {t1, . . . , tu} where the label of ti belong
to {1, . . . , N} ∪ {N + 1, . . . , N + U} and U is the number of unknown classes in
actual scenarios. We then denote the embedding space of category k as Sk and
its corresponding open space as Ok = R

d − Sk, where R
d is the d-dimensional

full space. In order to formalize and then manage open space risk finely, we
further address the positive open space from other known classes as Opos

k and
the remaining infinite unknown space as negative open space Oneg

k , namely Ok =
Opos

k ∪ Oneg
k .

The Open Set Recognition Problem. For simplicity, we will first introduce
the open set recognition of a single class and then extend the entire learning
process to a multiclass form. Given the labeled data DL with N known classes, let
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samples from category k be positive training data Dk
L (space Sk), samples from

other known classes be negative training data D �=k
L (space Opos

k ), and samples
from R

d but except DL be potential unknown data DU (space Oneg
k ). Let ψk :

R
d �→ {0, 1} be a binary measurable prediction function, mapping embedding x

to the label y. For 1-class open set recognition problem, the overall goal is to
optimize a discriminant binary function ψk by minimizing the expected error Rk

as:
arg min

ψk

{Rk | Rε(ψk,Sk ∪ Opos
k ) + α · Ro(ψk,Oneg

k )} (1)

where α is a positive regularization parameter, Rε is the empirical classifica-
tion risk on known data and Ro is the open space risk function to measure
the uncertainty of labeling the unknown samples as the class of interest or as
unknown, with further formulating as a non-zero integral function on space Oneg

k .
Afterwards we identify open set recognition problem by integrating multiple

binary classification tasks (one vs. rest) into a multiclass recognition problem
(see Fig. 2), by summarizing the expected risk defined in the Eq.(1) category by
category, i.e.

∑N
k=1 Rk, which leads to the following formulation as:

arg min
f∈H

{Rε(f,DL) + α ·
∑N

k=1
Ro(f,DU )} (2)

where f : R
d �→ N is a measurable multiclass recognition function (see more

details of derivation in supplementary material). According to the Eq. (2), solv-
ing the open set recognition problem is equivalent to minimize the combination of
the empirical classification risk on labeled known data and the open space risk on
potential unknown data simultaneously, over the space of allowable recognition
functions, which leads to be more distinguishable between known and unknown
spaces. Further, we propose reciprocal points for both closed set classification
and reducing the open space risk on DU during training.

3.2 Reciprocal Points for Classification

The reciprocal points for category k are denoted as Pk = {pk
i |i = 1, . . . , M},

where M is the number of reciprocal points for each class and Pk can be regarded
as the set of latent representations for the sub-dataset D �=k

L ∪ DU (space Ok).
Unlike the learning driven by prototype or center loss, we agree the fact that most
samples from the classes in Ok are more similar to the classificatory reciprocal
points Pk than samples from Sk, which can be formulated as:

∀d ∈ ζ(Pk, Dk
L), max(ζ(Pk, D �=k

L ∪ DU )) ≤ d (3)

where ζ(·, ·) calculates a set of distances of all samples between two sets and
max(·) is a maximal function.

In fact, the most intuitive goal of open set learning is usually to separate
known and unknown spaces as much as possible. To achieve this, for any category
k, we propose to separate the two mutually exclusive space by maximizing the
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distance between the reciprocal points of the category and its corresponding
known samples. Specifically, we optimize a set of d-dimensional representations
Pk, or reciprocal points, of each class through an embedding function fθ with
learnable parameters θ. Given the sample x and classificatory reciprocal points
Pk, we calculate the distance between them with the formulation as:

d(fθ(x),Pk) =
1
M

∑M

i=1
||fθ(x) − pk

i ||22 (4)

Afterwards, based on the distance we propose above, our framework estimates
the otherness between the embedding feature fθ(x) and the reciprocal points
Pk of all known classes to determine which category it belongs to. Actually,
following the nature of reciprocal points, the probability of sample x belongs
to category k is proportional to the otherness between fθ(x) and the reciprocal
points of category k, i.e. p(y = k|x) ∝ d(fθ(x),Pk), which means the greater
the distance between fθ(x) and Pk, the greater the probability that x will be
assigned with label k. According to the sum-to-one property, we embody the
final probability as:

p(y = k|x, fθ,P) =
eγd(fθ(x), Pk)

∑N
i=1 eγd(fθ(x), Pi)

(5)

where γ is a hyper-parameter that controls the hardness of probability assign-
ment. Learning proceeds by minimizing the reciprocal points classification loss
based negative log-probability of the true class k via SGD as:

Lc(x; θ,P) = − log p(y = k|x, fθ,P) (6)

which can be further seen as integrating multiple binary classification tasks to
solve the multiclass open set recognition problem. Through minimizing Eq. (6),
on the one hand, maximizing the otherness between known data DL and recip-
rocal points set P has a facilitating effect on maximizing the interval between
closed space Sk and open space Ok, which is consistent with our initial goal. On
the other hand, corresponding to Rε(f,DL) in the Eq. 2, the reciprocal points
classification loss reduces the empirical classification risk through the reciprocal
points.

3.3 Reducing Open Space Risk

In solving the open set recognition problem, in addition to utilizing the reciprocal
points loss to manage the empirical risk, we also further reduce the open space
risk Ro(f,DU ) in Eq. 2 with introducing a regularization term. According to the
notion of open set in Sec. 3.1, each particular category k has positive open space
Opos

k and infinite negative open space Oneg
k respectively. For multiclass open-set

recognition scenarios, we further union multiple class-wise open spaces into a
global open space OG as:

OG =
⋂N

k=1
(Opos

k ∪ Oneg
k ) (7)
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Algorithm 1. The reciprocal point learning algorithm.
Input: Training data {xi}. Initialized parameters θ in convolutional layers. Parameters

P and R in loss layers, respectively. Hyperparameter λ, γ and learning rate μ. The
number of iteration t ← 0.

Output: The parameters θ, P and R.
1: while not converge do
2: t ← t + 1.
3: Compute the joint loss by Lt = Lt

c + λ · Lt
o.

4: Compute the backpropagation error ∂Lt

∂xt for each i by ∂Lt

∂xt =
∂Lt

c
∂xt + λ · ∂Lt

o
∂xt .

5: Update the parameters P by Pt+1 = Pt − μt · ∂Lt

∂Pt = Pt − μt · ( ∂Lt
c

∂Pt + λ · ∂Lt
o

∂Pt ).

6: Update the parameters R by Rt+1 = Rt − μt · ∂Lt

∂Rt = Rt − λ · μt · ∂Lt
o

∂Rt .

7: Update the parameters θ by θt+1 = θt − μt · ∂Lt

∂θt = θt − μt · ( ∂Lt
c

∂θt + λ · ∂Lt
o

∂θt ).
8: end while

where we would restrict the total open space risk for all known classes. Moreover,
based on the principle of maximum entropy, for an unknown sample xu without
any prior information, a well-trained closed-set discriminant function tends to
assign known labels to xu with equal probability, which leads to the deep neural
networks usually embed unknown samples into the inside of known spaces rather
than random positions in the full space. This phenomenon is also consistent with
the observation of [6] and our visualization results shown in Fig. 4.

Obviously, the idea of which wants to manage open space risk by restricting
the open space to a bounded space directly is almost impossible because the
open space contains a large number of potentially unknown samples. However,
considering space Sk and Ok are complementary with each other, we indirectly
bound the open space risk by constraining the distance between samples from
Sk and reciprocal points Pk to a certain extent as:

Lo(x; θ,Pk, Rk) =
1
M

·
M∑

i=1

||d(fθ(x), pk
i ) − Rk||22 (8)

where Rk is the learnable margin in our framework. Specifically, minimizing the
Eq. (8) is equivalent to making Rk and ζ(Dk

L, Pk) in Eq. (3) as close as possible,
so that the following formula is established as:

max(ζ(D �=k
L ∪ DU , Pk)) ≤ Rk (9)

Considering bounded space B(Pk, Rk) with the reciprocal points Pk as cen-
ters and Rk as its corresponding intervals, in order to separate known and
unknown space, we further utilize these bounded spaces to approximate the
global unknown space OG as much as possible. As a result, calculating the regu-
larization loss with Eq. (8) can be viewed as managing open space risk Ro(f,DU )
in Eq. (6).
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3.4 Learning Open Set Network

Finally, the overall loss function of reciprocal points learning combines the empir-
ical classification risk and reducing open space risk as:

L(x; θ,P, R) = Lc(x; θ,P) + λLo(x; θ,P, R) (10)

where λ is a hyper-parameter of controlling the weight of reducing open space
risk module and θ,P, R represent the learnable parameters of our framework.
As shown in Fig. 2, learning open set recognition problem with Eq. (10) results
in pushing the known spaces to the periphery of global open space and then
separating the two spaces as much as possible. In Algorithm 1, we summarize
the learning details of the open set network with joint supervision.

How to Detect Unknown Classes? Samples from a class on which the net-
work was not trained would have probability scores distributed across all the
known classes [6]. Similar to thresholding softmax scores in [11], we agree that
unknown samples have a closer distance with all reciprocal points than samples
of known training classes based on a deep classifier. Therefore, the probability
that test instance x belongs to known classes is proportional to the distance
between the test instance and the farthest reciprocal point corresponding to
category k:

p(known|x) ∝ max
k∈{1,...,N}

d(f(x),Pk) (11)

The models for open set problem focus on two key questions, Q1) what is a good
score for open-set identification? (i.e., identifying a class as known or unknown),
and given a score, Q2) what is a good operating threshold for the model? [21]. Fur-
thermore, since how rare or common samples from unknown space is not known
in the actual scenario, the approaches to open set recognition which require
an arbitrary threshold or sensitivity for comparison is unreasonable [19]. Thus,
we utilize the difference between known and unknown distribution to measure
the learned models’ ability to detect unknown, which provides a calibration-free
measure of detection performance.

4 Experiments

4.1 Experiments for Open Set Identification

Evaluation Metrics. The evaluation protocol defined in [19] is considered and
Area Under the Receiver Operating Characteristic (AUROC) curve is used as
evaluation metric. AUROC is a threshold-independent metric [4]. It can be inter-
preted as the probability that a positive example is assigned a higher detection
score than a negative example [7]. Following the protocol in [19], we report the
AUROC averaged over five randomized trials.

Network Architecture. Except for RPL-WRN, the encoder and decoder archi-
tecture for this experiment is same to the architecture used in [19]. For a fair
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Table 1. The AUROC results of open set identification. The second column shows the
backbone for each method, including Encoder (E) or Decoder (D). The architecture
used to infer the unknown class are highlighted in bold. Values other than RPL are
taken from [21]. RPL++ means using GCPL to assist RPL training. Best performing
methods are highlighted in bold.

Method Backbone MNIST SVHN CIFAR10 CIFAR+10 CIFAR+50 TinyImageNet

Softmax E 97.8 88.6 67.7 81.6 80.5 57.7

Openmax [2] E 98.1 89.4 69.5 81.7 79.6 57.6

RPL E 98.9 93.4 82.7 84.2 83.2 68.8

RPL++ E 99.3 95.1 86.1 85.6 85.0 70.2

G-OpenMax [8] E + E + D 98.4 89.6 67.5 82.7 81.9 58.0

OSRCI [19] E + E + D 98.8 91.0 69.9 83.8 82.7 58.6

C2AE [21] E + D 98.9 92.2 89.5 95.5 93.7 74.8

RPL-WRN E(WRN) 99.6 96.8 90.1 97.6 96.8 80.9

comparison, we trained RPL with a Wide-ResNet [28] with depth 40, width 4
and dropout 0, WRN-40-4. The parameters of WRN-40-4 are about 9M , which
is less than the networks of C2AE [21] and OSRCI [19]. λ for RPL is set to 0.1
in the training stage. More details in the supplementary material.

Datasets. Similar to [21], we provide a simple summary of these protocols for
each dataset.

– MNIST, SVHN, CIFAR10. For MNIST [14], SVHN [20] and CIFAR10
[13], by randomly sampling 6 known classes and 4 unknown classes.

– CIFAR+10, CIFAR+50. For CIFAR+N experiments, 4 classes are sam-
pled from CIFAR10 for training. N non-overlapping classes are used as
unknown, which are sampled from the CIFAR100 dataset [13].

– TinyImageNet. For experiments with TinyImageNet [22], 20 known classes
and 180 unknown classes are randomly sampled for evaluation.

Result Comparisons. As shown in Table 1, RPL outperforms other methods
based on encoder in [19] in all datasets. Noted that RPL with only using known
training samples and a single encoder outperforms methods based on encoder
and decoder in MNIST and SVHN. With less information and simple training
method, RPL achieves better performance than OSRCI [19] and G-OpenMax [8]
using generation-based model on all datasets. Furthermore, we need fewer net-
work parameters and a more simple strategy for training to identify unknown
classes. RPL-WRN has similar parameters to C2AE model and performs signif-
icantly better than other recent state-of-the-art methods in SVHN, CIFAR, and
TinyImageNet. It shows that open set network trained by RPL learns better
scores for identifying known and unknown classes.

4.2 Experiments for Open Long-Tailed Recognition

Datasets. In real visual world, the frequency distribution of visual classes
is long-tailed, with a few common classes and many more rare classes [17].
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To simulate natural data distribution, we adopt ImageNet-LT [17] and a new
image datasets, Air-300, to evaluate our algorithm for open set identification.
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Fig. 3. (a) The overview of Air-300. (b) The number of images with classes.

ImageNet-LT. ImageNet-LT is a long-tailed version of the original ImageNet-
2012 [5]. It has 115.8K images from 1000 categories, with maximally 1280 images
per class and minimally 5 images per class. The test set contains the open set
based on the additional classes of images in ImageNet-2010.

Aircraft 300 Dataset. To facilitate research on open set recognition and eval-
uate the performance of different approaches, we further construct a new large-
scale dataset from the Internet, Aircraft 300 (Air-300), which contains 320,000
annotated colour images from 300 different classes in total, see thumbnails in
Fig. 3a briefly. Each category contains 100 images at least, and a maximum of
10,000 images, which leads to the long tail distribution as shown in Fig. 3b.
According to the number of images in each category, we then divide all classes
into two parts with 180 known classes for training and 120 novel unknown classes
for testing respectively. Furthermore, we aggregate 300 different aircraft mod-
els into 10 super classes according to their roles, such as a bomber, fighter,
helicopter and so on. As such, each image is annotated with a fine-grain label
(the sub-class category) and a coarse-grain label (the superclasss category) by
human. Note we also split these 10 superclasses into two parts for coarse-grain
open set recognition. Compared with the existing benchmark datasets, the tai-
lored Air-300 dataset is not only much larger and brings new challenges to open
set recognition, but also can be utilized to perform fine-grain classification and
object recognition respectively.

Evaluation Metrics. The AUROC and AUPR are adopted for evaluation,
AUPR-Known and AUPR-Unknown denote the area under the precision-recall
curve where known and unknown are specified as positives, respectively.

Network Architecture. All methods are trained based on WRN-40-4 for Air-
300 and ResNet50 for ImageNet-LT [17]. We optimize GCPL performance to
best by adjusting its parameters. More details in the supplementary material.
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Table 2. Test accuracy and open set identification of different methods on Air-300.

Method Air-300 (WRN-40-4) ImageNet-LT (ResNet50)

Acc AUROC AUPR-K AUPR-U Acc AUROC AUPR-K AUPR-U

Softmax 85.7 77.1 85.8 48.0 37.8 53.3 45.0 60.5

GCPL 84.5 79.1 88.0 61.3 37.1 54.5 45.7 61.9

RPL λ = 0 84.6 64.6 78.5 43.6 38.7 55.0 46.0 62.5

λ = 0.01 87.9 82.5 89.3 68.9 39.0 55.0 46.0 62.5

λ = 0.1 88.8 83.1 89.3 70.2 39.0 55.1 46.1 62.7

λ = 1 86.7 81.7 87.5 69.7 38.2 54.4 45.7 61.6

RPL++ 89.0 84.1 90.1 72.7 39.7 55.2 46.2 62.7

Result Comparisons. Table 2 shows the test accuracy of known classes and
the performance of open set identification on Air-300 and ImageNet-LT. Under
the λ = 0.1 settings, RPL has greatly improved in all evaluations compared
to softmax and GCPL. For air-300, RPL not only improves the classification
accuracy of closed set, but also is about 6% higher than softmax in AUROC.
ImageNet-LT has more categories and fewer training samples, which makes it
very challenging for open set recognition. It is difficult to detect unknown when
the accuracy of closed set is not so well, but RPL still improves the performance
of classification and open set identification by nearly 2%. It shows that RPL is
effective for the open set problem of long tail distribution.

4.3 Further Analysis

Analysis of Reducing Open Space Risk.

RPL vs. Softmax. Reciprocal points classification loss term (the first part of
Eq. 2) defines constraints for reciprocal point. However, similar to softmax, the
learned representation is still linear separable only with this classification loss.
See Fig. 4a and 4b, reciprocal points without Lo are learned to the origin, while
RPL with Lo can achieve better distribution (shown in Fig. 4d). For softmax
and RPL without Lo, there is a significant overlap between the known and the
unknown classes, so as to the neural network views unknown samples as some
known classes with high confidence. In contrast, the whole feature space learned
by RPL with Lo is in a limited range (1–6 in abscissa for unknowns and 5–8
in abscissa for knowns in Fig. 4d), which prevents high confidence in unknown
classes.

RPL vs. GCPL. As shown in Fig. 4c, GCPL used the prototypes to reduce
intra-class variance. However, without considering the unknown, GCPL extends
unknown classes to the whole feature space, resulting in a significant overlap with
known. By introducing Lo, different known categories are spread to the periph-
ery of the space, while unknown categories are restricted to the interior. It can be
seen that a clear gap is maintained between the two types of samples (known vs.
unknown) in Fig. 4d. RPL improves the robustness of neural networks by pre-
venting the misjudgment of the unknown class through the bounded restriction,
thereby enhancing and stabilizing the classification of known categories.
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(a) Softmax (b) RPL(λ = 0) (c) GCPL (d) RPL(λ = 0.1)

Fig. 4. (1) The first row is visualization in the learned feature space of MNIST as
known and FashionMNIST as unknown. Gray shapes are data of unknown, and circles
in color are data of known samples. Different colors represent different classes. Col-
ored stars and triangles represent the prototypes and the reciprocal points learned of
different known categories, respectively. (2) The second row is the maximum distance
distribution between features and prototypes or reciprocal points.

Margin and λ. See Table 2, the performance of RPL is related to the setting of
λ. With the increase of λ, RPL has greatly improved on open set identification.
However, when λ is too big, the accuracy of known classes will decrease slightly,
which is related to Lo limiting the size of the whole feature space, while the
learning margin in RPL can show the size of the whole feature space. Figure 5a
shows the variation trend of margin with λ. With the increase of λ, the learned
margin becomes smaller, and the limitation of Lo on feature space also tends
larger. Different training data need different reasonable margins and space sizes
to ensure that known and unknown can be classified correctly. Figure 5a proves
that the margin increases with the number of known classes with fixed lambda.
Reasonable λ can effectively control the interaction among known classes, by
learning the more appropriate embedding space size.

Experiments with Multiple Reciprocal Points. Figure 5b shows the impact
of increasing the number of reciprocal points on open set identification to detect
rare unknown classes. We can observe that the performance of open set identifi-
cation is relatively stable. The performance is slightly improved when employing
8 reciprocal points. Based on a good feature space distribution, increasing the
number of reciprocal points for each known category can slightly improve the
ability of the neural networks to distinguish unknown. However, too many recip-
rocal points will bring more training overhead and affect performance.

Combination of Reciprocal Point and Prototype. The reciprocal point can
push known classes to the periphery in the limited feature space, thereby improv-
ing the performance of the open set identification. We deem that the reciprocal
point and the prototype are opposite and complementary. Here we combine the
reciprocal point and the prototype, as RPL++. In the training phase of RPL, we
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(a) (b)

Fig. 5. (a) The trend of margin with λ and the number of known classes. (b) is the
variation trend of testing performance with multiple reciprocal points for open set
identification in Air-300. The abscissa represents the number of reciprocal points.

add prototypes and further train reciprocal points and prototypes by RPL and
prototype loss [25]. As shown in Table 1, RPL++ achieves better performance
than RPL. Moreover, the prototype further improves the performance of RPL
on open long-tailed recognition in Table 2. The reciprocal points form an excel-
lent embedding space structure, then the prototype further narrows intra-class
variance, to further divide the known classes and the unknown classes.

5 Conclusion

This paper proposes a new concept, Reciprocal Point, which is the potential rep-
resentation of the extra-class space corresponding to each known category. We
also propose a novel learning framework towards open set learning. The app-
roach introduces unknown information by reciprocal points, to optimize a better
feature space to separate known and unknown. Comprehensive experiments con-
ducted on multiple datasets demonstrate that our method outperforms previous
state-of-the-art open set classifiers in all cases. We also publish a open long-
tailed dataset, the Air-300, which is a challenging dataset to simulate natural
data distribution for open set recognition and other visual tasks.
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Abstract. Recently, implicit neural representations have gained popu-
larity for learning-based 3D reconstruction. While demonstrating promis-
ing results, most implicit approaches are limited to comparably simple
geometry of single objects and do not scale to more complicated or large-
scale scenes. The key limiting factor of implicit methods is their simple
fully-connected network architecture which does not allow for integrating
local information in the observations or incorporating inductive biases
such as translational equivariance. In this paper, we propose Convolu-
tional Occupancy Networks, a more flexible implicit representation for
detailed reconstruction of objects and 3D scenes. By combining convo-
lutional encoders with implicit occupancy decoders, our model incorpo-
rates inductive biases, enabling structured reasoning in 3D space. We
investigate the effectiveness of the proposed representation by recon-
structing complex geometry from noisy point clouds and low-resolution
voxel representations. We empirically find that our method enables the
fine-grained implicit 3D reconstruction of single objects, scales to large
indoor scenes, and generalizes well from synthetic to real data.

1 Introduction

3D reconstruction is a fundamental problem in computer vision with numerous
applications. An ideal representation of 3D geometry should have the following
properties: a) encode complex geometries and arbitrary topologies, b) scale to
large scenes, c) encapsulate local and global information, and d) be tractable in
terms of memory and computation.

Unfortunately, current representations for 3D reconstruction do not satisfy all
of these requirements. Volumetric representations [25] are limited in terms of res-
olution due to their large memory requirements. Point clouds [9] are lightweight
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(a) Occupancy Network [26]

(b) Conv. Occupancy Network (c) Reconstruction on Matterport3D [1]

Fig. 1. Convolutional Occupancy Networks. Traditional implicit models (a) are
limited in their expressiveness due to their fully-connected network structure. We pro-
pose Convolutional Occupancy Networks (b) which exploit convolutions, resulting in
scalable and equivariant implicit representations. We query the convolutional features
at 3D locations p ∈ R

3 using linear interpolation. In contrast to Occupancy Networks
(ONet) [26], the proposed feature representation ψ(p,x) therefore depends on both the
input x and the 3D location p. Figure (c) shows a reconstruction of a two-floor building
from a noisy point cloud on the Matterport3D dataset [1].

3D representations but discard topological relations. Mesh-based representations
[13] are often hard to predict using neural networks.

Recently, several works [3,26,27,31] have introduced deep implicit represen-
tations which represent 3D structures using learned occupancy or signed distance
functions. In contrast to explicit representations, implicit methods do not dis-
cretize 3D space during training, thus resulting in continuous representations
of 3D geometry without topology restrictions. While inspiring many follow-
up works [10,11,23,24,28–30,41], all existing approaches are limited to single
objects and do not scale to larger scenes. The key limiting factor of most implicit
models is their simple fully-connected network architecture [26,31] which neither
allows for integrating local information in the observations, nor for incorporating
inductive biases such as translation equivariance into the model. This prevents
these methods from performing structured reasoning as they only act globally
and result in overly smooth surface reconstructions.

In contrast, translation equivariant convolutional neural networks (CNNs)
have demonstrated great success across many 2D recognition tasks including
object detection and image segmentation. Moreover, CNNs naturally encode
information in a hierarchical manner in different network layers [50,51]. Exploit-
ing these inductive biases is expected to not only benefit 2D but also 3D tasks,
e.g., reconstructing 3D shapes of multiple similar chairs located in the same
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room. In this work, we seek to combine the complementary strengths of convo-
lutional neural networks with those of implicit representations.

Towards this goal, we introduce Convolutional Occupancy Networks, a
novel representation for accurate large-scale 3D reconstruction1 with continu-
ous implicit representations (Fig. 1). We demonstrate that this representation
not only preserves fine geometric details, but also enables the reconstruction of
complex indoor scenes at scale. Our key idea is to establish rich input features,
incorporating inductive biases and integrating local as well as global informa-
tion. More specifically, we exploit convolutional operations to obtain translation
equivariance and exploit the local self-similarity of 3D structures. We system-
atically investigate multiple design choices, ranging from canonical planes to
volumetric representations. Our contributions are summarized as follows:

– We identify major limitations of current implicit 3D reconstruction methods.
– We propose a flexible translation equivariant architecture which enables accu-

rate 3D reconstruction from object to scene level.
– We demonstrate that our model enables generalization from synthetic to real

scenes as well as to novel object categories and scenes.

Our code and data are provided at https://github.com/autonomousvision/
convolutional occupancy networks.

2 Related Work

Learning-based 3D reconstruction methods can be broadly categorized by the
output representation they use.

Voxels: Voxel representations are amongst the earliest representations for
learning-based 3D reconstruction [5,46,47]. Due to the cubic memory require-
ments of voxel-based representations, several works proposed to operate on mul-
tiple scales or use octrees for efficient space partitioning [8,14,25,37,38,42]. How-
ever, even when using adaptive data structures, voxel-based techniques are still
limited in terms of memory and computation.

Point Clouds: An alternative output representation for 3D reconstruction is 3D
point clouds which have been used in [9,21,34,49]. However, point cloud-based
representations are typically limited in terms of the number of points they can
handle. Furthermore, they cannot represent topological relations.

Meshes: A popular alternative is to directly regress the vertices and faces of
a mesh [12,13,17,20,22,44,45] using a neural network. While some of these
works require deforming a template mesh of fixed topology, others result in
non-watertight reconstructions with self-intersecting mesh faces.

Implicit Representations: More recent implicit occupancy [3,26] and distance
field [27,31] models use a neural network to infer an occupancy probability

1 With 3D reconstruction, we refer to 3D surface reconstruction throughout the paper.

https://github.com/autonomousvision/convolutional_occupancy_networks
https://github.com/autonomousvision/convolutional_occupancy_networks
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or distance value given any 3D point as input. In contrast to the aforemen-
tioned explicit representations which require discretization (e.g., in terms of the
number of voxels, points or vertices), implicit models represent shapes continu-
ously and naturally handle complicated shape topologies. Implicit models have
been adopted for learning implicit representations from images [23,24,29,41],
for encoding texture information [30], for 4D reconstruction [28] as well as for
primitive-based reconstruction [10,11,15,32]. Unfortunately, all these methods
are limited to comparably simple 3D geometry of single objects and do not scale
to more complicated or large-scale scenes. The key limiting factor is the simple
fully-connected network architecture which does not allow for integrating local
features or incorporating inductive biases such as translation equivariance.

Notable exceptions are PIFu [40] and DISN [48] which use pixel-aligned
implicit representations to reconstruct people in clothing [40] or ShapeNet
objects [48]. While these methods also exploit convolutions, all operations are
performed in the 2D image domain, restricting these models to image-based
inputs and reconstruction of single objects. In contrast, in this work, we propose
to aggregate features in physical 3D space, exploiting both 2D and 3D convo-
lutions. Thus, our world-centric representation is independent of the camera
viewpoint and input representation. Moreover, we demonstrate the feasibility of
implicit 3D reconstruction at scene-level as illustrated in Fig. 1c.

In concurrent work, Chibane et al.[4] present a model similar to our convo-
lutional volume decoder. In contrast to us, they only consider a single variant of
convolutional feature embeddings (3D), use lossy discretization for the 3D point
cloud encoding and only demonstrate results on single objects and humans, as
opposed to full scenes. In another concurrent work, Jiang et al. [16] leverage
shape priors for scene-level implicit 3D reconstruction. In contrast to us, they
use 3D point normals as input and require optimization at inference time.

3 Method

Our goal is to make implicit 3D representations more expressive. An overview
of our model is provided in Fig. 2. We first encode the input x (e.g., a point
cloud) into a 2D or 3D feature grid (left). These features are processed using
convolutional networks and decoded into occupancy probabilities via a fully-
connected network. We investigate planar representations (a + c + d), volumetric
representations (b + e) as well as combinations thereof in our experiments. In
the following, we explain the encoder (Sect. 3.1), the decoder (Sect. 3.2), the
occupancy prediction (Sect. 3.3) and the training procedure (Sect. 3.4) in more
detail.

3.1 Encoder

While our method is independent of the input representation, we focus on 3D
inputs to demonstrate the ability of our model in recovering fine details and
scaling to large scenes. More specifically, we assume a noisy sparse point cloud
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(e.g., from structure-from-motion or laser scans) or a coarse occupancy grid as
input x.

We first process the input x with a task-specific neural network to obtain a
feature encoding for every point or voxel. We use a one-layer 3D CNN for vox-
elized inputs, and a shallow PointNet [35] with local pooling for 3D point clouds.
Given these features, we construct planar and volumetric feature representations
in order to encapsulate local neighborhood information as follows.

(a) Plane Encoder

(b) Volume Encoder

(c) Convolutional Single-Plane Decoder

(d) Convolutional Multi-Plane Decoder

(e) Convolutional Volume Decoder

Fig. 2. Model Overview. The encoder (left) first converts the 3D input x (e.g.,
noisy point clouds or coarse voxel grids) into features using task-specific neural net-
works. Next, the features are projected onto one or multiple planes (Fig. 2a) or into
a volume (Fig. 2b) using average pooling. The convolutional decoder (right) pro-
cesses the resulting feature planes/volume using 2D/3D U-Nets to aggregate local and
global information. For a query point p ∈ R

3, the point-wise feature vector ψ(x,p) is
obtained via bilinear (Fig. 2c and Fig. 2d) or trilinear (Fig. 2e) interpolation. Given
feature vector ψ(x,p) at location p, the occupancy probability is predicted using a
fully-connected network fθ(p, ψ(p,x)).

Plane Encoder. As illustrated in Fig. 2a, for each input point, we perform an
orthographic projection onto a canonical plane (i.e., a plane aligned with the
axes of the coordinate frame) which we discretize at a resolution of H ×W pixel
cells. For voxel inputs, we treat the voxel center as a point and project it to
the plane. We aggregate features projecting onto the same pixel using average
pooling, resulting in planar features with dimensionality H × W × d, where d is
the feature dimension.



528 S. Peng et al.

In our experiments, we analyze two variants of our model: one variant where
features are projected onto the ground plane, and one variant where features
are projected to all three canonical planes. While the former is computationally
more efficient, the latter allows for recovering richer geometric structure in the
z dimension.

Volume Encoder. While planar feature representations allow for encoding at
large spatial resolution (1282 pixels and beyond), they are restricted to two
dimensions. Therefore, we also consider volumetric encodings (see Fig. 2b) which
better represent 3D information, but are restricted to smaller resolutions (typi-
cally 323 voxels in our experiments). Similar to the plane encoder, we perform
average pooling, but this time over all features falling into the same voxel cell,
resulting in a feature volume of dimensionality H × W × D × d.

3.2 Decoder

We endow our model with translation equivariance by processing the feature
planes and the feature volume from the encoder using 2D and 3D convolutional
hourglass (U-Net) networks [6,39] which are composed of a series of down- and
upsampling convolutions with skip connections to integrate both local and global
information. We choose the depth of the U-Net such that the receptive field
becomes equal to the size of the respective feature plane or volume.

Our single-plane decoder (Fig. 2c) processes the ground plane features with a
2D U-Net. The multi-plane decoder (Fig. 2d) processes each feature plane sepa-
rately using 2D U-Nets with shared weights. Our volume decoder (Fig. 2e) uses a
3D U-Net. Since convolution operations are translational equivariant, our output
features are also translation equivariant, enabling structured reasoning. More-
over, convolutional operations are able to “inpaint” features while preserving
global information, enabling reconstruction from sparse inputs.

3.3 Occupancy Prediction

Given the aggregated feature maps, our goal is to estimate the occupancy prob-
ability of any point p in 3D space. For the single-plane decoder, we project each
point p orthographically onto the ground plane and query the feature value
through bilinear interpolation (Fig. 2c). For the multi-plane decoder (Fig. 2d),
we aggregate information from the 3 canonical planes by summing the features
of all 3 planes. For the volume decoder, we use trilinear interpolation (Fig. 2e).

Denoting the feature vector for input x at point p as ψ(p,x), we predict the
occupancy of p using a small fully-connected occupancy network:

fθ(p, ψ(p,x)) → [0, 1] (1)

The network comprises multiple ResNet blocks. We use the network architecture
of [29], adding ψ to the input features of every ResNet block instead of the more
memory intensive batch normalization operation proposed in earlier works [26].
In contrast to [29], we use a feature dimension of 32 for the hidden layers. Details
about the network architecture can be found in the supplementary.
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3.4 Training and Inference

At training time, we uniformly sample query points p ∈ R
3 within the volume of

interest and predict their occupancy values. We apply the binary cross-entropy
loss between the predicted ôp and the true occupancy values op:

L(ôp, op) = −[op · log(ôp) + (1 − op) · log(1 − ôp)] (2)

We implement all models in PyTorch [33] and use the Adam optimizer [19] with
a learning rate of 10−4. During inference, we apply Multiresolution IsoSurface
Extraction (MISE) [26] to extract meshes given an input x. As our model is
fully-convolutional, we are able to reconstruct large scenes by applying it in a
“sliding-window” fashion at inference time. We exploit this property to obtain
reconstructions of entire apartments (see Fig. 1).

4 Experiments

We conduct three types of experiments to evaluate our method. First, we perform
object-level reconstruction on ShapeNet [2] chairs, considering noisy point
clouds and low-resolution occupancy grids as inputs. Next, we compare our app-
roach against several baselines on the task of scene-level reconstruction using
a synthetic indoor dataset of various objects. Finally, we demonstrate synthetic-
to-real generalization by evaluating our model on real indoor scenes [1,7].

Datasets

ShapeNet [2]: We use all 13 classes of the ShapeNet subset, voxelizations,
and train/val/test split from Choy et al.[5]. Per-class results can be found in
supplementary.

Synthetic Indoor Scene Dataset: We create a synthetic dataset of 5000
scenes with multiple objects from ShapeNet (chair, sofa, lamp, cabinet, table).
A scene consists of a ground plane with randomly sampled width-length ratio,
multiple objects with random rotation and scale, and randomly sampled walls.

ScanNet v2 [7]: This dataset contains 1513 real-world rooms captured with an
RGB-D camera. We sample point clouds from the provided meshes for testing.

Matterport3D [1]: Matterport3D contains 90 buildings with multiple rooms on
different floors captured using a Matterport Pro Camera. Similar to ScanNet,
we sample point clouds for evaluating our model on Matterport3D.

Baselines

ONet [26]: Occupancy Networks is a state-of-the-art implicit 3D reconstruction
model. It uses a fully-connected network architecture and a global encoding of
the input. We compare against this method in all of our experiments.

PointConv: We construct another simple baseline by extracting point-wise fea-
tures using PointNet++ [36], interpolating them using Gaussian kernel regres-
sion and feeding them into the same fully-connected network used in our app-
roach. While this baseline uses local information, it does not exploit convolutions.



530 S. Peng et al.

SPSR [18]: Screened Poisson Surface Reconstruction (SPSR) is a traditional 3D
reconstruction technique which operates on oriented point clouds as input. Note
that in contrast to all other methods, SPSR requires additional surface normals
which are often hard to obtain for real-world scenarios.

Table 1. Object-level 3D reconstruction from point clouds. Left: We report
GPU memory, IoU, Chamfer-L1 distance, normal consistency and F-Score for our app-
roach (2D plane and 3D voxel grid dimensions in brackets), the baselines ONet [26]
and PointConv on ShapeNet (mean over all 13 classes). Right: The training progression
plot shows that our method converges faster than the baselines.

GPU Memory IoU Chamfer-L1 Normal C. F-Score

PointConv 5.1G 0.689 0.126 0.858 0.644
ONet [26] 7.7G 0.761 0.087 0.891 0.785
Ours-2D (642) 1.6G 0.833 0.059 0.914 0.887
Ours-2D (3× 642) 2.4G 0.884 0.044 0.938 0.942
Ours-3D (323) 5.9G 0.870 0.048 0.937 0.933
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Metrics
Following [26], we consider Volumetric IoU, Chamfer Distance, Normal Consis-
tency for evaluation. We further report F-Score [43] with the default threshold
value of 1% unless otherwise specified. Details can be found in the supplementary.

4.1 Object-Level Reconstruction

We first evaluate our method on the single object reconstruction task on
ShapeNet [2]. We consider two different types of 3D inputs: noisy point clouds
and low-resolution voxels. For the former, we sample 3000 points from the mesh
and apply Gaussian noise with zero mean and standard deviation 0.05. For the
latter, we use the coarse 323 voxelizations from [26]. For the query points (i.e., for
which supervision is provided), we follow [26] and uniformly sample 2048 and 1024
points for noisy point clouds and low-resolution voxels, respectively. Due to the
different encoder architectures for these two tasks, we set the batch size to 32 and
64, respectively.

Reconstruction from Point Clouds. Table 1 and Fig. 3 show quantitative
and qualitative results. Compared to the baselines, all variants of our method
achieve equal or better results on all three metrics. As evidenced by the training
progression plot on the right, our method reaches a high validation IoU after only
few iterations. This verifies our hypothesis that leveraging convolutions and local
features benefits 3D reconstruction in terms of both accuracy and efficiency. The
results show that, in comparison to PointConv which directly aggregates features
from point clouds, projecting point-features to planes or volumes followed by
2D/3D CNNs is more effective. In addition, decomposing 3D representations
from volumes into three planes with higher resolution (642 vs. 323) improves
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Input PointConv ONet [26] Ours-2D Ours-2D Ours-3D GT mesh
(642) (3× 642) (323)

Fig. 3. Object-level 3D reconstruction from point clouds. Comparison of our
convolutional representation to ONet and PointConv on ShapeNet.

Table 2. Voxel super-resolution. 3D reconstruction results from low resolution
voxelized inputs (323 voxels) on the ShapeNet dataset (mean over 13 classes).

GPU memory IoU Chamfer-L1 Normal C. F-Score

Input –z 0.631 0.136 0.810 0.440

ONet [26] 4.8G 0.703 0.110 0.879 0.656

Ours-2D (642) 2.4G 0.652 0.145 0.861 0.592

Ours-2D (3 × 642) 4.0G 0.752 0.092 0.905 0.735

Ours-3D (323) 10.8G 0.752 0.091 0.912 0.729

performance while at the same time requiring less GPU memory. More results
can be found in supplementary.

Voxel Super-Resolution: Besides noisy point clouds, we also evaluate on the
task of voxel super-resolution. Here, the goal is to recover high-resolution details
from coarse (323) voxelizations of the shape. Table 2 and Fig. 4 show that
our method with three planes achieves comparable results over our volumetric
method while requiring only 37% of the GPU memory. In contrast to recon-
struction from point clouds, our single-plane approach fails on this task. We
hypothesize that a single plane is not sufficient for resolving ambiguities in the
coarse but regularly structured voxel input.

4.2 Scene-Level Reconstruction

To analyze whether our approach can scale to larger scenes, we now reconstruct
3D geometry from point clouds on our synthetic indoor scene dataset. Due to the
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Input ONet [26] Ours-2D Ours-2D Ours-3D GT mesh
(642) (3× 642) (323)

Fig. 4. Voxel super-resolution. Qualitative comparison between our method and
ONet using coarse voxelized inputs at resolution 323 voxels.

Table 3. Scene-level reconstruction on synthetic rooms. Quantitative compari-
son for reconstruction from noisy point clouds. We do not report IoU for SPSR as SPSR
generates only a single surface for walls and the ground plane. To ensure a fair com-
parison to SPSR, we compare all methods with only a single surface for walls/ground
planes when calculating Chamfer-L1 and F-Score.

IoU Chamfer-L1 Normal consistency F-Score

ONet [26] 0.475 0.203 0.783 0.541

PointConv 0.523 0.165 0.811 0.790

SPSR [18] – 0.223 0.866 0.810

SPSR [18] (trimmed) – 0.069 0.890 0.892

Ours-2D (1282) 0.795 0.047 0.889 0.937

Ours-2D (3 × 1282) 0.805 0.044 0.903 0.948

Ours-3D (323) 0.782 0.047 0.902 0.941

Ours-3D (643) 0.849 0.042 0.915 0.964

Ours-2D-3D (3 × 1282 + 323) 0.816 0.044 0.905 0.952

increasing complexity of the scene, we uniformly sample 10000 points as input
point cloud and apply Gaussian noise with standard deviation of 0.05. During
training, we sample 2048 query points, similar to object-level reconstruction.
For our plane-based methods, we use a resolution to 1282. For our volumetric
approach, we investigate both 323 and 643 resolutions. Hypothesizing that the
plane and volumetric features are complementary, we also test the combination
of the multi-plane and volumetric variants.

Table 3 and Fig. 5 show our results. All variants of our method are able to
reconstruct geometric details of the scenes and lead to smooth results. In con-
trast, ONet and PointConv suffer from low accuracy while SPSR leads to noisy
surfaces. While high-resolution canonical plane features capture fine details they
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Fig. 5. Scene-level reconstruction on synthetic rooms. Qualitative comparison
for point-cloud based reconstruction on the synthetic indoor scene dataset.
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are prone to noise. Low-resolution volumetric features are instead more robust to
noise, yet produce smoother surfaces. Combining complementary volumetric and
plane features improves results compared to considering them in isolation. This
confirms our hypothesis that plane-based and volumetric features are comple-
mentary. However, the best results in this setting are achieved when increasing
the resolution of the volumetric features to 643.

4.3 Ablation Study

In this section, we investigate on our synthetic indoor scene dataset different
feature aggregation strategies at similar GPU memory consumption as well as
different feature interpolation strategies.

Table 4. Ablation Study on Synthetic Rooms. We compare the performance
of different feature aggregation strategies at similar GPU memory in Table 4a and
evaluate two different sampling strategies in Table 4b.

GPU Memory IoU Chamfer-L1 Normal C. F-Score

Ours-2D (1922) 9.5GB 0.773 0.047 0.889 0.937
Ours-2D (3× 1282) 9.3GB 0.805 0.044 0.903 0.948
Ours-3D (323) 8.5GB 0.782 0.047 0.902 0.941

(a) Performance at similar GPU Memory

IoU Chamfer-L1 Normal C. F-Score

Nearest Neighbor 0.766 0.052 0.885 0.920
Bilinear 0.805 0.044 0.903 0.948

(b) Interpolation Strategy

Performance at Similar GPU Memory: Table 4a shows a comparison of
different feature aggregation strategies at similar GPU memory utilization. Our
multi-plane approach slightly outperforms the single plane and the volumetric
approach in this setting. Moreover, the increase in plane resolution for the single
plane variant does not result in a clear performance boost, demonstrating that
higher resolution does not necessarily guarantee better performance.

Feature Interpolation Strategy: To analyze the effect of the feature interpo-
lation strategy in the convolutional decoder of our method, we compare nearest
neighbor and bilinear interpolation for our multi-plane variant. The results in
Table 4b clearly demonstrate the benefit of bilinear interpolation.

4.4 Reconstruction from Point Clouds on Real-World Datasets

Next, we investigate the generalization capabilities of our method. Towards this
goal, we evaluate our models trained on the synthetic indoor scene dataset on
the real world datasets ScanNet v2 [7] and Matterport3D [1]. Similar to our
previous experiments, we use 10000 points sampled from the meshes as input.
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ScanNet v2: Our results in Table 5 show that among all our variants,
the volumetric-based models perform best, indicating that the plane-based
approaches are more affected by the domain shift. We find that 3D CNNs are
more robust to noise as they aggregate features from all neighbors which results
in smooth outputs. Moreover, all variants outperform the learning-based base-
lines by a significant margin.

Table 5. Scene-level reconstruction on ScanNet. Evaluation of point-based
reconstruction on the real-world ScanNet dataset. As ScanNet does not provide water-
tight meshes, we trained all methods on the synthetic indoor scene dataset. Remark: In
ScanNet, walls/floors are only observed from one side. To not wrongly penalize meth-
ods for predicting walls and floors with thickness (0.01 in our training set), we chose a
F-Score threshold of 1.5% for this experiment.

Chamfer-L1 F-Score

ONet [26] 0.398 0.390
PointConv 0.316 0.439
SPSR [18] 0.293 0.731
SPSR [18] (trimmed) 0.086 0.847

Chamfer-L1 F-Score

Ours-2D (1282) 0.139 0.747
Ours-2D (3× 1282) 0.142 0.776
Ours-3D (323) 0.095 0.837
Ours-3D (643) 0.077 0.886
Ours-2D-3D (3× 1282 + 323) 0.099 0.847

The qualitative comparison in Fig. 6 shows that our model is able to smoothly
reconstruct scenes with geometric details at various scales. While Screened
PSR [18] also produces reasonable reconstructions, it tends to close the resulting
meshes and hence requires a carefully chosen trimming parameter. In contrast,
our method does not require additional hyperparameters.

Matterport 3D Dataset. Finally, we investigate the scalability of our method
to larger scenes which comprise multiple rooms and multiple floors. For this
experiment, we exploit the Matterport3D dataset. Unlike before, we implement
a fully convolutional version of our 3D model that can be scaled to any size
by running on overlapping crops of the input point cloud in a sliding window
fashion. The overlap is determined by the size of the receptive field to ensure
correctness of the results. Figure 1 shows the resulting 3D reconstruction. Our
method reconstructs details inside each room while adhering to the room layout.
Note that the geometry and point distribution of the Matterport3D dataset
differs significantly from the synthetic indoor scene dataset which our model is
trained on. This demonstrates that our method is able to generalize not only
to unseen classes, but also novel room layouts and sensor characteristics. More
implementation details and results can be found in supplementary.
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Fig. 6. Scene-level reconstruction on ScanNet. Qualitative results for point-based
reconstruction on ScanNet [7]. All learning-based methods are trained on the synthetic
room dataset and evaluated on ScanNet.
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5 Conclusion

We introduced Convolutional Occupancy Networks, a novel shape representa-
tion which combines the expressiveness of convolutional neural networks with
the advantages of implicit representations. We analyzed the tradeoffs between
2D and 3D feature representations and found that incorporating convolutional
operations facilitates generalization to unseen classes, novel room layouts and
large-scale indoor spaces. We find that our 3-plane model is memory efficient,
works well on synthetic scenes and allows for larger feature resolutions. Our vol-
umetric model, in contrast, outperforms other variants on real-world scenarios
while consuming more memory.

Finally, we remark that our method is not rotation equivariant and only
translation equivariant with respect to translations that are multiples of the
defined voxel size. Moreover, there is still a performance gap between synthetic
and real data. While the focus of this work was on learning-based 3D reconstruc-
tion, in future work, we plan to apply our novel representation to other domains
such as implicit appearance modeling and 4D reconstruction.
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Abstract. Epipolar constraints are at the core of feature matching and
depth estimation in current multi-person multi-camera 3D human pose
estimation methods. Despite the satisfactory performance of this formu-
lation in sparser crowd scenes, its effectiveness is frequently challenged
under denser crowd circumstances mainly due to two sources of ambi-
guity. The first is the mismatch of human joints resulting from the sim-
ple cues provided by the Euclidean distances between joints and epipo-
lar lines. The second is the lack of robustness from the naive formu-
lation of the problem as a least squares minimization. In this paper,
we depart from the multi-person 3D pose estimation formulation, and
instead reformulate it as crowd pose estimation. Our method consists
of two key components: a graph model for fast cross-view matching,
and a maximum a posteriori (MAP) estimator for the reconstruction of
the 3D human poses. We demonstrate the effectiveness and superiority
of our proposed method on four benchmark datasets. Our code is avail-
able at: https://github.com/HeCraneChen/3D-Crowd-Pose-Estimation-
Based-on-MVG.

Keywords: 3D pose estimation · Occlusion · Correspondence problem

1 Introduction

Fast 3D human pose estimation for crowded scenes is an important component in
many computer vision applications such as autonomous driving, surveillance, and
robotics [12,17,26,29–31,41,43,47]. However, recovering 3D human pose from
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crowded real-world setting is a challenging endeavor due to the inherent depth
ambiguity caused by 2D to 3D backprojections, self-occlusions, and occlusions
by other people in crowded scenes [1,25,38]. A three-step process is commonly
used in the multi-person multi-camera 3D pose estimation problem: 1) Detecting
human body keypoints or parts in separate 2D views; 2) Matching people across
different views; 3) Reconstructing 3D pose by triangulation. Unfortunately, the
critical second step of matching people across different views is non-trivial. Well-
known matching algorithms such as the Harris corner detector [19] and the Scale
Invariant Feature Transform (SIFT) [35] give mostly wrong matches even after
robust estimation with RANSAC [18]. The problem is further aggravated in
the third step when these unreliable matches are used in a vanilla triangulation
algorithm to recover the 3D points.

With the rapid development of deep learning, features are extracted more
precisely and significant improvements are made for appearance-based feature
matching across different viewpoints on the spatial level or different frames on
the temporal level [34,40,48]. Despite the improvements, these methods are sub-
optimal for the task of people matching across multiple views in crowded sce-
narios. The reasons are threefold. Firstly, intra-class variation of human body
appearance is relatively smaller than objects such as architectural features or
graffiti paintings, and thus more outliers can result if the aforementioned meth-
ods are deployed directly. Secondly, dense feature matching across whole images
is usually computationally inefficient for applications such as autonomous driv-
ing, where real-time is one of the primary concerns. Thirdly, appearance-based
matching has a lower correctness criterion than people-based matching across
multiple views. On the other hand, it is interesting to note that the level of
occlusion in the same object can differ drastically among different views. There-
fore, it is reasonable to trust the slightly occluded views more than the highly
occluded views in the process of triangulation.

In this paper, we propose a 3D crowd human pose estimation method based
on multi-view geometry. Specifically, we focus on overcoming the bottlenecks of
multi-person 3D pose estimation and pushing it further to dense crowd 3D pose
estimation. To this end, we propose the matching of feet across multiple views
to improve the accuracy of body joint correspondences. We first modify a 2D
pose estimation network, i.e. the joint-candidates single person pose estimation
(SPPE) [28] to include additional joints for the feet. Subsequently, we find the
best matches of the feet across multiple views, and then extend the correspon-
dences to the other joints using the kinematic chain of the human body. We
cast the matching problem as a binary linear program and solve it efficiently
with the Jonker-Volgenant algorithm [22]. Finally, we improve the robustness
of triangulation by formulating the problem as a maximum a posteriori (MAP)
estimation that weighs the likelihood term with the uncertainty of the 2D joint
observation and enforces a prior on the average bone lengths of the estimated 3D
human poses. We evaluate our proposed method on four challenging benchmark
datasets. Experimental results show that our method outperforms all existing
algorithms on these datasets.
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Our main contributions in this work are summarized as follows:

– Design a simple and efficient people matching mechanism based on feet assign-
ment across different views, which is applicable for dense crowds.

– Propose a more robust triangulation for 3D crowd reconstruction using MAP
estimation that accounts for the uncertainty of 2D joint detection and enforces
the average 3D bone lengths.

– Define a problem of crowd 3D human pose estimation, and argue its exis-
tence as a separate problem from multi-person multi-camera 3D human pose
estimation.

2 Related Work

Single-Person Human Pose Estimation. A large amount of literature exists
in this field due to the advancement of deep learning. We briefly summarize those
for 3D human pose which are more closely related to this work. State-of-the-art
methods can be divided into two categories, direct regression methods [10,21,36]
and indirect regression methods based on heat maps [20,27,37]. In [37], a coarse-
to-fine prediction scheme was developed by analyzing 3D human pose in a volu-
metric representation. Integral pose [42] unifies the heat map representation and
joint regression by replacing the non-differentiable argmax with integral opera-
tion. Regardless of the good performance, learning 3D pose from a single image
is still an ill-posed problem. Instead of finding one exact solution, [27] developed
a multimodal mixture density network, so that multiple feasible solutions are
found before refining into one solution. The authors of [20] proposed a volu-
metric aggregation from intermediate 2D backbone feature maps and combines
3D information from multiple 2D views. The aforementioned methods obtained
state of the art performance for single person 3D pose estimation, but unfortu-
nately in the multi-person scenario, additional ambiguity makes these methods
suboptimal.

Multi-person Human Pose Estimation. Several recent works have focused
on multi-person scenarios in problem formulation either based on monocular set-
ting [44] or multi-view setting [2–5,13,24]. Results obtained from the multi-view
setting are generally more precise due to the additional information. However,
bottlenecks still exist in these multi-view based methods, i.e.how to cope with
the correspondence problem and how to make the triangulation of depth infor-
mation sufficiently robust against noise. In [24], epipolar constraints are directly
applied for people assignment among different views. This worked perfectly when
people in the scene stand far away from each other. However, this constraint is
likely to fail when the scenario gets crowded. For instance, if some epipolar line
of a particular joint happens to pass through several other people, it is hard
to make sure that no other joint is closer to the line than the correct matching
joint. The authors of [13] incorporated appearance cues by fusing re-identification
with epipolar constraints. However, the two kinds of constraints are still indepen-
dently considered. The 3D pictorial structure model [2,3] resolves ambiguities of
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mixed parts, occlusion, and false positives by building multi-view unary poten-
tials, while at the same time integrating prior model by pairwise and ternary
potential functions. This motivates our work in using MAP as a formulation to
cope with measurement noise in triangulation process.

Previous ‘multi-person’ methods work on relatively sparse crowds. In [28],
crowd pose estimation is firstly defined as a separate research field, but the
problem is defined in 2D. When extending to 3D, more uncertainties are intro-
duced. This encourages us to define the crowd pose estimation problem in 3D
and explore a potential solution in this paper.

Feature Matching and Correspondence Problem. Feature correspondence
in general raises stricter demand than feature matching due to the fact that both
appearance and location need to be taken into consideration. In [6], a globally-
optimal inlier set cardinality maximization approach is proposed to jointly esti-
mate optimal camera pose and optimal correspondences. [46] solves the corre-
spondence problem between two images by defining energy function measuring
data consistency and spatial regularity. In [14], Point-Line Minimal Problems
are thoroughly defined and analyzed. This provides a theoretical guidance to
solve the specific problem of point line matching for the people assignment task.

3 Our Method

Fig. 1. The pipeline of our proposed approach. See text for more detail.

Figure 1 shows an overview of our approach. Human bounding box proposals are
first obtained by an off-the-shelf detection network, and then fed into a modified
SPPE network (Sect. 3.1) to estimate the 2D joints. Subsequently, we get the
multi-view joint correspondences by solving a combinatorial optimization prob-
lem via graph matching (Sect. 3.2). Finally, the 3D crowd poses are reconstructed
using a MAP formulation (Sect. 3.3) solved by the trust region method [11].

3.1 2D Pose Estimation

We leverage on the recently proposed CrowdPose network [28] trained on the
CrowdPose Dataset [28] for 2D pose detection on the input images. The Crowd-
Pose network follows a top-down framework. It first detects the bounding boxes
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of individual persons using YOLOv3 [39], and then performs joint-candidate
SPPE and a global maximum joints association algorithm to estimate the 2D
joints. Similar to other 2D pose estimation methods, the accuracy of the joint
detection drops as it moves farther away from the center of a person (i.e. the
‘hip’ joint) despite the state-of-the-art performance of [28] on the benchmark
datasets. As a result, detection of the ‘ankle’ joints, which are usually used to
represent feet, are especially noisy. To mitigate this problem, we follow [7] in
adding 6 additional joints on the feet (3 on each foot) and modify the loss func-
tion of the network into the weighted sum of the mean square error (i.e. MSE[.,.])
from the body joints and the feet joints as follows:

L =
1

I + 6λ

{
I∑

i=1

MSE
[
Pi

h,Ti
h + μCi

h

]
+ λ

I+7∑
i=I+1

MSE
[
Pi

h,Ti
h + μCi

h

]}
. (1)

I stands for the number of joints of the body part excluding the 6 joints rep-
resenting the feet (e.g. I = 17 for MSCOCO [32]). Pi

h and Ti
h represents the

output heatmap and the heatmap of the target joints, respectively, for the ith

joint of the hth person. Ci
h represents detections of the same joint type from

other persons that might be within the bounding box of the hth person. We
include Ci

h into the loss function to learn a multi-modal heatmap Pi
h. μ is the

attention factor in the range of [0, 1] to control the extent of the contribution of
Ci

h, which we set to 0.5 in all our implementations. We set λ > 1, so that the 6
additional joints on the feet receive more attention during training. Our network
is trained on the Human Foot Keypoint Dataset [7].

3.2 Multi-view Correspondence with Graph Matching

Previous methods [13,24] apply epipolar constraints to all joints in order to
solve the correspondence problem. We argue that this can give a suboptimal
solution when the crowd becomes denser. This is because the epipolar line that
corresponds to a joint in one view is likely to pass through multiple joints in
the other view for a crowded scene. Consequently, this ambiguity renders the
Euclidean distance between the epipolar line and joints to be a less ideal metric.
We circumvent this challenge by casting the joint correspondence problem into a
feet assignment problem. Specifically, we first establish the feet that belong to a
same person across the multiple views, and then grow the joint correspondences
from the feet using the kinematic chain of the human body.

Feet Assignment. We propose to use feet assignment to realize people match-
ing as shown in Fig. 2(a). The core intuition is that prior information, appearance
constraints, location constraints are naturally fused in such setting. We use the
fact that at least one foot is on the ground when a person is walking as the prior
information. The detected joints of the feet as described in Sect. 3.1 are used
as the appearance information. To incorporate location constraints, we use the
homographies between all view pairs to rectify the ground planes among different
views into a common reference. We denote the homography between the ground
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planes of view j and k as Hj,k. Consequently, we can directly compare the joints
of the feet across different views. We get ≥4 point correspondences between the
ground plane of each pair of view j and k to compute Hj,k. It is interesting to
note that applying the homography to all pixels in the image, we might get a
twisted image which appear to be strange at first glance. This is based on the
prior that this ‘the world is 3D’. However, if we change the prior into ‘the world
is 2D’, and treat everything as chalk art drawn on the ground, then everything
in the rectified image starts to look reasonable. In this light, the problem of joint
matching boils down to feet assignment.

Graph Building. A naive search for the optimal feet assignment is intractable
due to the large combinatorial search space. To improve the efficiency of the
search, we build a complete bipartite graph from the feet across two views and
solve it as a linear assignment problem. Let Vj = {vij : ∀i ∈ {1, . . . , aj}} denote
the set of pair-of-feet in view j. vij is the detected pair-of-feet with index i in
view j, and aj is the total number of detected pair-of-feet in view j. We further
denote the set of edges in the complete bipartite graph for the pair of views j and
k as Ej,k = {el,m : ∀l ∈ {1, . . . , aj},m ∈ {1, . . . , ak}}. The complete bipartite
graph for each pair of views can then be formally written as:

Kaj ,ak
= ((Vj ,Vk), Ej,k), (2)

Optimal Cross-view Matching. Based on this construction, our goal becomes
finding a subgraph G ⊂ Kaj ,ak

by eliminating edges in the graph that represent
the unlikely correspondences. We solve this edge elimination problem as a binary
linear program that minimizes the total edge costs subjected to a set of linear
constraints, i.e.

min
d

aj∑
l=1

ak∑
m=1

cl,m · dl,m

s.t.
aj∑
l=1

cl,m ≤ 1,

ak∑
m=1

cl,m ≤ 1,

aj∑
l=1

dl,m = 1,

ak∑
m=1

dl,m = 1, d ∈ {0, 1}aj×ak .

(3)

dl,m ∈ d is a binary variable that represents the selection of the edge el,m when
it is equals to 1. cl,m is the cost of selecting the edge el,m, which we define as:

cl,m = k1 · |pl − Hj,k · pm| + k2 · ||vl|| − ||vm|| + k3 ·
(

vl × vm

|vl| · |vm|
)

, (4)

where pl and pm respectively represents the location of two pairs of feet, Hj,k

represents the homography matrix between the two views j and k, vl and vm

represent vectors of strides. k1, k2, k3 are hyper parameters to adjust the impor-
tance between the foot location, stride size, and stride direction. The metric is
visualized in Fig. 2(b).



3D Crowd Pose Estimation Based on MVG 547

Solver. We use the Jonker-Volgenant algorithm [22] as the solver to find the
solution to the two-view feet assignment problem formulated in Eq. 3. We ensure
consistency of the assignment across multiple views by resolving the conflict in
the correspondences with priority given to edges with lower edge cost as defined
in Eq. 4. A directed graph where the skeleton is a spanning union of disjoint
cycles is obtained when the matching across n views is successful. Our matching
algorithm has a time complexity of O((2N)3) = O(8N3), where N is the num-
ber of persons per image. In contrast, the O(n4) implementation of Hungarian
algorithm has a total time complexity of O((17N)4) on 17 joints. Although the
constant term is usually considered unimportant for time complexity analysis, it
cannot be neglected in this study since N < 30 usually holds. Thus, our method
is significantly faster.

Fig. 2. People matching using feet assignment. (a) The matching process across n
views, and (b) visualization of edge cost defined in Eq. 4.

3.3 3D Crowd Pose Reconstruction

Under the assumption that the camera parameters are known, we can recon-
struct the 3D human poses by triangulation of the joint correspondences across
the multiple views obtained from the previous section. One naive method of tri-
angulation is to directly minimize the squared sum of perpendicular distances
between the epipolar line and the detected joint. We refer to this naive method
as the vanilla triangulation method. This is a classical method that works well in
single person scenarios. However, in occluded scenes, the 2D joints are noisy and
might have shifts of a few pixels. Consequently, this breaks the correspondence
across multiple views and causes the 3D reconstructed points to be unreliable.
We formulate a MAP optimization to mitigate the problem from the unreli-
able correspondences, where we model the likelihood with the 2D measurement
uncertainty and use the prior term to constrain the bone lengths of the estimated
body poses.
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MAP Optimization. The ultimate goal of the proposed method is to estimate
3D coordinates of human joints. We formulate this as a MAP over the latent 3D
poses Q, i.e.

