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Foreword

Hosting the European Conference on Computer Vision (ECCV 2020) was certainly an
exciting journey. From the 2016 plan to hold it at the Edinburgh International
Conference Centre (hosting 1,800 delegates) to the 2018 plan to hold it at Glasgow’s
Scottish Exhibition Centre (up to 6,000 delegates), we finally ended with moving
online because of the COVID-19 outbreak. While possibly having fewer delegates than
expected because of the online format, ECCV 2020 still had over 3,100 registered
participants.

Although online, the conference delivered most of the activities expected at a
face-to-face conference: peer-reviewed papers, industrial exhibitors, demonstrations,
and messaging between delegates. In addition to the main technical sessions, the
conference included a strong program of satellite events with 16 tutorials and 44
workshops.

Furthermore, the online conference format enabled new conference features. Every
paper had an associated teaser video and a longer full presentation video. Along with
the papers and slides from the videos, all these materials were available the week before
the conference. This allowed delegates to become familiar with the paper content and
be ready for the live interaction with the authors during the conference week. The live
event consisted of brief presentations by the oral and spotlight authors and industrial
sponsors. Question and answer sessions for all papers were timed to occur twice so
delegates from around the world had convenient access to the authors.

As with ECCV 2018, authors’ draft versions of the papers appeared online with
open access, now on both the Computer Vision Foundation (CVF) and the European
Computer Vision Association (ECVA) websites. An archival publication arrangement
was put in place with the cooperation of Springer. SpringerLink hosts the final version
of the papers with further improvements, such as activating reference links and sup-
plementary materials. These two approaches benefit all potential readers: a version
available freely for all researchers, and an authoritative and citable version with
additional benefits for SpringerLink subscribers. We thank Alfred Hofmann and
Aliaksandr Birukou from Springer for helping to negotiate this agreement, which we
expect will continue for future versions of ECCV.

August 2020 Vittorio Ferrari
Bob Fisher

Cordelia Schmid
Emanuele Trucco



Preface

Welcome to the proceedings of the European Conference on Computer Vision (ECCV
2020). This is a unique edition of ECCV in many ways. Due to the COVID-19
pandemic, this is the first time the conference was held online, in a virtual format. This
was also the first time the conference relied exclusively on the Open Review platform
to manage the review process. Despite these challenges ECCV is thriving. The con-
ference received 5,150 valid paper submissions, of which 1,360 were accepted for
publication (27%) and, of those, 160 were presented as spotlights (3%) and 104 as orals
(2%). This amounts to more than twice the number of submissions to ECCV 2018
(2,439). Furthermore, CVPR, the largest conference on computer vision, received
5,850 submissions this year, meaning that ECCV is now 87% the size of CVPR in
terms of submissions. By comparison, in 2018 the size of ECCV was only 73% of
CVPR.

The review model was similar to previous editions of ECCV; in particular, it was
double blind in the sense that the authors did not know the name of the reviewers and
vice versa. Furthermore, each conference submission was held confidentially, and was
only publicly revealed if and once accepted for publication. Each paper received at least
three reviews, totalling more than 15,000 reviews. Handling the review process at this
scale was a significant challenge. In order to ensure that each submission received as
fair and high-quality reviews as possible, we recruited 2,830 reviewers (a 130%
increase with reference to 2018) and 207 area chairs (a 60% increase). The area chairs
were selected based on their technical expertise and reputation, largely among people
that served as area chair in previous top computer vision and machine learning con-
ferences (ECCV, ICCV, CVPR, NeurIPS, etc.). Reviewers were similarly invited from
previous conferences. We also encouraged experienced area chairs to suggest addi-
tional chairs and reviewers in the initial phase of recruiting.

Despite doubling the number of submissions, the reviewer load was slightly reduced
from 2018, from a maximum of 8 papers down to 7 (with some reviewers offering to
handle 6 papers plus an emergency review). The area chair load increased slightly,
from 18 papers on average to 22 papers on average.

Conflicts of interest between authors, area chairs, and reviewers were handled lar-
gely automatically by the Open Review platform via their curated list of user profiles.
Many authors submitting to ECCV already had a profile in Open Review. We set a
paper registration deadline one week before the paper submission deadline in order to
encourage all missing authors to register and create their Open Review profiles well on
time (in practice, we allowed authors to create/change papers arbitrarily until the
submission deadline). Except for minor issues with users creating duplicate profiles,
this allowed us to easily and quickly identify institutional conflicts, and avoid them,
while matching papers to area chairs and reviewers.

Papers were matched to area chairs based on: an affinity score computed by the
Open Review platform, which is based on paper titles and abstracts, and an affinity



score computed by the Toronto Paper Matching System (TPMS), which is based on the
paper’s full text, the area chair bids for individual papers, load balancing, and conflict
avoidance. Open Review provides the program chairs a convenient web interface to
experiment with different configurations of the matching algorithm. The chosen con-
figuration resulted in about 50% of the assigned papers to be highly ranked by the area
chair bids, and 50% to be ranked in the middle, with very few low bids assigned.

Assignments to reviewers were similar, with two differences. First, there was a
maximum of 7 papers assigned to each reviewer. Second, area chairs recommended up
to seven reviewers per paper, providing another highly-weighed term to the affinity
scores used for matching.

The assignment of papers to area chairs was smooth. However, it was more difficult
to find suitable reviewers for all papers. Having a ratio of 5.6 papers per reviewer with a
maximum load of 7 (due to emergency reviewer commitment), which did not allow for
much wiggle room in order to also satisfy conflict and expertise constraints. We
received some complaints from reviewers who did not feel qualified to review specific
papers and we reassigned them wherever possible. However, the large scale of the
conference, the many constraints, and the fact that a large fraction of such complaints
arrived very late in the review process made this process very difficult and not all
complaints could be addressed.

Reviewers had six weeks to complete their assignments. Possibly due to COVID-19
or the fact that the NeurIPS deadline was moved closer to the review deadline, a record
30% of the reviews were still missing after the deadline. By comparison, ECCV 2018
experienced only 10% missing reviews at this stage of the process. In the subsequent
week, area chairs chased the missing reviews intensely, found replacement reviewers in
their own team, and managed to reach 10% missing reviews. Eventually, we could
provide almost all reviews (more than 99.9%) with a delay of only a couple of days on
the initial schedule by a significant use of emergency reviews. If this trend is confirmed,
it might be a major challenge to run a smooth review process in future editions of
ECCV. The community must reconsider prioritization of the time spent on paper
writing (the number of submissions increased a lot despite COVID-19) and time spent
on paper reviewing (the number of reviews delivered in time decreased a lot pre-
sumably due to COVID-19 or NeurIPS deadline). With this imbalance the peer-review
system that ensures the quality of our top conferences may break soon.

Reviewers submitted their reviews independently. In the reviews, they had the
opportunity to ask questions to the authors to be addressed in the rebuttal. However,
reviewers were told not to request any significant new experiment. Using the Open
Review interface, authors could provide an answer to each individual review, but were
also allowed to cross-reference reviews and responses in their answers. Rather than
PDF files, we allowed the use of formatted text for the rebuttal. The rebuttal and initial
reviews were then made visible to all reviewers and the primary area chair for a given
paper. The area chair encouraged and moderated the reviewer discussion. During the
discussions, reviewers were invited to reach a consensus and possibly adjust their
ratings as a result of the discussion and of the evidence in the rebuttal.

After the discussion period ended, most reviewers entered a final rating and rec-
ommendation, although in many cases this did not differ from their initial recom-
mendation. Based on the updated reviews and discussion, the primary area chair then
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made a preliminary decision to accept or reject the paper and wrote a justification for it
(meta-review). Except for cases where the outcome of this process was absolutely clear
(as indicated by the three reviewers and primary area chairs all recommending clear
rejection), the decision was then examined and potentially challenged by a secondary
area chair. This led to further discussion and overturning a small number of preliminary
decisions. Needless to say, there was no in-person area chair meeting, which would
have been impossible due to COVID-19.

Area chairs were invited to observe the consensus of the reviewers whenever
possible and use extreme caution in overturning a clear consensus to accept or reject a
paper. If an area chair still decided to do so, she/he was asked to clearly justify it in the
meta-review and to explicitly obtain the agreement of the secondary area chair. In
practice, very few papers were rejected after being confidently accepted by the
reviewers.

This was the first time Open Review was used as the main platform to run ECCV. In
2018, the program chairs used CMT3 for the user-facing interface and Open Review
internally, for matching and conflict resolution. Since it is clearly preferable to only use
a single platform, this year we switched to using Open Review in full. The experience
was largely positive. The platform is highly-configurable, scalable, and open source.
Being written in Python, it is easy to write scripts to extract data programmatically. The
paper matching and conflict resolution algorithms and interfaces are top-notch, also due
to the excellent author profiles in the platform. Naturally, there were a few kinks along
the way due to the fact that the ECCV Open Review configuration was created from
scratch for this event and it differs in substantial ways from many other Open Review
conferences. However, the Open Review development and support team did a fantastic
job in helping us to get the configuration right and to address issues in a timely manner
as they unavoidably occurred. We cannot thank them enough for the tremendous effort
they put into this project.

Finally, we would like to thank everyone involved in making ECCV 2020 possible
in these very strange and difficult times. This starts with our authors, followed by the
area chairs and reviewers, who ran the review process at an unprecedented scale. The
whole Open Review team (and in particular Melisa Bok, Mohit Unyal, Carlos
Mondragon Chapa, and Celeste Martinez Gomez) worked incredibly hard for the entire
duration of the process. We would also like to thank René Vidal for contributing to the
adoption of Open Review. Our thanks also go to Laurent Charling for TPMS and to the
program chairs of ICML, ICLR, and NeurIPS for cross checking double submissions.
We thank the website chair, Giovanni Farinella, and the CPI team (in particular Ashley
Cook, Miriam Verdon, Nicola McGrane, and Sharon Kerr) for promptly adding
material to the website as needed in the various phases of the process. Finally, we thank
the publication chairs, Albert Ali Salah, Hamdi Dibeklioglu, Metehan Doyran, Henry
Howard-Jenkins, Victor Prisacariu, Siyu Tang, and Gul Varol, who managed to
compile these substantial proceedings in an exceedingly compressed schedule. We
express our thanks to the ECVA team, in particular Kristina Scherbaum for allowing
open access of the proceedings. We thank Alfred Hofmann from Springer who again
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serve as the publisher. Finally, we thank the other chairs of ECCV 2020, including in
particular the general chairs for very useful feedback with the handling of the program.

August 2020 Andrea Vedaldi
Horst Bischof
Thomas Brox

Jan-Michael Frahm
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Abstract. LiDAR point-cloud segmentation is an important problem
for many applications. For large-scale point cloud segmentation, the de
facto method is to project a 3D point cloud to get a 2D LiDAR image
and use convolutions to process it. Despite the similarity between reg-
ular RGB and LiDAR images, we are the first to discover that the fea-
ture distribution of LiDAR images changes drastically at different image
locations. Using standard convolutions to process such LiDAR images is
problematic, as convolution filters pick up local features that are only
active in specific regions in the image. As a result, the capacity of the
network is under-utilized and the segmentation performance decreases.
To fix this, we propose Spatially-Adaptive Convolution (SAC) to adopt
different filters for different locations according to the input image. SAC
can be computed efficiently since it can be implemented as a series of
element-wise multiplications, im2col, and standard convolution. It is a
general framework such that several previous methods can be seen as
special cases of SAC. Using SAC, we build SqueezeSegV3 for LiDAR
point-cloud segmentation and outperform all previous published meth-
ods by at least 2.0% mIoU on the SemanticKITTI benchmark. Code and
pretrained model are available at https://github.com/chenfengxu714/
SqueezeSegV3.

Keywords: Point-cloud segmentation · Spatially-adaptive convolution

1 Introduction

LiDAR sensors are widely used in many applications [59], especially autonomous
driving [1,9,56]. For level 4 & 5 autonomous vehicles, most of the solutions rely
on LiDAR to obtain a point-cloud representation of the environment. LiDAR
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point clouds can be used in many ways to understand the environment, such as
2D/3D object detection [3,34,41,65], multi-modal fusion [17,64], simultaneous
localization and mapping [2,4] and point-cloud segmentation [35,56,58]. This
paper is focused on point-cloud segmentation. This task takes a point-cloud
as input and aims to assign each point a label corresponding to its object cate-
gory. For autonomous driving, point-cloud segmentation can be used to recognize
objects such as pedestrians and cars, identify drivable areas, detecting lanes, and
so on. More applications of point-cloud segmentation are discussed in [59].

Recent work on point-cloud segmentation is mainly divided into two cate-
gories, focusing on small-scale or large-scale point-clouds. For small-scale prob-
lems, ranging from object parsing to indoor scene understanding, most of the
recent methods are based on PointNet [35,36]. Although PointNet-based meth-
ods have achieved competitive performance in many 3D tasks, they have limited
processing speed, especially for large-scale point clouds. For outdoor scenes and
applications such as autonomous driving, typical LiDAR sensors, such as Velo-
dyne HDL-64E LiDAR, can scan about 64 × 3000 = 192, 000 points for each
frame, covering an area of 160 × 160 × 20 m. Processing point clouds at such
scale efficiently or even in real time is far beyond the capability of PointNet-
based methods. Hence, much of the recent work follows the method based on
spherical projection proposed by Wu et al. [56,58]. Instead of processing 3D
points directly, these methods first transform a 3D LiDAR point cloud into a
2D LiDAR image and use 2D ConvNets to segment the point cloud, as shown
in Fig. 1. In this paper, we follow this method based on spherical projection.

Fig. 1. The framework of SqueezeSegV3. A LiDAR point cloud is projected to generate
a LiDAR image, which is then processed by spatially adaptive convolutions (SAC). The
network outputs a point-wise prediction that can be restored to label the 3D point
cloud. Other variants of SAC can be found in Fig. 4.
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To transform a 3D point-cloud into a 2D grid representation, each point in
the 3D space is projected to a spherical surface. The projection angles of each
point are quantized and used to denote the location of the pixel. Each point’s
original 3D coordinates are treated as features. Such representations of LiDAR
are very similar to RGB images, therefore, it seems straightforward to adopt 2D
convolution to process “LiDAR images”. This pipeline is illustrated in Fig. 1.

However, we discovered that an important difference exists between LiDAR
images and regular images. For a regular image, the feature distribution is largely
invariant to spatial locations, as visualized in Fig. 2. For a LiDAR image, its fea-
tures are converted by spherical projection, which introduces very strong spatial
priors. As a result, the feature distribution of LiDAR images varies drastically
at different locations, as illustrated in Fig. 2 and Fig. 3 (top). When we train
a ConvNet to process LiDAR images, convolution filters may fit local features
and become only active in some regions and are not used in other parts, as con-
firmed in Fig. 3 (bottom). As a result, the capacity of the model is under-utilized,
leading to decreased performance in point-cloud segmentation.

Fig. 2. Pixel-wise distribution at nine sampled locations from COCO2017 [25],
CIFAR10 [21] and SemanticKITTI [1]. The left shows the distribution of the red chan-
nel across all images in COCO2017 and CIFAR10. The right shows the distribution of
the X coordinates across all LiDAR images in SemanticKITTI.
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To tackle this problem, we propose Spatially-Adaptive Convolution (SAC),
as shown in Fig. 1. SAC is designed to be spatially-adaptive and content-aware.
Based on the input, it adapts its filters to process different parts of the image.
To ensure efficiency, we factorize the adaptive filter into a product of a static
convolution weight and an attention map. The attention map is computed by a
one-layer convolution, whose output at each pixel location is used to adapt the
static weight. By carefully scheduling the computation, SAC can be implemented
as a series of widely supported and optimized operations including element-wise
multiplication, im2col, and reshaping, which ensures the efficiency of SAC.

SAC is formulated as a general framework such that previous methods such as
squeeze-and-excitation (SE) [14], convolutional block attention module (CBAM)
[51], context-aggregation module (CAM) [58], and pixel-adaptive convolution
(PAC) [42] can be seen as special cases of SAC, and experiments show that the
more general SAC variants proposed in this paper outperform previous ones.

Using spatially-adaptive convolution, we build SqueezeSegV3 for LiDAR
point-cloud segmentation. On the SemanticKITTI benchmark, SqueezeSegV3
outperforms state-of-the art methods by at least 2.0 mIoU, demonstrating the
effectiveness of spatially-adaptive convolution.

2 Related Work

2.1 Point-Cloud Segmentation

Recent papers on point-cloud segmentation can be divided into two categories -
those that deal with small-scale point-clouds, and those that deal with large-scale
point clouds. For small-scale point-cloud segmentation such as object part pars-
ing and indoor scene understanding, mainstream methods are based on PointNet
[35,36]. DGCNN [50] and Deep-KdNet [20] extend the hierarchical architecture
of PointNet++ [36] by grouping neighbor points. Based on the PointNet archi-
tecture, [8,23,24] further improve the effectiveness of sampling, reordering and
grouping to obtain a better representation for downstream tasks. PVCNN [27]
improves the efficiency of PointNet-based methods [27,50] using voxel-based con-
volution with a contiguous memory access pattern. Despite these efforts, the effi-
ciency of PointNet-based methods is still limited since they inherently need to
process sparse data, which is more difficult to accelerate [27]. It is noteworthy to
mention that the most recent RandLA-Net [15] significantly improves the speed
of point cloud processing in the novel use of random sampling.

Large-scale point-cloud segmentation is challenging since 1) large-scale point-
clouds are difficult to annotate and 2) many applications require real-time infer-
ence. A typical outdoor LiDAR (such as Velodyne HDL-64E) can collect about
200K points per scan, it is difficult for previous methods [22,26,29,31,37,38,47]
to satisfy a real-time latency constraint. To address the data challenge, [48,56]
proposed tools to label 3D bounding boxes and convert to point-wise segmenta-
tion labels. [56,58,62] proposed to train with simulated data. Recently, Behley et
al. proposed SemanticKITTI [1], a densely annotated dataset for large-scale
point-cloud segmentation. For efficiency, Wu et al. [56] proposed to project 3D
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point clouds to 2D and transform point-cloud segmentation to image segmen-
tation. Later work [1,30,58] continued to improve the projection-based method,
making it a popular choice for a large-scale point-cloud segmentation.

2.2 Adaptive Convolution

Standard convolutions use the same weights to process input features at all
spatial locations regardless of the input. Adaptive convolutions may change the
weights according to the input and the location in the image. Squeeze-and-
excitation and its variants [13,14,51] compute channel-wise or spatial attention
to adapt the output feature map. Pixel-adaptive convolution (PAC) [42] changes
the convolution weight along the kernel dimension with a Gaussian function.
Wang et al. [49] propose to directly re-weight the standard convolution with a
depth-aware Gaussian kernel. 3DNConv [5] further extends [49] by estimating
depth through an RGB image and using it to improve image segmentation. In
our work, we propose a more general framework such that channel-wise attention
[13,14], spatial attention [51,58] and PAC [42] can be considered as special cases
of spatially-adaptive convolution. In addition to adapting weights, deformable
convolutions [6,66] adapt the location to pull features to convolution. DKN [19]
combines both deformable convolution and adaptive convolution for joint-image
filtering. However, deformable convolution is orthogonal to our proposed method.

2.3 Efficient Neural Networks

Many applications that involve point-cloud segmentation require real-time infer-
ence. To meet this requirement, we not only need to design efficient segmentation
pipelines [58], but also efficient neural networks which optimize the parameter
size, FLOPs, latency, power, and so on [52].

Many neural nets target to achieve efficiency, including SqueezeNet [10,16,
54], MobileNets [11,12,39], ShiftNet [55,61], ShuffleNet [28,63], FBNet [53,57],
ChamNet [7], MnasNet [44], and EfficientNet [45]. Previous work shows that
using a more efficient backbone network can effectively improve efficiency in
downstream tasks. In this paper, however, in order to rigorously evaluate the
performance of spatially-adaptive convolution (SAC), we use the same backbone
as RangeNet++ [30].

3 Spherical Projection of LiDAR Point-Cloud

To process a LiDAR point-cloud efficiently, Wu et al. [56] proposed a pipeline
(shown in Fig. 1) to project a sparse 3D point cloud to a 2D LiDAR image as

[
p
q
] = [

1
2 (1 − arctan(y, x)/π) · w

(1 − (arcsin(z · r−1) + fup) · f−1) · h
], (1)

where (x, y, z) are 3D coordinates, (p, q) are angular coordinates, (h,w) are the
height and width of the desired projected 2D map, f = fup+fdown is the vertical
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field-of-view of the LiDAR sensor, and r =
√

x2 + y2 + z2 is the range of each
point. For each point projected to (p, q), we use its measurement of (x, y, z, r)
and remission as features and stack them along the channel dimension. This
way, we can represent a LiDAR point cloud as a LiDAR image with the shape of
(h,w, 5). Point-cloud segmentation can then be reduced to image segmentation,
which is typically solved using ConvNets.

Despite the apparent similarity between LiDAR and RGB images, we discover
that the spatial distribution of RGB features are quite different from (x, y, z, r)
features. In Fig. 2, we sample nine pixels on images from COCO [25], CIFAR10
[21] and SemanticKITTI [1] and compare their feature distribution. In COCO
and CIFAR10, the feature distribution at different locations are rather similar.
For SemanticKITTI, however, feature distribution at each locations are dras-
tically different. Such spatially-varying distribution is caused by the spherical
projection in Eq. (1). In Fig. 3 (top), we plot the mean of x, y, and z channels of
LiDAR images. Along the width dimension, we can see the sinusoidal change of
x and y channels. Along the height dimension, points projected to the top of the
image have higher z-values than the ones projected to the bottom. As we will
discuss later, such spatially varying distribution can degrade the performance of
convolutions.

4 Spatially-Adaptive Convolution

4.1 Standard Convolution

Previous methods based on spherical projection [30,56,58] treat projected
LiDAR images as RGB images and process them with standard convolution
as

Y [m, p, q] = σ(
∑

i,j,n

W [m,n, i, j] × X[n, p + î, q + ĵ]), (2)

where Y ∈ RO×S×S is the output tensor, X ∈ RI×S×S denotes the input tensor,
and W ∈ RO×I×K×K is the convolution weight. O, I, S,K are the output chan-
nel size, input channel size, image size, and kernel size of the weight, respectively.
î = i − �K/2�, ĵ = j − �K/2�. σ(·) is a non-linear activation function.

Convolution is based on a strong inductive bias that the distribution of visual
features is invariant to image locations. For RGB images, this is a somewhat
valid assumption, as illustrated in Fig. 2. Therefore, regardless of the location,
a convolution use the same weight W to process the input. This design makes
the convolution operation very computationally efficient: First, convolutional
layers are efficient in parameter size. Regardless of the input resolution S, a
convolutional layer’s parameter size remains the same as O×I ×K ×K. Second,
convolution is efficient to compute. In modern computer architectures, loading
parameters into memory costs orders-of-magnitude higher energy and latency
than floating point operations such as multiplications and additions [33]. For
convolutions, we can load the parameter once and re-use for all the input pixels,
which significantly improves the latency and power efficiency.
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Fig. 3. Channel and filter activation visualization on the SemanticKITTI dataset. Top:
we visualize the mean value of x, y, and z channels of the projected LiDAR images at
different locations. Along the width dimension, we can see the sinusoidal change of the
x and y channels. Along the height dimension, we can see z values are higher at the
top of the image. Bottom: We visualize the mean activation value of three filters at the
11th layer of a pre-trained RangeNet21 [30]. We can see that those filters are sparsely
activated only in certain areas.

However, for LiDAR images, the feature distribution across the image are no
longer identical, as illustrated in Fig. 2 and 3 (top). Many features may only exist
in local regions of the image, so the filters that are trained to process them are
only active in the corresponding regions and are not useful elsewhere. To confirm
this, we analyze a trained RangeNet21 [30] by calculating the average filter
activation across the image. We can see in Fig. 3 (bottom) that convolutional
filters are sparsely activated and remain zero in many regions. This validates
that convolution filters are spatially under-utilized.

4.2 Spatially-Adaptive Convolution

To better process LiDAR images with spatially-varying feature distributions,
we re-design convolution to achieve two goals: 1) It should be spatially-adaptive
and content-aware. The new operator should process different parts of the image
with different filters, and the filters should adapt to feature variations. 2) The
new operator should be efficient to compute.

To achieve these goals, we propose Spatially-Adaptive Convolution (SAC),
which can be described as the following:

Y [m, p, q] = σ(
∑

i,j,n

W (X0)[m,n, p, q, i, j] × X[n, p + î, q + ĵ]). (3)
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Fig. 4. Variants of spatially-adaptive convolution used in Fig. 1.

W (·) ∈ RO×I×S×S×K×K is a function of the raw input X0. It is spatially-
adaptive, since W depends on the location (p, q). It is content-aware since W
is a function of the raw input X0. Computing W in this general form is very
expensive since W contains too many elements to compute.

To reduce the computational cost, we factorize W as the product of a stan-
dard convolution weight and a spatially-adaptive attention map as:

W [m,n, p, q, i, j] = Ŵ [m,n, i, j] × A(X0)[m,n, p, q, i, j]. (4)
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Ŵ ∈ RO×I×S×S is a standard convolution weight, and A ∈ RO×I×S×S×K×K is
the attention map. To reduce the complexity, we collapse several dimensions of
A to obtain a smaller attention map to make it computationally tractable.

We denote the first dimension of A as the output channel dimension (O), the
second as the input channel dimension (I), the 3rd and 4th dimensions as spatial
dimensions (S), and the last two dimensions as kernel dimensions (K).

Starting from Eq. (4), we name this form of SAC as SAC-OISK, and we re-
write A as AOISK , where the subscripts denote the dimensions that are not
collapsed to 1. If we collapse the output dimension, we name the variant as
SAC-ISK, and the attention map as AISK ∈ R1×I×S×S×K×K . SAC-ISK adapts
a convolution weight spatially as well as across the kernel and input channel
dimensions, as shown in Fig. 4a. We can further compress the kernel dimensions
to obtain SAC-IS with AIS ∈ R1×I×S×S×1×1, (Fig. 4d) and SAC-S with pixel-
wise attention as AS ∈ R1×1×S×S×1×1 (Fig. 4b).

As long as we retain the spatial dimension A, SAC is able to spatially adapt
a standard convolution. Experiments show that all variants of SAC effectively
improve the performance on the SemanticKITTI dataset.

4.3 Efficient Computation of SAC

To efficiently compute an attention map, we feed the raw LiDAR image X0 into
a 7 × 7 convolution followed by a sigmoid activation. The convolution computes
the values of the attention map at each location. The more dimensions to adapt,
the more FLOPs and parameter size SAC requires. However, most of the variants
of SAC are very efficient. Taking SqueezeSegV3-21 as an example, the cost of
adding different SAC variants is summarized in Table 1. The extra FLOPs (2.4%–
24.8%) and parameters (1.1%–14.9%) needed by SAC is quite small.

Table 1. Extra parameters and MACs for different SAC variants

Method O I S K Extra params (%) Extra MACs (%)

SAC-S ✗ ✗ ✓ ✗ 1.1 2.4

SAC-IS ✗ ✓ ✓ ✗ 2.2 6.2

SAC-SK ✗ ✗ ✓ ✓ 1.9 3.1

SAC-ISK ✗ ✓ ✓ ✓ 14.9 24.8

After obtaining the attention map, we need to efficiently compute the product
of the convolution weight Ŵ , attention map A, and the input X. One choice is
to first compute the adaptive weight as Eq. (4) and then process the input X.
However, the adaptive weight varies per pixel, so we are no longer able to re-use
the weight spatially to retain the efficiency of standard convolution.

So, instead, we first combine the attention map A with the input tensor X.
For attention maps without kernel dimensions, such as AS or AIS , we directly
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perform element-wise multiplication (with broadcasting) between A and X.
Then, we apply a standard convolution with weight W on the adapted input. The
examples of SAC-S and SAC-IS are illustrated in Figs. 4b and 4d respectively.
Pseudo-code implementation is provided in the supplementary material.

For attention maps with kernel dimensions, such as AISK and ASK , we first
perform an unfolding (im2col) operation on X. At each location, we collect
nearby K-by-K features and stack them along the channel dimension to get
X̃ ∈ RK2I×S×S . Then, we can apply element-wise multiplication to combine
the attention map A and input X. Next, we reshape weight W ∈ RO×I×K×K

as W̃ ∈ RO×K2I×1×1. Finally, the output of Y can be obtained by applying a
1-by-1 convolution with W̃ on X̃. The computation of SAC-ISK and SAC-SK
is shown in Figs. 4a and 4c respectively, and the pseudo-code implementation is
provided in the supplementary material.

Overall, SAC can be implemented as a series of element-wise multiplications,
im2col, reshaping, and standard convolution operations, which are widely sup-
ported and well optimized. This ensures that SAC can be computed efficiently.

4.4 Relationship with Prior Work

Several prior works can be seen as variants of a spatially-adaptive convolution,
as described by Eqs. 3 and 4. Squeeze-and-Excitation (SE) [13,14] uses global
average pooling and fully-connected layers to compute channel-wise attention to
adapt the feature map, as illustrated in Fig. 5. It can be seen as the variant of
SAC-I with a attention map of AI ∈ R1×I×1×1×1×1. The convolutional block
attention module (CBAM) [51] can be see as applying AI followed by an AS to
adapt the feature map. SqueezeSegV2 [58] uses the context-aggregation module
(CAM) to combat dropout noises in LiDAR images. At each position, it uses
a 7 × 7 max pooling followed by 1× 1 convolutions to compute a channel-wise
attention map. It can be seen as the variant SAC-IS with the attention map of
AIS ∈ R1×I×S×S×1×1. Pixel-adaptive convolution (PAC) [42] uses a Gaussian
function to compute kernel-wise attention for each pixel. It can be seen as the
variant of SAC-SK, with the attention map of ASK ∈ R1×1×S×S×K×K . All the
detail figures of prior works are presented in the supplementary. Our ablation
studies compare variants of SAC, including ones proposed in our paper and in
prior work. Experiments show our proposed SAC variants outperform previous
baselines.

5 SqueezeSegV3

Using the spatially-adaptive convolution, we build SqueezeSegV3 for LiDAR
point-cloud segmentation. The overview of the model is shown in Fig. 1.

5.1 The Architecture of SqueezeSegV3

To facilitate rigorous comparison, SqueezeSegV3’s backbone architecture is based
on RangeNet [30]. RangeNet contains five stages of convolution, each stage con-
tains several blocks. At the beginning of the stage, it performs downsampling.
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The output is then upsampled to recover the resolution. Each block of RangeNet
contains two stacked convolutions. We replace the first one with SAC-ISK as in
Fig. 4a. We remove the last two downsampling. To keep the similar FLOPs, we
reduce the channels of last two stages. The output channel sizes from Stage1
to Stage5 are 64, 128, 256, 256 and 256 respectively, while the output channel
sizes in RangeNet [30] are 64, 128, 256, 512 and 1024. Due to the removal of
the last two downsampling operations, we only adopt 3 upsample blocks using
transposed convolution and convolution.

5.2 Loss Function

We introduce a multi-layer cross entropy loss to train the proposed network,
which is also used in [18,32,40,60]. During training, from stage1 to stage5, we
add a prediction layer at each stage’s output. For each output, we respectively
downsample the groundtruth label map by 1x, 2x, 4x, 8x and 8x, and use them
to train the output of stage1 to stage5. The loss function can be described as

L =
5∑

i=1

−∑
Hi,Wi

∑C
c=1 wc · yc · log(ŷc)

Hi × Wi
. (5)

In the equation, wc = 1
log(fc+ε) is a normalization factor and fc is the frequency

of class c. Hi,Wi are the height and width of the output in i-th stage, yc is
the prediction for the c-th class in each pixel and ŷc is the label. Compared to
the single-stage cross-entropy loss used for the final output, the intermediate
supervisions guide the model to form features with more semantic meaning. In
addition, they help mitigate the vanishing gradient problem in training.

6 Experiments

6.1 Dataset and Evaluation Metrics

We conduct our experiments on the SemanticKITTI dataset [1], a large-scale
dataset for LiDAR point-cloud segmentation. The dataset contains 21 sequences
of point-cloud data with 43,442 densely annotated scans and total 4549 mil-
lions points. Following [1], sequences-{0–7} and {9, 10} (19130 scans) are used
for training, sequence-08 (4071 scans) is for validation, and sequences-{11–21}
(20351 scans) are for test. Following previous work [30], we use mIoU over 19
categories to evaluate the accuracy.

6.2 Implementation Details

We pre-process all the points by spherical projection following Eq. (1). The 2D
LiDAR images are then processed by SqueezeSegV3 to get a 2D predicted label
map, which is then restored back to the 3D space. Following previous work
[30,56,58], we project all points in a scan to a 64 × 2048 image. If multiple
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points are projected to the same pixel on the 2D image, we keep the point
with the largest distance. Following RangeNet21 and RangeNet53 in [30], we
propose SqueezeSegV3-21 (SSGV3-21) and SqueezeSegV3-53 (SSGV3-53). The
model architecture of SSGV3-21 and SSGV3-53 are similar to RangeNet21 and
RangNet53 [30], except that we replace regular convolution blocks with SAC
blocks. Both models contain 5 stages, each of them has a different input reso-
lution. In SSGV3-21, the 5 stages respectively contain 1, 1, 2, 2, 1 blocks and
in SSGV3-53, the 5 stages contain 1, 2, 8, 8, 4 blocks, which are also same as
RangeNet21 and RangeNet53, respectively.

We use the SGD optimizer to end-to-end train the whole model. During
training, SSGV3-21 and SSGV3-53 are trained with an initial learning rate of
0.01 and 0.005, respectively. We use the warming up strategy to change the
learning rate for 1 epoch. During inference, the original points will be projected
and fed into SqueezeSegV3 to get a 2D prediction. Then we adopt the restoration
operation to obtain the 3D prediction, as previous work [30,56,58].

6.3 Comparing with Prior Methods

We compare two proposed models, SSGV3-21 and SSGV3-53, with previous
published work [22,30,35,36,43,46,56,58]. From Table 2, we can see that the
proposed SqueezeSegV3 models outperforms all the baselines. Compared with
the previous state-of-the-art RangeNet53 [30], SSGV3-53 improves the accuracy
by 3.0 mIoU. Moreover, when we apply post-processing KNN refinement follow-
ing [30] (indicated as *), the proposed SSGV3-53* outperforms RangeNet53*
by 3.7 mIoU and achieves the best accuracy in 14 out of 19 categories. Mean-
while, the proposed SSGV3-21 also surpasses RangeNet21 by 1.4 mIoU and
the performance is close to RangeNet53* with post-processing. The advantages
are more significant for smaller objects, as SSGV3-53* significantly outperforms
RangeNet53* by 13.0 IoU, 10.0 IoU, 7.4 IoU and 15.3 IoU in categories of bicycle,
other-vehicle, bicyclist and Motorcyclist respectively.

In terms of speed, SSGV3-21 (16 FPS) is closet RangeNet21 (20 FPS). Even
though SSGV3-53 (7 FPS) is slower than RangeNet53 (12 FPS), note that our
implementation of SAC is primitive and it can be optimized to achieve further
speedup. In comparison, PointNet-based methods [22,35,36,43,46] do not per-
form well in either accuracy and speed except RandLA-Net [15] which is a new
efficient and effective work.

6.4 Ablation Study

We conduct ablation studies to analyze the performance of SAC with different
configurations. Also, we compare it with other related operators to show its
effectiveness. To facilitate fast training and experiments, we shrink the LiDAR
images to 64 × 512, and use the shallower model of SSGV3-21 as the starting
point. We evaluate the accuracy directly on the projected 2D image, instead of
the original 3D points, to make the evaluation faster. We train the models in
this section on the training set of SemanticKITTI and report the accuracy on
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the validation set. We study different variations of SAC, input kernel sizes, and
other techniques used in SqueezeSegV3.

Table 3. mIoU [%], Accuracy [%] and Latency [e−4s] for variants of spatially-adaptive
convolution

Method Baseline SAC-S SAC-IS SAC-SK SAC-ISK PAC [42] SE [14] CBAM [51] CAM [58]

mIoU 44.0 44.9 44.0 45.4 46.3 45.2 44.2 44.8 42.1

Accuracy 86.8 87.6 86.9 88.2 88.6 88.2 87.0 87.5 85.8

Latency 3.0 5.3 4.6 15.0 5.2 18.4 54.5 15.8 10.6

Variants of Spatially-Adaptive Convolution: As shown in Figs. 4 and 5,
spatially-adaptive convolution can have many variation. Some variants are equiv-
alent to or similar with methods proposed by previous papers, including squeeze-
and-excitation (SE) [14], convolutional block attention maps (CBAM) [51], pixel-
adaptive convolution (PAC) [42], and context-aggregation module (CAM) [58].
To understand the effectiveness of SAC variants and previous methods, we swap
them into SqueezeSegV3-21. For simple comparison, we evaluate the latency of
one block for each variant, all of which are fed by an input with the size of
32 × 64 × 512 and output a feature with the size of 64 × 64 × 512. The results
are reported in Table 3.

It can be seen that SAC-ISK significantly outperforms all the other settings
in term of mIoU with few latency increments. CAM and SAC-IS have the worst
performance, which demonstrates the importance of the attention on the kernel
dimension. Squeeze-and-excitation (SE) also does not perform well, since SE is
not spatially-adaptive, and the global average pooling used in SE ignores the
feature distribution shift across the LiDAR image. In comparison, CBAM [51]
improves the baseline by 0.8 mIoU. Unlike SE, it also adapts the input fea-
ture spatially. This comparison shows that being spatially-adaptive is crucial for
processing LiDAR images. Pixel-adaptive convolution (PAC) is similar to the
SAC variant of SAC-SK, except that PAC uses a Gaussian function to com-
pute the kernel-wise attention. Experiments show that the proposed SAC-ISK
slightly outperforms SAC-SK, possibly because SAC-SK adopts a more general
and learnable convolution to compute the attention map. Comparing SAC-S and
SAC-IS, adding the input channel dimension does not improve the performance.

Table 4. mIoU [%] and Accuracy [%] for different convolution kernel sizes for coordi-
nate map

Kernel size baseline 1 × 1 3 × 3 5 × 5 7 × 7

mIoU 44.0 45.5 44.5 45.4 46.3

Accuracy 86.8 88.4 87.6 88.2 88.6
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Kernel Sizes of SAC: We use a one-layer convolution to compute the attention
map for SAC. However, what should be the kernel size for this convolution? A
larger kernel size makes sure that it can capture spatial information around, but
it also costs more parameters and MACs. To examine the influence of kernel size,
we use different kernel sizes in the SAC convolution. As we can see in Table 4, a
1 × 1 convolution provides a very strong result that is better than its 3× 3 and
5 × 5 counterparts. 7× 7 convolution performs the best.

The Effectiveness of Other Techniques: In addition to SAC, we also intro-
duce several new techniques to SqueezeSegV3, including removing the last two
downsample layers and multi-layer loss (Table 4). We start from the baseline
of RangeNet21. First, we remove downsampling layers and reduce the channel
sizes of the last two stages to 256 to keep the MACS the same. The performance
improves by 3.9 mIoU. After adding the multi-layer loss, the mIoU increases by
another 1.5%. Based on the above techniques, adding SAC-ISK further boost
mIoU by 2.3%.

Table 5. mIoU [%] and Accuracy [%] with downsampling removal, multi-layer loss,
and spatially-adaptive convolution

method Baseline +DS removal +Multi-layer loss +SAC-ISK

mIoU 38.6 42.5 (+3.9) 44.0 (+1.5) 46.3 (+2.3)

Accuracy 84.7 86.2 (+1.5) 86.8 (+1.4) 88.6 (+1.8)

7 Conclusion

In this paper, we are the first to explore the issue of spatially-varying feature dis-
tribution of LiDAR images and design efficient Spatially-Adaptive Convolution
to mitigate it. Experiments show that SAC significantly improves the state-of-
the-art methods by more than 2.0%.
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modal unsupervised domain adaptation for 3D semantic segmentation (2019)

18. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer
and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV
2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-46475-6 43

19. Kim, B., Ponce, J., Ham, B.: Deformable kernel networks for joint image filtering.
arXiv preprint arXiv:1910.08373 (2019)

20. Klokov, R., Lempitsky, V.: Escape from cells: deep Kd-networks for the recognition
of 3D point cloud models. In: Proceedings of the IEEE International Conference
on Computer Vision, pp. 863–872 (2017)

21. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images (2009)

22. Landrieu, L., Simonovsky, M.: Large-scale point cloud semantic segmentation with
superpoint graphs. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 4558–4567 (2018)

http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1911.11236
http://arxiv.org/abs/1602.07360
https://doi.org/10.1007/978-3-319-46475-6_43
https://doi.org/10.1007/978-3-319-46475-6_43
http://arxiv.org/abs/1910.08373


SqueezeSegV3 17

23. Li, J., Chen, B.M., Hee Lee, G.: SO-Net: self-organizing network for point cloud
analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 9397–9406 (2018)

24. Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: PointCNN: convolution on X-
transformed points. In: Advances in Neural Information Processing Systems, pp.
820–830 (2018)

25. Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D.,
Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp.
740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1 48

26. Liu, F., Li, S., Zhang, L., Zhou, C., Ye, R., Wang, Y., Lu, J.: 3DCNN-DQN-RNN:
a deep reinforcement learning framework for semantic parsing of large-scale 3D
point clouds. In: Proceedings of the IEEE International Conference on Computer
Vision, pp. 5678–5687 (2017)

27. Liu, Z., Tang, H., Lin, Y., Han, S.: Point-voxel CNN for efficient 3D deep learning.
In: Advances in Neural Information Processing Systems, pp. 963–973 (2019)

28. Ma, N., Zhang, X., Zheng, H.-T., Sun, J.: ShuffleNet V2: practical guidelines for
efficient CNN architecture design. In: Ferrari, V., Hebert, M., Sminchisescu, C.,
Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 122–138.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9 8

29. Meng, H.Y., Gao, L., Lai, Y.K., Manocha, D.: VV-Net: Voxel VAE Net with group
convolutions for point cloud segmentation. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pp. 8500–8508 (2019)

30. Milioto, A., Vizzo, I., Behley, J., Stachniss, C.: RangeNet++: fast and accurate
LiDAR semantic segmentation. In: Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (2019)

31. Mo, K., et al.: PartNet: a large-scale benchmark for fine-grained and hierarchical
part-level 3D object understanding. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 909–918 (2019)

32. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose esti-
mation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS,
vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46484-8 29

33. Pedram, A., Richardson, S., Horowitz, M., Galal, S., Kvatinsky, S.: Dark memory
and accelerator-rich system optimization in the dark silicon era. IEEE Des. Test
34(2), 39–50 (2016)

34. Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum PointNets for 3D object
detection from RGB-D data. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 918–927 (2018)

35. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for
3D classification and segmentation. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 652–660 (2017)

36. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learn-
ing on point sets in a metric space. In: Advances in Neural Information Processing
Systems, pp. 5099–5108 (2017)

37. Rethage, D., Wald, J., Sturm, J., Navab, N., Tombari, F.: Fully-convolutional point
networks for large-scale point clouds. In: Ferrari, V., Hebert, M., Sminchisescu, C.,
Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 625–640. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-01225-0 37

38. Riegler, G., Osman Ulusoy, A., Geiger, A.: OctNet: learning deep 3D representa-
tions at high resolutions. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 3577–3586 (2017)

https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-030-01264-9_8
https://doi.org/10.1007/978-3-319-46484-8_29
https://doi.org/10.1007/978-3-319-46484-8_29
https://doi.org/10.1007/978-3-030-01225-0_37


18 C. Xu et al.

39. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2:
inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

40. Shen, W., Wang, B., Jiang, Y., Wang, Y., Yuille, A.: Multi-stage multi-recursive-
input fully convolutional networks for neuronal boundary detection. In: Proceed-
ings of the IEEE International Conference on Computer Vision, pp. 2391–2400
(2017)

41. Song, S., Xiao, J.: Deep sliding shapes for amodal 3D object detection in GB-D
images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 808–816 (2016)

42. Su, H., Jampani, V., Sun, D., Gallo, O., Learned-Miller, E., Kautz, J.: Pixel-
adaptive convolutional neural networks. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 11166–11175 (2019)

43. Su, H., et al.: SPLATNet: sparse lattice networks for point cloud processing. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 2530–2539 (2018)

44. Tan, M., et al.: MnasNet: platform-aware neural architecture search for mobile. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 2820–2828 (2019)

45. Tan, M., Le, Q.V.: EfficientNet: Rethinking model scaling for convolutional neural
networks. arXiv preprint arXiv:1905.11946 (2019)

46. Tatarchenko, M., Park, J., Koltun, V., Zhou, Q.Y.: Tangent convolutions for dense
prediction in 3D. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3887–3896 (2018)

47. Tchapmi, L., Choy, C., Armeni, I., Gwak, J., Savarese, S.: SEGCloud: semantic
segmentation of 3D point clouds. In: 2017 International Conference on 3D Vision
(3DV), pp. 537–547. IEEE (2017)

48. Wang, B., Wu, V., Wu, B., Keutzer, K.: LATTE: accelerating LiDAR point cloud
annotation via sensor fusion, one-click annotation, and tracking. In: 2019 IEEE
Intelligent Transportation Systems Conference (ITSC), pp. 265–272. IEEE (2019)

49. Wang, W., Neumann, U.: Depth-aware CNN for RGB-D segmentation. In: Ferrari,
V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215,
pp. 144–161. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6 9

50. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic
graph CNN for learning on point clouds. ACM Trans. Graph. (TOG) 38(5), 1–12
(2019)

51. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention
module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018.
LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-
3-030-01234-2 1

52. Wu, B.: Efficient deep neural networks. arXiv preprint arXiv:1908.08926 (2019)
53. Wu, B., et al.: FBNet: hardware-aware efficient ConvNet design via differentiable

neural architecture search. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 10734–10742 (2019)

54. Wu, B., Iandola, F., Jin, P.H., Keutzer, K.: SqueezeDet: unified, small, low power
fully convolutional neural networks for real-time object detection for autonomous
driving. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pp. 129–137 (2017)

55. Wu, B., et al.: Shift: A zero FLOP, zero parameter alternative to spatial convolu-
tions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 9127–9135 (2018)

http://arxiv.org/abs/1905.11946
https://doi.org/10.1007/978-3-030-01252-6_9
https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.1007/978-3-030-01234-2_1
http://arxiv.org/abs/1908.08926


SqueezeSegV3 19

56. Wu, B., Wan, A., Yue, X., Keutzer, K.: SqueezeSeg: convolutional neural nets
with recurrent CRF for real-time road-object segmentation from 3D LiDAR Point
Cloud. In: ICRA (2018)

57. Wu, B., Wang, Y., Zhang, P., Tian, Y., Vajda, P., Keutzer, K.: Mixed preci-
sion quantization of convnets via differentiable neural architecture search. arXiv
preprint arXiv:1812.00090 (2018)

58. Wu, B., Zhou, X., Zhao, S., Yue, X., Keutzer, K.: SqueezeSegV2: improved model
structure and unsupervised domain adaptation for road-object segmentation from
a LiDAR point cloud. In: ICRA (2019)

59. Xie, Y., Tian, J., Zhu, X.X.: A review of point cloud semantic segmentation. arXiv
preprint arXiv:1908.08854 (2019)

60. Xu, C., Qiu, K., Fu, J., Bai, S., Xu, Y., Bai, X.: Learn to scale: generating mul-
tipolar normalized density maps for crowd counting. In: Proceedings of the IEEE
International Conference on Computer Vision, pp. 8382–8390 (2019)

61. Yang, Y., et al.: Synetgy: algorithm-hardware co-design for ConvNet accelerators
on embedded FPGAs. In: Proceedings of the 2019 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, pp. 23–32 (2019)

62. Yue, X., Wu, B., Seshia, S.A., Keutzer, K., Sangiovanni-Vincentelli, A.L.: A LiDAR
point cloud generator: from a virtual world to autonomous driving. In: Proceedings
of the 2018 ACM on International Conference on Multimedia Retrieval, pp. 458–
464 (2018)

63. Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolu-
tional neural network for mobile devices. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 6848–6856 (2018)

64. Zhou, Y., et al.: End-to-end multi-view fusion for 3D object detection in LiDAR
point clouds. arXiv preprint arXiv:1910.06528 (2019)

65. Zhou, Y., Tuzel, O.: VoxelNet: end-to-end learning for point cloud based 3D object
detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4490–4499 (2018)

66. Zhu, X., Hu, H., Lin, S., Dai, J.: Deformable ConvNets v2: more deformable, better
results. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 9308–9316 (2019)

http://arxiv.org/abs/1812.00090
http://arxiv.org/abs/1908.08854
http://arxiv.org/abs/1910.06528


An Attention-Driven Two-Stage
Clustering Method for Unsupervised

Person Re-identification

Zilong Ji1, Xiaolong Zou2, Xiaohan Lin2, Xiao Liu3, Tiejun Huang2,
and Si Wu2,3(B)

1 State Key Laboratory of Cognitive Neuroscience and Learning,
Beijing Normal University, Beijing, China

jizilong@mail.bnu.edu.cn
2 School of Electronics Engineering and Computer Science, Peking University,

Beijing, China
{xiaolz,Lin.xiaohan,tjhuang,siwu}@pku.edu.cn

3 IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life
Sciences, Academy for Advanced Interdisciplinary Studies,

Peking University, Beijing, China
xiaoliu23@pku.edu.cn

Abstract. The progressive clustering method and its variants, which
iteratively generate pseudo labels for unlabeled data and per form fea-
ture learning, have shown great process in unsupervised person re-
identification (re-id). However, they have an intrinsic problem of mod-
eling the in-camera variability of images successfully, that is, pedestrian
features extracted from the same camera tend to be clustered into the
same class. This often results in a non-convergent model in the real
world application of clustering based re-id models, leading to degener-
ated performance. In the present study, we propose an attention-driven
two-stage clustering (ADTC) method to solve this problem. Specifically,
our method consists of two strategies. Firstly, we use an unsupervised
attention kernel to shift the learned features from the image background
to the pedestrian foreground, which results in more informative clusters.
Secondly, to aid the learning of the attention driven clustering model,
we separate the clustering process into two stages. We first use kmeans
to generate the centroids of clusters (stage 1) and then apply the k-
reciprocal Jaccard distance (KRJD) metric to re-assign data points to
each cluster (stage 2). By iteratively learning with the two strategies, the
attentive regions are gradually shifted from the background to the fore-
ground and the features become more discriminative. Using two bench-
mark datasets Market1501 and DukeMTMC, we demonstrate that our
model outperforms other state-of-the-art unsupervised approaches for
person re-id.
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1 Introduction

The difficulties faced by supervised learning have motivated people to develop
unsupervised person re-id models which is more applicable in the real world
setting. One promising approach is the clustering-based method. The idea is
to train a clustering model for the unlabeled data points and a feature learn-
ing model from the pseudo-labeled dataset in a iterative manner. However, in
a real world re-id system, pedestrian images detected in the same camera often
share similar background. This results in a clustering model which assigns pedes-
trian features extracted from the same camera into the same cluster. Such model
shows great attention to the image background and fails to capture the in-camera
variability of images (Fig. 1). Therefore, it is necessary to shift the foci from the
background to the foreground during the implementation of the clustering based
model. Under the setting of supervised person re-id, it is often done by intro-
ducing an attention kernel to highlight the informative features of pedestrians
(e.g., logos on clothes, backpacks) and suppresses uninformative ones (e.g., the
background) [14,23,38,41]. However, due to the lack of supervisory signals under
the setting of unsupervised person re-id, it is hard for the attention model to
learn correct attentive regions. An alternative way is to use the off-the-shelf pose
estimation model to propose hard attentive local regions [34], but this introduces
local network branches which increases computational complexity of the model.

In the present study, to solve the aforementioned challenges, we propose an
Attention-Driven, Two-Stage Clustering method, referred to as ADTC hereafter
(Fig. 2A), for unsupervised person re-id task. Specifically, we adopt a voxel atten-
tion kernel to highlight the features of images that are informative for pedestrian

Fig. 1. Examples of class activation maps (CAMs) of pedestrians extracted from the
same camera. From top to bottom are the original images, the CAMs without attention,
and the CAMs with attention (the attention mechanism is described in Sect. 3.1).
Without attention, the CAMs highlight more on the background, leading to that images
from the same camera are likely to be assigned to the same cluster. With attention,
the CAMs focus more on the informative features of pedestrians.
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Fig. 2. The scheme of our method ADTC. (A) Our model consists of two iterative
operations, the voxel attention and the two-stage clustering. The gray shadow denotes
the manifold of feature representations at the current round, and different colors rep-
resent different clusters. (B) The feature extractor of our model. GMP denotes global
max-pooling and BN batch normalization. (C) The detail of the attention kernel in the
red dotted box in (B). (Color figure online)

discrimination.This attentionmechanismenhances the informative spatial regions
for pedestrians and recalibrates the channel-wise feature information adaptively
according to the inter-dependencies between channels. As a result, it enlarges the
separations between the negative and positive image pairs with respect to a query.
Moreover, this voxel attention kernel only has a small number of trainable param-
eters, avoiding the overfitting problem during the iterative training. Furthermore,
to improve the training of the attention-related parameters under the unsupervised
setting, we adopt a two-stage clustering process to generate pseudo-labels for data
points. We first use kmeans++ [1] to generate the centroids of clusters and then
apply the k-reciprocal Jaccarddistance (KRJD)metric [45] to re-assigndatapoints
to each cluster. Due to the appealing property of KRJD, data points belonging to
the same class are more likely to be aggregated together, and the clustering qual-
ity of images is significantly improved, which in return facilitates the training of
the model parameters. Overall, in our model, data clustering (generating pseudo-
labels) and model training (optimizing feature representations with attention) are
executed iteratively (Fig. 2A), and they promote each other to achieve good perfor-
mances. Using benchmark datasets, we demonstrate that the proposed model can
largely correct the mistakes made by the previous clustering based models (Fig. 4)
and outperform other state-of-the-art unsupervised models for person re-id. The
main contributions of this paper include:

– We propose to use an unsupervised voxel attention strategy to correct the
mistakes made by the clustering based re-id models.

– We propose to use a two-stage clustering strategy to generate pseudo-labels
for data points, which improves the clustering quality and stabilizes the pro-
gressive training.

– Our model achieves the state-of-the-art performances under the unsupervised
setting for person re-id on a number of benchmark datasets.
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2 Related Work

2.1 Unsupervised Person Re-ID

Traditional unsupervised person re-id studies have mainly focused on feature
engineering [7,9,13,42], which created hand-craft features using human prior
knowledge that can be applied directly to the unsupervised learning paradigm.
These methods are efficient for a small dataset, but often fail to deal with a
large dataset, since they can not fully exploit the data distribution to extract
the appropriate semantic features. Recently, the domain adaptation strategy has
been widely used for unsupervised person re-id [18,24,25,32,33], which attempts
to reduce the discrepancy between the source and target data domains. During
training, the knowledge learned from the source domain is continuously trans-
ferred to the target domain to facilitate the learning process. For example, Lin et
al. [20] developed a feature alignment method to align the source and target data
in the feature space by jointly optimizing the classification and alignment losses.
Deng et al. [5] proposed a SPGAN model to preserve the similarity between two
domains and integrate image translation and model learning. However, these
approaches rely heavily on the assumption that the two domains have similar
distributions. When the discrepancy between two domains is large, there is no
guarantee that these methods will work well. Another direction for unsupervised
person re-id is the clustering-based method [6,8,21,28,39,40], which generates
pseudo-labels by clustering data points in the feature space and then use these
pseudo-labels to train the model as if in the supervised manner. Fan et al. [6]
proposed a progressive clustering method to transfer the pre-learned deep rep-
resentations to an unseen domain, where feature clustering and representation
learning are performed iteratively like the EM-style algorithm. Lin et al. [21]
proposed a bottom-up clustering approach to jointly optimize a convolutional
neural network and the relationship between the individual samples. Recently,
Yang et al. [39] introduced the asymmetric co-teaching strategy in the clustering
based method. For a clustering-based unsupervised model, the clustering quality
of data is crucial. Compared to the existing clustering-based models, our method
has two differences: 1) we use an attention mechanism to drive the clustering
process, and 2) we cluster data points in two stages using a more appropriate
distance metric. It turns out that our method improves the clustering quality
significantly, which further leverages the model performances (see the details in
Sects. 3.1 and 3.2).

2.2 Attention in Person Re-ID

The attention in a person re-id model aims to highlight the informative fea-
tures of images to avoid the mis-alignments due to pose variance, occlusion,
or body parts missing in a bounding box [3,4,27,36,49]. The attention mecha-
nisms proposed in the literature can be divided into two main categories: hard-
attention and soft-attention. The former typically uses a pose estimation model



24 Z. Ji et al.

to locate coarse regions and then exploit these local features for discrimina-
tion [15,30,34,43]. However, these hard region-level attentions rely heavily on
the pose estimation, which is often inaccurate and does not consider the pixel-
level information within the selected regions that are potentially important for
the identification task. A soft-attention mechanism typically inserts trainable
layers into the main body of the model to mask the convolutional feature maps,
so that the informative regions are highlighted [2,16,31,38]. Two main soft-
attention mechanisms are widely used: the spatial attention and the channel
attention. The former enables the model to pay attention to the valuable features
at different spatial locations, and the latter enables the model to improve the
representational power by performing channel-wise recalibration. There are also
works combining the two soft-attention mechanisms. For example, Li et al. [17]
proposed a Harmonious Attention Convolutional Neural Network (HA-CNN)
which combines the pixel-level spatial information and the scale-level channel
information to jointly learn the attentive regions and feature representations.
Notably, so far the attention mechanism has only been used under the super-
vised setting; here we apply it under the unsupervised setting which is much
harder to optimize.

3 Our Approach

3.1 Voxel Attention (VA)

We first introduce the voxel attention strategy1. Given an input image x in the
unlabeled dataset X, denote the output of the backbone model as the corre-
sponding feature map fw×h×c, where w, h, c are the values of width and height,
and the number of channels, respectively. The attention feature map aw×h×c is
defined as (for clearance, we omit the superscript hereafter),

a = v � f , (1)

where v is the voxel attention kernel having the same size as f , and � denotes the
element-wise product. v is composed of two complementary parts: the spatial and
the channel attentions (Fig. 2C). For the spatial attention part, we first calculate
the mean intensity of activation at each spatial location along the corresponding
channel, which is given by I(i, j) =

∑c
l=1

f(i,j,l)
c ; afterwards we apply softmax

to calculate the probability of I(i, j), which is S(i, j) = eI(i,j)/
[∑

i,j eI(i,j)
]
.

Here, the divisive normalization makes the spatial filters competitive (acts like
global inhibition) to highlight the most active (informative) ones. Note that
no trainable parameter is introduced for the spatial attention branch. For the
channel attention branch, we adopt the idea of [11] and apply a squeeze-and-
excitation block to improve the quality of representations. Firstly, we perform
global average pooling on f to squeeze the global spatial information into a
1 The term of voxel attention comes from that it is a 3D attention mask combining

the spatial and channel attentions.
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channel descriptor Cc
in, with each element clin =

∑h,w
i=1,j=1

f(i,j,l)
(h×w) aggregating the

feature information distributed across the spatial space in channel l. Secondly,
to capture the inter-dependencies between different channels in f , we employ a
gating function on Cc

in by forming a bottleneck with two fully connected layers,
i.e.,

C = σ [W2ReLU(W1Cin)] , (2)

where σ represents the sigmoid function, W1 ∈ Dd×c, W2 ∈ Dc×d,C ∈ Dc, with
d � c. The total number of parameters in the channel attention part is only 2cd,
which is computationally efficient. Eventually, the voxel attention kernel v can
be written as tensor multiplication between S and C,

v = S × C, (3)

i.e., each voxel vi in v at the location (i, j, l) is calculated as S(i, j) × C(l) (see
Fig. 2C).

The above voxel attention kernel can be regarded as a self-attention function,
which not only enhances the quality of spatial encoding by attending to active
spatial locations in the feature map f , but also recalibrates the channel-wise
feature responses adaptively by capturing the inter-dependencies between chan-
nels. Compared to the harmonious attention (HA) [17], the voxel attention has
a few differences: 1) it has a much simpler form with a much smaller number
of trainable parameters; 2) it is only applied after the backbone model, while
HA is inserted between several building blocks; 3) it includes a normalization
operation in the spatial attention to highlight the informative spatial locations.
It turns out that these differences contribute to improve the model performances
significantly (see Sects. 4.3 and 4.7).

3.2 Two-Stage Clustering (TC)

We now introduce the two-stage clustering strategy. The choice of the distance
metric is crucial for clustering. Although an off-the-shelf clustering algorithm
operating in the feature space, rather than in the raw pixel space, can alleviate
the problem of “curse of dimensionality” [29] to some extent, it may still lead
to an unsatisfactory clustering quality. Here we adopt a two-stage procedure to
improve the clustering performance. Firstly, we use the conventional kmeans++
to get the centroids of clusters, denoted as {cm}Mm=1, with M the predefined
number of clusters. Secondly, we re-assign data points to each cluster according
to their k-reciprocal Jaccard distances (KRJDs) [45] to the cluster centroids.
The k-reciprocal nearest neighbours of a feature point are defined as,

R(g, k) = {gj |(gj ∈ N(g, k)) ∩ (g ∈ N(gj , k))}, (4)

where g is a feature point for clustering, which is obtained by performing max-
pooling and 1-D batch normalization on the re-weighted attention feature map
a. N(g, k) denotes the k nearest neighbours of g. R(g, k) indicates that g and
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each element in its neighbourhood are the mutually k nearest neighbours of each
other. The KRJD distance between two feature points is then defined as

J(gi , gj ) = 1 − |R(gi , k) ∩ R(gj , k)|
|R(gi , k) ∪ R(gj , k)| . (5)

Compared to Euclidean distance, KRJD takes into account the reciprocal rela-
tionship between data points, and is a stricter rule measuring whether two feature
points match or not (see Fig. 5 and more examples in SI.6). KRJD can also be
seen as a refinement of the k-nearest neighbour in the Euclidean space which is
more accurate for sorting feature points. Then we obtain a refined cluster Cp

m

by selecting the top p closest feature points to cm with the KRJD metric. Some
of the refined clusters may share some data points due to noises or variances of
input images, especially when feature points are intertwined with each other at
the first few rounds of training. To alleviate this problem, we remove data points
having ambiguous pseudo-labels, and obtain the final pseudo-labeled training set
{(xj , yj)}Nr

j=1, yj ∈ [1, 2, . . . ,M ], where Nr is the number of remaining data.

3.3 Progressive Training

In our model, the voxel attention (in combination with model training and fea-
ture extraction) and two-stage clustering (generating pseudo-labels) are per-
formed iteratively. At each training round t, we optimize the model parameters
using the pseudo-labelled train set. When choosing the loss function, we note
that the clustering assignments of two adjacent training rounds can be com-
pletely different, even if the same set of training samples are used. We therefore
adopt the metric learning loss, rather than the softmax loss, as the latter will
lead to the failure of model learning. In other words, we only impose that the dif-
ference of (dis-)similarities between the positive and negative pairs with respect
to a query is larger than a predefined margin, such that the absolute values of
assignments are irrelevant. Specifically, we adopt the triplet loss with in-batch
hard example mining [10] to optimize the model parameters, which is written as

Lm
tri

(
g, g+, g−;θ

)
= max(0, ‖ g − g+ ‖22 − ‖ g − g− ‖22 + m),

where g+ = arg max
{gp}

‖g − gp‖22, and g− = arg min
{gn}

‖g − gn‖22.
(6)

Here {gp} and {gn} denote the positive and negative sets with respect to g in the
mini-batch, respectively, m is the margin between feature pairs, θ denotes the
model parameters. In order to avoid overfitting on the current pseudo labeled set,
we only train Mt in each round for a few gradient update steps to get Mt+1. MT

denotes the final model when the stopping criterion is reached. The two steps of
attention-driven clustering and feature learning are performed iteratively, and
they facilitate each other to achieve the final well-performing model. The detail
of our method ADTC is summarized in Algorithm 1.
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Algorithm 1. Attention-driven Two-stage Clustering (ADTC) method for
unsupervised person re-id
Input: The unlabeled dataset X, the model M0.
Output: Final model MT .
1: t=0.
2: repeat
3: Attention Step:
4: Extracting feature point fi of each data point xi ∈ X before the global max-

pooling layer.
5: Applying the voxel attention kernel vi on fi to get the attention feature point

ai .
6: Applying global max-pooling and 1-D batch normalization on ai to get the final

feature point gi .
7: Clustering Step:
8: Performing kmeans++ clustering on {gi}N

i=1 and obtaining centroids {cm}M
m=1.

9: For each centroid cm, computing its p-nearest neighbours Cp
m based on the KRJD

metric, and assigning the pseudo-label m to all data points in Cp
m.

10: Removing ambiguous data points belonging to more than one clusters and
obtaining the pseudo-labelled train set {(xj , yj)}Nr

j=1.
11: Parameter Updating Step:
12: Training Mt with the triplet loss on {(xj , yj)}Nr

j=1 to get Mt+1.
13: t = t+1;
14: until t = T

4 Experiments

4.1 Datasets

Market-1501 is a dataset containing 32668 images with 1501 identities captured
from 6 cameras [44]. The dataset is split into three parts: 12936 images with 751
identities forming the training data, 19732 images with 750 identities forming
the testing gallery, and another 3368 images from the testing gallery forming the
query data.

DukeMTMC contains 36411 images with 1812 identities captured from 8 cam-
eras [26]. The dataset is split into three parts: 16522 images with 702 identities
forming the training data, 17661 images with 1110 identities forming the testing
gallery, and another 2228 images with 702 identities from the testing gallery
forming the query data. Note that the evaluation protocol on two dataset are
the same.

4.2 Implementation Details

We use a Resnet-50 pretrained on Imagenet as the backbone model. Following
[37], we add a batch normalization layer after the global pooling layer to pre-
vent overfitting and directly use the batch-normalized global pooling features to
execute identity classification (for the performance of the model architecture on
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supervised dataset, see SI.4). The output channels are set as 800 in the voxel
attention kernel. During clustering, we set the number of clusters M to be 1000
(for the effect of M , see SI.2) and the neighbour size p is 20. All input images are
resized to 256 × 128. Except random horizontal flipping, no other data augmen-
tation strategy is used. 32 pseudo-classes and 4 examples per class are randomly
sampled to form a mini-batch. The margin m between negative pairs and posi-
tive pairs is 0.3. The total training rounds is set to be 20. To prevent overfitting,
the model is fine-tuned for 10 epochs in each round. The Adam optimizer is
used for optimization with an initial learning rate of 0.0001 which exponentially
decays after epoch 5 (for more detailed setting of hyper-parameters, see SI.1).

4.3 Model Performances on Benchmark Datasets

We compare our model with other state-of-the-art unsupervised person re-id
methods on two benchmark datasets Market1501 and DukeMTMC. These meth-
ods include: 1) two hand-crafted features: LOMO [19], BoW [44]; 2) four feature
alignment methods, MMFA [20], TJ-AIDL [32], ARN [18], and EANet [12]; 3)
four GAN-based domain adaptation methods, IPGAN [22], eSPGAN+LMP [5],
CamStyle [47], and HHL [46]; 4) two clustering-based methods, PUL [6] and
DAR [28]. Note that when training on Market1501, we first initialize our model
on DukeMTMC and vice versa (domain adaptation).

The results are summarized in Table 1. We observe that: 1) our model
achieves 59.7%/79.3% on Market1501 and 52.5%/71.9% on DukeMTMC on the
mAP/rank1 accuracy, which is one of the state-of-the-art (SOTA) models. Note
that we only initialized the model on the source labeled domain and then trained
it without any auxiliary label information in the unlabeled domain; whereas most
of the aforementioned methods keep using the auxiliary label information in the
source domain during the domain transfer learning. 2) Compared to the feature
alignment methods which implicitly make an assumption that the data distribu-
tions of the source and target domains are similar, our model learns directly from
the unlabeled target dataset and achieves better performances. 3) Compared to
the GAN-based models which aim at translating the style of labeled images
from the source domain to the target domain, our model achieves better perfor-
mances even without the voxel attention or two-stage clustering (see Table 2). 4)
Although the clustering-based SSG model achieves a slightly better performance
on DukeMTMC (mAP/rank1) than ours, they use multi learning branches and
the DBSCAN clustering method while our model only consists of only one learn-
ing branch and adopts the simple kmeans clustering method. Notably, the main
concern in our paper is to enhance the in-camera variability so as to improve
the accuracy of unsupervised person ReID model rather than introduce other
strategies to boost the performance. Overall, our model achieves the state-of-art
performances on the two benchmark datasets. In below, we inspect how different
elements of the model contribute to its superior performances.
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Table 1. Comparison of different unsupervised learning methods. DukeMTMC to
MarKet1501 means model initialized on DukeMTMC and trained on Market1501.
Market1501 to DukeMTMC means model initialized on Market1501 and trained on
DukeMTMC. ADTC w/o DA means we trained our model directly on the unlabeled
dataset without initialization on the source domain dataset. Note that the LOMO,
BoW and PUL also don’t use the source domain data to initialize models.

Source to target DukeMTMC to Market1501 Market1501 to DukeMTMC

mAP rank1 rank5 rank10 mAP rank1 rank5 rank10

Directly transfer 18.8 44.0 62.1 69.4 18.2 34.0 49.1 55.9

LOMO [19] 8.0 27.2 - - 4.8 12.3 – –

BoW [44] 14.8 35.8 - - 8.3 17.2 – –

MMFA [20] 24.7 45.3 59.8 66.3 27.4 56.7 75.0 81.8

TJ-AIDL [32] 26.5 58.2 74.8 81.1 23.0 44.3 59.6 65.0

ARN [18] 39.4 70.3 80.4 86.3 33.4 60.2 73.9 79.5

EANet [12] 51.6 78.0 - - 48.0 67.7 – –

IPGAN [22] 25.6 56.4 76.0 82.5 26.7 46.8 62.0 67.9

eSPGAN+LMP [5] 30.4 52.6 66.3 71.7 31.7 63.6 80.1 86.1

CamStyle [47] 27.4 58.8 78.2 84.3 25.1 48.4 62.5 68.9

HHL [46] 31.4 62.2 78.8 84.0 27.2 46.9 61.0 66.7

PUL [6] 20.1 44.7 59.1 65.6 16.4 30.4 44.5 50.7

DAR [28] 53.7 75.8 89.5 93.2 49.0 68.4 80.1 83.5

SSG [8] 58.3 80.0 90.0 92.4 53.4 73.0 80.6 83.2

ADTC w/o DA 38.8 59.5 71.6 76.9 37.9 59.4 70.0 74.1

ADTC (Ours) 59.7 79.3 90.8 94.1 52.5 71.9 84.1 87.5

4.4 Contribution of the Voxel Attention

Figure 3A and B present the class activation maps (CAMs) [48] of a few example
images, which display the spatial regions where the model pays attention to. We
see that without the voxel attention, the model pays more attention to the back-
ground than to the foreground, resulting in wrong cluster assignments. Indeed,
such a degenerate performance often occurs in a clustering-based method without
attention, since pedestrian images extracted from the same camera, especially
those from the same location, tend to have less variability than those from differ-
ent cameras (also see Fig. 1). Consequently, the model will assign clusters based
on the overall image appearances, rather than the details of pedestrians, and
thus fail to capture the in-camera variability of images crucial for the re-id task.
Figure 3A and B also show that the voxel attention helps to increase the margin
of the negative pair (g, g−) and decrease the margin of the positive pair (g, g+)
in a triplet. We calculate the margin difference δ = ‖g − g−‖22 − ‖g − g+‖22 of
10000 triplets randomly sampled from DukeMTMC, and find that by applying
the voxel attention, δ increases significantly across the whole dataset (Fig. 3C).
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Fig. 3. The voxel attention highlights the informative parts of images and makes them
more discriminatable. (A–B) Two examples from DukeMTMC with/without the voxel
attention. From top to bottom are the raw images, the CAMs without the voxel atten-
tion, and the CAMs with the voxel attention. The value in black stands for the euclidean
distance between two feature maps, and the value in red for the margin difference
defined in Sect. 4.4. (C) The statistical result of the margin difference δ from 10000
triplets randomly sampled from DukeMTMC. (Color figure online)

Fig. 4. The voxel attention enhances the in-camera discrimination. From left to right
are the results of the initialized model without training (baseline), the model with
progressive clustering but no attention, and the model with progressive clustering and
attention. The total number of query images is 2228. Blue, red, and orange: the number
of query images having the correct rank1, the number of in-camera error (ICE), and
the number of cross-camera errors (CCE). DukeMTMC is used. (Color figure online)
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This implies that the images belonging to the same identity have a more com-
pact aggregation in the feature space, which makes the retrieval task easier than
that without the voxel attention (see SI.5).

To further unveil the role of the voxel attention, we differentiate the wrongly
retrieved rank1 images to a query into the in-camera errors (ICE), i.e., those in
the same camera as the query, and the cross-camera errors (CCE), i.e., those
in different cameras with the query. Figure 4 compares the results of our model
with that of the progressive clustering method without attention. It shows that
without attention, the progressive clustering method can improve the rank1 accu-
racy from 34.0% to 60.3% compared to the baseline (i.e., the result of the model
initialized via the label data); but our model can improve the rank1 accuracy
further to 71.9%. Notably, this further improvement is mainly attributed to the
decrease of ICE, from 588 to 340 out of 2228 queries. This supports our idea that
the voxel attention helps to capture the in-camera variability of images; whereas
the progressive clustering method without attention is lack of this capability and
hence makes more mistakes in-camera identifications.

4.5 Contribution of Two-Stage Clustering

Fig. 5. Example clusters with top 10 nearest neighbours after training with/without
two-stage clustering. Market1501 is used. Upper: ranking by the Euclidean distance to
the cluster centroid. Lower: ranking by KRJD to the cluster centroid with two-stage
clustering. Blue, Red: the correctly, the wrongly assigned images.

We continue to inspect the contribution of two-stage clustering. Figure 5
shows that when two-stage clustering is used during training, more positive (cor-
rect) examples appear in the neighbourhood of a given cluster centroid, compared
to that of using only the Euclidean distance based Kmeans++ algorithm. This
indicates that KRJD indeed serve as a better metric to compute the neighbour-
hood relationship between feature points, which improves the clustering quality
and leverage the model performances (see SI.6 for more examples).

4.6 Contribution of Progressive Training

We further inspect how the voxel attention and two-stage clustering are executed
iteratively to generate good feature representations. To measure the clustering
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Fig. 6. (A) The clustering performance NMI vs. the training round. (B) The rank1
accuracy vs. the training round.

quality, we adopt the normalized mutual information (NMI), which is given by

NMI (C,L) =
I(C,L)

√
H(C)H(L)

, (7)

where C = {Cp
1 , Cp

2 , . . . , Cp
M} denote M clusters, L the corresponding ground

truth label set, and I the mutual information between C and L. H(C) and H(L)
are the entropies of C and L, respectively. The value of NMI is between 0 and 1,
with 1 standing for the perfect labeling of data points. The larger the NMI, the
closer the pseudo-labels to the ground truth2. Figure 6A shows how the clustering
performance increases along with the training round. Initially, the assignment
of clusters is unsatisfactory (NMI ≈ 0.77), as data points are intertwined with
each other. Along with the training, data points belonging to the same class
are gradually grouped together, and the assigned pseudo-clusters become more
similar to the ground truth (NMI ≈ 0.90). Figure 6B further shows that the rank1
accuracy of the model increases in the same pace as the clustering performance.
This suggests that in our model, data clustering and model training promote each
other during progressive training, in the sense that the improved assignments by
two-stage clustering will select more reliable samples to facilitate the learning of
the voxel attention, which in return will highlight more informative features to
further improve cluster assignments.

4.7 Component Analysis of ADTC

We carry out component analysis of our method. Table 2 shows that both the
voxel attention and two-stage clustering are indispensable to our model, in the
sense that when either of them is ablated, the model performance is degraded.
Moreover, we check that for the voxel attention, both the channel attention and
the spatial attention are indispensable, in the sense that when either of them
is ablated, the model performance is degraded. We also replace the proposed
voxel attention module with the Harmonious Attention (HA) kernel [17] and the
CABM attention kernel [35] (Table 2). It shows that the proposed attention ker-
nel is superior and leads to better performance under the unsupervised setting.
Besides, we also carry out robustness analysis of our model to hyper-parameters,
2 Note that NMI is independent of the absolute values of labels, in term of that a

permutation of cluster labels does not change its value.
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Table 2. Component analysis of the performances of our model. Except the ablating
part, all other hyper-parameters are fixed.

Source to target DukeMTMC to Market1501 Market1501 to DukeMTMC

mAP rank1 rank5 rank10 mAP rank1 rank5 rank10

Only TC 41.1 66.2 84.2 88.9 28.2 49.8 68.2 74.2

Only VA 35.5 61.7 74.3 79.1 32.6 52.0 65.3 69.4

TC + channel attention 42.8 68.9 87.1 91.2 30.1 52.2 71.5 78.9

TC + spatial attention 41.3 66.6 85.0 89.2 28.8 50.7 69.1 75.2

TC + HA 50.6 76.2 88.1 92.0 48.9 69.2 81.5 85.1

TC + CABM 55.2 77.3 88.8 93.5 49.1 69.8 82.0 85.9

Full model 59.7 79.3 90.8 94.1 52.5 71.9 84.1 87.5

e.g., the number of clusters, the margin m the updating epochs in each training
round (see SI.2) and the balance level of the original dataset (SI.3). All these
results indicate that our model is potentially feasible in real-world applications.

5 Conclusion

In this study, we have proposed an Attention-Driven Two-stage Clustering
(ADTC) method for learning an unsupervised model for person re-id. It cap-
tures the in-camera variability of images and reduce the noisy labels when clus-
tering(which has been ignored in current unsupervised ReID methods). The
method has two indispensable components. Firstly, we use the voxel attention
strategy to highlight the informative parts of pedestrian images, which captures
the in-camera variability of images crucial for the re-id task. Secondly, we adopts
a two-stage clustering strategy, which uses the KRJD metric to improve the clus-
tering quality and stabilizes the progressive training. Through progressive train-
ing, the two strategies facilitate with each and enables our model to outperform
other unsupervised approaches for person re-ID and achieve the state-of-the-art
performances on two benchmark datasets. We also empirically show that our
model is robust to a number of varying conditions, making it potentially feasible
in real-world applications.
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Abstract. Facial expression manipulation aims at editing facial expres-
sion with a given condition. Previous methods edit an input image under
the guidance of a discrete emotion label or absolute condition (e.g., facial
action units) to possess the desired expression. However, these methods
either suffer from changing condition-irrelevant regions or are inefficient
for fine-grained editing. In this study, we take these two objectives into
consideration and propose a novel method. First, we replace continuous
absolute condition with relative condition, specifically, relative action
units. With relative action units, the generator learns to only transform
regions of interest which are specified by non-zero-valued relative AUs.
Second, our generator is built on U-Net but strengthened by multi-scale
feature fusion (MSF) mechanism for high-quality expression editing pur-
poses. Extensive experiments on both quantitative and qualitative evalu-
ation demonstrate the improvements of our proposed approach compared
to the state-of-the-art expression editing methods. Code is available at
https://github.com/junleen/Expression-manipulator.

Keywords: GANs · Expression editing · Image-to-image translation

1 Introduction

Over the years, facial expression synthesis has been drawing considerable atten-
tion in the field of both computer vision and computer graphics. However, synthe-
sizing easy-to-use and fine-grained facial images with desired expression remains
challenging because of the complexity of this task. Recently, the proposal of gen-
erative adversarial networks [9,20] sheds light on image synthesis, introducing
significant advances with well-known architectures like [5,11,17,35]. However,
these work suffer from fine-grained expression editing because they either rely
on several binary emotion labels (e.g., smiling, mouth open) to synthesize target
expressions, or suffer from limited naturalness and low quality (Fig. 1).

As one of the most successful generative models, GANimation [26] pushes the
limits of facial expression manipulation by building a conditional GAN which
c© Springer Nature Switzerland AG 2020
A. Vedaldi et al. (Eds.): ECCV 2020, LNCS 12373, pp. 37–53, 2020.
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Fig. 1. Arbitrary Facial Expression Manipulation. Our model can 1) perform
continuous editing between two expressions (top); 2) learn to only modify one facial
component (middle); 3) transform expression in paintings (bottom). From left to right,
the emotion intensity is set to 0, 0.5, 0.75, 1, and 1.25.

relies on attention-based generator and discrete facial action units activation
(action units [7] (AUs), a kind embedding which indicates the facial muscles
movement). As a novel expression editing method, GANimation is able to edit
an image in a continuous manner and outperforms other popular multi-domain
image-to-image translation methods [5,16,25,37].

Despite the novelty and generality, GANimation suffers from two drawbacks.
First, by taking absolute AUs as input condition, the generator needs to estimate
the current facial muscles state so that it can apply a desired expression change
to the input image. This is insufficient for the model to reserve its facial part
corresponding to unchanged AUs. Besides, from the perspective of model testing,
exploiting the entire set of AUs as conditional input imposes a restriction on
fine-grained expression editing because a user always needs to acquire accurate
underlying real value of each AU in the input image, even though he does not
intend to to modify these facial regions. Second, the attention mechanism which
is introduced for learning desirable change from expression of input image to
desired expression, virtually applies a learned weighted sum between the input
image and the generated one. This kind of operation, as pointed out in [26],
brings about overlap artifacts around face deformation regions. Furthermore,
spatial attention networks for attribute-specific region editing [35] are effective
only for local attributes and not designed for arbitrary attribute editing [17].

To address these limitations, this work investigates arbitrary facial expression
editing on the basis of relative condition. In terms of relative, which is defined as
the difference between target AUs and source AUs, our model is capable of (i)
only considering the facial components to be modified while keeping the remain-
ing parts unchanged, and (ii) freely strengthening or suppressing the intensity
of specified AUs or arbitrary emotions by user-input real numbers. This brings
several benefits. First, by using relative AUs, the generator is not required to
compare the current AUs with desired AUs before applying image transforma-
tion. Second, the values of the relative AUs indicate the desired change to facial
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Fig. 2. An overview of proposed approach. Our model consists of a single genera-
tor (G) and two discriminators (Dadv and Dcond). (top) G conditions on an input image
and relative action units to generate image with target expression. (bottom right) Dadv

tries to distinguish between the input image x and generated image G(x,vrel). Condi-
tional discriminator Dcond aims at evaluating generated image in condition fulfillment.

muscles. In particular, non-zero values correspond to AUs of interest and zero
values correspond to unchanged AUs. Hence, our generator can learn to manipu-
late single AU with scalable one-hot vector, eliminating the demand for all other
AUs intensities.

For the purpose of higher image quality and better expression manipulation
ability, we start from U-Net-based generator and analyze its limitations. Note
that the features from encoder are directly concatenated with decoder features
in U-Net structure. This often produces overlap artifacts when dealing with
facial deformation. eIn this work, we resort to learn the model by simultaneously
fusing and transforming image features at different spatial size. Particularly,
we propose to introduce multi-resolution feature fusion mechanism and involve
several multi-scale feature fusion (MSF) modules in basic U-Net architecture
for image transformation. Taking relative AUs as conditional input, our MSF
module adaptively fuse and modify both the features from the encoder and all
lower resolution, and output fusion features with multi-resolution representation.
The fusion features are further concatenated with decoder features for image
decoding. Experimental results in Table 1 and Fig. 9 reveal the better expression
manipulation ability and higher image quality brought by MSF mechanism and
relative setting. Table 2 and Fig. 4, 6, and 7 demonstrate the superiority of our
method compared to baseline model. An overview of our approach is provided
in Fig. 2.
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2 Related Work

Generative Adversarial Networks. As one of the most promising unsu-
pervised deep generative models, GANs [9] have achieved a series of impres-
sive results. WGAN [1] stabilizes GAN training and alleviates model collapse
problems by introducing Wasserstein distance. WGAN-GP [10] is suggested to
improve WGAN training by enforcing gradient penalty. Conditional GAN [20]
generates images with desired properties under the constraint of extra condi-
tional variables. Up to now, GANs have become one of the most prominent gen-
erative models in image synthesis [14,24,36], super-resolution [6,32] and image-
to-image translation [11,22].

Image-to-Image Translation. Image-to-image translation can be treated as a
cGAN that conditions on an image, aiming at learning an image mapping from
one domain to another in supervised or unsupervised manner. Liu et al. [18]
introduce a shared-latent space assumption and an unsupervised image-to-image
translation framework based on Coupled GANs [19]. Pix2Pix [12] as well as [22]
is a supervised cGANs based approach which relies on an abundance of paired
images. However, the absence of adequate paired data limits the performance of
conditional GAN. To alleviate the dependency on paired images, Zhu et al. [37]
propose a cycle consistent framework for unpaired image-to-image translation.
GANimation [26] utilizes an encoder-decoder network to take images and entire
action units as input to generate animated images but suffers from undesired
artifacts in generated images.

Facial Expression Manipulation. Facial expression manipulation is an inter-
esting image-to-image translation problem, which has drawn prevalent attention
recently. Some popular works tackle this task with multiple facial attributes
editing [5,11,17,34], modifying attribute categories such as to smiling, mouth
open, mouth closed, adding beard, swapping gender and changing hair color,
etc. However, these methods cannot simply generalize to an arbitrary human
facial expression synthesizing tasks due to the limitations of discrete emotion
categories (e.g., happy, neutral, surprised, contempt, anger, disgust, and sad).
Several studies, aiming at manipulating human facial expression from facial geo-
metric representation [27,29], conditioning on face fiducial points to synthesize
animated faces but suffers from fine-grained details. Geng et al. [8] proposes a 3D
parametric face guided model to manipulate the geometry of facial components,
while requiring real existent target face images rather than a simple vector.

3 Methodology

In this section, we present the components of our approach. We consider an input
image as x with arbitrary facial expression. The expression is characterized by
a one-dimensional AUs vector v = (v1, . . . , vn), where each AU is normalized
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between 0 and 1 and vi indicates the intensity of the i-th AU. With the goal of
translating x into a photo-realistic image, our generator takes relative AUs vrel

as condition to renders with target expression. In the following parts, relative
action units, MSF module, network structure, and loss functions are presented.

3.1 Relative Action Units (AUs)

Previous methods [26] take both absolute target AUs vector vsrc and source
image x as input to the generator. However, this input setting is flawed in that
the generator needs to estimate the real AUs of input image to determine whether
to edit image. From an application perspective, we are required to provide a
value that must be strictly equal to the corresponding AU in the source image
(i.e., vi

tgt = vi
src, where i = 1, 2, . . . , n) even if we do not want to change it.

Otherwise, the generator will probably introduce unintended modifications to
editing results.

Compared to absolute AUs, relative AUs describe the desired change in
selected action units. This is in accordance with the definition of action units [7]
that indicates the activation state of facial muscles. Denote the source AUs and
target AUs as vsrc and vtgt. Therefore, the difference between target and source
AUs can be defined as:

vrel � vtgt − vsrc (1)

Introducing relative AUs as input brings several benefits. First, the relative
AUs represented by the difference between the source and target images are intu-
itive and user friendly. For example, if we only intend to suppress AU10 (Upper
Lip Raiser), we could assign an arbitrary real negative value to v10, while mak-
ing the other values zero. Second, in comparison to entire target AUs, the values
in vrel are zero-centered and can provide more expressive information for guid-
ing expression editing and stabilize the training process. Moreover, with relative
AUs, the generator learns to edit and reconstruct facial parts with respect to
non-zero and zero values, which alleviates the cost for action units preserving.
In our experiments, vrel with zero values hardly introduces artifacts and errors.

Additionally, we propose to edit interpolated expressions vinter among two
different expressions v1 and v2. The interpolated AUs is denoted as Eq. 2.

vinter = v1 + α(v2 − v1) − vsrc, 0 ≤ α ≤ 1 (2)

3.2 Network Structure

As presented in Fig. 3 (left), our generator is built on U-Net structure but replace
several skip connections by our MSF modules in both high and low-resolution
representation. The encoder consists of four convolutional layers with stride 2 for
down-sampling, while the decoder is composed of four transposed convolutional
layers with stride 2 for up-sampling. Furthermore, MSF module is applied as skip
unit to fuse features from both higher and lower resolution in our generator. The
kernel sizes are all 4 × 4 in down-sampling and up-sampling layers, while 5 × 5
in the rest convolutional layers.
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Fig. 3. Left: the structure of our generator, incorporating several MSF modules which
render the encoder features in different feature level. Right: details of the proposed
MSF module. The bottom legend on the right figure: conv. = convolution, trans. =
transposed.

Our discriminator D is the same as which in [26], which is trained to evaluate
the generated images both in realism score and desired expression fulfillment.
Two branches of the discriminator, namely Dadv and Dcond, share a fully convo-
lutional sub-network comprised of six convolutional layers with kernel size 4 and
stride 2. On top of Dadv, we add a convolutional layer with kernel size 3, padding
1 and stride 1. For conditional critic Dcond, we add an auxiliary regression head
to predict target AUs.

3.3 Multi-scale Feature Fusion

Encoder-decoder architecture is insufficient to manipulate the image with high
quality but U-Net based architectures support the rise of generating quality,
according to [17]. Taking these basics into consideration, we propose to modify the
image features in different spatial resolution, simultaneously. To this end, we alter
the structure in [30] and thenbuild a learnable sub-network, namely ourmulti-scale
feature fusion (MSF) module, to manipulate features in multi-scale level. In Fig. 3
(right), we show the overall architecture of multi-scale feature fusion module.

Our MSF module is different from [30] in two aspects. First, in MSF mod-
ule, we fuse features from low-to-high, and the two kinds of conv streams noted
above. In our approach, the MSF module takes the features across the encoder
and the MSF modules as well as relative AUs as input and learns to manipu-
late image features at different spatial sizes. Second, we inject the condition at
each MSF module. Such fusion mechanism helps MSF to learn the consistency
of expressions of features with different resolutions, especially between encoder
features and decoder features.

Without the loss of generality, we take the MSF module in i-th layer for
example. Denote the input encoder features as fi from i-th layer of encoder,
and fusion feature as f ′

i+1 from the i + 1-th MSF module. Firstly, the encoder
features are concatenated with relative AU vrel in depth-wise fashion. Then a
convolutional unit and a down-sample layer are applied to acquire two feature
maps in different spatial size. The down-sampled features are then concatenated
with higher-level features f ′

i+1 from i + 1-th MSF module. One more parallel
feature fusion unit is applied across high and low-resolution representation, and
then formulated into the output f ′

i . The fusion feature f ′
i will be one the input
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of decoder and i − 1-th MSF module. In this way, our generator learns and
transforms the image features collaboratively in a multi-scale manner.

3.4 Loss Functions

Denote the conditional generated image as x′ = G(x,vrel), where input image
x and relative attributes vrel are considered as inputs of the generator. In the
following, we will introduce the loss functions employed in our framework.

Adversarial Loss. To synthesize photo-realistic images with GANs, we use the
improved divergence criterion of standard GAN [9] proposed by WGAN-GP [10].
The adversarial loss can be written as:

max
Dadv

LDadv
= ExDadv(x) − Ex′Dadv(x′) − λgpEx̂[(‖ �x̂ Dadv(x̂)‖2 − 1)2] (3)

max
G

LGadv
= Ex,vrel

Dadv(G(x,vrel)) (4)

where λgp is a penalty coefficient and x̂ is randomly interpolated between x and
generated image x′. The discriminator D is unsupervised and aims to distinguish
between real images and the generated fake images. The generator G tries to
generate images which look realistic as the real.

Conditional Fulfillment. We require not only that the image synthesized
by our model should look realistic, but also possess desired AUs. To this end,
we adopt the core idea of conditional GANs [20] and employ an action units
regressor Dcond which shares convolutional weights with Dadv, and define the
following manipulation loss for training Dcond and G:

min
Dcond

LDcond
= Ex,vsrc

‖Dcond(x) − vsrc‖22 (5)

min
G

LGcond
= Ex′,vtgt

‖Dcond(x′) − vtgt‖22 (6)

where the AUs regression loss of real images x is used to optimize Dcond, thus G
can learn to generate images x′ which minimize the AUs regression loss LGcond

.

Reconstruction Regularization. Our generator G is trained to generate an
output image G(x,vrel) which not only looks realistic but also possesses desired
facial action units. However, there is no ground-truth supervision provided in
the dataset for our model to modify facial components while preserving identity
information. To this end, we add extra constraints to guarantee the faces in both
input and output images are from the same person in appearance.

On one hand, we utilize a self-reconstruction loss to enforce the generator
to manipulate nothing when fed with zero-value relative AUs (i.e., vrel = 0).
On the other hand, we adopt the concept of cycle consistency [37] and for-
mulate the cycle-reconstruction loss which penalizes the difference between
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G(G(x,vrel),−vrel) and the input source x. Hence, these two reconstruction
losses can be written as:

min
G

Lrec = Ex[‖x − G(x,0)‖1] + Ex,vrel
[‖G(G(x,vrel),−vrel) − x‖1] (7)

where 0 denotes a zero-padded vector with the same shape of vrel.

Total Variation Regularization. To ensure smooth spatial transformation
and naturalness of output images in RGB color space, we follow the prior
work [13,26] and perform a regularization Ltv over the synthesized fake sam-
ples G(x,vrel).

Model Objective. Taking the above losses into account, we finally build our
total loss functions for D and G by combining all previous partial losses, respec-
tively, as:

min
D

LD = −LDadv
+ λ1LDcond

(8)

min
G

LG = − LGadv
+ λ2LGcond

+ λ3Lrec + λ4Ltv (9)

where λ1, λ2, λ3, and λ4 are tradeoff parameters that control the impact of each
loss.

4 Experiments

4.1 Implementation Details

Dataset and Preprocessing. We randomly choose a subset of 200,000 samples
from AffectNet [21] dataset. Besides, we remove some repeated images or cartoon
faces in the validation set and take 3234 images as our testing samples to assess
the training process. The images are centered cropped and resized to 128 × 128
by bicubic interpolation. All continuous AUs annotations are extracted by [2].

Baseline. As the current state-of-the-art method, GANimation [26], outper-
forming plenty of representative facial expression synthesis models [5,16,25,37],
is taken as our baseline model. For fair comparison, we use the code1 released by
the authors and train the model on AffectNet [21] with default hyper-parameters.

Experiment Settings. We train the model by Adam [15] optimizer with
settings of β1 = 0.5, β2 = 0.999 for 30 epochs at initial learning rate of
1 × 10−4, and then linearly decay the rate to 1 × 10−5 for fine-tuning. We
perform every single optimization step of the generator with four optimization
steps of the discriminator. The weight coefficients for Eq. 8 and 9 are set to
λ1 = λ2 = 150, λ3 = 30, λ4 = 5 × 10−6. All experiments are conducted in
PyTorch [23] environment.
1 https://github.com/albertpumarola/GANimation.

https://github.com/albertpumarola/GANimation
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4.2 Evaluation Metrics

Evaluating a GAN model with respect to one criterion does not reliably reveal
its convincing performance. In this work, we conduct model evaluation from
two perspectives, which are network-based and human-based evaluation. Both
methods measure the performance in three aspects, namely expression fulfill-
ment, relative realism and identity preserving ability.

Network-Based Metrics. We evaluate 3234 images from AffectNet testing-
set, each of which is transformed to 7 randomly selected expressions. Therefore,
we get 22638 image pairs and then perform our quantitative evaluation.

– Inception Score (IS). IS [28] utilizes an Inception network to extract image
representation and calculates the KL divergence between the conditional dis-
tribution and marginal distribution. Although previous work [3] has revealed
the limitations of IS in intra-class images, it is still widely used to evalu-
ate the model performance in image quality [4,26]. Following the evaluating
method in [26], we calculate IS of images synthesized by our approach and
GANimation [26].

– Average Content Distance (ACD). ACD [31] measures l2-distance between
embedded features of the input and generated images. We employ a famous
facial recognition network2, as GANimation did in [26], to extract face code
for each individual and calculate the distance for each expression editing
result. The lower value indicates the better identity similarity between images
before and after editing.

– Expression Distance (ED). To consistently evaluate the ability of our model
in expression editing, we reuse OpenFace2.0 [2] to acquire the AUs of edited
images, and calculate l2-distance between the generated and target AUs (the
lower, the better). Performing such objective evaluation is not trivial, as a
categorized expression often related to two different AU intensity [7].

Human-Based Metrics. For each metric in human-based evaluation, we asked
20 volunteers to evaluate 100 pairs of images which are generated by baseline
and our method. During the test, we randomly display the images and ensure
that the users do not know which image is edited by our model.

– Relative realism. In each comparison, we randomly select two images which
are generated by GANimation and our model, respectively. The user is asked
to pick the more realistic image they think.

– Identity preserving. One more user study for identity similarity metric is con-
ducted to verify if humans agree that the given two images are from the same
person. The display order of synthesized images from GANimation or our
model is random.

2 https://github.com/ageitgey/face recognition.

https://github.com/ageitgey/face_recognition
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Fig. 4. Comparisons for single AU editing. Each time, we manipulate the face
with only one AU activated, leaving the rest part of face unchanged. The values upon
images denote the relative AUs value in our test.

– Expression fulfillment. Due to the complex distribution of human facial
expressions, it is not very reasonable to classify expression into a specific
category. To this end, we alleviate these limitations by asking the users to
rate the similarity of two facial expressions instead of reporting the emotion
labels. In every trail of human preference study, two images (one with target
expression and the other one is edited by GANimation or our method) are
displayed randomly. The users have to examine and rate the similarity of
facial expressions in the two images. If the given two images are considered
to be different in their opinion, the user is allowed to rate 0. When the user
thinks the images are totally the same expression, 2 will be given. If the user
is not sure about the similarity of two expressions or these expressions are
partly the same (e.g., same AUs for mouth but different for eyebrows), 1 will
be noted.

4.3 Qualitative Evaluation

We first qualitatively compare our model with GANimation in edition of single or
multiple AUs. Figure 4 shows two typical examples of AU2 (Outer Brow Raiser)
and AU15 (Lip Corner Depressor). From sample results of (a) in Fig. 4, it can be
observed that GANimation fails to focus on Outer Brow and wrinkles the mouth,
yielding less satisfying results than ours. In sample results of sub-figure (b),
our model produces more plausible and better-manipulated results, especially in
regions around the lip corner.
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AU7
AU20
AU15

Input -0.5 0.5 0.75 1.0 1.25-0.75-1.0-1.25 0

Fig. 5. Sample results in single/multiple AUs editing. AU4: Brow Lowerer; AU5:
Upper Lid Raiser; AU7: Lid Tightener; AU12: Lip Corner Puller; AU15: Lip Corner
Depressor; AU20: Lip Stretcher. The legend below the images are relative AUs intensity.
The higher (lower) AUs value means to strengthen (weaken) the corresponding facial
action unit in input image. Please zoom in for better observation.

Figure 5 shows more results in single/multiple AUs editing. By adopting rel-
ative action units as conditional input, our model convincingly learns to edit a
single or multiple AUs instead of entire action units of the input image.

We proceed to compare our model against GANimation. From the observa-
tion in Fig. 6, we can find that our model successfully transforms source image in
accordance with desired AUs, with fewer artifacts and manipulation cues. While
the baseline model is less likely to generate high-quality details or preserve the
facial regions corresponding to unchanged AUs, especially for eyes and mouth.

We next evaluate our network and discuss the model performance when deal-
ing with extreme situations, which includes but not limited to image occlusions,
portraits, drawings, and non-human faces. In Fig. 7, for instance, the first image
shows occlusions created by a finger. To edit the expression for this kind of image,
GANimation requires the entire set of AUs, including the activation status of
Lip Corner and Chin, which imposes an extra burden on the user and brings an
undesirable increase of visual artifacts. On the contrary, our method is able to
edit expression without the need for source AUs. In the third and fourth row
of Fig. 7, we present face editing examples from paintings and drawings, respec-
tively. GANimation is either fails to efficiently manipulate input image with fully
the same expression (the third row, left and the fourth row, right) or introduces
unnatural artifacts and deformation (third row, right and fourth row, left). We
can easily find the improvements of our method when compared to GANimation,
although GANimation achieves plausible results on these images.

To better understand the benefits of continuous editing, we exploit AUs inter-
polation between different expressions and present results in Fig. 8. The plausible
results verify the continuity in the action units space and demonstrate the gen-
eralization performance of our model.
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Target AUsInput GANimation Ours Target AUsInput GANimation Ours

Fig. 6. Qualitative comparison. Images are taken from AffectNet dataset.

Target AUsInput OursGANimation Target AUsInput OursGANimation

Fig. 7. Testing in difficult cases. We compare our model to GANimation in several
difficult cases, covering occlusions, paintings and drawings.

AUs 1 AUs 2Input

Fig. 8. Expression interpolation. Example results of linear expression interpolation
between two AUs vectors.
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4.4 Quantitative Evaluation

Here we will conduct quantitative evaluations to verify the qualitative compar-
isons above. As described in Sect. 4.2, we resort to three alternative measures for
quantitative evaluation of our method. First, we calculate metrics of IS, ACD and
ED for both GANimation and the proposed approach. The comparison results
are given in Table 1. It can be observed that our approach consistently achieves
competitive results against GANimation for IS and ED. Our generator without
MSF module attains the lowest score on ACD but the highest score in ED. This
is reasonable because the accuracy of a facial recognition network inevitably
suffers from expression variation.

Table 1. Network-based evaluation. Better results are in bold.

Method IS ↑ ACD ↓ ED ↓
Real Images 3.024 ± 0.157 – –

GANimation 2.861 ± 0.054 0.395 0.313

GANimation w/vrel 2.901 ± 0.043 0.352 0.661

Ours, kMSF = 0 2.809 ± 0.058 0.335 0.636

Ours, kMSF = 1 2.864 ± 0.042 0.349 0.609

Ours, kMSF = 2 2.899 ± 0.038 0.345 0.422

Ours 2.940 ± 0.039 0.375 0.275

Ours w/o vrel 2.808 ± 0.050 0.426 0.290

Table 2. Human-based evaluation. We present the proportion of user subjective
evaluation on edited expression fulfillment and human preference. Better results are in
bold.

Method Expression similarity Human preference

0 ↓ 1 ↑ 2 ↑ Realism ↑ Identity ↑
GANimation 25.04 43.25 31.71 34.43 90.59

Ours 17.66 35.22 47.12 65.57 90.56

Table 2, as a supplement to metric ED, offers a human-based evaluation on
expression editing ability. Benefiting from MSF modules which serve as skip
connections from encoder to decoder, our approach outperforms GANimation
by a large margin. Nearly a quarter of test samples transformed by GANimation
are considered failures. The proposed model is slightly favorable to the baseline
in terms of identity preservation and our model performs better in image realism
score, according to human preference results in Table 2 (right part).
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4.5 Ablation Study

In this section, we exploit the importance of each component within the pro-
posed method. To begin with, we investigate the improvement brought by rel-
ative AUs. We compare our model with baseline model in action units preserv-
ing from reconstruction perspective. To perform facial image reconstruction, we
respectively apply GANimation by taking source AUs as absolute condition, and
apply our model by taking a zero-valued vector as relative condition. We present
results of L1 norm, PSNR, and SSIM [33] between input and generated images
in Table 3. From the second and third row, it can be seen that GANimation
trained with relative AUs is slightly better than our approach without using
relative AUs. When trained with our full approach (fourth row), we achieve the
best reconstruction results.

Fig. 9. Conditional loss convergence. Left (right) figure: the learning curves of con-
dition loss in discriminator (generator). We use the same discriminator during ablation
study.

Table 3. Reconstruction comparison. We measure the reconstruction error using
L1 distance (lower is better), PSNR and SSIM [33] (higher is better).

Method L1 ↓ PSNR ↑ SSIM ↑
GANimation 0.049 23.76 0.901

GANimation w/vrel 0.022 29.11 0.954

Ours w/o vrel 0.025 28.83 0.972

Ours 0.018 31.89 0.986

We next examine the importance of MSF module based on IS/ACD/ED met-
rics. Note that our model is built on U-Net, we carefully replace the skip con-
nection with our MSF module and gradually train these generators separately.
Quantitative comparison results are shown in Table 1. The first case is our model
without MSF module (fourth row), which reduces to U-Net architecture. U-Net-
based model acquires the best ACD result and the worst expression distance,
which implies inefficient performance in expression editing. A conclusion can be
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drawn from the comparison results that a model has a greater potential to attain
lower ACD if the ED gets higher. One proper explanation is that the expression
editing intensity inevitably change the face features for facial recognition net-
work. Figure 9 shows the loss optimization process in our experiments. As can be
found, the trend of loss curves are almost the same during the period of training
discriminator (left figure). From the right figure, we can find that the generator
that has two MSF modules converges faster than those with less MSF modules,
which implies the definite improvements are brought by our MSF mechanism.

5 Conclusion

In this study, we propose a novel approach by incorporating multi-scale fusion
mechanism in U-Net based architecture for arbitrary facial expression editing. As
a simple but competitive method, relative condition setting is proved to improve
our model performance by a large margin, especially for action units preserving,
reconstruction quality and identity preserving. We achieve better experimental
results in visual quality, manipulation ability, and human preference compared
to state-of-the-art methods.
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Abstract. In this paper, we propose a novel end-to-end unsupervised
deep domain adaptation model for adaptive object detection by exploit-
ing multi-label object recognition as a dual auxiliary task. The model
exploits multi-label prediction to reveal the object category information
in each image and then uses the prediction results to perform conditional
adversarial global feature alignment, such that the multimodal structure
of image features can be tackled to bridge the domain divergence at the
global feature level while preserving the discriminability of the features.
Moreover, we introduce a prediction consistency regularization mecha-
nism to assist object detection, which uses the multi-label prediction
results as an auxiliary regularization information to ensure consistent
object category discoveries between the object recognition task and the
object detection task. Experiments are conducted on a few benchmark
datasets and the results show the proposed model outperforms the state-
of-the-art comparison methods.

Keywords: Cross-domain object detection · Auxiliary task

1 Introduction

The success of deep learning models has led to great advances for many computer
vision tasks, including image classification [16,35,36], image segmentation [24,43]
and object detection [11,23,28,29]. The smooth deployment of the deep mod-
els typically assumes a standard supervised learning setting, where a sufficient
amount of labeled data is available for model training and the training and test
images come from the same data source and distribution. However, in practi-
cal applications, the training and test images can come from different domains
that exhibit obvious deviations. For example, Fig. 1 demonstrates images from
domains with different image styles, which obviously present different visual
appearances and data distributions. The violation of the i.i.d sampling principle
across training and test data prevents effective deployment of supervised learn-
ing techniques, while acquiring new labeled data in each test domain is costly
and impractical. To address this problem, unsupervised domain adaptation has
recently received increasing attention [4,10,25,39].
c© Springer Nature Switzerland AG 2020
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Fig. 1. (a) and (b) are images from real scenes and virtual scenes respectively. It is
obvious that the visual appearances of the images from different domains are very
different, even if they contain the same categories of objects.

Unsupervised domain adaptation aims to adapt information from a label-
rich source domain to learn prediction models in a target domain that only has
unlabeled instances. Although many unsupervised domain adaptation methods
have been developed for simpler image classification and segmentation tasks
[4,10,25,37,38,42], much fewer domain adaptation works have been done on the
more complex object detection task, which requires recognizing both the objects
and their specific locations. The authors of [2] propose a domain adaptive faster
R-CNN model for cross-domain object detection, which employs the adversar-
ial domain adaptation technique [10] to align cross-domain features at both the
image-level and instance-level to bridge data distribution gaps. This adaptive
faster R-CNN method presents some promising good results. However, due to
the typical presence of multiple objects in each image, as shown in Fig. 1, both
the image-level and instance-level feature alignments can be problematic without
considering the specific objects contained. The more recent work [31] proposes to
address the problem of global (image-level) feature alignment by incorporating
an additional local feature alignment under a strong-weak alignment framework
for cross-domain object detection, which effectively improved the performance of
the domain adaptive faster R-CNN. Nevertheless, this work still fails to take the
latent object category information into account for cross-domain feature align-
ment. With noisy background and various objects, a whole image can contain
very complex information and the overall features of an image can have com-
plex multimodal structures. Aiming to learn an accurate object detector in the
target domain, it is important to induce feature representations that minimize
the cross-domain feature distribution gaps, while preserving the cross-category
feature distribution gaps.

In light of the problem analysis above, in this paper we propose a novel
end-to-end unsupervised deep domain adaptation model, Multi-label Condi-
tional distribution Alignment and detection Regularization model (MCAR), for
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multi-object detection, where the images in the target domain are entirely unan-
notated. The model exploits multi-label prediction as an auxiliary dual task to
reveal the object category information in each image and then uses this infor-
mation as an additional input to perform conditional adversarial cross-domain
feature alignment. Such a conditional feature alignment is expected to improve
the discriminability of the induced features while bridging the cross-domain rep-
resentation gaps to increase the transferability and domain invariance of fea-
tures. Moreover, as object recognition is typically easier to solve and can yield
higher accuracy than the more complex object detection task, we introduce
a consistency regularization mechanism to assist object detection, which uses
the multi-label prediction results as auxiliary regularization information for the
object detection part to ensure consistent object category discoveries between
the object recognition task and the object detection task.

The contribution of this work can be summarized as follows: (1) This is the
first work that exploits multi-label prediction as an auxiliary dual task for the
multi-object detection task. (2) We deploy a novel multi-label conditional adver-
sarial cross-domain feature alignment methodology to bridge domain divergence
while preserving the discriminability of the features. (3) We introduce a novel
prediction consistency regularization mechanism to improve the detection accu-
racy. (4) We conduct extensive experiments on multiple adaptive multi-object
detection tasks by comparing the proposed model with existing methods, and
demonstrate effective empirical results for the proposed model.

2 Related Work

Object Detection. Detection models have benefited from using advanced con-
volutional neural networks as feature extractors. Many widely used detection
methods are two-stage methods based on the region of interest (ROI) [11,12,29].
The RCNN in [12] is the first detection model that deploys the ROI for object
detection. It extracts features independently from each region of interest in the
image, instead of using the sliding window and manual feature design in tradi-
tional object detection methods. Later, the author of [11] proposed a Fast-RCNN
detection model, which adopts a ROI pooling operation to share the convolu-
tion layers between all ROIs and improve the detection speed and accuracy. The
work in [29] made further improvements and proposed the Faster-RCNN, which
combines Region Proposal Network (RPN) with Fast-RCNN to replace selec-
tive search and further improve detection performance. Faster-RCNN provides
a foundation for many subsequent research studies [6,15,21,23,28]. In this work
and many related unsupervised domain adaptation methods, the widely used
two-stage method, Faster-RCNN, is adopted as the backbone detection model.

Unsupervised Domain Adaptation. Unsupervised domain adaptation has
attracted a lot of attention in computer vision research community and made
great progress [7,10,20,25,30,33]. The main idea employed in these works is to
learn feature representations that align distributions across domains. For exam-
ple, the work in [10] adopts the principle of generative adversarial networks
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(GANs) [14] through a gradient reversal layer (GRL) [9] to achieve cross-domain
feature alignment. The work in [25] further extends adversarial adaptation into
conditional adversarial domain adaptation by taking the classifier’s prediction
into account. The works in [3,30] use image generation to realize cross-domain
feature transformation and align the source and target domains. Moreover, some
other works adopt distance metric learning methods, such as asymmetric metric
learning [20], maximum mean discrepancy (MMD) minimization [7] and Wasser-
stein distance minimization [33], to achieve domain alignment. Nevertheless,
these studies focus on the simpler image classification and segmentation tasks.

Adaptive Object Detection. Recently domain adaptation for object detec-
tion has started drawing attention. The work in [2] proposes an adaptive Faster-
RCNN method that uses adversarial gradient reversal to achieve image-level
and instance-level feature alignment for adaptive cross-domain object detection.
[18] adopts image transformation and exploits pseudo labels to realize a weakly
supervised cross-domain detection. The work in [19] leverages multi-style image
generation between multiple domains to achieve cross-domain object detection.
The authors of [31] propose a strong and weak alignment of local and global fea-
tures to improve cross-domain object detection performance. [44] focuses on rel-
evant areas for selective cross-domain alignment. [17] adopts hierarchical domain
feature alignment while adding a scale reduction module and a weighted gradi-
ent reversal layer to achieve domain invariance. [1] advances the Mean Teacher
paradigm with object relations for cross-domain detection. [34] uses a gradient
detach based multi-level feature alignment strategy for cross-domain detection.
[40] adopts multi-level feature adversary to achieve domain adaptation. Never-
theless, these methods are limited to cross-domain feature alignment, while fail-
ing to take the latent object category information into account when performing
feature alignment. Our proposed model employs multi-label object recognition
as an auxiliary task and uses it to achieve conditional feature alignment and
detection regularization.

3 Method

In this section, we present the proposed Multi-label Conditional distribution
Alignment and detection Regularization model (MCAR) for cross-domain adap-
tive object detection. We assume there are two domains from different sources
and with different distributions. The source domain is fully annotated for
object detection and the target domain is entirely unannotated. Let Xs =
{(xs

i ,b
s
i , c

s
i )}ns

i=1 denote the annotated images from the source domain, where
xs

i denotes the i-th image, bs
i and cs

i denote the bounding boxes’ coordinates
and the category labels of the corresponding objects contained in the image
respectively. Let Xt = {xt

i}nt
i=1 denote the unannotated images from the target

domain. We assume in total K classes of objects are presented in images of both
the source and target domains. We aim to train an object detection model by
exploiting the available data from both domains such that the model can have
good detection performance in the target domain.
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Fig. 2. The structure of the proposed MCAR model. Conditional adversarial global
feature alignment is conducted through a domain discriminator by using multi-label
prediction results as object category input. Meanwhile, multi-label prediction results
are also used to provide a prediction consistency regularization mechanism on object
detection after the RPN.

The main idea of the proposed MCAR model is to exploit multi-label pre-
diction (for multi-object recognition) as an auxiliary task and use it to perform
both conditional adversarial cross-domain feature alignment and prediction con-
sistency regularization for the target object detection task. This end-to-end deep
learning model adopts the widely used Faster-RCNN as the backbone detection
network. Its structure is presented in Fig. 2. Following this structure, we present
the model in detail below.

3.1 Multi-label Prediction

The major difference between object recognition and object detection lies in
that the former task only needs to recognize the presence of any object cat-
egory in the given image, while the latter task needs to identify each specific
object and its location in the image. The cross-domain divergence in image fea-
tures that impacts the object recognition task can also consequently degrade
the detection performance, since it will affect the region proposal network and
the regional local object classification. Therefore we propose to deploy a simpler
task of object recognition to help extract suitable image-level features that can
bridge the distribution gap between the source and target domains, while being
discriminative for recognizing objects.

In particular, we treat the object recognition task as a multi-label prediction
problem [13,41]. It takes the global image-level features produced by the fea-
ture extraction network F of the Faster-RCNN model as input, and predicts the
presence of K object category using K binary classifier networks, M1, · · · ,MK .
These classifiers can be learned on the annotated images in the source domain,
where the global object category label indicator vector ys

i ∈ {0, 1}K for the i-th
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image can be gathered from its bounding boxes’ labels cs
i through a fixed trans-

formation operation function ϕ : cs
i → ys

i , which simply finds all the existing
object categories in cs

i and represents their presence using ys
i . The multi-label

classifiers can then be learned by minimizing the following cross-entropy loss:

Lmulti = − 1
ns

ns∑

i=1

[
ys�

i log(ps
i ) + (1−ys

i )
�log(1−ps

i )
]

(1)

where each k-th entry of the prediction output vector ps
i is produced from the

k-th binary classifier:

ps
ik = Mk(F (xs

i )) (2)

which indicates the probability of the presence of objects from the k-th class.
The multi-label classifiers work on the global features extracted before the

RPN of the Faster-RCNN. For Faster-RCNN based object detection, these global
features will be used through RPNs to extract region proposals and then perform
object classification and bounding box regression on the proposed regions. In the
source domain, supervision information such as bounding boxes and the object
labels are provided for training the detector, while in the target domain, the
detection is purely based on the global features extracted and the detection
model parameters (for RPN, region classifiers and regressors) obtained in the
source domain. Hence it is very important to bridge the domain gap at the global
feature level. Moreover, image features that led to good global object recognition
performance are also expected to be informative for the local object classification
on proposed regions. Therefore we will exploit multi-label prediction for global
feature alignment and regional object prediction regularization.

3.2 Conditional Adversarial Feature Alignment

The popular generative adversarial network (GAN) [14] has shown that two dis-
tributions can be aligned by using a discriminator as an adversary to play a
minimax two-player game. Following the same principle, conditional adversary
is designed to take label category information into account. It has been suggested
in [25,27] that the cross-covariance of the predicted category information and the
global image features can be helpful for avoiding partial alignment and achieving
multimodal feature distribution alignment. We propose to integrate the multi-
label prediction results together with the global image features extracted by F to
perform conditional adversarial feature alignment at the global image level. The
key component network introduced is the domain discriminator D, which pre-
dicts the domain of the input image instance, with label 1 indicating the source
domain and 0 indicating the target domain. As shown in Fig. 2, the discriminator
consists of a convolution filter layer f , which reduces the dimension of the input
features, and a fully connected layer FC, which integrates the inputs to perform
classification. It takes features F (xi) and the multi-label prediction probability
vector pi as input, and uses softmax activation function to produce probabilistic
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prediction output. For the conditional adversarial training, we adopted a focal
loss [22,31], which uses the prediction confidence deficiency score to weight each
instance in order to give more weights to hard-to-classify examples. The loss of
conditional adversarial training, Ladv, is as below:

min
F

max
D

Ladv = −1
2
(Ls

adv + Lt
adv) (3)

Ls
adv =− 1

ns

ns∑

i=1

(1−D(F (xs
i ),p

s
i ))

γ log(D(F (xs
i ),p

s
i ))

Lt
adv =− 1

nt

nt∑

i=1

D(F (xt
i),p

t
i)

γ log(1−D(F (xt
i),p

t
i))

where γ is a modulation factor that controls how much to focus on the hard-
to-classify example; the global features F (xi) and the multi-label prediction
probability vector pi are integrated through a multi-linear mapping function
such that D(F (xi),pi) = FC(f(F (xi)) ⊗ pi). With this adversary loss, the
feature extractor F will be adjusted to try to confuse the domain discriminator
D, while D aims to maximumly separate the two domains.

This multi-label prediction conditioned adversarial feature alignment is
expected to bridge the domain distribution gaps while preserving the discrim-
inability for object recognition, which will improve the adaptation of the con-
sequent region proposal, object classification on each proposed region and its
location identification in the target domain.

3.3 Category Prediction Based Regularization

The detection task involves recognizing both the objects and their locations,
which is relatively more difficult than object recognition [8]. The multi-label
classifiers we applied can produce more accurate recognition results as the region
proposal mistakes can be accumulated to objection classification on the proposed
regions in the detection task. Based on such an observation, we propose a novel
category prediction consistency regularization mechanism for object detection
by exploiting multi-label prediction results.

Assume N region proposals are generated through the region proposal net-
work (RPN) for an input image x. Each proposal will be classified into one of
the K object classes using an object classifier C, while its location coordinates
will be produced using a regressor R. The multi-class object classifier produces
a length K prediction vector q̂ on each proposal that indicates the probability
of the proposed region belonging to one of the K object classes. The object pre-
diction on the total N proposals can form a prediction matrix Q ∈ [0, 1]K×N .
We can then compute an overall multi-object prediction probability vector q by
taking the row-wise maximum over Q, such that qk = max(Q(k, :)), and use qk

as the prediction probability of the image x containing the k-th object category.
To enforce consistency between the prediction produced by the detector and the
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prediction produced by the multi-label object recognition, we propose to min-
imize the KL divergence between their prediction probability vectors p and q
after renormalizing each vector with softmax function. As KL divergence is an
asymmetric measure, we define the consistency regularization loss as:

Lkl = Ls
kl + Lt

kl (4)

Ls
kl =

1
2ns

ns∑

i=1

(KL(ps
i ,q

s
i ) + KL(qs

i ,p
s
i )) (5)

Lt
kl =

1
2nt

nt∑

i=1

(KL(pt
i,q

t
i) + KL(qt

i,p
t
i)) (6)

With this regularization loss, we expect the multi-label prediction results can
assist object detection through unified mutual learning.

3.4 Overall End-to-End Learning

The detection loss of the base Faster-RCNN model, denoted as Ldet, is computed
on the annotated source domain data under supervised classification and regres-
sion. It has two components, the proposal classification loss and the bounding
box regression loss. We combine the detection loss, the multi-label prediction
loss, the conditional adversarial feature alignment loss, and the prediction con-
sistency regularization loss together for end-to-end deep learning. The total loss
can be written as:

⎧
⎨

⎩

Lall = Ldet + λLadv + μLmulti + εLkl

min
F

max
D

Lall

(7)

where λ, μ, and ε are trade-off parameters that balance the multiple loss terms.
We use SGD optimization algorithm to perform training, while GRL [9] is
adopted to implement the gradient sign flip for the domain discriminator part.

4 Experiments

We conducted experiments with multiple cross-domain multi-object detection
tasks under different adaptation scenarios: (1) Domain adaptation from real to
virtual image scenarios, where we used cross-domain detection tasks from PAS-
CAL VOC [8] to Watercolor2K [18] and Comic2K [18] respectively. (2) Domain
adaption from normal/clear images to foggy image scenarios, where we used
object detection tasks that adapt from Cityscapes [5] to Foggy Cityscapes [32].
In each adaptive object detection task, the images in the source domain are fully
annotated and the images in the target domain are entirely unannotated. We
present our experimental results and discussions in this section.
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Table 1. Test results of domain adaptation for object detection from PASCAL VOC
to Watercolor in terms of mean average precision (%). MC and PR indicate Multilabel-
Conditional adversary and Prediction based Regularization, respectively.

Method MC PR Bike Bird Car Cat Dog Person mAP

Source-only 68.8 46.8 37.2 32.7 21.3 60.7 44.6

BDC-Faster [31] 68.6 48.3 47.2 26.5 21.7 60.5 45.5

DA-Faster [2] 75.2 40.6 48.0 31.5 20.6 60.0 46.0

SW-DA [31] 82.3 55.9 46.5 32.7 35.5 66.7 53.3

SCL [34] 82.2 55.1 51.8 39.6 38.4 64.0 55.2

MCAR (Ours) � 92.5 52.2 43.9 46.5 28.8 62.5 54.4

� � 87.9 52.1 51.8 41.6 33.8 68.8 56.0

Train-on-Target 83.6 59.4 50.7 43.7 39.5 74.5 58.6

Table 2. Test results of domain adaptation for object detection from PASCAL VOC
to Comic, The definition of MC and PR is same as in Table 1.

Method MC PR Bike Bird Car Cat Dog Person mAP

Source-only 32.5 12.0 21.1 10.4 12.4 29.9 19.7

DA-Faster 31.1 10.3 15.5 12.4 19.3 39.0 21.2

SW-DA 36.4 21.8 29.8 15.1 23.5 49.6 29.4

MCAR (Ours) � 40.9 22.5 30.3 23.7 24.7 53.6 32.6

� � 47.9 20.5 37.4 20.6 24.5 50.2 33.5

4.1 Implementation Details

In the experiments, we followed the setting of [31] by using the Faster-RCNN as
the backbone detection network, pretraining the model weights on the ImageNet,
and using the same 600 pixels of images’ shortest side. We set the training epoch
as 25, and set λ, μ, ε, and γ as 0.5, 0.01, 0.1, and 5 respectively. The momentum is
set as 0.9 and weight decay as 0.0005. For all experiments, we evaluated different
methods using mean average precision (mAP) with a threshold of 0.5. By default,
in the multi-label learning, all the convolutional layers have 3 × 3 convolution
kernels and 512 channels. The convolution layer in conditional adversary learning
also has 3 × 3 convolution kernel and 512 channels. These convolution parameters
can be adjusted to suit different tasks, but our experiments all adopt the default
setting, which yield good results.

4.2 Domain Adaptation from Real to Virtual Scenes

In this set of experiments, we used the PASCAL VOC [8] dataset as the source
domain, and used the Watercolor2k and Comic2k [18] as the target domains.
PASCAL VOC contains realistic images, while Watercolor2k and Comic2k con-
tain virtual scene images. There are significant differences between the source
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Table 3. Test results of domain adaptation for object detection from Cityscapes to
Foggy Cityscapes in terms of mAP (%). MC and PR are same as in Table 1.

Method MC PR Person Rider Car Truck Bus Train Motorbike Bicycle mAP

Source-only 25.1 32.7 31.0 12.5 23.9 9.1 23.7 29.1 23.4

BDC-Faster [31] 26.4 37.2 42.4 21.2 29.2 12.3 22.6 28.9 27.5

DA-Faster [2] 25.0 31.0 40.5 22.1 35.3 20.2 20.0 27.1 27.6

SC-DA [44] 33.5 38.0 48.5 26.5 39.0 23.3 28.0 33.6 33.8

MAF [17] 28.2 39.5 43.9 23.8 39.9 33.3 29.2 33.9 34.0

SW-DA [31] 36.2 35.3 43.5 30.0 29.9 42.3 32.6 24.5 34.3

DD-MRL [19] 30.8 40.5 44.3 27.2 38.4 34.5 28.4 32.2 34.6

MTOR [1] 30.6 41.4 44.0 21.9 38.6 40.6 28.3 35.6 35.1

Dense-DA [40] 33.2 44.2 44.8 28.2 41.8 28.7 30.5 36.5 36.0

SCL [34] 31.6 44.0 44.8 30.4 41.8 40.7 33.6 36.2 37.9

MCAR (Ours) � 31.2 42.5 43.8 32.3 41.1 33.0 32.4 36.5 36.6

� � 32.0 42.1 43.9 31.3 44.1 43.4 37.4 36.6 38.8

Train-on-Target 50.0 36.2 49.7 34.7 33.2 45.9 37.4 35.6 40.3

and target domains. The training set of PASCAL VOC (Trainval of PASCAL
VOC 2007 and PASCAL VOC 2012) includes 20 different object labels and a
total of 16,551 images. Watercolor2k and Comic2k contain 6 different classes
(‘bicycle’, ‘bird’, ‘car’, ‘cat’, ‘Dog’, ‘person’), each providing 2K images, and
splitting equally into training and test sets. These 6 categories are included in
the 20 categories of PASCAL VOC. We used the 1K training set in each target
domain for training the domain adaptation model, while evaluating the model
and report results with the 1K test set. In this experiment, we used resnet101 [16]
as the backbone network of the detection model.

PASCAL VOC to Watercolor. The test detection results yield by adapta-
tion from PASCAL VOC to Watercolor are reported in Table 1. Our proposed
MCAR model is compared with the source-only baseline and the state-of-the-
art adaptive object detection methods, including BDC-Faster [31], DA-Faster [2],
SW-DA [31], and SCL [34]. The Train-on-Target results, obtained by training
on labeled data in the target domain, are provided as upperbound reference val-
ues. We can see under the same experimental conditions, our proposed method
achieves the best overall result, while only underpeforming the Train-on-Target
by 2.6%. Comparing to source only, our method achieves a remarkable overall
performance improvement of 9.8%. Although SW-DA [31] confirmed the valid-
ity of local and global feature alignment and showed a significant performance
improvement over other methods, our method surpasses SW-DA by 2.7%. Mean-
while, our method also outperforms SCL [34] which relies on stacked multi-level
feature alignment. The results suggest the proposed multi-label learning based
feature alignment and prediction regularization are effective.

PASCAL VOC to Comic. The results of adaptation from PASCAL VOC to
Comic are reported in Table 2. Again, the proposed MCAR method achieved the
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best adaptive detection result. It outperforms the baseline, source-only (trained
on source domain data without any adaptation), by 13.8%, and outperforms the
best comparison method, SW-DA, by 4.1%, These results again show that our
model is very suitable for adaptive multi-object detection.

4.3 Adaptation from Clear to Foggy Scenes

In this experiment, we perform adaptive object detection from normal clear
images to foggy images. We use the Cityscapes dataset as the source domain. Its
images came from 27 different urban scenes, where the annotated bounding boxes
are generated by the original pixel annotations. We use the Foggy Cityscapes
dataset as the target domain. Its images have been rendered by Cityscapes, which
can simulate fog in real road conditions with deep rendering. They contain 8
categories: ‘person’, ‘rider’, ‘car’, ‘truck’, ‘bus’, ‘train’, ‘motorcycle’ and ‘bicycle’.
In this experiment, we used vgg16 [35] as the backbone of the detection model.
We recorded the test results on the validation set of Foggy Cityscapes.

The results are reported in the Table 3. We can see the proposed MCAR
method achieved the best adaptive detection result. It outperforms source-only
by 15.4%, and outperforms the two best comparison methods, Dense-DA [40] and
SCL [34], by 2.8% and 0.9%. Moreover, it is worth noting that the performance
of the proposed approach is very close to the Train-on-Target; the result of the
Train-on-Target is only 1.5% higher than ours. Due to the very complex road
conditions in this task, although the multi-label classifier is more capable of
category judgment than the detection model, its accuracy is not much higher.
Hence in this experiment, we used the combination of the multi-label category
prediction and the object detection level category prediction. That is, we used
softmax(p+q) as the label category information for the conditional adversarial
feature alignment. This experiment presents and validates a natural variant of
the proposed model.

4.4 Ablation Study

The proposed MCAR model has two major mechanisms, Multilabel-conditional
adversary (MC) and Prediction based Regularization (PR), which are incorpo-
rated into the learning process through the three auxiliary loss terms in Eq. (7):
the conditional adversary loss Ladv, the multi-label prediction loss Lmulti, and
the prediction regularization loss Lkl. The conditional adversary loss uses the
multi-label prediction outputs as its conditions, and hence the two loss terms,
Ladv and Lmulti, together form the multilabel-conditional adversary (MC), while
the prediction regularization (PR) is also built on the multi-label prediction out-
puts through the regularization loss Lkl. To investigate the impact of these loss
components, we conducted a more comprehensive ablation study on the adaptive
detection task from Cityscapes to Foggy Cityscapes by comparing MCAR with
its multiple variants. The variant methods and results are reported in Table 4.

We can see that dropping the conditional adversary loss (MCAR-w/o-adv)
leads to large performance degradation. This makes sense since the adversarial
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Table 4. The ablation study results in terms of mAP(%) on the adaptive detection
task of Cityscapes → Foggy Cityscapes. “w/o-adv” indicates dropping the conditional
adversary loss; “uadv” indicates replacing the conditional adversary loss with an uncon-
ditional adversary loss; “w/o-PR” indicates dropping the prediction regularization loss;
and “w/o-MP-PR” indicates dropping both the multilabel prediction loss and the pre-
diction regularization loss.

Method Person Rider Car Truck Bus Train Motorbike Bicycle mAP

MCAR 32.0 42.1 43.9 31.3 44.1 43.4 37.4 36.6 38.8

MCAR-w/o-PR 31.2 42.5 43.8 32.3 41.1 33.0 32.4 36.5 36.6

MCAR-uadv 31.7 42.0 45.7 30.4 39.7 14.9 28.6 36.5 33.7

MCAR-uadv-w/o-PR 32.8 40.1 43.8 23.0 30.9 14.3 30.3 33.1 31.0

MCAR-uadv-w/o-MP-PR 30.5 43.2 41.4 21.7 31.4 13.7 29.8 32.6 30.5

MCAR-w/o-adv 25.0 34.9 34.2 13.9 29.9 10.0 22.5 30.2 25.1

Table 5. Parameter sensitivity analysis on the adaptation task from PASCAL VOC
to watercolor.

λ 0.5 γ 5

γ 1 3 5 7 9 λ 0.1 0.25 0.5 0.75 1

mAP 44.0 46.1 54.4 49.1 44.8 mAP 49.1 50.2 54.4 50.1 49.3

loss is the foundation for cross-domain feature alignment. By replacing the con-
ditional adversary loss with an unconditional adversary loss, MCAR-uadv loses
the multilabel-conditional adversary (MC) component, which leads to remark-
able performance degradation and verifies the usefulness of the multi-label pre-
diction based cross-domain multi-modal feature alignment. Dropping the pre-
diction regularization loss from either MCAR, which leads to MCAR-w/o-PR,
or MCAR-uadv, which leads to MCAR-uadv-w/o-PR, induces additional perfor-
mance degradation. This verifies the effectiveness of the prediction regularization
strategy, which is built on the multi-label prediction outputs as well. Moreover,
by further dropping the multi-label prediction loss from MCAR-uadv-w/o-PR,
the variant MCAR-uadv-w/o-MP-PR’s performance also drops slightly. Overall
these results validated the effectiveness of the proposed MC and PR mechanisms,
as well as the multiple auxiliary loss terms in the proposed learning objective.

4.5 Further Analysis

Feature Visualization. On the task of adaptation from Cityscapes to Foggy
Cityscapes, we used t-SNE [26] to compare the distribution of induced features
between our model and the Source-only model (clear to fogg scenes). The results
are shown in Fig. 3. We can see that with the feature distribution obtained by
source-only (Fig. 3(a)), the source domain and target domain are obviously sepa-
rated, which shows the existence of domain divergence. By contrast, our proposed
method produced features that can well confuse the domain discriminators. This
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(b) MCAR(Ours)(a)  Source-only

Fig. 3. Feature visualization results. (a) and (b) respectively represent the feature
distribution results of the Source-only model and our model in the clear (Cityscapes)
and foggy (Foggy Cityscapes) scenes. Red indicates from the source domain and blue
indicates from the target domain (Color figure online)

suggests that our proposed model has the capacity to bridge the domain distri-
bution divergence and induce domain invariant features.

Parameters Sensitivity Analysis. We conducted sensitivity analysis on the
two hyperparameters, λ and γ using the adaption task from PASCAL VOC to
Watercolor. λ controls the weight of adversarial feature alignment, while γ con-
trols the degree of focusing on hard-to-classify examples. Other hyperparameters
are set to their default values. We conducted the experiment by fixing the value
of γ to adjust λ, and then fixing λ to adjust γ. Table 5 presents the results.
We can see with the decrease of parameter γ from its default value 5, the test
performance degrades as the influence of domain classifier on difficult samples is
weakened and the contribution of easy samples is increased. When γ = 1, it leads
to the same result as the basic model, suggesting the domain regulation ability
basically fails to play its role. On the other hand, a very large γ value is not good
either, as the most difficult samples will dominate. For λ, we find that λ = 0.5
leads to the best performance. As detection is still the main task, it makes sense
to have the λ < 1. When λ = 0, it degrades to a basic model without feature
alignment. Therefore, some value in the middle would be a proper choice.

Qualitative Results. Object detection results are suitable to be qualitatively
judged through visualization. Hence we present some qualitative adaptive detec-
tion results in the target domain in Fig. 4. The top row of Fig. 4 presents the
qualitative detection result of three state-of-the-art adaptive detection methods,
DA-Faster, SW-DA, and MCAR (ours), and the ground-truth on an image from
Watercolor. We can see both ‘DA-Faster’ and ‘SW-DA’ have some false positives,
while failing to detect the object of ‘dog’. Our model correctly detected both the
‘person’ and the ‘dog’. The bottom row of Fig. 4 presents the detection results of
the DA methods and the ground-truth on an image from Foggy Cityscapes. We
can see it is obvious that the cars in the distance are very blurred and difficult to
detect due to the fog. The DA-Faster and SW-DA fail to find these cars, while
our model successfully detected them.
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DA-Faster SW-DA MCAR(Ours) Ground-Truth

Fig. 4. Qualitative results on adaptive detection. The top row presents examples of
domain adaptive detection from PASCAL VOC to Watercolor. The bottom row shows
examples of adaptive detection from Cityscapes to Foggy Cityscapes. The green box
represents the results obtained by the detection models, and the blue box represents
the ground-truth annotation. (Color figure online)

5 Conclusion

In this paper, we propose an unsupervised multi-object cross-domain detection
method. We exploit multi-label object recognition as a dual auxiliary task to
reveal the category information of images from the global features. The cross-
domain feature alignment is conducted by performing conditional adversarial
distribution alignment with the combination input of global features and multi-
label prediction outputs. We also use the idea of mutual learning to improve
the detection performance by enforcing consistent object category predictions
between the multi-label prediction over global features and the object classifi-
cation over detection region proposals. We conducted experiments on multiple
cross-domain multi-objective detection datasets. The results show the proposed
model achieved the state-of-the-art performance.
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Abstract. Tables are information-rich structured objects in document
images. While significant work has been done in localizing tables as
graphic objects in document images, only limited attempts exist on table
structure recognition. Most existing literature on structure recognition
depends on extraction of meta-features from the pdf document or on
the optical character recognition (ocr) models to extract low-level lay-
out features from the image. However, these methods fail to generalize
well because of the absence of meta-features or errors made by the ocr
when there is a significant variance in table layouts and text organization.
In our work, we focus on tables that have complex structures, dense con-
tent, and varying layouts with no dependency on meta-features and/or
ocr.

We present an approach for table structure recognition that combines
cell detection and interaction modules to localize the cells and predict
their row and column associations with other detected cells. We incorpo-
rate structural constraints as additional differential components to the
loss function for cell detection. We empirically validate our method on the
publicly available real-world datasets - icdar-2013, icdar-2019 (ctdar)
archival, unlv, scitsr, scitsr-comp, tablebank, and pubtabnet. Our
attempt opens up a new direction for table structure recognition by
combining top-down (table cells detection) and bottom-up (structure
recognition) cues in visually understanding the tables.

Keywords: Document image · Table detection · Table cell detection ·
Row and column association · Table structure recognition

1 Introduction

Deep neural networks have shown promising results in understanding document
layouts [1–3]. However, more needs to be done for structural and semantic under-
standing. Among these, the problem of table structure recognition has been of
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Fig. 1. The figure depicts the problem of recognizing table structure from it’s image.
This opens up many applications including information retrieval, graphical represen-
tation and digitizing for editing.

high interest in the community [4–20]. Table structure recognition refers to rep-
resentation of a table in a machine-readable format, where its layout is encoded
according to a pre-defined standard [10–14,17]. It can be represented in the form
of either physical [10,12,14,17] or logical formats [11,13]. While logical structure
contains every cells’ row and column spanning information, physical structure
additionally contains bounding box coordinates. Table structure recognition is
a precursor to contextual table understanding, which has a myriad of appli-
cations in business document analysis, information retrieval, visualization, and
human-document interactions, as motivated in Fig. 1.

Table structure recognition is a challenging problem due to complex struc-
tures and high variability in table layouts [4–17]. Early attempts in this space
are dependent on extraction of hand-crafted features and meta-data extracted
from the pdfs on top of heuristic/rule-based algorithms [21–24] to locate tables
and understanding tables by predicting/recognizing structures. These methods,
however, fail to extend to scanned documents as they rely on meta-data infor-
mation contained in the pdfs. They also make strong assumptions about the
structure of the tables. Some of these methods are also dependent on textual
information analysis which make them domain dependent. While textual fea-
tures are useful, visual analysis becomes imperative for analysis of complex page
objects. Inconsistency of size and density of tables, presence and location of
table cell borders, variation in table cells’ shapes and sizes, table cells spanning
multiple rows and/or columns and multi-line content are some challenges (refer
Fig. 2 for some examples) that need to be addressed to solve the problem using
visual cues [4,5,21–24].

We pose the table structure recognition problem as the generation of xml
containing table’s physical structure in terms of bounding boxes along with span-
ning information and, additionally, digitized content for every cell (see Fig. 1).
Since our method aims to predict this table structure given the table image
only (without using any meta-information), we employ a two-step process—(a)
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Fig. 2. Examples of complex table images from unlv and icdar-2013 datasets. Com-
plex tables are ones which contain partial or no ruling lines, multi-row/column spanning
cells, multi-line content, many empty dense cells.

top-down: where we decompose the table image into fundamental table objects,
which are table cells using a cell detection network and (b) bottom-up: where
we re-build the entire table as a collection of all the table cells localized from
the top-down process, along with their row and column associations with every
other cell. We represent row and column associations of table cells using row and
column adjacency matrices.

Though table detection has observed significant success [11,25–28], detection
of table cells remains a challenging problem. This is because of (i) large varia-
tion in sizes and aspect ratios of different cells present in the same table, (ii)
cells’ inherent alignment despite high variance in text amount and text justi-
fication, (iii) lack of linguistic context in cells’ content, (iv) presence of empty
cells and (v) presence of cells with multi-line content. To overcome these chal-
lenges, we introduce a novel loss function that models the inherent alignment
of cells in the cell detection network; and a graph-based problem formulation to
build associations between the detected cells. Moreover, as detection of cells and
building associations between them depend highly on one another, we present a
novel end-to-end trainable architecture, termed as tabstruct-net, for cell detec-
tion and structure recognition. We evaluate our model for physical structure
recognition on benchmark datasets: scitsr [14], scitsr-comp [14], icdar-2013
table recognition [18], icdar-2019 (ctdar) archival [19], and unlv [29]. Further,
we extend the comparative analysis of the proposed work for logical structure
recognition on tablebank [11] dataset. Our method sets up a new direction for
table structure recognition as a collaboration of cell detection, establishing an
association between localized cells and, additionally, cells’ content extraction.

Our main contributions can be summarised as follows:

– We demonstrate how the top-down (cell detection) and bottom-up (structure
recognition) cues can be combined visually to recognize table structures in
document images.

– We present an end-to-end trainable network, termed as tabstruct-net for
training cell detection and structure recognition networks in a joint manner.
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– We formulate a novel loss function (i.e., alignment loss) to incorporate struc-
tural constraints between every pair of table cells and modify Feature Pyra-
mid Network (fpn) to capture better low-level and long-range features for
cell detection.

– We enhance the visual features representation for structure recognition (built
on top of model [9]) through lstm.

– We unify results from previously published methods on table structure recog-
nition for a thorough comparison study.

Fig. 3. Block diagram of our approach. Table detection is a precursor to table structure
recognition and our method assumes that table is already localized from the input
document image. The end-to-end architecture predicts cell bounding boxes and their
associations jointly. From the outputs of cell detection and association predictions, xml
is generated using a post-processing heuristic.

2 Related Work

In the space of document images, researchers have been working on understand-
ing equations [30,31], figures [32,33] and tables [6–17]. Diverse table layouts,
tables with many empty cells and multi-row/column spanning cells are some
challenges that make table structure recognition difficult. Research in the domain
of table understanding through its structure recognition from document images
dated back to the early 1990s when algorithms based on heuristics were pro-
posed [21–24,34–36]. These methods were primarily dependent on hand-crafted
features and heuristics (horizontal and vertical ruling lines, spacing and geo-
metric analysis). To avoid heuristics, Wang et al. [5] proposed a method for
table structure analysis using optimization methods similar to the x-y cut algo-
rithm. Another technique based on column segmentation, header detection, and
row segmentation to identify the table structure was proposed by Hu et al. [4].
These methods make strong assumptions about table layouts for a domain agnos-
tic algorithm.

Many cognitive methods [6–12,14–16,37–43] have also been presented to
understand table structures as they are robust to the input type (whether being
scanned images or native digital). These also do not make any assumptions
about the layouts, are data-driven, and are easy to fine-tune across different
domains. Minghao et al. [11] proposed one class of deep learning methods to
directly predict an xml from the table image using the image-to-markup model.
Though this method worked well for small tables, it was not robust enough
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to dense and complex tables. Another set of methods is invoice specific table
extraction [39,40], which were not competent for a more generic use-cases. To
overcome this challenge, a combination of heuristics and cognitive methods has
also been presented in [12]. Chris et al. [10] presented another interesting deep
model, called splerge, which is based on the fundamental idea of first splitting
the table into sub-cells, and then merging semantically connected sub-cells to
preserve the complete table structure. Though this algorithm showed consider-
able improvements over earlier methods, it was still not robust to skew present
in the table images. Another interesting direction was presented by Vine et
al. [42], where they used conditional generative adversarial networks to obtain
table skeleton and then fit a latent table structure into the skeleton using a
genetic algorithm. Khan et al. [15], through their gru based sequential mod-
els, showed improvements over several cnn based methods for table structure
extraction. Recently, many works have preferred a graph-based formulation of
the problem as the graph is inherently an ideal data structure to model structural
associativity. Qasim et al. [9] proposed a solution where they used graph neural
networks to model table-level associativity between words. The authors validate
their method on synthetic table images. Chi et al. [14] proposed another graph-
based problem formulation and solution using a graph attention mechanism.
While these methods made significant progress towards understanding complex
structured tables, they made certain assumptions like availability of accurate
word bounding boxes, accurate document text, etc. as additional inputs [6,9,14].
Our method does not make any such assumptions. We use the table image as
the input and produce xml output without any other information. We demon-
strate results on complex tables present in unlv, icdar-2013, icdar-2019 ctdar
archival, scitsr, scitsr-comp tablebank, and pubtabnet datasets.

Fig. 4. Visual illustration of cell spanning information along rows and columns of a
table from unlv dataset. Left Image: shows original table image in unlv and Right
Image: illustrates ground-truth cell spanning information.

3 TabStruct-Net

Our solution for table structure recognition progresses in three steps—(a)
detection of table cells; (b) establishing row/column relationships between the
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detected cells, and (c) post-processing step to produce the xml output as desired.
Figure 3 depicts the block diagram of our approach.

Fig. 5. Our tabstruct-net. Modified rpn in cell detection network, which consists of
both top-down and bottom-up pathways to better capture low-level visual features. P2
layer of the optimized feature pyramid is used in the structure recognition network to
extract visual features.

3.1 Top-Down: Cell Detection

The first step of our solution for table structure recognition is localization of
individual cells in a table image, for which we use the popular object detection
paradigm. The difference from natural scene images, however, is an inherent
association between table cells. Recent success of r-cnns [44] and its improved
modifications (Fast r-cnn [45], Faster r-cnn [46], Mask r-cnn [47]) have shown
significant success in object detection in natural scene images. Hence, we employ
Mask r-cnn [47] for our solution with additional enhancements—(a) we augment
the Region Proposal Network (rpn) with dilated convolutions [48,49] to better
capture long-range row and column visual features of the table. This improves
detection of multi-row/column spanning and multi-line cells; (b) inspired by [50],
we append the feature pyramid network with a top-down pathway, which prop-
agates high-level semantic information to low-level feature maps. This allows
the network to work better for cells with varying scales; and (c) we append
additional losses during the training phase in order to model the inherent struc-
tural constraints. We formulate two ways of incorporating this information—(i)
through an end-to-end training of cell detection and the structure recognition
networks (explained next), and (ii) through a novel alignment loss function. For
the latter, we make use of the fact that every pair of cells is aligned horizontally
if they span the same row and aligned vertically if they span the same column.
For the ground truth, where tight bounding boxes around the cells’ content are
provided [13,14,18], we employ an additional ground truth pre-processing step to
ensure that bounding boxes of cells in the same row and same column are aligned
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vertically and horizontally, respectively. We model these constraints during the
training in the following manner:

L1 =
∑

r∈SR

∑
ci,cj∈r ||y1ci − y1cj ||22, L2 =

∑
r∈ER

∑
ci,cj∈r ||y2ci − y2cj ||22

L3 =
∑

c∈SC

∑
ci,cj∈c ||x1ci − x1cj ||22 and L4 =

∑
c∈EC

∑
ci,cj∈c ||x2ci − x2cj ||22

Here, SR, SC, ER and EC represent starting row, starting column, ending row
and ending column indices as shown in Fig. 4. Also, ci and cj denote two cells in
a particular row r or column c; x1ci , y1ci , x2ci and y2ci represent bounding box
coordinates X-start, Y-start, X-end and Y-end respectively of the cell ci. These
losses (L1, L2, L3, L4) can be interpreted as constraints that enforce proper
alignment of cells beginning from same row, ending on same row, beginning
from same column and ending on same column respectively. Alignment loss is
defined as

Lalign = L1 + L2 + L3 + L4. (1)

3.2 Bottom-Up: Structure Recognition

We formulate the table structure recognition using graphs similar to [9]. We
consider each cell of the table as a vertex and construct two adjacency matrices
- a row matrix Mrow and a column matrix Mcol which describe the association
between cells with respect to rows and columns. Mrow,Mcol ∈ R

Ncells×Ncells .
Mrowi,j

= 1 or Mcoli,j = 1 if cells i, j belong to the same row or column, else 0.
The structure recognition network aims to predict row and column relation-

ships between the cells predicted by the cell detection module during training
and testing. During training, only those predicted table cells are used for struc-
ture recognition which overlap with the ground truth table cells having an IoU
greater than or equal to 0.5. This network has three components:

– Visual Component: We use visual features from P2 layer (refer Fig. 5) of
the feature pyramid based on the linear interpolation of cell bounding boxes
predicted by the cell detection module. In order to encode cells’ visual char-
acteristics across their entire height and width, we pass the gathered P2
features for every cell along their centre horizontal and centre vertical lines
using lstm [51] to obtain the final visual features (refer Fig. 5) (as opposed
to visual features corresponding to cells’ centroids only as in [52]).

– Interaction Component: We use the dgcnn architecture based on graph neu-
ral networks used in [52] to model the interaction between geometrically
neighboring detected cells. It’s output, termed as interaction features, is a
fixed dimensional vector for every cell that has information aggregated from
its neighbouring table cells.

– Classification Component: For a pair of table cells, the interaction features
are concatenated and appended with difference between cells’ bounding box
coordinates. This is fed as an input to the row/column classifiers to predict
row/column associations. Please note that we use the same [52] Monte Carlo
based sampling to ensure efficient training and class balancing. During testing
time, however, predictions are made for every unique pair of table cells.
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We train the cell detection and structure recognition networks in a joint man-
ner (termed as tabstruct-net) to collectively predict cell bounding boxes along
with row and column adjacency matrices. Further, the two structure recognition
pathways for row and column adjacency matrices are put together in parallel.
The visual features prepared using lstms for every vertex are duplicated for both
the pathways, after which they work in a parallel manner. The overall empirical
loss of tabstruct-net is given by:

L = Lbox + Lcls + Lmask + Lalign + Lgnn, (2)

where Lbox, Lcls and Lmask are bounding box regression loss, classification loss
and mask loss, respectively defined in Mask r-cnn [47], Lalign is alignment loss
which is modeled as a regularizer (defined in Eq. 1) and Lgnn is the cross-entropy
loss back propagated from the structure recognition module of tabstruct-net.
The additional loss components help the model in better alignment of cells
belonging to same rows/columns during training, and in a sense fine-tunes the
predicted bounding boxes that makes it easier for post-processing and structure
recognition in the subsequent step.

3.3 Post-Processing

Once all the cells and their row/column adjacency matrices are predicted, we
create the xml interpretable output as a post-processing step. From the cell
coordinates along with row and column adjacency matrix, SR, SC, ER and EC
indexes are assigned to each cell, which indicate spanning of that cell along rows
and columns. We use Tesseract [53] to extract the content of every predicted cell.
The xml output for every table image finally contains coordinates of predicted
cell bounding boxes and along with cell spanning information and its content.

4 Experiments

4.1 Datasets

We use various benchmark datasets—scitsr [14], scitsr-comp [14], icdar-2013
table recognition [18], icdar-2019 (ctdar) archival [19], unlv [29], Marmot
extended [12], tablebank [11] and pubtabnet [13] datasets for extracting struc-
ture information of tables. Statistics of these datasets are listed in Table 1.

Table 1. Statistics of the datasets used for our experiments.

scitsr scitsr

comp

icdar

2013

icdar-

2013

-partial

icdar

2019

unlv unlv-

partial

Marmot

extended

table

bank

pubtabnet

Train 12000 12000 - 124 600 - 446 1016 145K 339K

Test 3000 716 158 34 150 558 112 - 1000 114K
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4.2 Baseline Methods

We compare the performance of our tabstruct-net against seven benchmark
methods—deepdesrt [7], tablenet [12], graphtsr [14], splerge [10], dgcnn [9],
Bi-directional gru [15] and Image-to-Text [11].

4.3 Implementation Details

tabstruct-net1 has been trained and evaluated with table images scaled to a fixed
size of 1536 × 1536 while maintaining the original aspect ratio as the input. While
training, cell-level bounding boxes along with row and column adjacency matri-
ces (prepared from start-row, start-column, end-row and end-column indices) are
used as the ground truth. We use nvidia titan x gpu with 12 gb memory for our
experiments and a batch-size of 1. Instead of using 3× 3 convolution on the output
feature maps from the fpn, we use a dilated convolution with filter size of 2× 2 and
dilation parameter of 2. Also, we use the resnet-101 backbone that is pre-trained
on ms-coco [54] dataset. Dilated convolution blocks of filter size 7 are used in the
fpn. To compute region proposals, we use 0.5, 1 and 2 as the anchor scale and
anchor box sizes of 8, 16, 32, 64 and 128. lstms used to gather visual features have
a depth of 128. The final memory state of the lstm layers is concatenated with
the cell’s coordinates to prepare features for the interaction network. Further, for
generation of the row/column adjacency matrices, we use 2400 as the maximum
number of vertices keeping in mind dense tables. Next, features from 40 neighbor-
ing vertices are aggregated using an edge convolution layer followedby adense layer
of size 64 with ReLu activation. Since every input table may contain hundreds of
table cells, training can be a time consuming process. To achieve faster training,
we employ a two-stage training process. In the first stage, we use 2014 anchors and
512 rois, and in the second stage, we use with 3072 anchors and 2048 rois. During
both the stages, we use 0.001 as the learning rate, 0.9 as the momentum and 0.0001
as the weight decay regularisation.

Table 2. Shows the performance of our tabstruct-net for physical table structure
recognition on various benchmark datasets.

Test dataset Train dataset S-A S-B

P↑ R↑ F1↑ P↑ R↑ F1↑
icdar-2013 scitsr 0.915 0.897 0.906 0.976 0.985 0.981

icdar-2013-partial scitsr 0.930 0.908 0.919 0.991 0.993 0.992

scitsr scitsr 0.927 0.913 0.920 0.989 0.993 0.991

scitsr-comp scitsr 0.909 0.882 0.895 0.981 0.987 0.984

unlv-partial scitsr 0.849 0.828 0.839 0.992 0.994 0.993

icdar-2019 scitsr 0.595 0.572 0.583 0.924 0.899 0.911

icdar-2019 icdar-2019 0.803 0.768 0.785 0.975 0.957 0.966

icdar-2019 scitsr+icdar-2019 0.822 0.787 0.804 0.975 0.958 0.966

1 Our code is available at https://github.com/sachinraja13/TabStructNet.git.

https://github.com/sachinraja13/TabStructNet.git
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Table 3. Shows the performance of our tabstruct-net for logical table structure recog-
nition on various benchmark datasets.

Test dataset Train dataset Metric Score

tablebank-word scitsr bleu 0.914

tablebank-latex scitsr bleu 0.937

tablebank-word+latex scitsr bleu 0.916

pubtabnet scitsr teds 0.901

4.4 Evaluation Measures

We use various existing measures—precision, recall and F1 [14,18,29] to evaluate
the performance of our model for recognition of physical structure of tables.
For recognition of logical structure of tables, we use bleu [55] score as used
in [11] and Tree-Edit-Distance-based similarity (teds) [13]. Since xml is our
final output for table structure recognition, we also use bleu [55], cider [56] and
rouge [57] scores to compare generated xml and ground truth xml on spanning
information and content of every cell. We first calculate these scores separately
on each table and then compute both micro-averaged score and macro-averaged
score as the final result. We consistently use an IoU threshold of 0.6 to compute
the confusion matrix. Please note that only non-empty table cells are considered
similar to [18] for the evaluation.

4.5 Experimental Setup

One major challenge in the comparison study with the existing methods is the
inconsistent use of additional information (e.g., meta-features extracted from
the pdfs [10], content-level bounding boxes from ground truths [12,14] and cell’s
location features generated from synthetic dataset [9]). Hence, we do experiments
in two different setups

– Setup-A (S-A): using only table image as the input
– Setup-B (S-B): using table image along with additional information (e.g.,

cell bounding boxes) as the input. For this, instead of removing the cell detec-
tion component from the network, we ignore the predicted boxes and use the
ground truth ones as input for structure recognition.

5 Results on Table Structure Recognition

Tables 2 and 3 summarize the performance of our model on standard datasets
used in the space of table structure recognition.
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5.1 Analysis of Results

Table 4 presents results on icdar-2013 dataset. In S-A, we observe that our
model outperforms deepdesrt [7] method by a 27.5% F1 score. This is because
cell coordinates for the latter are obtained by row and column intersections,
making it unable to recognize cells that span multiple rows/columns. For dense
tables (small inter-row spacing), row segmentation results of deepdesrt com-
bined multiple rows into one in several instances. split+heuristic [10] method
outperforms tabstruct-net by a small margin, however, it requires icdar-2013
dataset-specific cell merging heuristics and is trained on a considerably larger set
of images. Therefore, a direct comparison of (split+heuristic) with our method is
not fair. Nevertheless, comparable results of tabstruct-net indicates its robust-
ness to icdar-2013 dataset, without using any kind of dataset-specific post-
processing. However, if compared under the same training environment and no
post-processing, our model outperforms splerge with a 3% average F1 score.
splerge works well for datasets where ground truth bounding boxes are anno-
tated at the content-level instead of cell-level. This is because it allows for a wider
area for a prospective prediction of a row/column separator. Further, since it is
based on cell detection through the row and column separators, it is not agnostic
to input image noise such as skew and rotations. This method is susceptible to
dataset-specific post-processing as opposed to ours, where no post-processing is
needed.

Table 4. Comparison of results for physical structure recognition on icdar-2013
dataset. #Images: indicates number of table images in the training set. Heuristic:
indicates dataset specific cell merging rules for various models in [10].

Method Training Experimental P↑ R↑ F1↑
Dataset #Images Setup

deepdesrt [7] scitsr 12K S-A 0.631 0.619 0.625

splerge [10] scitsr 12K S-A 0.883 0.875 0.879

split+heuristic [10] Private [10] 83K S-A 0.938 0.922 0.930

tabstruct-net (our) scitsr 12K S-A 0.915 0.897 0.906

tablenet [12] Marmot Extended 1K S-B 0.922 0.899 0.910

graphtsr [14] scitsr 12K S-B 0.885 0.860 0.872

split-pdf [10] Private [10] 83K S-B 0.920 0.913 0.916

split-pdf+heuristic [10] Private [10] 83K S-B 0.959 0.946 0.953

dgcnn [9] scitsr 12K S-B 0.972 0.983 0.977

tabstruct-net (our) scitsr 12K S-B 0.976 0.985 0.981

In S-B, tabstruct-net sets up a state-of-the-art benchmark on the icdar-
2013 dataset, outperforming all the existing methods [9,10,12,14]. It is further
interesting to note that our technique outperforms split-pdf+heuristic model
also without needing any post-processing. It is because our enhancements to
the dgcnn [9] model can capture the visual characteristics of a cell across a
larger span through lstms. We observe that our model achieves significantly
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improved performance when content-level bounding boxes are used instead of
cell-level, which are much easier to obtain with the help of ocr tools and pdf
meta-information.

Table 5. Physical structure recognition results on icdar-2013 dataset for varying IoU
thresholds to demonstrate tabstruct-net’s robustness. ES: Experimental Setup, CD:
Cell Detection, TH: IoU threshold value, SR: Structure Recognition, P2: using visual
features from P2 layer of the fpn instead of using separate convolution blocks, lstm:
use of lstms to model visual features along center-horizontal and center-vertical lines
for every cell, td+bu: use of Top-Down and Bottom-Up pathways in the fpn, AL:
addition of alignment loss as a regularizer to tabstruct-net.

CD Network SR Network IoU CD Scores SR Scores

TH P↑ R↑ F1↑ P↑ R↑ F1↑
Mask r-cnn+td+bu+al dgcnn+p2+lstm 0.5 0.935 0.942 0.938 0.927 0.911 0.919

0.6 0.921 0.926 0.923 0.915 0.897 0.906

0.7 0.815 0.820 0.817 0.797 0.785 0.791

0.8 0.638 0.653 0.645 0.629 0.615 0.622

0.9 0.275 0.312 0.292 0.247 0.236 0.241

Table 5 shows the performance of our technique under the varying IoU thresh-
olds. It can be inferred from the table that our model achieves an F1 score of
79.1% on structure recognition with an IoU threshold value of as high as 0.7.
For the IoU values of 0.5 and 0.6, our model’s performance is 91.9% and 90.6%,
respectively. It demonstrates the robustness of our model. Figures 6 and 7 display
some qualitative outputs of our method on the datasets discussed in Sect. 4.1.
Figure 8 shows some of the failure cases of cell detection by our method. It can
be seen that our model fails for table images that have large amounts of empty
spaces. Supplementary material has (i) more quantitative results, (ii) more qual-
itative examples, (iii) specific implementation details, (iv) detailed comparative
analysis, IoU variation results, and ablation study on all the datasets.

5.2 Ablation Study

Table 6 shows the outcome of our enhancements to Mask r-cnn [47] and
dgcnn [9] models for both cell detection and structure recognition networks
under S-A and S-B. From the table, it can be observed that our additions to the
networks result in a significant increase of 4% average F1 scores on cell detection
and structure recognition tasks. The novel alignment loss, along with the use of
top-down and bottom-up pathways in the fpn results in an improvement of 2.3%
F1 score for cell detection and 2.4% on structure recognition. Use of lstms and
P2 layer output to prepare visual features for structure recognition results in a
2.1% improvement of F1 scores. Interestingly, because both models are trained
together in an end-to-end fashion, cell detection’s effect is also observed in the
form of a 1.5% average F1 score. This empirically bolsters our claim of using an
end-to-end architecture for cell detection and, in turn, structure recognition.
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Fig. 6. Sample intermediate cell detection results of tabstruct-net on table images
of icdar-2013, icdar-2019 ctdar and unlv, scitsr, scitsr-comp and tablebank
datasets.

Table 6. Ablation study for physical structure recognition on icdar-2013 dataset. ES:
Experimental Setup, CD: Cell Detection, SR: Structure Recognition, P2: using visual
features from P2 layer of the fpn instead of using separate convolution blocks, lstm:
use of lstms to model visual features along center-horizontal and center-vertical lines
for every cell, td+bu: use of Top-Down and Bottom-Up pathways in the fpn, AL:
addition of alignment loss as a regularizer to tabstruct-net.

ES CD Network SR Network CD Scores SR Scores

P↑ R↑ F1↑ P↑ R↑ F1↑
S-A Mask r-cnn dgcnn 0.885 0.890 0.887 0.871 0.860 0.865

Mask r-cnn dgcnn+P2 0.886 0.892 0.889 0.877 0.863 0.870

Mask r-cnn dgcnn+P2+lstm 0.898 0.904 0.901 0.885 0.879 0.882

Mask r-cnn+td+bu dgcnn 0.895 0.899 0.897 0.883 0.867 0.875

Mask r-cnn+td+bu dgcnn+p2 0.895 0.901 0.898 0.886 0.870 0.878

Mask r-cnn+td+bu dgcnn+p2+lstm 0.904 0.910 0.907 0.892 0.884 0.888

Mask r-cnn+td+bu+al dgcnn 0.905 0.911 0.908 0.891 0.879 0.885

Mask r-cnn+td+bu+al dgcnn+p2 0.914 0.920 0.917 0.906 0.885 0.895

Mask r-cnn+td+bu+al dgcnn+p2+lstm 0.921 0.926 0.924 0.915 0.897 0.906

S-B -na- dgcnn -na- -na- -na- 0.972 0.983 0.977

-na- dgcnn+p2 -na- -na- -na- 0.973 0.983 0.978

-na- dgcnn+p2+lstm -na- -na- -na- 0.976 0.985 0.981
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Fig. 7. Sample structure recognition output of tabstruct-net on table images of icdar-
2013, icdar-2019 ctdar archival and unlv datasets. First Row: prediction of cells
which belong to the same row. Second Row: prediction of cells which belong to the
same column. Cells marked with orange colour represent the examine cells and cells
marked with green colour represent those which belong to the same row/column of the
examined cell. (Color figure online)

Fig. 8. Sample intermediate cell detection results of tabstruct-net on table images of
icdar-2013, icdar-2019 ctdar, unlv, scitsr, scitsr-comp and tablebank datasets
illustrate failure of tabstruct-net.

6 Summary

We formulate the problem of table structure recognition as a combination of
cell detection (top-down) and structure recognition (bottom-up) tasks. For cell
detection, we make a modification to the rpn of original Mask r-cnn and intro-
duce a novel alignment loss function (formulated for every pair of table cells)
to enforce structural constraints. For structure recognition, we improve input
representation for the dgcnn network by using lstm, pre-trained ResNet-101
backbone and rpn of cell detection network. Further, we propose an end-to-end
trainable architecture to collectively predict cell bounding boxes along with their
row and column adjacency matrices to predict structure. We demonstrate our
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results on multiple public datasets on both digital scanned as well as archival
handwritten table images. We observe that our approach fails to handle tables
containing a large number of empty cells along both horizontal and vertical
directions. In conclusion, we encourage further research in this direction.
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Abstract. Novel view synthesis often needs the paired data from both
the source and target views. This paper proposes a view translation
model under cVAE-GAN framework without requiring the paired data.
We design a conditional deformable module (CDM) which uses the view
condition vectors as the filters to convolve the feature maps of the
main branch in VAE. It generates several pairs of displacement maps
to deform the features, like the 2D optical flows. The results are fed into
the deformed feature based normalization module (DFNM), which scales
and offsets the main branch feature, given its deformed one as the input
from the side branch. Taking the advantage of the CDM and DFNM,
the encoder outputs a view-irrelevant posterior, while the decoder takes
the code drawn from it to synthesize the reconstructed and the view-
translated images. To further ensure the disentanglement between the
views and other factors, we add adversarial training on the code. The
results and ablation studies on MultiPIE and 3D chair datasets validate
the effectiveness of the framework in cVAE and the designed module.

Keywords: View synthesis · cVAE · GAN

1 Introduction

Based on only a few sample images of a certain object with different poses,
humans have the strong ability to infer and depict 2D images of the same object
in arbitrary poses [27]. This paper focuses on a similar task, known as the novel
view synthesis, which aims to make computer render a novel target view image
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Fig. 1. We use unpaired data to realize view synthesis. In (a), given the first source
view image, the chair rotates with a span of 360◦ . In (b), faces are synthesized into
existing predefined views in the dataset. In (c), we are able to interpolate the face into
unseen views in the training data. Details are given in the result Subsects. 4.2 and 4.3.

of an object given its current source view input. Obviously, this task requires
the computer to understand the relationship between the 3D object and its
pose. It has many potential applications in computer vision and graphic such as
action recognition [32], 3D object recognition [26], modeling and editing [17] etc.
Traditional approaches [2,13] for this task are mainly based on 3D projection
geometry. They first construct the 3D shape model of the object from the cues
in the image. Then the model is projected onto a 2D image plane of the target
view. Actually, if 3D model can be perfectly built, object in arbitrary poses can
be rendered precisely. However, building 3D object model from a single 2D image
is an ill-posed problem. Therefore, it needs a large amount of close viewpoint
images to capture the full object structure. Since structures of various objects are
quite different, 3D geometry model for a particularly object may not generalize
to other. Moreover, rendering a high quality image not only depends on the
object model, but also other conditions such as the lighting and the background,
but they need to be modeled independently.

Learning based approaches [25,36] begin to show the advantages with the
help of deep convolutional neural network (CNN). This type of methods directly
learn the mapping network from the source view to the target without building
the 3D model and knowing the camera pose. The mapping network is modeled
by a huge number of parameters determined in the data-driven manner. Hence it
is large enough to accommodate not just the geometry projection function, but
the background and lighting conditions. Recently, employing the image genera-
tion technique like generative adversarial notwork (GAN) has drawn researchers’
attention. E.g., novel synthesis can be modeled by a conditional GAN (cGAN)
just like image-to-image translation [12].

Disadvantages of such methods lie in two aspects. First, the model dose not
consider the prior knowledge about the projection geometry, though, previous
works [31] already achieve the promising results given both the pose and identity
labels as conditions. The works in [21,29,34] improves this by either designing
differentiable 3D to 2D projection unit [21], predicting the warping flow between
two different views [29], or using a specific pose matrix rather than one hot
vector as the input conditions [34]. Training such a view translation model often
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requires the paired data, with one being used as the source view and the other
as the target. The paired data essentially provide the important constraining
loss function for minimization. Nonetheless, the ground truth data from target
view are not easy to obtain in real applications. Lately, with the recent synthesis
technique [3,37], building a translation model by unpaired data becomes possible,
which can greatly release the constraint of novel view synthesis.

This paper proposes a novel view synthesis algorithm using the conditional
deformable flow in cVAE-GAN framework, and it designs for training with the
unpaired data, although it still achieves the better results if the target view
image can be further exploited in the loss functions. The key idea is to perform
the view translation by deforming the latent feature map with the optical flows,
computed from by the image feature and the view condition vectors together. We
find that cVAE is able to disentangle the view-relevant and irrelevant factors, by
mapping different source view images into posteriors, and making them close to
a common prior. It greatly increases the performance on the unpaired data. To
further improve the synthesis results, we incorporate the adversarial training in
the pixel and latent feature domain, and the reconstruction loss on the sampling
code from the view-irrelevant posterior.

Specifically, we built the generator with a pair of connected encoder and
decoder. The source and target view conditions are added into them by our
proposed conditional deformable module (CDM), in which the one-hot view
vector is first mapped into two latent codes, and then they are used as two
filters to convolve the features, giving the displacements on x and y directions.
Note that instead of one flows, we actually get 3 × 3 flows for each location like
in [4]. To achieve this, the features are divided into 9 channel groups and the
two filters convolve each group to output a pair of displacement maps. Each
3× 3 results then deform the corresponding location in its 3× 3 neighbourhood,
naturally followed by an ordinary conv layer to refine feature maps after the
deformation. Rather than directly giving the deformed features into the later
layers, we also design a deformed feature based normalization module (DFNM),
which learns the scale and offset given the deformed feature as its input. With
the help of the CDM and DFNM, the encoder maps the source into a posterior,
while the decoder transforms the code, sampled from either the posterior or the
prior, back into a target view image. Besides the reconstructed and prior-sampled
image in traditional cVAE-GAN, our model also synthesizes a view-translated
image to guide the generator for the view synthesis task.

The contributions of this paper lie in following aspects. First, we build a
model in cVAE-GAN for novel view synthesis based on the unpaired data. With
the traditional and the extra added constraining loss, the model maps the source
image into a latent code, which does not reflect the view conditions. The target
view then complements the code in the decoder. Second, we propose two modules
named the CDM and DFNM for view translation. They fits in our model to
improve the synthesis results. Third, extensive experiments are performed on
two datasets to validate the effectiveness of the proposed method.
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2 Related Works

Image Generation by VAE and GAN. GAN [6] and Variational Auto-
Encoder (VAE) [15] are two powerful tools for generating high dimensional struc-
tured data. Both of them map the random code drawn from the prior into the
image domain data. GAN introduces a discriminator D to evaluate the results
from the generator G. D and G are training in the adversarial manner, and finally
G is able to synthesize high quality images. However, GAN’s training is unsta-
ble, and mode collapse often happens. Therefore, extra tricks are often added to
limit the ability of D [8,9]. VAE has a pair of encoder and decoder. In VAE, the
input image is first mapped into the latent probabilistic space by the encoder.
The decoder takes the random code drawn from the posterior to reconstruct the
input image. VAE can be easily trained by the reconstruction loss together with
KL loss as its regularization. But it tends to give the blurry image. So it usually
works with a discriminator to form a GAN [16]. Originally, both GAN and VAE
perform unconditional generation. To better control the generated results, cGAN
[12,18,20] and cVAE [3,28] are proposed. In these works, the conditional label is
given to the network as the input. So it controls the generation results to fulfill
the required condition. D in cGAN not only evaluates the image quality, but
also the condition conformity. GAN and VAE become popular tool in novel view
synthesis. Particularly, the latent code is disentangled into different dimensions
in the unsupervised way [10,21], with some of them naturally controlling the
pose, which shows their great potential on view synthesis.

Novel View Synthesis. Novel view synthesis is a classical topic in both com-
puter vision and graphics. Traditional approaches are built by the 3D projection
geometry [2,13,24,26,35]. These approaches estimate the 3D representation of
the object, including the depth and camera pose [2], 3D meshes [35] and 3D
model parameters [13,24,26]. Learning based method becomes increasingly pop-
ular with the help of CNN. Since all types of 3D representations can now be
estimated by CNN, it is the main building blocks of the view synthesis algo-
rithm. Dosovitskiy et al. [5] learn a CNN which takes the low dimensional code
including the shape and camera pose as the input, and maps it into a high dimen-
sional image. Zhou et al. [36] employ a CNN to predict the appearance flow to
warp source view pixels directly. However, without the adversarial training, these
works tend to give low quality images.

Since GAN and VAE is able to generate high quality images, GAN-based
method becomes dominant recently [22,29–31,34]. Park et al. [22] predict the
flow and the occlusion map to warp pixels first, and then the deformed image
is given to the following network for refinement. The work [29] fully exploits
a sequence of source images by giving them to an RNN-based network, which
predicts a series of warping flows from sources to the current target view. In
DR-GAN [31], a connected encoder-decoder based generator is proposed. The
encoder transforms the image into a latent code. Together with the target view
condition, the code is applied by the decoder to synthesize the image. The dis-
criminator in DR-GAN takes advantage of the ID labels to ensure the view



Conditional Deformable VAE 91

translation not to change the source ID. CR-GAN [30] extends the encoder-
decoder based structure by adding an extra path beginning from the decoder,
which gives an extra reconstruction constraint in the image domain. VI-GAN
[34] employs the estimated camera pose matrix as the input condition for both
source and target views, which replaces the one-hot condition vector. It also
feeds back the view-translated image into the encoder, and requires its latent
code to be close with the code from the source view, hence building the view-
independent space. Note that in the above works, most of them [22,29,30,34]
ask for the paired data to form the loss function. Although, DR-GAN do not
have this constraint, it still requires the ID label for training the discriminator.
Our work is totally based on the unpaired data and it dose not need any ID
label during training.

3 Method

3.1 Overview Framework

This paper regards the novel view synthesis as the condition translation task
in cVAE-GAN. To achieve the view translation based on the unpaired data,
we propose a conditional deformable module (CDM) and a deformed feature
based normalization module (DFNM) in our designed network. To enhance the
separation between the view-relevant and irrelevant factors, a disentanglement
adversarial classifier (DAC) is also incorporated. As is shown in the Fig. 2, our
network consists of three major components, an encoder E, a decoder G and a
discriminator D. ΨEX , ΨEY and ΨGX , ΨGY are four different MLPs in E and
G, respectively. These MLPs maps the view label into conv filters, which are
responsible for generating the optical flow. Given a source input image Xa and
its view label Ya, the algorithm synthesizes a view-translated image X̄b under
the target view Yb. Note that we do not have the ground truth Xb to constrain
the model during training.

In Fig. 2, E maps X into a posterior E(Z|X,Y ) = N(μ,Σ) , from which a
random code Z ∼ E(Z|X,Y ) can be sampled. With Z as its input, G renders
the fake images, and they are given to D to evaluate the realness and view
conformity. cVAE constrains E(Z|X,Y ) for all X with the common prior N(0, I)
by reducing the KL divergence between them. In cVAE, E removes Ya from the
source Xa, while G adds Yb into the synthesized image. To fit the task of novel
view synthesis, G generates three kinds images: the reconstructed, prior-sampled
images and the view-translated image. Note that, our model employs Y as the
input for E and G. Instead of directly concatenation, we propose the modules
CDM and DFNM, which make the whole network suitable for view translation.
Moreover, we follow the idea of BicycleGAN [38] to reconstruct Z from the prior-
sampled image, and it ensures G to take effective information from the code Z.
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Fig. 2. Overview framework of the proposed network structure. (a) the source image
Xa with its label viewpoint Ya is translated into X̄b in the target view Yb. X̄a is the
reconstructed image with the same Ya given at both E and G. (b) demonstrates that
the code Z ∼ N(0, I) is synthesizing into a prior-sampled image, which is given back
to E to reconstruct the code Z.

3.2 Conditional Deformable Module (CDM)

We now give the details about the proposed CDM, applied in both E and G.
Our motivation is to change the source view Ya to the target Yb by warping Xa

with the optical flow. Therefore, the CDM actually learns to generate the 2D
flows for the features. Note that the warping is particularly useful when Ya and
Yb are close. However, if they are far from each other, the deformed feature needs
to be refined and complemented by the later layers.

Here, we argue that the flows are mainly determined by Y , but they are
also influenced by the content in X. Therefore, they should be computed from
both of them. As the view label Y has no spatial dimensions, Y is first mapped
into a latent code, and then the code convolves the feature to get the offsets.
Specifically, two sets of MLPs, ΨEX , ΨEY and ΨGX , ΨGY , first map Ya and Yb to
the latent codes W (WEX , WEY in E and WGX , WGY in G). Here, we separate
the filters for x and y directions, and for E and G. Detailed discussions are given
in the experiments. Then, W are used as the filters to convolve on the feature
maps, resulting several pairs of feature maps indicating the displacement dx and
dy on x and y directions.

Figure 3 shows the details about CDM. It mainly composed of the conditional
flow computation (CFC) and the deformable conv module, as is shown in Fig. 3
(a). Supposed the input F i ∈ R

H×W×C , of ith layer, CDM outputs the deformed
F i
d of the same size. W are also inputs, which are two latent vectors, computed

from the view condition label Y by MLP. Particularly, F i is given to a conv layer
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with C ′ filters to produce F ′ ∈ R
H×W×C′

. F ′ is split into different groups along
the channel, then given to the CFC. Figure 3 (b) and (c) are two options for
CFC. In practice, we choose the design in Fig. 3 (b), in which the layer of Kernel
Given convolution (KGconv) uses WX ,WY ∈ R

1×1×C′
9 as a pair of filters to

convolve on each C′
9 intervals, leading to a pair of dx, dy ∈ R

H×W×9. Note that
dx, dy are composed of 9 groups of flows. Using 9 groups of flows is proposed by
[4] to introduce adaptive receptive fields in conv layer, 9 sets flows correspond to
the offsets of a 3 × 3 conv kernels, and it finally gives the deformed feature F i

d.
We follow it but the flows are redundant and correlated to some extend, since
they are the offsets of adjacent 3×3 elements. However, the 9 sets of flows could
sometimes be different, depending on the data.

Fig. 3. The details for CDM. (a) Given the F ∈ R
H×W×C before the deformation,

its output Fd is the deformed feature with the same size as F . (b) CFC also has two
separated input latent codes WX and WY , and they are used as the filters to convolve
on a number (usually 9) of groups in F ′. (c) Another design for CFC. Only one filter
is provided, and it convolves on 18 groups.

3.3 Deformed Feature Based Normalization Module (DFNM)

The deformed feature maps F i
d need to be further processed by (i + 1)th layers

in E and G. One intuitive way is to directly use F i
d as the input. However, recent

advances in GAN and cGAN show the advantage of the conditional normaliza-
tion like AdaIN [11] and SPADE [23]. Different from BN or IN, such layers do
not learn the scale γ and offset β as trainable model parameters. Instead, they
are the features from the side branch. In other words, the conditional adaptive
normalization module learns to scale and offset based on the conditional input.
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Inspired by SPADE, we propose a new conditional normalization way named
DFNM, which uses F i

d as the conditional input from the side branch. DFNM
performs the de-normalization, which means to determine the appropriate values
on β and γ. To be specific, it employs F i

d as its input, and specifies β and γ by
two conv layers. Note that DFNM has distinct internal parameters for different
layers, hence it progressively adjusts the features in the main branch based on
its current input. In practice, we can have different choices on the dimensions
of β and γ. Here we simply follow the setting in SPADE, which outputs the
unique γi

y,x,c and βi
y,x,c at different 3D sites, where the subscripts are the indexes

along the height, width and channel dimensions, respectively. Before the de-
normalization, the features in the main branch should be normalized first by
subtracting μ and dividing σ. Here we follow the way in BN to compute per-
channel statistics μi

c and σi
c from hi

n,y,x,c in the batch.

3.4 Overall Optimization Objective

The loss functions used in this paper mainly are three parts, namely, disentan-
gling losses, reconstruction losses and adversarial loss.

Disentangling Loss. The disentangling loss constrains the encoder E, and pre-
vents it from extracting the source view-relevant feature, so that the target view
Yb can be easily added into the view-translated image. The KL constraint penal-
izes the posterior distribution E(Z|Xa, Ya) being far from the standard Gaussian
N(0, I), which to some extent makes the random code Z ∼ E(Z|Xa, Ya) not
carry the information related to Ya. KL loss LKL, as is shown in Eq. (1), can be
easily computed in closed form since both the prior and posterior are assumed
as Gaussians.

LKL = DKL[E(Z|Xa, Ya)||N(0, I)] (1)

However, this loss also constrains on view-irrelevant factors, so that this kind
of information in Z may lose because of the penalty from it. To cope with this
issue, the paper proposes the DAC which mainly aims to reduce view-relevant
factors in Z. With the help of DAC, the KL loss weight can be reduced so
that the view-irrelevant factors remain in Z to a greater extent. In practice, we
implement the DAC as two FC-layers with the purpose of classifying the view
based on Z. DAC is trained in the adversarial manner. Hence it has two training
stages, D and G stages. In D stage, the DAC is provided with the output Z
from E and the correct source view label as well, while in G stage, DAC is fixed
and E get trained with the adversarial loss from DAC. In this stage, we give an
all-equal one-hot label to DAC with the same degree of confidence on each view.
The cross entropy loss are defined as Eq. (2) and Eq. (3), respectively.

Lcls
E = −EZ∼E(Z|Xa,Ya)

∑

c

1
C

log DAC(c|Z) (2)

Lcls
DAC = −EZ∼E(Z|Xa,Ya)

∑

c

I(c = Ya) log DAC(c|Z) (3)
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where I(c = Ya) is the indicator function, and DAC(c|Z) is softmax probability
output by the disentanglement adversarial classifier.

Reconstruction Losses. Reconstruction losses are important regularizations
which also ensure that the view-irrelevant factors remain unchanged during view
translation. Without extra supervisions, cVAE wants the synthesized image X̂a

to be close to the input when E and G are provided the same view label Ya. In
addition, the constraints of the middle layer features of the classification network
is also employed in our work. As shown in Eq. (4) and Eq. (5), φi indicates ith
of a pre-trained VGG network, and Gram means to compute the Gram matrix,
which is a typical second order features.

Lpixel
E,G =||Xa − X̄a||1, Lcontent

E,G = ||φi(Xa) − φi(X̄a)||1 (4)

Lstyle
E,G =||Gram(φi(Xa)) − Gram(φi(X̄a))||1 (5)

When Z ∼ N(0, I) for the prior-sampled image G(Z, Ya), we cannot constrain it
directly in the image domain, so we extract the feature from the image G(Z, Ya)
with E, and to reconstruct Z. So that the information in Z is kept. The recon-
struction loss expressed in Eq. (6)

Lrecz
G = EZ∼N(0,I)||Z − E(G(Z, Ya), Ya)||1 (6)

Adversarial Loss. In this paper, the projection discriminator [20] is adopted.
Given the real image Xa, constraints are made for three types of fake images,
reconstructed G(E(Xa, Ya), Ya), view-translated G(E(Xa, Ya), Yb) and prior-
sampled image G(Z, Ya), as shown in Eq. (7) and Eq. (8).

Ladv
D =EX∼pdata [max(0, 1 − D(X,Ya))]

+ EZ∼E(Z|Xa,Ya)[max(0, 1 + D(G(Z, Ya)), Ya)]
+ EZ∼E(Z|Xa,Ya)[max(0, 1 + D(G(Z, Yb)), Yb)]
+ EZ∼N(0,I)[max(0, 1 + D(G(Z, Ya)), Ya)]

(7)

Ladv
E,G =EZ∼E(Z|Xa,Ya)[max(0, 1 − D(G(Z, Ya)), Ya)]

+ EZ∼E(Z|Xa,Ya)[max(0, 1 − D(G(Z, Yb)), Yb)]
+ EZ∼N(0,I)[max(0, 1 − D(G(z, Ya)), Ya)]

(8)

The total loss for E, G, D and DAC can be written as following.

LE,G = LKL + Ladv
E,G + α1L

style
E,G + α2L

content
E,G + α3L

pixel
E,G + Lcls

E + Lrecz
G (9)

LD = Ladv
D , LDAC = Lcls

DAC (10)

We set the loss weight α1 = 0.001, α2 = 10, α3 = 100 for all experiments.
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4 Experiments

4.1 Dataset and Implementation Details

Dataset. We validate the proposed method on the 3D chair [1] and the MultiPIE
face datasets [7]. The 3D chair contains 86, 304 images with a span of 360◦ at
azimuth and 30◦ at pitch, respectively, covering a total of 62 angles. There are
1,392 different types of chairs. The multiPIE contains about 130,000 images,
with a total span of 180◦ and a spacing of 15◦ in azimuth dimension. A total of
13 angles are used for training and testing. Meanwhile, it also contains images of
250 identities under different lights. For all the datasets, 80% are used for model
training and the rest 20% for testing.

Input image

A:Baseline

B:A+CDM

C:B+DFNM

D:C+DAC

E:D-XYS

F:D-EDS

Real image

Fig. 4. Ablation study on 3D chair dataset.

Implementation Details. In E and G, all layers adopt instance normalization,
except those replaced by DFNM. The spectral norm [19] is applied to all layers
in D. All learning rates are set to 0.0002. We use the ADAM [14] and set β1 =
0, β2 = 0.9. Details are given in the supplementary materials.

4.2 Results and Ablation Studies on 3D Chair and MultiPIE

Extensive ablation studies is conducted to verify the effectiveness of each module.
We have 6 different settings for it. View-translated images in different settings
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are presented in the corresponding rows in Fig. 4 and the quantitative metrics
are given in Table 1.

Input image

A:Baseline

B:A+CDM

C:B+DFNM

D:C+DAC

E:D-XYS

F:D-EDS

Real image

Fig. 5. Ablation study on multiPIE dataset.

Baseline. To verify the effectiveness of our proposed method, we use a general
framework cVAE-GAN [3] as the baseline. To make the comparison fair, we
introduce the view-translated image in it, and use all the loss functions that is
presented. The result is indicated as “A: baseline” in Table 1 and Fig. 4 and 5.

Validity of CDM. To validate CDM, setting B is modified based on A. The only
difference is we introduce the label through CDM, thus the setting is indicated
by “B: A+CDM” in Table 1 and Fig. 4 and 5. Comparing the results between A
and B in Fig. 4, we find that both can translate images to the given view. But
when the difference between the target and input view is large, it is difficult for
A to maintain the attributes and local details of the source image. While the
CDM in B has the advantage of maintaining the representative details. In both
the visual fidelity and similarity, B has a greater improvement on A.

Validity of DFNM. We validate the DFNM in setting C based on B. The only
difference between B and C is that we apply DFNM in C, while the deformed
features are directly given to the later layers in the main branch in B. This
setting is written as “C: B+DFNM” in Table 1 and Fig. 4 and 5. As is shown
in Fig. 4, for some of the complex chair types, the synthesized image keep the
chair style, indicating that DFNM helps catching the detail features in the source
image. The quantitative results in Table 1 indicate that DFNM refines the results
compared with the setting B.
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Validity of DAC. To demonstrate the effectiveness of DAC loss, we experiment
in setting D based on C. In setting D, DAC is employed to provide the loss for
encoder by Eq. (2) . By introducing DAC, it enables G to get more view-irrelevant
information. In Fig. 4 and 5, we can clearly see that although setting C basically
maintain details, DAC in setting D gives a clearer representation. The results
in Table 1 give further proof that all metrics are improved on 3D chair, and L1
error and FID have only negligible decreasing on MultiPIE.

Necessity of Separating MLPs for x and y Directions. We are also inter-
ested in the way that CFC is implemented in CDM. There are at least two
options for the filters W from MLPs. One possible way is to employ the same W
to generate both dx and dy, as is shown in Fig. 3(c). The other way is illustrated
in the conditional flow computation sub-module in Fig. 3(b). The results of the
first option are specified as “E: D-XYS”, as is shown in Fig. 4 and 5 and Table 1.
We can see that the image is defective. The declines in quantitative metrics
further illustrate the necessity of our design in CDM.

Necessity of Separating the MLPs in E and G. E and G both use CDM
to warp the features. But considering the different purposes of E and G, the
input conditional filters are different, coming from ΨEX , ΨEY , and ΨGX , ΨGY ,
as is shown in Fig. 2. We are wondering whether separating the MLPs in E and
G is necessary, hence we implement a network in which ΨX , ΨY are sharing in
E and G. The results are presented as “F: D-EDS”, which are worse than D, as
is shown in Fig. 4 and 5 and Table 1. It shows the necessity of separating MLPs.

Table 1. Quantitative ablation study on the MultiPIE and the 3D chair dataset. The
pixel-wise mean L1 error and the structural similarity index measure (SSIM) [33] are
computed between the view-translated images and the ground truths. Besides, the FID
is also reported.

Method MultiPIE 3D chair

L1 SSIM FID L1 SSIM FID

A: Baseline 31.37 0.49 44.84 8.39 0.86 104.78

B: CDM 23.43 0.55 26.79 7.88 0.87 88.23

C: B + DFNM 21.53 0.56 23.59 6.68 0.88 93.11

D: C + DAC 21.90 0.57 23.95 6.37 0.89 86.34

E: D - XYS 24.48 0.54 31.02 7.18 0.88 90.31

F: D - EDS 23.59 0.54 28.40 6.94 0.88 89.56

4.3 Results and Analysis on MultiPIE

View-Translation Among Discrete Angles. Qualitative comparisons are
performed among our proposed method and the existing works like cVAE-GAN
[3], VI-GAN [34] and CR-GAN [30]. The results are listed in Fig. 6. Note that
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ours

cVAE-GAN

VI-GAN

CR-GAN

Real image

ours

cVAE-GAN

VI-GAN

CR-GAN

Real image

Fig. 6. Comparison on Multi-PIE. For each image, the top row is the ground truth
while the second row is generated by ours. The third , fourth and fifth rows are the
output of cVAE-GAN [3] ,VI-GAN [34] and CR-GAN [30] respectively.

in this study, we do not use paired data for all experiments during training. The
results of the quantitative metrics on each method are shown in the Table 2. After
removing the constraint from the paired data, CR-GAN can hardly realize the
view translation. The image qualities of VI-GAN significantly deteriorate under
the condition of large angle translation. Although cVAE-GAN can still work, the
converted image can not keep the view-irrelevant details from the source.

Table 2. Quantitative metrics comparisons. Results from CR-GAN, VI-GAN and
cVAE-GAN are provided on MultiPIE and the 3D chair datasets, respectively.

Method MultiPIE 3D chair

L1 SSIM FID L1 SSIM FID

CR-GAN [30] 39.80 0.397 48.87 13.45 0.696 111.34

VI-GAN [34] 38.18 0.464 47.02 10.54 0.802 105.78

cVAE-GAN [3] 31.37 0.493 44.84 8.39 0.859 104.78

Ours 21.90 0.571 23.95 6.37 0.885 86.34

Continuous View Synthesis by Interpolation. Synthesizing images at con-
tinuously varying angles is important in real applications. In our implementation,
this can be achieved by interpolating between two adjacent labels. Meanwhile,
we realize that the filter W , computed from the discrete view labels through the
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Fig. 7. Interpolating W to synthesis unseen view images.

Fig. 8. Comparisons on different interpolation schemes for synthesizing an unseen view
image on MultiPIE. (Color figure online)

MLPs Ψ , can help synthesizing the image at an unseen angle. Therefore, we can
also directly interpolate on W .

The minimum angle interval in MultiPIE is 15◦, and we choose to interpolate
at every 7.5◦. As is shown in Fig. 7, we visualize all the images by interpolating
W from 0◦ to 90◦ and find that the face realized smooth transformation.

For comparison, zooming-in results by interpolating on both W and Y are
given in Fig. 8. Note that all these images are the outputs from our model with
the source view at 0◦. The image marked with the red box is the obtained by
interpolating W , while the green box is the result from interpolating Y . The
results show that interpolation on W gives the more accurate images. This also
demonstrates that we have learned good representation W for the angle since
it directly relates to the optical flow on the feature. The above results can be
verified by the quantitative metric of FID. By interpolation on W , FID achieves
30.70, while it is 32.04 if the interpolation is implemented on Y .

5 Conclusions

This paper proposes the conditional deformable VAE for the novel view synthe-
sis based on unpaired training data. We design the CDM and DFNM which are
utilized in both the encoder and decoder. The CDM employs the latent code
mapping from the conditional view label as the filters to convolve the feature,
so that a set of optical flows can be obtained to deform the features. The out-
put from CDM are not directly given to the later layers, instead, they take
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effect through DFNM, which actually performs the conditional normalization
according to its input. The experiments on 3D chair and MultiPIE show the
effectiveness of our method particularly for unpaired training.
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Abstract. We develop a language-guided navigation task set in a con-
tinuous 3D environment where agents must execute low-level actions to
follow natural language navigation directions. By being situated in con-
tinuous environments, this setting lifts a number of assumptions implicit
in prior work that represents environments as a sparse graph of panora-
mas with edges corresponding to navigability. Specifically, our setting
drops the presumptions of known environment topologies, short-range
oracle navigation, and perfect agent localization. To contextualize this
new task, we develop models that mirror many of the advances made in
prior settings as well as single-modality baselines. While some trans-
fer, we find significantly lower absolute performance in the continu-
ous setting – suggesting that performance in prior ‘navigation-graph’
settings may be inflated by the strong implicit assumptions. Code at
jacobkrantz.github.io/vlnce.

Keywords: Vision-and-Language Navigation · Embodied agents

1 Introduction

Springing forth from the pages of science fiction and capturing the daydreams
of weary chore-doers everywhere, the promise and potential of general-purpose
robotic assistants that follow natural language instructions has been long under-
stood. Taking a small step towards this goal, recent work has begun devel-
oping artificial agents that follow natural language navigation instructions in
perceptually-rich, simulated environments [4,6]. An example instruction might
be “Go down the hall and turn left at the wooden desk. Continue until you reach
the kitchen and then stop by the kettle.” and agents are evaluated by their ability
to follow the described path in (potentially novel) simulated environments.
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Fig. 1. The VLN setting (a) operates on a fixed topology of panoramic images (shown
in blue) – assuming perfect navigation between nodes (often meters apart) and precise
localization. Our VLN-CE setting (b) lifts these assumptions by instantiating the task
in continuous environments with low-level actions – providing a more realistic testbed
for robot instruction following.

Many of these tasks have been developed from datasets of panoramic images
captured in real scenes – e.g. Google StreetView images in Touchdown [6] or
Matterport3D panoramas captured in homes in Vision-and-Language Navigation
(VLN) [4]. This paradigm enables efficient data collection and high visual fidelity
compared to 3D scanning or creating synthetic environments; however, scenes
are only observed from a sparse set of points relative to the full 3D environment
(∼117 viewpoints per environment in VLN). As a consequence, environments in
these tasks are defined in terms of a navigation graph (or nav-graph for short)
– a static topological representation of 3D space. As shown in Fig. 1(a), nodes
in the nav-graph correspond to 360◦ panoramic images taken at fixed locations
and edges between nodes indicate navigability. This nav-graph based formulation
introduces a number of assumptions that make it a poor proxy for what a robotic
agent would encounter while navigating the real world.

Focusing our discussion on Vision-and-Language Navigation (VLN), the exis-
tence and common usage of the nav-graph imply the following assumptions:

– Known topology. Rather than continuous environments in which agents can
move freely, agents operate on a fixed topology of traversable nodes (shown
in blue in Fig. 1(a)). Aside from being a poor match to robot control, this
also provides prior information about environment layout to agents – even
in “unseen” test settings. For example, it is common practice to define agent
actions by selecting directions in the current panorama and ‘snapping’ to the
nearest adjacent nav-graph node in that direction. How an actual agent might
acquire and update such a topology in new environments is an open question.

– Oracle navigation. Movement between adjacent nodes in the nav-graph
is deterministic, implying the existence of an oracle navigator capable of
accurately traversing multiple meters in the presence of obstacles – abstract-
ing away the problem of visual navigation. Further, this movement between
nodes is perceptually akin to teleportation – the current panorama is simply
replaced by the panorama at the new location meters away. This is in contrast
to the continuous stream of observations a real agent would encounter while
moving.
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– Perfect localization. Agents are given their precise location and heading
at all times. Most works use this data to encode precise geometry between
nodes in the nav-graph as part of the decision making process, e.g. moving
30◦W and 1.12 m forward from the previous node. Others use precise agent
localization to construct spatial maps of the environment on which to reason
about paths [3]. However, precise localization indoors is still a challenging
problem.

Taken together, these assumptions make current settings poor reflections of the
real world both in terms of control (ignoring actuation, navigation, and local-
ization error) and visual stimuli (lacking the poor framing and long observation-
sequences agents will encounter). In essence, the problem is reduced to that of
visually-guided graph search. As such, closing the loop by transferring these
trained agents to physical robotic platforms has not been examined.

These assumptions are often justified by invoking existing technologies as
potential oracles. For example, simultaneous localization and mapping (SLAM)
or odometry systems can offer strong localization in appropriate conditions
[16,21]. Likewise, algorithms for path planning and control can navigate short
distances in the presence of obstacles [11,25,31]. Further, it is reasonable to
suggest that issuing commands at the level of relative waypoints (in analogy to
nav-graph nodes) is the proper interface between language-guided AI navigators
and lower-level agent control. However, these techniques are each independently
far from perfect and such an agent would need to learn the limitations of these
lower-level control systems – facing consequences when proposed waypoints can-
not be reached effectively. Integrative studies that combine and evaluate tech-
niques for control and mapping with learned AI agents are not possible in current
nav-graph based problem settings. In this work, we develop a continuous setting
that enables such studies and take a first step towards integrating VLN agents
with control.

Vision-and-Language Navigation in Continuous Environments. In this
work, we focus in on the Vision-and-Language Navigation (VLN) [4] task and
lift these implicit assumptions by instantiating it in continuous 3D environments
[5,19]. Consequently, we call this task Vision-and-Language Navigation in Con-
tinuous Environments (VLN-CE). Agents in our task are free to navigate to
any unobstructed point through a set of low-level actions (e.g. move forward
0.25 m, turn-left 15◦) rather than teleporting between fixed nodes. This set-
ting introduces many challenges ignored in prior work. Agents in VLN-CE face
significantly longer time horizons; the average number of actions along a path in
VLN-CE is ∼55 compared to the 4–6 node hops in VLN (as illustrated in Fig. 1).
Moreover, the views the agent receives along the way are not well-posed by care-
ful human operators as in the panoramas, but rather a consequence of the agent’s
actions. Agents must also learn to avoid getting stuck on obstacles, something
that is structurally impossible in VLN’s navigability defined nav-graph. Further,
agents are not provided their location or heading while navigating.

We develop agent architectures for this task and explore how popular mecha-
nisms for VLN transfer to the VLN-CE setting. Specifically, we develop a simple
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Table 1. Comparison of language-guided visual navigation tasks. Ours is the only to
provide unconstrained navigation in real environments for crowdsourced instructions.

Task Instructions Environment Navigation

LANI [20] Crowdsourced Synthetic Unconstrained

StreetNav [13] Templated Real Nav-Graph Based

Touchdown [6] Crowdsourced Real Nav-Graph Based

VLN [4] Crowdsourced Real Nav-Graph Based

VLN-CE (ours) Crowdsourced Real Unconstrained

sequence-to-sequence baseline architecture as well as a cross-modal attention-
based model. We perform a number of input-modality ablations to assess the
biases and baselines in this new setting (including models without perception or
instructions as suggested in [27]). Unlike in VLN where depth is rarely used, our
analysis reveals depth to be an integral signal for learning embodied navigation
– echoing similar findings in point-goal navigation tasks [19,31]. We also apply
existing training augmentations [17,24,26] popular in VLN to our setting, find-
ing mixed results. Overall, our best performing agent successfully navigates to
the goal in approximately a third of episodes in unseen environments.

To further examine the relationship between the nav-graph-based VLN task
and VLN-CE, we also transfer paths from agents trained in continuous environ-
ments back to the nav-graph to provide a direct comparison. We find signifi-
cant gaps in performance between these settings indicative of the strong prior
provided by the nav-graph. This suggests prior results in VLN may be overly
optimistic in terms of progress towards instruction-following robots functioning
in the wild.

Contributions. To summarize our contributions, we:

– Lift the VLN task to continuous 3D environments – removing many unrealistic
assumptions imposed by the nav-graph-based representation.

– Develop model architectures for the VLN-CE task and evaluate a suite of
single-input ablations to assess the biases and baselines of the setting.

– Investigate how a number of popular techniques in VLN transfer to this more
challenging long-horizon setting – identifying significant gaps in performance.

2 Related Work

Language-Guided Visual Navigation Tasks. Language-guided visual nav-
igation tasks require agents to follow navigation directions in simulated envi-
ronments. There have been a number of recent tasks proposed in this space
[4,6,13,20]. Chen et al. [6] introduce the Touchdown task which studies out-
door language-guided navigation in Google Street View panoramas. Hermann
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et al. [13] investigates the same setting; however, the instructions are automat-
ically generated from Google Map directions rather than being crowdsourced
from human annotators. Both adopt a nav-graph setting due to the source data
being panoramic images – constraining agent navigation to fixed points. Misra
et al. [20] introduce a simulated environment with unconstrained navigation and
a dataset of crowdsourced instructions; however, the environments are unreal-
istic, synthetic scenes. Most related to our work is the Vision-and-Language
Navigation (VLN) task of Anderson et al. [4]. VLN provides nav-graph trajec-
tories and crowdsourced instructions in Matterport3D [5] environments as the
Room-to-Room (R2R) dataset. We build VLN-CE directly on these annotations
– converting R2R panorama-based trajectories to fine-grained paths in continu-
ous Matterport3D environments (Fig. 1(a) to Fig. 1(b)). This shift to continuous
environments with unconstrained agent navigation lifts a number of unrealistic
assumptions.

The variation in these tasks is primarily in the source of navigation
instructions (crowdsourced from human annotators vs. generated via template),
environment realism (hand-designed synthetic worlds vs. captures from real
locations), and constraints on agent navigation (nav-graph based navigation
vs. unconstrained agent motion). Table 1 provides a comparison between tasks
along these axes. Our proposed VLN-CE task provides the first setting with
crowdsourced instructions in realistic environments with unconstrained agent
navigation.

Approaches to Vision-and-Language Navigation. VLN has seen consider-
able progress. Multimodal attention mechanisms have become popular to provide
better grounding between instructions and the observations [29]. Orthogonal to
new modeling architectures, improvements have also come from new training
approaches and data augmentation methods. One prevalent technique is to uti-
lize inverse “speaker” models to re-rank candidate trajectories or augment the
available training data by generating instructions for novel trajectories [9]. Tan
et al. [26] improve upon this idea by improving the diversity of the generated
instructions. Ma et al. [17] show that an additional training signal can be gained
by explicitly estimating progress toward the goal (referred to as self-monitoring).
We adapt these methods to VLN-CE and examine their impact.

Other Language-Based Embodied AI. A number of other embodied tasks
have considered language-conditioned navigation. For instance, referring to spe-
cific rooms or objects that agents must then navigate to [7,10,30]. However, these
settings use language to specify end-goals or query agent knowledge rather than
to provide navigational directions. For example, specifying “lamp” or “What
color is the lamp in the living room?” rather than multi-step, grounded navi-
gation instructions. This loose coupling of intermediate agent action with the
language instruction differentiates these tasks from language-guided navigation
settings.
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3 VLN in Continuous Environments (VLN-CE)

We consider a continuous setting for the vision-and-language navigation task
which we refer to as Vision-and-Language Navigation in Continuous Environ-
ments (VLN-CE). Given a natural language navigation instruction, an agent
must navigate from a start position to the described goal in a continuous 3D
environment by executing a sequence of low-level actions based on egocentric
perception alone. In overview, we develop this setting by transferring nav-graph-
based Room-to-Room (R2R) [4] trajectories to reconstructed continuous Mat-
terport3D environments in the Habitat simulator [19]. We discuss these details
below.

Continuous Matterport3D Environments in Habitat. We set our problem
in the Matterport3D (MP3D) [5] dataset, a collection of 90 environments cap-
tured through over 10,800 high-definition RGB-D panoramas. In addition to the
panoramic images, MP3D also provides corresponding mesh-based 3D environ-
ment reconstructions. To enable agent interaction with these meshes, we develop
the VLN-CE task on top of the Habitat Simulator [19], a high-throughput simu-
lator that supports basic movement and collision checking for 3D environments
including MP3D. In contrast to the simulator used in VLN [4], Habitat allows
agents to navigate freely in the continuous environments.

Observations and Actions. We select observation and action spaces to emu-
late a ground-based, zero-turning radius robot with a single, forward-mounted
RGBD camera, similar to a LoCoBot [1]. Agents perceive the world through
egocentric RGBD images from the simulator with a resolution of 256× 256 and
a horizontal field-of-view of 90◦. Note that this is similar to the egocentric RGB
perception in the original VLN task [4] but differs from the panoramic observa-
tion space adopted by nearly all follow-up work [9,17,26,29].

While the simulator is quite flexible in terms of agent actions, we consider
four simple, low-level actions for agents in VLN-CE – move forward 0.25 m,
turn-left or turn-right 15◦, or stop to declare that the goal position has
been reached. These actions can easily be implemented on robotic agents with
standard motion controllers. In contrast, actions to move between panoramas in
[4] traverse 2.25 m on average and can include avoiding obstacles.

3.1 Transferring Nav-Graph Trajectories

Rather than collecting a new dataset of trajectories and instructions, we instead
transfer those from the nav-graph-based Room-to-Room dataset to our continu-
ous setting. Doing so enables us to compare existing nav-graph-based techniques
with our methods that operate in continuous environments on the same instruc-
tions.

Matterport3D Simulator and the Room-to-Room Dataset. The original
VLN task is based on panoramas from Matterport3D (MP3D) [5]. To enable
agent interaction with these panoramas, Anderson et al. [4] developed the Mat-
terport3D Simulator. Environments in this simulator are defined as nav-graphs
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Fig. 2. We successfully transfer 77% of the R2R trajectories. (a) Most panorama nodes
transfer directly, but 3% require horizontal adjustment – with an average displacement
of 0.19 m. (b) Some trajectories are not navigable due to differences between the panora-
mas and reconstructed environments, e.g. holes in the 3D mesh (top) or objects like
chairs being moved between panorama captures (bottom). (c) Optimal paths in our
setting require 10x more agent actions per trajectory – 55.88 compared to 5 in R2R.

E = {V, E}. Each node v ∈ V corresponds to a panoramic image I captured
by a Matterport camera at location x, y, z – i.e. v = {I, x, y, z}. Edges in the
graph correspond to navigability between nodes. Navigability was defined by
ray-tracing between node locations at varying heights to check for obstacles in
the reconstructed MP3D scene and then manually inspected. Edges were man-
ually added or removed based on judgement whether an agent could navigate
between nodes – including by avoiding minor obstacles1. Agents act by teleport-
ing between adjacent nodes in this graph. Based on this simulator, Anderson
et al. [4] collect the Room-to-Room (R2R) dataset containing 7189 trajectories
each with three human-generated instructions on average. These trajectories
consist of a sequence of nodes τ = [v1, . . . , vT ] with length T averaging between
4 and 6 nodes.

Converting Room-to-Room Trajectories to Habitat. Given a mapping
between the coordinate frames of Matterport3D Simulator and MP3D in Habi-
tat, it is seemingly simple to transfer the Room-to-Room trajectories – after
all, each node has a corresponding xyz location. However, node locations often
do not correspond to reachable locations for a ground-based agent – existing
at variable height depending on tripod configuration or placed on top of flat
furniture like tables. Further, the reconstructions and panoramas may differ if
objects are moved between camera captures.

For each node, v = {I, x, y, z}, we would like to identify the nearest, navigable
point on the reconstructed mesh – i.e. the closest point that can be occupied by
a ground-based agent represented by a 1.5 m tall cylinder of diameter of 0.2 m.
Directly projecting to the nearest mesh location fails for 73% of nodes where
failure is projecting to distant (>0.5 m) or non-navigable points. Many of these
points project to surfaces other than the floor due to camera height. Instead,
we cast a ray up to 2 m directly downward from the node. At small, fixed inter-
vals along this ray, we project to the nearest mesh point. If multiple navigable
1 Details included from correspondence with the author of [4].
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Fig. 3. We develop a simple baseline agent (a) as well as an attentional agent (b) com-
parable to that in [29]. Both receive RGB and depth frames represented by pretrained
networks for image classification [8] and point-goal navigation [31], respectively.

points are identified, we take the one with minimal horizontal displacement from
the original location. If no navigable point is found with less than a 0.5 m dis-
placement, we consider this MP3D node unmappable to the 3D mesh and thus
invalid. We manually reviewed invalid nodes and made corrections if possible,
e.g. shifting nodes around furniture. After these steps, 98.3% of nodes trans-
ferred successfully. We refer to these transferred nodes as waypoint locations. In
Fig. 2(a), points needing adjustment (3% of points) require small displacement,
averaging 0.19 m.

Given a trajectory of converted waypoints τ = [w1, . . . , wT ], we verify that
an agent can actually navigate between each location. We employ an A*-based
search algorithm to compute an approximate shortest path to a goal. We run this
algorithm between each waypoint in a trajectory to the next (e.g. wi to wi+1). A
trajectory is considered navigable if for each pairwise navigation, an agent can
follow the shortest path to within 0.5 m of the next waypoint (wi+1). In total,
we find 77% of the R2R trajectories navigable in the continuous environment.

Non-Navigable Trajectories. Among the 23% of trajectories that were not
navigable, we observed two primary failure modes. First and most simply, 22%
included one of the 1.7% of invalid nodes that could not be projected to MP3D
3D meshes. The remaining unnavigable trajectories spanned disjoint regions of
the reconstruction – i.e. lacking a valid path from some waypoint wi to wi+1.
As shown in Fig. 2(b), this may be due to holes or other mesh errors dividing
the space. Alternatively, objects like chairs may be moved in between panorama
captures – possibly resulting in a reconstruction that places the object mesh
on top of individual panorama locations. Nodes in the R2R nav-graph were
manually connected if there appeared to be a path between them, even if most
other panoramas (and thus the reconstruction) showed blocking objects.

3.2 VLN-CE Dataset

In total, the VLN-CE dataset consists of 4475 trajectories converted from R2R
train and validation splits. For each trajectory, we provide the multiple R2R
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instructions and a pre-computed shortest path following the waypoints via low-
level actions. As shown in Fig. 2(c), the low-level action space of VLN-CE makes
for a longer horizon task – with 55.88 steps on average compared to 4–6 in R2R.

4 Instruction-Guided Navigation Models in VLN-CE

We develop two models for VLN-CE. A simple sequence-to-sequence baseline and
a more powerful cross-modal attentional model. While there are many differences
in the details, these models are conceptually similar to early [4] and more recent
[29] work in the nav-graph based VLN task. Exploring these gives insight into
the difficulty of this setting in isolation and by comparison relative to VLN.
Further, these models allow us to test whether improvements from early to later
architectures carry over to a more realistic setting. Both of our models make use
of the same observation and instruction encodings described below.

Instruction Representation. We convert tokenized instructions to GLoVE
[23] embeddings which are processed by recurrent encoders for each model. We
denote these encoded tokens as w1, . . . ,wT for a length T instruction.

Observation Encoding. For RGB, we apply a ResNet50 [12] pretrained on
ImageNet [8] to collect semantic visual features. We denote the final spatial
features of this model as V = {vi} where i indexes over spatial locations. Likewise
for depth, we use a modified ResNet50 that was trained to perform point-goal
navigation (i.e. to navigate to a location given in relative coordinates) [31] and
denote these as D = {di}.

4.1 Sequence-to-Sequence Baseline

We consider a simple sequence-to-sequence model shown in Fig. 3(a). This model
consists of a recurrent policy that takes visual observations (depth and RGB)
and instructions at time step t to predict an action a. We can write the agent as

v̄t = mean-pool (Vt) , d̄t = [d1, . . . ,dwh] , s = LSTM (w1, . . . ,wT ) (1)

h(a)
t = GRU

([
v̄t, d̄t, s

]
,h(a)

t−1

)
, at = argmax

a
softmax

(
Wah

(a)
t + ba

)
(2)

where [·] denotes concatenation and s is the final hidden state of an LSTM
instruction encoder. This model enables straight-forward input-modality abla-
tions.

4.2 Cross-Modal Attention Model

The previous model lacks powerful inductive biases common to vision-and-
language tasks including cross-modal attention and spatial reasoning which are
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intuitively important for language-guided visual navigation. In Fig. 3(b) we con-
sider a model incorporating these mechanisms. This model consists of two recur-
rent networks – one tracking visual history and the other tracking attended
instruction and visual features. We write the first recurrent network as:

h(attn)
t = GRU

([
v̄t, d̄t,at−1

]
,h(attn)

t−1

)
(3)

where at−1 ∈ R
32 and is a learned linear embedding of the previous action. We

encode instructions with a bi-directional LSTM and reserve all hidden states:

S = {s1, . . . , sT} = BiLSTM (w1, . . . ,wT ) (4)

We then compute an attended instruction feature ŝt over these representations
which is then used to attend to visual (v̂t) and depth (d̂t) features. Concretely,

ŝt = Attn
(
S,h(attn)

t

)
, v̂t = Attn (Vt, ŝt) , d̂t = Attn (Dt, ŝt) (5)

where Attn is a scaled dot-product attention [28]. For a query q ∈ R
1×dq , x̂ =

Attn({xi},q) is computed as x̂=
∑

i αixi for αi=softmaxi((WKxi)Tq /
√

dq).
The second recurrent network then takes a concatenation of these features includ-
ing at−1 and h(attn)

t and predicts an action.

h(a)
t = GRU

([
ŝt, v̂t, d̂t,at−1,h

(attn)
t

]
,h(a)

t−1

)
(6)

at = argmax
a

softmax
(
Wah

(a)
t + ba

)
(7)

4.3 Auxiliary Losses and Training Regimes

Aside from modeling details, much of the remaining progress in VLN has come
from adjusting the training regime – adding auxiliary losses / rewards [17,29],
mitigating exposure bias during training [4,29], or incorporating synthetic data
augmentation [9,26]. We explore some common variants of these directions in
VLN-CE. We suspect addressing exposure bias and data sparsity will be impor-
tant in VLN-CE where these issues may be amplified by lengthy action sequences.

Imitation Learning. A natural starting point for training is maximizing the
likelihood of the ground truth trajectories. To do so, we perform teacher-forcing
training with inflection weighting (IW). As described in [30], IW places empha-
sis on time-steps where actions change (i.e. at−1 �= at), adjusting loss weight
proportionally to the rarity of such events. This was found to be helpful for nav-
igation problems with long sequences of repeated actions. We observe a positive
effect in early experiments and apply IW in all our experiments.

Coping with Exposure Bias. Imitation learning in auto-regressive settings
suffers from a disconnect between training and test – agents are not exposed
to the consequences of their actions during training. Prior work has shown sig-
nificant gains by addressing this issue for VLN through scheduled sampling [4]
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Table 2. No-learning baselines and input modality ablations for our baseline sequence-
to-sequence model. Given the long trajectories involved, we find both random agents
and single-modality ablations to perform quite poorly in VLN-CE.

Model Vision Instr. History Val-Seen Val-Unseen

TL ↓ NE ↓ nDTW ↑ OS ↑ SR ↑ SPL ↑ TL ↓ NE ↓ nDTW ↑ OS ↑ SR ↑ SPL ↑
Random - - - 3.54 10.20 0.28 0.04 0.02 0.02 3.74 9.51 0.30 0.04 0.03 0.02

Hand-Crafted - - - 3.83 9.56 0.33 0.05 0.04 0.04 3.71 10.34 0.30 0.04 0.03 0.02

Seq2Seq RGBD � � 8.40 8.54 0.45 0.35 0.25 0.24 7.67 8.94 0.43 0.25 0.20 0.18

– No Image D � � 7.77 8.55 0.46 0.31 0.24 0.23 7.87 9.09 0.41 0.23 0.17 0.15

– No Depth RGB � � 4.93 10.76 0.29 0.10 0.03 0.03 5.54 9.89 0.31 0.11 0.04 0.04

– No Vision - � � 4.26 11.07 0.26 0.03 0.00 0.00 4.68 10.06 0.30 0.07 0.00 0.00

– No Instruction RGBD - � 7.86 9.09 0.42 0.26 0.18 0.17 7.27 9.03 0.42 0.22 0.17 0.16

or reinforcement learning fine-tuning [26,29]. In this work, we apply Dataset
Aggregation (DAgger) [24] towards the same end. While DAgger and scheduled
sampling share many similarities, DAgger trains on the aggregated set of trajec-
tories from all iterations 1 to n. Thus, the resulting policy after iteration n is
optimized over all past experiences and not just those collected from iteration
n.

Synthetic Data Augmentation. Another popular strategy is to learn a
‘speaker’ model that produces instructions given a trajectory. Both [26] and [9]
use these models to generate new trajectory-instruction pairs and many following
works have leveraged these additional trajectories. We convert ∼150k synthetic
trajectories generated this way from [26] to our continuous environments.

Progress Monitor. An important aspect of success is identifying where to stop.
Prior work [17] found improvements from explicitly supervising the agent with
a progress-toward-goal signal. Specifically, agents are trained to predict their
fraction through the trajectory at each time step. We apply progress estimation
during training with a mean squared error loss term akin to [17].

5 Experiments

Setting and Metrics. We train and evaluate our models in VLN-CE. We
perform early stopping based on val-unseen performance. We report standard
metrics for visual navigation defined in [2,4,18] – trajectory length in meters
(TL), navigation error in meters from goal at termination (NE), oracle success
rate (OS), success rate (SR), success weighted by inverse path length (SPL), and
normalized dynamic-time warping (nDTW). For full details on metrics, see [2,4,18].

Implementation Details. We utilize the Adam optimizer [15] with a learning
rate of 2.5 × 10−4 and a batch size of 5 full trajectories. We set the inflection
weighting coefficient [30] to 3.2 (inverse frequency of inflections in our ground-
truth paths). We train on all ground-truth paths until convergence on val-unseen
(at most 30 epochs). For DAgger [24], we collect the nth set by taking the oracle
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Table 3. Performance in VLN-CE. We find that popular techniques in VLN have
mixed benefit in VLN-CE; however, our best performing model combining all examined
techniques succeeds nearly 1/3rd of the time in new environments. ∗ denotes fine-
tuning.

# Model PM [17] DA [24] Aug. [26] Val-Seen Val-Unseen

TL ↓ NE ↓ nDTW ↑ OS ↑ SR ↑ SPL ↑ TL ↓ NE ↓ nDTW ↑ OS ↑ SR ↑ SPL ↑
1 Seq2Seq Baseline - - - 8.40 8.54 0.45 0.35 0.25 0.24 7.67 8.94 0.43 0.25 0.20 0.18

2 � - - 8.34 8.48 0.47 0.32 0.22 0.21 8.93 9.28 0.40 0.28 0.17 0.15

3 - � - 9.32 7.09 0.53 0.44 0.34 0.32 8.46 7.92 0.48 0.35 0.26 0.23

4 - - � 8.23 7.76 0.51 0.34 0.26 0.25 7.22 8.70 0.44 0.26 0.19 0.17

5 � �∗ � 9.37 7.02 0.54 0.46 0.33 0.31 9.32 7.77 0.47 0.37 0.25 0.22

6 Cross-Modal Attention - - - 8.26 7.81 0.49 0.38 0.27 0.25 7.71 8.14 0.47 0.31 0.23 0.22

7 � - - 8.51 8.17 0.47 0.35 0.28 0.26 7.87 8.72 0.44 0.28 0.21 0.19

8 - � - 8.90 7.40 0.52 0.42 0.33 0.31 8.12 8.00 0.48 0.33 0.27 0.25

9 - - � 8.50 8.05 0.49 0.36 0.26 0.24 7.58 8.65 0.45 0.28 0.21 0.19

10 � �∗ � 9.26 7.12 0.54 0.46 0.37 0.35 8.64 7.37 0.51 0.40 0.32 0.30

11 � - � 8.49 8.29 0.47 0.36 0.27 0.25 7.68 8.42 0.46 0.30 0.24 0.22

12 - �∗ � 9.32 6.76 0.55 0.47 0.37 0.33 8.27 7.76 0.50 0.37 0.29 0.26

action with probability β = 0.75n and the current policy action otherwise. We
collect 5, 000 trajectories at each stage and then perform 4 epochs of imitation
learning (with inflection weighting) over all collected trajectories. Once again,
we train to convergence on val-unseen (6 to 10 dataset collections, depending on
the model). We implement our agents in PyTorch [22] and on top of Habitat [19].

5.1 Establishing Baseline Performance for VLN-CE

No-Learning Baselines. To establish context for our results, we consider ran-
dom and hand-crafted agents in Table 2 (top two rows). The random agent selects
actions according to the action distribution in train.2 The hand-crafted agent
picks a random heading and takes 37 forward actions (dataset average) before
calling stop. Both these agents achieve a ∼3% success rate in val-unseen despite
no learned components or input processing. A similar hand-crafted model in
VLN yields a 16.3% success rate [4]. Though not directly comparable, this gap
illustrates the strong structural prior provided by the nav-graph in VLN.

Seq2Seq and Single-Modality Ablations. Table 2 also shows performance
for the baseline Seq2Seq model along with input ablations. All models are trained
with imitation learning without data augmentation or any auxiliary losses. Our
baseline Seq2Seq model significantly outperforms the random and hand-crafted
baselines, successfully reaching the goal in 20% of val-unseen episodes.

As illustrated in [27], single modality models can be strong baselines
in embodied tasks. We train models without access to the instruction (No
Instruction) and with ablated visual input (No Vision/Depth/Image). All of
these ablations under-perform the Seq2Seq baseline. We find depth is a very
strong signal for learning – models lacking it (No Depth and No Vision) fail
to outperform chance (≤1% success rates). We believe depth enables agents to
2 68% forward, 15% turn-left, 15% turn-right, and 2% stop.
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Fig. 4. Example of our Cross Modal Attention model taken in an unseen environment.

quickly begin traversing environments effectively (e.g. without collisions) and
without this it is very difficult to bootstrap to instruction following. The No
Instruction model achieves 17% success, similarly to a hand-crafted agent
in VLN, suggesting shared trajectory regularities between VLN and VLN-CE.
While these regularities can be manually exploited in VLN via the nav-graph,
they are implicit in VLN-CE as evidenced by the significantly lower performance
of our random and hand crafted agents which collide with and get stuck on obsta-
cles. The No Image model also achieves 17% success, similarly failing to reason
about instructions. This hints at the importance of grounding visual referents
(through RGB) for navigation.

5.2 Model Performance in VLN-CE

Table 3 shows a comparison of our models (Seq2Seq and Cross-Modal)
under three training augmentations (Progress Monitor, DAgger, Data
Augmentation).

Cross-Modal Attention vs. Seq2Seq. We find the cross-modal attention
model outperforms Seq2Seq under all settings for new environments. For exam-
ple, in teacher-forcing training (row 1 vs. 6), the cross-modal attention model
improves from 0.18 to 0.22 SPL on val-unseen, an improvement of 0.04 SPL
(22% relative). When applying all three augmentations (row 5 vs. 10), the cross-
modal model improves from 0.22 to 0.30 SPL, an improvement of 0.08 SPL (36%
relative).

Training Augmentation. We find DAgger-based training impactful for both
the Seq2Seq (row 1 vs. 3) and Cross-Modal (row 6 vs. 8) models – improving
by 0.03-0.05 SPL in val-unseen. Contrary to findings in prior work, we observe
negative effects from progress monitor auxiliary loss or data augmentation for
both models (rows 2/4 and 7/9) – dropping 0.01-0.03 SPL from standard train-
ing (rows 1/6). Despite this, we find combining all three techniques to lead
to significant performance gains for the cross-modal attention model (row 10).
Specifically, we pretrain with imitation learning, data augmentation, and the
progress monitoring loss, then finetune using DAgger (with β=0.75n+1) on the
original data. This Cross-Modal Attention PM+DA∗+Aug model achieves an
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Table 4. Comparison on the VLN validation and test sets with existing models. Note
there is a significant gap between techniques that leverage the oracle nav-graph at train
and inference (top set) and our best method in continuous environments.

Model Val-Seen (VLN) Val-Unseen (VLN) Test (VLN)

TL ↓ NE ↓ OS ↑ SR ↑ SPL ↑ TL ↓ NE ↓ OS ↑ SR ↑ SPL ↑ TL ↓ NE ↓ OS ↑ SR ↑ SPL ↑
VLN Task VLN-Seq2Seq [4] 11.33 6.01 0.52 0.38 - 8.39 7.81 0.28 0.21 - 8.13 7.85 0.27 0.20 0.18

Self-Monitoring [17] - 3.18 0.77 0.68 0.58 - 5.41 0.68 0.47 0.34 18.04 5.67 0.59 0.48 0.35

RCM [29] 10.65 3.53 0.75 0.66 - 11.46 6.09 0.50 0.42 - 11.97 6.12 0.495 0.43 0.38

Back-Translation [26] 10.1 4.71 - 0.55 0.53 9.37 5.49 - 0.46 0.43 11.7 - - 0.51 0.47

Cross-Modal (PM+DA∗+Aug.) 6.92 7.77 0.30 0.25 0.23 7.42 8.17 0.28 0.22 0.20 9.47 8.55 0.32 0.24 0.21

SPL of 0.35 on val-seen and 0.30 on val-unseen – succeeding on 32% of episodes
in new environments.

We explore this trend further for the Cross-Modal model. We examine the
validation performance of PM+Aug (row 11) and find it to outperform Aug or
PM alone (by 0.02–0.03 SPL). Next, we examine progress monitor loss on val-
unseen for both PM and PM+Aug. We find that without data augmentation,
the progress monitor over-fits considerably more (validation loss of 0.67 vs. 0.47)
– indicating that the progress monitor can be effective in our continuous setting
but tends to over-fit on the non-augmented training data, negatively affecting
generalization. Finally, we examine the performance of DA∗+Aug (row 12) and
find that this outperforms DA (by 0.01–0.02 SPL), but is unable to match pre-
training with the progress monitor and augmented data (row 10).
Example. We examine our Cross-Modal Attention PM+DA∗+Aug model in an
unseen environment (Fig. 4). The example demonstrates the increased difficultly
of VLN-CE (37 actions vs. 4 hops in VLN). It also shows a failure of the agent
– the agent navigates towards the wrong windows and fails to first “pass the
kitchen” – stopping instead at the nearest couch. We observe failures when the
agent never sees the instruction referent(s) – with a limited egocentric field-of-
view, the agent must actively choose to observe the surrounding scene.

5.3 Examining the Impact of the Nav-Graph in VLN

To draw a direct comparison between the VLN and VLN-CE settings, we convert
trajectories taken by our Cross-Modal Attention (PM+DA∗+Aug.) model in
continuous environments to nav-graph trajectories (details in the supplement)
and then evaluate these paths on the VLN leaderboard.3 We emphasize that the
point of this comparison is not to outperform existing approaches for VLN, but
rather to highlight how important the nav-graph is to the performance of existing
VLN systems by contrasting them with our model. Unlike the approaches shown,
our model does not benefit from the nav-graph during training or inference.

As shown in Table 4, we find significant gaps between our model and prior
work in the VLN setting. Despite having similar cross-modal attention architec-
tures, RCM [29] achieves an SPL of 0.38 in test environments while our model

3 Note that the VLN test set is not publicly available except through this leaderboard.
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yields 0.21. Further, state-of-the-art on the test set is near 0.47 SPL, over 2x
what we report. However, it is unclear if these gains could be realized on a real
system given the strong assumptions set by the nav-graph. In contrast, our app-
roach does not rely on external information and recent work has shown promising
sim2real transferability for navigation agents trained in continuous simulations
[14].

Caveats. Direct comparisons between drastically different settings are challeng-
ing, we note some caveats. About 20% of VLN trajectories are non-navigable in
VLN-CE and thus our models cannot succeed on these. Further, continuous
VLN-CE paths can translate poorly to nav-graph trajectories when traversing
areas of the environment not well-covered by the sparse panoramas. Compar-
ing VLN-CE val results in Table 3 with the same in Table 4 shows these effects
account for a drop of ∼0.10 SPL. Even compensating for this possible under-
estimation, nav-graph-based approaches still outperform our continuous models
significantly.

6 Discussion

In this work, we explore the problem of following navigation instructions in
continuous environments with low-level actions – lifting many of the unrealistic
assumptions in prior nav-graph-based settings. Our work lays the groundwork
for future research into reducing the gap between simulation and reality for
VLN agents. Crucially, setting our VLN-CE task in continuous environments
(rather than a nav-graph) provides the community a testbed where integrative
experiments studying the interface of high- and low-level control are possible.
This includes studying the effect of imperfect actuation by leveraging recent
features in the Habitat simulator [19], reasoning about (potentially dynamic)
objects inserted in the 3D environment, or developing modular planner-controller
architectures that leverage existing robot path planning algorithms.
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Abstract. Temporal action proposal generation plays an important role
in video action understanding, which requires localizing high-quality
action content precisely. However, generating temporal proposals with
both precise boundaries and high-quality action content is extremely
challenging. To address this issue, we propose a novel Boundary Con-
tent Graph Neural Network (BC-GNN) to model the insightful relations
between the boundary and action content of temporal proposals by the
graph neural networks. In BC-GNN, the boundaries and content of tem-
poral proposals are taken as the nodes and edges of the graph neural
network, respectively, where they are spontaneously linked. Then a novel
graph computation operation is proposed to update features of edges and
nodes. After that, one updated edge and two nodes it connects are used
to predict boundary probabilities and content confidence score, which
will be combined to generate a final high-quality proposal. Experiments
are conducted on two mainstream datasets: ActivityNet-1.3 and THU-
MOS14. Without the bells and whistles, BC-GNN outperforms previous
state-of-the-art methods in both temporal action proposal and temporal
action detection tasks.

Keywords: Temporal action proposal generation · Graph Neural
Network · Temporal action detection

1 Introduction

Temporal action proposal generation becomes an active research topic in recent
years, as it is a fundamental step for untrimmed video understanding tasks,
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such as temporal action detection and video analysis. A useful action proposal
method could distinguish the activities we are interested in, so that only inter-
vals containing visual information indicating activity categories can be retrieved.
Although extensive studies have been carried out in the past, generating tem-
poral proposals with both precise boundaries and rich action content remains a
challenge[1,2,5,11–13,15,26].

Some existing methods [1,2,5,12,15,26] are proposed to generate candidate
proposals by sliding multi-scale temporal windows in videos with regular interval
or designing multiple temporal anchor instances for temporal feature maps. Since
the lengths of windows and anchors are fixed and set previously, these methods
cannot generate proposals with precise boundaries and lack flexibility to retrieve
action instances of varies temporal durations.

Recent works [11,13] aim to generate higher quality proposals. [13] adopts a
“local to global” fashion to retrieve proposals. In the first, temporal boundaries
are achieved by evaluating boundary confidence of every location of the video
feature sequence. Then, content feature between boundaries of each proposal
is used to generate content confidence score of proposal. [11] proposes an end-
to-end pipeline, in which confidence score of boundaries and content of densely
distributed proposals are generated simultaneously. Although these works can
generate proposals with higher quality, they ignore to make explicit use of inter-
action between boundaries and content.

To address this drawback, we propose Boundary Content Graph Neural
Network (BC-GNN), which uses a graph neural network to model interaction
between boundaries and content of proposals. As shown in Fig. 1, a graph neu-
ral network links boundaries and content into a whole. For the graph of each
video, the nodes denote temporal locations, while the edges between nodes are
defined based on content between these locations. This graph enables informa-
tion exchanging between nodes and edges to generate more dependable boundary
probabilities and content confidence scores. In our proposed framework, a graph
neural network is constructed to link boundaries and content of temporal pro-
posals firstly. Then a novel graph computation operation is proposed to update
features of edges and nodes. After that, one updated edge and two nodes it con-
nects are used to product boundary probabilities and content confidence score,
which are combined to generate a candidate proposal.

In summary, the main contributions of our work are three folds:

(1) We propose a new approach named Boundary Content Graph Neural Net-
work (BC-GNN) based on the graph neural network to enable the relation-
ship between boundary probability predictions and confidence evaluation
procedures.

(2) We introduce a novel graph reasoning operation in BC-GNN to update
attributes of the edges and nodes in the boundary content graph.

(3) Experiments in different datasets demonstrate that our method outperforms
other existing state-of-the-art methods in both temporal action proposal
generation task and temporal action detection task.
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Fig. 1. Schematic depiction of the proposed approach. The red box denotes an action
instance in a video. We regard temporal locations with regular interval as start loca-
tions and end locations for video segments. Start locations S and end locations E are
regarded as nodes. Only when the location of S is before E, we define the content
between them as an edge to connect them. Then, a novel graph reasoning operation
is applied to enable the relationship between nodes and edges. Finally, two nodes and
the edge connected them form a temporal proposal. (Color figure online)

2 Related Work

Action Recognition. Recognizing action classes in trimmed videos is a
both basic and significant task for the purpose of video understanding. Tra-
ditional approaches are mostly based on hand-crafted feature [4,10,18,25]. As
the progress of Convolutional Neural Networks (CNN) in recent years, CNN
based methods are widely adopted in action recognition and achieve superior
performance. One type of these methods [6,27] focus on combining multiple
data modalities. Furthermore, other methods attempt to exploit the spatial-
temporal feature by using 3D convolution operation [3,16,23]. The feature
sequence extracted by action recognition models can be used as the input feature
sequence of our network framework to analyze long and untrimmed video.

Graph Neural Network. Graph Neural Networks (GNNs) are proposed to
handle graph-structured data with deep learning. With the development of deep
learning, different kinds of GNNs appear one after another. [17] proposes the
Graph Convolutional Networks (GCNs), which defines convolutions on the non-
grid structures. [24] adopts attention mechanism in GNNs. [9] proposes an effec-
tive way to exploit features of edges in GNNs. Methods [19,29,31] based on
GNNs are also applied to many areas in computer vision, since the effectiveness
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of these GNNs. In this paper, we adopt a variation of convolution operation in
[9] to compute feature of nodes in our graph neural network.

Temporal Action Proposal Generation. The goal of temporal action pro-
posal generation task is to retrieve temporal segments that contain action
instance with high recall and precision. Previous methods [15,26] use temporal
sliding window to generate candidate proposals. However, durations of ground
truth action instances are various, the duration flexibility are neglected in these
methods. Some methods [1,2,5,12] adopt multi-scale anchors to generate propos-
als, and these methods are similar with the idea in anchor-based object detection.
[32] proposes Temporal Actionness Grouping (TAG) to output actionness prob-
ability for each temporal location over the video sequence using a binary action-
ness classifier. Then, continuous temporal regions with high actionness score are
combined to obtain proposals. This method is effective and simple, but the pro-
posal it generates lacks the confidence for ranking. Recently, [11,13] generate
proposals in a bottom-up and top-down fashion. As bottom-up, boundaries of
temporal proposals are predicted at first. As top-down, content between bound-
aries is evaluated as a confidence score. While the relations between boundaries
and content is not utilized explicitly, which is quite important we believe. In
this paper, we combine boundary probability predictions and confidence evalua-
tion procedures into a whole by graph neural network. It facilitates information
exchanging through these two branches, and brings strong quality improvement
in temporal action proposal generation and temporal action detection.

3 Our Approach

In this section, we will introduce the details of our approach illustrated in
Fig. 2. In Feature Encoding, visual contents of input video are encoded into
feature sequence by a spatial and temporal action recognition network, then this
sequence of features is fed into our proposed Boundary Content Graph Neural
Network (BC-GNN) framework. There are four modules in BC-GNN: Base Mod-
ule, Graph Construction Module (GCM), Graph Reasoning Module (GRM) and
Output Module. The Base Module is the backbone which is used to exploit local
semantic information of input feature sequence. GCM takes feature sequences
from Base Module as input and construct a graph neural network. In the GRM
module, a new graph computation operation is proposed to update attributes of
edges and nodes. Output Module takes the updated edges and nodes as input to
predict boundary and content confidence scores. At last, proposals are generated
by score fusion and Soft-NMS.

3.1 Problem Definition

One untrimmed video consists of a sequence of lv frames, and this sequence can
be denoted as X = {xn}lvn=1. Action instances in the video content compose a
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set named Ψg = {ψn = (tns , tne )}Ng

n=1, where tns and tne denote the start and end
temporal points of the nth action instance respectively, and Ng denotes the total
number of action instances in this video. Classes of these action instances are
not considered in temporal action proposal generation task.

3.2 Feature Encoding

Two-stream network [22] is adopted in our framework as visual encoder, since
this encoder shows good performance in video action recognition task. This two-
stream network consists of spatial and temporal branches. Spatial one is used to
encode RGB frames and temporal one is adopted for encoding flow frames. They
are designed to capture information from appearance and motion separately.

More specifically, an input video X with lv frames is downsampled to a
sequence of ls snippets S = {sn}lsn=1 in a regular temporal interval τ . Thus,
the length of snippet sequence ls is calculated as ls = lv/τ . Every snippet sn
in sequence S is composed of a RGB frame xn and several optical frames on.

Fig. 2. The framework of BC-GNN. Feature Encoding encodes the video into sequence
of feature. Base Module expands the receptive field. GCM constructs boundary content
graph network in which start nodes and end nodes are denoted as green circles and
yellow circles separately. GRM updates edges and nodes, to relate information between
edges and nodes. Finally, Output Module generates every candidate proposal with each
edge and its connected nodes.
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After feeding S into two-stream network, two sequences of action class scores are
predicted from top layers of both branches. Then, these two sequences of scores
are concatenated together at feature dimension to generate a feature sequence
F = {fn}lsn=1.

3.3 Boundary Content Graph Network

Base Module. On one hand, Base Module expands the receptive field, thus
it serves as the backbone of whole network. On the other hand, because of the
uncertainty of untrimmed videos’ length, Base Module applies temporal obser-
vation window with fixed length lw to normalize length of input sequences for
the whole framework. The length of observation windows depends on type of
datasets. We denote input feature sequence in one window as Fi ∈ RDi×lw ,
where Di is the input feature dimension size.

We use two stacked 1D convolution to design our Base Module since local
features are needed in sequential parts, written by Fb = conv1d2(conv1d1(fi)).
After feeding feature sequence Fi into convolutional layers, Fb ∈ RDb×lw is
generated.

Graph Construction Module (GCM). The goal of GCM is to construct a
boundary content graph network. Figure 3(a) shows the simplified structure of
undirected graph generated by GCM.

Three convolutional layers conv1ds, conv1de and conv1dc will be adopted
for Fb ∈ RDb×lw separately to generate three feature sequence Fs ∈ RDg×lw ,
Fe ∈ RDg×lw and Fc ∈ RDc×lw . It should be noted that feature dimension size
of Fs and Fe are equal to Dg.

We regard feature sequences Fs and Fe as two sets of feature elements,
denoted as Fs = {fs,i}lwi=1 and Fe = {fe,j}lwj=1, where fs,j and fe,j are the ith start
feature in Fs and the jth end feature in Fe. Then we conduct the Cartesian prod-
uct between sets Fs and Fe, denoted as Fs × Fe = {(fs,i, fs,j)|fs,i ∈ Fs ∧ fe,j ∈
Fe}. To clear out the illegals, we remove every tuple whose start location i is
greater than or equal to the end feature location j from the Fs × Fe and name
the start-end pair set to MSE = {(fs,i, fs,j)|(fs,i ∈ Fs) ∧ (fe,j ∈ Fe) ∧ (i < j)}.
The pairs of start and end feature form a start-end pair set MSE .

To achieve content representation, we select feature elements between the ith
temporal location and the jth location from Fc as a sequence {fc,n}jn=i. We adopt
linear interpolation to achieve constant N vectors at temporal dimension from
{fc,n}jn=i, and denote it as fc,(i,j) ∈ RDc×N . After generating fc,(i,j), we reshape
its dimension size from Dc × N to (Dc ·N)×1, and apply a fully connected layer
fc1 to make dimension size of fc,(i,j) same with fs,i and fe,j , denoted as fc,(i,j) ∈
RDg . Thus, we achieve a content set MC = {fc,(i,j)|i < j}. Content between the
ith temporal location and the jth temporal location composes content set MC .

Then, the start-end pair set MSE and content set MC make up a undirected
graph. Since the tuple (fs,i, fe,j) ∈ MSE corresponds to the video segment that
starts at the ith temporal location and ends at the jth temporal location. If
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elements in Fs and Fe are regarded as the nodes of a graph, tuples in MSE

identify the connection relationship between these nodes. Meanwhile the tuples
in MSE and elements in MC are mapped one by one. Therefore, elements in MC

can be regarded as the edges of this graph. Formally, graphs can be denoted as
G = (V,E, I), where V , E and I are their nodes, edges and incidence functions
respectively. In our graph, we define nodes as V = Fs ∪ Fe, edges as E = MC

and incidence function as I = Mc ↔ MSE , where MSE ⊂ V × V . We call fs,i
start node, and call fe,i end node.

In summary, we build a restricted undirected bipartite graph in which start
nodes are only connected to end nodes whose temporal locations are behind
them. It should be noted edge feature in our boundary content graph is not
scalars but multi-dimensional feature vectors.

(a) Undirected Graph in GCM (b) Directed Graph in GRM

Fig. 3. (a) Construction of undirected graph in GCM. Yellow circle denotes the start
node fs,i sampled from feature Fs, green circle denotes the end node fe,i sampled
from feature Fe, and blue line denotes the undirected edge which is generated from
feature vectors between temporal locations Pi and Pj in Fc. The translucent circles
denote the nodes without edge connection. (b) Structure of directed graph in GRM.
For convenience of description, this digraph only contains one end node and three start
nodes. Red curves denote the start to end edge which point from start node to end
node, and the grey curves denote the end to start edge which point from end node to
start node.

Graph Reasoning Module (GRM). In order to enable information exchang-
ing between nodes and edges, we propose a new graph computation operation.
One time of graph reasoning operation is applied in a block named Graph Rea-
soning Block (GRB). GRM consists of two stacked GRBs.

Our graph computation operation is divided into edge update and node
update step. Edge update step is intended to aggregate the attributes of the two
nodes connected by the edge. As mentioned above, we construct an undirected
bipartite graph, in which edges are not directed and start nodes only connect
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with end nodes. Since the feature required from start nodes to end nodes is
different from information from end nodes to start nodes. We converse the undi-
rected graph into a directed graph or a bi-directed edge. This conversion is shown
in Fig. 3(b), every undirected edge is split into two opposite directed edges. In
detail, we divide an undirected edge in this graph into two directed edges with
the same nodes connection and opposite direction. In other words, one undi-
rected edge turns into two directed edges, which are start to end directed edge
and end to start directed edge. We define one directed edge from the ith start
feature fs,i ∈ Fs to the jth end feature fe,j ∈ Fe as d(i,j), and define directed
edge from end feature fe,j to start feature fs,i as d(j,i), where subscript i is only
used for start node, j is only used for end node, and (i, j) identifies the direction
of the directed edge which points from the ith start node to the jth end node.

Features of directed edges d(i,j) and d(j,i) are same before the edge updating,
denoted as d(i,j) = d(j,i) = fc,(i,j), where fc,(i,j) is feature of the undirected edge
in undirected graph. The edge updating can be described as{

d̃(i,j) = σ(θs2e × (d(i,j) ∗ fs,i ∗ fe,j)) + d(i,j))
d̃(j,i) = σ(θe2s × (d(j,i) ∗ fs,i ∗ fe,j) + d(j,i))

, (1)

where “∗” and “×” denote element-wise product and matrix product separately.
θs2e ∈ RDg×Dg and θe2s ∈ RDg×Dg are different trainable parameter matrices,
and “σ” denotes activation function ReLU.

Node update step aims to aggregate attributes of the edges and their adjacent
nodes. We adopt the variation of graph convolution in [9]. For the convenience of
description, we denote start node and end node as general node nk ∈ RDg , where
k denotes the kth node in the graph. The total number of these nodes is lN = lw·2,
and these general nodes form a set as N = {nk}lNk=1. Meanwhile, we treat updated
start to end edge d̃(i,j) and updated end to start edge d̃(j,i) as general edge
e(h,t) ∈ RDg . These general edges form a set as E = {e(h,t)|nh ∈ N ∧ nt ∈ N}.
As usual, the node pointed by the directed edge is called the tail node, and the
node where the edge starts is called the head node. It is defined that e(h,t) is from
head node nh to tail node nt. Considering that the number of nodes connected
to each other is different, and to avoid increasing the scale of output features
through multiplication, we first normalize the features of edges before the graph
convolution operation. This normalization operation is described as

ẽp(h,t) =
ep(h,t)∑K

k=1 ep(h,k)
, (2)

where p is the pth feature in feature vectors e(h,t) and ẽ(h,t), and K is the num-
ber of tail nodes. Note that all elements in e(h,t) are nonnegative. Then the
convolution process of node features is described as

ñt = σ(θnode × (
H∑

h=1

(ẽ(h,t) ∗ nh)) + nt), (3)
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where trainable matrix θnode ∈ RDg×Dg is divided into θstart and θend depend-
ing on type of node nt, and H is the number of head nodes. This convolution
operation gathers the information of head nodes to the tail nodes through the
directed edges.

After performing the above two steps, there are a new node feature set Ñ =
{ñk}lNk=1 and an edge feature set Ẽ = {ẽ(h,t)|ñh ∈ Ñ ∧ ñt ∈ Ñ} generated in one
GRB. These two sets become input of the second GRB.

Output Module. As shown in Fig. 1, a candidate proposal is generated using
a pair of opposite directed edges and their connected nodes. Boundaries and
content confidence scores of the candidate proposals are generated based on
their nodes and edges, respectively. The details are described as following.

Before fed into Output Module, directed edge feature set Ẽ is divided into
a start to end edge feature set and an end to start edge feature set, which
are denoted as Ẽs2e = {ẽs2e,(i,j)|i < j ∧ ẽs2e ∈ Ẽ} and Ẽe2s = {ẽe2s,(j,i), |i <

j ∧ ẽe2s,(j,i) ∈ Ẽ}. Meanwhile, node feature set Ñ is divided into a start node
feature set Ñs = {ñs,i}lwi=1 and an end node feature set Ñe = {ñe,j}lwj=1. Based
on this divided feature sets, we build a candidate proposal feature set MSCE =
{(ñs,i, ñe,j , ẽs2e,(i,j), ẽe2s,(j,i))|i < j}, where ñs,i ∈ Ñs is the ith start node feature
, ñe,j ∈ Ñe is the jth end node feature, ẽs2e,(i,j) ∈ Ẽs2e is directed edge feature
from the ith start node to the jth end node and ẽe2s,(j,i) ∈ Ẽe2s is directed edge
feature from the jth end node to the ith start node. The elements in MSCE are
mapped to MSE one by one.

Output Module generates one proposal set Ψp = {ψn}lΨn=1, where ψn =
(ts, ps, te, pe, pc). ts and te are start and end temporal locations of ψn sepa-
rately. ps, pe and pc are the confidence scores of boundary locations ts, te and
confidence score of content between boundaries ts and te.

Each element in MSCE is computed to get a ψn, and the computation oper-
ation is described as

ψn =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ts = i,

te = j,

ps = σ(θSO × ñs,i),
pe = σ(θEO × ñe,j),
pc = σ(θCO × (ẽs2e,(i,j)‖ẽs2e,(j,i)))

, (4)

where “σ” denotes activation function sigmoid, “×” denotes matrix multipli-
cation, and “‖” denotes concatenating operation at feature dimension between
vectors. θSO, θEO and θCO denote trainable vectors.

3.4 Training of BC-GNN

Label Assignment. Given a video, we first extract feature sequence by two-
stream network [22]. Then, we use sliding observation windows with length lw
in feature sequence to get a series of feature sequences with length of lw.
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The ground-truth action instances in this window compose an instance set
Ψg = {ψn

g = (tng,s, t
n
g,e)}lgn=1, where lg is the size of Ψg. ψn

g starts at the temporal
position tng,s and ends at tng,e. For each ground truth action instance ψg

n, we
define its start interval rns = [tng,s − dng /10, tng,s + dng /10] and end interval rng,e =
[tng,s −dng /10, tng,s +dng /10] separately, where dng = tng,e − tng,s. After that, the start
region and end region are defined as following⎧⎪⎨

⎪⎩
rg,s =

lg∪
n=1

rng,s

rg,e =
lg∪

n−1
rng,e

. (5)

Extracted features in observation window are denoted as Fi. Taking Fi as
the input, BC-GNN outputs a set Ψp = {ψn = (ts, ps, te, pe, pc)}lpn=1, where
lp is the size of Ψp. Because a plenty of temporal proposals share boundaries,
boundary locations ts and te are duplicated in Ψp. We select a start set S =
{sn = (ts, ps, bs)|}lsn=1, an end set E = {en = (te, pe, be)}len=1 and a content set
C = {cn = (ts, te, pc, bc)}lcn=1 from ΨP . In these three sets, bs, be and bc are
assigned labels for sn, en and cn based on Ψg. If ts locates in the scope of rg,s,
label bs in start tuple sn is set to constant 1, otherwise it is set to 0. In the
same way we can get the label of en. If bc of content tuple cn is set to 1, two
conditions need to be satisfied. One is that ts and te of content tuple cn located
in the regions of rg,s and rg,e respectively. The other is that IoU between [ts, te]
and any ground-truth action instances ψg = (tg,s, tg,e) is larger than 0.5.

Training Objective. We train BC-GNN in the form of a multi-task loss func-
tion. It can be denoted as

Lobjective = Lbl(S) + Lbl(E) + Lbl(C). (6)

We adopt weighted binary logistic regression loss function Lbl for start, end and
content losses, where Lbi is denoted as

Lbl(X) =
N∑

n=1

(α+ · bi · log pn + α− · (1 − bi)) · log(1 − pn)), (7)

where α+ = N∑
(bi)

, α− = N∑
(1−bi)

and N is the size of set X.

3.5 Inference of BC-GNN

During inference, we conduct BC-GNN with same procedures described in train-
ing to generation proposals set Ψp = {ψn = (ts, te, ps, pe, pc)}lpn=l. To get final
results, BC-GNN undergoes score fusion and redundant proposals suppression
steps.
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Score Fusion. To generate a confidence score for each proposal ψn, we fuse
its boundary probabilities and content confidence score by multiplication. This
procedure can be described as

pf = ps ∗ pe ∗ pc. (8)

Thus, the proposals set can be denoted as Ψp = {ψn = (ts, te, pf )}lpn=l.

Redundant Proposals Suppression. After generating a confidence score for
each proposal, it is necessary to remove redundant proposals which highly overlap
with each other. In BC-GNN, we adopt Soft-NMS algorithm to remove redun-
dant proposals. Candidate proposal set ΨP turns to be Ψ ′

P = ψn = (ts, te, p′
f )l

′
P

n=1
,

where l′P is the number of final proposals.

4 Experiment

We present details of experimental settings and evaluation metrics in this section.
Then we compare the performance of our proposed method with previous state-
of-the-art methods on benchmark datasets.

4.1 Dataset and Setup

ActivityNet-1.3. This dataset is a large-scale dataset for temporal action pro-
posal generation and temporal action detection tasks. ActivityNet-1.3 contains
19,994 annotated videos with 200 action classes, and it is divided into three sets
by ratio of 2:1:1 for training, validation and testing separately.

THUMOS-14. This dataset includes 1,010 videos and 1,574 videos in the vali-
dation and testing sets with 20 classes. And it contains action recognition, tem-
poral action proposal generation and temporal action detection tasks. For the
action proposal generation and detection tasks, there are 200 and 212 videos
with temporal annotations in the validation and testing sets.

Evaluation Metrics. Average Recall (AR) with Average Number (AN) of
proposals per video calculated under different temporal intersection over union
(tIoU) is used to evaluate the quality of proposals. AR calculated at different AN
is donated as AR@AN. tIoU thresholds [0.5 : 0.05 : 0.95] is used for ActivityNet-
1.3 and tIoU thresholds [0.5 : 0.05 : 1.0] is used for THUMOS-14. Specially, the
area under the AR vs. AN curve named AUC is also used as an evaluation metric
in ActivityNet-1.3 dataset.

Mean Average Precision (mAP) is used to evaluate the results of action
detector. Average Precision (AP) of each class is calculated individually. On
ActivityNet-1.3 dataset, a set of tIoU thresholds [0.5 : 0.05 : 0.95] is used
for calculating average mAP and tIoU thresholds {0.5, 0.75, 0.95} for mAP. On
THUMOS-14, mAP with tIoU thresholds {0.3, 0.4, 0.5, 0.6, 0.7} is used.
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Implement Details. We adopt two-stream network [22] for feature encoding,
which pre-trained on training set of ActivityNet-1.3. The frame interval τ is set
to 5 in THUMOS-14 and 16 in ActivityNet-1.3. In Base Module, we set the
length of observation window lw to 128 on THUMOS-14. And in GCM, we get
rid of the segments more than 64 snippets, which can cover 98% of all action
instances. We linearly interpolate feature sequence of each video to 100 at the
temporal dimension in ActivityNet-1.3, which means lw = 100 in this dataset.
The learning rate of training BC-GNN is set to 0.0001, and weight decay is set to
0.005 on both datasets. We conduct 20 epoch of model training with the strategy
of early stopping.

4.2 Temporal Action Proposal Generation

Temporal action proposal generation method aims to find segments in videos
which highly overlap with ground-truth action instances. We compare BC-GNN
with state-of-the-art methods to verify the effectiveness of our method in this
section.

Comparison with State-of-the-Art Methods. Comparative experiments
are conducted on two widely used benchmarks ActivityNet-1.3 and THUMOS-
14.

The results of comparison on validation of ActivityNet-1.3 dataset between
our method and other state-of-the-art temporal action proposal generation
approaches are shown in Table 1. Our method BC-GNN outperforms other lead-
ing methods by a large margin, and our method performs particularly well in
aspect of AR@100.

Table 1. Comparison between our approach and other state-of-the-art methods on
validation set of ActivityNet-1.3 dataset in terms of AR@AN and AUC.

Method Prop-SSAD [12] CTAP [7] BSN [13] MGG [14] BMN [11] BC-GNN

AR@100(val) 73.01 73.17 74.16 74.54 75.01 76.73

AUC(val) 64.40 65.72 66.17 66.43 67.10 68.05

Comparison between our method and other state-of-the-art proposal gen-
eration methods on testing set of THUMOS-14 dataset in terms of AR@AN is
demonstrate in Table 2. Flow feature, 2Stream feature and C3D feature are adopt
as the input of these methods for ensuring a fair comparison. In this experiment,
BC-GNN outperforms other state-of-the-art methods in a large margin.

These experiments verify the effectiveness of our BC-GNN. BC-GNN achieves
the significant performance improvement since it makes explicit use of interaction
between boundaries and content.
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Table 2. Comparison between our approach with other state-of-the-art methods on
testing set of THUMOS-14 in terms of AR@AN.

Feature Method @50 @100 @200 @500 @1000

C3D SCNN-prop [21] 17.22 26.17 37.01 51.57 58.20

C3D SST [1] 19.90 28.36 37.90 51.58 60.27

C3D BSN [13] + NMS 27.19 35.38 43.61 53.77 59.50

C3D BSN + Soft-NMS 29.58 37.38 45.55 54.67 59.48

C3D MGG [14] 29.11 36.31 44.32 54.95 60.98

C3D BMN [11] + NMS 29.04 37.72 46.79 56.07 60.96

C3D BMN + Soft-NMS 32.73 40.68 47.86 56.42 60.44

C3D BC-GNN + NMS 33.56 41.20 48.23 56.54 59.76

C3D BC-GNN + Soft-NMS 33.31 40.93 48.15 56.62 60.41

2Stream TAG [32] 18.55 29.00 39.61 - -

Flow TURN [8] 21.86 31.89 43.02 57.63 64.17

2Stream CTAP [7] 32.49 42.61 51.97 - -

2Stream BSN [13] + NMS 35.41 43.55 52.23 61.35 65.10

2Stream BSN + Soft-NMS 37.46 46.06 53.21 60.64 64.52

2Stream MGG [14] 39.93 47.75 54.65 61.36 64.06

2Stream BMN [11] + NMS 37.15 46.75 54.84 62.19 65.22

2Stream BMN + Soft-NMS 39.36 47.72 54.70 62.07 65.49

2Stream BC-GNN + NMS 41.15 50.35 56.23 61.45 66.00

2Stream BC-GNN + Soft-NMS 40.50 49.60 56.33 62.80 66.57

Fig. 4. Ablation study for our BC-GNN is verified the effectiveness of its modules.

Ablation Study. In GRM module, we convert an undirected graph into a
directed graph and propose an edge feature updating operation. To evaluate the
effectiveness of these strategies, we study ablation experiments in two control
groups. We study the models in two control groups. In the first group, we study
three types of the graphs: model with Graph Convolutional Network (GCN)
manner in which edges are formed by cosine distance between nodes features, and
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model with directed or undirected edges. Since GCNs does not update edges, the
models in the first group do not apply edge updating for the fair. In the second
group, we study the effectiveness of directed edge in BC-GNN. The experimental
results are listed in Table 3 and the average recall against average number of
proposals at different tIoU thresholds are shown in Fig. 4. The comparison results
show that both of strategies are effective and essential.

Table 3. Ablation study for model with GCN, edge update step and directed edge.

Method Directed Edge updating AR@100 AUC(val)

GCN - - 75.57 66.88

BC-GNN × × 76.18 67.36

BC-GNN � × 76.15 67.53

BC-GNN × � 76.40 67.79

BC-GNN � � 76.73 68.05

4.3 Temporal Action Detection with Our Proposals

Temporal action detection is another aspect of evaluating the quality of pro-
posals. On ActivityNet-1.3, we adopt a two-stage framework that detects action
instances by classifying proposals. Proposals are generated by our proposal gen-
erator firstly and the top-100 temporal proposals per video are retained by rank-
ing. Then, for each video in validation set, its top-1 video-level classification
result will be obtained by using two-stream network [33] and all the proposals
of this video share the classification result as their action classes. On THUMOS-
14, we use the top-2 video-level classification scores generated by UntrimmedNet
[28] and proposal-level classification score generated by SCNN-cls to classify first
200 temporal proposals for one video. The results of multiplying the confidence
scores of proposals with classification are used for retrieving detection results.

Comparison results between our method and other approaches on validation
set of ActivityNet-1.3 in terms of mAP and average mAP are shown in Table 4.
Our method reaches state-of-the-art on this dataset which validates our app-
roach. We compare our method with other existing approaches on testing set of
THUMOS-14 in Table 5. Our approach is superior to the other existing two-stage
methods on the evaluation metrics mAP, which confirms the effectiveness of our
proposed proposal generator.
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Table 4. Action detection results on validation set of ActivityNet-1.3 dataset in terms
of mAP and average mAP.

Method 0.5 0.75 0.95 Average

CDC [20] 43.83 25.88 0.21 22.77

SSN [30] 39.12 23.48 5.49 23.98

BSN [13] + [33] 46.45 29.96 8.02 30.03

BMN [11] + [33] 50.07 34.78 8.29 33.85

BC-GNN + [33] 50.56 34.75 9.37 34.26

Table 5. Comparison between our approach and other temporal action detection meth-
ods on THUMOS-14.

Method Classifier 0.7 0.6 0.5 0.4 0.3

TURN [8] SCNN-cls 7.7 14.6 25.6 33.2 44.1

BSN [13] SCNN-cls 15.0 22.4 29.4 36.6 43.1

MGG [14] SCNN-cls 15.8 23.6 29.9 37.8 44.9

BMN [11] SCNN-cls 17.0 24.5 32.2 40.2 45.7

BC-GNN SCNN-cls 19.1 26.3 34.2 41.2 46.3

TURN [8] UNet 6.3 14.1 24.5 35.3 46.3

BSN [13] UNet 20.0 28.4 36.9 45.0 53.5

MGG [14] UNet 21.3 29.5 37.4 46.8 53.9

BMN [11] UNet 20.5 29.7 38.8 47.4 56.0

BC-GNN UNet 23.1 31.2 40.4 49.1 57.1

5 Conclusion

In this paper, a new method of temporal action proposal generation named
Boundary Content Graph Network (BC-GNN) is proposed. A boundary con-
tent graph is proposed to exploit the interaction between boundary probability
generation and confidence evaluation. A new graph reasoning operation is also
introduced to update the features of nodes and edges in the boundary content
graph. In the meantime, an output module is designed to generate proposals
using the strengthened features. The experimental results on popular datasets
show that our proposed BC-GNN method achieves promising performance in
both temporal proposal generation and temporal action detection tasks.
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Abstract. Object pose increases intraclass object variance which makes
object recognition from 2D images harder. To render a classifier robust to
pose variations, most deep neural networks try to eliminate the influence
of pose by using large datasets with many poses for each class. Here, we
propose a different approach: a class-agnostic object pose transformation
network (OPT-Net) can transform an image along 3D yaw and pitch axes
to synthesize additional poses continuously. Synthesized images lead to
better training of an object classifier. We design a novel eliminate-add
structure to explicitly disentangle pose from object identity: first ‘elim-
inate’ pose information of the input image and then ‘add’ target pose
information (regularized as continuous variables) to synthesize any target
pose. We trained OPT-Net on images of toy vehicles shot on a turntable
from the iLab-20M dataset. After training on unbalanced discrete poses
(5 classes with 6 poses per object instance, plus 5 classes with only 2
poses), we show that OPT-Net can synthesize balanced continuous new
poses along yaw and pitch axes with high quality. Training a ResNet-18
classifier with original plus synthesized poses improves mAP accuracy by
9% over training on original poses only. Further, the pre-trained OPT-
Net can generalize to new object classes, which we demonstrate on both
iLab-20M and RGB-D. We also show that the learned features can gen-
eralize to ImageNet. (The code is released at this github url).

Keywords: Pose transform · Data augmentation · Disentangled
representation learning · Object recognition · GANs

1 Introduction and Related Work

In object recognition from 2D images, object pose has a significant influence on
performance. An image depends on geometry (shape), photometry (illumination
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and material properties of objects) and dynamics (as objects move) of the scene.
Thus, every image is a mixture of instance-specific information and nuisance
factors [27], such as 3D viewpoint, illumination, occlusions, shadows, etc. Nui-
sance factors often depend on the task itself. Specifically, in object recognition
from 2D images, we care for instance-specific information like shape, while the
dynamics of pose is a nuisance that often degrades classification accuracy [27].

Fig. 1. Object pose transformation with OPT-Net. The first column shows input
images from the test dataset, and the remaining columns show target pose images
transformed by OPT-Net. Integer poses (1, 2, 3, 4, 5, 6 in red) are defined in the train-
ing dataset, while decimal poses (1.5, 2.5, 3.5, 4.5, 5.5 in green) are new poses, which
shows OPT-Net can achieve continuous pose transformation.

Deep convolution neural networks (CNNs) have achieved great success in
object recognition [15,17,23,35,38] and many other tasks, such as object detec-
tion [10,11,31,32], image segmentation [14,28,33], etc. Most research tries to
discount pose, by eliminating pose information or improving pose robustness of
a classifier. Typical CNN architectures, such as LeNet [25] AlexNet [23] and VGG
[35] use convolution layers and pooling layers to make the high-level feature rep-
resentations invariant to object pose over some limited range [43]. In contrast,
recent results have shown that explicitly modeling pose information can help
an object recognition task [2,3,40,43]. Some approaches use multi-task learning
where pose information can be an auxiliary task or regularization to improve
the main object recognition task [18,37,41,42]. These neural networks have the
potential to disentangle content from their instantiation attributes [13,30,44].
Training on multiple views of the object can improve recognition accuracy [36]. A
common method is collecting all poses of the object and creating a pose-balanced
dataset, with the hope that pose variations will average out. However, collect-
ing pose-balanced datasets is hard and expensive. One notable such dataset is
iLab-20M which comprises 22 million images of 704 toy vehicles captured by 11
cameras while rotating on a turntable [5]. Here, we use a subset of this data
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to learn about pose transformations, then transferring this knowledge to new
datasets (RGB-D [24], ImageNet [9]).

2D images can be seen as samples of 3D poses along yaw and pitch axes
(Fig. 2(a)). We want our OPT-Net to imitate the 3D pose transformation along
these two axes. Thus given any single pose image, we can ‘rotate’ the object
along yaw and pitch axes to any target pose. Instead of directly training a
transformation model to continuously ‘rotate’ images, we start with a discrete
transform, which is easier to constrain. Then we can make the pose representa-
tion continuous and regularize the continuous transform process. Here, we use
sampled discrete poses along yaw and pitch as our predefined poses (Fig. 2(b), 6
poses along the yaw axis and 3 poses along pitch axis). We treat different object
poses as different domains so that discrete pose transformation can be seen as
an image-to-image translation task, where a generative model can be used to
synthesize any target pose given any input pose. Recently, Generative Adver-
sarial Networks (GAN) [12] have shown a significant advantage in transforming
images from one modality into another modality [19,22,29,34,45]. GANs show
great performance in various tasks, such as style transfer [6,21], domain adap-
tation [16,39], etc. However, there is a high cost in our task, because we should
train specific GANs for all pairs of poses [4]. StarGAN [8] and CollaGAN [26]
proposed a method for multi-domain mapping with one generator and showed
great results in appearance changes such as hair color, age, and emotion trans-
form. However, pose transform creates a large, nonlinear spatial change between
input and output images. The traditional structure of the generators (Unet [33],
Vnet [28]) has few shared structures which satisfy all randomly paired pose
transformation. It makes StarGAN training hard to converge (see Exp 4.1).

Learning a better representation could also reduce variance due to pose. [46]
tried to learn better representation features to disentangle identity rotation and
view features. InfoGAN [7] learns disentangled representations in an unsuper-
vised manner. [20] seeks a view-invariant representation shared by views.

To combine the idea of better representation and multi-domain image trans-
formation, we propose a class-agnostic object pose transformation neural net-
work (OPT-Net), which first transforms the input image into a canonical space
with pose-invariant representation and then transform it to the target domain.
We design a novel eliminate-add structure of the OPT-Net and explicitly disen-
tangle pose from object identity: OPT-Net first ‘eliminates’ the pose informa-
tion of the input image and then ‘adds’ target pose information to synthesize
any target pose. Convolutional regularization is first used to implicitly regularize
the representation to keep only the key identification information that may be
useful to any target pose. Then, our proposed pose-eliminate module can explic-
itly eliminate the pose information contained in the canonical representation by
adversarial learning. We also add a discriminator leveraging pose classification
and image quality classification to supervise the optimization of transforming.

Overall our contributions are multifold: (1) developed OPT-Net, a novel class-
agnostic object pose transformation network with an eliminate-add structure
generator that learns the class-agnostic transformation among object poses by
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turning the input into a pose-invariant canonical representation. (2) design a
continuous representation of 3D object pose and achieve continuous pose trans-
forming in 3D, which can be learned from limited discrete sampled poses and
adversarial regularization. (3) demonstrated the generative OPT-Net signifi-
cantly boosts the performance of discriminative object recognition models. (4)
showed OPT-Net learns class-agnostic pose transformations, generalizes to out-
of-class categories and transfers well to other datasets like RGB-D and ImageNet.

Fig. 2. (a) Discrete predefined pose images sample. (b) Predefined sample poses and
pose change along pitch and yaw axes. (c) Given any pose (1st and 8th columns), OPT-
Net can transform it along pitch and yaw axes to target poses (remaining columns)

2 Object Pose Transforming Network

As shown in Fig. 3, the proposed OPT-Net has an eliminate-add structure gen-
erator, a discriminator and a pose-eliminate module.

2.1 Eliminate-Add Structure of the Generator

The generator (G) of OPT-Net transforms an input object pose image x into a
target object pose y conditioned on the target pose label c, G(x, c) →y. Differ-
ent from the hair color, gender and age transform, which have more appearance
transfer with smaller shape changes, object pose transformation creates large
shape differences. Our eliminate-add structure generator (Fig. 3(a)) first turns
the input pose image into a pose-invariant canonical representation by ‘elimi-
nating’ pose information, and then ‘adds’ target pose information to turn the
representation into the target pose. As shown in Fig. 3(b), given an input image,
we randomly select the target pose domain. We do not input target pose along
with the input image. Instead, in the ‘eliminate’ part, the first several convo-
lution layers with stride s > 2 are used to implicitly regularize the preserved
representation features. This implicit regularization makes the representation
features contain only key information for the transformation (appearance, color,
shape), and eliminates useless information which may hinder transformation
(pose). At the same time (Fig. 3(b)), the ‘pose-eliminate module’ (Pelim) explic-
itly forces the representation to contain as little pose information as possible,
by predicting equal probability for every pose. After both implicit and explicit
elimination of pose information, the input image is turned to a pose-invariant
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canonical representation space. We then ‘add’ the target pose information by
concatenating it with the representation feature map. The remaining layers in
the generative model transform the concatenated features into the target pose
image. This eliminate-add structure is shared and can be used for any pose
transformation. This shared structure makes the generator easy to converge. To
control the translation direction, as shown in Fig. 3(b), we use an auxiliary classi-
fier as discriminator D to guide the image quality and pose transform. Given one
image, the discriminator has two outputs, the probability that the input image
is real, which represents the quality of the synthesized image, and the output
pose, which should match the desired target pose, D : x → {Dsrc(x),Dcls(x)}.

Fig. 3. Flow of OPT-Net, consisting of three modules: eliminate-add structure gener-
ator G, discriminator D, and pose-eliminate module. (a) Pose transformation sketch
(b) Origin to target pose transformation. In the pose ‘eliminate’ part, G takes in the
original pose image and first uses both implicit regularization and the explicit pose-
eliminate module to eliminate pose information of the input, yielding a pose-invariant
canonical representation. Then, in the pose ‘add’ part, the representation features are
concatenated with a target pose mask and the target pose image is synthesized. D
learns to distinguish between real and fake images and to classify real images to their
correct pose. (c) Training OPT-Net: G first maps the original pose image to target
pose and synthesizes a fake image, then G tries to reconstruct the original pose image
from the fake image given the original pose information.

2.2 Pose-Eliminate Module

The pose-eliminate module (Pelim) takes the preserved representation feature
xr as input and outputs pose classification {Pelim(xr)}. Pelim can be treated as
a discriminator which forms an adversarial learning framework with the ‘elimi-
nate’ part of the generator (Gelim). The canonical representation features of real
images with pose labels are used to train Pelim. We use Cross-Entropy loss to
make Pelim predict the correct pose from the pose-invariant feature after Gelim.
Different from traditional adversarial training, when using Pelim to train Gelim,
we want the generator to eliminate all pose information in the pose-invariant
feature, which makes Pelim produce equal output probability for every pose. We
use the uniform probability (1/N) as the ground truth label to compute the
pose-eliminate loss, which is used to optimize the Gelim.
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2.3 Continuous Pose Transforming Training

We design a 2-dimension linear space to represent pitch and yaw values, in
which we could interpolate and achieve continuous pose representation (Fig. 1).
The yaw and pitch values can be duplicated as a matrix with same h and w
dimension as the canonical representation features and N (totally 6, 3 for yaw
and 3 for pitch) channel dimension, which is easy to be concatenated and can
be adjusted depending on the canonical features channel. We start the training
on discrete sampled poses (which can be represented as integer in linear space).
After the network has converged, we randomly sample decimal poses as target
poses and use a style consistency loss to regularize the synthesized images, which
keeps pose representation consistent along yaw and pitch axes.

2.4 Loss Function

Our goal is to train a generator G that learns object pose transformations along
yaw and pitch axes. The overall loss is formed by adversarial loss, domain clas-
sification loss, reconstruction loss, pose-eliminate loss and style consistency loss.

Adversarial Loss. The adversarial loss is used to make the synthesized image
indistinguishable from real images.

Ladv = Ex[logDsrc(x)] + Ex,c[log(1 − Dsrc(G(x, c)))] (1)

Dsrc(x) represent the probability that input x belongs to the real images given
by D. The generator G tries to minimize the loss, while the discriminator D
tries to maximize it.

Pose Classification Loss. The pose classification loss is used to guide the
pose transformation which makes the synthesized image y belong to the target
pose c. This pose classification loss is used to optimize both D and G. The pose
classification loss of D is defined as

Lr
cls = Ex,c′ [−logDcls(c′|x)] (2)

The loss for D is similar to a traditional Cross-Entropy loss for classification,
where Dcls(c′|x) means the predicted probability of real image x belongs to the
ground truth pose label c′. The pose classification loss of G is defined as

Lf
cls = Ex,c[−logDcls(c|G(x, c))] (3)

G tries to minimize this loss to make the synthesized fake image G(x, c) be
classified as the target pose c.
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Reconstruction Loss. To make the synthesized image preserve the content
information and change only the object pose, as shown in Fig. 3(c), we use the
cycle consistency loss [45] to optimize G.

Lrec = Ex,c,c′ [‖x − G(G(x, c), c′)‖1] (4)

where G can reconstruct the original image x by transforming the synthesized
fake target pose image G(x, c) back to the original pose c′. L1 norm is used as
reconstruction loss.

Pose-eliminate Loss. In the eliminate-add structure of G, to eliminate the
pose information in preserved canonical representation features, we designed
pose-eliminate loss to optimize the pose eliminate module (Pelim) and the elim-
inate part of G,(Gelim). The pose eliminate loss is

LP
pose = Ex,c′ [−logPelim(c′|Gelim(x))] (5)

where Pelim(c′|Gelim(x)) means the predicted probability of the canonical rep-
resentation features of a real image belongs to the ground truth pose label c′.
The pose eliminate loss for Gelim is defined as

LG
pose = −Ex

N∑

ci=1

1/N · log(Pelim(ci|Gelim(x))) (6)

where N is the number of pose classes we defined, ci represent the pose label, ci ∈
[0, N), Pelim(ci|Gelim(x)) represent the probability of the synthesized canonical
representation belongs to the ci pose. In ideal situations, the Pelim can hardly
predict the correct pose from canonical representation features and output equal
probability for every pose, which means the pose information is eliminated in
preserved canonical features. We use equal prediction of every pose to optimize
Gelim instead of minimizing the pose classification accuracy of to avoid a ‘cheated
optimize’ that Pelim tries to predict all input to a fixed pose class.

Style Consistency Loss. After the converge of the previous loss, we randomly
sample decimal target pose instead of all integers to make continuous pose trans-
forming, the style consistency loss can regularize the synthesized images. The
equation of style consistency loss is same as adversarial loss above, but the target
pose is randomly sampled decimal value along yaw and pitch axes.

Full Loss Function. Finally, we optimize:

LG = Ladv + λclsL
f
cls + λrecLrec + λposeL

G
pose (7)

LD = −Ladv + λclsL
r
cls (8)

LPelim
= LP

pose (9)

where λcls, λrec and λpose are hyper-parameters that control the relative impor-
tance of classification, reconstruction, and pose-eliminate losses.
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3 Experimental Methods

3.1 Datasets

iLab-20M Dataset [5]. The iLab-20M dataset is a controlled, parametric
dataset collected by shooting images of toy vehicles placed on a turntable using
11 cameras at different viewing points. There are in total 15 object categories
with each object having 25 160 instances. Each object instance was shot on
more than 14 backgrounds (printed satellite images), in a relevant context (e.g.,
cars on roads, trains on rail tracks, boats on water). In total, 1,320 images were
captured for each instance and background combinations: 11 azimuth angles
(from the 11 cameras), 8 turntable rotation angles, 5 lighting conditions, and 3
focus values (−3, 0, and +3 from the default focus value of each camera). The
complete dataset consists of 704 object instances, with 1,320 images per object-
instance/background combination, almost 22M images (18 times of ImageNet).

RGB-D Dataset. The RGB-D Object Dataset consists of 300 common house-
hold objects organized into 51 categories. This dataset was recorded using a
Kinect style 3D camera. Each object was placed on a turntable and video
sequences were captured for one whole rotation. For each object, there are 3
video sequences, each recorded with the camera mounted at a different height
so that the object is shot from different viewpoints.

3.2 Network Implementation

OPT-Net consists of two parts, pose ‘eliminate’, (including Gelim and Pelim)
and pose ‘add’, (including Gadd and D). As shown in Fig. 3(b), Gelim first has
3 convolution layers, 2 of them with stride size of 2 to down-sample the input
image. Then, 3 Residual blocks [15] form the backbone of Gelim. The output
Gelim(x) is the pose-invariant canonical representation feature. The canonical
feature is copied to different streams, one concatenates with the target pose
mask, forming the input of Gadd to synthesize the target pose image. The other
one is treated as the input of Pelim to predict the pose class. Gadd uses first layer
merge the target pose information, then has 5 Residual blocks as a backbone and
ends with 3 convolution layers (2 of them perform up-sampling) to transform
the canonical representation features to a target pose image, given a target pose
information mask. For discriminator D, we adopt the PatchGAN [19] network.

Pelim has a traditional classification network structure, which has the first
3 convolution layers with stride size of 2 to down-sample the input features,
followed with 1 Residual block and another 3 down-sampling convolution layers.
In the end, the output layer turns the feature to a N-dimensional (N poses)
vector and we use Softmax to obtain the prediction of pose class.

We use Wasserstein GAN objective with a gradient penalty [1] to stabilize
the training process. We adjust the λpose during training the generator, at the
beginning epochs of training, improving the value of λpose can accelerate the
convergence of generator, which makes the synthesized fake pose image have
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meaningful corresponding spacial structure. We gradually reduce the value of
λpose. At the last ending part of the training, λpose can be very small to make
the optimization concentrate on improving the image quality. (More network
architecture and training details are in supplementary materials)

4 Experiments and Results

We have five main experiments: in Subsect. 4.1 on object pose transforma-
tion task, we compare OPT-Net with baseline StarGAN [8] by quantitatively
and qualitatively comparing the synthesized object pose image quality. In Sub-
sect. 4.2, we use the OPT-Net as a generative model to help the training of a
discriminative model for object recognition, by synthesizing missing poses and
balancing a pose bias in the training dataset. In Subsect. 4.3, we further show
the class-agnostic transformation property of OPT-Net by generalizing the pre-
trained OPT-Net to new datasets. In Subsect. 4.4, we study the influence of
object pose information for objects which are mainly distinguishable by shape,
as opposed to other features like color. Finally, in Subsect. 4.5, we further demon-
strate how the learned pose features in OPT-Net and object recognition model
with the iLab-20M dataset can generalize to other datasets like ImageNet.

4.1 Object Pose Transformation Experiments

Because the baseline models can only do discrete pose transform, we fix the
pitch value and use 6 different yaw viewpoints among the 88 different views
of iLab-20M as our predefined pose to implement our OPT-Net. As is shown
in Fig. 2, the selected 6 viewpoints have big spatial variance which can better
represent the general object pose transformation task. In training set, each pose
has nearly 26k images with 10 vehicle classes (Table 2). Each class contains 20∼80
different instances. The test set has the same 10 vehicle categories, but different
instances than the training set. Both training and test datasets are 256× 256
RGB images. The training dataset is used to train our OPT-Net and the baseline
models, StarGAN. Our OPT-Net has one generator, one discriminator and one
pose-eliminate module; StarGAN has one generator and one discriminator.

Fig. 4. Object pose transform comparison for StarGAN and OPT-Net.
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Qualitative Evaluation. The experiment results are shown in Fig. 4. Com-
pared with StarGAN, which struggles with large pose variations, the synthesized
target pose images by OPT-Net are high quality with enough details. One possi-
ble reason is that eliminate-add structure decrease the conflicts between different
directions on pose transformation. Figure 1 shows more results of OPT-Net.

Quantitative Evaluation. Real target pose images of input are used as ground
truth. To reduce background influence, we segment the foreground vehicle with
the Graph-Based Image Segmentation method and only compute mean squared
error (MSE) and peak signal to noise ratio (PSNR) of foreground between the
synthesized image and ground truth (Table 1). The result is the mean MSE and
PSNR computed by 200 different instances, the MSE and PSNR for each instance
is the average of 6 synthesized fake pose images. Table 1 shows that the quality
of synthesized images by OPT-Net is better than StarGAN.

Table 1. Average Mean squared error (MSE; lower is better) and peak-signal-to-noise
ratio (PSNR; higher is better) for different methods

StarGAN OPT-Net

Mean MSE 502.51 374.76

Mean PSNR 21.95 23.04

4.2 Object Recognition Experiment

We design an object recognition experiment to explore the performance of OPT-
Net as a generative model to help the training of a discriminative model. Two
different training datasets are tailored from iLab-20M, pose-unbalanced (P-UB)
and pose-balanced (P-B). In P-UB (Table 2), 5 classes of vehicles (boat, car,
semi, tank, and van) have all 6 pose images (same poses as 4.1), while the
other 5 classes (bus, military car, monster, pickup, and train) have only two
poses (pose2 and pose5), which has significant pose bias. In P-B, each category
among 10 classes of vehicles has all 6 pose images (no pose bias). The test
dataset is a pose-balanced dataset which contains different instances of the 10
classes of vehicles that were not in either training dataset (P-UB and P-B). The
classification neural network we used is Resnet-18 [15] (no pre-training).

We first train the classification model on P-UB and P-B, calculating the test
accuracy of each class of vehicles on the test dataset. To evaluate the performance
of OPT-Net, we first train it on P-UB to learn the object transformation abil-
ity. After training, for each category in P-UB which have only pose2 and pose5
(bus, military car, monster, pickup, and train), we use the trained OPT-Net to
synthesize the missing 4 poses (pose1, pose3, pose4, pose6). We combine the
synthesized images with P-UB and form a synthesized-pose-balanced (S-P-B)
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Table 2. Poses used in the pose-unbalanced (P-UB) training dataset to train OPT-Net

Pose1 Pose2 Pose3 Pose4 Pose5 Pose6

Boat � � � � � �
Bus � �
Car � � � � � �
Mil � �
Monster � �
Pickup � �
Semi � � � � � �
Tank � � � � � �
Train � �
Van � � � � � �

training dataset. To show continuous transforms, we also interpolate pose values
and synthesize 5 new poses beyond the predefined ones, and form a synthesized-
additional-pose-balanced (SA-P-B) training dataset. S-P-B and SA-P-B were
used to train the same resnet-18 classification model from scratch and to cal-
culate test accuracy of each class of vehicles in the test dataset. We also use
common data augmentation methods (random crop, horizontal flip, scale resize,
etc.) to augment the P-UB dataset to the same number of images as P-B, called
A-P-UB (Table 3).

The test accuracy of each class is shown in Table 4. From P-UB to S-P-B, the
overall accuracy improved from 52.26% to 59.15%, which shows the synthesized
missing pose images by OPT-Net can improve the performance of object recogni-
tion. It is also shown that OPT-Net, as a generative model, can help the discrim-
inative model. Specifically, the vacant pose categories show significant improve-
ment in accuracy: military improved by 11.68%, monster improved by 14.97%,
pickup and train improved by 8.74% and 16.12% respectively. The comparison
of S-P-B and A-P-UB shows that synthesized images by OPT-Net are better
than traditional augmented images in helping object recognition. Because of the
continuous pose transformation ability, our OPT-Net can synthesize additional
poses different from the 6 poses in P-B. With these additional poses, SA-P-B
(61.23%) performs even better than the P-B (59.20%), achieve 9% improvement
compared with P-UB.

Table 3. Different training and testing datasets for object recognition

Dataset P-UB P-B S-P-B SA-P-B A-P-UB Test

Source Real Real Synthesized Synthesized Augmented Real

Size 25166 37423 37423 66041 37423 4137
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Table 4. Testing object recognition accuracy (%) of each class after trained on different
training dataset. Comparing S-P-B and SA-P-B with P-UB shows how much classifi-
cation improves thanks to adding synthesized images for missing poses in the training
set, reaching or surpassing the level of when all real poses are available (P-B). Our
synthesized poses yield better learning than traditional data augmentation (A-P-UB)

Category P-UB P-B S-P-B SA-P-B A-P-UB

Boat 54.0 61.6 65.4 57.7 51.3

Bus 35.2 42.5 38.1 47.8 37.2

Car 85.1 76.3 79.8 64.0 78.9

Mil 73.8 84.2 85.4 86.4 70.7

Monster 45.3 67.4 60.2 66.0 52.9

Pickup 17.8 26.7 26.6 36.5 18.7

Semi 83.9 79.8 79.0 83.5 86.1

Tank 78.1 69.4 78.6 77.0 72.5

Train 41.1 65.1 57.2 58.1 43.1

Van 23.6 18.6 24.2 20.7 21.0

Overall 52.3 59.2 59.2 61.2 52.3

4.3 Class-Agnostic Object Transformation Experiment

Our proposed OPT-Net can simultaneously make pose transformation on differ-
ent classes of vehicles, which demonstrate that the learned object pose trans-
formation has not fixed with object classes, it is a class-agnostic object pose
transformation. To further explore the class-agnostic property of OPT-Net, we
design experiments that generalize OPT-Net’s ability for object pose transfor-
mation from one dataset to other datasets.

15 categories of objects from RGB-D are used. They are both common house-
hold objects with big spatial variance between different object poses. Similar
poses of objects in RGB-D are selected and defined as the same pose as iLab-
20M. For each pose, RGB-D contains only about 100 images which cannot train
our OPT-Net from scratch, thus we use RGB-D to finetune OPT-Net pre-trained
on iLab-20M. We can see (Fig. 5) that our pre-trained OPT-Net can generalize
well to other datasets, which demonstrates that OPT-Net is a class-agnostic
object pose transformation framework.

To further explore the performance of OPT-Net as a generative model to
help a discriminative model of object recognition, we split RGB-D into a pose-
unbalanced (P-UB) training dataset, where each category randomly takes 3 poses
among all 6 poses; pose-balanced (P-B), and test dataset similar to 4.2.

We first use P-UB to finetune the pretrained OPT-Net, and then use the
trained OPT-Net to synthesize missing poses of household objects in RGB-
D. The synthesized images and the original pose-unbalanced images form the
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Fig. 5. Generalization results of OPT-Net on RGB-D dataset pretrained on iLab-20M.

synthesized pose balanced (S-P-B) training dataset. Similarly, to eliminate the
influence of the number of training images, we created A-P-UB using common
data augmentation methods. We trained Alexnet [23] on the 4 training datasets
separately, and showed the test accuracy for each category in Table 5.

Table 5. Overall object recognition accuracy for different training dataset in RGB-D

Dataset P-UB P-B S-P-B A-P-UB

Accuracy(%) 99.1 99.9 99.7 99.2

The (small) accuracy improvement in S-P-B compared with P-UB demon-
strates that our pretrained OPT-Net can be generalized to different datasets
after finetune, which can help the discriminative model in object recognition.
While the overall improvement is small, below we show that this is not the case
uniformly across all object categories.

4.4 Object Pose Significance on Different Object Recognition Tasks

Because the accuracy improvement in RGB-D is smaller than in iLab-20M, we
tested whether this was the case across all object categories, or whether those
which look more alike would benefit more from synthesized images from OPT-
Net. Indeed, maybe classifying a black keyboard vs. a blue stapler can easily
be achieved by size or color even without pose-dependent shape analysis. To
verify our hypothesis, we use the confusion matrix of classification to select cat-
egories which are more confused by classifier: marker, comb, toothbrush, stapler,
lightbulb, and sponge. We then assign different fixed poses to each category to
improve overall pose variance and form P-UB-1 (randomly fix 1 pose for each
category), P-UB-2 (randomly fix 2 poses for each category), and P-UB-3 (ran-
domly fix 3 poses for each category) pose-unbalanced datasets (suppl. material).

Similarly, we create 3 other training datasets using the same method as in 4.2
and 4.3: (S-P-B: use pretrained OPT-Net to synthesize the missing poses; P-B,
and A-P-UB for each unbalanced datasets), and report the object recognition
performance on the test dataset in Table 6.
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Table 6. Object recognition overall accuracy for different datasets

Dataset P-UB-1 A-P-UB-1 S-P-B-1 P-UB-2 A-P-UB-2 S-P-B-2

Accuracy(%) 75.1 77.6 83.2 90.4 91.2 94.2

Dataset P-UB-3 A-P-UB-3 S-P-B-3 P-B

Accuracy(%) 99.3 99.2 99.4 99.8

The results in Table 6 demonstrate that object pose information has dif-
ferent degrees of impact on the object recognition task. Compared with the
results in 4.3, where the improvement between P-UB and S-P-B is less than
1%, here, when the class variance is small, OPT-Net can improve more accuracy
after synthesizing the missing poses in the unbalanced dataset. The accuracy
improvement in experiment group 1 (P-UB-1 and S-P-B-1) is 8.1%. This result
verified our hypothesis that pose balance is more important in small interclass
variance object cognition tasks. Meanwhile, comparing the different accuracy
improvements in different experimental groups, group 2 (P-UB-2 and S-P-B-2)
is 3.8%, while group 3 (P-UB-3 and S-P-B-3) is 0.1%. This demonstrates that
when class-variance is fixed, the more pose bias we have, the more accuracy
improvement we will get with the help of our OPT-Net pose transformation.

4.5 Generalization to Imagenet

We directly use the pretrained OPT-Net on iLab-20M to synthesize images of
different poses on ImageNet (Shown in suppl. material). Results are not as good
and might be improved using domain adaptation in future work. However, the
discriminator of OPT-Net makes decent prediction of image poses: Fig. 6 shows
the top 8 ImageNet images for each of our 6 poses. To test object recognition
in ImageNet, we replace real images by OPT-Net synthesized images in S-P-B
(4.2) and form a S-P-B (OPT-Net) dataset (all synthesized images). Similarly,
we use StarGAN synthesized images form S-P-B (StarGAN). We use a resnet18
10-class vehicles classifier pretrained with this two synthesized datasets and pre-
dict 4 classes of vehicles in ImageNet which have similar meanings as iLab-20M,
with good results on some classes like car (Shown in suppl. material). To further
explore generalization, we pretrian an AlexNet on S-P-B which synthesized pose
images by StarGAN and OPT-Net respectively and then finetune it on Ima-
geNet. Results in suppl. material shows significantly better accuracy compared
to training from scratch when using only a small number of images per class,
demonstrating generalization from iLab-20M to ImageNet.
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Fig. 6. Top 8 ImageNet images for each pose predicted by discriminator in OPT-Net
without finetune.

5 Conclusions

We proposed OPT-Net, a class-agnostic object pose transformation network
(OPT-Net) to synthesize any target poses continuously given a single pose image.
The proposed eliminate-add structure generator can first eliminate pose informa-
tion and turn the input to a pose-invariant canonical representation, then adding
the target pose information to synthesize the target pose image. OPT-Net also
gives a more common framework to solve big variance continuous transforma-
tion problems. OPT-Net generated images have higher visual quality compared
to existing methods. We also demonstrate that the OPT-Net, as a generative
model can help the discriminative model in the object recognition task, which
achieve a 9% accuracy improvement. We design experiments to demonstrate that
pose balance is more important in small between-class variance object cognition
tasks. Finally, we demonstrate the learned pose features in OPT-Net with the
iLab-20M dataset can better generalize to other datasets like ImageNet.
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Abstract. Video Moment Retrieval (VMR) is a task to localize the tem-
poral moment in untrimmed video specified by natural language query.
For VMR, several methods that require full supervision for training
have been proposed. Unfortunately, acquiring a large number of train-
ing videos with labeled temporal boundaries for each query is a labor-
intensive process. This paper explores a method for performing VMR
in a weakly-supervised manner (wVMR): training is performed without
temporal moment labels but only with the text query that describes a
segment of the video. Existing methods on wVMR generate multi-scale
proposals and apply query-guided attention mechanism to highlight the
most relevant proposal. To leverage the weak supervision, contrastive
learning is used which predicts higher scores for the correct video-query
pairs than for the incorrect pairs. It has been observed that a large num-
ber of candidate proposals, coarse query representation, and one-way
attention mechanism lead to blurry attention map which limits the local-
ization performance. To address this issue, Video-Language Alignment
Network (VLANet) is proposed that learns a sharper attention by prun-
ing out spurious candidate proposals and applying a multi-directional
attention mechanism with fine-grained query representation. The Surro-
gate Proposal Selection module selects a proposal based on the proximity
to the query in the joint embedding space, and thus substantially reduces
candidate proposals which leads to lower computation load and sharper
attention. Next, the Cascaded Cross-modal Attention module considers
dense feature interactions and multi-directional attention flows to learn
the multi-modal alignment. VLANet is trained end-to-end using con-
trastive loss which enforces semantically similar videos and queries to
cluster. The experiments show that the method achieves state-of-the-art
performance on Charades-STA and DiDeMo datasets.
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1 Introduction

Video moment retrieval (VMR) is a task to find a temporal moment in
untrimmed video specified by a text description as illustrated in Fig. 1. With
the rising number of videos along with the need for a more detailed and refined
search capability that demand a better understanding of the video, the task of
Video Moment Retrieval is drawing appreciable attention.

A number of fully-supervised methods that learn from a set of videos with
ground-truth time stamps corresponding to a given query have been proposed
[3,6,23,25]. For these methods, a large-scale video dataset that requires the
laborious burden of temporally annotating the boundaries corresponding to each
query is a sine qua non. In general, the performance of a fully-supervised method
hinges on the quality of the dataset; however, for VMR, temporal boundaries
are often ambiguous to annotate and may act as noise in the learning process.

Recently, weakly-supervised VMR (wVMR) [12,14] that does not require
the temporal boundary annotation for each query has been studied. To leverage
the weak supervision, contrastive learning is applied such that higher scores
are predicted for the correct video-query pairs than for incorrect pairs. This
learning process improves the accuracy of the attention mechanism which plays
a vital role in wVMR. Inspired by recent methods [12,14], this paper addresses
two critical challenges: (1) generating appropriate multi-scale video candidate
proposals, and (2) learning the latent alignment between the text query and the
retrieved video segment.

Fig. 1. Illustration of video moment retrieval task. The goal is to search the temporal
boundary of the video moment that is most relevant to the given natural language
query.

The first challenge is that the video segment proposals should be adequate in
number to give high recall without excessive computational load, and the video
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segment should be of appropriate length to have high intersection-of-union (IoU)
with ground truth. Previous methods [3,6,12,14] greedily generated video can-
didate proposals using a pre-defined set of multi-scale sliding windows. As a
consequence, these methods generally produce large number of multi-scale pro-
posals which increase the chance of achieving high recall at the expense of high
computational cost. When an attention mechanism is used thereafter to weigh
the proposals, the attention becomes blurry as there are too many proposals to
attend.

The second challenge is to learn a similarity measure between video segment
and text query without ground truth annotation. In [14], a text-to-video atten-
tion mechanism is incorporated to learn the joint embedding space of video and
text query. More accurate multi-modal similarity could be attained with a text
query representation that is more effective in interacting with video frame fea-
ture. Representing the text query as the last hidden feature of the Gated Recur-
rent Unit (GRU), as used in some previous methods [12,14], is overly simplistic.
In addition, applying one-way attention from query to video is not sufficient to
bring out the most prominent feature in the video and query. Recent studies
in Visual Question Answering [5,9,24] have explored the possibility of apply-
ing multi-directional attention flows that include both inter- and intra-modality
attention. This paper devises an analogous idea for the problem of wVMR, and
validate its effectiveness in retrieving the moment using the weak labels.

To rise to the challenge, this paper proposes a Video-Language Alignment
Network (VLANet) for weakly-supervised video moment retrieval. As a first
step, the word-level query representation is obtained by stacking all intermedi-
ate hidden features of GRU. Video is divided into overlapping multi-scale seg-
ment groups where the segments within each group share a common starting
time. Then, the Surrogate Proposal Selection module selects one surrogate from
each group which reduces the number of effective proposals for more accurate
attention. To consider the multi-directional interactions between each surrogate
proposal and query, the Cascaded Cross-modal Attention (CCA) module per-
forms both intra- and inter-modality attention. The CCA module performs self-
attention on each modality: video to video (V2V) and query to query (Q2Q),
which considers the intra-modal relationships. Thereafter, the CCA module per-
forms cross-modal attention from query to video (Q2V), video to query (V2Q)
and finally attended query to attended video (Q2V). This cross-modal attention
considers the inter-modal relationships that is critical in learning the multi-
modal alignment. To leverage the weak labels of video-query pairs, VLANet is
trained in an end-to-end manner using contrastive loss that enforces semanti-
cally similar videos and queries to cluster in the joint embedding space. The
experiment results show that the VLANet achieves state-of-the-art performance
on Charades-STA and DiDeMo datasets. Extensive ablation study and quali-
tative analyses validate the effectiveness of the proposed method and provide
interpretability.
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2 Related Work

2.1 Temporal Action Detection

The goal of temporal action detection is to predict the temporal boundary
and category for each action instance in untrimmed videos. Existing works are
divided into two groups: the fully-supervised and weakly-supervised. Zhao et al.
[26] proposed a structured segment network that models the temporal structure
of each action instance by a structured temporal pyramid. Gao et al. [4] pro-
posed Cascaded Boundary Regression which uses temporal coordinate regression
to refine the temporal boundaries of the sliding windows. Lin et al. [11] proposed
Boundary Sensitive Network that first classifies each frame as the start, middle,
or end, then directly combines these boundaries as proposals.

In the weakly-supervised settings, however, only the coarse video-level labels
are available instead of the exact temporal boundaries. Wang et al. [22] pro-
posed UntrimmedNet that couples two components, the classification module,
and the selection module, to learn the action models and reason about the tem-
poral duration of action instances, respectively. Nguyen et al. [15] proposed a
Sparse Temporal Pooling Network that identifies a sparse subset of key segments
associated with the target actions in a video using an attention module and fuse
the key segments using adaptive temporal pooling. Shou et al. [17] proposed
AutoLoc that uses Outer-Inner-Contrastive loss to automatically discover the
required segment-level supervision to train a boundary predictor. Liu et al. [13]
proposed CleanNet that leverages an additional temporal contrast constraint
so that the high-evaluation-score action proposals have a higher probability to
overlap with the ground truth action instances.

2.2 Video Moment Retrieval

The VMR task is focused on localizing the temporal moment that is semantically
aligned with the given natural language query. For this task, various supervised
methods have been proposed [3,6,23,25]. In Gao et al. [3] and Hendricks et al.
[6], candidate moments are sampled using sliding windows of various lengths, and
multi-modal fusion is performed to estimate the correlation between the queries
and video moments. Xu et al. [23] proposed a model that integrates vision and
language features using attention mechanisms and leverages video captioning as
an auxiliary task. Zhang et al. [25] proposed Moment Alignment Network (MAN)
that considers the relationships between proposals as a structured graph, and
devised an iterative algorithm to train a revised graph convolution network.

Recently, the task was studied under the weakly-supervised setting [2,12,14].
Duan et al. [2] proposed to decompose weakly-supervised dense event caption-
ing in videos (WS-DEC) into a pair of dual problems: event captioning and
sentence localization. They proposed a cycle system to train the model based on
the assumption that each caption describes only one temporal segment. Mithun
et al. [14] proposed Text-Guided-Attention (TGA) model that learns a joint rep-
resentation between video and sentence. The attention weight is used to retrieve
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Fig. 2. Illustration of VLANet architecture. The Surrogate Proposal Selection module
prunes out irrelevant proposals based on the similarity metric. Cascaded Cross-modal
Attention considers various attention flows to learn multi-modal alignment. The net-
work is trained end-to-end using contrastive loss.

the relevant moment at test time. Lin et al. [12] proposed Semantic Completion
Network (SCN) that selects the top-K proposals considering exploration and
exploitation, and measures the semantic similarity between the video and query.
As an auxiliary task, SCN takes the masked sentence as input and predicts the
masked words from visual representations.

3 Method

3.1 Method Overview

Figure 2 illustrates the overall VLANet architecture. The input text query is
embedded using GloVe [16] after which each embedded representation is fed
into a GRU [1]. In the meanwhile, the video is embedded based on C3D [21].
Video is divided into overlapping multi-scale segment groups where the proposals
within each group share a common starting time. Given the video and query
representations V and Q, the similarity c between video and query is evaluated
by the Cascaded Cross-modal Attention (CCA) module. The learned attention
weights by CCA are used to localize the relevant moment at test time. A video-
query pair (V,Q) is positive if it is in the training data; otherwise, it is negative.
The network is trained in an end-to-end manner using contrastive loss to enforce
the scores of the positive pairs to be higher than those of the negative pairs. In
practice, the negative pairs are randomly sampled in a batch.