QMAP = argmax
Q

N∏
i=1

P (Qi)
M∏
j=1

O∏
k=1

P (qijk | Pk, Qij), (5)

where N is the total number of persons in the scene, M is the number of joints
per person, and O is the total number of camera views. qijk is the jth 2D joint
of the ith person in the kth camera view. Qij ∈ Qi is the jth 3D joint from the
3D pose Qi ∈ Q of the ith person in the scene. Pk is the projection matrix of the
kth camera. The likelihood term is given by the following Gaussian distribution:

P (qijk | Pk, Qij) =
1

2πσijk
exp

{
−‖qijk − α(Pk, Qij)‖2

2σijk
2

}
, (6)

where σijk = f(sibbox, skheatmap, qijk) is the uncertainty of the jth 2D joint qijk
computed from the bounding box sibbox of the ith person and the output heatmap
of the image from the kth view. ‖qijk − α(Pk, Qij)‖ is the reprojection error
computed from the 2D joint qijk and the normalized coordinates of the 3D joint
Qij projected into the image of the kth view given by α(., .). The prior term is
defined as:

P (Qi) =
L∏

l=1

1
2πσl

exp

{
−

∥∥blref − bli
∥∥2

2σ2
l

}
, (7)

where bli represents the lth bone length between two 3D joints in the ith person,
and blref represents the average length of the lth bone. L is the total number
of bones in the human body representation. σl is the standard deviation in the
length of the lth bone. Intuitively, the prior term enforces the bone lengths of
the estimated 3D human pose to be close to the average lengths.

Initialization and Solver. We initialize the iterative MAP optimization with
the vanilla triangulation. Subsequently, we use the trust region method [11]
as a solver for the MAP optimization. In addition, we empirically observe that
performing the maximum likelihood estimation (MLE) with the initialized values
as an intermediate step before MAP improves the final estimation of the 3d
human poses.

4 Experiments

We evaluate our proposed method on four public datasets. These datasets consist
of scenarios that include autonomous driving and surveillance with challenging
situations such as moving camera and heavy occlusions.
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4.1 Datasets

LOEWENPLATZ [15]. This is a dataset of driving recorder scenario captured
in Zurich with two calibrated cameras. The dataset represents common scenarios
that autonomous driving cars are likely to experience everyday.

Chariot Mk I [16]. This is a dataset captured by hand-held cameras. The
cameras are moving and shaking, which resemble real-life scenarios from the
perspective of the pedestrians.

Wildtrack [9]: This dataset emulates surveillance scenarios with the set-up
of 7 fixed cameras. All cameras are fully calibrated, i.e. known intrinsics and
extrinsics camera parameters. Occlusion is severe in each view of this dataset.

CMU Panoptic Dataset [23]: This dataset is captured in a studio and provides
precise 3D ground truth in MSCOCO [32] format. In this paper, we evaluate the
performance of our method quantitatively on the ‘Ultimatum’ sequences with
complete 3D human pose annotations. This sequence consists of relatively more
active and complicated social scenarios for human pose estimation than other
sequences.

Table 1. Quantitative results for the Chariot Mk I, LOEWENPLATZ, and Wildtrack
datasets using the evaluation metrics from MSCOCO [32].

Chariot Mk I AP AP50 AP75 APM APL AR AR50 AR75 ARM ARL

Belagiannis et al. [3] 48.1 64.8 59.3 63.7 64.6 58.1 62.7 55.9 54.4 61.9

Dong et al. [13] 69.3 87.4 73.6 77.5 75.4 71.9 87.5 81.7 78.1 80.0

Ours w/ Vanilla Trigulation 60.0 90.8 72.2 65.4 77.6 72.3 95.3 83.0 76.6 81.8

Ours w/ Proposed MAP 89.8 98.9 92.7 91.7 99.5 93.9 99.8 96.0 95.4 99.6

LOEWENPLATZ AP AP50 AP75 APM APL AR AR50 AR75 ARM ARL

Belagiannis et al. [3] 49.3 63.7 58.2 63.2 56.9 61.9 84.3 64.3 73.7 55.3

Dong et al. [13] 62.1 88.3 63.5 61.3 72.5 80.3 87.2 77.9 81.7 84.6

Ours w/ Vanilla Trigulation 66.7 93.8 73.1 71.6 84.4 78.2 96.7 84.5 80.1 88.9

Ours w/ Proposed Optimization 81.8 97.1 88.7 83.3 90.8 88.9 98.5 93.5 90.0 94.4

Wildtrack AP AP50 AP75 APM APL AR AR50 AR75 ARM ARL

Belagiannis et al. [3] 44.1 53.4 46.0 19.4 47.8 64.1 79.1 61.4 20.9 55.4

Dong et al. [13] 55.6 78.4 53.1 34.9 60.0 73.4 87.8 68.1 38.1 77.6

Ours w/ Vanilla Trigulation 55.3 79.6 50.6 33.2 60.1 77.3 88.7 72.9 38.6 78.4

Ours w/ Proposed MAP 70.0 90.2 73.6 44.7 76.4 78.3 93.6 82.4 55.5 83.7

4.2 Results

Quantitative Results. We adopt the key point evaluation metrics of MSCOCO
[32], i.e. the average precision (AP), average recall (AR) and their variants.
Specifically, the variants of AP and AR are specified by the Object Keypoint
Similarity (OKS) that plays the same role as the Intersection over Union (IoU)
in object detection. It measures the scale of the object, and the distance between
predicted joints and ground truth points. The AP at OKS = .50:.05:.95 (primary
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challenge metric in MSCOCO [32] competitions) is used to measure the repro-
jection errors. Table 1 shows that our method outperforms the state-of-the-art
algorithms on the Chariot Mk I, LOEWENPLATZ, and Wildtrack datasets using
the evalution metrics from MSCOCO [32]. Table 2 shows the comparative per-
formance for 2D key point detection of our modified body+foot candidate-joint
SPPE network on the MSCOCO dataset [32]. Our method achieves a compara-
ble performance with the best performing [8]. Furthermore, our method outper-
forms on AP@0.5:0.95 for medium objects, which is more valuable for our frame-
work with the feet detection, matching and optimization stages. CMU Panoptic
Dataset provides the 3D ground truth. Therefore, we use two metrics, i.e. mean
per joint position error (MPJPE) and percentage of correct parts (PCP) instead
of the reprojection error for direct evaluation. The results are shown in Table 3
and Table 4.

Table 2. Quantitative comparison of key point detection experiments on COCO body
+ foot validation set [7].

Method AP AP50 AP75 APM APL

GT Bbox + CPM [45] 62.7 86.0 69.3 58.5 70.6

SSD [33] + CPM [45] 52.7 71.1 57.2 47.0 64.2

Cao et al. [8] 65.3 85.2 71.3 62.2 70.7

Ours 65.3 80.1 72.2 74.1 68.3

Table 3. Quantitative results for the proposed method on different joints of human
body in CMU Panoptic Dataset (Ultimatum sequences, four cameras) using MPJPE
(mm).

Metric Average Head Shoulder Elbow Wrist Hip Knee Foot

MPJPE 50.0 45.1 43.6 55.6 60.7 25.3 53.2 66.0

Table 4. Quantitative results for the proposed method on different body parts in CMU
Panoptic Dataset (Ultimatum sequences, four cameras) using the PCP metric.

Metric PCP Head Torso Upper arms Lower arms Upper legs Lower legs

Percentage 91.3 74.5 100.0 93.8 80.0 100.0 99.3

Table 5. Ablation study of MLE as an intermediate step on WildTrack dataset.

Method ave min max var

Ours w/o MLE 64.75 18.06 316.7 50.69

Ours w/ MLE 38.55 2.18 219.29 27.52
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Qualitative Results. Figure 3, 4, and 5 show the qualitative results on the
Wildtrack [9], CMU Panoptic [23], and LOEWENPLATZ [15] datasets, respec-
tively. In Fig. 3, our approach gives good quality 3D reconstructions of the
human poses even when heavy occlusion happens in the crowded scene. To val-
idate effectiveness of the proposed method, we choose crowded scenes with at
least 5 people appearing in each frame as shown Fig. 4. We further show the qual-
itative visualizations of the estimated 3D human pose of several single persons
from our method with the ground truth. Location information is used to match
estimated pose with ground truth of each individual person. Orange represents
estimated skeleton and blue represents ground truth. We zoom in each skeleton
to clearly show details. As can be observed, the blue skeleton and orange skele-
ton has a slight offset. Nonetheless, this offset is in a tolerable range. In Fig. 5,
we evaluate our method under the setting of autonomous driving. The car went
straight, turned left, and stopped at a crosswalk. We can see that our proposed
method gives good 3D human pose estimations in different road scenes from a
moving camera.

Fig. 3. Qualitative results on Wildtrack dataset. (First four columns) First row shows
results of our modified candidate joint SPPE with attention on the feet; Second row
shows the ground truth 2D joints (blue dots); Third row shows the reprojection of our
estimated 3D joints (orange dots) overlaid on the ground truths (blue dots). The last
column shows the (top) estimated 3D crowd human poses and its (bottom) top view.
(Color figure online)

Table 6. Foot keypoint analysis on
COCO foot validation set.

Method AP AR AP75 AR75

Cao et al. [8] 77.9 82.5 82.1 85.6

Our 80.1 82.0 85.5 87.4

Table 7. Evaluation of correspondence pro-
cess on CMU Panoptic Dataset.

Dataset RANSAC EC Ours

Precision 46.0 86.5 93.7

Time complexity NA O((17N)4) O((2N)3)

Ablation Study. We perform ablation studies to show the effectiveness of our
proposed loss function Eq. 1 for 2D pose estimation, and the MLE as an inter-
mediate step. We define an error distance between the reprojection of a 3D
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Fig. 4. Qualitative results on CMU Panoptic dataset. The first row shows images
from the 4 cameras in the setup. The second row shows 3D crowd pose. The third to
seventh row visualize the estimated 3D pose of each person (orange skeleton) and its
corresponding ground truth (blue skeleton). (Color figure online)

point and its corresponding 2D ground truth for quantitative evaluation. Com-
parison is carried out between the results from MAP with and without MLE
as an intermediate step on the WildTrack dataset. In Table 5, we show the
average, minimum, maximum, and variance of the reprojection error distance.
Figure 7 shows the histogram of error distribution in pixel unit. We can see that
the smaller errors of the estimated 3D poses are obtained with the MLE as an
intermediate step. Figure 6 demonstrates the effectiveness of our proposed loss
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Fig. 5. Qualitative results on the LOEWENPLATZ dataset. The right most column
shows the estimated 3D poses of scene (a)-(d). The first column shows the 2D skeletons
detected by our modified SPPE network, the second column shows the ground truths of
the 2D joints (blue dots), and the third column shows the reprojection of our estimated
3D joints (orange dots) and overlaid on the ground truths (blue dots). (Color figure
online)

function Eq. 1 for 2D pose estimation. As can be seen in the figure, our net-
work detects the ‘big toe’, ‘small toe’ and ‘heel’ instead of the usual ‘ankle’ for
the representation of a foot. The increased attention of the feet joints improves
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Fig. 6. Qualitative demonstration of our proposed loss function in Eq. 1. The figure
shows the (a) original image, and the pose estimation result (b) with and (c) without
the loss term on the feet joints in Eq. 1. The second row shows the corresponding
zoomed-in images.

Fig. 7. Error distributions: (a) without and (b) with MLE as an intermediate step.

the estimation of the feet in highly occluded scene, and consequently facilities
our matching algorithm. Comparison of the foot keypoints on the COCO foot
validation set is shown in Table 6. To ablate the correspondence procedure, we
conduct evaluations of correspondence process on the CMU Panoptic dataset in
Table 7, where EC denotes Epipolar Constraint.

5 Conclusions

In this work, we propose a simple and effective approach for multi-person 3D
pose estimation applicable to dense crowds. Matching of feet across multiple
views improves the accuracy of body joint correspondences. A graph model is
used for fast cross-view matching based on accurate estimation of foot joints.
We cast the bipartite matching problem as a binary linear program and solve it
efficiently with the Jonker-Volgenant algorithm. The robustness of triangulation
is improved by using a MAP estimation that weighs the likelihood term with
the uncertainty of the 2D joint observation and enforces a prior on the average
bone lengths of the estimated 3D human poses. Experimental results show that
our method outperforms all existing algorithms on four public datasets.
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Abstract. We introduce TIDE, a framework and associated toolbox
(https://dbolya.github.io/tide/) for analyzing the sources of error in
object detection and instance segmentation algorithms. Importantly, our
framework is applicable across datasets and can be applied directly to
output prediction files without required knowledge of the underlying pre-
diction system. Thus, our framework can be used as a drop-in replace-
ment for the standard mAP computation while providing a comprehen-
sive analysis of each model’s strengths and weaknesses. We segment
errors into six types and, crucially, are the first to introduce a tech-
nique for measuring the contribution of each error in a way that isolates
its effect on overall performance. We show that such a representation
is critical for drawing accurate, comprehensive conclusions through in-
depth analysis across 4 datasets and 7 recognition models.

Keywords: Error diagnosis · Object detection · Instance segmentation

1 Introduction

Object detection and instance segmentation are fundamental tasks in computer
vision, with applications ranging from self-driving cars [6] to tumor detection [9].
Recently, the field of object detection has rapidly progressed, thanks in part to
competition on challenging benchmarks, such as CalTech Pedestrians [8], Pascal
[10], COCO [20], Cityscapes [6], and LVIS [12]. Typically, performance on these
benchmarks is summarized by one number: mean Average Precision (mAP ).

However, mAP suffers from several shortcomings, not the least of which is its
complexity. It is defined as the area under the precision-recall curve for detections
at a specific intersection-over-union (IoU) threshold with a correctly classified
ground truth (GT), averaged over all classes. Starting with COCO [20], it became
standard to average mAP over 10 IoU thresholds (interval of 0.05) to get a final
mAP 0.5:0.95. The complexity of this metric poses a particular challenge when
we wish to analyze errors in our detectors, as error types become intertwined,
making it difficult to gauge how much each error type affects mAP .
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Table 1. Comparison to Other Toolkits. We compare our desired features between
existing toolkits and ours. ✔ indicates a toolkit has the feature, ✱ indicates that it
partially does, and ✗ indicates that it doesn’t.

Feature Hoiem [14] COCO [1] UAP [4] TIDE (Ours)

Compact summary of error types ✱ ✗ ✔ ✔

Isolates error contribution ✱ ✗ ✗ ✔

Dataset agnostic ✗ ✗ ✔ ✔

Uses all detections ✗ ✔ ✔ ✔

Allows for deeper analysis ✔ ✔ ✔ ✔

Moreover, by optimizing for mAP alone, we may be inadvertently leaving
out the relative importance of error types that can vary between applications.
For instance, in tumor detection, correct classification arguably matters more
than box localization; the existence of the tumor is essential, but the precise
location may be manually corrected. In contrast, precise localization may be
critical for robotic grasping where even slight mislocalizations can lead to faulty
manipulation. Understanding how these sources of error relate to overall mAP
is crucial to designing new models and choosing the proper model for a given
task (Table 1).

Thus we introduce TIDE, a general Toolkit for Identifying Detection and seg-
mentation Errors, in order to address these concerns. We argue that a complete
toolkit should: 1.) compactly summarize error types, so comparisons can be made
at a glance; 2.) fully isolate the contribution of each error type, such that there
are no confounding variables that can affect conclusions; 3.) not require dataset-
specific annotations, to allow for comparisons across datasets; 4.) incorporate all
the predictions of a model, since considering only a subset hides information; 5.)
allow for finer analysis as desired, so that the sources of errors can be isolated.

Why We Need a New Analysis Toolkit. Many works exist to analyze the
errors in object detection and instance segmentation [7,15,17,22,24], but only
a few provide a useful summary of all the errors in a model [1,4,14], and none
have all the desirable properties listed above.

Hoiem et al. introduced the foundational work for summarizing errors in
object detection [14], however their summary only explains false positives (with
false negatives requiring separate analysis), and it depends on a hyperparameter
N to control how many errors to consider, thus not fulfilling (4). Moreover, to use
this summary effectively, this N needs to be swept over which creates 2d plots
that are difficult to interpret (see error analysis in [11,21]), and thus in practice
only partially addresses (1). Their approach also doesn’t fulfill (3) because their
error types require manually defined superclasses which are not only subjective,
but difficult to meaningfully define for datasets like LVIS [12] with over 1200
classes. Finally, it only partially fulfills (2) since the classification errors are
defined such that if the detection is both mislocalized and misclassified it will be
considered as misclassified, limiting the effectiveness of conclusions drawn from
classification and localization error.
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The COCO evaluation toolkit [1] attempts to update Hoiem et al.’s work
by representing errors in terms of their effect on the precision-recall curve (thus
tying them closer to mAP ). This allows them to use all detections at once
(4), since the precision recall curve implicitly weights each error based on its
confidence. However, the COCO toolkit generates 372 2d plots, each with 7
precision-recall curves, which requires a significant amount of time to digest and
thus makes it difficult to compactly compare models (1). Yet, perhaps the most
critical issue is that the COCO eval toolkit computes errors progressively which
we show drastically misrepresents the contribution of each error (2), potentially
leading to incorrect conclusions (see Sect. 2.3). Finally, the toolkit requires man-
ual annotations that exist for COCO but not necessarily for other datasets (3).

As concurrent work, [4] attempts to find an upper bound for AP on these
datasets and in the process addresses certain issues with the COCO toolkit.
However, this work still bases their error reporting on the same progressive
scheme that the COCO toolkit uses, which leads them to the dubious conclusion
that background error is significantly more important all other types (see Fig. 2).
As will be described in detail later, to draw reliable conclusions, it is essential
that our toolkit work towards isolating the contribution of each error type (2).

Contributions. In our work, we address all 5 goals and provide a compact, yet
detailed summary of the errors in object detection and instance segmentation.
Each error type can be represented as a single meaningful number (1), making
it compact enough to fit in ablation tables (see Table 2), incorporates all detec-
tions (4), and doesn’t require any extra annotations (3). We also weight our errors
based on their effect on overall performance while carefully avoiding the confound-
ing factors present in mAP (2). And while we prioritize ease of interpretation, our
approach is modular enough that the same set of errors can be used for more fine-
grained analysis (5). The end result is a compact, meaningful, and expressive set
of errors that is applicable across models, datasets, and even tasks.

We demonstrate the value of our approach by comparing several recent
CNN-based object detectors and instance segmenters across several datasets. We
explain how to incorporate the summary into ablation studies to quantitatively
justify design choices. We also provide an example of how to use the summary of
errors to guide more fine-grained analysis in order to identify specific strengths
or weaknesses of a model.

We hope that this toolkit can form the basis of analysis for future work, lead
model designers to better understand weaknesses in their current approach, and
allow future authors to quantitatively and compactly justify their design choices.
To this end, full toolkit code is released at https://dbolya.github.io/tide/ and
opened to the community for future development.

2 The Tools

Object detection and instance segmentation primarily use one metric to judge
performance: mean Average Precision (mAP ). While mAP succinctly summa-
rizes the performance of a model in one number, disentangling errors in object

https://dbolya.github.io/tide/
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detection and instance segmentation from mAP is difficult: a false positive can
be a duplicate detection, misclassification, mislocalization, confusion with back-
ground, or even both a misclassification and mislocalization. Likewise, a false
negative could be a completely missed ground truth, or the potentially correct
prediction could have just been misclassified or mislocalized. These error types
can have hugely varying effects on mAP , making it tricky to diagnose problems
with a model off of mAP alone.

We could categorize all these types of errors, but it’s not entirely clear how to
weight their relative importance. Hoiem et al. [14] weight false positives by their
prevalence in the top N most confident errors and consider false negatives sep-
arately. However, this ignores the effect many low scoring detections could have
(so effective use of it requires a sweep over N), and it doesn’t allow comparison
between false positives and false negatives.

There is one easy way to determine the importance of a given error to overall
mAP , however: simply fix that error and observe the resulting change in mAP .
Hoiem et al. briefly explored this method for certain false positives but didn’t
base their analysis off of it. This is also similar to how the COCO eval toolkit
[1] plots errors, with one key difference: the COCO implementation computes
the errors progressively. That is, it observes the change in mAP after fixing one
error, but keep those errors fixed for the next error. This is nice because at the
end result is trivially 100 mAP , but we find that fixing errors progressively in
this manner is misleading and may lead to false conclusions (see Sect. 2.3).

So instead, we define errors in such a way that fixing all errors will still result
in 100 mAP , but we weight each error individually starting from the original
model’s performance. This retains the nice property of including confidence and
false negatives in the calculation, while keeping the magnitudes of each error
type comparable.

2.1 Computing mAP

Before defining error types, we focus our attention on the definition of mAP to
understand what may cause it to degrade. To compute mAP , we are first given
a list of predictions for each image by the detector. Each ground truth in the
image is then matched to at most one detection. To qualify as a positive match,
the detection must have the same class as the ground truth and an IoU overlap
greater than some threshold, tf , which we will consider as 0.5 unless otherwise
specified. If multiple detections are eligible, the one with the highest overlap is
chosen to be true positive while all remaining are considered false positives.

Once each detection has matched with a ground truth (true positive) or not
(false positive), all detections are collected from every image in the dataset and
are sorted by descending confidence. Then the cumulative precision and recall
over all detections is computed as:

Pc =
TPc

TPc + FPc
Rc =

TPc

NGT
(1)
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Cls Loc Cls+Loc Duplicate Bkgd Missed

tftb0 1 tftb0 1 tftb0 1 tftb0 1 tftb0 1
N/A

Fig. 1. Error Type Definitions. We define 6 error types, illustrated in the top row,
where box colors are defined as: = false positive detection; = ground truth; =
true positive detection. The IoU with ground truth for each error type is indicated by
an orange highlight and shown in the bottom row.

where for all detections with confidence ≥ c, Pc denotes the precision, Rc recall,
TPc the number of true positives, and FPc the number of false positives. NGT

denotes the number of GT examples in the current class.
Then, precision is interpolated such that Pc decreases monotonically, and

AP is computed as a integral under the precision recall curve (approximated by
a fixed-length Riemann sum). Finally, mAP is defined as the average AP over
all classes. In the case of COCO [20], mAP is averaged over all IoU thresholds
between 0.50 and 0.95 with a step size of 0.05 to obtain mAP 0.5:0.95.

2.2 Defining Error Types

Examining this computation, there are 3 places our detector can affect mAP :
outputting false positives during the matching step, not outputting true positives
(i.e., false negatives) for computing recall, and having incorrect calibration (i.e.,
outputting a higher confidence for a false positive then a true positive).

Main Error Types. In order to create a meaningful distribution of errors that
captures the components of mAP , we bin all false positives and false negatives
in the model into one of 6 types (see Fig. 1). Note that for some error types
(classification and localization), a false positive can be paired with a false nega-
tive. We will use IoUmax to denote a false positive’s maximum IoU overlap with
a ground truth of the given category. The foreground IoU threshold is denoted
as tf and the background threshold is denoted as tb, which are set to 0.5 and
0.1 (as in [14]) unless otherwise noted.

1. Classification Error: IoUmax ≥ tf for GT of the incorrect class (i.e., local-
ized correctly but classified incorrectly).

2. Localization Error: tb ≤ IoUmax ≤ tf for GT of the correct class (i.e.,
classified correctly but localized incorrectly).

3. Both Cls and Loc Error: tb ≤ IoUmax ≤ tf for GT of the incorrect class
(i.e., classified incorrectly and localized incorrectly).
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4. Duplicate Detection Error: IoUmax ≥ tf for GT of the correct class but
another higher-scoring detection already matched that GT (i.e., would be
correct if not for a higher scoring detection).

5. Background Error: IoUmax ≤ tb for all GT (i.e., detected background as
foreground).

6. Missed GT Error: All undetected ground truth (false negatives) not already
covered by classification or localization error.

This differs from [14] in a few important ways. First, we combine both sim
and other errors into one classification error, since Hoiem et al.’s sim and other
require manual annotations that not all datasets have and analysis of the distinc-
tion can be done separately. Then, both classification errors in [14] are defined
for all detections with IoUmax ≥ tb, even if IoUmax < tf . This confounds local-
ization and classification errors, since using that definition, detections that are
both mislocalized and misclassified are considered class errors. Thus, we separate
these detections into their own category.

Weighting the Errors. Just counting the number of errors in each bin is not
enough to be able to make direct comparisons between error types, since a false
positive with a lower score has less effect on overall performance than one with a
higher score. Hoiem et al. [14] attempt to address this by considering the top N
highest scoring errors, but in practice N needed to be swept over to get the full
picture, creating 2d plots that are hard to interpret (see the analysis in [11,21]).

Ideally, we’d like one comprehensive number that represents how each error
type affects overall performance of the model. In other words, for each error type
we’d like to ask the question, how much is this category of errors holding back
the performance of my model? In order to answer that question, we can consider
what performance of the model would be if it didn’t make that error and use
how that changed mAP .

To do this, for each error we need to define a corresponding “oracle” that fixes
that error. For instance, if an oracle o ∈ O described how to change some false
positives into true positives, we could call the AP computed after applying the
oracle as APo and then compare that to the vanilla AP to obtain that oracle’s
(and corresponding error’s) effect on performance:

ΔAPo = APo − AP (2)

We know that we’ve covered all errors in the model if applying all the oracles
together results in 100 mAP . In other words, given oracles O = {o1, . . . , on}:

APo1,...,on = 100 AP + ΔAPo1,...,on = 100 (3)

Referring back to the definition of AP in Sect. 2.1, to satisfy Eq. 3 the oracles
used together must fix all false positives and false negatives.

Considering this, we define the following oracles for each of the main error
types described above:
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1. Classification Oracle: Correct the class of the detection (thereby making
it a true positive). If a duplicate detection would be made this way, suppress
the lower scoring detection.

2. Localization Oracle: Set the localization of the detection to the GT’s local-
ization (thereby making it a true positive). Again, if a duplicated detection
would be made this way, suppress the lower scoring detection.

3. Both Cls and Loc Oracle: Since we cannot be sure of which GT the detec-
tor was attempting to match to, just suppress the false positive detection.

4. Duplicate Detection Oracle: Suppress the duplicate detection.
5. Background Oracle: Suppress the hallucinated background detection.
6. Missed GT Oracle: Reduce the number of GT (NGT ) in the mAP calcula-

tion by the number of missed ground truth. This has the effect of stretching
the precision-recall curve over a higher recall, essentially acting as if the detec-
tor was equally as precise on the missing GT. The alternative to this would
be to add new detections, but it’s not clear what the score should be for
that new detection such that it doesn’t introduce confounding variables. We
discuss this choice further in the Appendix.

Other Error Types. While the previously defined types fully account for all
error in the model, how the errors are defined doesn’t clearly delineate false
positive and negative errors (since cls, loc, and missed errors can all capture
false negatives). There are cases where a clear split would be useful, so for those
cases we define two separate error types by the oracle that would address each:

1. False Positive Oracle: Suppress all false positive detections.
2. False Negative Oracle: Set NGT to the number of true positive detections.

Both of these oracles together account for 100 mAP like the previous 6 oracles
do, but they bin the errors in a different way.

2.3 Limitations of Computing Errors Progressively

Note that we are careful to compute errors individually (i.e., each ΔAP starts
from the vanilla AP with no errors fixed). Other approaches [1,4] compute their
errors progressively (i.e., each ΔAP starts with the last error fixed, such that
fixing the last error results in 100 AP ). While we ensure that applying all oracles
together also results in 100 AP , we find that a progressive ΔAP misrepresents
the weight of each error type and is strongly biased toward error types fixed last.

To make this concrete, we can define progressive error ΔAPa|b to be the
change in AP from applying oracle a given that you’ve already applied oracle b:

ΔAPa|b = APa,b − APb (4)

Then, computing errors progressively amounts to setting the importance of error
i to ΔAPoi|o1,...,oi−1 . This is problematic for two reasons: the definition of preci-
sion includes false positives in the denominator, meaning that if you start with
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fewer false positives (as would be the case when having fixed most false positives
already), the change in precision will be much higher. Furthermore, any changes
in recall (e.g., by fixing localization or classification errors) amplifies the effect
of precision on mAP , since the integral now has more area.

(a) Default COCO eval style error
curves.

(b) Swapping the order of errors
changes magnitudes drastically.

Fig. 2. The problem with computing errors progressively. The COCO eval
analyze function [1] computes errors progressively, which we show for Mask R-CNN
[13] detections on mAP50. On the right, we swap the order of applying the classification
and background oracles. The quantity of each error remains the same, but the perceived
contribution from background error (purple region) significantly decreases, while it
increases for all other errors. Because COCO computes background error second to
last, this instills a belief that it’s more important than other errors, which does not
reflect reality (see Sect. 2.3). (Color figure online)

We show this empirically in Fig. 2, where Fig. 2a displays the original COCO
eval style PR curves, while Fig. 2b simply swaps the order that background and
classification error are computed. Just computing background first leads to an
incredible decrease in the prevalence of its contribution (given by the area of the
shaded region), meaning that the true weight of background error is likely much
less than COCO eval reports. This makes it difficult to draw factual conclusions
from analysis done this way.

Moreover, computing errors progressively doesn’t make intuitive sense. When
using these errors, you’d be attempting to address them individually, one at a
time. There will never be an opportunity to correct all localization errors, and
then start addressing the classification errors—there will always be some amount
of error in each category left over after improving the method, so observing APa|b
isn’t useful, because there is no state where you’re starting with APb.

For these reasons, we entirely avoid computing errors progressively.
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3 Analysis

In this section we demonstrate the generality and usefulness of our analysis tool-
box by providing detailed analysis across various object detection and instance
segmentation models and across different data and annotation sets. We also
compare errors based on general qualities of the ground truth, such as object
size, and find a number of useful insights. To further explain complicated error
cases, we provide more granular analysis into certain error types. All modes of
analysis used in this paper are available in our toolkit.

Fig. 3. Summary of errors on COCO Detection. Our model specific error anal-
ysis applied to various object detectors on COCO. The pie chart shows the relative
contribution of each error, while the bar plots show their absolute contribution. For
instance segmentation results, see the Appendix.

Models. We choose various object detectors and instance segmenters based
on their ubiquity and/or unique qualities which allows us to study the perfor-
mance trade-offs between different approaches and draw several insights. We
use Mask R-CNN [13] as our baseline, as many other approaches build on top
of the standard R-CNN framework. We additionally include three such models:
Hybrid Task Cascades (HTC) [5], TridentNet [18], and Mask Scoring R-CNN
(MS-RCNN) [13]. We include HTC due to its strong performance, being the 2018
COCO challenge winner. We include TridentNet [18] as it specifically focuses on
increasing scale-invariance. Finally, we include MS R-CNN as a method which
specifically focuses on fixing calibration based error. Distinct from the two-
stage R-CNN style approaches, we also include three single-stage approaches,
YOLACT/YOLACT++ [2,3] to represent real-time models, RetinaNet [19] as a
strong anchor-based model, Fully Convolutional One-Stage Object Detection
(FCOS) [23] as a non anchor-based approach. Where available, we use the
ResNet101 versions of each model. Exact models are indicated in the Appendix.

Datasets. We present our core cross-model analysis on MS-COCO [20], a widely
used and active benchmark. In addition, we seek to showcase the power of our
toolbox to perform cross-dataset analysis by including three additional datasets:
Pascal VOC [10] as a relatively simple object detection dataset, Cityscapes [6]
providing high-res, densely annotation images with many small objects, and
LVIS [12] using the same images at COCO but with a massive diversity of
annotated objects with 1200+ mostly-rare class.
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3.1 Validating Design Choices

The authors of each new object detector or instance segmenter make design
choices they claim to affect their model’s performance in different ways. While
the goal is almost always to increase overall mAP , there remains the question:
does the intuitive justification for a design choice hold up? In Fig. 3 we present
the distribution of errors for all object detectors and instance segmenters we con-
sider on COCO [20], and in this section we’ll analyze the distribution of errors for
each detector to see whether our errors line up with the intuitive justifications.

(a) Detection Performance. (b) Instance Segmentation Performance.

Fig. 4. Comparison across models on COCO. Weight of each error type compared
across models. This has the same data as Fig. 3.

R-CNN Based Methods. First, HTC [5] makes two main improvements over
Mask R-CNN: 1.) it iteratively refines predictions (i.e., a cascade) and passes
information between all parts of the model each time, and 2.) it introduces a
module specifically for improved detection of foreground examples that look like
background. Intuitively, (1) would improve classification and localization sig-
nificantly, as the prediction and the features used for the prediction are being
refined 3 times. And indeed, the classification and localization errors for HTC
are the lowest of the models we consider in Fig. 4 for both instance segmentation
and detection. Then, (2) should have the effect of eliciting higher recall while
potentially adding false positives where something in the background was mis-
classified as an object. And this is exactly what our errors reveal: HTC has the
lowest missed GT error while having the highest background error (not counting
YOLACT++, whose distribution of errors is quite unique).

Next, TridentNet [18] attempts to create scale-invariant features by having a
separate pipeline for small, medium, and large objects that all share weights. Ide-
ally this would improve classification and localization performance for objects
of different scales. Both HTC and TridentNet end up having the same clas-
sification and localization performance, so we test this hypothesis further in
Sect. 3.2. Because HTC and TridentNet make mostly orthogonal design choices,
they would likely compliment each other well.

One-Stage Methods. RetinaNet [19] introduces focal loss that down-weights
confident examples in order to be able to train on all background anchor boxes
(rather than the standard 3 negative to 1 positive ratio). Training on all negatives
by itself should cause the model to output fewer background false positives,
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but at the cost of significantly lower recall (since the detector would be biased
toward predicting background). The goal of focal loss then is to train on all
negatives without causing extra missed detections. We observe this is successful
as RetinaNet has one of the lowest background errors across models in Fig. 4a,
while retaining slightly less missed GT error than Mask R-CNN.

Table 2. Mask Rescoring. An ablation of MS-RCNN [13] and YOLACT++ [2] mask
performance using the errors defined in this paper. ΔmAP50 is denoted as E for brevity,
and only errors that changed are included. Mask scoring better calibrates localization,
leading to decrease in localization error. However, by scoring based on localization, the
calibration of other error types suffer. Note that this information is impossible to glean
from the change in AP50 alone.

Method AP50 → Ecls
→

Eloc

→

Ebkg

→

Emiss

→

EFP

→

EFN

→

Mask R-CNN (R-101-FPN) 58.1 3.1 9.3 4.5 7.5 15.9 17.8

+ Mask Scoring 58.3 3.6 7.8 5.1 7.8 15.9 18.1

Improvement +0.2 +0.4 −1.5 +0.7 +0.3 +0.0 +0.3

YOLACT++ (R-50-FPN) 51.8 3.3 10.4 3.2 13.0 10.7 27.7

+ Mask Scoring 52.3 3.6 9.7 3.2 13.2 10.1 28.2

Improvement +0.5 +0.3 −0.7 +0.0 +0.2 −0.5 +0.6

Then FCOS [23] serves as a departure from traditional anchor-based models,
predicting a newly defined box at each location in the image instead of regress-
ing an existing prior. While the primary motivation for this design choice was
simplicity, getting rid of anchor boxes has other tangible benefits. For instance,
an anchor-based detector is at the mercy of its priors: if there is no applicable
prior for a given object, then the detector is likely to completely miss it. FCOS
on the other hand doesn’t impose any prior-based restriction on its detections,
leading to it having one of the lowest missed detection errors of all the models
we consider (Fig. 4a). Note that it also has the highest duplication error because
it uses an NMS threshold of 0.6 instead of the usual 0.5.

Real-Time Methods. YOLACT [3] is a real-time instance segmentation
method that uses a modified version of RetinaNet as its backbone detector with-
out focal loss. YOLACT++ [2] iterates on the former and additionally includes
mask scoring (discussed in Table 2). Observing the distribution of errors in Fig. 3,
it appears that design choices employed to speed up the model result in a com-
pletely different distribution of errors w.r.t. RetinaNet. Observing the raw magni-
tudes in Fig. 4a, this is largely due to YOLACT having much higher localization
and missed detection error. However, the story changes when we look at instance
segmentation, where it localizes almost as well as Mask R-CNN despite the bad
performance of its detector (see Appendix). This substantiates their claim that
YOLACT is more conducive to high quality masks and that its performance is
likely limited by a poor detector.
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(a) Classification Error (b) Localization Error

Fig. 5. Comparison of Scales between HTC and TridentNet. Both HTC and
TridentNet have the same classification and localization error on COCO detection.
Using fine analysis, we can isolate the cause of these errors further.

A Note on Ablations. To demonstrate the potential usefulness of this toolkit
for isolating error contribution and debugging, we showcase how an ablation
over error types instead of only over mAP provides meaningful insights while
still being compact. As an example, consider the trend of rescoring a mask’s
confidence based on its predicted IoU with a ground truth, as in Mask Scoring
R-CNN [16] and YOLACT++ [2]. This modification is intended to increase the
score of good quality masks and decrease the score of poor quality masks, which
intuitively should result in better localization. In order to justify their claims,
the authors of both papers provide qualitative examples where this is the case,
but limit quantitative support to the change to an observed increase in mAP .
Unfortunately, a change in mAP alone does not illuminate the cause of that
change, and some ablations may show little change in mAP despite the method
working. By adding the error types that were affected by the change to ablation
tables (e.g., see Table 2) we not only provide quantitative evidence for the design
choice, but also reveal side effects (such that classification calibration error went
up), which were previously hidden by the raw increase in mAP .

3.2 Comparing Object Attributes for Fine Analysis

In order to compare performance across object attributes such as scale or aspect
ratio, the typical approach is to compute mAP on a subset of the detections
and ground truth that have the specified attributes (with effective comparison
requiring normalized mAP [14]). While we offer this mode of analysis in our
toolkit, this doesn’t describe the effect of that attribute on overall performance,
just how well a model performs on that attribute. Thus, we propose an additional
approach based on the tools we defined earlier for summarizing error’s affect on
overall performance: simply fix errors and observe ΔmAP as before, but only
those whose associated prediction or ground truth have the desired attribute.

Comparing Across Scale. As an example of using this approach across dif-
ferent scales of objects, we return to the case of TridentNet vs. HTC discussed
in Sect. 3.1. Both models have the same classification and localization error and
we would like to understand where the difference, if any, lies. Since TridentNet
focuses specifically on scale-invariance, we turn our attention to performance
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(a) Object Detection (b) Instance Segmentation

Fig. 6. Performance of Mask R-CNN Across Datasets. Because our toolkit is
dataset agnostic, we can fix a detection architecture and compare performance across
datasets to gain valuable insights into properties of each dataset.

across scales. We define objects with pixel areas of between 0 and 162 as extra
small (XS), 162 to 322 as small (S), 322 to 962 as medium (M), 962 to 2882 as (L),
and 2882 and above as extra large (XL). In Fig. 5 we apply our approach across
HTC and TridentNet (with Mask R-CNN detections included for reference). This
comparison reveals that TridentNet localizes and classifies medium sized objects
better than HTC, while HTC is better at large objects. This could potentially be
why the authors of TridentNet find that they can achieve nearly the same per-
formance by only evaluating their branch for medium sized objects [18]. Other
comparisons between subsets of detections such as across aspect ratios, anchor
boxes, FPN layers, etc. are possible with the same approach.

3.3 Comparing Performance Across Datasets

Our toolkit is dataset agnostic, allowing us to compare the same model across
several datasets, as in Fig. 6, where we compare Mask R-CNN (Faster R-CNN
for Pascal) across Pascal VOC [10], COCO [20], Cityscapes [6], and LVIS [12].

In this comparison, the first immediately clear pattern is that Background
error decreases both in overall prevalence (pie charts) and absolute magnitude
(bar charts) with increasing density of annotations. Faster R-CNN on Pascal is
dominated by background error, but of reduced concern on COCO. Both LVIS
and Cityscapes, which are very densely annotated, have almost no background
error at all. This potentially indicates that much of the background error in
Pascal and COCO are simply due to unannotated objects (see Sect. 3.4).

As expected, missed ground truths are a large issue for densely annotated
datasets like LVIS and Cityscapes. The core challenge on Cityscapes is the pres-
ence of many small objects, which are well known to be difficult to detect with
modern algorithms. On the other hand, LVIS’s challenge is to deal with the vast
number of possible objects that the detector has to recognize. We can see from
the relatively normal classification error on LVIS that the model isn’t particu-
larly suffering directly from misclassifying rare objects, but instead completely
failing to detect them when they appear. This is also reflected in the false positive
and false negative error distributions (vertical bars). Overall, Pascal is heavily
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biased toward false positives, COCO is mixed, and LVIS and Cityscapes are both
biased toward false negatives.

On COCO, Mask R-CNN has a harder time localizing masks (Fig. 6b) than
boxes (Fig. 6a), but the opposite is true for LVIS, possibly because of its higher
quality masks, which are verified with expert studies [12]. Again, this potentially
indicates that a lot of the error in instance segmentation may be derived by mis-
annotations.

Fig. 7. Examples of Poor Annotations. In modern detectors, highly confident
detections classified as both mislocalized and misclassified or background errors are
likely to be mislabeled examples on COCO. In the first two images, the ground truth
should have been labeled as crowds. In the third, some of the donuts simply weren’t
labeled. = ground truth, = predictions.

3.4 Unavoidable Errors

We find in Sect. 3.3 that a lot of the background and localization error may
simply be due to mis- or unannotated ground truth. Examining the top errors
more closely, we find that indeed (at least in COCO), many of the most confident
errors are actually misannotated or ambiguously misannotated ground truth (see
Fig. 7). For instance, 30 of the top 100 most confident localization errors in Mask
R-CNN detections are due to bad annotations, while the number soars to 50
out of 100 for background error. These misannotations are simple mistakes like
making the box too big or forgetting to mark a box as a crowd annotation. More
examples are ambiguous: should a mannequin or action figure be annotated as a
person? Should a sculpture of a cat be annotated as a cat? Should a reflection of
an object be annotated as that object? Highly confident mistakes result in large
changes in overall mAP , so misannotated ground truth considerably lower the
maximum mAP a reasonable model can achieve.

This begs the question, what is the upper bound for mAP on these datasets?
Existing analyses into the potential upper bound in object detection such as
[4] don’t seem to account for the rampant number of mislabeled examples. The
state-of-the-art on the COCO challenge are slowly stagnating, so perhaps we
are nearing the “reasonable” upper bound for these detectors. We leave this for
future work to analyze.
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4 Conclusion

In this work, we define meaningful error types and a way of tying these error types
to overall performance such that it minimizes any confounding variables. We then
apply the resulting framework to evaluate design decisions, compare performance
on object attributes, and reveal properties of several datasets, including the
prevalence of misannotated ground truth in COCO. We hope that our toolkit
can not only serve as method to isolate and improve on errors in detection, but
also lead to more interpretability in design decisions and clearer descriptions of
the strengths and weaknesses of a model.
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Abstract. Arguably one of the top success stories of deep learning is
transfer learning. The finding that pre-training a network on a rich source
set (e.g., ImageNet) can help boost performance once fine-tuned on a usu-
ally much smaller target set, has been instrumental to many applications
in language and vision. Yet, very little is known about its usefulness in
3D point cloud understanding. We see this as an opportunity considering
the effort required for annotating data in 3D. In this work, we aim at
facilitating research on 3D representation learning. Different from pre-
vious works, we focus on high-level scene understanding tasks. To this
end, we select a suit of diverse datasets and tasks to measure the effect of
unsupervised pre-training on a large source set of 3D scenes. Our findings
are extremely encouraging: using a unified triplet of architecture, source
dataset, and contrastive loss for pre-training, we achieve improvement
over recent best results in segmentation and detection across 6 different
benchmarks for indoor and outdoor, real and synthetic datasets – demon-
strating that the learned representation can generalize across domains.
Furthermore, the improvement was similar to supervised pre-training,
suggesting that future efforts should favor scaling data collection over
more detailed annotation. We hope these findings will encourage more
research on unsupervised pretext task design for 3D deep learning.

Keywords: Unsupervised learning · Point cloud recognition ·
Representation learning · 3D scene understanding

1 Introduction

Representation learning is one of the main driving forces of deep learning
research. In 2D vision, the finding that pre-training a network on a rich source
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set (e.g. ImageNet classification) can help boost performance once fine-tuned
on the usually much smaller target set, has been key to the success of many
applications. A particularly important setting, is when the pre-training stage
is unsupervised, as this opens up the possibility to utilize a practically infinite
train set size. Unsupervised pre-training has been remarkably successful in nat-
ural language processing [13,47], and has recently attracted increasing attention
in 2D vision [3,3,8,8,26,26,27,38,40,40,64,81].

In the past few years, the field of 3D deep learning has witnessed much
progress with an ever-increasing number of 3D representation learning schemes
[1,9,12,15,16,21,22,34,62,69,75]. However, it still falls behind compared to its
2D counterpart as evidently, in all 3D scene understanding tasks, ad-hoc train-
ing from scratch on the target data is still the dominant approach. Notably, all
existing representation learning schemes are tested either on single objects or
low-level tasks (e.g. registration). This status quo can be attributed to multiple
reasons: 1) Lack of large-scale and high-quality data: compared to 2D images,
3D data is harder to collect, more expensive to label, and the variety of sens-
ing devices may introduce drastic domain gaps; 2) Lack of unified backbone
architectures: in contrast to 2D vision where architectures such as ResNets were
proven successful as backbone networks for pre-training and fine-tuning, point
cloud network architecture designs are still evolving; 3) Lack of a comprehensive
set of datasets and high-level tasks for evaluation.

The purpose of this work is to move the needle by initiating research on
unsupervised pre-training with supervised fine-tuning in deep learning for 3D
scene understanding. To do so, we cover four important ingredients: 1) Selecting
a large dataset to be used at pre-training; 2) identifying a backbone architecture
that can be shared across many different tasks; 3) evaluating two unsupervised
objectives for pre-training the backbone network; and 4) defining an evaluation
protocol on a set of diverse downstream datasets and tasks.

Specifically, we choose ScanNet [11] as our source set on which the pre-
training takes place, and utilize a sparse residual U-Net [9,49] as the backbone
architecture in all our experiments and focus on the point cloud representa-
tion of 3D data. For the pre-training objective, we evaluate two different con-
trastive losses: Hardest-contrastive loss [10], and PointInfoNCE – an extension
of InfoNCE loss [40] used for pre-training in 2D vision. Next, we choose a broad
set of target datasets and downstream tasks that includes: semantic segmenta-
tion on S3DIS [2], ScanNetV2 [11], ShapeNetPart [71] and Synthia 4D [50]; and
object detection on SUN RGB-D [31,53,55,65] and ScanNetV2. Remarkably, our
results indicate improved performance across all datasets and tasks (See Table 1
for a summary of the results). In addition, we found a relatively small advantage
to pre-training with supervision. This implies that future efforts in collecting
data for pre-training should favor scale over precise annotations.

Our contributions can be summarized as follows:

– We evaluate, for the first time, the transferability of learned representation
in 3D point clouds to high-level scene understanding.
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– Our results indicate that unsupervised pre-training improves performance
across downstream tasks and datasets, while using a single unified archi-
tecture, source set and objective function.

– Powered by unsupervised pre-training, we achieve a new state-of-the-art per-
formance on 6 different benchmarks.

– We believe these findings would encourage a change of paradigm on how we
tackle 3D recognition and drive more research on 3D representation learning.

2 Related Work

Representation Learning in 3D. Deep neural networks are notoriously data
hungry. This renders the ability to transfer learned representations between
datasets and tasks extremely powerful. In 2D vision it has led to a surge of
interest in finding optimal pretext unsupervised tasks [3,5,8,10,14,18,26,27,38–
41,64,77,78,81]. We note that while many of these tasks are low-level (e.g. pixel
or patch level reconstruction), they are evaluated based on their transferability
to high-level tasks such as object detection. Being much harder to annotate,
3D tasks are potentially the biggest beneficiaries of unsupervised- and transfer-
learning. This was shown in several works on single object tasks like reconstruc-
tion, classification and part segmentation [1,16,21,22,34,51,62,69]. Yet, gener-
ally much less attention has been devoted to representation learning in 3D that
extends beyond the single-object level. Further, in the few cases that did study
it, the focus was on low-level tasks like registration [12,15,75]. In contrast, here
we wish to push forward research in 3D representation learning by focusing on
transferability to more high-level tasks on more complex scenes.

Deep Architectures for Point Cloud Processing. In this work we focus
on learning useful representation for point cloud data. Inspired by the success
in 2D domain, we conjecture that an important ingredient in enabling such
progress is the evident standardization of neural architectures. Canonical exam-
ples include VGGNet [54] and ResNet/ResNeXt [25,66]. In contrast, point cloud
neural network design is much less mature, as is apparent by the abundance of
new architectures that have been recently proposed. This has multiple reasons.
First, is the challenge of processing unordered sets [37,45,48,74]. Second, is the
choice of neighborhood aggregation mechanism which could either be hierarchi-
cal [16,32,33,46,76], spatial CNN-like [29,35,57,68,79], spectral [58,60,72] or
graph-based [52,59,63,67]. Finally, since the points are discrete samples of an
underlying surface, continuous convolutions have also been considered [4,61,70].
Recently Choy et al. proposed the Minkowski Engine [9], an extension of sub-
manifold sparse convolutional networks [20] to higher dimensions. In particular,
sparse convolutional networks facilitate the adoption of common deep architec-
tures from 2D vision, which in turn can help standardize deep learning for point
cloud. In this work, we use a unified UNet [49] architecture built with Minkowski
Engine as the backbone network in all experiments and show it can gracefully
transfer between tasks and datasets.
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3 PointContrast Pre-training

In this section, we introduce our unsupervised pre-training pipeline. First, to
motivate the necessity of a new pre-training scheme, we conduct a pilot study
to understand the limitations of existing practice (pre-training on ShapeNet) in
3D deep learning (Sect. 3.1). After briefly reviewing an inspirational local fea-
ture learning work Fully Convolutional Geometric Features (FCGF) (Sect. 3.2),
we introduce our unsupervised pre-training solution, PointContrast, in terms of
pretext task (Sect. 3.3), loss function (Sect. 3.4), network architecture (Sect. 3.5)
and pre-training dataset (Sect. 3.6).

Fig. 1. Training from scratch vs. fine-tuning with ShapeNet pretrained weights.

3.1 Pilot Study: Is Pre-training on ShapeNet Useful?

Previous works on unsupervised 3D representation learning [1,16,21,22,34,62,
69] mainly focused on ShapeNet [7], a dataset of single-object CAD models. One
underlying assumption is that by adopting ShapeNet as the ImageNet counter-
part in 3D, features learned on synthetic single objects could transfer to other
real-world applications. Here we take a step back and reassess this assumption
by studying a straightforward supervised pre-training setup: we simply pre-train
an encoder network on ShapeNet with full supervision, and fine-tune it with a
U-Net on a downstream task (S3DIS semantic segmentation). Based on results
in 2D representation learning, we use full supervision here as an upper bound
to what could be gained from pre-training. We train a sparse ResNet-34 model
(details to follow in Sect. 3.5) for 200 epochs. The model achieves a high valida-
tion accuracy of 85.4% on ShapeNet classification task. In Fig. 1, we show the
downstream task training curves for (a) training from scratch and (b) fine-tuning
with ShapeNet pretrained weights. Critically, one can observe that ShapeNet
pre-training, even in the supervised fashion, hampers downstream task learning.
Among many potential explanations, we highlight two major concerns:

– Domain gap between source and target data: Objects in ShapeNet are
synthetic, normalized in scale, aligned in pose, and lack scene context. This
makes pre-training and fine-tuning data distributions drastically different.
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Fig. 2. PointContrast: pretext task for 3D pre-training.

Table 1. Summary of downstream fine-tuning tasks. Compared to the baseline learning
paradigm of training from scratch, which is dominant in 3D deep learning, our unsu-
pervised pre-training method PointContrast boosts the performance across the board
when finetuning on a diverse set of high-level 3D understanding tasks. ∗ indicates
results trained using only 1% of the training data.

PointContrast: downstream tasks for fine-tuning

Datasets Real/Synth. Complexity Env. Task Rel.gain

S3DIS Real Entire floor, office Indoor Segmentation (+2.7%) mIoU

SUN RGB-D Real Medium-sized cluttered rooms Indoor Detection (+3.1%) mAP0.5

ScanNetV2 Real Large rooms Indoor
Segmentation (+1.9%) mIoU

Detection (+2.6%) mAP0.5

ShapeNet Synth. Single objects Indoor &

outdoor

Classification (+4.0%) Acc.∗

ShapeNetPart Synth. Object parts Indoor &

outdoor

Segmentation (+2.2%) mIoU∗

Synthia 4D Synth. Street scenes, driving envs. Outdoor Segmentation (+3.3%) mIoU

– Point-level representation matters: In 3D deep learning, the local geo-
metric features, e.g. those encoded by a point and its neighbors, have proven
to be discriminative and critical for 3D tasks [45,46]. Directly training on
object instances to obtain a global representation might be insufficient.

This led us to rethink the problem: if the goal of pre-training is to boost
performance across many real world tasks, exploring pre-training strategies on
single objects might offer limited potential. (1) To address the domain gap con-
cern, it might be beneficial to directly pre-train the network on complex scenes
with multiple objects, to better match the target distributions; (2) to capture
point-level information, we need to design a pretext task and corresponding net-
work architecture that is not only based on instance-level/global representations,
but instead can capture dense/local features at the point level.

3.2 Revisiting Fully Convolutional Geometric Features (FCGF)

Here we revisit a previous approach FCGF [10] designed to learn geometric
features for low-level tasks (e.g. registration) as our work is mainly inspired
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by FCGF. FCGF is a deep learning based algorithm that learns local feature
descriptors on correspondence datasets via metric learning. FCGF has two major
ingredients that help it stand out and achieve impressive results in registration
recall: (1) a fully-convolutional design and (2) point-level metric learn-
ing. With a fully-convolutional network (FCN) [36] design, FCGF operates on
the entire input point cloud (e.g. full indoor or outdoor scenes) without hav-
ing to crop the scene into patches as done in previous works; this way the local
descriptors can aggregate information from a large number of neighboring points
(up to the extent of receptive field size). As a result, point-level metric learning
becomes natural. FCGF uses a U-Net architecture that has full-resolution out-
put (i.e. for N points, the network outputs N associated feature vectors), and
positive/negative pairs for metric learning are defined at the point level.

Despite having a fundamentally different goal in mind, FCGF offers inspira-
tions that might address the pretext task design challenges: A fully-convolutional
design will allow us to pre-train on the target data distributions that involve
complex scenes with a large number of points, and we could define the pretext
task directly on points. Under this perspective, we pose the question: Can we
repurpose FCGF as the pretext task for high-level 3D understanding?

Algorithm 1 General Framework of PointContrast
Input: Backbone architecture NN; Dataset X = {xi ∈ R

N×3}; Point feature dimension D;
Output: Pre-trained weights for NN.
for each point cloud x in X do

- From x, generate two views x1 and x2.
- Compute correspondence mapping (matches) M between points in x1 and x2.
- Sample two transformations T1 and T2.
- Compute point features f1, f2 ∈ R

N×D by
f1 = NN(T1(x1)) and f2 = NN(T2(x2)).
- Backprop. to update NN with contrastive loss Lc(f1, f2) on the matched points.

3.3 PointContrast as a Pretext Task

FCGF focuses on local descriptor learning for low-level tasks only. In contrast,
a good pretext task for pre-training aims to learn network weights that are
universally applicable and useful to many high-level 3D understanding tasks.
To take the inspiration of FCGF and create such pretext tasks, there are sev-
eral design choices that need to be revisited. In terms of architecture, since
inference speed is a major concern in registration tasks, the network used in
FCGF is very light-weight; Contrarily, the success of pre-training relies on over-
parameterized networks, as clearly evidenced in other domains [8,13]. In terms of
dataset, FCGF uses domain-specific registration datasets such as 3DMatch [75]
and KITTI odometry [17], which lack both scale and generality. Finally, in terms
of loss design, contrastive losses explored in FCGF are tailored for registration
and it is interesting to explore other alternatives.

In Algorithm 1, we summarize the overall pretext task framework explored in
this work. We name the framework PointContrast, since the high-level strategy
of this pretext task is, contrasting—at the point level—between two transformed
point clouds. Conceptually, given a point cloud x sampled from a certain distri-
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bution, we first generate two views x1 and x2 that are aligned in the same world
coordinates. We then compute the correspondence mapping M between these
two views. If (i, j) ∈ M then point x1

i and point x2
j are a pair of matched points

across two views. We then sample two random geometric transformations T1

and T2 to further transform the point clouds in two views. The transformation
is what could make the pretext task challenging as the network needs to learn
certain equivariance with respect to the geometric transformation imposed. In
this work, we mainly consider rigid transformation including rotation, translation
and scaling. Further details are provided in Appendix. Finally, a contrastive loss
is defined over points in two views: we minimize the distance for matched points
and maximize the distance of unmatched points. This framework, though coming
from a very different motivation (metric learning for geometric local descriptors),
shares a strikingly similar pipeline with recent contrastive-based methods for 2D
unsupervised visual representation learning [8,23,64]. The key difference is that
most work for 2D focuses on contrasting between instances/images, while in our
work the contrastive learning is done densely at the point level.

3.4 Contrastive Learning Loss Design

Hardest-Contrastive Loss. The first loss function, hardest-contrastive loss
we try, is borrowed from the best-performing loss design proposed in FCGF [10],
which adopts a hard negative mining scheme in traditional margin-based con-
trastive learning formulation,

Lc =
∑

(i,j)∈P

{[
d(fi, fj) − mp

]2
+/|P| + 0.5

[
mn − min

k∈N d(fi, fk)
]2
+/|Ni| + 0.5

[
mn − min

k∈N d(fj , fk)
]2
+/|Nj |

}

Here P is a set of matched (positive) pairs of points x1
i and x2

j from two views
x1 and x2, and f1i and f2j are associated point features for the matched pair. N
is a randomly sampled set of non-matched (negative) points which is used for
the hardest negative mining, where the hardest sample is defined as the closest
point in the L2 normalized feature space to a positive pair. [x]+ denotes function
max(0, x). mp = 0.1 and mn = 1.4 are margins for positive and negative pairs.

PointInfoNCE Loss. Here we propose an alternative loss design for Point-
Contrast. InfoNCE proposed in [40] is widely used in recent unsupervised rep-
resentation learning approaches for 2D visual understanding. By modeling the
contrastive learning framework as a dictionary look-up process [23], InfoNCE
poses contrastive learning as a classification problem and is implemented with a
Softmax loss. Specifically, the loss encourages a query q to be similar to its pos-
itive key k+ and dissimilar to, typically many, negative keys k−. One challenge
in 2D is to scale the number of negative keys [23].
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However, in the domain of 3D, we have a different problem: usually the
real-world 3D datasets are much smaller in terms of instance count, but the
number of points for each instance (e.g. a indoor or outdoor scene) can be huge,
i.e. 100K+ points even from one RGB-D frame. This unique property of 3D
data property, together with the original motivation to modelling point level
information, inspire us to propose the following PointInfoNCE loss:

Lc = −
∑

(i,j)∈P
log

exp(fi · fj/τ)∑
(·,k)∈P exp(fi · fk/τ)

Here P is the set of all the positive matches from two views. In this formulation,
we only consider points that have at least one match and do not use additional
non-matched points as negatives. For a matched pair (i, j) ∈ P, point feature
f1i will serve as the query and f2j will serve as the positive key k+. We use point
feature f2k where (·, k) ∈ P and k �= j as the set of negative keys. In practice, we
sample a subset of 4096 matched pairs from P for faster training.

Compared to hardest-contrastive loss, the PointInfoNCE loss has a simpler
formulation with less hyperparatmers. Perhaps more importantly, due to the
large number of negative distractors, it is more robust against mode collapsing
(features collapsed to a single vector) than the hardest-contrastive loss. In our
experiments, we find that hard-contrastive loss is unstable and hard to train:
the representation often collapses with extended training epochs (which is also
observed in FCGF [10]).

3.5 A Sparse Residual UNet as Shared Backbone

We use a Sparse Residual UNet (SR-UNet) architecture in this work. It is a 34-
layer UNet [49] architecture that has an encoder network of 21 convolution layers
and a decoder network of 13 convolution/deconvolution layers. It follows the 2D
ResNet basic block design and each conv/deconv layer in the network are fol-
lowed by Batch Normalization (BN) [30] and ReLU activation. The overall UNet
architecture has 37.85M parameters. We provide more information and a visu-
alization of the network in Appendix. The SR-UNet architecture was originally
designed in [9] that achieved significant improvement over prior methods on the
challenging ScanNet semantic segmentation benchmark. In this work we explore
if we can use this architecture as a unified design for both the pre-training task
and a diverse set of fine-tuning tasks.

3.6 Dataset for Pre-training

For local geometric feature learning approaches, including FCGF [10], training
and evaluation are typically conducted on domain and task specific datasets such
as KITTI odometry [17] or 3DMatch [75]. Common registration datasets are
typically constrained in either scale (training samples collected from just dozens
of scenes), or generality (focusing on one specific application scenario, e.g. indoor
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scenes or LiDAR scans for self-driving car), or both. To facilitate future research
on 3D unsupervised representation learning, in our work we utilize the ScanNet
dataset for pre-training, aiming to address the scale issue. ScanNet is a collection
of ∼1500 indoor scenes. Created with a light-weight RGB-D scanning procedure,
ScanNet is currently the largest of its kind.1

Here we create a point cloud pair dataset on top of ScanNet for the pretrain-
ing framework shown in Fig. 2. Given a scene x, we extract pairs of partial scans
x1 and x2 from different views. More precisely, for each scene, we first sub-sample
RGB-D scans from the raw ScanNet videos every 25 frames, and align the 3D
point clouds in the same world coordinates (by utilizing estimated camera poses
for each frame). Then we collect point cloud pairs from the sampled frames and
require that two point clouds in a pair have at least 30% overlap. We sample a
total number of 870K point cloud pairs. Since the partial views are aligned in
ScanNet scenes, it is straight-forward to compute the correspondence mapping
M between two views with nearest neighbor search.

Although ScanNet only captures indoor data distributions, as we will see
in Section 4.4, surprisingly it can generalize to other target distributions. We
provide additional visualizations for the pre-training dataset in Appendix.