3.2 Input Representation

Query Representation. Gated Recurrent Unit (GRU) [1] is used for encoding
the sentences. Each word of the query is embedded using GloVe and sequentially
fed into a GRU. Prior methods [14] use only the final hidden feature of GRU to
represent the whole sentence, which leads to the loss of information by exclud-
ing the interactions between frame- and word-level features of video and query.
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Motivated by recent works in visual question answering [5,24], this paper uses
all intermediate hidden features of the GRU. The query Q is represented as:

Q = [w1 w2 · · · wM ] (1)

where wm ∈ R
D denotes the m-th GRU hidden feature, and D is the dimen-

sion of the hidden feature. Each wm is L2 normalized to output a unit vector.

Video Representation. Video is encoded using a C3D [21] model pre-trained
on Sports-1M dataset [8] as in [3]. The feature was extracted at every 16 frames
for Charades-STA. The VGG16 model [19] is used for frame-level feature extrac-
tion for DiDeMo dataset following [6]. Both C3D and VGG16 features were
extracted from the penultimate fully-connected layer, which results in the fea-
ture dimension of 4096.

(a) Multi-scale proposal generation (b) Surrogate Proposal Selection

Fig. 3. Comparison between the previous and the proposed proposal generation
method. (a) generates large number of proposals of various lengths. (b) groups the
proposals, and selects the surrogate proposals based on the proximity to the query.

Video Proposal Generation. As depicted in image Fig. 3(a) previous meth-
ods [12,14] generated proposals using multi-scale sliding windows. Meanwhile, as
in Fig. 3(b), VLANet organizes the multi-scale windows in segment groups such
that within a group, all windows start at the same time instance. Each group
will have the same number of windows of fixed scales. The interval between the
starting times of each segment group is regular. With K segment groups and L
multi-scale proposals, the total number of proposals is K · L. Then, the video V
is represented by:

V =

⎡
⎢⎢⎢⎣

p11 p12 · · · p1K

p21 p22 · · · p2K

... · · ·
pL1 pL2 · · · pLK

⎤
⎥⎥⎥⎦ (2)
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where each plk ∈ R
D denotes the proposal feature of the l-th scale in the

k-th segment group, which is the average of the C3D features of the frames
participating in the proposal. Fully-connected layers are used to resize the feature
dimension of Q and V to D. L2 normalization is performed to make each plk a
unit vector.

3.3 Surrogate Proposal Selection Module

To reduce the large number of proposals, [12] proposed a sampling-based selec-
tion algorithm to prune out irrelevant proposals considering the exploration and
exploitation. However, the method is trained using policy gradient algorithm
[20] which suffers from high variance. Instead, as depicted in Fig. 3(b), the Sur-
rogate Proposal Selection module selects the best-matched proposals from each
segment group based on the cosine similarity to the final hidden feature of the
query. A surrogate proposal of the k-th segment group is defined as the proposal
that has the largest cosine similarity to the final hidden feature of the query.
The cosine similarity between each proposal and query is given by

⎡
⎢⎢⎢⎣

p11 · wM p12 · wM · · · p1K · wM

p21 · wM p22 · wM · · · p2K · wM

... · · ·
pL1 · wM pL2 · wM · · · pLK · wM

⎤
⎥⎥⎥⎦ (3)

where wM is the final hidden feature of the query. It is empirically determined
that the final hidden query feature is sufficient in pruning out irrelevant proposals
at a low computational cost. The Surrogate Proposal Selection module pick the
l′-th scale from each k-th segment group which is given by,

l′ = argmax [p1k · wM p2k · wM · · · pLk · wM ] , (4)
sk = pl′k (5)

where sk is the surrogate proposal feature of the k-th segment group. In back-
propagation, only the surrogate proposals sk’s contribute to the weight update
which allows end-to-end learning. Then the video is represented by K surrogate
proposal features:

V = [s1 s2 · · · sK ] (6)

where V is the updated video representation composed of the surrogate pro-
posals.

3.4 Cascaded Cross-Modal Attention Module

Cascaded Cross-modal Attention (CCA) module takes the video and query rep-
resentations as inputs, and outputs a compact attended video representation.
Compared to text-guided attention (TGA) [14], CCA module considers more
diverse multi-modal feature interactions including V2V, Q2Q, V2Q, and Q2V
where each has its own advantages as described below.
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Dense Attention. The basic attention unit of CCA module is referred to
as Dense Attention which calculates the attention between two multi-element
features. Given Y = [y1 . . .yM ]T ∈ R

M×D and X = [x1 . . .xN ]T ∈ R
N×D, the

Dense Attention A(X,Y ) : RN×D × R
M×D → R

N×D attends X using Y and is
defined as follows:

E(xn, Y ) =
∑M

m=1 tanh(W1xn · W2ym), (7)
A(X,Y ) = Softmax([E(x1, Y ) E(x2, Y ) · · · E(xN , Y )])X, (8)

where W1,W2 are learnable parameters. Here, E : R
D × R

M×D → R is
referred to as the Video-Language Alignment (VLA) function that performs the
multi-modal alignment.

Self-attention. Based on the Dense Attention defined above, the CCA module
initially performs a type of self-attention that attends V and Q using V and Q
respectively as given below,

V ← A(V,V), (9)
Q ← A(Q,Q). (10)

The intra-attention allows each element of itself to be attended by its global
contextual information. The attention from V to V is capable of highlighting the
salient proposals by considering the innate temporal relationships. The attention
from Q to Q updates the each word-level feature by considering the context of
the whole sentence.

Cross Modal Attention. Following self-attention defined above, the CCA
module is used to cross-attend V and Q using Q and V respectively such that
cross-modal attention is defined as follows:

V ← A(V, Q), (11)
Q ← A(Q,V). (12)

The above attention is critical in learning the latent multi-modal alignment. It
has been empirically observed that cross-modal attention applied in series several
times until near-saturation can be conducive in producing better performance.
Finally, a compact attended video representation vcomp is obtained by taking
the sum of all elements of V, and video-level similarity c is obtained by the VLA
function between vcomp and Q as given below:

c = E(vcomp, Q). (13)

The network is trained using the following contrastive loss:

Lcontrastive = max[0,Δ − E(vcomp, Q
+) + E(vcomp, Q

−)] (14)

where E is the VLA function defined above in Sect. 3.4 and Δ is the margin.
Q+ and Q− is positive and negative query features.
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4 Experiment

4.1 Datasets

Charades-STA. The Charades dataset was originally introduced in [18]. It
contains temporal activity annotation and multiple video-level descriptions for
each video. Gao et al. [3] generated temporal boundary annotations for sentences
using a semi-automatic way and released the Charades-STA dataset that is for
video moment retrieval. The dataset includes 12,408 video-sentence pairs with
temporal boundary annotations for training and 3,720 for testing. The average
length of the query is 8.6 words, and the average duration of the video is 29.8 s.

DiDeMo. The Distinct Describable Moments (DiDeMo) dataset [6] consists
of over 10,000 unedited, personal videos in diverse visual settings with pairs of
localized video segments and referring expressions. The videos are collected from
Flickr and each video is trimmed to a maximum of 30 s. The dataset includes
8,395, 1,065 and 1,004 videos for train, validation, and test, respectively. The
videos are divided into 5-s segments to reduce the complexity of annotation,
which results in 21 possible moments per video. The dataset contains a total
of 26,892 moments with over 40,000 text descriptions. The descriptions in the
DiDeMo dataset are natural language sentences that contain activities, camera
movement, and temporal transition indicators. Moreover, the descriptions in
DiDeMo are verified to refer to a single moment.

Evaluation Metric. For Charades-STA, the evaluation metric proposed by [3]
is adopted to compute “R@n, IoU=m”. For the test set predictions, the recall
R@n calculates the percentage of samples for which the correct result resides
in the top-n retrievals to the query. If the IoU between the prediction and the
ground truth is greater than or equal to m, the prediction is correct. The overall
performance is the average recall on the whole test set.

For DiDeMo, the evaluation metric proposed by [6] is adopted. The evaluation
metric is also R@n with different criteria for correct prediction. If the ground
truth moment is in the top-n predictions, the prediction for the sample is counted
as correct. The mIoU metric is computed by taking the average of the IoU
between the predicted moment and the ground truth moment.

4.2 Quantitative Result

Table 1 shows the performance comparison between VLANet and the related
methods on Charades-STA. The first section indicates random baseline, the sec-
ond section indicates fully-supervised methods, and the third section indicates
weakly-supervised methods. VLANet achieves state-of-the-art performance on
Charades-STA among weakly-supervised methods. It outperforms the random
baseline, VSA-RNN, and VSA-STV by a large margin. Compared to the other
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Table 1. Performance comparison of VLANet to the related methods on Charades-STA

Type Method R@1 R@5

IoU = 0.3 IoU = 0.5 IoU = 0.7 IoU = 0.3 IoU = 0.5 IoU = 0.7

Baseline Random 19.78 11.96 4.81 73.62 52.79 21.53

Fully VSA-RNN [3] – 10.50 4.32 – 48.43 20.21

VSA-STV [3] – 16.91 5.81 – 53.89 23.58

CTRL [3] – 23.63 8.89 – 58.92 29.52

EFRC [23] 53.00 33.80 15.00 94.60 77.30 43.90

MAN [25] – 46.53 22.72 – 86.23 53.72

Weakly TGA [14] 32.14 19.94 8.84 86.58 65.52 33.51

SCN [12] 42.96 23.58 9.97 95.56 71.80 38.87

VLANet (ours) 45.24 31.83 14.17 95.70 82.85 33.09

Table 2. Performance comparison of VLANet to the related methods on DiDeMo

Type Method R@1 R@5 mIoU

Baseline Upper bound 74.75 100 96.05

Random 3.75 22.50 22.64

LSTM-RGB-Local [6] 13.10 44.82 25.13

Fully Txt-Obj-Retrieval [7] 16.20 43.94 27.18

EFRC [23] 13.23 46.98 27.57

CCA [10] 18.11 52.11 37.82

MCN [6] 28.10 78.21 41.08

MAN [25] 27.02 81.70 41.16

Weakly TGA [14] 12.19 39.74 24.92

VLANet (ours) 19.32 65.68 25.33

fully-supervised methods such as CTRL and EFRC, its performance is compara-
ble. Besides, compared to the other weakly-supervised methods TGA and SCN,
VLANet outperforms others by a large margin.

Table 2 shows the performance comparison on DiDeMo. The first section
contains the baselines, the second section contains fully-supervised methods,
and the third section contains weakly-supervised methods. VLANet achieves
state-of-the-art performance among the weakly-supervised methods. In the R@5
based test, especially, its performance is 25.94 higher than the runner-up model
TGA. It is comparable to some fully-supervised methods such as CCA1 and Txt-
Obj-Retrieval. These indicate that even without the full annotations of tempo-
ral boundary, VLANet has the potential to learn latent multi-modal alignment
between video and query, and to localizing semantically relevant moments.

1 Here, CCA refers to a previous method [10], but not Cascaded Cross-modal Attention
proposed in this paper.
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Table 3. Performance of model variants and ablation study of VLANet on Charades-
STA. The unit of stride and window size is frame.

Method R@1 R@5

IoU = 0.3 IoU = 0.5 IoU = 0.7 IoU = 0.3 IoU = 0.5 IoU = 0.7

stride 4, window(176, 208, 240) 44.76 31.53 14.78 77.04 63.17 31.80

stride 6, window(176, 208, 240) 42.17 28.60 12.98 88.76 74.91 34.70

stride 8, window(176, 208, 240) 45.03 31.82 14.19 95.72 82.82 33.33

stride 6, window(128, 256) 42.39 28.03 13.09 94.70 73.06 30.69

stride 6, window(176, 240) 42.92 30.24 13.57 95.72 82.80 33.46

w/o cross-attn 43.41 30.08 13.23 95.72 82.41 33.06

w/o self-attn 42.31 30.81 15.38 95.38 80.02 33.76

w/o surrogate 35.81 25.30 12.26 80.61 64.57 31.31

Full model 45.03 31.82 14.19 95.72 82.82 33.33

4.3 Model Variants and Ablation Study

Table 3 summarizes the performance of model variants and the ablation study
conducted on VLANet. The first section shows the performance variation by
varying stride and window sizes, and the second section shows the performance
drop without core components. The strides and the sizes of the windows were
determined by considering the average video length. The first three rows show
that the network performs best with the stride of 8. While the proposals with
stride 4 have finer granularity, the large number of proposals decreases the per-
formance. The networks with three multi-scale proposals tend to achieve higher
performance than the networks with two multi-scale proposals. This shows the
importance of stride and the number of scales. After finding the best hyper-
parameters of ‘stride 8, window(176, 208, 240)’ these values were fixed for the
subsequent experiments and analyses. The network without cross-attention, self-
attention show a decrease in performance, demonstrating the importance of
the attention mechanisms. We generally notice a drop in performance with an
increasing IoU metric. The drop is more drastic without cross-attention than
without self-attention. This observation indicates that cross-modal attention has
a larger influence on performance than self-attention. The performance of w/o
surrogate is decreased significantly across all metrics. This indicates that select-
ing probable proposals in the early stage is critical to the performance.

4.4 Analysis of Multi-modal Similarity

Figure 4 shows similarity predicted by the network on the whole test set of
Charades-STA while training. The x-axis indicates the epoch of training, and
the y-axis indicates the similarity. It is observed that the similarity scores of the
positive pairs (blue) increase and reach a high plateau of about 0.9, while those
of the negative pairs (red) keep a low value of about 0.15. These demonstrate
that contrastive learning was successfully conducted.
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Fig. 4. The multi-modal similarity prediction by VLANet on the positive and negative
pairs while training. The similarity gap increases as epoch increases. (Color figure
online)

Fig. 5. Visualization of Cascaded Cross-modal Attention. The attention map is cal-
culated by the outer-product of video and query features that are obtained after the
Cascaded Cross-modal Attention module and before the pooling layer.

4.5 Visualization of Attention Map

Figure 5 visualizes the attention map of the proposed Cascaded Cross-modal
Attention. The x-axis indicates the words in the query and the y-axis indicates
the time. In the left example, the attention weight of the “put the sandwich
down” is high when the person is putting the sandwich down. Similarly in the
right example, important words such as action or object have high attention
weight with the related moment of the video. The high attention weights are
biased on the right side in Fig. 5 as the final GRU feature has the context
information about the whole sentence. The above example demonstrates that
VLANet can learn the latent multi-modal alignment.

4.6 Visualization of Inference

Figure 6 provides a visualization of the inference of VLANet. Only a subset of
total proposals were depicted whose color indicates the attention strength. In the
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Fig. 6. At inference time, VLANet successfully retrieves the moment described by the
query. Due to the limited space, only some proposals are visualized. The color indicates
the attention strength. The top-2 predicted moments are visualized with the temporal
boundaries. (Color figure online)

first example, both top-1 and top-2 predictions by VLANet have high overlaps
with the ground truth moment. In the second example, the network localizes
the moment when the person actually opens the refrigerator. Similarly in the
third example, the network localizes the moment when person puts the pillow.
This shows that the network successfully captures the moment when a certain
action is taken or an event occurs. The inference visualization demonstrates the
moment retrieval ability of VLANet and suggests its applicability to real-world
scenarios.

5 Conclusions

This paper considers Video-Language Alignment Network (VLANet) for weakly-
supervised video moment retrieval. VLANet is able to select appropriate can-
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didate proposals using a more detailed query representation that include inter-
mediate hidden features of the GRU. The Surrogate Proposal Selection mod-
ule reduces the number of candidate proposals based on the similarity between
each proposal and the query. The ablation study reveals that it has the largest
influence on performance. The Cascaded Cross-modal Attention module per-
forms a modified self-attention followed by a cascade of cross-attention based on
the Dense Attention defined. It also has a significant influence on performance.
VLANet is trained in an end-to-end manner using contrastive loss which enforces
semantically similar videos and queries to cluster in the joint embedding space.
The experiments shows that VLANet achieves state-of-the-art performance on
Charades-STA and DiDeMo datasets.
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Abstract. Query expansion is a technique widely used in image search
consisting in combining highly ranked images from an original query into
an expanded query that is then reissued, generally leading to increased
recall and precision. An important aspect of query expansion is choos-
ing an appropriate way to combine the images into a new query. Inter-
estingly, despite the undeniable empirical success of query expansion,
ad-hoc methods with different caveats have dominated the landscape,
and not a lot of research has been done on learning how to do query
expansion. In this paper we propose a more principled framework to
query expansion, where one trains, in a discriminative manner, a model
that learns how images should be aggregated to form the expanded query.
Within this framework, we propose a model that leverages a self-attention
mechanism to effectively learn how to transfer information between the
different images before aggregating them. Our approach obtains higher
accuracy than existing approaches on standard benchmarks. More impor-
tantly, our approach is the only one that consistently shows high accuracy
under different regimes, overcoming caveats of existing methods.

Keywords: Image retrieval · Query expansion learning ·
Attention-based aggregation

1 Introduction

Image search is a fundamental task in computer vision, directly applied in a
number of applications such as visual place localization [2,21,39], 3D reconstruc-
tion [16,24,40], content-based image browsing [1,27,50], etc. Image search is
typically cast as a nearest neighbor search problem in the image representation
space, originally using local feature matching and bag-of-words-like representa-
tions [43], and, more recently, CNN-based global image representations [13,33].

To increase the accuracy of image search systems, a robust representation
of the query image is desirable. Query expansion (QE) is a commonly used
technique to achieve this goal, where relevant candidates produced during an
initial ranking are aggregated into an expanded query, which is then used to
search more images in the database. Aggregating the candidates reinforces the
information shared between them and injects new information not available in
c© Springer Nature Switzerland AG 2020
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Fig. 1. Outline of our proposed approach. During training, we sample a query q and its
nearest neighbors in the training dataset (where their features have been precomputed
with the function φ, typically a CNN) and use our proposed attention-based model
θ to aggregate them into an expanded query q̃. Given positive (d+) and/or negative
(d-) samples, we use a ranking loss to optimize θ. Images with the green (red) border
represent relevant (non-relevant) samples to the query. At inference, we construct the
expanded q̃ given q and its neighbors in the index, and use it to query the index again.
(Color figure online)

the original query. This idea was originally exploited in the work of Chum
et al. [7], introducing the first attempt at image retrieval QE. This averaging
of query and top ranked results [7], or ad-hoc variations of it [3,6,13,33,45], are
now used as a standard method of performance boosting in image retrieval.

Selecting which images from the initial ranking should be used in the QE
procedure is however a challenging problem, since we do not have guarantees that
they are actually relevant to the query. Early methods use strong geometrical
verification of local features to select true positives [3,6,7,45]. As CNN-based
global features lack this possibility, the most common approach is to use the k-
nearest neighbors to the query [13,33], potentially including false positives. Yet, if
k is larger than the number of relevant images, topic drift will degrade the results
significantly. This leads to two unsatisfying alternatives: either use a very small k,
potentially not leveraging relevant images, or use weighted average approaches
with decreasing weights as a function of ranking [13] or image similarity [33],
where setting the appropriate decay is a task just as challenging as choosing the
optimal k. This has unfortunately led to many works tuning the k parameter
directly on test, as well as to use different values of k for each dataset. Replacing
k-nearest neighborhoods with similarity-based neighborhoods turn out to be just
as unstable, as, unlike inlier count for local features, cosine similarity of CNN
global features is not directly comparable between different query images [29].

We argue that existing QE approaches are generally not robust and use ad-
hoc aggregation methods, and instead propose to cast QE as a discriminative
learning problem. Similar to recent methods that learn embeddings suitable for
image retrieval using large-scale datasets [13,33], we formulate the problem as
a ranking one, where we train an aggregator that produces the expanded query,
optimized to rank relevant samples ahead of non-relevant ones, cf. Fig. 1. We
use a large-scale dataset, disjoint from the evaluation ones, to train and validate
our model and its parameters. We then leverage a self-attention mechanism to
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design an aggregator model that can transfer information between the candidates
(Fig. 2), enabling the model to learn the importance of each sample before aggre-
gating them. We call this model Learnable Attention-based Query Expansion,
or LAttQE. Unlike previous QE approaches, LAttQE does not produce mono-
tonically decreasing weights, allowing it to better leverage the candidates in the
expansion. LAttQE is more robust to the choice of k thanks to the large-scale
training, which enables the model to better handle false positive amongst the
top neighbors, and is usable across a wide range of class distributions without
sacrificing the performance at any number of relevant images.

Our contributions are as follows: (i) We show that standard query expansion
methods, albeit seemingly different, can be cast under the same mathematical
framework, allowing one to compare their advantages and shortcomings in a prin-
cipled way. (ii) We propose to treat query expansion as a discriminative learning
problem, where an aggregation model is learned in a supervised manner. (iii) We
propose LAttQE, an aggregation model designed to share information between
the query and the top ranked items by means of self-attention. We extend this
query expansion model to also be useful for database-side augmentation. (iv) We
show that our proposed approach outperforms commonly-used query expansion
methods in terms of both accuracy and robustness on standard benchmarks.

2 Related Work

Image Retrieval Query Expansion. Average query expansion (AQE) in
image retrieval was originally proposed for representations based on local fea-
tures [7], and tuned for the bag-of-words search model [43], where local features
are aggregated after a strict filtering step, usually based on strong feature geom-
etry [6,7] or Hamming embedding distance [45]. For CNN-based global image
representation, AQE is implemented by mean-aggregating the top k retrieved
images [13,33]. It has been argued that setting an optimal k for several datasets
of different positive image distributions is a non-trivial task [33]. Instead, Gordo
et al. [13] propose using a weighted average, where the weight is a monotonically
decaying function over the rank of retrieved images. We denote this method as
average query expansion with decay, or AQEwD. Likewise, Radenovic et al. [33]
use a weighted average, where the weights are computed as a power-normalized
similarity between the query and the top ranked images. This method, known
as alpha query expansion (αQE), has proven to be fairly robust to the number
of neighbors k, and is used as a de facto standard by a number of recent state-of-
the-art image retrieval works [11,14,17,18,34,36]. Finally, Arandjelovic et al. [3]
proposed discriminative query expansion (DQE) where they train a linear SVM
using top ranked images as positives, and low ranking images as negatives, and
use the resulting classifier as the expanded query. Note that this is very different
from our method, as DQE trains independent classifiers for each query, while we
train one single model using a large disjoint dataset.

Image Retrieval Database Pre-processing. If the database is fixed at index-
ing time, one can pre-process the database to refine the image representations
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and improve the accuracy. Database-side augmentation (DBA) [3] is a method
that applies QE to each image of the database and replaces the original repre-
sentation of the image by its expanded version. Although it increases the offline
pre-processing time, it does not increase the memory requirements of the pipeline
or the online search time. All aggregation-based QE methods described in the
previous paragraph [3,7,13,33] can be applied as different flavors of DBA, includ-
ing our proposed LAttQE. A different line of work [8,32,42] indexes local neigh-
borhoods of database images together with their respective representations, in
order to refine the search results based on the reciprocal neighborhood relations
between the query and database images. Besides offline pre-processing, these
approaches require additional storage and are slower at query time. Finally, some
works [5,19] build a nearest neighbor graph using the database image represen-
tations and traverse it at query time, or, alternatively, encode graph informa-
tion into image descriptors [23]. It increases the amount of required memory by
storing the graph structure of the database, and increases online search complex-
ity by orders of magnitude. Both reciprocal-nearest-neighbor and graph-based
methods are complementary to our work, and can be applied after augmenting
the database representations with our method. When dealing with dynamically-
growing indexes, applying these methods becomes even more challenging, which
makes them generally unappealing despite the accuracy gains.

Self-attention. The self-attention transformer [47] has established itself as the
core component of strong language representation models such as BERT [10] or
GPT-2 [35] due to its ability to capture complex interactions between tokens and
due to how easy it is to increase the capacity of models simply by stacking more
encoders. Self-attention has also shown applications outside of NLP. Wang et al.
[48] leverage self-attention to aggregate descriptors from different parts of the
image in order to capture interactions between them in a non-local manner. In
a similar way, Girdhar and Ramanan [12] use self-attention as an approximation
for second order pooling. In a different context, Lee et al. [22] use self-attention as
a graph pooling mechanism to combine both node features and graph topology in
the pooling. In this paper we use self-attention as a way to transfer information
between the top k results so we can construct a more discriminative query. As
we describe in Sect. 3, self-attention is an excellent mechanism to this end.

Query Expansion and Relevance Feedback in Information Retrieval.
The information retrieval community has leveraged query expansion techniques
for several decades [4,26,37]. Most interestingly, in the information retrieval com-
munity, query expansion methods expand or reformulate query terms indepen-
dently of the query and results returned from it, via, e.g., reformulation with a
thesaurus [25]. What the image search community denotes as query expansion is
generally known as relevance feedback (RF), and more precisely, pseudo-RF, as
one generally does not have access to the true relevance of the neighbors – although
a case could be made for geometrical verification methods [7] providing explicit
feedback. Our focus in this work is not on information retrieval methods for two
reasons: (i) they generally deal with explicit or implicit RF instead of pseudo-RF;
(ii) they generally assume high-dimensional, sparse features (e.g. bags of terms),
and learn some form of term weighting that is not applicable in our case.
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3 Attention-Based Query Expansion Learning

We start this section by presenting a generalized form of query expansion, and
by showing that well-known query expansion methods can be cast under this
framework. We then propose a general framework for learning query expansion
in a discriminative manner. Last, we propose LAttQE (Learnable Attention-
Based Query Expansion), an aggregation model that leverages self attention to
construct the augmented query and that can be trained within this framework.

3.1 Generalized Query Expansion

We assume that there exists a known function φ : Ω → RD that can embed items
(e.g. images) into an l2-normalized D-dimensional vectorial space. For example,
φ could be a CNN trained to perform image embedding [13,33,36]. Let us denote
with q a query item, and, following standard convention of using bold typeface
for vectors, let us denote with q = φ(q) its D-dimensional embedding. Similarly,
let us denote with {d}k = d1,d2, . . . ,dk the embeddings of the top k nearest
neighbors of q in a dataset D according to some measure of similarity, e.g. the
cosine similarity, and sorted in decreasing order. Let us also denote with {d}- a
collection of dataset items that are not close to the query, according to the same
measure of similarity. Last, for convenience, let us alias d0 := q.

We propose the following generalized form of query expansion:

q̂ =
1
Z

k∑

i=0

θ(di | q, {d}k, {d}-, i), (1)

where Z is a normalization factor, and θ is a learnable function that takes an
individual sample and applies a transformation conditioned on the original query
q, the top k retrieved results {d}k, a collection of low-ranked samples {d}-,
and its position i in the ranking. The final augmented query is computed by
aggregating the transformed top k results, including the query, and applying a
normalization Z (e.g. �2 normalization)1.

Standard query expansion methods can be cast under this framework. In fact,
they can be cast under a more constrained form: θ(di |q, {d}k, {d}-, i) = widi,
where the value of wi is method-dependent, see Table 1. Two things are worth
noticing. First, for all methods, wi depends either on positional information
(e.g. the sample got ranked at position i out of k, as done by AQEwD), or on
information about the content (e.g. the power-normalized similarity between the
item and the query, as done by αQE). None of the methods leverage both the
positional and the content information simultaneously. Second, except for DQE,
all methods produce a monotonically decreasing w, i.e., if i > j, then wi ≤ wj .
The implication is that these methods do not have the capacity to uplift the
samples amongst the top k retrieved results that are indeed relevant to the query

1 Note that Eq. (1) does not aggregate over {d}-. This is just to ease the exposition;
negative samples can also be aggregated if the specific method requires it, e.g., DQE.
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Table 1. Standard query expansion (QE) methods and their associated transforma-
tions. More details about the methods can be found in Sect. 2.

Method θ(di | q, {d}k, {d}-, i) = widi

[7] AQE: Average QE wi = 1

[13] AQEwD: AQE with decay wi = (k − i)/k

[3] DQE: Discriminative QE w is the dual-form solution of an SVM
optimization problem using {d}k as
positives and {d}- as negatives

[33] αQE: α-weighted QE wi = sim(q,di)
α, with α being a

hyperparameter

but were ranked after some non-relevant samples. That is, any top-ranked, non-
relevant item will contribute more to the construction of the expanded query
than any relevant item ranked after it, with clear negative consequences.

3.2 Query Expansion Learning

We propose that, following recent approaches in representation learning [13,33],
one can learn a differentiable θ transformation in a data-driven way (Fig. 1).
This training is done in a supervised manner, and ensures that relevant items to
the (expanded) query are closer to it than elements that are not relevant. This
is achieved by means of losses such as the triplet loss [49] or the contrastive
loss [15]. The approach requires access to an annotated dataset (e.g. rSfM120k
[33]), but the training data and classes used to learn θ can be disjoint from
the pool of index images that will be used during deployment, as long as the
distributions are similar. From that point of view, the requirements are similar
to other existing image embedding learning methods in the literature.

At training time, besides sampling queries, positive, and negative samples,
one also has to consider the nearest neighbors of the query for the expansion.
Sampling a different subset of neighbors each time, as a form of data augmen-
tation, can be useful to improve the model robustness. We provide more details
about the process in the experimental section. Finally, we note that this frame-
work allows one to learn θ and φ jointly, as well as to learn how to perform QE
and DBA jointly, but we consider those variations out of the scope of this work.

3.3 Learnable Attention-Based Query Expansion (LAttQE)

We propose a more principled θ function that overcomes the caveats of previ-
ous methods, and that can be trained using the framework described in the
previous section. In particular, our θ function is designed to be capable of trans-
ferring information between the different retrieved items, giving all top-ranked
relevant samples the opportunity to significantly contribute to the construction
of the expanded query. To achieve this we rely on a self-attention mechanism.
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We leverage the transformer-encoder module developed by Vaswani et al. [47],
where, in a nutshell, a collection of inputs first share information through a
multi-head attention mechanism, and later are reprojected into an embedding
space using fully connected layers with layer normalization and residual connec-
tions – see Fig. 1 of Vaswani et al. [47] for a diagram of this module (left) and the
decoder module (right), not used in this work. Stacking several of these encoders
increases the capacity of the model and enables sharing more contextual infor-
mation. The exact mechanism that the stack of self-attention encoders uses to
transfer information is particularly suited for our problem:

1. The encoder’s scaled dot-product attention [47] performs a weighted sum of
the form

∑k
j=0 Softmax(dT

i [d0,d1, . . . ,dk] /C)jdj , where C is a constant, in
practice computing the similarity between di and all other inputs and using
that as weights to aggregate all the inputs. Observing Eqs. (1) and (3), one
can see self-attention as a way to perform expansion of the input samples,
leading to richer representations that are then used to compute the weights.

2. The multihead attention enables focusing on different parts of the representa-
tions. This is important because computing similarities using only the original
embedding will make it difficult to change the original ranking. By using mul-
tihead attention, we discover parts of the embeddings that are still similar
between relevant items and dissimilar between non-relevant items, permitting
the model to further upweight relevant items and downweight non-relevant
ones.

3. Under this interpretation of the encoder, the stack of encoders allows the
model to “refine” the expansion process in an iterative manner. One can see
this as expanding the queries, making a first search, using the new neighbors
to expand a better query, find new neighbors, etc. Although the pool of neigh-
bors remains constant, we expect the expansion to become more and more
accurate.

Aggregation. The stack of encoders takes the query q and the top results
d1 . . .dk as input, and produces outputs q̃ and d̃1 . . . d̃k. To construct the
expanded query, a direct solution consists in aggregating them (e.g. through
average or weighted average) into a single vector that represents the expanded
query. However, this is challenging in practice, as it requires the encoder to learn
how to create outputs that lie in the same space as the original data, something
particularly hard when the embedding function φ is not being simultaneously
learned. We empirically verify that learning such a function leads to weak results.
Although we speculate that learning a “direct” θ function jointly with φ could
lead to superior results, the practical difficulties involved in doing so make this
approach unappealing. Instead, to ensure that we stay in a similar space, we
relax the problem and also construct the expanded query as a weighted sum of
the top k results, where the weights w are predicted by our model. If we denote
with M the stack of encoders, the transformed outputs can be represented as

d̃i = M({q} ∪ {d}k)i. (2)
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Then, inspired by other methods such as αQE, we can construct the weight wi

as the similarity between item di and the query q in the transformed space, i.e.,
wi = sim(q̃, d̃i). This leads to our proposed θ:

θ(di | q, {d}k, {d}-, i) = sim(q̃, d̃i)di. (3)

Fig. 2. Proposed aggregator. The output q̂ is constructed as the weighted sum (wΣ)
of the query q and the nearest neighbors d1 . . .dk. The weights are computed by
running the inputs through a stack of self-attention encoders after including positional
information and computing the similarity (through a normalized dot product ⊗)
between the transformed query q̃ and all the transformed samples d̃1 . . . d̃k.

Including Rank Information. As presented, the proposed method does not
leverage in any way the ranking of the results. Indeed, the encoders see the inputs
as a set, and not as a sequence of results. This prevents the model from leveraging
this information, e.g. by learning useful biases such as “top results tend to be
correct, so pay more attention to them to learn the transformations”. To enable
the model to reason not only about the content of the results but also about
their ranking, we follow standard practice when dealing with transformers and
include a positional encoding that is added to the inputs before being consumed
by the encoder, i.e., pe(di) = di+pi, where each pi ∈ RD is a learnable variable
within our model. The full proposed aggregator that leverages θ with positional
encoding is depicted in Fig. 2.

Auxiliary Classification Loss. Since, at training time, we have access to the
annotations of the images, we know which of the top k results are relevant to
the query and which ones are not. This enables us to have an auxiliary linear
classifier that predicts whether d̃i is relevant to the query or not. The role of
this classifier, which is only used at train time and discarded at inference time, is
to encourage the relevant and non-relevant outputs of the encoder to be linearly
separable, inducing the relevant items to be more similar to the query than the
non-relevant ones. Our empirical evaluation in Sect. 4 shows that the use of this
auxiliary loss can noticeably increase the accuracy of the model.
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3.4 Database-Side Augmentation

Database-side augmentation (DBA) is technique complementary to query expan-
sion. Although different variations have been proposed [3,13,44,46], the main
idea is that one can perform query expansion, offline, on the database images.
This produces an expanded version of the database images, which are then
indexed, instead of indexing the original ones. When issuing a new query, one
searches on the expanded index, and not on the original one.

Our proposed approach can also be used to perform better database-side
augmentation, using θ to aggregate the top k neighbors of each database image.
However, this approach did not work in practice. We believe that the reason is
that, on the database side, many images are actually distractors, unrelated to any
query, and our model was assigning weights too high for unrelated images when
using them as queries. To address this, we propose to use a tempered softmax
over the weights, i.e., instead of computing our weights as wi = sim(q̃, d̃i), we
compute it as

wi = Softmax(sim(q̃, [d̃0, d̃1, . . . , d̃k])/T )i, (4)

where sim(q̃, [d̃0, d̃1, . . . , d̃k]) is a vector of similarities between q̃ and all the d̃s,
and T is a learnable scalar.

To achieve the best results, we employ a curriculum learning strategy, where
first we train our model without softmax, and then we freeze the parameters
of the model, incorporate the tempered softmax, and continue training while
updating only T . This strategy led to a DBA that not only gave the best results
in terms of accuracy but that was also more stable than other variants.

4 Experiments

In this section we discuss implementation details of our training, evaluate differ-
ent components of our method, and compare to the state of the art.

4.1 Training Setup and Implementation Details

Image Representation. For all experiments we use a publicly-available, state-
of-the-art model for image retrieval [33]2 to extract the underlying features. We
use the best-performing model from the project page (trained on Google Land-
marks 2018 data [29]), consisting of a ResNet101 trunk followed by generalized-
mean pooling and a whitening layer, which produces features of 2048 dimensions.
Following [33], we extract features at 3 scales (1,

√
2, 1/

√
2), mean-aggregate

them, and finally �2-normalize to form the final 2048D representation.

Training Dataset. We use the publicly available rSfM120k created by Rade-
novic et al. [33], which comprises images selected from 3D reconstructions
of landmarks and urban scenes. These reconstructions are obtained from an

2 github.com/filipradenovic/cnnimageretrieval-pytorch.

https://github.com/filipradenovic/cnnimageretrieval-pytorch
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unordered image collection using a combined local-feature-based image retrieval
and structure-from-motion pipeline. The 3D reconstruction cluster ids serve as
a supervision for selecting positive and negative pairs. In total, 91642 images
from 551 classes are used for training, while additional 6403 database images –
1691 of which are used as queries – from 162 classes, disjoint from the training
ones, are set aside for validation. Performance on validation is measured as mean
average precision (mAP) [30] over all 1691 queries.

Learning Configuration. To train LAttQE we follow [33] and use a contrastive
loss of the form yz2+(1−y)max(0,m−z)2, with m being the margin, z = ||q̂−d||,
and y ∈ {0, 1} denotes whether d is relevant to q or not. We backpropagate
through q̂, which in turn optimizes the transformers (see Fig. 2). Other recent
ranking losses [9,28,36] could also be used. Since the base representations are
already strong, we use a margin of 0.1, which ensures that positives are pulled
together while only pushing away negatives that are too close to the query. LAt-
tQE consists of a stack of 3 transformer encoders, each one with 64 heads. We
did not see any improvement after further increasing the capacity of the model.
The self-attention and fully-connected layers within the encoders preserve the
original dimensionality of the inputs, 2048D. We also follow [33] regarding the
sampling strategy for positives and negatives: we select 5 negatives per positive,
found in a pool of 20000 samples that gets refreshed every 2000 updates. When
sampling neighbors to construct the augmented query, as a form of data aug-
mentation, the exact number of neighbors is drawn randomly between 32 and
64, and neighbors are also randomly dropped according to a Bernoulli distribu-
tion (where the probability of dropping neighbors in each query is itself drawn
from a uniform distribution between 0 and 0.6). The auxiliary classification head
uses a binary cross-entropy loss. We use Adam to optimize the model, with a
batch size of 64 samples, a weight decay of 1e-6, and an initial learning rate of
1e-4 with an exponential decay of 0.99. The optimal number of epochs (typically
between 50 and 100) is decided based on the accuracy on the validation set, and
is typically within 1% of the optimal iteration if it was validated directly on test.

4.2 Test Datasets and Evaluation Protocol

Revisited Oxford and Paris. Popular Oxford Buildings [30] and Paris [31]
datasets have been revisited by Radenovic et al. [34], correcting and improving
the annotation, adding new more difficult queries, and updating the evaluation
protocol. Revisited Oxford (ROxford) and Revisited Paris (RParis) datasets
contain 4,993 and 6,322 images respectively, with 70 held out images with regions
of interest that are used as queries. Unlike the original datasets, where the full-
size version of query images are present in the database side, this is not the case
in revisited versions, making query expansion a more challenging task. For each
query, the relevant database images were labeled according to the “difficulty”
of the match. The labels are then used to define three evaluation protocols for
ROxford and RParis: Easy (E), Medium (M), and Hard (H). As suggested by
Radenovic et al. [34], which points out that the Easy protocol is saturated, we
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only report results on the Medium and Hard protocols. Note that Oxford and
Paris landmarks are not present in rSfM120k training and validation datasets.

Distractors. A set of 1 million hard distractor images (R1M) were collected
in [34]. These distractors can, optionally, be added to both ROxford and RParis
to evaluate performance on a more realistic large-scale setup.

We do not evaluate on INRIA Holidays [20], another common retrieval
dataset, since performing query expansion on Holidays is not a standard practice.

4.3 Model Study

Table 2 displays the results of our proposed model, using all components (row ii),
and compares it with the results without query expansion (row i). We use 64
neighbors for query expansion, as validated on the validation set of rSfM120k.
Our model clearly improves results on ROxford and RParis, both on the M and
H settings. We further study the impact of the components introduced in Sect. 3.

Table 2. Mean average precision (mAP) performance of the proposed model (ii) com-
pared to the baseline without query expansion (i) and to variations where parts of the
model have been removed (iii–vi).

ROxford RParis Mean

M H M H

(i) No QE 67.3 44.3 80.6 61.5 63.4

(ii) Full model 73.4 49.6 86.3 70.6 70.0

(iii) Without self-attention 66.0 41.5 86.1 70.2 66.0

(iv) Without positional encoding 58.6 33.2 87.8 73.4 63.2

(v) Without visual embedding 67.1 42.9 83.8 66.7 65.1

(vi) Without auxiliary loss 71.8 47.0 85.8 69.4 68.5

Self-attention: Replacing the stack of self-attention encoders with a stack of
fully-connected layers leads to a very noticeable drop in accuracy (iii), highlight-
ing how important the attention is for this model.

Positional Encoding (PE): Removing the PE (iv) leads to a very pronounced
loss in accuracy for ROxford (which has very few relevant images per query).
PE is necessary for queries with few relevant items because the model has to
learn which images are important, and anchoring to the query (through the PE)
enables it to do so. This is less important for queries with many relevant items, as
in RParis. We additionally experiment with a position-only setup (v), where the
self-attention computes the weights using only the positional encodings, not the
actual image embeddings. This leads to a content-unaware weighting function,
such as the AQE or AQEwD methods. The drop in accuracy is also remarkable,
highlighting the need to combine both content and positional information.
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Auxiliary Loss: Removing the auxiliary loss (vi) leads to a small but consistent
drop in accuracy. Although the model is fully functional without this auxiliary
loss, it helps the optimization process to find better representations.

Inference Time: When considering 64 neighbors for the expansion, our non-
optimized PyTorch implementation can encode, on average, about 250 queries
per second on a single Tesla M40 GPU. This does not include the time to
extract the query embedding, which is orders of magnitude slower than our
method (about 4 images per second on the same GPU) and the main bottleneck.
Techniques such as distillation [38] and quantization [41], that have worked for
transformer-based models, could further increase speed and reduce memory use.

4.4 Comparison with Existing Methods

Query Expansion (QE). We compare the performance of our proposed
method with existing QE approaches. All methods and their associated transfor-
mations are given in Table 1. For LAttQE, hyper-parameters are tuned on the
validation set of rSfM120k, that has no overlapping landmarks or images with
the test datasets. For competing methods, we select their hyper-parameters on
the mean performance over test datasets, giving them an advantage. We denote
the number of neighbors used for QE as nQE. AQE: nQE = 2; AQEwD: nQE
= 4; αQE: nQE = 72, α = 3; DQE: nQE = 4, neg = 5, C = 0.1; LAttQE:
nQE = 64.
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Fig. 3. Mean average precision over all queries of four protocols (ROxford (M & H) and
RParis (M & H)) as a function of the number of neighbors used for query expansion.
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Database-Side Augmentation (DBA). All of the before-mentioned methods
can be combined with DBA. We separately tune all hyper-parameters in this
combined scenario. We denote number of neighbors used for DBA as nDBA.
ADBA + AQE: nDBA = 4, nQE = 4; ADBAwD + AQEwD: nDBA = 4,
nQE = 6; αDBA + αQE: nDBA = 36, nQE = 10, α = 3; DDBA + DQE:
nDBA = 4, nQE = 2, C = 0.1, neg = 5; LAttDBA + LAttQE: nDBA = 48,
nQE = 64.

Sensitivity to the Number of Neighbors Used in the QE. Figure 3 shows
the mean accuracy of LAttQE as well as other query expansion methods on
ROxford and RParis, as a function of the number of neighbors used in the
expansion. We highlight: (i) Unsurprisingly, methods that assume all samples
are positive (e.g. AQE, DQE) degrade very fast when the number of neighbors
is not trivially small. AQEwD degrades a bit more gracefully, but can still obtain
very bad results if nQE is not chosen carefully. (ii) It is also unsurprising that
αQE has become a standard, since the accuracy is high and results do not
degrade when nQE is high. However, this only happens because of the weighting
function is of the form rα, with r < 1, i.e., the weight rapidly converges to
zero, and therefore most neighbors barely have any impact in the aggregation.
(iii) Our proposed LAttQE consistently obtains the best results across the whole
range of nQE. Our method is not limited by a weight that converges to zero, and
therefore can still improve when αQE has essentially converged (nQE > 40).

Different “Number of Relevant Images” and “AP” Regimes. We evalu-
ate query expansion impact at different regimes to showcase further differences
between methods. In all cases we report the relative improvement in mAP intro-
duced by using query expansion. In the first set of experiments, see Fig. 4 (top),
we group queries based on the number of relevant images, using percentiles 33
and 66 as cut-off. AQE (with nQE = 4) works very well for queries with very few
relevant samples, but leads to small improvements when the number of relevant
is high, as they are not leveraged. On the other hand, αQE, with α = 3 and
nQE = 72 obtains good results when the number of relevant is high, but really
struggles when the number of relevant is low. LAttQE is the only method that
is able to obtain high accuracy on all regimes. Figure 4 (bottom) groups queries
based on their accuracy before query expansion. Similarly, LAttQE is the only
method that consistently obtains high accuracy.
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Fig. 4. Relative mean average precision (mAP) improvement at different number of rel-
evant images (top) and AP regimes (bottom) split into 3 groups. Evaluation performed
on ROxford and RParis at two difficulty setups, Medium (left) and Hard (right). Mean
number of relevant images over all queries in the group (top) and mean average pre-
cision over all queries in the group (bottom) shown under respective group’s bar plot.

State-of-the-Art Comparison. Table 3 reports the accuracy of different meth-
ods on ROxford and RParis, both with and without the R1M distractor set.
The optimal number of neighbors for our approach (64 for LAttQE and 48 for
LAttDBA) was decided on the validation set of rSfM120k. On the other hand,
the optimal number of neighbors for the remaining methods was adjusted on
test to maximize their mean accuracy on ROxford and RParis, giving them an
unfair edge. Our method is the only one that consistently obtains good results
on both ROxford and RParis. Compare this to other methods, where, for exam-
ple, αQE obtains the best results on RParis but the worst results on ROxford,
while AQE obtains the best results on ROxford (excepting our method) but the
worst results on RParis. Generally, this gap becomes even larger when including
the R1M distractors. When using DBA and QE we observe the same trends:
although some method can be slightly more accurate on specific datasets, our
approach is the only one that obtains consistently good results on all datasets.
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Table 3. Performance evaluation via mean average precision (mAP) on ROxford
(ROxf) and RParis (RPar) with and without 1 million distractors (R1M). Our method
is validated on validation part of rSfM120k and is marked with �. Other methods are
validated directly on mAP over all queries of 4 protocols of ROxford and RParis.

ROxf ROxf + R1M RPar RPar + R1M Mean

M H M H M H M H

No QE

— 67.3 44.3 49.5 25.7 80.6 61.5 57.3 29.8 52.0

QE

[7] AQE 72.3 49.0 57.3 30.5 82.7 65.1 62.3 36.5 56.9

[13] AQEwD 72.0 48.7 56.9 30.0 83.3 65.9 63.0 37.1 57.1

[3] DQE 72.7 48.8 54.5 26.3 83.7 66.5 64.2 38.0 56.8

[33] αQE 69.3 44.5 52.5 26.1 86.9 71.7 66.5 41.6 57.4

� LAttQE 73.4 49.6 58.3 31.0 86.3 70.6 67.3 42.4 59.8

DBA + QE

[7] ADBA + AQE 71.9 53.6 55.3 32.8 83.9 68.0 65.0 39.6 58.8

[13] ADBAwD + AQEwD 73.2 53.2 57.9 34.0 84.3 68.7 65.6 40.8 59.7

[3] DDBA + DQE 72.0 50.7 56.9 32.9 83.2 66.7 65.4 39.1 58.4

[33] αDBA + αQE 71.7 50.7 56.0 31.5 87.5 73.5 70.6 48.5 61.3

� LAttDBA + LAttQE 74.0 54.1 60.0 36.3 87.8 74.1 70.5 48.3 63.1

5 Conclusions

In this paper we have presented a novel framework to learn how to perform query
expansion and database side augmentation for image retrieval tasks. Within this
framework we have proposed LAttQE, an attention-based model that outper-
forms commonly used query expansion techniques on standard benchmark while
being more robust on different regimes. Beyond LAttQE, we believe that the
main idea of our method, tackling the aggregation for query expansion as a
supervised task learned in a discriminative manner, is general and novel, and
hope that more methods build on top of this idea, proposing new aggregation
models that lead to more efficient and accurate search systems.
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Abstract. This paper proposes a knowledge distillation method for
foreground object search (FoS). Given a background and a rectangle
specifying the foreground location and scale, FoS retrieves compatible
foregrounds in a certain category for later image composition. Fore-
grounds within the same category can be grouped into a small number of
patterns. Instances within each pattern are compatible with any query
input interchangeably. These instances are referred to as interchange-
able foregrounds. We first present a pipeline to build pattern-level FoS
dataset containing labels of interchangeable foregrounds. We then estab-
lish a benchmark dataset for further training and testing following the
pipeline. As for the proposed method, we first train a foreground encoder
to learn representations of interchangeable foregrounds. We then train a
query encoder to learn query-foreground compatibility following a knowl-
edge distillation framework. It aims to transfer knowledge from inter-
changeable foregrounds to supervise representation learning of compat-
ibility. The query feature representation is projected to the same latent
space as interchangeable foregrounds, enabling very efficient and inter-
pretable instance-level search. Furthermore, pattern-level search is feasi-
ble to retrieve more controllable, reasonable and diverse foregrounds. The
proposed method outperforms the previous state-of-the-art by 10.42%
in absolute difference and 24.06% in relative improvement evaluated
by mean average precision (mAP). Extensive experimental results also
demonstrate its efficacy from various aspects. The benchmark dataset
and code will be release shortly.

1 Introduction

Foreground object search (FoS) retrieves compatible foregrounds in a certain
category given a background and a rectangle as query input [25]. It is a core
task in many image composition applications [21]. For object insertion in photo
editing, users often find it challenging and time-consuming to acquire compatible
foregrounds in a foreground pool. Object insertion can be used to fill a new
foreground to a region comprising undesired objects in the background [26].
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In a larger sense, for text-to-image synthesis with multiple objects, recent
researches [8,12] have shown insight to generate semantic layout at first. Then,
one way to solve the follow-up task, layout to image, is multi-object retrieval and
composition [1]. Directly retrieving multiple objects simultaneously suffers from
combinatorial explosion that can be perfectly avoided by iteratively performing
FoS with composition. Hence, FoS is also a significant underlying task (Fig. 1).

Fig. 1. Foreground object search (FoS). Given a background and a rectangle specifying
the foreground location and scale as query input, FoS is to find compatible foregrounds
within a certain category. (a) illustrates the query input. (b) exemplifies patterns in
the foreground pool. (c) demonstrates search results by the proposed method.

Two problems arise to solve FoS. The first problem is how to classify
foreground instances and define what are similar foregrounds to be retrieved
together. The second problem is that given a query input and a foreground
instance, how to define and decide their compatibility. Most recent methods
[25,26] jointly learned foreground similarity and query-foreground compatibility
without decoupling the two problems. It makes the results difficult to interpret.

We notice that foregrounds in a certain category can be grouped to a small
number of patterns. Instances within the same pattern are compatible with any
query input interchangeably. These instances are referred to as interchangeable
foregrounds. Then, the first question arises: how to define and label interchange-
able foregrounds specifically?

Suppose we have answered the first question well, manually labelling com-
patibility for many pairs of query-foreground data is still extremely challenging,
if not impossible. Since definition of interchangeable foregrounds relates to com-
patibility, the second question is: can we transfer knowledge from labelled inter-
changeable foregrounds to supervise representation learning of compatibility?

We answer these two questions in this work. For the first question, we propose
a pipeline to build pattern-level FoS dataset comprising labels of interchangeable
foregrounds. We exemplify ‘person’ as the foreground category to explain how to
label and establish a benchmark dataset for further training and testing. We then
train a foreground encoder to classify these patterns in order to learn feature
representations for interchangeable foregrounds.
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For the second question, we train a query encoder to learn query-foreground
compatibility. It learns to transform query inputs into query features such that
the feature similarities between query and compatible foregrounds are closer than
those between query and incompatible ones. We follow a knowledge distillation
scheme to transfer interchangeable foregrounds labelling to supervise compat-
ibility learning. More specifically, we freeze the trained foreground encoder as
the teacher network to generate embeddings as ‘soft targets’ to train the query
encoder in the student network. As a result, the query inputs are projected to
the same latent space as interchangeable foregrounds, enabling very efficient and
interpretable instance-level search. Furthermore, as interchangeable foregrounds
are grouped into patterns, pattern-level search is feasible to retrieve more con-
trollable, reasonable and diverse foregrounds.

We first show effectiveness of the foreground encoder to represent inter-
changeable foregrounds. We then demonstrate efficacy of the query encoder to
represent query-foreground compatibility. The proposed method outperforms the
previous state-of-the-art by 10.42% in absolute difference and 24.06% in relative
improvement evaluated by mean average precision (mAP).

The key contributions are summarized as follows:

– We introduce a novel concept called interchangeable foregrounds. It allows
interpretable and direct learning of foreground similarity specifically for FoS.
In addition, it makes pattern-level search feasible to retrieve more control-
lable, reasonable and diverse foregrounds.

– We propose a new pipeline to establish pattern-level FoS dataset containing
labels of interchangeable foregrounds. We establish the first benchmarking
dataset using this pipeline. This dataset will be released to the public.

– We propose a novel knowledge distillation framework to solve FoS. It enables
fully interpretable learning and outperforms the previous state-of-the-art by
a significant margin.

2 Related Works

2.1 Foreground Object Search

Early efforts on FoS, such as Photo Clip Art [11] and Sketch2Photo [1], applied
handcrafted features to search foregrounds according to matching criterion
as camera orientation, lighting, resolution, local context and so on. Manually
designing either these matching criterion or handcrafted features is challeng-
ing. With the success of deep learning on image classification [17], deep features
are involved to replace handcrafted ones. Tan et al. [19] employed local region
retrieval using semantic features extracted from an off-the-shelf CNN model. The
retrieved regions contain person segments which are further used for image com-
position. They assume the foregrounds have surrounding background context
and therefore, not feasible when the foregrounds are just images with pure back-
ground. Zhu et al. [28] trained a discriminative network to decide the realism of a
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composite image. They couple the suitability of foreground selection, adjustment
and composition into one realism score, making it difficult to interpret.

Zhao et al. [25] first formally defined the FoS task and focused on the fore-
ground selection problem alone. They applied end-to-end feature learning to
adapt for different object categories. This work is the closest to ours and serves
as the baseline method for comparison purpose. More recently, Zhao et al. [26]
proposed an unconstrained FoS task that aims to retrieve universal compatible
foreground without specifying its category. We only focus on the constrained
FoS problem with known foreground category in this work.

2.2 Knowledge Distillation

Knowledge distillation is a general purpose technique that is widely applied for
neural network compression [16]. The key idea is to use soft probabilities of a
larger teacher network to supervise a smaller student network, in addition to the
available class labels. The soft probabilities reveal more information than the
class labels alone that can purportedly help the student network learn better.

In addition to neural network compression, prior works has found knowledge
distillation to be useful for sequence modelling [9], domain adaptation [15], semi-
supervised learning [20] and so on. The closest work to ours is multi-modal
learning [5]. They trained a CNN model for a depth map as a new modality by
teaching the network to reproduce the mid-level semantic representations learned
from a well-labelled RGB image with paired data. For our case, we learn query-
foreground compatibility as a new modality by teaching the network to reproduce
the mid-level foreground similarity representations learned from a well-labelled
interchangeable foreground modality with paired data. Therefore, the proposed
FoS method can be viewed as another knowledge distillation application.

3 Foreground Object Search Dataset

In this section, we describe the proposed pipeline to build pattern-level FoS
dataset containing labels of interchangeable foregrounds. We exemplify ‘person’
as the foreground category to explain how to label and establish a benchmark
dataset for further training and testing. Building a benchmark dataset is neces-
sary for two reasons. First, there is no publicly available dataset for FoS. We do
not have access to the one established by the baseline method [25]. Second, the
previous dataset is instance-level and not sufficient to validate our method.

3.1 Pipeline to Establish Pattern-Level FoS Dataset

Figure 2 demonstrates the general pipeline to establish pattern-level FoS dataset.
There exists publicly available datasets that contain instance segmentation
masks, such as MS-COCO [13], PASCAL VOC 2012 [13] and ADE20K [27].
We can decompose an image into a background scene, a foreground and a rect-
angle using a mask. Since they are all from the same image, they are naturally
compatible.
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Fig. 2. The proposed pipeline to establish a pattern-level FoS dataset. The instance-
level dataset is first established to obtain compatible instance pairs transformed from
instance segmentation annotations. Through grouping interchangeable foregrounds
to patterns, pattern-level dataset is finally built. A compatible instance pair in the
instance-level dataset can be augmented to many pairs in the pattern-level dataset.

Previous methods [25,26] leave the original foreground in the background
scene when building the dataset. They do so because they mask out the fore-
ground by a rectangle filled with image mean values during training with an
early-fusion strategy. By contrast, we apply a free-form image inpainting algo-
rithm [23] to fill the foreground region in the background scene when building
the dataset. This is because the deep inpainting algorithm trained on millions of
images can perform reasonably well on this task. On the other hand, the early-
fusion strategy by previous methods masks out too much background context,
leaving the compatibility decision much more difficult. As for foreground sam-
ples in the dataset, we paste the foreground in the original image to the center
location on a pure white square background.

With sufficient number of foregrounds in a certain category, the next goal is
to group them into patterns of interchangeable foregrounds. Given many thou-
sands of instances, this task is very challenging without supervision. Hence,
we label foregrounds by attributes at first. We then group them into the same
pattern if they have identical values in every attribute dimension. Finally, we
establish a pattern-level dataset where much more compatible instance pairs can
be extracted than its instance-level counterpart.

3.2 Interchangeable Foregrounds Labelling

We show how to label interchangeable foregrounds by using ‘person’ as the fore-
ground category. ‘person’ is adopted because it is one of the most frequent cate-
gories for image composition. Furthermore, it is a non-rigid object with numerous
different states. It is sufficiently representative to address the issues for inter-
changeable foregrounds labelling. We do not consider style issues in this work
since all the raw images are photographs.



194 B. Li et al.

Fig. 3. An illustration of attributes for the ‘person’ foreground. It contains six attribute
dimensions: orientation, truncation, sport, motion, viewpoint and state. For a particular
foreground, orientation and truncation are mandatory dimensions to be assigned with
the presented values while the others are optional.

Figure 3 illustrates the six attribute dimensions we defined to classify pat-
terns of interchangeable foregrounds. For a particular foreground, orientation
and truncation are two mandatory attribute dimensions to be assigned with the
presented values. They are mandatory because they will largely determine most
aspects of interchangeable foregrounds. The other four attribute dimensions are
sport, motion, viewpoint and state. These dimensions can further distinguish
various aspects of ‘person’. Their values can be left as ‘unspecified’ when we
cannot assign them with available values. Table 1 shows the number of available
attribute values in each dimension.

Table 1. Number of available attribute values in each dimension

Orientation Truncation Sport Motion Viewpoint State

8 6 12 31 4 3

We adopt images with mask annotations in the MS-COCO [13] dataset as
raw data. Before labelling attribute values for each sample, we first exclude inap-
propriate samples that are heavily occluded, small or incomplete, resulting in
10154 foregrounds. We label 5468 samples from them with these attribute values,
leading to 699 different patterns after grouping. Thus, we obtain 5468 pattern-
level query-foreground compatibility pairs in total. Furthermore, the remaining
4686 unannotated foregrounds can be labelled automatically by a trained fore-
ground encoder presented in Sect. 4. It leads to more pairs of pattern-level data
to train query-foreground compatibility. In a larger sense, applying our trained
foreground encoder with an instance segmentation model such as Mask-RCNN
[6], we can automate the whole pipeline using internet images to learn query-
foreground compatibility.
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3.3 Evaluation Set and Metrics

The annotated foreground patterns follow a heavy-tailed distribution. Therefore,
we only select those patterns with at least 20 interchangeable foregrounds for
testing. This leads to 69 patterns in total. We randomly select 5 foreground
instances from each of these patterns to obtain the foreground database at test
time. These foregrounds can be also applied to evaluate the capability of the
foreground encoder in classifying interchangeable foregrounds. We adopt top-1
and top-5 accuracies to evaluate the classifier with 699 classes altogether.

Simultaneously, we obtain the same number of corresponding query inputs.
We select 100 query samples and prefer those with more ‘person’ in the query
background intentionally to make the dataset more challenging. We then man-
ually label their compatibility to each foreground pattern in the test-time fore-
ground database. This is because one query input may have multiple other com-
patible foreground patterns except the corresponding one. On average, for each
query input, we label 22.35 and 6.07 compatible foreground instances and pat-
terns, respectively. These pairs are employed to evaluate query-foreground com-
patibility. We adopt mAP to evaluate the overall performance of FoS.

4 Proposed Approach

4.1 Overall Training Scheme

Fig. 4. The overall training scheme. The foreground encoder is first trained to classify
patterns of interchangeable foregrounds. It then serves as the teacher network to gen-
erate foreground embeddings as soft targets to train the query encoder which encodes
query-foreground compatibility.

Figure 4 presents the overall training scheme comprising two successive stages.
The first stage trains the foreground encoder to classify patterns of interchange-
able foregrounds in order to learn foreground feature representations. Feature
similarities from the same pattern are closer than those from other patterns.
Therefore, the learned features are fully interpretable.
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The second stage trains the query encoder to learn query-foreground compat-
ibility. This encoder transforms query inputs into embeddings such that embed-
ding distances between query and compatible foregrounds are closer. We aim
to transfer the knowledge of interchangeable foregrounds labelling to supervise
compatibility learning. Hence, during training, we freeze the foreground encoder
trained from the first stage as the teacher network. It generates foreground
embeddings as ‘soft targets’ to train the query encoder in the student network. As
a result, the query inputs are projected to the same latent space as interchange-
able foregrounds, enabling very efficient and interpretable instance-level search.
Cosine distance is applied to measure embedding distances between query and
foreground. The embeddings are l2 normalized before computing cosine distance.

4.2 Foreground Encoder

Training for the foreground encoder follows a typical image classification
pipeline. The deeply learned embeddings need to be not only separable but
also discriminative. These embeddings require to be well-classified by k-nearest
neighbour algorithms without necessarily depend on label prediction.

Therefore, we adopt center loss [22] in addition to softmax loss to train more
discriminative features. The center loss is used due to its proven success in the
face recognition task that is very similar to ours. The loss function is given by

Lf = Lf
S + λLf

C . (1)

Lf denotes the total loss for foreground classification. The superscript f denotes
foreground later on. Lf

S is the conventional softmax loss. Lf
C is the center loss

and λ is the weight. Lf
C is given by

Lf
C =

1
2

m∑

i=1

‖xf
i − cfyi

‖22, (2)

where m is the batch size, xf
i ∈ R

d denotes the ith embedding, and cfyi
∈ R

d is
the embedding center of the yth

i pattern. d is the feature dimension.
As for the foreground encoder architecture, we adopt ResNet50 [7] with 2048

dimensional feature embedding as feature extractor. We initialize the weights
that were pre-trained for the ILSVRC-2014 competition [17]. A fully connected
layer is further appended to the feature extractor for pattern classification.

4.3 Query Encoder

Compatibility is determined by three factors: the background context, the fore-
ground context, and the foreground location and scale (i.e. layout). We do not
consider style compatibility in this work, but our framework is fully adaptable to
style encodings learned from [2]. We focus to retrieve compatible foregrounds in
a certain category without considering the multi-class problem, since our work
can be easily expanded using [25] to tackle this issue. It is still challenging to
hand-design compatibility criterion, even considering only the three factors.
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Fig. 5. The training scheme for the query encoder as knowledge distillation. The query
encoder is trained to generate query embeddings using a triplet network. This network
aims to distill compatibility information from the foreground encoder trained to rep-
resent patterns of interchangeable foregrounds.

Network Architecture Figure 5 demonstrates the training scheme for the
query encoder as knowledge distillation. This encoder transforms query inputs
into embeddings such that embedding distances between query and compatible
foregrounds are closer. The general architecture follows a typical two-stream net-
work. The bottom stream takes the square foreground image with pure white
background as input. It encodes the image to feature embedding using the fore-
ground encoder trained in the first stage. We freeze the weights in the foreground
encoder during training for the query encoder.

The top stream takes a background scene and a rectangle specifying the
desired foreground location and scale as query input. The background scene is
first cropped to a square image, where the desired foreground location is placed
as close to the image center as possible. This cropping also preserves as much
context as possible for the square-background. Such cropping makes the back-
ground image more consistent so that the training is more stable. The square-
background is encoded by a ResNet50 [7] backbone pre-trained on ImageNet [17]
with 2048-dimensional features. This network serves as the background encoder
to represent scene context. Since the pre-trained network can represent semantic
context well, we freeze its weights during training for the query encoder.

The query rectangle is just a bounding box with four degrees of freedom
(DoF). We adopt the centroid representation for the bounding box. The first
two DoF are coordinates of the bounding box centroid. The other two DoF are
width and height of the bounding box. These coordinates are then normalized by
dividing the image side length. We only keep the first two digits after the decimal
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point for better generalization of the bounding box encoding. This encoding is
referred to as layout embedding.

Unlike previous methods [25,26] by filling the query rectangle with image
mean values to the background scene as a unified query input, our method
encodes the two query factors separately to make the embeddings more inter-
pretable. In addition, previous methods may fail when the query rectangle is too
big relative to the background scene because too few background context can
be preserved after the early-fusion to a unified query input. By contrast, we can
avoid this issue completely since we encode the full square-background context.
This is feasible because the foreground object has already been removed from
the background scene when we establish the FoS dataset.

The layout and background embeddings are late-fused using bilinear fusion
[14]. Here, the two embeddings are fused using their outer product followed by
flattening to a vector. The outer product is adopted since it can model pairwise
feature interactions well. Because the layout embedding is only 4-dimensional,
we have not applied compact bilinear pooling techniques [3,4,24] to reduce the
dimension of the fused feature. This feature is then transformed by two fully
connected (FC) layers with ReLU activation to obtain the query embedding.
The output dimensions for the first and second FC are all 2048.

Loss Function. We construct triplets consisting of a query input as anchor, a
compatible foreground as positive, and an incompatible foreground as negative to
train the network. We adopt triplet loss [18] and enforce the embedding distance
between anchor and positive to be closer than the one between anchor and
negative. These embeddings are l2 normalized before measuring distance using
cosine function.

Formally, a fused feature after bilinear fusion is given by uq ∈ R
e, where

the superscript q denotes query later on and e is the dimension of the feature
embedding. Denote the foreground embeddings for the positive and negative
samples are xf

p and xf
n, respectively. The operation of two FC layers with ReLU

is denoted as F . The triplet loss is then given by

Lq = max

(
0,

F (uq)T xf
p

‖F (uq) ‖‖xf
p‖ − F (uq)T xf

n

‖F (uq) ‖‖xf
n‖ + M

)
, (3)

where M is a positive margin. The objective is to train F by minimizing Lq over
all the sampled triplets.

Training Data. The pattern-level FoS dataset is used for training. The dataset
contains pairs of query and compatible pattern containing interchangeable fore-
ground instances. A query with these instances form positive pairs, whereas the
query with the others are all negative ones. With pattern-level FoS dataset, we
can largely alleviate the severe imbalance in the number of training samples, cou-
pled with noise in the negative pair sampling where some compatible foregrounds
are mistreated as negative ones.
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We apply different data augmentation strategies for the three types of input.
To augment the query rectangle, we relax its size and scale constraints by ran-
domly resizing the rectangle with maximum possible space being half of the rect-
angle’s width and height. To augment the query background, we add random
zoom on the cropped square-background while keep the whole query rectangle
within the field of view. This augmentation strategy cannot be applied by pre-
vious methods [25,26] since it will result in fewer background context in the
early-fused query input. As for foreground augmentation, we adopt the same
strategy when training the foreground encoder.

4.4 Pattern-Level Foreground Object Search

With the novel concept of interchangeable foregrounds, we can apply pattern-
level FoS instead of instance-level. For each foreground instance in the query
database, we can assign a pattern label on it. Having all foreground instances
within a pattern, the pattern embedding is computed using the centroid of all
the instance embeddings transformed by the trained foreground encoder. These
pattern embeddings can be also indexed for retrieval. Pattern-level FoS can easily
stratify the results, making it more feasible to retrieve controllable, reasonable
and diverse foreground instances.

4.5 Implementation Details

To train the foreground encoder, we use the SGD optimizer with momentum
and weight decay set to 0.9 and 0.0001, respectively. The learning rate for the
softmax loss is 0.02 and the learning rate decay is 0.5 for every 10 epochs. The
center loss weight, λ, is set to 0.005. The learning rate for the center loss is
0.5. Batch size is 32 during training. For offline augmentation, we add random
padding to the foreground and fill in the padded region with white color. Each
foreground is augmented to 20 samples. We then pad them to square images
with pure white background. For online augmentation, we apply color jitter by
randomly changing the brightness, saturation, contrast and hue by 0.4, 0.4, 0.4
and 0.2, respectively. These samples are resized to 256 × 256 before fed into the
foreground encoder.

To train the query encoder, we use the Adam optimizer [10] with β1 = 0.5,
β2 = 0.99 and ε = 10−9. The learning rate is 10−4 for the triplet loss. Batch size is
16 during training. The margin, M , is set to 0.1. The input size of the background
encoder is 256×256. We perform offline augmentations as described. Each query-
foreground pair is augmented to 20 samples. For online augmentation, we apply
color jitter by randomly changing the brightness, saturation, contrast and hue
by 0.4, 0.4, 0.4 and 0.2, respectively.
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Fig. 6. Retrieval results comparison on similar foregrounds. The yellow box denotes
the query foreground. The top-5 most similar foregrounds retrieved by the proposed
method, the baseline method [25] and the pre-trained ResNet50 model are shown in
the green, blue and orange boxes, respectively. (Color figure online)

5 Experiments

5.1 Foreground Encoder

We train foreground encoder in the first stage to classify patterns of interchange-
able foregrounds. We use a foreground as query and search for its top-5 most sim-
ilar foregrounds in a large database comprising 10154 samples. We first encode
all the samples into embeddings using our trained foreground encoder. These
embeddings are further l2 normalized for query using cosine distance. We apply
brute-force k-nearest neighbour matching to obtain the retrieval results. We
compare results with the baseline method [25] and the pre-trained ResNet50
model on ImageNet as shown by Fig. 6. Clearly, similar instances retrieved by
our method are much more interpretable. We can also apply pattern-level search
to create interpretable and controllable diversity.

To further quantify the performance of foreground encoder as a pattern
classifier, we test it on our evaluation set. The top-1 and top-5 accuracies are
respectively 53.15% and 85.79% with 699 classes. The accuracy can be further
improved with more labelled data, while the trained foreground encoder is suffi-
cient to achieve much better performance over the baseline method in supervising
query-foreground compatibility later.

5.2 Query Encoder

We compare our results with the baseline method [25]. We remove the MCB
module in the baseline method since we only focus on FoS with one foreground
category. Since their implementation is not publicly available, we implement it
by strictly following all the settings in their paper. We train both methods on
the newly established FoS dataset. We prepare 2 million triplets for each method
and train for 2 epochs until convergence.

We first compare results from the two methods qualitatively in Fig. 7. Each
row represents one query. The leftmost image shows the query input. Results
from pattern- and instance-level search using our method are given in the red
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Fig. 7. Retrieval results comparison with baseline method [25]. Each row represents
one query. The leftmost image demonstrates the query input. The red box shows top-3
patterns from pattern-level search, each with top-2 instances shown in a column, using
the proposed method. The top-5 instance-level search results by our method and the
baseline method are shown in the green and blue boxes, respectively. (Color figure
online)

and green boxes, respectively. The instance-level search results from the base-
line method are shown in the blue box. As can be seen, pattern-level search
can provide reasonable and diverse results in a more controllable fashion than
instance-level search. As for instance-level search, our results are much more
reasonable and interpretable as seen from the first to third row. When the query
rectangle is big relative to the background image, the baseline method cannot
work properly due to its early-fusion strategy in the query stream. The third row
illustrates such a case where a skateboard appears in the background image but
most parts of the skateboard are within the query rectangle. The baseline method
masks out this crucial cue with early-fusion, resulting in the fatal errors. Our
method uses late-fusion without losing any information from the query inputs
and therefore, it easily captures the important cue within the query rectangle.
Results in the forth and fifth row demonstrate a limitation of both the proposed
and baseline method. This limitation originates from the preprocessing step that
square-crops the background image. Take the case in the fifth row for example.
After square-cropping the query background, the woman playing tennis on the
opposite side to the query rectangle is completely cropped, resulting in the final
confusion of the retrieval results.

Quantitatively, we test both methods on our evaluation set. The mAP is
43.30% using the baseline method whereas ours is 53.72%. It outperforms the
baseline by 10.42% in absolute difference and 24.06% in relative improvement.

Ablation Study. Table 2 shows results in mAP of five ablation variants. The
value in blue shows their respective absolute changes relative to the base-
line method. We first investigate the significance to apply interchangeable
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Table 2. Ablation study results with mAP in percentage. ‘Baseline’ denotes baseline
method [25]. ‘Early-fusion’ denotes training using early-fused query inputs. ‘No-aug’
denotes late fusion without random zoom augmentation. ‘No-bg-freeze’ denotes training
without freezing background context encoder. ‘Multi-task’ denotes training using a
multi-task loss to jointly train the foreground and query encoder.

Baseline Early-fusion No-aug No-bg-freeze Multi-task Ours

43.30 48.98 5.68↑ 51.91 8.61↑ 53.61 10.31↑ 54.48 11.18↑ 53.72 10.42↑

foregrounds. We employ early fusion strategy in the query stream similar to
the baseline method, while we keep our pre-training for interchangeable fore-
grounds. With the newly introduced interchangeable foregrounds pre-training,
the mAP is enhanced by 5.68%, contributing to 54.51% for the overall improve-
ment. In the second variant, we apply our late fusion strategy in the query
stream without random zoom augmentation. It further improves the mAP by
2.93%, contributing to 28.12% for the overall improvement. In the third exper-
iment, we add random zoom augmentation. The baseline method [25] cannot
perform this augmentation since in many cases, the zoomed background with
masked query rectangle lacks background context. In this experiment, we do
not freeze the background encoder. With this augmentation, the mAP is further
enhanced by 1.7%, contributing to 16.31% for the overall improvement. In the
fourth experiment, we freeze the background encoder and just train the two FC
with ReLU layers. Results have shown that training for the background encoder
simultaneously cannot help determining compatibility. It implies that the pre-
trained model is sufficient to encode semantic context well for the background.
In the final ablation experiment, we further fine-tune the foreground and query
encoder with a multi-task loss without freezing the foreground encoder. It gives
a gain of 0.76%. However, the gain will be less as we enlarge the interchange-
able foreground dataset. By contrast, our knowledge distillation framework can
modularize FoS into two sub-tasks whose dataset can be prepared separately.

6 Conclusions

This paper introduces a novel concept called interchangeable foregrounds for
FoS. It enables interpretable and direct learning of foreground similarity. It
also makes pattern-level search feasible to retrieve controllable, reasonable and
diverse foregrounds. A new pipeline is proposed to build pattern-level FoS
dataset with labelled interchangeable foregrounds. The first FoS benchmark
dataset is established accordingly. A novel knowledge distillation framework
is proposed to solve the FoS task. It provides fully interpretable results and
enhances the absolute mAP by 10.42% and relative mAP by 24.06% over the pre-
vious state-of-the-art. It implies the knowledge from interchangeable foregrounds
can be transferred to supervise compatibility learning for better performance.
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Abstract. Most previous knowledge distillation frameworks train the
student to mimic the teacher’s output of each sample or transfer cross-
sample relations from the teacher to the student. Nevertheless, they
neglect the structured relations at a category level. In this paper, a
novel Category Structure is proposed to transfer category-level struc-
tured relations for knowledge distillation. It models two structured rela-
tions, including intra-category structure and inter-category structure,
which are intrinsic natures in relations between samples. Intra-category
structure penalizes the structured relations in samples from the same
category and inter-category structure focuses on cross-category relations
at a category level. Transferring category structure from the teacher to
the student supplements category-level structured relations for training
a better student. Extensive experiments show that our method groups
samples from the same category tighter in the embedding space and the
superiority of our method in comparison with closely related works are
validated in different datasets and models.

Keywords: Knowledge distillation · Intra-category structure ·
Inter-category structure · Structured relation

1 Introduction

Recent developments of deep neural network (DNN) have achieved state-of-the-
art performance in many tasks [1,21]. In several challenging datasets [3,11], well-
designed networks can even perform better than humans. However, these net-
works typically have millions of parameters and consume large amounts of com-
putation resources. Applications of these large networks are limited on embedded
devices due to their high resource demands. Therefore, there is an urgency for
training small networks with low resource demands, while keeping the perfor-
mance of small networks as close as possible to large networks. Several methods,
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(a) Conventional KD (b) Correlation KD (c) Our Category Structure KD

Teacher
Student

Fig. 1. Differences in transferred knowledge between conventional knowledge distilla-
tion, correlation knowledge distillation and our Category Structure Knowledge Dis-
tillation (CSKD). In contrast to previous methods, CSKD considers intra-category
structure and inter-category structure at a category level as profitable knowledge for
knowledge distillation to better improve the performance of the student

such as low-rank factorization [4,10], network pruning [15,18], network quantiza-
tion [13,17] and knowledge distillation [8,22], have been developed to solve this
problem. Knowledge distillation has been proved to be an effective approach to
improve the performance of small networks by transferring effective knowledge
from a large model to a small model. Through additional regression constraints
on outputs of teacher and student for input data, knowledge distillation forces
the student model to imitate teacher’s behaviors to obtain better performance.

The key problem of knowledge distillation is to extract effective, adequate
and general knowledge from the teacher to the student. To handle this problem,
conventional knowledge distillation transfers knowledge in a single-sample man-
ner, keeping the student learning the consistency of each input sample as shown
in Fig. 1(a). It focuses on extracting knowledge from the final and immediate
outputs of the teacher and transferring them to the student. Recently, correla-
tion congruence [20] has been proposed to add constraints on relations between
multiple samples as shown in Fig. 1(b). However, these methods ignore the struc-
tured relations at a category level, which depict relations from a more abstract
and high-level perspective.

We suppose that the category-level structured relations are also profitable
knowledge for improving the performance of the student. In this paper, we
further propose a novel general framework called Category Structure Knowl-
edge Distillation (CSKD) which focuses on transferring category-level struc-
tured relations named category structure from the teacher to the student. Cat-
egory structure consists of two types of structured relations: intra-category
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structure for each category and inter-category structure between different cat-
egories. Intra-category structure contains relations between samples from the
same category and inter-category structure transfers relations between different
categories. CSKD is easy to be implemented and the effectiveness of the pro-
posed method is demonstrated by extensive empirical results on three datasets
and different models.

Our contributions in this paper are summarized as follows:

1. We propose a new general distillation framework called Category Structure
Knowledge Distillation (CSKD), which transfers structured relations from the
teacher to the student at a category level. To the best of our knowledge, it is
the first work to introduce category-level structured relations for knowledge
distillation.

2. We define intra-category and inter-category structure to form the category
structure. And two effective relation functions are introduced to better extract
intra-category structure and inter-category structure from the embedding
space of the teacher and the student.

3. Extensive experiments show that our method achieves state-of-the-art perfor-
mance. We conduct experiments on different datasets and different teacher-
student architecture settings to show the effectiveness of the proposed method
in comparison with closely related works.

2 Related Work

In this paper, we focus on improving the performance of small networks. There-
fore, we summarize recent methods in model compression and knowledge distil-
lation in this section.

2.1 Model Compression

Model compression focuses on designing small networks with few parameters
and high performance simultaneously. Sindhwani [24] proposed a unified frame-
work to learn structured parameter matrices that are characterized by the notion
of low displacement rank. Louizos [15] employed L0 norm regularization in the
training to prune the neural networks by encouraging weights to become exactly
zero. Energy-aware pruning was utilized to construct energy-efficient convolu-
tional neural networks [27]. Binary quantization with weights and activation
constrained to {−1,+1} at run-time were adopted in [13]. Adaptive quantiza-
tion for finding optimal quantization bit-width for each layer was also explored
in recent work [30].

2.2 Knowledge Distillation

The purpose of knowledge distillation is improving the performance of small
models by transferring knowledge from large models to small models. Hinton [8]
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first proposed to distill teacher’s knowledge to student by soft targets under a
controlled temperature. Romero [22] proposed a two-stage training procedure
and transferred not only final outputs but also intermediate outputs to student.
In [29], a compact student network was improved by mimicking the attention
maps of a powerful teacher network. Yim [28] proposed a flow of solution pro-
cedure (FSP) to inherit relations between two convolutional layers. In [16], neu-
rons in the deeper hidden layers were used to transfer essential characteristics
of the learned face representation for face recognition task. To obtain a promis-
ing improvement, noise regularization was added while training the student [23].
Huang [9] regarded knowledge transfer as a distribution matching problem and
utilized neuron selectivity patterns between teacher and student models to solve
the distribution matching problem. In [7], activation boundary, which meant the
activations of neurons instead of their exact output values, was employed to
transfer classification-friendly partitions of the hidden feature space.

Recent works also adopt generative adversarial network (GAN) and adver-
sarial examples to obtain better performance. In [26], conditional generative
adversarial network was used to learn a proper loss function to transfer effective
knowledge from teacher to student. And in [25], a three-player game, consisting
of a teacher, a student, and a discriminator, was proposed based on generative
adversarial network to force teacher and student learning each other mutually.
Heo [6] forced student to learn the decision boundary by adversarial examples.

In addition to the above methods that transfer knowledge in a single-sample
manner, there are also a few methods to explore relations between multiple
samples for knowledge distillation. Chen [2] used cross-sample similarities which
could be naturally derived from deep metric models. In [19], distance-based
and angle-based relations were proposed to penalize structural differences in
relations. Similarly, Liu [14] utilized instance relationship graph to transfer a
relation graph from teacher to student.

In this paper, we further take the category structure in feature space as
profitable knowledge to transfer the intra-category structure and inter-category
structure from teacher to student.

3 Category Structure Knowledge Distillation

In this section, we describe the details of our proposed category structure for
knowledge distillation.

3.1 Knowledge Distillation

We start from conventional knowledge distillation in this section for a better
understanding. The concept of knowledge distillation is first proposed in [8] to
distill hint knowledge from teacher to the student using cross-entropy

LKD−CE =
1
n

n∑

i=1

Hcross(yt
i ,y

s
i ), (1)
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where n is the number of samples and Hcross is cross-entropy loss function.
yt

i and ys
i refer to teacher’s and student’s softmax outputs under distillation

temperature τ

yij =
ezj/τ

∑c
k=1 ezk/τ

, (2)

where yij refers to the predicted probability belonging to the j-th class, zj refers
to the logits of teacher and student and c represents the number of classes. By
minimizing the cross-entropy loss function, student mimics teacher’s behaviors
progressively. In several works [7,20], KL divergence is adopted to better match
distributions of teacher and student.

LKD−KL =
1
n

n∑

i=1

KL(yt
i ,y

s
i ). (3)

Correlation constraints are utilized in [20] to transfer relations between mul-
tiple samples by computing cross sample correlations.

Lcorrelation =
1
n2

‖Φ(F t) − Φ(F s)‖22, (4)

where F t and F s represent feature maps of teacher and student, respectively.
Φ(·) is a mapping function, Φ : F −→ Ω ∈ R

n×n, which maps feature represen-
tation F to a relational matrix Ω by computing pairwise similarity or distance
between any two samples in a mini-batch of training dataset. Correlation reflects
relations between samples and transferring mutual correlation to student can
improve the performance of student by providing extra beneficial information
that can not be noticed in single sample manner.

Transferring pairwise relations between any two samples is straight-forward
and it may contain some redundant and irrelevant information for knowledge dis-
tillation. For example, relations between samples from different classes are calcu-
lated for any pair in [20]. Samples from highly related classes may get high simi-
larity and samples from irrelevant classes may get low similarity. However, most
of these relations are redundant and unnecessary for classification task. Samples
from the same class may have similar relations between themselves and samples
from other classes. Transferring redundant information from teacher to student
may confuse student to some extent. Inspired by this, we consider structured rela-
tions at a category level as principal and sparse knowledge. Beyond sample corre-
lation, we further explore category structure for knowledge distillation.

3.2 Category Structure

In this section, we describe Category Structure Knowledge Distillation in
detail. Category structure consists of two parts: intra-category structure and
inter-category structure. Intra-category structure describes structured relations
between samples from the same category, while inter-category structure rep-
resents structured relations between different categories at a category level.
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Fig. 2. The overview of our CSKD. Extract intra-category structure and inter-category
structure by relation functions Ψ(·) and Λ(·) respectively, and transfer them from the
teacher to the student

The overall framework of our proposed method is illustrated in Fig. 2. Given n
training samples X = {x1, x2, ..., xn}, a pre-trained teacher model f t and a ran-
dom initialized student model fs. Let feature representations F it = f t(Xi;W t)
and F is = fs(Xi;W s), respectively. W t and W s are weights of teacher and
student. Xi refers to samples belonging to the i-th class. We divide training
samples into different categories by labels. Then category structure denoted as
CS is constructed to represent relation structures across samples and can be
expressed as

CS = (CSintra, CSinter) = ({Ψ(F i)}c
i=1, Λ({F i}c

i=1)), (5)

where Ψ(·) is the intra-category structure function constructing relations between
samples from the same category and Λ(·) refers to the inter-category structure
function representing relations between different categories. For each feature rep-
resentation set F i = f(Xi;W ) belonging to the i-th category, Ψ(F i) formalise
their structured relations to group a tight cluster in the embedding space. Corre-
spondingly, Λ({F i}c

i=1)) is a mapping function: Λ : F −→ M ∈ R
c×c, calculating

similarities between different categories to separate samples from irrelevant cat-
egories from each other. M is a category relational matrix.

To construct relations at a category level, we define a category center as

Ci =
1
m

m∑

j=1

F i
j , (6)

where F i
j refers to the feature map belonging to the j-th sample from the i-th

category, and m is the number of samples from the i-th category. Category center
is calculated by the average feature map for samples from the same category and
it represents the general category feature representation in high-level feature
space to some extent.

Then the relation function of intra-category structure can be defined as

Ψ(F i) = {F i
j − Ci}m

j=1. (7)
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Teacher

Inter-category structure transfer

Intra-category structure transfer

Category center

Training samples

Student

Fig. 3. Illustration of category structure transfer. Yellow solid arrows indicate the inter-
category structure transfer, and blue dotted arrows refer to intra-category structure
transfer. Inter-category structure transfers cross-category similarity between any two
categories and intra-category structure transfer relative structure formed by category
center and training samples from the same category (Color figure online)

It preserves the structured information of relative distances between each
sample and its category center. We assume that samples from the same category
group tight in the embedding space and category center can represent samples
from the same category in the embedding space. Based on category center, rela-
tions of samples from the same category are involved in the relation structure
in a more efficient and sparse way. We further define the relation function of
inter-category structure based on similarity:

M(i, j) = Λ(F i,F j) =
Ci · Cj

‖Ci‖2‖Cj‖2
, i, j = 1, 2, ..., c. (8)

It reflects the structured relations between any two categories. Highly related
categories have high similarity scores and irrelevant categories have low similarity
scores.

Intra-category structure ignores redundant relations between cross-category
samples and focuses on pairwise relations formed by relative distance to category
center between samples from the same category. Correspondingly, inter-category
structure maintains principal category-wise relations and it complements struc-
tured relations in a global sense. And our extensive experiments shows that intra-
category structure and inter-category structure shows mutual positive effects to
each other. Since we conduct structured relations at a category level, category
structure constructs sparser relations than correlation that calculates relations
between any two samples (see analysis in Sect. 4.6).

3.3 Loss for Category Structure Transfer

Figure 3 shows the illustration of category structure and its transfer process.To
transfer category structure from teacher to student, we construct LCS to
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measure differences between category structures of teacher and student. Let
D(·) represents the distance function between relation structures, then the loss
for category structure transfer can be defined as

LCS = Lintra + Linter

= β · D(CSt
intra, CSs

intra) + γ · D(CSt
inter, CSs

inter)

=
β

c
·

c∑

i=1

‖Ψ(F it) − Ψ(σ(F is))‖2 + γ · ‖Λ({F it}c
i=1) − Λ({F is}c

i=1)‖2

=
β

c
·

c∑

i=1

‖Ψ(F it) − Ψ(σ(F is))‖2 + γ · ‖M t − M s‖2,
(9)

where β and γ are hyper-parameters to control weights of intra-category struc-
ture and inter-category structure. σ(·) is a transformer with 1×1 convolution
layer for matching student’s channels to teacher’s. Therefore, total loss for train-
ing student is

Ltotal = αLCE + (1 − α)LKD + LCS , (10)

where LCE is the cross-entropy loss based on student’s output and ground truth
and LKD is the mean square errors of teacher’s and student’s logits in our
experiments. α is a trade-off between supervision from labels and single-sample
based knowledge transfer. Our CSKD is summarized in Algorithm 1.

4 Experiments

We evaluate CSKD on three datasets: CIFAR-10, CIFAR-100 and Tiny ImageNet
to show the effectiveness of our proposed method. And we compare CSKD with
closely related works. Extensive experiments are conducted to explore category
structure for knowledge distillation. Our codes for experiments and more results
will be available at https://github.com/xeanzheng/CSKD.

4.1 Experimental Settings

We adopt ResNet [5] as the main architecture in our experiments. In the main
experiments, the hyper-parameter α is set to 0.1, the weight of intra-category
structure loss β is empirically set to 0.01, and γ = 0.2.

On CIFAR-10, CIFAR-100, and Tiny ImageNet, we compare CSKD with the
student trained with only cross-entropy (CE), original knowledge distillation
(KD) [8], Fitnet [22], KDGAN [25], activation boundary transfer (AB) [7], and
correlation congruence knowledge distillation (CCKD) [20]. For fare compar-
isons, all methods are implemented and compared under the same architecture
configurations.

https://github.com/xeanzheng/CSKD
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Algorithm 1. Category structure knowledge distillation.
Input:

Training samples, X = {x1, x2, ..., xn};
Labels of training samples, y = {y1, y2, ..., yn};
Teacher model f t with pre-trained weights W t ;
Student model f̂s with random initialized weights Ŵ s ;
Transformer with 1×1 convolution layer, σ;

Output:
Student model fs with optimized weights W s ;

1: while not convergence do
2: Choose a random batch X̂ and their labels ŷ from training samples X and labels

y;
3: Extract features from teacher and student model, F t = f t(X̂ ; W t), F s =

f̂s(X̂ ; W s);
4: Group features into different groups by labels ŷ, F t = {F it}c

i=1, F s = {F is}c
i=1;

5: Extract structured relations by Ψ and Λ relation functions, Ψ(F it), Ψ(σ(F is)),
Λ({F it}c

i=1), Λ({F is}c
i=1);

6: Transfer category structure to student model fs by descending the stochastic
gradient from LCS :

∇W s
β
c

· ∑c
i=1 ‘‖Ψ(F it) − Ψ(σ(F is))‖2 + γ · ‖Λ({F it}c

i=1) − Λ({F is}c
i=1)‖2,

and train the student model by supervision from labels and single-sample based
knowledge distillation loss from the teacher:

∇W sαLCE + (1 − α)LKD;
7: end while
8: return fs with its weights W s;

4.2 Results on CIFAR-10

CIFAR-10 [12] consists of 60 K 32× 32 images in 10 classes and each class con-
tains 5000 images in training set and 1000 images in validation set. We first resize
images to 40×40 by zero-padding, and then randomly crop images to original
size 32 × 32. Meanwhile, random horizontal flip and normalization with channel
means and standard deviations are adopted to augment the training data. We
use a batch size 128 and a standard SGD optimizer with an initial learning rate
0.1 and momentum 0.9 to optimize our model and the weight decay is set to
1e−4. We train the model with 200 epochs and the learning rate is multiplied
by a scale factor 0.1 when training epochs are at 80, 120, 160.

We conduct our CSKD on teacher networks ResNet152 0.5 (14.6 M) with a
accuracy 93.22% and ResNet101 0.5 (10.7 M) with a accuracy 92.91% and stu-
dent networks ResNet18 0.25 (0.7 M), ResNet34 0.25 (1.3 M) and ResNet50 0.25
(1.4 M). ResNet x represents a ResNet with a channel reduction to a ratio of x.
The first convolution kernel is changed to size 3× 3 with a stride 1 and the stride
of the first max-pooling is set to 1 to fit the image size.

We show our results on CIFAR-10 in Table 1. CSKD shows remarkable
improvements under all evaluated teacher-student architecture settings. It
obtains an average 1.52% improvement on different student networks and sur-
passes several closely related state-of-the-art methods with obvious margins. And
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Table 1. Accuracy of different methods on CIFAR-10. We explore our CSKD on
different teacher-student architecture settings and keep the same training configuration
for all the methods for fair comparisons. The proposed method surpasses all other
methods. R101 0.5: ResNet101 with a channel reduction to the ratio of 50%

Teacher/Student Model CE KD Fitnet KDGAN AB CCKD Proposed Teacher

R101 0.5/R18 0.25 90.14 91.01 91.05 91.54 91.42 91.07 91.99 92.91

R101 0.5/R34 0.25 91.25 91.48 91.61 92.09 91.94 91.87 92.67 92.91

R101 0.5/R50 0.25 92.16 92.18 92.37 92.65 92.49 92.34 93.20 92.91

R152 0.5/R18 0.25 90.14 91.11 91.37 91.50 91.44 91.56 92.27 93.22

R152 0.5/R34 0.25 91.25 91.81 92.14 92.38 92.16 92.10 92.76 93.22

R152 0.5/R50 0.25 92.16 92.29 92.53 93.01 92.79 92.75 93.31 93.22

it is noticed that our compression ratios are around 4.8%∼13.1%, however, the
performance of the student even can surpass the teacher in some teacher-student
architecture settings, e.g., 92.91% of teacher ResNet101 0.5 versus 93.20% of stu-
dent ResNet50 0.25.

Table 2. Accuracy of different methods on CIFAR-100. Our CSKD outperforms all
other methods and even better than the teacher

Teacher/Student Model CE KD Fitnet KDGAN AB CCKD Proposed Teacher

R101 0.5/R18 0.25 65.64 67.43 68.04 68.35 68.17 68.96 69.14 71.77

R101 0.5/R34 0.25 66.86 69.30 69.76 69.81 69.91 70.14 70.39 71.77

R101 0.5/R50 0.25 68.79 70.57 71.39 71.24 71.05 71.32 71.61 71.77

R152 0.5/R18 0.25 65.64 67.99 68.41 68.34 68.73 69.15 69.22 72.15

R152 0.5/R34 0.25 66.86 70.08 70.48 70.70 70.75 70.98 71.01 72.15

R152 0.5/R50 0.25 68.79 71.24 71.92 71.52 72.25 72.19 72.60 72.15

Table 3. Top-1 accuracy and top-5 accuracy on Tiny ImageNet. The teacher is
ResNet152 (58.5M) and the student is ResNet18 0.25 (0.7 M)

Method Top-1 accuracy Top-5 accuracy

Teacher 60.70 81.87

CE 45.21 71.03

KD 49.53 74.90

Fitnet 50.12 75.41

KDGAN 52.84 77.62

CCKD 53.14 78.14

AB 52.72 77.89

Proposed 53.66 78.75
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4.3 Results on CIFAR-100

CIFAR-100 [12] is similar to CIFAR-10 dataset. But it is a more complicated
dataset because it contains 100 classes rather than 10 classes in CIFAR-10.
There are also 60 K 32× 32 images in CIFAR-100 and 50K/10K images for
training/validation. Each class contains 500 training images and 100 validation
images and we adopt the same data augmentation scheme used in CIFAR-10
(resize/padding/crop/flip/normalization) for CIFAR-100. The same multi-step
SGD optimizer is also adopted and we train our model with 200 epochs.

We show results on CIFAR-100 in Table 2. The same network architec-
ture settings are used and CSKD outperforms other methods. In this dataset,
there exists a relatively big margin (compression ratio around 2.98%∼6.51%)
between teacher and student and our CSKD improves the performance of the
student by 2.82%∼4.15%. And the student achieves a better accuracy 72.60%
(ResNet50 0.25) than the teacher with an accuracy 72.15% (ResNet152 0.5) at
the last entry in Table 2.

4.4 Results on Tiny ImageNet

Tiny ImageNet is a downsampled version of the ImageNet [3] for classification.
It consists of 120 K images with 200 classes and each class contains 500 training
images, 50 validating images, and 50 test images. The images are downsampled
from 256× 256 to 64× 64. It is more difficult to classify these images in Tiny
ImageNet than CIFAR datasets. We adopt Resnet152 (58.5 M) as the teacher
model and Resnet18 0.25 (0.7 M) as the student model to explore the perfor-
mance of CSKD when there is a big gap in capacity between the teacher and the
student. The student only has around 1.2% of the teacher’s parameters under
this teacher-student architecture setting. We resize input images to 72× 72 and
then randomly crop them to 64× 64. Random horizontal flip operation and chan-
nel normalization are also utilized to augment and normalize the training data.
To better extract feature representations in the embedding space, the first con-
volutional kernel in original ResNet18 is changed to 3× 3 with a stride 1 to fit
the image size. The batch size is chosen as 200 and the student is trained with
200 epochs. A SGD optimizer with initial learning rate 0.1 and momentum 0.9
is utilized and the weight decay is set to 5e−4. The learning rate is divided by
a factor 10 at 50, 100, 150 epochs.

Table 3 shows the results of CSKD and related works on Tiny ImageNet. All
models are evaluated on validation set and trained with the same epochs for
fair comparisons. Our CSKD surpasses all other methods in Table 3 and gets a
53.66% top-1 accuracy and a 78.75% top-5 accuracy. Compared with original
KD, CSKD surpasses by around 4% in both top-1 accuracy and top-5 accuracy.
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Table 4. Ablation study of Category Structure Knowledge Distillation. It is observed
that every part of our category structure takes effect. Intra-category structure and
inter-category structure show mutual effects when both of them are used

Intra loss Inter loss Top-1 accuracy Top-5 accuracy

× × 49.53 74.90

� × 52.51 78.36

× � 52.48 78.45

� � 53.66 78.75

4.5 Ablation Study

We conduct an ablation study on the setting of a teacher ResNet152 and a
student ResNet18 0.25 to delve into two parts of category structure, i.e., intra-
category structure and inter-category structure. The results are summarized in
Table 4. Each part of category structure loss is stripped to show the effective-
ness of two parts of our category structure. When applied only intra-category
loss or inter-category loss, our method gets similar improvements. If unabridged
category structure loss is used, intra-category loss and inter-category loss show
mutual effects on each other and CSKD achieves better promotions. It is also
noticed that our method gets a general higher top-5 accuracy when compared
with all other methods in Table 3, which reveals that category structure groups
similar categories tighter in the embedding space and separates irrelevant cate-
gories far away from each other.

4.6 Analysis

Since we construct relation structures at a category level, the relations are sparser
than cross-sample correlation which penalizes relations between any two samples.
We simply regard different kinds of relations as the same edges between different
vertices (samples) and calculate the number of edges to compare the complexity
between category structure and cross-sample correlation. Let a dataset consists
of c categories and to simplify the calculation, each category is assumed to con-
tain m images, then the number of edges in correlation is m2c2. In category
structure, the number of edges is mc + c2. Then the quantity ratio can be cal-
culated as

m2c2/(mc + c2) = m2c/(m + c) ≤ m

2
√

mc. (11)

It is obvious that category structure compresses original correlation at most
m
2

√
mc times. Our CSKD helps reduce redundant relations between cross-

category samples by focusing on relations between samples from the same cat-
egory (intra-category relations) and using relations based on category center
between different categories (inter-category relations).
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(a) KD (b) Fitnet (c) KDGAN

(d) ABF (e) CCKD (f) Our CSKD

Fig. 4. Feature visualization of different methods. Each point represents a sample and
each color represents a class. Our CSKD groups samples from the same category tighter
than all other methods. Best viewed in color (Color figure online)

To better show the effect of our CSKD, we extract feature representations of
the last layer in student ResNet18 0.25 and visualize them as shown in Fig. 4. A
random batch of validation set in Tiny ImageNet is used and therefore, there are
only four random classes for a clear comparison. It is observed that CSKD group
samples from the same category tighter than all other methods (e.g., the green
clusters in Fig. 4) and each cluster in CSKD has a relatively clear boundary to
other clusters.

5 Conclusion

In this paper, we find that relation transfer for knowledge distillation can be
further explored at a category level. For classification tasks, the concept of cate-
gory can be easily defined by labels. So we construct intra-category structure and
inter-category structure based on labels to transfer principal relational knowl-
edge in a sparse but powerful way. Intra-category structure preserves the struc-
tured relations in samples from the same category, while inter-category structure
reflects the cross-category relations at a category level.

Our CSKD is implemented in a mini-batch, which may be a limitation when
the number of categories is close to batch size. In this case, our category struc-
ture may degrade to the cross-sample correlation that transfers relations between
any two samples. We set batch size equal to or larger than the number of classes
to ensure that our CSKD takes effect in our experiments. And for the sake of
fair comparisons, we set the batch sizes of all other methods to the same as
our CSKD. An alternative to address this issue is to construct a better sampler
for training and we will explore this problem in future. Another issue worth
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exploring is that our CSKD naturally fits the setting of multi-label classification
tasks because of the existence of more complex and strong cross-category rela-
tions in multi-label classification datasets. Implementing CSKD in multi-label
classification tasks may get more convincing improvement.
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Abstract. Generating photorealistic images of human faces at
scale remains a prohibitively difficult task using computer graphics
approaches. This is because these require the simulation of light to
be photorealistic, which in turn requires physically accurate modelling
of geometry, materials, and light sources, for both the head and the
surrounding scene. Non-photorealistic renders however are increasingly
easy to produce. In contrast to computer graphics approaches, gener-
ative models learned from more readily available 2D image data have
been shown to produce samples of human faces that are hard to distin-
guish from real data. The process of learning usually corresponds to a
loss of control over the shape and appearance of the generated images.
For instance, even simple disentangling tasks such as modifying the hair
independently of the face, which is trivial to accomplish in a computer
graphics approach, remains an open research question. In this work, we
propose an algorithm that matches a non-photorealistic, synthetically
generated image to a latent vector of a pretrained StyleGAN2 model
which, in turn, maps the vector to a photorealistic image of a person of
the same pose, expression, hair, and lighting. In contrast to most pre-
vious work, we require no synthetic training data. To the best of our
knowledge, this is the first algorithm of its kind to work at a resolution
of 1K and represents a significant leap forward in visual realism.

1 Introduction

Generating photorealistic images of human faces remains a challenge in com-
puter graphics. While we consider the arguably easier problem of still images as
opposed to animated ones, we note that both pose unsolved research questions.
This is because of the complicated and varied appearance of human tissue found
in the hair, skin [45], eyes [7] and teeth of the face region. The problem is further
complicated by the fact that humans are highly attuned to the appearance of
faces and thus skilled at spotting any unnatural aspect of a synthetic render [36].

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-58604-1 14) contains supplementary material, which is
available to authorized users.
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Fig. 1. Pairs of synthetic input images, and samples from our algorithm at 1K resolu-
tion. Best viewed zoomed in, and in colour. (Color figure online)

Machine learning has recently seen great success in generating still images
of faces that are nearly indistinguishable from the domain of natural images to
a non-expert observer. This gives methods like StyleGAN2 (SG2) [28] a clear
advantage over computer graphics if the goal is to generate photorealistic image
samples only. The limitation of models like SG2 is that we get RGB data only,
and that such samples are often only useful if annotations such as head pose,
UVs, or expression parameters are available for downstream tasks. The second
major issue is that generative models necessarily inherit the bias of the data
they were trained on. For large image collections, this may be hard to assess
[48]. In computer graphics on the other hand, annotations such as UVs can be
trivially obtained for an image. Since the assets that define the data input into
the renderer need to be explicitly created, bias control becomes more feasible
(Fig. 1).

In this paper, we propose to play to the strengths of both fields by using
machine learning to change the appearance of non-photorealistic renders to be
more natural, while keeping semantics such as the shape, the expression of the
face, and the lighting as consistent as possible given constraints imposed by the
training data. This means that the annotations obtained from the renders are
still largely valid for the images after domain transfer. Because we do not require
photo-realism from the synthetic renders, we can produce them at scale and with
significant variety using a traditional graphics pipeline.

In contrast to other work using non-photorealistic renders to train models
that map from one domain to another (e.g. [17] for faces, or [8]), we require
no synthetic images for training at all, and thus no paired data. In fact, our
method only requires a pre-trained StyleGAN2 model, and a small number of
manual annotations from the data it was trained on as outlined below. For a
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given synthetic image (generated with [5]), our methods works best if masks of
the hair and background are available. These can be easily obtained from any
renderer. Our method works by finding an embedding in the latent space of SG2
that produces an image which is perceptually similar to a synthetic sample, but
still has the characteristic features of the data the GAN was trained with. In
terms of the scale space of an image [10,11], we attempt to match the coarser
levels of an image pyramid to the synthetic data, and replace fine detail with
that of a photorealistic image. Another way to interpret this is that we attempt
to steer StyleGAN2 with the help of synthetic data [25].

While embedding images in the latent space of SG2 is not a new concept
[1,2], the issue with using existing approaches is that they either do not, or
struggle to, enforce constraints to keep the results belonging to the distribution
of real images. In fact, the authors in [2] explicitly note that almost any image
can be embedded in a StyleGAN latent space. If closeness to the domain of real
images is not enforced, we simply get an image back from the generator that
looks exactly like the synthetic input whose appearance we wish to change.

We make the observation that samples from the prior distribution usually
approximately form a convex set, i.e. that convex combinations of any set of
such points mapped through the generator are statistically similar to samples
from the data distribution the GAN was trained on. We also note that showing
interpolations between pairs of latent vectors is a common strategy of evaluating
the quality of the latent embeddings of generative models [37]. As part of our
method, we propose an algorithm, Convex Set Approximate Nearest Neighbour
Search (CS-ANNS), which can be used to traverse the latent space of a generative
model while ensuring that the reconstructed images closely adhere to the prior.
This algorithm optimises for the combination of a set of samples from the SG2
prior by gradient descent, and is detailed in the method section below.

In summary, our contributions are:

1. The first zero-shot domain transfer method to work at 1K and with only
limited annotations of the real data, and

2. a novel algorithm for approximate nearest neighbour search in the latent
spaces of generative models.

2 Related Work

2.1 Generative Models

Generative models are of paramount importance to deep learning research.
In this work, we care about those that map samples from a latent space to
images. While many models have been proposed (such as Optimized MMD
[40], Noise Contrastive Estimation [20], Mixture Density Networks [9], Neu-
ral Autoregressive Distribution Estimators [33,41], Diffusion Process Models
[39], and flow-based models [13,14,32]), the most popular ones are the family of
Variational Autoencoders (VAEs) [26,30], and Generative Adversarial Networks
(GANs) [19].
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Because GANs are (at the time of writing) capable of achieving the highest
quality image samples, we focus on them in this work, and specifically on the
current state of the art for face images, StyleGAN2 (SG2) [28]. In any GAN,
a neural sampler called the generator is trained to map samples from a simple
distribution to the true data distribution, defined by samples (the training set).
A second network, called the discriminator, is trained to differentiate samples
produced by the generator and those from the data space.

Our method takes as input only the pretrained generator of SG2, and while
we backpropagate through it, we do not modify its weights as part of our algo-
rithm. Since SG2 uses a variant of Adaptive Instance Normalisation (AdaIn)[22],
its latent space is mapped directly to the AdaIn parameters at 18 different layers.
We do not use the additional noise inputs at each layer. This way of controlling
the generator output via the AdaIn inputs is the same methodology as used in
the Image2StyleGAN work [2]. The authors in [2] also consider style transfer by
blending two latent codes together, but choose very different image modalities
such as cartoons and photographs. We build on their work by defining a process
that finds a close nearest neighbour to blend with, thereby creating believable
appearance transfer that preserves semantics.

2.2 Zero-Shot Domain Transfer

To the best of our knowledge, there are no zero-shot image domain transfer
methods in the literature that require only one source domain operating at com-
parable resolution. By domain adaptation we mean the ability to make images
from dataset A look like images from dataset B, while preserving content. While
one-shot methods like [49] or [6] have been proposed, they work at significantly
lower resolution than ours and still require one sample from the target domain.
ZstGAN [34], the closest neighbour, requires many source domains (that could
for example be extracted from image labels of one dataset). The highest resolu-
tion handled in that work is 1282, which is signifantly lower than our method.
The categories are used to bootstrap the appearance transfer problem, as if mul-
tiple datasets were available. Without labels for dividing the data into categories,
we were unable to use it as a baseline.

2.3 Domain Adaptation

If paired training data from two domains is available, Pix2Pix [24] and its suc-
cessors (e.g. Pix2Pix HD [43], which uses multiple discriminators at multiple
scales to produce high resolution images) can be used effectively for domain
adaptation.

CycleGAN does not require paired training data [50]. This brings it closer
to the application we consider. However, it still requires a complete dataset of
both image modalities. Many improvements have since been suggeted to improve
CycleGAN. HarmonicGAN adds an additional smoothness constraint to reduce
artefacts in the outputs [47], Sem-GAN exploits additional information [12], as
does [3], Discriminative Region Proposal Adversarial Networks (DRPAN) [42]
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add steps to fix errors, Geometry-Consistent GANs (GcGAN) [15] use consis-
tency under simple transformations as an additional constraint. Some methods
also model a distribution of over possible outputs, such as MUNIT [23] or FUNIT
[35].

However, none of these methods are capable of zero-shot domain adaptation.

3 Method

Fig. 2. Illustration of the different steps of our method. (a) is the input synthetic render,
(b) the output of the sampling in step 1, (c) the result of Convex Set Approximate
Nearest Neighbour Search in step 2, and (d–f) results from step 3.

In the following, any variable containing w refers to the 18 × 512 dimensional
inputs of the pretrained SG2 generator, G. Any variable prefixed with I refers
to an image, either given as input, or obtaining by passing a w through the
generator G. The proposed method takes as input a synthetically rendered image
Is, and returns a series of ws that represent domain adapted versions of that
input.

Fig. 3. Example tuples of renders and alpha
masks, {Is, Ia, Iahair}, derived from synthetic
images. Note that we apply a falloff at sharp
boundaries to preserve them as described in
the text.

Our algorithm has four stages,
each producing results more closely
matching the input. In the first,
we find the latent code, ws, of
an approximate nearest neighbour
to a given synthetic input image,
Is, by sampling. This is the start-
ing point of our method. For the
second step, we propose Convex
Set Approximate Nearest Neigh-
bour Search (CS-ANNS), an algo-
rithm to refine the initial sam-
ple by traversing the latent space
while being strongly constrained to
adhere to the prior. This gives us a
refined latent code, wn. Please note
that additional details and results
can be found in the supplementary material.
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In the third step, we fit SG2 to the synthetic image without any constraint
to obtain another latent code wf that matches Is as closely as possible. We can
then combine wf and wn with varying interpolation weights to obtain a set of
final images that strongly resemble Is, but which have the appearance of real
photographs.

Because ws, wn and the results from step 3 are all valid proposals for the
final result, we select the latent code that gives an image as semantically similar
to Is as possible from among them in the fourth and final step. An example of
the different steps of our method can be seen in Fig. 2.

We note that the SG2 model used in this section was trained on the FFHQ
dataset [27], a dataset of photographs at high resolution. We use the same pre-
processing and face normalisation as the authors of that work.

Since we care about closely matching the face in this work, we construct
floating-point alpha masks from the synthetic renders that de-emphasize the
background and allow us to separate the hair. This gives us tuples of renders
and alpha masks {Is, Ia, Iahair} for each input. We observe that in order to get
accurate matching of face boundaries, the sharp opacity edges of Ia that come
from the renderer need to be extended outwards from the face. We compute the
distance transfer for the face boundary and produce a quickly decaying falloff by
mapping the resulting values, remapped to be in the range 0 − 1, by x10, where
x is the output of the distance transform at a pixel. This is illustrated in Fig. 3.

3.1 Step 1: Sampling

Fig. 4. Example of adding our control vectors
to the ‘mean’ face of SG2: (a) face angle; (b)
hair length (including headgear); (c) beard
length; (d) hair curlyness. Note that these can
be found by only rough annotations of a small
number of samples.

To find a good initialisation, we
could sample from the prior of SG2
and take the best match as input
to the other steps. However, we
found that, for a finite number of
samples, this could fail to produce
convincing results for faces at an
angle, under non frontal illumina-
tion etc. because our synthetic data
is more varied in pose, lighting and
ethnicity than FFHQ. To overcome
this problem, we annotate a small
subset of 2000 samples from SG2
with a series of simple attributes
to obtain a set of 33 control vec-
tors, vcontrol. These are detailed
in the supplementary material. The
effect of adding some of these to the
mean face of SG2 is shown in Fig. 4.
We also select a set of centroids,
vcentroid, to sample around. As can be seen in Fig. 5, these are selected to be
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somewhat balanced in terms of sex, skin tone and age, and are chosen empir-
ically. We are unable to prove conclusively that this leads to greater overall
fairness [16], and acknowledge that this sensitive issue needs closer examination
in future work.

The loss used in the sampling step is a combination of the LPIPS distance
[46], an L1 loss with different weights for colour and luminance, and landmark
loss based on 68 points computed with DLIB [29].

This loss is computed at a quarter resolution of 2562 pixels after low pass
filtering, and multiplication with the mask Ia. We do not compute the loss at
full resolution because our synthetics do not exhibit fine-scale details, and we
use a low-pass filter to not penalise their presence in the result. The entire loss
function for the sampling step is thus:

Lsampling = LLPIPS(r(Is ∗ Ia), r(G(ws) ∗ Ia))

+λlum ∗ ‖y(r(Is ∗ Ia)) − y(r(G(ws) ∗ Ia))‖1

+λcol ∗ ‖u(r(Is ∗ Ia)) − u(r(G(ws) ∗ Ia))‖1

+λlandm ∗ ‖l(r(Is ∗ Ia)) − l(r(G(ws) ∗ Ia))‖2 ,

(1)

where r is the resampling function that changes image size after Gaussian
filtering, u separates out the colour channels in the YUV colour space, y the
luminance channel, G is the pretrained SG2 generator, Is a synthetic image, ws

a latent code sample, and l the landmark detector. λlum is set to 0.1, λcol to
0.01, and λlandm to 1e − 5.

Fig. 5. Our manually curated set of centroids
for sampling.

For each sample at this stage of
our method, we pick one of the cen-
troids vcentroid with uniform prob-
ability, and add Gaussian noise to
it.

We then combine this with a
random sample of our control vec-
tors to vary pose, light, expression
etc. The i’th sample is thus obtained
as:

ws
i = s(vcentroid) + N (0.0, σ2)

+vcontrol ∗ Nuniform ∗ 2.0,
(2)

where s is the random centroid
selection function, σ2 = 0.25, and
Nuniform is uniform noise to scale
the control vectors.

The output of this stage is simply the best ws under the loss in Eq. 1, for
any of the 512 samples taken.
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3.2 Step 2: Latent Code Refinement

In step 2, we refine the previously obtained ws while keeping the results con-
strained to the set of photorealistic images the SG2 generator can produce. The
intuition is that any convex combination of samples from the prior in the latent
space also leads to realistic images when decoded through G. We highlight that
wn is the current point in the latent space, and updated at every iteration. It is
initialised with the result from step 1.

At each step, we draw 512 samples using the same procedure as before. Each
of these sample proposals wp is obtained as:

wp
i = s(vcentroid) + N (0.0, σ2). (3)

To ensure samples are sufficiently close to the current wn, we interpolate each
wp

i with wn using a random weight drawn at uniform from the range 0.25−0.75.
We then optimise for a set of weights, α, which determine how the wp

i s and
current wn are combined. It is an important detail that we use sets of α for each
of the 18 StyleGAN2 latent space inputs for this optimisation, i.e. α is a matrix
of shape [512 + 1, 18] (note how the current wn is included).

We constrain the optimisation to make sure each row of α sums to 1 using
the softmax function, ensuring a convex combination of the samples. In addition
to α, we include the control vectors in the optimisation, which are scaled by a
learnable parameter β. Because this last step could potentially lead to solutions
far outside the space of plausible images, we clamp β to 2.0. The loss is the same
as Eq. 1, just without the non-differentiable landmark term, i.e. with λlandm set
to 0.

We use 96 outer iterations for which the sample proposals wp are redrawn,
and α and β reset so that the current wn is the starting point (i.e. β is set to
zero, and alpha to one only for the current wn). For each of these outer loops,
we optimise α and β using Adam [31] with a learning rate of 0.01 in an inner
loop. We divide the initial learning rate by 10.0 for every 4 iterations in that
inner loop, and return the best result at any point, which gives us the refined
wn. We name this algorithm Convex Set Approximate Nearest Neighbour Search
(CS-ANN). More details can be found in the supplementary material.

3.3 Step 3: Synthetic Fit and Latent Code Interpolation

To fit SG2 to the synthetic image Is, we use the method of [28] with minor
modifications based on empirical observation. We set the number of total steps
to 1000, the initial learning rate to 0.01, and the initial additive noise to 0.01.
These changes are justified as we start from wn and so have a much-improved
initialisation compared to the original algorithm. We also mask the loss using
the same Ia as above.

Having obtained a latent code ws that closely resembles the synthetic input
image Is, and a latent code that describes that apprximate nearest neighbour
In, we can combine them in such a way that preserves the overall facial geometry
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Fig. 6. Interpolating between the output of step 2 (a0) and the output of the exact fit
to the synthetics (e4). (a − e) represent the number of latent codes used for blending,
and (0 − 4) the floating point weights for them.

of Is but has the fine detail of In. We use simple interpolation to do this, i.e.
the final latent code is obtained as:

wfinal = ws ∗ √
α + wn ∗ √

1.0 − α, (4)

where wfinal is a candidate for the final output of our method. We generate
candidates by letting α retain the first {1, 3, 5, 7} of the 18 latent codes with a
floating point weight of {1.0, 0.9, 0.8, 0.7} each. An example of the effect of this
interpolation can be seen in Fig. 6.

3.4 Step 4: Result Sample Selection

Having obtained a sequence of proposals, from step 1–4, we simply select the one
that matches input most using the Structural Similarity (SSIM) [44] metric at
a resoluton of 3682 pixels, which we empirically found to give better qualitative
results than the LPIPS distance. We hypothesise that this is due to the fact
that perceptual losses prioritise texture over shape [18], and alignment of facial
features is important for effective domain adaptation. We note that step 1–3 are
run ten times with different random seeds to ensure that even difficult samples
are matched with good solutions.

4 Experiments

We want to establish how realistic the images generated by our method are,
and how well they preserve the semantics of the synthetic images, specifically
head pose and facial features. To do so, we obtain a diverse set of 1000 synthetic
images, and process with them with our method, as well as two baselines.

We evaluate our algorithm quantitatively against the fitting method proposed
in [28], wich was designed to provide a latent embedding constrained to the
domain of valid images in a pretrained SG2 model, and also operates at 1K
resolution. This method is referred to as the StyleGAN2 Baseline.
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To assess how well we can match face pose and expression, we additionally
compare facial landmark similarity as computed by OpenFace [4].

A qualitative comparison is made to the StyleGAN2 Baseline, and Cycle-
GAN [50], with the latter trained on the entirety of our synthetic dataset. We
conducted a user study to assess the perceived realism of our results compared
to the StyleGAN2 Baseline as well as the input images, and to provide an initial
assessment of loss of semantics.

We make use of two variants of our results throughout this section. For
Ours (only face), we replace the background and hair using the masks from the
synthetic data by compositing them using a Laplacian Pyramid [11]. Because
of the close alignment of our results with the input, this produces almost no
visible artefacts. This allows us to ensure that the background does not impact
the quantitative metrics., and to isolate just the appearance change of the face
itself.

4.1 Qualitative Experiments

We train CycleGAN on FFHQ as well as a dataset of 12000 synthetic images,
using the default training parameters suggested by the authors. Despite having
access to the synthetic training data, and using a much tighter crop, we found
the results after 50 epochs unconvincing. Even at 1282, the images show arte-
facts, and lack texture detail. We show some results in Fig. 7, and more in the
supplementary material. Because of the overall quality of the results and because
this method has access to the entire synthetic dataset during training, we do not
include it in our user study. Instead, we focus on the StyleGAN2 Baseline for
extensive evaluation.

We show each annotator three images: The synthetic input, the baseline
result and our result, in random order. We ask if our result or the baseline is
more photorealistic, and which image is the overall most realistic looking, i.e.
comparable to a real photograph. Finally, we ask if the synthetic image and our
result could be the same image of the same person. In this case, we let each
annotator answer {Definitely No, Slightly No, Slightly Yes, Definitely Yes}.

From the annotation of 326 images, our results are considered more photoreal
than the StyleGAN2 Baseline in 94.48% of cases. In 95.1% of responses, our
result was considered more realistic looking than the input or the baseline.

In terms of whether the annotators thought the input and our result could
be a photograph of the same person, the responses to the options {Definitely No,
Slightly No, Slightly Yes, Definitely Yes} were selected {18.71, 19.1, 30.67, 31.6}
percent of the time. Despite the large gap in appearance, and the fact that
our results are designed to alter aspects of the face like freckles which could
be considered part of identity, roughly 60% still believed our results sufficiently
similar to pass as photograph of the same person at the same moment in time.

Figure 8 shows some of our results compared to the input synthetic images
and the baseline.
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Fig. 7. Representative comparison of results of our zero-shot method vs CycleGAN
trained on the whole synthetic dataset. Note how CycleGAN is unable to change the
input images enough to make them look realistic. We suggest viewing this figure zoomed
in.
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Fig. 8. Representative comparison of results of our method vs the StyleGAN2 Baseline.
Both variants of our method are able to produce substantially more realistic samples
with much greater detail. We suggest viewing this figure zoomed in.
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(a) IS and FID (to FFHQ) - large crop.

IS FID (to FFHQ)
SG2 Baseline 3.4965 90.342
Ours (only face) 3.3187 78.728
Ours 3.653 81.06

(b) IS and FID (to FFHQ) - tight crop.

IS FID (to FFHQ)
SG2 Baseline 3.398 78.185
Ours (only face) 3.464 70.731
Ours 3.435 76.947

Fig. 9. Ours (only face) uses the same background and hair as the renders, while
Ours replaces the entire image with our fit. We hypothesise that the difference in FID
between Ours (only face) andOurs is because the background HDRs are visible in the
renders, and those backgrounds are photographs. Note that we resize the large crop to
match CycleGAN resolution when calculating the IS.

4.2 Quantitative Experiments

The preservation of important facial features is also assessed quantitatively by
examing the alignment of 68 landmarks [4]. On our 10242 images, the median
absolute error in pixels is just 20.2 horizontally, and 14.2 vertically.

Fig. 10. Standard devia-
tion of the L1 landmark
error in our results ( scaled
20× for figure). Blue/red =
horizontal/vertical error.
(Color figurre online)

We illustrate alignment errors per landmark in
Fig. 10. The results indicate that the biggest errors
occur on the boundary of the face near the ears, and
that in the face region the eyebrows and lips have the
highest degree of misalignment. Since FFHQ contains
mostly smiling subjects, or images of people with
their mouth closed, it is unsurpising that the diverse
facial expressions from the synthetic data would show
the greatest discrepancy in these features. We empha-
size however, that these errors are less than two per-
cent of the effective image resolution on average.

We also compute both the FID [21] and IS [38]
metrics. The results are shown in Fig. 9 for the large
and small crops used throughout this paper. Our
method improves the FID signifcantly compared to
the baseline, and slightly in case of the IS. This backs
up the user study in terms of the perceptual plausibility of our results, but a
larger number of samples would be beneficial for a conclusive result.

The FID difference between Ours and Ours (only face) shows that the back-
ground can significantly impact this metric, which is not reflected in human
assessment.

5 Conclusions

We have presented a novel zero-shot algorithm for improving the realism of non-
photorealistic synthetic renders of human faces. The user study indicates that it
produces images which look more photorealistic than the synthetic images them-
selves. It also shows that previous work on embedding images in the StyleGAN2
latent space produces results of inferior visual quality.
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This result is reflected in quantitative terms in both the FID and IS metrics
comparing our result to real images from FFHQ. CycleGAN, having access to
a large dataset of synthetic images which our method never sees, and working
on an inherently easier crop, is clearly not able to compare with our results
qualitatively or quantitatively as well.

A downside of our method is that it requires substantial processing time per
image. We hypothesise that this could be amortised by training a model that
predicts the StyleGan2 embeddings directly from synthetic images once a large
enough dataset has been collected. We leave temporal consistency for processing
animations as future work, and show more results as well as failure cases (for
which the algorithm can simply be repeated with a different random seed) in
the supplementary material.

We would like to conclude by noting that our algorithm works across a wide
range of synthetic styles (due to its zero-shot nature), and even with some non-
photoreal images. Examples of this can be seen in Fig. 11.

Fig. 11. Our method applied to synthetic characters from popular culture. Left to
right, row by row, these are: Nathan Drake from Uncharted, Geralt of Rivia from the
Witcher, Flynn Rider from Tangled, Aloy from Horizon Zero Dawn, Grand Moff Tarkin
from Rogue One, and Ellie from The Last of Us. We note that this is the output of
only step 1 and 2 of our method. This indicates that we can find visually plausible
nearest neighbours even with some exaggerated facial proportions.
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Abstract. Few-shot learning, namely recognizing novel categories with
a very small amount of training examples, is a challenging area of
machine learning research. Traditional deep learning methods require
massive training data to tune the huge number of parameters, which
is often impractical and prone to over-fitting. In this work, we further
research on the well-known few-shot learning method known as proto-
typical networks for better performance. Our contributions include (1) a
new embedding structure to encode relative spatial relationships between
features by applying a capsule network; (2) a new triplet loss designated
to enhance the semantic feature embedding where similar samples are
close to each other while dissimilar samples are farther apart; and (3) an
effective non-parametric classifier termed attentive prototypes in place of
the simple prototypes in current few-shot learning. The proposed atten-
tive prototype aggregates all of the instances in a support class which
are weighted by their importance, defined by the reconstruction error for
a given query. The reconstruction error allows the classification poste-
rior probability to be estimated, which corresponds to the classification
confidence score. Extensive experiments on three benchmark datasets
demonstrate that our approach is effective for the few-shot classification
task.

Keywords: Few-shot learning · Meta learning · Capsule network ·
Feature embedding · Attentive prototype learning

1 Introduction

Deep learning has been greatly advanced in recent years, with many successful
applications in image processing, speech processing, natural language processing
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and other fields. However, the successes usually rely on the condition to access
a large dataset for training. If the amount of training data is not large enough,
the deep neural network would not be sufficiently trained. Consequently, it is
significant to develop deep learning for image recognition in the case of a small
number of samples, and enhance the adaptability of deep learning models in
different problem domains.

Few-shot learning is one of the most promising research areas targeting deep
learning models for various tasks with a very small amount of training dataset
[24,29,31,34,37,39], i.e., classifying unseen data instances (query examples) into
a set of new categories, given just a small number of labeled instances in each
class (support examples). The common scenario is a support set with only 1∼10
labeled examples per class. As a stark contrast, general classification problems
with deep learning models [15,38] often require thousands of examples per class.
On the other hand, classes for training and testing sets are from two exclusive
sets in few-shot learning, while in traditional classification problems they are the
same. A key challenge, in few-shot learning, is to make best use of the limited
data available in the support set in order to find the right generalizations as
required by the task.

Few-shot learning is often elaborated as a meta-learning problem, with an
emphasis on learning prior knowledge shared across a distribution of tasks [21,
34,39]. There are two sub-tasks for meta-learning: an embedding that maps the
input into a feature space and a base learner that maps the feature space to task
variables. As a simple, efficient and the most popularly used few-shot learning
algorithm, the prototypical network [34] tries to solve the problem by learning
the metric space to perform classification. A query point (new point) is classified
based on the distance between the created prototypical representation of each
class and the query point. While the approach is extensively applied, there are
a number of limitations that we’d like to address and seek better solutions.

Firstly, the prototypical representations [34,39], generated by deep Convo-
lutional Neural Networks, cannot account for the spatial relations between the
parts of the image and are too sensitive to orientation. Secondly, a prototypi-
cal network [34] divides the output metric space into disjoint polygons where
the nearest neighbor of any point inside a polygon is the pivot of the polygon.
This is too rough to reflect various noise effects in the data, thus compromising
the discrimination and expressiveness of the prototype. It has been well-known
that the performance of such a simple distance-based classification is severely
influenced by the existing outliers, especially in the situations of small training
sample size [7].

From the aforementioned discussion, we intend to improve the proto-
type network by proposing a capsule network [32] based embedding model
and reconstruction-based prototypical learning within the framework of meta-
learning. There are two main components in the proposed scheme: a capsule
network-based embedding module which create feature representations, and an
improved non-parametric classification scheme with an attentive prototype for
each class in the support set, which is obtained by attentive aggregation over the
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representations of its support instances, where the weights are calculated using
the reconstruction error for the query instance.

The training of the proposed network is based on the metric learning algo-
rithm with an improved triplet-like loss, which generalizes the triplet network
[33] to allow joint comparison with K negative prototypes in each mini-batch.
This makes the feature embedding learning process more tally with the few-shot
classification problem. We further propose a semi-hard mining technique to sam-
ple informative hard triplets, thus speeding up the convergence and stabilize the
training procedure.

In summary, we proposed a new embedding approach for few-shot learn-
ing based on a capsule network, which features the capability to encode the
part-whole relationships between various visual entities. An improved routing
procedure using the DeepCaps mechanism [27] is designed to implement the
embedding. With a class-specific output capsule, the proposed network can bet-
ter preserve the semantic feature representation, and reduce the disturbances
from irrelevant noisy information. The proposed attentive prototype scheme is
query-dependent, rather than just averaging the feature points of a class for the
prototype as in the vanilla prototype network, which means all of the feature
points from the support set are attentively weighted in advance, and then the
weighting values completely depend on the affinity relations between two feature
points from the support set and the query set. By using reconstruction as an
efficient expression of the affinity relation, the training points near the query
feature point acquire more attention in the calculation of the weighting values.

The proposed approach has been experimentally evaluated on few-shot image
classification tasks using three benchmark datasets, i.e. the miniImageNet,
tieredImageNet and Fewshot-CIFAR100 datasets. The empirical results verify
the superiority of our method over the state-of-the-art approaches. The main
contributions of our work are two-fold:

– We put forward a new few-shot classification approach with a capsule-based
model, which combines a 3D convolution based on the dynamic routing proce-
dure to obtain a semantic feature representation while preserving the spatial
information between visual entities.

– We propose a novel attentive prototype concept to take account of all the
instances in a given support class, with each instance being weighted by the
reconstruction errors between the query and prototype candidates from the
support set. The attentive prototype is robust to outliers by design and also
allows the performance to be improved by refraining from making predictions
in the absence of sufficient confidence.

2 Related Work

2.1 Few-Shot Learning

Few-shot learning aims to classify novel visual classes when very few labeled
samples are available [3,4]. Current methods usually tackle the challenge using
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meta-learning approaches or metric-learning approaches, with the representative
works elaborated below.

Metric learning methods aim to learn a task-invariant metric, which pro-
vide an embedding space for learning from few-shot examples. Vinyals et al. [39]
introduced the concept of episode training in few-shot learning, where metric
learning-based approaches learn a distance metric between a test example and
the training examples. Prototypical networks [34] learn a metric space in which
classification can be performed by computing distances to prototype represen-
tations of each class. The learned embedding model maps the images of the
same class closer to each other while different classes are spaced far away. The
mean of the embedded support samples are utilized as the prototype to repre-
sent the class. The work in [18] goes beyond this by incorporating the context of
the entire support set available by looking between the classes and identifying
task-relevant features.

There are also interesting works that explore different metrics for the embed-
ding space to provide more complex comparisons between support and query
features. For example, the relation module proposed in [37] calculates the rela-
tion score between query images to identify unlabeled images. Kim et al. [12]
proposed an edge-labeling Graph Neural Network (EGNN) for few-shot classifi-
cation. Metric-based task-specific feature representation learning has also been
presented in many related works. Our work is a further exploration of the pro-
totype based approaches [34,37], aiming to enhance the performance of learning
an embedding space by encoding the spatial relationship between features. Then
the embedding space generates attentive prototype representations in a query-
dependent scheme.

2.2 Capsule Networks

The capsule network [11] is a new type of neural network architecture proposed
by Geoffrey Hinton, with the main motivation to address some of the shortcom-
ings of Convolutional Neural Networks (CNNs). For example, the pooling layers
of CNNs lose the location information of relevant features, one of the so-called
instantiation parameters that characterize the object. Other instanced param-
eters include scale and rotation, which are also poorly represented in CNNs.
Capsule network handles these instantiation parameters explicitly by represent-
ing an object or a part of an object. More specifically, a capsule network replaces
the mechanisms of the convolution kernel in CNNs by implementing a group of
neurons to encode the spatial information and the probability of the existence
of objects. The length of the capsule vector is the probability of the features
in the image, and the orientation of the vector will represent its instantiation
information.

Sabour et al. [32] first proposed a dynamic routing algorithm for capsule
networks in 2017 for the bottom-up feature integration, the essence of which
is the realization of a clustering algorithm for the information transmission in
the model. In [32], a Gaussian mixture model (GMM) was integrated into the
feature integration process to adjust network parameters through EM routing.
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Since the seminal works [11,32], a number of approaches have been proposed to
implement and improve the capsule architecture [13,17,27,43].

Many applications have been attempted by applying capsule networks, for
example, intent detection [40], text classification [25] and computer vision [41,
42]. A sparse, unsupervised capsules network [28] was proposed showing that the
network generalizes better than supervised masking, while potentially enabling
deeper capsule networks. Rajasegaran et al. [27] proposed a deep capsule network
architecture called DeepCaps that adapts the original routing algorithm for 3D
convolutions and increases its performance on more complex datasets.

3 Method

3.1 Approach Details

In this section, we first revisit the DeepCaps network [27], which is designed
for more complex image datasets. We then extend it to the scenario of few-shot
learning and describe the proposed algorithm in detail.

DeepCaps Revisit. DeepCaps is a deep capsule network architecture proposed
in [27] to improve the performance of the capsule networks for more complex
image datasets. It extends the dynamic routing algorithm in [32] to stacked
multiple layers, which essentially uses a 3D convolution to learn the spatial
information between the capsules. The model consists of four main modules:
skip connected CapsCells, 3D convolutional CapsCells, a fully-connected capsule
layer and a decoder network. The skip-connected CapsCells have three ConvCaps
layers, the first layer output is convolved and skip-connected to the last layer
output. The motivation behind skipping connections is to borrow the idea from
residual networks to sustain a sound gradient flow in a deep model. The element-
wise layer is used to combine the outputs of the two capsule layers after skipping
the connection.

DeepCaps has a unit with a ConvCaps3D layer, in which the number of route
iterations is kept at 3. Then, before dynamic routing, the output of ConvCaps is
flattened and connected with the output of the capsule, which is then followed
by 3D routing (in CapsCell 3). Intuitively, this step helps to extend the model
to a wide range of different datasets. For example, for a dataset composed of
images with less rich information, such as MNIST, the low-level capsule from cell
1 or cell 2 is sufficient, while for a more complex dataset, we need the deeper 3D
ConvCaps to capture rich information content. Once all capsules are collected
and connected, they are routed to the class capsule through the fully-connected
capsule layer.

Network Architecture. As explained in the Introduction, our proposed model
has two parts: (1) a modified DeepCaps network with improved triplet-like loss
that learns the deep embedding space, and (2) a non-parameter classification
scheme that produces a prototype vector for each class candidate, which is
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Fig. 1. Framework of the proposed method for few-shot learning. We perform joint
end-to-end training of the Embedding Module (modified DeepCaps) together with the
Prototypical Learning via an improved triplet-like loss from the training dataset. The
well-learned embedding features are used to compute the distances among the query
images and the attentive prototype generated from the support set. The final classi-
fication is performed by calculating the posterior probability for the query instance.

derived from the attentive aggregation over the representations of its support
instances, where the weights are calculated using the reconstruction errors for
the query instance from respective support instances in the embedding space.
The final classification is performed by calculating the posterior probability for
the query instance based on the distances between the embedding vectors of the
query and the attentive prototype. Figure 1 schematically illustrates an overview
of our approach to few-shot image classification. Each of the parts is described
in detail below.

Embedding Module. We follow the practice of episodic training in [39] which is
the most popular and effective meta learning methodology [34,37]. We construct
support set S and query set Q from Dtrain in each episode to train the model.

S = {s1, s2, .., sK} ,

Q = {q1, s2, ..., qN} ,
(1)

where K and N represent the number of samples in the support set and query
set for each class, respectively. As shown in Fig. 2, we first feed the samples
S and Q into the convolution layer and CapsCells, then the collected capsules
are routed to the class capsules after the Flat Caps layer. Here, the decision
making happens via L2 and the input image is encoded into the final capsule
vector. The length of the capsule’s output vector represents the probability that
the object represented by the capsule exists in the current input. We assume
the class capsules as P ∈ Y b×d which consists of the activity vectors for all
classes, where b and d represents the number of classes in the final class capsule
and capsule dimension, respectively. Then, we only feed the activity vector of
predicted class Pm ∈ Y 1×d into the final embedding space in our setting, where
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m = argmaxi(||Pi||22). The embedding space acts as a better regularizer for the
capsule networks, since it is forced to learn the activity vectors jointly within a
constrained Y d space. The function of margin loss used in DeepCaps enhances
the class probability of the true class, while suppressing the class probabilities
of the other classes. In this paper, we propose the improved triplet-like loss
based on an attentive prototype to train the embedding module and learn more
discriminative features.

Fig. 2. The architecture of the embedding module in which obtains only the activity
vectors of the predicted class.

Attentive Prototype. The prototypical network in [34] computes a D dimen-
sional feature representation pi ∈ R

D, or prototype, of each class through an
embedding function fφ : RD → R

M with learnable parameters φ. Each proto-
type is the mean vector of the embedded support points belonging to its class:

pi =
1

|si|
∑

(xi,yi)∈si

fφ(xi) (2)

where each xi ∈ si is the D-dimensional feature vector of an example from class
i. Given a distance function d : R

D × R
D → [0,+∞), prototypical networks

produce a distribution over classes for a query point x based on a softmax over
distances to the prototypes in the embedding space:

pφ(y = t|x) =
exp(−d(fφ(x), pt))∑
t′ exp(−d(fφ(x), pt′ ))

(3)

Learning proceeds by minimizing the negative log-probability J(φ) =
−logpφ(y = t|x) of the true class t via Stochastic Gradient Descent (SGD). Most
prototypical networks for few-shot learning use some simple non-parametric clas-
sifiers, such as kNN. It is well known that non-parametric classifiers are usually
affected by existing outliers [6], which is particularly serious when the number
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of samples is small, the scenario addressed by few-shot learning. A practical and
reliable classifier should be robust to outliers. Motivated by this observation, we
propose an improved algorithm based on the local mean classifier [22]. Given
all prototype instances of a class, we calculate their reconstruction errors for
the query instance, which are then used for the weighted average of prototype
instances. The new prototype aggregates attentive contributions from all of the
instances. The reconstruction error between the new prototype and the query
instance not only provides a discrimination criteria for the classes, but also serves
as a reference for the reliability of the classification.

More specifically, with K support samples {xi1, xi2, ..., xiK} selected for class
i, a membership γij can be defined for a query instance q by employing normal-
ized Gaussian functions with the samples in support sets, e.g.,

γij =
exp( ||q−xij ||2

2σ2
i

)
∑K

l=1 exp( ||q−xil||2
2σ2

i
)
, j = 1, ...,K, i = 1, ...,M (4)

where xij are the j-th samples in class i, and σi is the width of the Gaussian
defined for class i, and we set the value σi relatively small (e.g., σi=0.1).

Then, for each class i, an attentive prototype pattern q̂i can be defined for a
query sample q

q̂i =

∑K
j=1 γijxij

∑K
l=1 γij

, i = 1, ...,M (5)

where γij is defined in Eq. 4 and q̂i can be considered as the generalized support
samples from class i for the query instance q. Here we want to ensure that an
image qa (anchor) of a specific class in the query set is closer to the attentive
prototype of the positive class q̂p (positive) than it is to multiple q̂n (negative)
attentive prototypes.

||qa − q̂p||22 + α < ||qa − q̂n||22,∀qa ∈ Q. (6)

f where α is a margin that is enforced between positive and negative pairs, Q is
the query set cardinality MN . The loss that is being minimized is then:

MN∑

m=1

[||f(qa
m) − f(q̂p

m))||22 − ||f(qa
m) − f(q̂n

m)||22 + α
]
+

(7)

For image classification, a query image can be classified based on the com-
parison of the errors between the reconstructed vectors and the presented image.
That is, a query image q is assigned to class m∗ if

m∗ = argmin
m

errm (8)

where errm = ||q − q̂m||,m = 1, ...,M .
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Improved Triplet-Like Loss. In order to ensure fast convergence it is crucial
to select triplets that violate the triplet constraint in Eq. 7. The traditional triplet
loss interacts with only one negative sample (and equivalently one negative class)
for each update in the network, while we actually need to compare the query
image with multiple different classes in few-shot classification. Hence, the triplet
loss may not be effective for the feature embedding learning, particularly when
we have several classes to handle in the few-shot classification setting. Inspired
by [1,35], we generalize the traditional triplet loss with E-negatives prototypes to
allow simultaneous comparisons jointly with the E negative prototypes instead of
just one negative prototype, in one mini-batch. This extension makes the feature
comparison more effective and faithful to the few-shot learning procedure, since
in each update, the network can compare a sample with multiple negative classes.

In particular, we randomly choose the E negative prototypes q̂ne , e =
{1, 2, ..., E} to form into a triplet. Accordingly, the optimization objective evolves
to:

L(qma , q̂mp , x̂n
m) =

MN∑

m=1

1
E

E∑

e=1

[||f(qma) − f(q̂mp))||22

−||f(qma) − f(q̂mne )||22 + α
]
+

(9)

For the sample qa
m in the query set, the optimization shall maximize the distance

to the negative prototype qn
m to be larger than the distance to the positive

prototypes qp
m in the feature space. For each anchor sample qa

m, we then learn
the positive prototype qp

m from the support set of the same class as qa
m and

further randomly select E other negative prototypes whose classes are different
from qa

m. Compared with the traditional triplet loss, each forward update in our
improved Triplet-like loss includes more inter-class variations, thus making the
learnt feature embedding more discriminative for samples from different classes.

Mining hard triplets is an important part of metric learning with the triplet
loss, as otherwise training will soon stagnate [10]. This is because when the
model begins to converge, the embedding space learns how to correctly map the
triples relatively quickly. Thus most triples satisfying the margin will not con-
tribute to the gradient in the learning process. To speed up the convergence and
stabilize the training procedure, we propose a new hard-triplet mining strategy
to sample more informative hard triplets in each episode. Specifically, triplets
will be randomly selected in each episode as described above, we then check
whether the sampled triplets satisfy the margin. The triplets that have already
met the margin will be removed and the network training will proceed with the
remaining triplets.

4 Experiments

Extensive experiments have been conducted to evaluate and compare the pro-
posed method for few-shot classification using on three challenging few-shot
learning benchmarks datasets, miniImageNet [39], tieredImageNet [29] and
Fewshot-CIFAR100 (FC100) [24]. All the experiments are implemented based
on PyTorch and run with NVIDIA 2080ti GPUs.
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4.1 Datasets

miniImageNet is the most popular few-shot learning benchmark proposed by
[39] and derived from the original ILSVRC-12 dataset [30]. It contains 100 ran-
domly sampled different categories, each with 600 images of size 84 × 84 pixels.
The tieredImageNet [29] is a larger subset of ILSVRC-12 [30] with 608 classes
and 779,165 images in total. The classes in tieredImageNet are grouped into 34
categories corresponding to higher-level nodes in the ImageNet hierarchy curated
by humans [2]. Each hierarchical category contains 10 to 20 classes, which are
divided into 20 training (351 classes), 6 validation (97 classes) and 8 test (160
classes) categories. Fewshot-CIFAR100 (FC100) is based on the popular
object classification dataset CIFAR100 [14]. Oreshkin et al. [24] offer a more
challenging class split of CIFAR100 for few-shot learning. The FC100 further
groups the 100 classes into 20 superclasses. Thus the training set has 60 classes
belonging to 12 superclasses, the validation and test data consist of 20 classes
each belonging to 5 superclasses each.

4.2 Implementation Details

Following the general few-shot learning experiment settings [34,37], we con-
ducted 5-way 5-shot and 5-way 1-shot classifications. The Adam optimizer is
exploited with an initial learning rate of 0.001. The total training episodes on
miniImageNet, tieredImageNet and FC100 are 600,000, 1,000,000 and 1,000,000,
respectively. The learning rate is dropped by 10% every 100,000 episodes or when
the loss enters a plateau. The weight decay is set to 0.0003. We report the mean
accuracy (%) over 600 randomly generated episodes from the test set.

4.3 Results Evaluation

Comparison with the Baseline Model. Using the training/testing data
split and the procedure described in Sect. 3, the baseline in Table 1, Table 2
and Table 3 evaluate a model with modified DeepCaps, without the attentive
prototype. The accuracy is 75.21 ± 0.43%, 78.41 ± 0.34% and 59.8 ± 1.0% and in
the 5-way 5-shot setting on miniImageNet, tieredImageNet and FC100 respec-
tively. Our baseline results are on a par with those reported in [34,37]. As shown
in Table 1, Table 2 and Table 3, using the attentive prototype strategy in the
model training with improved triplet-like loss, our method significantly improves
the accuracy on all three datasets. There are obvious improvements of approx-
imately +4.96% (from 75.21% to 80.17%), +4.83% (from 78.41% to 83.24%),
+2.5% (from 57.3% to 59.8%) under the 5-way 5-shot setting for miniImageNet,
tieredImageNet and FC100, respectively. These results indicate that the pro-
posed approach is tolerant to large intra- and inter-class variations and produces
marked improvements over the baseline.

Comparison with the State-of-the-Art Methods. We also compare our
method with some state-of-the-art methods on miniImageNet,tieredImageNet in
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Table 1. Few-shot classification accuracies (%) on miniImageNet.

Few-shot learning method 5-Way 1-Shot 5-Way 5-Shot

Matching Networks [39] 43.56 ± 0.84 55.31± 0.73

MAML [5] 48.70± 1.84 63.11± 0.92

Relation Net [37] 50.44± 0.82 65.32± 0.70

REPTILE [23] 49.97± 0.32 65.99± 0.58

Prototypical Net [34] 49.42± 0.78 68.20± 0.66

Predict Params [26] 59.60± 0.41 73.74 ± 0.19

LwoF [8] 60.06± 0.14 76.39 ± 0.11

TADAM [24] 58.50± 0.30 76.70± 0.30

EGNN [12] – 66.85

EGNN+Transduction [12] – 76.37

CTM [18] 62.05± 0.55 78.63± 0.06

wDAE-GNN [9] 62.96± 0.15 78.85± 0.10

MetaOptNet-SVM-trainval [16] 64.09± 0.62 80.00± 0.45

CTM, data augment [18] 64.12± 0.82 80.51± 0.13

Baseline 59.71± 0.35 75.21± 0.43

Ours 63.23± 0.26 80.17± 0.33

Ours, data augment 66.43±0.26 82.13±0.21

Table 1 and Table 2, respectively. On miniImageNet, we achieve a 5-way 1-shot
accuracy = 63.23±0.26, 5-way 5-shot accuracy =80.17 ± 0.33% when
using the proposed method, which has a highly competitive performance com-
pared with the state-of-the-art. On tieredImageNet, we arrive at 5-way 1-shot
accuracy = 65.53±0.21, 5-way 5-shot accuracy = 83.24 ± 0.18% which
is also very competitive. The previous best result was produced by introducing
a Category Traversal Module [18] and data augmention that can be inserted
as a plug-and-play module into most metric-learning based few-shot learners.
We further investigate whether the data augmention could work on our model.
By training a version of our model with basic data augmentation, we obtain the
improved results 5-way 5-shot accuracy = 82.13±0.21% on miniImageNet.
On tieredImageNet, we also observe a performance 5-way 5-shot accuracy =
86.35±0.41%.

For the FC100 dataset, our proposed method is superior to all the other
methods [5,24,36] in accuracy. The comparisons consistently confirm the com-
petitiveness of the proposed method on few-shot image classification. In terms
of size and computational cost, for the models trained on mini-ImageNet, the
proposed model has only 7.22 million parameters, while the ResNet-18 used in
the existing SOTA approach has 33.16 million parameters. We also tested both
models’ inference time, ResNet-18 takes 3.65 ms for a 64 × 64 ×3 image, while
our model takes only 1.67 ms for a 64 × 64 ×3 image.
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Table 2. Few-shot classification accuracies (%) on tieredImageNet.

Few-shot learning method 5-Way 1-Shot 5-Way 5-Shot

MAML [5] 51.67± 1.81 70.30± 0.08

Meta-SGD [19], reported by [31] 62.95± 0.03 79.34± 0.06

LEO [31] 66.33± 0.05 81.44± 0.09

Relation Net [37] 54.48± 0.93 71.32± 0.78

Prototypical Net [34] 53.31± 0.89 72.69± 0.74

EGNN [12] – 70.98

EGNN+Transduction [12] – 80.15

CTM [18] 64.78± 0.11 81.05± 0.52

MetaOptNet-SVM-trainval [16] 65.81± 0.74 81.75± 0.53

CTM, data augmention [18] 68.41± 0.39 84.28± 1.73

Baseline 63.25± 0.31 78.41± 0.34

Ours 65.53± 0.21 83.24± 0.18

Ours, data augmention 69.87±0.32 86.35±0.41

In summary, our proposed attentive prototype learning scheme improve over
the previous methods, mainly due to the better embedding space provided by the
capsule network and the attentive prototyping scheme. The importance value is
used as the weighting value for the support set instances, which is completely
dependent on the affinity relationship between the two feature points from the
support set and the query. The importance weighting values vary exponentially,
with larger value reflecting nearby pairs of feature points and a smaller value
for the distant pair. This conforms that the feature points from the support set
that are nearer to the query feature point should be given more attention.

Table 3. Few-shot classification accuracies (%) on the FC100 dataset.