4 Fine-Tuning on Downstream Tasks

The most important motivation for representation learning is to learn features
that can transfer well to different downstream tasks. There could be different
evaluation protocols to measure the usefulness of the learned representation. For
example, probing with a linear classifier [19], or evaluating in a semi-supervised
setup [26]. The supervised fine-tuning strategy, where the pre-trained weights are
used as the initialization and are further refined on the target downstream task,
is arguably the most practically meaningful way of evaluating feature transfer-
ability. With this setup, good features could directly lead to performance gains
in downstream tasks.

Under this perspective, in this section we perform extensive evaluations of the
effectiveness of PointContrast framework by fine-tuning the pre-trained weights
on multiple downstream tasks and datasets. We aim to cover a diverse suit of
high-level 3D understanding tasks of different natures such as semantic segmen-
tation, object detection and classification. In all experiments we use the same
backbone network, pre-trained on the proposed ScanNet pair dataset (Sect. 3.6)
using both PointInfoNCE and Hardest-Constrastive objectives.

4.1 ShapeNet: Classification and Part Segmentation

Setup. In Sect. 3.1 we have observed that weights learned on supervised
ShapeNet classification are not able to transfer well to scene-level tasks. Here we
explore the opposite direction: Are PointContrast features learned on ScanNet

1 Admittedly, ScanNet is still much smaller in scale compared to 2D datasets.
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Table 2. ShapeNet classification. Top: classification accuracy with limited labeled
training data for finetuning. Bottom: classification accuracy on the least represented
classes in the data (tail-classes). In all cases, PointContrast boosts performance. Rel-
ative improvement increases with scarcer training data and on less frequent classes.

Evaluating on all 55 classes 1% data 10% data 100% data

Trained from scratch 62.2 77.9 85.1

PointConstrast (Hardest-Contrastive) 66.2 (+4.0) 79.0 (+1.1) 85.7 (+0.6)

PointConstrast (PointInfoNCE) 65.8 (+3.6) 78.8 (+0.9) 85.7 (+0.6)

Using 100% training data 10 tail classes 30 tail classes All 55 classes

Train from scratch 65.0 70.9 85.1

PointConstrast (Hardest-Contrastive) 70.9 (+5.9) 72.9 (+2.0) 85.7 (+0.6)

PointConstrast (PointInfoNCE) 67.8 (+2.8) 72.0 (+1.1) 85.7 (+0.6)

Table 3. ShapeNet part segmentation. Replacing the backbone architecture with
SR-UNet already boosts performance. PointContrast pre-training further adds a sig-
nificant gain, and outshines where labels are most limited.

Methods IoU (1% data) IoU (5% data) IoU (100% data)

SO-Net [34] 64.0 69.0 –

PointCapsNet [80] 67.0 70.0 –

Multitask Unsupervised [22] 68.2 77.7 –

Train from scratch 71.8 79.3 84.7

PointConstrast (Hardest-Contrastive) 74.0 (+2.2) 79.9 (+0.6) 85.1 (+0.4)

PointConstrast (PointInfoNCE) 73.1 (+1.3) 79.9 (+0.6) 85.1 (+0.4)

useful for tasks on ShapeNet? To recap, ShapeNet [7] is a dataset of synthetic
3D objects of 55 common categories. It was curated by collecting CAD models
from online open-sourced 3D repositories. In [71], part annotations were added
to a subset of ShapeNet models segmenting them into 2–5 parts. In order to pro-
vide a comparison with existing approaches, here we utilize the ShapeNetCore
dataset (SHREC 15 split) for classification, and the ShapeNet part dataset for
part segmentation, respectively. We uniformly sample point clouds of 1024 points
from each model for classification and 2048 points for part segmentation. Albeit
containing overlapping indoor object categories with ScanNet, this dataset is
substantially different as it is synthetic, and contains only single objects. We also
follow recent works on 3D unsupervised representation learning [22] to explore a
more challenging setup: using a very small percentage (e.g. 1%–10%) of training
data to fine-tune the pre-trained model.

Results. As shown in Table 2 and Table 3, for both datasets, the effectiveness of
pre-training are correlated with the availability of training data. In the ShapeNet
classification task (Table 2), pre-training helps most where less training data is
available, achieving a 4.0% improvement over the training-from-scratch baseline
with the hardest-negative objective. We also note that ShapeNet is a class-
imbalanced dataset and the minority (tail) classes are very infrequent. When
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using 100% of the training data, pre-training provides a class-balancing effect,
as it boosts performance more on underrepresented (tail) classes. Table 3 shows a
similar effects of pre-training on part segmentation performance. Notably, using
SR-UNet backbone architecture already boosts performance; yet, pre-training is
able to provide further gains, especially when training data is scarce.

4.2 S3DIS Segmentation

Setup. Stanford Large-Scale 3D Indoor Spaces (S3DIS) [2] dataset comprises
3D scans of 6 large-scale indoor areas collected from 3 office buildings. The scans
are represented as point clouds and annotated with semantic labels of 13 object
categories. Among the datasets used here for evaluation S3DIS is probably the
most similar to ScanNet. Transferring features to S3DIS represents a typical sce-
nario for fine-tuning: the downstream task dataset is similar yet much smaller
than the pre-training dataset. For the commonly used benchmark split (“Area
5 test”), there are only about 240 samples in the training set. We follow [9] for
pre-processing, and use standard data augmentations. See Appendix for details.

Results. Results are summarized in Table 4. Again, merely switching the SR-
UNet architecture, training from scratch already improves upon prior art. Yet,
fine-tuning the features learned by PointContrast achieves markedly better seg-
mentation results in mIoU and mAcc. Notably, the effect persists across both
loss types, achieving a 2.7% mIoU gain using Hardest-Contrastive loss and an
on-par improvement of 2.1% mIoU for the PointInfoNCE variant.

Table 4. Stanford Area 5 Test (Fold 1) (S3DIS). Replacing the backbone network
with SR-UNet improves upon prior art. Using PointContrast adds further significant
boost with a mild preference for Hardest-contrastive over the PointInfoNCE objective.
See Appendix for more methods in comparison.

Methods mIoU mAcc

PointNet [45] 41.1 49.0

PointCNN [35] 57.3 63.9

MinkowskiNet32 [9] 65.4 71.7

Train from scratch 68.2 75.5

PointConstrast (Hardest-Contrastive) 70.9 77.0

PointConstrast (PointInfoNCE) 70.3 76.9

4.3 SUN RGB-D Detection

Setup. We now attend to a different high-level 3D understanding task: object
detection. Compared to segmentation tasks that estimate point labels, 3D



PointContrast 585

object detection predicts 3D bounding boxes (localization) and their correspond-
ing object labels (recognition). This calls for an architectural modification as
the SR-UNet architecture does not directly output bounding box coordinates.
Among many different choices [28,42,44,73], we identify the recently proposed
VoteNet [43] as a good candidate for three main reasons. First, VoteNet is
designed to work directly on point clouds with no additional input (e.g. images).
Second, VoteNet originally uses PointNet++ [46] as the backbone architecture
for feature extraction. Replacing this with a SR-UNet requires a minimal mod-
ification, keeping the proposal pipeline intact. In particular, we reuse the same
hyperparameters. Third, VoteNet is the current state-of-the-art method that
uses geometric features only, rendering an improvement markedly useful. We
evaluate the detection performance on the SUN RGB-D dataset [55], a collec-
tion of single view RGB-D images. The train set contains 5K images annotated
with amodal, 3D oriented bounding boxes for objects from 37 categories.

Results. We summarize the results in Table 5. We find that by simply switching
in the backbone network, our baseline results (training from scratch) with the
SR-UNet architecture achieves worse results (-1.4% mAP@0.25). This may be
attributed to the fact that VoteNet design and hyperparamter settings were tai-
lored to its PointNet++ backbone. However, PointContrast gracefully closes the
gap by showing a +3.1% gain on mAP@0.5, which also sets a new state-of-the-art
in this metric. The performance gain with harder evaluation metric (mAP@0.5)
suggests that the PointContrast pre-training can greatly help localization.

Table 5. SUN RGB-D detection results. PointContrast demonstrates a substan-
tial boost compared to training from scratch. We observe a larger improvement in
localization as manifested by the ΔmAP being larger for @0.5 than @0.25.

Methods Input mAP@0.5 mAP@0.25

VoteNet [43] Geo – 57.0

VoteNet [43] Geo+Height 32.9 57.7

Train from scratch Geo 31.7 55.6

PointContrast(Hardest-Contrastive) Geo 34.5 57.5

PointContrast(PointInfoNCE) Geo 34.8 57.5

Table 6. Segmentation results on the 4D Synthia test set. All networks here are
SR-UNet with 3D kernels, trained on individual 3D frames without temporal modeling.

Methods mIoU mAcc

MinkowskiNet32 [9] 78.7 91.5

Train from scratch 79.8 91.5

PointContrast (Hardest-contrastive) 82.6 93.7

PointContrast (PointInfoNCE) 83.1 93.7
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4.4 Synthia4D Segmentation

Setup. Synthia4D [50] is a large synthetic dataset designed to facilitate the
training of deep neural networks for visual inference in driving scenarios. Photo-
realistic renderings are generated from a virtual city, allowing dense and precise
annotations of 13 semantic classes, together with pixel-accurate depth. We follow
the train/val/test split as prescribed by [9] in the clean setting. In the context
of this work, Synthia4D is especially interesting since it is probably the most
distant from our pre-training set (outdoor v.s. indoor, synthetic v.s. real). We
test the segmentation performance using 3D SR-UNet on a per-frame basis.

Results. PointContrast pre-training brings substantial improvement over the
baseline model trained from scratch (+2.3% mIoU) as seen in Table 6. PointIn-
foNCE performs noticeably better than the hardest-contrastive loss. With unsu-
pervised pre-training, the overall results are much better than the previous state-
of-the-art reported in [9]. Note that in [9] it has been shown that adding the tem-
poral learning (i.e. using a 4D network instead of a 3D one) brings additional
benefit. To use 3D pre-trained weights for a 4D network with an additional tem-
poral dimension, we can simply inflate the convolutional kernels, following the
standard practice in 2D video recognition [6]. We leave it as a future work.

Table 7. Segmentation results on ScanNet validation set. PointContrast boosts
performance on the “in-domain” transfer task where the pre-training and fine-tuning
datasets come from a common source, showing the usefulness of pre-training even when
labels are available.

Methods mIoU mAcc

Train from scratch 72.2 80.7

PointContrast(Hardest-Contrastive) 73.3 81.0

PointContrast(PointInfoNCE) 74.1 81.6

Table 8. 3D object detection results on ScanNet validation set. Similarly to in-
domain segmentation task, here as well PointContrast boost performance on detection,
setting a new best result over prior art. See Appendix for more methods in comparison.

Methods Input mAP@0.5 mAP@0.25

DSS [28,56] Geo+RGB 6.8 15.2

3D-SIS [28] Geo+RGB (5 Views) 22.5 40.2

VoteNet [43] Geo+Height 33.5 58.6

Train from scratch Geo 35.4 56.7

PointContrast(Hardest-Contrastive) Geo 37.3 59.2

PointContrast(PointInfoNCE) Geo 38.0 58.5
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4.5 ScanNet: Segmentation and Detection

Setup. Although typically the source dataset for pre-training and the target
dataset for fine-tuning are different, because of the specific multi-view contrastive
learning pipeline for pre-training, it is likely that PointContrast can learn dif-
ferent representations (e.g. invariance/equivariance to rigid transformations or
robustness to noise) compared to directly training with supervision. Thus it
is interesting to see whether the pre-trained weights can further improve the
results on ScanNet itself. We use ScanNet semantic segmentation and object
detection tasks to test our hypothesis. For the segmentation experiment, we
use the SR-UNet architecture to directly predict point labels. For the detection
experiment, we again follow VoteNet [43] and simply switch the original back-
bone network with the SR-UNet without other modifications to the detection
head (See Appendix for details).

Results. Results are summarized in Table 7 and Table 8. Remarkably, on both
detection and segmentation benchmark, models pre-trained with PointContrast
outperform those trained from scratch. Notably, PointInfoNCE objective per-
forms better than the Hardest-contrastive one, achieving a relative improve-
ment of +1.9% in terms of segmentation mIoU and 2.6%+ in terms of detection
mAP@0.5. Similar to SUN RGB-D detection, here we also observe that Point-
Contrast features help most for localization as indicated by the larger margin of
improvement for mAP@0.5 than mAP@0.25.

4.6 Analysis Experiments and Discussions

In this section we show additional experiments to provide more insights on our
pre-training framework. We use S3DIS segmentation for the experiments below.

Supervised Pre-training. While the focus of this work is unsupervised pre-
training, a natural baseline is to compare against supervised pre-training. To
this end, we use the training-from-scratch baseline for the segmentation task on
ScanNetV2 and finetune the network on S3DIS. This yields an mIoU of 71.2%,
which is only 0.3% better than PointContrast unsupervised pre-training. We
deem this a very encouraging signal that suggests that the gap between super-
vised and unsupervised representation learning in 3D has been mostly closed (cf.
years of effort in 2D). One might argue that this is due to the limited quality
and scale of ScanNet, but even at this scale the amount of labor involved in
annotating thousands of rooms is large. The outcome of this, complements the
conclusion we had so far: not only should we put resources into creating large-
scale 3D datasets for pre-training; but if facing a trade-off between scaling the
data size and annotating it, we should favor the former.

Fine-Tuning vs From-Scratch Under Longer Training Schedule. Recent
study in 2D vision [24] suggests that simply by training from scratch for more
epochs might close the gap from ImageNet pre-training. We conduct additional
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experiment to train the network from scratch with 2× and 3× schedules on
S3DIS, relative to the 1× schedule of our default setup (10K iterations with
batch size 48). We found that validation mIoU does not improve with longer
training. In fact, the model exhibits overfitting due to the small dataset size,
achieving 66.7% and 66.1% mIoU at 20K and 30K iteration, respectively. This
suggests that potentially many of the 3D datasets could fall into the “breakdown
regime” [24] where network pre-training is essential for good performance.

Holistic Scene as a Single View for PointContrast. To show that the
multi-view design in PointContrast is important, we try a different variant where
instead of having partial views x1 and x2, we directly use the reconstructed
point cloud x (a full scene in ScanNet) PointContrast. We still apply indepen-
dent transformations T1 and T2 to the same x. We tried different variants and
augmentations such as random cropping, point jittering, and dropout. We also
tried different transformations for T1 and T2 of different degrees of freedom.
However, with the best configuration we can get a validation mIoU on S3DIS
of 68.35, which is just slightly better than the training from scratch baseline
of 68.17. This suggests that the multi-view setup in PointContrast is critical.
Potential reasons include: much more abundant and diverse training samples;
natural noise due to camera instability as good regularization, as also observed
in [75].

Acknowledgements. O.L. and L.G. were supported in part by NSF grant IIS-
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Center for AI Research.
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Abstract. Budgeted pruning is the problem of pruning under resource
constraints. In budgeted pruning, how to distribute the resources across
layers (i.e., sparsity allocation) is the key problem. Traditional methods
solve it by discretely searching for the layer-wise pruning ratios, which
lacks efficiency. In this paper, we propose Differentiable Sparsity Allo-
cation (DSA), an efficient end-to-end budgeted pruning flow. Utilizing
a novel differentiable pruning process, DSA finds the layer-wise pruning
ratios with gradient-based optimization. It allocates sparsity in continu-
ous space, which is more efficient than methods based on discrete evalua-
tion and search. Furthermore, DSA could work in a pruning-from-scratch
manner, whereas traditional budgeted pruning methods are applied to
pre-trained models. Experimental results on CIFAR-10 and ImageNet
show that DSA could achieve superior performance than current itera-
tive budgeted pruning methods, and shorten the time cost of the overall
pruning process by at least 1.5× in the meantime.

Keywords: Budgeted pruning · Structured pruning · Model
compression

1 Introduction

Convolutional Neural Networks (CNNs) have demonstrated superior perfor-
mances in computer vision tasks. However, CNNs are computational and stor-
age intensive, which poses significant challenges on the NN deployments under
resource constrained scenarios. Model compression techniques [16,20] are pro-
posed to reduce the computational cost of CNNs. Moreover, there are situations
(e.g., deploying the model onto certain hardware, meeting real-time constraints)
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under which the resources (e.g., latency, energy) of the compressed models must
be restricted under certain budgets. Budgeted pruning is introduced for handling
these situations.

Fig. 1. Workflow comparison of the iterative pruning methods [7,14,15,22] and DSA

As shown in Fig. 1, the budgeted pruning problem could be divided into two
sub-tasks: to decide how many channels to keep for each layer (i.e., sparsity
allocation) and to acquire proper weights (i.e., weight optimization). Recent
work [17] observes that once the pruned structure is acquired, the compressed
model can achieve similar accuracies no matter it is trained from scratch or fine-
tuned from the weights inherited from the original model. Therefore, sparsity
allocation is the key problem for budgeted pruning.

To solve the sparsity allocation problem, the majority of methods [7,14,15,22]
adopt an “iterative pruning flow” scheme. The workflow of these methods
involves three stages: pre-training, sparsity allocation, and finetuning, as shown
in Fig. 1. These methods conduct the sparsity allocation through a discrete
search, which contains hundreds of search-evaluation iterations. For each candi-
date allocation, a time-consuming approximate evaluation is needed. Also, the
discrete search in the large search space lacks sample efficiency. Moreover, these
methods need to be applied to the pre-trained models, and model pre-training
costs much computational effort. As a result, the overall iterative pruning flow
is not efficient.

In order to improve the efficiency of budgeted pruning, we propose DSA,
an end-to-end pruning flow. Firstly, DSA can work in a “pruning-from-scratch”
manner, thus eliminating the cumbersome pre-training process (see Sect. 5.3).
Secondly, DSA optimizes the sparsity allocation in continuous space with a
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gradient-based method, which is more efficient than methods based on discrete
evaluation and search.

For applying the gradient-based optimization for allocating sparsity, we
should make the evaluation of the validation accuracy and the pruning process
differentiable. For the validation performance evaluation, we use the validation
loss as a differentiable surrogate of the validation accuracy. For the pruning pro-
cess, we propose a probabilistic differentiable pruning process as a replacement.
In the differentiable pruning process, we soften the non-differentiable hard prun-
ing by introducing masks sampled from the probability distributions controlled
by the pruning ratio. The differentiable pruning process enables the gradients
of the task loss, w.r.t. the pruning ratios to be calculated. Utilizing the task
loss’s gradients, DSA obtains the sparsity allocation under the budget constraint
following the methodology of the Alternating Direction Method of Multipliers
(ADMM) [1].

The contributions of this paper are as follows.

– DSA uses gradient-based optimization for sparsity allocation under budget
constraints, and works in a pruning-from-scratch manner. DSA is more effi-
cient than iterative pruning methods.

– We propose a novel differentiable pruning process, which enables the gradi-
ents of the task loss w.r.t. the pruning ratios to be calculated. The gradient
magnitudes align well with the layer-wise sensitivity, thus providing an effi-
cient way of measuring the sensitivity (See Sect. 5.3). Due to this property of
the gradients, DSA can attribute higher keep ratios to more sensitive layers.

– We give a topological grouping procedure to handle the topological constraints
that are introduced by skip connections and so on, thus the resulting model
keeps the original connectivity.

– Experimental results on CIFAR-10 and ImageNet demonstrate the effective-
ness of DSA. DSA consistently outperforms other iterative budgeted pruning
methods with at least 1.5× speedup.

2 Related Work

2.1 Structured Pruning

Structured pruning intends to introduce structured sparsity into the NN mod-
els. SSL [20] removes structured subsets of weights by applying group lasso reg-
ularization and magnitude pruning. Some studies [4,16] add regularization on
the batch normalization (BN) scaling parameters γ instead of the convolution
weights. These methods focus on seeking the trade-off between model sparsity
and performance via designing regularization terms. Since these methods allo-
cate sparsity through regularizing the weights, the results are sensitive to the
hyperparameters.

There are also studies that target at choosing which filters to prune, given
the layer-wise pruning ratios. ThiNet [18] utilizes the information from the next
layer to select filters. FPGM [6] exploits the distances to the geometric median
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as the importance criterion. These methods focus on exploring intra-layer filter
importance criteria, instead of handling the inter-layer sparsity allocation.

2.2 Budgeted Pruning

To amend the regularization based methods for budgeted pruning, MorphNet [4]
alternates between training with L1 regularization and applying a channel multi-
plier. However, the uniform expansion of width neglects the different sensitivity
of different layers and might fail to find the optimal resource allocation strategy
under budget. To explicitly control the pruning ratios, ECC [21] updates the
pruning ratios according to the energy consumption model. The pruning process
is modeled as discrete constraints tying the weights and pruning ratios, and this
constrained optimization is handled using a proximal projection. In our work,
the pruning process is relaxed into a probabilistic and differentiable process,
which enables the pruning ratios to be directly instructed by the task loss.

Other methods view the budgeted pruning problem as a discrete search prob-
lem, in which the sparsity allocation and finetuning are alternatively conducted
for multiple stages. In each stage, a search-evaluation loop is needed to decide the
pruning ratios. For the approximate evaluation, a hard pruning procedure and
a walk-through of the validation dataset are usually required. As for the search
strategy, NetAdapt [22] empirically adjusts the pruning ratios, while ensuring a
certain resource reduction is achieved; AMC [7] employs reinforcement learning
to instruct the learning of a controller, and uses the controller to sample the prun-
ing ratios; AutoCompress [14] uses simulated annealing to explore in the search
space; MetaPruning [15] improves the sensitivity analysis by introducing a meta
network to generate weights for pruned networks. Apart from these methods
that search for the layer-wise pruning ratio, LeGR [2] searches for appropriate
affine transformation coefficients to calculate the global importance scores of the
filters. These methods can guarantee that the resulting models meet the budget
constraint, but the discrete search process is inefficient and requires a pre-trained
model.

In contrast, DSA (Differentiable Sparsity Allocation) is an end-to-end prun-
ing flow that allocates the inter-layer sparsity with a gradient-based method,
which yields better performance and higher efficiency. Moreover, DSA works in
a “pruning from scratch” manner, saving the cost of pre-training the model.
The comparison of various properties across pruning methods is summarized in
Table 1.

3 Problem Definition

For budgeted pruning, denoting the budget as BF , the weight as W , the opti-
mization problem of the keep ratios A = {α(k)}k=1,··· ,K (1 - pruning ratio) of K
layers can be written as:

A∗ = argmaxAAccv(W ∗(A),A)
s.t. W ∗(A) = argminW Lt(W,A)

F(A) ≤ BF , 0 ≤ A ≤ 1
(1)
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Table 1. Comparison of structured pruning methods. Headers: The “budget control”
column indicates whether the method could ensure the resulting model to satisfy the
budget constraint; The “from scratch” column indicates whether the method could be
applied to random initialized models rather than pre-trained ones; The “performance
instruction” column describes how the task performance instructs the sparsity allo-
cation, “indirect” means that the task performance instructs the sparsity allocation
only indirectly through weights (e.g., magnitude pruning); The “gen. perf.” column
indicates whether the generalization performance guides the pruning process

Methods Budget control From scratch End-to-End Performance instruction Gen. perf.

SSL [20] No Yes Yes Indirect No

NetAdapt [22] Yes No No Discrete evaluation Yes

AMC [7] Yes No No Discrete evaluation Yes

MetaPruning [15] Yes No No Discrete evaluation Yes

ECC [21] Yes No Yes Indirect No

Ours Yes Yes Yes Differentiable Yes

where Accv is the validation accuracy, and Lt is the training loss, and F(A) is
the consumed resource corresponding to the keep ratios A.

To solve this optimization problem, existing iterative methods [7,14,22] con-
duct sensitive analysis in each stage, and use discrete search methods to adjust A.
The common assumption adopted is that in each stage, Accv(Ŵ ∗(A),A) should
be correlated to Accv(W ∗(A),A), in which Ŵ ∗(A) is approximated using the
current weights (e.g., threshold-based pruning, local layer-wise least-square fit-
ting), instead of finding W ∗(A) by finetuning.

4 Method

Since the validation accuracy Accv in Eq. 1 is not differentiable, we use the
validation loss Lv as a differentiable surrogate of Accv. Then, the objective
function becomes A∗ = argminALv(W ∗(A),A) in the differentiable relaxation of
the budgeted pruning problem in Eq. 1. As for the inner optimization of W ∗(A),
we adapt the weights to the changes of the structure by adopting similar bi-level
optimization as in DARTS [13]. The high-order gradients ∂W ∗(A)

∂A are ignored,
thus ∂Lv(W ∗(A),A)

∂A ≈ ∂Lv(W,A)
∂A .

The workflow of DSA is shown in Algorithm1 and Fig. 2. First, DSA groups
the network layers according to the topological constraints (Sect. 4.2), and
assigned a keep ratio for each group of layers. The sparsity allocation prob-
lem is to decide the proper keep ratios A for the K groups. The optimization
of the keep ratios A is conducted with gradient-based method in the continuous
space. We apply an ADMM-inspired optimization method (Sect. 4.3) to utilize
the gradients of both the task and budget loss to find a good sparsity allocation
α∗ that meets the budget constraint. Note that to enable the task loss’s gradi-
ents to flow back to the keep ratios α, we design a novel differentiable pruning
process (Sec. 4.1).
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Fig. 2. DSA workflow. For feasible deployment, we first group the network layers
according to the topological constraints (Sect. 4.2), and a keep ratio will be attributed
to each topological group. The budget model F is also generated for measuring the
budget loss F(A). Then, in the sparsity allocation procedure, the weights are updated
using the task loss on the training dataset. And the keep ratios decision (i.e., inter-layer
sparsity allocation) is conducted on the validation dataset using gradient-based steps
(Secy. 4.3). Note that the differentiable characteristic of the pruning process (Sect. 4.1)
enables the task loss’s gradients to flow back to the keep ratios A

4.1 Differentiable Pruning

Pruning Process Relaxation. In the traditional pruning process of a partic-
ular layer, given the keep ratio α, a subset of channels are chosen according to
the channel-wise importance criteria bi ∈ R

+, i = 1, · · · , C (e.g., the L1 norm
of the convolutional weights). In contrast, we use a probabilistic relaxation of
the “hard” pruning process where channel i has the probability pi to be kept.
Then, channel-wise masks are sampled from the Bernoulli distribution of pi:
mi ∼ Bernoulli(pi), i = 1, · · · , C. The pruning process is illustrated in Fig. 3.

The channel-wise keep probability pi = f(α, bi) is computed using α. Due
to the probabilistic characteristics of the pruning process, the proportion of the
actual kept channels might deviate from α. We should make the expectation of
the actual kept channels E[

∑C
i=1 mi] =

∑C
i=1 pi =

∑C
i=1 f(α, bi) equal to αC,

which we denote as the “expectation condition” requirement.
What is more, as we need a “hard” pruning scheme eventually, this prob-

abilistic pruning process should become deterministic in the end. Defining the
inexactness as E = E[|∑i mi − αC|2] =

∑
i Var[mi] =

∑
i pi(1 − pi), a proper

control on the inexactness is desired such that the inexactness E can reach 0 at
the end of pruning.

The choice of f is important to the stability and controllability of the pruning
process. An S-shaped function family w.r.t. b, f(b;β) : R+ → (0, 1), parametrized
by at least two parameters is required, so that we can control the inexactness
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Algorithm 1. DSA: Differentiable sparsity allocation
1: Run topological grouping, get K topological groups, and the budget model F
2: A = 1K

3: while F(A) > BF do

4: Update the keep ratios A, auxiliary and dual variables following Eq. 8 in Sec. 4.3
5: Update weights W with SGD:

WT = WT−1 − ηw
∂Lt
∂W

|WT

6: end while
7: return the pruned network, A

and satisfy the expectation condition at the same time. We choose the sigmoid-
log function f(bi, β1, β2) = Sigmoid ◦ Log(bi) = 1

1+(
bi
β1

)−β2
, β1, β2 > 0. This

function family has the desired property that, β1 and β2 could be used to con-
trol the expected keep ratio E[

∑C
i=1 mi] and the inexactness E in a relatively

independent manner. 1) In our work, β2 is a parameter that follows an increas-
ing schedule. As β2 approaches infinity, the inexactness E approaches 0, and β1

becomes the hard pruning threshold of this layer. 2) β1 = β1(α) is a function of
α. It has the interpretation of the soft threshold for the base importance score.
It is calculated by solving the implicit equation of expectation condition:

g(β1) =
1
C

E[
C∑

i=1

mi] − α =
1
C

C∑

i=1

f(bi, β1, β2) − α = 0 (2)

Since g(β1) is monotonically decreasing, the root β1(α) could be simply and
efficiently found (e.g., with bisection or Newton methods).

To summarize, utilizing the differentiable pruning process, the forward pro-
cess of the k-th layer can be written as

y(k)(w, y(k−1);α) = m � Conv-BN-ReLU(w, y(k−1))

s.t. mi ∼ Bernoulli(pi),
C∑

i=1

pi =
C∑

i=1

f(α, bi) = αC, i = 1, · · · , C
(3)

where y(k−1), w, y(k) denote the inputs, weights, outputs of this layer, and the
superscript k is omitted for simplicity.

Differentiable Instruction by the Task Loss. The task loss L can be writ-
ten as

L(A,W ) = Ex∼D[E
m

(k)
i ∼Ber(m;p

(k)
i )

[CE(x, y;M,W )]] (4)

where D is the training dataset, W denotes the weights, M is the set of masks
{{m(k)

i }i=1,··· ,C(k)}k=1,··· ,K , A is the set of keep ratios {α(k)}k=1,··· ,K .
To enable differentiable tuning of the layer-wise keep ratios A instructed by

both the task loss and the budget constraint, the major challenge is to derive
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Fig. 3. The illustration of the differentiable pruning process of one layer. Given the base
importances bi and the keep ratio α, the process outputs channel-wise keep probabilities
pi = f(bi, β1, β2), which satisfy that the expectation condition

∑C
i pi = αC. Then, the

channel-wise masks mi are sampled

the task loss’s gradients w.r.t. α(k): ∂L
∂α(k) . First, we can calculate the implicit

gradient ∂β1(α)
∂α as:

1
C

C∑

i=1

∂f(bi, β1, β2)
∂β1

∂β1

∂α
− 1 = 0

∂β1(α)
∂α

=
C

∑C
i=1 f ′(bi, β1, β2)

(5)

Then, ∂L
∂α(k) could be calculated as:

∂L

∂α(k)
=

∂β1

∂α

C∑

i=1

∂L

∂pi

∂pi

∂β1
= C

C∑

i=1

∂L

∂pi
f̂ ′

i ; f̂ ′
i =

f ′
i∑
f ′

i

(6)

where the superscript k is omitted for simplicity and ∂L
∂pi

could be approximated
using Monte-Carlo samples of the reparametrization gradients.

Equation 6 could be interpreted as: The update of α(k) is instructed using a
weighted aggregation of the gradients of the task loss L w.r.t. the keep proba-
bilities of channels ∂L

∂p
(k)
i

, and the aggregation weights are f ′
i , i = 1, · · · , C(k).

4.2 Topological Grouping and Budget Modeling

For plain CNN, we can choose the layer-wise keep ratios α(k), k = 1, · · · ,K
independently. However, for networks with shortcuts (e.g., ResNet), the naive
scheme can lead to irregular computation patterns. Our grouping procedure for
handling the topological constraints is described in Alg. 1 in the appendix. An
example of grouping convolutions in two residual blocks is also shown in the
appendix.

The F(A) function models relationship of the keep ratios A and the resources.
Taking FLOPs as an example, F(A) could be represented as F(A) = AT FAA+
FT

BA. For completeness, we summarize the calculation procedure of FA and FB

in Alg. 1 in the appendix. Under budget constraints for resources other than
FLOPs, regression models can be fitted to get the corresponding F model.
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4.3 ADMM-Inspired Method for Budgeted Pruning

ADMM is an iterative algorithm framework that is widely used to solve uncon-
strained or constrained convex optimization problems. Here, we use alternative
gradient steps inspired by the methodology of ADMM to solve the constrained
non-convex optimization problem.

Substituting the variable A by Θ = Sigmoid−1(A), the 0 ≤ A ≤ 1 constraints
are satisfied naturally. By introducing auxiliary variable z and the corresponding
dual variable u2 for the equality constraint z = Θ, the augmented Lagrangian
is:

L(Θ, z, u2) = Lv(Θ) + I(F(z) ≤ BF ) + uT
2 (Θ − z) +

ρ2

2
||Θ − z||2 (7)

We then minimize the dual lower bound maxu2 L(Θ, z, u2) of Lv(Θ). Equa-
tion 8 shows the 3 alternative steps in one iteration. The variables with the
superscript “′” denote the values at the previous time step.

Θ = argminΘLv(Θ) + uT
2 (Θ − z′) +

ρ2

2
||Θ − z′||2

z = argminzu
T
2 (Θ − z) +

ρ2

2
||Θ − z||2 s.t. F(z) ≤ BF

u2 = u′
2 + ρ2(Θ − z)

(8)

The unconstrained sub-problem for Θ is hard to solve, since Lv(Θ) is a
stochastic objective and W can only be regarded as being constant in a local
region. Therefore, in each iteration, we only do one stochastic gradient step on
one validation batch for Θ.

To solve the inner problem for the auxiliary variable z with an inequality con-
straint, we use the standard trick of converting F(z) ≤ BF to [F(z)−BF ]+ = 0,
and then use gradient descent to solve the min-max optimization of the aug-
mented lagrangian L(z)(z, u1) in Eq. 9. In each iteration of the inner optimiza-
tion, one gradient descent step is applied to z: z = z′ −ηz∇zL(z)(z, u1), and one
dual ascent step is applied to u1: u1 = u′

1 + ρ1[F(Θ) − BF ]+. This optimization
is efficient since only z and u1 need to be updated.

L(z)(z, u1) = u1[F(z) − BF ]+
ρ1

2
[F(z) − BF ]2 + uT

2 (Θ − z) +
ρ2

2
||Θ − z||2 (9)

The dual variables u1, u2 can be interpreted as the regularization coefficients,
which are dynamically adjusted according to the constraint violations.
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Table 2. Pruning results of ResNet-20 and ResNet-56 on CIFAR-10. SSL and Mor-
phNet are re-implemented with topological grouping. Accuracy drops for the referred
results are calculated based on the reported baseline in their papers. Headers: “TG”
stands for Topological Grouping; “FLOPs Budget” stands for the percentage of the
pruned models’ FLOPs compared to the full model

FLOPs budget Method TG ResNet-20 ResNet-56

FLOPs ratio Acc. (Acc. Drop) FLOPs ratio Acc. (Acc. Drop)

Baseline Ours 100 % 92.17 % 100 % 93.12 %

75% SSL [20] � 73.8% 91.08% (−1.09%) 69.0% 92.06% (−1.06%)

Variationalb [23] 83.5% 91.66% (−0.41%) 79.7% 92.26% (−0.78%)

PFECb [10] � − − 74.4% 91.31% (−1.75%)

MorphNet [4] � 74.9% 90.64% (−1.53%) 69.2% 91.71% (−1.41%)

DSA (Ours) � 74.0% 92.10% (−0.07%) 70.7% 93.08% (−0.04%)

50% (×2) SSL [20] � 51.8%a 89.78 % (−2.39%) 45.5% 91.22% (−1.90%)

MorphNet [4] � 47.1% 90.1% (−2.07%) 51.9%a 91.55% (−1.57%)

AMCb [7] � − − 50% 91.9% (−0.9%)

CPb [8] − − 50% 91.8% (−1.0%)

Rethinkb [17] 60.0% 91.07% (−1.34%) 50% 93.07% (−0.73%)

SFPb [5] 57.8% 90.83% (−1.37%) 47.4% 92.26% (−1.33%)

FPGMb [6] 57.8% 91.09% (−1.11%) 47.4% 92.93% (−0.66%)

LCCLb [3] 64.0% 91.68% (−1.06%) 62.1% 92.81% (−1.54%)

DSA (Ours) � 49.7% 91.38% (−0.79%) 47.8% 92.91% (−0.22%)

33.3% (×3) SSL [20] � 34.6%a 89.06% (−3.11%) 38.1%a 91.32% (−1.80%)

MorphNet [4] � 30.5% 88.72% (−3.45%) 39.7%a 91.21% (−1.91%)

DSA (Ours) � 32.5% 90.24% (−1.93%) 32.6% 92.20% (−0.92%)
aThese pruned models’ FLOPs of SSL and MorphNet are higher than the budget constraints, since these

regularization based methods lack explicit control of the resource consumption and even with carefully

tuned hyperparameters, the resulting model might still violate the budget constraint.
bThese methods’ results are directly taken from their paper, and their accuracy drops are calculated based

on their reported baseline accuracies.

5 Experiments

5.1 Setup

We conduct the experiments on CIFAR-10 and ImageNet. For CIFAR-10, the
batch size is 128, and an SGD optimizer with momentum 0.9, weight decay
4e−5 is used to train the model for 300 epochs. The learning rate is initialized
to 0.05 and decayed by 10 at epochs 120, 180, and 240. The differentiable sparsity
allocation is conducted simultaneously with normal training after 20 epochs of
warmup. As for ImageNet, we use an SGD optimizer (weight decay 4e−5, batch
size 256) to optimize the models for 120 epochs. The learning rate is 0.1 and
decayed by 10 at epochs 50, 80, 110. The first 15 epochs remains plain training
without pruning.

In the sparsity allocation process, 10% of the training data are used as the
validation data for updating the keep ratios, while 90% are used for tuning the
weights. For the optimization of A, the penalty parameters ρ1, ρ2 is set to 0.01,
and the scaling coefficient of Lv(Θ) is 1e+5. z is updated for 50 steps with
learning rate 1e-3 in the inner optimization. In practice, to reach the budget
faster, we project the gradients of Θ to be nonnegative. After each update of A,
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the weights are tuned for 20 steps for adaption. After acquiring the budget, the
whole training set is used for updating the weights.

In the differentiable pruning process, the L1 norms of BN scales are chosen
as the base importance scores bi = |γi|. β1(α) is found by solving Eq. 2 with the
bisection method. β2(T ) follows a increasing schedule: starts at 0.05 and gets
multiplied by 1.1 every epoch. As β2 → ∞, the soft pruning process becomes a
hard pruning process, and the inexactness E goes to 0.

5.2 Results on CIFAR-10 and ImageNet

On CIFAR-10, for SSL [20] and MorphNet [4], the regularization coefficients on
the convolution weights or BN scaling parameters are adjusted to meet various
budget constraints.

Table 2 and Fig. 4 show the results of pruning ResNet-20 and ResNet-56 on
CIFAR-10. The pruned models obtained by DSA meet the budget constraints
with smaller accuracy drops than the baseline methods. Compared with the reg-
ularization based methods (e.g., SSL and MorphNet), due to the explicit bud-
get modeling, DSA guarantees that the resulting models meet different budget
constraints, without hyperparameter trials. Compared with the iterative prun-
ing methods (e.g., AMC), DSA allocates the sparsity in a gradient-based way
and is more efficient (See Sect. 5.3). We also apply DSA to compress ResNet-18
and VGG-16, and the results are included in Appendix Table 1 and Fig. 2. It
shows that DSA outperforms the recent work based on a discrete search [14].
For ResNet-18, DSA achieves 94.19% versus 93.91% of the baseline with roughly
the same FLOPs ratio. For VGG-16, DSA achieves 90.16% with 20.4× FLOPs
reduction, which is significantly better than the baseline [14] (88.78% with 14.0×
FLOPs reduction).

Table 3 shows the results of applying DSA to prune ResNet-18 and ResNet-
50 on ImageNet. As could be seen, DSA consistently outperforms other methods
across different FLOPs ratios and network structure. For example, DSA could
achieve a small accuracy drop of 1.11% while keeping 60% FLOPs of ResNet-18,
which is significantly better than the baselines.

5.3 Analysis and Discussion

Computational Efficiency. Some recent studies [17,19] suggest that starting
with a pre-trained model might not be necessary for pruning. Unlike current
methods which rely on a pre-trained model, DSA could work in a “pruning from
scratch” manner.

As shown in Fig. 1, traditional budgeted pruning consists of 3 stages: pre-
training, sparsity allocation, and finetuning. The iterative pruning methods con-
duct hundreds of search-evaluation steps for sparsity allocation, e.g., AMC takes
about 3 GPU hours for pruning ResNet-56 on CIFAR-10 [19]. After learning the
structure, the finetuning stage takes 100–200 epochs for CIFAR-10 (60 epochs
for ImageNet), which accounts for about 2–3 GPU hours for ResNet-56 on
CIFAR-10 and 150 GPU hours for ResNet-18 on ImageNet. Moreover, these two
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Table 3. Pruning results on ImageNet. “TG” stands for Topological Grouping

Network TG Method FLOPs Top-1 Top-5

Ratio Acc Drop Acc Drop

ResNet18 Baseline 100% 69.72% 89.07%

MiL [3] 65.4% −3.65% −2.30%

SFP [5] 60.0% −3.18% −1.85%

FPGM [6] 60.0% −2.47% −1.52%

� Ours 60.0% −1.11% −0.718%

ResNet50 Baseline 100% 76.02% 92.86%

APG [9] 69.0% −1.94% −1.95%

GDP [12] 60.0% −2.52% −1.25%

SFP [5] 60.0% −1.54% −0.81%

FPGM [6] 60.0% −1.12% −0.47%

� Ours 60.0% −0.92% −0.41%

ThiNet [18] 50.0% −4.13% −
CP [8] 50.0% −3.25% −1.40%

FPGM [6] 50.0% −2.02% −0.93%

PFS [19] 50.0% −1.60% −
Hinge [11] 46.55% −1.33% −

� Ours 50.0% −1.33% −0.8%

stages should be repeated for multiple rounds to achieve the maximum pruning
rates [14,22], thus further increase the computational costs by several times.
What’s more, these methods need to be applied to the pre-trained models, and
the pre-training stage takes about 300 and 120 epochs for models on CIFAR-
10 and ImageNet. To summarize, the 3 stages can take up to 10 GPU hours
for ResNet-56 on CIFAR-10, and 450 GPU hours for ResNet-18 on ImageNet.

Fig. 4. Pruning results on CIFAR-10
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Fig. 5. The alignment between sensitivity analysis and gradient magnitudes of ResNet-
18 on CIFAR-10. The magnitudes are normalized by v̂ = softmax(v/std(v))

In contrast, the sparsity allocation in DSA is carried out in a more efficient
gradient-based way, without the need of the pre-trained models. The extra cost
of the sparsity allocation is small, since all the ADMM updates can be merged
into the optimization of weights, and are conducted only once every tens of
weight optimization steps. The whole DSA flow runs for 300 and 120 epochs on
CIFAR-10 and ImageNet (5/300 GPU hours), thus speed up the overall pruning
process by about 1.5×.

Rationality of the Differentiable Sparsity Allocation. In DSA, the task
loss’s gradient w.r.t. layer-wise pruning ratios directly guides the budget allo-
cation. To see whether the gradient magnitudes align well with the local sensi-
tivity, we conduct an empirical sensitivity analysis for ResNet-18 on CIFAR-10.
We prune each layer (topological group) independently with different pruning
ratios according to the L1 norm, and show the test accuracy in Fig. 5a. Although
this sensitivity analysis is heuristic and approximate, the accuracy drop could be
interpreted as the local sensitivity for each group. Figure 5b shows the normal-
ized magnitudes of the task loss’s gradients and the sensitivity of the layer-wise
sparsity. We can see that these two entities align well, giving evidence that the
task loss’s gradient indeed encodes the relative layer-wise importance.

Figure 6 presents the sparsity allocation (FLOPs budget 25%) for ResNet-
18 on CIFAR-10 obtained by DSA and SSL [20]. The results show that the
first layer for primary feature extraction should not be pruned too aggressively
(group A), so do shortcut layers that are responsible for information transmission
across stages (groups A, D, G, J). The strided convolutions are relatively more
sensitive, and more channels should be kept (groups E, H). In conclusion, DSA
obtains reasonable sparsity allocation that matches empirical knowledge [15,17],
with lower computational cost than iterative pruning methods.
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Fig. 6. The comparison between the normalized sensitivity, and the sparsity allocation
of DSA and SSL [20] for ResNet-18 on CIFAR-10

6 Conclusion

In this paper, we propose Differentiable Sparsity Allocation (DSA), a more effi-
cient method for budgeted pruning. Unlike traditional discrete search methods,
DSA optimizes the sparsity allocation in a gradient-based way. To enable the
gradient-based sparsity allocation, we propose a novel differentiable pruning pro-
cess. Experimental results show that DSA could achieve superior performance
than iterative pruning methods, with significantly lower training costs.
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Abstract. AutoAugment has been a powerful algorithm that improves
the accuracy of many vision tasks, yet it is sensitive to the operator space
as well as hyper-parameters, and an improper setting may degenerate
network optimization. This paper delves deep into the working mecha-
nism, and reveals that AutoAugment may remove part of discriminative
information from the training image and so insisting on the ground-truth
label is no longer the best option. To relieve the inaccuracy of supervi-
sion, we make use of knowledge distillation that refers to the output of
a teacher model to guide network training. Experiments are performed
in standard image classification benchmarks, and demonstrate the effec-
tiveness of our approach in suppressing noise of data augmentation and
stabilizing training. Upon the cooperation of knowledge distillation and
AutoAugment, we claim the new state-of-the-art on ImageNet classi-
fication with a top-1 accuracy of 85.8%.

Keywords: AutoML · AutoAugment · Knowledge distillation

1 Introduction

Automated machine learning (AutoML) has been attracting increasing atten-
tions in recent years. In standard image classification tasks, there are mainly
two categories of AutoML techniques, namely, neural architecture search (NAS)
and hyper-parameter optimization (HPO), both of which focus on the possibility
of using automatically learned strategies to replace human expertise. AutoAug-
ment [4] belongs to the latter, which goes one step beyond conventional data
augmentation techniques (e.g., horizontal flipping, image rescaling & cropping,
color jittering, etc.) and tries to combine them towards generating more training
data without labeling new images. It has achieved consistent accuracy gain in
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image classification [4], object detection [11], etc., and meanwhile efficient vari-
ants of AutoAugment have been proposed to reduce the computational burden
in the search stage [13,17,25].

Fig. 1. Left: an image and its augmented copies generated by AutoAugment. The
original image is clean and there is no doubt to use the ground-truth label, while the
augmented counterparts look more like other classes which the annotation is not aware
of. This phenomenon is called augment ambiguity. Right: We leverage the idea of
knowledge distillation to provide softened signals to avoid ambiguity.

Despite their ability in improving recognition accuracy, we note that
AutoAugment-based methods often require the search space to be well-designed.
Without careful control (e.g., in an expanded search space or with an increased
distortion magnitude), these methods are not guaranteed to perform well – as we
shall see in Sect. 3.2, an improper hyper-parameter may deteriorate the optimiza-
tion process, resulting in even lower accuracy compared to the baseline. This puts
forward a hard choice between more information (seeing a wider range of aug-
mented images) and safer supervision (restricting the augmented image within
a relatively small neighborhood around the clean image), which downgrades the
upper-bound of AutoAugment-based methods.

In this paper, we investigate the reason of this contradictory. We find that
when heavy data augmentation is added to the training image, it is probable
that part of its semantic information is removed. An example of changing image
brightness is shown in Fig. 1, and other transformation such as image trans-
lation and shearing can also incur information loss and make the image class
unrecognizable (refer to Fig. 3). We name this phenomenon augment ambigu-
ity. In such contaminated training images, insisting on the ground-truth label
is no longer the best choice, as the inconsistency between input and supervision
can confuse the network. Intuitively, complementary information that relates the
augmented image to similar classes may serve as a better source of supervision.

Motivated by the above, we leverage the idea of knowledge distillation which
uses a standalone model (often referred to as the teacher) to guide the target net-
work (often referred to as the student). For each augmented image, the student
receives supervision from both the ground-truth and the teacher signal, and in
case that part of semantic information is removed, e.g., an ambiguous (Fig. 1) or
an out-of-distribution (Fig. 3) instance, the teacher can provide softened labels
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to avoid confusion. The extra loss between the teacher and student is measured
by the KL-divergence between the score distributions of their top-ranked classes,
and the number of involved classes is positively correlated to the magnitude of
augmentation, since a larger magnitude often eliminates more semantics and
causes smoother score distributions.

The main contribution of this paper is to reveal that knowledge distillation is
a natural complement to uncontrolled data augmentation, such as AutoAugment
and its variants. The effectiveness of our approach is verified in the space of
AutoAugment [4] as well as that of RandAugment [5] with different strengths of
transformations. Knowledge distillation brings consistent accuracy gain to recog-
nition, in particular when the distortion magnitude becomes larger. Experiments
are performed on standard image classification benchmarks, namely, CIFAR-
10/100 and ImageNet. On CIFAR-100, with a strong baseline of PyramidNet [12]
and ShakeDrop [49] regularization, we achieve a test error of 10.6%, outperform-
ing all competitors with similar training costs. On ImageNet, in the RandAug-
ment space, we boost the top-1 accuracy of EfficientNet-B7 [41] from 84.9% to
85.5%, with a significant improvement of 0.6%. Note that without knowledge
distillation, RandAugment with a large distortion magnitude may suffer unsta-
ble training. Moreover, on top of EfficientNet-B8 [45], we set a new record
on ImageNet classification (without extra training data) by claiming a top-1
accuracy of 85.8%, surpassing the previous best by a non-trivial margin.

2 Related Work

Deep learning [24], in particular training deep neural networks, has been the stan-
dard methodology in computer vision. Modern neural networks, either manually-
designed [14,19,22,34,38] or automatically searched [27,31,40,41,58,59], often
contain a very large number of trainable parameters and thus raise the challenge
of collecting more labeled data to avoid over-fitting. Data augmentation is a
standard strategy to generate training data without additional labeling costs.
Popular options of transformation include horizontal flipping, color/contrast jit-
tering, image rotation/shearing, etc., each of which slightly alters the geome-
try and/or pattern of an image but keeps its semantics (e.g., the class label)
unchanged. Data augmentation has been verified successful in a wide range of
visual recognition tasks, including image classification [7,52,54], object detec-
tion [35], semantic segmentation [8], person re-identification [57], etc. Researchers
have also discussed the connection between data augmentation and network reg-
ularization [10,36,49] methods.

With the rapid development of automated machine learning (AutoML) [43],
researchers proposed to learn data augmentation strategies in a large
search space to replace the conventional hand-designed augmentation policies.
AutoAugment [4] is one of the early efforts that works on this direction. It first
designed a search space with a number of transformations and then applied rein-
forcement learning to search for powerful combinations of the transformations to
arrive at a high validation accuracy. To alleviate the heavy computational costs
in the search stage, researchers designed a few efficient variants of AutoAugment.
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Fast AutoAugment [25] moved the costly search stage from training to evalu-
ation through bayesian optimization, and population-based augmentation [17]
applied evolutionary algorithms to generate policy schedule by only a single run
of 16 child models. Online hyper-parameter learning [26] combined the search
stage and the network training process, and faster AutoAugment [13] formulated
the search process into a differentiable function, following the recently emerg-
ing weight-sharing NAS approaches [2,28,30]. Meanwhile, some properties of
AutoAugment have been investigated, such as whether aggressive transforma-
tions need to be considered [17] and how transformations of enriched knowledge
are effectively chosen [55]. Recently, RandAugment [5] shared another opinion
that the search space itself may have contributed most: based on a well-designed
set of transformations, a random policy of augmentation works sufficiently well.

Knowledge distillation was first introduced as an approach to assist network
optimization [16]. The goal is to improve the performance of a target network
(often referred to as the student model) using two sources of supervision, one
from the ground-truth label, and the other from the output signal of a pre-trained
network (often referred to as the teacher model). Beyond its wide application
on model compression (large teacher, small student [16,33]) and model initial-
ization (small teacher, large student [3,34]), researchers later proposed to use
it for standard network training, with the teacher and student models sharing
the same network architecture [9,50,51], and sometimes under the setting of
semi-supervised learning [42,56]. There have been discussions on the working
mechanism of knowledge distillation, and researchers advocated for the so-called
‘dark knowledge’ [16] being some kind of auxiliary supervision, obtained from
the pre-trained model [1,50] and thus different from the softened signals based
on label smoothing [29,39].

In this paper, we build the connection between knowledge distillation and
AutoAugment by showing that the former is a natural complement to the latter,
which filters out noises introduced by overly aggressive transformations.

3 Our Approach

3.1 Preliminaries: Data Augmentation with AutoML

Let D = {(xn, yn)}N
n=1 be a labeled image classification dataset with N samples,

in which xn denotes the raw pixels and yn denotes the annotated label within
the range of {1, 2, . . . , C}, C is the number of classes. yn is the vectorized version
of yn with the dimension corresponding to the true class assigned a value of 1
and all others being 0. The goal is to train a deep network, M : yn = f(xn;θ),
where θ denotes the trainable parameters. The dimensionality of θ is often very
large, e.g., tens of millions, exceeding the size of dataset, N , in most of cases.
Therefore, network training is often a ill-posed optimization problem and incurs
over-fitting without well-designed training strategies.

The goal of data augmentation is to enlarge the set of training images without
actually collecting and annotating more data. It starts with defining a transfor-
mation function, xτ

n
.= g(xn, τ ), in which τ ∼ T is a multi-dimensional vector
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parameterizing how the transformations are performed. Note that each dimen-
sion of τ can take either discrete (e.g., whether the image is horizontally flipped)
or continuous (e.g., the image is rotated for a specific angle), and different trans-
formations can be applied to an image towards richer combinations. The idea of
AutoAugment [4] is to optimize the distribution, T , so that the model optimized
on the augmented training set performs well on the validation set:

T � = arg min
T

L(g(xn; τ ∼ T ) ,yn;θ�
T | (xn,yn) ∼ Dval), (1)

in which θ�
T = arg min

θ
L(g(xn; τ ∼ T ) ,yn;θ | (xn,yn) ∼ Dtrain).

Here, Dtrain and Dval are two subsets of D, used for training and validating the
quality of T , respectively. The loss function follows any conventions, e.g., the
cross-entropy form, L(xτ

n,yn;θ) = y�
n · ln f(xτ

n;θ). Equation (1) is a two-stage
optimization problem, for which existing approaches either applied reinforcement
learning [4,17,25] or weight-sharing methods [13] which are often more efficient.

We follow the convention to assign each dimension in τ to be an individual
transformation, with the complete list shown below:

• invert • autoContrast • equalize • rotate
• solarize • color • posterize • contrast
• brightness • sharpness • shear-x • shear-y
• translate-x • translate-y

Therefore, τ is a 14-dimensional vector and each dimension of τ represents the
magnitude of the corresponding transformation. For example, the fourth dimen-
sion of τ represents the magnitude of rotate transformation, and a value of
zero indicates the corresponding transformation being switched off. Each time
a transformation is sampled from the distribution, τ ∼ T , at most two dimen-
sions in it are set to be non-zero, and each selected transformation is assigned a
probability that it is applied after each training image is sampled online.

3.2 AutoAugment Introduces Noisy Training Images

AutoAugment makes it possible to generate infinitely many images which do
not exist in the original training set. On the upside, this reduces the risk of
over-fitting during the training process; on the downside, it can introduce a con-
siderable amount of outliers to the training process. Typical examples are shown
in Fig. 2. When an image with its upper part occupied by main content (e.g.,
bee) is sampled, the transformation of translate-y (shifting the image along
the vertical direction) suffers risk of removing all discriminative contents within
it outside the visible area, and thus the augmented image becomes meaningless
in semantics. Nonetheless, the training process is not always aware of such noises
and still uses the ground-truth signal, a one-hot vector, to supervise and thus
confuse the deep network.

In Fig. 2, we also show how the training loss and validation accuracy curves
change along with the magnitude of transformation. When the magnitude is 0
(i.e., no augmentation is used), it is easy for the network to fit the training set
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Fig. 2. Left: AutoAugment can generate meaningless training images but still assigns
deterministic class labels to them. Right: The results of EfficientNet-B0 with different
magnitudes of transformation on ImageNet. The training difficulty increases gradually
with enlarging the magnitude of transformation, while the validation accuracy rises
initially but drops at last. This phenomenon reveals the model starts from over-fitting
to under-fitting.

and thus the training loss quickly drops, but the validation accuracy remains
low which indicates over-fitting. With a relatively low magnitude of augmen-
tation, the training loss increases gradually meanwhile the validation accuracy
arrives at a higher plateau, i.e., over-fitting is alleviated. However, if the mag-
nitude of augmentation continues growing, it becomes more and more difficult
to fit the training set, i.e., the model suffers under-fitting. In particular, when
the magnitude is set to be 36, the noisy data introduced to the training set is
sufficiently high to bias the model training, i.e., the results is lower than the
baseline without AutoAugment.

From the above analysis, we realize that AutoAugment is indeed balancing
between richer training data and heavier noises. Researchers provided comments
from two aspects: some of them argued that the transformation strategies may
have been overly aggressive and need to be controlled [17], while some others
advocated for the benefit of exploring aggressive transformations so that richer
information is integrated into the trained model [55]. We deal with this issue from
a new perspective. We believe that aggressive transformations are useful to train-
ing, yet treating all augmented images just like they are clean (non-augmented)
samples is not the optimal choice. Moreover, the same transformations operated
on different images will cause different results, i.e., some generated images can
enrich the diversity of training set but the others are biased. Therefore, we treat
every image differently for preserving richer information but filtering out noises.

3.3 Circumventing Outliers with Knowledge Distillation

Our idea is very simple. For a training image generated by AutoAugment,
g(xn; τ ), we provide two-source supervision signals to guide network optimiza-
tion. The first one remains the same as the original training process, with
the standard cross-entropy loss computed based on the ground-truth class, yn.
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The second one comes from a pre-trained model which provides an individual
judgment of g(xn; τ ), i.e., whether it contains sufficient semantics for classifica-
tion. Let M

T and M
S denote the pre-trained (teacher) and target (student)

model, where the superscripts of T and S represent ‘teacher’ and ‘student’,
respectively, and thus the network loss function is upgraded to be:

LKD
(
xτ

n,yn;θS
)

= y�
n · ln fS

(
xτ

n;θS
)

+ λ · KL
[
fS

(
xτ

n;θS
)

‖fT
(
xτ

n;θT
)]

,

(2)
where λ is the balancing coefficient, and we have followed the convention to
use the KL-divergence to compute the distance between teacher and student
outputs, two probabilistic distributions over all classes.

Intuitively, when the semantic information of an image is damaged by data
augmentation, the teacher model that is ‘unaware’ of augmentation should pro-
duce less confident probabilistic outputs, e.g., if an original image, xn, contains
a specific kind of bird and some parts of the bird is missing or contaminated
by augmentation, τ , then we expect the probabilistic scores of the augmented
image, xτ

n, to be distributed over a few classes with close relationship to the true
one. We introduce a hyper-parameter, K, and consider the K classes with the
highest scores in fT

(
xτ

n;θT
)
, forming a set denoted by CK

(
xτ

n;θT
)
. Due to the

reason that the class probability decays rapidly with ranking, and low-ranked
scores may contain much noise, it is often unsafe to force the student model to
fit all teacher scores, so most often, we have K � C, and the choice of K will be
discussed empirically in the experimental section. The KL-divergence between
fT

(
xτ

n;θT
)

and fS
(
xτ

n;θS
)

is thus modified as:

KL
[
fS

(
xτ

n;θS
)

‖fT
(
xτ

n;θT
)]

=
∑

c∈CK(xτ
n;θT)

fT
c

(
xτ

n;θT
)

· ln
fS

c

(
xτ

n;θS
)

fT
c

(
xτ

n;θT
) , (3)

where fc denotes the c-th dimension of f .

3.4 Discussions and Relationship to Prior Work

A few prior work [1,50] studied how knowledge distillation works in the sce-
narios that teacher and student models have the same capacity. They argued
that the teacher model should be strong enough so as not to provide low-quality
supervision to the student model. However, this work provides a novel usage of
the teacher signal: suppressing noises introduced by data augmentation. From
this perspective, the teacher model can be considerably weaker than the stu-
dent model but still contribute to recognition accuracy. Experimental results
on CIFAR-100 (setting and details are provided in Sect. 4.1) show that a pre-
trained Wide-ResNet-28-10 [53] with AutoAugment (test set error rate of 17.1%)
can reduce the test set error rate of a Shake-Shake (26 2x96D) [10] trained with
AutoAugment from 14.3% to 13.8%.



Circumventing Outliers of AutoAugment with Knowledge Distillation 615

We noticed prior work [15] argued that data augmentation may introduce
uncertainty to the network training process because the training data distribu-
tion is changed, and proposed to switch off data augmentation at the end of
the training stage to alleviate the empirical risk of optimization. Our method
provides an alternative perspective that the risk is likely to be caused by the
noises of data augmentation and thus can be reduced by knowledge distillation.
Moreover, the hyper-parameters in [15] (e.g., when to switch off data augmenta-
tion) is difficult to tune. In training Wide-ResNet-28-10 [53] with AutoAugment
on CIFAR-100, we follow the original paper to prevent data augmentation by
adding 50 epochs to train the clean images only, but the baseline error rate
(17.1%) is only reduced to 16.8%. In comparison, when knowledge distillation is
added to these 50 epochs, the error rate is significantly reduced to 16.2%.

This work is also related to prior efforts that applied self-training to semi-
supervised learning, i.e., only a small portion of training data is labeled [23,
42,46]. These methods often started with training a model on the labeled part,
then used this model to ‘guess’ a pseudo label for each of the unlabeled samples,
and finally updated the model using all data with either ground-truth or pseudo
labels. This paper verifies the effectiveness of knowledge distillation in the fully-
supervised setting in which augmented data can be noisy. Therefore, we draw the
connection between exploring unseen data (data augmentation) and exploiting
unlabeled data (semi-supervised learning), and reveal the potential of integrating
AutoAugment and/or other hyper-parameter optimization methods to assist and
improve semi-supervised learning.

4 Experiments

4.1 Results on the CIFAR-10/100 Datasets

Dataset and Settings. CIFAR-10/100 [21] contain tiny images with a resolu-
tion of 32 × 32. Both of them have 50K training and 10K testing images, uni-
formly distributed over 10 or 100 classes. They are two commonly used datasets
for validating the basic properties of learning algorithms. Following the conven-
tion [4,5], we train three types of networks, namely, wide ResNet (Wide-ResNet-
28-10) [53], Shake-Shake (three variants with different feature dimensions) [10],
and PyramidNet [12] with ShakeDrop regularization [49].

Knowledge Distillation Stabilizes AutoAugment. The core idea of our
approach is to utilize knowledge distillation to restrain noises generated by severe
transformations. This is expected to stabilize the training process of AutoAug-
ment. To verify this, we start with training Wide-ResNet-28-10 on CIFAR-100.
Note that the original augmentation space of AutoAugment involves two major
kinds of transformations, namely, geometric or color-based transformations, on
which AutoAugment as well as its variants limited the distortion magnitude of
each transformation in a relatively small range so that the augmented images are
mostly safe, i.e., semantic information is largely preserved. In order to enhance
the benefit brought by suppressing noises of aggressive augmentations, we design
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Fig. 3. Examples of transformations involved in our self-designed augment space. The
distortion magnitude, M , is divided into 10 levels. The deformation introduced by
transformations increases along with the magnitude. First three rows are examples of
the deformation produced by each type of transformation with different magnitudes.
The last row represents applying two consecutive transformations on a single image,
which is the real case in our training scenario.

Table 1. Comparison between RandAugment with or without knowledge distillation
in our self-designed augment space on CIFAR-100 based on Wide-ResNet-28-10. All
numbers in the table are error rates (%). M indicates the distortion magnitude of each
transformation. RA for RandAugment [5], and KD for knowledege distillation.

Model Distortion magnitude, M

0 1 2 3 4 5 6 7

RA 18.4 19.5 20.7 22.4 25.7 31.6 40.3 55.1

RA+KD 18.0 17.6 18.5 19.9 21.9 27.0 34.9 48.0

Gain +0.4 +1.9 +2.2 +2.5 +3.8 +4.6 +5.4 +7.1

a new augment space in which the restriction in distortion magnitude is much
weaker. To guarantee that large magnitudes lead to complete damage of semantic
information, we only preserve a subset of geometric transformations (shear-x,
shear-y, translate-x, translate-y) as well as cutout, and set 10 levels of dis-
tortion, so that M = 0 implies no augment, and M = 10 of any transformation
destroys the entire image. Note that the range of M here is specifically designed
for the modified augment space, which is incomparable with the original defini-
tion of M in RandAugment (experimented in Sect. 4.2). Regarding knowledge
distillation, we set K = 3 (computing KL-divergence between the distributions
of top-3 classes, determined by the teacher model) for CIFAR-10 and K = 5 for
CIFAR-100. The balancing coefficient, λ, and the softmax temperature, T , is set
to be 1.0 and 2.0, respectively.
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In this modified augment space, we experiment with the strategy of Ran-
dAugment [5] which controls the strength of augmentation by adjusting the
distortion magnitude, M . For example, on the translate-x transformation, a
magnitude of 3 allows the entire image to be shifted, to the left or right, by
at most 30% of the visible field, and a magnitude of 10 enlarges the number
into 100%, i.e., the visible area totally disappears. More examples are shown in
Fig. 3. Note that RandAugment performs two consecutive transformations on
each image, therefore, a magnitude of 8 is often enough to destroy all semantic
contents. Hence, M is constrained within the range of 0–7 in our experiments.

Table 2. Comparison between our approach and other data augmentation methods
on CIFAR-10 and CIFAR-100. The teacher for all networks is Wide-ResNet-28-10,
except for PyramidNet+ShakeDrop with itself as teacher on CIFAR-100 (due to the
huge performance gap). All numbers in the table are error rates (%). NA indicates
no augmentation is used, AA for AutoAugment [4], FAA for fast AutoAugment [25],
PBA for population-based augmentation [17], and RA for RandAugment [5].

Dataset Network NA AA FAA PBA RA Ours

CIFAR-10 Wide-ResNet-28-10 3.9 2.6 2.7 2.6 2.7 2.4

Shake-Shake (26 2x32D) 3.6 2.5 2.5 2.5 − 2.3

Shake-Shake (26 2x96D) 2.9 2.0 2.0 2.0 2.0 1.8

Shake-Shake (26 2x112D) 2.8 1.9 1.9 2.0 − 1.9

PyramidNet+ShakeDrop 2.7 1.5 1.7 1.5 1.5 1.5

CIFAR-100 Wide-ResNet-28-10 18.8 17.1 17.3 16.7 16.7 16.2

Shake-Shake (26 2x96D) 17.1 14.3 14.6 15.3 − 13.8

PyramidNet+ShakeDrop 14.0 10.7 11.7 10.9 − 10.6

Results of different distortion magnitudes are summarized in Table 1. With
the increase of the magnitude, a larger portion of semantic information is
expected to be removed from the training image. In this scenario, if we continue
forcing the model to fit the ground-truth, one-hot supervision of each training
sample, the deep network may get confused and ‘under-fit’ the training data.
This causes consistent accuracy drop, especially in the modified augment space
with only geometric transformations. Even when the full augment space is used
(in which some transformations are not very sensitive to M), this factor persists
and hinders the use of larger M values, and thus restricts the degree of freedom
of AutoAugment.

Knowledge distillation offers an opportunity that each augmented image is
checked beforehand, and a soft label is provided by a pre-trained teacher model
to co-supervise the training process so that the deep network is not forced to fit
the one-hot label. This is especially useful when the training image is contam-
inated by augmentation. As shown in Table 1, knowledge distillation provides
consistent accuracy gain over RandAugment, as it slows down the accuracy
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drop with aggressive augmentation (the gain is larger as the distortion mag-
nitude increases). More importantly, under a magnitude of M = 1, knowledge
distillation produces an accuracy gain of 1.9%, assisting the RandAugment-only
model with a deficit of 1.1% to surpass the baseline, claiming an advantage of
0.4%. This proves that the benefit mainly comes from the cooperation of Ran-
dAugment and knowledge distillation, not only from the auxiliary information
provided by knowledge distillation itself [1,9,50].

Comparison with State-of-the-Arts. To make fair comparisons to the previ-
ous AutoAugment-based methods, we directly inherit the augmentation policies
found on CIFAR by AutoAugment. In this full space, all transformations listed
in Sect. 3.1, not only the geometric transformations, can appear. Results are
summarized in Table 2.

On CIFAR-10, our method outperforms other augmentation methods consis-
tently, in particular, on top of smaller networks (e.g., the error rates of Wide-
ResNet-28-10 and two Shake-Shake models are reduced by 0.2%). For larger
models, in particular PyramidNet with ShakeDrop regularization, the room of
improvement on CIFAR-10 is very small, yet we can observe improvement on
very large models on the more challenging CIFAR-100 and ImageNet datasets
(see the next part for details).

A side comment is that we have used the same teacher model (i.e., Wide-
ResNet-28-10, reporting a 2.6% error) which is relatively weak. We find this
model can assist training much stronger students (e.g., the Shake-Shake series,
in which the error of the 2x96D model, 2.0%, is reduced to 1.8%). In other
words, weaker teachers can assist training strong students. This delivers
a complementary opinion to prior research which advocates for extracting ‘dark
knowledge’ as some kind of auxiliary supervision [50] from stronger [16] or at
least equally-powerful [9] teacher models, and further verifies the extra benefits
brought by integrating knowledge distillation and AutoAugment together.

On CIFAR-100, we evaluate a similar set of network architectures, i.e., Wide-
ResNet-28-10, Shake-Shake (26 2x96D), and PyramidNet+ShakeDrop. As shown
in Table 2, our results consistently outperform the previous state-of-the-arts. For
example, on a relatively smaller Wide-ResNet-28-10, the error of AutoAugment
decreases from 17.1% to 16.2% and significantly outperforms other methods,
e.g., PBA and RA. On Shake-Shake (26 2x96D), our approach also surpasses
the previous best performance (14.3%) by a considerable margin of 0.5%. On
pyramidNet with ShakeDrop, although the baseline accuracy is sufficiently high,
knowledge distillation still brings a slight improvement (from 10.7% to 10.6%).

4.2 Results on the ImageNet Dataset

Dataset, Setting, and Implementation Details. ImageNet [6] is one of
the largest visual recognition datasets which contains high-resolution images.
We use the competition subset which has 1K classes, 1.3M training and 50K
validation images. The number of images in each class is approximately the
same for training data.
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We build our baseline upon EfficientNet [41] and RandAugment [5]. Efficient-
Net contains a series of deep networks with different depths, widths and scales
(i.e., the spatial resolution at each layer). There are 9 variants of Efficient-
Net [45], named from B0 to B8. Equipped with RandAugment, EfficientNet-B7
reports a top-1 accuracy of 85.0% which is close to the state-of-the-art. We start
with EfficientNet-B0 to investigate the impact of different knowledge distillation
parameters on ImageNet, and finally compete with state-of-the-art results on
EfficientNet-B4, EfficientNet-B7, and EfficientNet-B8.

Fig. 4. Training EfficientNet-B0 with different KD parameters. All numbers reported
are top-1 accuracy (%). Left: The testing accuracy of different λ values, while K is set
as 10. Right: The testing accuracy of different K values, while λ is set to be 0.5.

We follow the implementation details provided by the authors1, and repro-
duce the training process using PyTorch. For EfficientNet-B0, it is trained
through 500 epochs with an initial learning rate to be 0.256 and decayed by
a factor of 0.97 every 2.4 epochs. We use the RMSProp optimizer with a decay
factor of 0.9 and a momentum of 0.9. The batch-normalization decay factor is set
to be 0.99 and the weight decay 10−5. We use 32 GPUs (NVIDIA Tesla-V100) to
train EfficientNet-B0/B4, and 256 GPUs for EfficientNet-B7/B8, respectively.

The Impact of Different Knowledge Distillation Parameters. We start
with investigating the impact of λ and K, two important hyper-parameters of
knowledge distillation. Note that we fix the softmax temperature, T , to be 10.0
in all ImageNet experiments. We perform experiments on EfficientNet-B0 with a
moderate distortion magnitude of M = 9, which, as we have shown in the right-
hand side of Fig. 2, is a safe option on EfficientNet-B0. For λ, we set different
values including 0.1, 0.2, 0.5, 1.0, and 2.0. For K, the optional values include
2, 5, 10, 25, and 50. To better evaluate the effect of each parameter, we fix one
parameter value when changing the other.

Results are shown in Fig. 4. It is clear that a moderate λ performs best. While
setting λ with a small value, e.g., 0.1, knowledge distillation is only expected to
affect a small part of training samples. Yet, it obtains a 0.3% accuracy gain,
implying that these samples, though rarely seen, can make the training process

1 https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet.

https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
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unstable. On the other hand, when λ is overly large, e.g., knowledge distilla-
tion can dominate the training process and force the student model to have a
very similar behavior to the teacher model, which limits its ability and harms
classification performance.

Regarding K, we note that K = 5 achieves the best performance, indicating
that on average, each class is connected to 4 other classes. This was also suggested
in [50]. Yet, we find that setting K = 2 or K = 10 reports similar accuracy, but
the performance gradually drops as K increases. This implies including too many
classes for KL-divergence computation is harmful, because each training image,
after augmented with a relatively small distortion magnitude, is not likely to be
connected to a large number of classes. However, to train more powerful models,
larger distortion magnitudes need to be used and heavier ambiguity introduced.
In this case, a larger K will be better, as we shall see in the next section.

Regardless of tuning hyper-parameters, we emphasize that all tested λ’s, lying
in the range of [0.1, 2.0], and all tested K’s, in [2, 50], can bring positive effects
on classification. This indicates that knowledge distillation is usually useful in
training with augmented data. With the best setting, i.e., a distortion magnitude
of 9, a fixed K of 5, and λ = 0.5, we achieve a top-1 accuracy of 78.0% on
EfficientNet-B0. This surpasses the accuracy of RandAugment (reproduced by
us) and AdvProp [45] by margins of 0.6% and 0.4%, respectively.
Comparison to the State-of-the-Arts. To better evaluate the effectiveness of
our approach, we further conduct experiments on more challenging large mod-
els, i.e., EfficientNet-B4, EfficientNet-B7, and EfficientNet-B8. Given the fact
that larger network is expected to over-fit more easily, for EfficienNet-B4 and
EfficientNet-B7, we lift the magnitude of transformations on RandAugment from
9 in EfficientNet-B0 to 15 and 28, respectively. As discussed above, increasing
the distortion magnitude brings more ambiguity to the training images so that
each of them should be connected to more classes, and the knowledge distillation
supervision should take a heavier weight. Hence, we increase K to 50 and λ to
2.0 in all experiments in this part.

Results are summarized in Table 3. By restraining the inevitable noises gen-
erated by RandAugment, our approach significantly boosts the baseline models.
As shown in Table 3, the top-1 accuracy of EfficientNet-B4 is increased from
83.0% to 83.6%, and that of EfficientNet-B7 from 84.9% to 85.5%. The margin
of 0.6% is considered significant in such powerful baselines. Both numbers sur-
pass the current best, AdvProp [45], without using adversarial examples to assist
training. Besides, when we simply double the training epochs of EfficientNet-B4,
the top-1 accuracy is slightly improved from 83.0% to 83.2%, which is still much
lower than 83.6% reported by applying another KD-guided training procedure.

Following AdvProp [45], we also move towards training EfficientNet-B8. The
hyper-parameters remain the same as in training EfficientNet-B7. Due to GPU
memory limit, we use the best trained EfficientNet-B7 (with a 85.5% accuracy)
as the teacher model. We report a top-1 accuracy of 85.7%, which sets the new
state-of-the-art on the ImageNet dataset (without extra training data). With
the test image size increased from 672 to 800, the accuracy is slightly improved
to 85.8%. We show the comparison with previous best models in Table 4.
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Table 3. Comparison between our approach and other data augmentation methods on
ImageNet. All numbers in the table are top-1 accuracy (%). AA indicates AutoAug-
ment [4] is used, RA for RandAugment [5], and AdvProp for Adversarial Propaga-
tion method [45]. RA† denotes the results of RandAugment produced by ourselves in
PyTorch. EfficientNet-B7* denotes the student model in the penultimate row, which
achieves a top-1 accuracy of 85.5%.

Teacher network Student network AA RA RA† AdvProp Ours

EfficientNet-B0 EfficientNet-B0 77.3 − 77.4 77.6 78.0

EfficientNet-B4 EfficientNet-B4 83.0 − 83.0 83.3 83.6

EfficientNet-B7 EfficientNet-B7 84.5 85.0 84.9 85.2 85.5

EfficientNet-B7* EfficientNet-B8 84.8 85.4 − 85.5 85.7

Table 4. Comparison to the state-of-the-arts on ImageNet. In the middle panel, we
list three approaches with extra training data (a large number of weakly tagged or
unlabeled images). Italic and bold texts highlight the best results to date without and
with extra training data, respectively.

Method Params Extra training data Top-1 (%)

ResNet-152 [14] 60M − 77.8

Inception-v4 [37] 48M − 80.0

ResNeXt-101 [47] 84M − 80.9

SENet [18] 146M − 82.7

AmoebaNet-C [32] 155M − 83.5

GPipe [20] 557M − 84.3

EfficientNet-B7 [5] 66M − 85.0

EfficientNet-B8 [5] 88M − 85.4

EfficientNet-L2 [41] 480M − 85.5

AdvProp (EfficientNet-B8) [45] 88M − 85.5

ResNeXt-101, Billion-scale [48] 193M 3.5B tagged images 84.8

FixRes ResNeXt-101, WSL [44] 829M 3.5B tagged images 86.4

Noisy Student (EfficientNet-L2) [46] 480M 300M unlabeled images 88.4

Ours (EfficientNet-B7 w/ KD) 66M − 85.5

Ours (EfficientNet-B8 w/ KD) 88M − 85.8

5 Conclusions

This paper integrates knowledge distillation into AutoAugment-based methods,
and shows that the noises introduced by aggressive data augmentation policies
can be largely alleviated by referring to a pre-trained teacher model. We adjust
the computation of KL-divergence, so that the teacher and student models share
similar probabilistic distributions over the top-ranked classes. Experiments show
that our approach indeed suppresses noises introduced by data augmentation,
and thus stabilizes the training process and enables more aggressive AutoAug-
ment policies to be used. Our approach sets the new state-of-the-art, a 85.8%
top-1 accuracy, on the ImageNet dataset (without extra training data).
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Our research leaves several open problems. For example, it remains unclear
whether useful information only exists in the top-ranked classes determined by
the teacher model, and whether mimicking the class-level distribution is the opti-
mal choice. Moreover, the balancing coefficient, λ, is a constant during training,
which we believe there is room of improvement. We will continue investigating
these topics in our future research.
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Abstract. Establishing robust and accurate correspondences is a fun-
damental backbone to many computer vision algorithms. While recent
learning-based feature matching methods have shown promising results
in providing robust correspondences under challenging conditions, they
are often limited in terms of precision. In this paper, we introduce
S2DNet, a novel feature matching pipeline, designed and trained to effi-
ciently establish both robust and accurate correspondences. By leverag-
ing a sparse-to-dense matching paradigm, we cast the correspondence
learning problem as a supervised classification task to learn to output
highly peaked correspondence maps. We show that S2DNet achieves
state-of-the-art results on the HPatches benchmark, as well as on several
long-term visual localization datasets.

Keywords: Feature matching · Classification · Visual localization

1 Introduction

Establishing both accurate and robust correspondences across images is an
underpinning step to many computer vision algorithms, such as Structure-
from-Motion (SfM) [21,48,49,55], visual tracking [23,64] and visual localiza-
tion [45,53,54]. Yet, obtaining such correspondences in long-term scenarios where
extreme visual changes can appear remains an unsolved problem, as shown by
recent benchmarks [44,56]. In particular, illumination (e.g. daytime to night-
time), cross-seasonal and structural changes are very challenging factors for fea-
ture matching.

The accuracy of the correspondences plays a major role in the performance
of the aforementioned algorithms. Indeed, the noise perturbation experiment of
Fig. 1 (left) shows the highly damaging impacts of errors of a few pixels on
visual localization. A traditional and very commonly used paradigm for feature
matching between two images consists in detecting a set of keypoints [7,13,
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15,20,27,29,30,37,47,65], followed by a description stage [6,9,13–15,27,33,34,
37,50,51,65] in each image. Sparse sets of keypoints and their descriptors are
then matched using for instance approximate nearest neighbours. This sparse-to-
sparse matching approach has the main advantage of being both computationally
and memory efficient. For long-term scenarios, this requires detecting repeatable
keypoints and computing robust descriptors, which is very challenging.

Fig. 1. Learning accurate correspondences. On the left, we report the impact of
adding a gaussian noise of increasing variance on ground-truth 2D-3D correspondences
for the task of visual localization, on Aachen Day-Night [44,46] images. This experiment
highlights the importance of having very accurate correspondences, as offsets of a few
pixels can lead to localization errors of several meters. Yet as shown on the right,
sparse-to-sparse methods fail to make such accurate predictions. We show in (a) and
(b) local regions of interest for a day-night image pair. In (c) [top], we display the
keypoint detections being the nearest to the center of the patch in the daytime image
for each detector; [bottom] we show the closest correspondent detected keypoints for
each detector in the nighttime image. In (d), we show the correspondent image locations
found by S2DNet in the nighttime image for daytime keypoint detections. S2DNet
manages to find much more accurate correspondences than sparse-to-sparse methods.

With the advent of convolutional neural networks (CNNs), learning-based
sparse-to-sparse matching methods have emerged, attempting to improve robust-
ness of both detection and description stages in an end-to-end fashion. Sev-
eral single-CNN pipelines [13,15,37] were trained with pixel-level supervision
to jointly detect and describe interest points. These methods have yielded very
competitive results especially in terms of number of correct matches, but fail to
deliver highly accurate correspondences [15,37]. Indeed detecting the same key-
points repeatably across images is very challenging under strong visual changes,
as illustrated in Fig. 1 (right). Thus, the accuracy of such methods becomes
highly reliant on the feature detector’s precision and repeatability.

A recently proposed alternative [18] to solve the repeatable keypoint detec-
tion issue is to shift the sparse-to-sparse paradigm into a sparse-to-dense app-
roach: Instead of trying to detect consistent interest points across images, fea-
ture detection is performed asymmetrically and correspondences are searched
exhaustively in the other image. That way, all the information in the challenging
image is preserved, allowing each pixel to be a potential correspondent candidate.
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Thanks to the popularization and development of GPUs, this exhaustive search
can be done with a small computational overhead compared to other learning-
based methods. This approach has showed to give competitive results [18] when
trained in a weakly supervised fashion for the task of image retrieval.

Fig. 2. S2DNet feature matching pipeline overview. Given an image and a set of
detections coming from an off-the-shelf keypoint detector (a), we first extract a set of
sparse multi-level descriptors with S2DNet. We then compute dense feature maps for a
covisible image (b), and compute multi-level correspondence maps (c), which we aggre-
gate using bilinear upsampling and addition. Correspondences can the be retrieved
using a simple argmax operator. We explicitly train S2DNet to generate accurate and
discriminative correspondence maps using a supervised classification approach (d).

In this paper, we reuse the sparse-to-dense idea while also addressing the
accuracy issue. We introduce a novel feature matching pipeline which we name
S2DNet.

Contributions: (i) We propose to cast the feature learning problem as a classifica-
tion one in a sparse-to-dense paradigm. This is in contrast with State-of-the-art
(SoA) algorithms (e.g. D2-Net, R2D2) which learn features using metric learning
(with contrastive losses) and a sparse-to-sparse paradigm. We show that our app-
roach delivers significant improvements on both image matching and visual local-
ization popular benchmarks. (ii) Even when used in a classical sparse-to-sparse
framework, the image features learned by S2DNet lead to much more accurate
correspondences than SoA features. (iii) Our formalism also enables probabilis-
tic interpretation, which allows us to perform outlier rejection through confidence
thresholding. As demonstrated by our experiments, this significantly improves the
performance. (iv) Rather than aiming to jointly learn a feature detector and a fea-
ture descriptor like SoA approaches, we show we can keep using classical keypoint
detectors and rather focus on the feature learning problem. This leads to a single
loss, while previous methods have to combine multiple loss terms. Moreover, we
can also operate at single-scale. Our approach thus yields a fundamental simpler
approach, in addition to improving performance.
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2 Related Work

Establishing 2D to 2D correspondences between images is a key step for many
applications in computer vision, whose performance often directly relies on the
quantity and accuracy of such correspondences [17,62]. We can distinguish three
categories for obtaining such correspondences, which either rely on a bilateral,
no keypoint or asymmetrical detection stage.

Sparse-to-Sparse Feature Matching. The most popular and studied app-
roach for feature matching is a two-stage pipeline that first detects interest
point locations and assigns a patch-based descriptor to each of them. Detection is
applied on both images to be matched, and we refer to these detect-then-describe
approaches as sparse-to-sparse feature matching methods. To perform keypoint
detection, a variety of both hand-crafted [7,20,27,29] and learning-based [34,65]
detectors have been developed, each aiming to detect accurate keypoints in both
a repeatable as well as illumination, scale and affine invariant fashion. For fea-
ture description, methods using histograms of local gradients [7,10,27,39] or
learning-based patch description [4,11,34,58,59,65] have been widely used.

Yet, when working on long-term scenarios where very strong visual changes
can appear, such methods fail to give reliable correspondences [44], motivating
the need for data-driven methods leveraging information beyond patch-level.
Among them, end-to-end learning-based pipelines such as LIFT [65] propose
to jointly learn the detection and description stages. Methods like LF-Net [34]
or SuperPoint [13] learn detection and description in a self-supervised way,
using spatial augmentation of images through affine transformations. With D2-
Net [15], Dusmanu et al. showed that a single-branch CNN could both perform
detection and description, in a paradigm referred to as detect-and-describe. Their
network is trained in a supervised way with a contrastive loss on the deep local
features, using ground-truth pixel-level correspondences provided by Structure-
from-Motion reconstructions [26]. R2D2 [37] builds on the same paradigm and
formulates the learning of keypoint reliability and repeatability together with
the detection and description, using this time a listwise ranking loss.

In order to preserve the accuracy of their correspondences, both D2-Net [15]
and R2D2 [37] use dilated convolutions. Still when looking at feature-matching
benchmarks like HPatches [5], the mean matching accuracy at error thresholds of
one or two pixels is quite low. This indicates that their detection stage is often off
by a couple of pixels. As shown in Fig. 1, these errors have direct repercussions
on the subsequent localization or reconstruction algorithms.

Dense-to-Dense Feature Matching. Dense-to-dense matching approaches
get rid of the detection stage altogether by finding mutual nearest neighbors
in dense feature maps. This can be done using densely extracted features from
a pre-trained CNN, combined with guided matching from late layers to earlier
ones [56]. NCNet [38] trains a CNN to search in the 4D space of all possible
correspondences, with the use of 4D convolutions. While they can be trained
with weak supervision, dense-to-dense approaches carry high computational cost
and memory consumption which make them hardly scalable for computer vision



630 H. Germain et al.

applications. Besides, the quadratic complexity of this approach limits the reso-
lution of the images being used, resulting in correspondences with low accuracy.

Sparse-to-Dense Feature Matching. Very recently [18] proposed to per-
form the detection stage asymmetrically. In such setting, correspondences are
searched exhaustively in the counterpart image, by running for instance a cross-
correlation operation on dense feature maps with a sparse set of local hypercol-
umn descriptors. While this exhaustive search used to be a costly operation, it
can now be efficiently computed on GPUs, using batched 1 × 1 convolutions.
The main appeal for this approach is that under strong visual changes, the need
for repeatability in keypoint detection is alleviated, allowing each pixel to be a
detection. Instead, finding corresponding keypoint locations is left to the dense
descriptor map. Preliminary work on sparse-to-dense matching [18] has shown
that reusing intermediate CNN representations trained with weak supervision
for the task of image retrieval can lead to significant gains in performance for
visual localization. However, these features are not explicitly learned for feature
matching, and thus fail to give pixel-accurate correspondences. We will refer to
this method as S2DHM, for Sparse-to-Dense Hypercolumn Matching, in the rest
of the paper.

In this paper, we propose to explicitly learn correspondence maps for the
task of pixel-level matching.

3 Method

In this section we introduce and describe our novel sparse-to-dense feature-
matching pipeline, which we call S2DNet.

3.1 The Sparse-to-Dense Paradigm

Given an image pair (IA, IB), our goal is to obtain a set of 2D correspondences
which we write as {(pn

A,pn
B)}N

n=1. Let us consider the case where a feature detec-
tor (e.g. the SuperPoint detector [13]) has been applied on image A, producing a
set of N keypoints {pn

A}N
n=1. In this case, the feature matching problem reduces

to a sparse-to-dense matching problem of finding a correspondent pn
B in image B

for each detection pn
A. We propose to cast this correspondence learning problem

as a supervised classification task by restricting the set of admissible locations to
the pixel coordinates of IB. This leads to the following categorical distribution:

p (pn
B|pn

A, IA, IB, Θ) =
exp (Cn[pn

B])
∑

q∈Ω exp (Cn[q])
, (1)

where Cn is a correspondence map of the size of IB produced by our novel S2DNet
matching pipeline and Ω is the set of pixel locations of IB. S2DNet takes as input
pn
A, IA, IB and its parameters Θ. Equation 1 describes the likeliness of a pixel

pn
A in IA to correspond to pixel pn

B in IB.
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3.2 S2DNet Matching Pipeline

We introduce S2DNet, a pipeline built specifically to perform sparse-to-dense
matching which we illustrate in Fig. 2. Given a pair of images (IA, IB), we apply
a convolutional backbone F on both images using shared network weights i.e.
{Hm

A }M
m=1 = F (IA;Θ) and {Hm

B }M
m=1 = F (IB;Θ), where {Hm

A }M
m=1 and {Hm

B }M
m=1

correspond to intermediate feature maps extracted at multiple levels. Θ denotes
the parameters of F . Such representations are sometimes referred to as hyper-
columns [19,42]. While the earlier layers encode little semantic meaning, they
preserve high-frequency local details which is crucial for retrieving accurate key-
points. Conversely in the presence of max-pooling, later layers loose in resolution
but benefit from a wider receptive field and thus context.

For each detected keypoint pn
A in IA, we extract a set of sparse descriptors in

the dense intermediate feature maps Hm
A and compute the dense correspondence

map Cn against Hm
B , by processing each level independently, in the following way:

Cn =
M∑

m=1

U (Hm
A [pn,m

A ] ∗ Hm
B ) , (2)

where U refers to the bilinear upsampling operator to IB resolution, pn,m
A cor-

responds to downscaling the 2D coordinates pn
A to the resolution of Hm

A , and ∗
is the 1 × 1 convolution operator.

3.3 Training-Time

While state of the art approaches employ either a local contrastive or a listwise
ranking loss [15,34,37] to train their network, we directly optimize for the task of
sparse-to-dense correspondence retrieval by maximizing the log-likelihood in Eq.
(1) which results in a single multi-class cross-entropy loss. From a practical point
of view, for every training sample, this corresponds to computing the softmax
of the correspondence map and evaluate the cross-entropy loss using the ground
truth correspondence pn

B. This strongly penalizes wrong predictions, regardless
of their closeness to the ground-truth, forces the network to generate highly
localized and peaked predictions and helps computing accurate correspondences.

3.4 Test-Time

At test-time, to retrieve the correspondences in IB, we proceed as follows for
each detected keypoint pn

A:

pn
B

∗ = argmax
pn

B

p (pn
B|pn

A, IA, IB, Θ) = argmax
p

Cn [p] , (3)

where Cn = S2DNet(pn
A, IA, IB;Θ). By default, S2DNet does not apply any

type of filtering and delivers one correspondence for each detected keypoint in
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the source image. Since we do not explicitly deal with co-visibility issues, we
filter out some ambiguous matches if the following condition is not satisfied:

p (pn
B

∗|pn
A, IA, IB, Θ) > τ , (4)

where τ is a threshold between 0 and 1.

3.5 S2DNet Architecture

As [15,18], we use a VGG-16 [52] architecture as our convolutional backbone. We
place our intermediate extraction points at three levels, in conv 1 2, conv 3 3
and conv 5 3, after the ReLU activations. Note that conv 1 2 comes before
any spatial pooling layer, and thus preserves the full image resolution. To both
help with the convergence and reduce the final descriptors sizes, we feed these
intermediate tensors to adaptation layers. They consist of two convolutional
layers and a final batch-normalization [22] activation, with an output size of 128
channels. An illustration of our architecture can be seen in the supplementary
material.

3.6 Differences with Sparse-to-Dense Hypercolumn Matching [18]

Sparse-to-Dense Hypercolumn Matching (S2DHM) [18] described a weakly
supervised approach to learn hypercolumn descriptors and efficiently obtain cor-
respondences using the sparse-to-dense paradigm. In this paper, we propose a
supervised alternative which aims at directly learning accurate correspondence
maps. As we will show in our experiments, this leads to significantly superior
results. Moreover, in its pipeline S2DHM upsamples and concatenates inter-
mediate feature maps before computing correspondence maps. In comparison,
S2DNet computes correspondence maps at multiple levels before merging the
results by addition. We will later show that the latter approach is much more
memory and computationally efficient.

4 Experiments

In this section, we evaluate S2DNet on several challenging benchmarks. We first
evaluate our approach on a commonly used image matching benchmark, which
displays changes in both viewpoint and illumination. We then evaluate the per-
formance of S2DNet on long-term visual localization tasks, which display even
more severe visual changes.

4.1 Training Data

We use the same training data as D2-Net [15] to train S2DNet, which comes
from the MegaDepth dataset [26]. This dataset consists of 196 outdoor scenes
and 1, 070, 568 images, for which SfM was run with COLMAP [48,49] to gener-
ate a sparse 3D reconstruction. A depth-check is run using the provided depth
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maps to remove occluded pixels. As D2-Net, we remove scenes which overlap
with the PhotoTourism [1,57] test set. Compared to D2-Net and to provide
strong scale changes, we train S2DNet on image pairs with an arbitrary overlap.
At each training iteration, we extract random crops of size 512 × 512, and ran-
domly sample a maximum of 128 pixel correspondences. We train S2DNet for
30 epochs using Adam [24]. We use an initial learning rate of 10−3 and apply a
multiplicative decaying factor of e−0.1 at every epoch.

4.2 Image Matching

We first evaluate our method on the popular image matching benchmark HPat-
ches [5]. We use the same 108 sequences of images as D2-Net [15], each sequence
consisting of 6 images. These images either display changes in illumination (for
52 sequences) or changes in viewpoint (for 56 sequences). We consider the first
frame of each sequence to be the reference image to be matched against every
other, resulting in 540 pairs of images to match.

Evaluation Protocol. We apply the SuperPoint [13] keypoint detector on the
first image of each sequence. For each subsequent pair of images, we perform
sparse-to-dense matching using S2DNet (see Sect. 3.4). Additionally, we filter
out correspondences which do not pass the cyclic check of matching back on
their source pixel, which is equivalent to performing a mutual nearest-neighbor
verification as it is done with D2-Net [15] and R2D2 [37].

We compute the number of matches which fall under multiple reprojection
error thresholds using the ground-truth homographies provided by the dataset,
and report the Mean Matching Accuracy (or MMA) in Fig. 3.

We compare S2DNet to multiple sparse-to-sparse matching baselines. We
report the performance of RootSIFT [3,35] with a Hessian Affine detector [29]
(Hes.det. + RootSIFT), HardNet++ [31] coupled with HesAffNet regions [32]
(HAN + HN++), DELF [33], LF-Net [34], SuperPoint [13], D2-Net [15] and
R2D2 [37]. We also include results from the sparse-to-dense method S2DHM [18].

Results. We find that the best results were achieved when combining Super-
Point [13] with a threshold of τ = 0.20 (see Eq. 4), which are the results reported
in Fig. 3. We experimentally found that above this threshold, some sequences
obtain very few to no correspondence at all, which biases the results. We show
that overall our method outperforms every baselines at any reprojection thresh-
old. The gain in performance is particularly noticeable at thresholds of 1 and 2
pixels, indicating the correspondences we predict tend to be much more accurate.
DELF [33] achieves competitive results under changes in illumination, which can
be explained by the fact that keypoints are sampled on a fixed grid and that the
images undergo no changes in viewpoint. On the other hand, it performs poorly
under viewpoint changes.

Keypoint Detector Influence. We run an ablation study to evaluate the
impact of different feature detectors, confidence thresholds as well as using a
sparse-to-sparse approach, and report the results in Table 1 (left). We find that
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S2DNet tends to work best when combined with SuperPoint [13]. We also experi-
mentally find τ = 0.2 to be a good compromise of correspondence rejection while
also maintaining a high number of matches.

Sparse-to-Sparse vs. Sparse-to-Dense. We find that using S2DNet in a
sparse-to-sparse setting (i.e. applying a detector on the image undergoing illu-
mination or viewpoint changes) damages the results (see Table 1, left). This
phenomenon translates the errors made by keypoint detectors, and motivates
the sparse-to-dense setting. S2DNet efficiently leverages this paradigm and can
find corresponding keypoints that would not have been detected otherwise. Con-
versely, we study the impact of using sparse-to-sparse learning-based methods
D2-Net [15] and R2D2 [37] in a sparse-to-dense setting (see Table 1, right). In
this setting, we define S2DNet sparse descriptors as the concatenated multi-
scale feature vectors at the corresponding pixel locations. We find that using
the sparse-to-dense paradigm systematically improves their performance under
illumination changes, where images are aligned. This suggests that their descrip-
tor maps are robust to illumination perturbations. On the other hand, perfor-
mance is damaged for both methods under viewpoint changes, suggesting that
their descriptor maps are not highly localized and discriminative. Concerning
S2DHM, which was trained in a weakly supervised manner, running it in a
sparse-to-sparse setting improves the accuracy. This highlights the importance
of our main contribution, i.e. casting the sparse-to-dense matching problem as
a supervised classification task.

Fig. 3. HPatches Mean Matching Accuracy (MMA) comparison. We report
in this table the best results for S2DNet, obtained when combined with SuperPoint
detections. S2DNet outperforms all other baselines, especially at thresholds of one or
two pixels. This study highlights the power of working in a sparse-to-dense setting,
where every pixel in the target image becomes a candidate keypoint.

4.3 Long-Term Visual Localization

We showed that S2DNet provides correspondences which are overall more accu-
rate than other baselines. We will now study its impact for the task of visual
localization under challenging conditions. We report visual localization results
under day-night changes and complex indoor scenes.
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Table 1. Ablation study on HPatches. In (a), we evaluate the performance of
several detectors in both a sparse-to-dense (S2S) and sparse-to-sparse (S2S) setting
using S2DNet descriptors. We find that S2DNet works best in the S2D setting, coupled
with SuperPoint (SP) [13] detections, and a confidence threshold of τ = 0.20. In (b),
we study the impact of using sparse-to-sparse learning-based methods in a sparse-to-
dense setting. Results lead to the conclusion that D2-Net [15] and R2D2 [37] descriptor
maps are robust to illumination changes but not highly discriminative locally.

Detector Matching τ MMA@1 MMA@2 MMA@3 MMA@10

S2D 0.20 0.511 0.733 0.805 0.888
Harris [20] S2D 0.0 0.441 0.626 0.690 0.787

S2S - 0.278 0.464 0.565 0.763

S2D 0.20 0.511 0.742 0.823 0.902
SURF [7] S2D 0.0 0.436 0.639 0.718 0.828

S2S - 0.302 0.506 0.619 0.829

S2D 0.20 0.487 0.700 0.771 0.851
SIFT [27] S2D 0.0 0.441 0.626 0.690 0.787

S2D - 0.386 0.559 0.642 0.818

S2D 0.20 0.563 0.747 0.815 0.895
SuperPoint [13] S2D 0.0 0.469 0.623 0.686 0.788

S2S - 0.373 0.599 0.709 0.847

S2D 0.20 0.467 0.716 0.805 0.911
D2-Net [15] S2D 0.0 0.330 0.522 0.604 0.764

S2S - 0.118 0.285 0.425 0.777

S2D 0.20 0.478 0.715 0.799 0.901
R2D2 [37] S2D 0.0 0.341 0.522 0.598 0.746

S2S - 0.316 0.546 0.652 0.819

(a) S2S vs. S2D - S2DNet descriptors

D2-Net (S2S) [15] R2D2 (S2S) [37]
D2-Net (S2D) [15] R2D2 (S2D) [37]
SP + S2DHM [13,18] (S2S) SP [13] + S2DNet (S2S)
SP + S2DHM [13,18] (S2D) SP [13] + S2DNet (S2D)

(b) S2S vs. S2D - Other descriptors

Datasets. We evaluate our approach on two challenging outdoor localization
datasets which feature day-to-night changes, and one indoor dataset. The first
dataset is Aachen Day-Night [44,46]. It features 4,328 daytime reference images
taken with a handheld smartphone, for which ground truth camera poses are pro-
vided. The dataset also provides a 3D reconstruction of the scene [44], built using
SIFT [27] features and SfM. The evaluation is done on 824 daytime and 98 night-
time images taken in the same environment. The second dataset is RobotCar
Seasons [28]. It features 6,954 daytime reference images taken with a rear-facing
camera mounted on a car driving through Oxford. Similarly, ground truth camera
poses and a sparse 3D model of the world is provided [44] and we localize 3,978
images captured throughout a year. These images do not only exhibit night-
time conditions, but also cross-seasonal evolutions such as snow or rain. Lastly,
we evaluate our pipeline on the challenging InLoc [56,63] dataset. This indoor
dataset is difficult because of its large scale, illumination and long-term changes
as well as the presence of repetitive patterns such as corridors (see Fig. 4). It
contains 9, 972 database and 356 high-resolution query images, as well as dense
depth maps which can be used to perform dense pose verification. We report
for each datasets the pose recall at three position and orientation thresholds for
daytime and nighttime query images, as per [44].

Indoor Localization. The InLoc [56] localization benchmark comes with a pre-
defined code base and several pipelines for localization. The first one is called
Direct Pose Estimation (Direct PE) and performs hierarchical localization using
the set of top-ranked database images obtained using image retrieval, followed by
P3P-LO-RANSAC [16,25]. The second variant applies an intermediate spatial
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Table 2. InLoc [56] (left) and Local Features Benchmark [44] (right) results.
We report localization recalls in percent, for three translation and orientation thresh-
olds. On InLoc, S2DNet outperforms both baselines at the finest threshold for the
sparse categories. We also include Dense PE baseline results for reference. R2D2 authors
did not provide results on this benchmark. On the local features benchmark (a pre-
defined localization pipeline), S2DNet achieves state-of-the-art results at the medium
precision threshold. Due to the relatively small number of query images however, recent
methods like D2-Net and R2D2 are saturating around the same performance. *Note
that R2D2 was trained on Aachen database images.

InLoc(fixed pipeline)

Method Threshold Accuracy

0.25m / 2◦0.5m / 5◦ 5m / 10◦

Direct PE - Aff. RootSIFT [29,35] 18.5 26.4 30.4

Direct PE - D2-Net [15] 27.7 40.4 48.6

Direct PE - S2DNet (ours) 29.3 40.9 48.5

Sparse PE - Aff. RootSIFT [29,35] 21.3 32.2 44.1

Sparse PE - D2-Net [15] 35.0 48.6 62.6

Sparse PE - S2DNet (ours) 35.9 49.0 63.1

Sparse PE + Dense PV - Aff. RootSIFT [29,35] 29.5 42.6 54.5

Sparse PE + Dense PV - D2-Net [15] 38.0 56.5 65.4

Sparse PE + Dense PV - S2DNet (ours) 39.4 53.5 67.2

Dense PE + Dense PV - InLoc [56] 38.9 56.5 69.9

Aachen Day-Night
(fixed pipeline)

Method Threshold Accuracy

0.25m
2◦

0.5m
5◦

5m
10◦

RootSIFT [35] 3.7 52.0 65.3

HAN+HN [32] 37.8 54.1 75.5

SuperPoint [13]42.8 57.1 75.5

DELF [33] 39.8 61.2 85.7

D2-Net [15] 44.9 66.3 88.8

R2D2 [37]* 45.9 66.3 88.8

S2DNet (ours) 45.9 68.4 88.8

verification step [36] to reject outliers, referred to as (Sparse PE). On top of
this second variant, Dense Pose Verification (Dense PV) can be applied to re-
rank pose candidates by using densely extracted RootSIFT [35] features. In each
variant, we use S2DNet to generate 2D-2D correspondences between queries
and database images, which are then converted to 2D-3D correspondences using
the provided dense depth maps. We use a SuperPoint [13] detector and mutual
nearest-neighbour filtering.

InLoc localization results are reported in Table 2. We compare our approach
to the original InLoc baseline which uses affine covariant [29] detections and
RootSIFT [35] descriptors, as well as results provided by D2-Net [15]. We find
that S2DNet outperforms both sparse baselines at the finest threshold, and is
on par with other methods at the medium and coarse thresholds. In the sparse
setting, best results are achieved when combined with geometrical and dense pose
verification (Sparse PE + Dense PV). In addition we include localization results
that were computed by the benchmark authors using dense-to-dense feature
matching (Dense PE). Due to the nature of our pipeline and the very high
memory and computational consumption of this variant, we choose to limit our
study to sparse correspondence methods. It is interesting to note however that
S2DNet outperforms the original (Dense PE + Dense PV) InLoc baseline at the
finest precision threshold, using a much lighter computation.

Day-Night Localization. We report day-night localization results with
S2DNet using two localization protocols. Localization results reported in Table 2
show that S2DNet achieves state-of-the-art results, outperforming all other
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Table 3. Localization results. We report localization recalls in percent, for three
translation and orientation thresholds (high, medium, and coarse) as in [44]. We put in
bold the best and underline the second-best performances for each threshold. S2DNet
outperforms every baseline in nighttime conditions, except at the finest threshold of
RobotCar Seasons. This can be explained by the extreme visual changes and blur-
riness that these images undergo. At daytime, S2DNet performance is on par with
D2-Net [15]. *Note that S2DHM [18] was trained directly on RobotCar sequences,
which explains the high nighttime performance. SMC [60] also uses additional seman-
tic data and assumptions. R2D2 [37] authors did not provide localization results on
these benchmarks.

RobotCar Seasons Aachen Day-Night

Day-All Night-All Day Night

Method Threshold Accuracy Threshold Accuracy Threshold Accuracy Threshold Accuracy

0.25m

2◦
0.5m

5◦
5m

10◦
0.25m

2◦
0.5m

5◦
5m

10◦
0.25m

2◦
0.5m

5◦
5m

10◦
0.25m

2◦
0.5m

5◦
5m

10◦

S
tr
u
c
tu

re
-b

a
se
d CSL [53] 45.3 73.5 90.1 0.6 2.6 7.2 52.3 80.0 94.3 24.5 33.7 49.0

AS [43] 35.6 67.9 90.4 0.9 2.1 4.3 57.3 83.7 96.6 19.4 30.6 43.9

SMC [60] * 50.3 79.3 95.2 7.1 22.4 45.3 - - - - - -

R
e
tr
ie
v
a
l

-b
a
se
d FAB-MAP [12] 2.7 11.8 37.3 0.0 0.0 0.0 0.0 0.0 4.6 0.0 0.0 0.0

NetVLAD [2] 6.4 26.3 90.9 0.3 2.3 15.9 0.0 0.2 18.9 0.0 2.0 12.2

DenseVLAD [61] 7.6 31.2 91.2 1.0 4.4 22.7 0.0 0.1 22.8 0.0 2.0 14.3

H
ie
ra

r
-c
h
ic
a
l

HF-Net [40] 53.0 79.3 95.0 5.9 17.1 29.4 79.9 88.0 93.4 40.8 56.1 74.5

S2DHM [18] * 45.7 78.0 95.1 22.3 61.8 94.5 56.3 72.9 90.9 30.6 56.1 78.6

D2-Net [15] 54.5 80.0 95.3 20.4 40.1 55.0 84.8 92.6 97.5 43.9 66.3 85.7

S2DNet (ours) 53.9 80.6 95.8 14.5 40.2 69.7 84.3 90.9 95.9 46.9 69.4 86.7

methods at the medium precision threshold. It is important to note that R2D2
was finetuned on Aachen database images.

We then report in Table 3 localization results using a hierarchical approach,
similar to [18,40,44]. Contrary to Table 2, these results do not allow to compare
the keypoint matching approaches alone since localization pipelines are different.
Even the comparison with D2Net is difficult to interpret since their full localiza-
tion pipeline was not released. Still, S2DNet achieves state-of-the-art results in
Aachen nighttime images, and outperforms all baselines that were not trained
on RobotCar nighttime images at medium and coarse precision thresholds. At
daytime, where detecting repeatable and accurate keypoints is easier, S2DNet
is on par with other learning-based methods. At the finest nighttime RobotCar
threshold it is likely that S2DNet features struggle to compute accurate corre-
spondences, which can be explained by the extreme visual changes these images
undergo (see Fig. 4). Overall, this study shows that S2DNet achieves better per-
formance in particularly challenging conditions such as nighttime, compared to
other sparse-to-sparse alternatives.
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Table 4. Computational Time Study for visual localization. We compare the
time performance of our method against other learning-based approaches in a visual
localization scenario. For a given query image Iq and N reference images of size
1200 × 1600 with K detections each, we report the average measured time to per-
form image matching against each of them. In this standard setting, keypoint locations
and descriptors have already been extracted offline from the reference images.

Method Network

backbone

Descriptor

size

Forward

pass on

Iq

Detection

step on

Iq

Matching

per

keypoint

Total online

computational time

tA tB tC tA + tB + N × K × tC

N = 1

K = 1000

N = 5

K = 1000

N = 15

K = 1000

D2-Net [15] VGG-16 512 17.8 ms 5.474 s 0.4 µs 5.492 s 5.494 s 5.498 s

R2D2 [37] L2-Net 128 19.1 ms 479.6 ms 0.2 µs 0.499 s 0.499 s 0.501 s

S2DHM [18] VGG-16 2048 326 ms – 0.33 ms 0.656 s 1.976 s 5.276 s

S2DNet VGG-16 + adap. 3 × 128 28.2 ms – 0.31 ms 0.338 s 1.578 s 4.678 s

5 Discussion

Runtime Performance. To compare S2DNet against state-of-the-art
approaches, we time its performance for the scenario of visual localization. We
run our experiments on a machine equipped with an Intel(R) Xeon(R) E5-2630
CPU at 2.20 GHz, and an NVIDIA GeForce GTX 1080Ti GPU. We report the
results in Table 4. In a localization setting, we consider the keypoint detection
and description step to be pre-computed offline for reference images. Thus for an
incoming query image, only sparse-to-sparse methods need to perform the key-
point detection and descriptor extraction step. We find this very step to be the
bottleneck of learning-based methods like D2-Net [15] or R2D2 [37]. Indeed, these
methods are slowed down by the non-maxima suppression operations, which are
in addition run on images of multiple scales. For S2DHM [18] and S2DNet,
no keypoint detection is performed on the incoming query image and most of
the computation lies in the keypoint matching step. As expected however, the
matching step is much more costly for these sparse-to-dense methods. Still, for
1000 detections and 1 retrieved image, S2DNet is the fastest method while for
15 retrieved image, it is on par with D2-Net.

Current Limitations of the Sparse-to-Dense Paradigm. One limitation of
our current sparse-to-dense matching formulation appears for the task of multi-
view 3D reconstruction. Indeed, the standard approach to obtain features tracks
consists in 1) detecting and describing keypoints in each image, 2) matching pairs
of images using the previously extracted keypoints descriptors and 3) creating
tracks from these matches. In our S2D matching paradigm, every pixel becomes a
detection candidate which is not compatible with the standard 3D reconstruction
pipeline previously described. This limitation opens novel directions of research
for rethinking the standard tracks creation pipeline and enabling the use of S2D
matching in 3D reconstruction frameworks.
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Fig. 4. Correspondence maps examples. From left to right: Reference image with
a keypoint detection (a), intermediate correspondence maps predicted by S2DNet
(b, c, d), aggregated pre-softmax correspondence map (e) and retrieved correspondent
in the query image (f). From top to bottom: images from InLoc [56], Aachen Day-
Night [46] and RobotCar Seasons [28].

Compatibility with Learning-Based Matchers. Learning-based matching
methods like NG-RANSAC [8], OANet [66] or SuperGlue [41] process putative
correspondences to return inlier confidence scores. These methods could easily be
work as a post-processing step of S2DNet, to further improve matching results.

6 Conclusion

In this paper we presented S2DNet, a new sparse-to-dense learning-based key-
point matching architecture. In contrast to other sparse-to-sparse methods we
showed that this novel pipeline achieves superior performance in terms of accu-
racy, which helps improve subsequent long-term visual localization tasks. Under
visually challenging conditions, S2DNet reaches state-of-the-art performance for
image matching and localization, and advocates for the development of sparse-
to-dense methods.
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Abstract. In this work, we propose an efficient and accurate monocu-
lar 3D detection framework in single shot. Most successful 3D detectors
take the projection constraint from the 3D bounding box to the 2D box
as an important component. Four edges of a 2D box provide only four
constraints and the performance deteriorates dramatically with the small
error of the 2D detector. Different from these approaches, our method
predicts the nine perspective keypoints of a 3D bounding box in image
space, and then utilize the geometric relationship of 3D and 2D perspec-
tives to recover the dimension, location, and orientation in 3D space.
In this method, the properties of the object can be predicted stably
even when the estimation of keypoints is very noisy, which enables us
to obtain fast detection speed with a small architecture. Training our
method only uses the 3D properties of the object without any extra anno-
tations, category-specific 3D shape priors, or depth maps. Our method is
the first real-time system (FPS > 24) for monocular image 3D detection
while achieves state-of-the-art performance on the KITTI benchmark.

Keywords: Real-time monocular 3D detection · Autonomous
driving · Keypoint detection

1 Introduction

3D object detection is an essential component of scene perception and motion
prediction in autonomous driving [2,9]. Currently, most powerful 3D detectors
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Fig. 1. Overview of proposed method: We first predict ordinal keypoints projected
in the image space by eight vertexes and a central point of a 3D object. We then
reformulate the estimation of the 3D bounding box as the problem of minimizing the
energy function by using geometric constraints of perspective projection.

heavily rely on 3D LiDAR laser scanners for the reason that it can provide scene
locations [8,29,41,46]. However, the LiDAR-based systems are expensive and not
conducive to embedding into the current vehicle shape. In comparison, monocular
camera devices are cheaper and convenient which makes it drawing an increasing
attention in many application scenarios [6,26,40]. In this paper, the scope of our
research lies in 3D object detection from only monocular RGB image.

Monocular 3D object detection methods can be roughly divided into two
categories by the type of training data: one imposes complex features, such
as instance segmentation, category-specific shape prior and even depth map to
select best proposals in multi-stage fusion module [6,7,40]. These features require
additional annotation work to train some stand-alone networks which will con-
sume plenty of computing resources in the training and inferring stages. Another
one only employs 2D bounding box and properties of a 3D object as the super-
vised data [3,20,33,42]. In this case, the most straightforward way build a deep
regression network to directly predict the 3D information of the object, which
caused the performance bottlenecks due to the large search space. To address this
challenge, recent works have clearly pointed out that apply geometric constraints
from 3D box vertexes to 2D box edges to refine or directly predict object parame-
ters [3,20,23,26,28]. However, four edges of a 2D bounding box provide only four
constraints on recovering a 3D bounding box while each vertex of a 3D bounding
box might correspond to any edges in the 2D box, which will takes 4,096 of the
same calculations to get one result [26]. Meanwhile, the strong reliance on the
2D box causes a sharp decline in 3D detection performance when predictions
of 2D detectors even have a slight error. Therefore, most of these methods take
advantage of two-stage detectors [10,11,32] to ensure the accuracy of 2D box
prediction, which limit the upper-bound of the detection speed.

In this paper, we propose an efficient and accurate monocular 3D detection
framework in the form of one-stage, which be tailored for 3D detection without
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Table 1. Comparison of the real-time status and the requirements of additional data
in different image-based detection approaches.

Method Real time Stereo Depth Shape/CAD Segmentation

Mono3D [6] �
3DOP [7], stereoRCNN [20] �
MF3D [40], Peseudo-LiDAR [37],
MonoPSR [16] AM3D [25]

�

Mono3D++ [13], Deep-MANTA
[5], 3DVP [38]

�

Deep3DBox [26], GS3D [19],
MonoGRNet [31], FQNet [23],
M3D-RPN [3] Shift-RCNN [28],
MonoDIS [34]

Ours (RTM3D) �

relying on extra annotations, category-specific 3D shape priors, or depth maps.
The framework can be divided into two main parts, as shown in Fig. 1. First,
we perform a one-stage fully convolutional architecture to efficiently predict 9 of
the 2D keypoints which are projected points from 8 vertexes and central point of
3D bounding box. This 9 keypoints provides 18 geometric constrains on the 3D
bounding box. Inspired by CenterNet [45], we model the relationship between the
eight vertexes and the central point to solve the keypoints grouping and the ver-
texes order problem. The SIFT, SUFT and other traditional keypoint detection
methods [1,24]computed an image pyramid to solve the scale-invariant problem.
A similar strategy was used by CenterNet as a post-processing step to further
improve detection accuracy, which slows the inference speed. Note that the Fea-
ture Pyramid Network (FPN) [21] in 2D object detection is not applicable to
the network of keypoint detection, because adjacent keypoints may overlap in
the case of small-scale prediction. We propose a novel multi-scale pyramid of
keypoint detection to generate a scale-space response. The final activate map
of keypoints can be obtained by means of the soft-weighted pyramid. Given the
9 projected points, the next step is to minimize the reprojection error over the
perspective of 3D points that parameterized by the location, dimension, and
orientation of the object. We formulate the reprojection error as the form of
multivariate equations in se3 space, which can generate the detection results
accurately and efficiently. We also discuss the effect of different prior informa-
tion, such as dimension, orientation, and distance, predicted in parallel from our
keypoint detection network. The prerequisite for obtaining this information is
not to add too much computation so as not to affect the final detection speed. We
model these priors and reprojection error term into an overall energy function
in order to further improve 3D estimation.

To summarize, our main contributions are the following:

– We formulate the monocular 3D detection as the keypoint detection problem
and combine the geometric constrains to generate properties of 3D objects
more efficiently and accurately.
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– We propose a novel one-stage and multi-scale network for 3D keypoint detec-
tion which provide the accurate project points for multi-scale object.

– We propose an overall energy function that can jointly optimize the prior and
3D object information.

– Evaluation on the KITTI benchmark, We are the first real-time 3D detec-
tion method using only images and achieves better accuracy under the same
running time in comparing other competitors.

2 Related Work

Extra Data or Network for Image-based 3D Object Detection. In the
last years, many studies develop the 3D detection in an image-based method for
the reason that camera devices are more convenient and much cheaper. To com-
plement the lacked depth information in image-based detection, most of the pre-
vious approaches heavily relied on the stand-alone network or additional labeling
data, such as instance segmentation, stereo, wire-frame model, CAD prior, and
depth, as shown in Table 1. Among them, monocular 3D detection is a more
challenging task due to the difficulty of obtaining reliable 3D information from
a single image. One of the first examples [6] enumerate a multitude of 3D pro-
posals from pre-defined space where the objects may appear as the geometrical
heuristics. Then it takes the other complex prior, such as shape, instance seg-
mentation, contextual feature, to filter out dreadful proposals and scoring them
by a classifier. To make up for the lack of depth, [40] embed a pre-trained stand-
alone module to estimate the disparity. The disparity map concatenates the front
view representation to help the 2D proposal network and the 3D detection can
be boosted by fusing the extracted feature after RoI pooling and point cloud.
As a followup, [25] combines the 2D detector and monocular depth estimation
model to obtain the 2D box and corresponding point cloud. The final 3D box can
be obtained by the regression of PointNet [30] after the aggregation of the image
feature and 3D point information through attention mechanism, which achieves
the best performance in the monocular image. Intuitively, these methods would
certainly increase the accuracy of the detection, but the additional network and
annotated data would lead to more computation and labor-intensive work.

Image-only in Monocular 3D Object Detection. Recent works have tried
to fully explore the potency of RGB images for 3D detection. Most of them
include geometric constraints and 2D detectors to explicitly describe the 3D
information of the object. [26] uses CNN to estimate the dimension and orienta-
tion extracted feature from the 2D box, then it proposes to obtain the location
of an object by using the geometric constraints of the perspective relationship
between 3D points and 2D box edges. This contribution is followed by most
image-based detection methods either in refinement step or as direct calculation
on 3D objects [3,20]. All we know in this constraint is that certain 3D points
are projected onto 2D edges, but the corresponding relationship and the exact
location of the projection are not clear. Therefore, it needs to exhaustively enu-
merate 84 = 4096 configurations to determine the final correspondence and can
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only provide four constraints, which is not sufficient for fully 3D representation
in 9 parameters. It led to the need to estimate other prior information. Never-
theless, possible inaccuracies in the 2D bounding boxes may result in a grossly
inaccurate solution with a small number of constraints. Therefore, most of these
methods obtain more accurate 2D box through a two-stage detector, which is
difficult to get real-time speed.

Keypoints in Monocular 3D Object Detection. It is believed that the
detection accuracy of occluded and truncated objects can be improved by deduc-
ing complete shapes from vehicle keypoints [5,27,44]. They represent the regular-
shape vehicles as a wire-frame template, which is obtained from a large number of
CAD models. To train the keypoint detection network, they need to re-label the
data set and even use depth maps to enhance the detection capability. [13] is most
related to our work, which also considers the wire-frame model as prior informa-
tion. Furthermore, It jointly optimizes the 2D box, 2D keypoints, 3D orientation,
scale hypotheses, shape hypotheses, and depth with four different networks. This
has limitations in run time. In contrast to prior work, we reformulate the 3D detec-
tion as the coarse keypoints detection task. Instead of predicting the 3D box based
on an off-the-shelf 2D detectors or other data generators, we build a network to
predict 9 of 2D keypoints projected by vertexes and center of 3D bounding box
while minimize the reprojection error to find an optimal result.

3 Proposed Method

In this section. We first describe the overall architecture for keypoint detection
and prior property prediction. Then we detail how to estimate the 3D bounding
box of the object by maintaining 2D-3D consistency.

3.1 Keypoint Detection Network

Our keypoint detection network takes an only RGB image as the input and
simultaneously generates 2D-related information, such as perspective points and
2D size, and 3D-related information, such as dimension, orientation and distance.
As shown in Fig. 2, it consists of three components: backbone, keypoint feature
pyramid, and detection head. The main architecture adopts a one-stage strategy
that shares a similar layout with the anchor-free 2D object detector [15,18,36,
45], which allows us to get a fast detection speed. Details of the network are
given below.

Backbone. For the trade-off between speed and accuracy, we use two different
structures as our backbones: ResNet-18 [12] and DLA-34 [43]. All models take a
single RGB image I ∈ R

W×H×3 and downsample the input with factor S = 4.
The ResNet-18 and DLA-34 build for image classification network, the maximal
downsample factor is ×32. We upsample the bottleneck thrice by three bilinear
interpolations and 1 × 1 convolutional layer. Before the upsampling layers, we
concatenate the corresponding feature maps of the low level while adding one
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Fig. 2. An overview of proposed keypoint detection architecture: It takes only
the RGB images as the input and outputs main center heatmap, vertexes heatmap,
and vertexes coordinate as the base module to estimate 3D bounding box. It can also
predict other alternative priors to further improve the performance of 3D detection.

1 × 1 convolutional layers for channel dimension reduction. After three upsam-
pling layers, the channels are 256, 128, 64, respectively.

Keypoint Feature Pyramid. Keypoint in the image have no difference in size.
Therefore, the keypoint detection is not suitable for using the Feature Pyramid
Network (FPN) [21], which detect multi-scale 2D box in different pyramid layers.
We propose a novel approach Keypoint Feature Pyramid Network (KFPN) to
detect scale-invariant keypoints in the point-wise space, as shown in Fig. 3.
Assuming we have F scale feature maps, we first resize each scale f, 1 < f < F
back to the size of maximal scale, which yields the feature maps f̂1<f<F . Then,
we generate soft weight by a softmax operation to denote the importance of each
scale. The finally scale-space score map Sscore is obtained by linear weighing sum.
In detail, it can be defined as:

Sscore =
∑

f

f̂�softmax(f̂) (1)

where � denote element-wise product.