Few-shot learning method 5-Way 1-Shot 5-Way 5-Shot 5-Way 10-Shot

MAML [5] 38.1± 1.7 50.4± 1.0 56.2± 0.8

TADAM [24] 40.1± 0.4 56.1± 0.4 61.6± 0.5

MTL [36] 45.1± 1.8 57.6± 0.9 63.4± 0.8

Baseline 44.2± 1.3 57.3± 0.8 62.8± 0.6

Ours 47.5±0.9 59.8±1.0 65.4±0.5

Ablation study: To verify the effectiveness of components in the pro-
posed method, we conducted ablation experiments on the miniImageNet and
tieredImageNet datasets. First, to investigate the contribution of the designed
attentive prototype method, we compare the performance of the proposed
method with vanilla prototypical networks [34]. Then, we verify the effectiveness
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of our proposed feature embedding module by embedding it into the metric-based
algorithm Relation Net [37]. Table 4 summarizes the performance of the different
variants of our method.

Table 4. Ablation study on the attentive prototype and embedding module.

Few-shot learning method miniImageNet tieredImageNet

5-Way
5 shot

10-Way
5 shot

5-Way
5-shot

10-Way
5-shot

Prototypical Net [34] 68.20 - 72.69 -

Ours (average mechanism) 76.32 58.41 80.31 62.17

Ours (attentive prototype) 80.17 63.12 83.24 66.33

Relation Net [37] 65.32 – 71.32 –

Relation Net [37] (our
implementation)

80.91 64.34 83.98 67.86

1)Attentive prototype: In vanilla prototypical networks [34], the prototypes
are defined as the averages the embed features of each class in the support set.
Such a simple class-wise feature takes all instances into consideration equally.
Our attentive prototype scheme is a better replacement. A variant of DeepCaps
is applied with improved triplet-like loss to learn the feature embedding instead
of a shallow CNN network. To further verify the effectiveness of our attentive pro-
totype, we also compared the average-based prototypes created from our embed-
ding framework. The experimental results on miniImageNet and tieredImageNet
are summarized in Table 4. It can be observed that the attentive prototype gains
an approximately 3%-4% increase after replacing the average mechanism. This
shows that the attentive prototypes can be more ‘typical’ when compared to the
original average vectors by giving different weights for different instances.

2)Embedding module: The embedding is switched from four convolutional
blocks in Relation Net [37] to the modified DeepCaps model and the supervi-
sion loss is changed to the improved triplet-like loss. Table 4 shows the results
obtained by the improvements over the Relation Net. We find that the improved
Relation Net exceeds the original model by approximately +10%. This shows the
ability of the proposed capsule network-based embedding network to improve the
performance of the metric based method. Figure 3 visualizes the feature distri-
bution using t-SNE [20] for the features computed in 5-way 5-shot setting and
10-way 5-shot setting. As can be clearly observed, the improved Relation Net
model has more compact and separable clusters, indicating that features are
more discriminative for the task. This is caused by the design of the embedding
module.

3)Improved Triplet-like loss: To help analyze our model and show the benefit
of improved Triplet-like loss, we design several comparison methods as follows:
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(a) 5-way 5-shot setting

(b) 10-way 5-shot setting

Fig. 3. The t-SNE visualization [20] of the improved feature embeddings learnt by our
proposed approach.

Setting-1: Baseline model (modified DeepCaps); Setting-2: Using the attentive
prototype strategy in the model training; Setting-3: Based on the Setting 2, we
add the improved triplet-like loss to make the feature comparison more effective.

Table 5. Few-shot classification accuracies (%) on miniImageNet.

Few-shot learning method 5-Way 1-Shot 5-Way 5-Shot

Setting-1 59.71± 0.35 75.21± 0.43

Setting-2 61.76± 0.12 78.45± 0.23

Setting-3 63.23± 0.26 80.17± 0.33

With the help of improved triplet-like loss, we observed an improvement of
+1.5% as shown in Table 5. Thus making the learnt feature embedding more
discriminative for samples from different classes.

5 Conclusion

In this paper, we proposed a new few-shot learning scheme aiming to improve
the metric learning-based prototypical network. Our proposed scheme has the
following novel characteristics: (1) a new embedding space created by a capsule
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network, which is unique in its capability to encode the relative spatial relation-
ship between features. The network is trained with a novel triple-loss designed to
learn the embedding space; (2) an effective and robust non-parameter classifica-
tion scheme, named attentive prototypes, to replace the simple feature average
for prototypes. The instances from the support set are taken into account to gen-
erate prototypes, with their importance being calculated by the reconstruction
error for a given query. Experimental results showed that the proposed method
outperforms the other few-shot learning algorithms on all of the miniImageNet,
tieredImageNet and FC100 datasets.
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Abstract. Recent approaches for weakly supervised instance segmen-
tations depend on two components: (i) a pseudo label generation model
which provides instances that are consistent with a given annotation;
and (ii) an instance segmentation model, which is trained in a super-
vised manner using the pseudo labels as ground-truth. Unlike previous
approaches, we explicitly model the uncertainty in the pseudo label gen-
eration process using a conditional distribution. The samples drawn from
our conditional distribution provide accurate pseudo labels due to the use
of semantic class aware unary terms, boundary aware pairwise smooth-
ness terms, and annotation aware higher order terms. Furthermore, we
represent the instance segmentation model as an annotation agnostic
prediction distribution. In contrast to previous methods, our represen-
tation allows us to define a joint probabilistic learning objective that
minimizes the dissimilarity between the two distributions. Our approach
achieves state of the art results on the PASCAL VOC 2012 data set,
outperforming the best baseline by 4.2% mAPr

0.5 and 4.8% mAPr
0.75.

1 Introduction

The instance segmentation task is to jointly estimate the class labels and segmen-
tation masks of the individual objects in an image. Significant progress on instance
segmentation has been made based on the convolutional neural networks (CNN)
[9,17,24,26,28]. However, the traditional approach of learning CNN-based models
requires a large number of training images with instance-level pixel-wise annota-
tions. Due to the high cost of collecting these supervised labels, researchers have
looked at training these instance segmentation models using weak annotations,
ranging from bounding boxes [18,20] to image-level labels [1,10,13,23,42,43].

Many of the recent approaches for weakly supervised instance segmentation
can be thought of as consisting of two components. First, a pseudo label genera-
tion model, which provides instance segmentations that are consistent with the
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weak annotations. Second, an instance segmentation model which is trained by
treating the pseudo labels as ground-truth, and provides the desired output at
test time.

Seen from the above viewpoint, the design of a weakly supervised instance
segmentation approach boils down to three questions. First, how do we represent
the instance segmentation model? Second, how do we represent the pseudo label
generation model? And third, how do we learn the parameters of the two models
using weakly supervised data? The answer to the first question is relatively clear:
we should use a model that performs well when trained in a supervised manner,
for example, Mask R-CNN [17]. However, we argue that the existing approaches
fail to provide a satisfactory answer to the latter two questions.

Specifically, the current approaches do not take into account the inherent
uncertainty in the pseudo label generation process [1,23]. Consider, for instance,
a training image that has been annotated to indicate the presence of a person.
There can be several instance segmentations that are consistent with this annota-
tion, and thus, one should not rely on a single pseudo label to train the instance
segmentation model. Furthermore, none of the existing approaches provide a
coherent learning objective for the two models. Often they suggest a simple two-
step learning approach, that is, generate one set of pseudo labels followed by a
one time training of the instance segmentation model [1]. While some works con-
sider an iterative training procedure [23], the lack of a learning objective makes
it difficult to analyse and adapt them in varying settings.

In this work, we address the deficiencies of prior work by (i) proposing suit-
able representations for the two aforementioned components; and (ii) estimating
their parameters using a principled learning objective. In more detail, we explic-
itly model the uncertainty in pseudo labels via a conditional distribution. The
conditional distribution consists of three terms: (i) a semantic class aware unary
term to predict the score of each segmentation proposal; (ii) a boundary aware
pairwise term that encourages the segmentation proposal to completely cover
the object; and (iii) an annotation consistent higher order term that enforces
a global constraint on all segmentation proposals (for example, in the case of
image-level labels, there exists at least one corresponding segmentation proposal
for each class, or in the case of bounding boxes, there exists a segmentation pro-
posal with sufficient overlap to each bounding box). All three terms combined
enable the samples drawn from the conditional distribution to provide accurate
annotation consistent instance segmentations. Furthermore, we represent the
instance segmentation model as an annotation agnostic prediction distribution.
This choice of representation allows us to define a joint probabilistic learning
objective that minimizes the dissimilarity between the two distributions. The
dissimilarity is measured using a task-specific loss function, thereby encouraging
the models to produce high quality instance segmentations.

We test the efficacy of our approach on the Pascal VOC 2012 data set.
We achieve 50.9% mAPr

0.5, 28.5% mAPr
0.75 for image-level annotations and

32.1% mAPr
0.75 for bounding box annotations, resulting in an improvement of

over 4% and 10% respectively over the state-of-the-art.
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2 Related Work

Due to the taxing task of acquiring the expensive per-pixel annotations, many
weakly supervised methods have emerged that can leverage cheaper labels. For
the task of semantic segmentation various types of weak annotations, such as
image-level [2,19,29,32], point [6], scribbles [25,39], and bounding boxes [11,31],
have been utilized. However, for the instance segmentation, only image-level
[1,10,13,23,42,43] and bounding box [18,20] supervision have been explored.
Our setup considers both the image-level and the bounding box annotations as
weak supervision. For the bounding box annotations, Hsu et al. [18] employs
a bounding box tightness constraint and train their method by employing a
multiple instance learning (MIL) based objective but they do not model the
annotation consistency constraint for computational efficiency.

Most of the initial works [42,43] on weakly supervised instance segmentation
using image-level supervision were based on the class activation maps (CAM)
[30,35,40,41]. In their work, Zhou et al. [42] identify the heatmap as well as its
peaks to represent the location of different objects. Although these methods are
good at finding the spatial location of each object instance, they focus only on
the most discriminative regions of the object and therefore, do not cover the
entire object. Ge et al [13] uses the CAM output as the initial segmentation
seed and refines it in a multi-task setting, which they train progressively. We use
the output of [42] as the initial segmentation seed of our conditional distribution
but the boundary aware pairwise term in our conditional distribution encourages
pseudo labels to cover the entire object.

Most recent works on weakly supervised learning adopt a two-step process
- generate pseudo labels and train a supervised model treating these pseudo
labels as ground truth. Such an approach provides state-of-the-art results for
various weakly supervised tasks like object detection [5,37,38], semantic seg-
mentation [11,20], and instance segmentation [1,23]. Ahn et al. [1] synthesizes
pseudo labels by learning the displacement fields and pairwise pixel affinities.
These pseudo labels are then used to train a fully supervised Mask R-CNN [17],
which is used at the test time. Laradji et al. [23] iteratively samples the pseudo
segmentation label from MCG segmentation proposal set [3] and train a super-
vised Mask R-CNN [17]. This is similar in spirit to our approach of using the
two distributions. However, they neither have a unified learning objective for
the two distribution nor do they model the uncertainty in their pseudo label
generation model. Regardless, the improvement in the results reported by these
two methods advocates the importance of modeling two separate distributions.
In our method, we explicitly model the two distributions and define a unified
learning objective that minimizes the dissimilarity between them.

Our framework has been inspired by the work of Kumar et al. [22] who were
the first to show the necessity of modeling uncertainty by employing two sepa-
rate distributions in a latent variable model. This framework has been adopted
for weakly supervised training of CNNs for learning human poses and object
detection tasks [4,5]. While their framework provides an elegant formulation
for weakly supervised learning, its various components need to be carefully
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constructed for each task. Our work can be viewed as designing conditional
and prediction distributions, as well as the corresponding inference algorithms,
which are suited to instance segmentation.

3 Method

3.1 Notation

We denote an input image as x ∈ R
(H×W×3), where H and W are the height

and the width of the image respectively. For each image, a set of segmenta-
tion proposals R = {r1, . . . , rP } are extracted from a class-agnostic object pro-
posal algorithm. In this work, we use Multiscale Combinatorial Grouping (MCG)
[3] to obtain the object proposals. For the sake of simplicity, we only consider
image-level annotations in our description. However, our framework can be eas-
ily extended to other annotations such as bounding boxes. Indeed, we will use
bounding box annotations in our experiments. Given an image and the segmen-
tation proposals, our goal is to classify each of the segmentation proposals to
one of the C + 1 categories from the set {0, 1, . . . , C}. Here category 0 is the
background and categories {1, . . . , C} are object classes.

We denote the image-level annotations by a = {0, 1}C , where a(j) = 1
if image x contains the j−th object. Furthermore, we denote the unknown
instance-level (segmentation proposal) label as y = {0, . . . , C}P , where y(i) = j
if the i−th segmentation proposal is of the j−th category. A weakly supervised
data set W = {(xn,an) | n = 1, . . . , N} contains N pairs of images xn and their
corresponding image-level annotations an.

3.2 Conditional Distribution

Given the weakly supervised data set W, we wish to generate pseudo instance-
level labels y such that they are annotation consistent. Specifically, given the
segmentation proposals R for an image x, there must exists at least one segmen-
tation proposal for each image-level annotation a(j) = 1. Since the annotations
are image-level, there is inherent uncertainty in the figure-ground separation of
the objects. We model this uncertainty by defining a distribution Prc(y | x,a;θc)
over the pseudo labels conditioned on the image-level weak annotations. Here,
θc are the parameters of the distribution. We call this a conditional distribution.

The conditional distribution itself is not explicitly represented. Instead, we
use a neural network with parameters θc which generates samples that can be
used as pseudo labels. For the generated samples to be accurate, we wish that
they have the following three properties: (i) they should have high fidelity with
the scores assigned by the neural network for each region proposal belonging
to each class; (ii) they should cover as large a portion of an object instance as
possible; and (iii) they should be consistent with the annotation.
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Modeling: In order for the conditional distribution to be annotation consistent,
the instance-level labels y need to be compatible with the image-level annotation
a. This constraint cannot be trivially decomposed over each segmentation pro-
posal. As a result, it would be prohibitively expensive to model the conditional
distribution directly as one would be required to compute its partition function.
Taking inspiration from Arun et al. [5], we instead draw representative samples
from the conditional distribution using the Discrete Disco Nets [7]. We will now
describe how we model the conditional distribution through a Discrete Disco
Nets, which we will now call a conditional network.

Fig. 1. The conditional network: a modified U-Net architecture is used to model
the conditional network. For a single input image and three different noise samples
{z1, z2, z3} (represented as red, green, and blue matrix) and a pool of segmentation
proposals, three different instances are predicted for the given weak annotation (aero-
plane in this example). Here the noise sample is concatenated as an extra channel to
the final layer of the U-Net. The segmentation proposals are multiplied element-wise
with the global feature to obtain the proposal specific feature. A global average pool-
ing is applied to get class specific score. Finally, an inference algorithm generates the
predicted samples. (Color figure online)

Consider the modified fully convolutional U-Net [34] architecture shown in
Fig. 1 for the conditional distribution. The parameters of the conditional dis-
tribution θc are modeled by the weights of the conditional network. Similar to
[21], noise sampled from a uniform distribution is added after the U-Net block
(depicted by the colored filter). Each forward pass through the network takes the
image x and noise sample zk as input and produces a score function F k

u,yu
(θc) for

each segmentation proposal u and the corresponding putative label yu. We gen-
erate K different score functions using K different noise samples. These score
functions are then used to sample the segmentation region proposals yk

c such
that they are annotation consistent. This enables us to efficiently generate the
samples from the underlying distribution.

Inference: Given the input pair (x, zk) the conditional network outputs K
score functions for each of the segmentation proposal F k

u,yu
(θc). We redefine
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these score functions to obtain a final score function such that it is then used to
sample the segmentation region proposals yk

c . The final score function has the
following three properties.

1. The score of the sampled segmentation region proposal should be consistent
with the score function. This semantic class aware unary term ensures that
the final score captures the class specific features of each segmentation pro-
posal. Formally, Gk

u,yu
(yc) = F k

u,yu
(θc).

2. The unary term alone is biased towards segmentation proposals that are
highly discriminative. This results in selecting a segmentation proposal which
does not cover the object in its entirety. We argue that all the neighboring
segmentation proposals must have the same score discounted by the edge
weights between them. We call this condition boundary aware pairwise term.
In order to make the score function Gk

u,yu
(yc) pairwise term aware, we employ

a simple but efficient iterative algorithm. The algorithm proceeds by iter-
atively updating the scores Gk

u,yu
(yc) by adding the contribution of their

neighbors discounted by the edge weights between them until convergence. In
practice, we fix the number of iteration to 3. Note that, it is possible to back-
propagate through the iterative algorithm by simply unrolling its iterations,
similar to a recurrent neural networks (RNN). Formally,

Gk,n
u,yu

(yc) = Gk,n−1
u,yu

(yc) +
1

Hk,n−1
u,v (yc) + δ

exp (−Iu,v). (1)

Here, n denotes the iteration step for the iterative algorithm and δ is a small
positive constant added for numerical stability. In our experiments, we set
δ = 0.1. The term Hk,n−1

u,v (yc) is the difference between the scores of the
neighboring segmentation proposal. It helps encourage same label for the
neighboring segmentation proposals that are not separated by the edge pixels.
It is given as,

Hk,n−1
u,v (yc) =

∑

u,v∈Nu

(
Gk,n−1

u,yu
(yc) − Gk,n−1

v,yu
(yc)

)2
. (2)

The term Iu,v is the sum of the edge pixel values between the two neigh-
boring segmentation regions. Note that the pairwise term is a decay function
weighted by the edge pixel values. This ensures a high contribution to the
pairwise term is only from the pair of segmentation proposals that does not
share an edge.

3. In order to ensure that at there must exist at least one segmentation proposal
for every image-level annotation,a higher order penalty is added to the score.
We call this annotation consistent higher order term. Formally,

Sk(yc) =
P∑

u=1

Gk,n
u,yu

(yc) + Qk(yc). (3)
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Algorithm 1: Inference Algorithm for the Conditional Net
Input : Region masks: R, Image-level labels: a
Output: Predicted instance level instances: yk

c

/* Iterative Algorithm */

1 Gk
u,yu

(yc) = F k
u,yu

(θc)
2 repeat
3 for v ∈ Nu do

4 Hk,n−1
u,v (yc) =

∑
u,v∈Nu

(
Gk,n−1

u,yu
(yc) − Gk,n−1

v,yv
(yc)

)2
.

5 Gk,n
u,yu

(yc) = Gk,n−1
u,yu

(yc) + 1

H
k,n−1
u,v (yc)+δ

exp (−Iu,v)

6 until Gk,n
u,yu

(yc) has coverged
/* Greedily select highest scoring non-overlapping proposal */

7 Y ← φ

8 for j ← {1, . . . , C} ∧ a(j) = 1 do
9 Yj ← φ

10 Rj ← sort(Gk,n
u,yu

(yc))
11 for i ∈ 1, . . . , P do
12 Yj ← ri

13 Rj ← Rj − ri

14 for l ∈ Rj ∧ ri∩rl
rl

> t do

15 Rj ← Rj − rl

16 Y ← Yj

17 return yk
c = Y

Here,

Qk(yc) =

⎧
⎪⎨

⎪⎩

0 if ∀j ∈ {1, . . . , C} s.t. a(j) = 1,

∃i ∈ R s.t. y(i) = j,

−∞ otherwise.
(4)

Given the scoring function in Eq. (3), we compute the k−th sample of the
conditional network as,

yk
c = arg max

y∈Y
Sk(yc). (5)

Observe that in Eq. (5), the arg max is computed over the entire output
space Y. A näıve brute force algorithm is therefore not feasible. We design
an efficient greedy algorithm that selects the highest scoring non-overlapping
proposal. The inference algorithm is described in Algorithm1.

3.3 Prediction Distribution

The task of the supervised instance segmentation model is to predict the
instancemask given an image. We employ Mask R-CNN [18] for this task. As pre-
dictions for each of the regions in the Mask R-CNN is computed independently,
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we can view the output of the Mask R-CNN as the following fully factorized
distribution,

Pr
p

(y | x;θp) =
R∏

i=1

Pr(yi | ri,xi;θp). (6)

Here, R are the set of bounding box regions proposed by the region proposal
network and ri are its corresponding region features. The term yi is the corre-
sponding prediction for each of the bounding box proposals. We call the above
distribution a prediction distribution and the Mask R-CNN a prediction network.

4 Learning Objective

Given the weakly supervised data set W, our goal is to learn the parameters
of the prediction and the conditional distribution, θp and θc respectively. We
observe that the task of both the prediction and the conditional distribution is to
predict the instance segmentation mask. Moreover, the conditional distribution
utilizes the extra information in the form of image-level annotations. Therefore,
it is expected to produce better instance segmentation masks. Leveraging the
task similarity between the two distribution, we would like to bring the two
distribution close to each other. Inspired by the work of [4,5,8,22], we design
a joint learning objective that can minimize the dissimilarity coefficient [33]
between the prediction and the conditional distribution. In what follows, we
briefly describe the dissimilarity coefficient before applying it to our setting.

Dissimilarity Coefficient: The dissimilarity coefficient between any two distri-
butions Pr1(·) and Pr2(·) is determined by measuring their diversities. Given a
task-specific loss function Δ(·, ·), the diversity coefficient between the two dis-
tribution Pr1(·) and Pr2(·) is defined as the expected loss between two samples
drawn randomly from the two distributions respectively. Formally,

DIVΔ(Pr
1

,Pr
2

) = Ey1∼Pr1(·)
[
Ey2∼Pr2(·)[Δ(y1,y2)]

]
. (7)

If the model brings the two distributions close to each other, we could expect
the diversity DIVΔ(Pr1,Pr2) to be small. Using this definition, the dissimilarity
coefficient is defined as the following Jensen difference,

DISCΔ(Pr
1

,Pr
2

) =DIVΔ(Pr
1

,Pr
2

) − γDIVΔ(Pr
2

,Pr
2

)

− (1 − γ)DIVΔ(Pr
1

,Pr
1

),
(8)

where, γ = [0, 1]. In our experiments, we use γ = 0.5, which results in dissimi-
larity coefficient being symmetric for the two distributions.
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4.1 Task-Specific Loss Function:

The dissimilarity coefficient objective requires a task-specific loss function. To
this end, we use the multi-task loss defined by Mask R-CNN [17] as,

Δ(y1,y2) = Δcls(y1,y2) + Δbox(y1,y2) + Δmask(y1,y2). (9)

Here, Δcls is the classification loss defined by the log loss, Δbox is the bounding
box regression loss defined as the smooth-L1 loss, and Δmask is the segmentation
loss for the mask defined by pixel-wise cross entropy, as proposed by [17].

Note that the conditional network outputs the segmentation region y, where
there are no bounding box coordinates predicted. Therefore, for the conditional
network, only Δcls and Δmask is active as the gradients for Δbox is 0. For the
prediction network, all three components of the loss functions are active. We
construct a tight bounding box around the pseudo segmentation label, which
acts as a pseudo bounding box label for Mask R-CNN.

4.2 Learning Objective for Instance Segmentation:

We now specify the learning objective for instance segmentation using the dis-
similarity coefficient and the task-specific loss function defined above as,

θ∗
p,θ

∗
c = arg min

θp,θc

DISCΔ

(
Pr
p

(θp),Pr
c

(θc)
)

. (10)

As discussed in Sect. 3.2, modeling the conditional distribution directly is diffi-
cult. Therefore, the corresponding diversity terms are computed by stochastic
estimators from K samples yk

c of the conditional network. Thus, each diversity
term is written as1,

DIVΔ(Pr
p

,Pr
c

) =
1
K

K∑

k=1

∑

y
(i)
p

Pr
p

(y(i)
p ;θp)Δ(y(i)

p ,yk
c ), (11a)

DIVΔ(Pr
c

,Pr
c

) =
1

K(K − 1)

K∑

k,k′=1
k′ �=k

Δ(yk
c ,yk′

c ), (11b)

DIVΔ(Pr
p

,Pr
p

) =
∑

y
(i)
p

∑

y′(i)
p

Pr
p

(y(i)
p ;θp) Pr

p
(y′(i)

p ;θp)Δ(y(i)
p ,y′(i)

p ) (11c)

Here, DIVΔ(Prp,Prc) measures the cross diversity between the prediction and
the conditional distribution, which is the expected loss between the samples of
the two distribution. Since Prp is a fully factorized distribution, the expectation
of its output can be trivially computed. As Prc is not explicitly modeled, we
draw K different samples to compute its required expectation.
1 Details in the supplementary material.
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5 Optimization

As the parameters of the two distribution, θp and θc are modeled by a neural
network, it is ideally suited to be minimized by stochastic gradient descent. We
employ a block coordinate descent strategy to optimize the two sets of param-
eters. The algorithm proceeds by iteratively fixing the prediction network and
training the conditional network, followed by learning the prediction network for
a fixed conditional network.

Fig. 2. Examples of the predictions from the conditional and prediction networks for
three different cases of varying difficulty. Columns 1 through 3 are different samples
from the conditional network. For each case, its first row shows the output of the two
networks after the first iteration and its second row represents the output of the two
networks after the fourth (final) iteration. Each instance of an object is represented by
different mask color. Best viewed in color. (Color figure online)
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The iterative learning strategy results in a fully supervised training of each
network by using the output of the other network as the pseudo label. This allows
us to readily use the algorithms developed in Mask R-CNN [17] and Discrete
Disco Nets [7]. Note that, as the conditional network obtains samples over
the arg max operator in Eq. (5), the objective (10) for the conditional network
is non-differentiable. However, the scoring function Sk(yc) in Eq. (3) itself is
differentiable. This allows us to use the direct loss minimization strategy [16,36]
developed for computing estimated gradients over the arg max operator [7,27].
We provide the details of the algorithm in the supplementary.

5.1 Visualization of the Learning Process

Figure 2 provides the visualization of the output of the two networks for the
first and the final iterations of the training process. The first three columns
are the three output samples of the conditional distribution. Note that in our
experiments, we output 10 samples corresponding to 10 different noise samples.
The fourth column shows the output of the prediction distribution. The output
for the prediction network is selected by employing a non-maximal suppression
(NMS) with its score threshold kept at 0.7, as is the default setting in [17]. The
first row represents the output of the two networks after the first iteration and
the second row shows their output after the fourth (final) iteration.

The first case demonstrates an easy example where two cats are present in the
image. Initially, the conditional distribution samples the segmentation proposals
which do not cover the entire body of the cat but still manages to capture the
boundaries reasonably well. However, due to the variations in these samples,
the prediction distribution learns to better predict the extent of the cat pixels.
This, in turn, encourages the conditional network to generate a better set of
samples. Indeed, by the fourth iteration, we see an improvement in the quality
of samples by the conditional network and they now cover the entire body of the
cat, thereby improving the performance. As a result, we can see that finally the
prediction network successfully learns to segment the two cats in the image.

The second case presents a challenging scenario where a person is riding a
horse. In this case, the person is occluding the front and the rear parts of the
horse. Initially, we see that the conditional network only provides samples for
the most discriminative region of the horse - its face. The samples generated for
the person class, though not accurate, covers the entire person. We observe that
over the subsequent iterations, we get an accurate output for the person class.
The output for the horse class also expands to cover its front part completely.
However, since its front and the rear parts are completely separated, the final
segmentation could not cover the rear part of the horse.

The third case presents another challenging scenario where there are multi-
ple people present. Four people standing in front and two are standing at the
back. Here, we observe that initially, the conditional network fails to distinguish
between the two people standing in the front-left of the image and fails to detect
persons standing at the back. The samples for the third and the fourth persons
standing in front-center and front-right respectively are also not accurate. Over
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the iterations, the conditional network improves its predictions for the four peo-
ple standing in front and also sometimes detect the people standing at the back.
As a result, prediction network finally detects five of the six people in the image.

6 Experiments

6.1 Data Set and Evaluation Metric

Data Set: We evaluate our proposed method on Pascal VOC 2012 segmentation
benchmark [12]. The data set consists of 20 foreground classes. Following previ-
ous works [1,13,18,20], we use the augmented Pascal VOC 2012 data set [14],
which contains 10, 582 training images.

From the augmented Pascal VOC 2012 data set, we construct two differ-
ent weakly supervised data sets. The first data set is where we retain only the
image-level annotations. For the second data set, we retain the bounding box
information along with the image-level label. In both the data sets, the pixel-level
labels are discarded.

Evaluation Metric: We adopt the standard evaluation metric for instance seg-
mentation, mean average precision (mAP) [15]. Following the same evaluation
protocol from other competing approaches, we report mAP with four intersection
over union (IoU) thresholds, denoted by mAP r

k where k denotes the different
values of IoU and k = {0.25, 0.50, 0.70, 0.75}.

6.2 Initialization

We now discuss various strategies to initialize our conditional network for dif-
ferent levels of weakly supervised annotations.

Image Level Annotations: Following the previous works on weakly supervised
instance segmentation from image-level annotations [1,23,43], we use the Class
Activation Maps (CAMs) to generate the segmentation seeds for each image in
the training set. Specifically, like [1,23,43], we rely on the Peak Response Maps
(PRM) [42] to generate segmentation seeds that identify the salient parts of the
objects. We utilize these seeds as pseudo segmentation labels to initially train
our conditional network. We also filter the MCG [3] segmentation proposal such
that each selected proposal has at least a single pixel overlap with the PRM
segmentation seeds. This helps us reduce the number of segmentation propos-
als needed thereby reducing the memory requirement. Once the initial training
for the conditional network is over, we proceed with the iterative optimization
strategy, described in Sect. 5.

Bounding Box Annotations For the weakly supervised data set where bounding
box annotations are present, we filter the MCG [3] segmentation proposals such
that only those who have a high overlap with the ground-truth bounding boxes
are retained. The PRM [42] segmentation seeds are also pruned such that they
are contained within each of the bounding box annotations.
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6.3 Comparison with Other Methods

We compare our proposed method with other state-of-the-art weakly supervised
instance segmentation methods. The mean average precision (mAP) over dif-
ferent IoU thresholds are shown in Table 1. Compared with the other methods,
our proposed framework achieves state-of-the-art performance for both image-
level and the bounding box labels. We also study the effect of using a different
conditional network architecture based on ResNet-50 and ResNet-101. This is
shown in the table as ‘Ours (ResNet-50)’ and ‘Ours (ResNet 101)’ respectively.
Our main result employs a U-Net based architecture for the conditional network
and is presented by ‘Ours’ in the table. The implementation details and the
details of the alternative architecture are presented in the supplementary. The
encoder-decoder architecture of the U-Net allows us to learn better features. As
a result, we observe that our method which adopts U-Net architecture for the
conditional network consistently outperforms the one which adopts a ResNet
based architecture. In Table 1, observe that our approach performs particularly
well for the higher IoU thresholds (mAPr

0.70 and mAPr
0.75) for both the image-

level and the bounding-box labels. This demonstrates that our model can predict
the instance segments most accurately by respecting the object boundaries. The
per-class quantitative and qualitative results for our method is presented in the
supplementary material.

Table 1. Evaluation of instance segmentation results from different methods with
varying level of supervision on Pascal VOC 2012 val set. The terms F , B, and I denotes
a fully supervised approach, methods that uses the bounding box labels, and methods
that uses the image-level labels respectively. Our prediction network results when using
a ResNet based conditional network is presented as ‘Ours (ResNet-*) and the results of
the prediction network using a U-Net based conditional network is presented as ‘Ours’.

Method Supervision Backbone mAPr
0.25 mAPr

0.50 mAPr
0.70 mAPr

0.75

Mask R-CNN [17] F R-101 76.7 67.9 52.5 44.9

PRN [42] I R-50 44.3 26.8 – 9.0

IAM [43] I R-50 45.9 28.8 – 11.9

OCIS [10] I R-50 48.5 30.2 – 14.4

Label-PEnet [13] I R-50 49.1 30.2 – 12.9

WISE [23] I R-50 49.2 41.7 – 23.7

IRN [1] I R-50 – 46.7 – 23.5

Ours (ResNet-50) I R-50 59.1 49.7 29.2 27.1

Ours I R-50 59.7 50.9 30.2 28.5

SDI [20] B R-101 – 44.8 – 17.8

BBTP [18] B R-101 75.0 58.9 30.4 21.6

Ours (ResNet-101) B R-101 73.1 57.7 33.5 31.2

Ours B R-101 73.8 58.2 34.3 32.1
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Table 2. Evaluation of the instance segmentation results for the various ablative set-
tings of the conditional distribution on Pascal VOC 2012 data set

mAPr
0.25 mAPr

0.50 mAPr
0.75

U U+P U+P+H U U+P U+P+H U U+P U+P+H

57.9 59.1 59.7 47.6 49.9 50.9 23.1 26.9 28.5

6.4 Ablation Experiments

Effect of the Unary, the Pairwise and the Higher Order Terms. We
study the effect of the conditional distributions unary, pairwise and the higher
order terms have on the final output in Table 2. We use the terms U, U+P, and
U+P+H to denote the settings where only the unary term is present, both the
unary and the pairwise terms are present and all three terms are present in the
conditional distribution. We see that unary term alone performs poorly across
the different IoU thresholds. We argue that this is because of the bias of the
unary term for segmenting only the most discriminative regions. The pairwise
term helps allay this problem and we observe a significant improvement in the
results. This is specially noticeable for higher IoU thresholds that require more
accurate segmentation. The higher order term helps in improving the accuracy
by ensuring that correct samples are generated by the conditional distribution.

Table 3. Evaluation of the instance segmentation results for the various ablative set-
tings of the loss function’s diversity coefficient terms on Pascal VOC 2012 data set

Method mAPr
k Prp, Prc (proposed) PWp, Prc Prp, PWc PWp, PWc

mAPr
0.25 59.7 59.5 57.3 57.2

mAPr
0.50 50.9 50.3 46.9 46.6

mAPr
0.75 28.5 27.7 23.4 23.0

Effect of the Probabilistic Learning Objective. To understand the effect
of explicitly modeling the two distributions (Prp and Prc), we compare our app-
roach with their corresponding pointwise network. In order to sample a single
output from our conditional network, we remove the self-diversity coefficient
term and feed a zero noise vector (denoted by PWc). For a pointwise prediction
network, we remove its self-diversity coefficient. The prediction network still out-
puts the probability of each proposal belonging to a class. However, by removing
the self-diversity coefficient term, we encourage it to output a peakier distribu-
tion (denoted by PWp). Table 3 shows that both the diversity coefficient term is
important for maximum accuracy. We also note that modeling uncertainty over
the pseudo label generation model by including the self-diversity in the condi-
tional network is relatively more important. The self-diversity coefficient in the
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conditional network enforces it to sample a diverse set of outputs which helps in
dealing with the difficult cases and in avoiding overfitting during training.

7 Conclusion

We present a novel framework for weakly supervised instance segmentation. Our
framework efficiently models the complex non-factorizable, annotation consis-
tent and boundary aware conditional distribution that allows us to generate
accurate pseudo segmentation labels. Furthermore, our framework provides a
joint probabilistic learning objective for training the prediction and the condi-
tional distributions and can be easily extendable to different weakly supervised
labels such as image-level and bounding box annotations. Extensive experiments
on the benchmark Pascal VOC 2012 data set has shown that our probabilistic
framework successfully transfers the information present in the image-level anno-
tations for the task of instance segmentation achieving state-of-the-art result for
both image-level and bounding box annotations.
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Abstract. We present a visual localization framework based on novel
deep attention aware features for autonomous driving that achieves cen-
timeter level localization accuracy. Conventional approaches to the visual
localization problem rely on handcrafted features or human-made objects
on the road. They are known to be either prone to unstable matching
caused by severe appearance or lighting changes, or too scarce to deliver
constant and robust localization results in challenging scenarios. In this
work, we seek to exploit the deep attention mechanism to search for
salient, distinctive and stable features that are good for long-term match-
ing in the scene through a novel end-to-end deep neural network. Further-
more, our learned feature descriptors are demonstrated to be competent
to establish robust matches and therefore successfully estimate the opti-
mal camera poses with high precision. We comprehensively validate the
effectiveness of our method using a freshly collected dataset with high-
quality ground truth trajectories and hardware synchronization between
sensors. Results demonstrate that our method achieves a competitive
localization accuracy when compared to the LiDAR-based localization
solutions under various challenging circumstances, leading to a potential
low-cost localization solution for autonomous driving.

1 Introduction

Localization is a fundamental task in a self-driving car system. To exploit high
definition (HD) maps as priors for robust perception and safe motion planning,
this requires the localization system to reach centimeter-level accuracy [1,3].

Despite many decades of research, building a long-term, precise and reliable
localization system using low-cost sensors, such as automotive and consumer-
grade GPS/IMU and cameras, is still an open-ended and challenging problem.
Compared to the LiDAR, cameras are passive sensors meaning that they are
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Fig. 1. The major steps of our proposed framework: (a) The heatmaps (middle) and
descriptor maps (right) extracted by the local feature embedding module. (b) Map 3D
keypoints are selected by the attentive keypoint selection module in accordance with
the map heatmaps. (c) The neighboring keypoints in the map are projected onto the
online image (top) given a set of candidate poses. The corresponding feature descriptors
in the online image are found. (d) The optimal camera pose is estimated by evaluating
the overall feature matching cost.

more susceptible to appearance changes caused by varying lighting conditions or
changes in viewpoint. It is known that handcrafted point features (DIRD [25,27],
FREAK [2,5], BRIEF [6,31] et al.) suffer from unreliable feature matching under
large lighting or viewpoint change, leading to localization failure. Even when
using recent deep features [12,21,49,64], local 3D-2D matching is prone to fail
under strong visual changes in practice due to the lack of repeatability in the
keypoint detector [18,46,47]. Another alternative to these methods is to leverage
human-made objects, which encode appearance and semantics in the scene, such
as lane [10,50] or sign [45] markings on the road [22,53], road curbs, poles [65]
and so on. Those features are typically considered relatively stable and can be
easily recognized as they are built by humans for specific purposes and also used
by human drivers to aid their driving behavior. Nevertheless, those methods are
only good for environments with rich human-made features but easily fail in
challenging scenarios that lack them, for example, road sections with worn-out
markings under poor maintenance, rural streets with no lane markings or other
open spaces without clear signs. Furthermore, these carefully selected semantic
signs or markings typically only cover a small area in an image. One obvious
design paradox in a mainstream visual localization system is that it suffers from
the absence of distinctive features, however, at the same time, it deliberately
abandons rich and important information in an image by solely relying on these
human-made features (Fig. 1).

In this work, titled “DA4AD” (deep attention for autonomous driving), we
address the aforementioned problems by building a visual localization system
that trains a novel end-to-end deep neural network (DNN) to extract learning-
based feature descriptors, select attentive keypoints from map images, match
them against online images and infer optimal poses through a differentiable cost
volume. Inspired by prior works [13,41] that utilize the attention mechanism,
our intuition is that we seek to effectively select a subset of the points in the
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map images as attentive keypoints. They are stable features in the scene and
good for long-term matching. To this end, we first construct an image pyramid
and train fully convolutional networks (FCN) to extract dense features from
different scales on them independently. Using shared backbone networks, dense
heatmaps from different scales are simultaneously estimated to explicitly eval-
uate the attention scores of these features for their capabilities in conducting
robust feature matching under strong visual changes. To build a prior map, we
process our map images and store the selected attentive keypoints, extracted
features, and 3D coordinates into a database. The 3D coordinates are obtained
from LiDAR scans which are only used for mapping. During the online localiza-
tion stage, given a predicted prior vehicle pose as input, we query the nearest
neighboring map image with selected keypoints in it from the database. We
then sample a set of candidate poses around the prior pose. By projecting the
3D map keypoints onto the online image using each candidate pose, the matched
2D points in the online image can be found and their local features have been
extracted accordingly. Finally, given these local feature descriptor pairs from
both the online and map image as input, by evaluating overall feature match-
ing cost across all the candidate poses, the optimal estimation can be obtained.
More importantly, in this final feature matching step, we infer the unknown
camera poses through a differentiable multi-dimensional matching cost volume
in the solution space, yielding a trainable end-to-end architecture. Compared to
other works [12,13,21,49,64] that learn deep feature descriptors, this architec-
ture allows our feature representation and attention score estimation function
to be trained jointly by backpropagation and optimized towards our eventual
goal that is to minimize the absolute localization error. Furthermore, it bypasses
the repeatability crisis in keypoint detectors in an efficient way. This end-to-end
architecture design is the key to boost the overall performance of the system.

To summarize, our main contributions are:

– A novel visual localization framework for autonomous driving, yielding cen-
timeter level precision under various challenging lighting conditions.

– Use of the attention mechanism and deep features through a novel end-to-end
DNN which is the key to boost performance.

– Rigorous tests and benchmarks against several methods using a new dataset
with high-quality ground truth trajectories and hardware camera, LiDAR,
IMU timestamp synchronization.

2 Related Work

In the recent two decades, there has been a breakthrough in LiDAR-based local-
ization technologies that has led to compelling performance [3,28,29,35,58,61,
62]. However, camera-based solutions are particularly favored by car manufac-
turers and Tier 1 suppliers due to their low cost.
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Structure Based. One important category of methods utilizes human-made
structures in the environment. M. Schreiber et al. [50] localize the vehicle using a
stereo camera and by matching curbs and lane segments in a map. D. Cui et al.
[10,11] conversely detect consecutive lanes instead of lane segments and globally
locate them by registering the lane shape with the map. Furthermore, K. Jo
et al. [22] introduce an around-view monitoring (AVM) system and improve the
localization performance by benefiting from the detected lane markings within
it. A. Ranganathan et al. [45,63] propose to use signs marked on the road instead
of the lane markings to localize the vehicles. J. K. Suhr et al. [53] further build a
localization system using lane contours and road signs expressed by a minimum
number of points solved in a particle filter framework. Y. Yu et al. [65] utilize line
segments in the scene, such as lane markings, poles, building edges together with
sparse feature points, and define a road structural feature (RSF) for localization.

Low-level Feature Based. Another category of methods employs low-level
features. H. Lategahn et al. [26,27] detect salient 2D sparse points in the online
image and matched with the queried 3D landmarks from the map using hand-
crafted DIRD descriptors [25], and the 6 DoF poses are solved in a probabilistic
factor graph. Since the number of successfully matched landmarks is crucial to
the performance, H. Lategahn et al. [31] later propose to learn to select the most
relevant landmarks to improve the overall long-term localization performance.
Moving forward, [32] introduces linear SVM classifiers to recognize distinctive
landmarks in the environment through a unsupervised mining procedure. Most
recently, M. Bürki et al. [5] build a vision-based localization system with a clas-
sical 2D-3D correspondence detection-query-matching pipeline leveraging the
FREAK [2] descriptor. Similar to us, LAPS-II [38,51] also utilizes the 3D struc-
ture and performs 6 DoF visual localization by first transforming RGB images to
an illumination invariant color space and then finding the optimal vehicle poses
by minimizing the normalized information distance (NID), which can still be
considered as a handcrafted way to embed feature representations. Furthermore,
[9,40,43,60] propose to localize their vehicles by generating numerous synthetic
views of the environment rendered with LiDAR intensity, depth or RGB values,
and comparing them to the camera images to find the optimal candidate by mini-
mizing a handcrafted or learned cost. Recently, deep features [12,13,21,49,52,64]
have been proposed to replace these traditional handcrafted ones. GN-Net [52]
proposes to train deep features in a self-supervised manner (similar to us) with
the newly proposed Gauss-Newton loss. The work most related to our approach
is M. Dusmanu et al. [13]. It proposes a similar attentive describe-and-detect
approach to us, but fails to integrate the feature descriptor and detector train-
ing process into a specific application task through an end-to-end DNN, which
is the key to boost the performance.

Other recent attempts include DeLS-3D [59] that proposes to directly esti-
mate the camera pose by comparing the online image with a synthetic view
rendered with semantic labels given a predicted prior pose, and T. Caselitz [8]
that localizes its self-position by matching reconstructed semi-dense 3D points
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from image features against a 3D LiDAR map. Similar to us, H. Germain et al.
[18] proposes to only detect (“select” in our work) features in the reference image
to bypass the repeatability crisis in the keypoint detection. A large body of lit-
erature [4,23,24,39,44,46,48,54–57] focuses on solving vision-based localization
problems for other applications instead of the autonomous driving, which are
not discussed in detail here.

3 Problem Statement

Our problem definition is similar to previous works [35,59], where the input to
the localization system involves a pre-built map that encodes the memory of
the environment in history, and a predicted coarse camera pose usually esti-
mated by accumulating the localization estimation of the previous frame with
the incremental motion estimation obtained from an IMU sensor. At the sys-
tem initialization stage, this prior pose can be obtained using GPS, other image
retrieval techniques or Wi-Fi fingerprinting. Our map representation contains
2D point features together with global 3D coordinates.

Therefore, given an online image, our task is to seek an optimal offset between
the final and predicted pose by 3D-2D matching the features from the pre-built
map to the ones from the online image. For better efficiency and robustness, we
follow localization systems [29,35,58] for autonomous driving, and only the 2D
horizontal and heading offset (Δx,Δy,Δψ) is estimated.

4 Method

There are three different stages in the system: (i) network training; (ii) map gen-
eration; (iii) online localization. Both the map generation and online localization
can be considered as inferences of the trained network. The network architecture
of the proposed framework in different stages is shown in Fig. 2.

4.1 Network Architecture

The overall architecture can be decomposed into three main modules: (i) local
feature embedding (LFE); (ii) attentive keypoint selection (AKS); (iii) weighted
feature matching (WFM). To seek the best performance, we may choose to use
different algorithms or strategies in the same module when the system is in
different stages. These choices are introduced in detail in Sect. 4.3, 4.4 and 4.5.
The effectiveness of them is validated thoroughly in our experiments.

LFE Module. We seek to extract good local feature descriptors together with
their relevance weights (attention scores) to our task represented as a heatmap
in an image. Ideally, these extracted descriptors should be robust for matching
under appearance changes caused by different lighting conditions or seasons.
The attention scores should highlight reliable objects and avoid interferences
and noises in the scene.
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AKS Module. Despite the fact that our LFE module extracts dense features,
similar to [13], we adopt a describe-and-select approach to select a set of key-
points that are good for long-term matching and save them in the map database.

WFM Module. Given 3D keypoints associated with their 2D feature descrip-
tors from the map images and dense features extracted from the online image, the
WFM module estimates the optimal pose by sampling a set of candidate poses
around the prior pose and evaluating the matching cost given each candidate.

Fig. 2. The network architecture and system workflow of the proposed vision-based
localization framework based on end-to-end deep attention aware features in three
different stages: a) training; b) map generation; c) online localization.

4.2 System Workflow

Training. The training stage involves all the three modules, LFE, AKS, and
WFM. First of all, given a predicted pose, its closest map image in the Euclidean
distance is selected. Next, the LFE module extracts the dense features from
both the online and map images, and the attention heatmap from the map
image accordingly. Then the AKS module selects good features from the map
image as the keypoints and their associated 3D coordinates are obtained from
LiDAR point cloud projections. Finally, given these 3D keypoints, their feature
descriptors, and corresponding attention scores as input, the WFM module seeks
to find the optimal pose offset by searching in a 3D cost volume, and the optimal
pose offset is compared with the ground truth pose to produce the training loss.

Map Generation. After training, there is a designated map generation step
using a sub-portion of the network as shown in Fig. 2. To build the map and test



DA4AD: End-to-End Attention-Based Visual Localization 277

the system, we did multiple trials of data collection on the same road. One of
them is used for mapping. Given the LiDAR scans and the ground truth vehicle
poses (see Sect. 5.1 for details), the global 3D coordinates of LiDAR points can
be obtained readily. Note that the LiDAR sensors and ground truth poses are
used for mapping purposes only. First, the map image pixels are associated with
global 3D coordinates by projecting 3D LiDAR points onto the image, given the
ground truth vehicle poses. Attention heatmaps and feature maps of different
resolutions in the map image are then estimated by the LFE network inference.
Next, a set of keypoints are selected for different resolutions in the pyramid in the
AKS module. As a whole, we save keypoints together with their D-dimensional
descriptors and 3D coordinates in the map database.

Online Localization. During the localization stage, feature maps of differ-
ent resolutions in the online image are again estimated by the LFE network
inference. We collect the keypoints with their feature descriptors and global 3D
coordinates from the nearest map image given the predicted camera pose. Then
these keypoints are projected onto the online image given the sampled candidate
poses in the cost volume we built in the WFM module. Three feature matching
networks of different resolutions cascade to achieve a coarse-to-fine inference and
output the estimated vehicle pose.

Fig. 3. The illustration of the network structure of the three main modules: (a) local
feature embedding (LFE); (b) attentive keypoint selection (AKS); (c) weighted feature
matching (WFM).

4.3 Local Feature Embedding

The same LFE module is used in all three different stages. We employ a network
architecture similar to the feature pyramid network (FPN) introduced by T. Lin
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et al. [30] as shown in Fig. 3(a). With the lateral connections merging feature
maps of the same spatial size from the encoder path to the decoder, the FPN
can enhance high-level semantic features at all scales, thus harvesting a more
powerful feature extractor. In our encoder, we have an FPN consisting of 17
layers that can be decomposed into four stages. The first stage consists of two
2D convolutional layers where the numbers in brackets are channel, kernel and
stride sizes, respectively. Starting from the second stage, each stage consists of
a 2D convolutional layer with stride size 2 and two residual blocks introduced
in the ResNet [20]. Each residual block is composed of two 3 × 3 convolutional
layers. In the decoder, after a 2D convolutional layer, upsampling layers are
applied to hallucinate higher resolution features from coarser but semantically
stronger features. Features of the same resolution from the encoder are merged
to enhance these features in the decoder through the aforementioned lateral con-
nections that element-wise average them. The outputs of the decoder are feature
maps with different resolutions of the original image. They are fed into two dif-
ferent network heads as shown in the bottom right of Fig. 3, that are responsible
for descriptor extraction and attention heatmap estimation, respectively. The
feature descriptors are represented as D-dimensional vectors that are competent
for robust matching under severe appearance changes caused by varying lighting
or viewpoint conditions. The heatmap is composed of [0 - 1] scalars that are
used as relevance weights in our attention-based keypoint selection and feature
matching modules in Sect. 4.4 and 4.5. To be more specific, our descriptor map
output is a 3D tensor F ∈ R

H
s ×W

s ×D, where s ∈ 2, 4, 8 is the scale factor and
D = 8 is the descriptor dimension size. Our attention heatmap output is an
image W ∈ [0, 1]

H
s ×W

s .

4.4 Attentive Keypoint Selection

During the study, we learned that different keypoint selection strategies have a
considerable impact on the overall performance of the system. The AKS module
is used in two stages: the training and map generation. As we are solving a
geometric problem, it’s well known that a set of keypoints that are almost evenly
distributed in the geometric space rather than clustered together are crucial. We
find that the proposed methods are superior to other more natural choices, for
example top-K.

We consider two selection strategies, which are the farthest point sampling
(FPS) algorithm [14] and a variant of it, the weighted FPS (WFPS) algorithm
as shown in Fig. 3(b). Given a set of selected points S and unselected Q, if we
seek to iteratively select a new point q̂ from Q, the FPS algorithm calculates

q̂ = arg max
q∈Q

(min
s∈S

(d(q, s))). (1)

In our WFPS algorithm, we instead calculate

q̂ = arg max
q∈Q

(w(q)min
s∈S

(d(q, s))), (2)

where w(q) is the relevance attention weight of the query point q.
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During the training stage, we aim to uniformly learn the attention scores of
all the candidates, therefore it’s necessary to have an efficient stochastic selection
strategy. To this end, first of all, K candidate points are randomly selected and
sent to the GPU cache. Next, we apply the FPS algorithm to select the keypoints
among them. Interestingly, we find that a WFPS keypoint selection algorithm +
a weighted average marginalization operation (introduced in Sect. 4.5) leads to
catastrophic models. Our insight is that weighted average contributes as a posi-
tive feedback to the WFPS keypoint selection policy. A few good keypoints gain
high weights rapidly, stopping others from being selected during the training,
leading to a heatmap in where there are only a few clustered high weight points
and of which the remaining part is simply empty. A WFPS keypoint + a reduce
average marginalization operation (introduced in Sect. 4.5) is not a valid app-
roach as the heatmap network can not be trained without effective incorporation
of the attention weights.

During the map generation stage, we need an algorithm that can select good
keypoints by effectively incorporating the trained attention weights. For this
reason, again we first randomly selected K candidate points and then stick to
the WFPS during map generation considering it as a density sampling function
with the heatmap as probabilities.

In order to associate the 2D feature descriptors with 3D coordinates, we
project 3D LiDAR points onto the image. Given the fact that not all image
pixels are associated with LiDAR points, only the sparse 2D pixels with known
3D coordinates are considered as candidates, from which we select keypoints
that are good for matching. Please refer to the supplemental materials for exact
numbers of keypoints for different resolutions.

4.5 Weighted Feature Matching

Traditional approaches typically utilize a PnP solver [19] within a RANSAC [15]
framework to solve the camera pose estimation problem given a set of 2D-3D
correspondings. Unfortunately, these matching approaches including the outlier
rejection step, are non-differentiable and thus prevent them from the feature and
attention learning through backpropagation during the training stage. L3-Net
[35] introduced a feature matching and pose estimation method that leverages a
differentiable 3D cost volume to evaluate the matching cost given the pose offset
and the corresponding feature descriptor pairs from the online and map images.

In the following, we improve the original L3-Net design by coming up with
solutions to incorporate attention weights and making them effectively trainable.
The network architecture is illustrated in Fig. 3(c).

Cost Volume. Similar to the implementation of L3-Net [35], we build a cost
volume Ns × nx × ny × nψ, where Ns is the number of selected keypoints, nx,
ny and nψ are the grid sizes in each dimension. To be more specific, given
the predicted pose as the cost volume center, we divide its adjacent space into
a three-dimensional grid evenly, denoted as {ΔT = (Δxi,Δyj ,Δψk)|1 ≤ i ≤
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nx, 1 ≤ j ≤ ny, 1 ≤ k ≤ nψ}. Nodes in this cost volume are candidate poses
from which we desire to evaluate their corresponding feature pairs and find the
optimal solution. By projecting the selected 3D keypoints in the map images
onto the online images using each candidate pose, the corresponding local fea-
ture descriptors can be calculated by applying the bilinear interpolation on the
descriptor map of the online image. Unlike the implementation of L3-Net where it
computes the element-wise L2 distance between both descriptors from the online
and map images, we calculate the total L2 distance between them, bringing a
single-dimensional cost scalar. The cost scalar is then processed by a three-layer
3D CNNs with a kernel of Conv3D(8,1,1)-Conv3D(8,1,1)-Conv3D(1,1,1), and
the result is denoted as P (p,ΔT ), where p is a keypoint out of N.

Marginalization. In the original implementation of L3-Net, the regularized
matching cost volume Ns ×nx ×ny ×nψ is marginalized into a nx ×ny ×nψ one
across the keypoint dimension by applying a reduce average operation. Following
[41], how to effectively incorporate the attention weights across all the keypoint
features is the key to our success in the heatmap head training in the LFE
module. Compared to the reduce average (no attention weight incorporation),
the most straightforward solution to this is to use a weighted average operation
replacing the reduce average. We choose to use weighted average for training as
we use the FPS in the AKS module. We choose to use reduce average during
the online localization stage and thoroughly evaluate the performance of the two
different approaches in Sect. 5.3.

The remaining part that estimates the optimal offset Δẑ and its probability
distribution P (Δzi) for z ∈ {x, y, ψ} is identical to the design of L3-Net as shown
in Fig. 3(c). Please refer to [35] for more details.

4.6 Loss

1) Absolute Loss: The absolute distance between the estimated offset ΔT̂ and
the ground truth ΔT ∗ = (Δx∗,Δy∗,Δψ∗) is applied as the first loss:

Loss1 = α · (|Δx̂ − Δx∗| + |Δŷ − Δy∗| + |Δψ̂ − Δψ∗|), (3)

where α is a balancing factor.
2) Concentration Loss: Besides the absolute loss above, the concentration of the

probability distribution P (Δzi), z ∈ {x, y, ψ} also has a considerable impact
on the estimation robustness. For this reason, the mean absolute deviation
(MAD) of the probability distribution assuming the ground truth as the mean
value is used as:

σz =
∑

i

P (Δzi) · |Δzi − Δz∗|, (4)

where z ∈ {x, y, ψ}. Accordingly, the second loss function is defined as
Loss2 = β · (σx + σy + σψ).

3) Similarity Loss: In addition to geometry constrains, the corresponding 2D-
3D keypoint pairs should have similar descriptors. Therefore, we define the
third loss:
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Loss3 =
∑

p

max(P̂ (p) − C, 0), (5)

where P̂ (p) is the cost volume output from the 3D CNNs of the keypoint p,
when we project the keypoint in the map using the ground truth pose onto the
online image, find the corresponding point in the online image, and compute
the descriptor distance between the pair. C = 1.0 is a constant.

5 Experiments

5.1 Apollo-DaoxiangLake Dataset

To evaluate the proposed method, we require a dataset with multiple trials of
data collection of the same road over a long period of time containing aligned
camera images and 3D LiDAR scans. To this end, we evaluated several public
datasets [7,17,35,37,42,47]. The KITTI [16,17] and Ford Campus [42] datasets
fail to enclose multiple trials of the same road. The NCLT dataset [7] is the closest
one to our requirement, but unfortunately, we find that images are not well
aligned with 3D LiDAR scans. The Oxford RobotCar dataset [37] doesn’t provide
ground truth trajectories with high confidence until the latest upgrade [36].
The Aachen Day-Night, CMU-Seasons and RobotCar-Seasons datasets [47] focus
more on single-frame based localization, resulting in short trajectories lasting for
only several seconds, incompatible for the application of autonomous driving.
The Apollo-SouthBay dataset [34,35] doesn’t release camera images.

Therefore, we recruited our mapping vehicles and built this new dataset,
Apollo-DaoxiangLake. The cameras are hardware synchronized with the LiDAR
sensor. That allows us to compensate for the rolling shutter and motion effects
when we project 3D point clouds onto images, yielding precise alignment between
3D point clouds and image pixels. The ground truth poses are provided using
high-end sensors through necessary post-processing solutions. We collected 9 tri-
als of repetitive data within 14 weeks (Sep. to Dec.) over the same road adjacent
to the Daoxiang Lake park in Beijing, China. In particular, our dataset includes
different times of the day, for example, noon, afternoon, sunset, and seasonal
changes, e.g., sunny, snowy days, and difficult circumstances, e.g. foggy lens,
object occlusion, making it a challenging visual localization benchmark dataset.
Some sample images are shown in Fig. 4. The data from the first trial on Sep.
18 is reserved for building the localization map. Please refer to the supplemental
materials for more details about our dataset.

In our experiment, for simplicity, the input predicted poses are generated by
extracting the inter-frame incremental motion from the trajectories estimated
by the built-in GNSS/IMU integrated solution in NovAtel PwrPak7D-E1 with
RTK disabled, and appending it to the localization output of our system at the
previous frame, which is the same as the experimental setup of the LiDAR local-
ization system in [29]. In practice, the incremental motion should be estimated
by an inertial navigation system (INS).
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5.2 Performances

Quantitative Analysis. Due to the fact that not all the methods can work
properly in all circumstances in our dataset, we introduce an N/A ratio met-
ric and allow the system to claim “results not available” under certain specific
circumstances. Only the results from “available” frames are counted in the quan-
titative analysis of the localization accuracy. For our method, we monitor the
variance of estimated probability vectors P (Δzi), z ∈ {x, y, ψ}. We report the
“unavailable” status when the variance is higher than a threshold. Our quanti-
tative analysis includes horizontal and heading (yaw) errors with both RMS and
maximum values. The horizontal errors are further decomposed to longitudi-
nal and lateral directions. The percentages of frames where the system achieves
better than thresholds are also shown in tables. To make a thorough evalua-
tion, we compare the proposed approach with two methods, structure-based and
feature-based.

i) Structure-based: Following [22,50], a map that contains line segments to
represent the lane markings or curbs is used. 2D lane segments are extracted from
online images and are matched against those in the map based on a particle filter
framework. Objects, such as poles, are added to further improve the N/A ratio
and longitudinal error. Similarly, only 3 DoF are estimated in this method. When
there is no adequate detected or matched lane segments, the system reports the
“unavailable” status.

ii) Feature-based: The latest work HF-Net [46] is included. When there is
no sufficient matched inliers, the system reports the “unavailable” status. The
original implementation of HF-Net includes global descriptors for coarse local-
ization (image retrieval) and 6 DoF pose estimation using a PnP + RANSAC. To
conduct a fairer comparison, we made necessary modifications including three
parts: 1) We replaced its global retrieval with 10 neighboring images directly
found using the prior pose. 2) The local 6-DoF pose estimation using a PnP is
replaced with a PnP + bundle adjustment (BA) using the 3D-2D matches from
10 to 1 images (single camera) or 30 to 3 images (multi-cameras). 3) A 3 DoF BA
across (x, y, yaw) dimensions is implemented. These modifications improve its
performance as shown in Table 1. With regard to the feature descriptors which
play an essential role during matching, we also present the experimental results
using SIFT [33] in the HF-Net architecture.

In Table 1, we give a quantitative analysis of each method. The method
labeled “(S)” uses only a single front camera, others use all three cameras.
“HFNet[46]” is the original implementation with PnP +RANSAC which only
works for single view. “HFNet++” is the method with our modifications to
enhance the performance. “HFNet++SIFT” means that we use the SIFT
descriptors in the HF-Net framework. It demonstrates that the localization
performance of our proposed vision-based method is comparable to the latest
LiDAR-based solution [58], achieving centimeter-level RMS error in both longitu-
dinal and lateral directions. We also find that the LiDAR method [58] reaches its
maximum error when the road surface is wet during snowy days. The low local-
ization errors of our system demonstrate that our network can generalize decently



DA4AD: End-to-End Attention-Based Visual Localization 283

Table 1. Comparison with other methods. We achieve centimeter-level RMS errors
in both longitudinal and lateral directions, which is comparable to the latest LiDAR-
based solution [58]. Our overall performance, including the N/A rate and accuracy, is
higher than both the structure-based and feature-based methods by a large margin.

Method
N/A
(%)

Horizontal Longitudinal Lateral Yaw

RMS/Max(m) 0.1/0.2/0.3(%) RMS/Max(m) RMS/Max(m) RMS/Max(◦) 0.1/0.3/0.6(%)

Struct-based (S) 91.0 0.244/2.669 20.5/49.5/71.3 0.218/1.509 0.076/2.533 0.151/4.218 42.1/89.7/99.0
HFNet[46] (S) 61.4 0.243/322.6 34.3/61.4/76.3 0.211/322.5 0.081/8.844 0.081/15.65 77.8/97.8/99.6
HFNet++(S) 79.8 0.213/6.049 30.4/59.0/76.6 0.186/2.341 0.074/6.004 0.079/16.03 74.5/98.3/99.8
HFNet++SIFT(S)41.2 0.264/8.181 28.1/54.0/70.8 0.211/7.349 0.113/8.154 0.106/17.42 75.0/96.1/98.9
HFNet++ 93.2 0.176/13.62 45.4/73.9/87.0 0.152/13.54 0.056/6.380 0.077/25.22 82.6/98.2/99.5
HFNet++SIFT 48.9 0.244/8.281 30.3/61.2/75.7 0.191/7.349 0.105/7.046 0.107/14.68 77.6/95.9/98.3

Ours (S) 95.4 0.123/3.119 61.7/83.6/91.9 0.106/3.074 0.043/1.787 0.070/1.685 80.5/97.4/99.4
Ours 100.0 0.058/2.617 86.3/96.8/99.5 0.048/2.512 0.023/1.541 0.054/3.208 89.4/99.6/99.9

LiDAR [58] 100.0 0.053/1.831 93.6/99.7/99.9 0.038/1.446 0.029/1.184 0.070/1.608 76.4/99.8/99.9

in varying lighting conditions. The system also boosts its performance by using
all the three cameras. In addition, note our vast performance improvement over
both the structure-based or feature-based methods. The structure-based baseline
method achieves high lateral precision, which is crucial for autonomous driving.
Compared to the traditional SIFT feature, the learning-based feature HF-Net
demonstrates better performance. When the global descriptors fail to locate the
vehicle in the ballpark, the original HF-Net [46] can produce significantly large
localization errors as expected.

Run-time Analysis. We evaluated the runtime performance of our method
with a GTX 1080 Ti GPU, Core i7-9700K CPU, and 16 GB Memory. The total
end-to-end processing time per frame during online localization is 27 ms and
50 ms for single and three cameras, respectively. The pre-built map data size is
about 10 MB/km.

5.3 Ablations and Visualization

Keypoint Selection and Marginalization. We carry out a series of compre-
hensive experiments to compare the different keypoint selection and dimension
marginalization strategies we proposed in the AKS and WFM modules in Sect. 4
with the results shown in Table 2. “WFPS+Weighted” means that we choose the
WFPS algorithm as our keypoint selection algorithm and the weighted average
method in our WFM module during the online localization. Similarly, “Reduce”
means we choose the reduce average in the WFM module. We note that using
WFPS + reduce average outperforms others. In addition, the dramatic per-
formance decline using FPS + reduce average which does not incorporate the
estimated attention scores, proves the effectiveness of our proposed attention
mechanism.
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Table 2. Comparison with various keypoint selection and weighting strategies during
the network inference. WFPS + reduce average achieves the best performance.

Method
N/A
(%)

Horizontal Longitudinal Lateral Yaw

RMS/Max(m) 0.1/0.2/0.3(%) RMS/Max(m) RMS/Max(m) RMS/Max(◦) 0.1/0.3/0.6(%)

WFPS+Weighted 99.9 0.063/2.419 83.4/96.5/99.3 0.051/1.811 0.026/2.095 0.056/2.430 88.3/99.5/99.8
WFPS+Reduce 100.0 0.058/2.617 86.3/96.8/99.5 0.048/2.512 0.023/1.541 0.054/3.208 89.4/99.6/99.9
FPS+Weighted 98.9 0.306/18.40 58.0/76.4/82.9 0.222/14.96 0.161/17.93 0.195/3.390 66.0/87.0/92.3
FPS+Reduce 98.1 0.135/6.585 69.7/85.1/90.5 0.109/4.643 0.055/6.151 0.105/3.287 76.3/93.4/97.3

Keypoint and Heatmap Visualization. To have better insights into the
attention mechanism in our framework, we visualize the generated heatmaps
together with the selected keypoints and the extracted feature descriptors in
Fig. 4. Note the diverse lighting changes from noon to sunset, dramatic seasonal
changes on tree leaves and snow on the ground, challenging circumstances caused
by the foggy lens. Also interestingly, we find that the feature descriptors output
by the network for dynamic objects, such as cars, are similar to the background.
It implies both our learned feature maps and heatmaps suppress the influence
of the dynamic objects in our localization task.

Fig. 4. Visualization of the camera images together with the generated heatmaps,
feature maps, and keypoints. Note the dramatic visual differences between the online
and map images and the various challenging circumstances in our dataset.

6 Conclusion

We have presented a vision-based localization framework designed for
autonomous driving applications. We demonstrate that selecting keypoints based
on an attention mechanism and learning features through an end-to-end DNN
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allows our system to find abundant features that are salient, distinctive and
robust in the scene. The capability of full exploitation of these robust features
enables our system to achieve centimeter-level localization accuracy, which is
comparable to the latest LiDAR-based methods and substantially greater than
other vision-based methods in terms of both robustness and precision. The strong
performance makes our system ready to be integrated into a self-driving car, con-
stantly providing precise localization results using low-cost sensors, thus accel-
erating the commercialization of self-driving cars.

Acknowledgments. This work is supported by Baidu Autonomous Driving Technol-
ogy Department (ADT) in conjunction with the Apollo Project. Shufu Xie helped with
the development of the lane-based method. Shirui Li and Yuanfan Xie helped with the
sensor calibration. Shuai Wang, Lingchang Li, and Shuangcheng Guo helped with the
sensor synchronization.

References

1. Baidu Apollo open platform. http://apollo.auto/
2. Alahi, A., Ortiz, R., Vandergheynst, P.: FREAK: fast retina keypoint. In: Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 510–517. IEEE (2012)

3. Barsan, I.A., Wang, S., Pokrovsky, A., Urtasun, R.: Learning to localize using
a LiDAR intensity map. In: Proceedings of the Conference on Robot Learning
(CoRL), pp. 605–616 (2018)

4. Brahmbhatt, S., Gu, J., Kim, K., Hays, J., Kautz, J.: Geometry-aware learning of
maps for camera localization. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (2018)

5. Bürki, M., et al.: VIZARD: reliable visual localization for autonomous vehicles in
urban outdoor environments. arXiv preprint arXiv:1902.04343 (2019)

6. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent
elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV
2010. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-15561-1 56

7. Carlevaris-Bianco, N., Ushani, A.K., Eustice, R.M.: University of Michigan North
Campus long-term vision and LiDAR dataset. Int. J. Rob. Res. (IJRR) 35(9),
1023–1035 (2015)

8. Caselitz, T., Steder, B., Ruhnke, M., Burgard, W.: Monocular camera localization
in 3D LiDAR maps. In: Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 1926–1931. IEEE (2016)

9. Chen, Y., Wang, G.: EnforceNet: monocular camera localization in large scale
indoor sparse LiDAR point cloud. arXiv preprint arXiv:1907.07160 (2019)

10. Cui, D., Xue, J., Du, S., Zheng, N.: Real-time global localization of intelligent
road vehicles in lane-level via lane marking detection and shape registration. In:
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 4958–4964. IEEE (2014)

11. Cui, D., Xue, J., Zheng, N.: Real-time global localization of robotic cars in lane
level via lane marking detection and shape registration. IEEE Trans. Intell. Transp.
Syst. (T-ITS) 17(4), 1039–1050 (2015)

http://apollo.auto/
http://arxiv.org/abs/1902.04343
https://doi.org/10.1007/978-3-642-15561-1_56
https://doi.org/10.1007/978-3-642-15561-1_56
http://arxiv.org/abs/1907.07160


286 Y. Zhou et al.

12. DeTone, D., Malisiewicz, T., Rabinovich, A.: SuperPoint: self-supervised interest
point detection and description. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition Workshops (CVPRW) (2018)

13. Dusmanu, Met al.: D2-Net: atrainable CNN for joint description and detection of
local features. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2019)

14. Eldar, Y., Lindenbaum, M., Porat, M., Zeevi, Y.Y.: The farthest point strategy for
progressive image sampling. IEEE Trans. Image Process. (TIP) 6(9), 1305–1315
(1997)

15. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Commun.
ACM 24, 381–395 (1981)

16. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI
dataset. Int. J. Rob. Res. (IJRR) 32(11), 1231–1237 (2013)

17. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the KITTI
vision benchmark suite. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 3354–3361. IEEE (2012)

18. Germain, H., Bourmaud, G., Lepetit, V.: Sparse-to-dense hypercolumn matching
for long-term visual localization. In: Proceedings of the International Conference
on 3D Vision (3DV), pp. 513–523. IEEE (2019)

19. Haralick, B.M., Lee, C.N., Ottenberg, K., Nölle, M.: Review and analysis of solu-
tions of the three point perspective pose estimation problem. Int. J. Comput.
Vis.(IJCV) 13(3), 331–356 (1994)

20. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770–778 (2016)

21. He, K., Lu, Y., Sclaroff, S.: Local descriptors optimized for average precision. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2018)

22. Jo, K., Jo, Y., Suhr, J.K., Jung, H.G., Sunwoo, M.: Precise localization of an
autonomous car based on probabilistic noise models of road surface marker features
using multiple cameras. IEEE Trans. Intell. Transp. Syst. 16(6), 3377–3392 (2015)

23. Kendall, A., Grimes, M., Cipolla, R.: PoseNet: a convolutional network for real-
time 6-DOF camera relocalization. In: Proceedings of the IEEE International Con-
ference on Computer Vision (ICCV), pp. 2938–2946 (2015). https://doi.org/10.
1109/ICCV.2015.336

24. Kendall, A., Cipolla, R., et al.: Geometric loss functions for camera pose regression
with deep learning. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), vol. 3, p. 8 (2017)

25. Lategahn, H., Beck, J., Kitt, B., Stiller, C.: How to learn an illumination robust
image feature for place recognition. In: Proceedings of the IEEE Intelligent Vehicles
Symposium (IV), pp. 285–291. IEEE (2013)

26. Lategahn, H., Schreiber, M., Ziegler, J., Stiller, C.: Urban localization with camera
and inertial measurement unit. In: Proceedings of the IEEE Intelligent Vehicles
Symposium (IV), pp. 719–724. IEEE (2013)

27. Lategahn, H., Stiller, C.: Vision only localization. IEEE Trans. Intell. Transp. Syst.
(T-ITS) 15(3), 1246–1257 (2014)

28. Levinson, J., Montemerlo, M., Thrun, S.: Map-based precision vehicle localiza-
tion in urban environments. In: Proceedings of the Robotics: Science and Systems
(RSS), vol. 4, p. 1 (2007)

https://doi.org/10.1109/ICCV.2015.336
https://doi.org/10.1109/ICCV.2015.336


DA4AD: End-to-End Attention-Based Visual Localization 287

29. Levinson, J., Thrun, S.: Robust vehicle localization in urban environments using
probabilistic maps. In: Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), pp. 4372–4378 (2010)

30. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature
pyramid networks for object detection. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 2117–2125 (2017)

31. Linegar, C., Churchill, W., Newman, P.: Work smart, not hard: recalling relevant
experiences for vast-scale but time-constrained localisation. In: Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA), pp. 90–97.
IEEE (2015)

32. Linegar, C., Churchill, W., Newman, P.: Made to measure: bespoke landmarks
for 24-hour, all-weather localisation with a camera. In: Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), pp. 787–794. IEEE
(2016)

33. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Com-
put. Vis. (IJCV) 60(2), 91–110 (2004)

34. Lu, W., Wan, G., Zhou, Y., Fu, X., Yuan, P., Song, S.: DeepVCP: an end-to-
end deep neural network for point cloud registration. In: Proceedings of the IEEE
International Conference on Computer Vision (ICCV) (2019)

35. Lu, W., Zhou, Y., Wan, G., Hou, S., Song, S.: L3-Net: towards learning based
LiDAR localization for autonomous driving. In: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp. 6389–6398 (2019)

36. Maddern, W., Pascoe, G., Gadd, M., Barnes, D., Yeomans, B., Newman, P.:
Real-time kinematic ground truth for the Oxford robotcar dataset. arXiv preprint
arXiv:2002.10152 (2020)

37. Maddern, W., Pascoe, G., Linegar, C., Newman, P.: 1 year, 1000 km: the Oxford
RobotCar dataset. Int. J. Rob. Res. (IJRR) 36(1), 3–15 (2017)

38. Maddern, W., Stewart, A.D., Newman, P.: LAPS-II: 6-DoF day and night visual
localisation with prior 3D structure for autonomous road vehicles. In: Proceedings
of the IEEE Intelligent Vehicles Symposium (IV), pp. 330–337. IEEE (2014)

39. Naseer, T., Burgard, W.: Deep regression for monocular camera-based 6-DoF
global localization in outdoor environments. In: Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 1525–
1530 (2017)

40. Neubert, P., Schubert, S., Protzel, P.: Sampling-based methods for visual naviga-
tion in 3D maps by synthesizing depth images. In: Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 2492–
2498. IEEE (2017)

41. Noh, H., Araujo, A., Sim, J., Weyand, T., Han, B.: Large-scale image retrieval with
attentive deep local features. In: Proceedings of the IEEE International Conference
on Computer Vision (ICCV), pp. 3456–3465 (2017)

42. Pandey, G., McBride, J.R., Eustice, R.M.: Ford campus vision and LiDAR data
set. Int. J. Rob. Res. (IJRR) 30(13), 1543–1552 (2011)

43. Pascoe, G., Maddern, W., Newman, P.: Direct visual localisation and calibration
for road vehicles in changing city environments. In: Proceedings of the IEEE Inter-
national Conference on Computer Vision Workshops (ICCVW), pp. 9–16 (2015)

44. Radwan, N., Valada, A., Burgard, W.: VLocNet++: deep multitask learning for
semantic visual localization and odometry. IEEE Rob. Autom. Lett. (RA-L) 3(4),
4407–4414 (2018)

http://arxiv.org/abs/2002.10152


288 Y. Zhou et al.

45. Ranganathan, A., Ilstrup, D., Wu, T.: Light-weight localization for vehicles using
road markings. In: Proceedings of the IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pp. 921–927. IEEE (2013)

46. Sarlin, P.E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: robust
hierarchical localization at large scale. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2019)

47. Sattler, T., et al.: Benchmarking 6-DoF outdoor visual localization in changing
conditions. In: Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pp. 8601–8610 (2018)

48. Sattler, T., Zhou, Q., Pollefeys, M., Leal-Taixe, L.: Understanding the limitations
of CNN-Based absolute camera pose regression. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR) (2019)

49. Savinov, N., Seki, A., Ladicky, L., Sattler, T., Pollefeys, M.: Quad-networks: unsu-
pervised learning to rank for interest point detection. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (2017)
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Abstract. We propose an end-to-end network for image generation from
given structured-text that consists of the visual-relation layout mod-
ule and stacking-GANs. Our visual-relation layout module uses relations
among entities in the structured-text in two ways: comprehensive usage
and individual usage. We comprehensively use all relations together to
localize initial bounding-boxes (BBs) of all the entities. We use indi-
vidual relation separately to predict from the initial BBs relation-units
for all the relations. We then unify all the relation-units to produce the
visual-relation layout, i.e., BBs for all the entities so that each of them
uniquely corresponds to each entity while keeping its involved relations.
Our visual-relation layout reflects the scene structure given in the input
text. The stacking-GANs is the stack of three GANs conditioned on
the visual-relation layout and the output of previous GAN, consistently
capturing the scene structure. Our network realistically renders entities’
details while keeping the scene structure. Experimental results on two
public datasets show the effectiveness of our method.

1 Introduction

Generating photo-realistic images from text descriptions (T2I) is one of the
major problems in computer vision. Besides having a wide range of applications
such as intelligent image manipulation, it drives research progress in multimodal
learning and inference across vision and language [1–3].

The GANs [4] conditioned on unstructured text description [5–9] show
remarkable results in T2I. Stacking such conditional GANs has shown even more
ability of progressively rendering a more and more detailed entity in high reso-
lution [6,9]. However, in more complex scenarios where sentences are with many
entities and relations, their performance is degraded. This is because they use
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Scene graph Relation-unit Visual-relation layout Generated image Reference image
Scene graph with 

initial BBs

Fig. 1. Overall framework of our method. Given a structured-text (scene graph), our
method predicts initial BBs for entities using all relations together, next takes indi-
vidual relation one by one to infer a relation-unit for the relation, then unifies all the
relation-units to produce visual-relation layout. Finally, the layout is converted to an
image. Color of each entity BB corresponds to that in the scene graph. Red dotted
arrow means the individual usage of relations. (Color figure online)

only entity information in given text descriptions for rendering a specific entity,
leading to a poor layout of multiple entities in generated images.

In the presence of multiple entities, besides the details of each entity, how to
localize all the entities so that they reflect given relations becomes crucial for
better image generation. Indeed, recent work [1,10–12] show the effectiveness
of inferring the scene layout first from given text descriptions. Johnson+ [1],
Li+ [10], and Ashual+ [11] use structured-text, i.e., scene graphs [2], first to
construct a scene layout by predicting bounding boxes and segmentation masks
for all entities, then convert it to an image. Hong+ [12] constructs a semantic lay-
out, a scene structure based on object instances, from input text descriptions and
converts the layout into an image. However, those mentioned methods [1,10–12]
aggregate all relations in which each entity is involved, and then localize all enti-
ties’ bounding-boxes at the same time. As a result, the predicted bounding-boxes
do not preserve the relations among entities well. Localizing entities faithfully
by preserving their relations given in text descriptions is desired.

We leverage advantages of the pyramid of GANs and inferring the scene lay-
out, proposing a GAN-based model for T2I where our network steps further in
relation usage by employing not only all available relations together but also
individual relation separately. We refer the former usage of relations as compre-
hensive while the latter as individual. Our network has two steps: (1) inferring
from input the visual-relation layout, i.e., localized bounding-boxes for all the
entities so that each of which uniquely corresponds to each entity and faith-
fully preserves relations between the entities, and (2) progressively generating
coarse-to-fine images with the pyramid of GANs, namely stacking-GANs, con-
ditioned on the visual-relation layout. The first step takes the comprehensive
usage of relations first to generate initial bounding-boxes (BBs) for entities as
in [1,10–12], and then takes the individual usage to predict a relation-unit for
each subject–predicate–object relation where all the relations in the input are
extracted through its scene graph [2]. Each relation-unit consists of two BBs that
participate in the relation: one for a “subject” entity and one for an “object”
entity. Since one entity may participate in multiple relations, we then unify all
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the relation-units into refined (entity) BBs (including their locations and sizes)
so that each of them uniquely corresponds to one entity while keeping their
relations in the input text. Aggregating the refined BBs allows us to infer the
visual-relation layout reflecting the scene structure given in the text. In the sec-
ond step, three GANs progressively generate images where entities are rendered
in more and more details while preserving the scene structure. At each level,
a GAN is conditioned on the visual-relation layout and the output of previous
GAN. Our network is trained in a fully end-to-end fashion.

The main contribution of our proposed method is our introduction to the indi-
vidual usage of subject–predicate–object relations for localizing entity bounding-
boxes, so that our proposed visual-relation layout surely preserves the visual
relations among entities. In addition, we stack and condition GANs on the visual-
relation layout to progressively render realistic detailed entities that keep their
relations even from complex text descriptions. Experimental results on COCO-
stuff [13] and GENOME [14] demonstrate outperformances of our method
against state-of-the-arts. Figure 1 shows the overall framework of our proposed
method.

2 Related Work

Recent GAN-based methods have shown promising results on T2I [1,5,6,8,9,12,
15]. They, however, struggle to faithfully reproduce complex sentences with many
entities and relations because of the gap between text and image representations.

To overcome the limitation of GANs conditioned on text descriptions, a two-
step approach was proposed where inference of the scene layout as an interme-
diate representation between text and image is followed by using the layout to
generate images [1,10–12]. Since the gap between the intermediate representation
and image is smaller than that of text and image, this approach generates more
realistic images. Zhao+ [16] and Sun+ [17] propose a combination of ground-
truth (GT) layout and entity embeddings to generate images. Hong+ [12] infers a
scene layout by feeding text descriptions into a LSTM. More precisely, they use a
LSTM to predict BBs for all entities independently, then employ a bi-directional
conv-LSTM to generate entity shapes from each predicted BB without using
any relation. The function of the bi-directional conv-LSTM used here is just the
putting-together. They then combine the layout with text embeddings obtained
from the pre-trained text encoder [7], and use a cascade refinement network
(CRN) [18] for generating images.

Johnson+ [1], Li+ [10], and Ashual+ [11] employ a scene graph [2] to pre-
dict a layout and then condition CRN [18] on the layout. The graph convolution
network (GCN) used in these methods aggregates available relations of all the
entities together along the edges of the scene graph. Namely, only the comprehen-
sive usage of relations is employed. Consequently, individual relation information
is lost at the end of GCN because of the averaging operation on entity embed-
dings. Averaging entity embeddings means mixing different relations in which a
single entity is involved, resulting in failure of retaining individual relation infor-
mation. Different from [1], [10] retrieves entity appearances from a pre-defined
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Fig. 2. Our proposed network model consisting of the visual-relation layout module
and the Stacking-GANs.

tank while [11] adds entity appearances to the layout before feeding it to the
generation part. The layout in [1,10–12] is constructed through only the com-
prehensive usage of relation among entities for BBs’ localization, leading poor
scene structure as a whole even if each entity is realistically rendered.

Our main difference from the aforementioned methods is to construct the
visual-relation layout using subject–predicate–object relations between entities
extracted from an input structured-text not only comprehensively but also indi-
vidually. Recursively conditioning stacking-GANs on our constructed visual-
relation layout enables us to progressively generate coarse-to-fine images that
consistently preserve the scene structure given in texts.

3 Proposed Method

Our method is decomposed into two steps: (1) inferring the visual-relation layout
θ(t) from structured-text description t, and (2) generating an image from the
visual-relation layout, namely Î = G(θ(t)). To this end, we design an end-to-end
network with two modules: the visual-relation layout module and the stacking-
GANs (Fig. 2). We train the network in a fully end-to-end manner.

3.1 Visual-Relation Layout Module

The visual-relation layout module constructs the visual-relation layout θ(t) from
a given structured-text description t (Fig. 3) where t is assumed to be converted
into a scene graph [2], i.e., the collection of subject–predicate–object ’s. After the
pre-processing on converting t to its scene graph, the comprehensive usage sub-
net in this module predicts initial BBs for all the entities in t by aggregating all
available relations together through GCN (“comprehensive usage”). The indi-
vidual usage subnet takes each subject–predicate–object relation from the scene
graph one by one and select the pair of initial BBs involved in the relation
(predicate): one for “subject” entity and one for “object” entity. The subnet
then adjusts the location and size of the pair of initial BBs using the relation
(“individual usage”) to have a relation-unit for the relation. Since one entity
may participate in multiple relations, it next unifies relation-units so that each
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Fig. 3. Details of visual-relation layout module. This figure illustrates the prediction
for two subject–predicate–object relations.

entity uniquely has a single BB (called refined BB) that is further adjusted in
location and size using weights learned from all the participating relations. The
RefinedBB2layout subnet constructs the visual-relation layout by aggregating
all the refined BBs together using conv-LSTM.

Preprocessing. Similar to [1], we convert the structured-text t to its scene
graph (E,P ) where E ⊆ C and P ⊆ C ×R×C. C and R are the set of categories
and the set of relations given in a dataset. An edge of (E,P ) is associated with
one subject–predicate–object. It is directed and represented by (es, p, eo) with
entities es, eo ∈ E and predicate p ∈ R (s and o indicate subject and object).

Like [1], we use a learned embedding layer to produce the entity embedding
with the size of 1 × |C| and the predicate embedding with the size of 1 × |R| for
any of all the entities and predicates appearing in (E,P ). Any entity embedding
is associated with a single default BB presented by [x, y, w, h] ∈ [0, 1]4 where x
is the left coordinate, y is the top coordinate, w is the width, and h is the height.
We set x = y = 0 and w = h = 1 as default. This process ensures that all the
entities appear in the image. In practice, we concatenate the default BB and its
associated entity embedding to produce the vector with the size of 1 × (|C| + 4).

Comprehensive Usage Subnet. This subnet applies the comprehensive usage
to predict a single initial BB for each entity appearing in t as in [1,10–12]. This
subnet gives us initial locations and sizes of entities and they do not necessarily
satisfy the relations given in t.

In order to aggregate all information along the edges in the scene graph,
we employ GCN [1]. Our GCN is mostly identical to [1] with a modification
that produces 388 outputs instead of 384 not only to enrich entity/predicate
embeddings as in [1,10,11] but also to infer initial BBs. We do not use the
average pooling layer on top of GCN to retain individual relation information.

For each edge k of (E,P ), the triplet (esk,pk,eok) and two default BBs with
the size of 1 × (|C|+ |R|+ |C|+ 8) are processed to give enriched e′s

k , p′
k, and e′o

k

embeddings with the size of 1 × 128 each, separately, and a pair of initial BBs
(one for “subject” and one for “object”) with the size of 1 × 4 each.

Individual Usage Subnet. Since the initial BBs of the entities do not always
satisfy the relations given in t, we adjust their locations and sizes using each



Visual-Relation Conscious Image Generation from Structured-Text 295

relation separately. For each relation, we select a pair of initial BBs corresponding
to the “subject” and “object” involved in the relation, and adjust the locations
and sizes of the pair of BBs using the relation to have a relation-unit for the
relation consisting of two BBs for “subject” and “object” entities in the relation.
This process causes the situation where multiple BBs correspond to the same
entity, as different relations may involve same entities in common. We thus move
to focus on each entity to unify its corresponding BBs into a single BB (called
refined BB) where we use weights learned to retain all the relations. Accordingly,
the function of this subnet is two-fold: relation-unit prediction using individual
relation separately and unification of multiple BBs corresponding to the same
entity into a single refined BB. The subnet is built upon two fully-connected
layers followed by a ReLU layer [19] producing 512 and 8 outputs.

For each edge k of scene graph (E,P ), its enriched embeddings and its corre-
sponding pair of initial BBs with the size of 1×392(= 128+4+128+128+4) are
fed into this subnet to infer relation-unit (bsk, bok) with the size of 1×8. Each BB
(bsk or bok) in the relation-unit is associated with enriched embedding either e′s

k

or e′o
k , respectively for “subject” or “object”. We remark that the total number

of obtained BBs is |{bsk, bok}| = 2 × |P |, which is in general larger than |E|.
To encourage the refined BB of each entity to keep its involved relations, we

use the relation loss Lrel (Sect. 3.3) in a supervised manner. This is because Lrel

indicates the degree of retaining the involved relations in terms of relation-unit.
For entity ei ∈ E, let Bi = {Biν} denote the set of its corresponding BBs

(appearing in different relation-units) and βi = {βiν} be the set of their weights.

We define the refined BB: B̂i =
∑|B i|

ν=1 {(1+βiν)×Biν}
∑|B i|

ν=1 (1+βiν)
.

Each weight in βi is obtained from the outputs of the softmax function in
the relation auxiliary classifier using the relation loss Lrel.

At the beginning of training, relation-units cannot exactly reproduce their
involved relations. Their weights thus tend to be close to zero, leading B̂i above
almost similar to the simple average. Our refined BBs may be close to those
of [1,10,11] at the beginning of training yet they keep their relations thanks
to their weights. As training proceeds, the contribution of the relation-units
retaining relations consistent with text t to the refined BB gradually increases.
As a result, the location and size of the refined BB are continuously altered to
keep relations consistent with t.

For entity ei, its embeddings that are associated with {Biν}’s over ν are
averaged. In this way, we obtain the set of refined BBs {B̂i} and their associated
embeddings for all the entities in E. We remark that |{B̂i}| = |E|.

If all the initial BBs completely keep their relations, the individual usage
subnet works as the averaging operator as in [1,10,11] and our visual-relation
layout is similar to the layout by [1,10,11]. In practice, however, the comprehen-
sive usage of relations cannot guarantee to completely keep the relations. Our
individual usage subnet plays the role of adjusting all the BBs in location and
size to keep their relations as much as possible using each relation separately.
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RefinedBB2layout Subnet. In order to construct the visual-relation layout,
we aggregate all the refined BBs and transfer them from the bounding-box
domain to the image domain. This process should meet two requirements: (i)
each entity in the image should be localized and resized to match its individual
refined BB, and (ii) each entity should appear in the image even if some refined
BBs overlap with each other. To this end, we design refinedBB2layout subnet as
a learnable network rather than the putting-together operation. We build this
subnet using a conv-LSTM [20] with the 5 hidden states each outputting 128
channels.

For B̂i of entity ei, we first convert it to the binary mask with the size of
64× 64× 128 whose element is 1 if and only if it is contained in B̂i, 0 otherwise.
Then, we reshape its associated embedding from 1 × 128 to 1 × 1 × 128. Finally,
the reshaped embedding is wrapped to B̂i using the bilinear interpolation [21]
for the layout of entity ei (64×64×128). To produce θ(t), we feed the sequence of
entity layouts into the refinedBB2layout subnet. The size of θ(t) is 64×64×128.

3.2 Stacking-GANs

We condition three GANs, namely stacking-GANs, on θ(t) to progressively gen-
erate coarse-to-fine images with the size of n × n × 3 (n = 64, 128, 256). Each
GAN is identical to CRN [18]. Parameters are not shared by any GANs.

The first GAN generator receives the layout θ(t) and a standard Gaussian
distribution noise as input while the others receive the bilinear upsampled [21]
layout θ(t) and the output of the last refinement layer from the previous GAN.
The discriminators receive an image-layout pair as their inputs. Each pair is
either a real sample or a fake sample. A real sample consists of a real image and
a real layout while a fake one consists of a predicted layout and a generated or
real image. These samples not only encourage the GAN to improve the quality
of generated images but also give the helpful feedback to the layout predictor.

3.3 Loss Function

Relation Loss: Lrel is a cross entropy between relation-units and their GT
relations that is obtained by a relation auxiliary classifier. The classifier is built
upon two fully-connected layers producing 512 and |R| outputs. The first layer is
followed by a ReLU layer while the second one ends with the softmax function.

For each edge k of (E,P ), its relation-unit and involved embeddings, i.e.,
e′s

k , bsk, e′o
k , and bok, are concatenated in this order to have an input vector of

1 × 264. We then feed this vector into the relation auxiliary classifier to obtain
the probability distribution wk of the relations over R. wk is a vector of 1× |R|
and contains all the predicates pk ∈ R. We first obtain the index of predicate pk

∈ R. Since the order of predicates in wk is the same as that in R, the value at
index in wk is the weight of pk, which is used as the weight of the relation-unit
(bsk, bok) in the individual usage subnet. Note that the weight of a relation-unit
is used for the weight of both bsk and bok involved in the relation-unit.
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The relation loss is defined as: Lrel = −∑|P |
k=1

∑|R|
ν′=1 pk[ν′] log(wk[ν′]). Min-

imizing the relation loss encourages relation-units to adjust their locations and
sizes to meet the “predicate” relation. This is because the relation reflects the
relative spatial locations among its associated relation-units.

Pixel Loss: Lpix = ||I − Î||2, where I is the ground-truth image and Î is a
generated image. The Lpix is useful for keeping the quality of generated images.

Contextual Loss [22]: Lcontext = − log(CX(Φl(I), Φl(Î))), where Φl(·) denotes
the feature map extracted from layer l of perceptual network Φ, and CX(·) is the
function that computes the similarity between image features. Lcontext is used
to learn the context of an image since refined BBs may lose the context such as
missing pixel information or the size of entity.

Adversarial Loss [4]: Ladv encourages the stacking-GANs to generate realistic
images. Since the discriminator also receives the real/predicted layout as its
input, the Ladv is helpful in training the visual-relation layout module as well.

In summary, we jointly train our network in an end-to-end manner to min-
imize: L = λ1Lrel + λ2Lpix + λ3Lcontext +

∑3
i=1 λ4Ladvi, where λi are hyper-

parameters. We compute Ladv at each level in the stacking-GANs, while Lpix

and Lcontext are computed at the third GAN.

4 Experiments

4.1 Dataset and Compared Methods

Dataset. We conducted experiments on challenging COCO-stuff [13] and Visual
GENOME [14] datasets, which have complex descriptions with many entities and
relations in diverse context. We followed [1] to pre-process all the datasets: |C| =
171 and |R| = 6 (COCO-stuff [13]), and |C| = 178 and |R| = 45 (GENOME [14]).

Compared Methods. We employed Johnson+ [1] as the baseline (64×64). To
factor out the influence of image generator, we replaced the CRN in [1] by our
stacking-GANs to produce higher resolution images (128 × 128 and 256 × 256).
We also compared our method with Hong+ [12], Zhang+ [6], Xu+ [9], Li+ [10],
Ashual+ [11], Zhao+ [16], and Sun+ [17]. We reported the results in the original
papers whenever possible. For the methods that released at least one reference
pre-trained model [23] and [24], we trained authors’ provided codes (Zhang+ [6]
and Xu+ [9]) on GENOME dataset.

Evaluation Metrics. We use the inception score (IS) [25], and Fréchet incep-
tion distance (FID) [26] to evaluate the overall quality of generated images
(implemented in [27,28]). We also use four metrics to evaluate the layout: the
entity recall at IoU threshold (R@τ), the relation IoU (rIoU), the relation score
(RS) [29], and the BB coverage. To evaluate the relevance of generated images
and input text descriptions, we use the image caption metrics: BLEU [30],
METEOR [31], and CIDEr [32]. For the diversity of generated images, we use
the diversity score [33] (implemented in [34]).
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To evaluate how much the predicted layout is consistent with the ground-
truth (GT), we measure the agreement in size and location between predicted
(i.e., refined) and GT BBs using the entity recall at IoU threshold: R@τ = |{i |
IoU(B̂i,GTi) ≥ τ}|/N , where B̂i and GTi are predicted and GT BBs for entity
ei, N = min(|{B̂i}|, |{GTi}|) (we always observed |{B̂i}| = |{GTi}|), τ is a
IoU threshold, and IoU(·) denotes Intersection-over-Union metric. Note that we
used only the BBs that exist in both {B̂i} and {GTi} to compute R@τ .

We also evaluate the predicted layout using subject–predicate–object relations.
For each subject–predicate–object relation, we computed the IoU of the predicted
“subject” BB and its corresponding GT, and that for the “object”. We then
multiplied the two IoUs to obtain the IoU for the relation. rIoU is the average
over all the subject–predicate–object relations.

We use the relation score (RS) [29] for COCO-stuff to evaluate the compliance
of geometrical relation between predicted BBs. For each edge k of scene graph
(E,P ), we define score(B̂s

k, B̂o
k) = 1 if and only if the relative location between

B̂s
k and B̂o

k satisfies the relation pk, 0 otherwise. RS =
∑|P |

k=1 score(B̂s
k, B̂o

k)/|P |.
To evaluate how much BBs cover the area of the whole image, we

compute the coverage of predicted BBs over the image area: coverage =
⋃|E|

i=1 B̂i/(image area).
We note that R@τ and rIoU consider the consistency between predicted BBs

and GT BBs, and RS and coverage are independent of GT BBs. In other words,
R@τ and rIoU evaluate absolute locations of BBs while RS (and coverage as
well to some extent) does semantic relations. Therefore, they together effectively
evaluate the layout in a wide range of aspects.

4.2 Implementation and Training Details

We optimized our model (built in PyTorch [35]) using the Adam optimizer with
the recommended parameters [36] and the batch size of 16 for 500 epochs. We
used VGG-19 [37] pre-trained on ImageNet as Φ, and l = conv4 2 to compute
Lcontext. Each model took about one week for training on a PC with GTX1080Ti
× 2 while testing time was less than 0.5 s per structured-text input.

We trained the model except for the pre-processing in the end-to-end manner
where we set λ1 = λ2 = λ3 = λ4 = 1, and do not pre-train each individual subset,
meaning that we do not use any ground-truth BBs to train the visual-relation
layout. The layout predictor receives signals not only directly from the relation
loss but also from the other losses. In an early stage of the training, the rendering
part cannot generate reasonable images because the quality of BBs is poor. This
means the signals from losses are strong, leading to quick convergence of the
layout predictor. As the training proceeds, the layout predictor properly works,
and the rendering part gradually becomes better. Lrel, at that time, keeps the
layout predictor stable and more accurate.
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(a) COCO-stuff dataset [13].

(b) GENOME dataset. [14]

Fig. 4. Visual comparison on COCO-stuff and GENOME. For each example, we show
the scene graph and reference image at the first row. From second to the last rows,
we show the layouts and images generated by our method (256 × 256), Johnson+ [1]
(64 × 64), Zhang+ [6] (256 × 256), Xu+ [9] (256 × 256), and Ashual+ [11] (256 × 256,
COCO-stuff only, GT layout). The color of each entity BB corresponds to that in the
scene graph. Zoom in for best view.



300 D. M. Vo and A. Sugimoto

4.3 Comparison with State-of-the-Arts

Qualitative Evaluation. Figure 4 shows examples of the results obtained by
our method and SOTAs [1,6,9,11] on COCO-stuff [13] and GENOME [14]
datasets. It shows that the generated images by our method successfully pre-
serve the scene structure given in text descriptions, indicating that our proposed
visual-relation layouts are highly consistent with those of GTs. We see that the
results by Johnson+ [1] have reasonable layouts, however, their layouts failed
to keep all relations well and the visual impression of their results is not good.
The results by Zhang+ [6] and Xu+ [9] are clear in (entities) details but they
lose the scene structure (some entities disappear). The results by Ashual+ [11]
(COCO-stuff only) are more impressive than ours to some extent, however, they
use GT layout and pre-defined entities’ appearances.

Quantitative Evaluation. We classify all the compared methods into three:
(A) Johnson+ [1], Hong+ [12], Li+ [10], and Ashual+ [11] (which firstly infer
a layout and then convert it to an image), (B) Zhang+ [6] and Xu+ [9] (which
are directly conditioned on texts), and (C) Zhao+ [16] and Sun+ [17] (which are
directly conditioned on ground-truth layouts).

Table 1 shows that our method (almost) outperforms (A) in IS and FID on
both COCO-stuff and GENOME. In comparison with (B), our method achieves
the best in FID on both the datasets, the best on GENOME and the second
best on COCO-stuff in IS. Xu+ [9] achieves better IS on COCO-stuff than
us because (i) Xu+ [9] focuses on generating images in good human perception
based on entity information and (ii) COCO-stuff has less complex relations,
in other words, layouts may be less important. On GENOME, however, text
descriptions are more complex with many entities and relations, and their results
are degraded due to poor layouts as seen later in Table 2. Table 1 also shows that
the scores of our completed model are comparable to those of (C), meaning that
our (predicted) visual-relation layout is close to the GT layout. When replacing
the predicted layout by the GT (the 17th row), our results achieve the same level
with (C). We thus conclude that our method is more effective than the others.

Next, we evaluated how the scene structure given in input text was preserved
in generated images using R@τ (we changed τ from 0.3 to 0.9 by 0.2), rIoU , RS,
and coverage, see Table 2. We remark that we computed RS only for COCO-stuff
because COCO-stuff has geometrical relations only. For Zhang+ [6] and Xu+ [9],
we employed Faster-RCNN [38] to estimate their predicted BBs of entities where
we set the number of generated BBs to be the number of entities in an image.
We note that the number of predicted BBs by ours or Johnson+ [1] was always
the same with the number of entities in an image.

Table 2 shows that our method performs best, indicating that our predicted
BBs more precisely agree with those in relation (location and size) of entities
given in texts than the compared methods. To be more specific, rIoU ’s in Table 2
show that our predicted BBs more successfully retain the relations of entities
than the other methods. This observation is also supported by RS on COCO-
stuff. Moreover, our method outperforms the others in coverage and achieves
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Table 2. Comparison of the scene structure using R@τ , rIoU , RS, and coverage
(larger is better; the best in bold).

Dataset COCO-stuff [13] GENOME [2]

Metric R@τ rIoU RS coverage R@τ rIoU coverage

0.3 0.5 0.7 0.9 GT=98.240.3 0.5 0.7 0.9 GT=77.10

Ours w/o

individual

usage

61.45 43.22 29.71 20.05 0.2652 53.48 94.96 26.48 14.29 11.90 9.81 0.1264 50.07

Ours w/o

weighted

unification

61.76 45.28 30.22 20.51 0.2795 56.27 95.07 29.57 18.22 13.76 10.80 0.1501 56.77

Ours

(completed

model)

65.3449.0135.8723.610.318668.2397.19 35.0023.1216.3413.400.184771.13

Johnson+ [1] 59.75 42.53 29.23 19.89 0.2532 51.20 94.82 28.13 17.17 12.30 10.47 0.1485 52.28

Zhang+ [6] 37.81 20.50 10.64 7.76 0.0824 30.72 60.15 18.38 10.84 8.11 5.82 0.0643 40.07

Xu+ [9] 21.39 10.71 8.15 5.83 0.0671 31.97 52.76 16.02 9.33 7.66 5.15 0.0579 36.82

Table 3. Comparison using caption gen-
eration metrics on COCO-stuff (larger is
better; the best in blue). Scores inside the
parentheses indicate those reported in [12].

Method BLEU − 1 BLEU − 2 BLEU − 3 BLEU − 4 METEOR CIDEr

Ours 0.561 0.352 0.217 0.139 0.157 0.325

Johnson+ [1] 0.531 0.321 0.183 0.107 0.141 0.238
Hong+ [12] (0.541) (0.332) (0.199) (0.122) (0.154) (0.367)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Zhang+ [6] 0.417 0.214 0.111 0.062 0.095 0.078
Xu+ [9] 0.450 0.251 0.157 0.087 0.105 0.251

GT 0.627 0.434 0.287 0.191 0.191 0.367
(0.678) (0.496) (0.349) (0.243) (0.228) (0.802)

Table 4. Comparison using diversity
score [33] (the best in blue; the sec-
ond best in red). Scores are inside the
parentheses indicates those in the orig-
inal papers.

Method COCO-stuff [13] GENOME [2]

Ours (64 × 64) 0.36± 0.10 0.39± 0.09
Ours (128 × 128) 0.45± 0.12 0.49± 0.07
Ours (256 × 256) 0.52± 0.09 0.56± 0.06

Johnson+ [1] 0.29± 0.10 0.31± 0.08
Ashual+ [11] (0.67± 0.05) —
Zhao+ [16] (0.15± 0.06) (0.17± 0.09)
Sun+ [17] (0.40± 0.09) (0.43± 0.09)

comparable levels with the ground-truth BBs. These indicate that our visual-
relation layout is well-structured. Our method thus has even better ability of
rendering more realistic images with multiple entities since the faithful scene
structure and more BB coverage (i.e., entity information) are achieved. Note
that the observation that the coverage’s on COCO-stuff are better than those
on GENOME explains the reason why generated images on COCO-stuff are
better in IS and FID than those on GENOME.

Next, we use the image caption task to evaluate how the generated image is
relevant to its input text. We follow [12] to report scores on COCO-stuff [13], see
Table 3. Note that we evaluated on COCO-stuff only since the pre-trained image
caption model on GENOME is not available. We also note that all the scores
on the ground-truth dataset in [12] are higher than our re-computation. Table 3
shows that our method outperforms the others [1,6,9,12] on BLEU , METEOR
and comparable to [12] on CIDEr. We thus conclude that our method performs
more consistently with input texts than the others.

Finally, we show the diversity score of generated images in Table 4. Overall,
our scores are higher than Johnson+ [1], Zhao+ [16], and Sun+ [17] on both
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COCO-stuff and GENOME, and comparable to Ashual+ [11] on COCO-stuff.
Moreover, along with our stacking-GANs, our scores become better and better.
These scores also support the efficacy of our method.

We note that the number of (trainable) parameters in our model is about
41M which is comparable with Johnson+ [1] (28M), Zhang+ [6] (57M), and
Xu+ [9] (23M), and significantly smaller than Ashual+ [11] (191M).

Fig. 5. Example of layouts and generated images by the ablation models. For each
model, the 1st row shows the layout, the 2nd row shows the generated image. All
images are at 256 × 256 resolution.

4.4 Ablation Study

We evaluated ablation models, see the first block of Tables 1 and 2: ours w/o indi-
vidual usage denotes the model dropping the individual usage subnet; ours w/o
weighted unification denotes the replacement of refining BBs with just averaging
in the individual usage subnet; ours w/o refinedBB2layout denotes the replace-
ment by just putting all entity layouts together in constructing the visual-relation
layout. Figure 5 illustrates a typical output example of the ablation models. We
note that model w/o comprehensive usage is not applicable since all the other
subnets in our visual-relation layout module need the output by the comprehen-
sive usage subnet.

The 4th and 5th rows of Tables 1 and 2 confirm the importance of the indi-
vidual usage subnet. We also see the necessity of our learnable weights in refining
BBs because model w/o weighted unification performs better than model w/o
individual usage. We may conclude that the relation-unit prediction and the
weighted unification together bring gain to our performance.

From Fig. 5, we visually observe that the layout by the model w/o individual
usage does not successfully reflect relations. This observation is applicable to the
model w/o weighted unification as well. As a result, both the models generated
images in poorer quality than our complete model. The relation-units are in
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Fig. 6. Example of relation-units in the individual usage subnet; layouts and generated
images by model w/o weighted unification and completed model.

Fig. 7. Example of output along with the stacking-GANs. From left to right, scene
graph, visual-relation layout, the outputs at 64× 64, 128× 128, 256× 256 resolutions,
and the reference image.

diversity: entity BBs can be various in size and location because of multiple
relations (see Fig. 6, for example), and thus simply averaging BBs corresponding
to the same entity does not successfully retain the entity relations. The individual
usage of relations is important for more consistent layout with input text.

The 6th row in Table 1 shows the significance of the refinedBB2layout. Com-
plex descriptions with many entities and relations tend to produce overlapped
BBs. The model w/o refinedBB2layout cannot necessarily produce all the entities
in the layout, generating poor images.

We also evaluated the necessity of each term of the loss function through
comparing our completed model with models dropping one term each: model
w/o Lpix, model w/o Lcontext, and model w/o Ladv (we dropped each term in
the loss function (Sect. 3.3) except for stacking-GANs). From the 2nd block of
Table 1, we see that the absence of any term degrades the quality of generated
images. This indicates that all the loss terms indeed contribute to performance.

Finally, we see that along with the stacking of GANs, our method progres-
sively generates better images in terms of IS and FID (Table 1). We observe
that at 64 × 64 resolution, generated images tend to be blurred and lose some
details while the details of images are improved as the resolution becomes higher
(the best result is obtained at 256 × 256 resolution) (see Fig. 7 as an example).
We also confirmed that the visual-relation layouts of generated images at any
resolutions are the same and highly consistent with texts.

When we replaced CRN in [1] with our stacking-GANs for 128 × 128 and
256×256 resolutions to factor out the influence of image generators, we see that
the improvement of [1] on IS and FID along the resolution is worse than that
of our model (the 10th and the 11th rows of Table 1). This indicates that better
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layout significantly improves the performance of the final image generation and
also confirms clearer contribution of our proposed visual-relation layout module.

5 Conclusion

We proposed a GAN-based end-to-end network for text-to-image generation
where entity relations are comprehensively and individually used to infer a visual-
relation layout. We also conditioned the stacking-GANs on the visual-relation
layout to generate high-resolution images. Our layout preserves the scene struc-
ture more precisely than the layout by SOTAs.
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Abstract. By adding human-imperceptible noise to clean images, the
resultant adversarial examples can fool other unknown models. Features
of a pixel extracted by deep neural networks (DNNs) are influenced by its
surrounding regions, and different DNNs generally focus on different dis-
criminative regions in recognition. Motivated by this, we propose a patch-
wise iterative algorithm–ablack-box attack towardsmainstreamnormally
trained and defense models, which differs from the existing attack meth-
ods manipulating pixel-wise noise. In this way, without sacrificing the per-
formance of white-box attack, our adversarial examples can have strong
transferability. Specifically,we introduce an amplification factor to the step
size in each iteration, and one pixel’s overall gradient overflowing the ε-
constraint is properly assigned to its surrounding regions by a project ker-
nel. Our method can be generally integrated to any gradient-based attack
methods. Compared with the current state-of-the-art attacks, we signif-
icantly improve the success rate by 9.2% for defense models and 3.7%
for normally trained models on average. Our code is available at https://
github.com/qilong-zhang/Patch-wise-iterative-attack

Keywords: Adversarial examples · Patch-wise · Black-box attack ·
Transferability

1 Introduction

In recent years, Deep neural networks (DNNs) [9,10,15,16,30,31] have made
great achievements. However, the adversarial examples [32] which are added
with human-imperceptible noise can easily fool the state-of-the-art DNNs to
give unreasonable predictions. This raises security concerns about those machine
learning algorithms. In order to understand DNNs better and improve its robust-
ness to avoid future risks [6], it is necessary to investigate the defense models,
and meanwhile the generation of adversarial examples, e.g., [38].
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Various attack methods have been proposed in these years. One of the most
popular branches is gradient-based algorithms. For this branch, existing methods
can be generally classified as single-step attacks and iterative attacks. In general,
iterative attacks perform better than single-step attacks in the white-box setting.
But in the real world, attackers usually cannot get any information about the tar-
get model, which is called the black-box setting. In this case, single-step attacks
always have a higher transferability than iterative attacks at the cost of poor
performance of substitute models. To sum up, the essential difference between
the two sub-branches is the number of iterations. Iterative attacks require mul-
tiple iterations to obtain the final perturbation noise, and hence there is a risk
of getting stuck in the local optimum during the iterations, reducing the trans-
ferability. While single-step attack methods only update once, which is easy to
underfit but really improve the generalizability.

Moreover, with the development of attack methods, several adversarial exam-
ples have been applied to the physical world [6,12,20,29,33]. This has raised
public concerns about AI security. Consequently, a lot of defense methods are
proposed to tackle this problem. Lin et al. [18] propose defensive quantization
method to defend adversarial attacks while maintain the efficiency. Guo et al. [8]
use bit-depth reduction, JPEG compression [4], total variance minimization [26],
and image quilting [5] to preprocess inputs before they are feed to DNNs. Tram
èr et al. [34] use ensemble adversarial training to improve the robustness of mod-
els. Furthermore, Xie et al. [36] add feature denoising module into adversarial
training, and the resultant defense models demonstrate greater robustness in
both white-box and black-box attack settings. To generate more effective adver-
sarial examples, it is necessary to study the properties of intrinsic classification
logic of the DNNs. Here we use class activation mapping [39] to analyze it. Zhou
et al. [39] observed that the discriminative regions always vary across predicted
labels. Recent research [3] also showed that different models focus on different
discriminative regions in recognition, and the defense models generally focus on
larger discriminative regions than the normally trained models. The discrimi-
native regions are often clustered together, as shown in Fig. 1. Therefore, only
adding pixel-wise noise may hinder the transferability of adversarial examples
across different DNNs. Based on these observations, we argue that in addition
to reducing the responsiveness of the ground-truth regions while activating the
regions of any other categories, crafting perturbation with the characteristic
of aggregation in the above-discussed regions is also important. To that end,
we study the advantages and disadvantages of single-step and iterative attacks
[3,7,14], and we argue that linear nature of DNNs [7] does exist to some extent.
Therefore we amplify step size with a fixed factor to analyze the effect of step size
on transferability. Besides, we rethink the weakness of direct clipping operation
which discards partial gradient information. To alleviate this problem, we reuse
the cut noise and apply a heuristic project strategy to reduce the side effects of
direct clipping as well as generating patch-wise noise. Finally, combined with the
fast sign gradient method, we propose the Patch-wise Iterative Fast Gradi-
ent Sign Method (PI-FGSM) to generate strongly transferable adversarial
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Fig. 1. We show the adversarial examples generated by FGSM [7], I-FGSM [14] and our
method PI-FGSM for Inception V3 model [31] respectively. The maximum perturbation
ε is limited to 16. On the left side of the figure, we use Inception V3 [31] and DenseNet-
161 [10] to show the Gradient-weighted Class Activation Mapping (Grad-CAM) [28]
of the ground-truth label, and on the right side of the figure, we divide it into three
parts. Top row: the adversarial noise patch map (we define it in Sect. 3.2.1). Middle
row: the adversarial noise. Bottom row: the adversarial examples. Our PI-FGSM
can generate adversarial noise which has the same clustering property as the activation
map and also well covers the different discriminative regions.

examples. The visualization results in Fig. 1 also demonstrate our approach.
Compared with other methods, the noise generated by our PI-FGSM has obvi-
ous aggregation characteristics and can better cover varied discriminative regions
of different DNNs. Our major contributions can be summarized as: 1) We pro-
pose a novel patch-wise attack idea named PI-FGSM. Compared with existing
methods manipulating pixel-wise noise, our approach can have the advantage of
both single-step and iterative attacks, i.e., improving the transferability with-
out sacrificing the performance of the substitute model. 2) Technically, based on
the mature gradient-based attack pipeline, we adopt an amplification factor and
project kernel to generate more transferable adversarial examples by patch-wise
noise. Our method can be generally integrated to any iteration-based attack
methods; and 3) Extensive experiments on ImageNet show that our method
significantly outperforms the state-of-the-art methods, and improves the success
rate by 9.2% for defense models and 3.7% for normally trained models on average
in the black-box setting.

2 Related Work

In this section, we briefly analyze the exiting adversarial attack methods, from
the perspectives of classification of adversarial examples, attack setting, and
ensemble strategy.
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2.1 Adversarial Examples

Adversarial examples are first discovered by Szegedy et al. [32], which only added
subtle perturbation to the original image but can mislead the DNNs to make
an unreasonable prediction with unbelievably high confidence. To make mat-
ters worse, adversarial examples also exist in physical world [6,12,13], which
raises security concerns about DNNs. Due to the vulnerability of DNNs, a large
number of attack methods have been proposed and applied to various fields of
deep learning in recent years, e.g., object detection and semantic segmentation
[35], embodied agents [19], and speech recognition [1]. To make our paper more
focused, we only analyze adversarial examples in the image classification task.

2.2 Attack Settings

In this section, we describe three common attack settings. The first is the white-
box setting where the adversary can get the full knowledge of the targeted mod-
els, thus obtaining accurate gradient information to update adversarial examples.
The second is the semi-black-box setting where the output of the targeted model
is available but model parameters are still unknown. For example, Papernot
et al. [24] train a local model with many queries to substitute for the target
model. Ilyas et al. [11] propose the variant of NES [27] to generate adversar-
ial examples with limited queries. The rest is the black-box setting, where the
adversary generally cannot access the target model and adversarial examples are
usually generated for substitute models without exception. That is why trans-
ferability plays a key role in this setting. Recently, the black-box attack is a
hot topic and many excellent works have been proposed. Xie et al. [37] apply
random transformations to the input images at each iteration to improve trans-
ferability. Dong et al. [2] propose a momentum-based iterative algorithm to boost
adversarial attacks. Besides, the adversarial examples which are crafted by their
translation-invariant attack method [3] can evade the defenses with effect. How-
ever, the above works cannot generate powerful patch-wise noise because they
generally take valid gradient information into account. In this paper, our goal
is crafting efficient patch-wise noise to improve the transferability of adversarial
examples in the black-box setting.

2.3 Ensemble Strategy

There are two well-known but totally different strategies for this topic. One
strategy uses an ensemble of legitimate examples to update only one univer-
sal adversarial perturbation. Moosavi-Dezfooli et al. [23] propose an iterative
attack method to generate such perturbations which cause almost all images
sampled from the data distribution to be misclassified. Another strategy uses
an ensemble of models to get a better estimate of the gradient information. Liu
et al. [21] propose novel ensemble-based approaches that attacking multiple mod-
els to generate adversarial examples. In this way, the adversarial examples are
less likely to get stuck in the local optimum of any specific model, thus improving
transferability.



Patch-Wise Attack 311

3 Methodology

In this section, we describe our algorithm in detail. Let xclean denote a clean
example without any perturbation and y denote the corresponding ground-
truth label. We use f(x) to denote the prediction label of DNNs, and xnoise to
denote the human-imperceptible perturbation. The adversarial example xadv =
xclean +xnoise is visually indistinguishable from xclean but misleads the classifier
to give a high confidence of a wrong label. In this paper, we focus on untargeted
black-box attack, i.e., f(xadv) �= y. And the targeted version can be simply
derived. To measure the perceptibility of adversarial perturbations, we follow
previous works [2,3,37] and use l∞-norm here. Namely, we set the max adver-
sarial perturbation ε, i.e., we should keep ||xclean −xadv||∞ ≤ ε. To generate our
adversarial examples, we should maximize the cross-entropy loss J(xadv, y) of the
substitute models. Our goal is to solve the following constrained optimization
problem:

arg max
xadv

J(xadv, y), s.t. ||xclean − xadv||∞ ≤ ε. (1)

Due to the black-box setting, the adversary does not allow to analytically com-
pute the target models’ gradient ∇J(x, y). In the majority of cases, they use
the information of substitute models (i.e., official pre-trained models) to gener-
ate adversarial examples. Therefore, it is very important to improve the trans-
ferability of adversarial examples so that they still fool the black-box models
successfully.

3.1 Development of Gradient-Based Attack Methods

In this section, we give a brief introduction of some excellent works which are
based on the gradient sign method.

– Fast Gradient Sign Method (FGSM): Goodfellow et al. [7] argue that the
vulnerability of DNN is their linear nature. Consequently they update the
adversarial example by:

xadv = xclean + ε · sign(∇xJ(xclean, y)). (2)

where sign(·) indicates the sign operation.
– Iterative Fast Gradient Sign Method (I-FGSM): Kurakin et al. [14] use a small

step size α to iteratively apply the gradient sign method multiple times. This
method can be written as:

xadv
t+1 = Clipxclean,ε{xadv

t + α · sign(∇xJ(xadv
t , y))}. (3)

where Clipxclean,ε denotes element-wise clipping, aiming to restrict xadv

within the l∞-bound of xclean.
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– Momentum Iterative Fast Gradient Sign Method (MI-FGSM): Dong et al. [2]
use momentum term to stabilize update directions. It can be expressed as:

gt+1 = μ · gt +
∇xJ(xadv

t , y)
||∇xJ(xadv

t , y)||1
, xadv

t+1 = xadv
t + α · sign(gt+1). (4)

where gt is cumulative gradient, and μ is the decay factor.
– Diverse Input Iterative Fast Gradient Sign Method (DI 2-FGSM): Xie

et al. [37] apply diverse input patterns to improve the transferability of adver-
sarial examples. With the replacement of Eq. (3) by:

xadv
t+1 = Clipxclean,ε{xadv

t + α · sign(∇xJ(D(xadv
t ), y))}. (5)

where D(x) is random transformations to the input x. For simplicity, we use
DI-FGSM later.

– Translation-Invariant Attack Method : Dong et al. [3] convolve the gradient
with the pre-defined kernel W to generate adversarial examples which are less
sensitive to the discriminative regions of the substitute model. For TI-FGSM,
it is only updated in one step:

xadv = xclean + ε · sign(W ∗ ∇xJ(xadv
t , y)). (6)

and TI-BIM is its iterative version.

3.2 Patch-Wise Iterative Fast Gradient Sign Method

In this section, we elaborate our method in details. We first introduce our moti-
vations in Sect. 3.2.1 and Sect. 3.2.2. In Sect. 3.2.3, we will describe our solution.

3.2.1 Patch Map

Natural images are generally made up of smooth patches [22] and the discrim-
inative regions are usually focused on several patches of them. However, as
demonstrated in Fig. 1, different DNNs generally focus on different discriminative
regions, but these regions usually contain clustered pixels instead of scattered
ones. Besides, Li et al. [17] have demonstrated that regionally homogeneous per-
turbations are strong in attacking defense models, which is especially helpful to
learn transferable adversarial examples in the black-box setting. For this reason,
we believe that noises with the characteristic of aggregation in these regions are
more likely to attack successfully because they perturb more significant infor-
mation. To better view the adversarial noise xnoise, we take the absolute value
of xnoise to define its patch map xmap1, which is done by:

xmap = |xnoise| × 256
ε

. (7)

As shown in Fig. 1, compared with the patch map of I-FGSM, and FGSM, our
PI-FGSM can generate the noise with more obvious aggregation characteristics.
1 Pixel values of a valid image are in [0, 255]. If the values are more than 255, they

will be modified into 0 for “uint8” type, to give better contrast.
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3.2.2 Box Constraint

To the best of our knowledge, almost all iterative gradient-based methods apply
projected gradient descent to ensure the perturbation within the box. Although
this method can improve the generalization of adversarial examples to some
extent [23], it also has certain limitations. Let us take the dot product D(·) as
an example:

D(xadv
t ) = wxadv

t + b, D
′
(xadv

t ) = w. (8)

where w denotes a weight vector and b denotes the bias. Then we add a noise
αw to update xadv

t :

D(Clipxclean,ε{xadv
t + αw}) ≈ D(xadv

t ) + α2w
2. (9)

If xadv
t +αw excess the ε-ball of original image xclean, the result is Eq. (9). Obvi-

ously, α2<α due to element-wise clipping operation. If we adopt this strategy
directly, we will waste some of the gradient information and change the input
unexpectedly.

3.2.3 Our Method

From the above analysis, we observe that adding noise in a patch-wise style
will have better transferability than the pixel-wise style. Also, the element-wise
clipping operation of existing gradient-based attack methods will lose part of the
gradient information and lead to unexpected changes. Therefore, we propose our
method, which follows the mature gradient-based attack pipeline and tackles the
above issues simultaneously.

To the best of our knowledge, many recent iterative attack methods [2,3,37]
set step size α = ε/T , where T is the total number of iterations. In such a
setting, we do not need the element-wise clipping operation, and the adversarial
examples can finally reach the ε bound of xclean. This seems like a good way to
get around the above problem of direct clipping, but we notice that single-step
attacks often outperform iterative attacks in the black-box setting. To study the
transferability with respect to the step size setting, we make a tradeoff between
single large step and iterative small step by setting it to ε/T × β, where β is an
amplification factor.

The results in Fig. 2 show that iterative approaches with a large amplification
factor will help to avoid getting stuck in poor local optimum, thus demonstrating
a stronger attack towards black-box models. One possible reason is that attacks
with an amplification factor increase each element’s value of the resultant per-
turbation, thus providing a higher probability of misclassification due to the
linear assumption of Goodfellow et al. [7]. However, simply increasing the step
size does not get around the disadvantages of direct clipping operation, because
the excess noise would be eliminated.

Therefore, we propose a novel heuristic project strategy to solve this problem.
Our inspiration comes from Rosen Project Gradient Method [25]: by projecting
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Algorithm 1: PI-FGSM
Input : The cross-entropy loss function J of our substitute models;

iterations T ; L∞ constraint ε; project kernel Wp; amplification
factor β(≥ 1); project factor γ; a clean image xclean (Normalized to
[-1,1]) and the corresponding groud-truth label y;

Output: The adversarial example xadv;
1 Initialize cumulative amplification noise a0 and cut noise C to 0;

2 xadv
0 = xclean;

3 for t ← 0 to T do

4 Calculate the gradient ∇xJ(xadv
t , y);

5 at+1 = at + β · ε
T

· sign(∇xJ(xadv
t , y)); // Update at+1

6 if ||at+1||∞ ≥ ε then
7 C = clip(|at+1| − ε, 0, ∞) · sign(at+1);
8 at+1 = at+1 + γ · sign(Wp ∗ C);

9 else
10 C = 0;
11 end

12 xadv
t+1 = Clipxclean,ε{xadv

t + β · ε
T

· sign(∇xJ(xadv
t , y)) + γ · sign(Wp ∗ C)};

13 xadv
t+1 = clip(xadv

t+1, −1, 1); // Finally clip xadv
t+1 into [-1,1]

14 end

15 Return xadv = xadv
T ;

the gradient direction when the iteration point is on the edge of the feasible
region, the method ensures the iteration point remains within the feasible region
after updating. However, performing this method is a little complex and needs
additional computational cost. Hence we take a heuristic strategy to apply this
idea: just projecting the excess noise into the surrounding field. We argue that
the part of the noise vector which is more easy to break ε-ball limitation has
a higher probability of being in the highlighted area of discriminative regions.
Our strategy can simply reuse the noise to increase the degree of aggregation in
these regions without additional huge computational cost.

The integration of patch-wise iterative algorithm and fast gradient sign
method (PI-FGSM) is summarized in Algorithm 1. Firstly, in line 5, we need
to get the cumulative amplification noise at. After amplification operation, if
L∞-norm of at exceeds the threshold ε, we update the cut noise C by:

C = clip(|at+1| − ε, 0,∞) · sign(at+1). (10)

where | · | denotes the absolute operation. Finally, unlike other methods, we add
an additional project term before restricting the L∞-norm of the perturbations.
Note that we do not abandon the clipping operation. Instead, we just reuse the
cut noise to alleviate the disadvantages of direct clipping, thus increasing the
aggregation degree of noise patches. More specifically, we update the adversarial
examples by:

xadv
t+1 = Clipxclean,ε{xadv

t + β · ε

T
· sign(∇xJ(xadv

t , y)) + γ · sign(Wp ∗ C)}. (11)
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where Wp is a special uniform project kernel of size kw × kw, and sign(Wp ∗ C)
is cut noise’s “feasible direction”. In this paper, we simply define Wp as:

Wp[i, j] =

{
0, i = �kw/2	, j = �kw/2	.
1/(k2

w − 1), else.
(12)

We also test other types of kernels actually, e.g., Gaussian kernel. However,
experiment results show that there are no significant difference (only ∼1%).
Besides, the uniform kernel does not need extra parameters. Therefore we choose
it finally.

4 Experiment

4.1 Setup

Following the previous works [2,3], we also do our experiments on ImageNet-
compatible dataset2, which contains 1000 images and is used for NIPS 2017
adversarial competition. We choose eleven models to do these experiments. For
normally trained models, we consider Inception V3 (Inc-v3) [31], Inception V4
(Inc-v4) [30], Inception-ResNet V2 (IncRes-v2) [30] ResNet152 V2 (Res-152)
[9] and DenseNet 161 (Dense-161) [10]. For defense models, we include three
ensemble adversarial trained models: Inc-v3ens3, Inc-v3ens4 and IncRes-v2ens

[34], and three more robust models from [37]: ResNet152 Baseline (Res152B),
ResNet152 Denoise (Res152D), ResNeXt101 DenoiseAll (ResNeXtDA) [36]. For
the sake of simplicity, we use NT to denote normally trained models, EAT to
denote ensemble adversarial trained models and FD to denote feature denoising
defense models (include Res152B). Noted that the reported success rate of FD
has subtracted the ratio of clean images that are predicted incorrectly by FD.
In addition, PI-FGSM can be easily combined with other attack methods (e.g.,
DI-FGSM [37]). To make the abbreviation unambiguous, we use the first char-
acter to denote the corresponding method. For instance, DPI-FGSM means the
integration of DI-FGSM with PI-FGSM.

In our experiment, we set equal weight when attacking an ensemble of models.
The maximum perturbation ε is set to 16. The iteration T is set to 10 for all
iterative methods. For iterative methods without our amplification factor, the
step size is ε/T = 1.6. For MI-FGSM, we set the decay factor μ = 1.0; for TI-
FGSM and TI-BIM, we set the kernel size k = 15; and for DI-FGSM, we set the
transformation probability p = 0.7.

4.2 Amplification Factor

In this section, we calculate the success rate of different amplification factors,
which are varied from 1 to 10. The results are shown in Fig. 2. In general, a larger
2 https://github.com/tensorflow/cleverhans/tree/master/examples/

nips17 adversarial competition/dataset.

https://github.com/tensorflow/cleverhans/tree/master/examples/nips17_adversarial_competition/dataset
https://github.com/tensorflow/cleverhans/tree/master/examples/nips17_adversarial_competition/dataset
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Fig. 2. The average success rate(%) of non-targeted attacks in different amplifica-
tion factor β setting. The adversarial examples are crafted for Inc-v3 by FGSM, I-
FGSM, MI-FGSM, TI-BIM, TI-FGSM, DI-FGSM, PI-FGSM and their combined ver-
sions respectively. Left Column: The result of NT, including Inc-v4, Res-152, IncRes-
v2 and Dense-161 but except Inc-v3; Middle Column: The result of EAT, including
Inc-v3ens3, Inc-v3ens4 and IncRes-v2ens; Right Column: The result of FD, including
ResNeXtDA, Res152B and Res152D.

amplification factor does improve performance. Moreover, we observe that when
the amplification factor is large enough, further increasing it will not bring sig-
nificant improvement and may even reduce the transferability of some attacks.
For example, it is better not to use large amplification factor for DI-FGSM,
because this method applies random transformations to the input images. If
we set the amplification factor too large, the adversarial examples may devi-
ate from the global optimum. In addition, a larger amplification factor has no
obvious effect for MI-FGSM, which also proves that the momentum term can
stabilize the update directions and avoid getting stuck in a poor local opti-
mum. For our method, as the amplification factor increases, the success rate
will increase rapidly and outperform other approaches soon. If we set β = 1,
PI-FGSM degrades to I-FGSM because the cut noise has no effect anymore in
this setting. By comparing the growth curves of I-FGSM and PI-FGSM, we
observe that our heuristic project strategy can improve the transferability by
a large margin, which fully validates the effectiveness of our method. We also
examine the influence of amplification factor on the combined methods and show
the results in Fig. 2. It can be observed that the optimal amplification factor of
combined methods is usually between the best β of the two methods. If one
of these methods’ performance is negatively correlated with the amplification
factor, then the combination with our method may not perform well (i.e., MPI-
FGSM vs. EAT). In our experiments, the project factor γ is set to ε/T · β in
most cases, therefore we only focus on the amplification factor in this ablation
study, specific parameter settings will be given in the later experiments.



Patch-Wise Attack 317

Fig. 3. The average success rate(%) of non-targeted attacks in different kernel size set-
tings. The adversarial examples are crafted for different substitute models respectively,
e.g., Inc-v3 (blue solid line). Left Column: The results of NT, including Inc-v3, Inc-v4,
Res-152, IncRes-v2 and Dense-161; Middle Column: The results of EAT, including
Inc-v3ens3, Inc-v3ens4 and IncRes-v2ens; Right Column: The results of FD, including
ResNeXtDA, Res152B and Res152D. (Color figure online)

4.3 Project Kernel Size

In fact, the function of the project kernel is to generate patch-wise noise. As
shown in Fig. 1, the noise patch map of PI-FGSM is larger and regular than
others. The results in Fig. 2 also demonstrate the effectiveness of our proposed
method. However, The size of the kernel Wp play an important role for trans-
ferability. From Fig. 3, we find the optimal size of project kernel is different for
NT, EAT and FD:

– When transferring to NT, 3 × 3 kernel is the best. Larger kernel size always
decreases the transferability in the black-box setting.

– When transferring to EAT, 7 × 7 kernel can improve the transferability obvi-
ously. But if we keep increasing the size, the success rate grows slowly and
even gets worse.

– When transferring to FD, if adversarial examples are generated for FD, 3× 3
kernel is the best. And if we use NT to attack against FD, 21 × 21 is slightly
better.

Considering the difference between the NT, EAT and FD, we use 3 × 3 kernel
to attack against NT, 7 × 7 for EAT and 21 × 21 for FD if adversarial examples
are crafted for NT. Also, we use 3 × 3 kernel to fool FD if adversarial examples
are generated for FD.

4.4 Attacks vs. Normally Trained Models

In this section, we focus on the vulnerability of NT. we set β = 10 (γ = 16)
for PI-FGSM and MPI-FGSM, and β = 2.5, γ = 2 for DMPI-FGSM and DPI-
FGSM. We compare PI-FGSM with FGSM, I-FGSM, MI-FGSM, DI-FGSM to
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Table 1. The success rate(%) of non-targeted attacks against NT. The leftmost column
models are substitute models (“*” indicates white-box attack), the adversarial examples
are crafted for them by FGSM, I-FGSM, MI-FGSM, DI-FGSM, PI-FGSM, and their
combined versions respectively.

Attacks Inc-v3 Inc-v4 Res-152 IncRes-v2 Dense-161

Inc-v3

FGSM 80.9* 38.0 33.1 33.9 41.4
I-FGSM 100.0* 29.6 19.4 20.3 20.7
MI-FGSM 100.0* 54.1 43.5 50.9 45.8
DI-FGSM 99.8* 54.2 32.1 43.6 30.4

PI-FGSM(Ours) 100.0* 58.6 45.0 51.3 61.7

MPI-FGSM(Ours) 100.0* 63.0 50.6 60.0 59.0
DPI-FGSM(Ours) 100.0* 73.1 51.2 67.4 55.9

DMI-FGSM 99.9* 78.9 63.9 75.6 60.7
DMPI-FGSM(Ours) 100.0* 81.8 63.4 77.1 63.7

Inc-v4

FGSM 45.4 75.1* 35.1 35.8 45.4
I-FGSM 43.3 100.0* 25.5 25.3 24.7
MI-FGSM 71.2 100.0* 52.4 59.0 51.2
DI-FGSM 66.6 100.0* 39.8 50.4 33.2

PI-FGSM(Ours) 70.7 100.0* 50.9 54.9 65.8

MPI-FGSM(Ours) 77.3 100.0* 56.5 63.7 64.3
DPI-FGSM(Ours) 84.3 100.0* 57.6 70.6 61.8

DMI-FGSM 89.0 100.0* 70.8 80.2 67.7
DMPI-FGSM(Ours) 90.4 100.0* 70.6 82.2 70.0

Res-152

FGSM 41.4 36.4 82.3* 32.0 45.1
I-FGSM 30.7 24.7 99.5* 16.9 23.7
MI-FGSM 56.1 51.0 99.5* 47.9 50.2
DI-FGSM 60.0 56.5 99.2* 49.3 43.1

PI-FGSM(Ours) 63.3 54.4 99.7* 50.6 67.4

MPI-FGSM(Ours) 68.8 62.5 99.7* 59.9 69.0
DPI-FGSM(Ours) 81.0 77.2 99.6* 75.0 71.6

DMI-FGSM 82.2 79.4 99.3* 74.8 72.0
DMPI-FGSM(Ours) 86.1 83.4 99.5* 82.0 75.2

IncRes-v2

FGSM 45.9 39.2 35.7 68.3* 45.6
I-FGSM 48.2 38.3 25.5 100.0* 27.0
MI-FGSM 77.6 68.4 57.0 100.0* 57.1
DI-FGSM 70.2 66.1 47.9 99.2* 42.0

PI-FGSM(Ours) 76.1 68.8 58.2 99.9* 69.8

MPI-FGSM(Ours) 80.2 75.5 63.8 100.0* 70.3
DPI-FGSM(Ours) 87.2 83.4 65.0 99.7* 69.2

DMI-FGSM 86.8 85.6 76.5 99.1* 70.9
DMPI-FGSM(Ours) 92.2 89.0 77.1 99.6* 74.7

verify the effectiveness of our method. Moreover, we also test the performance
of the combination of different methods, e.g., MPI-FGSM. It should be noted
that we do not consider TI-BIM or TI-FGSM [3] here, because they focus more
on attacking the defense models.

The results are shown in Table 1. To sum up, compared with other attacks,
our PI-FGSM can improve the success rate by 3.7% on average, and when we
attack against Dense-1613, transferability can be increased by up to 17.2%.
This is because our perturbation patches have the property of aggregation, thus
reducing the impact of resizing. In particular, if we integrate PI-FGSM into
3 Input size need to be [224,224,3], therefore we need resize adversarial examples whose

size is [299,299,3].
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Table 2. The success rate(%) of non-targeted attacks against EAT. The top row mod-
els are substitute models, we use them to generate adversarial examples by FGSM,
I-FGSM, DI-FGSM, MI-FGSM, TI-FGSM, PI-FGSM and their combined versions
respectively.

Inc-v3 Inc-v4 Res-152 IncRes-v2

Attacks Inc-v3ens3 Inc-v3ens4 IncRes-v2ens Inc-v3ens3 Inc-v3ens4 IncRes-v2ens Inc-v3ens3 Inc-v3ens4 IncRes-v2ens Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

FGSM 16.8 15.8 8.3 16.6 17.2 9.1 21.4 19.4 11.4 18.6 17.5 11.2
I-FGSM 11.7 12.1 5.5 11.8 13.0 6.6 13.0 13.3 6.7 13.7 13.3 8.2
MI-FGSM 21.9 21.1 10.5 24.7 23.7 13.2 27.0 24.9 15.9 31.9 29.1 20.7
DI-FGSM 15.0 16.2 7.1 14.7 17.7 8.4 21.6 21.1 12.9 19.3 20.2 12.7
TI-FGSM 30.8 30.6 22.7 30.2 31.3 23.2 36.6 36.1 29.5 36.3 36.0 30.4

PI-FGSM(Ours) 39.3 39.5 28.8 40.3 41.8 31.4 43.0 45.0 34.9 46.4 48.4 42.4

TPI-FGSM(Ours) 49.1 50.2 36.5 49.6 51.7 38.5 51.5 51.4 43.3 59.2 60.3 56.5
DPI-FGSM(Ours) 40.9 41.6 31.2 43.4 46.0 33.8 47.9 48.5 41.4 48.8 50.4 45.8
DTMI-FGSM 50.7 50.3 39.5 54.0 54.2 42.9 59.5 58.4 53.1 65.4 63.8 62.9

DTPI-FGSM(Ours) 51.5 53.1 40.0 52.2 54.7 41.7 65.3 64.5 56.3 70.0 67.7 62.3

other attack methods such as DMI-FGSM, we can get a much better result. For
instance, the adversarial examples generated for IncRes-v2 by DMPI-FGSM can
fool Inc-v3 on 92.2% images in the black-box setting which also demonstrates
the vulnerability of NT.

4.5 Attacks vs. Defense Models

Our approach is especially effective for defense models. In this experiment, we
use EAT [34] and FD [36] to examine the transferability and we do not integrate
the momentum term into our proposed PI-FGSM because it may hinder the
performance.

Here we study the single-model attacks firstly. In this case, we set β = 10
(γ = 16), and the results are shown in Table 2. Compared with TI-FGSM, the
average success rate of our method is improved by about 9.0%. In particular, if
we use DTPI-FGSM to attack IncRes-v2, 70.0% adversarial examples can fool
Inc-v3ens. Noted that the results of Table 2 are not our best parameter setting,
because the best kernel size for a single-model attack is not the same. Here we
just set the kw = 7 to keep the experimental parameters consistent.

The transferability can be greatly improved when the adversarial examples
are crafted for an ensemble of models at the same time [21]. It is because this
strategy can prevent adversarial examples from falling into a local optimum of
any specific model. In this case, we set β = 5 (γ = 8) and the result are shown in
Table 3. Compared with MI-FGSM, our proposed PI-FGSM improves the perfor-
mance by about 9.6% on average. Furthermore, compared with DTMI-FGSM
[3] which takes momentum into account, our DTPI-FGSM still outperform it.

Furthermore, when using Inc-v3 to attack against FD, we are surprised to
find that sometimes I-FGSM even perturbs misclassified images into correctly
classified ones (See Fig. 2). This may be due to the significant difference in deci-
sion boundaries between the NT and FD. Since FD are very robust, and the
transferability largely depends on the substitute models. To make our proposed
PI-FGSM more convincing, we generate adversarial examples for ResNeXtDA,
Res152B , Res152D and an ensemble of them respectively. In this case, we set
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Table 3. The success rate(%) of non-targeted attacks. We use an ensemble of Inc-
v3, Inc-v4, Res-152, and IncRes-v2 to generate our adversarial examples by FGSM,
I-FGSM, MI-FGSM, DI-FGSM, TI-FGSM, PI-FGSM, and their combined versions
respectively.

Inc-v3ens3 Inc-v3ens4 IncResens ResNeXtDA Res152B Res152D

FGSM 27.1 24.0 13.5 3.1 1.4 2.2
I-FGSM 26.2 25.2 16.0 0.7 0.8 0.4
MI-FGSM 51.9 49.3 32.9 2.8 1.8 2.2
DI-FGSM 40.5 38.5 25.6 1.2 1.5 1.2
TI-FGSM 39.3 38.9 31.5 6.1 3.7 3.0

PI-FGSM(Ours) 61.0 62.8 51.3 8.7 8.5 6.0

TPI-FGSM(Ours) 79.6 81.4 74.0 11.5 10.5 9.4
DPI-FGSM(Ours) 66.7 68.5 58.7 9.0 7.4 6.4
DTMI-FGSM 81.2 81.1 76.6 6.1 5.5 4.8

DTPI-FGSM(Ours) 89.3 89.2 83.4 11.7 10.6 10.4

Table 4. The average success rate(%) of non-targeted attacks. The top row models
are substitute models (“*” indicates white-box attack). We use ResNeXtDA, Res152B ,
Res152D and an ensemble of them to generate adversarial examples by FGSM, I-FGSM,
DI-FGSM, TI-FGSM, MI-FGSM, PI-FGSM, and their combined versions respectively.

ResNeXtDA Res152B Res152D Ensemble

Attacks ResNeXtDA Res152B Res152D ResNeXtDA Res152B Res152D ResNeXtDA Res152B Res152D ResNeXtDA Res152B Res152D

DI-FGSM 58.3* 34.4 33.3 33.5 57.3* 32.5 34.7 34.8 56.8* 67.0* 66.8* 65.9*
TI-FGSM 66.7* 44.5 44.6 46.9 69.8* 44.3 48.6 46.6 65.3* 63.8* 62.1* 63.1*
FGSM 67.2* 45.7 45.0 47.5 71.3* 45.4 49.2 46.3 68.4* 67.2* 67.1* 65.7*

DTMI-FGSM 72.1* 51.0 52.3 52.4 74.0* 49.1 54.4 51.8 69.8* 69.6* 68.3* 65.4*
DMI-FGSM 72.5* 50.3 50.8 49.8 76.0* 48.3 51.7 48.9 72.2* 71.7* 71.9* 71.3*
MTI-FGSM 72.6* 50.1 52.1 51.8 77.7* 49.7 53.5 51.2 73.8* 70.6* 71.3* 68.4*
MI-FGSM 79.0* 54.0 54.4 56.6 81.5* 55.0 57.1 54.8 78.5* 75.3* 77.1* 75.7*
I-FGSM 81.6* 55.1 55.9 56.8 83.7* 55.9 57.7 55.8 82.5* 78.9* 79.6* 79.8*

PI-FGSM(Ours) 86.9* 62.0 60.8 62.0 88.1* 61.9 62.7 62.4 86.6* 84.8* 82.5* 83.2*

β = 2.5, γ = 1. In Table 4, we sort these methods in an ascending order. As
we can observe, our approach is superior to other methods by a large margin
for both the white-box and black-box settings. However, existing methods’ per-
formance is even worse than I-FGSM, which is a basic iterative method. It also
reminds us that when attacking several robust defense models, simply combining
with different methods may not be effective.

5 Conclusions

Here we propose a novel patch-wise iterative algorithm – a black-box attack
towards mainstream normally trained and defense models, which differs from
the existing attack methods manipulating pixel-wise noise. With this approach,
our adversarial perturbation patches in discriminative regions will be larger,
thus generating more transferable adversarial examples against both normally
trained and defense models. Compared with state-of-the-art attacks, extensive
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experiments have demonstrated the extraordinary effectiveness of our attack.
Besides, our method can be generally integrated to any gradient-based attack
methods. Our approach can serve as a baseline to help generating more transfer-
able adversarial examples and evaluating the robustness of various deep neural
networks.
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39. Zhou, B., Khosla, A., Lapedriza, À., Oliva, A., Torralba, A.: Learning deep features

for discriminative localization. In: CVPR (2016)



Feature Pyramid Transformer

Dong Zhang1, Hanwang Zhang2, Jinhui Tang1(B), Meng Wang3,
Xiansheng Hua4, and Qianru Sun5

1 School of Computer Science and Engineering, Nanjing University of Science
and Technology, Nanjing, China

{dongzhang,jinhuitang}@njust.edu.cn
2 Nanyang Technological University, Singapore, Singapore

hanwangzhang@ntu.edu.sg
3 Hefei University of Technology, Hefei, China

eric.mengwang@gmail.com
4 Damo Academy, Alibaba Group, Hangzhou, China

xiansheng.hxs@alibaba-inc.com
5 Singapore Management University, Singapore, Singapore

qianrusun@smu.edu.sg

Abstract. Feature interactions across space and scales underpin mod-
ern visual recognition systems because they introduce beneficial visual
contexts. Conventionally, spatial contexts are passively hidden in the
CNN’s increasing receptive fields or actively encoded by non-local con-
volution. Yet, the non-local spatial interactions are not across scales,
and thus they fail to capture the non-local contexts of objects (or parts)
residing in different scales. To this end, we propose a fully active feature
interaction across both space and scales, called Feature Pyramid Trans-
former (FPT). It transforms any feature pyramid into another feature
pyramid of the same size but with richer contexts, by using three specially
designed transformers in self-level, top-down, and bottom-up interaction
fashion. FPT serves as a generic visual backbone with fair computational
overhead. We conduct extensive experiments in both instance-level (i.e.,
object detection and instance segmentation) and pixel-level segmentation
tasks, using various backbones and head networks, and observe consis-
tent improvement over all the baselines and the state-of-the-art methods
(Code is open-sourced at https://github.com/ZHANGDONG-NJUST).

Keywords: Feature pyramid · Visual context · Transformer · Object
detection · Instance segmentation · Semantic segmentation

1 Introduction

Modern visual recognition systems stand in context. Thanks to the hierarchical
structure of Convolutional Neural Network (CNN), as illustrated in Fig. 1 (a),
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Fig. 1. The evolution of feature interaction across space and scale in feature pyramid
for visual context. Transparent cubes: feature maps. Shaded predict: task-specific head
networks. The proposed Feature Pyramid Transformer is inspired by the evolution.

contexts are encoded in the gradually larger receptive fields (the green dashed
rectangles) by pooling [14,19], stride [30] or dilated convolution [37]. There-
fore, the prediction from the last feature map is essentially based on the rich
contexts—even though there is only one “feature pixel” for a small object, e.g.,
mouse, its recognition will be still possible, due to the perception of larger con-
texts, e.g., table and computer [11,29].

Scale also matters—the mouse recognition deserves more feature pixels, not
only the ones from the last feature map, which easily overlooks small objects. A
conventional solution is to pile an image pyramid for the same image [1], where
the higher/lower levels are images of lower/higher resolutions. Thus, objects of
different scales are recognized in their corresponding levels, e.g., mouse in lower
levels (high resolution) and table in higher levels (low resolution). However,
the image pyramid multiplies the time-consuming CNN forward pass as each
image requires a CNN for recognition. Fortunately, CNN offers an in-network
feature pyramid [39], i.e., lower/higher-level feature maps represent higher/lower-
resolution visual content without computational overhead [25,28]. As shown in
Fig. 1 (b), we can recognize objects of different scales by using feature maps of
different levels, i.e., small objects (computer) are recognized in lower-levels and
large objects (chair and desk) are recognized in higher-levels [16,22,24].

Sometimes the recognition—especially for pixel-level labeling such as seman-
tic segmentation—requires to combine the contexts from multiple scales [5,44].
For example in Fig. 1 (c), to label pixels in the frame area of the monitor, per-
haps the local context of the object itself from lower levels is enough; however,
for the pixels in the screen area, we need to exploit both of the local context and
the global context from higher levels, because the local appearance of monitor
screen is close to TV screen, and we should use scene context such as keyboard
and mouse to distinguish between the two types.

The spirit of the above non-local context is recently modeled in a more
explicit and active fashion—as opposed to the above passive feature map pile—
by using the non-local convolution [34] and self-attention [3,33]. Such spatial
feature interaction is expected to capture the reciprocal co-occurring patterns of
multiple objects [16,41]. As shown in Fig. 1 (d), it is more likely that there is
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(a) Feature Pyramid (b) Feature Pyramid Transformer (c) Transformed Feature Pyramid
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Fig. 2. Overall structure of our proposed FPT network. Different texture patterns indi-
cate different feature transformers, and different color represents feature maps with
different scales. “Conv” denotes a 3 × 3 convolution with the output dimension of
256. Without loss of generality, the top/bottom layer feature maps has no render-
ing/grounding transformer.

a computer on the desk rather than on road, thus, the recognition of either is
helpful to the other.