Detection Head. The detection head is comprised of three fundamental com-
ponents and six optional components which can be arbitrarily selected to boost
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Fig. 3. Illustration of our keypoint feature pyramid network (KFPN).

the accuracy of 3D detection with a little computational consumption. Inspired
by CenterNet [45], we take a keypoint as the maincenter for connecting all fea-
tures. Since the 3D projection point of the object may exceed the image bound-
ary in the case of truncation, the center point of the 2D box will be selected
more appropriately. The heatmap can be define as M ∈ [0, 1]

H
S × W

S ×C , where
C is the number of object categories. Another fundamental component is the
heatmap V ∈ [0, 1]

H
S × W

S ×9 of nine keypoints projected by vertexes and center
of 3D bounding box. For keypoints association of one object, we also regress an
local offset Vc ∈ R

H
S × W

S ×18 from the maincenter as an indication. Keypoints of
V closest to the coordinates from Vc are taken as a group of one object.

Although the 18 constraints by the 9 keypoints have an ability to recover
the 3D information of the object, more prior information can provide more
constraints and further improve the detection performance. We offer a num-
ber of options to meet different needs for accuracy and speed. The center offset
Mos ∈ R

H
S × W

S ×2 and vertexes offset Vos ∈ R
H
S × W

S ×2 are discretization error for
each keypoint in heatmaps. The dimension D ∈ R

H
S × W

S ×3 of 3D object have a
smaller variance, which makes it easy to predict. The rotation R(θ) of an object
only by parametrized by orientation θ (yaw) in the autonomous driving scene.
We employ the Multi-Bin based method [26] to regress the local orientation. We
classify the probability with cosin and sine offset of the local angle in one bin,
which generates feature map of orientation O ∈ R

H
S × W

S ×8 with two bins. We
also regress the depth Z ∈ R

H
S × W

S ×1 of 3D box center, which can be used as the
initialization value to speed up the solution in Sect. 3.2.

Training. All the heatmaps of keypoint and maincenter training strategy follow
the [18,45]. The loss solves the imbalance of positive and negative samples with
focal loss [22]:

LK
kp = − 1

N

K∑
k=1

H/S∑
x=1

W/S∑
y=1

{
(1 − p̂kxy)αlog(p̂kxy) if pkxy = 1

(1 − pkxy)β p̂kxylog(1 − p̂kxy) otherwise
(2)

where K is the channels of different keypoints, K = C in maincenter and K = 9
in keypoints. N is the number of maincenter or keypoints in an image, and
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α and β are the hyper-parameters to reduce the loss weight of negative and
easy positive samples. We set is α = 2 and β = 4 in all experiments following
[18,45]. pkxy can be defined by Gaussian kernel pxy = exp

(
−x2+y2

2σ

)
centered

by ground truth keypoint p̃xy. For σ, we find the max area Amax and min area
Amin of 2D box in training data and set two hyper-parameters σmax and σmin.
We then define the σ = A( σmax−σmin

Amax−Amin
) for a object with size A. For regression

of dimension and distance, we define the residual term as:

LD =
1

3N

H/S∑

x=1

W/S∑

y=1

1obj
xy

(
Dxy − ΔD̃xy

)2

LZ =
1
N

H/S∑

x=1

W/S∑

y=1

1obj
xy

(
log(Zxy) − log(Z̃xy)

)2

(3)

We set ΔD̃xy = log
˜Dxy−D̄

Dσ
, where D̄ and Dσ are the mean and standard devia-

tion dimensions of training data. 1obj
xy denotes if maincenter appears in position

x, y. The offset of maincenter, vertexes are trained with an L1 loss following [45]:

Lm
off = 1

2N

H/S∑
x=1

W/S∑
y=1

1obj
xy

∣∣∣Mxy
os −

(
pm

S − p̃m

)∣∣∣

Lv
off = 1

2N

H/S∑
x=1

W/S∑
y=1

1ver
xy

∣∣∣V xy
os −

(
pv

S − p̃v

)∣∣∣
(4)

where pm, pv are the position of maincenter and vertexes in the original image.
The regression coordinate of vertexes with an L1 loss as:

Lver =
1
N

8∑

k=1

H/S∑

x=1

W/S∑

y=1

1ver
xy

∣∣∣∣V
(2k−1):(2k)xy
c −

∣∣∣∣
pv − pm

S

∣∣∣∣

∣∣∣∣ (5)

The finial multi-task loss for keypoint detection define as:

L = ωmainLC
kp + ωkpverL

8
kp + ωverLver + ωdimLD

+ ωoriLori + ωZLdis + ωm
offLm

off + ωv
offLv

off

(6)

We empirical set ωmain = 1, ωkpver = 1, ωver = 1, ωdim = 1, ωori = 0.5, ωdis =
0.1, ωm

off = 0.5 and ωv
off = 0.5 in our experimental.

3.2 3D Bounding Box Estimate

We estimate the 3D bounding box by enforcing the 2D-3D consistency between
estimated 2D-related and 3D-related information, given by our keypoint detec-
tion network. Considering an image I, a set of i = 1...N object are represented
by 9 keypoints and other optional prior, keypoints as k̂pij for j ∈ 1...9, dimen-
sion as D̂i, orientation as θ̂i, and distance as Ẑi. The corresponding 3D bounding
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box Bi can be defined by its rotation Ri(θ), position Ti = [T x
i , T y

i , T z
i ]T , and

dimensions Di = [hi, wi, li]T . Our goal is to estimate the 3D bounding box Bi,
whose projections of 3D center and vertexes on the image space best fit the cor-
responding 2D keypoints k̂pij . This can be solved by minimize the reprojection
error of 3D keypoints and 2D keypoints. We formulate it and other prior errors
as a nonlinear least squares optimization problem:

R∗, T ∗,D∗ = arg min
{R,T,D}

∑

Ri,Ti,Di

∥∥∥ecp

(
Ri, Ti,Di, k̂pi

)∥∥∥
2

Σi

+ ωd

∥∥∥ed

(
Di, D̂i

)∥∥∥
2

2
+ ωr

∥∥∥er

(
Ri, θ̂i

)∥∥∥
2

2

(7)

where ecp(..), ed(..), er(..) are measurement error of camera-point, dimension
prior and orientation prior respectively. We set ωd = 1 and ωr = 1 in our
experimental. Σ is the covariance matrix of keypoints projection error. It is the
confidence extracted from the heatmap corresponding to the keypoints:

Σi = diag(softmax(V (k̂pi)) (8)

In the rest of the section, we will first define this error item, and then introduce
the way to optimize the formulation.

Camera-Point. Following the [9], the homogeneous coordinate of eight vertexes
and 3D center can be parametrized as:

P i
3D = diag(Di)Cor

Cor =

[
0 0 0 0 −1 −1 −1 −1 −1/2

1/2 −1/2 −1/2 1/2 1/2 −1/2 −1/2 1/2 0
1/2 1/2 −1/2 −1/2 1/2 1/2 −1/2 −1/2 0
1 1 1 1 1 1 1 1 1

]
(9)

Given the camera intrinsics matrix K, the projection of these 3D points into the
image coordinate is:

kpi =
1
si

K

⎡

⎣ R T

0T 1

⎤

⎦ diag(Di)Cor =
1
si

K exp(ξ∧)diag(Di)Cor (10)

where ξ ∈ se3 and exp maps the se3 into SE3 space. The projection coordinate
should fit tightly into 2D keypoints detected by the detection network. Therefore,
the camera-point error is then defined as:

ecp = k̂pi − kpi (11)

Minimizing the camera-point error needs the Jacobians in se3 space. It is given
by:

∂ecp

∂δξ
= −

⎡

⎣
fx

Z′ 0 − fxX
′

Z′2

0 fy

Z′ 0 − fyY
′

Z′2

⎤

⎦ · [
I, −P

′∧]

∂ecp

∂Di
= −1

9

9∑

col=1

⎡

⎣
fx

Z′ 0 − fxX
′

Z′2

0 fy

Z′ 0 − fyY
′

Z′2

⎤

⎦ · R · Corcol

(12)
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where P
′
= [X

′
, Y

′
, Z

′
]T = (exp(ξ∧P ))1:3.

Dimension-Prior: The ed is simply defined as:

ed = D̂i − Di (13)

Rotation-Prior: We define er in SE3 space and use log to map the error into
its tangent vector space:

er = log(R−1R(θ̂))∨
se3

(14)

These multivariate equations can be solved via the Gauss-newton or Levenberg-
Marquardt algorithm in the g2o library [17]. A good initialisation is mandatory
using this optimization strategy. We adopt the prior information generated by
keypoint detection network as the initialization value, which is very important
in improving the detection speed.

4 Experimental

4.1 Implementation Details

Our experiments were evaluated on the KITTI 3D detection benchmark [9],
which has a total of 7481 training images and 7518 test images. We follow the
[7] and [39] to split the training set as train1, val1 and train2, val2 respectively,
and comprehensively compare our framework with other methods on this two
validation as well as test set.

Our deep neural network implemented by using PyTorch with the machine i7-
8086K CPU and 2 1080Ti GPUs. All the original image are padded to 1280×384
for training and testing. We project the 3D bounding box of Ground Truths in the
left and right images to obtain Ground Truth keypoints and use the horizontal
flipping as the data augmentation, which makes our dataset is quadruple with
the origin training set. We run Adam [14] optimizer with a base learning rate
of 0.0002 for 300 epochs and reduce 10× at 150 and 180 epochs. For standard
deviation of Gaussian kernel, we set σmax = 19 and σmin = 3. Based on the
statistics of KITTI dataset, we set l̃ = 3.89, w̃ = 1.62, h̃ = 1.53 and σl̃ =
0.41, σw̃ = 0.1, σh̃ = 0.13. In the inference step, after 3×3 max pooling, we filter
the maincenter and keypoints with threshold 0.4 and 0.1 respectively, and only
keypoints that in the image size range are sent into the geometric constraint
module. The backbone networks are initialized by a classification model pre-
trained on the ImageNet data set. Finally, The ResNet-18 takes about three
days with batch size 30 and DLA-34 for four days with batch size 16 in the
training stage.

4.2 Comparison with Other Methods

To fully evaluate the performance of our keypoint-based method, for each
task three official evaluation metrics be reported in KITTI: average precision
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Table 2. Comparison of our framework with current image-based 3D detection meth-
ods for car category evaluated using metric AP3D on val1/val2 of KITTI data set.
“Extra” means the extra data used in training. Red denotes the highest result, blue
for the second highest, and cyan for the third.

Method Extra Time
AP3D (IoU=0.5) AP3D (IoU=0.7)

Easy Moderate Hard Easy Moderate Hard
Mono3D [6] Mask 4.2 s 25.19 / - 18.20 / - 15.52 / - 2.53 / - 2.31 / - 2.31 / -
3DOP [7] Stereo 3 s 46.04 / - 34.63 / - 30.09 / - 6.55 / - 5.07 / - 4.10 / -
MF3D [40] Depth - 47.88 / 45.57 29.48 / 30.03 26.44 / 23.95 10.53 / 7.85 5.69 / 5.39 5.39 / 4.73

Mono3D++ [13] Depth+Shape >0.6s 42.00 / - 29.80 / - 24.20 / - 10.60 / - 7.90 / - 5.70 / -

GS3D [19] None 2.3s 32.15 / 30.60 29.89 / 26.40 26.19 / 22.89 13.46 / 11.63 10.97 / 10.51 10.38 / 10.51
Deep3DBox [26] None - 27.04 / - 20.55 / - 15.88 / - 5.85 / - 4.10 / - 3.84 / -
MonoGRNet [31] None 0.06s 50.51/ - 36.97/ - 30.82 / - 13.88 / - 10.19 / - 7.62 / -

FQNet[23] None 3.33s 28.16 / 28.98 21.02 / 20.71 19.91 / 18.59 5.98 / 5.45 5.50 / 5.11 4.75 / 4.45
M3D-RPN [3] None 0.16s 48.96/49.89 39.57/36.14 33.01/ 28.98 20.27/20.40 17.06/16.48 15.21/13.34

Ours (ResNet18) None 0.035s 47.43 /46.52 33.86 /32.61 31.04/30.95 18.13/18.38 14.14/14.66 13.33/12.35
Ours (DLA34) None 0.055s 54.36/52.59 41.90/40.96 35.84/34.95 20.77/19.47 16.86/16.29 16.63/15.57

Table 3. Comparison of our framework with current image-based 3D detection frame-
works for car category, evaluated using metric APBEV on val1/val2 of KITTI data
set.

Method Extra Time
APBEV (IoU=0.5) APBEV (IoU=0.7)

Easy Moderate Hard Easy Moderate Hard
Mono3D [6] Mask 4.2 s 30.50 / - 22.39 / - 19.16 / - 5.22 / - 5.19 / - 4.13 / -
3DOP [7] Stereo 3 s 55.04 / - 41.25 / - 34.55 / - 12.63 / - 9.49 / - 7.59 / -
MF3D [40] Depth - 55.02 / 54.18 36.73 / 38.06 31.27 / 31.46 22.03 / 19.20 13.63 / 12.17 11.60 / 10.89

Mono3D++ [13] Depth+Shape >0.6s 46.70 / - 34.30 / - 28.10 / - 16.70 / - 11.50 / - 10.10 / -

GS3D [19] None 2.3s - / - - / - - / - - / - - / - - / -
Deep3DBox [26] None - 30.02 / - 23.77 / - 18.83 / - 9.99 / - 7.71 / - 5.30 / -
MonoGRNet [31] None 0.06s - / - - / - - / - - / - - / - - / -

FQNet[23] None 3.33s 32.57 / 33.37 24.60 / 26.29 21.25 / 21.57 9.50 / 10.45 8.02 / 8.59 7.71 / 7.43
M3D-RPN [3] None 0.16s 55.37/55.87 42.49/41.36 35.29/34.08 25.94/26.86 21.18/21.15 17.90/17.14

Ours(ResNet18) None 0.035s 52.79/41.91 35.92/34.28 33.02/28.88 20.81/21.34 16.60/16.48 15.80/15.45
Ours (DLA34) None 0.055s 57.47/56.90 44.16/44.69 42.31/41.75 25.56/24.74 22.12/22.03 20.91/18.05

for 3D intersection-over-union (AP3D), average precision for Birds Eye View
(APBEV ), and Average Orientation Similarity (AOS) if 2D bounding box avail-
able. We evaluate our method at three difficulty settings: easy, moderate, and
hard, according to the object’s occlusion, truncation, and height in the image
space [9].

AP3D and APBEV . We compare our method with current image-based SOTA
approaches and also provide a comparison about running time. However, it is
not realistic to list the running times of all previous methods because most of
them do not report their efficiency. The results AP3D, APBEV and running time
are shown in Table 2 and 3, respectively. ResNet-18 as the backbone achieves the
best speed while our accuracy outperforms most of the image-only method. In
particular, it is more than 100 times faster than Mono3D [6] while outperforms
over 10% for both APBEV and AP3d across all datasets. In addition, our ResNet-
18 method is more than 75 times faster while having a comparable accuracy than
3DOP [7], which employs stereo images as the input. DLA-34 as the backbone
achieves the best accuracy while having relatively good speed. It is faster about 3
times than the recently proposed M3D-RPN [3] while achieves the improvement
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in most of the metrics. Note that comparing our method with this all approaches
is unfair because most of these approaches rely on extra stand-alone network or
data in addition to monocular images. Nevertheless, we achieve the best speed
with better performance.

Fig. 4. Qualitative results of our 3D detection. From top to bottom are keypoints,
projections of the 3D bounding box and bird’s eye view image, ground truths in green
and our results in blue. The crimson arrows, green arrows, and red arrows point to
occluded, distant, and truncated objects, respectively. (Color figure online)

Results on the KITTI Testing Set. We also evaluate our results on the
KITTI testing set, as shown in Table 4.

4.3 Qualitative Results

Figure 4 shows some qualitative results of our method. We visualize the key-
point detection network outputs, geometric constraint module outputs and BEV
images. The results of the projected 3D box on image demonstrate than our
method can handle crowded and truncated objects. The results of the BEV
image show that our method has an accuracy localization in different scenes.
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Table 4. Comparing 3D detection AP3D on KITTI testing set. We use the DLA-34 as
the backbone.

Method Accelerater Time
AP3D(IoU=0.7)
Easy Mode Hard

GS3D[19] - 2.3s 7.69 6.29 6.16
MonoGRNet[31] Tesla P40 0.06s 9.61 5.74 4.25
M3D-RPN[3] 1080Ti 0.16s 14.76 9.71 7.42
FQNet[23] 1080Ti 3.33s 2.77 1.51 1.01

MonoDIS[34] V100 - 10.37 7.94 6.40
Ours(DLA34) 1080Ti 0.055s 14.41 10.34 8.77

4.4 Ablation Study

Effect of Optional Components. Three optional components be employed
to enhance our method: dimension, orientation, distance and keypoints offset.
We experiment with different combinations to demonstrate their effect on 3D
detection. The results are shown in Table 5, we train our network with DLA-34
backbone and evaluate it using AP3D and APBEV . The combinations of dimen-
sion, orientation, distance and keypoints offset achieve the best accuracy mean-
while have a faster running speed. This is because we take the output predicted
by our network as the initial value of the geometric optimization module, which
can reduce the search space of the gradient descent method.

Table 5. Ablation study of different optional selecting results on val1 set. We use the
DLA-34 as the backbone.

dim ori dist off Time (s)
AP3D (IoU = 0.5) AP3D (IoU = 0.7)

Easy Mode Hard Easy Mode Hard
√

0.058 51.21 40.73 35.00 18.23 17.05 15.94√
0.061 25.35 22.33 21.18 3.12 3.43 2.97√ √
0.057 54.18 41.34 34.89 20.23 16.02 15.94√ √ √
0.055 54.20 41.56 35.13 20.76 16.80 16.25√ √ √ √
0.055 54.36 41.90 35.84 20.77 16.86 16.36

Effect of Keypoint FPN. We propose keypoint FPN as a strategy to improve
the performance of multi-scale keypoint detection. To better understand its
effect, we compare the AP3D and APBEV with and without KFPN. The details
are shown in Table 6, using KFPN achieves the improvement across all sets while
no significant change in time consumption.

2D Detection and Orientation. Although our focus is on 3D detection, we
also report the performance of our methods in 2D detection and orientation
evaluation in order to better understand the comprehensive capabilities of our
approach. We report the AOS and AP with a threshold IoU = 0.7 for comparison.
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Table 6. Comparing 3D detection AP3D of w/o KFPN and w/ KFPN for car category
on val1 set. We use the DLA-34 as the backbone.

KFPN Time AP3D (IoU = 0.7) AP3D (IoU = 0.5)

Easy Mode Hard Easy Mode Hard

w/o 0.054 50.14 40.73 34.94 17.47 15.99 15.36

w/ 0.055 54.36 41.90 35.84 20.77 16.86 16.36

Table 7. Comparing of 2D detection AP2D with IoU = 0.7 and orientation AOS results
for car category evaluated on val1/val2 of KITTI data set. Only the results under
the moderate criteria are shown. Ours (2D) represents the results from the keypoint
detection network, and Ours (3D) is the 2D bounding box of the projected 3D box.

Method AP2D AOS

Mono3D [6] 88.67/- 86.28/-

3DOP [7] 88.07/- 85.80/-

Deep3DBox [26] -/97.20 -/96.68

DeepMANTA [5] 90.89/91.01 90.66/90.66

GS3D [19] 88.85/90.02 87.52/89.13

Ours (2D) 90.14/91.85 89.58/89.22

Ours (3D) 90.41/92.08 89.95/89.40

The results are shown in Table 7, the Deep3DBox train MS-CNN [4] in KITTI
to produce 2D bounding box and adopt VGG16 [35] for orientation prediction,
which gives him the highest accuracy. Deep3Dbox takes advantage of better 2D
detectors, however, our AP3D outperforms it by about 20% in moderate sets,
which emphasize the importance of customizing the network specifically for 3D
detection. Another interesting finding is that the 2D accuracy of back-projection
3D results is better than the direct prediction, thanks to our method that can
infer the occlusive area of the object.

5 Conclusion

In this paper, we have proposed a faster and more accurate monocular 3D object
detection method for autonomous driving scenarios. We reformulate 3D detection
as the keypoint detection problem and show how to recover the 3D bounding box
by using keypoints and geometric constraints. We specially customize the point
detection network for 3D detection, which can simultaneously predict keypoints
of the 3D box and other prior information of the object using only images. Our
geometry module formulates this prior to easy-to-optimize loss functions. Our
approach generates a stable and accurate 3D bounding box without containing
stand-alone networks, additional annotation while achieving real-time running
speed.



658 P. Li et al.

References

1. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In:
Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–
417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023 32

2. Behl, A., Hosseini Jafari, O., Karthik Mustikovela, S., Abu Alhaija, H., Rother, C.,
Geiger, A.: Bounding boxes, segmentations and object coordinates: how important
is recognition for 3D scene flow estimation in autonomous driving scenarios? In:
Proceedings of the IEEE International Conference on Computer Vision, pp. 2574–
2583 (2017)

3. Brazil, G., Liu, X.: M3D-RPN: monocular 3D region proposal network for object
detection. In: Proceedings of the IEEE International Conference on Computer
Vision, Seoul, South Korea (2019)

4. Cai, Z., Fan, Q., Feris, R.S., Vasconcelos, N.: A unified multi-scale deep convo-
lutional neural network for fast object detection. In: Leibe, B., Matas, J., Sebe,
N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 354–370. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46493-0 22

5. Chabot, F., Chaouch, M., Rabarisoa, J., Teulière, C., Chateau, T.: Deep MANTA:
a coarse-to-fine many-task network for joint 2D and 3D vehicle analysis from
monocular image. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 2040–2049 (2017)

6. Chen, X., Kundu, K., Zhang, Z., Ma, H., Fidler, S., Urtasun, R.: Monocular 3D
object detection for autonomous driving. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 2147–2156 (2016)

7. Chen, X., Kundu, K., Zhu, Y., Ma, H., Fidler, S., Urtasun, R.: 3D object proposals
using stereo imagery for accurate object class detection. IEEE Trans. Pattern Anal.
Mach. Intell. 40(5), 1259–1272 (2017)

8. Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3D object detection network
for autonomous driving. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1907–1915 (2017)

9. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The
KITTI vision benchmark suite. In: 2012 IEEE Conference on Computer Vision
and Pattern Recognition, pp. 3354–3361. IEEE (2012)

10. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference
on Computer Vision, pp. 1440–1448 (2015)

11. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accu-
rate object detection and semantic segmentation. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

13. He, T., Soatto, S.: Mono3D++: monocular 3D vehicle detection with two-scale 3D
hypotheses and task priors. arXiv preprint arXiv:1901.03446 (2019)

14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv. Learning
(2014)

15. Kong, T., Sun, F., Liu, H., Jiang, Y., Shi, J.: FoveaBox: beyond anchor-based
object detector. arXiv preprint arXiv:1904.03797 (2019)

16. Ku, J., Pon, A.D., Waslander, S.L.: Monocular 3D object detection leveraging accu-
rate proposals and shape reconstruction. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 11867–11876 (2019)

https://doi.org/10.1007/11744023_32
https://doi.org/10.1007/978-3-319-46493-0_22
http://arxiv.org/abs/1901.03446
http://arxiv.org/abs/Learning
http://arxiv.org/abs/1904.03797


RTM3D 659

17. Kummerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: G 2 o: a
general framework for graph optimization, pp. 3607–3613 (2011)

18. Law, H., Deng, J.: CornerNet: detecting objects as paired keypoints. In: Proceed-
ings of the European Conference on Computer Vision (ECCV), pp. 734–750 (2018)

19. Li, B., Ouyang, W., Sheng, L., Zeng, X., Wang, X.: GS3D: an efficient 3D object
detection framework for autonomous driving. In: The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2019

20. Li, P., Chen, X., Shen, S.: Stereo R-CNN based 3D object detection for autonomous
driving. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 7644–7652 (2019)

21. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature
pyramid networks for object detection. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

22. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object
detection. In: Proceedings of the IEEE International Conference on Computer
Vision, pp. 2980–2988 (2017)

23. Liu, L., Lu, J., Xu, C., Tian, Q., Zhou, J.: Deep fitting degree scoring network
for monocular 3D object detection. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1057–1066 (2019)

24. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Com-
put. Vision 60(2), 91–110 (2004)

25. Ma, X., Wang, Z., Li, H., Zhang, P., Ouyang, W., Fan, X.: Accurate monocular 3D
object detection via color-embedded 3D reconstruction for autonomous driving.
In: Proceedings of the IEEE International Conference on Computer Vision, pp.
6851–6860 (2019)

26. Mousavian, A., Anguelov, D., Flynn, J., Kosecka, J.: 3D bounding box estimation
using deep learning and geometry. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 7074–7082 (2017)

27. Murthy, J.K., Krishna, G.S., Chhaya, F., Krishna, K.M.: Reconstructing vehicles
from a single image: shape priors for road scene understanding. In: 2017 IEEE
International Conference on Robotics and Automation (ICRA), pp. 724–731. IEEE
(2017)

28. Naiden, A., Paunescu, V., Kim, G., Jeon, B., Leordeanu, M.: Shift R-CNN: deep
monocular 3D object detection with closed-form geometric constraints. In: 2019
IEEE International Conference on Image Processing (ICIP), pp. 61–65 (2019)

29. Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum PointNets for 3D object
detection from RGB-D data. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 918–927 (2018)

30. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for
3D classification and segmentation. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 652–660 (2017)

31. Qin, Z., Wang, J., Lu, Y.: MonoGRNet: a geometric reasoning network for monoc-
ular 3D object localization. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, pp. 8851–8858 (2019)

32. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. In: Advances in Neural Information Pro-
cessing Systems, pp. 91–99 (2015)

33. Rubino, C., Crocco, M., Del Bue, A.: 3D object localisation from multi-view image
detections. IEEE Trans. Pattern Anal. Mach. Intell. 40(6), 1281–1294 (2017)



660 P. Li et al.

34. Simonelli, A., Bulo, S.R., Porzi, L., López-Antequera, M., Kontschieder, P.: Disen-
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Abstract. How to make a segmentation model efficiently adapt to a
specific video as well as online target appearance variations is a fun-
damental issue in the field of video object segmentation. In this work, a
graph memory network is developed to address the novel idea of “learning
to update the segmentation model”. Specifically, we exploit an episodic
memory network, organized as a fully connected graph, to store frames
as nodes and capture cross-frame correlations by edges. Further, learn-
able controllers are embedded to ease memory reading and writing, as
well as maintain a fixed memory scale. The structured, external mem-
ory design enables our model to comprehensively mine and quickly store
new knowledge, even with limited visual information, and the differen-
tiable memory controllers slowly learn an abstract method for storing
useful representations in the memory and how to later use these rep-
resentations for prediction, via gradient descent. In addition, the pro-
posed graph memory network yields a neat yet principled framework,
which can generalize well to both one-shot and zero-shot video object
segmentation tasks. Extensive experiments on four challenging bench-
mark datasets verify that our graph memory network is able to facilitate
the adaptation of the segmentation network for case-by-case video object
segmentation.

Keywords: Video segmentation · Episodic graph memory · Learn to
update

1 Introduction

Video object segmentation (VOS), as a core task in computer vision, aims to
predict the target object in a video at the pixel level. Typically, according to
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whether or not annotations are provided for the first frame during testing, VOS
can be categorized into one-shot video object segmentation (O-VOS) [5,48] and
zero-shot video object segmentation (Z-VOS) [52]. Provided with only first-frame
annotations, O-VOS is to identify and segment the labeled object instances in
the rest of the video [7,15,17,27,33,69]; whereas Z-VOS targets at automatically
inferring the primary objects without any test-time indications [44,45].

O-VOS is a challenging task because there are no further assumptions regard-
ing to the specific target object and the application scenes often contain similar
distractor objects. To tackle these challenges, earlier methods typically perform
network finetuning over each annotated object [5,50]. Though effective, this is
quite time-consuming. Current popular solutions [11,31,49,51,70] are instead
built upon an efficient matching based framework; they formulate the task as a
differentiable matching procedure between the support set (i.e., the first labeled
frame or prior segmented frames) and query set (i.e., current frame). Thus they
can directly assign labels to the query frame, according to the pixel-wise simi-
larity to the annotated first frame and/or previous processed frames.

Although omitting first-frame finetune and improving the performance to
some extent, matching based O-VOS methods still suffer from several limita-
tions. First, they typically learn a generic matching network and then apply it
to test videos directly, failing to make full use of first-frame target-specific infor-
mation. As a result, they cannot efficiently adapt to the input video. Second, as
the segmentation targets may undergo appearance variation (i.e., fast motion,
occlusion), it is meaningful to perform online model updating. Third, matching
based methods only modeling pair-relations between the query and each support
frame, neglecting the rich context within the support set.

To address these issues, we take inspiration from the recent development of
memory-augmented networks for few-shot learning [39,58] and develop a graph
memory network to online adapt the segmentation model to a specific target in
one single feed-forward pass. Specifically, by regarding O-VOS as episodic mem-
ory reasoning, our approach equips with the ability to slowly learn high-level
knowledge for extracting useful representations from the offline training data,
and the ability to rapidly fuse the unseen information from the first-frame anno-
tation in the test video, via an external memory module. In this way, our model
can internally modulate the output by learning to rapidly cache representation
in the memory stores. During the segmentation, to maintain the variations of the
object appearance, we perform memory updating by storing and recalling target
information from the external memory. Therefore, we can implement the online
model updating easily without extensive parameter optimization. In addition,
the memory module, built upon the end-to-end memory network [43], is endowed
with a graph structure to better mine the relations among memory cells.

The proposed graph memory network is neat and fast. For memory updating,
instead of some prior matching based O-VOS models [31] inserting a new ele-
ment into newly allocated position, our model performs message passing on the
fixed-size graph memory without increasing memory consumption. Our model
provides a principled framework; it generalizes Z-VOS task well, in which main-
stream methods also lack the adaptation capability. As far as we know, this work
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represents the first effort that addresses both O-VOS and Z-VOS in a unified net-
work design. Experiments on representative O-VOS datasets show the proposed
method performs favorably against state-of-the-arts. Without bells and whis-
tles, it also outperforms other competitors on Z-VOS datasets. These promising
results demonstrate the efficacy and generalizability of our graph memory net-
work.

2 Related Work

One-shot Video Object Segmentation (O-VOS) is to track the first-frame
annotation to subsequent frames at pixel level. Traditional methods usually for-
mulate this task as a label propagation process [1,35,40,53,57]. With the renais-
sance of the connectionism, deep learning based solutions become the domani-
ant [11,27,33,35] in the field of O-VOS. Among them are three representative
strategies. One is the segmentation-by-detection scheme [5,6,10,26] that learns
a video-specific representation about the first-frame annotated objects and then
performs pixel-wise detection in the rest frames. Another one is the propaga-
tion based pipeline [10,45,60], which propagates segmented masks to fit objects
in the upcoming frames. The third, i.e., the more advanced, is the matching
based strategy [7,11,15,17,25,31,49,51,69,70] which usually trains a prototypi-
cal Siamese matching network to find the most matching pixel (or embedding in
the feature space) between the first frame (or a segmented frame) and the query
frame, and then achieves label assignment accordingly. Some matching-based
methods employ internal memory (e.g., ConvLSTM [48,64]) or external memory
(e.g., [31,48]) to implicitly or explicitly store previously computed segmentation
information for facilitating learning the evolution of objects over time. However,
our utilization of memory differs from these methods substantially: i) we employ
an external memory with learnable read-write controller to rapidly encode new
video information for quick segmentation network updating; ii) compared to
vanilla memory network [28,43], our graph memory network stores memory con-
tent in a structured manner that explicitly captures context in cells; iii) instead
of writing new input to a newly located position [31], our memory is dynamically
updated by iterative cell state renewing without increasing the memory size.

Zero-shot Video Object Segmentation (Z-VOS) aims to segment
primary objects in unconstrained videos. This task has been widely stud-
ied over several decades which also called unsupervised video object segmen-
tation [19,22,35,71]. Traditional methods usually leverage motion [18,29] or
saliency cues [12,54] to obtain a heuristic representation for inferring the primary
objects. Recent methods were built upon fully convolutional networks. Early
methods explored two-stream architectures [8,16,41,72] or variants of recurrent
neural networks [42,45,55]. Recent ones address comprehensive foreground rea-
soning from a global view by non-local structures [24,52]. In this work, rather
than these methods learning a universal video foreground object representation
and hoping it could generalize well to all unseen scenarios, our episodic memory
design allows target-adaption on-the-fly by learning to update the segmentation
network.
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Learning to Update in VOS. To learn more video-specific information, a
direct way is to perform iterative network finetune in the first frame [5,50].
Some recent efforts instead applied meta-learning for model updating [4,61,66],
whose basic ideas are similar: learning segmentation model parameters on train-
ing videos. This paper, in contrast, uses a graph memory network with learnable,
lightweight controllers to assimilate a new video. Thus the model can quickly
adapt to unseen scenes and appearance variants through the memory node
(cell) updating rather than sensitive and expensive network parameter gener-
ation [61,66].

3 Proposed Algorithm

3.1 Preliminary: Episodic Memory Networks

Memory networks augment neural networks with an external memory compo-
nent [28,43,58], which allow the network to explicitly access the past experiences.
They have been shown effective in few-shot learning [39,62,63] and object track-
ing [67]. Recently, episodic external memory networks have been explored to
solve reasoning issues in visual question answering and visual dialog [21,28,43].
The basic idea is to retrieve the information required to answer the question
from the memory with trainable read and write operators. Given a collection
of input representations, the episodic memory module chooses which parts of
the inputs to focus on through the neural attention. It then produces a “mem-
ory summarization” representation taking into account the query as well as the
stored memory. Each iteration in the episode provides the memory module with
newly relevant information about the input. As a result, the memory module
has the ability to retrieve new information in each iteration and obtain a new
representation about the input.

3.2 Learning to Update

In the context of O-VOS [5], the goal is to learn from the annotated objects in
the first frame (support set) and predict them in the subsequent frames (query
set). To this end, traditional methods usually finetune the network and perform
online learning for each specific video. In contrast, we construct an episodic mem-
ory based learner on variety of tasks (videos), sampled from the distribution of
training tasks [4], such that the learned model performs well on new unseen tasks
(test videos). Thus we tackle O-VOS as a “learning to update” segmentation
network procedure [38]: i) extracting a task representation from the one-shot
support set, and ii) updating the segmentation network for the query given the
task representation. As shown in Fig. 1, we enhance an episodic memory net-
work with graph structure (i.e., graph memory network) to: i) instantly adapt
the segmentation network to a specific object, rather than performing lots of
finetuning iterations; and ii) make full use of context within video sequences. As
a result, our graph memory network has two abilities: learn to adjust the segmen-
tation network from one-shot support set during the model initialization phase
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and learn to take advantage of segmented frames to update the segmentation
during frame processing phase. Our model thus can make efficient case-by-case
adaption and online updating within one feed-forward process.

3.3 Graph Memory Network

The graph memory network consists of an external graph memory and learnable
controllers for memory operating. The memory provides short-term storage for
new knowledge encoding and its graph structure allows to fully explore the
context. The controllers interact with the graph memory through a number of
read and write operations and they are capable of long-term storage via slow
updates of the weights. Through the controllers, our model learns a general
strategy for the types of representations it should place into the memory and
how it should later use these representations for segmentation predictions.

Fig. 1. Illustration of our graph memory based O-VOS method. Previous frames
are fed together with the pre-defined or self-segmented masks to the support encoder
to initialize graph memory nodes {m0

i }i. Current frame is fed into the query encoder
to output the query embedding q. The graph memory interacts with q under several
episodic reasoning (with learnable read and write controllers) to mine support context
and generate video specific features. After K-step episodic reasoning, the decoder pre-
dicts segmentation mask Ŝ, based on the episodic feature hK and query embedding q.

The core idea of our graph memory network is to perform K steps of episodic
reasoning to efficiently mine the structures in the memory and better capture
target-specific information. Specifically, the memory is organized as a size-fixed,
fully connected graph G =(M, E), where node mi ∈ M denotes ith memory cell,
and edge ei,j =(mi,mj) ∈E indicates the relation between cell mi and mj .

Given a query frame, the support set is considered as the combination of
the first annotated frame and previously segmented frames. The graph memory
is initialized from N(= |M|) frames, sampled from the support set. For each
memory node mi, its initial embedding m0

i ∈ mathbbRW×H×C is generated by
applying a fully convolutional memory encoder to the corresponding support
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frame to capture both the spatial visual feature as well as segmentation mask
information.

Graph Memory Reading. A fully convolutional query encoder is also applied
to the query frame to extract the visual feature q ∈ R

W×H×C . A learnable read
controller first takes q as input and generates its initial state h0:

h0 = fP(q) ∈ R
W×H×C , (1)

where fP(·) indicates a projection function.
At each episodic reasoning step k ∈ {1, ...,K}, the read controller interacts

with the external graph memory by reading the content. Following the key-value
retrieval mechanism in [21,28,43], we first compute the similarity between the
query and each memory node mi:

ski =
hk−1 · mk−1

i

‖hk−1‖‖mk−1
i ‖

∈ [−1, 1]. (2)

Fig. 2. Illustration of iterative reasoning over the episodic graph memory.

Next, we compute the read weight wk
i by a softmax normalization function:

wk
i = exp(ski )

/ ∑
j
exp(skj ) ∈ [0, 1]. (3)

Considering some nodes are noisy due to the underlying camera shift or out-of-
view, wk

i measures the confidence of memory cell mi. Then the memory summa-
rization mk is retrieved using this weight to linearly combine the memory cell:

mk =
∑

i
wk

i m
k−1
i ∈ R

W×H×C . (4)

Through Eqs. (2–4), the memory module retrieves the memory cell most sim-
ilar to hk to obtain the memory summarization mk. Once reading the memory
summarization, the read controller updates its state as follows:
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h̃k = W h
r ∗ hk−1 + Uh

r ∗ mk ∈ R
W×H×C ,

ak
r = σ(W a

r ∗ hk−1 + Ua
r ∗ mk) ∈ [0, 1]W×H×C ,

hk = ak
r ◦ h̃k + (1 − ak

r ) ◦ hk−1 ∈ R
W×H×C ,

(5)

where W s and Us are convolution kernels and σ indicates the sigmoid activation
function. ‘∗’ and ‘◦’ represent the convolution operation and Hadamard product,
respectively. The update gate ak controls how much previous hidden state hk−1

to be kept. In this way, the hidden state of the controller encodes both the graph
memory and query representations, which are necessary to produce an output.

Episodic Graph Memory Updating. After each pass through the memory
summarization, we need to update the episodic graph memory with the new
query input. At each step k, a learnable memory write controller updates each
memory cell (i.e., graph node) mi by considering its previous state mk−1

i , current
content from the read controller hk, and the states from other cells {mk−1

j }j �=i.
Specifically, following [52], we first formulate the relation eki,j from mj to mi as
the inner-product similarity over their feature matrices:

eki,j = mk−1
i We mk−1�

j ∈ R
(WH)×(WH), (6)

where We ∈ R
C×C indicates a learnable weight matrix, and mk−1

i ∈ R
(WH)×C

and mk−1
j ∈ R

(WH)×C are flattened into matrix representations. eki,j stores
similarity scores corresponding to all pairs of positions in mi and mj .

Then, for mi, we compute the summarized information cki from other cells,
weighted by their normalized inner-product similarities:

cki =
∑

j �=i
softmax(eki,j)m

k−1
j ∈ R

W×H×C , (7)

where softmax(·) normalizes each row of the input.
After aggregating the information from neighbors, the memory write con-

troller updates the state of mi as:

m̃k
i = Wm

u ∗ hk + Um
u ∗ mk−1

i + V m
u ∗ cki ∈ R

W×H×C ,

ak
u = σ(W a

u ∗ hk + Ua
u ∗ mk−1

i + V a
u ∗ cki ) ∈ [0, 1]W×H×C ,

mk
i = ak

u ◦ m̃k + (1 − ak
u) ◦ mk−1 ∈ R

W×H×C .

(8)

The graph memory updating allows each memory cell to embed the neighbor
information into its representation so as to fully explore the context in the sup-
port set. Moreover, by iteratively reasoning over the graph structure, each mem-
ory cells encode the new query information and yield progressively improved
representations. Compared with traditional memory network [58], the proposed
graph memory network brings two advantages: i) the memory writing operation
is fused into the memory updating procedure without increasing the memory
size, and ii) avoiding designing complex memory writing strategies [21,39,58].
Figure 2 shows a detailed diagram of memory reading and updating.
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Final Segmentation Readout. After K steps of the episodic memory updat-
ing, we leverage the final state hK from the memory read controller to support
the prediction on the query:

Ŝ = fR(hK, q) ∈ [0, 1]W×H×2, (9)

where the readout function fR(·) gives the final segmentation probability maps.

3.4 Full Network Architecture

Network Configuration. Our whole model is end-to-end fully convolutional.
Both the query encoder and memory encoder have the same network architec-
ture, except for the inputs. The query encoder takes an RGB query frame as
input, while, for the memory encoder, input is an RGB support frame concate-
nated with the one-channel softmax object mask and one-hot label map [31]. For
the graph memory, the read controller (Eq. (5)) and write controller (Eq. (8))
are all implemented using ConvGRU [2], with 1 × 1 convolutional kernels. The
project function fP (Eq. (1)) is also realized with 1 × 1 convolutional layer.
Similar to [59], the readout function fR (Eq. (9)) is implemented with a decoder
network, which consists of four blocks with skip connections to the corresponding
ResNet50 [14] blocks. The kernel size of each convolution layer in the decoder is
set as 3 × 3, excepting the last 1 × 1 convolution layer. The final 2-channel seg-
mentation prediction is obtained by a softmax operation. The query and memory
encoders are implemented as the four convolution blocks of ResNet50, initialized
by the weights pretrained on ImageNet. The other layers are randomly initial-
ized. Considering memory encoder takes binary mask and instance label maps as
input, extra 1 × 1 convolutional layers are used for encoding these inputs. The
resulting features are added with RGB features at the first blocks of ResNet50.

Fig. 3. From video clip to video clip, the instances with associated labels are shuffled.
G denotes the graph memory network and Ŝ is the output prediction.

Training. For O-VOS, we train our model following the “recurrence training”
procedure [13,59]. Each training pass is formed by sampling a support set to
build the graph memory and a relevant query set. The core heart of recurrence
training is to mimic the inference procedure [4]. For each video, we sample N + 1
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frames to build a support set (first N frames) and a query set (last frame). Thus,
the N support frames can be represented by a N -node memory graph. We apply
a cross entropy loss for supervising training.

To prevent the graph memory from only memorizing the relation between the
instance and the one-hot vector label, we employ the label shuffling strategy [39].
As shown in Fig. 3, every time we run a segmentation episode, we shuffle the one-
hot instance labels [49], meaning sometimes the label of specific instance becomes
2 instead of 1 and vice versa. This encourages the segmentation network to learn
to distinguish the specific instance in current frame by considering the current
training samples rather than memorizing specific relation between the target
and the given label. See Sect. 4.3 for detailed experiments for the efficacy of our
label shuffling strategy.

To further boost performance, we extend the training set with synthetic
videos [31,49,59]. Specifically, for a static image, the video generation tech-
nique [33] is adopted to obtain simulated video clips, through different transfor-
mation operations (e.g., rotation, scaling, translation and sheering). The static
images come from existing image segmentation datasets. After pre-training on
the synthetic videos, we use the real video data for finetuning.

For Z-VOS, we follow a similar training protocol as O-VOS, but the input
modality only has RGB data. We do not use the label shuffling strategy, as
we focus on an object-level Z-VOS setting (i.e., do not discriminate different
object instances). More training details for Z-VOS and O-VOS can be found in
Sect. 3.5.

Inference. After training, we directly apply the learned network to unseen test
videos without online finetuning. For O-VOS, we process each testing video in
a sequential manner. For the first N frames, we compute the memory sum-
marization (Eq. (4)) directly and write these frames into the memory. From
(N + 1)th frame, after segmentation, we would use this frame to update the
graph memory. Considering the first frame and its annotation always provide
the most reliable information, we re-initialize the node which stores the infor-
mation about the first frame. Therefore, we use the first annotated frame, last
segmented frame and N −2 frames sampled from previous segmented frames, as
well as their pre-defined or segmented masks to build the memory. For multiple-
instances cases, we run our model for each instance independently and obtain a
soft-max probability mask for each one. Considering the underlying probability
overlap between different instances, we combine these results together with a
soft-aggregation strategy [59]. Our network achieves fast segmentation speed of
0.2 s per frame.

For Z-VOS, we randomly sample N frames from the same video to build the
graph memory, then we process each frame based on the constructed memory.
Considering the global information is more important than local information for
handling underlying object occlusions and camera movements, we process each
frame independently by re-initializing the graph memory with globally sampled
frames. Following common practice [8,42,45], we employ CRF [20] binarization
and the whole processing speed is about 0.3 s per frame.
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3.5 Implementation Details

During pre-training, we randomly crop 384 × 384 patches from static image
samples, and the video clip length is N + 1 = 4. During the main training,
we crop 384 × 640 patches from real training videos. We randomly sample four
temporal ordered frames from the same video with a maximum skip of 25 frames
to build a training clip. Data augmentation techniques, like rotation, flip and
saturation, are adopted to increase the data diversity. For O-VOS, we select a
saliency dataset, MSRA10K [9], and semantic segmentation dataset, COCO [23],
to synthesize videos. We use all the training videos in DAVIS17 [36] and Youtube-
VOS [64] for the main training. For Z-VOS, we use two image saliency datasets,
MSRA10K [9] and DUT [65], to generate simulated videos. These two datasets
are selected following conventions [24,45] for fair comparison. After that, we take
advantage of the training set of DAVIS16 [34] to finetune the network.

Our model is implemented on PyTorch and trained on four NVIDIA Tesla
V100 GPUs with 32 GB memory per card. The batch size is set to 16. We
optimize the loss function with Adam optimizer using “poly” learning schedule,
with the base learning rate of 1e−5 and power of 1.0. The pre-training stage
takes about 24 h and the main training stage takes about 16 h for O-VOS.

4 Experiments

To verify the effectiveness and generic applicability of the proposed method, we
perform experiments on different VOS settings. In concrete, we first evaluate

Table 1. Evaluation of O-VOS on DAVIS17 val set (Sect. 4.1), with region simi-
larity J , boundary accuracy F and average of J &F . Speed is also reported.

Method OSMN

[66]

SIMMASK

[51]

FAVOS

[7]

RVOS

[48]

OSVOS

[5]

AGAME

[17]

OnAVOS

[50]

RGMP

[59]

J &F Mean ↑ 54.8 65.4 58.2 60.6 60.3 71.0 65.4 66.7

J Mean ↑ 52.5 54.3 54.6 57.5 56.6 68.5 61.6 64.8

Recall↑ 60.9 62.8 61.1 65.2 63.8 78.4 67.4 74.1

Decay↓ 21.5 19.3 14.1 24.9 26.1 14.0 27.9 18.9

F Mean ↑ 57.1 58.5 61.8 63.6 63.9 73.6 69.1 68.6

Recall↑ 66.1 67.5 72.3 73.2 73.8 83.4 75.4 77.7

Decay↓ 24.3 21.0 18.0 28.2 27.0 15.8 26.6 19.6

Times (s) 0.13 0.028 1.8 1.8 7.0 0.07 13 0.13

Method OSVOS-S

[27]

RANet [56] FEELVOS

[49]

CINM

[3]

PReMVO

[26]

DMMNet

[70]

STM [31] Ours

J & F Mean ↑ 68.0 65.7 71.5 70.6 77.8 70.7 81.8 82.8

J Mean ↑ 64.7 63.2 69.1 67.2 73.9 68.1 79.2 80.2

Recall↑ 74.2 73.7 79.1 74.5 83.1 77.3 88.7 90.1

Decay↓ 15.1 18.6 17.5 24.6 16.2 16.8 8.0 6.0

F Mean ↑ 71.3 68.2 74.0 74.0 81.8 73.3 84.3 85.2

Recall↑ 80.7 78.8 83.8 81.6 88.9 82.7 91.8 93.3

Decay↓ 18.5 19.7 20.1 26.2 19.5 23.5 10.5 8.4

Times (s) 4.5 0.13 0.5 38 70 2.7 0.18 0.2
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our model on two O-VOS datasets (Sect. 4.1) and then test it on two Z-VOS
datasets (Sect. 4.2). Finally, in Sect. 4.3, agnostic experiments are conducted for
in-depth analysis.

4.1 Performance for O-VOS

Datasets. Experiments are conducted on two well-known O-VOS benchmarks:
DAVIS17 [36] and Youtube-VOS [64]. DAVIS17 comprises 60 videos for training
and 30 videos for validation. Each video contains one or multiple annotated
object instances. Youtube-VOS is a large-scale dataset which is split into a train
set (3,471 videos) and a val set (474 videos). The validation set is further divided
into seen subset which has the same categories (65) as the train set and unseen
subset with 26 unseen categories.

Evaluation Criteria. Following the standard evaluation protocol of DAVIS17,
the mean region similarity J and contour accuracy F are reported. For Youtube-
VOS, these two metrics are separately computed for the seen and unseen sets.

Quantitative Results. The performance of our network on DAVIS17 is shown
in Table 1 with both online learning and offline approaches. Overall, our model
outperforms all the contemporary methods and sets a new state-of-the-art in
terms of mean J &F (82.8%), mean J (80.2%) and mean F (85.2%). Notably,
our method obtains a much higher score for both region similarity and con-
tour accuracy compared to several representative online learning methods:
OSVOS [5], OnAVOS [50], AGAME [17] and DMMNet [70]. Furthermore, we
report the segmentation speed and memory comparison by averaging the infer-
ence times for all instances. We observe that most segmentation-by-detection
methods (e.g., OSVOS [5]) consume small GPU memory but need a long time
for first frame finetuning and online learning. Meanwhile, most matching based
methods (e.g., AGAME [17], FEELVOS [49], and RGMP [59]) achieve fast infer-
ence yet suffer from heavy memory cost. However, our method achieves better
performance with fast speed and acceptable memory usage.

Moreover, we report the segmentation results on Youtube-VOS in Table 2.
Our approach obtains a final score of 80.2%, significantly outperforming state-of-
the-arts. Compared to memory-based method S2S [64], our model achieves much
higher performance (i.e., 80.2% vs 64.4%), which verifies the effectiveness of our
external graph memory design. Moreover, our method performs favorably on
both seen and unseen categories. Overall, our method achieves huge performance
promotion over time-consuming online learning base methods without invoking
online finetuning. This demonstrates the efficacy of our core idea of formulating
O-VOS as a procedure of learning to update segmentation network.

Qualitative Results. In Fig. 4, we show qualitative results of our method at dif-
ferent time steps (uniformly sampled percentage w.r.t. the whole video length) on
a few representative videos. Specifically, many instances in the first two DAVIS17

videos undergo fast motion and background clutter. However, through the graph
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Table 2. Evaluation of O-VOS on Youtube-VOS val set (Sect. 4.1), with region
similarity J and boundary accuracy F . “Overall”: averaged over the four metrics

Method MSK [33] OSMN [66] RGMP [59] OnAVOS [50] RVOS [48] OSVOS [5] S2SS2S [64] AGAME [17] PreMVOS [26] DMMNet [70] STM [31] Ours

Overall 53.1 51.2 53.8 55.2 56.8 58.8 64.4 66.1 66.9 58.0 79.4 80.2

Seen Mean J ↑ 59.9 60.0 59.5 60.1 63.6 59.8 71.0 67.8 71.4 60.3 79.7 80.7

Mean F ↑ 59.5 60.1 – 62.7 67.2 60.5 70.0 – 75.9 63.5 84.2 85.1

Unseen Mean J ↑ 45.0 40.6 45.2 46.6 45.5 54.2 55.5 60.8 56.5 50.6 72.8 74.0

Mean F ↑ 47.9 44.0 – 51.4 51.0 60.7 61.2 – 63.7 57.4 80.9 80.9

Fig. 4. Qualitative O-VOS results on DAVIS17 and Youtube-VOS (Sect. 4.1).

memory mechanism, our segmentation network can handle these challenging fac-
tors well. The last two Youtube-VOS videos present challenges that the instances
suffer occlusion and out-of-view. Once the occlusion ends, our graph memory
allows the segmentation network to re-detect the target and segment it success-
fully.

4.2 Performance for Z-VOS

Datasets. Experiments are conducted on two challenging datasets: DAVIS16 [34]
and Youtube-Objects [37]. DAVIS16 contains 50 videos with 3,455 frames, cov-
ering a wide range of challenges, such as fast motion and occlusion. It is split
into a train set (30 videos) and a val set (20 videos). Youtube-Objects has
126 videos belonging to 10 categories and 25,673 frames in total. The val set of
DAVIS16 and whole Youtube-Objects are used for evaluation.

Evaluation Criteria. We follow the official evaluation protocols [32,34] and
report the region similarity J , boundary accuracy F and time stability T for
DAVIS16. Youtube-Objects is evaluated in terms of region similarity J .

Quantitative Results. For DAVIS16 [34], we compare our method with 17
state-of-the-arts from DAVIS16 benchmark1 in Table 3. Our method outper-
forms other competitors across most metrics. In particular, compared with recent
1 https://davischallenge.org/davis2016/soa compare.html.

https://davischallenge.org/davis2016/soa_compare.html
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Table 3. Evaluation of Z-VOS on DAVIS16 val set [34] (Sect. 4.2), with region
similarity J , boundary accuracy F and time stability T .

Method MSG

[29]

NLC

[12]

CUT [18] FST

[32]

SFL

[8]

LMP

[44]

FSEG

[16]

LVO

[45]

UOVOS

[73]

J Mean ↑ 53.3 55.1 55.2 55.8 64.7 70.0 70.7 75.9 73.9

Recall ↑ 61.6 55.8 57.5 64.9 81.4 85.0 83.0 89.1 88.5

Decay ↓ 2.4 12.6 2.2 0.0 6.2 1.3 1.5 0.0 0.6

F Mean ↑ 50.8 52.3 55.2 51.1 66.7 65.9 65.3 72.1 68.0

Recall ↑ 60.0 61.0 51.9 51.6 77.1 79.2 73.8 83.4 80.6

Decay ↓ 5.1 11.4 3.4 2.9 5.1 2.5 1.8 1.3 0.7

T Mean ↓ 54.8 65.4 58.2 60.6 60.3 71.0 65.4 66.7 39.0

Method ARP

[19]

PDB

[42]

MotAdapt

[41]

LSMO

[46]

AGS

[55]

COSNet

[24]

AGNN

[52]

AnDiff

[68]

Ours

J Mean ↑ 76.2 77.2 77.2 78.2 79.7 80.5 80.7 81.7 82.5

Recall ↑ 89.1 91.1 93.1 87.8 91.1 93.1 94.0 90.9 94.3

Decay ↓ 7.0 0.9 5.0 4.1 1.9 4.4 0.03 2.2 4.2

F Mean ↑ 65.3 72.1 70.6 74.5 77.4 79.4 79.1 80.5 81.2

Recall ↑ 83.4 83.5 84.4 84.7 85.8 89.5 90.5 85.1 90.3

Decay ↓ 7.9 -0.2 3.3 3.5 0.0 5.0 0.03 0.6 5.6

T Mean ↓ 39.3 29.1 27.9 21.2 26.7 18.4 33.7 21.4 19.8

matching-based methods: COSNet [24], AGNN [52] and AnDiff [73], our method
achieves an average J score of 82.5% which is 0.8% better than the second best
method, AnDiff [73] despite the fact that it utilizes more training samples than
ours. Compared with COSNet [24], our method achieves significant performance
promotion of 2.0% and 1.8% in terms of mean J and mean F , respectively.
Notably, our method outperforms online learning based methods (i.e., SFL [8],
UVOS [73] and LSMO [46]) by a large margin.

We further report results on Youtube-Objects in Table 4 with detailed
category-wise performance as well as the final average J score. As seen, our
method surpasses other competitors significantly (reaching 71.4% mean J ), espe-
cially compared with recent matching based methods [24,52]. Overall, our model
consistently yields promising results over different datasets, which clearly illus-
trates its superior performance and powerful generalizability.

Table 4. Evaluation of Z-VOS on Youtube-Objects [37] (Sect. 4.2). “Mean J ↑”
denotes the results averaged over all the categories.

Method LTV [30] FST [32] COSEG [47] ARP [19] LVO [45] PDB [42] FSEG [16] SFL [8] MotAdapt [41] LSMO [46] AGS [55] COSNet [24] AGNN [52] Ours

Airplane (6) 13.7 70.9 69.3 73.6 86.2 78.0 81.7 65.6 77.2 60.5 87.7 81.1 81.1 86.1

Bird (6) 12.2 70.6 76.0 56.1 81.0 80.0 63.8 65.4 42.2 59.3 76.7 75.7 75.9 75.7

Boat (15) 10.8 42.5 53.5 57.8 68.5 58.9 72.3 59.9 49.3 62.1 72.2 71.3 70.7 68.6

Car (7) 23.7 65.2 70.4 33.9 69.3 76.5 74.9 64.0 68.6 72.3 78.6 77.6 78.1 82.4

Cat (16) 18.6 52.1 66.8 30.5 58.8 63.0 68.4 58.9 46.3 66.3 69.2 66.5 67.9 65.9

Cow (20) 16.3 44.5 49.0 41.8 68.5 64.1 68.0 51.1 64.2 67.9 64.6 69.8 69.7 70.5

Dog (27) 18.2 65.3 47.5 36.8 61.7 70.1 69.4 54.1 66.1 70.0 73.3 76.8 77.4 77.1

Horse (14) 11.5 53.5 55.7 44.3 53.9 67.6 60.4 64.8 64.8 65.4 64.4 67.4 67.3 72.2

Motorbike (10) 10.6 44.2 39.5 48.9 60.8 58.3 62.7 52.6 44.6 55.5 62.1 67.7 68.3 63.8

Train (5) 19.6 29.6 53.4 39.2 66.3 35.2 62.2 34.0 42.3 38.0 48.2 46.8 47.8 47.8

Mean J ↑ 15.5 53.8 58.1 46.2 67.5 65.4 68.4 57.0 58.1 64.3 69.7 70.5 70.8 71.4
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Fig. 5. Qualitative Z-VOS results on DAVIS16 and Youtube-Objects (Sect. 4.2).

Quantitative Results. Figure 5 depicts some representative visual results on
DAVIS16 and Youtube-Objects. As can be observed, our method handles well
these challenging scenes, typically with fast motion, partial occlusion and view
changes, even without explicit foreground object indication.

4.3 Diagnostic Experiments

In this section, we analyze the contribution of different model components to
the final performance. Specifically, we take O-VOS and Z-VOS as exemplar and
evaluate all ablated versions on DAVIS17 [36] and DAVIS16 [34], respectively. The
experimental results are evaluated by mean J and mean F . For each ablated
version, we retrain the model from scratch using the same protocol. From the
whole results comparison in Table 5, we can draw several essential conclusions.

Table 5. Ablation study of our graph memory network (Sect. 4.3).

Aspect Method One-shot VOS

DAVIS17 [36]

Zero-shot VOS

DAVIS16 [34]

Mean J ↑ Mean F↑ Mean J ↑ Mean F↑
Full model Graph memory (3 nodes, 3 episodes) 80.0 85.9 82.5 81.2

Backbone Direct infer. w/o graph memory 73.5 78.4 73.2 72.5

Graph structure 2 nodes 76.0 81.4 78.5 76.8

4 nodes 79.5 84.6 82.5 81.2

5 nodes 80.0 85.9 82.5 81.2

State updating K = 0 78.1 82.2 81.2 79.7

K = 1 78.9 83.3 81.6 80.3

K = 2 79.3 84.8 82.0 80.8

K = 4 80.0 85.9 82.5 81.2

Training w/o label shuffling 78.5 82.7 – –
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Graph Memory Network: First, with the proposed graph memory network,
our method yields significant performance improvements (+6.5%, +7.5% and
+9.3%, +8.7% in terms of mean J and mean F) than the backbone over different
VOS settings. This supports our view that the graph memory network with
differential controllers can learn to update the segmentation network effectively.

Memory Size: We next investigate the influence of memory size on the final
performance (1st and 3rd–5th rows). We find only a 3-node memory is enough for
achieving good performance, further verifying the efficacy of our memory design.

Iterative Memory Reasoning: It is also of interest to assess the impact of
our iterative memory updating strategy. When K = 0, it means no update for
graph memory network, therefore the state of the network is fixed without online
learning. In this case, the results deteriorate significantly. We further observe that
more steps can boost the performance (1 → 3) and when the step is increased
to certain extent (K = 4), the performance remains almost unchanged.

Label Shuffling: Finally we study the effect of our label shuffling strategy.
Comparing results on the first and last rows, we can easily observe that shuffling
instance labels during network training indeed promotes O-VOS performance.

5 Conclusion

This paper integrates a novel graph memory mechanism to efficiently adapt the
segmentation network to specific videos without catastrophic inference/finetune.
Through episodic reasoning the memory graph, the proposed model is capable
of generating video-specific memory summarization which benefits the final seg-
mentation prediction significantly. Meanwhile, the online model updating can be
implemented via learnable memory controllers. Our method is effective and prin-
ciple, which can be easily extended to Z-VOS setting. Extensive experimental
results on four challenging datasets demonstrate its promising performance.
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Oy (Finland) project, an Amazon AWS grant, and Nvidia..

References

1. Badrinarayanan, V., Galasso, F., Cipolla, R.: Label propagation in video sequences.
In: CVPR (2010)

2. Ballas, N., Yao, L., Pal, C., Courville, A.: Delving deeper into convolutional net-
works for learning video representations. In: ICLR (2016)

3. Bao, L., Wu, B., Liu, W.: CNN in MRF: video object segmentation via inference
in a CNN-based higher-order spatio-temporal MRF. In: CVPR (2018)

4. Behl, H.S., Najafi, M., Arnab, A., Torr, P.H.: Meta learning deep visual words for
fast video object segmentation. In: NeurIPS Workshop (2019)



676 X. Lu et al.

5. Caelles, S., Maninis, K.K., Pont-Tuset, J., Leal-Taixé, L., Cremers, D., Van Gool,
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1 Introduction

A common belief behind the design principles of most popular light-weight
models (either manually designed or automatically searched) [27,31,34,35] is to
adopt the inverted residual block [31]. Compared to the classic residual bottle-
neck block [12,14], this block shifts the identity mapping from high-dimensional
representations to low-dimensional ones (i.e., the bottlenecks). However, con-
necting identity mapping between thin bottlenecks would inevitably lead to
information loss since the residual representations are compressed as shown in
Fig. 2(b). Moreover, it would also weaken the propagation capability of gradi-
ents across layers, due to gradient confusion arising from the narrowed feature
dimensions [32]. Therefore, despite the wide use of the inverted residual block,
how to design residual blocks for mobile devices is worthy of studying.