The tale of context and scale should continue, and it is our key motivation.
In particular, we are inspired by the omission of the cross-scale interactions
(Fig. 1 (c)) in the non-local spatial interactions (Fig. 1 (d)). Moreover, we believe
that the non-local interaction per se should happen in the corresponding scales of
the interacted objects (or parts), but not just in one uniform scale as in existing
methods [33,34,41]. Figure 1 (e) illustrates the expected non-local interactions
across scales: the low-level mouse is interacting with the high-level computer,
which is interacting with desk at the same scale.

To this end, we propose a novel feature pyramid network called Feature
Pyramid Transformer (FPT) for visual recognition, such as instance-level
(i.e., object detection and instance segmentation) and pixel-level segmentation
tasks. In a nutshell, as illustrated in Fig. 2, the input of FPT is a feature pyramid,
and the output is a transformed one, where each level is a richer feature map
that encodes the non-local interactions across space and scales. Then, the feature
pyramid can be attached to any task-specific head network. As its name implies,
FPT’s interaction adopts the transformer-style [3,33]. It has the neat query, key
and value operation (cf. Sect. 3.1) that is shown effective in selecting informative
long-range interaction, which tailors our goal: non-local interaction at proper
scales. In addition, the computation overhead (cf. Sect. 4.1) can be alleviated by
using TPUs like any other transformer models [18].

Our technical contributions, as illustrated in the FPT breakdown in Fig. 2,
are the designs of three transformers: 1) Self-Transformer (ST). It is based on
the classic non-local interaction within the same level feature map [34], and the
output has the same scale as its input. 2) Grounding Transformer (GT). It is
in a top-down fashion, and the output has the same scale as the lower-level fea-
ture map. Intuitively, we ground the “concept” of the higher-level feature maps
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to the “pixels” of the lower-level ones. In particular, as it is unnecessary to use
the global information to segment objects, and the context within a local region
is empirically more informative, we also design a locality-constrained GT for both
efficiency and accuracy of semantic segmentation. 3) Rendering Transformer
(RT). It is in a bottom-up fashion, and the output has the same scale as the
higher-level feature map. Intuitively, we render the higher-level “concept” with
the visual attributes of the lower-level “pixels”. Note that this is a local inter-
action as it is meaningless to render an “object” with the “pixels” of another
distant one. The transformed feature maps of each level (the red, blue and green)
are re-arranged to its corresponding map size and then concatenated with the
original map, before feeding into the conv-layer that resize them to the original
“thickness”.

Extensive experiments show that FPT can greatly improve conventional
detection/segmentation pipelines by the following absolute gains: 1) 8.5% box-
AP for object detection and 6.0% mask-AP for instance segmentation over base-
line on the MS-COCO [23] test-dev ; 2) for semantic segmentation, 1.6% and
1.2% mIoU on Cityscapes [7] and PASCAL VOC 2012 [9] test sets, respectively;
1.7% and 2.0% mIoU on ADE20K [45] and LIP [12] validation sets, respectively.

2 Related Work

FPT is generic to apply in a wide range of computer vision tasks. This paper
focuses on two instance-level tasks: object detection, instance segmentation, and
one pixel-level task: semantic segmentation. Object detection aims to predict a
bounding box for each object and then assigns the bounding box a class label [29],
while instance segmentation is additionally required to predict a pixel-level mask
of the object [13]. Semantic segmentation aims to predict a class label to each
pixel of the image [26].

Feature Pyramid. The in-network feature pyramid (i.e., the Bottom-up Fea-
ture Pyramid (BFP) [22]) is one of the most commonly used methods, and has
been shown useful for boosting object detection [25], instance segmentation [24]
and semantic segmentation [43]. Another popular method of constructing fea-
ture pyramid uses feature maps of the scale while processing the maps through
pyramidal pooling or dilated/atrous convolutions. For example, atrous spatial
pyramid pooling [5] and pyramid pooling module [14,44] leverages output feature
maps of the last convolution layer in the CNN backbone to build the four-level
feature pyramid, in which different levels have the same resolution but differ-
ent information granularities. Our approach is based on the existing BFP (for
the instance-level) and unscathed feature pyramid [27] (for the pixel-level). Our
contribution is the novel feature interaction approach.

Feature Interaction. An intuitive approach to the cross-scale feature interac-
tion is gradually summing the multi-scale feature maps, such as Feature Pyramid
Network (FPN) [22] and Path Aggregation Network (PANet) [24]. In particular,
both FPN and PANet are based on BFP, where FPN adds a top-down path to
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propagate semantic information into low-level feature maps, and PANet adds
a bottom-up path augmentation on the basis of FPN. Another approach is to
concatenate multi-scale feature maps along the channel dimension. The spe-
cific examples for semantic segmentation are DeepLab [4] and pyramid scene
parsing network [44]. Besides, a more recent work proposed the ZigZagNet [20]
which exploits the addition and convolution to enhance the cross-scale feature
interaction. Particularly, for the within-scale feature interaction, some recent
works exploited non-local operation [34] and self-attention [33] to capture the
co-occurrent object features in the same scene. Their models were evaluated in
a wide range of visual tasks [16,38,41,48]. However, we argue that the non-local
interaction performed in just one uniform scale feature map is not enough to
represent the contexts. In this work, we aim to conduct the non-local interaction
per se in the corresponding scales of the interacted objects (or parts).

3 Feature Pyramid Transformer

Given an input image, we can formally extract a feature pyramid, where the
fine-/coarse-grained feature maps are in low/high levels, respectively. Without
loss of generality, we express a low-level fine-grained feature map as Xf and a
high-level coarse-grained feature map as Xc. Feature Pyramid Transformer
(FPT) enables features to interact across space and scales. It specifically includes
three transformers: self-transformer (cf. Sect. 3.2), grounding transformer (cf.
Sect. 3.3) and rendering transformer (cf. Sect. 3.4). The transformed feature
pyramid is in the same size but with richer contexts than the original.

3.1 Non-local Interaction Revisited

A typical non-local interaction [34] operates on queries(Q), keys(K) and
values(V) within a single feature map X, and the output is the transformed
version X̃ with the same scale as X. This non-local interaction is formulated as:

Input: qi,kj ,vj

Similarity: si,j = Fsim(qi,kj)
Weight: wi,j = Fnom(si,j)

Output: X̃i = Fmul(wi,j ,vj),

(1)

where qi = fq(Xi) ∈ Q is the ith query ; kj = fk(Xj) ∈ K and vj = fv(Xj) ∈ V
are the jth key/value pair; fq(·), fk(·) and fv(·) denote the query, key and
value transformer functions [3,33], respectively. Xi and Xj are the ith and jth

feature positions in X, respectively. Fsim is the similarity function (default as
dot product); Fnom is the normalizing function (default as softmax ); Fmul is the
weight aggregation function (default as matrix multiplication); and X̃i is the ith

feature position in the transformed feature map X̃.
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3.2 Self-Transformer

Self-Transformer (ST) aims to capture the co-occurring object features on
one feature map. As illustrated in Fig. 3 (a), ST is a modified non-local interac-
tion [34] and the output feature map X̂ has the same scale as its input X. A main
difference with [33,34] is that we deploy the Mixture of Softmaxes (MoS) [35]
as the normalizing function Fmos, which turns out to be more effective than the
standard Softmax [41] on images. Specifically, we first divide qi and kj into N
parts. Then, we calculate a similarity score sni,j for every pair, i.e., qi,n, kj,n,
using Fsim. The MoS-based normalizing function Fmos is as follows:

Fmos(sni,j) =
N∑

n=1

πn

exp(sni,j)∑
j exp(sni,j)

, (2)

where sni,j is the similarity score of the nth part. πn is the nth aggregating
weight that is equal to Softmax

(
wT

n k̄
)
, where wn is a learnable linear vector

for normalization and k̄ is the arithmetic mean of all positions of kj . Based on
Fmos, we then can reformulate Eq. 1 to elaborate our proposed ST as follows:

Input: qi,kj ,vj ,N
Similarity: sni,j = Fsim(qi,n,kj,n)

Weight: wi,j = Fmos(sni,j)

Output: X̂i = Fmul(wi,j ,vj),

(3)

where X̂i is the ith transformed feature position in X̂.

3.3 Grounding Transformer

Grounding Transformer (GT) can be categorized as a top-down non-local
interaction [34], which grounds the “concept” in the higher-level feature maps
Xc to the “pixels” in the lower-level feature maps Xf . The output X̂f has the
same scale as Xf . Generally, image features at different scales extract differ-
ent semantic or contextual information or both [39,43]. Moreover, it has been
empirically shown that the negative value of the euclidean distance Feud is more
effective in computing the similarity than dot product when the semantic infor-
mation of two feature maps is different [42]. So we prefer to use Feud as the
similarity function, which is expressed as:

Feud(qi,kj) = −||qi − kj ||2, (4)

where qi = fq(X
f
i ) and kj = fk(Xc

j); Xf
i is the ith feature position in Xf , and

Xc
j is the jth feature position in Xc. We then replace the similarity function in

Eq. 3 with Feud, and get the formulation of the proposed GT as follows:
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(c) Locality-constrained GT (d) Rendering  Transformer

Stride conv

(a) Self-Transformer (b) Conventional 
Cross-scale Interaction

Fig. 3. Self-Transformer (ST), Conventional Cross-Scale Interaction in existing meth-
ods, Locality-constrained Grounding Transformer (GT), and Rendering Transformer.
The red grid in low-level is a query position; grids in high-level are the key and the
value positions (within a local square area in (b)); Q are the high-level feature maps,
K and V are the low-level feature maps. Grey square is the down-sampled V.

Input: qi,kj ,vj ,N
Similarity: sni,j = Feud(qi,n,kj,n)

Weight: wi,j = Fmos(sni,j)

Output: X̂f
i = Fmul(wi,j ,vj),

(5)

where vj = fv(Xc
j); X̂f

i is the ith transformed feature position in X̂f . Based on
Eq. 5, each pair of qi and kj with a closer distance will be given a larger weight
as in [33,34]. Compared to the results of dot product, using Feud brings clear
improvements in the top-down interactions1.

In feature pyramid, high-/low-level feature maps contain much global/local
image information. However, for semantic segmentation by cross-scale feature
interactions, it is unnecessary to use global information to segment two objects
in an image. The context within a local region around the query position is
empirically more informative. That is why the conventional cross-scale interac-
tion (e.g., summation and concatenation) is effective in existing segmentation
methods [4,44]. As shown in Fig. 3 (b), they are essentially the implicit local
style. However, our default GT is the global interaction.

Locality-Constrained Grounding Transformer. We therefore introduce a
locality-constrained version of GT called Locality-constrained GT (LGT) for
semantic segmentation, which is an explicit local feature interaction. As illus-
trated in Fig. 3 (c), each qi (i.e., the red grid on the low-level feature map)
interacts with a portion of kj and vj (i.e., the blue grids on the high-level fea-
ture map) within the local square area where the center coordinate is the same
with qi and the side length is square size. Particularly, for positions of kj and
vj that exceed the index, we use 0 value instead.

1 More details are given in Section A of the supplementary.
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3.4 Rendering Transformer

Rendering Transformer (RT) works in a bottom-up fashion, aiming to render
the high-level “concept” by incorporating the visual attributes in the low-level
“pixels”. As illustrated in Fig. 3 (d), RT is a local interaction where the local is
due to the fact that it is meaningless to render an “object” with the features or
attributes from another distant one.

In our implementation, RT is not performed by pixel but the entire feature
maps. Specifically, the high-level feature map is defined as Q; the low-level fea-
ture map is defined as K and V. To highlight the rendering target, the interaction
between Q and K is conducted in a channel-wise attention manner [6]. K first
computes a weight w for Q through Global Average Pooling (GAP) [21]. Then,
the weighted Q (i.e., Qatt) goes through a 3 × 3 convolution for refinement [36].
V goes through a 3 × 3 convolution with stride to reduce the feature scale (the
gray square in Fig. 3 (d)). Finally, the refined Qatt and the down-sampled V
(i.e., Vdow) are summed-up, and processed by another 3 × 3 convolution for
refinement. The proposed RT can be formulated as follows:

Input: Q,K,V

Weight: w = GAP(K)
Weight Query: Qatt = Fatt(Q,w)

Down-sampled Value: Vdow = Fsconv(V)

Output: X̂
c

= Fadd(Fconv(Qatt),Vdow),

(6)

where Fatt(·) is an outer product function; Fsconv(·) is a 3×3 stride convolution,
in particular, where stride = 1 if the scales of Q and V are equal; Fconv(·) is a
3 × 3 convolution for refinement; Fadd(·) is the feature map summation function
with a 3 × 3 convolution; and X̂

c
denotes the output feature map of RT.

3.5 Overall Architecture

We build specific FPT networks for tackling object detection [16,22], inatance
segmentation [13,24], and semantic segmentation [5,44]. Each FPT network is
composed of four components: a backbone for feature extraction; a feature pyra-
mid construction module; our proposed FPT for feature transformer; and a task-
specific head network. In the following, we detail the proposed architectures.

FPT for Object Detection and Instance Segmentation. We follow [22,24]
to deploy the ResNet as the backbone, and pre-train it on the ImageNet [8].
BFP [22] is used as the pyramid construction module. Then the proposed FPT
is applied to BFP, for which the number of divided parts of N is set to 2 for ST
and 4 for GT2. Then, the transformed feature maps (by FPT) are concatenated
with the original maps along the channel dimension. The concatenated maps go
through a 3 × 3 convolution to reduce the feature dimension into 256. On the

2 More details are given in Section B of the supplementary.
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top of the output feature maps, we apply the head networks for handling specific
tasks, e.g., the Faster R-CNN [29] head for object detection and the Mask R-
CNN [13] head for instance segmentation. To enhance the feature generalization,
we apply the DropBlock [10] to each output feature map. We set the drop block
size as 5 and the feature keep probability as 0.9.

FPT for Semantic Segmentation. We use dilated ResNet-101 [37] as the
backbone (pre-trained on the ImageNet) following [5,40]. We then apply the
Unscathed Feature Pyramid (UFP) as the feature pyramid construction module,
which basically contains a pyramidal global convolutional network [27] with the
internal kernel size of 1, 7, 15 and 31, and each scale with the output dimension
of 256. Then, the proposed FPT (including LGT) is applied to UFP with the
same number of divided parts N as in the instance-level tasks. In particular, the
square size of LGT is set to 5. On the top of the transformed feature pyramid,
we apply the semantic segmentation head network, as in [5,41]. We also deploy
the DropBlock [10] on the output feature maps with the drop block size as 3 and
the feature keep probability as 0.9.

4 Experiments

Our experiments were conducted on three interesting and challenging tasks: i.e.,
instance-level object detection and segmentation, and pixel-level semantic seg-
mentation. In each task, we evaluated our approach with careful ablation studies,
extensive comparisons to the state-of-the-arts and representative visualizations.

4.1 Instance-Level Recognition

Dataset. Experiments on object detection and instance segmentation were con-
ducted on MS-COCO 2017 [23] which has 80 classes and includes 115k, 5k and
20k images for training, validation and test, respectively.

Backbone. In the ablation study, ResNet-50 [15] was used as the backbone. To
compare to state-of-the-arts, we also employed ResNet-101 [15], Non-local Net-
work (NL-ResNet-101) [34], Global Context Network (GC-ResNet-101) [2] and
Attention Augmented Network (AA-ResNet-101) [17] as the backbone networks.

Setting. As in [22,24], the backbone network was pre-trained on the Ima-
geNet [8], then the whole network was fine-tuned on the training data while freez-
ing the backbone parameters. For fair comparisons, input images were resized
into 800 pixels/1, 000 pixels for the shorter/longer edge [20].

Training Details. We adopted SGD training on 8 GPUs with the Synchronized
Batch Norm (SBN) [40]. Each mini-batch involved one image per GPU and 512
Region of Interest (ROI) per image. The positive-to-negative ratio was set to 1 :
3. The weight decay and momentum were set to 0.0001 and 0.9, respectively. For
object detection, the learning rate was 0.05 in the first 80k iterations, and 0.005
in the remaining 20k iterations. For instance segmentation, the learning rate was
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Table 1. Ablation study on MS-COCO 2017 val set [23]. “BFP” is Bottom-up Feature
Pyramid [22]; “ST” is Self-Transformer; “GT” is Grounding Transformer; “RT” is
Rendering Transformer. Results on the left and right of the dashed are of bounding
box detection and instance segmentation.

Table 2. Ablation study of SBN [40] and DropBlock [10] on the MS-COCO 2017 val
set [23]. Results on the left and right of dashed lines are respectively for bounding box
detection and instance segmentation.

FPT SBN DropBlock AP AP50 AP75 APS APM APL

� ✗ ✗ 37.2 35.9 56.0 54.3 37.7 36.9 19.0 17.2 37.7 34.8 53.1 51.3

� � ✗ 37.8 36.5 56.7 55.2 38.4 38.2 19.6 18.0 37.9 35.1 54.0 52.1

� ✗ � 37.5 36.2 56.5 54.8 38.0 37.3 19.5 17.8 37.8 35.0 53.8 51.9

� � � 38.0 36.8 57.1 55.9 38.9 38.6 20.5 18.8 38.1 35.3 55.7 54.2

0.05 for the first 120k iterations, and 0.005 in the remaining 40k iterations. An
end-to-end region proposal network was used to generate proposals, as in [34].

Comparison Methods. We compared our FPT to the state-of-the-art cross-
scale feature pyramid interactions including FPN [22], Bottom-up Path Aggrega-
tion (BPA) in PANet [24], and Bi-direction Feature Interaction (BFI) in ZigZa-
gNet [20]. We also reported the experimental results of using the Augmented
Head (AH) [24] and Multi-scale Training (MT) [24], where the AH specifically
includes the adaptive feature pooling, fully-connected fusion, and heavier head.

Metrics. We evaluated the model performance using the standard Average Pre-
cision (AP), AP50, AP75, APS , APM and APL.

Ablation Study. Our ablation study aims to (1) evaluate the performance of
three individual transformers (in our FPT) and combinations, for which the base
pyramid method BFP [22] is the baseline (in Table 1), and (2) investigate the
effects of SBN [40] and DropBlock [10] on our FPT (in Table 2).

Comparing to the Baseline. Table 1 show that three transformers bring con-
sistent improvements over the baseline. For example, ST, GT and RT respec-
tively brings 0.4%, 3.5% and 3.1% improvements for the bounding box AP in
object detection. The improvements are higher as 0.7%, 4.0% and 3.2% for the
mask AP in instance segmentation. The gain by ST is not as much as the gains
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Input FPN BPA BFI FPT (Ours) Ground Truth

86.7% 90.0% 88.1%

75.5%

92.3%

76.3% 78.7% 86.7%

88.3% 89.6% 88.9% 92.5%

Fig. 4. Visualization results in instance segmentation. The red rectangle highlights the
better predicted area of FPT. Samples are from MS-COCO 2017 validation set [23].
The value on each image represents the corresponding segmentation mIoU.

by the other two transformers. An intuitive reason is that, compared to self-
interaction (i.e., ST), the cross-scale interactions (i.e., GT and RT) capture more
diverse and richer inter-object contexts to achieve better object recognition and
detection performances, which is consistent with the conclusion of instance-level
recognition works [46,47]. The middle blocks in Table 1 show that the combina-
tion of transformers improves the performance over individuals in most of cases.
In particular, the full combination of ST, GT and RT results the best perfor-
mance, i.e., 38.0% bounding box AP (6.4% higher than BFP) on object detection
and 36.8% mask AP (6.9% higher than BFP) on instance segmentation.

Effects of SBN and DropBlock. Table 2 shows that both SBN and DropBlock
improve the model performance. Their combination yields 0.8% AP improvement
for object detection, and 0.9% AP improvement for instance segmentation.

Model Efficiency3 We reported the model Parameters (Params) and GFLOPs
with the Mask R-CNN [13]. Adding +ST/+GT/+RT to the baseline respec-
tively increase Params by 0.59×/0.85×/0.15× (with mask AP improvements of
0.7%/4.0%/3.2%). Correspondingly, GFLOPs are increased by 0.44×, 0.54× and
0.09×. Compared to related works [20,22,34], these are relatively fair overheads
on average.

Comparing to the State-of-the-Arts. Table 3 show that applying the cross-
scale interaction methods, e.g., FPN [22], BPA [24], BFI [20] and FPT, results
consistent improvements over the baseline [22]. In particular, our FPT achieves
the highest gains, i.e., 8.5% AP in object detection and 6.0% mask AP in instance
segmentation, with ResNet-101 [15]. Besides, the consistent improvements are
also achieved on the stronger NL-, GC- and AA- ResNet-101, and validate that
BFP+FPT can generalize well to stronger backbones, which make more senses in
the age of results4. Two bottom blocks in Table 3 show that adding efficient train-
ing strategies such as AH, MT, and both (denoted as “[all]”) to BFP+FPT yields

3 More details are given in the Section C of the supplementary..
4 More results are given in Section D of the supplementary.
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Table 3. Experimental results on MS-COCO 2017 test-dev [23]. “AH” is Augmented
Head, and “MT” is Multi-scale Training [24]; “all” means that both the AH and MT
are used. Results on the left and right of the dashed are of bounding box detection and
instance segmentation. “-” means that there is no reported result in its paper.

Methods Backbone AP AP50 AP75 APS APM APL

BFP [22] ResNet-101 33.1 32.6 53.8 51.7 34.6 33.3 12.6 11.4 35.3 34.4 49.5 48.9

NL-ResNet-101 34.4 33.7 54.3 53.6 35.8 33.9 15.1 13.7 37.1 36.0 50.7 49.7

GC-ResNet-101 35.0 34.2 55.8 54.1 36.5 35.3 14.8 13.9 38.6 37.3 50.9 50.5

AA-ResNet-101 33.8 32.8 54.2 52.3 35.4 33.8 13.0 12.3 35.5 34.5 50.0 49.0

BFP+FPN [22] ResNet-101 36.2 35.7 59.1 58.0 39.0 37 .8 18.2 15.5 39.0 38.1 52.4 49.2

BFP+BPA [24] ResNet-101 37.3 36.3 60.4 59.0 39.9 38.3 18.9 16.3 39.7 39.0 53.0 50.5

BFP+BFI [20] ResNet-101 39.5 - - - - - - - - - - -

BFP+FPT ResNet-101 41.6 38.6 60.9 58.2 44.0 43.3 23.4 19.0 41.5 39.2 53.1 50.8

NL-ResNet-101 42.0 39.5 62.1 60.7 46.5 45.4 25.1 20.8 42.6 41.0 53.7 53.0

GC-ResNet-101 42.5 40.3 62.0 61.0 46.1 45.8 25.3 21.1 42.7 41.8 53.1 52.7

AA-ResNet-101 42.1 40.1 61.5 60.1 46.5 45.2 25.2 20.6 42.6 41.2 53.5 52.0

BFP+FPT [AH] ResNet-101 41.1 40.0 62.0 59.9 46.6 45.5 24.2 20.5 42.1 41.0 53.3 52.5

BFP+FPT [MT] ResNet-101 41.2 39.8 62.1 60.1 46.0 45.1 24.1 20.9 41.9 40.8 53.2 51.9

BFP+FPN [22] [all] ResNet-101 37.9 36.3 59.6 58.8 40.1 39.1 19.5 16.7 41.0 40.3 53.5 51.1

BFP+BPA [24] [all] ResNet-101 39.0 37.7 60.8 59.4 41.7 40.1 20.2 18.5 41.5 40.1 54.1 52.4

BFP+BFI [20] [all] ResNet-101 40.1 38.2 61.2 60.0 42.6 42.4 21.9 19.6 42.4 40.8 54.3 52.5

BFP+FPT [all] ResNet-101 42.6 40.3 62.4 61.1 46.9 45.9 24.9 21.3 43.0 41.2 54.5 53.3

performance boosts. For example, BFP+FPT [all] achieves a higher bounding
box AP and the same mask AP, compared to the best performance of BFP+FPT
(with stronger GC-ResNet-101). Besides, BFP+FPT [all] achieves the average
1.5% AP in object detection and 2.1% mask AP in instance segmentation (over
BFP+BFI) using ResNet-101, which further verifies the robust plug-and-play
ability of our FPT. The visualization results in instance segmentation are given
in Fig. 4. Compared to other feature interaction methods, the results of FPT
show more precise predictions for both small (e.g., bottle) and large objects (e.g.,
bicycle). Moreover, it shows the gracile parts in the object (e.g., the horse legs)
are also well predicted using our FPT.

4.2 Experiments on Pixel-Level Recognition

Dataset. Our pixel-level segmentation experiments were conducted on four
benchmarks: (1) Cityscapes [7] contains 19 classes, and includes 2, 975, 500 and
1, 525 images for training, validation and test, respectively; (2) ADE20K [45]
has 150 classes, and uses 20k, 2k, and 3k images for training, validation and
test, respectively; (3) LIP [12] contains 50, 462 images with 20 classes, and
includes 30, 462, 10k and 10k images for training, validation and test, respec-
tively; (4) PASCAL VOC 2012 [9] contains 21 classes, and includes 1, 464, 1, 449
and 1, 456 images for training, validation and test, respectively.

Backbone. We used dilated ResNet-101 [37] as the backbone as in [41].

Setting. We first pre-trained the backbone network on the ImageNet [8], then
fine-tuned the whole network on the training data while fixing the parameters
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Table 4. Ablation study on the Cityscapes validation set [7]. “LGT” is Locality-
constrained Grounding Transformer; “RT” is Rendering Transformer; “ST” is Self-
Transformer. “+” means building the method on the top of UFP.

Methods Tra.mIoU Val.mIoU Params GFLOPs

UFP [27] 86.0 79.1 71.3 M 916.1

UFP+ST [27] 86.9 80.7 91.2 M 948.4

UFP+LGT [27] 86.5 80.3 102.8 M 1008.3

UFP+RT [27] 86.3 80.1 77.4 M 929.3

UFP+LGT+ST [27] 87.2 80.9 121.3 M 1052.6

UFP+RT+ST [27] 87.0 80.8 96.2 M 985.2

UFP+LGT+RT [27] 86.6 80.4 107.0 M 1014.8

UFP+LGT+ST+RT [27] 87.4 81.7 127.2 M 1063.9

the improvement ↑ 1.4 ↑ 2.6

Table 5. Comparisons with state-of-the-art on test sets of Cityscapes [7] and PASCAL
VOC 2012 [9], validation sets of ADE20K [45] and LIP [12]. Results in this table refer
to mIoU; “-” means that there is no reported result in its paper. The best and second
best models under each setting are marked with corresponding formats.

Methods Backbone Cityscapes ADE20K LIP PASCAL VOC 2012

Baseline ResNet-101 65.3 40.9 42.7 62.2

CFNet [41] ResNet-101 80.6 44.9 54.6 84.2

AFNB [48] ResNet-101 81.3 45.2 - -

HRNet [31] HRNetV2-W48 81.6 44.7 55.9 84.5

OCNet [38] ResNet-101 81.7 45.5 54.7 84.3

GSCNN [32] Wide-ResNet-101 82.8 - 55.2 -

PPM [44]+OC [38] ResNet-101 79.9 43.7 53.0 82.9

ASPP [5]+OC [38] ResNet-101 80.0 44.1 53.3 82.7

UFP [27]+OC [38] ResNet-101 80.6 44.7 54.5 83.2

PPM [44]+FPT ResNet-101 80.4(↑ 0.5) 44.8(↑ 1.1) 54.2(↑ 1.2) 83.2(↑ 0.3)

ASPP [5]+FPT ResNet-101 80.7(↑ 0.7) 45.2(↑ 1.1) 54.4(↑ 1.1) 83.1(↑ 0.4)

UFP [27]+FPT ResNet-101 82.2(↑ 1.6) 45.9(↑ 1.2) 56.2(↑ 1.7) 85.0(↑ 1.8)

of backbone as in [40]. Before input, we cropped the image into 969 × 969 for
Cityscapes, 573 × 573 for LIP, and 521 × 521 for PASCAL VOC 2012. Because
images in ADE20K are of various sizes, we cropped the shorter-edge images to
an uniform size {269, 369, 469, 569} as that in [38].

Training Details. We followed [38] to use the learning rate scheduling lr =
baselr×(1− iter

totaliter
)power. On Cityscapes, LIP and PASCAL VOC 2012, the base

learning rate was 0.01, and the power is 0.9. The weight decay and momentum
were set to 0.0005 and 0.9, respectively. On ADE20K, the base learning rate
was 0.02 and the power was 0.9. The weight decay and momentum were 0.0001
and 0.9, respectively. We trained models on 8 GPUs with SBN [40]. The model
was trained for 120 epochs on Cityscapes and ADE20K, 50 on LIP, and 80 on
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Input OCNetBaseline Ground TruthFPT (Ours)

73.1% 86.5% 90.4%

77.1% 86.7% 92.6%

73.3% 87.0% 93.5%

Fig. 5. Visualization results. Samples are from the validation set of PASCAL VOC
2012 [9]. The value on each image represents the corresponding segmentation mIoU.

PASCAL VOC 2012. For data augmentation, the training images were flipped
left-right and randomly scaled between a half and twice as in [41].

Comparison Methods. Our FPT was applied to the feature pyramids con-
structed by three methods: UFP [27], PPM [14,44] and ASPP [5]. Based on
each of these methods, we compared our FPT to the state-of-the-art pixel-level
feature pyramid interaction method, i.e., Object Context Network (OCNet) [38].

Metrics. We used the standard mean Intersection of Union (mIoU) as a uniform
metric. We showed the results of ablation study by reporting the mIoU of training
set (i.e., Tra.mIoU) and validation set (i.e., Val.mIoU) on the Cityscapes.

Ablation Study. Results are given in Table 4. Applying our transformers
(i.e., +ST, +LGT and +RT) to UFP respectively achieves the improvements
of 0.9%, 0.5% and 0.3% Tr.mIoU, and the more impressive 1.6%, 1.2% and 1.0%
Val.mIoU. Moreover, any component combinations of our transformers yields
concretely better results than individual ones. Our best model achieves 1.4%
and 2.6% improvements (over UFP) for Tr.mIoU and Val.mIoU, respectively.

Model Efficiency. In Table 4, we reported the model Params and GFLOPs.
It is clear that using our transformers increases a fair computational overhead.
For example, +ST, +LGT and +RT respectively add Params 0.28×, 0.44× and
0.09×, and increase GFLOPs by 0.04×, 0.10× and 0.01×, compared to UFP.

Comparing to the State-of-the-Arts. From Table 5, we can observe that
our FPT can achieve a new state-of-the-art performance over all the previous
methods based on ResNet-101. It obtains improvements as 1.6%, 1.2%, 1.7%
and 1.8% mIoU on Cityscapes [7], ADE20K [45], LIP [12] and PASCAL VOC
2012 [9], respectively. Besides, compared to OCNet, FPT obtains gain by 0.9%,
1.1%, 1.3% and 0.8% mIoU in these four datasets on average. In Fig. 5, we
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provide the qualitative results5. Compared to the baseline [27] and OCNet [38],
results of FPT show more precise segmentation for smaller and thinner objects,
e.g., the guardrail, person’s leg and bird. Moreover, FPT can also achieve more
integrated segmentation on some larger objects, e.g., the horse, person and sofa.

5 Conclusion

We proposed an efficient feature interaction approach called FPT, composed
of three carefully-designed transformers to respectively encode the explicit self-
level, top-down and bottom-up information in the feature pyramid. Our FPT
does not change the size of the feature pyramid, and is thus generic and easy
to plug-and-play with modern deep networks. Our extensive quantitative and
qualitative results on three challenging visual recognition tasks showed that FPT
achieves consistent improvements over the baselines and the state-of-the-arts,
validating its high effectiveness and strong application capability.
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Abstract. Recently, end-to-end CNNs have presented remarkable per-
formance for disparity estimation. But most of them are too heavy to
resource-constrained devices, because of enormous parameters necessary
for satisfactory results. To address the issue, we propose two compact
stereo networks, MABNet and its light version MABNet tiny. MABNet
is based on a novel Multibranch Adjustable Bottleneck (MAB) module,
which is less demanding on parameters and computation. In a MAB mod-
ule, feature map is split into various parallel branches, where the depth-
wise separable convolutions with different dilation rates extract features
with multiple receptive fields however at an affordable computational
budget. Besides, the number of channels in each branch is adjustable
independently to tradeoff computation and accuracy. On SceneFlow and
KITTI datasets, our MABNet achieves competitive accuracy with fewer
parameters of 1.65M. Especially, MABNet tiny reduces the parameters
47K by cutting down the channels and layers in MABNet.

Keywords: Stereo matching · Disparity estimation · Multibranch
adjustable bottleneck module · Compact networks

1 Introduction

Disparity estimation from a stereo pair of images provides depth informa-
tion which is a significant cue for many computer vision applications, such as
autonomous driving [19], 3D reconstruction [32] and augmented reality [1]. These
applications usually run on mobile devices or embedded platforms, including
drones [20], smart phones and vehicles. These resource-constrained devices pre-
fer the stereo system with low power consumption and small memory footprint.
Besides, stereo system has to be of low latency and high accuracy to ensure the
safety and the comfort, especially in autonomous driving. However, in order to
achieve high accuracy, we have to design complex model with a large number
of parameters and floating-point-operations (FLOPs), which conflicts the energy
efficiency required by resource-constrained devices. In this paper, we propose two
lightweight end-to-end stereo networks to tradeoff computation and accuracy,
c© Springer Nature Switzerland AG 2020
A. Vedaldi et al. (Eds.): ECCV 2020, LNCS 12373, pp. 340–356, 2020.
https://doi.org/10.1007/978-3-030-58604-1_21
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namely MABNet and its light version MABNet tiny. They have fewer parame-
ters and FLOPs thus are more suitable to be deployed on embedded devices.

In general, traditional stereo matching pipeline consists of four steps: match-
ing cost calculation, cost aggregation, disparity computation and disparity refine-
ment [12]. It computes the matching cost within a finite window, with the lim-
itation of dealing with the large texture-less areas, occlusions and repeating
textures. The accuracy and speed of traditional stereo matching methods are
still unable to meet the actual application requirements.

With the rapid development of deep convolutional neural networks (CNNs),
people proposed many learning-based stereo methods to overcome the limita-
tion of traditional methods. MC-CNN [44] first introduced CNNs in stereo to
calculate the matching cost by comparing image patches, and proved the great
potential of CNNs. Gradually, it replaced some of the aforementioned steps of
the traditional stereo pipeline. CCNN [28] and PBCP [31] estimate confidence
by CNNs, while LRCR [16] and RecResNet [3] train CNNs to refine the dispar-
ity. Learning-based stereo methods improve the accuracy but have to take more
time to process.

Inspired by the successes of end-to-end neural networks in optical flow compu-
tation [8], object detection and semantic segmentation [2,5], CNNs have replaced
the total traditional stereo matching pipeline. The first end-to-end stereo net-
work is DispNet [24] proposed in 2016. DispNet achieves competitive accuracy
with MC-CNN [44] on KITTI dataset [10,26] but runs 100× faster on GPU. It
utilizes encoder-decoder architecture which extracts unary features from a stereo
pair of images by 2D CNNs, correlates the features and then restores the origi-
nal resolution by consecutive deconvolutions. CRL [27], iResNet [21], MADNet
[34] encode similarity into feature channels by this feature correlation method.
However, their results loss the real geometric context and have to improve accu-
racy at the expense of more parameters in filters. Instead of simply correlating
features, some networks, such as GC-Net [17], PSMNet [4], GA-Net [45] and
AMNet [9], correlate features at different disparity levels to build a 4D cost vol-
ume and aggregate cost by 3D CNNs. They have fewer parameters but take a
longer time because of more operations in 3D CNNs.

Although end-to-end CNNs show superior performance in stereo, it is chal-
lenging to deploy end-to-end stereo networks on practical devices with limited
resource due to their enormous parameters and excessive FLOPs. People pay
too much attention to the high accuracy, constructing more complex networks.
For example, in comparison with GC-Net [17], GA-Net-deep [45] reduced three-
pixel-error (3PE) from 2.87% to 1.81% on KITTI2015 [26] but doubling the
number of parameters and runtime. In contrast to previous works, we focus
on the model size and feasibility of implementation on hardware and manage to
build as compact as possible stereo networks on the precondition of guaranteeing
precision.

We propose a lightweight bottleneck module constructed by depthwise sepa-
rable convolutions [7] with fewer parameters and FLOPs than standard convo-
lutions. In addition, in order to compensate the accuracy loss, it incorporates
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standard convolution and dilated convolution [13] with different dilation rates
by split-transform-merge strategy [41], and uses channel shuffle operation [46] to
promote the information communication between different groups. We name the
bottleneck module as Multibranch Adjustable Bottleneck (MAB) module since it
has several branches with different dilation rates and adjustable scale factors. As
for 3D MAB module, we factorize a standard 3D convolution into disparity-wise
convolution and spatial convolution to further reduce parameters and FLOPs.
Details of our 2D and 3D MAB modules are described in Sect. 3.1. Based on the
2D and 3D MAB modules, we design our compact stereo networks MABNet and
MABNet tiny. MABNet with 1.65M parameters achieves 2.41% three-pixel-error
(3PE) on KITTI2015, while MABNet tiny 47 K parameters achieves 3.88% 3PE.

2 Related Work

There have been several concurrent works pushing towards learning-based stereo
in different directions, such as high accuracy, low latency and strong self-
adaption. In this paper, we are concerned with lightweight end-to-end stereo
networks, which is prone to be applied on embedded devices instead of GPUs.
Some works optimize the GPU to process neural network more efficiently and
faster, or improve the neural network to adapt the operation mode of GPU.
They speed up the stereo networks on GPU, but have fewer substantive benefit
on the high energy efficient implementation on embedded devices than reducing
model size.

Different from them, StereoDRNet [33] devoted to reducing FLOPs. Based
on PSMNet [4], it improved the feature extraction module by vortex pooling [40],
and proposed a novel cost filtering network with fewer FLOPs to aggregate cost.
PDSNet [35], an applications-friendly deep stereo, designed a novel bottleneck
module, drastically reducing the memory footprint in inference. It also proposed
sub-pixel cross-entropy loss combined with a MAP estimator, making the system
applicable to different disparity ranges without retraining. Besides, LWSM [43]
utilized group convolution and dilated convolution to build upon an enhance-
ment block which has low computation complexity and memory consumption.
Their accuracy is competitive with classical end-to-end stereo networks, but their
models are smaller obviously.

Furthermore, there are more compact models, such as StereoNet [18] and
AnyNet [38]. StereoNet [18] achieved real-time performance by using a very
low-resolution cost volume, reducing the parameters by an order of magnitude
in comparison with PDSNet [35] or LWSM [43]. AnyNet [38] is a tiny stereo
network with 40 K parameters by the aid of U-Net [29] and SPNet [22]. It can
process 1242×375 resolution images within a range of 10–35 FPS on an NVIDIA
Jetson TX2 module. However, due to excessive compression, both of StereoNet
and AnyNet’s accuracy drop severely.

In comparison with prior models on the approximate order of magnitude,
our MABNet and MABNet tiny achieve a noticeable improvement in accu-
racy. Moreover, our models with fewer parameters and FLOPs are easier to
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be deployed on embedded devices. The detailed experimental data is given in
the Sect. 4.3.

3 Proposed Network

As the foundation of our networks, Multibranch Adjustable Bottleneck (MAB)
module is introduced firstly, including the structure and the advantage. Then we
provide an overview. In each part of its introduction, we describe the difference
between MABNet tiny and the origin MABNet.

3.1 Multibranch Adjustable Bottleneck (MAB) Module

Most prior works, such as PSMNet [4], StereoDRNet [33] and GA-Net [45], uti-
lized ResNet block [11] (see Fig. 1) to design their feature extraction backbone,
leading to oversized models. Recently, there have been more compact and more
accurate networks, such as MobileNet [14,30], SqueezeNet [15] and ShuffleNet
[23,46]. They are used or referenced in different fields, showing great perfor-
mance. Besides for classification, FastDepth [39] adopted MobileNet [14,30] to
design an encoder-decoder architecture for monocular depth estimation, while
ESPNet [25] used techniques in compact CNNs to build a network for seman-
tic segmentation. Driven by the successful experience, we designed Multibranch
Adjustable Bottleneck (MAB) module, as shown in Fig. 2 and Fig. 3.

Fig. 1. ResNet block in PSMNet [4] does not apply ReLU after summation. (a)ResNet
block with stride=1. (b)ResNet block with stride=2.

We adopt split-transform-merge strategy [33] to design our MAB module.
Firstly, a 2D MAB module (see Fig. 2(a)) equally splits the input into two sub-
blocks by channel split operation [23]. Then, the first subblock is fed into three
parallel branches to generate features. The corresponding scale factors λi in
Fig. 2 and Fig. 3 controls the number of channels for input feature maps in these
branches separately. Generally, the first layer projects a high dimension feature
map onto a low dimension space via a pointwise convolution. Then a depthwise
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Fig. 2. (a)2D MAB module with sizein=sizeout (stride=1 and Cin = Cout = C).
(b)2D MAB module with sizein �= sizeout ((stride = S) �= 1 or Cin �= Cout). PWConv:
pointwise convolution. DWConv: depthwise convolution. λi={λ1,λ2 λ3}.

convolution [6] with a certain dilation rate extracts features. The three branches
with dilation rates of {1,2,4} grab multilevel context information. Next, we com-
bine the outputs of three branches along channel dimension, followed by another
pointwise convolution to merge them. Finally, we concatenate it with another
subblock of input, then perform channel shuffle operation proposed in ShuffleNet
[23,46] to make the input and output channels fully related.

Although dilated convolution used in our MAB enlarges the effective recep-
tive field without increasing the number of parameters, it may cause gridding
artifact [37] sacrificing the accuracy. Fortunately, our multibranch structure not
only contains context information of multiple receptive fields but also diminishes
gridding artifact through fusing output features of the three branches. Further-
more, considering that larger dilation rate leads to more paddings (filling in
zeros) which fades the effective information in feature maps and increases com-
putational cost, we finally choose the dilation rate as {1,2,4} in 2D MAB module.
In Sect. 4.2, we prove the choice by ablation studies.

In addition, features with different receptive fields benefit the depth estima-
tion of different scenes. Usually, large dilation rate learns coarse-grained rela-
tionship, such as houses, cars and roads, helpful for disparity estimation in
background. On the contrary, small dilation rate needs more convolutions to
get the same receptive field, and learns more fine-grained information, like win-
dows, wheels and traffic lights. In Sect. 4.2, we research the best proportional
relationship between the three scale factors and a reasonable receptive field in
outputs.

Unlike the Fig. 2(a), the subfigure of Fig. 2(b) exhibits another 2D MAB
module when stride �=1 or Cin �= Cout. In the (b) module used to downsample,
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Fig. 3. (a)3D MAB module with sizein=sizeout (stride=1 and Cin = Cout = C).
(b)3D MAB module with sizein �= sizeout ((stride = S) �= 1 or Cin �= Cout). PWConv:
pointwise convolution. DWConv: depthwise convolution. λi={λ1,λ2}.

we skip the channel split operation, but concatenate the input as a residual to
the result through a shortcut connection.

Besides the 2D MAB, we also implement two kinds of computational efficient
3D MAB modules, as shown in Fig. 3. Inspired by the spatial and temporal con-
volutions in 3D CNNs [36,42] for video recognition, we factorize a standard 3D
convolution into two stages, namely disparity-wise convolution and spatial con-
volution. The disparity-wise convolution plays the same role as the first pointwise
convolution in 2D MAB module. Meanwhile, the resolution of 3D MAB in cost
aggregation is smaller than that of 2D MAB in feature extraction, asking 3D
MAB for fewer paddings. Therefore, 3D MAB deletes the branches with dilation
rate=4 and remains only two branches, which also reduce computation.

Fig. 4. Architecture overview of MABNet and MABNet tiny.

3.2 MABNet Overview

As shown in Fig. 4, our stereo matching pipeline consists of four classical steps.
Firstly, the stereo pair of images each with the size of 3 × H × W are fed to
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two weight-sharing feature extractors respectively. The resolution of each output
feature map is reduced to a quarter of the original input image as C × 1

4H × 1
4W .

Then we correlate the two feature maps at different disparity levels to build a
4D cost volume of 2C × 1

4D × 1
4H × 1

4W . Next, the cost volume is aggregated
by 3D MAB modules followed by a bilinear interpolation to upsample the cost
volume back to the resolution of 1 × D × H × W . Finally, we apply a regression
procedure in D dimension to obtain the disparity map of the same resolution as
the input images. Note that C, D, H and W denote the number of channels, the
maximum disparity, the height and the weight of the input image respectively
in the paper.

3.3 Feature Extraction by 2D MAB

Fig. 5. Feature extraction in MABNet. ×2, ×3 and ×15 represent the number of
repetitions. λ=[λ1,λ2,λ3]. The height of the rectangle is proportional to the resolution
of the output feature maps.

The schematic diagram of the feature extraction in MABNet and the param-
eters for each 2D MAB are presented in Fig. 5. We first use three cascaded 3×3
convolution filters, where the first filter has a stride of 2, downsampling the
input image. Next, four groups of 2D MAB modules extract further features.
The number of 2D MAB modules in the four groups are {3,16,3,3} individually,
generating the output feature maps of {32,64,128,128} channels respectively.
The outputs of the last three groups are concatenated to form a unary feature
map of 320 channels. Finally, through two convolution layers, we fuse the 320-
channel feature map to a cost volume of 32 channels then output it. Instead of
using four groups of 2D MAB modules, MABNet tiny uses only three groups of
{4,8,4} modules corresponding {8,16,32} channels, and gives a cost volume of 8
channels by fusing the outputs of the last two groups.

3.4 Cost Volume

After the feature extraction, we get the left and right feature maps, both with
the size of C × 1

4H × 1
4W . As illustrated in Fig. 6, following GC-Net [17], we

form a 4D cost volume of 2C × 1
4D × 1

4H × 1
4W by concatenating left feature
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map with their corresponding right feature map at different disparity levels,
rather than concatenating a bulk of right feature maps at the end of the entire
group of left feature maps. Specifically, when a 1

4H × 1
4W feature map of left

feature builds a 1
4D × 1

4H × 1
4W cost, the data stays at the original position.

But the corresponding right feature map shifts to the right sequentially with the
necessary trimming and padding.

Fig. 6. Illustration of cost volume building. The colored parts represent data in feature
maps, while the white parts in the illustration of 4D cost volume represent data filled
with 0. (Color figure online)

3.5 Cost Aggregation by 3D MAB

Fig. 7. Cost aggregation in MABNet.

At cost aggregation stage, instead of stacking standard hourglass (encoder-
decoder) architecture proposed in PSMNet [4], we design a novel multibranch
hourglass, a bit similar to split-transform-merge structure. MABNet takes the
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advantage of the three successive hourglass networks, as shown in Fig. 7. In each
hourglass network, a combination of four parallel branches and a 3D MAB mod-
ule encodes information with different receptive fields. The encoded information
is upsampled back to the same size as the input image by two 3D deconvolu-
tions and one bilinear interpolation. The two outputs in the first layer of each
hourglass network are concatenated and added to the output of first 3D decon-
volution through a short path to compensate the loss of features during the
encoding procedure, as linked by the blue arrows in Fig. 7. In MABNet, the
three successive hourglass networks generate three aggregated costs and three
training losses (Loss1, Loss2, and Loss3) correspondingly. The loss function is
described in Sect. 3.7. As for the simplification of MABNet tiny, we keep only
one hourglass network in cost aggregation.

3.6 Disparity Regression

We employ the disparity regression proposed in GC-Net [17] to estimate the
continuous disparity map:

d̂ =
Dmax∑

d=0

d × σ (−cd) (1)

where the estimation disparity d̂ denotes the sum of each disparity d weighted
by its probability. And the probability is calculated from the cost volume −cd
via the softmax operation σ (·).

3.7 Training Loss

During training, we adopt smooth L1 loss to measure the difference between the
output of MABNet and the ground truth. L1 loss is robust but nondifferentiable
at disparity discontinuities, while L2 loss is differentiable everywhere but too
sensitivity to outliers. Hence, we formulate smooth L1 loss, defined as

L
(
d, d̂

)
=

1
N

N∑

i=1

smoothL1

(
di − d̂i

)
(2)

in which

smoothL1 (x) =

⎧
⎨

⎩
0.5x2, if

∣∣∣x
∣∣∣ < 0.5∣∣∣x

∣∣∣ − 0.5, otherwise
(3)

where N is the total number of labeled pixels, d̂i is the predicted disparity and
di is the ground-truth disparity. Similar to PSMNet [4], the total training loss
is calculated as the weighted summation of the three losses. The total training
loss Ltotal in MABNet is defined as

Ltotal = 0.5 × Loss1 + 0.7 × Loss2 + Loss3. (4)

Because MABNet tiny uses just one hourglass network, its Ltotal equals to Loss1.
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4 Experiments

In this section, we evaluate our MABNet on SceneFlow, KITTI2012 and
KITTI2015 stereo datasets. We first introduce the datasets and the experiment
settings. Then we present ablation studies to compare different models with
different parameter configurations. Finally, we compare the proposed stereo net-
works with other state-of-the-art published methods.

4.1 Implementation Details

Datasets. SceneFlow [24] is a large-scale synthetic dataset with 35454 stereo
pairs for training and 4370 stereo pairs for testing, all being of 540×960 reso-
lution. It provides dense disparity maps as ground truth. We use the end-point
error (EPE) as the evaluation metric, which means the average absolute disparity
error in pixels.

Unlike SceneFlow, KITTI is a real-world dataset with street views from a
driving car, consisting of KITTI2012 [10] and KITTI2015 [26]. KITTI2012 con-
tains 194 training stereo pairs with semi-dense ground truth disparities acquired
using a LIDAR sensor and 195 testing stereo pairs without ground truth dispari-
ties, both of which are of 376×1240 resolution. KITTI2015 contains 200 training
stereo pairs and 200 testing stereo pairs. Since there is no ground truth disparity
in testing set, we divide the whole training data into a training set (80%) and
a validation set (20%) in our ablation studies. Finally, we submit the results to
the KITTI online benchmark to evaluate our models. Note that KITTI consider
a pixel to be correctly estimated if the disparity end-point error is <3 pixels
or <5%. The percentage of erroneous pixels (3PE) is the evaluation metric for
KITTI dataset.

Experiment Settings. We implement our stereo networks in PyTorch and
train them by Adam optimizer with β1=0.9 and β2=0.999 on four Nvidia RTX
2080Ti. During training, we crop the input image to size 256×512 randomly and
perform color normalization to process all of them. Besides, we fix the batch size
to 8 and set the maximum disparity Dmax to 192.

4.2 Ablation Studies

In the proposed MAB module, the number of branches, scale factors are
adjustable. Through the following ablation studies, we want to figure out the
impact of the parameter configuration to the accuracy of MABNet. Basically, a
larger number of branches and higher scale factors lead to more expensive com-
putational demand while not necessarily a better accuracy of the stereo network.
We performed two sets of experiments in MABNet to decide the proper param-
eter configuration in 2D and 3D MAB modules. Each model was evaluated on
SceneFlow and KITTI2015. For SceneFlow dataset, we trained the model from
scratch for 10 epochs with learning rate=0.001. For KITTI2015, there are only
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160 training stereo pairs and 40 validation stereo pairs, making models suscepti-
ble to over-fitting. Thus, we used the pretrained SceneFlow model and finetuned
it for 300 epochs. The learning rate of this fine-tuning began at 0.001 for first
200 epochs, then drops to 0.0001 for remaining 100 epochs. Finally, we computed
EPE on the SceneFlow test set and the percentage of 3PE on the KITTI 2015
validation set.

Different Numbers of Branches in 2D MAB Module. To figure out the
best choice for the number of branches in 2D MAB module, we did four experi-
ments in MABNet with the fixed scale factors as 0.5 both in 2D and 3D MAB
modules. The reason we only did experiments with 2D MAB is because the num-
ber of branches in 3D MAB can be inferred from the results about 2D MAB.
And adding a branch in 3D MAB will greatly increase FLOPs, which is time
and resources consuming. In the experiments, λ1, λ2 and λ3 are the scale factor
in the branch with dila=1, dila=2 and dila=4 respectively. Besides, we added
the 4th branch with dila=8 and λ4.

Table 1. Evaluation of MABNet with different numbers of branches in 2D MAB
module. λ1, λ2, λ3 and λ4 are scale factors in 2D MAB. FLOPs represent floating-point-
operations in processing a stereo pair of 256×512, including convolution, activation
function and batch normalization.

Branches λ1 λ2 λ3 λ4 Parameters FLOPs SceneFlow(EPE) KITTI2015(3PE)

1 0.5 – – – 1.525M 188.26G 1.072 3.236%

2 0.5 0.5 – – 1.573M 189.16G 1.111 3.349%

3 0.5 0.5 0.5 – 1.621M 190.07G 1.056 3.174%

4 0.5 0.5 0.5 0.5 1.669M 190.97G 1.588 3.225%

The results listed in Table 1 show that setting three branches in 2D MAB is
the most reasonable case. As for experiments with one and two branches, they
do not extract enough multilevel features, causing lower accuracy than that
with three branches. As for the experiment with four branches, although it has
features with more level at the cost of more parameters and FLOPs, its result
is comparatively unacceptable especially when tested on Sceneflow [24] which
contains lots of pictures of monkey and flying objects. As mentioned in Sect. 3.1,
larger dilation rate in the additional branch leads to more paddings, fading
the effective information in feature maps. On the other hand, larger dilation
rate good for the estimation of background disparity contains scanty foreground
information. Therefore, the experiment with four branches yields a worse depth
estimation.

Different Scale Factors in MAB Module. After determining the number
of branches, we further explored the proportional relationship between the three
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scale factors. Similar to 2D MAB, λ1, λ2 in 3D MAB are the scale factors in
the branches with dila=1 and dila=2 respectively. To narrow the search space,
we constrained the λi to be 1

2n (n=0,1,2), which ensured that the number of
output channels was an integer and greater than 1. Besides, we only performed
experiments on SceneFlow since KITTI validation dataset has too few samples
to get regular results.

We first carry out the experiments with fixed λ in 3D MAB module as 0.5 and
0.25. The results about 2D MAB modules in Table 2 proves that λ1 had positive
impact on the accuracy but λ3 had opposite effect. Therefore, we empirically
fixed the scale factors of 2D MAB in the next three experiments in Table 3, trying
to explore the importance of λi in 3D MAB. We found that the configuration of
{1,0.5,0.25,0.5,0.25} gives the best result.

Table 2. Evaluation of MABNet with different scale factors in 2D MAB module.

2D MAB 3D MAB Parameters SceneFlow (EPE)

λ1 λ2 λ3 λ1 λ2

0.25 0.5 0.5 0.5 0.25 1.591 M 1.107

0.5 0.5 0.5 0.5 0.25 1.615 M 1.072

1 0.5 0.5 0.5 0.25 1.663 M 1.041

0.5 0.25 0.5 0.5 0.25 1.591 M 1.075

0.5 0.5 0.5 0.5 0.25 1.615 M 1.072

0.5 1 0.5 0.5 0.25 1.663 M 1.073

0.5 0.5 0.25 0.5 0.25 1.591 M 1.091

0.5 0.5 0.5 0.5 0.25 1.615 M 1.072

0.5 0.5 1 0.5 0.25 1.663 M 1.161

Table 3. Evaluation of MABNet with different scale factors in 3D MAB modules.

2D MAB 3D MAB Parameters SceneFlow (EPE)

λ1 λ2 λ3 λ1 λ2

1 0.5 0.25 0.25 0.5 1.639 M 1.127

1 0.5 0.25 0.5 0.25 1.639 M 0.987

1 0.5 0.25 0.5 0.5 1.645 M 1.006

1 0.5 0.25 1 0.5 1.655 M 0.994

4.3 Evaluations on Benchmarks

We evaluated our MABNet and MABNet tiny on SceneFlow and KITTI to prove
the effectiveness of our MAB module. Unlike ablation studies, we increased the
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number of trainings to 20 epochs for SceneFlow and 600 epochs for KITTI. For
SceneFlow, the learning rate was 0.001 initially, 0.0005 for 16th-18th epoch and
0.0001 for 19th-20th. For KITTI, we used the pretrained SceneFlow model in
15th epoch. The learning rate was 0.001 initially, 0.0005 for 300th-399th epoch,
0.0002 for 400th-499th epoch and 0.0001 for 500th-600th epoch.

According to the online KITTI2015 leaderboard, as shown in Table 4, in com-
parison with other models on the approximate order of magnitude, our compact
models with fewer parameters achieves competitive accuracy. Especially, MAB-
Net tiny improves the accuracy significantly over StereoNet and AnyNet. We
obtain the same observation through the experimental results on KITTI2012
and SceneFlow, illustrated in Table 5.

Table 4. Evaluation results on KITTI2015 benchmark. The percentages of erroneous
pixels for non-occluded (Noc) and all (All) pixels in background (D1-bg), foreground
(D1-fg) and all areas (D1-all) are reported. Note that AnyNet [38] is tested on the
Nvidia Jetson TX2 GPU computing module.

Method All(%) Noc(%) Parameters Runtime

D1-bg D1-fg D1-all D1-bg D1-fg D1-all

GC-Net [17] 2.21 6.16 2.87 2.02 5.58 2.61 3.5M 0.9 s

PSMNet [4] 1.86 4.62 2.32 1.71 4.31 2.14 5.2M 0.41 s

PDSNet [35] 2.29 4.05 2.58 2.09 3.68 2.36 2.2M 0.5 s

LWSM [43] 1.86 5.35 2.44 1.69 4.68 2.18 1.8M 0.24 s

MABNet 1.89 5.02 2.41 1.74 4.59 2.21 1.65M 0.38 s

StereoNet [18] 4.30 7.45 4.83 – – – 360K 0.015 s

AnyNet [38] – – 6.20 – – – 40K 0.0973 s

MABNet tiny 3.04 8.07 3.88 2.80 7.28 3.54 47K 0.11 s

Table 5. Evaluation results on KITTI2012 and SceneFlow benchmark. The percent-
ages of erroneous pixels (Out) and the average end-point errors (Avg) for both non-
occluded (Noc) and all (All) pixels are reported on KITTI2012. The error threshold is
set to 2.

Method KITTI2012 SceneFlow (EPE)

Out-Noc(%) Out-All(%) Avg-Noc(px) Avg-all(px)

GC-Net [17] 2.71 3.46 0.6 0.7 2.51

PSMNet [4] 2.44 3.01 0.5 0.6 1.09

PDSNet [35] 3.82 4.65 0.9 1.0 1.12

LWSM [43] 2.48 3.17 0.5 0.6 0.8

MABNet 2.43 3.02 0.5 0.5 0.797

StereoNet [18] 4.91 6.02 0.8 0.9 1.101

MABNet tiny 4.45 5.27 0.7 0.8 1.663



MABNet 353

As shown in Table 6, compared with PSMNet [4] and StereoNet [18], the
proposed MABNet and MABNet tiny that have much less network parameters
do not exhibit the advantage of running time on the platform of GPU. We dis-
cover that the depthwise convolutions involved in the 2D and 3D MAB modules
cannot perform efficiently on GPUs. Because the procedure of a convolution
is similar to a general matrix multiplication (GEMM) operation, before which
GPU must perform an im2col operation, transforming the input 3D data into
a 2D matrix. Therefore, a depthwise convolution needs to repeat the im2col
and GEMM operation C times because it has C groups of feature map, while
a standard convolution needs only once in2col operation. Since the number of
parameters influences the memory access cost [46], as well as the number of
FLOPs determines the number of multiply-and-accumulate (MAC) operations,
we believe MABNet and its light version should achieve superior efficiency on
the other hardware flatforms, like embedded DNN accelerators for edge devices.

Table 6. Evaluation results of FLOPs for processing a stereo pair of 256×512, including
convolution, activate function and batch normalization.

Method PSMNet [4] MABNet StereoNet [18] MABNet tiny

FLOPs 257.01 G 190.75 G 14.08 G 6.60 G

Runtime 0.41 s 0.38 s 0.015 s 0.11 s

5 Conclusions

We propose the MAB module which can extract features with multiple recep-
tive fields and is adjustable in the number of channels in each branch. Moreover,
we are looking forward to applying the MAB module to more fields, such as
object detection, semantic segmentation and classification. Based on the MAB
module, we propose two lightweight stereo network MABNet and its light ver-
sion MABNet tiny. Experimental results on SceneFlow and KITTI demonstrate
the effectiveness of the MAB module, MABNet and MABNet tiny. More impor-
tantly, our models with few parameters and low computational complexity are
easy to be deployed on resource-constrained devices.
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Abstract. Person Re-identification (Re-ID) in crowed scenes is a chal-
lenging problem, where people are frequently partially occluded by
objects and other people. However, few studies have provided flexible
solutions to re-identifying people in an image containing a partial occlu-
sion body part. In this paper, we propose a simple occlusion-aware app-
roach to address the problem. The proposed method first leverages a fully
convolutional network to generate spatial features. And then we design a
combination of a pose-guided and mask-guided layer to generate saliency
heatmap to further guide discriminative feature learning. More impor-
tantly, we propose a new matching approach, called Guided Adaptive
Spatial Matching (GASM), which expects that each spatial feature in the
query can find the most similar spatial features of a person in a gallery
to match. Especially, We use the saliency heatmap to guide the adaptive
spatial matching by assigning the foreground human parts with larger
weights adaptively. The effectiveness of the proposed GASM is demon-
strated on two occluded person datasets: Crowd REID (51.52%) and
Occluded REID (80.25%) and three benchmark person datasets: Mar-
ket1501 (95.31%), DukeMTMC-reID (88.12%) and MSMT17 (79.52%).
Additionally, GASM achieves good performance on cross-domain person
Re-ID. The code and models are available at: https://github.com/JDAI-
CV/fast-reid/blob/master/projects/CrowdReID.

Keywords: Person re-identification · Guided saliency feature
learning · Guided adaptive spatial matching

1 Introduction

Person re-identification (Re-ID) has achieved significant improvement both in
academic and industrial society in the past two years, making it widely used
in many real-world scenarios, such as train station, airport, etc. However, two
urgent yet challenging problems of person Re-ID in crowded scenes are still not
well addressed. One major issue that challenges this task is the ubiquitous pedes-
trian occlusion by each other. For instance, as shown in Fig. 1, the captured per-
son is occluded by a partial body of the front person, making it difficult to track
c© Springer Nature Switzerland AG 2020
A. Vedaldi et al. (Eds.): ECCV 2020, LNCS 12373, pp. 357–373, 2020.
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Image of the person 
to be retrieved

Image of a person 
that is not completely 
visible to the camera

Cross-camera 
person matching

Occluded by 
Partial body of 
other person

Fig. 1. Illustration of the person Re-ID in crowed scenes. Here, the Re-ID system aims
to recognize the person within the red region. The captured person by the surveillance
operator is occluded by the partial body of the front person.

her movement. Another major issue that challenges this task is cross-camera per-
son image matching because of unpredictable dynamic background-bias under
different cameras. From this perspective, person Re-ID in crowded scenes has
attracted significant research attention as the demand for identification using
images captured by video surveillance systems has been rapidly growing.

Most existing person Re-ID [9,11] approaches fail to identify a person when
the body region is severely occluded by the partial body of the other person.
To match an occluded person image, most of the attention-based approaches
[10,18,25] (see in Fig. 2(a)) enforce the output features to mainly focus on the
foreground human bodies. Our observations show that the attention-based app-
roach can only eliminate the influence of background, but fail to remove the
partial body of another person. Some other approaches [8,15,21] proposed a
two-stream network as shown in Fig. 2(b), which consists of an appearance map
extraction stream and a body part heatmap extraction stream. Following the
two streams, a part-aligned feature map was obtained by a bilinear mapping of
the corresponding local appearance and body part descriptors. But it inevitably
requires more inference time to obtain the body part heatmap and fails to gen-
erate accurate body part heatmap under heavily occluded by the partial body
of the other person in crowded scenes.

In this paper, we propose a towards accurate camera-aware person Re-ID
framework that can re-identify a person occluded by a partial person’s body as
shown in Fig. 2(c). First, we utilize a fully convolutional neural network to pro-
duce spatial feature maps that contains the features of the person’s body occlu-
sion person body (partial body of another person) and background. To guaran-
tee the extracted feature with less contamination of background and occlusion
person body, we design a mask layer combined with a pose layer to predict the
saliency heatmap. In particular, The predictive power of the saliency heatmap for
the mask layer and pose layer are respectively learned from large human segmen-
tation and pose estimation models. And then we obtain the discriminative fea-
ture by a bilinear mapping of the spatial feature map and the saliency heatmap.
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Fig. 2. (a) Attention-based approach (b) Two-stream approach (c) Our approach.

Finally, we develop an adaptive spatial matching method, which expects that
each spatial feature in the query can find the most similar spatial feature of
a person in a gallery to match. To achieve the more accurate matching, We
also use the saliency heatmap to guide the spatial matching by assigning the
person body with larger weights and the occlusion body and background with
smaller weights to overcome the occlusion and background problem. Remark-
ably, the model improves the performance of cross-camera Re-ID by eliminating
background-bias. The main contributions of our work are summarized as follows:

– We propose a novel saliency feature learning network that integrates Re-
ID feature learning, human segmentation and pose estimation in a unified
framework, which can effectively address person re-identification under severe
occlusion in crowded scenes. Our approach does not rely on any external cues
during the inference term.

– We propose guide adaptive spatial matching for person Re-ID, which can
address person image misalignment problem and is flexible to arbitrary-sized
person images.

– The proposed saliency feature presentation framework effectively eliminates
dynamic background-bias, which helps to improve cross-domain person Re-
ID.

– Experimental results demonstrate that the proposed approach achieves
impressive results on multiple occlusion datasets including new Crowd REID
and Occluded REID. It exceeds some occluded Re-ID approaches by more
than 15% in terms of rank-1 accuracy. Besides, the proposed method
achieves competitive results on multiple benchmark datasets including Mar-
ket1501 [27], DukeMTMC-reID [30], MSMT17 [29].

2 Related Work

Occluded Person Re-identification. Occluded/Partial person Re-ID [2,16]
has become an emerging problem in video surveillance. To address this problem.
Part-based models are considered as a solution to occluded person Re-ID. A
local-to-local matching strategy is employed to handle occlusions and cases where
the target is partially out of camera’s view. Zheng et al. [28] proposed a local-level
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matching model called Ambiguity-sensitive Matching Classifier (AMC) based on
the dictionary learning and introduced a local-to-global matching model called
Sliding Window Matching (SWM) that can provide complementary spatial lay-
out information. To address the Re-ID problem with occlusion, i.e., only part of
the human body is visible to the camera, He et al. [4] proposed an alignment-free
approach namely Deep Spatial feature Reconstruction (DSR) that uses a fully
convolutional network to extract corresponding-sized spatial feature maps for
the incomplete person images, and then exploits the reconstruction error based
on sparse coding to avoid explicit alignment. Furthermore, a Foreground-aware
Pyramid Reconstruction (FPR) [6] scheme also tries to remove the influence of
background and scale various. Sun et al. introduce a Visibility-aware Part Model
(VPM) [22] to extract stripe-level features, thus addressing the spatial misalign-
ment in the incomplete images. Luo et al. [13] proposed STNReID that combines
a spatial transformer network (STN) and a re-id network for partial re-id Besides,
the Pose-Guided Feature Alignment (FGFA) [14] utilizes the pose landmarks to
mine discriminative part information to address the occlusion noise. Although
these methods mentioned above can solve the occlusion problem to some extent,
it cannot deal with the situation where a person is partially occluded by a partial
body of another person. To this end, we propose a guided saliency feature learn-
ing model that can effectively classify background and partial occlusion body,
and then incorporate adaptive spatial matching to address occlusion problem in
crowded scenes.

Person Re-identification. The attention mechanism is usually utilized in
many human-centric video analysis applications [5,12], such as ReID, to extract
more discriminative features. Si et al. [18] proposed a dual attention mecha-
nism, in which both intra-sequence and inter-sequence attention strategies are
used for feature refinement and feature-pair alignment, respectively. Chen et al.
proposed an Attentive but Diverse Network (ABD-Net) [1], which integrates
spatial-channel attention modules and diversity regularizations throughout the
entire network to extract more discriminative features. Zhou et al. [32] intro-
duce a novel consistent attention regularizer between feature representation lay-
ers to learn foreground-aware feature maps. Besides, most of the person Re-ID
approaches leverage external cues such as human mask and human pose esti-
mation to enhance feature representation. In some mask-guided models, mask
as an external cue helps to remove the background clutters in pixel-level and
only contain body shape information. Song et al. [19] introduced the binary seg-
mentation masks to construct the synthetic RGB-Mask pairs as inputs, then
they design a mask-guided contrastive attention model (MGCAM) [19] to learn
features separately from the body and background regions. Kalayeh et al. [8] pro-
posed a person re-identification model that integrated human semantic parsing
in person re-identification. Pose-guided models utilize pose estimation informa-
tion as an external cue in person Re-ID to reduce the part misalignment problem.
Each key part can be well located using person landmarks. Su et al. [20] pro-
posed a Pose-driven Deep Convolutional (PDC) model to learn improved feature
extractors and matching models from end-to-end, PDC can explicitly leverage
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Fig. 3. Architecture of the proposed guided saliency feature learning. The backbone
consists of a fully convolutional network (FCN), a mask layer and a pose layer. FCN
is used to extract spatial features. The mask layer and pose layer are used to predict
the mask-guided heatmap and pose-guided heatmap. And then saliency features are
obtained by a bilinear mapping of the feature map and the saliency heatmap.

the human part cues to alleviate the pose variations. Suh et al. [21] proposed
a two-stream network that consisted of an appearance map extraction stream
and body part map extraction stream. And then a part-aligned feature map is
obtained by a bilinear mapping of the corresponding local appearance and body
part descriptors. Although mask-guided and pose-guided approaches can achieve
satisfying performance, they extremely rely on accurate segmentation model and
pose estimation model. Also, these existing approaches are two-stream structure
so that the computation cost of these approaches is rather extensive during the
inference term.

3 Proposed Approach

In this section, we elaborate on the proposed guided saliency feature learning
for the occluded person re-identification approach. We first introduce the entire
network architecture. After that, we will introduce the training of our model.
Finally, we will explain saliency adaptive spatial matching.

3.1 Architecture of the Proposed Model

The architecture of the proposed Re-ID model is shown in Fig. 3. Structurally, it
consists of a full convolutional neural network (FCN), a mask layer and a pose
layer. We now introduce them one by one.

FCN. In the crowded scenes, the target person to re-identify is provided with
person detection bounding boxes by a human detector. As shown in Fig. 1, the
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detected person bounding boxes are coarse, often containing background and
partial body part of occlusion person. Conventional neural networks involving a
feature aggregation layer like the fully connected layer or average pooling layer
would output global features contaminated by background and occlusion. To
obtain better representation that only focuses on the person to be re-identified,
we use a fully convolutional network (FCN) as the backbone for spatial fea-
ture extraction. FCN can still retain spatial coordinate so that the background,
occlusion features, and person features are extracted without interference with
each other. We discard the last average pooling layer based on ResNet-50 to
implement FCN, and the last Resblock outputs the spatial feature map.

Mask Layer. The extracted spatial features are often contaminated by the back-
ground and occlusion features. To guarantee the following person spatial feature
are less contamination from the background, we design a mask layer to obtain
the foreground probability of spatial features. The designed mask layer consists
of a convolution layer with a 1×1×d (d denotes the number of the channel of the
output feature map, and d = 2048 in our model) convolution kernel. The output
spatial features pass the mask layer to generate a correspondingly-size mask-
guided heatmap, and the size of each mask-guided heatmap is W ×H, where W
and H denote the width and the height of output feature map, respectively.

Pose Layer. The detected person may be occluded by other partial bodies of
other persons, resulting in that only mask-guided heatmap unable to distinguish
between persons to be identified or occlusion persons. Therefore, we also design
a pose layer to predict the C human keypoints heatmap (C= 13)1 that can only
focus on the identified person. The pose layer consists of a convolution layer
with 13 1 × 1 × 2048 kernels. Likewise, the output spatial features pass the pose
layer to generate a correspondingly-size pose-guided heatmap, and the size of
each pose-guided heatmap is W × H × C.

Pose-guided heatmap only focuses on human keypoints, the weights around
person keypoints are relatively large while the weights beyond person keypoints
are relatively small. As for Mask-guided heatmap, it only focuses on the person
part, but it cannot address partial occlusion body contamination. Therefore,
pose-guided heatmap combined with mask-guided heatmap can output a more
accurate saliency heatmap for further guiding following feature learning and
adaptive spatial matching.

3.2 Guided Saliency Feature Learning

In this section, we now explain the training strategy for learning saliency features.
As shown in Fig. 3, four loss functions are used to optimize the whole Re-ID
model.

Mask-Guided Loss. We design a mask layer to classify the spatial features of
the background and foreground person. We treat this problem as a probabilistic
1 Head, Left-shoulder, Right-shoulder, Left-elbow, Right-elbow, Left-wrist, Right-

wrist, Left-hip, Right-hip, Left-knee, Right-knee, Left-ankle, Right-ankle.
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Fig. 4. Example results of source image, pose heatmap, mask heatmap and saliency
heatmap.

prediction problem. To generate a mask-guided heatmap, we use the semantic
segmentation model PSPNet [26] trained with COCO dataset to guide the mask
layer to predict the mask-guided heatmap Mp ∈ R

W×H . Let Mgt generated by
PSPNet with downsampling operation be the ground truth human mask of width
W and height H. Our aim is to regress the Mp with regard to Mgt. Therefore,
the training objective of mask layer is a pixel-wise regression:

Lmask = ||Mp − Mgt||F (1)

Pose-Guided Loss. The predicted mask-guided heatmap can only distinguish
between backgrounds and persons, but is unable to distinguish between per-
sons to be identified and partial body of other persons. Therefore, we want
to design a pose layer to classify the spatial features of the person and partial
body. The human pose estimation model CenterNet [33] (visualized human joints
are shown in Fig. 4) is used to guide the pose layer to predict the pose-guided
heatmap. Keypoint types included 13 human joints in human pose estimation.
Let Pp ∈ R

W×H×13 and Pgt ∈ R
W×H×13 be predicted pose-guided heatmap

by the pose layer and the generated ground truth pose heatmap by CenterNet
with downsampling operation, respectively. Our aim is to use Pp to regress Pgt.
Therefore, the training objective of the pose layer is a pixel-wise regression:

Lpose = ||Pp − Pgt||F (2)

And then, we use channel sum operation to obtain the final pose-guided heatmap
Pp.

The two complementary mask-guided heatmap and pose-guided heatmap
are fused to obtain saliency heatmap to predict more accurate saliency person
coordinate information.

Triplet Loss and Identification Loss. Our person re-identification model
simply aggregates the output spatial feature map using the saliency heatmap.
By using the weighted sum operation, the network finally generates a 2048-
D global saliency feature representation. To train the network, we pass it to a
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Fig. 5. Illustration of guided adaptive spatial matching. Here, each spatial feature in
the query can find the most similar spatial feature of a person in a gallery to match.
The saliency heatmap can refine the final matching result.

multi-class classification objective with softmax cross-entropy loss Lid. To obtain
a more compact feature representation, we also use a metric learning objective
with triplet loss Ltri to train the network.

The final loss function is a weighted sum of all the losses defined above: Lmask

and Lpose are complementary to predict the saliency person heatmap. Lid and
Ltri to preserve identity discrimination.

L = λmaskLmask + λposeLpose + Lid + Ltri (3)

We set λmask = 0.05 and λpose = 0.1 in our experiments.

3.3 Guided Adaptive Spatial Matching

At present, Euclidean distance is used to match global features. However, such
coarse matching is hard to solve the misalignment problem. The saliency adap-
tive spatial matching (SASM) is a more refined matching method, which can
solve the misalignment to some extent. Given a pair of person images Ix
(query) and Iy (gallery), Corresponding spatial feature maps x ∈ R

W×H×d and
y ∈ R

W×H×d are inferred by FCN, where W , H and d denote the height, the
width and the number of the channel of spatial feature map. xh,w ∈ R

1×1×d rep-
resents a local spatial feature corresponding to a local region of a source image.
As shown in Fig. 5, xw,h attempt to search similar local spatial feature in y to
match, and then outputs the similar score dw,h. For W × H spatial features in
x, we can calculate the similarity score of each spatial feature xW,H

w=1,h=1 with
regard to y. The similar score matrix can be defined as D.

However, it suffers from an obvious limitation: since x contains the back-
ground and partial occlusion body features, the spatial matching scores are inac-
curate. To alleviate the problem, we want to reduce the influence of background
and partial occlusion body by assigning their matching scores small weights,
while enhancing the effect of foreground person by assigning these matching
scores large weights adaptively. Therefore, we use the generated saliency heatmap
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to guide adaptive spatial matching for further improving the Re-ID performance.
Given a query image Ix, the pose layer and mask layer as introduced above out-
put the saliency heatmap Sx. Then the saliency heatmap Sx can be used to
guide the adaptive spatial matching. We perform weight sum operation over
the spatial matching matrix D and saliency heatmap Sx. Then the final guided
adaptive spatial matching (GASM) distance d of Ix and Iy can be defined as

d =
H∑

h=1

W∑

w=1

Dh,w ∗ Sh,w
x (4)

Also, the global matching distance provides the complementary matching infor-
mation to GASM by average weighting operation.

4 Experiments

In this section, we first verify the effectiveness of our proposed approach for the
task of occluded person Re-ID on two occluded person Re-ID dataset: Crowd
REID and Occluded REID [7], and then experiment on three person Re-ID
benchmarks: Market1501 [27], DukeMTMC-reID [30], and MSMT17 [24] to show
its generalizability. Also, we verify the advantage of our proposed approach for
the task of cross-domain person Re-ID. Finally, we perform the parameter anal-
ysis to investigate the influence of the separated pose layer and mask layer.

4.1 Experiment Settings

Implementation Details. Our implementation is based on the publicly avail-
able code of PyTorch. All models are trained and tested on Linux with P40
GPUs. In the training term, all training images are re-scaled to 384 × 128. For
batch hard triplet loss function, one batch consists of 16 subjects, and each sub-
ject has 4 different images. We train the overall network with 120 epochs, We
use the Adam optimizer with the base learning rate initialized to 10−4, then
decayed to 10−5, 10−6 after 40, 90 epochs, respectively.

Evaluation Protocol. We employ the standard metrics as in most person Re-ID
literature namely the cumulative matching curve (CMC) and the mean Average
Precision (mAP).

4.2 Datasets

Crowd REID is a newly created, which is specifically designed for person Re-ID
in crowded scenes. The dataset is collected in a train station by 11 surveillance
cameras. The dataset is very challenging because most of the person images in
these images to be identified are occluded by the partial body of other persons.
The examples of occlusion persons in the Crowd REID dataset are shown in
Fig. 6(a). To evaluate this dataset, 2,412 images of 835 identities are used as the
gallery set and 845 images of 605 identities are used as the gallery set.
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Fig. 6. (a) Example of person images in the crowd REID dataset, the person to be
identified are occluded by partial bodies of other persons such as head-shoulder or half
body. (b) Example of person images in the Occluded dataset, the person images are
occluded by static objects such as tree, car, and umbrella, etc.

Occluded REID is an occluded person dataset captured by mobile cameras,
consisting of 2,000 images of 200 occluded persons (see Fig. 6(b)). Each iden-
tity has 5 full-body person images and 5 occluded person images with different
viewpoints, backgrounds and different types of severe occlusions.

Market1501 has 12,936 training and 19.732 testing images with 1,501 identities
in total from 6 cameras. Deformable Part Model (DPM) is used as the person
detector. We follow the standard training and evaluation protocols in [27] where
751 identities are used for training and the remaining 750 identities for testing.

DukeMTMC-reID is the subset of Duke Dataset [17], which consists of 16,522
training images from 702 identities, 2,228 query images and 1,7,661 gallery
images from other identities. It provides manually labeled person bounding
boxes. Here, we follow the setup in [30].

MSMT17 is the current largest available person Re-ID dataset, consisting of
126,441 images of 4,101 identities captured by 12 outdoor cameras and 3 indoor
cameras. We follow the training-testing split of [24]. MSMT17 is significantly
more challenging than market1501 and DukeMTMC-reID due to more complex
collected scenes, different weather conditions (morning, noon, afternoon).

Table 1. Performance comparison on Crowd REID and Occluded REID using Mar-
ket1501, DukeMTMC and MSMT17 training datasets, respectively.

Method Crowd REID rank-1 (mAP) Occluded REID rank-1 (mAP)

Market1501 DukeMTMC MSMT17 Market1501 DukeMTMC MSMT17

PCB [23] 14.1 (13.4) 20.3 (17.5) 32.7 (26.6) 41.3 (38.9) 47.5 (42.4) 56.2 (47.5)

MaskReID [15] 14.3 (13.7) 21.7 (19.8) 37.2 (31.2) 26.8 (25.0) 44.2 (38.1) 54.2 (51.2)

PABR [21] 24.3 (21.7) 26.5 (23.7) 41.6 (36.8) 67.1 (55.4) - -

DSR [4] 28.8 (26.7) 30.3 (27.3) 48.7 (43.3) 72.8 (62.8) - -

FPR [6] 30.2 (29.9) 32.6 (30.3) 50.7 (45.8) 78.3 (68.0) - -

self-attention 22.3 (23.2) - - 67.4 (55.8) - -

Baseline 16.7 (16.4) 26.6 (24.3) 44.0 (41.2) 60.2 (57.0) 66.1 (60.2) 74.6 (69.2)

GASM 32.4 (31.1) 35.8 (31.8) 51.5 (47.1) 74.5 (65.6) 76.5 (67.8) 80.3 (73.2)
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4.3 Occluded Person Re-identification

The designed person Re-ID model is respectively trained with Market1501,
DukeMTMC-reID, and MSMT17 datasets, and tested on Crowd REID and
Occluded REID datasets. Therefore, it is a cross-domain setting. Firstly, we com-
pare our GASM against existing person Re-ID approaches including a part-based
model PCB [23], a mask-guided Re-ID model MaskReID [15] and pose-guided
Re-ID model PABR [21]. Besides, we also compare our GASM against partial
person Re-ID approaches DSR [4] and FPR [6]. For PCB, MaskReID, PABR,
DSR, and FPR, we follow their original parameter settings. Besides, we compare
our proposed GASM against the baseline model based on ResNet-50.

Table 1 respectively shows the experimental results on Crowd REID and
Occluded REID datasets. It is noted that: (1) The proposed GSAM achieves sta-
ble results regardless of different training datasets and different testing datasets.
Clear gaps are shown between our proposed GASM and these state-of-the-art,
which suggests that GSAM is very solid to address the occlusion problem; (2) The
proposed GASM outperforms AMC-SWM, PCB, MaskReID, SPReID, PABR,
DSR and FPR on Crowd REID dataset. Such a result justifies the fact that
GASM can reduce the influence of the partial body of other persons, making the
network only focus on foreground person part; (3) The gap between GASM and
AMC-SWM, PCB are significant on the two datasets. Compared to PCB: GASM
increases from 14.1% to 32.4% and from 41.3% to 74.5% at rank-1 accuracy on
Crowd REID and Occluded REID when we use Market1501 dataset to train
the model. The results suggest that it is difficult to address occlusion problem
since it fuses both occlusion/background part feature and human part feature
to the final feature.; (4) PABR and FPR achieve comparable results (24.3%,
67.1% and 30.2%, 78.3% at rank-1 accuracy) on the two datasets because pose
estimation heatmaps used in PABR and foreground-aware network can allevi-
ate the influence the background; (5) GASM performs better than MaskReID
due to eliminating the background-bias is not conducive to person Re-ID; (6)
Although MaskReID and PABR are well suited for addressing occlusion problem,
they depend on external models such segmentation network and pose estimation
network during the inference. Therefore, the forward inference is inefficient.

As discussed above, GASM is an occlusion-aware approach that can both
address background-bias, occlusion object, and occlusion partial body by assign-
ing them small weights. Furthermore, GSAM is an adaptive local matching app-
roach that can address misalignment person image.

4.4 Non-occluded Person Re-identification

We also experiment on non-occluded person datasets: Market1501, DukeMTMC-
reID, and MSMT17 to test the generalizability of our proposed approach.

Results on Market1501. Comparisons between GSAM and 11 state-of-the-
art: PCB [23], MasKReID [15], SPReID [8], PABR [21], DSR [4] and FPR [6],
OSNet [31], ABDNet [1], CAR [32] and P 2-Net [3]. We only conduct a single
query experiment. The results are shown in Table 2, which suggests that the
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Table 2. Performance comparison on Market1501, DukeMTMC and MSMT17
datasets.

Method Market1501 DukeMTMC MSMT17

PCB [23] 92.3 (77.4) 81.8 (66.1) -

PCB+RPP [23] 93.8 (81.6) 83.3 (69.2) -

SPReID [8] 92.5 (81.3) 83.3 (68.8) -

MaskReID [15] 90.0 (75.3) - -

PABR [21] 90.2 (76.0) 82.1 (64.2) -

OSNet [31] 94.8 (84.9) 88.6 (73.5) 78.7 (52.9)

ABDNet [21] 95.6 (88.3) 89.0 (78.6) 82.3 (60.8)

CAR [32] 96.1 (84.7) 86.3 (73.1) -

P 2−Net [3] 95.2 (85.6) 86.5 (73.1) -

DSR [4] 94.7 (85.8) 88.1 (77.1) -

FPR [6] 95.4 (86.6) 88.6 (78.4) -

Baseline 94.8 (83.4) 87.3 (73.7) 77.3 (49.4)

GASM 95.3 (84.7) 88.3 (74.4) 79.5 (52.5)

proposed GSAM achieves competitive performance on all evaluation criteria. It
is noted that: (1) The gaps between our results and baseline model (ResNet-
50+Triplet loss + softmax cross-entropy loss) are significant: GASM increases
from 94.8% to 95.3% at rank-1 accuracy and from 83.4% to 84.7% at mAP accu-
racy, which fully suggests that guided adaptive spatial matching is more effec-
tive than only using global feature matching. GASM can reduce the influence of
background for cross-camera person Re-ID; (2) Benefit from guided saliency fea-
ture learning based on external human segmentation model and pose estimation
model, GSAM can reduce the influence of background. Besides, adaptive spa-
tial matching effectively addresses the misalignment problem; (3) Contributed
by exacting human semantic parsing and pose estimation, SPReID, PABR, and
P 2-Net achieves the competitive accuracy. However, SPReID, PABR, and P 2-
Net rely on excellent human segmentation model and pose estimation during
the inference term. GASM place a huge advantage over these mask-guided and
pose-guided approaches since it does not depend on external cue models during
the inference term; (4) Although attention-based approaches OSNet, ABDNet
and CAR improve the performance of person Re-ID, only using self-attention
mechanism easily result in unstable of these methods due to partial body
occlusion.

Results on DukeMTMC-reID. Person Re-ID results on DukeMTMC-reID
are given in Table 2. This dataset is challenging because the person bounding
box size varies drastically across different camera views, which naturally suits the
proposed GASM. We report the results of PCB, MasKReID, SPReID, PABR,
DSR, FPR, OSNet, ABDNet, CAR and P 2-Net. The results show that GASM
achieves 88.1% at rank-1 accuracy and 74.4% mAP accuracy. Besides, GASM
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Table 3. Performance comparison on Cross-domain person Re-ID.

Method M→D M→MS D→M D→MS MS→M MS→D

Baseline 54.3 (34.8) 22.2 (7.5) 61.6 (29.6) 26.8 (8.7) 64.7 (43.3) 64.6 (33.8)

GASM 56.4 (36.5) 27.8 (9.5) 67.2 (34.8) 32.8 (10.4) 68.4 (49.1) 68.3 (35.8)

beats the spatial feature reconstruction method DSR by 0.3% at the rank-1
accuracy. However, GASM performs worse than FPR due to pyramid pooling
used in FPR can cope with scale variations to some extent.

Results on MSMT17. Very few methods report the result on this dataset
since it is recently released. Except for PCB, MasKReID, SPReID, PABR, other
comparison methods have reported the result on MSMT17. The results show
that the proposed GASM yields comparable results both at the rank-1 and mAP
metrics.

As discussed above, GASM can achieve competitive performance on the three
benchmark datasets. Referring to the results of occluded person Re-ID exper-
imental result, our proposed GASM can both address occluded person Re-ID
and non-occluded person Re-ID. Since these three datasets are collected in non-
crowded scenes, it cannot show its superiority.

4.5 Cross-domain Person Re-identification

To verify the effectiveness of GASM in cross-domain person Re-ID, we con-
duct several cross-domain Re-ID experiments including M→D, M→MS, D→M,
D→MS, MS→M and MS→D (M→D means that train model with Market1501
and test model with DukeMTMC-reID). More remarkable, we train a model
using source-domain dataset, and then directly test on target-domain dataset
without extra processing like finetuning and GAN on target-domain dataset.
We only compare our proposed GASM against a baseline model (the baseline
model is based on ResNet-50). Table 3 shows the results of cross-domain Re-ID.
It is noted that GASM has lager superiority for cross-domain testing, improving
rank-1 accuracy by 2.1%, 5.6%, 5.6%, 6.0%, 3.7% and 3.7% for M→D, M→MS,
D→M, D→MS, MS→M and Ms→D, respectively. Such results also suggest that
GASM improves the performance of cross-domain Re-ID by guided saliency fea-
ture learning. It is well known that the differences between different datasets
mainly come from background, content, and camera parameters, GASM is capa-
ble of eliminating the background-bais to further improve the performance of
person Re-ID.

In summary, we provide a good baseline for cross-domain person Re-ID and
unsupervised person Re-ID.

4.6 Ablation Study

In this subsection, we aim to thoroughly analyze the effectiveness of each compo-
nent in our Guided Saliency Feature Learning framework. Four different networks
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Table 4. The performance of person Re-ID using different components.

Market1501 train Market1501 DukeMTMC MSMT17 Crowd REID Occluded REID

Baseline 94.8 (83.8) 54.3 (34.8) 22.18 (7.5) 16.7 (16.4) 60.2 (57.0)

+mask 94.5 (84.1) 55.3 (35.2) 27.1 (9.3) 32.2 (30.4) 74.1 (64.3)

+pose 95.1 (84.3) 56.1 (35.7) 26.1 (9.0) 30.0 (30.4) 74.5 (65.6)

+pose, +mask 95.3 (84.7) 56.4 (36.5) 79.5 (52.5) 32.4 (31.1) 74.5 (56.6)

DukeMTMC train Market1501 DukeMTMC MSMT17 Crowd REID Occluded REID

Baseline 61.6 (29.6) 87.3 (73.68) 26.8 (8.7) 26.6 (24.3) 66.1 (60.2)

+mask 65.6 (32.8) 87.8 (72.4) 31.5 (9.9) 32.2 (28.7) 75.5 (68.5)

+pose 67.2 (33.8) 87.9 (73.9) 32.5 (10.2) 34.3 (31.1) 75.4 (67.4)

+pose, +mask 67.2 (34.2) 88.1 (74.2) 32.8 (10.4) 35.8 (31.8) 76.5 (67.8)

MSMT17 train Market1501 DukeMTMC MSMT17 Crowd REID Occluded REID

Baseline 64.6 (33.8) 64.7 (43.3) 77.3 (49.4) 44.0 (41.2) 74.6 (69.2)

+mask 67.9 (35.5) 67.9 (47.7) 79.3 (51.7) 50.9 (47.4) 78.9 (72.0)

+pose 67.2 (34.5) 67.7 (47.5) 78.5 (51.7) 50.4 (47.0) 78.4 (72.9)

+pose, +mask 68.2 (35.9) 68.3 (49.1) 79.7 (52.5) 51.5 (47.1) 80.3 (73.1)

including FCN + average pooling (baseline), FCN + pose layer, FCN + mask
layer, and FCN + pose layer + mask + layer are designed, and test on occluded
datasets and three benchmark datasets, respectively. Besides, we also conduct
cross-domain person Re-ID experiments using the four networks.

Table 4 shows the experimental results using Market1501, DukeMTMC-reID
and MSMT17. We find the results on three datasets are similar, FCN + pose
layer + mask layer outperforms better than other three designed networks on dif-
ferent tasks because pose-guided heatmap combined with mask-guided heatmap
can output more accurate saliency heatmap. Pose-guided heatmap only focuses
on human keypoints, the weights around person keypoints are relatively large
while the weights beyond person keypoints are relatively small. As for Mask-
guided heatmap, it only focuses on the person part, but it cannot address partial
occlusion body contamination. It is also noted that: (1) FCN + average pooling
performs worse than other three networks on different tasks due to failing to
address occlusion and background; (2) Mask-guided heatmap and pose-guided
heatmap are complementary, mask-guided heatmap helps to find the person part
but cannot address partial body occlusion; pose-guided heatmap helps to find
the person to be identified but fails to address every part of person image. In
summary, the two modules work well together to occluded person Re-ID, non-
occluded person Re-ID and cross-domain person Re-ID.

5 Conclusion

We have proposed a novel approach called Guided Adaptive Spatial Matching
to person Re-ID in crowded scenes. The proposed method design a pose-guided
layer and mask-guide layer to learn the saliency heatmap to further guide feature
learning. Besides, we proposed a novel matching approach called Guided Adap-
tive Spatial Matching (GASM) where each spatial feature in the query can find
the most similar spatial features of a person in a gallery to match. Remarkably,
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saliency heatmap used in spatial matching can solve partial body occlusion and
eliminate background-bais. Experimental results on Crowd REID and Occluded
REID dataset validate that GSAM can address the occlusion problem. Besides,
GSAM also shows its advantage in cross-domain by eliminating background-bais.
Additionally, the proposed method is also competitive on the benchmark person
datasets.

Acknowledgement. Special thanks to Xingyu Liao who support our experiments,
and thanks to FastReID: https://github.com/JDAI-CV/fast-reid [5] that provides with
codebase for GASM. This work is partially supported by Beijing Academy of Artificial
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Abstract. Most existing RGB-D saliency detection methods adopt
symmetric two-stream architectures for learning discriminative RGB and
depth representations. In fact, there is another level of ambiguity that is
often overlooked: if RGB and depth data are necessary to fit into the same
network. In this paper, we propose an asymmetric two-stream architec-
ture taking account of the inherent differences between RGB and depth
data for saliency detection. First, we design a flow ladder module (FLM)
for the RGB stream to fully extract global and local information while
maintaining the saliency details. This is achieved by constructing four
detail-transfer branches, each of which preserves the detail information
and receives global location information from representations of other
vertical parallel branches in an evolutionary way. Second, we propose a
novel depth attention module (DAM) to ensure depth features with high
discriminative power in location and spatial structure being effectively
utilized when combined with RGB features in challenging scenes. The
depth features can also discriminatively guide the RGB features via our
proposed DAM to precisely locate the salient objects. Extensive experi-
ments demonstrate that our method achieves superior performance over
13 state-of-the-art RGB-D approaches on the 7 datasets. Our code will
be publicly available.

Keywords: Saliency detection · Flow ladder · Depth attention

1 Introduction

Salient object detection, which involves identifying the visually interesting
regions, is a well-researched domain of computer vision. It serves as an essential
pre-processing step for various visual tasks such as image retrieval [7,15,17,28],
visual tracking [2,20,38], object segmentation [12,39,40,42,43], object recogni-
tion [10,36,37], and therefore makes an important contribution towards sustain-
able development.
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A majority of existing works [21,26] for saliency detection focus on operat-
ing RGB images. While RGB-based saliency detection methods have achieved
great success, appearance features in RGB data are less predictive to some chal-
lenging scenes, such as multiple or transparent objects, similar foreground and
background, complex background, low-intensity environment, etc.

The depth cue has the preponderance of discriminative power in location and
spatial structure, which has been proved beneficial to accurate saliency predic-
tion [35]. Moreover, the paired depth data for RGB natural images are widely
available with the advent of depth sensors, e.g., Kinect and Lytro Illum. Conse-
quently, using depth information gains growing interests in saliency detection.

Most RGB-D-based methods utilize symmetric two-stream architectures for
extracting RGB and depth features [4,6,18,32]. However, we observe that while
RGB data contain more information such as color, texture, contour, as well as

RGB Depth GT Ours CPFPDMRA

Fig. 1. The comparison of predicted maps
between our method and two top-ranking
RGB-D-based methods on salient objects
details, i.e., DMRA [32], CPFP [46]. The
1st row and the 4th row are the enlarged
images of the red box area of the middle
two rows, which show superior performance
of our method on saliency details

limited location, grayscale depth
data provide more information such
as spatial structure and 3D lay-
out. In consequence, a symmetric
two-stream network may overlook
the inherent differences of RGB and
depth data. Asymmetric architec-
tures have been adopted in few works
to extract RGB and depth features,
taking the differences between two
modalities into account. Zhu et al.
[48] present an architecture com-
posed of a master network for pro-
cessing RGB values, and a sub-
network making full use of depth
cues, which incorporates depth-based
features into the master network
via direct concatenation. Zhao et al.
[46] incorporate the contrast prior to
enhance the depth maps and then
integrate them into the RGB stream for saliency detection. However, simple
fusion strategies like direct concatenation or summation are less adaptive to
locate the salient objects due to myriad possibilities of salient objects positions
in the real world. Overall, these above methods overlook the fact that depth
cue contributes differently to the salient object prediction in various scenes. Fur-
thermore, existing RGB-D methods inevitably suffer from detail information
loss [16,41] for adopting strides and pooling operations in the RGB and depth
streams. An intuitive solution is to use skip-connections [22] or short-connections
[21] for reconstructing the detail information. Although these strategies have
brought satisfactory improvements, they remain restrictive to predict the com-
plete structures with fine details.
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Building on the above observation, we strive to take a further step towards
the goal of accurate saliency detection with an asymmetric two-stream model.
The primary challenge towards this goal is how to effectively extract rich
global context information while preserving local saliency details. The second
challenge is how to effectively utilize the discriminative power of depth features
to guide the RGB features for locating salient objects accurately.

To confront these challenges, we propose an asymmetric two-stream archi-
tecture as illustrated in Fig. 2. Concretely, our contributions are:

• We design a flow ladder module (FLM) and a lightweight depth network
(DepthNet) with a small model size of 6.7MB. Instead of adopting skip-
connections or short-connections, our FLM can effectively extract local detail
information (see Fig. 1) and global context information through a local-global
evolutionary fusion flow for accurate saliency detection.

• We propose a novel depth attention module (DAM) to ensure that the depth
features can effectively guide the RGB features by using the discriminative
power of depth cues. Its effectiveness has been experimentally verified (see
Table 4).

• Furthermore, we conduct extensive experiments on 7 datasets and demon-
strate that our method achieves consistently superior performance over 13
state-of-the-art RGB-D approaches in terms of 4 evaluation metrics. Numer-
ically, our approach reduces the MAE performance by nearly 33% on DUT-
RGBD dataset. In addition, our method minimizes the model size by 33%
compared with the existing minimum method (PDNet) and achieves Top-2
running speed of 46 FPS.

2 Related Work

RGB-D Saliency Detection. Although many RGB-based saliency detection
methods have achieved appealing performance [16,29,33,44,45,47], they may not
accurately detect the salient area because the appearance features in RGB data
are less predictive when encountering with some complex scenes, such as low-
contrast scenes, transparent objects, foreground sharing similar contents with
background, multiple objects, and complex backgrounds. With the advent of
consumer-grade depth cameras such as Kinect cameras, light field cameras and
lidars, depth cues with a wealth of geometric and structural information is widely
used in salient object detection (SOD).

Existing RGB-D saliency detection methods can be generally classified into
two categories: Traditional methods [8,9,11,24,31,35,49,50]. Ren et al. [35]
propose a two-stage RGB-D saliency detection framework using the validity of
global priors. Lang et al. [24] introduce the depth prior into the saliency detec-
tion model to improve detection performance. Desingh et al. [11] use a non-linear
regression to combine the RGB-D saliency detection model with the RGB model
to measure the saliency values. CNNs-based methods [4–6,18,32,34,46,48].
To better mine salient information in challenging scenes, some CNNs-based
methods combine depth information with RGB information for more accurate
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Fig. 2. The overall architecture of our proposed approach. Our asymmetric architecture
consists of three parts, i.e., the RGBNet, the DAM and the lightweight DepthNet. The
RGBNet includes a VGG-19 backbone and a flow ladder module. For depth stream,
we also employ the same backbone of the RGBNet. The black arrows represent the
information flows

results. Practices and theories that lead to symmetric two-stream architectures
which extract RGB and depth representations equally have been studied for a
long time [4–6,18,32]. Han et al. [18] design a symmetric architecture for fus-
ing the deep representations of depth and RGB views automatically to obtain
the final saliency map. Chen et al. [6] utilize two-stream CNNs-based models
for introducing cross-model interactions in multiple layers by direct summation.
Recently, several asymmetric architectures are proposed for processing different
data types [46,48]. Zhao et al. [46] use the enhanced depth information as an
auxiliary cue and adopt a pyramid decoding structure to obtain more accurate
salient regions.

Because of the inherent differences between RGB and depth information, clas-
sic symmetric two-stream architectures and simple fusion strategies may work
their ways down to inaccurate prediction. Besides, the strides and pooling oper-
ations adopted in existing RGB-D-based methods for downsampling inevitably
result in information loss. To address the above-mentioned issues, in this work,
we design an asymmetric network and ably fuse RGB and depth information by
a depth attention mechanism for precise saliency detection.
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3 The Proposed Method

The overall architecture of our proposed method is shown in Fig. 2. In this
section, we begin with describing the overall architecture in Sect. 3.1, then intro-
duce the DepthNet in Sect. 3.2, the flow ladder module in Sect. 3.3, and finally
the proposed depth attention module in Sect. 3.4.

Table 1. Details of our DepthNet architecture, k represents the kernel, s represents the
stride, chns represents the number of input/output channels for each layer, p represents
the padding, in and out represent the input and output feature size

Name Layer k s p chns in out

Conv1 ∗1 3 1 1 3/64 256 * 256 256 * 256

Maxpool - 2 - 64/64 256 * 256 128 * 128

Conv2 ∗1 3 1 1 64/128 128 * 128 128 * 128

Maxpool - 2 - 128/128 128 * 128 64 * 64

Transition1 3 1 1 128/32 64 * 64 64 * 64

Conv3 ∗4 3 1 1 32/32 64 * 64 64 * 64

3 1 1 32/32 64 * 64 64 * 64

Conv4 ∗4 3 1 1 32/32 64 * 64 64 * 64

3 1 1 32/32 64 * 64 64 * 64

Transition2 3 1 1 32/128 64 * 64 64 * 64

Conv5 ∗4 3 1 1 128/128 64 * 64 64 * 64

3 1 1 128/128 64 * 64 64 * 64

3.1 The Overall Architecture

Considering that most RGB-D-based methods utilizing symmetric two-stream
architectures overlook the inherent differences between RGB and depth data, we
propose an asymmetric two-stream architecture, as illustrated in Fig. 2. Our two-
stream architecture includes a lightweight depth stream and a RGB stream with
a flow ladder module, namely DepthNet and RGBNet, respectively. As for the
depth stream, we design a lightweight architecture as shown in Table 1. Then the
extracted depth features are fed into the RGB stream through a depth attention
mechanism (DAM, see Fig. 3) to generate complementary features with affluent
information of location and spatial structure. For the RGB stream, we adopt the
commonly used architecture VGG-19 as our baseline. Based on this baseline, we
propose a novel flow ladder module (FLM) to preserve the detail information as
well as receive global location information from representations of other vertical
parallel branches in an evolutionary way, which benefits locating salient regions
and achieves considerable performance gains.
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Fig. 3. Illustration of the depth attention module (DAM). The images above Fout are
the corresponding original RGB image and ground truth

3.2 DepthNet

Compared with RGB data which contains richer color and texture information,
depth cues focus on spatial location information. A large number of parameters
in a complex depth extraction network are redundant, thus we consider that is
unnecessary to process depth data with a complex network as large as RGBNet.
In addition, the ablation experiments on symmetric and asymmetric architec-
tures in Sect. 4.3 also confirm our claim. As illustrated in Fig. 2, we adopt a
detail-transfer architecture for the depth stream (see Table 1 for detailed specifi-
cation) and take the original depth maps as input. Our DepthNet transfers detail
information in the whole architecture to capture fine spatial details. Consider-
ing the differences between RGB and depth data, numerous redundant channels
of depth features are unnecessary. Therefore, we prune the number of feature
channels to 32 in Conv3, 4 and 128 in final Conv, which further achieves a more
lightweight DepthNet with a model size of 6.7MB.

3.3 RGBNet

Deeper networks are able to extract richer high-level information such as loca-
tion and semantic information, but strides and pooling operations widely used
in existing RGB-D-based methods may cause detail information loss, such as
boundary, small object, for saliency detection. A straightforward solution to this
issue is combining the low-level features with the high-level features by skip-
connections [22]. However, the low-level features take a less discriminative and
predictive power for complex scenes, which has trouble contributing to accurate
saliency detection. Hence, we design a novel RGBNet consisting of a VGG back-
bone for fair comparison and a flow ladder model to preserve the local detail
information by constructing four detail-transfer branches and fuse the global
location information in an evolutionary way. In order to fit our task, we trun-
cate the last three fully-connected layers and maintain the five convolution blocks
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as well as all pooling operations of VGG-19. The FLM can preserve the reso-
lution of representations in multiple scales and levels, ensuring that the local
detail information and global location information contribute to the precision of
saliency detection. More details are described as follows.

In order to alleviate the detail information loss, we design a flow ladder model
(FLM). This module is applied in VGG-19 and integrates four detail-transfer
branches in the way of local-global evolutionary fusion flow. We design detail-
transfer branches for preserving the saliency details. As shown in Fig. 2, the
first two branches consist of 3 layers. The number of the layers in the 3rd and
4th branch is decreased to 2, 1, respectively. Specifically, we simply denote the
jth layer of the ith branch as BiLj , iε[1, 4], jε[1, 3]. BiLj is composed of four
basicblocks [19], each of which consists of two convolutional layers as shown in
the top of Fig. 2. Our FLM consists of 4 evolved detail-transfer branches. Instead
of adopting strides and pooling operations, our FLM preserves the resolution of
representations with more details in each branch by employing convolutional
operations with 1 * 1 stride.

We design a novel local-global evolutionary fusion flow for integrat-
ing multi-scale local and global features extracted from detail-transfer branches.
Each branch receives rich information from other vertical parallel representa-
tions through our local-global evolutionary fusion flow. In this way, rich global
context representations are generated while more local saliency details are pre-
served. Specifically, the representations of the deeper branches are fused into
the shallower branches by upsampling and summation operations as well as the
representations of the shallower branches are fused into the deeper branches
by downsampling and summation operations as shown in the FLM of Fig. 2.
Through the evolution between different branches (shown in Fig. 2), the local
detail information and the global context information are effectively combined,
which benefits the precision of saliency detection. The whole fusion process is
described as the following equations:

BiLj =

⎧
⎨

⎩

trans(Conv2) i = 1, j = 1
trans(Conv(i + 1)) i = j + 1, jε[1, 3]

∑j
n=1 f(BnLj−1) iε[1, j], jε[2, 3]

, (1)

F j
RGB =

j+1∑

n=1

f(BnLj) jε[1, 2], (2)

F 3
RGB = cat(f(BnL3)) nε[1, 4], (3)

where Bi and Lj denote the ith branch and jth layer, respectively. f(·) denotes
n − i times up-sampled when n > i and i − n times down-sampled when n < i.
And when n is equal to i, f(·) means no operation. Conv(i) means the output
features of the ith Conv block in VGG-19 and trans(·) is operated by a con-
volutional layer to realize the transformation of the number of channels. cat(·)
denotes concatenating all features together. The final output of our LFM namely
F 3

RGB is a concatenation of multi-scale features extracted from four branches. In
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Fig. 4. Comparisons of ours with state-of-the-art CNNs-based methods. Those meth-
ods are top ranking ones in quantitative evaluation. Obviously, our results are more
consistent with the ground truths (GT), especially in complex scenes

conclusion, the features with local and global information are transferred to the
parallel branches in an evolutionary way. Our proposed LFM can not only alle-
viate the object detail information loss but also effectively integrate multi-scale
and multi-level features for precise saliency prediction.

3.4 Depth Attention Module

Changes in statistics of object positions in the real world makes linear fusion
strategies of RGB and depth data less adaptive to complex scenes. To take full
advantage of the depth cues with the discriminative power in location and spa-
tial structure, we design a depth attention module to adaptively fuse the RGB
and depth representations as shown in Fig. 3. Firstly, the depth features contain
abundant spatial and structural information. We utilize the context attention
block which contains a 1 * 1 convolutional layer Wk and a softmax function for
extracting the salient location cues more precisely, instead of applying simple
fusion like summation or concatenation. Then a matrix multiplication opera-
tion is adopted to aggregate all location features together to generate attention
weights of each channel i (i.e., αi) for capturing pixel-wise spatial dependencies.
Moreover, the degree of response to the salient regions varies between features of
different channels. Thus we adopt a channel-wise attention block which contains
two 1 * 1 convolutional layers Wc and a LayerNorm function to capture the inter-
dependencies between channels, and further achieves a weighted depth feature
β. Then we adopt dot product operation to fuse β into the RGB stream, which
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helps guide the RGB features at pixel-level to distinguish the foreground and
background thoroughly. Furthermore, the ablation experiments in Sect. 4.3 also
verify the effectiveness of our DAM compared with simple fusion. And the visual
results in Fig. 6(b) also prove that the salient regions are emphasized through
the attention mechanism.

The details of these three blocks can be formulated as the following equations:

αi =
Np∑

j=1

eWkF j
d

∑Np

m=1 eWkF m
d

F j
d , (4)

βi = ς(Wc2ReLU(LN(Wc1αi)) � Fd), (5)

Ffusion = ς(FRGB � β), (6)

where αi denotes the weight of the ith channel to obtain the global context fea-
tures. F j

d means the jth position in depth feature Fdepth. Np is the number of
positions in the depth feature map (e.g., Np = H ·W ). Wk, Wc1 and Wc2 denote
1 * 1 convolutional operations. LN denotes the LayerNorm operation after the
convolution Wc1, and ReLU is an activate function. The ς(·) and � mean the
sigmoid function and dot product operation, respectively. The βi indicates the
depth pixel-wise attention map of ith channel of FRGB . FRGB and Ffusion rep-
resent the input RGB feature and the output feature of the DAM, respectively.
The Ffusion can be calculated as a DAM output with much more effective depth-
induced context-aware attention features. Furthermore, experiments in Sect. 4.3
show that our DAM is capable of fusing depth features discriminatively and
filtering out features which are guided by depth cues in mistake.

As illustrated in Fig. 3, the inputs of our DAM are F i
RGB and F i

Depth

extracted from our LFM and DepthNet, respectively, i = 1, 2, 3. At the end,
a simple decoder is adopted for supervision. The decoder module contains two
bilinear upsample functions, each of which is followed by 3 convolutional layers.
The total loss L can be represented as:

L = lf{Decoder(F 3
fusion); gt}, (7)

where F 3
fusion represents the output fusion feature of the third DAM and gt

means the ground-truth map. The cross-entropy loss lf can be computed as:

lf{ŷ; y} = ylogŷ + (1 − y)log(1 − ŷ), (8)

where y and ŷ denote the saliency ground-truth map and the predicted map,
respectively.

4 Experiments

4.1 Dataset

We perform our experiments on 7 public RGB-D datasets for fair comparisons,
i.e., NJUD [23], NLPR [31], RGBD135 [8], STEREO [30], LFSD [27], DUT-
RGBD [32], SSD [25]. We split those datasets as [4,6,18] to guarantee fair com-
parisons. We randomly select 800 samples from DUT-RGBD, 1485 samples from
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Table 2. Quantitative comparisons of E-measure (Eγ), S-measure (Sλ), F-measure
(Fβ) and MAE (M) on 7 widely-used RGB-D datasets. The best three results are
shown in boldface, bolditalic, italic fonts respectively. From top to bottom: the latest
CNNs-based RGB-D methods and traditional RGB-D methods

DUT-RGBD NJUD NLPR SSD

Method Years Backbone Eγ ↑ Sλ ↑ Fβ ↑ M ↓ Eγ ↑ Sλ ↑ Fβ ↑ M ↓ Eγ ↑ Sλ ↑ Fβ ↑ M ↓ Eγ ↑ Sλ ↑
Ours - VGG-19 0.948 0.918 0.920 0.032 0.921 0.901 0.893 0.040 0.945 0.907 0.876 0.028 0.901 0.860

CPFP [46] CVPR19 VGG-16 0.814 0.749 0.736 0.099 0.906 0.878 0.877 0.053 0.924 0.888 0.822 0.036 0.832 0.807

DMRA [32] ICCV19 VGG-19 0.927 0.888 0.883 0.048 0.908 0.886 0.872 0.051 0.942 0.899 0.855 0.031 0.892 0.857

MMCI [6] PR19 VGG-16 0.855 0.791 0.753 0.113 0.878 0.859 0.813 0.079 0.871 0.855 0.729 0.059 0.860 0.814

TANet [5] TIP19 VGG-16 0.866 0.808 0.779 0.093 0.893 0.878 0.844 0.061 0.916 0.886 0.795 0.041 0.879 0.839

PDNet [48] ICME19 VGG-16 0.861 0.799 0.757 0.112 0.890 0.883 0.832 0.062 0.876 0.835 0.740 0.064 0.813 0.802

PCA [4] CVPR18 VGG-16 0.858 0.801 0.760 0.100 0.896 0.877 0.844 0.059 0.916 0.873 0.794 0.044 0.883 0.843

CTMF [18] TCyb17 VGG-16 0.884 0.834 0.792 0.097 0.864 0.849 0.788 0.085 0.869 0.860 0.723 0.056 0.837 0.776

DF [34] TIP17 - 0.842 0.730 0.748 0.145 0.818 0.735 0.744 0.151 0.838 0.769 0.682 0.099 0.802 0.742

MB [49] CAIP17 - 0.691 0.607 0.577 0.156 0.643 0.534 0.492 0.202 0.814 0.714 0.637 0.089 0.633 0.499

CDCP [50] ICCVW17 - 0.794 0.687 0.633 0.159 0.751 0.673 0.618 0.181 0.785 0.724 0.591 0.114 0.714 0.604

DCMC [9] SPL16 - 0.712 0.499 0.406 0.243 0.796 0.703 0.715 0.167 0.684 0.550 0.328 0.196 0.790 0.706

NLPR [31] ECCV14 - 0.767 0.568 0.659 0.174 0.722 0.530 0.625 0.201 0.772 0.591 0.520 0.119 0.726 0.562

DES [8] ICIMCS14 - 0.733 0.659 0.668 0.280 0.421 0.413 0.165 0.448 0.735 0.582 0.583 0.301 0.383 0.341

Table 3. Continuation of Table 2

SSD STEREO LFSD RGBD135

Method Years Backbone Fβ ↑ M ↓ Eγ ↑ Sλ ↑ Fβ ↑ M ↓ Eγ ↑ Sλ ↑ Fβ ↑ M ↓ Eγ ↑ Sλ ↑ Fβ ↑ M ↓
Ours - VGG-19 0.827 0.050 0.921 0.897 0.884 0.039 0.905 0.865 0.862 0.064 0.952 0.907 0.885 0.024

CPFP [46] CVPR19 VGG-16 0.725 0.082 0.897 0.871 0.827 0.054 0.867 0.828 0.813 0.088 0.927 0.874 0.819 0.037

DMRA [32] ICCV19 VGG-19 0.821 0.058 0.920 0.886 0.868 0.047 0.899 0.847 0.849 0.075 0.945 0.901 0.857 0.029

MMCI [6] PR19 VGG-16 0.748 0.082 0.890 0.856 0.812 0.080 0.840 0.787 0.779 0.132 0.899 0.847 0.750 0.064

TANet [5] TIP19 VGG-16 0.767 0.063 0.911 0.877 0.849 0.060 0.845 0.801 0.794 0.111 0.916 0.858 0.782 0.045

PDNet [48] ICME19 VGG-16 0.716 0.115 0.903 0.874 0.833 0.064 0.872 0.845 0.824 0.109 0.915 0.868 0.800 0.050

PCA [4] CVPR18 VGG-16 0.786 0.064 0.905 0.880 0.845 0.061 0.846 0.800 0.794 0.112 0.909 0.845 0.763 0.049

CTMF [18] TCyb17 VGG-16 0.709 0.100 0.870 0.853 0.786 0.087 0.851 0.796 0.781 0.120 0.907 0.863 0.765 0.055

DF [34] TIP17 - 0.709 0.151 0.844 0.763 0.761 0.142 0.841 0.786 0.810 0.142 0.801 0.685 0.566 0.130

MB [49] CAIP17 - 0.414 0.219 0.693 0.579 0.572 0.178 0.631 0.538 0.543 0.218 0.798 0.661 0.588 0.102

CDCP [50] ICCVW17 - 0.524 0.219 0.801 0.727 0.680 0.149 0.737 0.658 0.634 0.199 0.806 0.706 0.583 0.119

DCMC [9] SPL16 - 0.551 0.200 0.838 0.745 0.761 0.150 0.842 0.754 0.815 0.155 0.674 0.470 0.228 0.194

NLPR [31] ECCV14 - 0.073 0.500 0.781 0.567 0.716 0.179 0.742 0.558 0.708 0.211 0.850 0.577 0.857 0.097

DES [8] ICIMCS14 - 0.684 0.168 0.451 0.473 0.223 0.417 0.475 0.440 0.228 0.415 0.786 0.627 0.689 0.289

NJUD and 700 samples from NLPR for training. The remaining images in these
3 datasets and other 4 datasets are all for testing to verify the generalization
ability of saliency models. To prevent overfitting, we additionally augment the
training set by flipping, cropping and rotating those images.

4.2 Experimental Setup

Evaluation Metrics. To comprehensively evaluate various methods, we adopt
4 evaluation metrics including F-measure (Fβ) [1], mean absolute error (M) [3], S-
measure (Sλ) [13], E-measure (Eγ) [14]. Specifically, the F-measure can evaluate
the performance integrally. The M represents the average absolute difference
between the saliency map and ground truth. The S-measure which is recently
proposed can evaluate the structural similarities. The E-measure can jointly
capture image level statistics and local pixel matching information.
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Fig. 5. Illustration of the six ablation experiments

Fig. 6. (a) The visualization of the feature maps in FLM. The BiLj presents the output
features of corresponding block in Fig. 2. (b) Visualization of the effectiveness of the
DAM. The 4th (DAM b/f) and the 5th columns (DAM a/f) show the feature maps
before and after adopting DAM, respectively

Implementation Details. Our method is implemented with pytorch toolbox
and trained on a PC with GTX 2080Ti GPU and 16 GB memory. The input
images are uniformly resized to 256 * 256. The momentum, weight decay, batch-
size and learning rate of our network are set as 0.9, 0.0005, 2 and 1e-10, respec-
tively. During training, we use softmax entropy loss described in Sect. 3.4 and
the network converges after 60 epochs with mini-batch size 2.

4.3 Ablation Analysis

Effect of FLM. We adopt the commonly two-stream VGG-19 network fused
by direct summation as our baseline(denoted as ’B[s]’ shown in Fig. 5(a)). In
order to verify the effectiveness of FLM, we employ the FLM in both the RGB
and depth streams (’B+FLM[s]’ shown in Fig. 5(b)). The experimental results of
(a) and (b) in Table 4 clearly demonstrate that our FLM obtains impressive per-
formance gains. Moreover, as shown in Fig. 7, we can note that after employing
FLM, the saliency maps achieve sharper boundaries as well as finer structures.
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Table 4. Ablation analysis on 7 datasets. The [s] and [a] following the modules repre-
sent the symmetric and asymmetric architectures, respectively. Obviously, each com-
ponent of our architecture can achieve considerable accuracy gains. (a), (b), (c), (d),
(e), (f) represent the modules indexed by the corresponding letters in Fig. 5

DUT-RGBD NJUD NLPR STEREO LFSD RGBD135 SSD

Components Index Modules Fβ ↑ M ↓ Fβ ↑ M ↓ Fβ ↑ M ↓ Fβ ↑ M ↓ Fβ ↑ M ↓ Fβ ↑ M ↓ Fβ ↑ M ↓
FLM (a) B[s] 0.822 0.068 0.810 0.071 0.766 0.050 0.816 0.068 0.812 0.088 0.794 0.044 0.749 0.080

(b) B+FLM[s] 0.911 0.035 0.893 0.040 0.872 0.029 0.881 0.041 0.858 0.064 0.882 0.025 0.836 0.048

DAM (a) B[s] 0.822 0.068 0.810 0.071 0.766 0.050 0.816 0.068 0.812 0.088 0.794 0.044 0.749 0.080

(c) B+DAM[s] 0.839 0.059 0.811 0.064 0.799 0.041 0.818 0.061 0.817 0.087 0.822 0.037 0.738 0.082

(d) B+FLM[a] 0.909 0.034 0.886 0.041 0.870 0.029 0.879 0.041 0.870 0.060 0.882 0.025 0.825 0.052

(e) B+FLM+DAM[a] 0.920 0.032 0.893 0.040 0.876 0.028 0.884 0.039 0.862 0.064 0.885 0.024 0.827 0.050

Asymmetric (b) B+FLM[s] 0.911 0.035 0.893 0.040 0.872 0.029 0.881 0.041 0.858 0.064 0.882 0.025 0.836 0.048

(d) B+FLM[a] 0.909 0.034 0.886 0.041 0.870 0.029 0.879 0.041 0.870 0.060 0.882 0.025 0.825 0.052

(f) B+FLM+DAM[s] 0.920 0.033 0.895 0.040 0.890 0.025 0.891 0.038 0.863 0.066 0.876 0.026 0.834 0.052

(e) B+FLM+DAM[a] 0.920 0.032 0.893 0.040 0.876 0.028 0.884 0.039 0.862 0.064 0.885 0.024 0.827 0.050

(a) (c)

(d) (e)

(f) (e)

(b) (d)RGB depth GT

RGB depth GT

RGB depth GT

RGB depth GT

(a) (b)RGB depth GT

(a) (b)RGB depth GT

Fig. 7. Visual comparisons of ablation analyses. (a), (b), (c), (d), (e), (f) represent the
visual results of the experiments indexed by the corresponding letters in Fig. 5

Furthermore, for effectively analyzing the working mechanism of FLM module,
we visualized the output features of each block in FLM. As shown in Fig. 6(a), we
can see that the branch 4 and branch 3 extract the global location information
while the branch 2 and branch 1 preserve more local detail information. This
benefits from the evolutionary process of salient regions with finer details.

Effect of DAM. We conduct contrast experiments for verifying the effective-
ness of our DAM on both symmetric and asymmetric architectures. In terms of
symmetric architecture, we replace simple summation with DAM on our baseline
(denoted as ‘B+DAM[s]’, as shown in Fig. 5(c)). From the results of (a) and (c)
in Table 4 we can see that the MAE is reduced by 18% on NLPR dataset after
employing DAM, which intuitively verifies the effect of DAM. Meanwhile, the
corresponding visual results in Fig. 7 also illustrate that our DAM can fuse depth
features discriminatively and filter out features which are guided by depth cues in
mistake. On the other hand, we employ FLM in the RGB stream and replace the
VGG-19 backbone with DepthNet in the depth stream (denoted as ‘B+FLM[a]’,
as shown in Fig. 5(d)). And we adopt DAM on ‘B+FLM[a]’ for verifying the effect
of DAM on asymmetric architecture (denoted as ‘B+FLM+DAM[a]’ shown in
Fig. 5(e)). The comparison results of (d) and (e) in Table 4 demonstrate the effec-
tiveness of DAM on asymmetric architecture over all datasets. Additionally, we
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visualized the feature maps of our two-stream asymmetric architecture (before
and after adopting DAM). As shown in Fig. 6(b), we can see that the salient
regions are emphasized after adopting DAM, which significantly improves our
detection accuracy.

Effect of Asymmetric Architecture. In order to illustrate the effectiveness
of adopting asymmetric architecture, we compare the results of (b) and (d)
in Fig. 5. Furthermore, for fair comparison, we adopt our FLM and DAM on
the two-stream symmetric network (denoted as ‘B+FLM+DAM[s]’, as shown in
Fig. 5(f)). As we can see from Table 4 (Asymmetric), the asymmetric architecture
achieves considerable performance compared with symmetrical architecture, but
has a small size. Specifically, the asymmetric architecture tremendously mini-
mizes the model size by 47% (128.9 MB vs. 244.4 MB). Based on the above
observation, we consider that is unnecessary to utilize large network as RGBNet
for extracting features and we can replace it with a more lightweight network.

4.4 Comparison with State-of-the-Art

Considering that most of the existing approaches are based on VGG network, we
adopt VGG as our backbone for fair comparisons. And We compare our model
with 13 RGB-D based salient object detection models including 8 CNNs-based
methods: CPFP [46], DMRA [32], MMCI [6], TANet [5], PDNet [48], PCA [4],
CTMF [18], DF [34], and 5 traditional methods: MB [49], CDCP [50], DCMC [9],
NLPR [31], DES [8]. For fair comparisons, the results of the competing methods
are generated by authorized codes or directly provided by authors.

Quantitative Evaluation. Tables 2 and 3 show the validation results in terms
of 4 evaluation metrics on 7 datasets. As we can see, our model achieves sig-
nificant outperformance over all other methods. It is noted that our approach
outperforms all other methods by a dramatic margin on datasets DUT-RGBD,
NJUD and RGBD135, which are considered as more challenging datasets due
to the large number of complex scenes like similar foreground and background,
low-contrast and transparent object. It further indicates that our model can be
generalized to various challenging scenes.

Qualitative Evaluation. We also visually compare our method with the most
representative methods as shown in Fig. 4. From those results, we can observe
that our saliency maps are closer to the ground truths. For instance, other meth-
ods have trouble in distinguishing salient objects in complex environments such
as cluttered background (see the 1th row), while ours can precisely identify the
whole object and exquisite details. And our model can locate and detect the
entire salient object with sharp details more accurately than others in more
challenging scenes such as low-contrast (see the 2nd - 3rd rows), transparent
object (see the 8th row), multiple objects and small object (see the 5th - 7th

rows). Those results further verify the effectiveness and robustness of our pro-
posed model.
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Table 5. Complexity comparisons on two datasets. The best three results are shown
in boldface, bolditalic, italic fonts respectively

DUT-RGBD NLPR

Methods Size ↓ FPS ↑ Fβ ↑ M ↓ Fβ ↑ M ↓
PCA 533.6 MB 15 0.760 0.100 0.794 0.044

TANet 951.9 MB 14 0.779 0.093 0.795 0.041

MMCI 929.7 MB 19 0.753 0.113 0.729 0.059

PDNet 192 MB 19 0.757 0.112 0.740 0.064

CPFP 278 MB 6 0.736 0.099 0.822 0.036

CTMF 826 MB 50 0.792 0.097 0.723 0.056

DMRA 238.8 MB 22 0.883 0.048 0.855 0.031

Ours 128.9 MB 46 0.920 0.032 0.876 0.028

Complexity Evaluation. We compare the model size and execution time of
our method with other 7 representative models, as shown in Table 5. It can be
seen that our method achieves Top-1 model size and Top-2 FPS. To be specific,
the model size of our architecture is only 128.9 MB which is 2/3 of the exist-
ing minimum model size (PDNet). Compared with the best performing method
DMRA, our architecture tremendously minimizes the model size by 46% and
boosts the FPS by 109%. Besides, we achieve a high running speed with 46
Frame Per Second (FPS) compared with the representative approaches.

5 Conclusion

In this paper, we propose an asymmetric two-stream architecture taking account
of the inherent differences between RGB and depth data for saliency detection.
For the RGB stream, we introduce a flow ladder module (FLM) for effectively
extracting rich global context information while preserving local saliency details.
And we design a lightweight DepthNet for depth stream with a small model size
of 6.7MB. Besides, we propose a depth attention module (DAM) ensuring that
the depth cues can discriminatively guide the RGB features for precisely locating
salient objects. Our approach significantly advances the state-of-the-art methods
over the widely used datasets and is capable of precisely capturing salient regions
in challenging scenes.
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region detection. In: CVPR, pp. 1597–1604 (2009)



388 M. Zhang et al.

2. Borji, A., Frintrop, S., Sihite, D.N., Itti, L.: Adaptive object tracking by learn-
ing background context. In: CVPR, pp. 23–30 (2012). https://academic.microsoft.
com/paper/2158535435

3. Borji, A., Sihite, D.N., Itti, L.: Salient object detection: a benchmark. In: Fitzgib-
bon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS,
vol. 7573, pp. 414–429. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-33709-3 30

4. Chen, H., Li, Y.: Progressively complementarity-aware fusion network for RGB-D
salient object detection. In: CVPR, pp. 3051–3060 (2018)

5. Chen, H., Li, Y.: Three-stream attention-aware network for RGB-D salient object
detection. TIP 28(6), 2825–2835 (2019)

6. Chen, H., Li, Y., Su, D.: Multi-modal fusion network with multi-scale multi-path
and cross-modal interactions for RGB-D salient object detection. PR 86, 376–385
(2019)

7. Cheng, M.M., Hou, Q.B., Zhang, S.H., Rosin, P.L.: Intelligent visual media process-
ing: When graphics meets vision. JCST 32(1), 110–121 (2017). https://academic.
microsoft.com/paper/2571295082

8. Cheng, Y., Fu, H., Wei, X., Xiao, J., Cao, X.: Depth enhanced saliency detection
method. In: ICIMCS, pp. 23–27 (2014)

9. Cong, R., Lei, J., Zhang, C., Huang, Q., Cao, X., Hou, C.: Saliency detection for
stereoscopic images based on depth confidence analysis and multiple cues fusion.
SPL 23(6), 819–823 (2016)

10. Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully
convolutional networks. In: NIPS, pp. 379–387 (2016). https://academic.microsoft.
com/paper/2407521645

11. Desingh, K., K, M.K., Rajan, D., Jawahar, C.V.: Depth really matters: improving
visual salient region detection with depth. In: BMVC (2013)

12. Donoser, M., Urschler, M., Hirzer, M., Bischof, H.: Saliency driven total varia-
tion segmentation. In: ICCV, pp. 817–824 (2009). https://academic.microsoft.com/
paper/2546160422

13. Fan, D.P., Cheng, M.M., Liu, Y., Li, T., Borji, A.: Structure-measure: a new way
to evaluate foreground maps. In: ICCV, pp. 4558–4567 (2017). https://academic.
microsoft.com/paper/2963868681

14. Fan, D.P., Gong, C., Cao, Y., Ren, B., Cheng, M.M., Borji, A.: Enhanced-alignment
measure for binary foreground map evaluation. In: IJCAI, pp. 698–704 (2018)

15. Fan, D.P., Wang, J., Liang, X.M.: Improving image retrieval using the context-
aware saliency areas. AMM 734, 596–599 (2015). https://academic.microsoft.com/
paper/2090323693

16. Feng, M., Lu, H., Ding, E.: Attentive feedback network for boundary-aware salient
object detection. In: CVPR, pp. 1623–1632 (2019). https://academic.microsoft.
com/paper/2948510860

17. Gao, Y., Wang, M., Tao, D., Ji, R., Dai, Q.: 3-D object retrieval and recogni-
tion with hypergraph analysis. TIP 21(9), 4290–4303 (2012). https://academic.
microsoft.com/paper/2068078373

18. Han, J., Chen, H., Liu, N., Yan, C., Li, X.: CNNs-based RGB-D saliency detection
via cross-view transfer and multiview fusion. TSMC 48(11), 3171–3183 (2018)

19. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR, pp. 770–778 (2016)

20. Hong, S., You, T., Kwak, S., Han, B.: Online tracking by learning discriminative
saliency map with convolutional neural network. In: ICML, pp. 597–606 (2015).
https://academic.microsoft.com/paper/1854404533

https://academic.microsoft.com/paper/2158535435
https://academic.microsoft.com/paper/2158535435
https://doi.org/10.1007/978-3-642-33709-3_30
https://doi.org/10.1007/978-3-642-33709-3_30
https://academic.microsoft.com/paper/2571295082
https://academic.microsoft.com/paper/2571295082
https://academic.microsoft.com/paper/2407521645
https://academic.microsoft.com/paper/2407521645
https://academic.microsoft.com/paper/2546160422
https://academic.microsoft.com/paper/2546160422
https://academic.microsoft.com/paper/2963868681
https://academic.microsoft.com/paper/2963868681
https://academic.microsoft.com/paper/2090323693
https://academic.microsoft.com/paper/2090323693
https://academic.microsoft.com/paper/2948510860
https://academic.microsoft.com/paper/2948510860
https://academic.microsoft.com/paper/2068078373
https://academic.microsoft.com/paper/2068078373
https://academic.microsoft.com/paper/1854404533


ATSA 389

21. Hou, Q., Cheng, M.M., Hu, X., Borji, A., Tu, Z., Torr, P.H.S.: Deeply supervised
salient object detection with short connections. CVPR. 41, 815–828 (2017)

22. Hou, Q., Cheng, M.M., Hu, X., Borji, A., Tu, Z., Torr, P.H.S.: Deeply supervised
salient object detection with short connections. TPAMI 41(4), 815–828 (2019).
https://academic.microsoft.com/paper/2569272946

23. Ju, R., Ge, L., Geng, W., Ren, T., Wu, G.: Depth saliency based on anisotropic
center-surround difference. In: ICIP, pp. 1115–1119 (2014)

24. Lang, C., Nguyen, T.V., Katti, H., Yadati, K., Kankanhalli, M., Yan, S.: Depth
matters: influence of depth cues on visual saliency. In: Fitzgibbon, A., Lazebnik, S.,
Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7573, pp. 101–115.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33709-3 8

25. Li, G., Zhu, C.: A three-pathway psychobiological framework of salient object
detection using stereoscopic technology. In: ICCVW, pp. 3008–3014 (2017).
https://academic.microsoft.com/paper/2766315367

26. Li, G., Yu, Y.: Deep contrast learning for salient object detection. In: CVPR, pp.
478–487 (2016)

27. Li, N., Ye, J., Ji, Y., Ling, H., Yu, J.: Saliency detection on light field. PAMI 39(8),
1605–1616 (2017)

28. Liu, G., Fan, D.: A model of visual attention for natural image retrieval. In: ISCC-
C, pp. 728–733 (2013). https://academic.microsoft.com/paper/2314707829

29. Liu, N., Han, J.: DHSNet: deep hierarchical saliency network for salient object
detection. In: CVPR, pp. 678–686 (2016)

30. Niu, Y., Geng, Y., Li, X., Liu, F.: Leveraging stereopsis for saliency analysis. In:
CVPR, pp. 454–461 (2012)

31. Peng, H., Li, B., Xiong, W., Hu, W., Ji, R.: RGBD salient object detection: a
benchmark and algorithms. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T.
(eds.) ECCV 2014. LNCS, vol. 8691, pp. 92–109. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-10578-9 7

32. Piao, Y., Ji, W., Li, J., Zhang, M., Lu, H.: Depth-induced multi-scale recurrent
attention network for saliency detection. In: ICCV (2019)

33. Qin, X., Zhang, Z., Huang, C., Gao, C., Dehghan, M., Jagersand, M.: BASNet:
boundary-aware salient object detection. In: CVPR, pp. 7479–7489 (2019). https://
academic.microsoft.com/paper/2961348656

34. Qu, L., He, S., Zhang, J., Tian, J., Tang, Y., Yang, Q.: RGBD salient object
detection via deep fusion. TIP 26(5), 2274–2285 (2017)

35. Ren, J., Gong, X., Yu, L., Zhou, W., Yang, M.Y.: Exploiting global priors for
RGB-D saliency detection. In: CVPRW, pp. 25–32 (2015)

36. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. TPAMI 39(6), 1137–1149 (2017). https://
academic.microsoft.com/paper/639708223

37. Ren, Z., Gao, S., Chia, L.T., Tsang, I.W.H.: Region-based saliency detection
and its application in object recognition. TCSVT 24(5), 769–779 (2014). https://
academic.microsoft.com/paper/2055180303

38. Smeulders, A.W.M., Chu, D.M., Cucchiara, R., Calderara, S., Dehghan, A., Shah,
M.: Visual tracking: an experimental survey. TPAMI 36(7), 1442–1468 (2014).
https://academic.microsoft.com/paper/2126302311

39. Wang, W., Shen, J., Porikli, F.: Saliency-aware geodesic video object segmentation.
In: CVPR, pp. 3395–3402 (2015)

40. Wang, W., Shen, J., Sun, H., Shao, L.: Video co-saliency guided co-
segmentation. TCSVT 28(8), 1727–1736 (2018). https://academic.microsoft.com/
paper/2887503470

https://academic.microsoft.com/paper/2569272946
https://doi.org/10.1007/978-3-642-33709-3_8
https://academic.microsoft.com/paper/2766315367
https://academic.microsoft.com/paper/2314707829
https://doi.org/10.1007/978-3-319-10578-9_7
https://doi.org/10.1007/978-3-319-10578-9_7
https://academic.microsoft.com/paper/2961348656
https://academic.microsoft.com/paper/2961348656
https://academic.microsoft.com/paper/639708223
https://academic.microsoft.com/paper/639708223
https://academic.microsoft.com/paper/2055180303
https://academic.microsoft.com/paper/2055180303
https://academic.microsoft.com/paper/2126302311
https://academic.microsoft.com/paper/2887503470
https://academic.microsoft.com/paper/2887503470


390 M. Zhang et al.

41. Wu, R., Feng, M., Guan, W., Wang, D., Lu, H., Ding, E.: A mutual learning
method for salient object detection with intertwined multi-supervision. In: CVPR,
pp. 8150–8159 (2019). https://academic.microsoft.com/paper/2962680827

42. Zhang, M., et al.: LFNet: light field fusion network for salient object detection.
IEEE Trans. Image Process. 29, 6276–6287 (2020)

43. Zhang, M., Li, J., Ji, W., Piao, Y., Lu, H.: Memory-oriented decoder for light
field salient object detection. In: NeurIPS 2019: Thirty-third Conference on Neural
Information Processing Systems, pp. 898–908 (2019)

44. Zhang, P., Wang, D., Lu, H., Wang, H., Ruan, X.: Amulet: aggregating multi-level
convolutional features for salient object detection. In: ICCV, pp. 202–211 (2017).
https://academic.microsoft.com/paper/2963032190

45. Zhang, X., Wang, T., Qi, J., Lu, H., Wang, G.: Progressive attention guided recur-
rent network for salient object detection. In: CVPR (2018)

46. Zhao, J.X., Cao, Y., Fan, D.P., Cheng, M.M., Li, X.Y., Zhang, L.: Contrast prior
and fluid pyramid integration for RGBD salient object detection. In: CVPR, pp.
3927–3936 (2019)

47. Zhao, R., Ouyang, W., Li, H., Wang, X.: Saliency detection by multi-context deep
learning. In: CVPR, pp. 1265–1274 (2015)

48. Zhu, C., Cai, X., Huang, K., Li, T.H., Li, G.: PDNet: prior-model guided depth-
enhanced network for salient object detection. In: ICME (2019)

49. Zhu, C., Li, G., Guo, X., Wang, W., Wang, R.: A multilayer backpropagation
saliency detection algorithm based on depth mining. In: CAIP, pp. 14–23 (2017)

50. Zhu, C., Li, G., Wang, W., Wang, R.: An innovative salient object detection using
center-dark channel prior. In: ICCVW, pp. 1509–1515 (2017)

https://academic.microsoft.com/paper/2962680827
https://academic.microsoft.com/paper/2963032190


Explaining Image Classifiers Using
Statistical Fault Localization

Youcheng Sun1(B) , Hana Chockler2 , Xiaowei Huang3 ,
and Daniel Kroening4

1 Queen’s University Belfast, Belfast, Northern Ireland
youcheng.sun@qub.ac.uk

2 King’s College London, London, England
3 University of Liverpool, Liverpool, England

4 University of Oxford, Oxford, England

Abstract. The black-box nature of deep neural networks (DNNs) makes
it impossible to understand why a particular output is produced, creat-
ing demand for “Explainable AI”. In this paper, we show that statisti-
cal fault localization (SFL) techniques from software engineering deliver
high quality explanations of the outputs of DNNs, where we define an
explanation as a minimal subset of features sufficient for making the
same decision as for the original input. We present an algorithm and
a tool called DeepCover, which synthesizes a ranking of the features
of the inputs using SFL and constructs explanations for the decisions
of the DNN based on this ranking. We compare explanations produced
by DeepCover with those of the state-of-the-art tools gradcam, lime,
shap, rise and extremal and show that explanations generated by Deep-
Cover are consistently better across a broad set of experiments. On a
benchmark set with known ground truth, DeepCover achieves 76.7%
accuracy, which is 6% better than the second best extremal.

Keywords: Deep learning · Explainability · Statistical fault
localization · Software testing

1 Introduction

Deep neural networks (DNNs) are increasingly used in place of traditionally
engineered software in many areas. DNNs are complex non-linear functions with
algorithmically generated (and not engineered) coefficients, and therefore are
effectively “black boxes”. They are given an input and produce an output, but the
calculation of these outputs is difficult to explain [26]. The goal of explainable AI
is to create artifacts that provide a rationale for why a neural network generates
a particular output for a particular input. This is argued to enable stakeholders
to understand and appropriately trust neural networks.

A typical use-case of DNNs is classification of highly dimensional inputs,
such as images. DNNs are multi-layered networks with a predefined structure
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that consists of layers of neurons. The coefficients for the neurons are deter-
mined by a training process on a data set with given classification labels. The
standard criterion for the adequacy of training is the accuracy of the network on
a separate validation data set. This criterion is clearly only as comprehensive as
the validation data set. In particular, this approach suffers from the risk that the
validation data set is lacking an important instance [36]. Explanations provide
additional insight into the decision process of a neural network [9,23].

In traditional software development, SFL measures have a substantial track
record of helping engineers to debug sequential programs [19]. These measures
rank program locations by counting the number of times a particular loca-
tion is visited in passing and in failing executions for a given test suite and
applying statistical formulae. The ranked list is presented to the engineer. The
main advantage of SFL measures is that they are comparatively inexpensive
to compute. There are more than a hundred of measures in the literature [33].
Some of the most widely used measures are Zoltar, Ochiai, Tarantula and Wong-
II [8,14,21,34].

Our Contribution. We propose to apply the concept of explanations intro-
duced by Halpern and Pearl in the context of actual causality [11]. Specifically,
we define an explanation as a subset of features of the input that is sufficient
(in terms of explaining the cause of the outcome), minimal (i.e., not containing
irrelevant or redundant elements), and not obvious.

Using this definition and SFL measures, we have developed DeepCover –
a tool that provides explanations for DNNs that classify images. DeepCover
ranks the pixels using four well-known SFL measures (Zoltar, Ochiai, Tarantula
and Wong-II) based on the results of running test suites constructed from random
mutations of the input image. DeepCover then uses this ranking to efficiently
construct an approximation of the explanation (as explained below, the exact
computation is intractable).

We compare the quality of the explanations produced by DeepCover with
those generated by the state-of-the-art tools gradcam, lime, shap, rise and
extremal in several complementary scenarios. First, we measure the size of the
explanations as an indication of the quality of the explanations. To complement
this setup, we further apply the explanation tools to the problem of weakly
supervised object localization (WSOL). We also create a “chimera” benchmark,
consisting of images with a known ground truth. DeepCover exhibits consis-
tently better performance in these evaluations. Finally, we investigate the use
of explanations in a DNN security application, and show that DeepCover suc-
cessfully identifies the backdoors that trigger Trojaning attacks.

2 Related Work

There is a large number of methods for explaining DNN decisions. Our app-
roach belongs to a category of methods that compute local perturbations. Such
methods compute and visualize the important features of an input instance to
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explain the corresponding output. Given a particular input, lime [27] samples
the neighborhood of this input and creates a linear model to approximate the
model’s local behavior; owing to the high computational cost of this approach,
the ranking uses super-pixels instead of individual pixels. In [4], the natural dis-
tribution of the input is replaced by a user-defined distribution and the Shapley
Value method is used to analyze combinations of input features and to rank
their importance. In [3], the importance of input features is estimated by mea-
suring the flow of information between inputs and outputs. Both the Shapley
Value and the information-theoretic approaches are computationally expensive.
In RISE [25], the importance of a pixel is computed as the expectation over
all local perturbations conditioned on the event that the pixel is observed. More
recently, the concept of “extreme perturbations” has been introduced to improve
the perturbation analysis by the extremal algorithm [6].

On the other hand, gradient-based methods only need one backward pass.
gradcam [29] passes the class-specific gradient into the final convolutional layer
of a DNN to coarsely highlight important regions of an input image. In [30],
the activation of each neuron is compared with some reference point, and its
contribution score for the final output is assigned according to the difference. The
work of [4,18,27,30] is similar: an approximation of the model’s local behavior
using a simpler linear model and an application of the Shapley Value theory to
solve this model.

Our algorithm for generating explanations is inspired by the statistical
fault localization (SFL) techniques in software testing [19] (see Sect. 3.2 for an
overview). SFL measures have the advantage of being simple and efficient. They
are widely used for localizing causes of software failures. Moreover, there are
single-bug optimal measures [15] that guarantee that the fault is localized when
it is the single cause for the program failure. While it is not always possible to
localize a single best feature to explain a DNN image classifier, single-bug optimal
measures often perform well even when there is more than one fault in the pro-
gram [16]. From the software engineering perspective, our work can be regarded
as applying SFL techniques for diagnosing the neural network’s decision. This
complements recent works on the testing and validation of AI [20,22,31,32], for
which a detailed survey can be found in [13].

3 Preliminaries

3.1 Deep Neural Networks (DNNs)

We briefly review the relevant definitions of deep neural networks. Let f : I → O
be a deep neural network N with N layers. For a given input x ∈ I, f(x) ∈ O
calculates the output of the DNN, which could be, for instance, a classification
label. Images are among the most popular inputs for DNNs, and in this paper
we focus on DNNs that classify images. Specifically, we have

f(x) = fN (. . . f2(f1(x;W1, b1);W2, b2) . . . ;WN , bN ) (1)
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where Wi and bi for i = 1, 2, . . . , N are learnable parameters, and
fi(zi−1;Wi−1, bi−1) is the layer function that maps the output of layer (i − 1),
i.e., zi−1, to the input of layer i. The combination of the layer functions yields a
highly complex behavior, and the analysis of the information flow within a DNN
is challenging. There is a variety of layer functions for DNNs, including fully
connected layers, convolutional layers and max-pooling layers. Our algorithm is
independent of the specific internals of the DNN and treats a given DNN as a
black box.

3.2 Statistical Fault Localization (SFL)

Statistical fault localization techniques (SFL) [19], have been widely used in soft-
ware testing to aid in locating the causes of failures of programs. SFL techniques
rank program elements (e.g., statements or assignments) based on their suspi-
ciousness scores. Intuitively, a program element is more suspicious if it appears
in failed executions more frequently than in correct executions (the exact formu-
las for ranking differ). Diagnosis of the faulty program can then be conducted
by manually examining the ranked list of elements in descending order of their
suspiciousness until the culprit for the fault is found.

The SFL procedure first executes the program under test using a set of
inputs. It records the program executions together with a set of Boolean flags
that indicate whether a particular element was executed by the current test.
The task of a fault localization tool is to compute a ranking of the program
elements based on the values of these flags. Following the notation in [19], the
suspiciousness score of each program statement s is calculated from a set of
parameters 〈as

ep , as
ef , a

s
np , as

nf 〉 that give the number of times the statement s is
executed (e) or not executed (n) on passing (p) and on failing (f) tests. For
instance, as

ep is the number of tests that passed and executed s.
A large number of measures have been proposed to calculate the suspicious-

ness scores. In Eq. 2 we list the most widely used ones [8,14,21,34]; those are
also the measures that we use in our ranking procedure.

Ochiai:
as
ef√
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nf )(a
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ep)
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Zoltar:
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10000as
nf a
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ef
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Wong-II: as
ef − as

ep (2d)

There is no single best measure for fault localization. Different measures perform
better on different applications, and best practice is to use them together.
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4 What Is an Explanation?

An explanation of an output of an automated procedure is essential in many
areas, including verification, planning, diagnosis and the like. A good explana-
tion can increase a user’s confidence in the result. Explanations are also useful
for determining whether there is a fault in the automated procedure: if the expla-
nation does not make sense, it may indicate that the procedure is faulty. It is
less clear how to define what a good explanation is. There have been a num-
ber of definitions of explanations over the years in various domains of computer
science [2,7,24], philosophy [12] and statistics [28]. The recent increase in the
number of machine learning applications and the advances in deep learning led
to the need for explainable AI, which is advocated, among others, by DARPA [9]
to promote understanding, trust, and adoption of future autonomous systems
based on learning algorithms (and, in particular, image classification DNNs).
DARPA provides a list of questions that a good explanation should answer and
an epistemic state of the user after receiving a good explanation. The description
of this epistemic state boils down to adding useful information about the output
of the algorithm and increasing trust of the user in the algorithm.

In this paper, we are loosely adopting the definition of explanations by
Halpern and Pearl [11], which is based on their definition of actual causality [10].
Roughly speaking, they state that a good explanation gives an answer to the
question “why did this outcome occur”, which is similar in spirit to DARPA’s
informal description. As we do not define our setting in terms of actual causal-
ity, we omit the parts of the definition that refer to causal models and causal
settings. The remaining parts of the definition of explanation are:

1. an explanation is a sufficient cause of the outcome;
2. an explanation is a minimal such cause (that is, it does not contain irrelevant

or redundant elements);
3. an explanation is not obvious; in other words, before being given the explana-

tion, the user could conceivably imagine other explanations for the outcome.

In image classification using DNNs, the non-obviousness holds for all but
extremely trivial images. Translating 1) and 2) into our setting, we get the
following definition.

Definition 1. An explanation in image classification is a minimal subset of
pixels of a given input image that is sufficient for the DNN to classify the image,
where “sufficient” is defined as containing only this subset of pixels from the
original image, with the other pixels set to the background colour.

We note that (1) the explanation cannot be too small (or empty), as a too small
subset of pixels would violate the sufficiency requirement, and (2) there can be
multiple explanations for a given input image.

The precise computation of an explanation in our setting is intractable, as
it is equivalent to the earlier definition of explanations in binary causal models,
which is DP-complete [5]. A brute-force approach of checking all subsets of pixels



396 Y. Sun et al.

of the input image is exponential in the size of the image. In Sect. 5 we describe an
efficient linear-time approach to computing an approximation of an explanation
and argue that for practical purposes, this approximation is sufficiently close to
an exact explanation as defined above.

5 SFL Explanation for DNNs

We propose a black-box explanation technique based on statistical fault localiza-
tion. In traditional software development, SFL measures are used for ranking
program elements that cause a failure. In our setup, the goal is different: we are
searching for an explanation of why a particular input to a given DNN yields
a particular output; our technique is agnostic to whether the output is correct.
We start with describing our algorithm on a high level and then present the
pseudo-code and technical details.

Generating the Test Suite. SFL requires test inputs. Given an input image x
that is classified by the DNN N as y = N [x], we generate a set of images by
randomly mutating x. A legal mutation masks a subset of the pixels of x, i.e.,
sets these pixels to the background color. The DNN computes an output for each
mutant; we annotate it with “y” if that output matches that of x, and with “¬y”
to indicate that the output differs. The resulting test suite T (x) of annotated
mutants is an input to the DeepCover algorithm.

Ranking the Pixels of x. We assume that the original input x consists of n pixels
P = {p1, . . . , pn}. Each test input t ∈ T (x) exhibits a particular spectrum for
the pixel set, in which some pixels are the same as in the original input x and
others are masked. The presence or masking of a pixel in x may affect the output
of the DNN.

We use SFL measures to rank the set of pixels of x by slightly abusing the
notions of passing and failing tests. For a pixel pi of x, we compute the vector
〈ai

ep , ai
ef , a

i
np , ai

nf 〉 as follows:

– ai
ep is the number of mutants in T (x) labeled y in which pi is not masked;

– ai
ef is the number of mutants in T (x) labeled ¬y in which pi is not masked;

– ai
np is the number of mutants in T (x) labeled y in which pi is masked;

– ai
nf is the number of mutants in T (x) labeled ¬y in which pi is masked.

Once we construct the vector 〈ai
ep , ai

ef , a
i
np , ai

nf 〉 for every pixel, we apply the
SFL measures discussed in Sect. 3.2 to rank the pixels of x for their importance
regarding the DNN’s output (the importance corresponds to the suspiciousness
score computed by SFL measures).

Constructing an Explanation. An explanation is constructed by iteratively
adding pixels to the set in the descending order of their ranking (that is, we
start with the highest-ranked pixels) until the set becomes sufficient for the
DNN to classify the image. This set is presented to the user as an explanation.
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Algorithm 1. SFL Explanation for DNNs

INPUT: DNN N , image x, SFL measure M
OUTPUT: a subset of pixels Pexp

1: T (x) ← test inputs gen(N , x)
2: for each pixel pi ∈ P do
3: calculate ai

ep , a
i
ef , a

i
np , a

i
nf from T (x)

4: valuei ← M(ai
ep , a

i
ef , a

i
np , a

i
nf )

5: end for
6: pixel ranking ← pixels in P from high value to low
7: Pexp ← ∅
8: for each pixel pi ∈ pixel ranking do
9: Pexp ← Pexp ∪ {pi}

10: xexp ← mask pixels of x that are not in Pexp

11: if N [xexp ] = N [x] then
12: return Pexp

13: end if
14: end for

5.1 SFL Explanation Algorithm

We now present our algorithms in detail. Algorithm1 starts by calling procedure
test inputs gen to generate the set T (x) of test inputs (Line 1). It then computes
the vector 〈ai

ep , ai
ef , a

i
np , ai

nf 〉 for each pixel pi ∈ P using T (x) (Lines 2–5). Next,
the algorithm computes the ranking of each pixel according to the specified
measure M (Line 6). Formulas for measures are as in Eq. (2a)–(2d). The pixels
are sorted in descending order of their ranking (from high value to low value).

From Line 7 onward in Algorithm 1, we construct a subset of pixels Pexp to
explain N ’s output on this particular input x as follows. We add pixels to Pexp,
while N ’s output on Pexp does not match N [x]. This process terminates when
N ’s output is the same as on the whole image x. Finally, Pexp is returned as
the explanation. At the end of this section we discuss why Pexp is not a precise
explanation according to Definition 1 and argue that it is a good approximation
(coinciding with a precise explanation in most cases).

As the quality of the ranked list computed by SFL measures inherently
depends on the quality of the test suite, the choice of the set T (x) of mutant
images plays an important role in our SFL explanation algorithm for DNNs.
While it is beyond the scope of this paper to identify the best set T (x), we pro-
pose an effective method for generating T (x) in Algorithm 2. The core idea of
Algorithm 2 is to balance the number of test inputs annotated with “y” (that
play the role of the passing traces) with the number of test inputs annotated with
“¬y” (that play the role of the failing traces). Its motivation is that, when apply-
ing fault localisation in software debugging, the rule of thumb is to maintain a
balance between passing and failing cases.

The fraction σ of the set of pixels of x that are going to be masked in a
mutant is initialized by a random or selected number between 0 and 1 (Line 2)
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Algorithm 2. test inputs gen(N , x)

INPUT: DNN N , image x (with n pixels)
OUTPUT: test suite T (x)
PARAMETERS: σ, ε, test suite size m

1: T (x) ← ∅
2: σ ← sample in the range (0, 1)
3: while |T (x)| < m do
4: x′ ← randomly select and mask σ · n pixels in x
5: T (x) ← T (x) ∪ {x′}
6: if N [x′] �= N [x] then
7: σ ← max{σ − ε, 0}
8: else
9: σ ← min{σ + ε, 1}

10: end if
11: end while
12: return T (x)

and is later updated at each iteration according to the decision of N on the
previously constructed mutant. In each iteration of the algorithm, a randomly
chosen set of (σ ·n) pixels in x is masked and the resulting new input x′ is added
to T (x) (Lines 4–5). Roughly speaking, if a mutant is not classified with the
same label as x, we decrease the fraction of masked pixels by a pre-defined small
number ε; if the mutant is classified with the same label as x, we increase the
fraction of masked pixels by the same ε.

5.2 Relationship Between Pexp and Definition 1

Recall that Definition 1 requires an explanation to be sufficient, minimal, and not
obvious (see Sect. 4). As we argued above, the non-obviousness requirement holds
for all but very simple images. It is also easy to see that Pexp is sufficient, since
this is a stopping condition for adding pixels to this set (Line 11 in Algorithm 1).

The only condition that might not hold is minimality. The reason for possi-
ble non-minimality is that the pixels of x are added to the explanation in the
order of their ranking, with the highest-ranking pixels being added first. It is
therefore possible that there is a high-ranked pixel that was added in one of
the previous iterations, but is now not necessary for the correct classification of
the image (note that the process of adding pixels to the explanation stops when
the DNN successfully classifies the image; this, however, shows minimality only
with respect to the order of addition of pixels). We believe that the redundancy
resulting from our approach is likely to be small, as higher-ranked pixels have a
larger effect on the DNN’s decision. In fact, even if our explanation is, strictly
speaking, not minimal, it might not be a disadvantage, as it was found that
humans prefer explanations with some redundancy [35].
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Another advantage of our algorithm is that its running time is linear in the
size of the set T (x) and the size of the image, hence it is much more efficient
than the brute-force computation of all explanations as described in Sect. 4 (and
in fact, any algorithm that computes a precise explanation, as the problem is
intractable). One hypothetical advantage of the enumeration algorithm is that it
can produce all explanations; however, multiple explanations do not necessarily
provide better insight into the decision process.

6 Experimental Evaluation

We have implemented the SFL explanation algorithm for DNNs presented in
Sect. 5 in the tool DeepCover1. We now present the experimental results. We
tested DeepCover on a variety of DNN models for ImageNet and we compare
DeepCover with the most popular and most recent work in AI explanation:
lime [27], shap [18], gradcam [29], rise [25] and extremal [6].2

6.1 Experimental Setup

We configure the heuristic test generation in Algorithm 2 with σ = 1
5 and ε = 1

6 ,
and the size m of the test set T (x) is 2,000. These values have been chosen
empirically and remain the same through all experiments. It is possible that they
are not appropriate for all input images, and that for some inputs increasing m
or tuning σ and ε produces a better explanation. All experiments are run on a
laptop with a 3.9 GHz Intel i7-7820HQ and 16 GB of memory.

6.2 Are the Explanations from DeepCover Useful?

Figure 1 showcases representative output from DeepCover on the Xception
model. We can say that explanations are indeed useful and meaningful. Each
subfigure in Fig. 1 provides the original input and the output of DeepCover. We
highlight misclassifications and counter-intuitive explanations in red. One of the
more interesting examples is the “cowboy hat”image. Although Xception labels
the input image correctly, an explanation produced by DeepCover indicates
that this decision is not based on the correct feature (the hat in the image), but
on the face, which is an unexpected feature for the label ‘cowboy hat’. While this
image was not, technically speaking, misclassified, the explanation points to a
flaw in the DNN’s reasoning. The “wool” and “whistle” are two misclassifications
by Xception, and the explanations generated by DeepCover can help us to
understand why the misclassification happens: there are similarities between the
features that are used for the correct and the incorrect labels.

1 https://github.com/theyoucheng/deepcover.
2 lime version 0.1.33; shap version 0.29.1; gradcam, rise and extremal are from

https://github.com/facebookresearch/TorchRay (commit 6a198ee61d229360a3def59
0410378d2ed6f1f06).

https://github.com/theyoucheng/deepcover
https://github.com/facebookresearch/TorchRay
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‘cowboy hat’ ‘dog’ ‘numbfish’ ‘sheep’

‘hare’ ‘mushroom’ ‘wool’ ‘turnstile’

‘langur’ ‘whistle’ ‘unicycle’ ‘fire engine’

‘traffic light’ ‘ballpoint’ ‘bolo tie’ ‘projector’

Fig. 1. Input images and explanations from
DeepCover for Xception (red labels high-
light misclassification or counter-intuitive
explanations) (Color figure online)

Original It. 1 It. 5 It. 10 It. 20

Fig. 2. Explanations of the DNN at
different training stages: the 1st col-
umn are the original images and the
subsequent columns give the explana-
tions for a particular training itera-
tion (CIFAR-10 validation data set)

Furthermore, we apply DeepCover after each training iteration to the inter-
mediate DNN. In Fig. 2 we showcase some representative results at different
stages of the training. Overall, as the training procedure progresses, explanations
of the DNN’s decisions focus more on the “meaningful” part of the input image,
e.g., those pixels contributing to the interpretation of image (see, for example,
the progress of the training reflected in the explanations of DNN’s classification
of the first image as a ‘cat’). This result reflects that the DNN is being trained to
learn features of different classes of inputs. Interestingly, we also observed that
the DNN’s feature learning is not always monotonic, as demonstrated in the
bottom row of Fig. 2: after the 10th iteration, explanations for the DNN’s classi-
fication of an input image as an ‘airplane’ drift away from the intuitive parts of
the input towards pixels that may not fit human interpretation (we repeated the
experiments multiple times to minimize the uncertainty because of the random-
ization in our SFL algorithm). The explanations generated by DeepCover may
thus be useful for assessing the adequacy of the DNN training: they allow us to
check, whether the DNN is aligned with the developer’s intent during training.
Additionally, the results in Fig. 2 satisfy the “sanity” requirement postulated
in [1]: the explanations from DeepCover evolve when the model parameters
change during the training.

6.3 Comparison with the State-of-the-art

We compare DeepCover with state-of-the-art DNN explanation tools. The
DNN is VGG16 and we randomly sample 1,000 images from ILSVRC2012 as
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inputs. We evaluate the effect of highly ranked features by different methods
following an addition/deletion style experiment [6,25].

An explanation computed by Algorithm 1 is a subset Pexp of top-ranked
pixels out of the set P of all 224×224 pixels that is sufficient for the DNN to
classify the image correctly. We define the size of the explanation as |Pexp|

|P| . We
use the size of an explanation as a proxy for its quality.

Fig. 3. Comparison in the size of gener-
ated explanations by different tools

Fig. 4. Misclassification vs percentage of
masked pixels for different tools

Figure 3 compares DeepCover and its competitors with respect to the size
of the generated explanations. The position on the x-axis is the size of the
explanation, and the position on the y-axis gives the accumulated percentage of
explanations: that is, all generated explanations with smaller or equal size.

The data in Fig. 3 suggests that explanations based on SFL ranking are
superior in terms of their size. For example, nearly 40% of the DNN inputs can
be explained via DeepCover using no more than 10% of the total input pixels,
which is two times as good as the second best explanation method extremal.

We quantify the degree of redundancy in the generated explanations as fol-
lows. We mask pixels following the ranking generated by the different methods
until we obtain a different classification. The smaller the number of pixels that
have to be masked, the more important the highest-ranked features are. We
present the number of pixels changed (normalized over the total number of pix-
els) in Fig. 4. Again, DeepCover dominates the others. Using DeepCover’s
ranking, the classification is changed after masking no more than 2% of the total
pixels in 60% of the images. To achieve the same classification outcomes, the sec-
ond best method extremal requires changing 4% of the total number of pixels,
and that is twice the number of pixels needed by DeepCover.

Discussion. We have refrained from using human judges to assess the quality
of the explanations, and instead use size as a proxy measure to quantify the
quality of explanation. However, a smaller explanation is not necessarily a bet-
ter explanation—in fact, “people have a preference for explanations with some
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redundancy” [35]. We therefore complement our evaluation with further experi-
ments. Figure 5 gives the results of using the explanations for the weakly super-
vised object localization (WSOL). We measure the intersection of union (IoU)
between the object bounding box and the equivalent number of top-ranked pix-
els. The IoU is a standard measure of success in object detection and a higher IoU
is better. The results confirm again that the top-ranked pixels from DeepCover
perform better than those generated by other tools.

Comparison with Rise. The rise tool generates random masks and calculates
a ranking of the input pixels using the expected confidence of the classification
of the masked images. A rank of a pixel p by rise depends only on the confi-
dence of the images in which p is unmasked. By contrast, DeepCover uses a
binary classification (a mutant image is either classified the same as the orig-
inal image or not) and takes into account both the images where p is masked
and where it is unmasked. Figures 3 and 4 demonstrate that DeepCover out-
performs rise, producing smaller and more intuitive explanations. Furthermore,
the DeepCover approach is more general and does not depend on a particu-
lar sampling distribution as long as its mutant test suite is balanced (Sect. 5.1).
Moreover, the DeepCover approach is less sensitive to the size of the mutant
test suite (Fig. 6). When the size of the test suite decreased from 2,000 to 200,
the size of the generated explanation only increased by 3% of the total pixels on
average.

Fig. 5. Results for weakly
supervised object localisation

Original n=2,000 n=200 n=2,000 n=200

DeepCover rise

Fig. 6. Explanations for the ‘Welsh springer spaniel’

by DeepCover and rise with varying number of
samples (i.e. n)

Next, we present a synthetic benchmark (Sect. 6.4) and a security application
(Sect. 6.5).

6.4 Generating “ground Truth” with a Chimera Benchmark

The biggest challenge in evaluating explanations for DNNs (and even for human
decision making) is the lack of the ground truth. Human evaluations of the expla-
nations remain the most widely accepted measure, but are often subjective. In
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Fig. 7. Examples of embedding
the red panda (Color figure online)

Table 1. IoUs between the embedded red
panda and the highest ranked pixels for four
different tools

IoU ≥ 0.5 IoU ≥ 0.6 IoU ≥ 0.7

DeepCover 76.7% 54.9% 9.8%

extremal 70.7% 21.5% 2.2%

rise 55.8% 42.9% 25.7%

gradcam 0% 0% 0%

the experiment we describe below, we synthesize a Chimera benchmark3 by ran-
domly superimposing a “red panda” explanation (a part of the image of the red
panda) onto a set of randomly chosen images. The benchmark consists of 1, 000
composed (aka “Chimera”) images that retain the “red panda” label when using
both the MobileNet and the VGG16 classifiers. Figure 7 gives several examples
of the Chimera images. The rationale is that if such an image is indeed classified
as “red panda” by the DNN, then the explanation of this classification must be
contained among the pixels we have superimposed onto the original image.

For each image from the Chimera benchmark, we rank its pixels using Deep-
Cover and other tools. We then check whether any of their top-π highest ranked
pixels are part of the “red panda”. In Table 1, we measure the IoU (intersection
of union) between the ground truth explanation and the top-π highest ranked
pixels, where π ranges from 1% to 100%. Assuming that an IoU ≥ 0.5 is a suc-
cessful detection, DeepCover successfully detects the ground truth planted in
the image in 76.7% of the total cases and it is 6% better than the second best
extremal. The benefit provided by DeepCover is even more substantial when
requiring 0.6 IoU. Overall, the results in Table 1 are consistent with the addi-
tion/deletion experiment (Figs. 3 and 4) and the WSOL experiment (Fig. 5),
with DeepCover topping the list. Interestingly, when rise succeeds to find
the explanation, it seems to localize it better (with IoU ≥ 0.7). gradcam fails
to detect the embedded red panda in all cases. These observations support the
hypothesis that a benchmark like Chimera is a good approximation for ground
truth, and helps us to compare algorithmic alternatives.

6.5 Trojaning Attacks

The authors of [17] say that a DNN is “trojaned” if it behaves correctly on
ordinary input images but exhibits malicious behavior when a “Trojan trigger”
is part of the input. Thus, we can treat this trigger as a ground truth explanation
for the Trojaned behavior of the DNN. We have applied DeepCover to identify
the embedded trigger in the input image for the Trojaned VGG Face [17]. The
result is illustrated in Fig. 8. This use case suggests that there is scope for the
application of DeepCover in DNN security.
3 The benchmark images are publicly available at http://www.roaming-panda.com/.

http://www.roaming-panda.com/
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Fig. 8. Applying DeepCover to Trojaning attacks on VGG Face. The Trojan trigger
is the square shape in the lower right corner of the image; the DeepCover explanation
for the Trojan behaviour is on the right.

When applying DeepCover to the Trojaned data set in [17], the top 8%
highest ranked pixels have an average IoU value of 0.6 with the Trojan trigger.
According to DeepCover, the Trojaning output for each input is caused by a
small part of its embedded trigger. This black-box discovery by DeepCover is
consistent with and further optimizes the theory of DNN Trojaning [17]. Finally,
as many as 80% of the (ground truth) Trojan triggers are successively localized
(with IoU ≥ 0.5) by only π = 8% of the pixels top-ranked by DeepCover.
DeepCover is thus very effective.

6.6 Threats to Validity

In this part, we highlight several threats to the validity of our evaluation.
Lack of Ground Truth. We have no ground truth for evaluating the generated
explanations for Xception on ImageNet images, hence we use the size of an
explanation as a proxy. We have the ground truth for the Chimera images of red
panda (Fig. 7) and for the Trojaning attacks (Fig. 8), and the results support
our claims of the high quality of DeepCover explanations.

Selection of SFL Measures. We have only evaluated four SFL measures (Ochiai,
Zoltar, Tarantula and Wong-II). There are hundreds more such measures, which
may reveal new observations.

Selection of Parameters When Generating Test Inputs. When generating the
test suite T (x), we empirically configure the parameters in the test generation
algorithm. The choice of parameters affects the results of the evaluation and
they may be overfitted.

7 Conclusions

This paper advocates the application of statistical fault localization (SFL) for
the generation of explanations of the output of neural networks. Our defini-
tion of explanations is inspired by actual causality, and we demonstrate that
we can efficiently compute a good approximation of a precise explanation using
a lightweight ranking of features of the input image based on SFL measures.
The algorithm is implemented in the tool DeepCover. Extensive experimental
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results demonstrate that DeepCover consistently outperforms other explana-
tion tools and that its explanations are accurate when compared to ground truth
(that is, the explanations of the images have a large overlap with the explanation
planted in the image).
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Abstract. Building on recent progress at the intersection of combinato-
rial optimization and deep learning, we propose an end-to-end trainable
architecture for deep graph matching that contains unmodified com-
binatorial solvers. Using the presence of heavily optimized combinato-
rial solvers together with some improvements in architecture design, we
advance state-of-the-art on deep graph matching benchmarks for key-
point correspondence. In addition, we highlight the conceptual advan-
tages of incorporating solvers into deep learning architectures, such as
the possibility of post-processing with a strong multi-graph matching
solver or the indifference to changes in the training setting. Finally, we
propose two new challenging experimental setups.

Keywords: Deep graph matching · Keypoint correspondence ·
Combinatorial optimization

1 Introduction

Fig. 1. Example keypoint
matchings of the proposed
architecture on SPair-71k.

Matching discrete structures is a recurring
theme in numerous branches of computer sci-
ence. Aside from extensive analysis of its the-
oretical and algorithmic aspects [9,26], there
is also a wide range of applications. Computer
vision, in particular, is abundant of tasks with
a matching flavor; optical flow [4,49,50], person
re-identification [25,45], stereo matching [12,36],
pose estimation [11,25], object tracking [39,57],
to name just a few. Matching problems are
also relevant in a variety of scientific disciplines
including biology [28], language processing [40],
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bioinformatics [19], correspondence problems in computer graphics [43] or social
network analysis [35].

Particularly, in the domain of computer vision, the matching problem has
two parts: extraction of local features from raw images and resolving con-
flicting evidence e.g. multiple long-term occlusions in a tracking context. Each
of these parts can be addressed efficiently in separation, namely by deep net-
works on the one side and by specialized purely combinatorial algorithms on
the other. The latter requires a clean abstract formulation of the combinatorial
problem. Complications arise if concessions on either side harm performance.
Deep networks on their own have a limited capability of combinatorial general-
ization [6] and purely combinatorial approaches typically rely on fixed features
that are often suboptimal in practice. To address this, many hybrid approaches
have been proposed.

In case of deep graph matching some approaches rely on finding suitable dif-
ferentiable relaxations [60,62], while others benefit from a tailored architecture
design [23,27,59,64]. What all these approaches have in common is that they
compromise on the combinatorial side in the sense that the resulting “combina-
torial block” would not be competitive in a purely combinatorial setup.

In this work, we present a novel type of end-to-end architecture for semantic
keypoint matching that does not make any concessions on the combi-
natorial side while maintaining strong feature extraction. We build on recent
progress at the intersection of combinatorial optimization and deep learning [56]
that allows to seamlessly embed blackbox implementations of a wide range of
combinatorial algorithms into deep networks in a mathematically sound fash-
ion. As a result, we can leverage heavily optimized graph matching solvers [52,53]
based on dual block coordinate ascent for Lagrange decompositions.

Since the combinatorial aspect is handled by an expert algorithm, we can
focus on the rest of the architecture design: building representative graph match-
ing instances from visual and geometric information. In that regard, we leverage
the recent findings [23] that large performance improvement can be obtained by
correctly incorporating relative keypoint locations via SplineCNN [22].

Additionally, we observe that correct matching decisions are often simplified
by leveraging global information such as viewpoint, rigidity of the object or
scale (see also Fig. 1). With this in mind, we propose a natural global feature
attention mechanism that allows to adjust the weighting of different node
and edge features based on a global feature vector.

Finally, the proposed architecture allows a stronger post-processing step. In
particular, we use a multi-graph matching solver [52] during evaluation to jointly
resolve multiple graph matching instances in a consistent fashion.

On the experimental side, we achieve state-of-the-art results on standard
keypoint matching datasets Pascal VOC (with Berkeley annotations [8,20]) and
Willow ObjectClass [14]. Motivated by lack of challenging standardised bench-
marks, we additionally propose two new experimental setups. The first one is the
evaluation on SPair-71k [38] a high-quality dataset that was recently released
in the context of dense image matching. As the second one, we suggest to drop
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the common practice of keypoint pre-filtering and as a result force the future
methods to address the presence of keypoints without a match.

The contributions presented in this paper can be summarized as follows.

1. We present a novel and conceptually simple end-to-end trainable archi-
tecture that seamlessly incorporates a state-of-the-art combinatorial graph
matching solver. In addition, improvements are attained on the feature extrac-
tion side by processing global image information.

2. We introduce two new experimental setups and suggest them as future bench-
marks.

3. We perform an extensive evaluation on existing benchmarks as well as on the
newly proposed ones. Our approach reaches higher matching accuracy than
previous methods, particularly in more challenging scenarios.

4. We exhibit further advantages of incorporating a combinatorial solver:
(i) possible post-processing with a multi-graph matching solver,
(ii) an effortless transition to more challenging scenarios with unmatchable

keypoints.

2 Related Work

Combinatorial Optimization Meets Deep Learning. The research on this
intersection is driven by two main paradigms.

The first one attempts to improve combinatorial optimization algorithms
with deep learning methods. Such examples include the use of reinforcement
learning for increased performance of branch-and-bound decisions [5,25,30] as
well as of heuristic greedy algorithms for NP-Hard graph problems [7,17,29,32].

The other mindset aims at enhancing the expressivity of neural nets by turn-
ing combinatorial algorithms into differentiable building blocks. The work on
differentiable quadratic programming [3] served as a catalyzer and progress was
achieved even in more discrete settings [21,37,58]. In a recent culmination of
these efforts [56], a “differentiable wrapper” was proposed for blackbox implemen-
tations of algorithms minimizing a linear discrete objective, effectively allowing
free flow of progress from combinatorial optimization to deep learning.

Combinatorial Graph Matching. This problem, also known as the quadratic
assignment problem [33] in the combinatorial optimization literature, is famous
for being one of the practically most difficult NP-complete problems. There exist
instances with less than 100 nodes that can be extremely challenging to solve
with existing approaches [10]. Nevertheless, in computer vision efficient algo-
rithmic approaches have been proposed that can routinely solve sparse instances
with hundreds of nodes. Among those, solvers based on Lagrangian decomposi-
tion [53,54,65] have been shown to perform especially well, being able to quickly
produce high quality solutions with small gaps to the optimum. Lagrange decom-
position solvers split the graph matching problem into many small subprob-
lems linked together via Lagrange multipliers. These multipliers are iteratively
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Fig. 2. Differentiation of a piecewise constant loss resulting from incorporating a graph
matching solver. A two-dimensional section of the loss landscape is shown (left) along
with two differentiable interpolations of increasing strengths (middle and right).

updated in order to reach agreement among the individual subproblems, typi-
cally with subgradient based techniques [48] or dual block coordinate ascent [51].

Graph matching solvers have a rich history of applications in computer vision.
A non-exhaustive list includes uses for finding correspondences of landmarks
between various objects in several semantic object classes [54,55,66], for estimat-
ing sparse correspondences in wide-displacement optical flow [2,54], for estab-
lishing associations in multiple object tracking [13], for object categorization [18],
and for matching cell nuclei in biological image analysis [28].

Peer Methods. Wider interest in deep graph matching was ignited by [62]
where a fully differentiable graph matching solver based on spectral methods
was introduced. While differentiable relaxation of quadratic graph matching has
reappeared [60], most methods [27,59,61] rely on the Sinkhorn iterative nor-
malization [1,47] for the linear assignment problem or even on a single row
normalization [23]. Another common feature is the use of various graph neu-
ral networks [6,34,44] sometimes also in a cross-graph fashion [59] for refining
the node embeddings provided by the backbone architecture. There has also
been a discussion regarding suitable loss functions [59,61,62]. Recently, non-
trivial progress has been achieved by extracting more signal from the available
geometric information [23,64].

3 Methods

3.1 Differentiability of Combinatorial Solvers

When incorporating a combinatorial solver into a neural network, differentia-
bility constitutes the principal difficulty. Such solvers take continuous inputs
(vertex and edge costs in our case) and return a discrete output (an indicator
vector of the optimal matching). This mapping is piecewise constant because a
small change of the costs typically does not affect the optimal matching. There-
fore, the gradient exists almost everywhere but is equal to zero. This prohibits
any gradient-based optimization.
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A recent method proposed in [56] offers a mathematically-backed solution to
overcome these obstacles. It introduces an efficient “implicit interpolation” of
the solver’s mapping while still treating the solver as a blackbox. In end effect,
the intact solver is executed on the forward pass and as it turns out, only one
other call to the solver is sufficient to provide meaningful gradient information
during the backward pass.

Specifically, the method of [56] applies to solvers that solve an optimization
problem of the form

w ∈ R
N �→ y(w) ∈ Y ⊂ R

N such that y(w) = arg min
y∈Y

w · y, (1)

where w is the continuous input and Y is any discrete set. This general formu-
lation covers large classes of combinatorial algorithms that include the shortest
path problem, the traveling salesman problem and many others. As will be shown
in the subsequent sections, graph matching is also included in this definition.

If L denotes the final loss of the network, the suggested gradient of the
piecewise constant mapping w �→ L

(
y(w)

)
takes the form

dL
(
y(w)

)

dy
:=

y(wλ) − y(w)
λ

, (2)

in which wλ is a certain modification of the input w depending on the gradient
of L at y(w). This is in fact the exact gradient of a piecewise linear interpolation
of L

(
y(w)

)
in which a hyperparameter λ > 0 controls the interpolation range as

Fig. 2 suggests.
It is worth pointing out that the framework does not require any explicit

description of the set Y (such as via linear constraints). For further details and
mathematical guarantees, see [56].

3.2 Graph Matching

The aim of graph matching is to find an assignment between vertices of two
graphs that minimizes the sum of local and geometric costs.

Let G1 = (V1, E1) and G2 = (V2, E2) be two directed graphs. We denote by
v ∈ {0, 1}|V1||V2| the indicator vector of matched vertices, that is vi,j = 1 if a
vertex i ∈ V1 is matched with j ∈ V2 and vi,j = 0 otherwise. Analogously, we set
e ∈ {0, 1}|E1||E2| as the indicator vector of matched edges. Obviously, the vector
e is fully determined by the vector v. Further, we denote by Adm(G1, G2) the
set of all pairs (v, e) that encode a valid matching between G1 and G2.

Given two cost vectors cv ∈ R
|V1||V2| and ce ∈ R

|E1||E2|, we formulate the
graph matching optimization problem as

GM(cv, ce) = arg min
(v,e)∈Adm(G1,G2)

{cv · v + ce · e} . (3)
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Algorithm 1. Forward and Backward Pass
function ForwardPass(cv, ce)

(v, e) := GraphMatching(cv, ce)
// Run the solver

save (v, e) and (cv, ce)
// Needed for backward pass

return (v, e)

function BackwardPass(∇L(v, e), λ)
load (v, e) and (cv, ce)
(cv

λ, ce
λ) := (cv, ce) + λ∇L(v, e)

// Calculate modified costs
(vλ, eλ) := GraphMatching(cv

λ, ce
λ)

// One more call to the solver
return 1

λ

(
vλ − v, eλ − e

)

It is immediate that GM fits the definition of the solver given in (1). If L =
L(v, e) is the loss function, the mapping

(cv, ce) �→ L
(
GM(cv, ce)

)
(4)

is the piecewise constant function for which the scheme of [56] suggests

∇
(
L

(
GM(cv, ce)

))
:=

1
λ

[
GM(cv

λ, ce
λ) − GM(cv, ce)

]
, (5)

where the vectors cv
λ and ce

λ stand for

cv
λ = cv + λ∇vL

(
GM(cv, ce)

)
and ce

λ = ce + λ∇eL
(
GM(cv, ce)

)
, (6)

where ∇L = (∇vL,∇eL). The implementation is listed in Algorithm 1
In our experiments, we use the Hamming distance between the proposed

matching and the ground truth matching of vertices as a loss. In this case, L
does not depend on e and, consequently, ce

λ = ce.
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Fig. 3. Cycle consistency in multi-graph
matching. The partial matching induced
by light and dark green edges prohibits
including the dashed edges. (Color figure
online)

A more sophisticated variant of
graph matching involves more than two
graphs. The aim of multi-graph match-
ing is to find a matching for every pair
of graphs such that these matchings
are consistent in a global fashion (i.e.
satisfy so-called cycle consistency, see
Fig. 3) and minimize the global cost.
Although the framework of [56] is also
applicable to multi-graph matching, we
will only use it for post-processing.

3.3 Cost Margin

One disadvantage of using Hamming distance as a loss function is that it reaches
its minimum value zero even if the ground truth matching has only fraction-
ally lower cost than competing matchings. This increases sensitivity to distribu-
tion shifts and potentially harms generalization. The issue was already observed
in [42], where the method [56] was also applied. We adopt the solution proposed
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in [42], namely the cost margin. In particular, during training we increase the
unary costs that correspond to the ground truth matching by α > 0, i.e.

←→
cv

i,j =

{
cv
i,j + α if v∗

i,j = 1
cv
i,j if v∗

i,j = 0
for i ∈ V1 and j ∈ V2, (7)

where v∗ denotes the ground truth matching indicator vector. In all experiments,
we use α = 1.0.

3.4 Solvers

Graph Matching. We employ a dual block coordinate ascent solver [53] based
on a Lagrange decomposition of the original problem. In every iteration, a dual
lower bound is monotonically increased and the resulting dual costs are used to
round primal solutions using a minimum cost flow solver. We choose this solver
for its state-of-the-art performance and also because it has a highly optimized
publicly available implementation.

Multi-graph Matching. We employ the solver from [52] that builds upon [53] and
extends it to include additional constraints arising from cycle consistency. Primal
solutions are rounded using a special form of permutation synchronization [41]
allowing for partial matchings.

3.5 Architecture Design

Our end-to-end trainable architecture for keypoint matching consists of three
stages. We call it BlackBox differentiation of Graph Matching solvers (BB-GM).

1. Extraction of visual features. A standard CNN architecture extracts a feature
vector for each of the keypoints in the image. Additionally, a global feature
vector is extracted.

2. Geometry-aware feature refinement. Keypoints are converted to a graph
structure with spatial information. Then a graph neural network architec-
ture is applied.

Fig. 4. Extraction of features for a single image. Keypoint locations and VGG features
are processed by a SplineCNN and a global feature vector is produced.
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Fig. 5. Construction of combinatorial instance for keypoint matching.

3. Construction of combinatorial instance. Vertex and edge similarities are com-
puted using the graph features and the global features. This determines a
graph matching instance that is passed to the solver.

The resulting matching v is compared to the ground truth matching v∗ and
their Hamming distance L(v) = v · (1 − v∗) + v∗ · (1 − v) is the loss function to
optimize.

While the first and the second stage (Fig. 4) are rather standard design
blocks, the third one (Fig. 5) constitutes the principal novelty. More detailed
descriptions follow.

Visual Feature Extraction. We closely follow previous work [23,59,62]
and also compute the outputs of the relu4 2 and relu5 1 operations of the
VGG16 [46] network pre-trained on ImageNet [16]. The spatially corresponding
feature vector for each keypoint is recovered via bi-linear interpolation.

An image-wide global feature vector is extracted by max-pooling the output
of the final VGG16 layer, see Fig. 4. Both the keypoint feature vectors and the
global feature vectors are normalized with respect to the L2 norm.

Geometric Feature Refinement. The graph is created as a Delaunay trian-
gulation [15] of the keypoint locations. Each edge consists of a pair of directed
edges pointing in opposite directions. We deploy SplineCNN [22], an architecture
that proved successful in point-cloud processing. Its inputs are the VGG vertex
features and spatial edge attributes defined as normalized relative coordinates
of the associated vertices (called anisotropic in [23,24]). We use two layers of
SplineCNN with max aggregations. The outputs are additively composed with
the original VGG node features to produce the refined node features. For sub-
sequent computation, we set the edge features as the differences of the refined
node features. For illustration, see Fig. 4.
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Matching Instance Construction. Both source and target image are passed
through the two described procedures. Their global features are concatenated to
one global feature vector g. A standard way to prepare a matching instance (the
unary costs cv) is to compute the inner product similarity (or affinity) of the
vertex features cv

i,j = fv
s (i) ·fv

t (j), where fv
s (i) is the feature vector of the vertex

i in the source graph and fv
t (j) is the feature vector of the vertex j in the target

graph, possibly with a learnable vector or a matrix of coefficient as in [59].
In our case, the vector of “similarity coefficients” is produced as a weighted

inner product
cv
i,j =

∑

k

fv
s (i)k ak fv

t (j)k, (8)

where a is produced by a one-layer NN from the global feature vector g. This
allows for a gating-like behavior; the individual coordinates of the feature vectors
may play a different role depending on the global feature vector g. It is intended
to enable integrating various global semantic aspects such as rigidity of the
object or the viewpoint perspective. Higher order cost terms ce are calculated in
the same vein using edge features instead of vertex features with an analogous
learnable affinity layer. For an overview, see Fig. 5.

4 Experiments

We evaluate our method on the standard datasets for keypoint matching Pas-
cal VOC with Berkeley annotations [8,20] and Willow ObjectClass [14]. Addi-
tionally, we propose a harder setup for Pascal VOC that avoids keypoint filtering
as a preprocessing step. Finally, we report our performance on a recently pub-
lished dataset SPair-71k [38]. Even though this dataset was designed for a slightly
different community, its high quality makes it very suitable also in this context.
The two new experimental setups aim to address the lack of difficult benchmarks
in this line of work.

In some cases, we report our own evaluation of DGMC [23], the strongest
competing method, which we denote by DGMC∗. We used the publicly available
implementation [24].

Runtime. All experiments were run on a single Tesla-V100 GPU. Due to the
efficient C++ implementation of the solver [51], the computational bottleneck of
the entire architecture is evaluating the VGG backbone. Around 30 image pairs
were processed every second.

Hyperparameters. In all experiments, we use the exact same set of hyperpa-
rameters. Only the number of training steps is dataset-dependent. The optimizer
in use is Adam [31] with an initial learning rate of 2× 10−3 which is halved four
times in regular intervals. Learning rate for finetuning the VGG weights is mul-
tiplied with 10−2. We process batches of 8 image pairs and the hyperparameter
λ from (2) is consistently set to 80.0. For remaining implementation details, the
full code base will be made available.
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Fig. 6. Keypoint filtering strategies. The image pair in (a) would not occur under
inclusion filtering (b) because the different perspectives lead to incomparable sets of
keypoints. Intersection filtering is unaffected by viewpoints. (Color figure online)

Table 1. Impact of filtering strategies on test accuracy (%) for DGMC [23] on Pas-
cal VOC. Classes with drastic differences are highlighted.

Image Pair Sampling and Keypoint Filtering. The standard benchmark
datasets provide images with annotated keypoints but do not define pairings of
images or which keypoints should be kept for the matching instance. While it
is the designer’s choice how this is handled during training it is imperative that
only one pair-sampling and keypoint filtering procedure is used at test time.
Otherwise, the change in the distribution of test pairs and the corresponding
instances may have unintended effects on the evaluation metric (as we demon-
strate below), and therefore hinder fair comparisons.

We briefly describe two previously used methods for creating evaluation data,
discuss their impact, and propose a third one.

Keypoint intersection (∴ ∩ ∴). Only the keypoints present in both source and
target image are preserved for the matching task. In other words, all outliers are
discarded. Clearly, any pair of images can be processed this way, see Fig. 6a.

Keypoint inclusion (∴⊂∴). Target image keypoints have to include all the
source image keypoints. The target keypoints that are not present in the source
image are then disregarded. The source image may still contain outliers. Exam-
ples in which both target and source images contain outliers such as in Fig. 6b,
will not be present.

When keypoint inclusion filtering is used on evaluation, some image pairs
are discarded, which introduces some biases. In particular, pairs of images seen
from different viewpoints become underrepresented, as such pairs often have
uncomparable sets of visible keypoints, see Fig. 6. Another effect is a bias towards
a higher number of keypoints in a matching instance which makes the matching
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Table 2. Keypoint matching accuracy (%) on Pascal VOC using standard intersection
filtering (∴ ∩ ∴). For GMN [62] we report the improved results from [59] denoted
as GMN-PL. DGMC* is [23] reproduced using ∴ ∩ ∴. For DGMC* and BB-GM we
report the mean over 5 restarts.

Table 3. F1 score (%) for Pascal VOC keypoint matching without filtering (∴ ∪ ∴).
As a reference we report an ablation of our method where the solver is forced to match
all source keypoints, denoted as BB-GM-Max. BB-GM-Multi refers to using the multi-
graph matching solver with cycle consistency [52] with sets of 5 images at evaluation.
The reported statistics are over 10 restarts. The last row displays the percentage of
unmatched keypoints in the test-set pairs.

task more difficult. While the effect on mean accuracy is not strong, Table 1
shows large differences in individual classes.

Another unsatisfactory aspect of both methods is that label information is
required at evaluation time, rendering the setting quite unrealistic. For this rea-
son, we propose to evaluate without any keypoint removal.

Unfiltered keypoints (∴ ∪ ∴). For a given pair of images, the keypoints are
used without any filtering. Matching instances may contain a different number
of source and target vertices, as well as outliers in both images. This is the most
general setup.

4.1 Pascal VOC

The Pascal VOC [20] dataset with Berkeley annotations [8] contains images
with bounding boxes surrounding objects of 20 classes. We follow the standard
data preparation procedure of [59]. Each object is cropped to its bounding box
and scaled to 256 × 256 px. The resulting images contain up to 23 annotated
keypoints, depending on the object category.

The results under the most common experimental conditions (∴ ∩ ∴)
are reported in Table 2 and we can see that BB-GM outperforms competing
approaches.
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All Keypoints. We propose, see Sect. 4, to preserve all keypoints (∴ ∪ ∴).
Matching accuracy is no longer a good evaluation metric as it ignores false
positives. Instead, we report F1-Score, the harmonic mean of precision and recall.

Since the underlying solver used by our method also works for partial match-
ings, our architecture is applicable out of the box. Competing architectures rely
on either the Sinkhorn normalization or a softmax and as such, they are hard-
wired to produce maximal matchings and do not offer a simple adjustment to
the unfiltered setup. To simulate the negative impact of maximal matchings we
provide an ablation of BB-GM where we modify the solver to output maximal
matchings. This is denoted by BB-GM-Max.

In addition, we report the scores obtained by running the multi-graph match-
ing solver [52] as post-processing. Instead of sampling pairs of images, we sample
sets of 5 images and recover from the architecture the costs of the

(
5
2

)
= 10

matching instances. The multi-graph matching solver then searches for globally
optimal set of consistent matchings. The results are provided in Table 3.

Note that sampling sets of 5 images instead of image pairs does not interfere
with the statistics of the test set. The results are therefore comparable.

4.2 Willow ObjectClass

The Willow ObjectClass dataset contains a total of 256 images from 5 categories.
Each category is represented by at least 40 images, all of them with consistent
orientation. Each image is annotated with the same 10 distinctive category-
specific keypoints, which means there is no difference between the described
keypoint filtering methods. Following standard procedure, we crop the images
to the bounding boxes of the objects and rescale to 256 × 256 px.

Multiple training strategies have been used in prior work. Some authors
decide to train only on the relatively small Willow dataset, or pretrain on Pas-
cal VOC and fine-tune on Willow afterward [59]. Another approach is to pre-
train on Pascal VOC and evaluate on Willow without fine-tuning, to test the
transfer-ability [60]. We report results for all different variants, following the
standard procedure of using 20 images per class when training on Willow and
excluding the classes car and motorbike from Pascal VOC when pre-training, as
these images overlap with the Willow dataset. We also evaluated the strongest
competing approach DGMC [23] under all settings.

The results are shown in Table 4. While our method achieves good perfor-
mance, we are reluctant to claim superiority over prior work. The small dataset
size, the multitude of training setups, and high standard deviations all prevent
statistically significant comparisons.

4.3 SPair-71k

We also report performance on SPair-71k [38], a dataset recently published in
the context of dense image matching. It contains 70, 958 image pairs prepared
from Pascal VOC 2012 and Pascal 3D+. It has several advantages over the
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Table 4. Keypoint matching accuracy (%) on Willow ObjectClass. The columns Pt
and Wt indicate training on Pascal VOC and Willow, respectively. Comparisons should
be made only within the same training setting. For HARG-SSVM [14] we report the
comparable figures from [59]. Twenty restarts were carried out.

Method Pt Wt Face Motorbike Car Duck Bottle

HARG-SSVM [59] x � 91.2 44.4 58.4 55.2 66.6

GMN-PL [59,62]
� x 98.1 65.0 72.9 74.3 70.5

� � 99.3 71.4 74.3 82.8 76.7

PCA-GM [59]
� x 100.0 69.8 78.6 82.4 95.1

� � 100.0 76.7 84.0 93.5 96.9

CIE [61]
� x 99.9 71.5 75.4 73.2 97.6

� � 100.0 90.0 82.2 81.2 97.6

NGM [60] x � 99.2 82.1 84.1 77.4 93.5

GLMNet [27] � � 100.0 89.7 93.6 85.4 93.4

DGMC* [23] � x 98.6 ± 1.1 69.8 ± 5.0 84.6 ± 5.2 76.8 ± 4.3 90.7 ± 2.4

x � 100.0 ± 0.0 98.5 ± 1.5 98.3 ± 1.2 90.2 ± 3.6 98.1 ± 0.9

� � 100.0 ± 0.0 98.8 ± 1.6 96.5 ± 1.6 93.2 ± 3.8 99.9 ± 0.3

BB-GM

� x 100.0 ± 0.0 95.8 ± 1.4 89.1 ± 1.7 89.8 ± 1.7 97.9 ± 0.7

x � 100.0 ± 0.0 99.2 ± 0.4 96.9 ± 0.6 89.0 ± 1.0 98.8 ± 0.6

� � 100.0 ± 0.0 98.9 ± 0.5 95.7 ± 1.5 93.1 ± 1.5 99.1 ± 0.4

Table 5. Keypoint matching accuracy (%) on SPair-71k grouped by levels of difficulty
in the viewpoint of the matching-pair. Statistics is over 5 restarts.

Method Viewpoint difficulty All

Easy Medium Hard

DGMC* 79.4 ± 0.2 65.2 ± 0.2 61.3 ± 0.5 72.2 ± 0.2

BB-GM 84.8 ± 0.1 73.1 ± 0.2 70.6 ± 0.9 78.9 ± 0.4

Pascal VOC dataset, namely higher image quality, richer keypoint annotations,
difficulty annotation of image-pairs, as well as the removal of the ambiguous and
poorly annotated sofas and dining tables.

Again, we evaluated DGMC [23] as the strongest competitor of our method.
The results are reported in Table 5 and Table 6. We consistently improve upon
the baseline, particularly on pairs of images seen from very different viewpoints.
This highlights the ability of our method to resolve instances with conflicting
evidence. Some example matchings are presented in Fig. 1 and Fig. 7.

4.4 Ablations Studies

To isolate the impact of single components of our architecture, we conduct var-
ious ablation studies as detailed in the supplementary material. The results on
Pascal VOC are summarized in Tab. S1.
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Table 6. Keypoint matching accuracy (%) on SPair-71k for all classes.

Fig. 7. Example matchings from the SPair-71k dataset.

5 Conclusion

We have demonstrated that deep learning architectures that integrate combina-
torial graph matching solvers perform well on deep graph matching benchmarks.

Opportunities for future work now fall into multiple categories. For one, it
should be tested whether such architectures can be useful outside the designated
playground for deep graph matching methods. If more progress is needed, two
major directions lend themselves: (i) improving the neural network architecture
even further so that input costs to the matching problem become more dis-
criminative and (ii) employing better solvers that improve in terms of obtained
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solution quality and ability to handle a more complicated and expressive cost
structure (e.g. hypergraph matching solvers).

Finally, the potential of building architectures around solvers for other com-
puter vision related combinatorial problems such as multicut or max-cut can
be explored.
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424 M. Roĺınek et al.

54. Torresani, L., Kolmogorov, V., Rother, C.: A dual decomposition approach to
feature correspondence. IEEE Trans. Pattern Anal. Mach. Intell. 35(2), 259–271
(2013)

55. Ufer, N., Ommer, B.: Deep semantic feature matching. In: IEEE Conference on
Computer Vision and Pattern Recognition. CVPR 2017, pp. 6914–6923 (2017)

56. Vlastelica, M., Paulus, A., Musil, V., Martius, G., Roĺınek, M.: Differentiation of
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Abstract. We introduce a novel self-supervised learning approach to
learn representations of videos that are responsive to changes in the
motion dynamics. Our representations can be learned from data with-
out human annotation and provide a substantial boost to the training of
neural networks on small labeled data sets for tasks such as action recog-
nition, which require to accurately distinguish the motion of objects. We
promote an accurate learning of motion without human annotation by
training a neural network to discriminate a video sequence from its tem-
porally transformed versions. To learn to distinguish non-trivial motions,
the design of the transformations is based on two principles: 1) To define
clusters of motions based on time warps of different magnitude; 2) To
ensure that the discrimination is feasible only by observing and ana-
lyzing as many image frames as possible. Thus, we introduce the fol-
lowing transformations: forward-backward playback, random frame skip-
ping, and uniform frame skipping. Our experiments show that networks
trained with the proposed method yield representations with improved
transfer performance for action recognition on UCF101 and HMDB51.

Keywords: Representation learning · Video analysis · Self-supervised
learning · Unsupervised learning · Time dynamics · Action recognition

1 Introduction

A fundamental goal in computer vision is to build representations of visual data
that can be used towards tasks such as object classification, detection, segmenta-
tion, tracking, and action recognition [11,26,39,41]. In the past decades, a lot of
research has been focused on learning directly from single images and has done
so with remarkable success [17,18,38]. Single images carry crucial information
about a scene. However, when we observe a temporal sequence of image frames,
i.e., a video, it is possible to understand much more about the objects and the
scene. In fact, by moving, objects reveal their shape (through a change in the
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occlusions), their behavior (how they move due to the laws of Physics or their
inner mechanisms), and their interaction with other objects (how they deform,
break, clamp etc.). However, learning such information is non trivial. Even when
labels related to motion categories are available (such as in action recognition),
there is no guarantee that the trained model will learn the desired information,
and will not instead simply focus on a single iconic frame and recognize a key
pose or some notable features strongly correlated to the action [40].

To build representations of videos that capture more than the informa-
tion contained in a single frame, we pose the task of learning an accurate
model of motion as that of learning to distinguish an unprocessed video from a
temporally-transformed one. Since similar frames are present in both the unpro-
cessed and transformed sequence, the only piece of information that allows their
discrimination is their temporal evolution. This idea has been exploited in the
past [12,28,29,33,50] and is also related to work in time-series analysis, where
dynamic time warping is used as a distance for temporal sequences [20].

In this paper, we analyze different temporal transformations and evaluate
how learning to distinguish them yields a representation that is useful to clas-
sify videos into meaningful action categories. Our main finding is that the most
effective temporal distortions are those that can be identified only by observing
the largest number of frames. For instance, the case of substituting the second
half of a video with its first half in reverse order, can be detected already by
comparing just the 3 frames around the temporal symmetry. In contrast, distin-
guishing when a video is played backwards from when it is played forward [50]
may require observing many frames. Thus, one can achieve powerful video repre-
sentations by using as pseudo-task the classification of temporal distortions that
differ in their long-range motion dynamics. Towards this goal, we investigate 4
different temporal transformations of a video, which are illustrated in Fig. 1:

1. Speed: Select a subset of frames with uniform sub-sampling (i.e., with a fixed
number of frames in between every pair of selected frames), while preserving
the order in the original sequence;

2. Random: Select a random permutation of the frame sequence;
3. Periodic: Select a random subset of frames in their natural (forward) tem-

poral order and then a random subset in the backward order;
4. Warp: Select a subset of frames with a random sub-sampling (i.e., with a

random number of frames in between every pair of selected frames), while
preserving the natural (forward) order in the original sequence.

We use these transformations to verify and illustrate the hypothesis that learning
to distinguish them from one another (and the original sequence) is useful to
build a representation of videos for action recognition. For simplicity, we train
a neural network that takes as input videos of the same duration and outputs
two probabilities: One is about which one of the above temporal transformations
the input sequence is likely to belong to and the second is about identifying the
correct speed of the chosen speed transformation.

In the Experiments section, we transfer features of standard 3D-CNN archi-
tectures (C3D [44], 3D-ResNet [16], and R(2+1)D [45]) pre-trained through the



Video Representation Learning by Recognizing Temporal Transformations 427

Fig. 1. Learning from Temporal Transformations. The frame number is indicated
below each image. (a)–(d) Speed transformation by skipping: (a) 0 frames, (b) 1 frame,
(c) 3 frames, and (d) 7 frames. (e) Random: frame permutation (no frame is skipped). (f)
Periodic: forward-backward motion (at the selected speed). (g) Warp: variable frame
skipping while preserving the order.

above pseudo-task to standard action recognition data sets such as UCF101
and HMDB51, with improved performance compared to prior works. We also
show that features learned through our proposed pseudo-task capture long-range
motion better than features obtained through supervised learning. Our project
page https://sjenni.github.io/temporal-ssl provides code and additional experi-
ments.

Our contributions can be summarized as follows: 1) We introduce a novel
self-supervised learning task to learn video representations by distinguishing
temporal transformations; 2) We study the discrimination of the following novel
temporal transformations: speed, periodic and warp; 3) We show that our
features are a better representation of motion than features obtained through
supervised learning and achieve state of the art transfer learning performance
on action recognition benchmarks.

https://sjenni.github.io/temporal-ssl
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2 Prior Work

Because of the lack of manual annotation, our method belongs to self-supervised
learning. Self-supervised learning appeared in the machine learning literature
more than 2 decades ago [2,7] and has been reformulated recently in the context
of visual data with new insights that make it a promising method for representa-
tion learning [9]. This learning strategy is a recent variation on the unsupervised
learning theme, which exploits labeling that comes for “free” with the data.
Labels could be easily accessible and associated with a non-visual signal (for
example, ego-motion [1], audio [35], text and so on), but also could be obtained
from the structure of the data (e.g., the location of tiles [9,34], the color of
an image [27,53,54]) or through transformations of the data [14,21,22]. Several
works have adapted self-supervised feature learning methods from domains such
as images or natural language to videos: Rotation prediction [23], Dense Predic-
tive Coding [15], and [43] adapt the BERT language model [8] to sequences of
frame feature vectors.

In the case of videos, we identify three groups of self-supervised approaches:
1) Methods that learn from videos to represent videos; 2) Methods that learn
from videos to represent images; 3) Methods that learn from videos and auxiliary
signals to represent both videos and the auxiliary signals (e.g., audio).

Temporal Ordering Methods. Prior work has explored the temporal ordering
of the video frames as a supervisory signal. For example, Misra et al. [33] showed
that learning to distinguish a real triplet of frames from a shuffled one yields a
representation with temporally varying information (e.g., human pose). This
idea has been extended to longer sequences for posture and behavior analysis by
using Long Short-Term Memories [5]. The above approaches classify the correct-
ness of a temporal order directly from one sequence. An alternative is to feed
several sequences, some of which are modified, and ask the network to tell them
apart [12]. Other recent work predicts the permutation of a sequence of frames
[28] or both the spatial and temporal ordering of frame patches [6,24]. Another
recent work focuses on solely predicting the arrow of time in videos [50]. Three
concurrent publications also exploit the playback speed as a self-supervision
signal [4,10,52]. In contrast, our work studies a wider range of temporal trans-
formations. Moreover, we show empirically that the temporal statistics extent
(in frames) captured by our features correlates to the transfer learning perfor-
mance in action recognition.

Methods Based on Visual Tracking. The method of Wang and Gupta [48]
builds a metric to define similarity between patches. Three patches are used as
input, where two patches are matched via tracking in a video and the third one
is arbitrarily chosen. Tracking can also be directly solved during training, as
shown in [46], where color is used as a supervisory signal. By solving the task
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of coloring a grey-scale video (in a coherent manner across time), one can auto-
matically learn how to track objects. Visual correspondences can also be learned
by exploiting cycle-consistency in time [49] or by jointly performing region-level
localization and fine-grained matching [29]. However, although trained on videos,
these methods have not been used to build video representations or evaluated
on action recognition.

Methods Based on Auxiliary Signals. Supervision can also come from addi-
tional signals recorded with images. For example, videos come also with audio.
The fact that the sounds are synchronized with the motion of objects in a video,
already provides a weak supervision signal: One knows the set of possible sounds
of visible objects, but not precisely their correspondence. Owens et al. [36] show
that, through the process of predicting a summary of ambient sound in video
frames, a neural network learns a useful representation of objects and scenes.
Another way to learn a similar representation is via classification [3]: A network
is given an image-sound pair as input and must classify whether they match
or not. Korbar et al. [25] build audio and video representations by learning to
synchronize audio and video signals using a contrastive loss. Recently, [37] use
multi-modal data from videos also in a contrastive learning framework. Several
methods use optical flow as a supervision signal. For example, Wang et al. [47]
extract motion and appearance statistics. Luo et al. [32] predict future atomic
3D flows given an input sequence, and Gan et al. [13] use geometry in the form
of flow fields and disparity maps on synthetic and 3D movies. Optical flow is
also used as input for video representation learning or filtering of the data [50].
Conversely, we do not make use of any auxiliary signals and learn video repre-
sentations solely from the raw RGB frames.

3 Learning Video Dynamics

Recent work [47] showed how a careful learning of motion statistics led to a video
representation with excellent transfer performance on several tasks and data
sets. The learning of motion statistics was made explicit by extracting optical
flow between frame pairs, by computing flow changes, and then by identifying
the region where a number of key attributes (e.g., maximum magnitude and
orientation) of the time-averaged flow-change occurred. In this work, we also
aim to learn from motion statistics, but we focus entirely our attention on the
temporal evolution without specifying motion attributes of interest or defining a
task based on appearance statistics. We hypothesize that these important aspects
could be implicitly learned and exploited by the neural network to solve the lone
task of discriminating temporal transformations of a video. Our objective is to
encourage the neural network to represent well motion statistics that require a
long-range observation (in the temporal domain). To do so, we train the network
to discriminate videos where the image content has been preserved, but not
the temporal domain. For example, we ask the network to distinguish a video
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Fig. 2. Training a 3D-CNN to distinguish temporal transformations. In each
mini-batch we select a video speed (out of 4 possible choices), i.e., how many frames
are skipped in the original video. Then, the 3D-CNN receives as input mini-batch a
mixture of 4 possible transformed sequences: speed (with the chosen frame skipping),
random, periodic and warp. The network outputs the probability of which motion type
a sequence belongs to and the probability of which speed type the speed-transformed
sequence has.

at the original frame rate from when it is played 4 times faster. Due to the
laws of Physics, one can expect that, in general, executing the same task at
different speeds leads to different motion dynamics compared to when a video
is just played at different speeds (e.g., compare marching vs walking played at a
higher speed). Capturing the subtleties of the dynamics of these motions requires
more than estimating motion between 2 or 3 frames. Moreover, these subtleties
are specific to the moving object, and thus they require object detection and
recognition.

In our approach, we transform videos by sampling frames according to dif-
ferent schemes, which we call temporal transformations. To support our learn-
ing hypothesis, we analyze transformations that require short- (i.e., temporally
local) and long-range (i.e., temporally global) video understanding. As will be
illustrated in the Experiments section, short-range transformations yield rep-
resentations that transfer to action recognition with a lower performance than
long-range ones.

3.1 Transformations of Time

Figure 2 illustrates how we train our neural network (a 3D-CNN [44]) to build
a video representation (with 16 frames). In this section, we focus on the inputs
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to the network. As mentioned above, our approach is based on distinguishing
different temporal transformations. We consider 4 fundamental types of trans-
formations: Speed changes, random temporal permutations, periodic motions
and temporal warp changes. Each of these transformations boils down to pick-
ing a sequence of temporal indices to sample the videos in our data set.
Vτ

κ ⊂ {0, 1, 2, . . . } denotes the chosen subset of indices of a video based on
the transformation τ ∈ {0, 1, 2, 3} and with speed κ.

Speed (τ = 0): In this first type we artificially change the video frame rate, i.e.,
its playing speed. We achieve that by skipping a different number of frames. We
consider 4 cases, Speed 0, 1, 2, 3 corresponding to κ = 0, 1, 2, 3 respectively,
where we skip 2κ − 1 frames. The resulting playback speed of Speed κ is there-
fore 2κ times the original speed. In the generation of samples for the training of
the neural network we first uniformly sample κ ∈ {0, 1, 2, 3}, the playback speed,
and then use this parameter to define other transformations. This sequence is
used in all experiments as one of the categories against either other speeds or
against one of the other transformations below. The index sequence V0

κ is thus
ρ + [0, 1 · 2κ, 2 · 2κ, . . . , 15 · 2κ], where ρ is a random initial index.

Random (τ = 1): In this second temporal transformation we randomly per-
mute the indices of a sequence without skipping frames. We fix κ = 0 to ensure
that the maximum frame skip between two consecutive frames is not too dissim-
ilar to other transformations. This case is used as a reference, as random permu-
tations can often be detected by observing only a few nearby frames. Indeed, in
the Experiments section one can see that this transformation yields a low trans-
fer performance. The index sequence V1

0 is thus ρ+permutation([0, 1, 2, . . . , 15]).
This transformation is similar to that of the pseudo-task of Misra et al. [33].

Periodic (τ = 2): This transformation synthesizes motions that exhibit
approximate periodicity. To create such artificial cases we first pick a point
2 · 2κ < s < 13 · 2κ where the playback direction switches. Then, we com-
pose a sequence with the following index sequence: 0 to s and then from s−1 to
2s−15·2κ. Finally, we sub-sample this sequence by skipping 2κ−1 frames. Notice
that the randomization of the midpoint s in the case of κ > 0 yields pseudo-
periodic sequences, where the frames in the second half of the generated sequence
often do not match the frames in the first half of the sequence. The index
sequence V2

κ is thus ρ+[0, 1·2κ, 2·2κ, . . . , s̄·2κ, (s̄−1)·2κ+δ, . . . , (2s̄−15)·2κ+δ]),
where s̄ = �s/2κ�, δ = s − s̄ · 2κ, and ρ = max(0, (15 − 2s̄) · 2κ − δ).

Warp (τ = 3): In this transformation, we pick a set of 16 ordered indices with
a non-uniform number of skipped frames between them (we consider sampling
any frame so we let κ = 0). In other words, between any of the frames in the
generated sequence we have a random number of skipped frames, each chosen
independently from the set {0, . . . , 7}. This transformation creates a warping of
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the temporal dimension by varying the playback speed from frame to frame. To
construct the index sequence V3

0 we first sample the frame skips sj ∈ {0, . . . , 7}
for j = 1, . . . , 15 and set V3

0 to ρ + [0, s1, s1 + s2, . . . ,
∑15

j=1 sj ].

3.2 Training

Let φ denote our network, and let us denote with φm (motion) and φs (speed)
its two softmax outputs (see Fig. 2). To train φ we optimize the following loss

−Eκ∼U [0,3],p∈V0
κ,q∈V1

0 ,s∈V2
κ,t∈V3

0 ,x

[
log

(
φm
0 (xp) φm

1 (xq) φm
2 (xs) φm

3 (xt)
)]

(1)

−Eκ∼U [0,3],p∈V0
κ,x

[
log (φs

κ (xp))
]

where x is a video sample, the sub-index denotes the set of frames. This loss is
the cross entropy both for motion and speed classification (see Fig. 2).

3.3 Implementation

Following prior work [47], we use the smaller variant of the C3D architecture [44]
for the 3D-CNN transformation classifier in most of our experiments. Training
was performed using the AdamW optimizer [31] with parameters β1 = 0.9, β2 =
0.99 and a weight decay of 10−4. The initial learning rate was set to 3 · 10−4

during pre-training and 5 · 10−5 during transfer learning. The learning rate was
decayed by a factor of 10−3 over the course of training using cosine annealing [30]
both during pre-training and transfer learning. We use batch-normalization [19]
in all but the last layer. Mini-batches are constructed such that all the different
coarse time warp types are included for each sampled training video. The batch
size is set 28 examples (including all the transformed sequences). The speed type
is uniformly sampled from all the considered speed types. Since not all the videos
allow a sampling of all speed types (due to their short video duration) we limit
the speed type range to the maximal possible speed type in those examples. We
use the standard pre-processing for the C3D network. In practice, video frames
are first resized to 128 × 171 pixels, from which we extract random crops of size
112 × 112 pixels. We also apply random horizontal flipping of the video frames
during training. We use only the raw unfiltered RGB video frames as input to the
motion classifier and do not make use of optical flow or other auxiliary signals.

4 Experiments

Datasets and Evaluation. In our experiments we consider three datasets.
Kinetics [55] is a large human action dataset consisting of 500K videos. Video
clips are collected from YouTube and span 600 human action classes. We use
the training split for self-supervised pre-training. UCF101 [41] contains 13K
video clips spanning 101 human action classes. HMDB51 [26] contains 5K videos
belonging to 51 action classes. Both UCF101 and HMDB51 come with three pre-
defined train and test splits. We report the average performance over all splits for
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Table 1. Ablation experiments. We train a 3D-CNN to distinguish different sets
of temporal transformations. The quality of the learned features is evaluated through
transfer learning for action recognition on UCF101 (with frozen convolutional layers)
and HMDB51 (with fine-tuning of the whole network).

Pre-training signal Speed

Loss
UCF101 (conv
frozen)

HMDB51 (conv
fine-tuned)

Action Labels UCF101 – 60.7% 28.8%

Speed YES 49.3% 32.5%

Speed + Random NO 44.5% 31.7%

Speed + Periodic NO 40.6% 29.5%

Speed + Warp NO 43.5% 32.6%

Speed + Random YES 55.1% 33.2%

Speed + Periodic YES 56.5% 36.1%

Speed + Warp YES 55.8% 36.9%

Speed + Random + Periodic NO 47.4% 30.1%

Speed + Random + Warp NO 54.8% 36.6%

Speed + Periodic + Warp NO 50.6% 36.4%

Speed + Random + Periodic YES 60.0% 37.1%

Speed + Random + Warp YES 60.4% 39.2%

Speed + Periodic + Warp YES 59.5% 39.0%

Speed + Random + Periodic + Warp NO 54.2% 34.9%

Speed + Random + Periodic + Warp YES 60.6% 38.0%

transfer learning experiments. We use UCF101 train split 1 for self-supervised
pre-training. For transfer learning experiments we skip 3 frames corresponding
to transformation Speed 2. For the evaluation of action recognition classifiers in
transfer experiments we use as prediction the maximum class probability aver-
aged over all center-cropped sub-sequences for each test video. More details are
provided in the supplementary material.

Understanding the Impact of the Temporal Transformations. We per-
form ablation experiments on UCF101 and HMDB51 where we vary the number
of different temporal transformations the 3D-CNN is trained to distinguish. The
3D-CNN is pre-trained for 50 epochs on UCF101 with our self-supervised learn-
ing task. We then perform transfer learning for action recognition on UCF101
and HMDB51. On UCF101 we freeze the weights of the convolutional layers
and train three randomly initialized fully-connected layers for action recogni-
tion. This experiment treats the transformation classifier as a fixed video feature
extractor. On HMDB51 we fine-tune the whole network including convolutional
layers on the target task. This experiment therefore measures the quality of
the network initialization obtained through self-supervised pre-training. In both
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cases we again train for 50 epochs on the action recognition task. The results of
the ablations are summarized in Table 1. For reference we also report the perfor-
mance of network weights learned through supervised pre-training on UCF101.

We observe that when considering the impact of a single transformation
across different cases, the types Warp and Speed achieve the best transfer per-
formance. With the same analysis, the transformation Random leads to the
worst transfer performance on average. We observe that Random is also the
easiest transformation to detect (based on training performance – not reported).
As can be seen in Fig. 1(e) this transformation can lead to drastic differences
between consecutive frames. Such examples can therefore be easily detected by
only comparing pairs of adjacent frames. In contrast, the motion type Warp can
not be distinguished based solely on two adjacent frames and requires modelling
long range dynamics. We also observe that distinguishing a larger number of
transformations generally leads to an increase in the transfer performance. The
effect of the speed type classification is quite noticeable. It leads to a very sig-
nificant transfer performance increase in all cases. This is also the most difficult
pseudo task (based on the training performance – not reported). Recognizing the
speed of an action is indeed challenging, since different action classes naturally
exhibit widely different motion speeds (e.g., “applying make-up” vs. “biking”).
This task might often require a deeper understanding of the physics and objects
involved in the video. Notice also that our pre-training strategy leads to a bet-
ter transfer performance on HMDB51 than supervised pre-training using action
labels. This suggests that the video dynamics learned through our pre-training
generalize well to action recognition and that such dynamics are not well cap-
tured through the lone supervised action recognition.

Transfer to UCF101 and HMDB51. We compare to prior work on self-
supervised video representation learning in Table 2. A fair comparison to much
of the prior work is difficult due to the use of very different network architec-
tures and training as well as transfer settings. We opted to compare with some
commonly used network architectures (i.e., C3D, 3D-ResNet, and R(2+1)D)
and re-implemented two prior works [33] and [23] using C3D. We performed
self-supervised pre-training on UCF101 and Kinetics. C3D is pre-trained for 100
epochs on UCF101 and for 15 epoch on Kinetics. 3D-ResNet and R(2+1)D are
both pre-trained for 200 epochs on UCF101 and for 15 epochs on Kinetics. We
fine-tune all the layers for action recognition. Fine-tuning is performed for 75
epochs using C3D and for 150 epochs with the other architectures. When pre-
training on UCF101 our features outperform prior work on the same network
architectures. Pre-training on Kinetics leads to an improvement in transfer in
all cases.
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Table 2. Comparison to prior work on self-supervised video representa-
tion learning. Whenever possible we compare to results reported with the same data
modality we used, i.e., unprocessed RGB input frames. * are our reimplementations.

Method Ref Network Train dataset UCF101 HMDB51

Shuffle& Learn [33] [33] AlexNet UCF101 50.2% 18.1%

O3N [12] [12] AlexNet UCF101 60.3% 32.5%

AoT [50] [50] VGG-16 UCF101 78.1% –

OPN [28] [28] VGG-M-2048 UCF101 59.8% 23.8%

DPC [15] [15] 3D-ResNet34 Kinetics 75.7% 35.7%

SpeedNet [4] [4] S3D-G Kinetics 81.1% 48.8%

AVTS [25] (RGB+audio) [25] MC3 Kinetics 85.8% 56.9%

Shuffle& Learn [33]* – C3D UCF101 55.8% 25.4%

3D-RotNet [23]* – C3D UCF101 60.6% 27.3%

Clip Order [51] [51] C3D UCF101 65.6% 28.4%

Spatio-Temp [47] [47] C3D UCF101 58.8% 32.6%

Spatio-Temp [47] [47] C3D Kinetics 61.2% 33.4%

3D ST-puzzle [24] [24] C3D Kinetics 60.6% 28.3%

Ours – C3D UCF101 68.3% 38.4%

Ours – C3D Kinetics 69.9% 39.6%

3D ST-puzzle [24] [24] 3D-ResNet18 Kinetics 65.8% 33.7%

3D RotNet [23] [23] 3D-ResNet18 Kinetics 66.0% 37.1%

DPC [15] [15] 3D-ResNet18 Kinetics 68.2% 34.5%

Ours – 3D-ResNet18 UCF101 77.3% 47.5%

Ours – 3D-ResNet18 Kinetics 79.3% 49.8%

Clip Order [51] [51] R(2+1)D UCF101 72.4% 30.9%

PRP [52] [52] R(2+1)D UCF101 72.1% 35.0%

Ours – R(2+1)D UCF101 81.6% 46.4%

Long-Range vs Short-Range Temporal Statistics. To illustrate how well
our video representations capture motion, we transfer them to other pseudo-tasks
that focus on the temporal evolution of a video. One task is the classification of
the synchronization of video pairs, i.e., how many frames one video is delayed
with respect to the other. A second task is the classification of two videos into
which one comes first temporally. These two tasks are illustrated in Fig. 3. In
the same spirit, we also evaluate our features on other tasks and data sets and
we report the results at our project page https://sjenni.github.io/temporal-ssl.

For the synchronization task, two temporally overlapping video sequences
x1 and x2 are separately fed to the pre-trained C3D network to extract features
ψ(v1) and ψ(v2) at the conv5 layer. These features are then fused through ψ(v1)−
ψ(v2) and fed as input to a randomly initialized classifier consisting of three
fully-connected layers trained to classify the offset between the two sequences.
We consider random offsets between the two video sequences in the range –6 to
+6. For the second task we construct a single input sequence by sampling two

https://sjenni.github.io/temporal-ssl
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Fig. 3. Time-Related Pseudo-Tasks. (a) Synchronization problem: The network is
given two sequences with a time delay (4 frames in the example) and a classifier is
trained to determine the delay. (b) The before-after problem: The network is given two
non-overlapping sequences, and it needs to determine which comes first (the bottom
sequence after the top one in the example).

non-overlapping 8 frame sub-sequences xi1 and xi2, where xi1 comes before xi2.
The network inputs are then either (xi1, xi2) for class “before” or (xi2, xi1) for
the class “after”. We reinitialize the fully-connected layers in this case as well.

Table 3. Time-Related Pseudo-Tasks. We examine how well features from different
pre-training strategies can be transferred to time-related tasks on videos. As tasks we
consider the synchronization of two overlapping videos and the temporal ordering of
two non-overlapping videos. We report the accuracy on both tasks on the UCF101 test
set and also report Mean Absolute Error (MAE) for the synchronization task. * are
our reimplementations.

Method Sync. Before-After

Accuracy MAE Accuracy

Action labels (UCF101) 36.7% 1.85 66.6%

3D-RotNet [23]* 28.0% 2.84 57.8%

Shuffle& Learn [33]* 39.0% 1.89 69.8%

Ours 42.4% 1.61 76.9%

In Table 3 we compare the performance of different pre-training strategies on
the time-related pseudo-tasks. We see that our self-supervised features perform
better at these tasks than supervised features and other self-supervised features,
thus showing that they capture well the temporal dynamics in the videos.
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Fig. 4. Visualization of active pixels. The first row in each block corresponds to
the input video. Rows two and three show the output of our adaptation of Guided
Backpropagation [42] when applied to a network trained through self-supervised learn-
ing and supervised learning respectively. In all three cases we observe that the self-
supervised network focuses on image regions of moving objects or persons. In (a) we
can also observe how long range dynamics are being detected by the self-supervised
model. The supervised model on the other hand focuses a lot on static frame features
in the background.

Visualization. What are the attributes, factors or features of the videos that
self-supervised and supervised models are extracting to perform the final clas-
sification? To examine what the self-supervised and supervised models focus
on, we apply Guided Backpropagation [42]. This method allows us to visual-
ize which part of the input has the most impact on the final decision of the
model. We slightly modify the procedure by subtracting the median values from
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every frame of the gradient video and by taking the absolute value of the result.
We visualize the pre-trained self-supervised and supervised models on several
test samples from UCF101. As one can see in Fig. 4, a model pre-trained on
our self-supervised task tends to ignore the background and focuses on persons
performing an action and on moving objects. Models trained with supervised
learning on the other hand tend to focus more on the appearance of foreground
and background. Another observation we make is that the self-supervised model
identifies the location of moving objects/people in past and future frames. This is
visible in row number 2 of blocks (a) and (c) of Fig. 4, where the network tracks
the possible locations of the moving ping-pong and billiard balls respectively.
A possible explanation for this observation is that our self-supervised task only
encourages the learning of dynamics. The appearance of non-moving objects or
static backgrounds are not useful to solve the pretext task and are thus ignored.

Learning Dynamics vs. Frame Features. The visualizations in Fig. 4 indi-
cate that features learned through motion discrimination focus on the dynamics
in videos and not so much on static content present in single frames (e.g., back-
ground) when compared to supervised features. To further investigate how much
the features learned through the two pre-training strategies rely on motion, we
performed experiments where we remove all the dynamics from videos. To this
end, we create input videos by replicating a single frame 16 times (resulting
in a still video) and train the three fully-connected layers on conv5 features
for action classification on UCF101. Features obtained through supervised pre-
training achieve an accuracy of 18.5% (vs. 56.5% with dynamics) and features
from our self-supervised task achieve 1.0% (vs. 58.1%). Although the setup in
this experiment is somewhat contrived (since the input domain is altered) it still
illustrates that our features rely almost exclusively on motion instead of features
present in single frames. This can be advantageous since motion features might
generalize better to variations in the background appearance in many cases.

Nearest-Neighbor Evaluation. We perform an additional quantitative eval-
uation of the learned video representations via the nearest-neighbor retrieval.
The features are obtained by training a 3D-ResNet18 network on Kinetics with
our pseudo-task and are chosen as the output of the global average pooling layer,
which corresponds to a vector of size 512. For each video we extract and aver-
age features of 10 temporal crops. To perform the nearest-neighbor retrieval, we
first normalize the features using the training set statistics. Cosine similarity is
used as the metric to determine the nearest neighbors. We follow the evaluation
proposed by [6] on UCF101. Query videos are taken from test split 1 and all the
videos of train split 1 are considered as retrieval targets. A query is considered
correctly classified if the k-nearest neighbors contain at least one video of the
correct class (i.e., same class as the query). We report the mean accuracy for
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different values of k and compare to prior work in Table 4. Our features achieve
state-of-the-art performance.

Table 4. Video Retrieval Performance on UCF101. We compare to prior work
in terms of k-nearest neighbor retrieval accuracy. Query videos are taken from test split
1 and retrievals are computed on train 1. A query is correctly classified if the query
class is present in the top-k retrievals. We report mean retrieval accuracy for different
values of k.

Method Network Top1 Top5 Top10 Top20 Top50

Jigsaw [34] AlexNet 19.7 28.5 33.5 40.0 49.4

OPN [28] AlexNet 19.9 28.7 34.0 40.6 51.6

Büchler et al. [6] AlexNet 25.7 36.2 42.2 49.2 59.5

Clip order [51] R3D 14.1 30.3 40.0 51.1 66.5

SpeedNet [4] S3D-G 13.0 28.1 37.5 49.5 65.0

PRP [52] R3D 22.8 38.5 46.7 55.2 69.1

Ours 3D-ResNet18 26.1 48.5 59.1 69.6 82.8

5 Conclusions

We have introduced a novel task for the self-supervised learning of video repre-
sentations by distinguishing between different types of temporal transformations.
This learning task is based on the principle that recognizing a transformation of
time requires an accurate model of the underlying natural video dynamics. This
idea is supported by experiments that demonstrate that features learned by dis-
tinguishing time transformations capture video dynamics more than supervised
learning and that such features generalize well to classic vision tasks such as
action recognition or time-related task such as video synchronization.
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Abstract. In this paper, we look into the problem of estimating per-
pixel depth maps from unconstrained RGB monocular night-time images
which is a difficult task that has not been addressed adequately in the
literature. The state-of-the-art day-time depth estimation methods fail
miserably when tested with night-time images due to a large domain
shift between them. The usual photometric losses used for training these
networks may not work for night-time images due to the absence of uni-
form lighting which is commonly present in day-time images, making it
a difficult problem to solve. We propose to solve this problem by posing
it as a domain adaptation problem where a network trained with day-
time images is adapted to work for night-time images. Specifically, an
encoder is trained to generate features from night-time images that are
indistinguishable from those obtained from day-time images by using a
PatchGAN-based adversarial discriminative learning method. Unlike the
existing methods that directly adapt depth prediction (network output),
we propose to adapt feature maps obtained from the encoder network so
that a pre-trained day-time depth decoder can be directly used for pre-
dicting depth from these adapted features. Hence, the resulting method
is termed as “Adversarial Domain Feature Adaptation (ADFA)” and
its efficacy is demonstrated through experimentation on the challeng-
ing Oxford night driving dataset. To the best of our knowledge, this
work is a first of its kind to estimate depth from unconstrained night-
time monocular RGB images that uses a completely unsupervised learn-
ing process. The modular encoder-decoder architecture for the proposed
ADFA method allows us to use the encoder module as a feature extractor
which can be used in many other applications. One such application is
demonstrated where the features obtained from our adapted encoder net-
work are shown to outperform other state-of-the-art methods in a visual
place recognition problem, thereby, further establishing the usefulness
and effectiveness of the proposed approach.
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Fig. 1. The depth predictions of the proposed method on Oxford Night driving images.
Top to bottom: (a) Input RGB night-time image. (b) Corresponding ground truth depth
map generated from the LIDAR points. (c) The depth predictions using the proposed
method

1 Introduction

Estimating depth from RGB images is a challenging problem which finds appli-
cations in a wide range of fields such as augmented reality [30], 3D reconstruction
[16], self-driving cars [19], place recognition [11], etc. The recent success of deep
learning methods has spurred the research in this field leading to the creation
of several new benchmarks that now outperform traditional methods which rely
on handcrafted features and exploit camera geometry and/or camera motion for
depth and pose estimation from monocular or stereo sequence of images (video).
These learning methods can be broadly classified into two categories: supervised
and unsupervised. The supervised learning methods [7,10] necessitate explicit
availability of ground truth information (Laser or LiDAR range data) which
may not always be feasible in many real-world scenarios. This is overcome by
the unsupervised methods [5,39,42] that harness the spatial and/or temporal
consistency present in image sequences to extract the underlying geometry to be
used as the implicit supervision signal required for training the models. Many of
these methods were shown to provide very impressive results on several popular
datasets such as KITTI [15] and Cityscapes [9] containing only day-time images.
In contrast, there are a very few works that aim to solve the night-time depth esti-
mation problem, which is comparatively more challenging owing to factors such
as low visibility and non-uniform illumination arising from multiple (street lights,
traffic lights) and possibly, moving light sources (car headlights). For instance,
authors in [22] exploit the inherent motion component in burst shot (several suc-
cessive shots with varying camera settings, also known as “auto-bracketing”) to
estimate depth from images taken under low-light condition. Similarly, Zhu et al.
[43] present a deep learning based method for estimating motion flow, depth and
pose from images obtained from event cameras that return a time-stamped event
tuple whenever a change in pixel intensity is detected. In another work, Kim et
al. [24] propose a deep network for estimating depth from thermal images taken
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during the night time. To the best of our knowledge, there is no reported work
that addresses the problem of estimating depth and pose directly from a single
ordinary RGB monocular night-time image. The deep learning models trained on
day-time monocular [42] or stereo images [5] fail miserably on night-time images
due to the inherent large domain shift between these images. The domain shift
refers to the change from day-time conditions (well-lit and uniform illumination)
to night-time conditions comprising low illumination/visibility with non-uniform
illumination caused by unpredictable appearance and disappearance of multiple
point-light sources (e.g., street lamps or car headlights, etc.).

One possible solution will be to apply image-to-image translation methods,
such as Cycle-GAN [44] or MUNIT [21], to map night-time images to day-time
images and then use a pre-trained day-time depth model to estimate depth
from these translated images. Some of these image translation techniques have
been used in the context of night-time images. For instance, the authors in [2]
use night-to-day image translation for solving the place recognition problem
required for localization. Similarly, authors in [4,40] explore image translation
techniques to generate synthetic labeled data to reduce the requirement of real-
world images for training depth estimation models. Many of these models trained
on simulated images do not generalize well to natural images due to the inher-
ent domain shift and hence, employ several domain adaptation techniques to
improve their applicability to real-world situations [4,31,40]. These approaches
have several limitations. For instance, many of these methods use two different
deep networks - one for image translation and another for depth estimation,
making it computationally heavy and with possibly, inferior performance due
to the cascading error effect of using two models in a cascade. Since the image
translation module is trained independent of the depth network module, it may
not learn depth-specific attributes required for preserving structural information
during image translation. This may, in turn, introduce artifacts which might not
be understood by the depth estimation module leading to poor depth predic-
tion for the input night-time image. Secondly, it is difficult to generate synthetic
night-time images that can capture all the vagaries of real-world night conditions
as one can observe in the Synthia dataset [33]. Many of the simulated night-time
images in this dataset appear almost like day-time images and using them for
night-time depth prediction may not give desired results. Finally, these methods
have been applied so far to day-time images for depth estimation.

In this paper, we propose a PatchGAN-based domain adaptation technique
for estimating depth from monocular night images by using a single encoder-
decoder type deep network model. Specifically, an encoder network is trained
to generate night-time features which are indistinguishable from those obtained
from day-time images. This is achieved by using an adversarial discriminative
learning [36] that uses day-time encoded features as the reference. These adapted
night features could then be used directly with a decoder network pre-trained
on day-time images for depth estimation. Since the domain features are adapted
through adversarial learning, this method is termed as “Adversarial Domain
Feature Adaptation (ADFA)” method to distinguish it from other methods that
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attempt to adapt depth predictions directly [4,31,40]. PatchGAN networks [23,
37] have been shown to provide superior performance compared to conventional
GANs by capturing high frequency local structural information and hence, form
a natural choice of GAN architecture for the proposed method.

The resulting outcome of our approach is shown qualitatively in Fig. 1. We are
able to obtain reliable depth maps shown in Fig. 1(c) from monocular night-time
images shown in Fig. 1(a). This is also evident from the interpolated ground-truth
depth maps obtained from the LIDAR point clouds as shown in Fig. 1(b). The
efficacy of the proposed approach is demonstrated by applying it to the chal-
lenging Oxford night-time driving dataset [29]. The modular encoder-decoder
architecture provides the flexibility of using the encoder module as a feature
extractor to extract or select useful features from input images. Such feature
extractors are used in several applications such as pose estimation [18], Visual
Place Recognition (VPR) [11,12], object detection [41] and segmentation [6]. We
demonstrate one such application where the adapted features obtained from our
encoder module are shown to provide superior place recognition accuracy com-
pared to other state-of-the-art feature representations available in the literature.

In short, the main contributions made in this paper may be summarized as
follows:

– We propose a novel PatchGAN-based domain feature adaptation method for
estimating depth from unconstrained monocular night-time RGB images,
which is considered to be more difficult compared to day-time images. To
the best of our knowledge, this is the first instance where adversarial dis-
criminative domain feature adaptation is being used for estimating depth
from unconstrained night-time monocular RGB images and this may act as
a stepping-stone for future research in this field.

– We also propose an image translation-based method for night-time depth esti-
mation by using a combination of an image translating network (e.g. Cycle-
GAN [44]) and a standard day-time depth estimation network (such as [18])
in cascade. This serves to highlight the difficulties involved in such methods
and hence, provides a strong motivation in favour of the proposed work.

– The usefulness and effectiveness of our method is further established by
demonstrating that the features obtained using the proposed ADFA method
outperform other state-of-the-art feature representations in a visual place
recognition problem.

Rest of this paper is organized as follows. The proposed method is described
in the next section. The experimental evaluation of our approach on various
datasets is discussed in Sect. 3. The concluding remarks and future scope of this
work is presented in Sect. 4. Our code will be made available at https://github.
com/madhubabuv/NightDepthADFA.

2 Proposed Method

We propose to solve the depth estimation problem for night-time images by
posing it as a domain adaption problem in which a model pre-trained on day-time

https://github.com/madhubabuv/NightDepthADFA
https://github.com/madhubabuv/NightDepthADFA
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Fig. 2. Architectural overview of the proposed method. (a) The monocular day-model
consists of a Depth-Net (Fd, Gd) and a Pose-Net (Fp, Gp) to predict per-pixel depth-
map dt and 6-DoF pose P t−1

t , respectively. The day-model is trained using photometric
losses calculated from images reconstructed from view-reconstruction module. (b) A
new encoder Fn takes a night-time image In and predicts fn. The fn features are
adapted to look-like day features fd using adversarial learning with a Patch-GAN
based discriminator D. The red dotted line is drawn to indicate modules trained using
back propagation.(c) Finally, the new-encoder Fn and the day depth-decoder Gd are
used together to predict depth for night-time images (Color figure online)

images is adapted to work for night-time images as well. The overall approach
is shown in Fig. 2. It consists of three steps. First, an encoder-decoder type deep
network model (Fd, Gd) is trained on day-time images to estimate depth directly
from RGB images by using one of the existing methods as in [17,18,37,39,42].
This is shown in Fig. 2(a). The second step involves training a new image encoder
Fn with night-time images using adversarial discriminative learning that uses Fd

as the generator. This is shown in Fig. 2(b). The third and the final step involves
using the new encoder Fn in conjunction with the day-time decoder Gd for
estimating depth directly from night-time images as shown in Fig. 2(c).

The above three components of the proposed ADFA method are described
in detail in the following subsections.

2.1 Learning Fd and Gd from Day-Time Images

Estimating depth from monocular day-time images is an active field of research
where deep learning methods have been applied successfully and several new
benchmarks have been reported in the literature [5,7,10,27,28,37,39,42]. These
deep networks have an encoder-decoder type architecture as shown in Fig. 2(a).
Such an architecture allows us to decompose the entire pipeline into two sub-
networks, one for encoding (or extracting) features from input images and
another for mapping these features to depth information. In unsupervised meth-
ods, the image reconstruction error is used as the loss function for training
the entire model thereby avoiding the necessity of having the explicit ground
truth depth information. The images are reconstructed by using spatial and/or
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temporal cues obtained from stereo or monocular sequence of images. The meth-
ods that use only temporal cues (such as optical flow) incorporate an additional
network to estimate pose or ego motion required for image reconstruction [39,42].
The Depth-Net as shown in Fig. 2(a) is composed of a series of convolutional
and deconvolutional layers with different filter sizes. Given a monocular day-
time image Id, the image encoder Fd generates, say, L number of convolutional
feature maps with different shapes and sizes, one from each layer. This feature
map is represented as Fd(Id) = fd = {f i

d}, i = 1, 2, . . . , L, where L is the total
number of convolutional layers used in the image encoder. These feature maps
are then passed to a depth-decoder Gd to predict per-pixel depth map D of
the input image Id. One can use any of the existing methods (supervised or
unsupervised) to learn the functions Fd and Gd. In this work, we have used the
state-of-the art depth-net model [18] as our Fd and Gd which are trained on
the day-time monocular images. Since only monocular sequence of images are
used for training, an additional pose network is required to estimate ego motion
of the camera required for reconstructing images in the temporal domain. The
encoder network Fd is used to train a new encoder Fn for night-images using an
adversarial learning as explained in the next section.

2.2 Learning Fn Using Night-Time Images

Once the day-time image encoder Fd and depth decoder Gd are learned, our
objective is to learn an image encoder Fn that can generate the features maps
fn from a night-time image In which are indistinguishable from the day-time
feature maps fd obtained from the day-time encoder Fd. There is no direct
supervision signal available for computing the loss function from fd and fn as
the input day and night images are unpaired. Here, the term unpaired means
that these two images are not taken at the same time or at the same place. The
encoder Fn is trained to reduce the distance between the distributions of day and
night feature spaces by using an adversarial training approach proposed in [36].
In this approach, the image encoder Fn acts as a generator trying to generate
feature maps from a night image In, which look similar to the day-time feature
maps fd obtained from a day-time image Id using a day-time encoder Fd. These
generated features maps are then evaluated by a discriminator network D that
tries not to get fooled by the generator by assigning correct labels to them. In this
way, the generator learns to generate day-like feature maps from the night-time
images by playing a zero-sum min-max game with the discriminator.

Unlike a regular GAN discriminator which assigns a single scalar value for a
given input, a patch-based discriminator [23] assigns a grid of m×n scalar values
for a given feature map. Each value of this grid is a probability ranging from 0
(night) to 1 (day) and it corresponds to a patch of the input feature map. This
allows the discriminator to evaluate the input feature maps locally thereby, pro-
viding superior distinguishing ability compared to normal GAN discriminators.
In addition, the patch-based discriminators are fully convolutional and hence,
are computationally much faster compared to the other discriminator models
that use fully-connected layers along with the convolutional layers [37].
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Instead of training a single discriminator network on the feature maps
obtained from the final convolutional layer of the image encoder as is done in
[31,36], we train multiple discriminators, one for each layer of the encoder net-
work to constrain the solution space further. Hence, the proposed multi-stage
patch-based discriminator is composed of L number of discriminators where each
discriminator Di, takes feature maps (f i

n, f
i
d) obtained from the i−th convolu-

tional layer of the encoder networks (Fn, Fd) as input. This multi-stage discrim-
inator is shown to provide superior domain adaptation performance which will
be discussed later in the experiments section.

2.3 Training Losses

The proposed method is an unsupervised learning approach which neither uses
any explicit ground truth nor paired day-night image examples to calculate losses
for training. Instead, we entirely rely on adversarial losses calculated using the
discriminator module. The loss functions to learn Fn and D can be expressed as
follows:

LGAN (Fn,D) = min
Fn

max
D

V (Fn,D) = Efd∼Fd(Id)[log(D(fd))]

+Efn∼Fn(In) [log(1 −D(fn))] (1)

min
Fn

LFn
(Fn,D, In) =

1
L

L∑

i=1

− Efn∼Fn(In)

[
∑

m,n

log
[
Di(f i

n)
]
m,n

]
(2)

min
D

LD(Fd, Fn,D, Id, In) =
1
L

L∑

i=1

− Efd∼Fd(Id)

[
∑

m,n

log
[
Di(f i

d)
]
m,n

]

− Efn∼Fn(In)

[
∑

m,n

log
(
1 − [

Di(f i
n)

]
m,n

)]
(3)

The details about our experimental setup and various experiments conducted
are explained in the following section.

3 Experiments and Results

In this section, we provide various experimental results to establish the efficacy
of the proposed method for estimating depth from night-time monocular RGB
images. We use the publicly available Oxford Robotcar dataset [29] for evaluating
the performance of our method. This dataset is used to perform two sets of
experiments. The first experiment is carried out to analyze the depth estimation
performance of the proposed method while the second experiment is performed
to demonstrate the flexibility of using the encoder for solving a Visual Place
Recognition (VPR) problem. The overview of dataset used and the details of
experiments performed are described next in this section.
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3.1 Oxford Robotcar Dataset: Training and Testing Data Setup

Oxford RobotCar dataset [29] is a popular outdoor-driving dataset comprising
of images collected during different seasons, weather conditions and at different
timings of day and night. The data collection is carried out over a period of one
year by setting cameras in all the four directions. The images captured from the
front-view stereo cameras are of resolution 1280 × 960. We have used the left
images of the front stereo-camera (Bumblebee XB3) data from the sequences
captured on 2014-12-16-18-44-24 for night-time and 2014-12-09-13-21-02 for day-
time images for depth estimation. The training is performed on the images from
the first 5 splits of the day and night-time sequences after cropping the car-hood
from the images and downscaling them to 256 × 512. The static images where
the car has stopped at signals are not considered for the experiments and thus,
the total number of images left for training is close to 20,000. We have randomly
sampled a total of 498 images for testing from the 6th split of night-driving
sequence.

For VPR, we have used day and night sequences as 2014-12-09-13-21-02 and
2014-12-10-18-10-50 respectively from the Oxford Robotcar dataset, where the
query (night) sequence is different from that used in the network training. We
only used the first 6000 stereo-left image frames from each of these traverses
which were uniformly sub-sampled using the GPS data to maintain consecutive
frame distance of approximately 2 m. The day traverse is used as the reference
traverse against which each of the query (night) image representations is com-
pared with Euclidean distance to retrieve the best match. The night images
do not overlap geographically with the night data used for training the model
employed for feature extraction for VPR experiments. The evaluation is done
using the GPS data by calculating the recall rate for the localization radius
varying between 0 to 100 m. Here, recall rate is defined as the ratio of correctly
matched images within the given radius of localization to the total number of
query images.

3.2 Experimental Setup

The proposed method is implemented using TensorFlow [1]. The network is
trained for 40 epochs using a GTX 1080 Alienware-R4 laptop. The learning rate
is initially set to 0.0001, then it is reduced by half after 3/5th of the total itera-
tions and finally, it is further reduced by half after 4/5th of the total iterations.
Leaky Relu [38] is used as an activation function in all the layers, except in
disparity prediction layers. The predicted disparity is normalized to have the
maximum disparity as 30% of the input image width by using sigmoid as activa-
tion function while learning the day-time depth estimation model. The network
is trained using the Adam [25] optimizer. Two major experimental studies, one
for depth estimation and another for visual place recognition, are carried out
under extreme photometric variations using the Oxford dataset [29]. Both the
experimental studies along with the qualitative and quantitative analyses are
presented below.
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Fig. 3. A qualitative comparison of predicted depth-maps with different experiments.
The first column shows the night-time images which are provided as input to different
networks. The second column shows the output depth images obtained using photomet-
ric losses. As one can observe, these methods fail to maintain the structural layout of
the scene. The third column shows the output of an image-translation network (Cycle-
GAN) which are then applied to a day-depth estimation network to obtain depth-maps
as shown in the fourth column. These are slightly better compared to the previous case
but it introduces several artifacts which degrade the depth estimation in several cases.
The last column shows the predictions using the proposed ADFA approach. As one can
see, the proposed method provides better predictions compared to these methods and
is capable of preserving structural attributes of the scene to a greater extent

3.3 Study 1: Depth Evaluation

In this study, we perform several experiments to establish the efficacy of our
proposed method for estimating depth from monocular night-time images. The
summary of these experiments is provided in Table 1. The first row of this table
shows the outcome of our first experiment where we train a monocular ver-
sion of Monodepth2 [18] network on Oxford day-time images and then, test
it on Oxford night-time images. As expected, the day-time trained model per-
forms poorly on night-time images because of the inherent domain shift present
between day-time and night-time images. The second row shows the outcome of
another experiment where the same network is trained on the Oxford night-time
images and then, tested on a different set of night-time images (test-split). The
performance in this case is better than the first experiment but still not good
enough as the presence of temporal intensity gradient makes it difficult to use the
existing photometric losses for training the network. The third row of this table
shows the outcome of yet another experiment where we use image translation
for depth estimation. In this approach, we use Cycle-GAN [44] for translating
night-time Oxford images into day-time images and then use a day-time trained
Monodepth2 model for estimating depth from these translated images. The per-
formance of this approach is similar to the above methods (worse in terms of
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Table 1. A quantitative performance comparison analysis for depth estimation from
night-time images. The top split of the table is evaluated with 60 m and the lower is
evaluate with 40m as the maximum depth-range. Higher value is better for the blue
color labeled cells and lower value is better for the rest

Method Error Metric ↓ Accuracy Metric ↑
Abs Rel Sq Rel RMSE logRMSE δ <1.25 δ <1.252 δ <1.253

Monodepth2 [18] (Day) 0.7221 11.5155 14.253 0.663 0.252 0.467 0.644

Monodepth2 [18] (Night) 0.3990 38.8965 23.596 0.408 0.482 0.760 0.894

Cycle-GAN [44] 0.7587 12.7944 13.681 0.663 0.277 0.503 0.688

ADFA (with KITTI) 0.3589 5.1174 11.611 0.384 0.424 0.730 0.914

ADFA (with Oxford) 0.2327 3.783 10.089 0.319 0.668 0.844 0.924

Monodepth2 [18] (Day) 0.6108 6.9513 9.945 0.592 0.267 0.502 0.695

Monodepth2 [18] (Night) 0.2921 7.5395 10.686 0.332 0.588 0.829 0.932

Cycle-GAN [44] 0.6497 7.9346 9.521 0.596 0.298 0.546 0.740

ADFA (with KITTI) 0.2984 3.2349 7.801 0.328 0.495 0.833 0.942

ADFA (with Oxford) 0.2005 2.5750 7.172 0.278 0.735 0.883 0.942

‘Abs Rel’ metric and better in terms of ‘RMSE’ metric) indicating that image
translation is not adequate for solving the night-time depth estimation problem.
Moreover, it is a computationally expensive method that uses two independent
networks in cascade unlike the above methods that use only one network for
this task. We now apply our proposed ADFA method to adapt the depth model
used in the first experiment above and the outcome is shown in the fifth row
of this table. As one can see, it provides significant improvement over the pre-
vious three approaches, thereby establishing the superiority of our approach. In
this case, day-time encoder-decoder pair (Fd, Gd) and night-time encoder (Fn)
are trained using images from Oxford dataset and then tested using night-time
images from the same dataset. We also perform another experiment where the
day-time encoder-decoder network (Fd, Gd) is trained on the KITTI dataset,
but the night-time encoder (Fn) is trained and then tested on night-time Oxford
images. The corresponding result is shown in the fourth row and is labeled as
‘ADFA (with KITTI)’. While its performance is worse than ADFA (Oxford), it is
better than all other methods mentioned above. It is worth to mention that this
is an extreme case of domain adaption where not only there is a domain varia-
tion from day to night, but also a place variation from KITTI to Oxford. It only
demonstrates the resilience of our approach whose performance degrades grace-
fully in the face of this extreme domain variation. Even though Monodepth2 [18]
model has been used as our base network architecture for providing the above
performance analysis, ADFA is a generic approach which could be applied to
any other deep network model with similar effect.

A qualitative performance comparison of these methods is shown in Fig. 3.
The first column shows the input night-time images selected randomly from
the test set. The second column shows the depth estimation results obtained by
using methods such as Monodepth2 [18] that use photometric losses for training.
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Table 2. Ablation study to determine the number of day-encoder convolutional layers
to be used during the adversarial learning. The best performance is achieved by skipping
the first two layers (without cnv-1,2) features

Method Abs Rel Sq Rel RMSE logRMSE

Full conv layers 0.2071 2.8971 7.619 0.282

without cnv-1 0.2038 2.7908 7.461 0.280

without cnv-1,2 0.2005 2.575 7.172 0.278

without cnv-1,2,3 0.2260 2.574 7.283 0.300

The third column shows the images obtained after image translation by using
methods such as Cycle-GAN [44]. The fourth column shows the depth map
obtained from these translated images by a pre-trained day-time depth network.
We can clearly see that image translation introduces several artifacts leading
to poor depth estimation results. The last column shows the depth prediction
results obtained by using our proposed ADFA method. One can clearly notice
the improvements achieved through our proposed domain feature adaptation
method.

The front LMS laser sensor data with INS data is used to prepare the ground-
truth needed for testing images using the official code-base released with the
dataset. The maximum depth range is set to 60m in the first half of the Table 1
and changed to 40 m in the second half. The scale is calculated using the ground-
truth depth data, as it is done in [39,42]. In addition, an ablation study is carried
out to determine the optimal number of night-time encoder Fn layers to be
constrained for the best performance and the results are shown in Table 2. We
observed that a model trained by skipping the first two layers of the day-encoder
gives the best-performance and the same model is used to report the final results.

To the best of our knowledge, the proposed work is the first attempt at
solving the depth estimation problem for unconstrained night-time monocular
images for which no priors are available in the literature. However, there are
some cases, shown in the Fig. 4, where the model is observed to provide poor or
failed prediction results. Some of the failure cases include night-time images with
very low-illumination conditions, blurred image regions and saturated regions
(bright light spots). It is also difficult for our method to deal with small and
narrow structures such as traffic poles. The failure case with low-illuminated
night-time images could be due to the absence of such extreme conditions in day-
time images on which the day encoder-decoder model is trained. The problems
associated with small structures could be dealt by incorporating some semantic
information (if available) into the training data. These limitations will provide
a fertile ground for further research in this field.
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Fig. 4. Failure cases of the proposed depth prediction approach. The model is not able
to predict accurate depth for blurred image regions, traffic signal poles and very low
illuminated regions of the image

Fig. 5. Visual Place Recognition Performance Benchmark: It can be observed that the
feature representations derived from our depth encoder perform the best as compared
to other approaches

3.4 Study 2: Visual Place Recognition: Day Versus Night

The depth estimation network trained using our proposed approach is able to
learn appearance-robust features within the encoder. This is particularly useful
for visual place recognition under significant appearance variations, for example,
day versus night. The state-of-the-art VPR methods use deep-learnt represen-
tations either based on end-to-end training [3,8,32] or indirectly derived from
the internal layer representations [2,14,35]. For the performance benchmark pre-
sented in this section, we directly compare the convolutional features based image
representations, extracted from different networks. In this way, the repeatability
of activation patterns across day and night appearance conditions can be directly
evaluated.

Figure 5 shows the performance comparison among different place represen-
tation methods. This includes flattened conv5 representations from four differ-
ent networks trained on different tasks: Ours-C5 uses the encoder output from
our proposed network, trained to predict depth for night-time images; NV-C5
uses VGG [34] based NetVLAD [3], trained for place recognition; Obj-C5 uses
ResNet50 [20], trained for object recognition; and Sem-C5 uses the encoder out-
put of RefineNet [26] which is based on ResNet101 [20] and trained for dense
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Fig. 6. Qualitative Results: For night time query images (top row), Ground Truth (GT)
match (second row) and matches obtained from different methods are displayed (sub-
sequent rows) including successful matches using our proposed representation (third
row)

semantic segmentation. The latter has also been effectively used for state-of-the-
art place recognition descriptor LoST [13]. The flattened conv5 representations
expect a similar viewpoint between the compared pairs of images; for sake of
completion, we also include a viewpoint-invariant representation in our com-
parisons: NetVLAD as NV which uses 4096-dimensional descriptors. It can be
observed that the feature representations based on our depth encoder perform
the best. While there is a significant margin in performance for the flattened
conv5 comparisons, the proposed representation also outperforms the end-to-
end learnt viewpoint-invariant NetVLAD representation.

Figure 6 shows qualitative results for visual place recognition under signif-
icant appearance variations. The first row shows four query images captured
under night time conditions; their corresponding Ground Truth (GT) day-time
image matches are shown in the second row. In subsequent columns, image
matches obtained through different representation methods are displayed with
the third row comprising successful matches based on our proposed represen-
tation. The incorrect matches using other methods in the first column seem
to indicate a bias in their selection based on the presence of a vehicle in the
query image. In the second row, it can be observed that most of the retrieved
matches comprise buildings viewed from far with an oblique viewpoint, how-
ever, only the proposed representation is able to obtain the correct match. We
believe that learning to predict depth per pixel for night time imagery enables the
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latent representations to be more robust to perceptual aliasing caused by appear-
ance variations. Moreover, our proposed depth-estimation network is trained in
a completely unsupervised manner, where other vision-based tasks like object
recognition and semantic segmentation would require labeled night-time data if
they were to be used for extracting appearance-invariant image representations
for place recognition.

4 Conclusions and Future Scope

This paper discusses the problem of estimating depth from night-time images,
which suffers from poor visibility, non-uniform and unpredictable variation in
illumination arising from multiple and possibly, moving light sources. The prob-
lem is tackled by applying a patchGAN-based domain adaptation technique that
allows an encoder to adapt the features obtained from the night-time images to
acquire the attributes of day-time features so that a decoder trained on day-
time images could be directly used for estimating depth from these adapted
features. The proposed novel approach is completely unsupervised as it does
not necessitate the availability of either explicit ground truth signals (obtained
from range sensors) or implicit supervision signals obtained from multi-view
(spatial/temporal) images. Unlike many of the existing methods, the proposed
method also does not require generating simulated data which is considerably
difficult for night-time images. The efficacy of the proposed approach is demon-
strated through extensive analyses on the challenging Oxford RobotCar dataset.
Its usefulness is also demonstrated through its application to a visual place recog-
nition problem where the feature representation obtained from our depth encoder
is shown to outperform those obtained from the existing state-of-the-art meth-
ods. The proposed approach has some limitations which will form the scope for
future investigations. As shown in Fig. 4, our method can not deal with satu-
rated regions (bright lights), very low illuminated regions and thin structures,
such as traffic signal poles. This could be solved to some extent by incorporat-
ing semantic information in the learning process. Secondly, instead of learning
two separate encoders - one for day-time images and the other for night-time
images, it would be good to have one encoder model which could be trained to
learn context-specific features which are unique to different styles rather than
image-specific features. These context-specific features could then provide the
necessary semantics to deal with the above failure cases.

References

1. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: OSDI,
vol. 16, pp. 265–283 (2016)

2. Anoosheh, A., Sattler, T., Timofte, R., Pollefeys, M., Van Gool, L.: Night-to-day
image translation for retrieval-based localization. In: 2019 International Conference
on Robotics and Automation (ICRA), pp. 5958–5964. IEEE (2019)



Night Time Depth Estimation Using ADFA 457

3. Arandjelovic, R., Gronat, P., Torii, A., Pajdla, T., Sivic, J.: NetVLAD: CNN archi-
tecture for weakly supervised place recognition. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 5297–5307 (2016)

4. Atapour-Abarghouei, A., Breckon, T.P.: Real-time monocular depth estimation
using synthetic data with domain adaptation via image style transfer. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
2800–2810 (2018)

5. Babu, V.M., Das, K., Majumdar, A., Kumar, S.: UnDEMoN: unsupervised deep
network for depth and ego-motion estimation. In: Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 1082–
1088. IEEE (2018)

6. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional
encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal.
Mach. Intell. 39(12), 2481–2495 (2017)

7. Cao, Y., Wu, Z., Shen, C.: Estimating depth from monocular images as classifica-
tion using deep fully convolutional residual networks. IEEE Trans. Circuits Syst.
Video Technol. 28(11), 3174–3182 (2018)

8. Chen, Z., et al.: Deep learning features at scale for visual place recognition. In:
2017 IEEE International Conference on Robotics and Automation (ICRA), pp.
3223–3230. IEEE (2017)

9. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understand-
ing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3213–3223 (2016)

10. Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image
using a multi-scale deep network. In: Advances in Neural Information Processing
Systems, pp. 2366–2374 (2014)

11. Garg, S., et al.: Look no deeper: recognizing places from opposing viewpoints
under varying scene appearance using single-view depth estimation. arXiv preprint
arXiv:1902.07381 (2019)

12. Garg, S., Harwood, B., Anand, G., Milford, M.: Delta descriptors: change-based
place representation for robust visual localization. IEEE Robotics and Automation
Letters 5(4), 5120–5127 (2020)

13. Garg, S., Suenderhauf, N., Milford, M.: Lost? Appearance-invariant place recogni-
tion for opposite viewpoints using visual semantics. In: Proceedings of Robotics:
Science and Systems XIV (2018)

14. Garg, S., Sünderhauf, N., Milford, M.: Semantic-geometric visual place recognition:
a new perspective for reconciling opposing views. Int. J. Rob. Res. (2019)

15. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI
dataset. Int. J. Rob. Res. 32(11), 1231–1237 (2013)

16. Geiger, A., Ziegler, J., Stiller, C.: StereoScan: dense 3D reconstruction in real-time.
In: IEEE Intelligent Vehicles Symposium, Baden-Baden, Germany, June 2011

17. Godard, C., Mac Aodha, O., Brostow, G.J.: Unsupervised monocular depth esti-
mation with left-right consistency. In: 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 6602–6611. IEEE (2017)

18. Godard, C., Mac Aodha, O., Firman, M., Brostow, G.: Digging into self-supervised
monocular depth estimation. arXiv preprint arXiv:1806.01260 (2018)

19. Handa, A., Whelan, T., McDonald, J., Davison, A.J.: A benchmark for RGB-
D visual odometry, 3D reconstruction and SLAM. In: 2014 IEEE International
Conference on Robotics and automation (ICRA), pp. 1524–1531. IEEE (2014)

http://arxiv.org/abs/1902.07381
http://arxiv.org/abs/1806.01260


458 M. Vankadari et al.

20. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

21. Huang, X., Liu, M.-Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-
image translation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.)
ECCV 2018. LNCS, vol. 11207, pp. 179–196. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-01219-9 11

22. Im, S., Jeon, H.G., So Kweon, I.: Robust depth estimation from auto bracketed
images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2946–2954 (2018)

23. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with con-
ditional adversarial networks. In: 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 5967–5976. IEEE (2017)

24. Kim, N., Choi, Y., Hwang, S., Kweon, I.S.: Multispectral transfer network: unsu-
pervised depth estimation for all-day vision. In: Thirty-Second AAAI Conference
on Artificial Intelligence (2018)

25. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

26. Lin, G., Milan, A., Shen, C., Reid, I.: RefineNet: multi-path refinement networks for
high-resolution semantic segmentation. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), vol. 1, p. 3 (2017)

27. Luo, C., et al.: Every pixel counts++: joint learning of geometry and motion with
3D holistic understanding. arXiv preprint arXiv:1810.06125 (2018)

28. Luo, Y., et al.: Single view stereo matching. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 155–163 (2018)

29. Maddern, W., Pascoe, G., Linegar, C., Newman, P.: 1 year, 1000 km: the Oxford
RobotCar dataset. Int. J. Rob. Res. 36(1), 3–15 (2017)

30. Marchand, E., Uchiyama, H., Spindler, F.: Pose estimation for augmented reality: a
hands-on survey. IEEE Trans. Visual Comput. Graphics 22(12), 2633–2651 (2016)

31. Nath Kundu, J., Krishna Uppala, P., Pahuja, A., Venkatesh Babu, R.: AdaDepth:
unsupervised content congruent adaptation for depth estimation. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2656–
2665 (2018)
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Abstract. Connectionist Temporal Classification (CTC) is a training
criterion designed for sequence labelling problems where the alignment
between the inputs and the target labels is unknown. One of the key
steps is to add a blank symbol to the target vocabulary. However, CTC
tends to output spiky distributions since it prefers to output blank sym-
bol most of the time. These spiky distributions show inferior alignments
and the non-blank symbols are not learned sufficiently. To remedy this,
we propose variational CTC (Var-CTC) to enhance the learning of non-
blank symbols. The proposed Var-CTC converts the output distribution
of vanilla CTC with hierarchy distribution. It first learns the approxi-
mated posterior distribution of blank to determine whether to output a
specific non-blank symbol or not. Then it learns the alignment between
non-blank symbols and input sequence. Experiments on scene text recog-
nition and offline handwritten text recognition show Var-CTC achieves
better alignments. Besides, with the enhanced learning of non-blank sym-
bols, the confidence scores of model outputs are more discriminative.
Compared with the vanilla CTC, the proposed Var-CTC can improve
the recall performance by a large margin when the models maintain the
same level of precision.

Keywords: Connectionist Temporal Classification · Scene text
recognition · Handwritten text recognition

1 Introduction

Connectionist Temporal Classification (CTC) [4] is a training criterion designed
for sequence labelling problems where the alignments between the inputs and the
target labels are unknown. It has gained widespread traction from its successful
use in tasks such as speech recognition [5,7,24], text recognition [6,30], sign
language recognition [2], video segmentation [13] and so on. It is proven to be
effective in sequence recognition tasks.

CTC works by adding an extra blank symbol to target vocabulary and max-
imizing the probabilities of all possible alignments. The added blank symbol
represents outputting either a specific non-blank symbol or not. With the added
blank symbol, the outputs over all timesteps are aligned to multiple paths, which
c© Springer Nature Switzerland AG 2020
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consists of labels and blanks. The CTC-based training is then to sum up proba-
bilities of all the corresponding paths and maximize them. However, the distri-
bution of blank and non-blank symbols in the training data is unbalanced. This
is because: 1) blank is almost added into every training data to make paths; 2)
compared with the non-blank, the positions of blanks in paths are more flexible,
which leads to more blanks are added. The unbalanced distribution leads to the
model prefers output blank most of the time, which is known as the CTC spiky
distribution problem [4,24,28]. As shown in Fig. 1, the outputs of the charac-
ters in label sequence only exist in only a few timesteps. The spiky distributions
show inferior alignments [28]. The learning of non-blank symbols is not sufficient,
which is suppressed by the added blank.

In this paper, we try to enhance the learning of non-blank symbols by propos-
ing the variational CTC (Var-CTC). The Var-CTC approximates the posterior
distribution of blank using a learned inference network. It is fit with variational
inference [16] technique to improve the training bound. In the proposed Var-
CTC, the influence of the unbalanced distribution for non-blank symbols is
relieved. This is because the distributions of blank and non-blank symbols are
not belonging to the same one. Var-CTC first learns the approximated posterior
distribution of blank to determine whether to output a label or not. Then it
learns to determine to output which label. This hierarchy output of Var-CTC
is similar to the classification branch in objection detection [26], where the first
hierarchy determines the background and non-background category and the sec-
ond hierarchy determines the object category.

Besides, we find the confidence scores of the CTC model’s predictions in
text recognition are not discriminative enough. Confidence scores are important
for practical use, as we want the model’s predictions can achieve the desired
precision and recall at the same time. Having a reliable confidence score is crucial
for real world applications of OCR. As far as we know, the confidence score based
evaluation has never been compared. In this paper, we add the confidence score
based evaluation for model comparisons. We find the proposed Var-CTC can
improve the Precision-Recall performance significantly.

The main contributions of this paper can be summarized as follows: (1) Vari-
ational inference for CTC is first introduced, which converts output distribution
of vanilla CTC with hierarchy distribution; (2) The confidence scores of CTC
based models on text recognition are analyzed. We show why the confidence
score is not discriminative enough by case study and Precision-Recall curve; (3)
With the enhanced learning of non-blank symbols, the proposed Var-CTC can
improve the recall by a large margin while maintain the same level precision.

2 Related Work

CTC has been explored extensively in sequence recognition tasks, like text recog-
nition [6,30], speech recognition [4,5,7] and so on. A relevant and recent work to
ours is the EnEs-CTC [20]. EnEs-CTC proposes a maximum conditional entropy
based regularization method to penalize spiky distributions. The penalization
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Fig. 1. (Better viewed in color). Visualization of the output distributions for CTC
(left) and Var-CTC (right). For Var-CTC, we visualize two distributions, where the
bottom one denotes P (classes|blank, img) ∗ P (blank|img) and the top one denotes
P (classes|img). The classes in this case represents the characters in label sequence
“MEADOWS”. (Color figure online)

operation enables the model to explore more paths for the sequence alignments,
which improves the learning of the non-blank symbols. In contrast to them, our
work improves the learning of non-blank symbols by changing the output distri-
bution to hierarchy distribution. The hierarchy distribution relieves the influence
of the unbalance problem, which is more thoroughly.

For large scale speech recognition, [32] introduces and evaluates Sampled
CTC to speed up CTC training. Two sampling methods are proposed to sample
the blank outputs, which are heuristic. Once the blank is sampled, the other
parameters can be optimized by minimizing cross entropy objective. Our pro-
posed Var-CTC can also sample the blank output. While the sampling procedure
is guided by the approximated posterior distribution, which is end-to-end learn-
able. GTC [12] tries to learn better alignment with an attention decoder as
a guidance for CTC training while this paper focuses on the underfitting for
non-blanks in vanilla CTC.

Besides, [3] modifies the CTC by fusing focal loss with it and thus makes
the model to attend to the low-frequent samples at training stage. The proposed
method tries to solve the class unbalance problem of Chinese optical character
recognition. Compared to them, our work try to solve the unbalance problem
between blank and non-blank symbols rather then unbalance among non-blank
symbols. For weakly-supervised action labelling in video, [13] introduces the
extended CTC framework to enforce the consistency of all possible paths with
frame to frame visual similarities. However, computing the visual similarities
between consecutive frames is expensive.

Meanwhile, CTC based model for scene text recognition has achieved relative
high recognition accuracy on several benchmark datasets. These models are often
evaluated by sequence accuracy [20,30]. The confidence score is important but
never analyzed. In this paper, we add the confidence score based performance
as an evaluation criterion.

2.1 Methodology

Before proceeding, we define our mathematical notations. The input feature
sequence is represented as X = {x1, x2, x3, ..., xT }, where T is the sequence
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Fig. 2. The probabilistic graphical model of our proposed method. Dotted lines rep-
resent the calculation of the approximate posterior distribution. X and Y represent
feature sequence and label sequence respectively. Ob represents whether to output a
label or not at each timestep. p(Oc|X) represents the categorical distribution for ele-
ments in label sequence Y , which does not contain blank.

length, and xi is a vector representation in R
d. The target label sequence is

represented as Y = {y1, y2, ..., yT y}. T y represents the length of target label
sequence, which is no greater than T . The elements of label sequence come from
the target vocabulary A. The blank symbol is represented as “−”. The extended
vocabulary A ∪ {−} is represented as A∗. The model output is represented as O
and it contains blank output sequence Ob and non-blank output sequence Oc. ot

represents the output at timestep t.

2.2 Connectionist Temporal Classification

Given feature sequence X and label sequence Y , CTC learns the alignment
without employing the frame level alignment information. The blank symbol
“−” is added to the target label vocabulary for two reasons. Firstly, it separates
the repeated label in the label sequence. Secondly, it is used as label for unlabeled
data. At every timestep, the softmax function normalizes the outputs to get the
distribution from xt to A∗.

The complete sequence of outputs is then used to define a distribution over
all possible alignments, where each possible alignment is named as a path π. The
path π is composed by labels in Y and blanks. Assuming the outputs at each
timestep to be independent of those at other timesteps, the probability of one
particular path π can be calculated as:

p(π|X) =
T∏

t=1

p(ot
πt |xt). (1)

where πt represents the label at the timestep t for path π. CTC then defines a
many-to-one mapping function F . The mapping function F maps the paths to



464 L. Chao et al.

the label sequence by first merging the consecutive same labels into one and then
discards the blanks. For example F (a,−, a, b,−) = F (a, a,−, a, b) = aab. The
probability of label Y can be calculated as an aggregation of the probabilities of
all possible CTC paths:

p(Y |X) =
∑

π∈F−1(Y )

p(π|X). (2)

For CTC based models, the CTC is usually applied on the top of bidirectional
recurrent neural networks (RNNs) [29] with Long Short Term Memory (LSTM)
cells [11]. The RNNs can be trained to maximize the following objective function:

L(Y ) = log p(Y |X). (3)

Unbalanced Distribution Between Blank and Non-blanks. Based on the
mapping function F , blanks are inserted to label sequence to make paths. Blank
can exist in almost every training data as long as the sequence length T is greater
than label length T y. Besides, the positions of blanks in paths are more flexible
compared to non-blank symbols, which makes the unbalanced problem worse.
The unbalanced distribution between blank and non-blank symbols leads to the
non-blank symbols are not aligned to the input feature sequence sufficiently. This
also means the model is underfitting the non-blanks.

2.3 Variational Connectionist Temporal Classification

As the unbalanced distribution between blank and non-blank symbols in CTC
is inevitable, computing the distributions of blank and non-blank symbols sepa-
rately may reduce the influence. So we propose to change the unified distribution
to hierarchy distribution. Specifically, we put forward the following objective:

L(Y ) = log p(Y |X) = log
∑

Ob

p(Ob|X)p(Y |Ob,X). (4)

The Eq. 4 shows the model first determines the blank, then outputs the non-
blanks. The blank outputs determine the alignment paths between label and
input sequence, which is vital for the unsupervised alignments. Given the pos-
terior distribution of blank (p(Ob|X,Y )), the model should learn the alignment
for non-blanks better. Thus, we propose to approximate the posterior of blank
instead of learning the likelihood (p(Ob|X)). With the help of variational infer-
ence optimization strategy, we try to optimize the evidence lower bound (ELBO)
[16] of L(Y ). In this paper, we define the ELBO as the Var-CTC loss. It is defined
as:

Lvar−ctc(Y ) = Eqψ(Ob|X,Y )[log p(Y |Ob,X)] − KL(qψ(Ob|X,Y )||pβ(Ob|X)).
(5)

It is composed of three different terms, likelihood p(Y |Ob,X), prior pβ(Ob|X)
and posterior qψ(Ob|X,Y ). These three terms can be parameterized by three
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different layers, like multilayer perceptrons (MLPs) and RNN. Figure 2 shows
the schematic diagram of the Var-CTC based model. For parameter efficiency,
we utilize the MLP to represent the posterior and prior distributions in this
paper. These three terms are described below:

Likelihood. Given the approximate posterior for blanks, the likelihood aggre-
gates the probabilities of all possible paths. Different with the vanilla CTC, at
each timestep, the categorical distribution form xt to A∗ is calculated as:

p(ot|ot
b, x

t) =

{
qψ(ot

b|xt, Y ), if ot =“–”,
p(ot

c|xt) · (1 − qψ(ot
b|xt, Y )), otherwise,

(6)

where p(ot
c|xt) = softmax(xtWc) is the class distribution over all non-blank

symbols in the vocabulary. Wc ∈ R
d×|A| is the matrix parameter.

Once we get the output possibilities at each timestep, the function F maps
the paths to sequence output like CTC. During inference time when the label
sequence is not available, the prior term is used to replace posterior approximator
to output the blank distribution.

Prior. The prior pβ(Ob|X) is formulated as a sequence of Bernoulli distributions.
Given feature sequence, it computes the distribution of blank at all the timesteps.
For efficiency, we directly convert the feature at every timestep to distributions
with one feed-forward layer. It is computed as follows:

pβ(ot
b|xt;β) = σ(xtwp), (7)

where σ(·) is the sigmoid function with wp ∈ R
d being vector parameter.

Approximate Posterior. The posterior distribution qψ(Ob|X,Y ) follows the
similar architecture as the prior. The main difference lies in the fact that pos-
terior approximator is aware of the label sequence Y , therefore outputting more
accurate distributions. In order to incorporate the label sequence, we embed
each symbol in vocabulary to a random initialized vector. These embeddings are
learned with other parameters in the network together. For a particular label
sequence, we get the label representation Ȳ by mean pooling operation on time
axis. The posterior is then computed as follows:

qψ(ot
b|xt, Y ;ψ) = σ((f(xt) ◦ Ȳ )wa), (8)

where function f is one feed-forward layer and it converts dimension of xt to
the same dimension of Ȳ . The ◦ denotes the Hadamard product. wa ∈ R

d is the
vector parameter.

Optimization. The loss function has two terms, which can be optimized jointly.
The first term in Eq. 5 is motivated to get the target label based on blank
distribution. Optimizing this term can also help the approximate posterior to
obtain accurate blank output distribution. The second term is the KL-divergence
between the prior distribution and the approximated posterior distribution,
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which is motivated to push the prior distribution towards the posterior distribu-
tion. The values of qψ(Ob|X,Y ) can be directly utilized to compute p(Y |Ob,X)
based on the forward-backward algorithm [4] and the mapping function F in
vanilla CTC. Thus, the distributions qψ(Ob|X,Y ) and p(Y |Ob,X) in the first
term can be optimized based on the forward-backward algorithm like the vanilla
CTC loss. The second term is the KL divergence between two distributions. The
gradients of the second term can also be calculated analytically. So the loss can
be optimized with any gradient based optimization algorithm.

The Ob can also be modeled as discrete values similar to the Sampled CTC
[32]. It means their values are sampled binary values based on qψ. In this way,
as Ob is not differentiable with respect to qψ, the REINFORCE algorithm [33]
can be used to tackle this problem. One advantage of this modeling way is it
can speed up the training process since the forward-backward algorithm is not
needed. The disadvantage is that variance reduction technique for the REIN-
FORCE based optimization should be considered. We leave this line for future
work.

Complexity Analysis. The time complexity of CTC and Var-CTC forward-
backward dynamic programming is O(T ). Compared to CTC, the mainly added
computation is the posterior distribution, which is also O(T ). Since the forward
and backward variable are kept for gradient computing, the space complexity of
CTC and Var-CTC is O(TT y).

3 Experimental Results

In our experiments, two tasks are employed to evaluate the effectiveness of
Var-CTC, including handwritten text recognition and scene text recognition.
Besides, we also try to directly maximize the marginal likelihood p(Y |X) =∑

Ob
p(Ob|X)p(Y |Ob,X) using only the prior and likelihood model following [8],

which enables us to understand the superiority of introducing an approximate
posterior. We call this objective as Mml-CTC.

3.1 Scene Text Recognition

Convolutional Recurrent Neural Network (CRNN) [30] is utilized as the feature
extraction network. We compare our method with CRNN-CTC [30] and CRNN-
EnEs-CTC [20] models. All models have the same feature extraction network.

Evaluation Metrics. There are two evaluation metrics in this experiment. The
first one is the sequence accuracy, which is in accordance with the experiments
setup of [20,30]. Sequence accuracy means the percentage of test images that
are recognized totally correct.

The second one is the Precision-Recall curve. The confidence score is com-
puted based on the greedy decode method. Greedy decode is the widely used
decode method in scene text recognition [20,30]. It decodes the outputs by choos-
ing the most feasible path, which is the concatenation of the most probable
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labelling for every timestep. The confidence score corresponding to this path is
calculated as:

p(π∗|x) =
T∏

i=1

max p(ot|xt). (9)

Previous studies evaluate the model on benchmark datasets on the resized
images. For example, both [20,30] resize the test images to 100 × 32. Thus, we
plot the Precision-Recall curves based on the resized images.

Datasets. We train our models with the large scale synthetic dataset Synth90K
[14] and test on four real-world benchmark datasets following [20,30]. Synth90K
contains 8 million training images and 1 million test images. All the images
are generated by a synthetic data engine using a 90k word dictionary. These
four real-world test datasets are ICDAR 2003 (IC03) [21], ICDAR 2013 (IC13)
[17], IIIT5kword (IIIT5K) [25] and Street View Text (SVT) [15]. IC03 test set
consists of 251 full scene images and 860 cropped image patches containing words.
IC13 extends IC03 and contains 1015 cropped word images from real scenes.
In the experiments, only words with alphanumeric characters and at least three
characters are considered. There are 860 and 857 test images are utilized for IC03
and IC13 respectively. IIIT5k contains 3,000 cropped word images downloaded
from Google Image Search. SVT contains 647 word images cropped from 249
street-view images. The images are collected from Google Street View.

In the experiment, we use the 8 million training images of Synth90K as the
training data and the 1 million test images as the validation data. The maximum
iteration step is 1,600,000, which is roughly 50 epochs. We validate the models
every 10 K iterations on the validation set. The best models are picked based on
the sequence accuracy performance on the validation set.

Implementation Details. We use Tensorflow [1] to implement all the mod-
els. Our Tensorflow based implementation has two differences compared to the
implementation of [30]. The first one is the different padding way in the third and
fourth maximum pooling layers. We use the 0× 0 padding in Tensorflow com-
pared to 0× 1 padding in Pytorch1. The second difference is that we add dropout
[10] with probability 0.1 after convolutional layers except the first and the last
ones. Because we find dropout improves performances. In order to accelerate the
training process, all the images are resized to 100 × 32.

We take the outputs of the last BLSTM layer as feature sequence for the
input image. In Var-CTC, the dimension of label embedding is set to 50. In
order to prevent overfitting, we also add dropout with probability 0.5 for the
pooled label embedding. We use Adam [18] to train all the models with batch
size set to 256. The learning rate is fixed at 0.001 for the CTC and Mml-CTC
based models. For Var-CTC based model, we set the learning rate to 0.0005.

Comparison Results. The sequence accuracy comparisons are shown in
Table 1. Compared to the CRNN-CTC model [30], our implementation shows
clear improvements on all the four datasets, which are 0.3%, 2.9%, 1.2% and 0.8%

1 Tensorflow does not support 0 × 1 padding for MaxPooling operation.
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Fig. 3. Precision-Recall curves on four real-world datasets. The red dotted line is used
to indicate the precision value equals to 98%. (Color figure online)

Table 1. Comparisons of SeqAcc on
the four real-world datasets.
Method IC03 IC13 IIIT5K SVT

CRNN-CTC [30] 89.4 86.7 78.2 80.8

CRNN-EnEs-CTC [20] 92.0 90.6 82.0 80.6

CRNN-CTC(ours) 89.7 89.6 79.4 81.6

CRNN-Mml-CTC 88.6 89.4 81.3 81.8

CRNN-Var-CTC 90.0 88.7 78.7 80.8

Table 2. Comparisons of recall perfor-
mances when all the models maintain
98% precision on the four real-world
datasets.
Method IC03 IC13 IIIT5K SVT

CRNN-CTC 58.0 78.5 30.2 34.3

CRNN-Mml-CTC 78.5 83.2 68.7 57.7

CRNN-Var-CTC 90.3 92.1 66.4 85.1

respectively. The improvements mainly come from the added dropout operation
in our implementation. Compared to the CRNN-EnEs-CTC model, our imple-
mentation does not show advantage on sequence accuracy performance.

The comparison between CRNN-Mml-CTC and CRNN-CTC (ours) shows
that the CRNN-Mml-CTC model improves 1.9% and 0.2% on IIIT5K and SVT
respectively. And it also shows that CRNN-Mml-CTC brings down the sequence
accuracy with 0.7% and 0.2% on IC03 and IC13 respectively. While the CRNN-
Var-CTC achieves the best performance on IC03 dataset compared to the CTC
and Mml-CTC models, it has no advantage for the other three datasets. We
can conclude the proposed Mml-CTC objective is comparable with vanilla CTC
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loss and the Var-CTC loss has slightly inferior performance when evaluating
sequence accuracy.

The Precision-Recall curves of the compared models on the four datasets
are shown in Fig. 3. The comparison results also show Mml-CTC and Var-CTC
have clear improvements compared to the vanilla CTC and Var-CTC gets the
best performances. These means the proposed Var-CTC and Mml-CTC perform
better in average precision (AP). We also compare the recall performances when
the models maintain 98% precision. The comparison results are shown in Table 2.
Under the same condition, the Var-CTC can improve the recall with 31.7%,
13.6%, 36.2% and 50.8% respectively. In practical use, the proposed Var-CTC
can recall more samples compared the vanilla CTC.

Table 3. Comparisons with attention based model.

Method SeqAcc AP Recall@Precision=98%

ASTER [31] 86.21 98.37 69.84

CTC 82.37 98.01 67.57

Mml-CTC 83.83 98.59 77.21

Var-CTC 81.65 98.64 81.92

Comparison with Attention Based Method. We compare our proposed
methods with ASTER [31]. ASTER is an attention based model and its well-
trained models are public available. We take the same experiment setup of
ASTER. The only difference is that all our CTC based models only utilize
the ResNet based backbone, without the Spatial Transformer [15] based thin-
plate spline (TPS) transformation network. There are seven testing datasets in
ASTER. Due to limited space, we replace Precision-Recall curve with AP metric
and the comparison in Table 3 is based on collection of all the seven datasets.
The comparison results also show Var-CTC has the best AP or Precision-Recall
performance, especially the recall performance at a high precision level.

3.2 Offline Handwritten Text Recognition

To verify the generalization capability of our method, we further evaluate our
method on offline handwritten text recognition. Compared to scene text recog-
nition, offline handwritten text recognition problem is highly complicated and
challenging to solve. In the experiment, we follow the experiment setup of [34].

Datasets. The public handwritten datasets IAM [23] is used in this experi-
ment. IAM is a handwritten text dataset, with 647 writers. It is partitioned into
writer-independent training, validation and test partitions, where each partition
contains 46945, 7554 and 20306 correctly segmented words respectively.
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Evaluation Metrics. Three metrics are used to evaluate the handwritten text
recognition model. The first two are the Character Error Rate (CER) and the
Word Error Rate (WER). CER is defined as the Levenstein distance between the
predicted and real character sequence of the word. WER denotes the percentage
of words improperly recognized. For CER and WER, small values indicate better
performance. The last metric is the Precision-Recall curve. We also use greedy
decoding to decode the outputs. The confidence score of each word is computed
based on Eq. 9.

Implementation Details. Different with the experiment in scene text recog-
nition, we use a 25-layer residual network [9] as convolutional feature extractor.
As IAM is much smaller than Synth90K, we stop the training at 20k iterations.
The other setups are the same with scene text recognition task. We name the
feature extraction network as ResNet to distinguish the CRNN in scene text
recognition experiment.

Comparison Results. The comparison results are shown in Table 4 and Fig. 4.
We also compare our method with the state-of-the-art approaches [34]. For WER
and CER metrics, the proposed Var-CTC has no advantage compared to the
vanilla CTC. However, for Precision-Recall curve metric, the proposed Var-CTC
and Mml-CTC show strong performances compared to vanilla CTC.

Table 4. Comparisons of WER and CER
on IAM.

Method WER CER

zhang2019sequence [34] 22.2 8.5

ResNet-CTC 23.8 9.53

ResNet-Mml-CTC 23.6 9.35

ResNet-Var-CTC 24.0 9.52

Fig. 4. Precision-Recall curve performance
comparisons on IAM.

3.3 Further Analysis

We first analyze the learning signals of non-blanks to check whether their learning
is enhanced. Then we analyze whether the enhanced learning lead to a better
alignment, especially for the non-blanks. We try to explain the reason for the
improved Precision-Recall curve performance. The badcase analysis and the label
embedding visualization for Var-CTC are also included in this part. At last, we
give the exact comparisons of the space and time for the proposed models. All
these analysises are based on scene text recognition task.
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Fig. 5. The evolution of gradient signals for non-blank symbols. The input image is
the first example in Fig. 6. The horizontal axis denotes the position in the image and
colors represent different labels.

Gradient Signal Analysis. Figure 5 shows one example about the evolution of
gradient signals for non-blank symbols. The experiment is based on the Synth5K
[20] dataset. Synth5K is a small dataset with 5 K training data sampled randomly
from Synth90K. Both the Var-CTC and CTC based models predict correctly for
the chosen case. We can observe four points from the comparisons. Firstly, at
the initial training stage, the gradient signals for Var-CTC are less than the
CTC model; Secondly, the gradient signals of the CTC model decay much more
quickly than the Var-CTC model; Thirdly, the gradients of CTC model quickly
focus to several isolated points; At last, in the middle (30 epochs) and late (50
epochs) training periods, the gradients of Var-CTC are much greater than the
CTC model. From the comparison, we can see the learning of non-blank symbols
in Var-CTC model is more stable and sufficient.

Alignment Analysis. We depict the output distributions of six examples for
CTC and Var-CTC based models in Fig. 6. The figure shows both the outputs
of the two models are spiky, where blank dominates the outputs. We also depict
the second hierarchy outputs for Var-CTC model. All the six examples show the
distribution of p(ot

c|xt) aligns to the corresponding non-blanks sufficiently, even
for the cases with irregular shapes. The alignment visualization can be explained
by the gradient signal visualization in Fig. 5, which is better learning signal leads
to better alignment.

Confidence Score Analysis. We can also find the reason why the confidence
score of the CTC model is not discriminative enough. The “SHARE” example in
Fig. 6 shows there are two successive timesteps that the CTC model is aligned to
the label “A”. At the first timestep, it outputs “A” with probability close to 1.0.
While at the successive timestep the model outputs “A” with probability close
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Fig. 6. Outputs visualizations of six examples. P ∗ represents the second hierarchy
outputs (p(otc|xt) in Eq. 6.

to 0.3 and blank with probability close to 0.7. It shows there is ambiguity at the
second timestep between “A” and blank. Although the “SHARE” example is a
clear and easy to recognize image visually, the confidence score of it keeps close
to some hard examples (for example, the third example in Fig. 6). For the CTC
model, the prediction confidence score of “SHARE” is less than “KEEPERS”.

The “TRUSTPASS” example in Fig. 6 shows both the CTC and Var-CTC
are influenced by the image content after the second “S”. However, for this wrong
decision, the CTC model still outputs a high level confidence score at the last
timestep, which is close to probability 1.0. While the Var-CTC model is not sure
which character it looks like and output character with low confidence score. As
these cases show, the confidence score of the CTC model is not discriminative
enough. It is difficult to set the threshold in practical use. And the proposed
Var-CTC can relieve this problem with the improved confidence score.

Table 5. Error analysis for the IIIT5K datasets.

Method Replace Delete Insert

CRNN-CTC 49% 14% 37%

CRNN-Var-CTC 40% 19% 41%

Error Analysis. We roughly classify the prediction errors into three types based
on the sequence lengths of the labels and predictions. These three types are
“Replace”, “Delete” and “Insert”. “Replace” means element in the label sequence
is replaced by other symbols in the prediction sequence. “Insert” means the
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model predicts extra symbols compared to the label. We can see the blank out-
puts contribute more to the “Delete” and “Insert” types as those two types show
segmentation error exists. The alignments between non-blank symbols and image
contribute more about the “Replace” type. Table 5 shows the error analysis on
IIIT5K datasets. Compared with the CTC model, the ratio of the “Replace”
error is declined for the Var-CTC model. This proves the alignments of the non-
blank symbols are improved. The statistics also shows the approximate posterior
of blank should be improved.

Label Embedding Visualization. We visualize the label embeddings learned
by Var-CTC in Fig. 7. For better visualization, we do not show the embeddings
of 26 letters in English alphabet. The learned embeddings nicely reflect the
clustering structures among the characters (the “6”, “8” and “9” have similar
shapes). It means the added label embedding has positive effect to the model
learning, which can explain the superiority of Var-CTC compared to Mml-CTC.

Fig. 7. Visualization of the label
embeddings learned by Var-CTC using
t-SNE [22]. Only the 10 number char-
acters are shown.

Table 6. Comparisons of parameters and
FLOPS.

Model #Parameters #FLOPS

CRNN-CTC 8,720,165 17,436,510

CRNN-Mml-CTC 8,720,165 17,436,511

CRNN-Var-CTC 8,747,765 17,491,816

Space and Time Comparisons. Table 6 lists the exact number of parame-
ters and FLOPS for models in Sect. 3.1. All the MLPs in Fig. 2 are one layer
in our implementation and they are used to transform features to the desired
dimensions. Mml-CTC has exactly the same number of parameters with CTC.
Compared to Mml-CTC, Var-CTC adds the approximated posterior. The table
shows Var-CTC adds extra 0.3% more parameters and 0.3% more FLOPS com-
pared to CTC, which is neglectable.

4 Conclusion

We proposed the variational CTC to improve CTC for enhancing the learning
of the non-blank symbols. The proposed Var-CTC first determines whether to
output a specific label or not and then learns the alignment of the non-blank
symbols with the input feature sequence. With the hierarchy output, the influ-
ence of imbalanced distribution between blank and non-blanks is relieved. With
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the enhanced learning of non-blanks, our model can output more reliable con-
fidence scores, which is important in practical use. Experiments on scene text
recognition and offline handwritten text recognition tasks show the proposed
Var-CTC improves the Precision-Recall curve performances significantly. Under
the same condition, the Var-CTC can improve the recall performance with a
large margin on four five-world benchmark datasets. Qualitative analysis also
shows the effectiveness of the proposed method. As for future work, we plan to
try variational inference techniques such as [19,27] to improve the approximate
posterior distributions.
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Abstract. As an important computer vision task, 3d human pose esti-
mation in a multi-camera, multi-person setting has received widespread
attention and many interesting applications have been derived from it.
Traditional approaches use a 3d pictorial structure model to handle this
task. However, these models suffer from high computation costs and
result in low accuracy in joint detection. Recently, especially since the
introduction of Deep Neural Networks, one popular approach is to build
a pipeline that involves three separate steps: (1) 2d skeleton detection
in each camera view, (2) identification of matched 2d skeletons and (3)
estimation of the 3d poses. Many existing works operate by feeding the
2d images and camera parameters through the three modules in a cas-
cade fashion. However, all three operations can be highly correlated. For
example, the 3d generation results may affect the results of detection in
step 1, as does the matching algorithm in step 2. To address this phe-
nomenon, we propose a novel end-to-end training scheme that brings the
three separate modules into a single model. However, one outstanding
problem of doing so is that the matching algorithm in step 2 appears to
disjoint the pipeline. Therefore, we take our inspiration from the recent
success in Capsule Networks, in which its Dynamic Routing step is also
disjointed, but plays a crucial role in deciding how gradients are flowed
from the upper to the lower layers. Similarly, a dynamic matching mod-
ule in our work also decides the paths in which gradients flow from step
3 to step 1. Furthermore, as a large number of cameras are present, the
existing matching algorithm either fails to deliver a robust performance
or can be very inefficient. Thus, we additionally propose a novel match-
ing algorithm that can match 2d poses from multiple views efficiently.
The algorithm is robust and able to deal with situations of incomplete
and false 2d detection as well.
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1 Introduction

3d human pose estimation is a fundamental problem in computer vision. It can be
applied to various applications such as human-computer interactions, augmented
reality and video surveillance. Due to the availability of increasingly sophisticated
datasets, and more and more powerful deep learning models, researchers have
made significant progress in this area using deep convolutional neural networks
(CNNs). While 3d pose estimation research into a single human under monoc-
ular or multi-camera settings has made remarkable advances, fewer works have
studied 3d pose estimation of multiple humans, which is a significantly more
challenging problem to address. This is primarily due to the occurrences of fre-
quent and sometimes severe occlusions when multiple people are involved. These
difficulties have been further exacerbated by the lack of labeling for identifying
corresponding people under a multi-view setting.

Despite these difficulties, there are two main reasons why multi-view multi-
person 3d pose estimations will become mainstream research. First, models
involving multiple people are more generic in many real-world applications com-
pared to those for a single human, such as in supermarkets and factories. Sec-
ondly, using multi-cameras, the pose estimation can be made more robust than
using a monocular camera due to the multiplied information available from dif-
ferent views, such as when dealing with occlusions.

The methodology for multi-view multi-person 3d pose estimation in many
existing studies includes two steps. The first is to predict 2d poses in each view
individually using off-the-shelf 2d models [6,9,22]. The second is to aggregate
these 2d poses and generate their 3d counterpart. One typical idea is to use
the so-called 3d Pictorial Structures model (3DPS), which directly generates 3d
human poses by exploring an ample state space of all possible human key points
or human body parts in 3d space [3,20]. However, this method lacks efficiency
due to the enormous state space needed for exploration.

In contrast to the above two-step models, a recent direction is to use a match-
ing algorithm that identifies matched 2d skeletons from multiple views before
the estimation for 3d poses [10]. If the matching algorithm is perfect, the subse-
quent 3d pose estimation for multiple people can be regarded as multiple 3d pose
estimation for a single person. Thus the accuracy will be significantly improved.
However, the matching algorithm may make mistakes or even fail. Once a reli-
able skeleton matching is established, we can then build an effective model in
which its pipeline consists of three separate steps: (1) detect 2d skeletons in each
camera view, (2) identify matched skeletons and (3) estimate the 3d pose.

An intuitive approach is, of course, to train each of these steps/modules inde-
pendently. During testing, we can feed the 2d images and camera parameters
through these trained modules one by one. However, all of the three operations
are highly correlated in both directions of the pipeline. How individual poses
are extracted in step 1 will undoubtedly influence the 3d pose estimation result
in step 3. The reverse is also true: any adjustments that occur in the 3d esti-
mation in step 3 will ultimately affect the way in which the detection should
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be carried out in step 1. Therefore, it is essential that the information can be
back-propagated in reverse order through step 3 to step 1.

At the same time, when the parameters of the detection module in step 1
are not trained properly, especially during the early stage of the training, the
matching algorithm in step 2 may fail to identify the matched skeletons and
catastrophically impact the 3d estimation result in step 3. The traditional one-
directional pipeline approach will not improve the parameters of step 1 as each
module works independently while having an end-to-end training mechanism
allows the model to keep improving the parameters of each step as a result.

However, there is still one bottleneck when we carry out this design. The
matching algorithm in step 2 makes the pipeline discontinuous, i.e., it is not
a smooth function in which we can back-propagate the changes in parameters
freely. However, we can reconcile this with inspiration from Capsule Networks
[14,26]. In CapsNet, the Dynamic Routing step decides how lower layer capsules
are fed to their immediate upper layer, either by agreement or expectation-
maximization (EM) clustering. In our work, the matching algorithm in step 2
acts in a very similar fashion to the Dynamic Routing. It also decides the feed-
forward paths in which information flows from step 1 to step 3, i.e., we apply
our matching algorithm to dynamically route/match the poses. This justification
and analogy makes our end-to-end approach highly appropriate and is the central
theme of our paper.

As one may appreciate, in this end-to-end training mechanism, the dynamic
matching step plays a pivotal role. Hence it is vital that we also improve upon the
existing works in this area. To this end, we additionally propose a novel matching
algorithm which can match multiple 2d poses from multiple views efficiently. The
algorithm is robust and can handle situations where there is incomplete and false
2d detection.

In summary, the main contributions of our work are stated below:

– We propose a novel end-to-end training scheme for multi-view multi-person
3d pose estimation. Different from training independent modules separately,
our model back-propagates the gradients from the last 3d estimation step
to the first 2d detection step, so as to significantly improve the efficiency,
robustness and accuracy on 3d pose estimation.

– We propose a multi-view 2d human pose dynamic matching algorithm. This
could dynamically match the corresponding 2d poses detected in multiple
views for each person involved. The approach does not require the exact
number of people in the scene and can handle cases where false detection and
severe occlusions exist.

– Experiments on the Shelf and Campus datasets demonstrate that our pro-
posed model outperforms the state-of-the-art methods with respect to both
efficiency and accuracy.

2 Related Work

In this section, we review the literature related to the techniques of this paper.
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2.1 Single-View 2D Pose Estimation

Single person pose estimation predicts 2d keypoints of the human body in one
RGB image. Many existing deep learning-based methods have achieved amazing
results [7,15,22] since DeepPose [28] was proposed, which was the first method
to use deep neural networks for pose estimation.

For multi-person 2d pose estimation, current state-of-the-art solutions can be
divided into two categories. The first category is called the “top-down methods”
[9,12,17]. It uses an object detection method to detect all the people in the image
and sends them separately to a single 2d pose detector to obtain their correspond-
ing 2d poses. In [17], the authors constructed a fully connected graph from a set
of detected joint candidates of each person in an image and resolved the joint-
to-person association and outlier detection by using integer linear programming.
[12] proposed a framework with three components for pose estimation which can
extract a high-quality single person region from an inaccurate bounding box. In
[9], a two-part network structure was proposed where GlobalNet localizes the
“simple” keypoints and the RefineNet deals with the “hard” keypoints. The sec-
ond category, “bottom-up methods”, jointly labels part detection candidates and
associates them with individuals by a matching algorithm [6,16,23]. The authors
in [6] mapped the relationship between keypoints into part affinity fields (PAFs),
then clustered detected keypoints into different 3d human poses. [23] interpreted
the problem of distinguishing different people in an image as an Integer Linear
Programming problem and partitioned part detection candidates into identity
clusters. On the basis of [23], the authors in [16] used a stronger part detectors
based on ResNet [13] and image-dependent pairwise scores, vastly improving the
run time by using an incremental optimization approach.

In our work, we choose the “top-down methods” for their higher accuracy.
We adopt the Cascaded Pyramid Network (CPN) [9] as the 2d pose estimator
backbone.

2.2 Multi-view 3D Pose Estimation

Instead of estimating with a single image, multi-view 3d pose estimation meth-
ods require image inputs from multiple views, which are believed to obtain better
3d pose estimation than using a monocular camera. Most previous efforts had
focused on single person estimation [19,27]. Traditional methods [1,4,5] used 2d
pose estimation captured by calibrated cameras to predict 3d poses by point
triangulation or 3DPS. Recent works have begun to adopt deep neural networks
in this area and have delivered significant achievements. For example, in [18],
a volumetric triangulation approach was proposed to project the feature maps
produced by 2d pose estimators into 3d volumes, which were then used to pre-
dict 3d poses. There are also self-supervised approaches that predict 3d poses
separately in different camera views and minimize the distance between pairwise
3d poses after rotating to the same view [8,21,25].