Fig. 1. Top-1 classification accuracy comparisons between the proposed MobileNeXt
and MobileNetV2 [31]. We use different width multipliers to trade-off between model
complexity and accuracy. Here, four widely-used multipliers are chosen, including 0.5,
0.75, 1.0, and 1.4. As can be seen, under each width multiplier, our MobileNeXt sur-
passes the MobileNetV2 baseline by a large margin, especially for the models with less
learnable parameters.

In this paper, in view of the above concerns, we rethink the rationality of
shifting from the classic bottleneck structure (Fig. 2(a)) to the popular inverted
residual block (Fig. 2(b)) in developing mobile networks. In particular, we con-
sider the following three fundamental questions. (i) What are the effects if we
position the identity mapping (i.e., shortcuts) at the high-dimensional represen-
tations as done in the classic bottleneck structure? (ii) While the linear activation
can reduce information loss, should it only be applied to the bottlenecks? (iii)
The previous questions remind us of the classic bottleneck structure which suffers
high computational complexity. This cost can be reduced by replacing the dense
spatial convolutions with depthwise ones, but, regarding the bottlenecks, should
the depthwise convolution be still added in the low-dimensional bottleneck as
conventional?
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Motivated by the above questions, we present and evaluate a new bottleneck
design, termed the sandglass block. Unlike the inverted residual block that builds
shortcuts between linear bottlenecks, our sandglass block puts shortcut connec-
tions between linear high-dimensional representations, as shown in Fig. 2(c).
Such structure preserves more information delivered between blocks compared
to the inverted residual block and propagates more gradients backward to better
optimize network training because of the high-dimensional residuals [32]. Fur-
thermore, to learn more expressive spatial representation, instead of putting the
spatial convolutions in the bottleneck with compressed channels, we propose to
apply them in the expanded high dimensional feature space, which we find is an
effective way of improving the model performance. In addition, we maintain the
channel reduction and expansion process with pointwise convolutions to reduce
computational cost. This makes our block quite different from the inverted resid-
ual block but more similar to the classic residual bottleneck.

Fig. 2. Conceptual diagram of different residual bottleneck blocks. (a) Classic residual
block with bottleneck structure [13]. (b) Inverted residual block [31]. (c) Our proposed
sandglass block. We use thickness of each block to represent the corresponding relative
number of channels. As can be seen, compared to the inverted residual block, the
proposed residual block reverses the thought of building shortcuts between bottlenecks
and adds depthwise convolutions (detached blocks) at both ends of the residual path,
both of which are found crucial for performance improvement.

We stack the sandglass blocks in a modularized way to build the proposed
MobileNeXt. Our network achieves more than 1.7% top-1 classification accuracy
improvement over MobileNetV2 on ImageNet with slightly less computation and
a comparable number of parameters as shown in Fig. 1. When applying the
sandglass block on the EfficientNet topology to replace the inverted residual
block, the resulting model surpasses the previous state-of-the-art by 0.5% with
a comparable amount of computation but 20% parameter reduction. Particularly,
in object detection, when taking SSDLite [25,31] as the object detector, using
our MobileNeXt as backbone gains 0.9% in mAP on the Pascal VOC 2007 test set
over MobileNetV2. More interestingly, we also experimentally find the proposed
sandglass block can be used to enrich the search space of neural architecture
search algorithms [24]. By adding the sandglass block into the search space as a
‘super’ operator, without changing the search algorithm, the resultant model can
improve classification accuracy by 0.13% but with 25% less parameters compared
to models searched from the vanilla space.
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In summary, we make the following contributions in this paper:

– Our results advocate a rethinking of the bottleneck structure for mobile net-
work design. It seems that the inverted residuals are not so advantageous over
the bottleneck structure as commonly believed.

– Our study reveals that building shortcut connections along higher-
dimensional feature space could promote model performance. Moreover,
depthwise convolutions should be conducted in the high dimensional space for
learning more expressive features and learning linear residuals is also crucial
for bottleneck structure.

– Based on our study, we propose a novel sandglass block, which substantially
extends the classic bottleneck structure. We experimentally demonstrate that
this structure is more suitable for mobile applications in terms of both accu-
racy and efficiency and can be used as ‘super’ operators in architecture search
algorithms for better architecture generation.

2 Related Work

Modern deep neural networks are mostly built by stacking building blocks, which
are designed based on either the classic residual block with bottleneck struc-
ture [12] or the inverted residual block [31]. In this section, we categorize all
related networks based on above two types of building blocks and briefly describe
them below.

Classic Residual Bottleneck Blocks. The bottleneck structure was first introduced
in ResNet [12]. A typical bottleneck structure consists of three convolutional lay-
ers: an 1 × 1 convolution for channel reduction, a 3 × 3 convolution for spatial
feature extraction, and another 1×1 convolution for channel expansion. A resid-
ual network is often constructed by stacking a sequence of such residual blocks.
The bottleneck structure was further developed in later works by widening the
channels in each convolutional layer [41], applying group convolutions to the
middle bottleneck convolution for aggregating richer feature representations [39],
or introducing attention based modules to explicitly model inter-dependencies
between channels [18,23]. There are also other works [3,37] combining residual
blocks with dense connections to boost the performance. However, in spite of the
success in heavy-weight network design, it is rarely used in light-weight networks
due to the model complexity. Our work demonstrates that by reasonably adjust-
ing the residual block, this kind of classic bottleneck structure is also suitable
for light-weight networks and can yield state-of-the-art results.

Inverted Residual Blocks. The inverted residual block, which was first introduced
in MobileNetV2 [31], reverses the idea of the classic bottleneck structure and con-
nects shortcuts between linear bottlenecks. It largely improves performance and
optimizes the model complexity compared to the classic MobileNet [17] which is
composed of a sequence of 3 × 3 depthwise separable convolutions. Because of
high efficiency, the inverted residual block has been widely adopted in the later
mobile network architectures. ShuffleNetV2 [27] inserts a channel split module
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before the inverted residual block and adds another channel shuffle module after
it. In HBONet [22], down-sampling operations are introduced into inverted resid-
ual blocks for modeling richer spatial information. MobileNetV3 [16] proposes
to search for optimal activation functions and the expansion rate of inverted
residual blocks at each stage. More recently, MixNet [36] proposes to search
for optimal kernel sizes of the depthwise separable convolutions in the inverted
residual block. EfficientNet [35] is also based on the inverted residual block but
differently it uses a scaling method to control the network weight in terms of
input resolution, network depth, and network width. Different from all the above
approaches, our work advances the standard bottleneck structure and demon-
strates the superiority of our building block over the inverted residual block in
mobile settings.

Model Compression and Neural Architecture Search. Model compression algo-
rithms are effective for removing redundant parameters for neural networks,
such as network pruning [2,11,26,30], quantization [5,19], factorization [20,43],
and knowledge distillation [15]. Despite efficient networks, the performance of
the compressed networks is still closely related to the original networks’ archi-
tectures. Thus, designing more efficient network architectures is essential for
yielding efficient models. Neural architecture search achieves so by automati-
cally searching efficient network architectures [1,9,34] or even parameters [42].
However, the search space (SS) requires human expertise and the performance of
the searched networks is largely dependent upon SS as pointed out in [6,40]. In
this paper, we show that our proposed building block is complementary to exist-
ing SS design principles and can further improve the performance of searched
networks if added to existing search spaces.

3 Method

In this section, we first review preliminaries about the bottleneck structure used
in previous residual networks and then describe our proposed block and network
architecture.

3.1 Preliminaries

Residual Block with Bottleneck Structure. The classic residual block with bot-
tleneck structure [12], as shown in Fig. 2(a), consists of two 1 × 1 convolution
layers for channel reduction and expansion respectively and one 3 × 3 convolu-
tion layer between them for spatial information encoding. In spite of its success
in heavy-weight network design [12], this conventional bottleneck structure is not
suitable for building light-weight neural networks because of its large amount of
parameters and computation cost in the standard 3 × 3 convolutional layer.

Depthwise Separable Convolutions. To reduce computational cost and make the
network more efficient, depthwise separable convolutions [4,17] are developed to
replace the standard one. As demonstrated in [4], a convolution with a k×k×M×
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N weight tensor, where k × k is the kernel size and M and N are the number of
input and output channels respectively, can be factorized into two convolutions.
The first is an M -channel k × k depthwise (a.k.a channel-wise) convolution to
learn the spatial correlations among locations within each channel separately.
The second is a pointwise convolution that learns to linearly combine channels
to produce new features. As the combination of a pointwise convolution and a
k ×k depthwise convolution has significantly less parameters and computations,
using depthwise separable convolutions in basic building blocks can remarkably
reduce the parameters and computational cost. Our proposed architecture also
adopts such separable convolutions.

Inverted Residual Block. The inverted residual block is specifically tailored for
mobile devices, especially those with limited computational resource budget.
More specifically, unlike the classic bottleneck structure as shown in Fig. 2(a),
to save computations, it takes as input a low-dimensional compressed tensor
and expands it to a higher dimensional one by a pointwise convolution. Then it
applies depthwise convolution for spatial context encoding, followed by another
pointwise convolution to generate a low-dimensional feature tensor as input to
the next block. The inverted residual block presents two distinct architecture
designs for gaining efficiency without suffering too much performance drop: the
shortcut connection is put between the low-dimensional bottlenecks if necessary
(as shown in Fig. 2(b)); and linear bottleneck is adopted.

Despite good performance [31], in inverted residual blocks, feature maps
encoded by the intermediate expansion layer should be first projected to low-
dimensional ones, which may not preserve enough useful information due to
channel compression. Moreover, recent studies have unveiled that wider archi-
tecture is more favorable for alleviating gradient confusion [32] and hence can
improve network performance. Putting shortcut connections between bottlenecks
may prevent the gradients from top layers from being successfully propagated
to bottom layers during model training because of the low-dimensionality of
representations between adjacent inverted residual blocks.

3.2 Sandglass Block

In view of the aforementioned limitations of the inverted residual block, we
rethink its design rules and present a sandglass block that can tackle the above
issues by flipping the thought of inverted residuals.

Our design principle is mainly based on the following insights: (i) To pre-
serve more information from the bottom layers when transiting to the top layers
and to facilitate the gradients propagation across layers, the shortcuts should be
positioned to connect high-dimensional representations. (ii) Depthwise convolu-
tions with small kernel size (e.g., 3×3) are light-weight, so we can appropriately
apply a couple of depthwise convolutions onto the higher-dimensional features
such that richer spatial information can be encoded to generate more expressive
representations. We elaborate on these design considerations in the following.
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Rethinking the Positions of Expansion and Reduction Layers. Originally, the
inverted residual block performs expansion at first and then reduction. Based on
the aforementioned design principle, to make sure the shortcuts connect high-
dimensional representations, we propose to reverse the order of the two pointwise
convolutions first. Let F ∈ R

Df×Df×M be the input tensor and G ∈ R
Df×Df×M

the output tensor of a building block1. We do not consider the depthwise con-
volution and activation layers at this moment. The formulation of our building
block can be written as follows:

G = φe(φr(F)) + F, (1)

where φe and φr denote the two pointwise convolutions for channel expansion and
reduction, respectively. In this way, we can keep the bottleneck in the middle of
the residual path for saving parameters and computation cost. More importantly,
this allows us to use the shortcut connection to connect representations with a
large number of channels instead of the bottleneck ones.

High-Dimensional Shortcuts. Instead of putting shortcuts between bottlenecks,
we put shortcuts between higher-dimensional representations as shown in
Fig. 3(b). The ‘wider’ shortcut delivers more information from the input F to
the output G compared to the inverted residual block and allows more gradients
to propagate across multiple layers.

Learning Expressive Spatial Features. Pointwise convolutions can be used to
encode the inter-channel information but fail to capture spatial information.
In our building block, we follow previous mobile networks and adopt depthwise
spatial convolutions. The inverted residual block adds depthwise convolutions
between pointwise convolutions to learn expressive spatial context information.
However, in our case, the position between two pointwise convolutions is the

Fig. 3. Different types of residual blocks. (a) Classic bottleneck structure with depth-
wise spatial convolutions. (b) Our proposed sandglass block with bottleneck structure.
To encode more expressive spatial information, instead of adding depthwise convolu-
tions in the bottleneck, we propose to move them to the ends of the residual path with
high-dimensional representations.

1 For simplicity, we assume that the input and output of the building block share the
same number of channels and resolution.
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Table 1. Basic operator description of the proposed sandglass block. Here, ‘t’ and ‘s’
denote the channel reduction ratio and the stride, respectively.

Input dimension Operator type Output dimension

Df ×Df ×M 3 × 3 Dwise conv, ReLU6 Df ×Df ×M

Df ×Df ×M 1 × 1 conv, linear Df ×Df × M
t

Df ×Df × M
t

1 × 1 conv, ReLU6 Df ×Df ×N

Df ×Df ×N 3 × 3 Dwise conv, linear, stride = s
Df

s
× Df

s
×N

bottleneck. Directly adding depthwise convolutions in the bottleneck as shown
in Fig. 3(a) makes them have fewer filters and thus, less spatial information can
be encoded. We experimentally found that this structure largely degrades the
performance compared to MobileNetV2 by more than 1%.

Regarding the positions of the pointwise convolutions, instead of directly
putting the depthwise convolution between the two pointwise convolutions, we
propose to add depthwise convolutions at the ends of the residual path as shown
in Fig. 3(b). Mathematically, our building block can be formulated as follows:

Ĝ = φ1,pφ1,d(F) (2)

G = φ2,dφ2,p(Ĝ) + F (3)

where φi,p and φi,d are the i-th pointwise and depthwise convolutions, respec-
tively. In this way, since both depthwise convolutions are conducted in high-
dimensional spaces, richer feature representations can be extracted compared to
the inverted residual block. We will give more explanations on the advantages
of such design.

Activation Layers. It has been demonstrated in [31] that using linear bottle-
necks helps in preventing the feature values from being zeroed. Following this
suggestion, we do not add any activation layer after the reduction layer (the first
pointwise convolutional layer). It should also be noted that though the output
of our building block is high-dimensional, we empirically found adding an acti-
vation layer after the last convolution can negatively influence the classification
performance. Therefore, activation layers are only added after the first depth-
wise convolutional layer and the last pointwise convolutional layer. We will give
more explanations in our experiments on this.

Block Structure. Taking the above considerations, we design a novel residual
bottleneck block. The structure details are given in Table 1, and the diagram can
also be found in Fig. 3(b). Note that when the input and output have different
channel numbers, we do not add the shortcut connection and for blocks with
stride 2 we remove the first depthwise convolution. For depthwise convolutions,
we always use kernel size 3 × 3 as done in other works [12,31]. We also utilize
batch normalization and ReLU6 activation if necessary during training.

Relation to the Inverted and Classic Residual Blocks. Albeit both architectures
exploit the bottlenecks, the design intuition and the internal structure are quite
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different. Our goal is to demonstrate that the idea of building shortcut con-
nections between high-dimensional representations as in the classic bottleneck
structure [12] is suitable for light-weight networks as well. To the best of our
knowledge, this is the first work that attempts to investigate the advantages
of the classic bottleneck structure over the inverted residual block for efficient
network design. On the other hand, we also attempt to demonstrate that adding
depthwise convolutions to the ends of the residual path in our structure can
encourage the network to learn more expressive spatial information and hence
yield better performance. In our experiment section, we will show more numer-
ical results and provide detailed analysis.

3.3 MobileNeXt Architecture

Based on our sandglass block, we develop a modularized architecture,
MobileNeXt. At the beginning of our network, there is a convolutional layer
with 32 output channels. After that, our sandglass blocks are stacked together.
Detailed information about the network architecture can be found in Table 2.
Following [31], the expansion ratio used in our network is set to 6 by default. The
output of the last building block is followed by a global average pooling layer
to transform 2D feature maps to 1D feature vectors. A fully-connected layer is
finally added to predict the final score for each category.

Table 2. Architecture details of the proposed MobileNeXt. Each row denotes a
sequence of building blocks, which is repeated ‘b’ times. The reduction ratio used
in each building block is denoted by ‘t’. The stride of the first building block in each
stage is set to 2 and all the others are with stride 1. Each convolutional layer is followed
by a batch normalization layer and the kernel size for all spatial convolutions is set
to 3 × 3. We do not add identity mappings for those blocks have different input and
output channels. We suppose there are totally k categories.

No. t Output dimension s b Input dimension Operator

1 – 112 × 112 × 32 2 1 224 × 224 × 3 conv2d 3 × 3

2 2 56 × 56 × 96 2 1 112 × 112 × 32 Sandglass block

3 6 56 × 56 × 144 1 1 56 × 56 × 96 Sandglass block

4 6 28 × 28 × 192 2 3 56 × 56 × 144 Sandglass block

5 6 14 × 14 × 288 2 3 28 × 28 × 192 Sandglass block

6 6 14 × 14 × 384 1 4 14 × 14 × 288 Sandglass block

7 6 7 × 7 × 576 2 4 14 × 14 × 384 Sandglass block

8 6 7 × 7 × 960 1 3 7 × 7 × 576 Sandglass block

9 6 7 × 7 × 1280 1 1 7 × 7 × 960 Sandglass block

10 – 1 × 1 × 1280 - 1 7 × 7 × 1280 avgpool 7 × 7

11 – k – 1 1 × 1 × 1280 conv2d 1 × 1
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Identity Tensor Multiplier. The shortcut connections in residual blocks have
been shown essential for improving the capability of propagating gradients across
layers [12,31]. According to our experiments, we find that there is no need to
keep the whole identity tensor to combine with the residual path. To make our
network more friendly to mobile devices, we introduce a new hyper-parameter—
identity tensor multiplier, denoted by α ∈ [0, 1], which controls what portion
of the channels in the identity tensor is preserved. For convenience, let φ be
the transformation function of the residual path in our block. Originally, the
formulation of our block can be written as G = φ(F ) + F . After applying the
multiplier, our building block can be rewritten as

G1:αM = φ(F )1:αM + F1:αM , GαM :M = φ(F )αM :M , (4)

where the subscripts index the channel dimension.
The advantages of using α are mainly two-fold. First, after reducing the

multiplier, the number of element-wise additions in each building block can be
reduced. As pointed out in [27], the element-wise addition is time consuming.
Users can choose a lower identity tensor multiplier to yield better latency with
nearly no performance drop. Second, the number of memory access times can be
reduced. One of the main factors that affect the model latency is the memory
access cost (MAC). As the shortcut identity tensor is from the output of the last
building block, its recurrent nature hints an opportunity to cache it on the chip
in order to avoid the excessive off-chip memory access. Therefore, reducing the
channel dimension of the identity tensor can effectively encourage the processors
to store it in the cache or other faster memory near the processors and hence
improve the latency. We will give more details on how this multiplier affects the
performance and model latency in the experiment section.

4 Experiments

4.1 Experiment Setup

We adopt the PyTorch toolbox [29] to implement all our experiments. We use the
standard SGD optimizer to train our models with both decay and momentum of
0.9 and the weight decay is 4 × 10−5. We use the cosine learning schedule with
an initial learning rate of 0.05. The batch size is set to 256 and four GPUs are
used for training. Without special declaration, we train all the models for 200
epochs and report results on the ImageNet [21] for classification and Pascal VOC
dataset [7] for object detection. We use distributed training with three epochs
of warmup.
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Table 3. Comparisons with MobileNetV2 using different width multipliers with input
resolution 224 × 224. As can be seen, the smaller the multiplier is set to the better
performance gain we achieve over MobileNetV2 with comparable latency (e.g., 210
ms for both models with width multiplier 1.0) tested on Google Pixel 4XL under the
PyTorch environment setting.

No. Models Param. (M) MAdd(M) Top-1 acc. (%)

1 MobileNetV2-1.40 6.9 690 74.9

2 MobileNetV2-1.00 3.5 300 72.3

3 MobileNetV2-0.75 2.6 150 69.9

4 MobileNetV2-0.50 2.0 97 65.4

5 MobileNetV2-0.35 1.7 59 60.3

6 MobileNeXt-1.40 6.1 590 76.1

7 MobileNeXt-1.00 3.4 300 74.0

8 MobileNeXt-0.75 2.5 210 72.0

9 MobileNeXt-0.50 2.1 110 67.7

10 MobileNeXt-0.35 1.8 80 64.7

4.2 Comparisons with MobileNetV2

In this subsection, we extensively study the advantages of our MobileNeXt over
MobileNetV2 under various settings. Besides comparing performance of their
full models (i.e., , with weight multiplier of 1) for classification, we also compare
their performance with other weight multipliers and quantization. This can help
unveil the performance advantage of our model w.r.t. the full spectrum of model
architecture configurations.

Comparison Under Different Width Multipliers. We use the width multiplier as
a scaling factor to trade off the model complexity and accuracy of the model as
used in [16,17,31]. Here, we adopt five different multipliers, including 1.4, 1.0,
0.75, 0.5, and 0.35, to show the superiority of our network over MobileNetV2.
As shown in Table 32, our networks with different multipliers all outperform
MobileNetV2 with comparable numbers of parameters and computations. The
performance gain of our model over MobileNetV2 is especially high when the
multiplier is small. This demonstrates that our model is more efficient since our
model performance is much better at small sizes.

Comparison Under Post-training Quantization. Quantization algorithms are
often used in real-world applications as a kind of effective compression tool with
subtle performance loss. However, the performance of the quantized model is
significantly affected by the original base model. We experimentally show that
the MobileNeXt can achieve better performance than the MobileNetV2 when

2 We also conduct latency measurements with TF-Lite on Pixel 4XL and the measured
latency for MobileNeXt and MobileNetV2 are 66 ms and 68 ms respectively.
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Table 4. Performance of our proposed MobileNeXt and MobileNetV2 after post-
training quantization. In bites configurations, ‘W’ denotes the number of bits used
to represent the weights of the model and ‘A’ denotes the number of bits used to
represent the activations.

Model Precision (W/A) Method Top-1 acc. (%)

MobileNetV2 INT8/INT8 Post Training Quant. 65.07

MobileNeXt INT8/INT8 Post Training Quant. 68.62+3.55

MobileNetV2 FP32/FP32 – 72.25

MobileNeXt FP32/FP32 – 74.02+1.77

Table 5. Performance of our proposed network and MobileNetV2 when adding the
number of spatial convolutions (Dwise convs) in each building block. Obviously, our
MobileNeXt performs much better than the improved MobileNetV2 with less learnable
parameters and computational cost.

Method #Dwise convs Param. (M) M-Adds (M) Top-1 acc. (%)

MobileNetV2 2 (middle) 3.6 340 73.02

MobileNeXt 2 (top, bottom) 3.5 300 74.02

combined with the quantization algorithm. Here, we use a widely-used post-
training linear quantization method introduced in [28]. We apply 8-bit quan-
tization on both weights and activations as 8-bit is the most common scheme
used on hardware platforms. The results are shown in Table 4. Without quan-
tization, our network improves MobileNetV2 by more than 1.7% in terms of
top-1 accuracy. When the parameters and activations are quantized to 8 bits,
our network outperforms MobileNetV2 by 3.55% under the same quantization
settings. The reasons for this large improvement are two-fold. First, compared to
MobileNetV2, we move the shortcut in each building block from low-dimensional
representations to high-dimensional ones. After quantization, more informative
feature representations can be preserved. Second, using more depthwise spatial
convolutions can help preserve more spatial information, which we believe is
beneficial to the classification performance.

Comparison with MobileNetV2 on Structure. As shown in Fig. 3(b), our sand-
glass block contains two 3 × 3 depthwise convolutions for encoding rich spa-
tial context information. To demonstrate the benefit of our model comes from
our novel architecture rather than leveraging one more depthwise convolution
or larger receptive field, in this experiment, we attempt to compare with an
improved version of MobileNetV2 with one more depthwise convolution inserted
in the middle of each inverted residual block. The results are shown in Table 5.
Obviously, after adding one more depthwise convolution, the performance of
MobileNetV2 increases to 73%, which is still far worse than ours (74%) with
even more learnable parameters and complexity. This indicates that structurally
our network does have an edge over MobileNetV2.
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4.3 Comparison with State-of-the-Art Mobile Networks

To further verify the superiority of our proposed sandglass block over the inverted
residual blocks, we add squeeze and excite modules into our MobileNeXt as done
in [16,35]. We do not apply any searching algorithms on the architecture design
and data augmentation policy. We directly take the EfficientNet-b0 architecture
[35] and replace the inverted residual block with sandglass block with the basic
augmentation policy. As shown in Table 6, with a comparable amount of com-
putation and 20% parameter reduction, replacing the inverted residual block
with sandglass block results in 0.4% top-1 classification accuracy improvement
on ImageNet-1k dataset.

4.4 Ablation Studies

In Sect. 4.2, we have shown the importance of connecting high-dimensional rep-
resentations with shortcuts. Here, we study how other model design choices
contribute to the model performance and efficiency, including the effect of using
wider transformation, the importance of learning linear residuals, and the role
of identity tensor multiplier.

Importance of Using Wider Transformation. As described in Sect. 3, we apply
spatial transformation and shortcut connections to high-dimensional representa-
tions. To demonstrate the importance of such operations, we follow the inverted
residual block to use the shortcuts to connect the bottleneck representations.
This operation leads to an accuracy decrease of 1%, which indicates the advan-
tage of using wider transformation.

Importance of Linear Residuals. According to MobileNetV2 [31], its classification
performance will be degraded when replacing the linear bottleneck with the
non-linear one because of information loss. From our experiment, we obtain
a more general conclusion. We find that though the shortcuts connect high-
dimensional representations in our model, adding non-linear activations (ReLU6)
to the last convolutional layer decreases the performance by nearly 1% compared
to the setting using linear activations (no ReLU6). This indicates that learning
linear residual (i.e., adding no non-linear activation layer on the top of the
residual path) is essential for light-weight networks with shortcuts connecting
either expansion layers or reduction layers.

Effect of Identity Tensor Multiplier. Here, we investigate how the identity tensor
multiplier (Sect. 3.3) would trades-off the model accuracy and latency. We use
pytorch to generate the model and run it on Google Pixel 4XL. For each model,
we measure the average inference time of 10 images as the final inference latency.
As shown in Table 7, the reduction of the multiplier has subtle impacts on the
classification accuracy. When half of the identity representations are removed,
the performance has no drop but the latency is improved. When the multiplier
is set to 1/6, the performance decreases by 0.34%, but with further improvement
in terms of latency. This indicates that introducing such a hyper-parameter does
matter for balancing the model performance and latency.
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Table 6. Comparisons with other state-of-the-art models. MobileNeXt denotes the
model based on our proposed sandglass block and MobileNeXt† denotes the models
with sandglass block and the SE module [18] added for a fair comparison with other
state-of-the-art models such as EfficientNet. We do not apply any searching algorithms.

Models Param. (M) MAdd (M) Top-1 acc. (%)

MobilenetV1-1.0 [17] 4.2 575 70.6

MobilenetV2-1.0 [31] 3.5 300 72.3

MnasNet-A1 [34] 3.9 312 75.2

MobilenetV3-L-0.75 [16] 4.0 155 73.3

ProxylessNAS [1] 4.1 320 74.6

FBNet-B [38] 4.5 295 74.1

GhostNet-1.3 [10] 7.3 226 75.7

EfficientNet-b0 [35] 5.3 390 76.3

MobileNeXt-1.0 3.4 300 74.02

MobileNeXt-1.0† 3.94 330 76.05

MobileNeXt-1.1† 4.28 420 76.7

Table 7. Model performance and latency comparisons with different identity tensor
multipliers. As can be seen, the latency can be improved by using lower identity tensor
multipliers with only negligible sacrifice on the classification accuracy.

No. Models Tensor multiplier Param. (M) Top-1 acc. (%) Latency (ms)

1 MobileNeXt 1.0 3.4 74.02 211

2 MobileNeXt 1/2 3.4 74.09 196

3 MobileNeXt 1/3 3.4 73.91 195

4 MobileNeXt 1/6 3.4 73.68 188

4.5 Application for Object Detection

To explore the transferable capability of the proposed approach against
MobileNetV2, in this subsection, we apply our classification model to the object
detection task as pretrained models. We use both the proposed network and
MobileNetv2 as feature extractors and report results on the Pascal VOC 2007
test set [8] following [25] using SSDLite [25,31]. Similar to [31], the first and sec-
ond layers of SSDLite are connected to the last pointwise convolution layer with
output stride of 16 and 32, respectively. The rest of SSDLite layers are attached
on top of the last convolutional layer with output stride of 32. During training,
we use a batch size of 24 and all the models are trained for 240,000 iterations.
For more detailed settings, readers can refer to [25,31].

In Table 8, we show the results when different backbone networks are used.
Obviously, with the nearly the same number of parameters and computation,
SSDLite with our backbone improves the one with MobileNetV2 by nearly 1%.
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This demonstrates that the proposed network has better transferable capability
compared to MobileNetV2.

4.6 Improving Architecture Search as Super-Operators

It has been verified in previous subsections that our proposed sandglass block
is more effective than the inverted residual block in both the classification task
and the object detection task. From a holistic perspective, we can also regard
a residual block as a ‘super’ operator with more powerful transformation power
than a regular convolutional operator. To further investigate the superiority of
the proposed sandglass block over the inverted residual block, we separately
add it into the search space of the differentiable searching algorithm (DARTS)
[24] to see the network performance after architecture search and report the
corresponding results on CIFAR-10 dataset. As shown in Table 9, by adding
our sandglass block as an new operator into the DARTS search space without
changing the cell structure, the resulting model achieves higher accuracy than
the model with the original DARTS search space with about 25% parameter
reduction. However, the searched model with the inverted residual block added
in the search space decreases the original performance. This demonstrates that
our proposed sandglass block can generate more expressive representations than
the inverted residual block and can also be used in architecture search algorithms
as a kind of ‘super’ operator. For more details on the searched cell structure,
please refer to our supplementary materials.

Table 8. Detection results on the Pascal VOC 2007 test set. As can be seen, using
the same SSDLite320 detector, replacing the MobileNetV2 backbone with our network
achieves better results. Note that the multipliers of both MobileNetV2 and our network
are set to 1.0.

No. Method Backbone Param. (M) M-Adds (B) mAP (%)

1 SSD300 VGG [33] 36.1 35.2 77.2

2 SSDLite320 MobileNetV2 [31] 4.3 0.8 71.7

3 SSDLite320 MobileNeXt 4.3 0.8 72.6

Table 9. Results produced by different network architectures searched by DARTS [24].
For Lines 2 and 3, we separately add the inverted residual (IR) block and our sandglass
block into the original search space of DARTS. We report results on CIFAR-10 dataset
as in [24].

No. Search space Test error (%) Param. (M) Search method #Operators

1 DARTS original 3.11 3.25 Gradient based 7

2 DARTS + IR Block 3.26 3.29 Gradient based 8

3 DARTS + sandglass block 2.98 2.45 Gradient based 8
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5 Conclusions

In this paper, we deeply analyze the design rules and shortcomings of the pre-
vious inverted residual block. Based on the analysis, we propose to reverse the
thought of adding shortcut connections between low-dimensional representations
and present a novel building block, called the sandglass block, that connects high-
dimensional representations instead. Experiments in both classification, object
detection, and neural architecture search demonstrate the effectiveness of the
proposed sandglass block and its potential to be used in more contexts.
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Abstract. When training a neural network for a desired task, one may
prefer to adapt a pre-trained network rather than starting from ran-
domly initialized weights. Adaptation can be useful in cases when train-
ing data is scarce, when a single learner needs to perform multiple tasks,
or when one wishes to encode priors in the network. The most commonly
employed approaches for network adaptation are fine-tuning and using
the pre-trained network as a fixed feature extractor, among others. In
this paper, we propose a straightforward alternative: side-tuning. Side-
tuning adapts a pre-trained network by training a lightweight “side” net-
work that is fused with the (unchanged) pre-trained network via sum-
mation. This simple method works as well as or better than existing
solutions and it resolves some of the basic issues with fine-tuning, fixed
features, and other common approaches. In particular, side-tuning is less
prone to overfitting, is asymptotically consistent, and does not suffer
from catastrophic forgetting in incremental learning. We demonstrate
the performance of side-tuning under a diverse set of scenarios, including
incremental learning (iCIFAR, iTaskonomy), reinforcement learning, imi-
tation learning (visual navigation in Habitat), NLP question-answering
(SQuAD v2), and single-task transfer learning (Taskonomy), with con-
sistently promising results.

Keywords: Sidetuning · Finetuning · Transfer learning ·
Representation learning · Lifelong learning · Incremental learning ·
Continual learning

1 Introduction

The goal of side-tuning (and generally network adaptation) is to capitalize on
a pretrained model to better learn one or more novel tasks. The side-tuning
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approach is straightforward: it assumes access to a given (base) model B : X → Y

that maps the input x onto some representation y. Side-tuning then learns a side
model S : X → Y, so that the curated representations for the target task are

R(x) � B(x) ⊕ S(x), (1)

for some combining operation ⊕. For example, choosing B(x)⊕S(x) � αB(x)+
(1 − α)S(x) (commonly called α-blending) reduces the side-tuning approach to:
fine-tuning, feature extraction, and stage-wise training, depending on α (Fig. 2,
right). Hence those can be viewed as special cases of the side-tuning approach
(Fig. 1).

Fixed Features Fine-Tune Side-Tune

Fig. 1. The side-tuning framework vs. common alternatives fine-tuning and
fixed features. Given a pre-trained network that should be adapted to a new task,
fine-tuning re-trains the weights in the pretrained network and fixed feature extraction
trains a readout function with no re-training of the pre-trained weights. In contrast,
Side-tuning adapts the pre-trained network by training a lightweight conditioned “side”
network that is fused with the (unchanged) pre-trained network using summation.

Side-tuning is an example of an additive learning approach, one that adds new
parameters for each new task. Since side-tuning does not change the base model,
it, by design, adapts to a target task without degrading performance on the base
task. Unlike many other additive approaches, side-tuning places no constraints
on the structure of the base model or side network, allowing for the architecture
and sizes to vary independently. In particular, while other approaches require the
side network to scale with the base network, side-tuning can use tiny networks
when the base only requires minor updates. By adding fewer parameters per
task, side-tuning can learn more tasks before the model grows large enough to
require parameter consolidation.

Substitutive methods instead opt for a single large model that is updated on
each task. These methods often require adding additional constraints per-task
in order to prevent inter-task interference [12,30]. Side-tuning does not require
such regularization since the base remains untouched.

Compared to existing state-of-the-art network adaptation and incremen-
tal learning1 approaches, we find that the more complex methods perform no
better—and often worse—than side-tuning .

This straightforward mechanism deals with the key challenges of incremental
learning (Sect. 4.2). Namely, it does not suffer from either:
1 Also referred to as lifelong or continual learning.
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– Catastrophic forgetting: tendency of a network to lose previously learned
knowledge upon learning new information.

– Rigidity: Increasing inability of a network to adapt to new problems as
it accrues constraints from previous problems. Note: Incremental learning
literature sometimes calls this intransigence [2]. We prefer rigidity as it is
clear and widely used in psychology, dating back over 70 years [13,27].

We test side-tuning for incremental learning on iCIFAR and the more chal-
lenging iTaskonomy dataset, which we introduce, finding that incremental learn-
ing methods that work on iCIFAR often do not work as well in the more demand-
ing setup. On these datasets, side-tuning uses side networks that are much
smaller than the base. Consequently, even without consolidation, side-tuning
uses fewer learnable parameters than the alternative methods.

Finally, because side-tuning treats the base model as a black-box, it can be
used with non-network sources of information such as a decision trees or oracle
information on a related task (see Sect. 4.4). Thus, side-tuning can be applied
even when other model adaptation techniques cannot.

Table 1. Advantages of side-tuning vs. representative alternatives. Fixed fea-
tures provide a fixed representation and if the pretrained model discarded important
information then there is no way to recover the lost details. This often leads to modest
performance. On the other hand, fine-tuning has a large number of learnable param-
eters which leads to overfitting. Side-tuning is a simple method that addresses these
limitations with a small number of learnable parameters.

1 Target Task > 1 Target Tasks
Method Low Data High Data (incremental)

Fixed features (Info Loss) (Info Loss)

Fine-tuning (Overfit) (Forgetting)

Side-tuning

2 Related Work

Broadly speaking, network adaptation methods either overwrite existing param-
eters (substitutive methods) or freeze them and add new parameters (additive
learning).

Substitutive Methods modify an existing network to solve a new task
by updating some or all of the network weights (simplest approach being fine-
tuning). A large body of constraint-based methods focuses on how to regularize
these updates in order to prevent forgetting earlier tasks. Methods such as [12,15,
30] impose additional constraints for each new task, which slows down learning
on later tasks (see Sect. 4.2 on rigidity, [3]). Other methods such as [4] relegate
each task to approximately orthogonal subspaces but are then unable to transfer
information across tasks. Side-tuning does not require such regularization since
the base remains untouched.
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Additive Methods circumvent forgetting by freezing the weights and
adding a small number of new parameters per task. One economical approach is
to use off-the-shelf-features with one or more readout layers [32]. However, off-
the-shelf features cannot be updated for the new task, and so recent work has
focused on how features can be modulated by applying per-task learned weight
masks [17,28], by pruning [18], or by hard attention [31].

If information is missing from the original features, then recovering that infor-
mation might require adding additional weights. Works such as [14,29] introduce
a new network with independent access to the input and connect to various lay-
ers from the original network. Other works like [1,24,25] learn task-dependent
parameters (e.g. separate batch norm, linear layers) that are inserted directly
into the existing network. Tying the new weights directly into the original net-
work architecture often requires making restrictive assumptions about the orig-
inal network architecture (e.g. that it must be a ResNet [8]).

Unlike these previous works, side-tuning uses only late fusion and makes no
assumptions about the base network. This means it can be applied on a larger
class of models. While simpler, the results suggest that side-tuning offers similar
or better performance to the more complex alternatives and calls into question
whether that complexity buys much in practice.

Residual Learning exploits the fact that it is often easier to approximate
a difference rather than the original function. This has been successfully used in
ResNets [8] where a residual is learned on top of the identity function prior. Some
network adaptation methods insert new residual-modeling parameters directly
into the base architecture [14,24]. Residual learning has also been explored in
robotics as residual RL [10,33], in which we train an agent for a single task by
first taking a coarse policy (e.g. behavior cloning) and then training a residual
network on top (using RL). For a single task, iteratively learning residuals is
known as gradient boosting, but side-tuning adds a side network to adapt a
base representation for a new task. We discuss the relationship in Sect. 4.4.

Meta-learning, unlike network adaptation approaches, seeks to create net-
works that are inherently adaptable. Typically this proceeds by training on tasks
sampled from a known task distribution. Side-tuning is fundamentally compat-
ible with this formulation and with existing approaches (e.g. [6]). Recent work
suggests that these approaches work primarily by feature adaptation rather than
rapid learning [22], and feature adaptation is also the motivation for our method.

3 Side-Tuning: The Simplest Additive Approach

Side-tuning learns a side model S(x) and combines it with a pre-trained base
model B(x). The representation for the target task is R(x) � B(x) ⊕ S(x).
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Fig. 2. Mechanics of side-tuning . (i) Side-tuning takes some core network and
adapts it to a new task by training a side network. (ii) Connectivity structure when
using side-tuning along with α-blending. (iii) Some of the existing common adaptation
methods turn out to be special cases of an alpha blending with a side network. In
particular: fine-tuning, feature extraction, and other approaches are side-tuning with
a fixed curriculum on the blending parameter α, as shown in the plot.

3.1 Architectural Elements

Base Model. The base model B(x) provides some core cognition or perception,
and we put no restrictions on how B(x) is computed. We never update B(x), and
in our approach it has zero learnable parameters. B(x) could be a decision tree
or an oracle for another task (experiments with this setup shown in Sect. 4.4).
We consider several choices for B(x) in Sect. 4.4, but the simplest choice is just
a pretrained network.

Side Model. Unlike the base model, the side network, S(x), is updated during
training; learning a residual that we apply on top the base representation. One
crucial component of the framework is that the complexity of the side network
can scale to the difficulty of the problem at hand. When the base is relevant and
requires only a minor update, a very simple side network can suffice.

Since the side network’s role is to amend the base network to a new task,
we initialize the side network as a copy of the base. When the forms of the base
and side networks differ, we initialize the side network through knowledge distil-
lation [9]. We investigate side network design decisions in Sect. 4.4. In general,
we found side-tuning to perform well in a variety of settings and setups.

Combining Base and Side Representations
Side-tuning admits many options for the combination operator, ⊕, and we com-
pare several in Sect. 4.5. We observe that alpha blending, B(x)⊕S(x) � αB(x)+
(1 − α)S(x), where α is treated as a learnable parameter works well and α cor-
relates with task relevance (see Sect. 4.4).

While simple, alpha blending is expressive enough that it encompasses several
common transfer learning approaches. As shown in Fig. 2(iii), side-tuning is
equivalent to feature extraction when α = 1. When α = 0, side-tuning is instead
equivalent to fine-tuning if the side network has the same architecture the base.
If we allow α to vary during training, then switching α from 1 to 0 is equivalent
to the common (stage-wise) training curriculum in RL where a policy is trained
on top of some fixed features that are unlocked partway through training.
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When minimizing estimation error there is often a tradeoff between the bias
and variance contributions [7] (see Table 1). Feature extraction locks the weights
and corresponds to a point-mass prior while fine-tuning is an uninformative
prior yielding a low-bias high-variance estimator. Side-tuning aims to leverage
the (useful) bias from those original features while making the representation
asymptotically consistent through updates to the residual side-network2.

Given the bias-variance interpretation, a notable curriculum for α during
training is α(N) = k

k+N for k > 0 (hyperbolic decay) where N is the number
of training epochs. This curriculum, placing less weight on the prior as more
evidence accumulates, is suggestive of a maximum a posteriori estimate and,
like the MAP estimate, it converges to the MLE (fine-tuning).

3.2 Side-Tuning for Incremental Learning

We often care about the performance not only on the current target task but also
on the previously learned tasks. This is the case for incremental learning, where
we want an agent that can learn a sequence of tasks T1, ..., Tm and is capable
of reasonable performance across the entire set at the end of training. In this
paradigm, catastrophic forgetting (diminished performance on {T1, ..., Tm−1} due
to learning Tm) becomes a major issue.

In our experiments, we dedicate one new side network to each task. We
define a task T : x �→ P (Y ) as a mapping from inputs, x, to a probability
distribution over the output space, Y . For example, x is an RGB image mapped
to probabilities over object classes, Y . Datasets for a task are a set of pairs
{(x, y) | y ∼ T (x)}. For task Tt, our loss function is

L(xt, yt) = ‖Dt(αtB(xt) + (1 − αt)St(xt)) − yt‖ (2)

where t is the task number and Dt is some decoder readout of the side-tuning
representation. This simple approach leads to the training curve in Fig. 3 with no
possible catastrophic forgetting. Furthermore, since side-tuning is independent
of task order, training does not slow down as training progresses. We observe that
this approach provides a strong baseline for incremental learning, outperforming
existing approaches in the literature while using fewer parameters on more tasks
(in Sect. 4.2).

2 Sidetuning is one way of making features obey Cromwell’s rule: “I beseech you, in
the bowels of Christ, think it possible that you may be mistaken.”.
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Fig. 3. Theoretical learning
curve of side-tuning . The model
learns during task-specific training
and those weights are subsequently
frozen, preserving performance.

Side-tuning naturally handles other con-
tinuous learning scenarios besides incremen-
tal learning. A related problem is that of con-
tinuous adaptation, where the agent needs
to perform well (e.g. minimizing regret) on
a stream of tasks with undefined boundaries
and where there might very little data per
task and no task repeats. As we show in
Sect. 4.2, inflexibility becomes a serious prob-
lem for constraint-based methods and task-
specific performance declines after learning
more than a handful of tasks. Moreover, con-
tinuous adaptation requires an online method
as task boundaries must be detected and data cannot be replayed (e.g. to gen-
erate constraints for EWC).

Side-tuning could be applied to continuous adaptation by keeping a small
working memory of cheap side networks that constantly adapt the base network
to the input task. These side networks are small, easy to train, and when one

Fig. 4. Side-tuning does not forget in incremental learning. Qualitative results
for iTaskonomy with additive learning (side-tuning , top 3 rows) and constraint-based
substitutive learning (EWC, bottom 3 rows). Each row contains results for one task
and columns show how predictions change over the course of training. Predictions
from EWC quickly degrade over time, showing that EWC catastrophically forgets.
Predictions from side-tuning do not degrade, and the initial quality is better in later
tasks (e.g. compare the table in surface normals). We provide additional comparisons
(including for PSP, PNN) in the supplementary.
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of the networks begins performing poorly (e.g. signaling a distribution shift)
that network can simply be discarded. This is an online approach, and online
adaptation with small cheap networks has found recent success (e.g. in [20]).

4 Experiments

In the first section we show that when applied to the incremental learning setup,
side-tuning compares favorably to existing approaches on both iCIFAR and the
more challenging iTaskonomy dataset. We then extend this to multiple domains
(computer vision, RL, imitation learning, NLP) in the simplified scenario for
m = 2 tasks (transfer learning). Finally, we interpret side-tuning in a series of
analysis experiments.

4.1 Baselines

We provide comparisons of side-tuning against the following methods:

Scratch: The network is initialized with appropriate random weights and trained
using minibatch SGD with Adam [11].

Feature extraction (features): The pretrained base network is used as-is and
is not updated during training.

Fine-tuning: An umbrella term that encompasses a variety of techniques, we
consider a more narrow definition where pretrained weights are used as ini-
tialization and then training proceeds as in scratch.

Elastic Weight Consolidation (EWC). A constraint-based substitutive app-
roach from [12]. We use the formulation from [30] which scales better.

Parameter Superposition (PSP): A parameter-masking substitutive app-
roach from [4] that attempts to make tasks independent from one another by
mapping the weights to approximately orthogonal spaces.

Progressive Neural Network (PNN): An additive approach from [29]
which utilizes many lateral connections between the base and side networks.
Requires the architecture of the base and side networks to be the same or
similar.

Piggyback (PB): Learns task-dependent binary weight masks [17].
Residual Adapters (RA): An additive approach which learns task-dependent

batch-norm and linear layers between layers in an existing network [24,25].
Independent: Each task uses a pretrained network trained independently for

that task. This method uses far more learnable parameters than all the alter-
natives (e.g. saving a separate ResNet-50 for each task) and achieves strong
performance.

4.2 Incremental Learning

On both the incremental Taskonomy [34] (iTaskonomy) and incremental CIFAR
(iCIFAR [26]) datasets, side-tuning performs competitively against existing
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incremental learning approaches while using fewer parameters3. On the more
challenging Taskonomy dataset, it outperforms other approaches.

– iCIFAR. Comprises 10 subsequent tasks by partitioning CIFAR-100 [26] into
10 disjoint sets of 10-classes each. Images are 32 × 32 RGB. First, we pretrain
the base network (ResNet-44) on CIFAR-10. We then train on each subtask
for 20k steps before moving to the next one. The SotA substitutive baselines
(EWC and PSP) update the base network for each task (683K parameters),
while side-tuning updates a four layer convolutional network per task (259K
parameters after 10 tasks).

– iTaskonomy. Taskonomy [34] is significantly more challenging than CIFAR-
100 and includes multiple computer vision tasks beyond object classification:
including 2D (e.g. edge detection), 3D (e.g. surface normal estimation), and
semantic (e.g. object classification) tasks. We note that approaches which
work well on iCIFAR often do quite poorly in the more realistic setting.
We created iTaskonomy by selecting all (12) tasks that make predictions
from a single RGB image, and then created an incremental learning setup
by selecting a random order in which to learn these tasks (starting with
curvature). The images are 256× 256 and we use a ResNet-50 for the base
network and a 5-layer convolutional network for the side-tuning side network.

Fig. 5. Incremental Learning on iTaskonomy and iCIFAR. The above curves
show loss and error for three tasks on iTaskonomy (left) and iCIFAR (right) datasets.
The fact that side-tuning losses are flat after training (as we go right) shows that it does
not forget previously learned tasks. That performance remains consistent even on later
tasks (as we go down), showing that side-tuning does not become rigid. Substitutive
methods show clear forgetting (e.g. PSP) and/or rigidity (e.g. EWC). In iTaskonomy,
PNN and Independent are hidden under Sidetune. (Color figure online)

3 Full experimental details (e.g. architecture) provided in the supplementary.
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The number of learnable network parameters used across all tasks is 24.6M
for EWC and PSP, and 11.0M for side-tuning4.

Catastrophic Forgetting. As expected, there is no catastrophic forgetting in
side-tuning and other additive methods. Figure 5 shows that the error for side-
tuning does not increase after training (blue shaded region), while it increases
sharply for the substitutive methods on both iTaskonomy and iCIFAR.

The difference is meaningful, and Fig. 4 shows sample predictions from side-
tuning and EWC for a few tasks during and after training. As is evident from the
bottom rows, EWC exhibits catastrophic forgetting on all tasks (worse image
quality as we move right). In contrast, side-tuning (top) shows no forgetting and
the final predictions are significantly closer to the ground-truth (boxed red).

Rigidity. Side-tuning learns later tasks as easily as the first, while constraint-
based methods such as EWC stagnate. The predictions for later tasks are signifi-
cantly better using side-tuning even immediately after training and before
any forgetting can occur (e.g., surface normals in Fig. 4).

Figure 6 quantifies this slowdown. We measure rigidity as the log-ratio of the
actual loss of the ith task over the loss when that task is instead trained first
in the sequence. As expected, side-tuning experiences effectively zero slowdown
on both datasets. For EWC, the added constraints make learning new tasks
increasingly difficult and rigidity increases with the number of tasks (Fig. 6,
left). PNN shows some positive transfer in iCIFAR (negative ratio value), but
becomes rigid on the more challenging iTaskonomy, where tasks are more diverse.

Final Performance. Overall, side-tuning significantly outperforms the substi-
tutive methods while using fewer than half the number of trainable parameters.
It is comparable with additive methods while remaining remarkably simpler.
On iCIFAR, vanilla side-tuning achieves a strong average rank (2.20 of 6, see

Fig. 6. Rigidity (Intransigence) on iTaskonomy and iCIFAR. Side-tuning
always learns new tasks easily; EWC becomes increasingly unable to learn new tasks
as training progresses. The same trend holds on iCIFAR (right).

4 Numbers not counting readout parameters, which are common between all methods.
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Table 2) and, when using the same combining operator (MLP) as PNN, is as
good as the best-performing model without the additional lateral connections
(see Fig. 5 right). On iTaskonomy, vanilla side-tuning achieves the best average
rank (1.33 of 6, while the next best is 2.42 by PNN, see Table 2).

Table 2. Average rank on iTaskonomy and
iCIFAR. Despite being simpler than alterna-
tives, side-tuning generally achieved a better
average rank than other approaches. The dif-
ference increases on the more challenging Tas-
knomy dataset, where side-tuning significantly
outperformed all tested alternatives.

Method Avg. rank (↓)

iTaskonomy iCIFAR

EWC (λ = 100, 105) 5.25 2.70

PSP 5.25 5.60

Res. Adapter 3.58 4.40

Piggyback 3.17 5.00

PNN 2.42 1.10

Side-tune 1.33 2.20

This is a direct result of
the fact (shown above) that
side-tuning does not suffer from
catastrophic forgetting or rigidity
(intransigence). It is not due to
the fact that the sidetuning struc-
ture is specially designed for these
types of image tasks; it is not (we
show in Sect. 4.3 that it performs
well on other domains). In fact,
the much larger networks used
in EWC and PSP should achieve
better performance on any single
task. For example, EWC produces
sharper images early on in train-
ing, before it has had a chance to
accumulate too many constraints
(e.g. reshading in Fig. 4). But this factor was outweighed by side-tuning’s immu-
nity from the effects of catastrophic forgetting and compunding rigidity.

4.3 Universality of the Experimental Trends

In order to address the possibility that side-tuning is somehow domain- or task-
specific, we provide results showing that it is well-behaved in other settings. As
the concern with additive learning is mainly that it is too inflexible to learn
new tasks, we compare with fine-tuning (which outperforms other incremental
learning tasks when forgetting is not an issue). For extremely limited amounts of
data, feature extraction can outperform fine-tuning. We show that side-tuning
generally performs as well as features or fine-tuning–whichever is better.

Transfer Learning in Taskonomy. We trained networks to perform one of
three target tasks (object classification, surface normal estimation, and curvature
estimation) on the Taskonomy dataset [34] and varied the size of the training set
N ∈ {100, 4 × 106}. In each scenario, the base network was trained (from scratch)
to predict one of the non-target tasks. The side network was a copy of the original
base network. We experimented with a version of fine-tuning that updated both
the base and side networks; the results were similar to standard fine-tuning5. In
all scenarios, side-tuning successfully matched the adaptiveness of fine-tuning,
and significantly outperformed learning from scratch, as shown in Table 3a.
The additional structure of the frozen base did not constrain performance with
5 We defer remaining experimental details (learning rate, full architecture, etc.) to the

supplementary materials. See provided code for full details.
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Table 3. Side-tuning comparisons in other domains. Sidetuning matched the
adaptability of fine-tuning on large datasets, while performing as well or better than
the best competing method in each domain: (a) In Taskonomy, for Normal Estima-
tion or Object Classification using a base trained for Curvatures and either 100 or 4M
images for transfer. Results using Obj. Cls. base are similar and provided in the sup-
plementary materials. (b) In SQuAD v2 question-answering, using BERT instead of
a convolutional architecture. (c) In Habitat, learning to navigate by imitating expert
navigation policies, using inputs based on either Curvature or Denoising. Finetuning
does not perform as well in this domain. (d) Using RL (PPO) and direct interaction
instead of supervised learning for navigation.

Method

Fine-tune

Features

Scratch

Side-tune

Transfer Learning in
Taskonomy

From Curvature (100/4M ims.)

Normals (MSE ↓) Obj. Cls. (Acc. ↑)

0.200 / 0.094 24.6 / 62.8

0.204 / 0.117 24.4 / 45.4

0.323 / 0.095 19.1 / 62.3

0.199 / 0.095 24.8 / 63.3

(a)

QA on
SQuAD

Match (↑)
Exact F1

79.0 82.2

49.4 49.5

0.98 4.65

79.6 82.7

(b)

Navigation
(IL)

Nav. Rew. (↑)
Curv. Denoise

10.5 9.2

11.2 8.2

9.4 9.4

11.1 9.5

(c)

Navigation
(RL)

Nav. Rew. (↑)
Curv. Denoise

10.7 10.0

11.9 8.3

7.5 7.5

11.8 10.4

(d)

large amounts of data (4M images), and side-tuning performed as well as (and
sometimes slightly better than) fine-tuning.

Question-Answering in SQuAD v2. We also evaluated side-tuning on a
question-answering task (SQuAD v2 [23]) using a non-convolutional architec-
ture. We use a pretrained BERT [5] model for our base, and a second for the
side network. Unlike in the previous experiments, BERT uses attention and no
convolutions. Still, side-tuning adapts to the new task just as well as fine-tuning,
outperforming features and scratch (Table 3b).

Imitation Learning for Navigation in Habitat. We trained an agent to nav-
igate to a target coordinate in the Habitat environment. The agent is provided
with both RGB input image and also an occupancy map of previous locations.
The map does not contain any information about the environment—just pre-
vious locations. In this section we use Behavior Cloning to train an agent to
imitate experts following the shortest path on 49k trajectories in 72 buildings.
The agents are evaluated in 14 held-out validation buildings. Depending on what
the base network was trained on, the source task might be useful (Curvature)
or harmful (Denoising) for imitating the expert and this determines whether
features or learning from scratch performs best. Table 3c shows that regardless
of the which approach worked best, side-tuning consistently matched or beat it.

Reinforcement Learning for Navigation in Habitat. Using a different
learning algorithm (PPO) and direct interaction instead of expert trajectories,
we observe identical trends. We trained agents directly in Habitat (74 build-
ings). Table 3d shows performance in 14 held-out buildings after 10M frames of
training. Side-tuning performs comparably to the max of competing approaches.
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4.4 Learning Mechanics in Side-Tuning

Using Non-network Base Models. Since side-tuning treats the base model
is a black box, it can be used even when the base model is not a neural network.
On iTaskonomy, we show that side-tuning can effectively use ground truth cur-
vature as a base for incremental learning whereas all the methods we compare
against cannot use this information (with the exception of feature extraction).
Specifically, we resize the curvature image from 256× 256×2 to 32× 32×2 and
reshape it to 16× 16×8, the same size as the output of other base models. Side-
tuning with ground truth curvature achieves a better rank (4.3) on iTaskonomy
than all 20 other methods (excluding Independent, 4.2)

Benefits for Intermediate Amounts of Data. We showed in the previous
section that side-tuning performs like the best of {features,fine-tuning, scratch}
in domains with abundant or scant data.

Fig. 7. Side-tuning outperformed
features and fine-tuning on inter-
mediate amounts of data. Using
imitation learning on a point-goal nav-
igation task (setup from [19]).

In order to test whether side-tuning
could profitably synthesize the features
with intermediate amounts of data, we
evaluated each approach’s ability to learn
to navigate using 49, 490, 4900, or 49k
expert trajectories and pretrained denois-
ing features. Side-tuning was always the
best-performing approach and, on inter-
mediate amounts of data (e.g. 4.9k tra-
jectories), outperformed the other tech-
niques (side-tune 9.3, fine-tune: 7.5, fea-
tures: 6.7, scratch: 6.6), Fig. 7).

Network Size. We find that when the
base network is large, distilling it into a
smaller network and sidetuning will still retain most of the performance. In
Fig. 8, we explore this in Habitat (RL using {curvature,denoise} → navigation),
with other results in the supplementary.

Fig. 8. Effect of network size in RL. (Left) The distilled (5-layer) networks perform
almost as well as the original ResNet-50 base networks. The choice of which base to
use (Curvature vs. Denoising) has a much larger impact. (Right) Fine-tuning, even
with RAdam, performed significantly worse than the alternative approaches.
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Fig. 9. Boosting. Deeper networks out-
perform many shallow learners.

More than Just Stable Updates.
In RL, fine-tuning often fails to
improve performance. One common
rationalization is that the early updates
in RL are ‘high variance’. The com-
mon stage-wise solution is to first train
using fixed features and then unfreeze
the weights. We found that this app-
roach performs as well (but no better
than) using fixed features–and side-
tuning performed as well as both while
not being domain-specific (Fig. 8). We
tested the ‘high-variance’ theory by
fine-tuning with both gradient clipping and an optimizer designed to prevent
such high-variance updates (RAdam [16]). This provided no benefits over vanilla
fine-tuning, suggesting that the benefits of side-tuning are not solely due to gra-
dient stabilization early in training.

Not Boosting. Since the side network learns a residual on top of the base
network, could side-tuning be used for boosting? Although network boosting
does improve performance on iCIFAR (Fig. 9), the parameters would’ve been
better used in a deeper network rather than many shallow networks.

4.5 Analysis of Design Choices

We evaluate the effect of our architectural design decisions on task performance.

Base and Side Elements. Side-tuning uses two streams of information - one
from the base model and one from the side model. Are both streams necessary?
Table 5 shows that on the iTaskonomy experiment performance improves when
using both models.

Merge Methods. Section 3.1 described different ways to merge the base and
side networks. Table 4 evaluates a few of these approaches. Product and alpha-
blending are two of the simplest approaches and have little overhead in terms
of compute and parameter count. [29] (MLP) and [21] (FiLM) use multi-layer
perceptrons to adapt the base network to the new task. Table 4 shows that alpha-
blending, MLP, and FiLM are comparable, though the FiLM-based methods
achieve marginally better average rank on iTaskonomy. We use alpha-blending
as it adds fewer parameters and achieves similar performance.

Side Network Initialization. A good side network initialization can yield
a minor boost in performance. We found that initializing from the base net-
work slightly outperforms a low-energy initialization6, which slightly outper-
forms Xavier initialization. However, we found that these differences were not
statistically significant across tasks (H0 : pretrained = xavier; p = 0.07, Wilcoxon

6 Side network is trained to not impact the output. Full details in the supplementary.
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Table 4. Average rank of various
merge methods. Alternative feature-
wise transformations did not outperform
simple α-blending in a statistically signif-
icant way.

Method Avg. rank (↓)

iTaskonomy

Product (element-wise) 3.64

Summation (α-blending) 2.27

MLP [29] 2.18

FiLM [21] 1.91

Table 5. Both base and side
networks contribute. Perfor-
mance (average rank on iTaskon-
omy) improved when using both
the base and side model in side-
tuning.

Method Avg. rank (↓)

iTaskonomy

Base-only 2.55

Side-only 2.10

Side-tuning 1.36

signed-rank test). We suspect that initialization might be more important on
harder problems. We test this by repeating the analysis without the simple
texture-based tasks (2D keypoint + edge detection and autoencoding) and find
the difference in initialization is now significant (p = 0.01).

5 Conclusions and Limitations

We have introduced the side-tuning framework, a simple yet effective approach
for additive learning. Since it does not suffer from catastrophic forgetting or
rigidity, it is naturally suited to incremental learning. The theoretical advantages
are reflected in empirical results, and we found side-tuning to perform on par
with or better than many current incremental learning approaches, while being
significantly simpler. Experiments demonstrated this in challenging contexts and
with various state-of-the-art neural networks across multiple domains.

More complex methods should need to demonstrate clear improvements over
simply doing this näıve approach. We see several natural ways to improve it:

Better Forward Transfer: Our experiments used only a single base and single
side network. Leveraging previously trained side networks could yield better
performance on later tasks.

Learning When to Deploy Side Networks: Like most incremental learning setups,
we assumed that the tasks are presented in a sequence and that task identities
are known. Using several active side networks in tandem would provide a natural
way to identify task change or distribution shift.

Using Side-Tuning to Measure Task Relevance: We found that α tracked task
relevance in [34], but a more rigorous treatment of the interaction between the
base, side, α and final performance could yield insight into how tasks relate.
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Abstract. Even though most existing monocular 3D pose estimation
approaches achieve very competitive results, they ignore the heterogene-
ity among human body parts by estimating them with the same network
architecture. To accurately estimate 3D poses of different body parts, we
attempt to build a part-aware 3D pose estimator by searching a set of
network architectures. Consequently, our model automatically learns to
select a suitable architecture to estimate each body part. Compared to
models built on the commonly used ResNet-50 backbone, it reduces 62%
parameters and achieves better performance. With roughly the same
computational complexity as previous models, our approach achieves
state-of-the-art results on both the single-person and multi-person 3D
pose estimation benchmarks.

Keywords: 3D pose estimation · Body parts · Neural architecture
search

1 Introduction

3D human pose estimation plays a crucial role to unlock widespread applica-
tions in human-computer interaction, robotics, surveillance, and virtual real-
ity. Compared with multi-view methods [19,41,43,52,61], monocular 3D human
pose estimation is more flexible for deployment in outdoor environments. How-
ever, given its ill-posed nature, estimating 3D human poses from a single RGB
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Fig. 1. Motivation. Most of the previous methods employ a single network architecture
to deal with intrinsically heterogeneous human body parts (as shown in (a)). Instead,
we are motivated to search for a suitable network architecture for a group of parts and
estimate their 3D locations with a part-specific architecture (as shown in (b)).

image remains a challenging problem. Thanks to Convolutional Neural Networks
(CNNs), many effective approaches are proposed and formulate the problem as
joint coordinate regression [28,47] or heat maps learning [57,65]. Recently, many
approaches [39,40,48,62] have followed a popular paradigm in predicting per
voxel likelihood for each human joint and achieved competitive performance.

In most previous approaches shown in Fig. 1(a), CNNs share the same net-
work architecture for predicting all human body parts with different degrees of
freedom (DOFs), ranging from parts with higher DOFs like the wrists to parts
with lower DOFs like the torso. However, a single network architecture might be
sub-optimal to deal with various body parts. Because different parts might have
various movement patterns and shapes, estimating their locations might require
different network topologies (e.g., different kernel sizes and distinct receptive
fields). A recent effort [54] also demonstrates that it is effective to estimate
different body parts by explicitly taking their DOFs into account.

As shown in Fig. 1(b), we approach the problem from a different angle and
propose to estimate different body parts with part-specific network architec-
tures. However, looking for optimal architectures for various body parts is an
intractable and time-consuming job even for an expert. Therefore, instead of
designing them manually, we consult the literature of neural architecture search
(NAS) [4,14,17,23,31,49,56] and propose to search part-specific network archi-
tectures for different parts. In fact, the idea of searching network architectures
for certain tasks is not new. Specifically, it has been applied in semantic segmen-
tation [7,30,60] and object detection [8,13,42].

However, applying NAS into 3D human pose estimation is non-trivial,
because current NAS approaches mainly focus on 2D visual tasks. Different
from them, 3D human poses are commonly estimated in a higher-order volu-
metric space [11,40,48,52]. It consists of 2D spatial and depth axes and greatly
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increases the uncertainty during optimization. More importantly, how to use
prior information about the human body structure to facilitate the architecture
search and achieve a trade-off between accuracy and complexity is another issue.

To deal with these issues, we introduce the fusion cell in the context of NAS
to increase the resolution of feature maps and generate desired volumetric heat
maps efficiently. The fusion cell has multiple head networks that are various
convolutional architectures, consisting of different kernels and operations. To
improve the part-awareness of our model, we attempt to generate the volumetric
heat map for each part with a specially optimized head network. Considering
the symmetry prior of the human body structure, it is inefficient to search a
different head network for each part. Our approach classifies all body parts into
several groups and assigns each group with a part-specific architecture. In the
search stage of our approach, all the architectures, including the fusion cell, are
optimized by gradient descent. Then, we stack these optimized computational
cells to construct our part-aware 3D pose estimator. In the evaluation stage,
our part-aware 3D human pose estimator can select optimized head networks
encoded in the fusion cell to estimate different groups of body parts.

Through extensive experiments, we show that our approach can achieve a good
trade-off between complexity and performance. With 62% fewer parameters and
24% fewer FLOPs (multiply-adds), our approach outperforms the model using
ResNet-50 backbone and achieves 53.6 mm in Mean Per Joint Position Error
(MPJPE). By stacking more computational cells, it can further advance the state-
of-the-art accuracy on Human3.6M by 2.3 mm with 41% fewer parameters.

Our contributions can be summarized as follows:

• Our work shows that it might be sub-optimal to estimate 3D poses of all
body parts with a single network architecture. To the best of our knowledge,
we make the first attempt to search part-specific architectures for different
parts.

• We introduce the fusion cell to generate volumetric heat maps efficiently. In
the fusion cell, we classify all body parts into several groups and estimate
each group of parts with a distinct head network.

• Our part-aware 3D pose estimator is both compact and efficient. It achieves
state-of-the-art accuracy on both the single-person and multi-person 3D
human pose benchmarks using much fewer parameters and FLOPs.

2 Related Work

3D Human pose estimation has been studied widely in the past. In this section,
we only focus on previous works that can be relevant to our work.

Estimate 3D poses from 2D Joints: Some approaches divide the task of
3D human pose estimation into first predicting 2D joint locations and then
back-projecting them to estimate 3D human poses. The practice of inferring
3D human poses from their 2D projections can be traced back to the classic
work [27]. Given the bone lengths, the problem boils down to a binary decision
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tree where each branch corresponds to two possible states of a joint concerning
its parent. Jiang et al. [20] generate a set of hypothesis of 3D poses using Taylor’s
algorithm [50] and use them to query a large database of motion capture data
to find the nearest neighbor. Similarly, the idea of exploiting nearest neighbor
queries has been revisited by [15]. Chen et al. [6] also share the idea of using
the detected 2D pose to query a large database of exemplary poses. Another
common approach [3,63] is to learn an over-complete dictionary of basis 3D
poses from a large database of motion capture data. Moreno-Noguer et al. [36]
employ the pair-wise distance matrix of 2D joints to learn a distance matrix for
3D joints. Martinez et al. [32] design a fully-connected network to estimate 3D
joint locations relative to the pelvis from 2D poses. Hossain et al. [16] exploit
temporary information to calculate a sequence of 3D poses from a sequence of 2D
joint locations. Ci et al. [10] combine the advantage of graph convolution network
and fully-connected network and equip the model with strong generalization
power. Cai et al. [5] introduce a graph-based local-to-global network to recover
3D poses from 2D pose sequences. These methods focus on estimating 3D poses
from 2D poses, and we attempt to estimate 3D poses from monocular images.

Estimate 3D poses from Monocular Images: Recently, many approaches
have been proposed to estimate 3D poses from monocular images in an end-to-
end fashion. Li et al. [28] and Park et al. [38] exploit the 2D pose information to
benefit 3D pose estimation. Rogez et al. [44] and Varol et al. [53] augment the
training data with synthetic images and train CNNs to predict 3D poses from real
images. Sun et al. [47] adopt a reparameterized pose representation using bones
instead of joints. Pavlakos et al. [40] extend 2D heat maps to 3D volumetric heat
maps and predict per voxel likelihood for each joint. Tome et al. [51] generalize
Convolutional Pose Machine (CPM) [55] to the task of monocular 3D human pose
estimation. Chen et al. [9] propose to decompose the volumetric representation
into 2D depth-aware heat maps and joint depth estimation. Zhou et al. [65]
propose a weakly-supervised transfer learning method that uses mixed 2D and
3D labels in a unified deep neural network. By introducing a simple integral
operation, Sun et al. [48] unify heat maps learning and regression learning for
pose estimation. Kocabas et al. [25] propose to train the 3D pose estimator with
the multi-view triangulation in a self-supervised manner. Instead of estimating
root-relative 3D poses, Moon et al. [35] propose to estimate 3D poses in the
camera coordinate system directly. More recent works [1,21,22,26,37] tend to
focus on reconstructing fine-grained 3D human shapes. Nevertheless, all works
are limited in estimating all body parts with a single head network, and we
attempt to search part-specific head networks for different body parts.

3 The Proposed Approach

In the literature of NAS, differential architecture search (DARTS) [30] is a repre-
sentative method that can search effective network architectures using fewer com-
puting resources. Therefore, we build our model on DARTS. First, we introduce
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some basic knowledge about DARTS. Then, we describe our approach to search
part-specific head networks for intrinsically heterogeneous body parts.

3.1 Preliminaries: Differential Architecture Search (DARTS)

The framework of DARTS decomposes the searched network architecture into
a number of (L) computational cells. There are two types of cells: the normal
cell and the reduction cell. Both of them have typical convolution architectures
to transform feature maps. Additionally, the reduction cell has another function
to downsample the feature map. Each computational cell can be represented as
a directed acyclic graph (DAG), consisting of an ordered sequence of N nodes
(N = {x(i)|i = 1, ..., N}). In the DAG, each node x(i) (i ∈ {1, ..., N}) is a
hidden representation (i.e., feature map), and each edge o(i,j)(·) denotes the
transformation from x(i) to x(j) and is associated with an operation (i.e., pooling
and convolution). In each cell, there are two input nodes (i.e., x(1) and x(2)

receive outputs from the previous two cells) and one output node x(N) (i.e., the
concatenation of all intermediate nodes (x(3), x(4), ..., x(N−1))). The output of an
intermediate node x(j) is computed as:

x(j) =
∑

i<j

o(i,j)(x(i)) (1)

Where the node x(i) is one predecessor of the node x(j). There is a pre-defined
space of operations denoted by O, each element of which is a fixed operation
(e.g., identity connection, convolution and max pooling). In the search stage, our
goal is to automatically select one operation from O and assign the operation to
o(i,j)(·) for each pair of nodes.

The core idea of DARTS is to make the search space continuous, and formu-
late the choice of an operation as a softmax over all possible operations:

ō(i,j)(x) =
∑

o∈O

exp(αo
i,j)∑

o′∈O exp(αo′
i,j)

o(x) (2)

Where αo
i,j denotes the learnable score of the operation o(·) on the edge from

x(i) to x(j). αi,j ∈ R
|O| represents the scores of all candidate operations over the

edge. The architecture of a cell is denoted as α = {αi,j}, consisting of αi,j for all
edges connecting pairs of nodes. Then, DARTS formulates architecture search
as finding α to minimize the loss function on the validation set:

min
α

Lval(w∗(α), α) (3)

s.t. w∗(a) = argminw Ltrain(w,α) (4)

Where w∗(α) denotes the network weights associated with the architecture α,
which is optimized on the training set. The architecture parameter α can be
optimized via gradient descent by approximating Eq. 3 as:

∇αLval(w∗(α), α) ≈ ∇αLval(w − ξ∇wLtrain(w,α), α) (5)
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Where w denotes the current network weights, ∇wLtrain(w,α) is the a gradient
step of w and ξ is the step’s learning rate. When we finish optimizing α in
the search stage, we assign o(i,j)(·) with the most likely operation candidate
according to α(i,j). For each intermediate node in a computational cell, DARTS
retains its two strongest predecessors.

3.2 DARTS for Monocular 3D Human Pose Estimation

Since the framework of DARTS is originally designed for image classification,
neither the normal cell nor the reduction cell can increase the resolution of fea-
ture maps. However, it is a common practice for 3D pose estimators to upsample
feature maps from the size of 8 × 8 to the size of 64 × 64 consecutively and gen-
erate volumetric heat maps for all body parts. To this end, as shown in Fig. 2,
we propose to introduce another type of cell, namely fusion cell, in the context
of DARTS. It can upsample and transform feature maps propagated from pre-
vious cells. Just like the reduction cell performs downsampling at input nodes,
the fusion cell also upsamples feature maps at input nodes as a preprocessing
step. Then, we employ edges between two nodes (i.e., convolution, pooling, etc.)
to transform upsampled feature maps and produce volumetric heat maps for all
parts at the output node. As shown in Fig. 2, it is interesting to note that the
output node is the concatenation of all intermediate nodes and each intermediate
node represents volumetric heat maps for a certain group of body parts. Through
intermediate nodes in the fusion cell, we automatically divide all body parts into
several groups, and the number of groups is equal to the number of intermedi-
ate nodes in the fusion cell. As shown in Fig. 2(a), there exist many candidate
operations between nodes in the search stage, and we obtain the optimized archi-
tecture upon finishing the search process. In the optimized architecture shown in
Fig. 2(b), we can observe that each intermediate node has been transformed by
a different set of operations. In other words, we learn part-specific architectures
in the search stage and employ them to estimate different groups of body parts
in the evaluation stage.

Fig. 2. An illustration of the fusion cell. Node 0 is the input node, and Node 1, 2, 3
are intermediate nodes. Node 4 is the output node and concatenates all intermediate
nodes. Each edge represents one operation between two nodes. For simplicity, we only
draw one input node here instead of two.

We follow a popular baseline [48] to build our part-aware 3D pose estimator.
It predicts per voxel likelihood for each part and uses the soft-argmax operator to
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extract the 3D coordinate from the volumetric heat map. Instead of using ResNet-
50 backbone and deconvolution layers, we search the whole network architecture.
In the search stage, we stack the normal cell, the reduction cell, the fusion cell to
construct our model with a total of Nc cells. We fix the number of reduction cells
and fusion cells to Nr and Nf , respectively. Because the fusion cell is designed
to generate volumetric heat maps at last, we first interweave (Nc − Nr − Nf )
normal cells and Nr reduction cells. Following the original DARTS, we organize
the position of the reduction cell as:

P i
r = floor(

Nc − Nf

Nr + 1
) × i + 1 (6)

Fig. 3. An overview of our network architecture. We take the 256×256 input image as
an example. It consists of ten computation cells: two normal cells, five reduction cells,
and three fusion cells. The architecture of all types of cells are optimized in the search
stage, and each cell receives inputs from the outputs of the previous two cells.

Where i ∈ {1, 2, ..., Nr} denotes the ith reduction cell. P i
r denotes the position of

the ith reduction cell. floor(·) represents the function that discards the decimal
point of a given number. After arranging normal cells and reduction cells, we
append Nf fusion cells behind them. In the search stage, our model has a total
of ten cells. We set Nr and Nf as 5 and 3, respectively. As illustrated in Fig. 3,
out of the top seven cells, we interweave two normal cells and five reduction
cells. Then, we append three fusion cells consecutively behind them to generate
volumetric heat maps for all parts. We employ L1 loss to supervise estimated 3D
poses and update network parameters w on the training set and architectures
for all types of cells α on the validation set alternately.

When we finish the search process, we obtain the optimized normal cell,
reduction cell, and fusion cell, as in Fig. 2(b). To evaluate the effectiveness of our
searched architectures, we re-train our model constructed with these optimized
cells. When our model is built with ten computational cells, the overview of its
architecture is the same as what it was in the search stage. As shown in Fig. 3,
given an input image, it first goes through a 3 × 3 convolution layer and a normal
cell to generate the feature map. Then, we append five consecutive reduction cells
to downsample the feature map and double its channel with a total stride of 25.
After a series of reduction cells, the feature map is 8 × 8 × 2048 in size, and we
use a normal cell to refine it further. To generate the volumetric heat map, we
use the proposed fusion cell to upsample the feature map. Except for the last
one, we set the output channel of remaining fusion cells to 256 as a common
practice. Three consecutive fusion cells upsample the feature map with a total
stride of 23 and generate the volumetric heat map of size 64 × 64 × 64 for all



722 Z. Chen et al.

body parts. For each part, we extract its 3D coordinate from the corresponding
volumetric heat map via the differential soft-argmax operation [48]. As we do in
the search stage, we still employ L1 loss to train our model.

4 Experimental Evaluation

In this section, we present a detailed evaluation of our proposed approach. First,
we introduce main benchmarks and present our experimental settings. Then, we
conduct rigorous ablation analysis about our approach. Finally, we build our
strongest part-aware estimator upon the knowledge obtained in ablation studies
and compare it with state-of-the-art performance.

4.1 Main Benchmarks and Evaluation Metrics

Human3.6M Dataset [18]: It is captured in a calibrated multi-view studio
and consists of 3.6 millions of video frames. Eleven subjects are recorded from
four camera viewpoints, performing 15 activities. Previous works widely use two
evaluation metrics. The first one is mean per joint position error (MPJPE), which
first aligns the pelvis joint between estimated and ground-truth 3D poses and
computes the average joint error among all human joints. The second metric uses
Procrustes Analysis (PA) to align MPJPE further, and it is called PA MPJPE.

MuCo-3DHP and MuPoTS-3D Datasets [34]: These datasets are designed
for multi-person 3D pose estimation. The training set is the MuCo-3DHP
dataset, and it is generated by compositing the MPI-INF-3DHP dataset [33].
MuPoTS-3D dataset acts as the test set and contains 20 in-the-wild scenes. The
evaluation metric is the 3D percentage of correct keypoints (3DPCK).

4.2 Experimental Settings and Implementation Details

Human3.6M Dataset: Two evaluation protocols are widely used. Protocol 1
uses six subjects (S1, S5, S6, S7, S8, S9) in training and reports the evaluation
result on every 64th frame of Subject 11’s videos using PA MPJPE. Protocol 2
uses six subjects (S1, S5, S6, S7, S8) in training and reports the evaluation result
on every 64th frame of two subjects (S9, S11) using MPJPE. In the evaluation
stage of our approach, we use additional MPII [2] 2D pose data during training.

In the search stage, we train the network only with Human3.6M data. We
split three subjects (S1, S5, S6) as the training set to update the network param-
eter w and use two subjects (S7, S8) as the validation set to update the network
architecture α. We include following eight operations in the pre-defined space
O: 3 × 3 and 5 × 5 separable convolutions, 3 × 3 and 5 × 5 dilated separable
convolutions, 3 × 3 max pooling, 3 × 3 average pooling, identity and zero.

MuCo-3DHP and MuPoTS-3D Datasets: We create 400K composite
frames of the MuCo-3DHP dataset, of which half are without appearance aug-
mentation. We use additional COCO [29] 2D pose data during training.
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Table 1. Quantitative evaluation of the number of intermediate nodes within each
fusion cell on Human3.6M using Protocol 2. Ni denotes the number of intermediate
nodes within each fusion cell. Lower is better, best in bold, second-best underlined.

Methods Search space Params FLOPs Direct. Dicuss Eating Greet Phone Pose

dil. conv. sep. conv.

Ours, Ni = 1 � � 14.7M 22.9G 52.6 60.9 50.8 54.3 62.0 53.4

Ours, Ni = 2 � � 13.0M 10.7G 46.3 55.3 47.2 49.0 55.0 48.2

Ours, Ni = 3 � � 9.9M 7.8G 53.5 62.2 54.1 56.5 62.7 55.5

Ours, Ni = 4 � � 9.9M 7.9G 50.8 60.0 53.2 53.3 60.7 50.8

Ours, Ni = 2 – � 15.9M 12.8G 55.8 61.3 52.5 55.3 63.0 54.6

Ours, Ni = 2 � – 10.4M 8.7G 52.0 60.0 51.4 53.9 61.5 52.6

Methods Purch. Sitting SitD. Smoke Photo Wait Walk WalkD. WalkT. Avg

Ours, Ni = 1 56.0 68.8 76.7 60.0 65.8 53.8 44.6 62.7 51.8 58.9

Ours, Ni = 2 52.6 64.6 70.8 54.4 60.0 48.8 40.9 58.3 46.7 53.6

Ours, Ni = 3 59.0 73.1 81.5 60.7 66.9 55.8 46.9 63.7 53.3 60.9

Ours, Ni = 4 55.9 69.8 74.3 58.7 64.8 53.0 43.4 61.2 49.5 58.0

Ours, Ni = 2 57.0 69.9 76.8 61.3 67.6 54.4 45.9 64.2 52.9 59.9

Ours, Ni = 2 56.6 68.8 76.7 59.9 66.3 53.5 44.8 62.6 51.6 58.7

Fig. 4. Cells found on Human3.6M dataset when we set Ni to 2. Our model uses two
intermediate nodes encoded in the fusion cell to estimate different groups of body parts.

Implementation Details: In the search stage, to save GPU memory, we set
the size of the input image and the volumetric heat map to 128 × 128 and
32×32×32, respectively. The total training epoch is 25, and the parameter w is
updated by the Adam optimizer [24] with a batch size of 40. The initial learning
rate is 1 × 10−3 and reduced by a factor of 10 at the 15th and the 20th epoch.
We start to optimize the network architecture α at the 8th epoch. Its learning
rate and weight decay are 8 × 10−4 and 3 × 10−4, respectively. The search
process lasts two days on a single NVIDIA TITAN RTX GPU. In the evaluation
stage, the size of the input image and the volumetric heat map are 256 × 256
and 64 × 64 × 64, respectively. The total epoch is 20. We train our network
with Adam with a batch size of 64. The initial learning rate is 1 × 10−3 and
reduced by ten at the 12th and the 16th epoch. Training samples are augmented
via rotation (±30◦), horizontal flip, color jittering, and synthetic occlusion [46].
The training process takes two days on four NVIDIA P100 GPUs. We run each
experiment three times with different random seeds, and the confidence interval
is about ±0.3 mm.
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4.3 Ablation Experiments

The Number of Intermediate Nodes in the Fusion Cell
As we explain in Sect. 3, the number of intermediate nodes in the fusion cell is
equal to the number of groups that we divide all body parts into. In this set of
experiments, by adjusting the number of intermediate nodes, we are motivated
to explore how many groups all body parts are divided into is an optimal choice.
In the search stage, we optimize the network architecture where the fusion cell
can have Ni ∈ {1, 2, 3, 4} intermediate nodes, and the model has a total of ten
computational cells, as in Fig. 3. In Table 1, we can observe that the model with
two intermediate nodes outperforms all the others on every action. Compared to
dividing all parts into more or fewer groups, it achieves a better trade-off between
performance and computational complexity. With only 13.0M parameters and
10.7G FLOPs, it encouragingly reduces MJPJE to 53.6 mm.

Fig. 5. Illustration of the equivalence between shuffling the part order and shuffling
the heat map order. The number in the box denotes the part id. There are a total of
eighteen parts. As shown in Fig. 4(d), within the last fusion cell, orange boxes indicate
parts estimated by Node 0, and pink boxes indicate ones estimated by Node 1. (Color
figure online)

To investigate what makes our architecture efficient when Ni is 2, we visualize
searched architectures in Fig. 4. As a comparison, when Ni is 1, our model esti-
mates all body parts with a single head network. It is computationally intensive,
having 14.7M parameters and 22.9G FLOPs, but its performance is not satisfac-
tory. Towards a better solution shown in Fig. 4(d), we employ two intermediate
nodes encoded in the fusion cell to estimate the torso and limbs, respectively.
Specifically, Node 0 is transformed from pooling layers and is robust to estimate
parts with relatively low DOFs. On the other side, dilated convolutional layers
empower Node 1 to capture long-range context information, which is helpful
to estimate parts with higher DOFs, such as the wrist and ankle. The normal
cell, shown in Fig. 4(a), consists of many dilated convolutional layers, which
greatly increase the receptive field of our model, and are critical to performance
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improvement. As shown in Table 1, if we remove dilated convolution from our
search space O, our searched model has more parameters and FLOPs, and its
performance drops from 53.6 mm to 59.9 mm. The reduction cell employs many
depth-wise convolution layers to fuse multi-scale features efficiently. Similarly,
we validate their importance by removing these operations from O, and it leads
to a 5.1 mm decline in performance.

The Part-Awareness of Our Model
We begin to validate the part-awareness of our approach from two perspectives.
First, to investigate whether searched head networks are part-specific, we intend
to shuffle the order of parts when we re-train our model in the evaluation stage.
However, it is a little troublesome to do this since we would have to modify the
data augmentation policy according to the shuffled order. Alternatively, as shown
in Fig. 5, we propose to shuffle the order of heat maps produced in the last fusion
cell. The implementation of the shuffle operation is the same as ShuffleNet [59],
which is efficient and GPU-friendly. If our model trained with the shuffled order
behaves obviously worse than the original one, we can validate that our optimized
head networks are part-aware. We run experiments three times and train our
model with different shuffled orders. As shown in Table 2, we observe that all
models trained with shuffled orders suffer from a significant drop in performance,
more than 3 mm in MPJPE. As we take a closer look, the decline in performance
also reflects on every individual part, especially parts with higher DOFs (e.g.,
ankle, knee), and their estimation accuracy might drop by more than 5 mm. By
comparing models trained with shuffled orders, we validate that our approach
learns part-specific head networks for specific body parts in the search stage.

In our model, the fusion cell plays a pivotal role in learning part-specific
head networks. To evaluate the importance of the fusion cell, we replace them
with deconvolution layers and only search the backbone network. The backbone
network only consists of normal cells and reduction cells. For a fair comparison,
all constructed networks have two normal cells and five reduction cells, and their

Table 2. Quantitative evaluation of the shuffled part order on Human3.6M using
Protocol 2. We set Nc and Ni to 10 and 2 respectively. We compute part-wise MPJPE
to report performance. Bold values indicate parts estimated by Node 0 and italic values
denote ones estimated by Node 1.

Methods Pelvis R Hip R Kn. R An. L Hip L Kn. L An. Torso Neck

Ours, original 0.0 23.2 53.4 74.4 22.6 47.3 75.5 37.2 44.7

Ours, shuffled 1 0.0 24.3 56.2 78.3 23.7 50.3 78.6 38.9 48.3

Ours, shuffled 2 0.0 25.1 56.1 83.8 24.9 52.1 82.8 39.4 46.5

Ours, shuffled 3 0.0 24.3 58.2 81.7 24.2 53.6 82.7 40.4 45.4

Methods Nose Head L Sh. L El. L Wr. R Sh. R El. R Wr. Avg

Ours, original 46.9 50.8 51.7 72.1 92.2 50.6 76.0 93.9 53.6

Ours, shuffled 1 53.7 57.8 57.0 74.7 95.3 55.4 80.1 98.2 57.2

Ours, shuffled 2 50.7 55.7 54.2 74.1 93.3 53.5 79.9 96.0 56.9

Ours, shuffled 3 49.3 53.1 55.0 75.8 95.3 54.2 80.8 97.7 57.1
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Table 3. Quantitative evaluation of the importance of the fusion cell on Human3.6M
using Protocol 2. BS and WS denote the backbone search and the whole architecture
search, respectively. We compute action-wise MPJPE to report the network perfor-
mance. Lower is better, best in bold, second-best underlined.

Methods Backbone Pretrain Params FLOPs Direct. Dicuss Eating Greet Phone Pose

Ours, ResNet ResNet50 � 34.3M 14.1G 50.8 52.3 54.8 57.9 52.8 47.0

Ours, BS Searched – 20.5M 12.5G 49.0 59.9 49.8 53.5 58.0 51.0

Ours, WS – – 13.0M 10.7G 46.3 55.3 47.2 49.0 55.0 48.2

Methods Purch. Sitting SitD. Smoke Photo Wait Walk WalkD. WalkT. Avg

Ours, ResNet 52.1 62.0 73.7 52.6 58.3 50.4 40.9 54.1 45.1 53.9

Ours, BS 56.0 65.8 77.5 56.3 63.8 52.9 44.4 62.7 50.0 57.1

Ours, WS 52.6 64.6 70.8 54.4 60.0 48.8 40.9 58.3 46.7 53.6

only difference is whether they have fusion cells. In Table 3, compared to the
backbone search, searching the whole network architecture improves performance
by 3.5 mm and reduces 37% parameters and 14% FLOPs. In comparison with
the model built on the commonly used ResNet-50 backbone, we advance esti-
mation accuracy by 0.3 mm with 62% fewer parameters and 24% fewer FLOPs.
Through our experiments, we show that fusion cells significantly contribute to
the compactness and efficiency of our approach and exhibit more competitive
performance over models using the ResNet-50 backbone.

The Number of Computational Cells
Instead of stacking only ten computation cells, we attempt to construct a deeper
part-aware 3D pose estimator, according to Eq. 6. As shown in Table 4, as
we increase the number of computational cells, our model becomes better in
performance but has more parameters and FLOPs. When Nc is 20, our model
achieves the best performance, 47.3 mm in MPJPE. As we increase Nc from 10
to 20, the gain in network parameters (from 13.0M to 20.4M) and FLOPs (from
10.7G to 14.1G) also leads to an improvement in performance (from 53.6 mm
to 47.3 mm). This phenomenon also demonstrates that the network architecture
optimized during the search process is computationally efficient.

Table 4. Quantitative evaluation of the number of cells on Human3.6M using Protocol
2. Nc denotes the number of computational cells. We compute action-wise MPJPE to
report the network performance. Lower is better, best in bold, second-best underlined.

Methods Params FLOPs Direct. Discuss Eating Greet Phone Pose Purch.

Ours, Nc = 10 13.0M 10.7G 46.3 55.3 47.2 49.0 55.0 48.2 52.6

Ours, Nc = 15 14.7M 12.7G 45.8 53.7 43.4 49.4 52.0 46.4 51.4

Ours, Nc = 20 20.4M 14.1G 41.4 48.6 42.0 45.3 47.1 42.3 46.0

Methods Sitting SitD. Smoke Photo Wait Walk WalkD. WalkT. Avg

Ours, Nc = 10 64.6 70.8 54.4 60.0 48.8 40.9 58.3 46.7 53.6

Ours, Nc = 15 60.8 63.4 50.9 55.6 45.7 40.8 55.4 44.5 50.9

Ours, Nc = 20 57.9 62.1 47.8 51.2 43.6 36.1 51.1 41.5 47.3
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Table 5. Comparison with state-of-the-art methods on Human3.6M using Protocol 1.
S denotes our small part-aware model with ten cells, and L denotes our large model
with twenty cells. Lower is better, best in bold, second-best underlined.

Methods Dire. Dis. Eat Gre. Phe. Pose Pur. Sit SitD. Smo. Phot.. Wait Walk WD. WT. Ave.

Yasin [58] 88.4 72.5 108.5 110.2 97.1 81.6 107.2 119.0 170.8 108.2 142.5 86.9 92.1 165.7 102.0 108.3

Chen [6] 71.6 66.6 74.7 79.1 70.1 67.6 89.3 90.7 195.6 83.5 93.3 71.2 55.7 85.9 62.5 82.7

Moreno [36] 67.4 63.8 87.2 73.9 71.5 69.9 65.1 71.7 98.6 81.3 93.3 74.6 76.5 77.7 74.6 76.5

Zhou [64] 47.9 48.8 52.7 55.0 56.8 49.0 45.5 60.8 81.1 53.7 65.5 51.6 50.4 54.8 55.9 55.3

Sun [47] 42.1 44.3 45.0 45.4 51.5 43.2 41.3 59.3 73.3 51.0 53.0 44.0 38.3 48.0 44.8 48.3

Fang [12] 38.2 41.7 43.7 44.9 48.5 40.2 38.2 54.5 64.4 47.2 55.3 44.3 36.7 47.3 41.7 45.7

Sun [48] 36.9 36.2 40.6 40.4 41.9 34.9 35.7 50.1 59.4 40.4 44.9 39.0 30.8 39.8 36.7 40.6

Moon [35] 31.9 30.6 39.9 35.5 34.8 30.2 32.1 35.0 43.8 35.7 37.6 30.1 24.6 35.7 29.3 34.0

Ours, S 31.8 33.4 38.9 37.9 36.4 36.6 32.6 36.2 47.8 38.9 43.0 32.6 26.5 39.8 30.8 36.4

Ours, L 27.5 30.9 34.0 35.5 32.4 30.8 31.9 32.7 41.9 36.3 39.1 28.4 23.3 37.1 27.0 32.7

4.4 Comparison with the State-of-the-Art

To demonstrate the effectiveness and the generalization ability of our approach,
we conduct our experiments on both single-person and multi-person 3D pose
estimation benchmarks. Previous works have different experimental settings, and
we summarize comparison results in Tables 5, 6 and 7, respectively. In Fig. 6, we
show qualitative results produced by our model with ten cells. It can generalize
well for in-the-wild images, even on challenging poses and crowded scenes.

Single-Person 3D Human Pose Estimation: We compare our approach
on Human3.6M with state-of-the-art methods in Tables 5 and 6. By reducing
about 40% parameters, our large part-aware model advances the-state-of-the-art
accuracy by 1.3 mm and 2.3 mm in protocol 1 and protocol 2, respectively. If
we add supervision on intermediate feature maps, the performance of our small

Table 6. Comparison with state-of-the-art methods on Human3.6M using Protocol 2.
S denotes our small part-aware model with ten cells, and L denotes our large model
with twenty cells. Lower is better, best in bold, second-best underlined.

Methods Dire. Dis. Eat Gre. Phe. Pose Pur. Sit SitD. Smo. Phot. Wait Walk WD. WT. Ave.

Chen [6] 89.9 97.6 90.0 107.9 107.3 93.6 136.1 133.1 240.1 106.7 139.2 106.2 87.0 114.1 90.6 114.2

Tome [51] 65.0 73.5 76.8 86.4 86.3 68.9 74.8 110.2 173.9 85.0 110.7 85.8 71.4 86.3 73.1 88.4

Moreno [36] 69.5 80.2 78.2 87.0 100.8 76.0 69.7 104.7 113.9 89.7 102.7 98.5 79.2 82.4 77.2 87.3

Zhou [64] 68.7 74.8 67.8 76.4 76.3 84.0 70.2 88.0 113.8 78.0 98.4 90.1 62.6 75.1 73.6 79.9

Mehta [33] 57.5 68.6 59.6 67.3 78.1 56.9 69.1 98.0 117.5 69.5 82.4 68.0 55.3 76.5 61.4 72.9

Fang [12] 50.1 54.3 57.0 57.1 66.6 53.4 55.7 72.8 88.6 60.3 73.3 57.7 47.5 62.7 50.6 60.4

Omran [37] – – – – – – – – – – – – – – – 59.9

Sun [47] 52.8 54.8 54.2 54.3 61.8 53.1 53.6 71.7 86.7 61.5 67.2 53.4 47.1 61.6 63.4 59.1

Kanazawa [47] – – – – – – – – – – – – – – – 56.8

Moon [35] 50.5 55.7 50.1 51.7 53.9 46.8 50.0 61.9 68.0 52.5 55.9 49.9 41.8 56.1 46.9 53.3

Sun [48] 47.5 47.7 49.5 50.2 51.4 43.8 46.4 58.9 65.7 49.4 55.8 47.8 38.9 49.0 43.8 49.6

Ours, S 46.3 55.3 47.2 49.0 55.0 48.2 52.6 64.6 70.8 54.4 60.0 48.8 40.9 58.3 46.7 53.6

Ours, L 41.4 48.6 42.0 45.3 47.1 42.3 46.0 57.9 62.1 47.8 51.2 43.6 36.1 51.1 41.4 47.3
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Table 7. Comparison with state-of-the-art methods on MuPoTS-3D using all ground
truths. S denotes our small part-aware model with ten cells, and L denotes our large
model with twenty cells. Higher is better, best in bold, second-best underlined.

Methods S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Rogez [45] 67.7 49.8 53.4 59.1 67.5 22.8 43.7 49.9 31.1 78.1

Mehta [34] 81.0 60.9 64.4 63.0 69.1 30.3 65.0 59.6 64.1 83.9

Moon [35] 94.4 77.5 79.0 81.9 85.3 72.8 81.9 75.7 90.2 90.4

Ours, S 93.1 76.7 79.9 78.2 83.6 64.6 79.0 72.5 87.6 88.3

Ours, L 95.8 80.2 81.3 84.6 87.1 74.5 82.7 79.4 91.2 93.3

Methods S11 S12 S13 S14 S15 S16 S17 S18 S19 S20

Rogez [45] 50.2 51.0 51.6 49.3 56.2 66.5 65.2 62.9 66.1 59.1

Mehta [34] 68.0 68.6 62.3 59.2 70.1 80.0 79.6 67.3 66.6 67.2

Moon [35] 79.2 79.9 75.1 72.7 81.1 89.9 89.6 81.8 81.7 76.2

Ours, S 76.1 79.4 71.1 70.6 77.7 86.6 87.1 80.3 79.5 72.0

Ours, L 83.4 82.0 78.6 76.5 84.3 92.1 91.1 85.3 82.4 77.8

Fig. 6. Qualitative results on different datasets. Our small model produces convincing
results even on challenging poses and crowded scenes.

model can be significantly improved, achieving 50.4 mm in Protocol 2. Moreover,
our method is also compatible with some efficient learning frameworks [19,25,62].

Multi-person 3D Human Pose Estimation: For multi-person 3D pose esti-
mation, we use RootNet [35] to estimate absolute depth for the root joint of each
person. As shown in Table 7, we compare our model with previous state-of-the-
art multi-person pose estimation methods on MuPoTS-3D, and our large part-
aware 3D pose estimator achieves more superior performance on every sequence.
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5 Conclusion and Future Works

In this work, we propose to estimate 3D poses of different parts with part-
specific neural architectures. In the search stage, we optimize the architectures
of different types of cells via gradient descent. Then, we interweave optimized
computational cells to construct our part-aware 3D pose estimator, which is com-
pact and efficient. Our model advances the state-of-the-art accuracy on both the
single-person and multi-person 3D human pose estimation benchmarks. In the
future, we attempt to explore other NAS methods to search 3D pose estimators
in a larger space, which may open up the possibility for a global optimization.
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Abstract. Machine learning models are known to perpetuate and even
amplify the biases present in the data. However, these data biases fre-
quently do not become apparent until after the models are deployed.
To tackle this issue and to enable the preemptive analysis of large-
scale dataset, we present our tool. REVISE (REvealing VIsual biaSEs)
is a tool that assists in the investigation of a visual dataset, surfacing
potential biases currently along three dimensions: (1) object-based, (2)
gender-based, and (3) geography-based. Object-based biases relate to
size, context, or diversity of object representation. Gender-based metrics
aim to reveal the stereotypical portrayal of people of different genders.
Geography-based analyses consider the representation of different geo-
graphic locations. REVISE sheds light on the dataset al.ong these dimen-
sions; the responsibility then lies with the user to consider the cultural
and historical context, and to determine which of the revealed biases
may be problematic. The tool then further assists the user by suggest-
ing actionable steps that may be taken to mitigate the revealed biases.
Overall, the key aim of our work is to tackle the machine learning bias
problem early in the pipeline. REVISE is available at https://github.
com/princetonvisualai/revise-tool.

Keywords: Dataset bias · Dataset analysis · Computer vision fairness

1 Introduction

Computer vision dataset bias is a well-known and much-studied problem. In
2011, Torralba and Efros [60] highlighted the fact that every dataset is a unique
slice through the visual world, representing a particular distribution of visual
data. Since then, researchers have noted the under-representation of object
classes [9,44,47,49,54,65], object contexts [13,16,52], object sub-categories [71],
scenes [70], gender [10,35], gender contexts [11,69], skin tones [10,63], geo-
graphic locations [16,55] and cultures [16]. The downstream effects of these
under-representations range from the more innocuous, like limited generaliza-
tion of car classifiers [60], to the much more serious, like having deep societal
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Fig. 1. Our tool takes in as input a visual dataset and its annotations, and outputs
metrics, seeking to produce insights and possible actions.

implications in automated facial analysis [10,26]. Efforts such as Datasheets for
Datasets [23] have played an important role in encouraging dataset transparency
through articulating the intent of the dataset creators, summarizing the data col-
lection processes, and warning downstream dataset users of potential biases in
the data (Fig. 1).

However, this is only the beginning. It is often impossible to foresee the biases
hiding in the data, and manual review is certainly not a feasible strategy given
the scale of modern datasets.

Bias Detection Tool. To mitigate this issue, we provide an automated tool
for REvealing VIsual biaSEs (REVISE) in datasets. REVISE is a broad-purpose
tool for surfacing the under- and different- representations hiding within visual
datasets. For the current exploration we limit ourselves to three sets of met-
rics: (1) object-based, (2) gender-based and (3) geography-based. Object-based
analysis is most familiar to the computer vision community [60], considering
statistics about object frequency, scale, context, or diversity of representation.
Gender-based analysis considers the representation of people of different gen-
ders within the dataset [23,69]; such issues are gaining attention within the
computer vision community. Future iterations of REVISE will include analysis
of additional axes of identity. Finally, geography-based analysis considers the
portrayal of different geographic regions within the dataset; this is a new but
very important conversation within the community [55].

We imagine two primary use cases: (1) dataset builders can use the actionable
insights produced by our tool during the process of dataset compilation to guide
the direction of further data collection, and (2) dataset users who train models
can use the tool to understand what kinds of biases their models may inherit as
a result of training on a particular dataset.

Example Findings. REVISE automatically surfaces a variety of metrics that
highlight unrepresentative or anomalous patterns in the dataset. To validate the
usefulness of the tool, we have used it to analyze several datasets commonly
used in computer vision: COCO [43], OpenImages [39], YFCC100m [58]. Some
examples of the kinds of automatic insights our tool has found include:

– In the object detection dataset COCO [43], some objects, e.g., airplane, bed
and pizza, are frequently large in the image. This is because fewer images of
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airplanes appear in the sky (far away; small) than on the ground (close-up;
large). One way for the dataset creator to mitigate the problem is to query
for images of airplane appearing in scenes of mountains, desert, sky.

– The OpenImages dataset [39] depicts a large number of people who are too
small in the image for human annotators to determine their gender; neverthe-
less, we found that annotators infer that they are male 69% of the time, and
especially in scenes of outdoor sports fields, parks. Computer vision
researchers might want to exercise caution with these gender annotations so
they don’t propagate into the model.

– In the computer vision and multimedia dataset YFCC100m (Yahoo Flickr
Creative Commons 100 million) [58] images come from 196 different countries.
However, we estimate that for around 47% of those countries—especially in
developing regions of the world—the images are predominantly photos taken
by visitors to the country rather than by locals, potentially resulting in a
stereotypical portrayal.

A benefit of our tool is that a user doesn’t need to have specific biases in
mind, as these can be hard to enumerate. Rather, the tool automatically surfaces
unusual patterns. REVISE cannot automatically say which of these patterns,
or lack of patterns, are problematic, and leaves that analysis up to the user’s
judgment and expertise. It is important to note that “bias” is a contested term,
and while our tool seeks to surface a variety of findings that are interesting to
dataset creators and users, not all may be considered forms of bias by everyone.

2 Related Work

Data Collection. Visual datasets are constructed in various ways, with the
most common being through keyword queries to search engines, whether singu-
lar (e.g., ImageNet [53]) or pairwise (e.g., COCO [43]), or by scraping websites
like Flickr (e.g., YFCC100m [58], OpenImages [39]). There is extensive pre-
processing and cleaning done on the datasets. Human annotators, sometimes
in conjunction with automated tools [70], then assign various labels and anno-
tations. Dataset collectors put in significant effort to deal with problems like
long-tails to ensure a more balanced distribution, and intra-class diversity by
doing things like explicitly seeking out non-iconic images beyond just the object
itself in focus.

Dataset Bias. Rather than pick a single definition, we adopt an inclusive notion
of bias and seek to highlight ways in which the dataset builder can monitor and
control the distribution of their data. Proposed ways to deal with dataset bias
include cross-dataset analysis [60] and having the machine learning community
learn from data collection approaches of other disciplines [8,32]. Recent work [51]
has looked at dataset issues related to consent and justice, and motivate enforcing
Institutional Review Boards (IRB) approval for large scale datasets. Construc-
tive solutions will need to combine automated analysis with human judgement
as automated methods cannot yet understand things like the historical context
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of a statistical imbalance in the dataset. Our work takes this approach by auto-
matically supplying a host of new metrics for analyzing a dataset along with
actions that can be taken to mitigate these findings. However, the responsibil-
ity lies with the user to select next steps. The tool is open-source, lowering the
resource and effort barrier to creating ethical datasets [32].

Computer Vision Tools. Hoiem et al.[27] built a tool to diagnose the weak-
nesses of object detector models in order to help improve them. More recently,
tools in the video domain [4] are looking into forms of dataset bias in activity
recognition [56]. We similarly in spirit hope to build a tool that will, as one
goal, help dataset curators be aware of the patterns and biases present in their
datasets so they can iteratively make adjustments.

Algorithmic Fairness. In addition to looking at how models trained on one
dataset generalize poorly to others [59,60], many more forms of dataset bias
are being increasingly noticed in the fairness domain [12,45,66]. There has been
significant work looking at how to deal with this from the algorithm side [17,18,
36,62] with varying definitions of fairness [21,24,37,50,68] that are often deemed
to be mathematically incompatible with each other [14,38], but in this work, we
look at the problem earlier in the pipeline from the dataset side.

Automated Bias Detectors. IBM’s AI Fairness 360 [6] is an open-source
toolkit that discovers biases in datasets and machine learning models. How-
ever, its look into dataset biases is limited in that it first trains a model on
that dataset, then interrogates this trained model with specific questions. On
the other hand, REVISE looks directly at the dataset and its annotations to
discover model-agnostic patterns. The Dataset Nutrition Label [28] is a recent
project that assesses machine learning datasets. Differently, our approach works
on visual rather than tabular data which allows us to use additional computer
vision techniques, and goes deeper in terms of presenting a variety of graphs and
statistical results. Swinger et al. [57] looks at automatic detection of biases in
word embeddings, but we look at patterns in visual images and their annotations.

3 Tool Overview

REVISE is intended to be general enough to yield insights at varying levels of
granularity, depending on the annotations available. We do use external tools and
pretrained models [1,30,33,34,70] to derive some of our metrics, and acknowl-
edge these models themselves may contain biases.

REVISE takes the form of a Jupyter notebook interface that allows explo-
ration and customization of metrics. The analyses that can be performed depend
on the annotations available:

Object-based insights require instance labels and, if available, their corre-
sponding bounding boxes and object category. Datasets are frequently collected
together with manual annotations, but we are also beginning to use automated
computer vision techniques to infer some semantic labels, like scenes.
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Gender-based insights require gender labels of the people in the images. The
tool is general enough that given labels of any groupings of people, such as racial
groups, the corresponding analyses can be performed. In this paper we’ve limited
our analyses to a grouping based on perceived binary gender because these labels
already exist in the datasets we look at, even though it is not at all inclusive
of all gender categories. We use the terms male and female to refer to binarized
socially-perceived gender expression, and not gender identity nor sex assigned
at birth, neither of which can be inferred from an image.

Table 1. Object-based summary: for image content and object annotations of COCO

Metric Example insight Example action

Object counts Within the supercategory appliance,
oven and refrigerator are
overrepresented and toaster is
underrepresented

Query for more toaster images

Duplicate
annotations

The same object is frequently labeled
as both doughnut and bagel

Manually reconcile the duplicate
annotations

Object scale Airplane is overrepresented as very
large in images, as there are few
images of airplanes smaller and flying
in the sky

Query more images of airplane

with kite, since they’re more likely
to have a small airplane

Object
co-occurrences

Person appears more with unhealthy
food like cake or hot dog than
broccoli or orange

Query for more images of people
with a healthier food

Scene diversity Baseball glove doesn’t occur much
outside of sports fields

Query images of baseball glove in
different scenes like a sidewalk

Appearance
diversity

The appearance of furniture objects
become more varied when they come
from scenes like water, ice, snow

and outdoor sports fields, parks

rather than predominantly from home

or hotel

Query more images of furniture in
outdoor sports fields, parks,
since this scene is more common
than water, ice, snow, and still
contributes appearance diversity

Geography-based insights require country- or subregion-level annotations on
where each image is taken. Information about the user who took each image
would also be helpful—for example to determine if they were a local or a tourist.
We do not have this user information in the datasets we analyze and instead infer
it from the language and content of the tag captions.

In the rest of the paper we will describe some insights automatically generated
by our tool on various datasets, and potential actions that can be taken.

4 Object-Based Analysis

We begin with an object-based approach to gain a basic understanding of a
dataset. Much visual recognition research has centered on recognizing objects as
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the core building block [19], and a number of object recognition datasets have
been collected e.g., Caltech101 [20], PASCAL VOC [19], ImageNet [15,53]. In
Sect. 4.1 we introduce 6 such metrics reported by REVISE; in Sect. 4.2 we dive
into the actionable insights we surface as a result, all summarized in Table 1.

4.1 Object-Based Metrics

Object Counts. Object counts in the real world tend to naturally follow a long-
tail distribution [49,54,65]. But for datasets, there are two main views: reflect-
ing the natural long-tail distribution (e.g., in SUN [64]) or approximately equal
balancing (e.g., in ImageNet [53]). Either way, the first-order statistic when ana-
lyzing a dataset is to compute the per-category counts and verify that they are
consistent with the target distribution. Objects can also be grouped into hierar-
chical supercategories: e.g., an appliance supercategory encompasses the more
granular instances of oven, refrigerator, and microwave in COCO [43]. By
computing how frequently an object is represented both within its supercategory,
as well as all objects, this allows for a fined-grained look at frequency statistics:
for example, while the oven and refrigerator objects fall below the median
number of instances for an object class in COCO, it is nevertheless notable that
both of these objects are around double as represented as the average object
from the appliance class (Fig. 2).

Fig. 2. Oven and refrigerator counts fall below the median of object classes in COCO;
however, they are actually over-represented within the appliance category.

Duplicate Annotations. A common issue with object dataset annotation is
the labeling of the same object instance with two names (e.g., cup and mug),
which is especially problematic in free-form annotation datasets such as Visual
Genome [40]. In datasets with closed-world vocabulary, image annotation is com-
monly done for a single object class at a time causing confusion when the same
object is labeled as both trumpet and trombone [53]. While these occurrences are
manually filtered in some datasets, automatic identification of such pairs is useful
for both dataset curators (to remove errors) and to dataset users (to avoid over-
counting). REVISE automatically identifies such object instances, and in the
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OpenImages dataset [39] some examples of automatically detected pairs include
bagel and doughnut, jaguar and leopard, and orange and grapefruit.

Object Scale. It is well-known that object size plays a key role in object recog-
nition accuracy [27,53], as well as semantic importance in an image [7]. While
many quantizations of object scale have been proposed [27,43], we aim for a
metric that is both comparable across object classes and invariant to image res-
olution to be suitable for different datasets. Thus, for every object instance we
compute the fraction of image area occupied by this instance, and quantize into
5 equal-sized bins across the entire dataset. This binning reveals, for example,
that rather than an equal 20% for each size, 77% of airplanes and 73% of
pizzas in COCO are extra large (>9.3% of the image area).

Object Co-occurrence. Object co-occurrence is a known contextual visual cue
exploited by object detection models [22,48], and thus can serve as an impor-
tant measure of the diversity of object context. We compute all pairwise object
class co-occurrence statistics within the dataset, and use them both to iden-
tify surprising co-occurrences as well as to generate potential search queries to
diversify the dataset, as described in Sect. 4.2. For example, we find that in
COCO, person appears in 43% of images containing the food category; how-
ever, person appears in a smaller percentage of images containing broccoli
(15%), carrot (21%), and orange (29%), and conversely a greater percentage
of images containing cake (55%), donut (55%), and hot dog (56%).

Scene Diversity. Building on quantifying the common context of an object,
we additionally strive to measure the scene diversity directly. To do so, for every
object class we consider the entropy of scene categories in which the object
appears. We use a ResNet-18 [25] trained on Places [70] to classify every image
into one of 16 scene groups,1 and identify objects like person that appear in
a higher diversity of scenes versus objects like baseball glove that appear in
fewer kinds of scenes (almost all baseball fields). This insight may guide dataset
creators to further augment the dataset, as well as guide dataset users to want
to test if their models can support out-of-context recognition on the objects that
appear in fewer kinds of scenes, for example baseball gloves in a street.

Appearance Diversity. Finally, we consider the appearance diversity (i.e.,
intra-class variation) of each object class, which is a primary challenge in object
detection [67]. We use a ResNet-110 network [30] trained on CIFAR-10 [41] to
extract a 64-dimensional feature representation of every instance bounding box,
resized to 32 × 32 pixels. We first validate that distances in this feature space
correspond to semantically meaningful measures of diversity. To do so, on the
COCO dataset we compute the average distance with n = 500, 000 between two
object instances of the same class (5.91 ± 1.44), and verify that it is smaller than

1 Because top-1 accuracy for even the best model on all 365 scenes is 55.19%, but
top-5 accuracy is 85.07%, we use the less granular scene categorization at the second
tier of the defined scene hierarchy here. For example, aquarium, church indoor, and
music studio fall into the scene group of indoor cultural.

http://places2.csail.mit.edu/scene_hierarchy.html
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the average distance between two object instances belonging to different classes
but the same supercategory (6.24 ± 1.42) and further smaller than the average
distance between two unrelated objects (6.48 ± 1.44). This metric allows us to
identify individual object instances that contribute the most to the diversity of
an object class, and informs our interventions in the next section.

4.2 Object-Based Actionable Insights

The metrics of Sect. 4.1 help surface biases or other issues, but it may not always
be clear how to address them. We strive to mitigate this concern by providing
examples of meaningful, actionable, and useful steps to guide the user.

For duplicate annotations, the remedy is straight-forward: perform manual
cleanup of the data, e.g., as in Appendix E of [53]. For the others the path is less
straight-forward. For datasets that come from web queries, following the litera-
ture [19,43,53] REVISE defines search queries of the form “XX and YY,” where XX
corresponds to the target object class, and YY corresponds to a contextual term
(another object class, scene category, etc.). REVISE ranks all possible queries
to identify the ones that are most likely to lead to the target outcome, and we
investigate this approach more thoroughly in Appendix C.

For example, within COCO, airplanes have low diversity of scale and are
predominantly large in the images. Our tool identifies that smaller airplanes
co-occurred with objects like surfboard and scenes like mountains, desert,
sky (which are more likely to be photographed from afar). In other words, size
matters by itself, but a skewed size distribution could also be a proxy for other
types of biases. Dataset creators aiming to diversify their dataset towards a more
uniform distribution of object scale can use these queries as a guide. These pair-
wise queries can similarly be used to diversify appearance diversity. Furniture
objects appear predominantly in indoor scenes like home or hotel, so querying
for furniture in scenes like water, ice, snow would diversify the dataset. How-
ever, this combination is quite rare, so we want to navigate the tradeoff between
a pair’s commonness and its contribution to diversity. Thus, we are more likely

Fig. 3. The left shows the tradeoff for furniture in COCO between how much scenes
increase appearance diversity (our goal) and how common they are (ease of collect-
ing this data). To maximize both, outdoor sports fields, parks would be the most
efficient way of augmenting this category. Water, ice, snow provides the most diver-
sity but is hard to find, and home or hotel is the easiest to find but provides little
diversity. On the right are sample images of furniture from these scenes.
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to be successful if we query for images in the more common outdoor sports
fields, parks scenes, which also brings a significant amount of appearance
diversity. The tool provides a visualization of this tradeoff (Fig. 3), allowing the
user to make the final decision.

5 Gender-Based Analysis

We next look into potential discrepancies in various aspects of how each gender
is represented, summarized in Table 2. The two datasets we have gender labels
for are COCO and OpenImages. The gender labels in COCO are from [69], and
their methodology in determining the gender for an image is that if at least one
caption contains the word “man” and there is no mention of “woman”, then it is
a male image, and vice versa for female images. We use the same methodology
along with other gendered labels like “boy” and “girl” on OpenImages using pre-
existing annotations of individuals. In Sect. 5.1 we explain some of the metrics
that we collect, and in Sect. 5.2 we discuss possible actions.

Table 2. Gender-based summary: investigating representation of different genders

Metric Example insight Example action

Contextual
representation

Males occur in more outdoors
scenes and with sports

objects. Females occur in
more indoors scenes and with
kitchen objects

Collect more images of
females in outdoors scenes
with sports objects, and vice
versa for males

Interactions In images with musical
instrument organ, males are
more likely to be actually
playing the organ

Collect more images of
females playing organs

Appearance
differences

Males in sports uniforms

tend to be playing outdoor
sports, while females in
sports uniforms are often
indoors or in swimsuits

Collect more images of each
gender with sports uniform

in their underrepresented
scenes

Gender label
inference

When gender is unlikely to be
identifiable, people in images
are by default labeled as male

Prune these gender labels
from the dataset so as not to
reinforce societal stereotypes

5.1 Gender-Based Metrics

Contextual Representation. We look into the contexts different genders tend
to be featured in through object groups and scenes, with results in Appendix A.

Instance Counts and Distances. Analyzing the object instances themselves
allows a more granualar understanding of gender biases in the dataset. In Open-
Images we find that objects like cosmetics, doll, and washing machine are
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overrepresented with females, and objects like rugby ball, beer, bicycle are
overrepresented with males. However, beyond just looking at the number of times
objects appear, we also look at the distance an object is from a person. We use

Fig. 4. 5 images from OpenImages for a person
(red bounding box) of each gender pictured with
an organ (blue bounding box) along the gradient of
inferred 3D distances. Males tend to be featured as
actually playing the instrument, whereas females
are oftentimes merely in the same space as the
instrument. (Color figure online)

a scaled distance measure as
a proxy for understanding if
a particular person, p, and
object, o, are actually inter-
acting with each other in
order to derive more meaning-
ful insight than just quanti-
fying a mutual appearance in
the same image. The distance
measure we define is dist =
distance between p and o centers√

areap∗areao to
estimate distance in the 3D
world. In Appendix B we val-
idate this notion that our dis-
tance measure can be used as a
proxy interaction. We consider
these distances in order to disambiguate between situations where a person is
merely in an image with an object in the background, rather than directly inter-
acting with the object, revealing biases that were not clear from just looking at
the frequency differences. For example, organ (the musical instrument) did not
have a statistically significant difference in frequency between the genders, but
does in distance, or under our interpretation, relation. In Fig. 4 we investigate
what accounts for this difference and see that when a male person is pictured
with an organ, he is likely to be playing it, whereas a female person may just be
near it but not necessarily directly interacting with it. Through this analysis we
discover something more subtle about how an object is represented.

Fig. 5. Qualitative interpretation of what the visual model has learned for the sports

uniform and flower objects between the two genders in OpenImages.
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Appearance Differences. We also look into the appearance differences in
images of each gender with a particular object. This is to further disambiguate
situations where numbers, or even distances, aren’t telling the whole story. This
analysis is done by (1) extracting FC7 features from AlexNet [42] pretrained
on Places [70] on a randomly sampled subset of the images to get scene-level
features, (2) projecting them into

√
number of samples dimensions (as is recom-

mended in [29,31]) to prevent over-fitting, and then (3) fitting a Linear Support
Vector Machine to see if it is able to learn a difference between images of the
same object with different genders. To make sure the female and male images
are actually linearly separable and the classifier isn’t over-fitting, we look at
both the accuracy as well as the ratio in accuracy between the SVM trained
on the correctly labeled data and randomly shuffled data. In Fig. 5 we can see
what the Linear SVM has learned on OpenImages for the sports uniform and
flower categories. For sports uniform, males tend to be represented as playing
outdoor sports like baseball, while females tend to be portrayed as playing an
indoor sport like basketball or in a swimsuit. For flower, we see another drastic
difference in how males and females are portrayed, where males pictured with a
flower are in formal, official settings, whereas females are in staged settings or
paintings.

Gender Label Inference. Finally, we examine the concerning practice of
assigning gender to a person in the case where the person is far too small to
be identifiable, or no face is even detected in the image. This is not to say that
if these cases are not met it is acceptable to assign gender, but merely that
assigning gender when one of these two cases is applicable is a particularly egre-
gious practice. For example, it’s been shown that in images where a person is
fully clad with snowboarding equipment and a helmet, they are still labeled as
male [11] due to preconceived stereotypes. We investigate the contextual cues
annotators rely on to assign gender, and consider the gender of a person unlikely
to be identifiable if the person is too small (below 1000 pixels, which is the
number of dimensions that humans require to perform certain recognition tasks
in color images [61]) or if automated face detection (using Amazon Rekogni-
tion [1]) fails. For COCO, we find that among images with a human whose
gender is unlikely to be identifiable, 77% are labeled male. In OpenImages,2 this
fraction is 69%. Thus, annotators seem to default to labeling a person as male
when they cannot identify the gender; the use of male-as-norm is a problematic
practice [46]. Further, we find that annotators are most likely to default to male
as a gender label in outdoor sports fields, parks scenes, which is 2.9x the
rate of female. Similarly, the rate for indoor transportation scenes is 4.2x and
outdoor transportation is 4.5x, with the closest ratio being in shopping and
dining, where male is 1.2x as likely as female. This suggests that in the absence
of gender cues from the person themselves, annotators make inferences based on
image context.

2 Random subset of size 100,000.
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5.2 Gender-Based Actionable Insights

Compared to object-based metrics, the actionable insights for gender-based met-
rics are less concrete and more nuanced. There is a tradeoff between attempting
to represent the visual world as it is versus as we think it should be. In contem-
porary societies, gender representation in various occupations, activities, etc. is
unequal, so it is not obvious that aiming for gender parity across all object cat-
egories is the right approach. Gender biases that are systemic and historical are
more problematic than others [5], and this analysis cannot be automated. Fur-
ther, the downstream impact of unequal representation depends on the specific
models and tasks. Nevertheless, we provide some recommendations.

A trend that appeared in the metrics is that images frequently fell in line
with common gender stereotypes. Each gender was under- or over-represented
in a particular way, and dataset collectors may want to adjust their datasets to
account for these by augmenting in the direction of the underrepresentations.
Dataset users may want to audit their models, and look into to what extent their
models have learned the dataset’s biases before they are deployed.

For the metric of gender label inference, this brings up a larger question of
which situations, if any, gender labels should ever be assigned. However, that is
outside the scope of this work, where we simply recommend that dataset creators
should give clearer guidance to annotators, and remove the gender labels on
images where gender can definitely not be determined (Table 3).

Table 3. Geography-based summary: looking into the geo-representation of a dataset,
and how that differs between countries and subregions

Metric Example insight Example action

Country
distribution

Most images are from the
USA, with very few from the
countries of Africa

Collect more images from the
countries of Africa

Local
language
analysis

Countries in Africa and Asia
that are already
underrepresented are
frequently represented by
non-locals rather than locals

Collect more images taken by
locals rather than visitors in
underrepresented countries

Tag counts,
appearances

Wildlife is overrepresented
in Kiribati, and mosque in
Iran

Collect other kinds of images
representing these countries

6 Geography-Based Analysis

Finally, we look into the geography of the images, and the cultural biases that
arise. We use the YFCC100m dataset [58] because of the geo-location data it
contains. However, we use a different subset of the dataset for metrics that
require more annotations, and explain each below.
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6.1 Geography-Based Metrics

Country Distribution3. The first thing we look at is the geographical dis-
tribution of where images come from. Researchers have looked at OpenImages
and ImageNet and found these datasets to be amerocentric and eurocentric [55],
with models dropping in performance when being run on images from underrep-
resented locales. In the left side of Fig. 6 it immediately stands out that the USA
is drastically overrepresented compared to other countries, with the continent of
Africa being very sparsely represented.