As for multi-view multi-person 3d pose estimation, 3DPS is the most widely
used approach [2,3,20]. It predicts 3d keypoints or 3d body parts by exploring
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Fig. 1. The framework of our proposed model. First, the images I are input into the 2d
human keypoints detector backbone, which is based on CPN [9], to get the heatmaps h.
Next, we apply soft-argmax on h to get the corresponding 2d human poses y. Then, we
feed both h and y into the dynamic matching module which groups them by identities
and automatically determines the number of groups. After that, the heatmaps are sent
into a network to get the weight matrices. Last, each cluster is sent to a weight-sharing
3d pose estimator to get the final results Y .

an ample state space and the candidates in the state space are generated by
the grid sampling. With the 2d priors given by the 2d detector, the 3d pose can
be generated through the maximum likelihood estimation. Recent work [10] has
proposed a model to combine person re-identification (re-id) [29,30] and epipolar
geometry to match the pose, followed by the prediction of 3d poses using 3DPS.
The shortcoming of this approach is that the speed of the person re-id model is
relatively slow, which causes efficiency problems. On the contrary, our approach
is efficient on multi-view multi-person 3d pose estimation, which benefits from
our novel matching algorithm.

3 Method

In this section, we demonstrate our proposed end-to-end 3d pose estimation
model in detail. The scenario assumes there are synchronized video streams
from multiple cameras with known parameters, and all cameras capture the
same scene with one or more people in it from different views. The goal is to
estimate the 3d positions of the keypoints of these people. Note that the exact
number of people in the scene is not required.

The inputs of the model are cropped 2d human images from all cameras in
the same frame. The images, denoted by I, are cropped by using bounding boxes
from either available off-the-shelf 2d human bounding box detectors or ground
truths. I = {Ic

n|c = 1, 2, . . . , C, n = 1, 2, . . . , Nc} where Ic
n is the nth image in the

cth view, C is the number of views and Nc is the number of detected bounding
boxes in the cth view. The outputs, denoted by Y , are the 3d keypoints of all
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detected people in the scene. The overview architecture of our model is illustrated
in Fig. 1.

In the following text, we will demonstrate the 2d pose estimator backbone,
dynamic matching algorithm and 3d pose estimation module respectively.

3.1 2d Pose Estimator Backbone

The 2d pose estimator backbone fp with trainable weights θp consists of Glob-
alNet and RefineNet. The GlobalNet predicts all keypoints while the RefineNet
justifies the “hard” keypoints. The backbone outputs the heatmaps:

hc
n = fp (Ic

n; θp) , c = 1, 2, . . . , C, n = 1, 2, . . . , Nc. (1)

The next step is to estimate the 2d positions. To keep the gradient flow, we
use soft-argmax instead of argmax to the heatmaps across spatial axes:

gc
n,j = ehc

n,j/

(∫
q∈Ω

ehc
n,j(q)

)
, (2)

where hc
n,j denotes the heatmap of the jth keypoint of the nth detected per-

son in the cth view and Ω denotes the domain of the heatmap. Then the 2d
coordinates of the estimated joint yc

n,j is the integration of all locations q in the
domain, weighted by their corresponding probabilities (we use yc

n to denote the
2d coordinates of all keypoints of the nth detected person in the cth view):

yc
n,j =

∫
q∈Ω

q ∗ gc
n,j(q). (3)

3.2 Dynamic Matching

A matching algorithm is to group 2d poses from different views with people’s
identities so as to connect the 2d pose detection and 3d pose estimation. It is a
challenging task due to several reasons. First of all, there are sizable errors in
the estimated 2d poses which can significantly influence the matching accuracy.
The second reason is that the number of people in the scene is unknown, which
means one cannot cluster these 2d poses to centers like what k-means does.
Furthermore, the matching itself is hard to be cycle-consistent. For example, 2d
poses y1

1 and y2
1 are matched, so do y1

1 and y3
1 , but y2

1 and y3
1 are not matched.

Different from previous methods which compute the matching score for 2d
poses, we propose a new matching algorithm that creates a 3d pose subspace
first and recursively finds matched 3d poses in this subspace. It resolves both
the efficiency and cycle-consistent problems simultaneously. This newly proposed
matching algorithm is illustrated in Fig. 2.
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Fig. 2. Overview of the our matching algorithm

3d Pose Subspace Construction. To construct the 3d pose subspace, we first
enumerate all possible pairs of 2d poses from different views. For each pair of 2d
poses, we apply the traditional point triangulation to generate the corresponding
3d pose. All generated 3d poses compose a 3d pose subspace containing a small
quantity of correct 3d poses (i.e., matched 2d poses) and a large quantity of
incorrect 3d poses. For each pair of 2d keypoints yc

n,j and yd
m,j , c �= d, we can

get the coefficient matrices for their corresponding homogeneous 3d vectors:

Ac
n,j =

[
yc

n,j

1

]
× Pc, Ad

m,j =
[

yd
m,j

1

]
× Pd, (4)

where Pc and Pd are the projection matrices of cameras c and d respectively.
Thus, the 3d point Ỹ(cn,dm),j can be obtained by solving the following linear
system: [

Ac
n,j

Ad
m,j

]
·
[

Ỹ(cn,dm),j

1

]
= 0. (5)

We use Ỹ(cn,dm) to denote the calculated 3d pose given 2d poses yc
n and yd

m. The
number of 3d poses constructed is

T =
C∑

c=1

Nc

C∑
d=c+1

Nd. (6)

Bottom-Up Matching. After the construction of 3d pose subspace, we now
need to pick out the correct 3d poses. The idea we distinguish the correct 3d poses
with incorrect ones is that, the correct 3d poses are almost always calculated by
2d poses belonging to the same person. For example, if a person is captured by
four cameras, we will detect four 2d poses which are used to construct six 3d
poses, and these 3d poses are almost always very similar to each other, i.e. their
distances are very small. Therefore, if the distance between a pair of 3d poses is
sufficiently small, their corresponding 2d poses are regarded as a match.
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We use the euclidean distance as the measurement between pairwise 3d poses
Ỹ(cn,dm) and Ỹ(c′

p,d′
q)

:

E(Ỹ(cn,dm), Ỹ(c′
p,d′

q)
) = ‖Ỹ(cn,dm) − Ỹ(c′

p,d′
q)

‖F , (7)

where ‖·‖ is the Frobenius norm. Since we do not need to calculate the distance
between 3d poses coming from the same views (i.e. c = c′ and d = d′), the
number of distances calculated is

|D| =
C∑

c=1

C∑
d=c+1

(T − NcNd) · NcNd/2. (8)

where D denotes the set of distances between all possible pairwise 3d poses and
| · | here is the cardinality.

In order to efficiently obtain all matches, we propose a bottom-up matching
algorithm. Suppose the matching result is stored in a set S = {sk|k = 1, 2, . . . }
where sk is a subset which contains the indices of 2d poses belonging to the
same person. We initialize S as an empty set and update it by iterations. In
each iteration, we first find the minimal distance in D, denoted by Dmin which
relates to two 3d poses generated by four 2d poses (three if one of them is shared
by both pairs), say yc1

n1
, yc2

n2
, yd1

m1
and yd2

m2
, and their corresponding indices can be

denoted by a set of view-image pairs V = {(c1, n1), (c2, n2), (d1,m1), (d2,m2)}.
Next, we find a subset s∗

k in S which contains any of the indices in V . If no
subset is found, we add an empty set s∗

k = {} into S. This finding process is
referred as F (S, V ). Then we update s∗

k by s∗
k = s∗

k ∪ V . Note that an index
will be dropped if s∗

k has already contained another index from the same view.
After the update, Dmin will be removed from D. We repeat the above steps until
Dmin > ρ where ρ is a predefined threshold. The complete bottom-up matching
algorithm is presented in Algorithm 1.

Algorithm 1. Bottom-up matching algorithm
Input: D, ρ
Output: S

1: InitializeS ← ∅
2: Dmin ← min(D)
3: while Dmin < ρ do
4: {(c1, n1), (c2, n2), (d1, m1), (d2, m2)} ← Dmin

5: V ← {(c1, n1), (c2, n2), (d1, m1), (d2, m2)}
6: s∗

k ← F (S, V ) ∪ V
7: D ← D \ Dmin

8: Dmin ← min(D)

Through the matching algorithm we can get the resultant S =
{s1, s2, . . . , sK} where K is the estimated number of people in the scene. It
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Fig. 3. The structure of the weight matrix network

is determined automatically by the algorithm. According to the indices in sk

we can select the 2d poses and heatmaps of the kth person and group them
together:

y(k), h(k) = G (y, h, sk) , k ∈ [1,K] , (9)

where y and h are the 2d poses and heatmaps for all people from all views, and
function G(·) does the operations of both selection and grouping. Each group
of 2d poses and heatmaps will be sent to the subsequent module for 3d pose
estimation.

This dynamic matching module plays a similar role as the dynamic routing
(especially the EM routing) in CapsNet. The difference between them is that the
dynamic routing integrates the features from lower capsules by using weighted
summation, while our dynamic matching clusters the 2d poses and corresponding
heatmaps without any value changes.

Note that the proposed dynamic matching requires at least three views of the
scene, which can be inferred form Eq. (8). When there are only two views, |D| in
Eq. (8) becomes 0, which invalidates the whole matching algorithm. Therefore,
for this special case of two views, we use auxiliary approaches such as the above
mentioned person re-id and epipolar geometry.

3.3 3D Pose Estimation

Given the grouped 2d poses and heatmaps of each person, we can reconstruct
their 3d poses in several ways. The point triangulation described previously is
one of them. However, we are now using the 2d keypoints from all views instead
of a pair of views, and the corresponding linear system becomes:

A
(k)
j ·

[
Y

(k)
j

1

]
= 0, (10)

where A
(k)
j is a matrix concatenating the homogeneous 3d vectors of all views

for the jthe keypoint of the kth person.
The point triangulation is an efficient 3d pose estimation algorithm with

strong theoretical supports but often produces imprecise 3d poses if there are
erroneous detection of 2d poses. The reason is that the coordinates of different
keypoints are computed separately. This phenomenon can occur quite frequently
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at the beginning of training when the 2d pose detection module has not been
trained well enough, which in turn affects the improvements of the 2d detection.

To deal with the inaccuracy, inspired by [18], we add a learnable module fw

illustrated in Fig. 3 before the point triangulation, which accepts the heatmaps
as inputs:

w
(k)
j = fw

(
h
(k)
j ; θw

)
. (11)

The output w
(k)
j is a weight matrix which is in the same size of A

(k)
j . We add it

to Eq. (10) and have (
w

(k)
j ◦ A

(k)
j

)
·
[

Y
(k)
j

1

]
= 0, (12)

The original module in [18] predicts a scalar weight for each view denoting
how important the keypoints of a view will be. However, scalar weights cannot
reflect the details of importance. For example, if a detected keypoint is inaccurate
on the horizontal axis but very accurate on the vertical axis, scalar weights have
to balance their importance and there will be no difference of importance if we
switch the accuracy for both axes. Therefore, we propose to use a weight matrix
instead of a scalar weight to better learn the importance so that the accuracy of
point triangulation can be further improved.

3.4 Loss Function

Our loss function contains two parts, the 2d reprojection loss and the 3d mean
square error (MSE) loss. The reason we add the 2d reprojection loss is that,
if we only use the 3d MSE loss, there would be infinite points that have the
same loss value but target at the 3d ground truth in different directions. The 2d
reprojection loss can indicate the correct direction by constraining projected 2d
poses from different views.

The 3d MSE loss between the estimated 3d pose and 3d ground truth is
defined as:

L3d
mse =

K∑
k=1

1
|Y (k)| ‖Y (k) − Y

(k)
gt ‖2F . (13)

The 2d reprojection loss between the reprojected 2d pose from the computed 3d
pose and the detected 2d pose from backbone is defined as:

L2d
repj =

K∑
k=1

C∑
c=1

1

|y(k)
c |

‖ỹ(k)
c − y(k)

c ‖2F , (14)

where

ỹ(k)
c =

[
p1 ·

[
Yk

1

]
/p3 ·

[
Yk

1

]
, p2 ·

[
Yk

1

]
/p3 ·

[
Yk

1

]]
, (15)

and
Pc =

[
p1 p2 p3

]T
. (16)
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Thus, the total loss of our model is defined as:

L = L3d
mse + αL2d

repj, (17)

where α is a weight coefficient.

4 Experiments

4.1 Datasets

We conduct experiments on two standard datasets for multi-view multi-person
3d human pose estimation.

Shelf [2]: The Shelf dataset is one of the public 3d multi-person human pose
datasets in multi-view setting. It consists of 3200 frames from 5 synchronized
cameras along with the 2d pose annotations and 3d pose ground truth derived
by pose triangulation. There are 4 human subjects interacting with each other
in a small room. All 3200 frames are split into an evaluation set (frame 300–600)
and a training set (other frames).

Campus [2]: The Campus dataset contains three human subjects interacting
with each other in an outdoor environment. The scene is captured by three
calibrated cameras. The dataset consists of 2000 frames and is divided into an
evaluation set (frame 350–470, frame 650–750) and a training set (other frames).

For the evaluation protocol, we use the percentage of correctly estimated
parts (PCP@0.5) to measure the model performance, which is the most com-
monly adopted in this area [2,10].

4.2 Implementation Details

As for the data preprocessing, we crop the images with bounding boxes esti-
mated by an off-the-shelf 2d human detector, Yolo [24]. The 2d pose detection
backbone is the same as [9] with pretrained weights, which outputs heatmaps
and connects to a soft-argmax function to obtained the 2d poses. The dynamic
matching module is implemented according to Algorithm 1. The 3d pose esti-
mator consists of two convolutional layers and three fully-connected layers. The
weight coefficient α in the loss function is set to 2. We choose the Adam opti-
mizer with a learning rate of 10−6 which reduces by a decay factor of 10 in each
epoch. The training set and evaluation set are kept the same as described in the
datasets.

4.3 Ablation Study

Our first experiment is to verify the effectiveness of different settings for our
model through the ablation study on the Shelf dataset.
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End-to-end Vs Multi-step Architecture. Our model is end-to-end and can
predict the 3d poses from 2d human images as a whole. An alternative is to divide
the model into three consecutive steps which deal with the 2d pose detection,
matching and 3d pose estimation separately. We compare these two architectures
and the results are presented in Table 1.

Table 1. The PCP@0.5 performance of the alternative multi-step model and our end-
to-end model on the Shelf dataset. They are using the same 2d pose detection backbone,
matching algorithm, 3d pose estimator and loss function.

Actor 1 Actor 2 Actor 3 Average

Multi-step 98.12 95.16 96.77 96.67

End-to-end (ours) 98.75 96.22 97.20 97.39

From the table, we can see that the performance of our end-to-end model is
better than the multi-step model for all three people in the scene. The average
improvement is 0.72. This demonstrates that the end-to-end model is more capa-
ble of learning the features of human poses which refines the 2d pose detection
with gradients flowing back from the overall loss function.

Matching Method. Given the 2d poses obtained from the 2d detection mod-
ule, we propose a novel matching algorithm to group the 2d poses and heatmaps
by identities. There are two existing matching methods in the literature, the
person re-id and epipolar geometry. The former finds matches by using the re-id
appearance matrix as confidence scores, while the latter uses epipolar geometry
affinity matrix as the confidence scores. The comparison between these three
matching methods is shown in Table 2.

Table 2. Comparison of matching methods including the person re-id, epipolar geom-
etry and our algorithm on the Shelf dataset over the PCP@0.5 and time cost. All three
methods use the same 2d pose detector and 3d pose estimator.

Actor 1 Actor 2 Actor 3 Average Time (s)

Person re-id 97.62 93.72 95.69 95.68 6.73

Epipolar geometry 97.28 91.76 91.27 93.44 0.64

Our method 98.75 96.22 97.20 97.39 0.96

The results show that our matching method achieves the best performance
among the three, with average improvements of 1.71 and 3.95. The time cost
of person re-id is the highest while that of epipolar geometry is the lowest. Our
matching method is slightly slower than epipolar geometry, but still much faster
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than person re-id. This experiment demonstrates that our matching algorithm is
robust and efficient. The reason is that both person re-id and epipolar geometry
use 2d information, thus there may be cases where the poses of different people
result in a larger confidence score than those of the same person because of the
angle of camera views or imprecise 2d detection. On the contrary, our method
finds the matches in the 3d pose subspace directly, which leverages the infor-
mation inequality between the 2d and 3d spaces and makes our method more
robust and insensitive to imprecise or even incorrect 2d poses.

3d Pose Estimation Method. As described in the method section, we use
the point triangulation with a learnable weight matrix to estimate 3d poses.
Alternatives include the sole point triangulation or the original learnable trian-
gulation network [18]. We compare these two methods with ours and the result
is presented in Table 3.

Table 3. Performance of our 3d pose reconstruction method compared with the point
triangulation and learnable triangulation on the Shelf dataset. They are implemented
with the same 2d pose detection backbone and dynamic matching.

Actor 1 Actor 2 Actor 3 Average

Point triangulation 98.05 91.17 92.78 94.00

Learnable triangulation 98.64 95.83 96.91 97.13

Our method 98.75 96.22 97.20 97.39

We can see from the table that our method outperforms the other two meth-
ods by 3.39 and 0.26 respectively in average. This demonstrates that (1) the
3d poses estimated by point triangulation is not accurate enough, (2) adding
learnable scalar weights can significant improve the performance and (3) using
a learnable weight matrix instead of the scalar weights can further improve the
model’s robustness.

4.4 Comparison with Previous Works

We compare our model with existing state-of-the-art models for multi-view
multi-person 3d pose estimation on both datasets. The models compared are:

– Belagiannis et al. [2], the first one applying the 3DPS to 3d pose estimation
for multiple humans.

– Belagiannis et al. [3], an improved version of their previous work.
– Ershadi-Nasab et al. [11], an extension of the 3DPS.
– Dong et al. [10], which uses person re-id and geometry methods to match 2d

poses.
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Table 4. Comparison of multi-view multi-person 3d pose estimation models on the
Shelf and Campus datasets under PCP@0.5. All results are obtained from the original
papers except for the (*) which only provides the average performance (in the paren-
theses) and its results on body parts presented here are from our own experiments
using the authors’ published code.

Shelf dataset Head Torso Upper

Arms

Lower

Arms

Upper

Legs

Lower

Legs

All parts Average

Belagiannis et al. [2] Actor 1 89.30 90.20 72.16 60.59 37.12 70.61 66.05 71.39

Actor 2 72.10 92.80 80.11 44.20 46.30 71.80 64.97

Actor 3 94.66 96.35 91.00 89.00 45.80 94.50 83.16

Belagiannis et al. [3] Actor 1 96.29 100.00 82.24 66.67 43.17 86.07 75.26 77.51

Actor 2 78.95 100.00 82.58 47.37 50.00 78.95 69.67

Actor 3 98.00 100.00 93.15 92.30 56.50 97.00 87.59

Ershadi-Nasab et al. [11] Actor 1 98.27 97.34 92.57 83.33 95.94 96.83 93.29 87.99

Actor 2 63.05 94.61 78.33 33.38 95.30 93.45 75.85

Actor 3 98.15 94.12 94.43 89.82 97.41 96.34 94.83

Dong et al. [10]* Actor 1 88.17 100.00 99.82 99.28 99.82 100.00 98.60 96.76 (96.90)

Actor 2 97.30 100.00 98.65 71.62 100.00 100.00 93.78

Actor 3 94.41 100.00 95.96 96.27 100.00 100.00 97.89

Our model Actor 1 88.89 100.00 99.82 99.46 100.00 100.00 98.75 97.39

Actor 2 100.00 100.00 100.00 81.08 100.00 100.00 96.22

Actor 3 90.06 100.00 95.65 95.96 95.96 99.38 97.20

Campus dataset Head Torso Upper

Arms

Lower

Arms

Upper

Legs

Lower

Legs

All parts Average

Belagiannis et al. [2] Actor 1 93.62 49.94 82.85 77.80 86.23 91.39 82.01 75.79

Actor 2 97.40 41.13 90.36 39.65 73.87 89.02 72.43

Actor 3 81.26 69.67 77.58 61.84 83.44 70.27 73.72

Belagiannis et al. [3] Actor 1 96.55 93.10 96.55 86.21 93.10 96.55 93.45 84.49

Actor 2 98.24 48.82 97.35 42.94 75.00 89.41 75.65

Actor 3 93.20 85.44 89.81 74.76 91.75 76.21 84.37

Ershadi-Nasab et al. [11] Actor 1 97.31 94.16 96.83 87.48 93.67 97.27 94.18 90.56

Actor 2 98.73 95.41 94.12 78.98 98.94 95.34 92.89

Actor 3 95.36 84.37 93.16 70.34 88.36 81.38 84.62

Dong et al. [10]* Actor 1 100.00 100.00 97.96 89.80 100.00 100.00 97.55 95.85 (96.30)

Actor 2 97.88 100.00 100.00 67.72 100.00 100.00 93.33

Actor 3 99.28 99.28 98.91 89.86 97.46 97.83 96.67

Our model Actor 1 100.00 100.00 98.98 90.82 100.00 100.00 97.96 96.71

Actor 2 99.47 100.00 100.00 74.34 100.00 100.00 94.81

Actor 3 100.00 100.00 99.64 90.58 97.10 97.46 97.39

For the Campus dataset, since the number of views is insufficient to generate
enough3dpose candidates,weuse person re-id and epipolar geometry as auxiliaries
in our matching algorithm. The comparison results are shown in Table 4.

On both datasets our model surpasses the state-of-the-art methods in almost
all cases. The average performance of our model is 97.39 and 96.71 respectively
with improvements of 0.63 and 0.86 comparing with the second best model
(0.49 and 0.41 improvements if compared with the results from their paper).
It is noteworthy that, the performance of existing models on the lower arms
of Actor 2 in Shelf dataset is quite low, while ours achieves 81.08 with a huge
improvement of 9.46. We notice that there exists a large quantity of occlusions
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in this case, which means our model can better handle occlusions than others in
a multi-person setting.

5 Conclusion

In this paper, we have proposed a novel end-to-end dynamic matching network
for multi-view multi-person 3d pose estimation. Different from previous studies,
the end-to-end scheme of our work enables the gradients to flow back from the
3d pose estimation module to the 2d pose detection backbone. A bottom-up
dynamic matching algorithm is proposed to group the 2d poses and heatmaps
by identities so as to connect the 2d pose detector and the 3d pose estimator.
The algorithm is efficient and robust and able to automatically determine the
number of people in the scene. The ablation study verified the effectiveness of
each part of our model and the experimental results on the Shelf and Campus
datasets demonstrate that our proposed model is superior to the state-of-the-art
models with respect to accuracy, robustness and efficiency.
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Abstract. In the real world, out-of-distribution samples, noise and dis-
tortions exist in test data. Existing deep networks developed for point
cloud data analysis are prone to overfitting and a partial change in test
data leads to unpredictable behaviour of the networks. In this paper,
we propose a smart yet simple deep network for analysis of 3D models
using ‘orderly disorder’ theory. Orderly disorder is a way of describing
the complex structure of disorders within complex systems. Our method
extracts the deep patterns inside a 3D object via creating a dynamic link
to seek the most stable patterns and at once, throws away the unstable
ones. Patterns are more robust to changes in data distribution, especially
those that appear in the top layers. Features are extracted via an inno-
vative cloning decomposition technique and then linked to each other
to form stable complex patterns. Our model alleviates the vanishing-
gradient problem, strengthens dynamic link propagation and substan-
tially reduces the number of parameters. Extensive experiments on chal-
lenging benchmark datasets verify the superiority of our light network
on the segmentation and classification tasks, especially in the presence
of noise wherein our network’s performance drops less than 10% while
the state-of-the-art networks fail to work.

Keywords: Point cloud · Deep neural network · Orderly disorder ·
Segmentation · Classification

1 Introduction

Object classification and semantic segmentation of 3D models are foundations
of numerous computer vision applications like autonomous driving and robot
manipulation. Thus far, a considerable number of convolutional neural networks
(CNNs) have been developed for such tasks [1–6] and in most cases they yield
promising results, especially when the distributions of test and train datasets
are similar. However, 3D models in the real world contain out-of-distribution
samples, different samplings, noise and distortions that significantly influence
their performance. Figure 1 shows a few examples of wrong classification in the
presence of noise.
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Fig. 1. Classification results of most existing networks highly depend on the distri-
bution of training and test data. A partial change in the distribution of test data by
adding Gaussian noise N (0, 0.02) leads to misclassification.

Using a large number of parameters for modeling and training results in
overfitting and exponentially growing computational cost. It also renders the
networks to being more data-driven which makes them unable to work under a
small change in the point set. Although several works [7–9] show less tendency
towards overfitting, their performance is highly dependent on the samples. Most
models are susceptible to irregular samples and work only under certain condi-
tions. Meanwhile, developing highly accurate, robust and fast models for the pro-
cessing of 3D data is demanded by many practical applications like autonomous
driving.

Our studies have shown that patterns of an object represent the structural
information of that object and remain almost unchanged under different sam-
plings of the data and so are a more stable basis on which to build classification
and segmentation algorithms. In this paper, we propose a novel cloning tech-
nique aiming at extraction of the stable patterns from an object. Such features
can efficiently improve the network’s performance. Our robust network is the
first successful attempt to tackle and to investigate classification and segmen-
tation under irregular samplings of point cloud data. Additionally, it needs a
relatively low number of parameters so it is fast and less prone to overfitting.
The key contributions of this paper are as follows:

– We design a robust deep neural network whose performance is not significantly
affected by data grid, thus it is invulnerable to noise, out-of-distribution sam-
ples and distortions.

– The proposed model mitigates the problem of distance saturation in KNN-
based models.

– The architecture of the proposed network allows the user to go deeper and
deeper without the problem of vanishing-gradient. This scheme is capable of
analysis of highly complex objects.
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– We provide thorough empirical and theoretical analysis on the stability and
efficiency of the proposed method using the 3D benchmark datasets: Model-
Net and ShapeNet [2,10].

In order to be robust to undesirable factors, our pattern-based network does not
require any annotated samples, and it just trains once on noise-free point cloud
data and then runs over any distorted ones1.

2 Related Work

Deep learning methods for 3D shape analysis and understanding can be broadly
divided into view-based, volumetric and point cloud-based categories. View-
based techniques [3,4,11] map 3D models into 2D view scenes and then employ
image-based CNNs for further analysis. Self-occlusions and information loss often
occur during mapping. Volumetric methods [1,2,12–14] quantize the input 3D
models into a regular grid before applying 3D CNNs. Loss of resolution, high
memory and computational demands are the main limitations of voxelization.

Instead of converting or mapping 3D models into other domains, they can
be analyzed in the point cloud domain directly. Due to the impressive results of
PointNet [5], most studies have been devoted to learning directly in the point
cloud domain. Since PointNet does not consider the local pattern of a given 3D
point cloud, PointNet++ [15] was proposed, which uses a hierarchical applica-
tion of PointNet to multiple subsets of a 3D point cloud. Inspired by DenseNet
[16], DensePoint [17] was introduced that learns a dense contextual representa-
tion for point cloud processing via a deep hierarchy architecture. Exploitation of
other aspects of local structure with PointNet are also reported in [6,18]. Super-
point [19] partitions the point cloud into geometrical homogeneous elements and
then a graph convolution network is applied to such local elements. The main
drawback of these methods is their lack of shape awareness. More precisely, such
methods do not explicitly model the local spatial layout of points. To this end,
several works have been developed [9,20–22] that capture the spatial layout of
a point cloud by learning a high-level relation expression among 3D points.

Although the approach of explicitly modeling the relation improves the seg-
mentation results, isolating high-level relation features from low-level ones may
not strengthen relation propagation, subsequently there is a vanishing-gradient
problem [16]. The appropriate distance or neighbour count parameter to use in
the KNN-based networks [9,17,20] is often obtained via trial-and-error, which
is saturated at a certain number of neighbours and even drastically drops by
increasing the number of neighbours or neighbourhood radius. This aspect of
such networks is not favorable, especially in dense 3D models.

Another main weakness of the existing networks that makes them imprac-
tical for real world data is their vulnerability to noise, distortions and out-of-
distribution sampling schemes. Robustness is a key property that allows applying
the same model to different irregular point clouds. Enriching the training step

1 Supplementary materials are available at https://github.com/mogvision/pattern-net.

https://github.com/mogvision/pattern-net
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with annotated data, like adding noise, distortions etc., is not a straightfor-
ward solution to the above problem. This is because increasing the volume of
input data with annotated samples makes the training convergence difficult to
achieve. Additionally, a large-scale input data renders a high number of param-
eters, resulting in overfitting. Hence there is interest in developing CNNs that
work efficiently under disparity between the training and test data.

3 Proposed Pattern-Wise Network

The goal is to establish and learn a deep neural network that converts an
input point cloud P = {pm ∈ R

d,m = 1, ...,M} into a set of segmen-
tation labels Γs = {γs ∈ R, s = 1, ..., S} or a set of classification labels
Γc = {γc ∈ R, c = 1, ..., C}. Here, M is the total number of 3D points
and d is the dimension of the point set that can be represented as a set of
3D coordinates plus other measured features like color, normal vectors etc.
pm = {coordinate : (xm, ym, zm), color : (rm, gm, bm), normal : (Nx

m, Ny
m, Nz

m)}.
In this paper, we just consider the 3D coordinates and extension of the network
over color and normal is straightforward. The output of the network for seg-
mentation tasks is a vector of labels γs ∈ {1, ..., S}, where S is the number of
segmentation labels. Likewise, for the classification task, 3D points are labelled
as γc ∈ {1, ..., C} with C classes.

3.1 Network Properties

A segmentation/classification network for a point set must meet the following
four requirements [5,15,23]:

Property i (Permutation Invariant): It states that segmentation/classification
scores must be invariant to changes in the order of 3D points. Unlike pixels in
images or voxels in volumetric grids, 3D point cloud has no order and due to its
irregular format, the network must be invariant to the order of points.

Property ii (Transformation Invariant): The labels/classifications of points
must not be varied by their changes in rotation, scale and translation.

Property iii (Points Relations): In the point cloud, the relation between points
is determined by their distance from each other. The distance metrics could be
Euclidean distance, Manhattan distance, cosine distance, etc. Points in the point
cloud are not isolated and their neighbours make a meaningful subset that can
be measured by an appropriate metric.

Property iv (Robustness): The segmentation parts or classification labels of
points must not be varied under different samplings. In practice, the distribution
of test data is not close to that of the training data. Additionally, presence of
out-of-distribution samples, noise and distortions in test data is inevitable so
point cloud networks must be robust to the irregular samples.

The above properties are the backbone of our network.
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Fig. 2. (a) P is the input point set which is constituted of three subsets shown in
blue (P{1}), black (P{2}) and red (P{3}). The abstract/structural information (solid
green lines) remains unchanged across different samplings. (b) Entropy of patterns with
different characteristics. (c) Categorization of potential patterns inside a rigid/non-rigid
object in point clouds. (Color figure online)

3.2 Network Architecture

The orderly disorder theory was introduced in physics [24,25] and it refers to
a way of describing the complex structure of disorders within complex systems.
Unpredictable disorders could occur just under external disturbances not because
of internal reasons. Ordered/predictable disorders may not be seen by human
vision and this increases the ambiguity between the predictable and unpre-
dictable disorders. However, the entropy metric could give us the degree of chaos
inside a complex structure. Chaos theory has been well studied in mathemat-
ics, behavioral science, management, sociology etc. With the success of CNNs
in solving high-order problems, our aim is to deeply analyze the links between
points in the given point cloud.

For a rigid/non-rigid 3D object in the given point cloud, the location of
points may change under different sampling operations, external disturbances
etc. but its abstract information does not vary. Such abstract information can be
named as stationary information and they are predictable while non-stationary
information refers to those features that do not obey a regular pattern and
under different conditions show different behaviours. The best way is to encode
a 3D object by its stationary patterns which always show predictable behaviour.
Contrary to stationary patterns, the behaviour of non-stationary patterns is
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completely unpredictable. For example, the minor details of a 3D model can
vary under various samplings but its skeleton remains unchanged (Fig. 2(a)).
Thus, we can claim that the classification score of a 3D object must not be
varied under changes in the density and distribution of points if the number of
points is sufficiently large, i.e.

Γ[p1,...,pN ] = Γ[p1,...,pM ] if N < M & N � 1. (1)

In other words, if our observation of an object is sufficiently large, then few
sample variations must not change the label of the enquiry object. Let’s assume
M = LN for a sufficiently large N , where L is a positive integer. According to
Eq. 1, we can say that

Γ[p1,...,pN ] = Γ[p(l−1)N+1,...,plN ], ∀l ∈ {2, ..., L}. (2)

One possible solution to the above equation is to decompose the input point
cloud P into L levels via a random down-sampling operator in such a way that all
L point subsets P{l}, l ∈ {1, ..., L}, are completely different while their overall
schemes/abstracts are similar to each other. Under these conditions, Eq. 2 is
asserted. If we apply a random down-sampling operator to point cloud P that
provides

P{l} ∩ P{j} = ∅ ∀ l, j ∈ {1, ..., L} & l �= j, (3)

L⋃

l=1

P{l} = P, (4)

H(P{l}) � H(P{j}) ∀ l, j ∈ {1, ..., L} & l �= j, (5)

then we can assert that all the L point subsets have similar stationary struc-
tures/patterns. In Eq. 5, ‘H’ denotes the entropy of each subset and this equation
assures that all the subsets have approximately similar information content. If R
denotes the entropy of redundant/predictable patterns in a point cloud set and
similarly, the entropy of random/less-redundant/unpredictable ones is denoted
by R, then the entropy H of each subset is equal to

H
(
P{l})

= R
(
P{l})

+ R
(
P{l})

, ∀ l ∈ {1, ..., L}. (6)

The entropy of redundant patterns is close to zero and the large part of
the overall entropy ‘H’ is assigned to unpredictable patterns R. Possible values
of entropy for patterns with different characteristics is depicted in Fig. 2(b).
It is worth noting that the randomness of the down-sampling operator ensures
that each point subset includes all parts/organs of an object. We name this
strategy as ‘cloning decomposition’ and an example is illustrated in Fig. 2(a),
where all the point subsets of the given 3D object share approximately similar
structures across multiple decomposed levels while none of them shares identical
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Fig. 3. An example of how the proposed cloning decomposition can successfully remedy
chaos in the given point cloud. For better visualisation, axis ‘z’ was set to 0. (a) Con-
ventional KNN-based networks yield asymmetric, complex, and dissimilar patterns for
two adjacent points; (b) The cloning decomposition technique increases the probability
of extracting symmetric, simple, and similar patterns.

3D samples. Overall, the feature space of an object could be categorized into a
number of undesirable non-stationary patterns in which the patterns are chaotic
and a series of stationary patterns, wherein complex and simple patterns are
learnt from orderly stable relations (Fig. 2(c)).

The simplified point subsets can markedly help the network to extract sta-
tionary patterns, enhancing robustness as stated by Property iv above. An
illustrative example is depicted in Fig. 3. This example aims at drawing the
KNN responses (here, K = 7) of two adjacent points. According to Fig. 3(a),
conventional KNN-based networks rely heavily on the density of 3D points and
also they may not find reliable neighbours as the radius of the neighbourhood
for an enquiry point depends on the density and distribution of the point cloud
data. The proposed technique decomposes the given point cloud in Fig. 3(a) into
two subsets via Eqs. 3–5. As shown in Fig. 3(b), it could provide similar pat-
terns for a complex point cloud. The radius of the neighbourhood for both the
blue and the red points is almost equal. As will be discussed later, this strategy
efficiently helps the network not to be saturated with its K nearest neighbours
while keeping the radius of the neighbourhood reasonable.

Fig. 4. Proposed network architecture for classification of point cloud data.
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The proposed network is depicted in Fig. 4. The framework has four main
layers including cloning decomposition (CD), searching relations (SR), learning
relations (LR) and linkage patterns (LP) layers. In the following, we detail the
functionality of each layer.

– Cloning Decomposition (CD) Layer: Image acquisition is often made
under various conditions that directly affect quality and quantity of 3D mod-
els and subsequently, their point cloud samples. This layer decomposes the
input object points into multiple subsets via Eqs. 3–5. Since high-level pat-
terns are directly deduced from the low-level ones, this layer plays a key role
in the extraction of reliable patterns. Cloning analysis reduces the number
of parameters, alleviates the vanishing-gradient problem and improves the
convergence pace.

– Searching Relations (SR) Layer: The task of this layer is to search all
possible links between the feature vectors (or equivalently potential low-level
patterns) according to Property iii above. This is done via the KNN algo-
rithm in the Hilbert space. Instead of using the Euclidean space dominantly
employed by most existing deep networks, we use a Hilbert kernel. Given
two low-/high-level feature vectors X and Y , a measure/relation of similarity
between them in the Euclidean space can be expressed as

E(X,Y ) = ||X||22 + ||Y ||22 − 2 < X,Y >, (7)

while the Hilbert kernel yields

H(X,Y ) = 2
(
1− <

X

||X||2 ,
Y

||Y ||2 >
)
. (8)

In the above equations, the angle brackets denote an inner product operator.
The Hilbert kernel emphasizes the cross-similarity while the self-similarity
remains the same, i.e. unit. Unlike the Euclidean space that is biased by
self-similarity, the Hilbert space just considers the cross-similarity between
enquiry feature vectors and thus, it is expected that it can find reliable rela-
tions between feature vectors.

– Learning Relations (LR) Layer: This layer seeks and learns potential
relations between all input feature vectors via a convolution kernel followed
by a batch normalization operator. A max pooling operator is then applied
to the outputs to obtain the global feature of the input features. The max
pooling is a symmetric function that guarantees that the extracted features
are permutation-invariant, as stated by Property i above. The combination
of the convolution kernel, batch normalization and max pooling operators is
often called multi-layer perceptron (MLP) [5].

– Linkage Patterns (LP) Layer: This layer comprises several MLP operators
and its aim is to aggregate the relations across all the subsets and extract
the most stable patterns from them. All the subsets have different samples
and the LP layer is applied to the patterns for extracting the common ones.
Such patterns carry stationary information of the object and they are robust
to irregular samples and density.
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Now, we detail the proposed pattern-based CNN (hereafter it is abbreviated
as Pattern-Net) for the classification and segmentation of given point clouds.

3.3 Classification and Segmentation Networks

In the classifier model depicted in Fig. 4, the input point cloud data is first
decomposed into ‘L’ subsets via the cloning technique described in the previous
section. Inside each subset, relations between each query point and its neigh-
bours is sought by the KNN algorithm. This is done by applying four MLPs
{64, 64, 64, 64} to each cloning subset. Similar to KNN-based networks [9,20,26],
we compute K nearest neighbour responses of edges emanating from the enquiry
feature point and stack them with the enquiry feature point. The KNN algo-
rithm is considerably affected by the density of points. If the 3D model is sparse,
then the best K responses will lie within a large volume neighbourhood while
such responses in a high density model may fall into a small radius (Fig. 3(a)).
Moreover, adjacent points in high density 3D samples would share similar KNN
responses and this makes the network data-dependent. In other words, the net-
work may fail to work for test point cloud data with different samplings from
the training data. This problem can be seen in almost all KNN-based networks
which here is solved by the cloning layer. In the proposed model, the LP layer
finds the most repeated relations across different subsets and then labels them
as stable patterns. Even in the presence of changes in point coordinates, the
patterns remain approximately unchanged as we consider overall behaviour of a
group of points rather than the exact behaviour of each point.

Each cloning subset yields a description vector of length 256 and they are
called cloning description vectors ψl, l ∈ {1, ..., L}. All the L cloning description
vectors are arranged in a matrix Ψ . An MLP is applied to all cube features over
all the subsets to yield a global description vector φ, shown in light green in the
figure. Here, the goal is to make each cloning description vector ψl similar to the
global one φ as much as possible. If we consider a linear relationship between
the cloning and global description vectors, i.e. φ = Ψω, then the estimated
coefficients ω can be computed by the Moore-Penrose inverse, i.e. ω = Ψ †φ =
(ΨTΨ)−1ΨTφ. Parameter ω determines the contribution of each cloning vector
in the resultant global vector. The deviation of ω elements should approach zero
if all the cloning description vectors are completely similar to the global one. We
add this term into the loss function:

L(θ) = − 1
n

n∑

i=1

C∑

c=1

yic log pic

︸ ︷︷ ︸
classification loss

+λ σ(Ψ †φ)︸ ︷︷ ︸
linear mapping loss

(9)

In the above equation, the first term is the categorical cross-entropy function
for computing the loss of the predicted labels and the second term enforces the
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Table 1. Classification accuracy in percentage (%) on ModelNet40 (‘-’: unknown)

Method Input Avg. classes Overall

PointNet [5] 1k-xyz 86.0 89.2

PointNet++ [15] 5k-xyz - 91.9

PointCNN [23] 1k-xyz 88.1 92.2

ECC [27] 1k-xyz 83.2 87.4

DGCNN [20] 2k-xyz 90.7 93.5

SO-Net [26] 2k-xyz 88.7 90.9

DensePoint [17] 1k-xyz - 93.2

RS-CNN [9] 1k-xyz - 93.6

1k-xyz 90.3 92.9

Pattern-Net 2k-xyz 90.7 93.6

4k-xyz 90.8 93.9

network to yield zero standard deviation for weights obtained by the linear map-
ping between the cloning and global description vectors. λ is a predetermined
constant, whose value is determined by the smoothing label’s value in the one-hot
encoded yic. Finally, pic is a scaled (softmax) logits. The Moore-Penrose pseudo-
inverse can be simply implemented by singular value decomposition (SVD) [28].
The ultimate cloning vector is obtained by applying a max-pooling operator to
the cloning vectors. The resulting vector is aggregated with the global vector to
yield the description vector for the given point set which is of length 512. Finally,
the description vector is fed into three MLPs {256, 256, C}, configured for clas-
sification. The resultant description vector is also used in segmentation. For this
task, four MLPs {64,64,64,64} are applied to the input data to extract low- and
high-level features. They are then concatenated with the description vector to
encode each point. Similar to the classification task, three MLPs {256, 256, S}
are employed for segmentation. The drop-rate of all decoding MLPs except the
last one is fixed at 0.5.

4 Experimental Results

We have evaluated Pattern-Net on the ModelNet40 dataset [2] for the classifica-
tion task. It contains 12311 meshed CAD models from 40 categories. Similar to
the other work, 9843 models were used for training and the rest for testing and
the models were normalized to a unit sphere. Each model is uniformly sampled
from the mesh faces in 1k, 2k and 4k samples. During the training step, the points
are augmented by randomly rotating, scaling and translating for being transfor-
mation invariant (Property ii above). The quantitative comparisons with the
state-of-the-art point-based methods are presented in Table 1. Our method for
1k and 2k points is on par with the other methods and gives the best result for
4k points.
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Fig. 5. (a) Influence of parameter K and number of points on the classification accuracy.
(b) Linear mapping loss for different cloning levels (#cloning levels×#points).

Table 2. Classification accuracy in percentage (%) on ModelNet40 in the presence of
noise [2k − xyz + N (0, σ)]

Method N (0, 0.02) N (0, 0.05) N (0, 0.08) N (0, 0.1) N (0, 0.15)

PointCNN 78.7 40.8 18.6 10.5 4.7

DGCNN 92.9 69.1 29.9 11.4 4.2

SO-Net 70.6 35.4 11.9 9.8 5.8

Pattern-Net (4× 512) 93.5 92.4 89.1 84.2 32.6

Unlike the existing methods, where the performance is quickly saturated by
a specific number of points, our network is saturated slowly as can be seen in
Fig. 5(a). For a fixed number of decomposed levels, an increase in the num-
ber of points improves the classification accuracy. There is also a direct link
between the accuracy and parameter K in KNN. Tuning parameter K in the
KNN-based networks is not straightforward and it is often obtained by trial-
and-error. According to the figure, further increasing K yields better results but
the performance increase slows down after K = 30. In order to make a bal-
ance between computational time and performance, parameter K was set to 30
throughout this study.

A suitable value for the number of cloning levels relies on the number of input
points, parameter K and the convergence of Eq. 9. As shown in Fig. 5(b), the rate
of convergence is reduced by increasing cloning numbers and the network requires
more epochs to find similar patterns between different cloning levels. However,
lower mapping loss does not guarantee high accuracy as the loss equation is
constituted of two terms including the mapping loss and the classification loss.
Our experiment shows that {3, 4, 5} cloning levels often yield good results. In
Table 1, this parameter was set to 4.

As mentioned previously, the ability to tolerate noise is a necessity for robust
and practical deep learning methods. In the following experiment, we added zero-
mean white Gaussian noise with different standard deviation values N (0, σ) to



Orderly Disorder in Point Cloud Domain 505

Fig. 6. Classification results on ModelNet40 with added Gaussian noise N (0, 0.05).
First 10 shapes shown are for each query, with the first line for our Pattern-Net and
the second line for DGCNN. The misclassified objects are highlighted in red. (Color
figure online)

the test samples. The classification accuracy results are reported in Table 2 and
a part of results is depicted in Fig. 6. The table shows that our networks can
tolerate noise up to N (0, 0.1) while the state-of-the-art methods failed to work.
The drop is less than 10% for N (0, 0.1), which is impressive.

Segmentation of Given Point Clouds: Segmentation of point cloud data is
one of the popular 3D tasks. We carried out this experiment on the ShapeNet
benchmark [10] and followed the data split in [5]. ShapeNet contains 16881
models of 16 categories and they are labelled in 50 parts in total. Like [10],
the Intersection-over-Union (IoU) of a shape is computed by averaging the IoUs
of different parts in that shape, and the IoU of each category is obtained by
averaging the IoUs of all the shapes belonging to that category. The results
are summarized in Table 3. When the training set is small, the performance of



506 M. Ghahremani et al.

Table 3. Segmentation results (%) on ShapeNet

Category (#) PointNet PointNet++ PointCNN DGCNN SO-Net RS-CNN Pattern-Net

Areo (2690) 83.4 82.4 82.4 84.0 82.8 83.5 84.3

Bag (76) 78.7 79.0 80.1 83.4 77.8 84.8 81.0

Cap (55) 82.5 87.7 85.5 86.7 88.0 88.8 87.4

Car (898) 74.9 77.3 79.5 77.8 77.3 79.6 80.1

Chair (3758) 89.6 90.8 90.8 90.6 90.6 91.2 91.4

Ear (69) 73.0 71.8 73.2 74.7 73.5 81.1 79.7

Guitar (787) 91.5 91.0 91.3 91.2 90.7 91.6 91.4

Knife (392) 85.9 85.9 86.0 87.5 83.9 88.4 88.1

Lamp (1547) 80.8 83.7 85.0 82.8 82.8 86.0 86.3

Laptop (451) 95.3 95.3 95.7 95.7 94.8 96.0 95.8

Motor (202) 65.2 71.6 73.2 66.3 69.1 73.7 72.1

Mug (184) 93.0 94.1 94.8 94.9 94.2 94.1 94.1

Pistol (283) 81.2 81.3 83.3 81.1 80.9 83.4 82.2

Rocket (66) 57.9 58.7 51.0 63.5 53.1 60.5 62.4

Skate (152) 72.8 76.4 75.0 74.5 72.9 77.7 72.4

Table (5271) 80.6 82.6 81.8 82.6 83.0 83.6 83.9

Avg. 83.7 85.1 85.1 85.2 84.9 86.2 86.4

our network is on par with the other methods. Our technique extracts common
deep features between shapes so it needs a sufficiently large number of training
samples. From the table, it can be seen that Pattern-Net outperforms the existing
methods on relatively large categories like airplane, car, chair and lamp. A sample
result of each category is illustrated in Fig. 7.

Table 4. Complexity of different methods for point cloud classification task

Method PointNet++ PointCNN DGCNN SO-Net RS-CNN DensePoint Pattern-Net

#params 1.48M 8.2M 11.8M 11.5M 1.41M 670k 399k

Complexity Analysis: Table 4 reports the complexity of Pattern-Net as well as
those of the existing techniques for the classification task. The number of input
points was set to 1024. Thanks to the cloning decomposition, our technique
needs less than 0.4M parameters which is much lower than 670k of DensePoint.
This characteristic of our method is more appealing for real-time applications
like mobile robotics and autonomous driving.
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Fig. 7. Segmentation results on ShapeNet. First shape of each category is selected,
where the left shape stands for the ground truth and the right one for our Pattern-Net.

5 Conclusions

In this study, we have proposed a novel technique for efficiently learning sta-
tionary patterns in the given point clouds, which is less susceptible to noise,
distortions and overfitting. It is also invariant to changes in translation, rotation
and scale. The key idea is to decompose the point cloud into multiple subsets
with similar structural information. Then we enforce the network to learn stable
patterns. Compared with noise that is order-less with unpredictable behaviour,
natural objects have complex structures accompanied with irregularities in some
parts due to the external disturbances. Informative patterns could be successfully
extracted if the level of randomness and uncertainty is diminished. Unpredictable
disorders cause inaccurate representation of given objects and this concept is
known as ‘orderly disorder’ theory. To this end, we have proposed the cloning
decomposing technique. Since our network learns just stable patterns, it is less
prone to overfitting, which means it needs to train only once and can then run
over a variety of data (e.g. different noise and sampling patterns). This method
could provide a promising direction for robust representation of point cloud data.
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Abstract. Deep learning is emerging as a new paradigm for solving
inverse imaging problems. However, the deep learning methods often
lack the assurance of traditional physics-based methods due to the lack
of physical information considerations in neural network training and
deploying. The appropriate supervision and explicit calibration by the
information of the physic model can enhance the neural network learning
and its practical performance. In this paper, inspired by the geometry
that data can be decomposed by two components from the null-space of
the forward operator and the range space of its pseudo-inverse, we train
neural networks to learn the two components and therefore learn the
decomposition, i.e.we explicitly reformulate the neural network layers as
learning range-nullspace decomposition functions with reference to the
layer inputs, instead of learning unreferenced functions. We empirically
show that the proposed framework demonstrates superior performance
over recent deep residual learning, unrolled learning and nullspace learn-
ing on tasks including compressive sensing medical imaging and natu-
ral image super-resolution. Our code is available at https://github.com/
edongdongchen/DDN.

Keywords: Decomposition learning · Physics · Inverse problems

1 Introduction

We consider a linear inverse problem of the form:

yε = Hx + ε, (1)

where the goal is to recover the unknown signal x ∈ R
D from the noisy mea-

surement yε ∈ R
d with typical dimension D � d, and H : R

D → R
d is the

forward operator which models the response of the acquisition device or recon-
struction system, while ε ∈ R

d represents the measurement noise intrinsic to the
acquisition process.

Inverse problems have wide applications in computer vision, medical imaging,
optics, radar, and many other fields. The forward operator H in (1) could repre-
sent various inverse problems, from e.g. an identity operator for image denoising,
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to convolution operators for image deblurring, random sensing matrices for com-
pressive sensing (CS), filtered subsampling operators for super-resolution (SR),
(undersampled) Fourier transform for magnetic resonance imaging (MRI) and
the (subsampled) Radon transform in computed tomography (CT). The inverse
problems in (1) are often noisy and ill-posed since the operator H has a non-
trivial null space. Such under-determined systems are extremely difficult to solve
and the solutions are very sensitive to the input data. The classical approach for
solving them have traditionally been model-based [4,9], which typically aim to
regularize the solutions by constraining them to be consistent with prior knowl-
edge about the signal and usually can only be solved iteratively.

More recently, due to the powerful representation learning and transforma-
tion ability, deep neural networks (DNN) have emerged as a new paradigm for
inverse problems. The community has already taken significant steps in this
direction, with deep neural networks being successfully applied to a wide vari-
ety of inverse problems [25]. For example, [5,48] use a fully connected feed-
foward neural network for image denoisng and inpainting. [12,22] learn end-
to-end mappings between yε and x with vanilla convolutional neural networks
(CNN). [24,51] further use CNNs with residual blocks [17] and skip connections
to improve the neural network performance. [20,28,36] learn downsampling and
upsampling feature maps with encoder-decoder CNNs. [8,50] use autoencoders
for learning new representations for x and yε to solve the inverse problems. [47]
use CNN as a prior and train with early stopping criteria to recover a single
image from its observation. [33] use CNN to perform denoising-based approxi-
mate message passing. [31,46] unfold the model-based optimizations with DNN.
[3,34] use generative models for natural images to recover images from Gaussian
measurements.

However, the DNN itself in the above deep learning-based approaches often
lack the guarantees of traditional physics-based methods as they are purely data-
driven and learning-based. In addition, the designing of DNNs is usually com-
plicated and has poor intuitive interpretation when they are decoupled from
the inverse problem of interest. Furthermore, it is a commonly held belief in the
inverse problems community that using the physics is preferable to relying solely
on data [30,41]. This raises a number of questions: is a purely data-driven neural
network the best way to solve an inverse problem? Does physical information
facilitate neural networks to find a better inverse problem solution? How should
one best make use of the prior physical (acquisition) information? All of these
above questions inspire us to think about whether the introduction of physi-
cal information in neural networks would be beneficial to the training of deep
learning methods to better solve inverse problems.

We present Deep Decomposition learning Network (DDN) as a way of using
physics to reconstruct image from its measurement yε (ε �= 0). Relying on the
range-nullspace decomposition of data and the recent null-space learning [30,41],
also known as affine projected network in [44], we propose to use two sets of
neural network layers to separately capture the residuals lying on the range of
H† and the nullspace of H. By incorporating the two learned residuals with the
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pseudo-inverse input, the proposed framework DDN is able to recover a plausible
image and preserve data consistency with respect to the measurements yε.

Decomposition learning can be used with various inverse imaging problems.
In this paper, we follow a compressive sensing magnetic resonance fingerprinting
(CS-MRF) reconstruction task [10,27]: reconstructing brain MR images sequence
from highly undersampled and noisy Fourier space data. We show that the DDN
outperforms recent related deep learning methods including deep residual learn-
ing [20] which is physics-free, deep nullspace learning [30,41,44] which neglected
the noise component, and deep unrolled learning [15,16,38] which retained the
undesirable iterative nature of model-based systems. We also performed an abla-
tion study on the natural image super-resolution (SR) task, and the results show
that simultaneous learning of two residuals is outperforming the way that does
not use physics or only learn one of the residuals. Finally, all the experiments
demonstrate that decomposition learning can facilitate the generalization of the
deep neural network for inverse problems.

2 Background

2.1 Deep Learning for the Inverse Problem

Depending on whether the physical acquisition information with respect to H is
used during DNN training and testing, we divide the deep learning approaches
into two categories: Physics-free and Physics-engaged.

Physics-Free. The DNN aims to learn a direct mapping from yε (or its
projection, e.g. H†yε) to x without exploiting the knowledge of H at any point
in the training or testing process (with the exception of the input). The general
principle is that, given enough training data, we should be able to design a proper
DNN to learn everything we need to know about H to successfully estimate x
directly. The success of this approach is likely to depend on the complexity of the
forward operator H. However, it has been observed to work well for numerous
computer vision tasks, such as denoising and inpainting [48], superresoluion [12]
and deblurring [23,49]. The DNN can be trained by a sole least squares loss
[20,28,48] or a combination of least squares loss and auxiliary losses such as
adversarial loss [23,24,37,43]. In general, this approach requires large quantities
of training data because it is required to not only learn the geometry of the image
space containing x, but also aspects of H. Hence, an interesting question is how
hard (relatively) are each of these components to learn and how important is it
to incorporate H into the learning process. When the forward problem is too
complex such that it can not be incorporated into the DNN model it will always
be necessary to go Physics-free. Finally, since direct estimation using a DNN for
solving inverse problems is essentially a form of regression, there is a potential
generalization issue with such physic-free DNN approaches.

Physics-Engaged. The most widely used strategy considering physics of H
in deep learning approaches is through a model-based approach, in which one
or more pretrained DNNs are used within a more traditional iterative physics-
engaged model-based framework such as [4,9]. As mentioned before, the inverse
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problem (1) typically boils down to solving an optimisation problem broadly of
the following form:

arg min
x

f(x) + λφ(x), (2)

where the first term f(x) aims to enforce data fidelity, e.g. f could be the MSE
between Hx and yε, while the regularizer φ allows us to insert knowledge onto
the solution x, and λ ∈ R

+ controls the strength of the regularization. Typically
there is no closed-form solution to (2) and it usually needs to be solved iteratively.
This has led to the following proposed uses for pretrained DNNs: (i) use DNN
to replace the proximal operator associated with φ(x) in a proximal gradient
algorithm [15,16,38], (ii) use DNN to replace the gradient ∇φ in an unrolled
optimization method [7,31,46], (iii) directly replace the regularizer φ with DNN
[26,39], (iv) use DNN as a generative model to generate x from a latent code that
needs to be estimated [3,42]. These iterative methods are Physics-engaged, as
they actually use the regularizer along with the forward model and observation
by minimizing the disparity between the oracle and its reconstruction.

As an exception to the above physics-engaged deep learning approaches, there
have been some recent studies aimed at explicitly using H-related information
during the DNN training process in an end-to-end manner. For example, [30,
41] explicitly learn the nullspace component of x with respect to H. However,
this separate nullspace learning does not deal with the presence of noise in the
input nor with situations where no nullspace exists. Another interesting direction
presented in [11] considers a Neumann series expansion of linear operators to
approximate the inverse mapping of (2). However, this requires the network to
precondition and store the results of each iteration in order to accumulate the
approximate Neumann series to solve the inverse problem.

In this paper, inspired by the nullspace method of [30,41,44], we explore the
possibility of a more flexible end-to-end neural network structure that is capable
of exploiting both the range and null space structures of the inverse problem.
Before discussing the proposed method, let us briefly recall the Range-Nullspace
decomposition of data.

2.2 Range-Nullspace (R-N ) Decomposition

Given a linear forward operator H ∈ R
d×D and its right pseudo inverse H† ∈

R
D×d, which satisfies HH† = Id, it holds that R

D = R(H†) ⊕ N (H), which
implies that for any sample ∀x ∈ R

D there exists two unique elements x+ ∈
R(H†) and x⊥ ∈ N (H) such that x = x++x⊥. Therefore we define the following
range-nullspace (R-N ) decomposition,

Definition 1. R-N Decomposition: Let Pr � H†H be the operator that
projects the sample x from sample domain to the range of H†, and denote by
Pn � (ID−H†H) the operator that projects x to the null space of H. Then
∀x∈ R

D, there exists the unique decomposition:

x = Pr(x) + Pn(x), (3)
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where we will call Pr(x) and Pn(x) the r-component and n-component of x,
respectively.

Remark 1. In this paper we will only focus on the above decomposition. How-
ever, we comment that in principle the pseudo-inverse, H†, could be replaced by
any general right inverse of H in the above decomposition which might provide
added flexibility in certain inverse problems.

Thus, the task of solving an inverse problem is to find these two components
Pr(x) and Pn(x) based on the observed data, yε. The simple linear estimator to
solve this problem is to use the approximation:

x∗ = H†yε. (4)

This estimator enjoys global and exact data-consistency, i.e.Hx∗ ≡ yε, which is
an important consideration when solving inverse problems [30]. However, com-
paring (4) with (3) we can see that this is achieved by simply setting the nullspace
component to zero: Pn(H†yε) = 0. In general this provides a poor solution for ill-
posed problems. Thus it is necessary to further estimate the missing component
Pn(x). Such an estimator is necessarily nonlinear.

Nullspace Learning. Recently, [30,41,44] explored the use of a neural net-
work G to feed a refined backprojection G(H†yε) to the null-space projection
operator Pn, then the reconstruction in (4) is reformulated as

x∗ = H†yε + Pn(G(H†yε)), (5)

where the network G is suggested to be trained by minimizing the error between
x and x∗. Note the solution (5) enjoys global data consistency, i.e.Hx∗ ≡ yε.
However, the solution (5) unfortunately, only works for the noise-free situation,
and does not allow any denoising in the range R(H†). Indeed, (5) can only
denoise in the nullspace and the denoising ability is therefore worst-case bounded
by ‖ε‖/‖H‖ since ‖H(x−x∗)‖ = ‖ε‖. The noise may further limit the ability to
predict the null space component from the noisy measurements. Although it is
reminiscent of decoupling the neural network denoiser from the inverse problem,
it does not benefit from this since the training needs to be tailored to the task
[38], which will be confirmed in our experiments.

3 Deep Decomposition Learning

Inspired by nullspace learning [30,41,44] we aim to remove the range space
denoising deficiency while still exploiting the nullspace property. Let us consider
the case ε �= 0 in (1) which is more practical. By the R-N decomposition (3), it
holds that x can be exactly recovered by,

x = H†yε − H†ε + Pn(x). (6)

However, as mentioned before, in the scenario of the inverse problem, both the
oracle image x and the noise term ε in (6) are still unknown and need to be
recovered.
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Fig. 1. Decomposition learning (a) and its two corresponding network architectures
in (b) and (c). Decomposition learning trains neural network to recovery the range
component Pr(x) = H†Hx and nullspace component Pn(x) = x − Pr(x) of oracle
image x from its coarse reconstruction H†yε. The residuals between H†yε and Pr(x)
and Pn(x) are recovered by f = Pr(F) and g = Pn(G) respectively, where F and G are
two sets of neural layers need to train. Different from direct learn the residual between
x and H†yε without using physics, x is instead reconstructed by H†yε + f + g in a
decomposition learning mechanism. This method enables physics to engage in neural
network training and testing and generate more physics plausible reconstruction.

We address this problem by using two neural networks and introducing the
decomposition learning framework (illustrated in Fig. 1a). Instead of hoping a
single neural network will directly fit a desired underlying mapping between
H†yε and x = Pr(x) + Pn(x), we explicitly let two networks, denoted by F and
G fit the two mappings from H†yε to the residual r-component Pr(x) − H†yε

and the n-component Pn(x), respectively. In particular, the output of F should
be bounded by the magnitude of noise ε, while G should be a smooth, i.e. a
Lipschitz continuous neural network, since G is essentially a nullspace network,
which does not need to be strongly bounded but should be regularized in order
to get reasonable generalization. Therefore, the oracle x is decomposed as the
sum of a linear component H†yε (the input), a bounded residual component
Pr ◦ F ∈ R(H†) and a smooth n-component Pn ◦ G ∈ N (H).

We consider two versions of DDN estimators. First, we define an independent
connection architecture (Fig. 1b) estimator Ai using the R-N decomposition,

Ai(yε) � H†yε + Pr(F(H†yε)) + Pn(G(H†yε)). (7)

where there are no interactions between F and G.
An alternative (but essentially equivalent) mapping Ac from yε to x which

is related to (7) uses a cascade of networks (Fig. 1c), i.e. first denoising with F ,
then feeding the denoised H†yε + Pr(F(H†yε)) into G such that:

Ac(yε) � H†yε + Pr(F(H†yε)) + Pn(G(H†yε + Pr(F(H†yε)))). (8)

Intuitively (8) is preferable since it is no more complex than the independent
network topology and provides the nullspace network G with a range denoised
input, thereby reducing the learning burden needed to be done by G. Our exper-
iments also verified the cascade connections typically perform better than the
independent one. Note that the independent model is by its nature a shallower
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but wider network than the cascade model which by construction is deeper, but
given the decomposition both networks have essentially the same complexity.

The R-N decomposition learning gives the outputs of the two networks F and
G clear interpretability: the output from F estimates the noise component, while
the output from G represents the component that is inferred from the implicit
image model as it was not measured at all by yε. Second, the DDN estimator
A(yε) defined in (7) and (8) offers the ability to denoise both the r-component
Pr(x) and the n-component Pn(x), and if ‖HF‖ ≤ ‖ε‖, the solution enjoys
a relaxed notion of data-consistency (in the spirit of the discrepancy principle
popular in inverse problems), which convergences to exact data consistency when
‖HF −ε‖ → 0, that makes the deep learning solutions more physically plausible.
Finally, in the cascade architecture (Fig. 1c) we calculate Pr(F) first. If we had
cascaded Pn(G(H†yε)) +H†yε first we would have lost the R-N decomposition
as the input to F would live in the full space. The input to G would also have
range noise, as in the independent architecture, thereby increasing the training
burden on G network.

3.1 Training Strategy

Let X = {(y(i)
ε ,x(i))}N

i=1 denote a training set of N samples, where x(i) and y(i)
ε

are the clean oracle signal and its noisy measurement given by (1). Denote by
�(x, y) the loss function, which measures the discrepancy between x and y. In
this paper we used �2 to compute �. Given an estimator A, we jointly training
F and G by solving a single optimization program,

min
F,G

�emp(A) + λ1φ1(F) + λ2φ2(G), (9)

where the first term �emp(A) � 1
N

∑
y
(i)
ε ,x(i)∈X

�(A(y(i)
ε ),x(i)) is A’s empiri-

cal loss associated with the training set X and serves the data-fidelity, and
A take the form either in (7) or in (8). In this paper, we set φ1(F) =
∑N

i=1 �(HF(H†y(i)
ε ), ε(i)) in order to encourage the data discrepancy term to

be small. We then set φ2 as the weight decay term to control the Lipschitz of the
network [41] and to encourage good generalization [21]. It worth noting we can
flexibly define different φ1 and φ2 for F and G to impose the desired bounded-
ness and smoothness conditions, such that to tune the networks to their specific
tasks.

Due to the decomposition x = Pr(x)+Pn(x) in the independent architecture
there are no interactions between the respective targets of F and G, therefore one
can decouple (9) into two independent sub-optimizations to train F and G sepa-
rately, i.e.minF (Pr(F),Pr(X)) + λ1φ1 and minG(Pn(G),Pn(X)) + λ2φ2. While
joint training and decoupled training are theoretically equivalent, in practice,
the decoupled training enjoys more intuitive interpretability, and it is easier to
control F and G each to achieve better convergence results. However, the joint
training is slightly more efficient than the decoupled because the networks can
be trained simultaneously. Accordingly we use the cascade architecture as our
DDN in our experiments and jointly train it using (9).
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3.2 The Relationship to Other Work

In the noise-free case (ε = 0), the decomposition learning (6) reduces naturally
to vanilla nullspace learning (5). Thus a DDN can be regarded as a generalized
nullspace network. While in the noisy case, one might be tempted to consider
adopting a separate generic denoiser to preprocess the measurements yε. How-
ever, such denoisers are typically built in a manner decoupled from the inverse
problem of interest, therefore to train a nullspace network with such denoised
measurements could amplify the reconstruction error, causing more inconsistent
results [38]. In contrast, the denoising process in the DDN is not decoupled from
the inverse problem but integrated into a unified learning model. The experi-
ments show this not only improves the quality of the results but in addition,
helps the model’s generalization. Note DDN is different from the recent heuris-
tic decomposition network [35] which broadly separates the image into structure
part and detail part. In contrast, we identify the natural R-N decomposition
induced by H that also allows us to select appropriate loss functions for the
different components.

Our decomposition learning can also be regarded as a special gated neural
network. To be specific, if we rewrite (7) as

A = TF(z) + (I − T)G(z) + z, (10)

where z = H†yε, T = H†H, it can be seen the output of F and G are gated
in terms of T and I − T. The importance of the two components is determined
by the physics in terms of H†H. This is different from previous gated networks
such as [18,45] in which the model is gated by some bounded numerical function
such as a sigmoid or hardlim which are not typically related to the physics of the
forward model or its inverse. Our method can also be regarded as a generalized
residual learning [17], i.e.we decompose the residual A−z into two components
in R(H†) and N (H) with more explicit interpretability. In particular, in the
absence of the nullspace N (H) or in the case H = I such that Pr = I and
Pn = 0, i.e. there is no nullspace learning, G will be irrelevant and only F will
be learnable, and the decomposition learning will be reduced to a non-gated
neural network and equivalent to the standard residual learning.

Remark 2. A key aspect of the DDN framework is access to the projection oper-
ators Pn and Pr. The complexity will depend on how easy it is to approximate
H†, or another left inverse. While many computer vision problems admit an eas-
ily computable inverse, such as: deblurring, inpainting and the ones considered in
this paper - compressed sensing and super-resolution, for more general inverse
problems this approximation is more challenging and may even be unstable.
However, it is possible to approximate z = H†y by a regularized linear operator,
e.g. arg minz ‖y − Hz‖2 + λ‖z‖2. Here we can leverage the wealth of literature
in inverse problems dedicated to efficiently computing this, e.g. using precondi-
tioned conjugate gradient solvers, etc. Unrolled physics-engaged deep learning
solutions [15,16,38] also solve a similar optimization problem but with an inte-
grated complex DNN regularizer, and therefore resort to slower proximal first
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Table 1. Four DNN solvers A that use different mechanisms for using physics to solve
inverse problems. Note the residual learning is physic-free and ProxH is the proximal
operator in proximal gradient descent optimization.

Mechanism Residual learning Unrolled learning Nullspace learning Decomposition learning

Formulation A = I + G ◦ F ProxH ← G ◦ F A = I + Pn(G ◦ F) A = I + Pr(F) + Pn(G)

order methods. In contrast, the DDN allows us to separate the DNN mappings
from this optimization. For such challenging problems we doubt whether a sim-
ilar complexity physics-free solution would be competitive.

4 Experiments

We designed our experiments to address the following questions:

– Does the proposed deep decomposition learning help the neural network pro-
duce superior results on different inverse problem tasks? Does the DDN enjoy
better generalization?

– Which training strategy, e.g. jointly or decoupled, is best for training the
DDN? Which connection type, e.g. the independent or cascade one, is better?

– How important is each component Pr(F) and Pn(G) to DDN?

To do that, we validate the effectiveness of our proposed decomposition learning
on the inverse problems of compressive sensing MR fingerprinting (CS-MRF)
[10,27] reconstruction and natural images super-resolution. While our focus is
mostly on CS-MRF, the SR experiments are included to shed some light on the
ablation analysis.

4.1 Implementation

Our goal here is not to explore the potential designs of the neural networks,
F and G, but the usage of physics in the neural network. Therefore, we use a
simple four layers CNN as F and directly apply UNet [40], which is commonly
used in the field of image reconstruction [16,20,47], as G. In particular, all the
layers in F are with 3 × 3 kernels where the first three layers undergo ReLU
activation and the 2nd and 3rd layers were followed by batch normalization and
ReLU activation, and a fixed number of c, 64, 64, c feature maps for each layer
where c is the number of input channels. We compare the proposed decompo-
sition learning (DDN) with residual learning (ResUnet, [20]), unrolled learning
(NPGD, [31]) and nullspace learning (NSN, [32,41]). The above different mecha-
nisms are summarized in Table 1. We build NPGD with a fixed 3 recurrent steps
[31]. It is important to note that we keep the base neural network topology and
the number of parameters the same for both our DDN and the competitors.

We quantify the image reconstruction quality using Normalized MSE
(NMSE), Peak Signal to Noise Ratio (PSNR), i.e.PSNR = 10 log10(255/MSE)2,
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and generalization error (GE)-the difference between the expected loss and the
training loss, is evaluated by GE(A) = |�(A,Xtest) − �(A,Xtrain)| where �(A,X )
denotes the loss evaluated over the data X . We used ADAM to optimize the DDN
and tuned the λ1 and λ2 for specific inverse problems. All networks used H†yε

as the input, were implemented in PyTorch, and trained on NVIDIA 2080Ti
GPUs.

4.2 CS-MRF Reconstruction

Magnetic Resonance Fingerprinting (MRF) [27] recently emerged to accelerate
the acquisition of tissues’ quantitative MR characteristics include T1, T2, off-
resonance frequency, etc. The compressive sensing MRF (CS-MRF) [10] is typi-
cally involves two goals, reconstructing a reasonable MR fingerprint (multi-coil
sensitivities, i.e.MR images sequence) x from its undersampled k-space mea-
surement yε, and at the same time using pattern recognition techniques such as
dictionary matching [27] or neural networks [6,13,14], to query the correspond-
ing quantitative map m, such that achieve quantification of MRI. Accordingly,
the data acquisition of CS-MRF can be boiled down to yε = H(x)+ ε where the
forward operator H consists a Fourier transformation F followed by a per-frame
and time-varying subsampling operator S, i.e.H = S ◦F . For the simplicity, we
use the Cartesian sampling as example and now H† = F−1 ◦ S�.

Note that x can be generated by the Bloch equation using its tissue prop-
erty/parameters map m, thus predicting m from x is another inverse problem
and is nonlinear. Recent studies show that this nonlinear inverse problem x → m
can be effectively solved by neural networks [6,13,14]. Here we mainly focus on
the inverse problem yε → x, i.e. recover x from its noisy measurement yε. We
then use the UNet-based network [13] that pre-trained on the clean oracle MRF
images to predict the tissue property map m for a given MRF image x.

Dataset. We use the simulated human brain MRF dataset in [6]. The ground
truth parametric tissue property maps are collected from 8 volunteers (2k slices)
using MAGIC [29] quantitative MRI protocol with Cartesian sampling. These
parametric maps are then used to simulate MRF acquisition using the Fast
imaging with Steady State Precession (FISP) [19] protocol and Cartesian sam-
pling. In particular, we set the dimension reduced 10 channel MRF image x
with scale D = 200 × 200, the compression ratio is d/D = 1/40, and the noise
level σε = 0.01. In order to evaluate the generalization ability of different meth-
ods under the extreme case that scarce labelled anatomical quantitative MRI
datasets that are available for training, small numbers of samples from the first
7 patients are randomly picked for training, e.g.N = 100, 50, 10 in our experi-
ments and 20 slices from the last volunteer are picked for the test.
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Table 2. Comparison results on CS-MRF reconstruction task.

IT X (NMSE×10−2/GE) T1 (PSNR dB)

(sec) N = 100 N = 50 N = 10 N = 100 N = 50 N = 10

ResUnet [20] 0.005 0.62/0.027 0.743/0.069 1.119/0.164 17.10 ± 2.64 17.80 ± 1.93 15.18 ± 1.49

NPGD [31] 0.15 0.58/0.024 0.980/0.118 1.689/0.255 18.05 ± 2.02 15.49 ± 1.47 13.67 ± 1.31

NSN [41] 0.04 0.57/0.031 0.740/0.068 1.119/0.159 18.49 ± 2.39 18.03 ± 1.65 15.25 ± 1.53

DDN 0.06 0.51/0.019 0.711/0.062 1.056/0.139 18.92 ± 2.04 18.06 ± 1.54 15.90 ± 1.49

Comparison Results. Table 2 reports the inferring time (IT), NMSE and GE
for the reconstruction of MRF images and the PSNRs for the tissue maps predic-
tion results. Due to space limitation, we only list the PSNR results of T1 here.
Figure 2a and Fig. 2b show the reconstruction of a test MRF image x’s first
channel and x’s T1 map prediction, respectively. In summary, we make three key
findings.

First, DDN obtained the best reconstruction results and the best general-
ization ability in all cases (Table 2). When training with fewer training samples
e.g. 50 and 10, NSN and NPGD perform better than NPGD. This demonstrates
that a neural network that improperly-trained using a few samples is not suitable
as a proximal operator. ResUnet is more stable than NPGD because the former
does not need to be used in another optimization algorithm which is irrelevant
to the neural network training.

Second, let τ denotes the number of times a particular model accesses the
physical model (e.g.H, H†). Clearly, τResUnet = 0, τNSN = 2, τDDN = 2×τNSN =
4 and τNPGD = 2 × 3 = 6 since NPGD needs to access both H and H� in
a proximal gradient descent iteration. As can be seen, the inferring time of
ResUnet is very short due to its essence of the pure physics-free model. Although
NPGD requires longer inferring time (2.5 times DDN), it only performs well when
training using 100 samples, i.e. fewer samples are not sufficient to train a good
neural proximal operator [31,38]. This also shows the usage of physics Pr and
Pn in the proposed decomposition learning is reasonable since it obtained best
results within an acceptable inferring time.

Finally, when the ResUnet, NPGD and NSN are trained with 50 or 10 sam-
ples, there exist lots of artifacts in their reconstructions (see Fig. 2a and Fig. 2b).
In contrast, DDN can stably output reasonable MRF image reconstructions and
such that lead to a physics plausible prediction of T1 map. This shows the use of
decomposition learning can help improve the generalization ability of the neural
network and alleviate the dependence of deep learning performance on large-
volume training samples.
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Fig. 2. (a) Reconstruction of MRF image x from its noisy measurement yε (σε = 0.01)
and (b) its corresponding T1 map prediction. From top to bottom are the groundtruth
x and m and their corresponding reconstructions by ResUnet [20], NPGD [31], NSN
[41] and DDN (proposed) trained with 100, 50 and 10 sample, respectively.

4.3 Ablation Study

We are interested in studying (1) the impact of different training strategies
(jointly/decoupled) and different connection types (independent/cascade) to
DDN and (2) the importance of component Pr and Pn to DDN. To do that, we
consider the Super-resolution (SR) task and train the models on the BSDS300
[1] and test on the benchmark dataset Set5 [2]. We super-resolve low-resolution
(LR) images by a scale factor of 2. The LR images are formed by downsampling
with bi-cubic anti-aliasing the HR images [12], and then corrupting them with
Gaussian noise with a standard deviation σε = 0.1 (10% noise). The presence of
anti-aliasing in the downsampling means that the bi-cubic upsampling operator
is a reasonable approximation to H†, and this is what we use in our DDN. Train-
ing is performed using 40×40 RGB image patches (LR). The quantitative results
presented are then evaluated on the luminance (Y) channel. We emphasize that
our goal here is not to achieve state-of-the-art performance on the SR task, but
a simple scenario to study the behaviour of ablation analysis for decomposition
learning.
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Table 3. Comparison results of ablation study on image SR task (×2, σε = 0.1).

Metric Training strategy study Ablation study

Independent Cascade DDN1 DDN2 DDN3 DDN4

Joint/Decoupled Joint Decoupled

PSNR (dB) 26.15 26.30 26.38 22.31 20.95 25.82 26.30

GE (10−3) 1.24 1.26 1.24 1.75 1.41 1.83 1.26

Fig. 3. Visualization of DDN with different specs on the SR task (×2, σε = 0.1). From
the left to right are the oracle HR image x, reconstructions by H†yε, DDN1( ✘�Pr,
✘�Pn), DDN2( ✘�Pr, ✔�Pn), DDN3( ✔�Pr, ✘�Pn), DDN4( ✔�Pr, ✔�Pn), and the r-component
H†yε + Pr(F) and n-component Pn(G) recovered by DDN4.

Training Strategy Study. We trained DDN using different training strategies.
The test results are reported in the Table 3 which demonstrates the cascade
architecture always performs slightly better than the independent one in term
of both PSNR and GE. Note that for the independent model the joint and
decoupled training are exactly equivalent. We also find that F and G benefit
from more iterations in the decoupled training, especially for very noisy cases.
In contrast, joint training was observed to be more efficient. In all experiments,
we therefore use the cascade architecture with joint training for the DDNs.

Importance of Pr and Pn. We trained four DDN variants by different usages
of Pr and Pn: DDN1 - deactivate both Pr and Pn, DDN2 - only use Pn, DDN3

- only use Pr and DDN4 - use both Pr and Pn. The statistics PSNRs and GEs
of the reconstruction are listed in Table 3. Two reconstruction examples and the
learnt r-component and n-component by DDN4 are shown in Fig. 3. From the
results, we have the following conclusions.

First, it can be seen that the DDN4 achieves the best results which used
both projectors Pr and Pn. DDN2 is essentially a nullspace network and per-
formed poorly in the presence of noise, as in this scenario the denoising task
plays a significant role in the inverse problem. DDN1 is equivalent to residual
learning and is purely learning-based and physics-free, it consistently provides
better performance than DDN2, but it has the higher GEs. This suggests that
introducing physics into deep learning models can facilitate the neural network
to enjoy better generalization for solving inverse problems.
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Second, DDN3 performs better than DDN1 and DDN2 but worse than DDN4.
It is because DDN3 considers denoising by recovering the r-component of data
but fails to learn the n-component. This demonstrates integrating Pr and Pn

into the proposed decomposition learning allows the DDN to remove structural
noise and to simultaneously accurately approximate the r-component Pr(x) (see
the penultimate column in Fig. 3) and predict the n-component Pn(x) (see the
last column in Fig. 3) from its noisy measurement. From the above discussions,
we conclude that decomposition learning is well-principled, structurally simple,
and highly interpretable.

Finally, we emphasize that given a linear forward operator H, the decompo-
sition learning naturally exists and is easy to define. One can plug the decompo-
sition learning, into other existing specialized deep learning solvers for different
inverse problems, with which we believe one could increase the performance limit
of the deep learning solvers.

5 Conclusion

In this paper, we have proposed a deep decomposition learning framework for
building an end-to-end and physics-engaged neural network solution for inverse
problems. We have explicitly reformulated the neural network layers to learn
range-nullspace decomposition functions with reference to the layer inputs,
instead of learning unreferenced functions. We have shown that the decompo-
sition networks not only produce superior results, but also enjoy good inter-
pretability and generalization. We have demonstrated the advantages of decom-
position learning on CS-MRF and image super-resolution examples. In future
work, we will explore adapting the proposed deep decomposition learning to
more challenging inverse problems such as tomographic imaging.
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Abstract. We propose and study a method called FLOT that estimates
scene flow on point clouds. We start the design of FLOT by noticing
that scene flow estimation on point clouds reduces to estimating a per-
mutation matrix in a perfect world. Inspired by recent works on graph
matching, we build a method to find these correspondences by borrowing
tools from optimal transport. Then, we relax the transport constraints to
take into account real-world imperfections. The transport cost between
two points is given by the pairwise similarity between deep features
extracted by a neural network trained under full supervision using syn-
thetic datasets. Our main finding is that FLOT can perform as well as
the best existing methods on synthetic and real-world datasets while
requiring much less parameters and without using multiscale analysis.
Our second finding is that, on the training datasets considered, most of
the performance can be explained by the learned transport cost. This
yields a simpler method, FLOT0, which is obtained using a particular
choice of optimal transport parameters and performs nearly as well as
FLOT.

1 Introduction

Scene flow [38] is the 3D motion of points at the surface of objects in a scene. It
is one of the low level information for scene understanding, which can be useful,
e.g., in autonomous driving. Its estimation is a problem which has been studied
for several years using different modalities as inputs such as colour images, with,
e.g., variational approaches [1,45] or methods using piecewise-constant priors
[16,22,39], or also using both colour and depth as modalities [2,12,32].

In this work, we are interested in scene flow estimation on point clouds only
using 3D point coordinates as input. In this setting, [8] proposed a technique
based on the minimisation of an objective function that favours closeness of
matching points for accurate scene flow estimate and local smoothness of this
estimate. In [35], 2D occupancy grids are constructed from the point clouds and
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given as input features to a learned background removal filter and a learned
classifier that find matching grid cells. A minimisation problem using these grid
matches is then proposed to compute a raw scene flow before a final refinement
step. In [36], a similar strategy is proposed but the match between grid cells
is done using deep features. In [3,47], the point clouds are projected onto 2D
cylindrical maps and fed in a traditional CNN trained for scene flow estimation.
In contrast, FLOT directly consumes point clouds by using convolutions defined
for them. The closest related works are discussed in Sect. 2.

We split scene flow estimation into two successive steps. First, we find soft-
correspondences between points of the input point clouds. Second, we exploit
these correspondences to estimate the flow. Taking inspiration from recent works
on graph matching that use optimal transport to match nodes/vertices in two
different graphs [18,29,34], we study the use of such tools for finding soft-
correspondences between points.

Our network takes as input two point clouds captured in the same scene
at two consecutive instants t and t + 1. We extract deep features at each point
using point cloud convolutions and use these features to compute a transport cost
between the points at time t and t+1. A small cost between two points indicates
a likely correspondence between them. In the second step of the method, we
exploit these soft-correspondences to obtain a first scene flow estimate by linear
interpolation. This estimate is then refined using a residual network. The optimal
transport and networks’ parameters are learned by gradient descent under full
supervision on synthetic datasets.

Our main contributions are: (a) an optimal transport module for scene flow
estimation and the study of its performance; (b) a lightweight architecture that
can perform as well as the best existing methods on synthetic and real-world
datasets with much less parameters and without using multiscale analyses; (c)
a simpler method FLOT0 obtained for a particular choice of the OT parame-
ters and which achieves competing results with respect to the state-of-the-art
methods. We arrive at this simplified version by noticing that most of the per-
formance in FLOT are explained by the learned transport cost. We also notice
that the main module of FLOT0 can be seen as an attention mechanism. Finally,
we discuss, in the conclusion, some limitations of FLOT concerning the absence
of explicit treatment of occlusions in the scene.

2 Related Works

Deep Scene Flow Estimation on Point Clouds. In [4], a deep network is
trained end-to-end to estimate rigid motion of objects in LIDAR scans. The clos-
est related works where no assumption of rigidity is made are [11,15,40,46]. In
[40], a parametric continuous convolution that operates on data lying on irregular
structures is proposed and its efficiency is demonstrated on segmentation tasks
and scene flow estimation. The method [15] relies on PointNet++ [30] and uses a
new flow embedding layer that learns to mix the information of both point clouds
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to yield accurate flow estimates. In [11], a technique to perform sparse convolu-
tions on a permutohedral lattice is proposed. This method allows the processing
of large point clouds. Furthermore, it is proposed to fuse the information of both
point clouds at several scales, unlike in [15] where the information is fused once
at a coarse scale. In contrast, our method fuse the information once at the finest
scale. Let us highlight that our optimal transport module is independent of the
type of point cloud convolution. We choose PointNet++ but other convolution
could be used. In [46], PWC-Net [33] is adapted to work on point clouds. The
flow is estimated in a coarse-to-fine scale fashion showing improvement over the
previous method. Finally, let us mention that recent works [25,46] address this
topic using self-supervision. We however restrict ourselves to full supervision in
this work.

Graph Matching by Optimal Transport. Our method is inspired by recent
works on graphs comparison using optimal transport. In [18], the graph Laplacian
is used to map a graph to a multidimensional Gaussian distribution that repre-
sents the graph structure. The Wasserstein distance between these distributions
is then used as a measure of graph similarity and permits one to match nodes
between graphs. In [27], each graph is represented as a bag-of-vectors (one vec-
tor per node) and the measure of similarity is the Wasserstein distance between
these sets. In [29], a method building upon the Gromov-Wasserstein distance
between metric-measure spaces [21] is proposed to compare similarity matrices.
This method can be used to compare two graphs by, e.g., representing each of
them with a matrix containing the geodesic distances between all pairs of nodes.
In [34], it is proposed to compare graphs by fusing the Gromov-Wassertsein dis-
tance with the Wasserstein distance. The former is used to compare the graph
structures while the latter is used to take into account node features. In our
work, we use the latter distance. A graph is constructed for each point cloud by
connecting each point to its nearest neighbours. We then propose a method to
train a network that extract deep features for each point and use these features
to match points between point clouds in our optimal transport module.

Algorithm Unrolling. Our method is based on the algorithm unrolling tech-
nique which consists in taking an iterative algorithm, unrolling a fixed number
of its iterations, and replacing part of the matrix multiplications/convolutions in
these unrolled iterations by new ones trained specifically for the task to achieve.
Several works build on this technique, such as [10,17,24,26] to solve linear inverse
problems, or [5,14,20,41] in for image denoising (where the denoiser is sometimes
used to solve yet another inverse problem). In this work, we unroll few iterations
of the Sinkhorn algorithm and train the cost matrix involved in it. This matrix is
trained so that the resulting transport plan provides a good scene flow estimate.
Let us mention that this algorithm is also unrolled, e.g., in [9] to train a deep
generative network, and in [31] for image feature assignments.
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3 Method

3.1 Step 1: Finding Soft-Correspondences Between Points

Let p, q ∈ R
n×3 be two point clouds of the same scene at two consecutive

instants t and t + 1. The vectors pi, qj ∈ R
3 are the xyz coordinates of the ith

and jth points of p and q, respectively. The scene flow estimation problem on
point clouds consists in estimating the scene flow f ∈ R

n×3 where fi ∈ R
3 is

the translation of pi from t to t + 1.

Fig. 1. The point clouds p and q go through g which outputs a feature for each input
point. These features (black arrows) go in our proposed OT module where they are
used to compute the pairwise similarities between each pair of points (pi, qj). The
output of the OT module is a transport plan which informs us on the correspondences
between the points of p and q. This information permits us to compute a first scene
flow estimate f̃ , which is refined by h to obtain fest. The convolution layers (conv) are
based on PointNet++ [30] but the OT module could accept the output of any other
point cloud convolution. The dashed-blue arrows indicate that the point coordinates
are passed to each layer to be able to compute convolutions on points.

Perfect World. We construct FLOT starting in the perfect world where p+f =
P q, with P ∈ {0, 1}n×n a permutation matrix. The role of FLOT is to estimate
the permutation matrix P without the knowledge of f . In order to do so, we
use tools from optimal transport. We interpret the motion of the points pi as
a displacement of mass between time t and t + 1. Each point in the first point
cloud p is attributed a mass which we fix to n−1. Each point qj then receives
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Input: cost matrix C; parameters K, λ, ε > 0.
Output: transport plan T.
a ← 1n−1;
U ← exp(−C/ε);
for k = 1, . . . , K do

b ← [(1n−1) � (Uᵀa)]λ/(λ+ε) ;

a ← [(1n−1) � (U b)]λ/(λ+ε) ;

end
T ← diag(a) U diag(b) ;

Algorithm 1: Optimal transport module. The symbol � denote the element-
wise division and multiplication, respectively.

the mass n−1 from pi if pi + fi = qj , or, equivalently, if Pij = 1. We propose
to estimate the permutation matrix P by computing a transport plan T ∈ R

n×n
+

from p to q which satisfies

T ∈ argmin
U∈R

n×n
+

n∑

i,j=1

CijUij subject to U1 = 1n−1 and Uᵀ1 = 1n−1, (1)

where 1 ∈ R
n is the vector with all entries equal to 1, and Cij � 0 is the

displacement cost from point pi to point qj [28]. Each scalar entry Tij � 0 of
the transport plan T represents the mass that is transported from pi to qj .

The first constraint in (1) imposes that the mass of each point pi is entirely
distributed over some of the points in q. The second constraint imposes that each
points qj receives exactly a mass n−1 from some of the points p. No mass is lost
during the transfer. Note that in the hypothetical case where the cost matrix C
would contain one zero entry per line and per column then the transport plan is
null everywhere except on these entries and the mass constraints are immediately
satisfied via a simple scaling of the transport plan. In this hypothetical situation,
the mass constraints would be redundant for our application as it would have
been enough to find the zero entries of C to estimate P. It is important to note the
mass constraints play a role in the more realistic situation where “ambiguities”
are present in C by ensuring that each point gives/receives a mass n−1 and that
each point in p has a least one corresponding point in q and vice-versa.

We note that n−1P satisfies the optimal transport constraints. We need now
to construct C so that T = n−1P.

Real World and Fast Estimation of T. In the real world, the equality p+f =
P q does not hold because the surfaces are not sampled at the same physical
locations at t and t + 1 and because objects can (dis)appear due to occlusions.
A consequence of these imperfections is that the mass preservation in (1) does
not hold exactly: mass can (dis)appear. One solution to circumvent this issue is
to relax the constraints in (1). Instead of solving (1), we propose to solve
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min
U∈R

n×n
+

⎡

⎣
n∑

i,j=1

CijUij + εUij (logUij − 1)

⎤

⎦ + λ KL
(
U1,

1
n

)
+ λ KL

(
Uᵀ1,

1
n

)
,

(2)

where ε, λ � 0, and KL denotes the KL-divergence. The term Uij(logUij − 1)
in (2) is an entropic regularisation on the transport plan. Its main purpose, in
our case, is to allow the use of an efficient algorithm to estimate the transport
plan: the Sinkhorn algorithm [7]. The version of this algorithm for the optimal
transport problem (2) is derived in [6] and is presented in Algorithm 1. The
parameter ε controls the amount of entropic regularisation. The smaller ε is, the
sparser the transport plan is, hence finding sparse correspondences between p
and q. The regularisation parameter λ adjust how much the transported mass
deviates from the uniform distribution, allowing mass variation. One could let
λ → +∞ to impose strict mass preservation.

Note that the mass regularisation is controlled by the power λ/(λ+ε) in Algo-
rithm 1. This power tends to 1 when λ → +∞ to impose strict mass preservation
and reaches 0 in absence of any regularisation. Instead of fixing the parameters
ε, λ in advance, we let these parameters free and learn them by gradient descent
along with the other networks’ parameters.

We would like to recall that, in the perfect world, it is not necessary for
the power λ/(λ + ε) to reach 1 to yield accurate results as the final quality
is also driven by the quality of C. In a perfect situation where the cost would
be perfectly trained with a bijective mapping already encoded in C by its zero
entries, then any amount of mass regularisation is sufficient to reach accurate
results. This follows from our remark at the end of the previous subsection but
also from the discussion in the subsection below on the role of C and the mass
regularisation. In a real situation, the cost is not perfectly trained and we expect
the power λ/(λ + ε) to vary in the range of (0, 1) after training, reaching values
closer to 1 when trained in a perfect world setting and closer to 0 in presence of
occlusions.

Learning the Transport Cost. An essential ingredient in (2) is the cost
C ∈ R

n×n where each entry Cij encodes the similarity between pi to point qj .
An obvious choice could be to take the Euclidean distance between each pair of
points (pi, qj), i.e., Cij = ‖pi − qj‖2, but this choice does not yield accurate
results. In this work, we propose to learn the displacement costs by training a
deep neural network g : Rn×3 → R

n×c that takes as input a point cloud and
output a feature of size c for each input point. The entries of the cost matrix are
then defined using the cosine distance between the features g(p)i, g(q)j ∈ R

c at
points pi and qj , respectively:

Cij =
(

1 − g(p)ᵀ
i g(q)j

‖g(p)i‖2 ‖g(q)j‖2

)
· i‖·‖2�dmax (pi − qj) . (3)



FLOT: Scene Flow by Optimal Transport 533

The more similar the features g(p)i and g(q)j are, the less the cost of transport-
ing a unit mass from pi to qj is. The indicator function

i‖·‖2�dmax (pi − qj) =
{

1 if ‖pi − qj‖2 � dmax,
+∞ otherwise, (4)

is used to prevent the algorithm to find correspondences between points too far
away from each other. We set dmax = 10 m.

In order to train the network g, we adopt the same strategy as, e.g., in [9] to
train generative models or in [31] for matching image features. The strategy con-
sists in unrolling K iterations of Algorithm 1. This unrolled iterations constitute
our OT module in Fig. 1. One can remark that the gradients can backpropagate
through each step of this module and allow us to train g.

On the Role of C and of the Mass Regularisation. We gather in this
paragraph the earlier discussions on the role of C and the mass regularisation.
For the sake of the explanation, we come back in the perfect-world setting and
consider (1). In this ideal situation, one could further dream that it is possible
to train g perfectly such that Cij is null for matching points, i.e., when Pij = 1,
and strictly positive otherwise. The transport plan would then satisfy T = n−1P
with a null transport cost. However, one should note that the solution T would
entirely be encoded in C up to a global scaling factor: the non-zero entries of T
are at the zero entries of C. In that case, the mass transport constraints only
adjust the scale of the entries in T. Such a perfect scenario is unlikely to occur but
these considerations highlight that the cost matrix C could be exploited alone
and could maybe be sufficient to find the appropriate correspondences between
p and q for scene flow estimation. The mass transport regularisation plays a role
in the more realistic case where ambiguities appears in C. The regularisation
enforces, whatever the quality of C and with a “strength” controlled by λ, that
the mass is distributed as uniformly as possible over all points. This avoids that
some points in p are left with no matching point in q, and vice-versa.

FLOT0. FLOT0 is a version of FLOT where only the cost matrix C is exploited
to find correspondences between p and q. This method is obtained when remov-
ing the mass transport regularisation in (2), i.e., by setting λ = 0. In this limit,
the “transport plan” satisfies

T = exp(−C/ε). (5)

T is then used in the rest of the method as if it was the output of Algorithm 1.

3.2 Step 2: Flow Estimation from Soft-Correspondences

We obtained, in the previous step, a transport plan T that gives correspondences
between the points of p, q. Our goal now is to exploit these correspondences to
estimate the flow. As before, it is convenient to start in the perfect world and
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consider (1). In this setting, we have seen that f = Pq − p and that, if g is well
trained, we expect n−1P = T. Therefore, an obvious estimate of the flow is

f̃i =
n∑

j=1

Pij qj − pi =
1

n−1

n∑

j=1

Tij qj − pi =

∑n
j=1 Tij qj∑n

j=1 Tij
− pi, (6)

where we exploited the fact that
∑n

j=1 Tij = n−1 in the last equality.
In the real world, the first equality in (6) does not hold. Yet, the last expres-

sion in (6) remains a sensible first estimation of the flow. Indeed, this computa-
tion is equivalent to computing, for each point pi, a corresponding virtual point
that is a barycentre of some points in q. The larger the transported mass Tij

from pi to qj is, the larger the contribution of qj to this virtual point is. The
difference between this virtual point and pi gives an estimate of the flow fi. This
virtual point is a “guess” on the location of pi + fi made knowing where the
mass from pi is transported in q.

However, we remark that the flow f̃ estimated in (6) is, necessarily, still
imperfect as it is highly likely that some points in p+ f cannot be expressed as
barycentres of the found corresponding points q. Indeed, some portion of objects
visible in p might not visible any more in q due to the finite resolution in point
cloud sampling. The flow in these missing regions cannot be reconstructed from
q but has to be reconstructed using structural information available in p, relying
on neighbouring information from the well sampled regions. Therefore, we refine
the flow using a residual network:

fest = f̃ + h(f̃), (7)

where h : Rn×3 → R
n×c takes as inputs the estimated flow f̃ and uses convolu-

tions defined on the point cloud p.
Let us finally conclude this section by highlighting the fact that, in the case

of FLOT0, (6) simplifies to

f̃i =

∑n
j=1 exp(−Cij/ε) (qj − pi)∑n

j=1 exp(−Cij/ε)
. (8)

On can remark that the OT module essentially reduces to an attention mech-
anism [37] in that case. The attention mechanism is thus a particular case of
FLOT where the entropic regularisation ε plays the role of the softmax temper-
ature. Let us mention that similar attention layers haved been showed effective
in related problems such as rigid registration [42–44].

3.3 Training

The network’s parameters, denoted by θ, and ε, γ are trained jointly under full
supervision on annotated synthetic datasets of size L. Note that to enforce pos-
itivity of ε, γ, we learn their log values. A constant offset of 0.03 is applied to ε
to avoid numerical instabilities in the exponential function during training.
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The sole training loss is the �1-norm between the ground truth flow f and
the estimated flow fest:

min
θ

1
3L

L∑

l=1

∥∥∥M(l) (f (�)
est − f (�))

∥∥∥
1
, (9)

where M(l) ∈ R
n×n is a diagonal matrix encoding an annotated mask used to

remove points where the flow is occluded.
We use a batchsize of 4 at n = 2048 and a batchsize of 1 at n = 8192

using Adam [13] and a starting learning rate of 0.001. The learning rate is kept
constant unless specified in Sect. 4.

3.4 Similarities and Differences with Existing Techniques

A first main difference between FLOT and [11,15,46] is the number of parameters
which is much smaller for FLOT (see Table 1). Another difference is that we do
not use any downsampling and upsampling layers. Unlike [11,46], we do not
use any multiscale analysis to find the correspondences between points. The
information between point clouds is mixed only once, as in [15], but at the finest
sampling resolution and without using skip connections between g and h.

We also notice that [11,15,46] rely on a MLP or a convnet applied on the
concatenated input features to mix the information between both point clouds.
The mixing function is learned and thus not explicit. It is harder to find how
the correspondences are effectively done, i.e., identify what input information is
kept or not taken into consideration. In contrast, the mixing function in FLOT is
explicit with only two scalars ε, λ adjusted to the training data and whose roles
are clearly identified in the OT problem (2). The core of the OT module is a sim-
ple cross-correlation between input features, which is a module easy to interpret,
study and visualise. Finally, among all the functions that the convnets/MLPs in
[11,15,46] can approximate, it is unlikely that the resulting mixing function actu-
ally approximates the Sinkhorn algorithm, or an attention layer, after learning
without further guidance than those of the training data.

4 Experiments

4.1 Datasets

As in related works, we train our network under full supervision using FlyingTh-
ings3D [19] and test it on FlyingThings3D and KITTI Scene Flow [22,23]. How-
ever, none of the datasets provide point clouds directly. This information needs
to be extracted from the original data. There is at least two slightly different
ways of extracting these 3D data, and we report results for both versions for a
better assessment of the performance. The first version of the datasets are pre-
pared1 as in [11]. No occluded point remains in the processed point clouds. We
1 Code and pretrained model available at https://github.com/laoreja/HPLFlowNet.

https://github.com/laoreja/HPLFlowNet
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Table 1. Performance of FLOT on the validation sets of FT3Dp, FT3Ds, and FT3Do

(top). Performance of FLOT measured at the output of the OT module, i.e., before
refinement by h, on FT3Dp and FT3Ds (bottom). The corresponding performance
on FT3Do is in the supplementary material. We report average scores and, between
parentheses, their standard deviations. Please refer to Sect. 4.3 for more details.

Dataset K ε λ/(λ + ε) EPE AS AR Out.

With flow

refinement
FT3Dp

FLOT0 0.03 (0.00) 0 (fixed) 0.0026 (0.0005) 99.56 (0.08) 99.69 (0.05) 0.44 (0.10)

1 0.03 (0.00) 0.70 (0.00) 0.0011 (0.0001) 99.83 (0.01) 99.89 (0.01) 0.17 (0.01)

3 0.03 (0.00) 0.82 (0.00) 0.0009 (0.0001) 99.85 (0.01) 99.90 (0.01) 0.16 (0.01)

5 0.03 (0.00) 0.88 (0.00) 0.0009 (0.0001) 99.84 (0.02) 99.90 (0.01) 0.17 (0.02)

FT3Ds

FLOT0 0.03 (0.00) 0 (fixed) 0.0811 (0.0005) 50.32 (0.34) 83.08 (0.24) 52.15 (0.34)

1 0.03 (0.00) 0.64 (0.01) 0.0785 (0.0003) 50.91 (0.52) 83.67 (0.10) 51.73 (0.38)

3 0.03 (0.00) 0.59 (0.00) 0.0786 (0.0010) 51.06 (0.95) 83.78 (0.35) 51.72 (0.76)

5 0.03 (0.00) 0.56 (0.00) 0.0798 (0.0003) 49.77 (0.50) 83.39 (0.08) 52.58 (0.31)

FT3Do

FLOT0 0.03 (0.00) 0 (fixed) 0.1834 (0.0018) 21.94 (0.69) 52.79 (0.53) 77.19 (0.43)

1 0.03 (0.00) 0.50 (0.01) 0.1798 (0.0009) 22.01 (0.14) 53.39 (0.24) 76.77 (0.16)

3 0.03 (0.00) 0.34 (0.00) 0.1797 (0.0014) 22.77 (0.53) 53.74 (0.54) 76.39 (0.43)

5 0.03 (0.00) 0.35 (0.01) 0.1813 (0.0020) 22.64 (0.41) 53.58 (0.41) 76.52 (0.46)

No flow

refinement
FT3Dp

FLOT0

Same as above

0.0026 (0.0006) 99.59 (0.07) 99.70 (0.05) 0.42 (0.10)

1 0.0010 (0.0001) 99.83 (0.01) 99.89 (0.01) 0.18 (0.01)

3 0.0009 (0.0000) 99.85 (0.01) 99.90 (0.01) 0.16 (0.01)

5 0.0010 (0.0001) 99.84 (0.03) 99.90 (0.01) 0.17 (0.02)

FT3Ds

FLOT0

Same as above

0.1789 (0.0004) 17.57 (0.07) 43.34 (0.08) 75.34 (0.07)

1 0.1721 (0.0005) 18.24 (0.11) 44.64 (0.14) 74.54 (0.11)

3 0.1764 (0.0003) 17.64 (0.07) 43.52 (0.10) 75.09 (0.07)

5 0.1761 (0.0009) 17.68 (0.13) 43.60 (0.23) 75.07 (0.13)

denote these datasets FT3Ds and KITTIs. The second version of the datasets
are the ones prepared2 by [15] and denoted FT3Do and KITTIo. These datasets
contains points where the flow is occluded. These points are present at the input
and output of the networks but are not taken into account to compute the train-
ing loss (9) nor the performance metrics, like in [15]. Further information about
the datasets is in the supplementary material. Note that we keep aside 2000
examples from the original training sets of FT3Ds and FT3Do as validation sets,
which are used in Sect. 4.3.

4.2 Performance Metrics

We use the four metrics adopted in [11,15,46]: the end point error EPE; two
measures of accuracy, denoted by AS and AR, computed with different thresholds
on the EPE; a percentage of outliers also computed using a threshold on the EPE.
The definition of these metrics is recalled in the supplementary material.

Let us highlight that the performance reported on KITTIs and KITTIo are
obtained by using the model trained on FT3Ds and FT3Do, respectively without

2 Code and datasets available at https://github.com/xingyul/flownet3d.

https://github.com/xingyul/flownet3d
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fine tuning. We do not adapt the model for any of the method. We nevertheless
make sure that the xyz axes are in correspondence for all datasets.

4.3 Study of FLOT

We use FT3Ds, FT3Do and FT3Dp to check what values the OT parameters ε, λ
reach after training, to study the effect of K on the FLOT’s performance and
compare it with that of FLOT0. FT3Dp is exactly the same dataset as FT3Ds

except that we enforce p + f = Pq when sampling the point to simulate the
perfect world setting. The sole role of this ideal dataset is to confirm that the
OT model holds in the perfect world, the starting point of our design.

For these experiments, training is done at n = 2048 for 40 epochs and takes
about 9 h. Each model is trained 3 times starting from a different random draw of
θ to take into account variations due to initialisation. Evaluation is performed at
n = 2048 on the validation sets. Note that the n points are drawn at random also
at validation time. To take into account this variability, validation is performed
5 different times with different draws of the points for each of the trained model.
For each score and model, we thus have access to 15 values whose mean and
standard deviation are reported in Table 1. We present the scores obtained before
and after refinement by h.

First, we notice that ε = 0.03 for all model after training. We recall that we
applied a constant offset of 0.03 to prevent numerical errors occurring in Algo-
rithm 1 in the exponential function when reaching to small value of ε. Hence,
the entropic regularisation, or, equivalently, the temperature in FLOT0, reaches
its smallest possible value. Such small values favour sparse transport plans T,
yielding sparse correspondences between p and q. An illustration of these sparse
correspondences is provided in Fig. 2. We observe that the correspondences are
accurate and that the mass is well concentrated around the target points, espe-
cially when these points are near corners of the object.

Second, the power λ/(λ + ε), which controls the mass regularisation, reaches
higher values on FT3Dp than FT3Do. This is the expected behaviour as FT3Dp

contains no imperfection and FT3Do contains occlusions. The values reached on
FT3Ds are in between those reached on FT3Dp than FT3Do. This is also the
expected behaviour as FT3Ds is free of occlusions and the only imperfections
are the different sampling of the scene as t and t + 1.

Third, on FT3Dp, FLOT reduces by 2 the EPE compared to FLOT0, which
nevertheless already yields good results. Increasing K from 1 to 3 further reduces
the error and stabilises at K = 5. This validates the OT model in our the perfect
world setting: the OT optimum and perfect world optimum coincide.

Fourth, on FT3Ds and FT3Do, the average scores are better for FLOT than
FLOT0, except for two metrics at K = 5 on FT3Ds. The nevertheless good
performance of FLOT0 indicates that most of it is due to the trained transport
cost C. On FT3Ds and FT3Do, changing K from 1 to 3 has less impact on the
EPE than on FT3Dp. We also detect a slight decrease of performance when
increasing K from 3 to 5. The OT model (2) can only be an approximate model
of the (simulated) real-world. The real-world optimum and OT optimum do not
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Fig. 2. Illustration of correspondences, found by FLOT (K = 1) trained on n = 8192
(see Sect. 4.4), between p and q in two different scenes of KITTIs. We isolated one
car in each of the scenes for better visualisation. The point cloud p captured at time
t is represented in orange. The lines show the correspondence between a query point
pi and the corresponding point qj∗ in q on which most the mass is transported: j∗ =
argmaxj Tij . The colormap on q represents the values in Ti where yellow corresponds to
0 and blue indicates the maximum entry in Ti and show how the mass is concentrated
around qj∗ . (Color figure online)

Table 2. Performance on FT3Ds and KITTIs. The scores of FlowNet3D and
HPLFlowNet are obtained from [11]. We also report the scores of PointPWC-Net avail-
able in [46], as well as those obtained using the official implementation†. Italic entries
are for methods publicly available but not yet published at submission time.

Dataset Method EPE AS AR Out. Size (MB)

FT3Ds FlowNet3D [15] 0.114 41.2 77.1 60.2 15

HPLFlowNet [11] 0.080 61.4 85.5 42.9 77

FLOT (K = 1) 0.052 73.2 92.7 35.7 0.44

PointPWC-Net [46] 0 .059 73 .8 92 .8 34 .2 30

PointPWC-Net† 0 .055 79 .0 94 .4 29 .8 30

KITTIs FlowNet3D [15] 0.177 37.4 66.8 52.7 15

HPLFlowNet [11] 0.117 47.8 77.8 41.0 77

FLOT (K = 1) 0.056 75.5 90.8 24.2 0.44

PointPWC-Net [46] 0 .069 72 .8 88 .8 26 .5 30

PointPWC-Net† 0 .067 78 .5 90 .6 22 .8 30
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coincide. Increasing K brings us closer to the OT optimum but not necessarily
always closer to the real-world optimum. K becomes an hyper-parameter that
should be adjusted. In the following experiments, we use K = 1 or K = 3.

Finally, the absence of h has no effect on the performance on FT3Dp, with
FLOT still performing better than FLOT0. This shows that OT module is able
to estimate accurately the ideal permutation matrix P on its own and that
the residual network h is not needed in this ideal setting. However, h plays a
important role on the more realistic datasets FT3Ds and FT3Do, with an EPE
divided by around 2 when present.

4.4 Performance on FT3Ds and KITTIs

We compare the performance achieved by FLOT and the alternative methods
on FT3Ds and KITTIs in Table 2. We train FLOT using n = 8192 points, as in
[11,46]. The learning rate is set to 0.001 for 50 epochs before dividing it by 10
and continue training for 10 more epochs.

The scores of FlowNet3D and HPLFlowNet are obtained directly from [11].
We report the scores of PointPWC-net available in [46], as well as the better
scores we obtained using the associated code and pretrained model.3 The model
sizes are obtained from the supplementary material of [15] for FlowNet3D, and
from the pretrained models provided by [11] and [46]. HPLFlowNet, PointPWC-
Net and FLOT contain 19 M, 7.7 M, and 0.11 M parameters, respectively.

FLOT performs better than FlowNet3D and HPLFlowNet on both FT3Ds

and KITTIs. FLOT achieves a slightly better EPE than PointPWC-Net on
KITTIs and a similar one on FT3Ds. However, PointPWC-Net achieves better
accuracy and has less outliers. FLOT is the method that uses the less trainable
parameters (69 times less than PointPWC-Net).

We illustrate in Fig. 3 the quality of the scene flow estimation for two scenes
of KITTIs. We notice that FLOT aligns correctly all the objects. We also remark

Table 3. Performance on FT3Do and KITTIo.

Dataset Method EPE AS AR Out.

FT3Do FlowNet3D [15] 0.160 25.4 58.5 78.9

FLOT0 0.160 33.8 63.8 70.5

FLOT (K = 1) 0.156 34.3 64.3 70.0

FLOT (K = 3) 0.161 32.3 62.7 71.7

KITTIo FlowNet3D [15] 0.173 27.6 60.9 64.9

FLOT0 0.106 45.3 73.7 46.7

FLOT (K = 1) 0.110 41.9 72.1 48.6

FLOT (K = 3) 0.107 45.1 74.0 46.3

3 Code and pretrained model available at https://github.com/DylanWusee/
PointPWC.

https://github.com/DylanWusee/PointPWC
https://github.com/DylanWusee/PointPWC
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Fig. 3. Two scene from KITTIs with input point clouds p, q along with the ground
truth p + f , estimated p + f̃ and refined p + fest using FLOT (K = 1) at n = 8192.
(Color figure online)

that the flow f̃ estimated at the output of the OT module is already of good
quality, even though the performance scores are improved after refinement.

4.5 Performance on FT3Do and KITTIo

We present another comparison between FlowNet3D and FLOT using FT3Do

and KITTIo, originally used in [15]. We train FlowNet3D using the associated
official implementation. We train FLOT and FLOT0 on n = 2048 points using
a learning rate of 0.001 for 340 epochs before dividing it by 10 and continue
training for 60 more epochs.

The performance of both methods is reported in Table 3. We notice that
FLOT and FLOT0 achieve a better accuracy than FlowNet3D with an improve-
ment of AS of 8.8 points on FT3Do and 17.7 on KITTIo. The numbers of outliers
are reduced by the same amount. FLOT at K = 1 performs the best with FLOT0
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close behind. On KITTIo, the best performing model are those of FLOT0 and
FLOT at K = 3.

The reader can remark that the results of FlowNet3D are similar to those
reported in [15] but worse on KITTIo. The evaluation on KITTIo is done differ-
ently in [15]: the scene is divided into chunks and the scene flow is estimated
within each chunk before a global aggregation. In the present work, we keep the
evaluation method consistent with that of Sect. 4.4 by following the same proce-
dure as in [11,46]: the trained model is evaluated by processing the full scene in
one pass using n random points from the scene.

5 Conclusion

We proposed and studied a method for scene flow estimation built using optimal
transport tools. It can achieves similar performance to that of the best per-
forming method while requiring much less parameters. We also showed that the
learned transport cost is responsible for most of the performance. This yields a
simpler method FLOT0, which performs nearly as well as FLOT.

We also noticed that the presence of occlusions affects the performance of
FLOT negatively. The proposed relaxation of the mass constraints in Eq. (2) per-
mits us to limit the impact of these occlusions on the performance but does not
handle them explicitly. There is thus room for improvements by detecting, e.g.,
by analysing the effective transported mass, and treating occlusions explicitly.
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A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information
Processing Systems, pp. 13876–13887. Curran Associates, Inc. (2019)

19. Mayer, N., et al.: A large dataset to train convolutional networks for disparity,
optical flow, and scene flow estimation. In: Conference on Computer Vision and
Pattern Recognition, pp. 4040–4048. IEEE (2016)

20. Meinhardt, T., Moller, M., Hazirbas, C., Cremers, D.: Learning proximal opera-
tors: using denoising networks for regularizing inverse imaging problems. In: Inter-
national Conference on Computer Vision, pp. 1799–1808. IEEE (2017)

21. Mémoli, F.: Gromov-wasserstein distances and the metric approach to object
matching. Found. Comput. Math. 11(4), 417–487 (2011)

22. Menze, M., Heipke, C., Geiger, A.: Joint 3D estimation of vehicles and scene flow.
In: ISPRS Workshop on Image Sequence Analysis (2015)

23. Menze, M., Heipke, C., Geiger, A.: Object scene flow. ISPRS J. Photogrammetry
Remote Sens. 140, 60–76 (2018)

24. Metzler, C., Mousavi, A., Baraniuk, R.: Learned D-AMP: principled neural network
based compressive image recovery. In: Guyon, I., et al. (eds.) Advances in Neural
Information Processing Systems, pp. 1772–1783. Curran Associates, Inc. (2017)

http://arxiv.org/abs/org


FLOT: Scene Flow by Optimal Transport 543

25. Mittal, H., Okorn, B., Held, D.: Just go with the flow: self-supervised scene flow
estimation. In: Conference on Computer Vision and Pattern Recognition. IEEE
(2020)

26. Mousavi, A., Baraniuk, R.G.: Learning to invert: signal recovery via deep convo-
lutional networks. In: International Conference on Acoustics, Speech and Signal
Processing, pp. 2272–2276. IEEE (2017)

27. Nikolentzos, G., Meladianos, P., Vazirgiannis, M.: Matching node embeddings for
graph similarity. In: AAAI Conference on Artificial Intelligence, pp. 2429–2435
(2017)
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Abstract. Affine correspondences (ACs) have been an active topic of
research, namely for the recovery of surface normals. However, cur-
rent solutions still suffer from the fact that even state-of-the-art affine
feature detectors are inaccurate, and ACs are often contaminated by
large levels of noise, yielding poor surface normals. This article provides
new formulations for achieving epipolar geometry-consistent ACs, that,
besides leading to linear solvers that are up to 30× faster than the state-
of-the-art alternatives, allow for a fast refinement scheme that signifi-
cantly improves the quality of the noisy ACs. In addition, a tracker that
automatically enforces the epipolar geometry is proposed, with experi-
ments showing that it significantly outperforms competing methods in
situations of low texture. This opens the way to application domains
where the scenes are typically low textured, such as during arthroscopic
procedures.

Keywords: Affine correspondences · Photoconsistency optimization ·
Tracking · Surface normal estimation

1 Introduction

Affine correspondences (ACs) encode important information about the scene
geometry and researchers have been actively exploiting them for solving very
different Computer Vision tasks, ranging from plane segmentation to the esti-
mation of radial distortion parameters. In particular, Perdoch et al. [16] generate
point correspondences from ACs for estimating the epipolar geometry, Bento-
lila and Francos [6] estimate the fundamental matrix from 3 ACs, Raposo and
Barreto [18,20] use them to estimate the essential matrix and perform plane
segmentation, Pritts et al. [17] retrieve distortion parameters from affine maps,
and Hajder and Barath [9] accomplish planar motion estimation from a single
AC. More recently, the estimation of affine transformations from two directions
if the epipolar geometry is known has been proposed in [15].
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Fig. 1. a) A calibrated camera whose pose is known at all times observes a 3D scene
from different viewpoints. ACs extracted across multiple frames are shown and iden-
tified with colors. b) For each multi-view track of affine maps, the proposed method
provides an oriented 3D point, i.e., its 3D location and normal to the surface. Recon-
structed 3D points are shown in black and red arrows represent normals. (Color figure
online)

The fact that an AC encodes information about the normal to the surface
has motivated a series of recent works to estimate normals from ACs when the
epipolar geometry is known [2–4,7,8], with important applications in the fields
of object detection, 3D registration and segmentation. In general terms, two
families of algorithms exist: one that estimates the surface normal directly from
the extracted ACs [2,4,8] and another that starts by correcting the AC to be
consistent with the epipolar geometry and afterwards retrieves the normal [3,7].
All solutions in the second family of algorithms perform an initial correction
of the point correspondence and afterwards modify the affine transformation.
When considering highly textured scenes, this two-step process is reliable since
point correspondences are usually accurate and it is the affine component that
is significantly affected by noise. However, when working in low textured scenes,
it cannot be assumed that point correspondences are known or can be corrected
by triangulation [10] since accurate ones are difficult to extract, with methods
typically yielding very sparse and inaccurate reconstructions.

This article provides new insights on how to solve the problem of obtaining 3D
oriented points, i.e. 3D points augmented with the information about the surface
normal, from ACs. In addition, schemes for the refinement and tracking of ACs
based on photoconsistency that automatically enforce the epipolar constraints
and that work well in situations of low texture are proposed. A valid alterna-
tive would be to formulate the problem using the plane equation to represent
homographies. However, working directly with ACs enables the extracted affine
regions to be used as the integration domain in photoconsistency. In the case
of homographies, the optimal integration region depends on the scene geometry,
which is unknown and not straightforward to determine.

Being able to obtain accurate and rich reconstructions of 3D oriented points
in low-texture scenes greatly benefits several monocular vision algorithms. Exam-
ples include the reconstruction of indoor scenes, which are typically dominated



Accurate Reconstruction of Oriented 3D Points Using ACs 547

by large low-textured planes, and the detection and 3D registration of objects
with low texture. In particular, this would add significant value to the domain
of arthroscopic procedures where obtaining 3D reconstructions of bone surface
solely from the arthroscopic images is difficult mainly due to their inherent low
texture [21]. In summary, the contributions are the following:

Fast Correction of ACs and Normal Estimation: Building on a recent
study [20] that provides the relation between an AC and the epipolar geometry,
we show how to write the AC as a function of only two unknown parameters
(2 degrees of freedom (DoF)), in case the point correspondence is fixed, and
three unknown parameters (3 DoF) otherwise, and propose fast linear solvers for
enforcing noisy ACs to be consistent with the epipolar geometry. For the 2-DoF
case, the multi-view solution comes in a straightforward manner. In addition,
a fast linear solver for the estimation of normals from multiple frames is also
presented.

Multi-view Refinement of ACs Consistent with the Epipolar Geom-
etry: A fast method for multi-view photoconsistency refinement of the affine
transformation of the AC that is the first to automatically enforce the epipo-
lar geometry is proposed. Experiments show that it significantly improves the
quality of the estimated normals, providing accurate oriented 3D points (Fig. 1).

Tracking of ACs Consistent with the Epipolar Geometry: We present
the first formulation for correction of ACs to be consistent with the epipolar
geometry that also corrects the point depth, avoiding the common two-step pro-
cess [3] of fixing the point correspondence and the affine frame sequentially.
Building on this formulation, a novel tracker that enables the accurate recon-
struction of oriented 3D points in low textured scenes, outperforming a standard
KLT tracker [1], is proposed.

2 Epipolar Geometry-Consistent ACs

Let (x,y,A) be an affine correspondence (AC) such that the patches surrounding
x and y are related by a non-singular 2 × 2 matrix A, with

x =
[
x1 x2

]T
,y =

[
y1 y2

]T
,A =

[
a1 a3

a2 a4

]
. (1)

A point correspondence (u,v) in the patch is related by v = Au + b, with
b = y − Ax. As demonstrated in [20], an AC is consistent with the epipolar
geometry if the following is verified:

⎡

⎣
x1y1 x1y2 x1 x2y1 x2y2 x2 y1 y2 1
a3x1 a4x1 0 y1+a3x2 y2+a4x2 1 a3 a4 0

y1+a1x1 y2+a2x1 1 a1x2 a2x2 0 a1 a2 0

⎤

⎦E(:)=0, (2)

with D(:) denoting the vectorization of matrix D by columns and E being the
essential matrix.
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From the relation y = Ax + b, Eq. 2 can be written as

M(E,x) [mT 1]T = 0, (3)

where M only depends on the essential matrix E and the point in the first image
x, and m = [A(:)T bT]T. By taking the null space of M, whose dimension is
3 × 7, a basis for the full AC A = [A b] is obtained, and thus A can be written
as a linear combination of this null space:

A(:) = N6×4 [αT 1]T, (4)

with N6×4 being the matrix that is obtained by removing the last row of the
null space matrix of M3×7 and α being the set of unknown parameters αT =
[α1 α2 α3]. It comes in a straightforward manner that an AC Ã extracted
from a pair of images can be corrected to an AC A that is consistent with the
epipolar geometry by finding the solution α∗ to the system N6×4[α∗T 1]T = Ã(:)
in the least-squares sense and afterwards computing A = N6×4[α∗T 1]T.

As mentioned in the introduction, when extracting ACs in real scenarios, the
level of noise present in the affine component is significantly larger than the one
that affects the point correspondence. Thus, it may be desirable to assume that
the point correspondence (x,y) is known, and only the affine component A is
to be corrected to be consistent with the epipolar geometry. In this case, the
problem is simplified since the two bottom equations of the system of Eqs. 2 can
be written as

P(E,x,y) [A(:)T 1]T = 0, (5)

where P is a 2 × 5 matrix that only depends on the essential matrix E and
the point correspondence (x,y). By taking the null space of P, the following is
obtained

A(:) = Q4×3[αT 1]T, (6)

where Q is the matrix that is obtained by removing the last row of the null space
of P, having the following format

Q =

⎡

⎢
⎢
⎣

q1 0 q2
1 0 0
0 q1 q3
0 1 0

⎤

⎥
⎥
⎦ . (7)

In this case, the number of degrees of freedom (DoF) is 2, i.e., α = [α1 α2]T.
The corrected AC is estimated similarly to the 3-DoF case.

2.1 Extension to the Multi-view Case

2-DoF Formulation. Consider a 3-view affine track consisting of two ACs
(x,y,A) and (y, z,B) that relate patches in frames 1 and 2 and frames 2 and 3,
respectively. By assuming that the point correspondences are fixed, it is possible
to correct ACs A and B independently by performing as previously described.
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However, a multi-view formulation for correcting one AC using information from
more than two views simultaneously yields more accurate results [7].

This section proposes a new linear solver for accomplishing this task. Let
(x, z,C) be the AC that relates the patch in frame 1 surrounding x with the
patch in frame 3 surrounding z, so that C = BA. By representing each AC as
in Eq. 6, i. e., A(:) = QA[αT 1]T, B(:) = QB[βT 1]T and C(:) = QC[γT 1]T, it
is possible to write the unknown parameters β and γ as a function of α so that
the latter can be estimated using the information from all three views:

β1 = λ1α1 + λ2α2/λ3α1 + λ4α2

β2 = λ5α1 + λ6α2 + λ7/λ3α1 + λ4α2

γ1 = λ8α1 + λ9

γ2 = λ8α2 + λ10

, (8)

where λi, i = 1, . . . , 10 are parameters that only depend on the known matrices
QA, QB and QC.

Since the relationship between γ and α is linear, a linear system of equations
relating ACs A and C with the unknown parameters α,

L[αT 1]T = [A(:)T C(:)T]T, (9)

can be written, where

L =
[

QA

λ8Q
[1,2]
C QC[λ9 λ10 1]T

]
, (10)

with Q
[1,2]
C denoting columns 1 and 2 of matrix QC. This formulation can be

extended to more than 3 views in a straightforward manner by performing sim-
ilarly for each new frame and stacking the new equations to the linear system 9.

3-DoF Formulation. Performing multi-view correction of ACs in the general
case, i.e., when it is not assumed that the point correspondences are known and
thus the full AC A is accounted for, is possible but not as simple as described
for the 2-DoF case. The reason for this is that, when attempting to follow a
procedure analogous to the 2-DoF case, since point y is not known, it becomes
impossible to directly obtain a representation of B as in Eq. 4. However, y can be
written as y = A[xT 1]T, which, together with the null-space representations
of ACs A and C,

A(:) = NA [αT 1]T

C(:) = NC [γT 1]T , (11)

yields, after considerable algebraic manipulation1, the following system of equa-
tions

G [βT γT]T = g, (12)

1 We used MATLAB’s symbolic toolbox for performing the algebraic manipulation.
The MATLAB code for deriving all the equations in this section is provided as
supplementary material.
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where G and g depend on α. Unfortunately, this dependency precludes a linear
system such as the one in Eq. 9 from being obtained, making this formulation
significantly more complex than the 2-DoF one. One possibility for achieving
AC correction in this case is to devise an iterative scheme for minimizing the
Frobenius norm of the difference between the extracted and the corrected ACs.
This could be done by starting with an initialization for α obtained from the
extracted AC Ã, estimating β and γ using Eq. 12, retrieving the corrected ACs
A, B and C and iterating for every new estimation of α until the sum of the
squared Frobenius norms of the differences between the extracted and the cor-
rected ACs is minimal. Generalization to an arbitrary number of views comes in
a straightforward manner.

3 Multi-view Linear Estimation of Surface Normals

It is well known that the affine transformation A of an AC is the Jacobian of
the homography in point x [11,12,20]. This result enables to relate the AC with
the normal to the surface at the corresponding 3D point X, also enabling the
latter to be estimated. Solutions for this problem, in the 2-view and multi-view
cases, that formulate the problem in the 3D space have been proposed [2,4]. In
this section we derive a simpler formulation that allows to build a linear solver
for normal estimation in the multi-view case.

It has been shown in [20] that an AC (x,y,A) induces a two-parameter family
of homographies H that can be written up to scale as

H(j;x,y,A) =
[
A + yjT y − (A + yjT)x

jT 1 − jTx

]
. (13)

The equality H(j;x,y,A) = R + tnT, where R, t is the known rotation and
translation between the cameras and n is the normal to be estimated, can be
rewritten as F[nT jT]T = −R(:), with F being a 9 × 6 matrix that depends on
t,x,y and A. By stacking the equations obtained for each view and solving the
linear system, the multi-view estimation of n is accomplished.

Unlike in [2] where only the direction of the normal is recovered, this solver
also provides the distance of the plane tangent to the surface, encoded in the
norm of the normal vector. This extra information allows to reconstruct the 3D
point by intersecting the back-projection rays of each camera with the plane.

4 Photoconsistency Optimization for Accurate Normals

Although there has been intensive research on affine region detectors [14,24],
state-of-the-art methods still provide ACs that present high levels of noise [7].
Thus, in order to obtain accurate 3D oriented points, it does not suffice to correct
the ACs to be consistent with the epipolar geometry. In this section, we propose
two novel methods for photoconsistency error minimization that are based on
the 2-DoF and 3-DoF formulations derived in Sect. 2. The first method works as
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an optimizer of ACs and is designed to work in scenes with texture, where point
correspondences can be accurately extracted. The second method is a tracker as
it only requires feature detection in one frame and performs tracking for every
incoming frame. It handles situations of low texture by performing the tracking
constrained by the epipolar geometry.

4.1 2-DoF Formulation

The refinement of the affine component of the ACs is formulated as a non-linear
optimization problem whose cost function is the photoconsistency error, i.e., the
sum of the squared error between a template T, considered as the patch from
the first frame that encloses the affine region, and the second frame I. Given
an initial estimate for the parameters to optimize p, the goal is to iteratively
compute the update parameters δp by minimizing the cost function [1]

∑

x∈N

⎡

⎢
⎣I(w(x;p + δp)) − T(x)

︸ ︷︷ ︸
E(δp)

⎤

⎥
⎦

2

, (14)

where w is the image warping function and N denotes the integration region.
The Efficient Second-order Minimization (ESM) alignment formulation [5,13]

states that the incremental update δp which minimizes the error at each iteration
is given, considering a second-order Taylor expansion approximation, by

δp ≈ −
(

J(0) + J(δp)
2

)+

E(0), (15)

where the symbol + denotes the pseudoinverse and J(i) is the Jacobian of the
error E(i), having as general formula

J(i) =
∂E(i)

∂i
=

∂I (w (x;p + i))
∂i

. (16)

The Jacobian J(0) evaluated using the current solution is given by

J(0) =
∂I (w (x;p + i))

∂i

∣
∣
∣
∣
i=0

=
∂I(x′)
∂x′

∣
∣
∣
∣
x′=w(x;p)

∂w (x;p + i)
∂i

∣
∣
∣
∣
i=0

. (17)

The first term on the right-hand side of Eq. 17 is the gradient of the image
warped at the current solution. The second term is the Jacobian of the warp
function evaluated at i = 0 which, using the formulations derived in Sect. 2, is
easy to compute. For the sake of computational efficiency, we obtain the incre-
mental update by solely considering J(0), i.e., by computing δp = −J(0)+E(0),
which is a valid approximation.

In the present case, where the point correspondence (x,y) is fixed, the
unknown parameters p to be refined correspond to α in Eq. 6 and the warp
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function w transforms points u in the template into points v in the second
image by an affine projection HA = [A(QA,p) y − A(QA,p)x], where A(QA,p)
is the 2 × 2 matrix computed using QA and p, as described in Sect. 2.

The extension to the multi-view case is obtained by writing the warp function
that transforms points u in the template into points w in the third image as
a function of the unknown parameters p using the relation between α and γ
derived in Eq. 8. The Jacobian of this warp function is then computed, as well as
the gradient of the third image warped at the current solution. By stacking the
errors E and their Jacobians, obtained using frames 2 and 3, the update δp is
computed using the information of the 3 frames simultaneously. By performing
similarly for every incoming frame, the multi-view photoconsistency refinement
of the affine transformation A is achieved.

4.2 3-DoF Formulation

The formulation for the case of 3 unknown parameters is analogous to the 2-DoF
case, with the unknown parameters vector p corresponding to α in Eq. 4, and the
warp function being determined using matrix N. Since in this case the unknown
parameters p allow to optimize both the affine component and the translation
part, this formulation can be used as a tracker, with the affine features being
extracted in the first frame for creating the templates to be tracked.

As previously explained, one drawback of this formulation is that, since it
is not possible to obtain a linear relation between α and γ, as in the 2-DoF
case, this formulation cannot be extended to the multi-view case in a straight-
forward manner. However, an alternative formulation for minimizing the cost
function 14 can be devised using non-linear optimization algorithms such as
Levenberg-Marquardt and the relation between α, β and γ derived in Eq. 12.

5 Experimental Validation

In this section, the proposed algorithms for AC correction, normal estimation,
refinement of ACs using photoconsistency and tracking of affine regions are
tested and compared with the state-of-the-art methods, both using synthetic
data and real-world datasets. In all experiments using real data, affine covari-
ant features are extracted with the Hessian Laplace detector [14,24] using the
VLFeat library [25].

5.1 Synthetic Data

This experiment serves to compare the accuracy and computational efficiency of
the two proposed linear solvers for correcting ACs and estimating normals with
the state-of-the-art solutions [7] and [2], respectively.

The synthetic setup was generated as described in [2,7]2, consisting of N
cameras randomly located on the surface of a sphere of radius 5 and looking
2 We thank the authors for kindly providing the source code.
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Fig. 2. Comparison of the proposed multi-view solver for correcting ACs (a and b)
and the proposed multi-view method for normal estimation (c and d) with the state-
of-the-art alternatives [7] and [2], respectively. a) The proposed and competing methods
provide the same solutions when performing AC correction, with b) our method being
over an order of magnitude faster for N > 5 views. c) Similar results are obtained
by both methods, with [2] being slightly more accurate for N > 6 and the highest
noise level. Correcting the AC prior to estimating the surface normal is systematically
the best option. d) While our method scales well, having a nearly constant compu-
tational time for increasing number of views, [2] presents higher computational times
that increase approximately linearly with the number of views.

towards the origin of that sphere. Random oriented 3D points were generated
and projected onto the cameras, allowing the estimation of ground truth affine
maps and point locations. Zero-mean Gaussian noise with standard deviation
σ was added to the affine components. Figure 2 gives the comparison of our
solvers with the ones presented in [2,7], in terms of accuracy and computational
time. The ACs correction solvers are implemented in C++, while the normal
estimation algorithms are implemented in Matlab. The number of views N varies
from 2 to 10 and different noise levels are considered, by varying σ. Results were
obtained over 1000 trials.

Figure 2a shows the distribution of errors in the affine components of the
extracted ACs and of both the ACs corrected with the method proposed in [7]
and our approach. The error in the affine component is computed as the Frobe-
nius norm of the difference between each AC 2 × 2 matrix and the ground truth
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Fig. 3. Datasets used in the photoconsistency refinement experiment. The datasets
consist of images acquired in very different scenes and the camera poses come from
distinct sources, including detection of fiducial markers (a and b), application of an
SfM pipeline (c and d) and GPS measurements (e). The high variability of the datasets
evinces the large range of possible applications of the proposed approach. The datasets
are identified in Fig. 4 by a) Bone model, b) Bone model arthro, c) herzjesu-p8, d)
fountain-p11 and e) freiburg3.

one. It can be seen that our proposed solver provides the exact same solution
as [7], while being significantly faster, as shown in Fig. 2b that it achieves a speed
up of over 30× for N = 10. While the solution in [7] involves computing SVD
of a 2N × C-matrix, with C being the combination of all pairs of views, and
performing two multiplications of matrices with considerable size, our solution
solely requires the computation of the SVD of a 4(N − 1) × 3 matrix. As an
example, for N = 10, the matrices sizes are 20 × 45 ([7]) vs 36 × 3 (ours). This
difference in the solver results in a dramatic decrease in computational times.
In addition, it can be seen that for the considered noise level (σ = 1) correcting
the ACs always makes them closer to the ground truth ones.

In order to compare the performance of the multi-view normal estimation
algorithm presented in [2] with our linear solver, we fed both algorithms with
the noisy ACs and computed the angle between the obtained normals and the
ground truth ones. Results are shown in Fig. 2c, where the angular errors of the
normals estimated after correcting the ACs are also plotted. In this case, since
the two solvers provide different solutions, we tested for different noise levels
by considering σ = 0.2, 1, 2. It can be seen that although the solutions are not
identical, they are very similar, demonstrating the effectiveness of our proposed
linear solver. This result also confirms the findings reported in [7] that correcting
the ACs before estimating the surface normal is beneficial in almost every case.
Regarding the computational time, our solver is about 6.5× faster than [2] for
10 views, and, unlike the latter, scales well for increasing number of views. The
reason for this considerable speed up is that while the number of equations in
our normal estimation solver is equal to 9(N − 1), the complexity of the one
presented in [2] increases quadratically with N .

5.2 Photoconsistency Refinement

In this experiment we evaluate our proposed algorithm for optimizing ACs based
on photoconsistency by considering 5 datasets of very different scenes for which
dense 3D models exist, and containing images for which the cameras’ poses are
known, as well as their intrinsic calibrations. For each dataset, multi-view tracks
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Table 1. Average times in ms of Matlab implementations of the proposed Ref2DoF
method and Ref4DoF, for different number of views.

# views 2 3 4 5

Avg. time (ms) Ref2DoF 19.7 39.7 62.0 103.6

Ref4DoF 36.3 71.9 108.8 168.5

of affine maps were extracted and the ground truth 3D points and normals were
obtained by intersecting the back-projection rays of the first camera with the
3D model, and retrieving both the point of intersection and the normal at that
point. In order to enforce the epipolar geometry assumptions, for each multi-view
track, the point was triangulated [10] and projected onto each camera, yielding
correspondences that perfectly satisfy the epipolar geometry.

The considered datasets, described in Fig. 3, are the two sequences from
the Strecha dataset [22] fountain-p11 and herzjesu-p8 with publicly available
ground truth 3D point cloud, the sequence freiburg3 nostructure texture far from
the RGB-D SLAM Dataset and Benchmark [23] and two other sequences we
acquired similarly to what is described in [21]. In more detail, we considered a 3D
printed model of a bone to which a fiducial with printed binary square patterns
is attached and can be tracked, providing the camera pose for every frame.
We acquired two sequences, one with a large-focal distance lens and another
with an arthroscopic lens. For both sequences we undistorted the images before
extracting ACs.

The proposed approach, referred to as Ref2DoF, is compared with 4 alter-
native methods: (1) estimating the normals directly from the extracted ACs, (2)
correcting the ACs and afterwards estimating the normals, (3) performing a pho-
toconsistency refinement using a 4-DoF formulation (referred to as Ref4DoF),
where all 4 parameters of the affine transformation are considered as unknown
parameters, and applying (1), and (4) performing (3) followed by (2).

Figure 4 shows the angular errors of the normals obtained by all 5 methods
for the different datasets, and Table 1 gives the runtimes for Ref2DoF and
Ref4DoF, for a varying number of views. Results show that although Ref4DoF
significantly improves the quality of the estimated normals, it is always less
accurate than our 2-DoF refinement algorithm, while also being considerably
slower. In addition, it can be seen that, as expected, the improvement obtained
by correcting the ACs is irrelevant when compared to the one achieved by a
photoconsistency refinement. This experiment shows not only that refining ACs
is crucial for achieving accurate 3D oriented points, but also that incorporating
the constraints of the epipolar geometry into the refinement benefits both the
accuracy and the computational efficiency. Figure 1b depicts some of the 3D
oriented points obtained on the bone model dataset, where it can be visually
confirmed that the normals are nearly perpendicular to the surface.
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Fig. 4. Average errors in the normals estimated by 5 alternative methods, on the
datasets described in Fig. 3. Methods 1 to 5 correspond to: (1) - estimating the normals
directly from the extracted ACs; (2) - correcting the ACs and afterwards applying (1);
(3) - Ref4DoF + (1); (4) - Ref4DoF + (2); (5) - Ref2DoF

5.3 Tracking

This final experiment serves to assess the performance of our proposed 3-DoF
tracker (Track3DoF) under very challenging conditions of low texture, where
existing solutions perform poorly. For this, we selected the sequence freiburg3
nostructure notexture far from the RGB-D SLAM Dataset and Benchmark [23]
and extracted affine covariant features from the first frame. Figure 5a shows the
frame with the point locations of the features. These features were tracked across
10 frames both using the proposed method Track3DoF and a formulation using
6 DoFs, referred to as Track6DoF, which is equivalent to a standard KLT affine
tracker [1]. Figure 5b shows the obtained 3D oriented points by Track3DoF, as
well as a green and a yellow planes. The green plane is obtained by finding
the plane that best fits to the point cloud provided by the depth camera, and
the yellow plane is obtained similarly from the reconstructed points. In order to
quantitatively assess the quality of the oriented 3D points, we computed the angle
between each obtained normal and the normals of both the green and the yellow
planes, and the distance of each 3D point to both planes. Results are shown in
Figs. 5c and 5d, and also include the errors obtained for Track6DoF, which were
computed in a similar manner. It can be seen that 75% of the normals estimated
by our method have an error below 20◦, while for Track6DoF the value for the
third quartile is 1.8× larger. Also, while our approach managed to successfully
track 76% of the features, the 6-DoF formulation yielded only 64.8% of tracks
with symmetric epipolar distance below 5 pix. In terms of computational time,
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Fig. 5. Experiment of tracking features in very low texture conditions. a) Affine features
extracted from the first image to be tracked across multiple images. b) Oriented 3D
points, represented as blue spheres with red arrows, reconstructed using the proposed
Track3DoF method, with 76% of the features being correctly tracked. The obtained
3D points are fitted to a plane (yellow plane), as well as the ground truth 3D points
provided in the dataset (green plane). Since the depth sensor presents non-negligible
noise, we computed the errors in (c) the normals and in (d) the 3D point locations
for both planes. Our method outperforms a standard 6-DoF affine KLT formulation
(Track6DoF) that only successfully tracks 64.8% of the features and is 1.25× slower.
(Color figure online)

our formulation is 1.25× faster, taking on average 45ms per tracklet in a Matlab
implementation. In addition, we attempted to perform feature matching with
the other frames in the dataset but, in this case, most retrieved correspondences
were incorrect, and only 29% yielded a symmetric epipolar distance below 5 pix.

These experimental results confirm that including information about the
epipolar geometry in the estimation of oriented 3D points significantly improves
their quality. In particular, when working in very low textured situations, where
feature matching algorithms fail and standard 6-DoF trackers perform poorly,
our proposed solution is a viable alternative.

6 Conclusions and Future Work

We investigate the use of ACs in the tasks of normal estimation and reconstruc-
tion of oriented 3D points. Existing solutions still suffer from the low accuracy
of affine detectors, yielding normals that are far from the ground truth. This
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paper proposes methods that greatly improve the quality of noisy ACs, being an
advance in the literature on this subject and also having practical relevance.

We provide new, simpler representations for ACs consistent with the epipo-
lar geometry. As a consequence, we obtain a multi-view AC correction linear
solver that outperforms the state-of-the-art in terms of computational time for
any number of views, reaching a speed up of 30× for the case of 10 views. A
novel linear solver for the multi-view estimation of normals is also presented,
and experiments demonstrate that it is a valid faster alternative to the existing
solvers. The novel simple representation of epipolar geometry-consistent ACs
enables refinement schemes to be formulated as photoconsistency-based track-
ers, which, as demonstrated by the experimental results, significantly improve
the quality of the extracted ACs. In addition, another important contribution
of this paper is the new 3-DoF tracker that works in scenes presenting low tex-
ture, which is faster and accurately tracks more features than the standard affine
6-DoF KLT tracker.

The proposed 3-DoF tracker opens the way to applications in new domains.
One important area where this type of tracker would be very useful is in surgi-
cal arthroscopic procedures, such as the reconstruction of the anterior cruciate
ligament in the knee joint or the resection of the femoroacetabular impingement
in the hip joint, where the access to the joint is made through two portals for
inserting the arthroscopic camera and the surgical instruments. Existing solu-
tions make use of instrumented touch probes for reconstructing bone surface
and afterwards perform registration with a pre-operative model of the bone [21].
However, since the maneuverability inside the joint is limited, this procedure
is often difficult. Also, existing image-based surface reconstruction procedures
fail in providing acceptable results due to the very low texture of the bone
surface. As future work, we intend to explore the possibility applying the new
3-DoF tracker to the arthroscopic images for the reconstruction of bone sur-
face, which would then enable registration with the pre-operative model to be
performed with schemes that make use of surface normals [19]. Additionally,
we will further investigate how to perform multi-view photoconsistency refine-
ment/tracking using the 3-DoF formulation in an efficient manner.
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Abstract. Existing techniques to encode spatial invariance within deep
convolutional neural networks (CNNs) apply the same warping field to
all the feature channels. This does not account for the fact that the
individual feature channels can represent different semantic parts, which
can undergo different spatial transformations w.r.t. a canonical config-
uration. To overcome this limitation, we introduce a learnable module,
the volumetric transformer network (VTN), that predicts channel-wise
warping fields so as to reconfigure intermediate CNN features spatially
and channel-wisely. We design our VTN as an encoder-decoder network,
with modules dedicated to letting the information flow across the feature
channels, to account for the dependencies between the semantic parts.
We further propose a loss function defined between the warped features
of pairs of instances, which improves the localization ability of VTN. Our
experiments show that VTN consistently boosts the features’ represen-
tation power and consequently the networks’ accuracy on fine-grained
image recognition and instance-level image retrieval.

Keywords: Spatial invariance · Attention · Feature channels ·
Fine-grained image recognition · Instance-level image retrieval

1 Introduction

Learning discriminative feature representations of semantic object parts is key
to the success of computer vision tasks such as fine-grained image recognition
[16,72], instance-level image retrieval [42,46], and people re-identification [35,74].
This is mainly because, unlike generic image recognition and retrieval [11,13],
solving these tasks requires handling subtle inter-class variations.

A popular approach to extracting object part information consists of exploit-
ing an attention mechanism within a deep convolutional neural network (CNN)
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Fig. 1. Visualization of VTN: (a) input image and target coordinates for warping
an intermediate CNN feature map, (b) source coordinates obtained using STNs [28]
(top) and SSN [48] (bottom), and (c), (d), (e), and (f) four feature channels and
samplers in VTN. Note that the colors in the warping fields represent the corresponding
target coordinates. Unlike STNs [28] that applies the same warping field across all the
feature channels, VTN maps the individual channels independently to the canonical
configuration, by localizing different semantic parts in different channels.

[20,42,65,67]. While effective at localizing the discriminative parts, such an app-
roach has limited ability to handle spatial variations due to, e.g., scale, pose and
viewpoint changes, or part deformations, which frequently occur across different
object instances [10,14,28]. To overcome this, recent methods seek to spatially
warp the feature maps of different images to a canonical configuration so as to
remove these variations and thus facilitate the subsequent classifier’s task. This
trend was initiated by the spatial transformer networks (STNs) [28], of which
many variants were proposed, using a recurrent formalism [37], polar transforma-
tions [12], deformable convolutional kernels [10], and attention based samplers
[48,73]. All of these methods apply the same warping field to all the feature
channels. This, however, does not account for the findings of [5,18,49], which
have shown that the different feature channels of standard image classifiers typ-
ically relate to different semantic concepts, such as object parts. Because these
semantic parts undergo different transformations w.r.t. the canonical configu-
ration, e.g., the wings of a bird may move while its body remains static, the
corresponding feature channels need to be transformed individually.

In this paper, we address this by introducing a learnable module, the volu-
metric transformer network (VTN), that predicts channel-wise warping fields. As
illustrated by Fig. 1, this allows us to correctly account for the different transfor-
mations of different semantic parts by reconfiguring the intermediate features of
a CNN spatially and channel-wisely. To achieve this while nonetheless account-
ing for the dependencies between the different semantic parts, we introduce
an encoder-decoder network that lets information flow across the original fea-
ture channels. Specifically, our encoder relies on a channel-squeeze module that
aggregates information across the channels, while our decoder uses a channel-
expansion component that distributes it back to the original features.
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As shown in previous works [12,28,37,69], training a localization network to
achieve spatial invariance is challenging, and most methods [12,28,37,69] rely
on indirect supervision via a task-dependent loss function, as supervision for the
warping fields is typically unavailable. This, however, does not guarantee that
the warped features are consistent across different object instances. To improve
the localization ability of the predicted warping fields, we further introduce a
loss function defined between the warped features of pairs of instances, so as
to encourage similarity between the representation of same-class instances while
pushing that of different-class instances apart.

Our experiments on fine-grained image recognition [22,32,40,64] and
instance-level image retrieval [46], performed using several backbone networks
and pooling methods, evidence that our VTNs consistently boost the features’
representation power and consequently the networks’ accuracy.

2 Related Work

AttentionMechanisms. As argued in [76], spatial deformation modeling meth-
ods [10,28,37,48], including VTNs, can be viewed as hard attention mechanisms,
in that they localize and attend to the discriminative image parts. Attention mech-
anisms in neural networks have quickly gained popularity in diverse computer
vision and natural language processing tasks, such as relational reasoning among
objects [4,52], image captioning [67], neural machine translation [3,61], image gen-
eration [68,71], and image recognition [23,63]. They draw their inspiration from
the human visual system, which understands a scene by capturing a sequence of
partial glimpses and selectively focusing on salient regions [27,34].

Unlike methods that consider spatial attention [20,42,65,67], some works
[15,23,62,70] have attempted to extract channel-wise attention based on the
observation that different feature channels can encode different semantic con-
cepts [5,18,49], so as to capture the correlations among those concepts. In those
cases, however, spatial attention was ignored. While some methods [7,65] have
tried to learn spatial and channel-wise attention simultaneously, they only pre-
dict a fixed spatial attention with different channel attentions. More importantly,
attention mechanisms have limited ability to handle spatial variations due to,
e.g., scale, pose and viewpoint changes, or part deformations [10,14,28].

Spatial Invariance. Recent work on spatial deformation modeling seeks to
spatially warp the features to a canonical configuration so as to facilitate recog-
nition [10,12,28,37,48]. STNs [28] explicitly allow the spatial manipulation of
feature maps within the network while attending to the discriminative parts.
Their success inspired many variants that use, e.g., a recurrent formalism [37],
polar transformations [12], deformable convolutional kernels [10], and attention
based warping [48,73]. These methods typically employ an additional network,
called localization network, to predict a warping field, which is then applied to
all the feature channels identically. Conceptually, this corresponds to using hard
attention [20,42,65,67], but it improves spatial invariance. While effective, this
approach concentrates on finding the regions that are most discriminative across
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all the feature channels. To overcome this, some methods use multi-branches
[28,72], coarse-to-fine schemes [16], and recurrent formulations [36], but they
remain limited to considering a pre-defined number of discriminative parts, which
restricts their effectiveness and flexibility.