Local Language Analysis4. However, the locale of an image can be mislead-
ing, since if all the images taken in a particular country are only by tourists,
this would not necessarily encompass the geo-representation one would hope for.
The right side of Fig. 6 shows the percentage of images taken in a country and
captioned in something other than the national language(s), as detected by the
fastText library [33,34]. We use the lower bound of the binomial proportion con-
fidence interval in the figure so that countries with only a few images total which
happen to be mostly taken by tourists are not shown to be disproportionately
imaged as so. Even with this lower bound, we see that many countries that are
represented poorly in number are also under-represented by locals. To determine
the implications in representation based on who is portraying a country, we cat-
egorize an image as taken by a local, tourist, or unknown, using a combination of
language detected and tag content as an imperfect proxy. We then investigate if
there are appearance differences in how locals and tourists portray a country by
automatically running visual models. Although our tool does not find any such
notable difference, this kind of analysis can be useful on other datasets where a
local’s perspective is dramatically different than that of a tourist’s.

Fig. 6. Geographic distribution normalized by population (left) and percentage of tags
in a non-local language (right) in YFCC100m. Even when underrepresented countries
are imaged, it is not necessarily by someone local to that area.

3 Data subset: images with geo-location metadata.
4 Data subset: images with geo-location metadata and Flickr tags.



746 A. Wang et al.

Tag Counts, Appearances5. To gain insight into the actual content of what is
being portrayed in images from country to country, we look at the tags assigned
to each image. This allows us to discern if certain tags are over/under-represented
between countries. We consider the frequency with which each tag appears in the
set of a country’s tags, compared to the frequency that same tag makes up in the
rest of the countries. Some examples of over- and under- representations include
Kiribati with wildlife at 86x, North Korea with men at 76x, Iran with mosque
at 30x, Egypt with politics at 20x, and United States with safari at .92x. But
because, as we’ve seen in previous sections, numbers don’t always tell the full
story, we also look into the appearances of how different subregions, as defined
by the United Nations geoscheme [3], represent certain tags. DeVries et al. [16]
showed that object-recognition systems perform worse on images from countries
that are not as well-represented in the dataset due to appearance differences
within an object class, so we look into such appearance differences within a Flickr
tag. We perform the same analysis as in Sect. 5.1 where we run a Linear SVM
on the featurized images, this time performing 17-way classification between the
different subregions. In Fig. 7 we show an example of the dish tag, and what
images from the most accurately classified subregion, Eastern Asia, look like
compared to images from the other subregions. Images with the dish tag tend
to refer to food items in Eastern Asia, rather than a satellite dish or plate,
which is a more common practice in other regions. While this is a more innocent
discrepancy, one could imagine how it may be important to know if other tags
are represented differently across subregions so that models do not overfit to one
particular subregion’s representation of an object.

Fig. 7. A qualitative look at YFCC100m for what the visual model confidently and
correctly classifies for images with the dish tag as in Eastern Asia, and out.

6.2 Geography-Based Actionable Insights

Much like the gender-based actionable insights, those for geography-based are
also more general and dependent on what the model trained on the data will be
used for. Under- and over- representations can be approached in ways similar
to before by augmenting the dataset, an important step in making sure we do
not have a one-sided perspective of a country. Dataset users should validate
that their models are not overfitting to a particular country’s representation by

5 Data subset: images with geo-location metadata and cleaned English tags from a list
of 1540 from the Tag Prediction competition [2]. Because we are using this prexisting
dataset of tags in order to meaningfully relate different images, we are excluding a
large variety of images that have captions in a non-English language.
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testing on more geographically diverse data. It is clear that as we deploy more
and more models into the world, there should be some form of either equal or
equitable geo-representation. This emphasizes the need for data collection to
explicitly seek out more diversity in locale, and specifically from the people that
live there. Technology has been known to leave groups behind as it makes rapid
advancements, and it is crucial that dataset representation does not follow this
trend and base representation on digital availability. It requires more effort to
seek out images from underrepresented areas, but as Jo et al. [32] discuss, there
are actions that can and should be taken, such as explicitly collecting data from
underrepresented geographic regions, to ensure a more diverse representation.

7 Conclusions

In conclusion, we present the REVISE tool, which automates the discovery of
potential biases in visual datasets and their annotations. We perform this inves-
tigation along three axes: object-based, gender-based, and geography-based, and
note that there are many more axes along which biases live. What cannot be
automated is determining which of these biases are problematic and which are
not, so we hope that by surfacing anomalous patterns as well as actionable next
steps to the user, we can at least bring these biases to light.
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Abstract. Phrase grounding, the problem of associating image regions
to caption words, is a crucial component of vision-language tasks. We
show that phrase grounding can be learned by optimizing word-region
attention to maximize a lower bound on mutual information between
images and caption words. Given pairs of images and captions, we max-
imize compatibility of the attention-weighted regions and the words
in the corresponding caption, compared to non-corresponding pairs of
images and captions. A key idea is to construct effective negative cap-
tions for learning through language model guided word substitutions.
Training with our negatives yields a ∼ 10% absolute gain in accuracy
over randomly-sampled negatives from the training data. Our weakly
supervised phrase grounding model trained on COCO-Captions shows a
healthy gain of 5.7% to achieve 76.7% accuracy on Flickr30K Entities
benchmark. Our code and project material will be available at http://
tanmaygupta.info/info-ground.

Keywords: Mutual information · InfoNCE · Grounding · Attention

1 Introduction

Humans can learn from captioned images because of their ability to associate
words to image regions. For instance, humans perform such word-region asso-
ciations while acquiring facts from news photos, making a diagnosis from MRI
scans and radiologist reports, or enjoying a movie with subtitles. This word-
region association problem is called word or phrase grounding and is a crucial
capability needed for downstream applications like visual question answering,
image captioning, and text-image retrieval.

Existing object detectors can detect and represent object regions in an image,
and language models can provide contextualized representations for noun phrases
Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-58580-8 44) contains supplementary material, which is
available to authorized users.

c© Springer Nature Switzerland AG 2020
A. Vedaldi et al. (Eds.): ECCV 2020, LNCS 12348, pp. 752–768, 2020.
https://doi.org/10.1007/978-3-030-58580-8_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58580-8_44&domain=pdf
http://tanmaygupta.info/info-ground
http://tanmaygupta.info/info-ground
https://doi.org/10.1007/978-3-030-58580-8_44
https://doi.org/10.1007/978-3-030-58580-8_44
https://doi.org/10.1007/978-3-030-58580-8_44


Contrastive Learning for Weakly Supervised Phrase Grounding 753

Fig. 1. Overview of our contrastive learning framework. We begin by extracting
region and word features using an object detector and a language model respectively.
Contrastive learning trains a word-region attention mechanism as part of a compat-
ibility function φθ between the set of region features from an image and individual
contextualized word representations. The compatibility function is trained to maxi-
mize a lower bound on mutual information with two losses. For a given caption word,
Limg learns to produce a higher compatibility for the true image than a negative image
in the mini-batch. Llang learns to produce a higher compatibility of an image with a
true caption-word than with a word in a negative caption. We construct negative cap-
tions by substituting a noun word like “donut” in the true caption with contextually
plausible but untrue words like “cookie” using a language model.

in the caption. However, learning a mapping between these continuous, indepen-
dently trained visual and textual representations is challenging in the absence of
explicit region-word annotations. We focus on learning this mapping from weak
supervision in the form of paired image-caption data without requiring laborious
grounding annotations.

Current state-of-the-art approaches [1,11,33] formulate weakly supervised
phrase grounding as a multiple instance learning (MIL) problem [18,25]. The
image can be viewed as a bag of regions. For a given phrase, all images with cap-
tions containing the phrase are treated as positive bags while remaining images
are treated as negatives. Models aggregate per region features or phrase scores to
construct image-level predictions that can be supervised with image-level labels
in the form of phrases or captions. Common aggregation approaches include
max or mean pooling, noisy-OR [13], and attention [11,18]. Popular training
objectives include binary classification loss [13] (whether the image contain the
phrase) or caption reconstruction loss [33] (generalization of binary classifica-
tion to caption prediction) or ranking objectives [1,11] (do true image-caption
or image-phrase pairs score higher than negative pairs).

Figure 1 provides an overview of our proposed contrastive training. We pro-
pose a novel formulation of the weakly supervised phrase grounding problem as
that of maximizing a lower bound on mutual information between set of region
features extracted from an image and contextualized word representations. We
use pretrained region and word representations from an object detector and a
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language model and perform optimization over parameters of word-region atten-
tion instead of optimizing the region and word representations themselves. Intu-
itively, to compute mutual information with a word’s representation, attention
must discard nuisance regions in the word-conditional attended visual represen-
tation, thereby selecting regions that match the word. For any given word, the
learned attention thus functions as a soft selection or grounding mechanism over
regions.

Since computing MI is intractable, we maximize the recently introduced
InfoNCE lower bound [30] on mutual information. The InfoNCE bound requires
a compatibility score between each caption word and the image to contrast pos-
itive image and caption word pairs with negative pairs in a minibatch. We use
two objectives. The first objective (Limg in Fig. 1) contrasts a positive pair with
negative pairs with the same caption word but different image regions. The sec-
ond objective (Llang in Fig. 1) contrasts a positive pair with negative pairs with
the same image but different captions. We show empirically that sampling neg-
ative captions randomly from the training data to optimize Llang does not yield
any gains over optimizing Limg only. Instead of random sampling, we propose
to use a language model to construct context-preserving negative captions by
substituting a single noun word in the caption.

We design the compatibility function using a query-key-value attention
mechanism. The queries and keys, computed from words and regions respec-
tively, are used to compute a word-specific attention over each region which acts
as a soft alignment or grounding between words and regions. The compatibil-
ity score between regions and word is computed by comparing attended visual
representation and the word representation.

Our key contributions are: (i) a novel MI based contrastive training frame-
work for weakly supervised phrase grounding; (ii) an InfoNCE compatibility
function between a set of regions and a caption word designed for phrase ground-
ing; and (iii) a procedure for constructing context-preserving negative captions
that provides ≈ 10% absolute gain in grounding performance.

1.1 Related Work

Our work is closely related to three active areas of research. We now provide an
overview of prior arts in each.

Weakly Supervised Phrase Grounding. Weakly supervised phrase localiza-
tion is typically posed as a multiple instance learning (MIL) problem [18,25]
where each image is considered as a bag of region proposals. Images whose cap-
tions mention a word or a phrase are treated as positive bags while rest of the
images are treated as negatives for that word or phrase. Features or scores for a
phrase or the entire caption are aggregated across all regions to make a predic-
tion for the image. Common methods of aggregation are max or average pooling,
noisy-OR [13], or attention [18,33]. With the ability to produce image-level scores
for pairs of images and phrases or captions, the problem becomes an image-level
fully-supervised phrase classification problem [13] or an image-caption retrieval
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problem [1,11]. An alternatives to the MIL formulations is the approach of
Ye et al. [44] which uses statistical hypothesis testing approach to link concepts
detected in an image and words mentioned in the sentence. While all the above
approaches assume paired image-caption data, Wang et al. [42] recently address
the problem of phrase grounding without access to image-caption pairs. Instead
they assume access to a set of scene and color classifiers, and object detectors to
detect concepts in the scene and use word2vec [27] similarity between concept
labels and caption words to achieve grounding.

MI-Based Representation Learning. Recently MI-based approaches have
shown promising results on a variety representation learning problems. Comput-
ing the MI between two representations is challenging as we often have access
to samples but not the underlying joint distribution that generated the sam-
ples. Thus, recent efforts rely on variational estimation of MI [3,6,20,30]. An
overview of such estimators is discussed in [31,40] while the statistical limita-
tions are reviewed in [26,34].

In practice, MI-based representation learning models are often trained by
maximizing an estimation of MI across different transformations of data. For
example, deep InfoMax [17] maximizes MI between local and global represen-
tation using MINE [6]. Contrastive predictive coding [16,30] inspired by noise
contrastive estimation [14,29] assumes an order in the features extracted from an
image and uses summary features to predict future features. Contrastive multi-
view coding [39] maximizes MI between different color channels or data modali-
ties while augmented multiscale Deep InfoMax [5] and SimCLR [8] extract views
using different augmentations of data points. Since the infoNCE loss is limited
by the batch size, several previous work rely on memory banks [15,28,43] to
increase the set of negative instances.

Joint Image-Text Representation Learning. With the advances in both
visual analysis and natural language understanding, there has been a recent
shift towards learning representation jointly from both visual and textual
domains [2,9,22–24,35–38,45]. ViLBERT [24] and LXMERT [38] learn repre-
sentation from both modalities using two-stream transformers, applied to image
and text independently. In contrast, UNITER [9], VisualBERT [23], Unicoder-
VL [22], VL-BERT [35] and B2T2 [2] propose a unified single architecture that
learns representation jointly from both domains. Our method is similar to the
first group, but differs in its fundamental goal. Instead of focusing on learning a
task-agnostic representation for a range of downstream tasks, we are interested
in the quality of region-phrase grounding emerged by maximizing mutual infor-
mation. Moreover, we rely on the language modality as a weak training signal
for grounding, and we perform phrase-grounding without any further finetuning.

2 Method

Consider the set of region features and contextualized word representation as two
multivariate random variables. Intuitively, estimating MI between them requires
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extracting the information content shared by these two variables. We model this
MI estimation as maximizing a lower bound on MI with respect to parameters of
a word-region attention model. This maximization forces the attention model to
downweight regions from the image that do not match the word, and to attend
to the image regions that contain the most shared information with the word
representation.

Section 2.1 describes MI and the InfoNCE lower bound. Section 2.2 intro-
duces notation and InfoNCE based objective for learning phrase grounding from
paired image caption data. Section 2.3 presents the design of a word-region
attention based compatibility function which is part of the InfoNCE objective.

2.1 InfoNCE Lower Bound on Mutual Information

Let x ∈ X and y ∈ Y be random variables drawn from a joint distribution with
density p(x, y). The MI between x and y measures the amount of information
that these two variables share:

MI(x, y) = E(x,y)∼p(x,y)

[
log

p(x, y)
p(x)p(y)

]
, (1)

which is also the Kullback–Leibler Divergence from p(x, y) to p(x)p(y).
However, computing MI is intractable in general because it requires a com-

plete knowledge of the joint and marginal distributions. Among the existing MI
estimators, the InfoNCE [30] lower bound provides a low-variance estimation
of MI for high dimensional data, albeit being biased [31]. The appealing vari-
ance properties of this estimator may explain its recent success in representation
learning [8,16,30,36]. InfoNCE defines a lower bound on MI by:

MI(x, y) ≥ log(k) − Lk(θ). (2)

Here, Lk is the InfoNCE objective defined in terms of a compatibility function
φ parametrized by θ: φθ : X ×Y → R. The lower bound is computed over a mini-
batch B of size k, consisting of one positive pair (x, y) ∼ p(x, y) and k−1 negative
pairs {(x′

i, y)}k−1
i=1 where x′ ∼ p(x):

Lk(θ) = EB

[
− log

(
eφθ(x,y)

eφθ(x,y) +
∑k−1

i=1 eφθ(x′
i,y)

)]
. (3)

Oord et al. [30] showed that maximizing the lower bound on MI by minimizing
Lk with respect to θ leads to a compatibility function φθ∗ that obeys

eφθ∗ (x,y) ∝ p(x|y)
p(x)

=
p(x, y)

p(x)p(y)
, (4)

where θ∗ is the optimal θ obtained by minimizing Lk.
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2.2 InfoNCE for Phrase Grounding

Recent work [11] has shown that pre-trained object detectors such as Faster-
RCNN [32] and language models such as BERT [12] provide rich representations
in the visual and textual domains for the phrase grounding problem. Inspired by
this, we aim to maximize mutual information between region features generated
by an object detector and contextualized word representation extracted by a
language model (Fig. 2).

Fig. 2. Compatibility function φθ with word-region attention. The figure shows
compatibility computation between the set of image regions and the word “mug” in
the caption. The compatibility function consists of learnable query-key-value func-
tions kr, vr, qw, vw. The query constructed from contextualized representation of the
word “mug” is compared to keys created from region features to compute attention
scores. The attention scores are used as weights to linearly combine values created
from region features to construct an attended visual representation for “mug”. The
compatibility is defined by the dot product of the attended visual representation and
value representation for “mug”.

Let us denote image region features for an image by R = {ri}m
i=1 where m is

the number of regions in the image with each ri ∈ R
dr . Similarly, caption word

representations are denoted as W = {wj}n
j=1 where n is the number of words in

the caption with each word represented as wj ∈ R
dw .

We maximize the InfoNCE lower bound on MI between image regions and
each individual word representation denoted by MI(R, wj). Thus using Eq. 2 we
maximize the following lower bound:

n∑
j=1

MI(R, wj) ≥ n log(k) −
n∑

j=1

Lkj(θ). (5)

We empirically show that maximizing the lower bound in Eq. 5 with an appro-
priate choice of compatibility function φθ results in learning phrase grounding
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without strong grounding supervision. The following section details the design
of the compatibility function.

2.3 Compatibility Function with Attention

The InfoNCE loss in our phrase grounding formulation requires a compatibility
function between the set of region feature vectors R and the contextualized
word representation wj . To define the compatibility function, we propose to
use a query-key-value attention mechanism [41]. Specifically, we define neural
modules kr, vr : Rdr → R

d to map each image region to keys and values and
qw, vw : R

dw → R
d to compute query and values for the words. The query

vectors for each word are used to compute the attention score for every region
given a word using

a(ri, wj) =
es(ri,wj)∑m

i′=1 es(ri′ ,wj)
, (6)

where s(ri, wj) = qw(wj)T kr(ri)/
√

d. The attention scores are used as a soft
selection mechanism to compute a word-specific visual representation using a
linear combination of region values

vatt(R, wj) =
m∑

i=1

a(ri, wj)vr(ri). (7)

Finally, the compatibility function is defined as φθ(R, wj) = vT
w(wj)

vatt(R, wj), where θ refers to the parameters of neural modules kr, vr, qw, and vw,
implemented using simple feed-forward MLPs. Following Eqs. 3 & 5, the
InfoNCE loss for phrase grounding is defined as

Limg(θ) = EB

⎡
⎣−

n∑
j=1

log

(
eφθ(R,wj)

eφθ(R,wj) +
∑k−1

i=1 eφθ(R′
i,wj)

)⎤
⎦ . (8)

which is marked using subscript img as negative pairs are created by replacing
image regions from a positive pair with regions extracted from negative instance
in the mini-batch.

Remark: We enforce compatibility between each word and all image regions
using MI(R, wj) in Eq. 5, but not between a region and all caption words
(MI(ri,W)). This is because the words only describe part of the image, so there
will be regions with no corresponding word in the caption.

2.4 Context-Preserving Negative Captions

The objective in Eq. 8 trains the compatibility function by contrasting positive
regions-word pairs against pairs with replaced image regions. We now propose
a complementary objective function that contrasts the positive pairs against
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negative pairs whose captions are replaced with plausible negative captions.
However, extracting negative captions that are related to a captions is chal-
lenging as it requires semantic understanding of words in a caption. Here, we
leverage BERT as a pretrained bidirectional language model to extract such
negative captions.

Fig. 3. Context-preserving negative captions. We construct negative captions
which share the same context as the true caption but substitute a noun word. We
choose the substitute using a language model such that it is plausible in the context
but we reject potential synonyms or hypernyms of the original word by a re-ranking
procedure.

For a caption with a noun word s and context c, we define a context-
preserving negative caption as one which has the same context c but a different
noun s′ with the following properties: (i) s′ should be plausible in the context;
and (ii) the new caption defined by the pair (s′, c) should be untrue for the
image. For example, consider the caption ‘‘A man is walking on a beach’’
where s is chosen as ‘‘man’’ and c is defined by ‘‘A [MASK] is walking on
a beach’’ where [MASK] is the token that denotes a missing word. A poten-
tial candidate for a context-preserving negative caption might be ‘‘A woman is
walking on a beach’’ where s′ is woman. However, ‘‘A car is walking on
a beach’’ and ‘‘A person is walking on a beach’’ are not negative cap-
tions because car is not plausible given the context, and the statement with
person is still true given that the original caption is true for the image.

Constructing Context-Preserving Negative Captions. We propose to use
a pre-trained BERT language model to construct context-preserving negative
captions for a given true caption. Our approach for extracting such words consists
of two steps: First, we feed the context c into the language model to extract 30
most likely candidates {s′

l}30l=1 for the masked word using probabilities p(s′|c)
predicted by BERT. Intuitively, these words correspond to those that fill in the
masked word in caption according to BERT. However, the original masked word
or its synonyms may be present in the set as well. Thus, in the second step,
we pass the original caption into BERT to compute q(s′

l|s, c) which we use as a
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proxy for how true (s′
l, c) is given that (s, c) is true. We re-rank the candidates

using the score p(s′|c)
q(s′|s,c) and we keep the top 25 captions {(s′

l, c)}25l=1 as negatives
for the original caption (s, c).

We empirically find that the proposed approach is effective in extracting
context-preserving negative captions. Figure 3 shows a context-preserving neg-
atives for a set of captions along with candidates that were rejected after re-
ranking. Note that the selected candidates match the context and the rejected
candidates are often synonyms or hypernyms of the true noun.

Training with Context-Preserving Negative Captions. Given the context-
preserving negative captions, we can train our compatibility function by contrast-
ing the positive pairs against negative pairs with plausible negative captions. We
use a loss function similar to InfoNCE to encourage higher compatibility score
of an image with the true caption than any negative caption. Let w and {w′

l}25l=1

denote the contextualized representation of the positive word s and the corre-
sponding negative noun words {s′

l}25l=1. The language loss is defined as

Llang(θ) = EB

[
− log

(
eφθ(R,w)

eφθ(R,w) +
∑25

l=1 eφθ(R,w′
l)

)]
. (9)

For captions with multiple noun words, we randomly select s from the noun
words for simplicity.

2.5 Implementation Details

Regions and Visual Features. We use the Faster-RCNN object detector pro-
vided by Anderson et al. [4] and used for extracting visual features in the current
state-of-the-art phrase grounding approach Align2Ground [11]. The detector is
trained jointly on Visual Genome object and attribute annotations and we use
a maximum of 30 top scoring bounding boxes per image with 2048 dimensional
ROI-pooled region features.

Contextualized Word Representations. We use a pretrained BERT lan-
guage model to extract 768 dimensional contextualized word representations for
each caption word. Note that BERT is trained on a text corpora using masked
language model training where words are randomly replaced by a [MASK] token
in the input and the likelihood of the masked word is maximized in the distri-
bution over vocabulary words predicted at the output. Thus, BERT is trained
to model distribution over words given context and hence suitable for modeling
p(s|c) defined in Sect. 2.4 for constructing context-preserving negative captions.

Query-Key-Value Networks. We use an MLP with 1 hidden layer for each
of kr, vr, qw, vw for all experiments except the ablation in Fig. 4. We use Batch-
Norm [19] and ReLU activations after the first linear layer. The hidden layer has
the same number of neurons as the input dimensions of these networks which
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are 2048 for (kr, vr), and 768 for (qw, vw). The output layer is 384 (= 768/2) for
all networks.

Losses. Since we only care about grounding noun phrases, we compute Limg

only for noun and adjective words in the captions as identified by a POS tagger
instead of all caption words for computation efficiency.

Optimization. We optimize Limg + Llang computed over batches of 50 image-
caption pairs using the ADAM optimizer [21] with a learning rate of 10−5. We
compute Limg for each image using other images in the batch as negatives.

Attention to Phrase Grounding. We use the BERT tokenizer to convert
captions into individual word or sub-word tokens. Attention is computed per
token. For evaluation, the phrase-level attention score for each region is computed
as the maximum attention score assigned to the region by any of the tokens in
the phrase. The regions are then ranked according to this phrase level score.

3 Experiments

Our experiments compare our approach to state-of-the-art on weakly supervised
phrase localization (Sect. 3.2), ablate gains due to pretrained language repre-
sentations and context-preserving negative sampling using a language model
(Sect. 3.3), and analyse the relation between phrase grounding performance and
the InfoNCE bound that we optimize as a proxy for phrase grounding (Sect. 3.4).

3.1 Datasets and Metrics

We train our models on image-caption pairs from COCO training set which con-
sists of ∼ 83K training images. We use the validation set with ∼ 41K images for
part of our analysis. Each image is accompanied with 5 captions. For evaluation,
we use the Flickr30K Entities validation set for model selection (early stopping)
and test set for reporting final performance. Both sets consist of 1K images with
5 captions each. We report two metrics:

Recall@k which is the fraction of phrases for which the ground truth bound-
ing box has an IOU ≥ 0.5 with any of the top-k predicted boxes.

Pointing accuracy which requires the model to predict a single point loca-
tion per phrase and the prediction is counted as correct if it falls within the
ground truth bounding box for the phrase. Unlike recall@k, pointing accuracy
does not require identifying the extent of the object. Since our model selects one
of the detected regions in the image, we use center of the selected bounding box
as the prediction for each phrase for computing pointing accuracy.
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3.2 Performance on Flickr30K Entities

Table 1 compares performance of our method to existing weakly supervised
phrase grounding approaches on the Flickr30K Entities test set. A few exist-
ing approaches train on Flickr30K Entities train set and report recall@1 while
recent methods use COCO train set and report pointing accuracy. Further, all
approaches use different visual features making direct comparison difficult. For
a fair comparison to state-of-the-art, we use Faster-RCNN trained on Visual
Genome object and attribute annotations used in Align2Ground [11] and report
performance for models trained on either datasets on both recall and pointing
accuracy metrics.

Table 1. Grounding performance on Flickr30K Entities test set. We make our
approach directly comparable to the current state-of-the-art, Align2Ground [11]. The
performance of older methods are reported for completeness but the use of different
visual features makes direct comparison difficult.

Method Training data Visual features R@1 R@5 R@10 Accuracy

GroundeR (2015) [33] Flickr30K Entities VGG-det (VOC) 28.94 – – –

Yeh et al. (2018) [44] Flickr30K Entities VGG-cls (IN) 22.31 – – –

Yeh et al. (2018) [44] Flickr30K Entities VGG-det (VOC) 35.90 – – –

Yeh et al. (2018) [44] Flickr30K Entities YOLO (COCO) 36.93 – – –

KAC Net+Soft KBP (2018) [7] Flickr30K Entities VGG-det (VOC) 38.71 – – –

Fang et al. (2015) [13] COCO VGG-cls (IN) – – – 29.00

Akbari et al. (2019) [1] COCO VGG-cls (IN) – – – 61.66

Akbari et al. (2019) [1] COCO PNAS Net (IN) – – – 69.19

Align2Ground (2019) [11] COCO Faster-RCNN (VG) – – – 71.00

Ours Flickr30K Entities Faster-RCNN (VG) 47.88 76.63 82.91 74.94

Ours COCO Faster-RCNN (VG) 51.67 77.69 83.25 76.74

Table 2. Benefits of language modeling. The first two rows show the gains due to
pretrained language representations. The next three rows show gains from each step in
our proposed context-preserving negative caption construction.

Negative captions Language model R@1 R@5 R@10 Accuracy

None BERT (Random) 25.66 59.57 75.16 57.37

None BERT (Pretrained) 35.74 72.91 82.07 66.89

Random BERT (Pretrained) 36.32 72.42 81.81 66.92

Contextually plausible BERT (Pretrained) 48.05 76.78 82.97 74.91

Excluding near-synonyms & hypernyms BERT (Pretrained) 51.67 77.69 83.25 76.74

Using the same training data and visual feature architecture, our model shows
a 5.7% absolute gain in pointing accuracy over Align2Ground. Learning using
our contrastive formulation is also quite sample efficient as can be seen by only
a 2 to 3 points drop in performance when the model is trained on the much
smaller Flickr30K Entities train set which has approximately one-third as many
image-caption pairs as COCO.
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3.3 Benefits of Language Modeling

Our approach benefits from language modeling in two ways: (i) using the pre-
trained language model to extract contextualized word representations, and
(ii) using the language model to sample context-preserving negative captions.
Table 2 evaluates along both of these dimensions.

Fig. 4. Relation between InfoNCE lower bound and phrase grounding performance with
training iterations for 3 different choices of key-value modules in the compatibility
function φθ. Each epoch is ∼ 8K iterations. The scattered points visualize the measured
quantities during training. The dashed lines are created by applying moving average
to highlight the trend.

Gains from Pretrained Word Representations. In Table 2, BERT (Random)
refers to the BERT architecture initialized with random weights and finetuned on
COCO image-caption data along with parameters of the attention mechanism.
BERT (Pretrained) refers to the off-the-shelf pretrained BERT model which
is used as a contextualized word feature extractor during contrastive learning
without finetuning. We observe a ∼10% absolute gain in both recall@1 and
pointing accuracy by using pretrained word representations from BERT.
Gains from Context-Preserving Negative Caption Sampling. Our
context-preserving negative sampling has two steps. The first step is drawing
negative noun candidates given the context provided by the true caption. The
second step is re-ranking the candidates to filter out likely synonyms or hyper-
nyms that are also true for the image.
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First, note that randomly sampling negative captions from training data for
computing Llang performs similarly to only training using Limg. Model trained
with contextually plausible negatives significantly outperforms random sampling
by ≥8% gain in recall@1 and pointing accuracy. Excluding near-synonyms and
hypernyms yields another ∼3 points gain in recall@1 and accuracy.

3.4 Is InfoNCE a Good Proxy for Learning Phrase Grounding?

The fact that optimizing our InfoNCE objective results in learning phrase
grounding is intuitive but not trivial. Figure 4 shows that maximizing the
InfoNCE lower bound correlates well with phrase grounding performance on a
heldout dataset. We make several interesting observations: (i) As training pro-
gresses (from left to right), InfoNCE lower bound (Eq. 5) mostly keeps increasing
on the validation set. This indicates that there is no overfitting in terms of the
InfoNCE bound. (ii) With the increase in InfoNCE lower bound, phrase ground-
ing performance first increases until peak performance and then decreases. This
shows that the InfoNCE bound is correlated with the grounding performance
but maximizing it fully does not necessarily yield the best grounding. A similar
observation has been made in [39] for representation learning. (iii) The peak per-
formance and the number of iterations needed for the best performance depends
on the choice of key-value-query modules. One and two layer MLPs hit the
peak faster and perform better than linear functions. We refer the reader to the
supplementary material for a discussion of limitations of our approach.

3.5 Qualitative Results

Figure 5 visualizes the word-region attention learned by our model. The quali-
tative results demonstrate the following abilities: (i) localizing different objects
mentioned in the same caption with varying degrees of semantic relatedness,
e.g., man and canine in row 1 vs. man and woman in row 3; (ii) disambiguation
between two instances of the same object category using caption context. For
example, boy and another in row 4 and bride and groom from other men and
women in row 3; (iii) localizing object parts such as toddler’s shirt in row 2 and
instrument’s mouthpiece in row 5; (iv) handling occlusion, e.g., table covered
with toys in row 6; (v) handling uncommon words or categories like ponytail
and mouthpiece in row 5 and hose in row 7.
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Fig. 5. Visualization of attention. We show all detected regions and top-3 attended
regions with attention scores for two words highlighted in each caption. More qualitative
results can be found on our project page http://tanmaygupta.info/info-ground/

4 Conclusion

In this work, we offer a novel perspective on weakly supervised phrase grounding
from paired image-caption data which has traditionally been cast as a multi-
ple instance learning problem. We formulate the problem as that of estimating
mutual information between image regions and caption words. We demonstrate

http://tanmaygupta.info/info-ground/
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that maximizing a lower bound on mutual information with respect to param-
eters of a region-word attention mechanism results in learning to ground words
in images. We also show that language models can be used to generate context-
preserving negative captions which greatly improve learning in comparison to
randomly sampling negatives from training data.
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1 Introduction

Gesture recognition and 3D hand pose estimation are both challenging and fast-
growing research topics which have received contiguous attention recently due
to their wide range of applications in human-computer interaction, robotics,
virtual reality, augmented reality, etc. The two tasks are closely correlated as they
both leverage heavily on joint-aware features, i.e. features related to the hand
joints [19,40]. On the other hand, the two tasks are often tackled separately by
dedicated systems [1,4,9,23,24]. Though some recent efforts [13,22,29] attempt
to handle the two tasks at one go, it does not consider to iteratively gain benefits
from mutual learning of them.

In this paper, we propose to perform gesture recognition and 3D hand pose
estimation mutually. We design a novel collaborative learning strategy to exploit
joint-aware features that are crucial for both tasks, with which gesture recogni-
tion and 3D hand pose estimation can learn to boost each other progressively,
as illustrated in Fig. 1.

Fig. 1. Overview of our proposed network architecture for gesture recognition and
3D hand pose estimation from videos. The input is video frames, and the output is
predicted gesture class of the video and 3D hand joint locations of each video frame.
The process flow of our network can be divided into 5 stages: (1) Generating J . (2)
Generating P and Predicting 3D Hand Pose. (3) Aggregating input to Gesture Sub-
Network. (4) Generating G and Recognizing Gesture Class. (5) Aggregating input to
Pose Sub-Network. (As shown by the (1)–(5) in this Figure). Stage (2) to (5) are
operated in an iterative way (details are introduced in Sect. 3.1).

Inspired by the successes [28,34] that use motion information for human
activity recognition in videos, we exploit motion information for better gesture
recognition by focusing more on joint-aware features. Specifically, we distinguish
slowly and fast-moving hand joints and exploit such motion information in the
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intermediate network layers to learn enhanced and enriched joint-aware features.
Beyond that, we propose a multi-order multi-stream feature analysis module
that exploits more discriminative and representative joint motion information
according to the intermediate joint-aware features.

Additionally, annotating 3D hand poses is often very laborious and time-
consuming. To address this issue, we propose a weakly supervised 3D pose esti-
mation technique that can learn accurate 3D pose estimation models from the
gesture labels which are widely available in many video data. We observe that the
weakly supervised learning improve the 3D pose estimation significantly when
only a few samples with 3D pose annotations are included, largely because the
exploited joint-aware features that are useful for both gesture recognition and
3D hand pose estimation tasks. At the other end, the weakly supervised learning
can also learn accurate gesture estimation models from hand image sequences
with 3D pose annotations with similar reasons.

The contributions of this work can be summarized from four aspects. First,
we propose a novel collaborative learning network that leverage joint-aware fea-
tures for both gesture recognition and 3D hand pose estimation simultaneously.
To the best of our knowledge, this is the first network that exploits and opti-
mizes the joint-aware features for both gesture recognition and 3D hand pose
estimation. Second, it designs a multi-order feature analysis module that employs
a novel slow-fast feature analysis scheme to learn joint-aware motion features
which improves the gesture recognition greatly. Third, it designs a multi-scale
relation module to learn hierarchical hand structure relations at multiple scales
which enhances the performance of gesture recognition clearly. Fourth, we pro-
pose a weakly supervised learning scheme that is capable of leveraging hand pose
(or gesture) annotations to learn powerful gesture recognition (or pose estima-
tion) model. The weakly supervised learning greatly relieves the data annotation
burden especially considering the very limited annotated 3D pose data and the
wide availability of annotated hand gesture data.

2 Related Work

Gesture and Action Recognition. In the early stage, many gesture and
action recognition methods were developed based on handcrafted features
[14,15,32,33]. With the advance of deep learning, Convolutional neural networks
(CNNs) [7,28,30,31,34,36,38,39] have been applied to gesture recognition and
action recognition. Simonyan and Zisserman [28] proposed a two-stream archi-
tecture, where one stream operates on RGB frames, and the other on optical
flow. Many works follow and extend their framework [7,30,36]. They all use the
optical flow as the motion information. Wang et al. [34] built a new motion
representation: RGB difference, which stacks the differences between consecu-
tive frames, to save the time of optical flow extraction. The calculation process
of optimal flow [28,34] and RGB difference [34] are all pre-processed which is
outside of the learning process.
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Inspired by the above-mentioned works, in our work, we propose a new multi-
order multi-stream feature analysis module, which is conducted at the interme-
diate features that capture more discriminative and representative motion infor-
mation as compared to the original video data. Specifically, a slow-fast feature
analysis module is added to consolidate the features of both the slowly and fast-
moving joints at multiple orders which significantly enhances the gesture-aware
features for more reliable gesture recognition.

3D Hand Pose Estimation. 3D hand pose estimation from RGB images has
received much attention recently [2,5,6,23,26,40]. However, only a few works
[22,29] focused on performing gesture recognition and 3D hand pose estimation
from the RGB videos jointly. Tekin et al. [29] predicted hand pose and action
categories first, and then use the predicted information to do the gesture recog-
nition.

We propose to leverage the joint-aware features for mutual 3D pose estima-
tion and gesture recognition. A novel collaborative learning method is proposed
which iteratively boosts the performance of the two tasks by optimizing the
joint-aware features which are crucial for both tasks. It also enables the weakly-
supervised learning for 3D hand pose estimation.

Joint Gesture/Action Recognition and 3D Pose Estimation. Gesture (or
action) recognition and 3D pose estimation are highly related, thus many works
performed gesture (or action) recognition based on the results of pose estima-
tion. In the Skeleton-based gesture (or action) recognition [9,16,17,19,20,24],
joints’ location (pose) information is used for recognizing the gesture (or action)
categories. In the RGB-based action recognition, Liu et al. [21] also proposed
to recognize human actions based on the pose estimation maps. Nie et al. [35]
and Luvizon et al. [22] performed pose estimation and action recognition in a
single network, yet they did not consider these two tasks mutually to optimize
the performance of each other, i.e., they performed the two tasks either in a
parallel way or in a sequential way.

Different from the aforementioned methods, we design a new collaborative
learning method that boosts the learning of gesture recognition and 3D hand
pose estimation in an iterative manner as shown in Fig. 1. To the best of our
knowledge, our method is the first that learns gesture-aware and hand pose-
aware information for boosting the two tasks progressively.

Weakly-Supervised Learning on 3D Hand Pose Estimation. In the past
few years, several works focus on weakly-supervised learning in 3D pose estima-
tion and 3D hand pose estimation areas, since it is hard to obtain the 3D pose
annotations. Cai et al. [3,4] proposed a weakly-supervised adaptation method
by bridging the gap between fully annotated images and weakly-labelled images.
Zhou et al. [37] transformed knowledge from 2D pose to 3D pose estimation
network using re-projection constraint to 2D results. Chen et al. [8] used the
multi-view 2D annotation as the weak supervision to learn a geometry-aware 3D
representations.
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All aforementioned methods still used 2D joint information as the weak super-
vision to generate 3D hand poses. Differently, we propose that the gesture label
can also be used as the weak supervision for 3D hand pose estimation. Our
experiments show that this weak-supervised learning method is efficient.

3 Methodology

We predict gesture categories and 3D hand joint locations directly from RGB
image sequences as illustrated in Fig. 1. Specifically, the input is a sequence of
RGB images centered on hand which is fed to a pre-trained ResNet [11] to learn
joint-aware feature maps J (as shown in Fig. 1). The learned J are then fed to
pose sub-network and gesture sub-network which learn collaboratively for more
discriminative features. The whole network is trained in an end-to-end manner,
more details to be presented in the following subsections.

3.1 Collaborative Learning for Gesture Recognition and 3D Hand
Pose Estimation

Gesture recognition and 3D hand pose estimation are both related to the joint-
level features. Joints’ locations have been used for skeleton-based action recog-
nition and gesture recognition, while gesture classes also contain potential hand
posture information that is useful for hand pose estimation.

We propose a collaborative learning method that simultaneously learns the
gesture features and 3D hand pose features mutually in an iterative way, as
illustrated in Fig. 1. As described above, the pre-trained ResNet [11] is used to
learn the joint-aware feature maps J . Specifically, we equally divide the joint-
aware feature maps J to N groups, where N is the number of hand joints, i.e.
J = {Ji|i = 1, ..., N}, and Ji is the subset of feature maps representing the
joint i (i ∈ [1, N ]).

Pose Sub-network: Following the previous works [18,37,40], we first use a Pose
Feature Analysis module to estimate the 2D heatmaps based on the intermediate
features for generating the 3D hand pose. The Pose Feature Analysis module is
composed by two parts: 2D hand pose estimation part and depth regression
part, which is similar to [18,37,40]. For the 2D hand pose estimation part,
its input are the joint-aware feature maps J and its output are N heatmaps
(denoted by H). Each map Hi is a H ×W matrix, representing a 2D probability
distribution of each joint in the image.

Follow the deep regression module in [18,37]. We aggregate the joint-aware
feature maps J and the generated 2D heatmaps H with 1 × 1 convolution by a
summation operation, the summed feature maps are input of the deep regres-
sion module. Here the 1 × 1 convolution is used to map the generated 2D
heatmaps H and the joint-aware feature maps J to the same size. The deep
regression module contains a sequence of convolutional layers with pooling and
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a fully connected layer in order to regress the depth values D = {Di|i = 1, ..., N},
where Di denotes the depth value of the ith joint.

Since the output of pose sub-network is the input of the gesture sub-network,
and pose sub-network and gesture sub-network operate iteratively (as shown in
Fig. 1), we set the input and output of pose sub-network the same size. To keep
the size constant, we first duplicate the depth values to the same size of the
heatmaps, and concatenate them with 2D heatmaps. For each joint, its depth
value is a scalar, while heatmap’s size is H ×W . Thus, we duplicate depth value
HW to match heatmaps’ size to facilitate feature concatenation. Secondly, the
1 × 1 convolution is used to map the concatenated feature maps and the joint-
aware feature maps J to the same size to generate the output of pose sub-
network, named pose-optimized joint-aware feature maps P (see Fig. 1).

Gesture Sub-network: The input of Gesture Sub-Network is obtained by
aggregating the joint-aware feature maps J and pose-optimized joint-aware fea-
ture maps P with 1 × 1 convolution followed by a summation. The resultant
feature maps are fed to the Gesture Feature Analysis module to generate the
gesture-optimized joint-aware feature maps G and gesture category y (see Fig. 1).
Where the Gesture Feature Analysis module contains a sequence of convolutional
layers as well as temporal convolution (TCN) layers to get the temporal relation,
TCN layers are used here to predict the gesture class y.

Collaborative Learning Method: As shown in Fig. 1, we design a collabo-
rative learning strategy to perform gesture recognition and 3D hand pose esti-
mation in an iterative way. Our proposed framework’s learning processes can be
described in the following stages:

(1) Generating J : The pre-trained ResNet [11] is used to learn the joint-aware
feature maps J .

(2) Generating P and Predicting 3D Hand Pose: The learned feature
maps J are fed to Pose Feature Analysis module (shown in Fig. 1) to gen-
erate 3D hand poses (2D Heatmaps H and depth values D), and also the
pose-optimized joint-aware feature maps P.

(3) Aggregating input to Gesture Sub-Network: The 1× 1 convolution is
used to generate intermediate feature maps by aggregating the joint-aware
feature maps J and the pose-optimized joint-aware feature maps P.

(4) Generating G and Recognizing Gesture Class: The intermediate fea-
ture maps are fed to Gesture Feature Analysis module as input to generate
the gesture-optimized joint-aware feature maps G and to recognize gesture
category y.

(5) Aggregating input to Pose Sub-Network: We aggregate the gesture-
optimized joint-aware feature maps G and the joint-aware feature maps J
with 1 × 1 convolution followed by a summation. The aggregated feature
maps are fed to next iteration’s Pose Sub-Network as input for further fea-
ture learning.

(6) Stage 2 to 5 repeat in an iterative way to perform gesture recognition and
hand pose estimation collaboratively for further improving the performance.
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3.2 Multi-order Multi-stream Feature Analysis

As discussed in Sect. 2, prior studies have shown that motion information such as
optical flow [28,34] is crucial in video-based recognition. As we aim to learn joint-
aware features, we propose a multi-order multi-stream feature analysis module
as shown in Fig. 2 to learn the motion information based on the joint-aware fea-
tures. The proposed multi-order multi-stream module participates in the Gesture
Feature Analysis module (see Fig. 1).

Since the pre-trained ResNet [11] and our pose sub-network operate at the
image level, the corresponding feature maps belonging to hand joints in an image.
We name the image-level features as Zero-Order Features (denote by Zo,
which stand for pose information and static information), as shown in the top
line of Fig. 2, the cubes in it are feature maps of the corresponding hand joints.
Zero-Order features form N × C × H × W tensors, where N is the total number

Fig. 2. Illustration of the multi-order multi-stream feature analysis module: With the
zero-order features Zo as input, the multi-order multi-stream analysis generates motion
information on the intermediate features including first-order slow & fast features and
second-order slow & fast features. These four motion features, together with the zero-
order features, are fed to five multi-scale relation modules (more details in Fig. 3),
respectively, to generate gesture-optimized joint-aware feature maps G and gesture
category y. The generated G are aggregated with joint-aware feature maps J and
fed to the pose sub-network for pose feature learning. Our multi-order multi-stream
feature analysis module participates in the Gesture Feature Analysis module, as shown
in Fig. 1. (More description of Fig. 2 are illustrated in supplementary material.)
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of hand joints, C is the number of channels for each hand joint, H and W are
the height and width of feature maps, respectively.

First-Order Features can be seen as velocity features. A temporal neigh-
borhood pair of feature maps is constructed from the entire Zero-Order Features
as follows:

U1 = {〈Zot−1, Zot〉 : t ∈ T} (1)

Fot = Zot − Zot−1 (2)

where T is the length of input image sequences. First-order features of each joint
are calculated by subtracting features of one frame from the previous frame. We
use Zot minus Zot−1 to get the first-order features (denote by Fo) as in Eq. 2.

Second-Order Features can be seen as the acceleration features. We con-
struct a triplet subset for each frame’s features:

U2 = {〈Zot−1, Zot, Zot+1〉 : t ∈ T} (3)

Sot = (Zot+1 − Zot) − (Zot − Zot−1) = (Fot+1 − Fot) (4)

Similar to the manner of getting first-order features, second-order features of
each joint are calculated by subtracting features of current frame’s first-order
features from its previous frame’s first-order features. We use Fot+1 minus Fot
to get the second-order features (So) by Eq. 4.

Slow-Fast Feature Analysis: Slow and fast moving joints are both useful in
gesture recognition. The features representing static tendency joints and motion
tendency joints encode different levels of motion information. Instead of directly
considering these motion features aggregately, we propose to explicitly learn
these motion levels separately. Specifically, we design a slow-fast feature analysis
method to explicitly distinguish these slow-moving and fast-moving joint features
from First-Order Features Fo and Second-Order Features So. In this way, both
static tendency joints and motion tendency joints can be exploited.

First-order features and second-order features tensors are of the shape N ×
C ×H ×W (the same as the zero-order ones). We first reshape these features to
N ×CHW matrices (where N is the number of hand joints), and then calculate
the L2 norm on each joint’s first-order and second-order feature vector (with the
shape of 1×CHW ) from the reshaped features matrices, respectively. There will
be N L2 norm results, denoted by Feature Difference (FD = {FDi|i = 1, ...N},
a N × 1 vector). Each FDi is a value representing the motion magnitude of
each corresponding joint. We adopt Gaussian distributions to obtain the feature
maps of slow-moving and fast-moving joints. For slow motion analysis, we aim
to enhance features from the more static joints, i.e., assign larger weights to
joints that move more slowly. We use a Gaussian function (with FDmin as mean
and (FDmax − FDmin)/3 as standard deviation) to map FD values to weights
(FDmin/FDmax denotes the min/max FD values). With this mapping, the
weight of the joint with the min/max motion magnitude (FDmin/FDmax) will
be close to 1/0. As there are N hand joints, we will obtain a N × 1 slow vector
that contains weights for the features of N joints. Similarly, we aim to enhance
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features from the more dynamic joints using the fast motion analysis module. We
thus set FDmax and (FDmin − FDmax)/3 as the mean and standard deviation.
In this way, the joint that has min/max motion magnitude will have a weight
around 0/1.

When the slow and fast motion analysis modules apply on the first-order
and second-order features Fo and So, we obtain four N × 1 vectors that contain
weights of features of N joints as shown in Fig. 2: 1) First-order slow vector (fos);
2) First-order fast vector (fof ); 3) Second-order slow vector (sos); and 4) Second-
order fast vector (sof ). All these four vectors are used to refine the zero-order
features Zo which are first reshaped to an N ×CHW matrix and then multiplied
with these four vector separately. The embedding features are then reshaped
back to N × C × H × W tensors, namely, first-order-slow features, first-order-
fast features, second-order-slow features and second-order-fast features as shown
in Fig. 2. These four features together with the zero-order features are fed to the
multi-scale relation module (details to be discussed in the Sect. 3.3), respectively.
Finally, the results of each stream are averaged to obtain the gesture-optimized
joint-aware feature maps G and the gesture category y.

Fig. 3. Illustration of the multi-scale relation module: The multiple scale analysis pro-
cess the feature maps from the slow-fast feature analysis at three different levels to
generate relations at each level. It interact with the Gesture Sub-network by applying
temporal convolution (TCN) on Level 3 (containing global information) to generate
the classification scores. Node up-sampling is applied to keep the input and output of
the same shape. (Color figure online)

3.3 Multi-scale Relation Module

Considering different levels of semantic information contained in the hierarchical
structure of hand, human hand can be defined with different scales. As shown
in Fig. 3, we show three levels, where the level-1 is the local level consisting of
the hand joints, and the level-2 is the middle level representing five fingers and
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palm. For the level-3, we see the hand globally as complete holistic information.
Following the connection between contiguous scale, we use the structure pooling
to perform feature aggregation across these three scales, and recognize gesture
class y at the Level-3 using TCN, since it contains the global information.

Structure pooling means we use average pooling over the hand joints by
following hierarchical physical structure of hand to perform step-wise feature
aggregation. We first average features of the joints that belong to each finger
or palm, in order to get features for the five fingers and palm (see Fig. 3), then
average features of five fingers and palm to obtain the final global features rep-
resenting full hand.

Additionally, we calculate a relation matrix for each level to better learn the
features at each scale. Take the first level as the example; the whole feature maps
size is N × C × H × W . We first activate it through two embedding function
(1×1×1 convolution). The two embedding features are rearranged and reshape
to a N × CHW matrix and CHW × N matrix. They are then multiplied to
obtain a N × N relation matrix. The values of the matrix mean the degree of
relation between each pair of joints. The softmax function is used here to do the
normalization. In this way, we can calculate relation matrices for each level and
use them to refine the feature maps at each hand scale.

To maintain the input and output of this module in the same shape, we use
the node up-sampling method: joints’ features from the higher level are dupli-
cated to the corresponding child joint in the lower level. In addition, the skip-
connections (see thin blue arrows in Fig. 3) are used over different spatial scales
of hand to better learn multi-scale hand features and to preserve the original
information. Our multi-scale network participates in each stream of multi-order
multi-stream module (as shown in Fig. 2).

3.4 Weakly-Supervised Learning Strategy

Weakly-Supervised 3D Hand Pose Estimation Using Gesture Labels:
Annotating 3D poses is often laborious, and it’s difficult to have a large amount
of video samples with 3D pose annotations for training. In the supervised learn-
ing, the pose-optimized joint-aware feature maps P and the gesture-optimized
joint-aware feature maps G are learned based on the joint-aware feature maps
J . We therefore propose a weakly-supervised learning method that use gesture
labels as weak supervision for 3D hand pose estimation. We provide different
ratios of training data with 3D pose annotations in training process.

Weakly-Supervised Gesture Recognition Using Pose Labels: When only
a few videos have gesture labels, we can similarly use 3D hand pose annotations
as weak supervision for gesture recognition. We provide different ratios of train-
ing data with gesture labels in training to make our method more applicable.
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3.5 Training

We use the following losses in training. 2D Heatmaps loss. L2d =
∑N

n=1 ‖Hn−
Ĥn‖22, This loss measures the L2 distance between the predicted heatmaps
Hn and the ground-truth heatmaps Ĥn. Depth Regression loss. L3d =∑N

n=1 ‖Dn − D̂n‖22, where Dn and D̂n are the estimated and the ground truth
depth values, respectively. L3d is also based on the L2 distance. Classification
loss. We use the standard categorical cross-entropy loss to supervise the gesture
classification process, which is Lc = CrossEntropy(y, ỹ), where y is the class
predicted score and ỹ is the ground truth category.

Fully-Supervised Training Strategy. In our implementation, we first fine-
tune the ResNet-50 to make it sensitive to human joint information. We then
train the entire network in an end-to-end manner with the objective function:

L = λ2dL2d + λ3dL3d + λcLc (5)

Weakly-Supervised Training Strategy. Based on the Eq. 5, we set λ2d = 0
and λ3d = 0 when the samples do not have 3D pose annotations and we use
gesture categories as weak supervision for 3D hand pose estimation. Similarly,
we set λc = 0 for video sequences without gesture labels, where we use 3D pose
annotations as weak supervision for gesture recognition.

4 Experiment

Implementation Details: We implement our method with the PyTorch frame-
work, and optimize the objective function with the Adam optimizer with mini-
batches of size 4. The learning rate starts from 10−4, with a 10 times reduction
when the loss is saturated. Following the same setting in [18,37], the input
image is resized to 256×256, and the heatmap resolution is set at 64×64. In the
experiment, the parameters in the objective function are set as follows: λ2d = 1,
λ3d = 0.001 and λc = 0.001. For the weakly-supervised learning, we choose
the 15% to 40% samples as the weakly supervision samples and set λ2d = 0 and
λ3d = 0 when the samples do not have 3D pose annotations (gesture categories
are used as weak supervision for 3D hand pose estimation). Additionally, we set
λc = 0 for video sequences without gesture labels, where 3D pose annotations
are used as weak supervision for gesture recognition as described in Sect. 3.4.

Following [34], each input video is divided into K segments and a short clip
is randomly selected from each segment in training. On testing, each video is
similarly divided into K segments and one frame is selected from each segment
to make sure that temporal space between adjacent frames is equal to T/K. The
final classification scores are computed by the average over all clips from each
video, and the pose estimation is presented on image level.
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Datasets: We perform extensive experiments on the large-scale and challenging
dataset: First-Person Hand Action (FPHA) [10] for simultaneous gesture recog-
nition and 3D hand pose estimation. To the best of our knowledge, this is the
only publicly available dataset that provides labels of accurate 2D & 3D hand
poses and gesture labels. The dataset consists of 1175 gesture videos with 45
gesture classes. The videos are performed by 6 actors under 3 different scenar-
ios. A total of 105, 459 video frames are annotated with accurate hand pose and
action classes. Both 2D and 3D annotations of the total 21 hand keypoints are
provided for each frame. We follow the protocol in [10,29] and use 600 video
sequences for training and the remaining 575 video sequences for testing.

Evaluation Metrics: We adopt the widely used metrics for evaluation of ges-
ture recognition and 3D hand pose estimation. For gesture recognition, we
directly evaluate the accuracy of video classification. For 3D pose estimation,
we use the percentage of correct keypoints (PCK) score that evaluates the pose
estimation accuracy with different error thresholds.

4.1 Experimental Results

Gesture Recognition: Table 1 shows the comparison with state-of-the-art ges-
ture recognition methods. It can be seen that our method outperforms the state-
of-the-art by up to 3%, showing its effectiveness gesture recognition. Addition-
ally, augmenting each of our proposed module (multi-scale relation, multi-order
multi-stream and collaborative learning strategy) yield improved gesture recog-
nition performance.

3D Hand Pose Estimation: We compare our method with prior works on
FPHA as shown in the first graph in Fig. 4. Table 2 shows three 3D PCK results
at three specific error threshold. It can be seen that our method outperforms the
state-of-the-art with a large range between 0 mm and 30 mm. Even though we
use color images, our results are better than [10] that uses depth images which
demonstrates the advantage of our proposed method.

Qualitative Results on 3D Hand Pose Estimation: Figure 5 illustrates
3D pose estimations by our method. We compare the ground truth 3D poses
(in blue-color structures) and the predicted 3D pose (in red-color structures)
in the same 3D coordinate system. We also provide the predicted 2D poses in
the original RGB image. As Fig. 5 shows, our method is capable of accurately
predicting 3D poses of different orientations with different backgrounds.
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Table 1. Comparisons to state-of-the-art gesture recognition methods: “Baseline”
means 1-iteration network with no multi-order feature analysis and multi-scale relation.

Model Input modality Accuracy

Joule-depth [12] Depth 60.17%

Novel view [27] Depth 69.21%

HON4D [25] Depth 70.61%

FPHA + LSTM [10] Depth 72.06%

Two-stream-color [28] Color 61.56%

Joule-color [12] Color 66.78%

Two-stream-flow [28] Color 69.91%

Two-stream-all [28] Color 75.30%

[29] - HP Color 62.54%

[29] - HP + AC Color 74.20%

[29] - HP + AC + OC Color 82.43%

Baseline Color 72.17%

Baseline + multi-scale Color 78.26%

Baseline + multi-scale + multi-order Color 83.83%

Baseline + multi-scale + multi-order + 2-iterations Color 85.22%

Fig. 4. Left: Comparing our method with [10] and [29] for 3D hand pose estimation
with 3D PCK metric. Middle: Comparing our weakly supervised method with the
baseline (with 3D PCK@30) when different amounts of pose labels are used. Right:
Comparing our weakly supervised method with the baseline (with classification accu-
racy) when different amount of gesture labels are used.

4.2 Weakly-Supervised Learning

Weakly-Supervised Results on 3D Hand Pose Estimation: We present
multiple experiments on our weakly-supervised method by providing different
ratios (15% to 40%) of samples with pose labels (gesture labels are provided
for all training samples) and compare with the baseline that does not use ges-
ture labels. Figure 4 (middle) shows 3D PCK@30 (percentage of correct key-
point when error threshold smaller than 30 mm) results of the baseline and our
weakly-supervised method. It can be seen that the 3D hand pose estimation is
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improved significantly for all labeled ratios when weak supervision is included.
This validates that joint-aware features in the gesture can benefit 3D hand pose
estimation.

Fig. 5. Qualitative illustration of our proposed method: It shows the predicted 2D
poses shown on the original image. It also compares the predicted 3D poses (the blue-
color structures) and the Ground Truth 3D poses (the red-color structures). (Color
figure online)

Table 2. Comparisons on 3D pose estimation: Numbers are percentage of correct
keypoint (PCK) over respective error threshold, more results available in Fig. 4 (left).
Our results are based on the proposed 2-iterations multi-order structure.

Error threshold (mm) PCK@20 PCK@25 PCK@30

Hernando (Depth) [10] 72.13% 82.08% 87.87%

Tekin (RGB) [29] 69.17% 81.25% 89.17%

Ours (RGB) 81.03% 86.61% 90.11%

Weakly-Supervised Results on Gesture Recognition: We compare our
weakly supervised method that uses pose labels as weak supervision for gesture
recognition with the baseline which does not use pose labels. We conduct experi-
ments by providing different ratios of training samples with gesture labels, while
the pose labels of all samples are given. As Fig. 4 (right) shows, our weakly-
supervised learning improves the gesture recognition significantly for all labeled
ratios. This validates that joint-aware features in hand poses can improve the
gesture recognition performance greatly.

4.3 Ablation Studies

Impact of Number of Network Iterations: Table 3 shows the 3D PCK
results and classification results of our method under different iterations of col-
laborative learning. It can be seen that our method improves with increasing iter-
ations. This can be expected since hand pose estimation and gesture recognition
learn in a collaborative manner and boost each other. Note that the improvement
of 3D PCK and gesture recognition slows down with the increase of iterations.
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We use the two-iteration network in the experiment for the balance between
accuracy and computational complexity. Note all these comparisons are based
on the zero-order framework. We cannot evaluate multi-order network for the
3-itr, 4-itr, 5-itr due to our GPU’s memory limitation.

Effect of the Multi-order Module: We analyze the advantage of our proposed
multi-order module by implementing four variants as shown in Table 4 (part 1, 2,
and 4). It can be seen that adding first-order and second-order slow-fast features
leads to an accuracy improvement by 1.7% and 2.9%, respectively. Our multi-
order module (Zero-order + First and Second order slow-fast) achieves the best
accuracy at 85.22%, demonstrating its effectiveness.

Table 3. Evaluation of our proposed network on gesture recognition and pose estima-
tion with respect to different iteration numbers.

Iteration (itr) number 1-itr 2-itr 3-itr 4-itr 5-itr

Pose estimation (PCK@30) 87.2% 89.3% 89.8% 89.9% 89.9%

Gesture recognition accuracy 78.3% 80.9% 81.7% 81.9% 82.0%

Table 4. Evaluation of our proposed gesture recognition network with different combi-
nations of motion features of different orders and slow-fast patterns. (All experiments
below are based on the 2-iteration network.

Network setting Accuracy Δ

1 Zero-order 80.87%

2 Zero-order + First-order slow-fast 82.61% 1.74%

Zero-order + Second-order slow-fast 83.80% 2.93%

3 Zero-order + First and Second order slow 82.96% 2.09%

Zero-order + First and Second order fast 82.09% 1.22%

4 Zero-order + First and Second order slow-fast 85.22% 4.35%

Effect of the Slow Feature and Fast Feature: We also evaluate the impact
of the slow-fast features and Table 4 (part 3) shows the results. It can be seen
that the slow features and the fast features can improve the accuracy by 2.1%
and 1.2%, respectively, and the best accuracy is obtain when both are included.

Effect of the Multi-scale Relation: We also assess the effectiveness of the our
multi-scale relation module and Table 1 shows experimental results. As Table 1
shows, removing the multi-scale relation module leads to around 6% accuracy
drop as compared with the “Baseline” and “Baseline + multi-scale”, showing
the benefit of the proposed multi-scale relation.
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5 Conclusion

In this paper, we have presented a collaborative learning method for joint gesture
recognition and 3D hand pose estimation. Our model learns in a collaborative
way to recurrently exploit the joint-aware feature to progressively boost the
performance of each task. We have developed a multi-order multi-stream model
to learn motion information in the intermediate feature maps and designed a
multi-scale relation module to extract semantic information at hierarchical hand
structure. To learn our model in scenarios that lack labeled data, we leverage
one fully-labeled task’s annotations as weak supervision for the other very few
labeled task. The proposed collaborative learning network achieves state-of-the-
art performance for both gesture recognition and 3D hand pose estimation tasks.
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