Fine-Grained Image Recognition. To learn discriminative feature repre-
sentations of object parts, conventional methods first localize these parts and
then classify the whole image based on the discriminative regions. These two-
step methods [6,25] typically require bounding box or keypoint annotations of
objects or parts, which are hard to collect. To alleviate this, recent methods
aim to automatically localize the discriminative object parts using an attention
mechanism [8,16,36,48,51,58,72,73] in an unsupervised manner, without part
annotations. However, these methods do not search for semantic part represen-
tations in the individual feature channels, which limits their ability to boost the
feature representation power. Recently, Chen et al. [8] proposed a destruction
and construction learning strategy that injects more discriminative local details
into the classification network. However, the problem of explicitly processing the
individual feature channels remains untouched.

Instance-Level Image Retrieval. While image retrieval was traditionally
tackled using local invariant features [39,41] or bag-of-words (BoW) models
[1,56], recent methods use deep CNNs [2,30,42,47,59,59] due to their better
representation ability. In this context, the main focus has been on improving
the feature representation power of pretrained backbone networks [21,33,55],
typically by designing pooling mechanisms to construct a global feature, such as
max-pooling (MAC) [59], sum-pooling (SPoC) [2], weighted sum-pooling (CroW)
[30], regional max-pooling (R-MAC) [59], and generalized mean-pooling (GeM)
[47]. These pooling strategies, however, do not explicitly leverage the discrim-
inative parts, and neither do the methods [19,47] that have tried to fine-tune
the pretrained backbone networks [21,33,55]. While the approach of [42] does,
by learning spatial attention, it ignores the channel-wise variations. Taking such
variations into account is the topic of this paper.

3 Volumetric Transformer Networks

3.1 Preliminaries

Let us denote an intermediate CNN feature map as U ∈ R
H×W×K , with height

H, width W , and K channels. To attend to the discriminative object parts and
reduce the inter-instance spatial variations in the feature map, recent works
[12,28,37,69] predict a warping field to transform the features to a canonical
pose. This is achieved via a module that takes U as input and outputs the
parameters defining a warping field G ∈ R

H×W×2 to be applied to U . The
representation in the canonical pose is then obtained via a feature sampling
mechanism, which, for every pixel i in the output representation, produces a
warped feature such that V (i) = U(i+G(i)). As argued above, while this reduces
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Fig. 2. Intuition of VTNs: (a) target coordinates for warping an intermediate CNN
feature map and source coordinates obtained using (b) STNs [28], (c) SSN [48], and
(d) VTNs, which predict channel-wise warping fields.

spatial variations and lets the network focus on discriminative image regions, the
same warping field is applied across all the channels, without considering the
different semantic meanings of these individual channels. Moreover, this does
not explicitly constrain the warped features of different instances of the same
class to be consistent.

3.2 Motivation and Overview

By contrast, our volumetric transformer network (VTN), which we introduce in
the remainder of this section, encodes the observation that each channel in an
intermediate CNN feature map acts as a pattern detector, i.e., high-level chan-
nels detect high-level semantic patterns, such as parts and objects [5,7,18,65],
and, because these patterns can undergo different transformations, one should
separately attend to the discriminative parts represented by the individual chan-
nels to more effectively warp them to the canonical pose. To achieve this, unlike
existing spatial deformation modeling methods [10,28,37,48], which apply the
same warping field to all the feature channels, as in Fig. 2(b), our VTN predicts
channel-wise warping fields, shown in Fig. 2(d).

Concretely, a VTN produces a warping field Gc ∈ R
H×W×2 for each channel

c. Rather than estimating the warping field of each channel independently, to
account for dependencies between the different semantic parts, we design two
modules, the channel squeeze and expansion modules, that let information flow
across the channels. Furthermore, to improve the computational efficiency and
localization accuracy, we build a group sampling and normalization module, and
a transformation probability inference module at the first and last layer of VTN,
respectively. To train the network, instead of relying solely on a task-dependent
loss function as in [10,28,37,48], which may yield poorly-localized warping fields,
we further introduce a loss function based on the distance between the warped
features of pairs of instances, thus explicitly encouraging the warped features to
be consistent across different instances of the same class.

3.3 Volumetric Transformation Estimator

Perhaps the most straightforward way to estimate channel-wise warping fields
is to utilize convolutional layers that take the feature map U as input and out-
put the warping fields G = {Gc} ∈ R

H×W×2×K . This strategy, however, uses
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Fig. 3. VTN architecture. A VTN consists of a group sampling and normalization
module, sequential spatial convolutions, channel squeeze and expansion modules, and
a transformation probability inference module.

separate convolution kernels for each warping field Gc, which might be subject
to overfitting because of the large number of parameters involved. As an alter-
native, one can predict each warping field Gc independently, by taking only the
corresponding feature channel Uc ∈ R

H×W×1 as input. This, however, would fail
to account for the inter-channel relationships, and may be vulnerable to out-
lier channels that, on their own, contain uninformative features but can yet be
supported by other channels [18,29,71].

To alleviate these limitations, we introduce the channel squeeze and expan-
sion modules, which yield a trade-off between the two extreme solutions dis-
cussed above. We first decompose the input feature map across the channel
dimension, and apply a shared convolution to each of the K channels. We then
combine the original feature channels into K ′ new channels by a channel-squeeze
module, parameterized by a learned matrix Wcs, in the encoder and expand
these squeezed feature channels into K channels by a channel-expansion mod-
ule, parameterized by a learned matrix Wce, in the decoder.

Formally, as depicted by Fig. 3, let us define an intermediate CNN feature
map after a forward pass through an encoder as Y = F(U ;Ws) ∈ R

H×W×D×K ,
where each feature channel is processed independently with spatial convolution
parameters Ws shared across the channels, introducing an additional dimension
of size D. We introduce a channel squeeze module, with parameters Wcs ∈
R

K×K′
, K ′ < K, applied to the reshaped Y ∈ R

HWD×K , whose role is to
aggregate the intermediate features so as to output Z = F(Y ;Wcs) ∈ R

HWD×K′
,

which can also be reshaped to R
H×W×D×K′

. In short, this operation allows the
network to learn how to combine the initial K channels so as to leverage the
inter-channel relationships while keeping the number of trainable parameters
reasonable. We then incorporate a channel expansion module, with parameters
Wce ∈ R

K′×K , which performs the reverse operation, thereby enlarging the
feature map Z ∈ R

H×W×D×K′
back into a representation with K channels.

This is achieved through a decoder.
We exploit sequential spatial convolution and channel squeeze modules in

the encoder, and sequential spatial convolution and channel expansion modules
in the decoder. In our experiments, the volumetric transformation estimator
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consists of an encoder with 4 spatial convolution and channel squeeze modules
followed by max-pooling, and a decoder with 4 spatial convolution and channel
expansion modules followed by upsampling. Each convolution module follows
the architecture Convolution-BatchNorm-ReLU [26].

Grouping the Channels. In practice, most state-of-the-art networks [21,24,
55] extract high-dimensional features, and thus processing all the initial fea-
ture channels as described above can be computationally prohibitive. To over-
come this, we propose a group sampling and normalization module inspired by
group normalization [66] and attention mechanisms [65]. Concretely, a group
sampling and normalization module takes the feature map U as input and sep-
arates it into C groups following the sequential order of the channels. We then
aggregate the features Uc in each group c ∈ {1, . . . , C} by using two pooling
operations: Umax

c ∈ R
H×W×1 and Uavg

c ∈ R
H×W×1, and concatenate them as

Xc ∈ R
H×W×2, followed by group normalization without per-channel linear

transform [66]. We then take the resulting X = {Xc} ∈ R
H×W×2×K as input to

the volumetric transformation estimator described above, instead of U .

Probabilistic Transformation Modeling. Unlike existing spatial deforma-
tion modeling methods [28,37] that rely on parametric models, e.g., affine trans-
formation, VTNs estimate non-parametric warping fields, thus having more
flexibility. However, regressing the warping fields directly may perform poorly
because the mapping from the features to the warping fields adds unnecessary
learning complexity. To alleviate this, inspired by [57,60], we design a proba-
bilistic transformation inference module that predicts probabilities for warping
candidates, instead of directly estimating the warping field. Specifically, we pre-
dict the probability Pc(i, j) of each candidate j ∈ Ni at each pixel i, and compute
the warping field Gc by aggregating these probabilities as

Gc(i) =
∑

j∈Ni

Pc(i, j)(j − i). (1)

Furthermore, instead of predicting the probability Pc(i, j) directly, we compute
a residual probability and then use a softmax layer such that

Pc(i, j) = Ψ ((Umax
c (j) + Uavg

c (j) + Ec(i, j)) /β) , (2)

where Ec ∈ R
H×W×|Ni| is the output of the volumetric transformation estimator

whose the size depends on the number of candidates |Ni|. Note that Ec(i, j) is a
scalar because i denotes a spatial point over H ×W and j indexes a point among
all candidates. Ψ(·) is the softmax operator and β is a parameter adjusting the
sharpness of the softmax output. At initialization, the network parameters are
set to predict zeros, i.e., Ec(i, j) = 0, thus the warping fields are determined by
candidate feature responses Umax

c +Uavg
c , which provide good starting points. As

training progresses, the network provides increasingly regularized warping fields.
This is used as the last layer of the VTN.
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Fig. 4. Illustration of training VTNs using our consistency loss function. By simultane-
ously exploiting a sample from the same class and another sample from a different class,
our consistency loss function improves the localization ability and the discriminative
power of the intermediate features.

3.4 Loss Function

Similarly to existing deformation modeling methods [12,28,37,69], our network
can be learned using only the final task-dependent loss function Ltask, with-
out using ground-truth warping fields, since all modules are differentiable. This,
however, does not explicitly constrain the warped features obtained from the pre-
dicted warping fields to be consistent across different object instances of the same
class. To overcome this, we draw our inspiration from semantic correspondence
works [31,50], and introduce an additional loss function modeling the intuition
that the warped features of two instances of the same class should match and be
similar. The simplest approach to encoding this consists of using a square loss
between such features, which yields

L =
∑

i

‖V (i) − V ′(i)‖2, (3)

where V and V ′ are the warped feature maps of two instances of the same class.
Minimizing this loss function, however, can induce erroneous solutions, such as
constant features at all the pixels. To avoid such trivial solutions, we use a triplet
loss function [54,69] simultaneously exploiting a sample V ′ from the same class
as V and another sample V ′′ from a different class. We then express our loss as

Lcons =
∑

i

[‖V (i) − V ′(i)‖2 − ‖V (i) − V ′′(i)‖2 + α
]
+

, (4)

where α > 0 is a threshold parameter and [·]+ = max(·, 0). Our loss function
jointly encourages the instances’ features from the same class to be similar, and
the instances’ features from different classes to be dissimilar. Together, this helps
to improve the features’ discriminative power, which is superior to relying solely
on a task-dependent loss function, as in previous methods [12,28,37,69]. Note
that our approach constitutes the first attempt at learning warping fields that
generate consistent warped features across object instances. To train our VTNs,
we then use the total loss Ltotal = Ltask + λLcons with balancing parameter λ.
Figure 4 depicts the training procedure of VTNs.
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Fig. 5. Comparison of VTN warping fields with those of existing deformation model-
ing methods [28,48] on examples from CUB-Birds [64]: (a) input images and source
coordinates obtained using (b) STNs [28], (c) SSN [48], (d) ASN [73], and (e), (f), (g),
and (h) four feature channel samplers in VTNs. Points with the same color in different
images are projected to the same point in the canonical pose. This shows that VTNs
not only localize different semantic parts in different channels but identify the same
points across different images.

3.5 Implementation and Training Details

In our experiments, we use VGGNet [55] and ResNet [21] backbones pretrained
on ImageNet [11]. We build VTNs on the last convolution layers of each network.
For fine-grained image recognition, we replace the 1000-way softmax layer with
a k-way softmax layer, where k is number of classes in the dataset [22,32,40,64],
and fine-tune the networks on the dataset. The input images were resized to a
fixed resolution of 512×512 and randomly cropped to 448×448. We apply random
rotations and random horizontal flips for data augmentation. For instance-level
image retrieval, we utilize the last convolutional features after the VTNs as global
representation. To train VTNs, we follow the experimental protocols of [19,47].
We set the hyper-parameters by cross-validation on CUB-Birds [64], and then
used the same values for all experiments. We set the size of the transformation
candidates |Ni| = 11 × 11, the parameter β = 10, the number of groups C = 32,
and the balancing parameter λ = 1. We also set the threshold parameter α = 20
for VGGNet [55] and α = 30 for ResNet [21], respectively, because they have
different feature distributions. The source code is available online at our project
webpage: http://github.com/seungryong/VTNs/.

4 Experiments

4.1 Experimental Setup

In this section, we comprehensively analyze and evaluate VTNs on two tasks:
fine-grained image recognition and instance-level image retrieval. First, we ana-
lyze the influence of the different components of VTNs compared to existing
spatial deformation modeling methods [10,28,48,73] and the impact of combin-
ing VTNs with different backbone networks [21,55] and second-order pooling
strategies [9,17,35,36,38]. Second, we compare VTNs with the state-of-the-art

http://github.com/seungryong/VTNs/
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Table 1. Accuracy of VTNs compared to spatial deformation modeling methods on
fine-grained image recognition benchmarks (CUB-Birds [64], Stanford-Cars [32], and
FGVC-Aircraft [40]).

Methods Backbone [64] [32] [40]

Base VGG-19 71.4 68.7 80.7

ResNet-50 74.6 70.4 82.1

Def-Conv [10] VGG-19 74.2 70.1 82.6

ResNet-50 76.7 72.1 83.7

STNs [28] VGG-19 72.1 69.2 81.1

ResNet-50 76.5 71.0 81.2

SSN [48] VGG-19 75.1 72.7 84.6

ResNet-50 77.7 74.8 83.1

ASN [73] VGG-19 76.2 74.1 82.4

ResNet-50 78.9 75.2 85.7

VTNs wo/Wcs,Wce VGG-19 77.8 78.6 86.1

ResNet-50 80.1 81.4 86.9

VTNs wo/Group VGG-19 76.3 76.1 84.4

ResNet-50 77.2 79.1 82.4

VTNs wo/T-Probability VGG-19 78.1 79.7 84.9

ResNet-50 79.0 80.4 85.1

VTNs wo/Lcons VGG-19 79.2 80.2 87.1

ResNet-50 82.4 82.1 84.9

VTNs VGG-19 80.4 81.9 87.4

ResNet-50 83.1 82.7 89.2

methods on fine-grained image recognition benchmarks [22,32,40,64]. Finally,
we evaluate them on instance-level image retrieval benchmarks [46].

4.2 Fine-Grained Image Recognition

Analysis of the VTN Components. To validate the different components of
our VTNs, we compare them with previous spatial deformation modeling meth-
ods, such as STNs [28], deformable convolution (Def-Conv) [10], saliency-based
sampler (SSN) [48], and attention-based sampler (ASN) [73] on fine-grained
image recognition benchmarks, such as CUB-Birds [64], Stanford-Cars [32], and
FGVC-Aircraft [40]. For the comparison to be fair, we apply these methods at
the same layer as ours, i.e., the last convolutional layer. In this set of experi-
ments, we utilize VGGNet-19 [55] and ResNet-50 [21] as backbone networks. As
an ablation study, we evaluate VTNs without the channel squeeze and expan-
sion modules, denoted by VTNs wo/Wcs,Wce, without the group sampling and
normalization module, denoted by VTNs wo/Group, and without the transfor-
mation probability inference module, denoted by VTNs wo/T-Probability. We
further report the results of VTNs trained without our consistency loss function,
denoted by VTNs wo/Lcons.
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Table 2. Accuracy of VTNs incorporated with second-order pooling methods on
fine-grained image recognition benchmarks (CUB-Birds [64], Stanford-Cars [32], and
FGVC-Aircraft [40]).

Methods [64] [32] [40]

Base 74.6 70.4 82.1

BP [38] 80.2 81.5 84.8

CBP [17] 81.6 81.6 88.6

KP [9] 83.2 82.9 89.9

MPN-COV [36] 84.2 83.1 89.7

iSQRT-COV [35] 88.1 90.0 92.8

Base+VTNs 83.1 82.7 89.2

BP [38]+VTNs 84.9 84.1 90.6

CBP [17]+VTNs 85.2 84.2 91.2

KP [9]+VTNs 85.1 83.2 91.7

MPN-COV [36]+VTNs 86.7 88.1 90.6

iSQRT-COV [35]+VTNs 89.6 93.3 93.4

Table 3. Accuracy of VTNs compared to the state-of-the-art methods on fine-grained
image recognition benchmarks (CUB-Birds [64], Stanford-Cars [32], and FGVC-
Aircraft [40]).

Methods Backbone [64] [32] [40]

RA-CNN [16] 3×VGG-19 85.3 92.5 88.2

MA-CNN [72] 3×VGG-19 86.5 92.8 89.9

DFL-CNN [63] ResNet-50 87.4 93.1 91.7

DT-RAM [36] ResNet-50 87.4 93.1 91.7

MAMC [58] ResNet-50 86.5 93.0 92.9

NTSN [58] 3×ResNet-50 87.5 91.4 93.1

DCL [8] VGG-16 86.9 94.1 91.2

ResNet-50 87.8 94.5 93.0

TASN [73] VGG-19 86.1 93.2 –

ResNet-50 87.9 93.8 –

[35]+TASN [73] ResNet-50 89.1 – –

DCL [8]+VTNs ResNet-50 89.2 95.1 93.4

[35]+VTNs ResNet-50 89.6 93.3 93.4

[35]+TASN [73]+VTNs ResNet-50 91.2 95.9 94.5

The results are provided in Table 1 and Fig. 5. Note that all versions of our
approach outperform the existing deformation modeling methods [10,28,48,73].
Among these versions, considering jointly spatial and channel-wise deforma-
tion fields through our squeeze and expansion modules improves the results.
The group sampling and normalization and transformation probability inference
modules also boost the results. Using the consistency loss function Lcons further
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Table 4. Accuracy of VTNs compared to the state-of-the-art methods on iNaturalist-
2017 [22].

Super class ResNet [21] SSN [48] TASN [73] [35]+VTNs

Plantae 60.3 63.9 66.6 68.6

Insecta 69.1 74.7 77.6 79.1

Aves 59.1 68.2 72.0 72.9

Reptilia 37.4 43.9 46.4 48.1

Mammalia 50.2 55.3 57.7 60.6

Fungi 62.5 64.2 70.3 72.1

Amphibia 41.8 50.2 51.6 53.9

Mollusca 56.9 61.5 64.7 66.3

Animalia 64.8 67.8 71.0 73.2

Arachnida 64.8 73.8 75.1 78.2

Actinoopterygii 57.0 60.3 65.5 68.4

Chromista 57.6 57.6 62.5 64.0

Protozoa 78.1 79.5 79.5 81.1

Total 58.4 63.1 66.2 68.2

Table 5. Localization errors on CUB-Birds [64].

Methods top-1 err top-5 err

GoogLeNet+GAP [75] 59.00 –

VGGNet+ACoL [70] 54.08 43.49

ResNet+GCAM [53] 53.42 43.12

ResNet+STNs [28]+GCAM [53] 54.21 43.33

ResNet+VTNs+GCAM [53] 52.18 41.76

yields higher accuracy by favoring learning a warping to a consistent canonical
configuration of instances of the same class and improving the discriminative
power of the intermediate features.

Incorporating Second-Order Pooling Strategies. While our VTNs can
be used on their own, they can also integrate second-order pooling schemes,
such as bilinear pooling (BP) [38], compact BP (CBP) [17], kernel pooling (KP)
[9], matrix power normalized covariance pooling (MPN-COV) [36], and itera-
tive matrix square root normalization of covariance pooling (iSQRT-COV) [35],
which yield state-of-the-art results on fine-grained image recognition. In this set
of experiments, we use ResNet-50 [21] as backbone. As shown in Table 2, our
VTNs consistently outperform the corresponding pooling strategy on its own,
thus confirming the benefits of using channel-wise warped regions.

Comparison with the State-of-the-Art Methods. We also compare VTNs
with the state-of-the-art fine-grained image recognition methods, such as RA-
CNN [16], MA-CNN [72], DFL-CNN [63], DT-RAM [36], MAMC [58], NTSN [58],
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Fig. 6. Network visualization using Grad-CAM [53]: (a), (e) input images, (b), (f)
ResNet-50 [21], (c), (g) ResNet-50 with STNs [28], and (d), (h) ResNet-50 with VTNs.

Table 6. Comparison of VTNs with the state-of-the-art methods on the ROxford and
RParis benchmarks [46].

Methods Medium Hard

ROxf RPar ROxf RPar

Pretr.+MAC [59] 41.7 66.2 18.0 44.1

Pretr.+SPoC [2] 39.8 69.2 12.4 44.7

Pretr.+CroW [30] 42.4 70.4 13.3 47.2

Pretr.+GeM [47] 45.0 70.7 17.7 48.7

Pretr.+R-MAC [59] 49.8 74.0 18.5 52.1

DELF [42,44,59] 67.8 76.9 43.1 55.4

[47]+GeM 64.7 77.2 38.5 56.3

[19]+R-MAC 60.9 78.9 32.4 59.4

[19]+R-MAC+STNs [28] 61.3 79.4 36.1 59.8

DELF [42,44,59]+VTNs 69.7 78.1 45.1 56.4

[47]+GeM+VTNs 67.4 80.5 45.5 57.1

[19]+R-MAC+VTNs 65.6 82.7 43.3 60.9

DCL [8], and TASN [73]. Since our VTN is designed as a generic drop-in layer that
can be combined with existing backbones and pooling strategies, we report the
results of VTNs combined with DCL [8], TASN [73], and iSQRT-COV [35], which
are the top-performers on this task. As can be seen in Table 3, our method out-
performs the state of the art in most cases. In Table 4, we further evaluate VTNs
with iSQRT-COV [35] on iNaturalist-2017 [22], the largest fine-grained recognition
dataset, on which we consistently outperform the state of the art.

Network Visualization. To analyze the feature representation capability of
VTNs, we applied Grad-CAM (GCAM) [53], which uses gradients to calculate
the importance of the spatial locations, to STN- and VTN-based networks. As
shown in Fig. 6 and Table 5, compared to the ResNet-50 [21] backbone, STNs [28]
only focus on the most discriminative parts, and thus discard other important
parts. Unlike them, VTNs improve the feature representation power by allowing
the networks to focus on the most discriminative parts represented by each
feature channel.
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Fig. 7. Visualization of warping fields of VTNs at each channel on some instances of
the ROxford and RParis benchmarks [46]. VTNs not only localize different semantic
parts in different channels but identify the same points across different images.

4.3 Instance-Level Image Retrieval

Finally, we evaluate our VTNs on the task of instance-level image retrieval using
the ROxford and RParis benchmarks [46], which address some limitations of
the standard Oxford-5K [44] and Paris-6K benchmarks [45], such as annotation
errors, size of the dataset, and level of difficulty, and comprise 4,993 and 6,322
images, respectively. Following standard practice, we use the mean average pre-
cision (mAP) [44] for quantitative evaluation. We follow the evaluation protocol
of [46], using two evaluation setups (Medium and Hard). As baselines, we use a
pretrained ResNet-50 [21] backbone, followed by various pooling methods, such
as MAC [59], SPoC [2], CroW [30], R-MAC [59], and GeM [47]. We also evaluate
deep local attentive features (DELF) [42] with an aggregated selective match ker-
nel [59] and spatial verification [44] that learns spatial attention, and incorporate
our VTNs into them. Furthermore, we report the results of end-to-end training
techniques [19,47], and incorporate our VTNs on top of them. As evidenced by
our significantly better results in Table 6, focusing on the most discriminative
parts at each feature channel is one of the key to the success of instance-level
image retrieval. Note that the comparison with STNs shows the benefits of our
approach, which accounts for different semantic concepts across different feature
channels and thus, even for rigid objects, is able to learn more discriminative
feature representations than a global warping. Figure 7 visualizes some warping
fields of VTNs.

5 Conclusion

We have introduced VTNs that predict channel-wise warping fields to boost
the representation power of an intermediate CNN feature map by reconfigur-
ing the features spatially and channel-wisely. VTNs account for the fact that
the individual feature channels can represent different semantic information and
require different spatial transformations. To this end, we have developed an
encoder-decoder network that relies on channel squeeze and expansion mod-
ules to account for inter-channel relationships. To improve the localization abil-
ity of the predicted warping fields, we have further introduced a loss function
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defined between the warped features of pairs of instances. Our experiments have
shown that VTNs consistently boost the features’ representation power and con-
sequently the networks’ accuracy on fine-grained image recognition and instance-
level image retrieval tasks.
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Abstract. Panoramic 360◦ images taken under unconstrained condi-
tions present a significant challenge to current state-of-the-art recogni-
tion pipelines, since the assumption of a mostly upright camera is no
longer valid. In this work, we investigate how to solve this problem by
fusing purely geometric cues, such as apparent vanishing points, with
learned semantic cues, such as the expectation that some visual elements
(e.g. doors) have a natural upright position. We train a deep neural net-
work to leverage these cues to segment the image-space endpoints of an
imagined “vertical axis”, which is orthogonal to the ground plane of a
scene, thus levelling the camera. We show that our segmentation-based
strategy significantly increases performance, reducing errors by half, com-
pared to the current state-of-the-art on two datasets of 360◦ imagery. We
also demonstrate the importance of 360◦ camera levelling by analysing
its impact on downstream tasks, finding that incorrect levelling severely
degrades the performance of real-world computer vision pipelines.

1 Introduction

The ability of 360◦ (or spherical) imaging to record an entire scene with a sin-
gle capture makes them a powerful tool, both for machine perception and for
rapidly documenting entire scenes. For example, 360◦ imaging has been used
to record crime scenes where it is vital to image the entire scene for evidence
[32], to easily create Virtual Reality (VR) videos with minimal cost [24], and is
perhaps most widely recognized in its role in creating Google Street View [12].
Arrays of cameras that can be composed into a full 360◦ image or video are
also important in mobile applications with critical safety requirements, such as
self-driving cars [1]. With the availability of inexpensive 360◦ capture devices,
and the growth of VR headsets, there is an increased demand for techniques to
automatically analyse and process spherical images.

The recent successes of computer vision, with deep learning playing a key role
in the state-of-the-art object detectors [22], segmentation [30], camera pose esti-
mation [20] and many others, seem to indicate that the same techniques should
be directly applicable to 360◦ images. However, there are specific difficulties
associated with this modality that need to be addressed. One common problem
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Fig. 1. Illustration of the problem of levelling spherical images. From left to right: a
spherical image captured at a tilted angle relative to the sky (red arrow), with the
horizon line shown in blue; its 2D representation (equirectangular image), with heavy
distortions due to the rotation; the same image, undistorted by our system; the aligned
spherical image in 3D. (Color figure online)

for spherical images is a misalignment between the camera frames’ ground plane
and the world frames’ ground plane (see Fig. 2).

This misalignment makes automatically processing spherical images more
challenging than it needs to be. For example, training a spherical object detector
on misaligned images would require the network to learn a representation which
was invariant to rotations away from the vertical axis [15]. In contrast to this,
if all images are level (upright), the representation could be sensitive to these
rotations, simplifying the task to be learned [11] (Fig. 1).

The ground-plane alignment that we focus on estimates 2◦ of freedom (DOF)
(roll and pitch), and must be contrasted to general camera pose estimation, which
estimates 6 DOF (translation and rotation in 3D) [20]. Ground-plane alignment
can be performed with a single image, by using simple cues (e.g. vertical walls,
ground or sky/ceiling positions). Differently, 6D camera pose estimation requires
extra reference images [14,19,20], making it much less applicable.

Aligning spherical images to the ground is also an important pre-processing
step for downstream tasks (we demonstrate this empirically in Sect. 3). State-of-
the-art object detectors, and segmentation networks are trained and evaluated
on upright equirectangular images [8,37,38], and do not work under arbitrary
rotations. Similarly, human visual recognition also degrades quickly with extreme
rotations [33], and there are classification problems that are impossible to solve
under arbitrary rotations (the canonical example being the distinction between
the digits 9 and 6). Ground-plane alignment can also make pose estimation more
robust, as estimating the pose of a levelled image requires two fewer DOF [28].

At a high level, our method estimates the axis orthogonal to the ground
(vertical axis) by segmenting the unit sphere (where each point corresponds
to a different direction) into likely candidates. We leverage a state-of-the-art
segmentation network [30], by exploiting the fact that the unit sphere can be
mapped to a 2D image via the equirectangular transform (Sect. 2.1). The network
is trained to segment the sphere into those directions likely to correspond to the
vertical axis.

In addition to the novel segmentation formulation of this problem, we propose
to combine the strengths of both geometrical methods and learning-based meth-
ods. Geometrical methods, such as those based on detecting and accumulating
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Fig. 2. Overview of the proposed method. We train a convolutional network to produce
a segmentation of an equirectangular image, using vanishing point features as extra
geometric information. The output segmentation encodes the endpoints of the vertical
axis, which we use to orient the image upright.

votes for locations of vanishing points (VP) [10,21,37], are very accurate, but
brittle under noise and uncertainty. Learning-based methods are less accurate
but very robust. We combine both, by incorporating a residual stream that prop-
agates information about VP likelihoods, and this way informs our segmentation
network with precise geometrical information.

By leveraging the power of feature engineering with state-of-the-art segmen-
tation techniques, our method is the most accurate to date. We compare our
method with the two most recent automatic alignment methods Deep360Up [18]
and Coarse2Fine [27]. We demonstrate improved performance on the Sun360
dataset [35], as well a new dataset of construction images that we collected.

1.1 Related Work

Ground plane alignment is related to pose estimation [14,19,20], as described
in Sect. 1. Another related line of work is rotation invariant (or equivariant)
networks [15,34], which aims to make models more robust and predictable w.r.t.
rotations, and is complementary to our method. We aim instead to predict and
undo the effect of a single global rotation, with a semantically-defined reference
(the ground plane).

The classical solution to ground plane alignment has been to extract the
straight line segments from an image, and use these to estimate a vanishing
point in the direction of the vertical axis [10,21,37]. These methods rely on what
are known as the Manhattan or Atlanta world assumptions [4,25], which assert
that the scene that has been captured will contain some orthogonal structure,
given the tendency in human construction to build at right angles. It must be
remarked that this assumption does not always hold in practice. One typical way
to extract this orthogonal structure is to determine the direction in which all
straight lines in an image are pointing, and have each line vote on vanishing point
directions [37], in a manner similar to the Hough transform [7] (c.f. Sect. 2.3).
The orthogonal directions of the scene can then be found by looking for the
three orthogonal directions which together have the most votes. However, many



582 B. Davidson et al.

scenes may not have this orthogonal structure, and we may not be able to extract
many straight line segments from the image. Moreover, the maximal orthogonal
set found by maximisation may not be the true orthogonal directions. Due to
the many assumptions of this approach, it is very brittle in practice, despite the
apparent strength of the vanishing point features it uses.

Deep learning solutions to ground plane alignment have shown to be more
robust than the classical vanishing point methods. The existing methods are
either a variation of a deep convolutional regression network [17,18] or a clas-
sification network [27]. In the most recent regression network, referred to as
Deep360Up, the vertical direction (pointing upwards) is output directly from
a DenseNet [16], which is trained using the logarithm of the hyperbolic cosine
between the estimated and ground truth vertical directions [18]. The most accu-
rate and recent deep approach has been to use a coarse to fine classification
network [27]. This approach, referred to as Coarse2Fine, classifies the pitch and
roll of an image as belonging to a 10◦ bin (coarse), thus adjusting the image
to be within ±5◦, and then classifying the adjusted image to be within a 1◦

bin (fine). Another standard feature of such solutions is to generate training
data from already levelled images (which we discuss in Sect. 2.4). Though these
methods have once again demonstrated the power of deep networks, we show in
Sect. 3 that the proposed segmentation approach is more accurate.

A related line of work is to propose network architectures that directly work
with spherical images, for example for classification and detection [3], or for
segmentation and depth prediction [31]. Our levelling method can alleviate any
upright-world assumptions in these works, as well as standard networks, and is
thus complementary.

2 Methods

Our approach can broadly be split into three stages: calculating the vanish-
ing points, segmenting the image, and processing the segmentation into a single
vertical direction. Before describing our method in detail, we provide some back-
ground on equirectangular images and some useful operations.

2.1 Background on Equirectangular Images

An equirectangular image is a planar representation of an image on the sphere,
where height and width correspond respectively to latitude and longitude. The
explicit transformation (denoted p) between pixel coordinates (x, y) and spheri-
cal coordinates (λ, φ) is straightforward:

p : R
2 → S

2, p(x, y) =
(πy

h
, 2π − πx

w

)
= (λ, φ) (1)

where w and h are the dimensions in pixels. Note that this is an invertible trans-
formation and so we can move from the image to the sphere and vice-versa. Using
p we will frequently refer to an equirectangular image as being on the sphere,
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Fig. 3. An example equirectangular image, and its corresponding projection on the
faces of a cube. Note the many curved lines in the equirectangular image, which become
straight in the corresponding cube face.

by which we mean the projection of the image to the sphere. Furthermore we
can map spherical to Cartesian coordinates and vice versa using the spherical
to cartesian transformation: f(λ, φ) = (cos(φ) sin(λ), sin(φ) sin(λ), cos(λ)). We
can use these transformations to rotate an equirectangular image Isrc to create
another image Idst of different orientation, by rotating the sphere. Starting from
a point xdst in the pixel space of Idst we project xdst to the sphere p(xdst), and
rotate the sphere with a rotation matrix R ∈ SO(3). Note that R represents
an arbitrary rotation in 3D space, with an axis of rotation not necessarily cor-
responding to latitude or longitude. Doing so gives the following relationship
between coordinate systems:

ysrc = Rf(p(xdst)) (2)

After this transformation we project back to image space: xsrc = p−1(f−1(ysrc)).
The transformation of image coordinates xdst to xsrc allows us to re-sample an
image Isrc to create Idst, for example by bilinear interpolation [15]. As can be
seen in Eq. (2), we may rotate the image so that we have an equirectangular
image of any orientation, which we will use to generate training data for our
segmentation network.

Another subtle but important aspect about equirectangular images is how to
extract straight line segments visible within the scene. Straight lines in the scene
do not in general map to straight lines in an equirectangular image (see Fig. 3). To
recover straight lines from an equirectangular image, we need to convert it to one
or more perspective images. We cover the full 360◦ view with perspective views,
corresponding to 6 cube faces (see Fig. 3). Each one is produced by rendering
the sphere (with the mapped texture) from 6 different points-of-view, at right
angles. This “cube mapping” is commonly used in computer graphics to render
far-away scenes [26]. This allows using unmodified line segment detectors.

2.2 Segmentation Framework

Our method is based on a convolutional neural network optimised for segmenta-
tion, with side-information about vanishing points as input to an attention mod-
ule. The output of our network is a binary segmentation of the original equirect-
angular image, which by applying the pixel to spherical transform p may be
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thought of as a segmentation of the sphere into background and likely directions
for the vertical axis. Specifically, we segment all points on the sphere which are
within 5◦ of the north or south pole, where the poles are taken relative to camera
coordinates (see Fig. 2 for an example segmentation). By embedding all useful
inputs and outputs in a 2-dimensional space, we can leverage highly successful
2D segmentation networks, and allow predictions to be based on both geomet-
ric and semantic cues (i.e., vanishing points and poses of distinctive objects in
images).

Network Architecture. The base architecture that we use is the Gated-Shape
CNN (GSCNN) [30]. The GSCNN is a fully convolutional network, designed to
utilise side information about object boundaries to improve its performance on
semantic segmentation tasks. It consists of a backbone feature extractor, in our
case InceptionV3 [29], an ASPP (atrous spatial pyramid pooling) layer, and the
shape stream. The shape stream in the original work accepts image gradients and
intermediate backbone features as inputs, and outputs a single channel feature
image. The output shape stream features are then combined with other backbone
features in the ASPP layer to generate a dense feature map of the same resolution
as the input image.

Our architecture modifies GSCNNs so that it would be more informative to
call the shape stream the vanishing point stream, as we replace image gradients
with the vanishing point image V (see Sect. 2.3). The reasoning behind this is
that V is a feature that is highly informative w.r.t. the vertical axis, and we
would like to let the network exploit this source of information. Also, feeding V
to the network in this manner allows us to use a pre-trained backbone network,
which would not be possible by just concatenating V to the channels of the
image. Using a GSCNN enabled us to introduce information relating to vanishing
points, whilst also retaining the ability to use pre-trained backbones.

2.3 Vanishing Point Image

Vanishing points have proven to be a strong geometric cue for many computer
vision tasks, including ground plane alignment [10]. In many scenes a horizon
line is visible, or orthogonal structures such as the corners of buildings. These
structures are useful for determining the vertical axis, and can be emphasised
by calculating vanishing points (see Fig. 4). Moreover, these features can be
computed directly from images, with no learning required. This makes them
excellent features for our purpose.

To build the vanishing point image in Fig. 4 we extract all of the straight
lines in the scene and use each line to vote on vanishing directions. The first step
of this process is to project the equirectangular image to the 6 cube faces (Fig. 3,
right) and extract line segments from each face. To extract the line segments we
use Canny edge detection combined with a probabilistic Hough transform [2,9].
We then convert each line segment to a plane, defined by the line endpoints,
and the origin of the sphere. Let n be the normal vector to this plane. We use n



360◦ Camera Alignment 585

Fig. 4. An equirectangular image and the corresponding vanishing point image
(Sect. 2.3). The 6 regions highlighted in red are areas which have received a large
number of votes. Note that each highly-voted region corresponds to one face of the
approximately cuboid room (the four walls, floor and ceiling). (Color figure online)

Fig. 5. Illustration of how to calculate vanishing point features from line segments in
a cube face. We can see that every point on the great circle formed by intersecting the
plane and the sphere will be orthogonal to the normal vector. Therefore, every point
in this circle receives a vote. In practice the 2D surface of the sphere is discretised
(Sect. 2.1), and every bin within some threshold distance of this circle receives a vote.

to vote for vanishing point locations, by voting for all directions on the sphere
which are orthogonal to n. Geometrically this means all points on the great circle
defined by the intersection of the plane and sphere receive a vote. In practice we
split the sphere into h × w bins by projecting each pixel in an equirectangular
image I to the sphere and then voting via

V n
h0,w0

=

{
1 |n · f(p(Ih0,w0))| < λvanishing

0 otherwise
. (3)

We calculate a normal vector n for every line segment and accumulate votes by
summing V =

∑
n V n. Finally we normalise V to be an intensity image with

values in the range of [0, 255]. High values will correspond to probable vanishing
points, which have many line segments pointing towards them, and will assist
our network in finding the vertical axis (Fig. 5).

2.4 Training Method

To train our network, we use a weighted generalised dice loss [5] on uniformly
distributed points on the sphere. This is in contrast to the original GSCNN work
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which utilises auxiliary and regularising losses [30], and which have no direct
analogue in our setting. We chose to use the generalised dice loss as this has
been shown to perform well in situations where there are large class imbalances
between foreground and background classes [5]. This is a concern in our setting,
since vanishing points are sparse.

We do not compute the loss directly on the 2D segmentation image, as this
would over-sample the polar regions, thus disproportionately weighing vertical
directions near them. Instead, we select points that are uniformly distributed
around the sphere, and project these into the equirectangular segmentation,
and ground truth. Finally, we interpolate the values of each projected point to
construct y and ŷ.

Training Data. The data fed to our network during training are equirectangu-
lar images (e.g. from the Sun360 dataset [36]), and ground truth equirectangular
segmentations, which we generate from already levelled equirectangular images.
The dataset we begin with consists only of levelled equirectangular images. For
all of these images, we know that the vertical direction is z = (0, 0, 1). By rotat-
ing a levelled image with a random rotation R and using Eq. (2), we know that
the resulting vertical direction of the rotated image will be R−1z. From this we
can generate training pairs of image and vertical direction. Now, given a vertical
direction, it is simple to construct a binary equirectangular segmentation. Let u
be the generic vertical direction for some image and I an equirectangular image.
After applying f ◦p to all pixel values in I, we can consider the i, jth pixel as sit-
ting at xi,j on the sphere in R

3. Our segmentation si,j is 1 where |u ·xi,j | > λseg

and 0 otherwise, which means that we consider pixels that project near to the
vertical axis as foreground (1) and all others as background (0). Rotating level
images whilst keeping track of the vertical axis allows us to construct many pairs
of image and segmentation from a single levelled image.

To actually generate our dataset we compute nrot rotations which will place
the vertical axis uniformly around the sphere, and then apply a small offset
rotation. Performing these almost uniform rotations avoids using the same nrot

rotations for every image, whilst ensuring that the directions completely cover
the sphere (c.f. Appendix A). Note there are infinitely many rotations placing
the vertical direction at a specific point (by rolling around the vertical axis). We
incorporate this rotation online during training, as the rotation can be repre-
sented via rolling the equirectangular image along its width axis.

Even when using high quality interpolation methods, we cannot avoid rota-
tional artifacts appearing in the rotated images, which can adversely impact gen-
eralization performance. This relatively subtle issue will be discussed in Sect. 3.

2.5 Test-Time Prediction

Once we have an equirectangular segmentation, we can extract a vertical direc-
tion by selecting the most probable connected component and taking its centroid
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Fig. 6. Accuracy evaluation on the test splits of 3 datasets. From left to right: Sun360
with the same artificial rotations as used by Deep360up [18], Sun360 without rotation,
and the construction dataset (Sect. 3.3). We report the accuracy over different angular
thresholds, for 4 methods: ours, vanishing points (VP, a purely geometric method), and
2 state-of-the-art deep learning methods (360Up and Coarse2Fine). Our method sig-
nificantly outperforms others on images without artificial rotations (center and right).

as the vertical direction. Given such a centroid c and Eq. (1) we recover the ver-
tical direction via p(c) ∈ S

2. While this is a simple computer vision operation,
for completeness we describe it fully in Appendix A (Fig. 6).

Test-Time Augmentation. The final stage of our approach is an optional test
time augmentation, which may rotate an image and rerun the segmentation. Let
u be a candidate vertical direction obtained after running a single forward pass of
the network. If the image was already close to level, i.e. u is close to z = (0, 0, 1),
then we rotate the images pitch by 20◦ and rerun the entire inference and post-
processing steps to get a new u′. The reason for this is that, if the image is
already close to level, the vanishing point features for the vertical axis are close
to the points of most distortion: ±z. Following this, we rotate u′ back 20◦ and
take the resulting vector as the vertical direction.

Testing Data. We collected a test set of unlevelled images, where the verti-
cal direction has been calculated manually. To calculate the vertical direction
manually two vertical lines, vertical in the world frame, are manually identified,
which allows us to construct a plane parallel to the ground plane, by computing
the normals as in Sect. 2.3. This plane parallel to the ground trivially gives us
the vertical axis, as the axis orthogonal to the plane. By ensuring we use unro-
tated test images, we avoid data leakage due to rotational artifacts present in
the images (see Sect. 3).

3 Experiments

We trained and tested our methods on three datasets: the Sun360 dataset, a
synthetic dataset of noise, and a dataset of construction images. Training on
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synthetically rotated Sun360 images can lead to rotational artifacts (Sect. 3.2)
being learned by the network, a common problem with similar synthetic training
regimes [6,23]. As all images in the Sun360 dataset are level, we could only evalu-
ate our networks’ performance on levelled images without introducing rotational
artifacts. To measure the extent to which the network relies on rotational arti-
facts, we created a dataset of rotated noise images. Lastly, to accurately estimate
the networks’ performance on unlevelled images, without the aid of artifacts, we
collected a dataset consisting of images which were not level, and for which the
vertical direction was known.

In the following experiments, we compare our method with that of
Deep360Up [18] and a baseline vanishing point (VP) method based on [38].
We made use of the publicly available Deep360Up implementation. When possi-
ble we also report the performance of the Coarse2Fine [27] approach, by testing
on the same test set. On the Sun360 dataset we also show the importance of
the vanishing point stream, by removing it from the network and observing a
reduced performance.

Finally, we demonstrate the importance of levelling images for downstream
tasks by training a segmentation network on levelled and unlevelled images. We
make use of our implementation of the original GSCNN work as the segmentation
network, and the dataset from [13].

3.1 Sun360 Dataset

This dataset consists of 30,000 levelled images, and we use a 80-10-10 split for
training, validation and test. As all images in this dataset are already level, we
cannot test on any images which do not contain rotational artifacts. To account
for this, we evaluated the network on the original, level, images as well as rotated
images. We report performance on 3 subsets of data: the unrotated level test set
(referred to as Test Flat), the unrotated validation set, and a rotated valida-
tion set where all vertical directions are in the upper-hemisphere. To compare
our method with both Deep360Up and Coarse2Fine we also report results on
a synthetically rotated test set, referred to as Test Deep360Up, consisting of
17,825 images that were used to evaluate both methods in the original works.

The accuracy of our method as well as the brittleness of the classical vanishing
point method is shown in Table 1. Our approach is the most accurate on both
the level and synthetically rotated test sets, when considering a threshold of at
least 2◦. The Coarse2Fine approach does achieve a higher accuracy than our
method when considering a 1◦ threshold, but then falls off to be the lowest
out of all considered deep learning methods, at larger thresholds. A possible
explanation for this dropoff is that the Coarse2Fine approach solves the problem
in two stages: first adjusting the image to be within 10◦ of level, and then
refining this adjusted image to be within 1◦. Therefore, if the initial estimation
is incorrect, the network can never recover the true vertical direction. In contrast,
our method is completely end-to-end, and so we do not depend on the output of
a previous stage, giving a more robust approximation. Here we also demonstrate
the importance of the vanishing point stream, as removing it significantly reduces
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Table 1. Performance for different subsets of the Sun360 dataset (see text for details).
We report the percentage of images for which the vertical axis is correctly estimated
within a threshold of x◦.

Percentage of estimated axes within x◦

Dataset Method 1◦ 2◦ 3◦ 4◦ 5◦ 7.5◦ 10◦ 12◦

Val rotated Ours 25.1 60.5 80.5 90.3 94.7 97.5 98.1 98.4

Ours (no VP) 20.9 45.6 57.0 74.4 90.2 96.5 97.4 97.8

Deep360Up 4.9 17.6 34.8 54.7 70.1 91.0 95.7 97.5

VP 0.2 0.7 1.2 1.5 1.7 2.2 2.5 2.8

Val flat Ours 34.7 78.8 92.4 96.4 97.9 99.0 99.3 99.4

Ours (no VP) 0.3 1.0 2.9 67.0 97.0 98.9 99.3 99.4

Deep360Up 9.8 20.5 33.3 45.5 58.8 81.4 93.2 97.1

VP 0.5 2.8 5.1 7.3 9.4 12.9 16.0 17.6

Test Deep360 Ours 19.7 53.6 75.5 87.2 92.6 97.1 98.2 98.4

Ours (no VP) 7.5 23.5 40.3 55.9 68.2 87.1 94.8 97.4

Deep360Up 7.1 24.5 43.9 60.7 74.2 91.9 96.6 97.9

Coarse2Fine 30.9 51.7 65.9 74.1 79.1 NA NA 91.0

VP 0.3 0.9 1.6 2.1 2.5 3.3 3.8 4.2

Test flat Ours 34.0 78.4 92.4 96.2 97.8 98.8 99.3 99.4

Ours (no VP) 0.4 1.3 3.1 63.9 96.5 98.6 99.0 99.2

Deep360Up 10.2 22.5 35.3 48.2 60.1 82.3 93.4 97.3

VP 0.3 2.5 6.1 8.8 11.0 14.1 16.7 18.5

performance. The poor performance of the vanishing point method is explained
by the nature of the Sun360 dataset, which consists of mostly natural scenes (eg.
forests), and therefore does not satisfy the Manhattan world assumption.

3.2 Noise Dataset

As we synthetically rotate images during training, it was crucial to ensure the
network was not “cheating”, i.e. simply using visual artifacts induced by syn-
thetic rotations to solve the problem, and not learning high-level cues that gen-
eralize to images with real rotations. Deep networks are very efficient at finding
the simplest solution to a problem, and the existence of shortcuts is a prevalent
problem in unsupervised learning, for example taking advantage of boundary
effects [23, Sect. 4.2] or chromatic aberrations of lenses [6, Sect. 3.1].

We demonstrate empirically that, in fact, a network can invert a rotation
on pure noise successfully. To do this, we generated images of random (white)
noise, rotated them, and used them to train both our method and the Deep360Up
method. We found that in both cases the network could learn to undo the trans-
formation. This highlights the need for an unrotated test set to be sure of the
network’s performance at test time. Note that we generated a new random noise
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Fig. 7. Visualisation of automatically levelled validation images: proposed method
(top), Deep360Up (middle), and the misaligned counterparts (bottom row).

image at each training and validation step, meaning that this was not a result
of over-fitting, as every image the network saw was different. For Deep360Up,
we observed the average angular error in this case to be around 5◦, and for
our method we saw the generalised dice loss fall to 0.04. Both indicate that
the network was able to significantly beat chance using only rotational artifacts
(Fig. 7).

3.3 Construction Dataset

To ensure our network was actually solving the problem at hand, we collected a
dataset of images from construction sites where we had the raw capture, and the
vertical axis of the raw capture. This dataset consists of 10,054 images where
we use a 90–10 split for training and validation, and 1006 images for testing.
The imbalance in the number of images for training and validation compared to
testing images is due to the nature of the data collection process: the training
and validation images were already rotated to be level; in contrast, the testing
data was gathered manually and consisted of the original capture, which in many
cases was not level. This permitted us to test our approach on unlevelled images,
that did not contain rotational artifacts. A total of 9365 distinct locations were
captured from 16 construction sites, with no overlap in locations between the
training and testing data. 48.7% of images were within 3◦ of level, and 90%
were within 12◦ of level, see Fig. 8 for typical example scenes from this dataset.
Again, our method was considerably more accurate than existing state-of-the-art
techniques. Table 2 shows that our approach is the most accurate on all datasets,
achieving 98% of estimates within 5◦ for the test set.

Note that the performance of the vanishing point method on the construction
data is significantly better than when applied to the Sun360 data. This can be
explained due to the construction dataset consisting of rooms that satisfy the
Manhattan world assumption, in contrast to the Sun360 dataset.
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Table 2. Performance for different subsets of the construction dataset (see text for
details). We report the percentage of images for which the vertical axis is correctly
estimated within a threshold of x◦.

Percentage of estimated axes within x◦

Dataset Method 1◦ 2◦ 3◦ 4◦ 5◦ 7.5◦ 10◦ 12◦

Val. rotated Ours 23.1 59.0 79.2 88.2 93.2 96.4 97.2 97.5

Deep360Up 3.0 12.1 27.4 42.7 58.3 82.5 91.6 95.7

VP 4.2 13.4 22.3 28.9 33.3 38.9 41.6 43.0

Val. flat Ours 25.3 66.3 87.4 93.5 96.0 97.9 98.3 98.7

Deep360Up 12.4 25.3 39.6 50.8 61.5 82.4 93.5 96.7

VP 2.8 11.6 25.7 39.1 47.4 60.8 68.6 73.2

Test Ours 26.9 67.3 88.6 95.0 97.5 99.4 99.7 99.7

Deep360Up 9.0 29.3 49.2 62.1 73.0 88.5 94.2 96.2

VP 4.9 15.1 27.9 38.1 46.7 62.4 70.5 74.9

3.4 Downstream Segmentation Task

To illustrate the importance of levelling images for downstream tasks we trained
several segmentation models using the dataset in [13], which consists of 666
images from the Sun360 dataset, for which the authors have added segmentation
labels for 15 classes. As all images in the Sun360 dataset are already level, we
created a rotated segmentation dataset by randomly rotating each image so
that its vertical direction was at most 45◦ away from level. We also constructed
a levelled dataset by applying our method to the rotated images, using the
estimated rotations to level the images and their annotations. In total we used
these 3 datasets: original, rotated, and levelled, to train 3 segmentation models.

The segmentation models consist of our own implementation of GSCNNs.
Our training regime followed the original work [30] except that we trained for
100 epochs. After training each model, we then evaluated the mean IOU on the
original, rotated, and levelled validation sets, consisting of 100 images.

Table 3. Downstream task performance (mean IOU, in percentages) on different sub-
sets of data (Sect. 3.4). For each model we highlight the worst performance in bold.

Evaluation dataset

Original Levelled Rotated

Training dataset Original 40.1 40.0 26.7

Levelled 42.5 42.0 31.4

Rotated 43.0 42.7 39.1

Table 3 shows that all models performed the worst on the rotated dataset,
even the model trained specifically on rotated images. This drop in performance
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Fig. 8. Top row: Qualitative results for the downstream task of semantic segmentation
(Sect. 3.4). Middle row: Ground truth. The model performs well on the original images
(left), but significantly worse on rotated images (center). Levelling with our method
(right) recovers the performance. This highlights the importance of levelling for realistic
downstream tasks. Bottom row: Example scenes from the construction dataset.

is particularly striking for models trained on levelled images, with drops of
13.3% and 10.6% for the model trained on the original dataset and levelled
dataset respectively. This highlights a significant problem for many 360◦ pro-
cessing methods, which have been trained and evaluated on levelled images.
These methods may not generalise well at test time where images may not be
level. Our method solves this problem as can be seen in Table 3, where the auto-
matically levelled images achieve close to the same performance as the original,
levelled dataset.

4 Conclusion

In this paper, we presented the most accurate auto-alignment method to date,
developed by combining state-of-the-art segmentation methods with classical
vanishing point features. We have demonstrated that care needs to be taken when
generating training data to avoid data leakage. Moreover, we have demonstrated
that casting the vertical axis estimation problem as a segmentation problem
results in improved performance, whilst using standard segmentation techniques.

One issue with our approach is that we make the assumption that the ver-
tical direction is already in the upper hemisphere. Though this is a reasonable
assumption given how images are captured (where such misalignment is rarely
an issue), and the availability of onboard sensors to roughly align an image, we
could remedy this problem by instead segmenting the image into three classes:
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up, down and background. Doing so would allow us to calculate a vertical axis
as before, but then use the up or down label to vote for the up direction. Future
work could also try directly regressing the location of the vertical direction fol-
lowing the segmentation. We leave this for future work as it would require a
considerable modification of the proposed framework.
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Abstract. Radon transform is a popular mathematical tool for shape
analysis. However, it cannot handle affine deformation. Although its
extended version, trace transform, allow us to construct affine invariants,
they are less informative and computational expensive due to the loss of
spatial relationship between trace lines and the extensive repeated calcu-
lation of transform. To address this issue, a novel line integral transform
is proposed. We first use binding line pairs that have the desirable prop-
erty of affine preserving as a reference frame to rewrite the diametrical
dimension parameters of the lines in a relative manner which make them
independent on affine transform. Along polar angle dimension of the line
parameters, a moment-based normalization is then conducted to degrade
the affine transform to similarity transform which can be easily normal-
ized by Fourier transform. The proposed transform is not only invariant
to affine transform, but also preserves the spatial relationship between
line integrals which make it very informative. Another advantage of the
proposed transform is that it is more efficient than the trace transform.
Conducting it one time can allow us to achieve a 2D matrix of affine
invariants. While conducting the trace transform once only generates a
single feature and multiple trace transforms of different functionals are
needed to derive more to make the descriptors informative. The effec-
tiveness of the proposed transform has been validated on two types of
standard shape test cases, affinely distorted contour shape dataset and
region shape dataset, respectively.

Keywords: Shape analysis · Affine distortions · Affine invariants ·
Radon transform · Trace transform

1 Introduction

Shape analysis is an active research area in the computer vision and pattern
recognition community and has a large body of potential applications such as
human activity recognition [28], target tracking [29], medical image retrieval [30],
etc. The object images captured by the camera are generally subject to vari-
ous deformations. One of the typical distortions is perspective transform which
occurs on the situation of the pictures of the objects are taken under arbitrary
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orientations. The computer vision systems are also expected to effectively handle
the recognition of perspective distorted shapes. Under certain circumstance like
the distance between the camera and the object being far enough, or the thick
of the object being very small that can be approximated a plane, the perspec-
tive transform can be well approximated by affine transformation [20,31]. In this
paper, we focus on recognizing shapes distorted by affine transform.

Conducting line integrals over the image plane and transform the image
function to another 2D function of line parameters (θ, λ) is an effective way
for shape analysis. This is one of the significant applications of the well-known
Radon transform [1]. The main appealing characteristics of the Radon transform
is that it benefits extracting feature of the inner structure of the object and the
image function of the object can be fully reconstructed from its Radon transform.

Numerous efforts have been made on extracting invariant shape features from
Radon transform for object recognition [32–36]. However, these methods can only
handle similarity transform (translation, rotation and scaling) which is a kind of
shape-preserving transformation and is a subset of larger affine group. Although
affine transform is line-preserving, the complex behaviours of the line integrals
of the image function make the affine transform challenging to extract affine
invariants from the domain of the line integral transform.

Trace transform [37] is a generalized version of the Radon transform. It
extends the line integral to any 1D functional along lines (termed trace func-
tional). So, various functionals used will derive different trace transform. How-
ever, trace transform is still sensitive to affine transform because the functionals
used along the line can not yield invariants. To achieve affine invariants, Petrou
and Kadyrov [5] propose to further conduct diametrical functionals along the
dimension of λ and circus functionals along the dimension of θ. It is worth
noting that in this method, a set of functionals including a trace functional, a
diametrical functionals and a circus functionals can only generate one invariant
feature. So, to make the shape descriptors informative, many triples of function-
als have to be developed for yielding more affine invariants. However, it is very
difficult to find appropriate triple of functionals to constructing the desirable
invariants and the expensive computational cost also make it not suitable for
real applications.

In this paper, we propose a novel integral transform that can effectively and
efficiently handle affine-distorted shapes. The proposed transform has the follow-
ing advantages over the trace transform: (1) It is much more discriminative than
the trace-transform based method [5]. The later uses diametrical functionals and
circus functionals to achieve affine invariants which cannot preserve the informa-
tion of diametrical dimension and circus dimension of the trace lines. While the
proposed transform perfectly preserves it; (2) It has the higher efficiency to yield
affine invariants than the trace transform. Conducting it one time can allow us to
achieve a group of shape invariants. While conducting the trace transform once
only generates a single feature and multiple trace transforms of different function-
als are needed to derive more to make the descriptors informative; (3) The features
obtained by the proposed transform has a physical interpretation, while the fea-
tures obtained from the trace transform generally has no clearly physical meaning.
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2 Related Work

The existing affine shape analysis methods can be categorized into two groups.
One is contour based methods which represent the object boundary as ordered
points or parameterized curves. The other is region based methods which attempt
to generate affine invariants from the whole shape region.

A large body of methods have made attempts to model the silhouette of the
shape for characterizing the behavior of the shapes that are subject to affine
transform. The popular ideas of them model the silhouette as a parameterized
curve. Then some mathematical tools can be used for analysis the geometric
properties. The earlier work [20] applied Fourier transform to the affine-length
parameterized boundary description for eliminating its dependency on the affine
transformation. Various wavelet transforms with different wavelet basis functions
are also utilized to generate affine shape invariants [22,23].

B-spline is a kind of continuous curve representation which make it very
suitable for shape analysis. Wang and Teoh [18] modeled the shape contour using
B-spline to construct the Curvature Scale Space (CSS) image for affine invariant
shape matching. Huang and Cohen [17] proposed a fast algorithm for estimating
the B-spline control points and used a new class of weighted B-spline curve
moments to handle the affine transformation between curves. Various algebraic
curve models such as quartic implicit polynomials [16] and conic curve [19] were
proposed for extracting affine or perspective invariants. Zuliani et al. [10] used the
area, centroid, and covariance of the domain enclosed by the curve to normalize
the shape for removing the effect of affine transform.

There are also many methods treating the silhouette of the shape as a sequence
of order points to construct shape descriptors or building corresponding to match-
ing shapes. Mai et al. [13] represented shape as a sequence of chained edge points
and proposed to project one shape onto the subspace spanned by the other. The
two shapes are then matched by minimizing a subspace projection error. This
method has a clear physical interpretation and works very fast for estimating
the affine transform. Jia et al. [14] developed a new projective invariant, the
characteristic number (CN) whose values is calculated on a series of five sample
points along the shape contour. With the sample intervals varying, a coarse to
fine strategy is developed for capturing both the global geometry described by
projective invariants and the local contextual information. Xue et al. [25] pro-
posed a fuzzy algorithm for aligning shapes under affine transform. This algo-
rithm can efficiently estimate the point correspondence and the relevant affine
parameters. Recently, Bryner et al. [7,8] presented a contour-based shape analy-
sis framework based on Riemannian geometry that is invariant to affine transform
and re-parameterization of contours. Three shape space, landmark-affine, curve-
affine and landmark projective are studied in their work.

Different from the contour based methods, the region based shape analysis
approaches characterize shape considering all the pixels over the shape domain.
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Moment invariants are the popular region based shape descriptors. In the ear-
lier work, Flusser and Suk [12] introduced affine moment invariants for object
recognition. Heikkilä [21] used the second and higher order moments of the image
points for both recognition and alignment under affine transform. The advantage
of this method is that it does not require to know any point correspondences
in advance. Yang and Cohen [26] proposed a framework for deriving a class of
new global affine invariants based on a novel concept of cross-weighted moments
with fractional weights.

Besides the moment descriptors, many recent works developed various strate-
gies for region based shape recognition and matching. Domokos et al. [15] pro-
posed a novel parametric estimation of affine deformations for planar shapes.
Instead of finding the correspondences between the landmarks of the template
shape and target shape for computing the affine parametric, they treat the affine
parametric estimation as a solution of polynomial equations in which all the
information available in the input image is used. More recently, Ruiz et al. [24]
proposed a fast and accurate affine canonicalization method for recognizing and
matching planar shapes. Different from many shape analysis methods which
extract invariant features for recognition, this work attempts to produce multi-
ple canonical versions of the shape for provides a common reference frame for
accurate shape comparison.

The works that are most relevant to our research in this paper are various
transform based methods. Ruiz et al. [11] proposed a multiscale autoconvolution
(MSA) transform based on a probabilistic interpretation of the image function.
The MSA transform is a 2D function derived from the shape image function
which can present infinitely many affine invariant features by varying its two
variable. So, it can be directly applied for shape recognition. The trace transform
is a generalization of the Radon transform. Petrou and Kadyrov [5] proposed
to conduct several trace functionals on the original image function firstly to
obtain the same number of trace transforms of the image function, then for each
available trace transform, several diametrical functionals are used to transform
them to the same number of 1D functions of directional angle of line. The affine
invariants are finally achieved by further performing circus functionals to the
available 1D functions. The number of the available affine invariant features
is the number of the combinations of the used three types of functionals. It
can be directly used for shape recognition and its theory can be extended for
affine parametric estimation [27]. Recently, Zhang and Chu [38] developed a ray
projection transform and apply it for recovering a geometric transformation and
an affine lighting change between two objects.

3 Affine Theory of Line Integral

Given a 2D function f (x) and a straight line � with equation λ − −→
θ T x = 0,

where
−→
θ = (cosθ, sinθ)T is a unit vector in the direction of the normal to the

line �, and x = (x, y)T ∈ R
2 denote the coordinates of a point of the line �. The

integral of the function f (x) over the line � can be mathematically expressed as
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�f(λ, θ) =
∫

f (x)δ(λ − −→
θ T x)dx, (1)

where δ(·) denotes a Dirac delta function. Through the line integral, the function
f (x) is transformed into another 2D function �f(λ, θ) of line parameters (λ, θ)
(in the later sections, we directly use the parameters (λ, θ) to denote a line).
This is the well-known Radon transform [1] that has been widely applied for
image analysis. In this section, we study the behavior of the line integral of the
function f (x) under affine transform.

An affine transform H = H(A, s) can be defined as x
′

= Ax + s, where A
is a 2 × 2 nonsingular real matrix and s ∈ R

2. Using it, a function f (x) can
be transformed to another function g(x) = f (A−1x − A−1s). The relationship
between their Radon transformed versions, �f(λ, θ) and �g(λ, θ), can be deduced
as

�g(λ, θ) =
∫

g (x)δ(λ − −→
θ T x)dx

=
∫

f (A−1x − A−1s)δ(λ − −→
θ T x)dx.

(2)

Let y = A−1x − A−1s, Eq. (2) can be rewritten as

�g(λ, θ) = |det(A)|
∫

f (y)δ(λ − −→
θ T s − (AT −→

θ )T y)dy. (3)

Note that the vector AT −→
θ is a transformed version of the vector

−→
θ and may

not be a unit vector. Here, we use the scaling property [2] of the Dirac delta
function, that is δ(αx) = |α|−1δ(x) for α �= 0, to normalize it and Eq. (3) can be
rewritten as

�g(λ, θ) =
|det(A)|∥∥∥AT

−→
θ

∥∥∥
∫

f (y)δ

⎛
⎝ λ∥∥∥AT

−→
θ

∥∥∥ −
−→
θ T s∥∥∥AT

−→
θ

∥∥∥ − (AT −→
θ )T∥∥∥AT
−→
θ

∥∥∥ y

⎞
⎠ dy, (4)

where ‖·‖ denotes the length of the vector. Defining following functions of vari-
able θ:

ε(θ) = |det(A)|
∥
∥
∥AT

−→
θ

∥
∥
∥

, ζ(θ) = 1∥
∥
∥AT

−→
θ

∥
∥
∥

, η(θ) = −
−→
θ T s∥

∥
∥AT

−→
θ

∥
∥
∥

,

and
ρ(θ) =

〈
AT −→

θ
〉

, (5)

where 〈·〉 denotes the direction angle of the vector, we then have

�g(λ, θ) = ε(θ)
∫

f (y) δ
(
ζ(θ) · λ + η(θ) − −−→

ρ(θ)T y
)

dy

= ε(θ) · �f(ζ(θ) · λ + η(θ), ρ(θ)).
(6)

The above equation indicates the following effects of the affine transform H(A, s)
on the line integral of the function f (x): (1) its amplitude is scaled by ε(θ); (2)



A Novel Line Integral Transform for 2D Affine-Invariant Shape Retrieval 601

its parameter λ is scaled by ζ(θ) and shifted by η(θ), and (3) its parameter θ is
transformed to be ρ(θ).

Let the inverse transform of H(A, s) be H−1(A−1,−A−1s). The inverse trans-
formed versions ε−1(θ), ζ−1(θ), η−1(θ), and ρ−1(θ) of the functions ε(θ), ζ(θ),
η(θ), and ρ(θ) can be defined by replacing A and s appeared in the Eq. (5) with
A−1 and −A−1s, respectively. From Eq. (6), we can also conclude that when
a line (λ, θ) is subject to the affine transform H(A, s), it will become the line
(ζ−1(θ) ·λ+η−1(θ), ρ−1(θ)). In the next section, we will use the affine theories of
the line and line integral under affine transform to construct a novel line integral
transform for affine shape analysis.

4 The Proposed Line Integral Transform

A shape is defined as region D that is a subset of pixels in the image plane R
2

[3]. The shape image function f (x) can then be defined an indicator function
f(x) = 1 if x ∈ D and f (x) = 0 otherwise.

4.1 Binding Line Pair and Its Affine Property

Using the line integral �f (λ, θ) of the function f (x), we define a 1D function of
the variable θ as

σf (θ) = arg min
λ

{�f (λ, θ) > 0} . (7)

Then for an angle θ ∈ [0, 2π], we can uniquely derive a line pair (σf (θ), θ)
and (−σf (θ + π), θ). It can be easily concluded that they have the following
relationships with the shape region D:

∃x ∈ D,σf (θ) − −→
θ T x = 0. (8)

and
∀x ∈ D,σf (θ) ≤ −→

θ T x ≤ −σf (θ + π). (9)

The Eq. (8) and Eq. (9) indicate that the shape region D is located between the
line pair (σf (θ), θ) and (−σf (θ + π), θ) and has at least one intersection point
with them which also means that the shape region D is bound by the line pair.
We term the line (σf (θ), θ) and (−σf (θ+π), θ) as binding line pair. An example
of binding line pair is presented in Fig. 1.

Now, we analysis the property of the binding line pair under the affine trans-
form H(A, s). According to Eq. (7), we can conclude that the function σf (θ) has
the following relationship with the function σg(θ):

σf (θ) =
σg(ρ−1(θ)) − η−1(θ)

ζ−1(θ)
. (10)

Under the affine transform H(A, s), the line (σf (θ), θ) is transformed to
be the line (ζ−1(θ) · σf (θ) + η−1(θ), ρ−1(θ)) which can be rewritten as
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Fig. 1. An example of a binding line pair for a shape (marked in green color). (Color
figure online)

(σg(ρ−1(θ)), ρ−1(θ)) in terms of Eq. (10). Therefore, we can conclude that the
affine transformed version of a binding line of the shape is the binding line of the
affine transformed version of the shape. Note that the parameters (−σf (θ+π), θ)
and the parameters (σf (θ + π), θ + π) represent the same line. Thus, another
binding line (−σf (θ + π), θ) also keeps its binding property under the affine
transform. A graphical illustration of this property is shown in Fig. 2.

Fig. 2. An example to indicate the binding line pairs (marked by the same color for
each) having the property of being affine transform preserved, i.e. the affine transformed
version of a binding line pair of the shape is the binding pair of the affine transformed
version of the shape.

4.2 The Proposed Transform

Given an image function f (x) and a direction angle θ ∈ [0, 2π), a binding line
pair (σf (θ), θ) and (−σf (θ+π), θ) can be calculated. The distance between them
is −σf (θ + π) − σf (θ). The line that has equal distance to the binding line pair,
i.e., the center line, can be represented as ((σf (θ) − σf (θ + π))/2, θ). Taking the
center line and the binding line (σf (θ), θ) as the reference lines, each line that is
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located between them can be then uniquely represented as the parameter form
of (Γf (μ, θ), θ). Where θ ∈ [0, 2π] is the direction angle of the line which is also
the direction angle of the reference lines and the parameter Γf (μ, θ) is a 2D
function of the variables (μ, θ) defined by

Γf (μ, θ) =
σf (θ) − σf (θ + π)

2
− μ · −σf (θ + π) − σf (θ)

2
, (11)

where μ ∈ [0, 1] is the ratio of the distance between the line with the reference
line (σf (θ), θ) to the distance between the two reference lines, (σf (θ), θ) and
((σf (θ) − σf (θ + π))/2, θ).

Let the parameter θ vary from 0 to 2π and the parameter μ vary from 0 to
1, all the lines that go through the shape region D can then be available to form
a line set denoted by

{(Γf (μ, θ), θ) : μ ∈ [0, 1], θ ∈ [0, 2π)} . (12)

We integral the shape image function f (x) over each line in the above set and
obtain a novel integral transform for the function f (x) as follows:

Ψf (μ, θ) = �f (Γf (μ, θ), θ). (13)

which is a 2D function of the parameters μ ∈ [0, 1] and θ ∈ [0, 2π].
The proposed transform Ψf (μ, θ) has the following property under the affine

transform H = H(A, s) of the shape image function f (x):

Ψg(μ, θ) = ε(θ) · Ψf (μ, ρ(θ)). (14)

Comparing the above equation with Eq. (6), we can find the difference
between the proposed transform with the Radon transform under affine trans-
form as follows: the first parameter λ for the Radon transform embeds the param-
eters of affine transform, while the first parameter μ for the proposed transform
is independent of the affine transform. However, Eq. (14) also indicates that the
second parameter θ and the amplitude of the proposed transform still encode the
affine transform parameters. Since the parameter μ of the proposed transform is
independent of the affine transform, we fix it and rewrite the function Ψf (μ, θ)
as the function Ψμ

f (θ) which has only one variable θ. Delimited by the function
Ψμ

f (θ), a region Wμ
f can be derived and mathematically defined as

Wμ
f =

{
w ∈ R

2 : ∃ θ ∈ [0, 2π] ∧ ∃ r ∈ [0, 1] such that w = (r · Ψμ
f (θ))

−→
θ

}
. (15)

Similarly, a region Wμ
g that is delimited by the function Ψμ

g (θ) can be defined
by replacing f with g in Eq. (15). We are interested in the relationship between
the available regions Wμ

f and Wμ
g . For any w

′ ∈ Wμ
g , there exists w ∈ Wμ

f such
that

w
′
= |det(A)|A−T w. (16)
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and on the other hand, for any w ∈ Wμ
f , there exists w

′ ∈ Wμ
g which also makes

Eq. (16) hold, where A−T denotes the transpose matrix of A−1. Therefore, we
can deduce that the region Wμ

f and the region Wμ
g are correlated by the affine

transform H′
= H′

(|det(A)|A−T , 0). This is a desirable property which allows us
to use their respective second-order geometric moment to derive a transformation
for reducing the relation between them from an affinity into a similarity. Similar
ideas can be found in [4,5].

For the region Wμ
f , we construct its second-order geometric moment matrix

as
Mμ

f =
∫

Wµ
f

wwT dw. (17)

Similarly, the second-order geometric moment matrix Mμ
g for the region Wμ

g can
be available. For the integration expression of calculating the moment matrix
Mμ

g , by making following changes: the variable w
′
= |det(A)|A−T w, the deriva-

tive dw
′

= |det(A)|dw, and the integration region Wμ
g → Mμ

f , we can easily
deduce that

Mμ
g = |det(A)|3A−T Mμ

f A−1. (18)

which indicates the relationship between the moment matrix Mμ
f and the

moment matrix Mμ
g . Define M1/2 as any matrix that satisfies (M1/2)(M1/2)T =

M . Since det(M) > 0, the M1/2 can be always achieved. It can be calculated
by using an eigenvalue method [5,6]. Let Δf = (Mμ

f )1/2 and Δg = (Mμ
g )1/2, we

accordingly achieve Mμ
f = ΔfΔT

f and Mμ
g = ΔgΔ

T
g . Using the matrices Δf and

Δg, we can produce a transformation matrix as

E = Δ−1
g (|det(A)|A−T )Δf . (19)

Then we have

EET = Δ−1
g (|det(A)|A−T )ΔfΔT

f (|det(A)|A−1)Δ−T
g . (20)

Using Eq. 18, the above equation can be rewritten as

EET = |det(A)|−1Δ−1
g Mμ

g Δ−T
g

= |det(A)|−1Δ−1
g ΔgΔ

T
g Δ−T

g

= |det(A)|−1I.

(21)

where I is an identity matrix. The above equation indicates that E is a similarity
matrix which encodes the relation of the matrices A,Δf and Δg. According to
Eq. (21), the transform matrix E can be denoted by E = αRθ0 for det(E) > 0
and E = αR̃θ0 for det(E) < 0, where α = |det(A)|−1/2 play the role of scale
factor, Rθ0 and R̃θ0 are

Rθ0 =
[

cosθ0 −sinθ0
sinθ0 cosθ0

]
(22)



A Novel Line Integral Transform for 2D Affine-Invariant Shape Retrieval 605

and

R̃θ0 =
[

cosθ0 sinθ0
sinθ0 −cosθ0

]
(23)

which can transform a vector
−→
θ to be

−−−→
θ + θ0 and

−−−→
θ0 − θ respectively. It is worth

noting that for Eq. (19), since det(Δf ) > 0 and det(Δg) > 0 [5,6], det(E) takes
the same sign as det(A). While det(A) < 0 indicates that besides the scaling,
rotation and shearing, the affine transform with the affine matrix A also includes
a mirror transform.

We have now obtained the matrices Δf and Δg, they are then be used to
normalize the function Ψμ

f (θ) and its affine-transform version Ψμ
g (θ) respectively.

We first normalize the function Ψμ
f (θ) as

Ψ̇μ
f (θ) =

1∥∥∥Δf
−→
θ

∥∥∥Ψμ
f

(〈
Δf

−→
θ

〉)
. (24)

Similarly, the normalized version of Ψμ
g (θ) is defined as Ψ̇μ

g (θ). The relationship
between them can be achieved as

Ψ̇μ
g (θ) = α · Ψ̇μ

f (θ − θ0) for det(A) > 0, (25)

and
Ψ̇μ

g (θ) = α · Ψ̇μ
f (θ0 − θ) for det(A) < 0. (26)

which indicate that the normalized versions Ψ̇μ
f (θ) and Ψ̇μ

g (θ) are only correlated
by a similarity transform. The Eq. (26) also indicates that when the affine trans-
form includes a mirror transform, the original function Ψ̇μ

f (θ) is also subject to
an additional mirror transform.

Also, we can see that for any μ ∈ [0, 1], its corresponding 1D function Ψ̇μ
f (θ)

for the shape f only suffers from scaling, translation and mirror distortions when
the shape f is subject to affine transform. In the former section, we fix the vari-
able μ for the convenience of presenting the details of the proposed transform.
Now, we set it free and rewrite the 1D function Ψ̇μ

f (θ) to a 2D function Ψ̇f (μ, θ).
Obviously, the affine transform makes the 2D function Ψ̇f (μ, θ) occur only shift-
ing and mirror effects on the dimension of θ and a scaling of the amplitude of
the function.

4.3 Affine Invariants

Here we apply the proposed transform Ψ̇f (μ, θ) to affine invariant shape recog-
nition. As discussed in the former section, the transform Ψ̇f (μ, θ) is only subject
to a shifting and a mirror transform on the dimension of θ and a scaling on
the amplitude of the function. So, it is very easy to remove these effects from
the proposed transform. To do so, we apply the 1D Fourier transform to the
dimension of θ against the proposed transform Ψ̇f (μ, θ). Assume that Ψ̇f (μi, θj),
i = 1, ..., k and j = 1, ..., N is the digital form of the proposed transform Ψ̇f (μ, θ),
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where K and N are the number of the points uniformly sampled from the range
[0, 1] and the range [0, 2π] respectively. Then we obtain a matrix of size K × N .
For each row of the matrix, we perform discrete 1D Fourier transform against
it and keep the magnitudes of Fourier coefficients. According to the theory of
Fourier transform, the shifting and mirror effects are removed from the trans-
form Ψ̇f (μi, θj). As for the scaling effect, we normalize each row of the matrix
using its respective 0th-order Fourier coefficient. Then we obtain a completely
affine invariant version of the transform Ψ̇f (μi, θj) which can be directly utilized
for shape recognition. The dissimilarity between two shapes can be measured by
calculating the L1 norm between their transforms Ψ̇(μi, θj).

5 Experimental Results and Discussions

To examine the feasibility and effectiveness of the proposed method on shape
retrieval, we perform the proposed method on two groups of shape image
datasets: (1) Contour shape dataset in which each shape is enclosed by a single
silhouette and no content is contained inside, and (2) Region shape dataset in
which each sample has several separated regions or its whole region is though
enclosed by a single silhouette, it also contain some contents inside which usually
have complex structure. For all the experiments, we uniformly sample 18 values
from the range [0, 1] and 180 values from the range [0, 2π] for conducting the
proposed transform.

To quantify the retrieval performance of the algorithms, the standard metric
for information retrieval, knee-point score [7,8], is used in our experiments. For
any query shape Qi, calculate the distances of all the dataset samples to it and
rank them to a sequence in ascending order. Let H be the number of all the
dataset samples and Vi be the number of the relevant ones to the query shape
Qi in the dataset. For each integer number 1 ≤ h ≤ H, count the number vi,h

of the relevant samples of the top k best matches in the sequence. Then for the
given query Qi, its precision and recall at the top h best matches are defined as

pi,h =
vi,h

h
and ri,h =

vi,h

Vi
, (27)

respectively. We calculate their average values over all the queries Qi. In our
experiments, each sample from the dataset is taken in turn as a query. So, there
are a total of H queries. When Vi = h, precision and recall will take the same
value which is termed knee-point score as measurement [7,8].

Multiview Curve Database (MCD): To evaluate the performance of the
algorithms on recognizing the curved shapes in presence of affine distortion,
Zuliani et al. [10] chose 40 samples from the MPEG-7 CE-1 contour shape dataset
[9] with each selected from one shape class. Each of them is then printed on a
white paper and 7 pictures are taken to it from different view angles using a dig-
ital camera. Another 7 images are achieved by randomly rotating and reflecting
the available seven samples. So, there are a total of 40×14 = 560 samples in the
MCD which consists of MPEG-7 shapes that are affected by natural perspective
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Table 1. The retrieval accuracy on the MCD dataset

Algorithm Knee-point score (%)

Affine-invariant elastic metric [7] 90.00∗

Hierarchical projective invariant contexts [14] 88.14∗

Subspace approach [13] 90.15

Affine-invariant curve matching [10] 80.00∗

Affine moment invariants [12] 66.01

Mutiscale Autoconvolution (MSA) [11] 71.84

Affine invariant features from the Trace transform [5] 80.08

Proposed method 97.07
∗ The results from the original papers.

skew due to the manner of extracting from real images. Some typical samples
from the MCD are shown in Fig. 3. This dataset is publicly available and has
been used as test case in many works [7,10,14].

Fig. 3. Part of typical samples in the dataset MCD. Left: the 14 affine-distorted insect
shapes, right: the 14 affine-distorted camel shapes.

To make a fair comparison, we choose those approaches which are particu-
larly designed for affine shape recognition. Three region based methods, including
Trace transform based method [5], Multiscale autoconvolution (MSA) [11] and
Affine moment invariants [12] which are state-of-the-arts descriptors for affine
shape recognition, are used as benchmarks in our experiments. Since the tem-
plate sample of the shapes in MCD database are from the MPEG-7 CE-1 dataset
which is a contour based test case, four recently published contour based meth-
ods including Affine-invariant elastic metric [7], Hierarchical projective invariant
contexts [14], subspace approach [13] and Affine-invariant curve matching [10]
are selected as benchmarks for a wide comparison. All of them take the MCD
dataset as the test case in their experiments. The Knee-point scores of the pro-
posed method together with the benchmark methods are summarized in Table 1.
It can be seen that the proposed method achieves 97.07% of retrieval accuracy
which is about 17% higher than the Trace transform based method [5] and much
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more than the other two region based methods [12] and [11]. While compare with
the other four contour based methods which generally perform better on the con-
tour based test case than those region based methods, the proposed method still
achieves more than about 7% of retrieval accuracy than them.

Fig. 4. Example samples from the MPEG CE-2 database which consists of 3101 region
shape images. (a) Some typical samples that are used as gallery images. (b) Some
typical images that are used as queries, where for each row, the top left one is template
shape and the remaining ones are part of its various perspective transformed versions.

MPEG-7 CE-2 Perspective Transform Test: MPEG-7 CE-2 database is
developed for evaluating the performance of those region based shape analysis
methods. Here, we perform the MPEG-7 CE-2 perspective test to validate the
effectiveness of the proposed on the retrieval of region shapes in presence of
perspective transform. In this test protocol, all the 3101 region-based shape
images in the database are used as gallery images (Some typical samples are
shown in Fig. 4(a)). Among them, 330 images of 30 classes with 11 images in
each class are labeled as queries for the retrieval experiment. In each query class,
one image is the original shape, and the other ten images are its perspective
transformed versions (Example images are shown in Fig. 4(b)). As can be seen
that different from the CE-1 shapes, the CE-2 samples usually have complex
interior structures and some samples have even separate shape regions.

In our experiments, we follow the protocol of the CE-2 perspective trans-
form test. Since the contour based shape recognition methods used in the for-
mer experiments can not handle region shapes, we only compare the proposed
method with the other three region based methods. The knee-point scores for
all the compared methods are summarized in Table 2. It can be seen that the
proposed method achieved an accuracy of 97.49%, much higher than those of
all the benchmarks (2.48% higher than the second best approach), on retriev-
ing shapes with various perspective transformations. As can be seen that on the
CE-2 perspective test, the proposed method keeps the best retrieval performance
over the benchmark methods. The encouraging experimental results demonstrate
the effectiveness of the proposed transform in describing shapes in presence of
perspective transform and its superior discriminability over the existing region
based methods on handling the shapes with complex interior structures.



A Novel Line Integral Transform for 2D Affine-Invariant Shape Retrieval 609

Table 2. The retrieval accuracy for the MPEG-7 CE-2 perspective test

Algorithm Knee-point score (%)

Affine moment invariants [12] 42.53

Mutiscale Autoconvolution (MSA) [11] 62.09

Affine invariant features from the Trace transform [5] 95.01

Proposed method 97.49

6 Conclusions

A novel line integral transform has been presented for affine-invariant shape
recognition. It is a 2D function which is not only invariant to affine transform,
but also preserves the spatial relationship between the line integrals which makes
it more discriminative than those shape descriptors from the trace transform.
In additional, the proposed method is more efficient than the trace transform.
In the proposed method, a 2D matrix of affine invariants can be generated by
conducting the proposed transform once. While conducting the trace transform
once can only generate a single feature and multiple times of transforms should
be performed make shape descriptors discriminative. The proposed transform
has been tested on the standard affinely distorted contour shape database and
region shape database and compared with the state-of-the-art shape descriptors
that are designed for affine shape analysis. The encouraging experimental results
showed that the proposed method is effective for affine shape recognition.

Acknowledgement. This work was supported in part by the Australian Research
Council (ARC) under Discovery Grant DP140101075 and the Natural Science Foun-
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Abstract. Visual relationship detection is fundamental for holistic
image understanding. However, the localization and classification of (sub-
ject, predicate, object) triplets remain challenging tasks, due to the com-
binatorial explosion of possible relationships, their long-tailed distribu-
tion in natural images, and an expensive annotation process.

This paper introduces a novel weakly-supervised method for visual
relationship detection that relies on minimal image-level predicate labels.
A graph neural network is trained to classify predicates in images from
a graph representation of detected objects, implicitly encoding an induc-
tive bias for pairwise relations. We then frame relationship detection as
the explanation of such a predicate classifier, i.e. we obtain a complete
relation by recovering the subject and object of a predicted predicate.

We present results comparable to recent fully- and weakly-supervised
methods on three diverse and challenging datasets: HICO-DET for
human-object interaction, Visual Relationship Detection for generic
object-to-object relations, and UnRel for unusual triplets; demonstrating
robustness to non-comprehensive annotations and good few-shot gener-
alization.

1 Introduction

Visual perception systems, built to understand the world through images, are not
only required to identify objects, but also their interactions. Visual relationship
detection aims at forming a holistic representation by identifying triplets in the
form (subject, predicate, object). Subject and object are localized and classified
instances such as a cat or a boat, and predicates include actions such as pushing,
spatial relations such as above, and comparatives such as taller than.

In recent years, we have witnessed unprecedented development in various
forms of object recognition; from classification to detection, segmentation, and
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person push motorcycle person wear helmet person drive motorcycle person wear helmet

Fig. 1. Weakly-supervised relationship detection: detecting all 〈subj, pred, obj〉
triplets by training only on weak image-level predicate annotations {push, wear, drive}

pose estimation. Yet, the higher-level visual task of inter-object interaction recog-
nition remains unsolved, mainly due to the combinatorial number of possible
interactions w.r.t. the number of objects. This issue not only complicates the
inference procedure, but also complicates data collection – the cost of gathering
and annotating data that spans a sufficient set of relationships is enormous. In
this work, we propose a novel inference procedure that requires minimal labeling
thereby making it easier and cheaper to collect data for training.1

Consider the problem of adding a predicate category to a small vocabulary
of 20 objects. A single predicate could introduce up to 202 new relationship
categories, for which samples must be collected and models should be trained.
Moreover, we know that the distribution of naturally-occurring triplets is long-
tailed, with combinations such as person ride dog rarely appearing [29]. This
exposes standard training methods to issues arising from extreme class imbal-
ance. These challenges have prompted modern techniques to take a composi-
tional approach [15,24,29,34] and to incorporate visual and language knowl-
edge [24,29,31], improving both training and generalization.

Although some progress has been made towards recognition of rare triplets,
successful methods require training data with exhaustive annotation and local-
ization of 〈subj,pred, obj〉 triplets. This makes weakly-supervised learning a
promising research direction to mitigate the costs and errors associated with data
collection. Nonetheless, we identified only two weakly-supervised works tackling
general visual relation detection [30,48], both requiring image-level triplet anno-
tation. In this work, we use an even weaker setup for visual relationship detection
that relies only on image-level predicate annotations (Fig. 1).

To achieve that, we decompose a probabilistic description of visual relation-
ship detection into the subtasks of object detection, predicate classification and
retrieval of localized relationship triplets. Due to considerable progress in object
detection, we focus on the last two and use existing pre-trained models for object
detection. For predicate classification, we use graph neural networks operating
on a graph of object instances, encoding a strong inductive bias for object-object
relations. Finally, we use backward explanation techniques to attribute the graph
network’s predicate predictions to pairs of objects in the input.

1 PyTorch implementation, data and experiments: github.com/baldassarreFe/ws-vrd.

https://github.com/baldassarreFe/ws-vrd
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Contributions. The main contributions of this work are threefold:
I) We tackle visual relation detection using a weaker form of label, i.e. image-level
predicate annotations only, which reduces data collection cost, is more robust to
non-exhaustive annotations, and helps generalization w.r.t. rare/unseen triplets.
II) We propose a novel explanation-based weakly-supervised approach for rela-
tionship detection. We believe this is the first work to (a) use weakly-supervised
learning beyond object/scene recognition, and (b) employ explanation techniques
on graph networks as the key component of a relationship detection pipeline.
III) Despite using weaker supervision, we show comparable results to state-of-
the-art methods with stronger labels on several visual relation benchmarks.

2 Related Works

We are interested in weakly-supervised learning of visual relations. We achieve
this by employing graph network explanation techniques. In this section, we
cover the related papers corresponding to the different aspects of our work.

Visual Relationship Detection. Visual relation detection involves identifying
groups of objects that exhibit semantic relations, in particular (subject, predi-
cate, object) triplets. Relations are usually either comparative attributes/relative
spatial configurations [12] which are useful for referral expression [26] and visual
question answering [17], or, inter-object interactions [39] which is crucial for
scene understanding. Due to the importance of human-centered image recogni-
tion for various applications, many of such works focus on human-object inter-
actions [6,7,15,34,46,51].

Visual relation detection has been initially tackled by considering the whole
relationship triplet as a single-phrase entity [39]. However, this approach comes
with high computational costs and data inefficiency due to the combinatorial
space of possible phrases. It is therefore important to devise methods that
improve data efficiency and better generalize to rare or unseen relations.

Most modern works take a compositional approach [15,24,29–31,34], where
objects and predicates are modelled in their own right, which enables better
and more efficient generalization. Leveraging language through construction of
priors, text embeddings, or joint textual-visual embeddings has also been shown
to improve generalization [24,29,31]. The recent work of Peyre et al. [29] deals
with the combinatorial growth of relation triplets using visual-language analo-
gies. While this approach generalizes well to unseen combinations of seen enti-
ties, it adopts a fully-supervised training procedure that demands a considerable
amount of annotated triplets for training.

In contrast, our approach improves data efficiency by only requiring image-
level predicate labels, and instead learning relation triplets through weakly-
supervised learning. Our non-reliance on the subject/object entities, in turn,
improves generalization to unseen relations as, importantly, we do not require
subject/object entities to appear in the training set.
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Weakly-Supervised Learning. Weakly-supervised learning is generally desir-
able since it reduces the need for costly annotations. It has already proven effec-
tive for various visual recognition tasks including object detection [5,28], seman-
tic segmentation [10,20], and instance segmentation [14,52]. Relationship detec-
tion can benefit from weakly-supervised learning even more than object/scene
recognition, since the number of possible relation triplets grows quadratically
with the number object categories. Despite this, weakly-supervised learning of
visual relations has received surprisingly less attention than object-centric tasks.

Weakly-Supervised Learning of Visual Relations. The early work of
Prest et al. [33], similar to our work, only requires image-level action labels.
But Prest et al. focused on human-object interactions using part detectors, as
opposed to general visual relationship detection. More recent works [30,48] learn
visual relations in a weakly-supervised setup where triplets are annotated at the
image level and not localized through bounding boxes. Peyre et al. [30] repre-
sents object pairs by their individual appearance as well as their relative spatial
configuration. Then, they use discriminative clustering with validity constraints
to assign object pairs to image-level labels. In [48], three separate pipelines are
used, one for object detection, one for object-object relation classification and
the third for object-object pair selection for each relation. The softmax output
of the latter is then used as an attention mechanism over object pairs to account
for the weak labels.

Both [30,48] work with non-localized triplets annotated at the image-level2.
Our weaker supervision setup, by not requiring subject and object annotations,
allows for potentially simpler, more general, and less costly construction of
large training datasets using search engines or image captions. Furthermore, our
method is based on object-centric explanations of graph networks, which sets it
apart from previous works on weakly-supervised learning of visual relations.

Explanation Techniques. In mission-critical applications such as medical
prognosis, a real-world deployment of trained AI systems require explanations of
the predictions. Thus, many explanation techniques have been developed based
on local approximation [37], game theory [25], or gradient propagation [2,41,50].
Recently, following the success of graph networks, explanation methods have
been extended to those models as well [4,32,47]. We use graph networks to obtain
image-level predicate predictions and then apply graph explanation techniques
to obtain the corresponding subject and object in an unsupervised manner.

Explanation-Based Weakly-Supervised Learning. The idea of using
explanations to account for weak labels has been previously used for object
recognition. Class Activation Mapping (CAM) uses a specific architecture with

2 It should be noted that [30] can be extended to work with only predicate annotations,
using a new set of more relaxed constraints.
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fully-convolutional layers and global average pooling to obtain object localiza-
tion at the average pooling layer [50]. [52] extends this approach by backpropa-
gating the maximum response of the CAM back to the image space for weakly-
supervised instance segmentation. Grad-CAM [41] generalizes CAM and extends
its applicability to a wider range of architectures by pushing the half-rectified
gradient backward and using channel-wise average pooling to obtain location-
wise importance. Similar to CAM, Grad-CAM is applied to ILSVRC [38] for
weakly-supervised object localization. Finally, [14] develops a cascaded label
propagation setup with conditional random fields and object proposals to obtain
object instance segmentation from image-level predictions, using excitation back-
propagation [49] for the backward pass. Our work is an extension to this line of
research: we consider a more complicated application, namely visual relationship
detection, and use explanation techniques on graph networks.

3 Method

Detecting visual relationships in an image consists in identifying triplets τ =
〈subj,pred, obj〉 of subject, predicate and object. For example, person drive car
or tree next to building. To formalize this, we denote the set of objects in an
image by O, where each object instance, i, has a corresponding bounding box
bi and is categorized as ci according to a vocabulary of object classes {1 . . . C}.
Predicates belong to a vocabulary of predicate classes {1 . . . K} that include
actions such as eating, spatial relations such as next to and comparative terms
such as taller than.
With this notation, detecting visual relations from an image I corresponds to
determining high-density regions of the following joint probability distribution:

P (τ |I) � P (csubj = ci, kpred = k, cobj = cj , bsubj = bi, bobj = bj |I), (1)

where csubj and cobj indicate resp. the class of the subject and the object, kpred
indicates the class of the predicate, bsubj and bobj indicate resp. the location of
the subject and the object, and i, j = 1 . . . |B| index the bounding boxes.
To accommodate weakly-supervised learning, we propose the following approxi-
mate factorization based on object detection and predicate classification:

P (τ |I) =

P (csubj = ci|I, bsubj = bi)P (cobj = cj |I, bobj = bj) object detection (2)
P (kpred = k|I) predicate classification (3)
P (bsubj = bi, bobj = bj |I, kpred = k) likelihood of a pair (4)
P (csubj = ci, cobj = cj |kpred = k). prior over relations (5)

For Eq. 2, we use an object detection pipeline to localize and classify objects
in an image. The two terms, then, refer to the confidence scores assigned by the
object detector to the subject and object of the relationship (Sect. 3.1).

Equation 3 corresponds to a predicate classifier that predicts the presence of
predicate k in the image. This component only relies on image-level predicate
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annotations during training, and does not explicitly attribute its predictions to
pairs of input objects. However, by carefully designing the architecture of the
predicate classifier, we introduce a strong inductive bias towards objects and rela-
tions, which we can later exploit to recover 〈subj,pred, obj〉 triplets (Sect. 3.2).

Given a certain predicate k, Eq. 4 recovers the likelihood of object pairs to
be the semantic subject and object of that predicate. In other words, we wish
to identify all possible (subj, obj) pairs by their likelihood Eq. 4 w.r.t. a given
predicate. Therefore, we use an explanation technique to compute unnormalized
scores that associate predicates to pairs of objects (Sect. 3.3).

Term 5, which we refer to as prior over relationships, represents the co-
occurrence of certain classes as subjects or objects of a predicate, and the direc-
tionality of such relationship. For instance, it can indicate that (person, truck),
with person as the subject, is a more likely pair for drive than (fork, sand-
wich). As such, this term is optional, and excluding it would be the same as
assuming a uniform prior. However, this term assumes great importance in a
weakly-supervised setup, since isolated predicate labels provide no clue on the
directionality of the relation between subject and object (Sect. 3.4).

3.1 Object Detection

We use an object detection module to extract a set of objects O from a given
image I. We describe each object bounding box by the visual appearance features
and the classification scores obtained from the detector. These objects will then
be used to classify the predicates present in I and, later on, serve as targets for
explanations that identify relevant relationship triplets. Similar to the weakly-
supervised setup of Peyre et al. [30] we assume the availability of pre-trained
object detectors [36] as there is substantial progress in that field.

(bi , ci)

Faster R-CNN feature maps

fn

fe

fn

fr fp(agg{ei,j})

ni

ei,j
jump

hold

fly

catch
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drive

board
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Fig. 2. A graph neural network (GNN) trained to classify the predicates
depicted in a scene. Object detections extracted through Faster R-CNN are rep-
resented as a fully-connected graph. The GNN classifier aggregates local information
across nodes and produces an image-level predicate prediction. The input represen-
tation and architecture implicitly encode an inductive bias for pairwise relationships
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3.2 Predicate Classification

Predicate classification as described in Eq. 3 is a mapping from image to pred-
icate(s) and as such does not necessarily require an understanding of objects.
Thus, a simple choice for the classifier would be a convolutional neural network
(CNN) trained on image-level predicate labels, e.g. ResNeXt [44]. However, the
raw representation of images as pixels does not explicitly capture the composi-
tional nature of the task. Instead, we introduce a strong inductive bias towards
objects and relationships in both the data representation and the architecture.
Specifically, the module is implemented as a graph neural network (GNN) with
architecture similar to [40], that takes as input a graph representation of the
image G = (O, E), aggregates information by passing messages over the graph,
and produces image-level predicate predictions. This design choice allows us to
later explain the predictions in terms of objects, rather than raw pixels.

Each node in the image graph represents an object i ∈ O with its spatial and
visual features extracted by the object detector, which together we denote as the
tuple ni = (ns

i ,n
v
i ). The image graph is built as fully-connected and therefore

impartial to relations between objects. Directed edges i→ j are placed between
every pair of nodes, excluding self loops, resulting in |O|2 − |O| edges.

Node ni and edge ei,j representations are first transformed through two small
networks fn and fe:

n′
i = fn(ni) (6)

e′
i,j = fe(ei,j). (7)

Then, a relational function fr aggregates local information by considering
pairs of nodes and the edge connecting them:

e′′
i,j = fr(n′

i , e′
i,j , n′

j). (8)

This pairwise function induces an architectural bias towards object-object rela-
tionships, which hints at the ultimate goal of relationship detection.

In a fully-supervised scenario, a classification head could be applied to each
of the e′′

i,j edges and separate predicate classification losses could be computed
using ground-truth pairwise labels pi,j , e.g. [34]. Instead, we consider image-level
labels p ∈ {0, 1}K , where pk indicates the presence of predicate k in the image,
e.g. p would contain 1s at the locations of push, wear, drive for Fig. 1. Therefore,
we aggregate all edge vectors and apply a final prediction function that outputs
a binary probability distribution over predicates as in Eq. 3:

y = fp
(
agg

{
e′′
i,j

}) ∈ [0, 1]K , (9)

where agg is a permutation-invariant pooling function such as max, sum or mean.
Designed as such, the graph-based predicate classifier can be trained by min-

imizing the binary cross entropy between predictions and ground-truth labels:

L = −
K∑

k=1

{pk log(yk) + (1 − pk) log(1 − yk)} . (10)
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input wear 74% above 74%

Fig. 3. Grad-CAM heatmap visualization of a ResNet predicate classifier.
Ground-truth annotations contain person wear jacket and person above snowboard, but
it would be hard to identify subjects and objects from the pixel-level explanation.

3.3 Explanation-Based Relationship Detection

Once the predicate classifier is trained, we wish to use it to detect complete
relationship triplets 〈subj,pred, obj〉. This is where the relational inductive bias
introduced for the predicate classifier plays a key role. In fact, had the predicate
classifier been a simple CNN, we would only be able to attribute its predic-
tions to the input pixels, e.g. through sensitivity analysis [3] or Grad-CAM [41].
Figure 3 shows an example of Grad-CAM explanations obtained for a ResNeXt
architecture [44] trained for predicate classification on the Visual Relationship
Detection dataset (see appendix B.3). While it is possible to guess which areas
of the image are relevant for the predicted predicate, it is undoubtedly hard to
identify a distinct (subj, obj) pair from the pixel-wise heatmaps.

Thanks to the GNN architecture of the previous module, we can instead
attribute predicate predictions to the nodes of the input graph, evaluating the
importance of objects rather than pixels. We can then consider all pairs of nodes
representing the candidate subject and object of a predicate of interest, score
them with a backward explanation procedure and select the top-ranking triplets.

Specifically, we apply sensitivity analysis [3] to compute the relevance of a
node (rki ) and of an edge (rki,j) with respect to a predicate k:

rki =
∥
∥
∥
∥

∂yk
∂ni

∥
∥
∥
∥
1

single-object relevance (11)

rki,j =
∥
∥
∥
∥

∂yk
∂ei,j

∥
∥
∥
∥
1

object-pair relevance (12)

We experimented with different ways to compute these relevances, includ-
ing gradient×input, max(gradient×input, 0), and the L1, L2 norms, but no
significant differences were noticed on the validation set.

The product of these relevances is then used as a proxy for the unnormalized
likelihood of a subject-object pair given a predicate (Eq. 4):

P (bsubj = bi, bobj = bj |kpred = k) ∝ rki · rki,j · rkj . (13)

Rather than computing this quantity for every predicate and for every pair
of objects, we limit the search to the N top-scoring predicates, reducing the
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number of candidates from K(|O|2 − |O|) to N(|O|2 − |O|) relationships. A
Big O complexity that scales as |O|2 might seem unappealing, yet with |O|<30
we could process batches of 128 image graphs in a single pass (Fig. 4).

Fig. 4. Relationship detection through explanation. A predicate prediction is
explained by attributing it to the pair of objects in the input that are most relevant
for it, effectively recovering a full relationship triplet in the form 〈subj, pred, obj〉

3.4 Prior over Relationships

Learning to detect 〈subj,pred, obj〉 relations using image-level predicate labels is
inherently ill-defined. Consider the task of learning a new predicate, e.g. squanch.
By observing a sufficient number of labeled images, we could learn that two
specific objects are often in a squanch relationship. However, we would not be
able to determine which should be the subject and which the object, i.e. the
direction of such relation, without semantic knowledge about the new word (can
things be squanchier than others? can objects squanch each other?).

Equation 5 represents the belief over which categories can act as subject and
objects of a certain predicate. In fully- or weakly-supervised scenarios, where
〈subj,pred, obj〉 triplets are available during training, a relationship detector
would learn such biases directly from data. Our graph-based predicate classi-
fier, trained only image-level predicate annotations, can indeed learn to recog-
nize object-object relations and to assign high probability to meaningful pairs
(Eq. 13), but neither the training signal nor the inductive biases contain hints
about directionality. In fact, the relevance rki,j is in no way constrained to rep-
resent the relationship that has i as subject and j as object, even though Eq. 8
considers the edge i→j. Thus the explanation (Eq. 13) for hold might score both
person hold pencil and its semantic opposite pencil hold person equally.

Previous work [24] use word2vec [27] embeddings of 〈subj,pred, obj〉 triplets
from the training set to form a semantically-grounded prior. Instead, we compute
a simple frequency-based prior freq(ci, cj |k) over a small validation set, to avoid
including exclusive relationship information from the training set (app. C.3).
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4 Experiments

In this section, we test our weakly-supervised method for visual relationship
detection on three different datasets, each one presenting specific challenges and
different evaluation metrics. Before discussing the individual experiments, we
provide further implementation details about the object detection, predicate
classification and visual relationship explainer modules. Additional experiments
and ablation studies can be found in appendix C.

4.1 Setup

Object Detection. Our object detection module is based on the detectron2
[43] implementation of Faster R-CNN [36]. Given an object i and its bounding
box bi, either from the ground-truth annotations or detected by Faster R-CNN,
we use RoIAlign [16] to pool a 256 ×7×7 feature volume nv

i from the pyra-
mid of features [22] built on top of a ResNeXt-101 backbone [44]. Furthermore,
we compute a feature vector ns

i that represents the spatial configuration of bi.
Specifically, the tuple of spatial and visual features ni = (ns

i ,n
v
i ) is defined as:

ns
i =

[
wi

hi
,

hi

wi
,

wihi

WH

]
spatial features (14)

nv
i = RoiAlign (FPN(I), bi) , visual features (15)

where (wi, hi) and (W , H) represent width and height of the box bi and of the
image I respectively, FPN is the feature pyramid network used to extract visual
features from the whole image, and RoIAlign is the pooling operation applied
to the feature pyramid to extract features relative to the box bi.

Edge attributes ei,j are chosen to represent the spatial configuration of the
pair of objects they connect:

ei,j =
[‖xj − xi‖√

WH
, sin(∠ij), cos(∠ij), IoU(bj , bi),

wjhj

wihi

]
, (16)

where xi ∈ R
2
+ is the center of bi, ∠ij is the angle between xj − xi and the

positive horizontal axis, and IoU is the intersection over union of the two boxes.

Predicate Classifier. At training time, the input of the predicate classifier
described in Sect. 3.2 is a fully-connected graph of ground-truth objects. During
inference, we apply the object detector and build a graph with all objects having
confidence score of 30% or more. For each dataset, the hyperparameters of the
GNN-based predicate classifier are selected on a validation split of 15% training
images. The following values apply to the HICO-DET dataset, more details
about the hyperparameter space are available in appendix B.2.

The input node function fn is implemented as i) a 2× (Conv + ReLU)
network applied to nv, where the convolutional layers employ 256 kernels of size



622 F. Baldassarre et al.

3×3 each, and ii) a Linear+ReLU operation that transforms ns into a 1024-
vector. The input edge functions fe consist of a Linear+ReLU operation that
outputs a 1024-vector of transformed edge features. The relational function fr in
Eq. 8 is implemented as a Linear + ReLU operation where the features of two
nodes and of the directed edge between them are concatenated at the input. The
output of fr is a 1024-vector for each ordered pair of nodes. For all datasets, the
aggregation function in Eq. 9 is element-wise max, and fp is a Linear+Sigmoid
operation that outputs a K−vector of binary probabilities.

We train the weights of the predicate classifier by minimizing the loss in
Eq. 10 with the Adam optimizer [19] with 10−3 initial learning rate and 10−5

weight decay. During training, we track recall@5, i.e. the fraction of ground-
truth predicates retrieved among the top-5 confident predictions for an image.
We let the optimization run on batches of 128 graphs for 18 epochs, at which
point the classifier achieves 94% recall on a validation split.

Relationship Detector. The explanation-based relationship detection algo-
rithm described in Sect. 3.3 does not have many hyperparameters. We tried i)
whether to multiply the gradient with the input when computing relevances,
ii) which norm to use between L1, L2 and max(L1,0), and iii) the number N
of top-scoring predicates whose gradient is traced back to the input to identify
relevant triplets. As observed in [8], optimizing these parameters on the whole
training set would violate the premise of weakly-supervised learning by access-
ing fully-labeled data. Therefore, we employ once again the 15% validation split
used to optimize the classifier, assuming that in a real-world scenario it should
always be possible to manually annotate a small subset of images for validation
purposes. The best choice of N for all datasets was found to be 10, while the
other two parameters seem to have little effect on performance.

4.2 HICO-DET

The Humans Interacting with Common Objects (HICO-DET) dataset contains
∼50K exhaustively annotated images of human-object interactions (HOI), split
into ∼40K train and ∼10K test images [6,7]. The subject of a relationship
is always person, the 117 predicates cover a variety of human-centric actions
(e.g. cook, wash, paint), and the 80 objects categories are those defined as
thing classes in MS-COCO [23]. We can therefore use the pre-trained object
detector from [43], of which we report performances in appendix A.1.

The nature of this dataset allows us to embed the relationship prior in the
graph itself. A fully-connected graph encodes a uniform prior, i.e. no preference
about subject-object pairs, while a sparse graph containing only edges from
humans to objects encodes a bias towards human-object interactions.

The metric for this dataset is the 11-point interpolated mean Average Preci-
sion (mAP) [11] computed over the 600 human-object interaction classes of the
dataset [6]. The following criteria should be met for a detected triplet to match
with a ground-truth triplet: a) subject, predicate and object categories match,
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and b) subject boxes overlap with IoU > .5, and c) object boxes overlap with
IoU> .5, and d) the ground-truth triplet was not matched with a previously-
considered detected triplet. Table 1 reports mAP for the standard splits of HICO-
DET[6]: all 600 human-object interactions, 138 rare triplets, and 462 non-rare
triplets (10 or more training samples). We compare with various fully-supervised
baselines including the original HO-RCNN from [6] and the method from [29]
that uses semantic and visual analogies to improve detection of rare and unseen
triplets. Despite the weaker supervision signal, the strong inductive bias towards
pairwise relationships allows our explanation method to achieve higher mAP for
both the uniform and human-object priors (Fig. 5).

p. sit on bench p. carry handbag (not possible with
ground-truth objects)

boat row person
(subj-obj inversion)

p. ride surfboard p. straddle bicycle p. operate microwave
(p. operate oven)

person wear tie
(wrong subj-obj pair)

Fig. 5. Relationship detection on HICO-DET. Top row uses GT objects, bottom
row uses Faster R-CNN objects. Left to right: correct relationship detection, correct
but missing ground-truth, incorrect due to object misdetection, incorrect detection
(selected predictions of our model using a uniform relationship prior)

Table 1. Mean Average Precision on the HICO-DET dataset. The choice of
relationship prior embedded in the graph is indicated in parentheses

Full (600) Rare (138) Non-rare (462)

Fully supervised

Chao [6] 7.81 5.37 8.54

InteractNet [15] 9.94 7.16 10.77

GPNN [34] 13.11 9.34 14.23

iCAN [13] 14.84 10.45 16.15

Analogies [29] 19.40 14.60 20.90

Weakly supervised

Ours (uniform) 24.25 20.23 25.45

Ours (human-object) 28.04 24.63 29.06
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4.3 Visual Relationship Detection Dataset

The Visual Relationship Detection dataset (VRD) contains ∼5000 annotated
images, split into ∼4000 train and ∼1000 test images [18,24]. The 70 predicates
in this dataset include both verbs and spatial relationships, e.g. carry, next to.
The 100 object categories cover both well spatially-defined objects such as bottle
and concepts like sky and road, that are harder to localize. For this set of objects
there is no ready-to-use object detector, therefore we finetune a detectron2
model using annotations from the training set (details in appendix A.2).

The standard metric for VRD [24] is recall@x i.e. fraction of ground-truth
triplets retrieved among the x top-ranked detections [1]. Here, recall is preferred
over mAP since it does not penalize the retrieval of triplets that exist in the
image, but are missing in the ground-truth. Criteria for true positive in VRD
follow those of HICO-DET, and are used in the following settings [24]:

Predicate detection: objects for the image graph come from ground-truth
annotations,allowing to test the explanation-based retrieval of relationships
under perfect object detection conditions (classification and localization).

Phrase detection: objects come from Faster R-CNN proposals, but IoU> .5
is evaluated on the union box of subject and object, effectively localizing the
entire relationship as a single image region, or visual phrase [39].

Relationship detection: objects come from Faster R-CNN proposals, subject
and object boxes are required to individually overlap with their corresponding
boxes in the ground-truth (same as HICO-DET).

As shown in Table 2, our method achieves recall scores R@100 close to a fully-
supervised baseline [24], despite the weaker training signal. By analyizing the
top 100 predictions of a model with uniform prior, we often observed the coap-
pearance of a relationship and its semantic opposite, e.g. person drive car and
car drive person, which possibly “wastes” half of the top-x detection due to
incorrect directionality (corroborated by the gap between R@50 and R@100 of
ours-uniform). Importantly, moving from a uniform to a frequency-based prior
almost doubles R@50, which highlights the importance of the relationship prior
in connection with our method. We expect that including a stronger prior, e.g.
based on natural-language embeddings of objects and predicates, would further
improve detection of semantically-correct relationships.

The test set of VRD contains a triplets that never occur during training and
can be used to evaluate zero-shot generalization. As shown in Table 3, our method
performs on a par with other methods that use stronger annotations and explic-
itly improve generalization through language embeddings [24] or visual analogy
transformations [29]. Expectedly, the freq-based prior computed on the valida-
tion set does not improve recall of unseen triplets. To verify importance of this
term, we show that a simple prior with access to a few zero-shot triplets readily
improves recall. Clearly, peeking at the test set is not correct practice, but serves
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Table 2. Recall at 50 and 100 on the VRD dataset. Comparison of fully- and
weakly-supervised methods. The choice of relationship prior is indicated in parentheses

GT objects R-CNN objects

Predicate det. Phrase det. Relation. det.

R@50 R@100 R@50 R@100 R@50 R@100

Fully supervised

Visual Phrases [39] 0.9 1.9 0.04 0.07 − −
Visual [24] 3.5 3.5 0.7 0.8 1.0 1.1

Visual+Language [24] 47.9 47.9 16.2 17.0 13.9 14.7

Sup. PPR-FCN [48] 47.4 47.4 19.6 23.2 14.4 15.7

Peyre [30] 52.6 52.6 17.9 19.5 15.8 17.1

Weakly sup. (subj, pred, obj)

PPR-FCN [48] − − 6.9 8.2 5.9 6.3

Peyre [30] 46.8 46.8 16.0 17.4 14.1 15.3

Weakly sup. (predonly)

Ours (uniform) 27.3 47.1 6.8 13.0 5.3 8.4

Ours (frequentist) 43.0 57.4 14.8 20.2 10.6 13.2

as a proxy for what could be achieved by improving this term, e.g. via incorpo-
rating language or visual analogies. The next experiment better demonstrates
the generalization of our method to unseen triplets.

4.4 Unusual Relations Dataset

The Unusual Relations dataset (UnRel) is an evaluation-only collection of ∼1000
images, which shares the same vocabulary as VRD and depicts rarely-occurring
relationships [30]. For relationship detection methods trained on 〈subj,pred, obj〉
triplets, this dataset represents a benchmark for zero-shot retrieval of triplets not
seen during training. E.g. our predicate classifier trained on VRD has clearly
encountered hold during training, but never in person hold plane (Fig. 2).

In Table 4 we report mAP over the 76 unusual triplets of UnRel. We follow
the evaluation setup of [30]: the test set of VRD is mixed in to act as distractor,
up to 500 candidate triplets per image are retained, and they are matched if
IoU> .3. Since the average number of detected objects per image is small, ∼4
we increase the number of top-scoring predicates considered in the explanation
step to N = 50. Differently from [29,30], we use obj. detection scores for ranking
triplets, and we do not introduce a no-interaction predicate. Compared to recall,
mAP is less affected by unseen triplets and the prior from VRD results effective.
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Table 3. Zero-shot recall on the VRD dataset: triplets from the test set that are
never seen during training. The choice of relationship prior is indicated in parentheses

GT objects R-CNN objects

Predicate det. Phrase det. Relation. det.

R@50 R@100 R@50 R@100 R@50 R@100

Fully supervised

Visual [24] 3.5 3.5 0.7 0.8 1.0 1.1

Visual+Language [24] 8.5 8.5 3.4 3.8 3.1 3.5

Peyre 2017 [30] 21.6 21.6 6.8 7.8 6.4 7.4

Weakly sup. (subj, pred, obj)

Peyre 2017 [30] 19.0 19.0 6.9 7.4 6.7 7.1

Weakly sup. (predonly)

Ours (uniform) 13.7 29.2 3.8 6.5 2.8 4.6

Ours (VRD freq.) 13.5 28.2 4.4 6.4 3.3 4.6

Ours (Zero freq.) 20.5 37.0 4.7 8.2 4.0 6.4

Table 4. Mean average precision on UnRel with VRD as a distractor

GT objects R-CNN objects

Predicate Phrase Subj. only Relationship

Fully supervised

Peyre 2017 [30] 62.6 14.1 12.1 9.9

Analogies [29] 63.9 17.5 15.9 13.4

Weakly sup. (subj, pred, obj)

Peyre 2017 [30] 58.5 13.4 11.0 8.7

Weakly sup. (predicate only)

Ours (uniform) 70.9 19.8 18.1 14.9

Ours (frequency) 70.6 20.0 18.3 15.1

5 Conclusion

We considered the task of learning visual relationship detection with weak image-
level predicate labels. While this makes learning significantly harder, it enables
collecting datasets that are more representative of possible relations without
suffering from combinatorial scaling of search queries and annotation cost.

Using pretrained object detectors, strong inductive bias via graph networks,
backward explanations, and a direction prior, we showed that it is possible to
achieve results on par with recent works that benefit from stronger supervision.

An issue with predicate-only annotation is the lack of directional information,
which can only be provided using auxiliary sources such as language. While
we mitigated this issue through a simple frequentist prior, an important future
direction is to solve it in a principled way. For instance, one can annotate a
subset of images with unlocalized image-level triplets, only to disambiguate the
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direction of the relations. Note that, since such a dataset does not have to be
exhaustively annotated for all triplets, the collection cost would be negligible.

Finally, another interesting direction is to study the proposed explanation-
based weakly-supervised method in other domains such as situation recogni-
tion [21], video recognition [45], segmentation [35], chemistry [9] and biology [42].
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Abstract. Establishing dense semantic correspondences requires deal-
ing with large geometric variations caused by the unconstrained setting
of images. To address such severe matching ambiguities, we introduce
a novel approach, called guided semantic flow, based on the key insight
that sparse yet reliable matches can effectively capture non-rigid geo-
metric variations, and these confident matches can guide adjacent pixels
to have similar solution spaces, reducing the matching ambiguities sig-
nificantly. We realize this idea with learning-based selection of confident
matches from an initial set of all pairwise matching scores and their
propagation by a new differentiable upsampling layer based on moving
least square concept. We take advantage of the guidance from reliable
matches to refine the matching hypotheses through Gaussian parametric
model in the subsequent matching pipeline. With the proposed method,
state-of-the-art performance is attained on several standard benchmarks
for semantic correspondence.

Keywords: Dense semantic correspondence · Matching confidence ·
Moving least square

1 Introduction

Finding pixel-level correspondences across semantically similar images facilitates
a variety of computer vision applications, including non-parametric scene pars-
ing [22,30,52], image manipulation [10,26,51], visual localization [41,47], and to
name a few.

Classical approaches for dense correspondence take visually similar images
taken under constraint settings, such as 1D epipolar line for stereo matching [43,
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50] and 2D small motion for optical flow estimation [1,9]. Contrarily, semantic
correspondence has no such constraints on the input image pairs except that two
images describe the same object or scene category, posing additional challenges
due to large appearance and geometric intra-class variations. Recent state-of-
the-art methods [17,19,20,23,26,28,39–41,44] have attempted to address these
challenges by carefully designing convolutional neural networks (CNNs) that
mimic the classical matching pipeline [36]: feature extraction, similarity score
computation, and correspondence estimation.

(a) image pair (b) guidance displacements (c) our result

Fig. 1. Visualization of our intuition: (a) image pair, (b) selected confident matches,
and (c) warped image using the correspondences from our method. The proposed
method, guided semantic flow, establishes reliable dense semantic correspondences by
leveraging the guidance from confident matches to reduce matching ambiguities.

Since no viewpoint constraint is imposed on the source and target images, the
search space for each pixel on the source image have to be defined with all pixels
of the target image. However, searching over the full set of pairwise matching
candidates inevitably increases the uncertainty in the matching pipeline, espe-
cially in the presence of non-rigid deformations and repetitive patterns.

One possible approach to this issue is to design additional modules that
can vote for plausible transformation candidates from the full set of pairwise
matches [17,39–41,44]. Following the pioneering work of [39], several meth-
ods [40,44] attempted to directly regress an image-level global transformation
(e.g. affine or thin plate spline) between images. However, all matching scores
are equally treated regardless of how confident they are, thus these approaches
are inherently vulnerable to inaccurate matching scores that are often produced
under severe intra-class variations. Without the need of global geometry, some
methods [17,41] recently proposed to identify locally consistent matches by ana-
lyzing neighborhood consensus patterns. They down-weight ambiguous matches
by assessing the confidence of matching scores, but this is performed only with
a hand-crafted criterion (e.g. mutual consistency) that may often produces high
confidence scores even for unconfident pixels.

Alternatively, similar to stereo matching and optical flow estimation [9,50],
one can simply discard ambiguous matches by constraining the search space
within a predefined local region centered at the querying pixel [20,26], but these
approaches disregard the possibility of non-local matches that often appear
across the semantically similar images. To address this issue, dilation tech-
nique [49] was utilized in [23], but the number of ambiguous matches increases at
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the same time. Some methods alleviated this by limiting the search space based
on the heuristic matching cues, e.g. computing the discrete argmax [28] or start-
ing with an image-level global transformation [19] estimated from a full set of
pairwise similarity scores. However, such heuristics are often violated under large
intra-class variations where the feature representations are quite inconsistent to
measure accurate matching similarity or non-rigid geometric deformations that
cannot be modeled with a global transformation model.

In this paper, we propose a novel approach, dubbed as guided semantic flow,
that reliably infers dense semantic correspondence fields under large intra-class
variations, as illustrated in Fig. 1. Our key idea is based on two observations:
sparse yet reliable matches can effectively capture non-rigid geometric varia-
tions, and these confident matches can guide the adjacent pixels to have similar
solution spaces, reducing the matching ambiguities significantly. Our method
realizes this idea through three different modules consisting of pruning, prop-
agation, and matching. We first select confident matches from a complete set
of pairwise matching candidates through deep networks, and then propagate
their reliable information to invalid neighborhoods through a new differentiable
upsampling layer inspired by moving least square (MLS) approach [42]. Lastly,
dense correspondence fields are reliably inferred from the refined correlation vol-
ume by constraining the search space with Gaussian parametric model that is
centered at the interpolated displacement vector. Experimental results on var-
ious benchmarks demonstrate the effectiveness of the proposed model over the
latest methods for dense semantic correspondence.

2 Related Works

Stereo Matching and Optical Flow Estimation. There have been numer-
ous efforts on reducing the matching ambiguitiy for classical dense correspon-
dence problems, i.e. stereo matching and optical flow estimation.

Based on the seminal work of PatchMatch [2], the randomized search scheme
has been utilized and extended in numerous literature thanks to its effectiveness
in pruning the search space [7,15,16]. Another popular idea is to leverage the
spatial pyramid of an image, naturally imposing the hierarchical smoothness con-
straint in a coarse-to-fine manner [5,38,45]. Also, in order to enhance matching
scores, recent approaches for depth estimation [35,37] additionally exploit sparse
yet reliable measurements retrieved from an external source (e.g. LiDAR). How-
ever, since these approaches are tailored to the specific problem constraints such
as epipolar geometry and relatively small motion, they are not directly appli-
cable to the semantic correspondence task where two images may have large
variations in terms of appearance and geometry.

Semantic Correspondence. Most conventional methods for semantic corre-
spondence that use hand-crafted features and regularization terms [22,30,32]
have provided limited performance due to a low discriminative power. Recent
state-of-the-art approaches have used deep CNNs to extract their features [11,
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25,27] and/or spatially regularize correspondence fields in an end-to-end man-
ner [19,23,39,44].

To deal with large geometric deformations, several approaches [17,39–41,44]
first computed similarity scores with respect to all possible pairwise matching
candidates and then predicted the semantic correspondence through deep net-
works. As a pioneering work, Rocco et al. [39,40] estimates a global geometric
model such as an affine and thin plate spline (TPS) transformation through
CNN architecture mimicking the traditional matching pipeline. Seo et al. [44]
proposed an offset-aware correlation kernel to put more attention to reliable sim-
ilarity scores. Without the need of global geometric model, Rocco et al. [41] pro-
posed to identify sets of spatially consistent matches by analyzing neighborhood
consensus patterns. Huang et al. [17] extended this architecture by leveraging
context-aware semantic representation to further resolve local ambiguities.

Rather than considering all possible matching candidates, some meth-
ods [19,20,23,26,28] constrain matching candidates within pre-defined local
regions, like stereo matching and optical flow approaches [9,50]. In [20,23,26],
locally-varying affine transformation fields are iteratively estimated within
locally constrained cost volume. More recently, Lee et al. [28] proposed to lever-
age a kernel soft argmax function to deal with multi-modal distribution within
a correlation volume.

The most relevant method to ours is [19] that utilizes intermediate results
from the previous level to constrain the search space of the current level in a
coarse-to-fine manner. However, they start with the global affine transformation
estimation that often fails to capture reliable matches under large geometric
variations with non-rigid transformation.

3 Problem Statement

Let us denote semantically similar source and target images as Is and It,
respectively. The objective is to establish a two dimensional correspondence field
τi = [ui, vi]T between the two images that is defined for each pixel i = [ix, iy]T

in Is.
Analogously to the classical matching pipeline [36], this objective involves

first extracting dense feature maps from Is and It, denoted by F s, F t ∈ R
h×w×d

where (h,w) denotes the spatial resolution of the image, and d the dimension-
ality of feature. Then, given two dense feature maps, a correlation volume C is
computed by encoding the similarity as cosine distance:

Cij(F s, F t) = 〈F s
i , F t

j 〉/‖F s
i ‖2‖F t

j ‖2 (1)

where i and j indicate the individual feature position in the source and target
images, respectively.

In this stage, several methods [17,39–41,44] construct a full correlation vol-
ume Cf considering a set of all possible matching candidates J f

i , such that

J f
i = {j|jx ∈ [1, ..., w], jy ∈ [1, ..., h]}. (2)
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Fig. 2. (a) Given an image pair and a reference pixel i, we visualize its corresponding
match (j = argmaxl(Cil)) and correlation score map (Cil), computed with: (b) match-
ing candidates J f [17,39–41,44], (c) matching candidates J p

i [19,20,23,26,28], and (d)
the proposed method. (e) Our key observation is that sparse yet reliable matches can
guide the adjacent pixels to have similar solution spaces, reducing matching ambiguities
significantly.

Note that J f
i is independent to pixel i and identical for all i pixels. However,

as exemplified in Fig. 2 (a), the similarity scores in Cf are not guaranteed to
be accurate due to inconsistent feature representations under large semantic
variations. To address this, several approaches [39,40,44] design an additional
module that can vote for the transformation candidates by regressing an image-
level single transformation, but they treat the matching scores of all pixels evenly
regardless of their confidence. While some methods [17,41] alleviate this by fil-
tering the correlation volume with mutual consistency constraint, they assess the
confidences based on a simple criterion such as maximum normalization which
may lack the robustness that is attainable with deep CNNs.

Meanwhile, as shown in Fig. 2(b), some approaches [19,20,23,26,28] con-
struct a partial correlation volume Cp by constraining the search space of each
reference pixel i as the restricted local region Nk centered at the pixel k on the
target image. Formally, denoting the pixel k that is dependent on pixel i as k(i),
the constrained matching candidates J p

i can be defined as

J p
i = {j|j ∈ Nk(i)}. (3)

The center of the local region, k(i), is determined in various ways; as a refer-
ence pixel i itself (k(i) = i) [20,23,26] or by finding the matching cues from
the fully constructed correlation volume through applying the discrete argmax
function [28] (k(i) = argmaxj(C

f
ij)) or estimating an image-level coarse trans-

formation τg(Cf ) [19] (k(i) = i + τg
i (Cf )). However, as exemplified in Fig. 2(b),

these approaches often fail to constrain the search space correctly under the
large intra-class variations where the feature representations between two input
images are quite inconsistent to measure accurate matching scores or complex
geometric deformations cannot be modeled with a global affine transformation
model.
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4 Guided Semantic Flow

The proposed method leverages guidance cues from the confident matches to
generate reliable likelihood matching hypotheses, as illustrated in Fig. 2(c).
Unlike the existing methods that alleviate matching ambiguities with inaccu-
rately assessed matching confidences [17,41] or with the heuristically constrained
search spaces [19,20,23,26,28], we address this issue with a learning-based selec-
tion of confident matches and their propagation, reducing matching ambiguities
significantly while maintaining the robustness to large geometric variations.

Fig. 3. (a) Our overall framework consists of pruning, propagation, and matching mod-
ules. (b) The pruning module takes a full correlation volume C as an input and pre-
dicts pairwise confidence scores Q′ from it by retaining confident matches and rejecting
ambiguous ones with the parameters WP . The propagation module converts this vol-
ume Q′ into a dense guidance map G′ in a fully differentiable manner. The matching
module refines the initial correlation volume C with the guidance map G′ and then
estimates a dense correspondence field τ with the pararmeters WM .

4.1 Network Architecture

The proposed method consists of three modules as illustrated in Fig. 3: pruning
module that estimates the confidence probability volume Q′, propagation module
that converts the confidence probability volume into a guidance displacement
map G′, and matching module that refines the initial correlation volume and
estimates dense correspondence fields τ from it.

To extract convolutional feature maps of source and target images, the input
images are passed through the shared feature extraction networks with param-
eters WF such that F = F(I;WF ) where F denotes a feed-forward operation.
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The initial correlation volume Cf is then constructed considering all possible
pairwise matching candidates, following (1) and (2), to consider the large intra-
class geometric deformations.

Pruning Module. To establish an initial set of confidence probabilities over all
pairwise matches, we adopt a differentiable mutual consistency criterion [17,41],
such that

Qij =
(Cij)

2

maxiCij · maxjCij
(4)

where Qij equals one if and only if the match between i and j satisfies the
mutual consistency constraint, and becomes smaller than 1 otherwise. Recent
works [17,41] utilized this confidence volume Q to filter their similarity scores C
(e.g. Q·C), but the confidence of each pixel is assessed only with the handcrafted
criterion as in (4), thus often producing a high confidence score even for an
unconfident pixel as exemplified in Fig. 4(a).

In this work, we propose to refine the initial confidence volume with the
pruning networks that consist of an encoder-decoder style architecture and a
sigmoid function, yielding a value in (0, 1) to suppress false positives, as exem-
plified in Fig. 4(b). Formally, the refined confidence probability volume Q′ can
be obtained by

Q′
ij = T (Qij · [F(Q;WP )]ij , ρ) (5)

where WP is the parameters of the pruning networks and T (·, ρ) is a truncation
function that discards a probability lower than a threshold ρ to retain only
confident matches, such that T (X, ρ) = X if X > ρ and T (X, ρ) = 0 otherwise.

It should be noted that several works have also attempted to find the reliable
correspondences from the full pairwise similarity scores by thresholding [40], the
correspondence consistency [19], or learning with the probabilisitic model [20].
However, these constraints are used in the loss functions only as a supervision for
training their deep networks, and are not explicitly used to refine the correlation
volume.

Propagation Module. Taking the refined confidence volume Q′ as an input,
our propagation module first extracts the displacement vectors of the confident
matches that can guide nearby ambiguous ones to have similar solution space.
Specifically, given a set of the collected confident pixels S = {i|∑j Q′

ij �= 0},
our propagation module converts the confidence volume Q′ into 2-dimensional
displacement map G through a soft argmax layer [21], such that

Gi =
{∑

j j · exp(Q′
ij)/

∑
l exp(Q′

il) − i, if i ∈ S
invalid, otherwise.

(6)

The displacement map G can then be used to constrain the plausible search
range from all possible matching candidates, but this guidance is valid only
for confident pixels (i ∈ S). To guide the search space of the invalid pixels



638 S. Jeon et al.

(a) image pair (b) confident matches in Q (c) confident matches in Q′

Fig. 4. The effectiveness of the pruning networks: (a) matches that satisfy the mutual
consistency criterion (i.e. Qij = 1), and (b) matches from the refined confidence volume
Q′ (i.e. Q′

ij > ρ). Our pruning networks effectively suppress the false positive confidence
matches that often occur at ambiguous regions.

(i /∈ S) with the help of confident pixels, we attempted to interpolate the sparse
displacement map G using the existing bilinear upsampler of [18]. However, this
cannot be directly realized since the confident matches in S are sparsely and
irregularly distributed in the spatial dimension. In this work, we introduce a
new differentiable upsampling layer that interpolates the sparse displacement
map G into a dense guidance map G′. Concretely, inspired by moving least
square approach [42], the displacement vector G′

i at a pixel i can be computed
with a spatially-varying weight function w as

G′
i =

∑

s∈S Gs · w(s − i)/
∑

s∈S w(s − i) (7)

where w(z) = exp(−||z||2/2cP
2) is formed with a coefficient cP . The differen-

tiability of this operator G′
i with respect to Gi can be easily derived similar

to [18].

Matching Module. With a favor of densely interpolated guidance displace-
ments G′, we refine the initial correlation volume C by maintaining only the
similarity scores of highly probable matches. To be specific, we compute the
refined correlation volume C ′ by modulating the original volume C with Gaus-
sian parametric model centered at the guidance displacement vector G′:

C ′
ij = exp(−(j − G′

i)
2
/2cM

2) · Cij (8)

where cM adjust the distribution of Gaussian model. Unlike the existing meth-
ods [19,20,23,26,28] that constrain the search space with simple heuristics, our
method leverages the reliable information propagated from the confident matches
to effectively deal with large intra-class geometric variations.

With the resulting uni-modal likelihood hypotheses where matching ambigu-
ities are significantly reduced, we subsequently formulate matching networks to
regress residual displacements at sub-pixel level, facilitating fine-grained local-
ization. The final dense correspondence field τ is computed as

τi = G′
i + [F(C ′;WM )]i (9)

where WM is the parameters of our matching networks.
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4.2 Objective Functions

To overcome the limitation of insufficient training data for semantic correspon-
dence, our matching networks are learned using weak image-level supervision in
a form of matching image pairs. Additionally, we expedite the learning process
by allowing only the gradients of the foreground pixels to be backpropagated
within object masks of the source and target images, similar to [19,23,24,28].

Pruning Networks. To train the pruning networks with the parameter WP ,
we define a novel loss function that consists of silhouette consistency loss and
geometry consistency loss, such that

LP = Lsil + λLgeo (10)

where λ is the weighting parameter.
With the intuition that local structures between source and target image

features should be similar at the correct confident correspondences, we encourage
the pruning networks to automatically discard the matches that do not satisfy
the following local geometry consistency constraint

Lgeo =
∑

i∈S

∑

l∈Ni

||F s
l − [G′ ◦ F t]l||2F (11)

where Ni is a local window centered at the pixel i, ◦ is a warping operator, and
|| · ||2F denotes Frobenius norm. By aggregating the contextual information of Ni

through the parameters WP , we can predict more accurate confidence scores
than the handcrafted criterion of (4) that relies only on the pixel-level similarity
scores.

Additionally, we formulate the silhouette consistency loss that encourages the
refined confidence volume Q′ to lie within the silhouette of the initial volume Q:

Lsil =
∑

{i,j}∈S∗ | log(Q′
ij/Qij)| (12)

where S∗ = {i, j|Qij > ρ}, hence Q′
ij/Qij becomes [F(Q;WP )]ij . Note that

similar loss function is used in the object landmark detection literature [46] to
encourage the landmarks to lie within the silhouette of the object of interest.

Matching Networks. Thanks to the guidance displacements G′, most of geo-
metric deformations are already resolved, and thus computing the residual trans-
formation field F(C ′;WM ) with the weakly-supervised loss function of [23] is
tractable, such that

LM =
∑

i
− log(Pi(τ)) (13)

where P (τ) is the softmax matching probability defined with a local neighbor-
hood Mi as

Pi(τ) =
exp(< F s

i , [τ ◦ F t]i >)
∑

l∈Mi
exp(< F s

i , [τ ◦ F t]l >)
. (14)
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This objective allows us to consider both positive and negative samples by
maximizing the similarity score at the correct transformation while minimizing
the scores of remaining candidates within local neighborhood Mi.

Final Objective Function. We additionally utilize L1 regularization loss Lsm

for the spatial smootheness in the final correspondence field τ [26,28]. A final
objective is defined as a weighted summation of the presented three losses:

Lfinal = λPLP + λMLM + λsmLsm. (15)

4.3 Training Details

Inspired by recent works on finding good matches for wide-baseline stereo [4,34],
we first freeze the network parameters WF , WM and learn the pruning networks
WP only with the gradients from LP. This allows the pruning networks to be
converged stably by fixing the values Q of silhouette consistency loss (12). In
second stage, we train the whole networks in an end-to-end manner with Lfinal

where the properly selected confident matches from the pruning networks boost
the convergence of the feature extraction and matching networks by providing
well-defined negative samples within the neighborhood Mi of matching loss (14).

Following [20,26,40], this two-stage learning procedure first utilizes synthet-
ically generated image pairs, by applying random synthetic transformations to
a single image of PASCAL VOC 2012 segmentation dataset [8] using the split
in [28]. Then, our networks are finetuned with semantically similar image pairs
from PF-PASCAL dataset [12] using the split in [40].

5 Experimental Results

5.1 Implementation Details

For feature extraction, we used two CNNs as main backbone networks; Ima-
geNet [6]-pretrained ResNet 101 [14] and PASCAL VOC 2012 [8]-pretrained
SFNet [28], where activations are sampled at ‘conv4-23’ and ‘conv5-3’. The acti-
vations adapted from ‘conv5-3’ are upsampled using bilinear interpolation. We
denote these backbone networks in the following evaluations as “Ours w/ResNet”
and “Ours w/SFNet”. We set threshold ρ to 0.9, the variances {cP , cM} to {7, 5},
and Referring to the ablation study of [23], the radius of local window Mi is set
to 5. More details about the implementation and the performance analysis with
respect to the hyper-parameters are provided in the supplemental material.

5.2 Results

PF-WILLOW and PF-PASCAL Dataset. PF-WILLOW dataset [11]
includes 10 object sub-classes with 10 keypoint annotations for each image, pro-
viding 900 image pairs. PF-PASCAL dataset [12] contains 1,351 image pairs over
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20 object categories with PASCAL keypoint annotations [3]. Following the split
in [13,40], we used only 300 testing image pairs for the evaluation. We used a
common metric of the percentage of correct keypoint (PCK) by computing the
distance between flow-warped keypoints and the ground-truth ones [31]. The
warped keypoints are determined to be correct if they lie within α·max(h,w) pix-
els from the ground-truth keypoints for α ∈ [0, 1], where h and w are the height
and width of either an image (αimg) or an object bounding box (αbb). PCK with
αbb is more stringent metric than that of αimg [33]. In line with the previous
works, we used αbb for PF-WILLOW [11] and αimg for PF-PASCAL [12].

Table 1. Matching accuracy compared to state-of-the-art correspondence techniques
on PF-WILLOW dataset [11], PF-PASCAL dataset [12], and Caltech-101 dataset [29].
Results of [13,39–41,44] are borrowed from [33].

Methods PF-PASCAL (PCK@αimg) PF-WILLOW (PCK@αbb) Caltech-101

α = 0.05 α = 0.1 α = 0.15 α = 0.05 α = 0.1 α = 0.15 LT-ACC IoU

Unsupervised CNNgeo [39] 41.0 69.5 80.4 36.9 69.2 77.8 0.79 0.56

A2Net [44] 42.8 70.8 83.3 36.3 68.8 84.4 0.80 0.57

Fully supervised SCNet [13] 36.2 72.2 82.0 38.6 70.4 85.3 0.79 0.51

HPF [33] 60.1 84.8 92.7 45.9 74.4 85.6 0.87 0.63

Weakly supervised CNNinlier [40] 49.0 74.8 84.0 37.0 70.2 79.9 0.85 0.63

NCNet [41] 54.3 78.9 86.0 33.8 67.0 83.7 0.85 0.60

RTNs [23] 55.2 75.9 85.2 41.3 71.9 86.2 0.86 0.65

SFNet [28] 50.0 78.7 88.9 37.5 71.1 88.5 0.88 0.67

SAMNet [26] 60.1 80.2 86.9 – – – – –

DCCNet [17] – 82.3 – 43.6 73.8 86.5 – –

Ours w/ResNet 62.8 84.5 93.7 47.0 75.8 88.9 0.88 0.69

Ours w/SFNet 65.6 87.8 95.9 49.1 78.7 90.2 0.89 0.69

The average PCK scores are summarized in Table 1 showing that our model
(“Ours w/ResNet”) exhibits a competitive performance to the latest weakly-
supervised and even fully-supervised techniques for semantic correspondence,
demonstrating the benefits of generating highly probable hypotheses based on
the confident matches. When combined with sophisticate CNN features (“Ours
w/SFNet”), the outstanding performance was attained.

Caltech-101 Dataset. We also evaluated our method on Caltech-101
dataset [29] which provides the images of 101 object categories with ground-truth
object masks. For the evaluation, we used the 1,515 image pairs used in [13,40],
i.e. 15 image pairs for each object category. Compared to other datasets described
above, the Caltech-101 dataset [29] enable us to evaluate the performances under
more general settings with the image pairs from more diverse classes. Following
the experimental protocol in [22], the matching accuracy was evaluated with two
metrics: the label transfer accuracy (LT-ACC), and the intersection-over-union
(IoU) metric.
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In Table 1, our method achieves a competitive performance compared to
state-of-the-art methods in terms of both LT-ACC and IoU metrics. In particu-
lar, our results show better performances with significant margins compared to
the methods [39–41,44] that consider all possible matching scores.

This reveals the effectiveness of the proposed pruning and propagation modules
where only reliable information is propagated and leveraged to reduce thematching
ambiguity.

(a) image pair and our result (b) RTNs [23], NCNet [41], SFNet [28]

Fig. 5. Qualitative results of the semantic alignment on the testing pair of SPair-71k
benchmark [33]: (a) input image pairs and warped source images using correspon-
dences obtained from our method, and (b) warped source images from state-of-the-art-
methods; (left) RTNs [23], (middle) NCNet [41], (right) SFNet [28].

SPair-71k Benchmark. The evaluation was also performed on the SPair-
71k benchmark [33] that includes 70,958 image pairs of 18 object categories
from PASCAL 3D+ [48] and PASCAL VOC 2012 [8], providing 12,234 pairs
for testing. This benchmark is more challenging than other datasets [11,12,29]
for semantic correspondence evaluation, as it covers significantly large variations
of 4 factors as shown in Table 2. For the evaluation metric, we used the PCK
setting the threshold with respect to the object bounding box to αbb = 0.1.
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Table 2. Matching accuracy compared to the state-of-the-art techniques on SPair-71k
benchmark [33]. Difficulty levels of viewpoints and scales are labeled ‘easy’, ‘medium’,
and ‘hard’, while those of truncation and occlusion are indicated by ‘none’, ‘source’,
‘target’, and ‘both’. The performances are evaluated by fixing the levels of other vari-
ations as ‘easy’ and ‘none’. Results of [39–41,44] are borrowed from [33].

Methods Viewpoint Scale Truncation Occlusion All

easy medi hard easy medi hard none src tgt both none src tgt both

CNNgeo [39] 25.2 10.7 5.9 22.3 16.1 8.5 21.1 12.7 15.6 13.9 20.0 14.9 14.3 12.4 18.1

A2Net [44] 27.5 12.4 6.9 24.1 18.5 10.3 22.9 15.2 17.6 15.7 22.3 16.5 15.2 14.5 20.1

CNNinlier [40] 29.4 12.2 6.9 25.4 19.4 10.3 24.1 16.0 18.5 15.7 23.4 16.7 16.7 14.8 21.1

NCNet [41] 34.0 18.6 12.8 31.7 23.8 14.2 29.1 22.9 23.4 21.0 29.0 21.1 21.8 19.6 26.4

RTNs [23] 34.8 18.2 11.7 33.4 24.7 14.3 30.1 20.9 22.7 20.5 28.8 19.5 20.9 18.8 25.7

HPF [33] 35.6 20.3 15.5 33.0 26.1 15.8 31.0 24.6 24.0 23.7 30.8 23.5 22.8 21.8 28.2

Ours w/ResNet 40.6 22.3 17.8 39.5 30.1 18.7 37.0 28.7 27.1 27.7 36.4 27.8 27.5 23.7 33.5

Ours w/SFNet 42.1 25.7 20.1 42.3 34.0 20.8 39.8 31.1 30.0 29.9 38.8 29.3 28.3 26.9 36.1

Table 2 reports the quantitative performance with respect to different lev-
els of four variation factors. The qualitative results are visualized in Fig. 5. As
shown in Table 2 and Fig. 5, our results have shown highly improved perfor-
mances qualitatively and quantitatively compared to the state-of-the-art tech-
niques on all variation factors. In contrast to the methods [23,28] that cannot
capture large geometric variations due to the simple heuristics used to constrain
the search space, a large PCK gain for difficult image pairs in Table 2 indi-
cates that our method is effective especially in the presence of severe appearance
and shape variations thanks to the guidance by the confident matches learned
from all matching candidates. Though the performance was evaluated only on
the sparsely annotated keypoints provided from the benchmark, the qualitative
results in Fig. 5 indicates that the objective measure can be significantly boosted
if dense ground-truth annotations are given for evaluation.

5.3 Ablation Study

Lastly, we conducted an ablation study on different modules and losses in our
model of “Ours w/ResNet” evaluating on the testing image pairs of SPair-71k
benchmark [33].

Network Architecture. We report the quantitative assessment when one of
our modules is removed from the network architecture in Table 3(a) in terms
of average PCK at αbb = 0.1. Interestingly, the guidance displacement map
G′, which is the result obtained with only the pruning and propagation mod-
ules, already outperforms state-of-the-art methods by a large margin as shown
in Table 2. The performance degradation due to the lack of the pruning or
propagation modules highlights the importance of the learning-based selection
of confident matches and the MLS layer. Figure 6 shows the intermediate results
of our method.
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Training Loss. To validate the effectiveness of the utilized losses, we exam-
ined the performance of our model when learned with different loss functions.
In Table 3(b), the first three rows compare the performances for the variants of
the pruning networks. The performance gain from 25.1 to 28.5 with respect to
Lgeo indicates the effectiveness of imposing local geometry consistency constraint
by aggregating the contextual information. On the other hand, with respect to
Lsil, the degraded performance from 28.5 to 24.3 demonstrates the importance
of regularizing the refined confidence scores to be similar with the initial ones,
so that the retained confident matches also satisfy mutual consistency.

Table 3. Ablation study on the testing pairs of SPair-71k benchmark [33] for (a) differ-
ent components and (b) different loss functions. Note that, in (a), when the ‘MLS layer’
in the propagation module is removed, the refined correlation volume C′ is computed
by applying Gaussian parametric model only on the confident pixelsa.

Pruning MLS layer Matching PCK

(Q → Q′) (G → G′) (C, G′ → τ) (αbb = 0.1)

✓ ✓ ✗ 29.3

✓ ✗ ✓ 26.8

✗ ✓ ✓ 25.1

✓ ✓ ✓ 33.5

(a) network architecture

Lsil Lgeo LM Lsm Training stage PCK

– ✓ – — 1st 24.3

✓ – – – 1st 25.1

✓ ✓ – – 1st 28.5

✓ ✓ ✓ ✓ only 2nd 30.2

✓ ✓ ✓ ✓ 1st & 2nd 33.5

(b) training loss
aC′

ij =

{
exp(−(j − Gi)

2/2cM
2) · Cij , if i ∈ S

Cij , otherwise.

(a) confident matches in Q′ (b) matching result with G′ (c) matching result with τ

Fig. 6. The visualization of the intermediate results: (a) source and target images, (b)
the selected confident matches Q′, (c) matching results with the guidance displacements
G′, and (d) matching results with the final correspondence fields τ .

The last two rows in Table 3(b) reveal the effect of the used two-stage learn-
ing process. The performance drop from 33.5 to 30.2 by removing the first stage
highlights that the properly selected confident matches from the pruning net-
works can boost the convergence of our training by allowing only well-defined
matching candidates to be utilized during the second stage.
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6 Conclusion

We presented a novel framework, guided semantic flow, that reliably infers dense
semantic correspondences under large appearance and spatial variations. Taking
advantage of the reliable information of confident matches, we effectively han-
dle severe non-rigid geometric deformations and reduce matching ambiguities.
The outstanding performance was validated through extensive experiments on
various benchmarks.
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Abstract. Structure extraction from document images has been a long-
standing research topic due to its high impact on a wide range of prac-
tical applications. In this paper, we share our findings on employing a
hierarchical semantic segmentation network for this task of structure
extraction. We propose a prior based deep hierarchical CNN network
architecture that enables document structure extraction using very high
resolution (1800 × 1000) images. We divide the document image into
overlapping horizontal strips such that the network segments a strip and
uses its prediction mask as prior for predicting the segmentation of the
subsequent strip. We perform experiments establishing the effectiveness
of our strip based network architecture through ablation methods and
comparison with low-resolution variations. Further, to demonstrate our
network’s capabilities, we train it on only one type of documents (Forms)
and achieve state-of-the-art results over other general document datasets.
We introduce our new human-annotated forms dataset and show that
our method significantly outperforms different segmentation baselines
on this dataset in extracting hierarchical structures. Our method is cur-
rently being used in Adobe’s AEM Forms for automated conversion of
paper and PDF forms to modern HTML based forms.

Keywords: Documents structure extraction · Hierarchical semantic
segmentation · High resolution semantic segmentation

1 Introduction

Semantic structure extraction for documents has been explored in various
works [16,17,47,49]. The task is important for applications such as document
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Fig. 1. (Left): Part of an example form that illustrates elements and structures at
different levels of hierarchy. (Right): An illustrative dense form and lower elements
segmentation mask predicted by our model. The TextRuns are marked in green and
Widgets in yellow. (Color figure online)

retrieval, information extraction, and categorization of content. Document struc-
ture extraction is also a key step for digitizing documents to make them reflow-
able (automatically adapt to different screen sizes), which is useful in web-based
services [1,13,22,36]. Organizations in domains such as govt services, finance,
administration, and healthcare have many documents that they want to digi-
tize. These industries which have been using paper or flat PDF documents would
want to re-flow them into digitised version [36] (such as an HTML) so that they
can be used on many devices with different form factors [1,13]. A large part of
these documents are forms used to capture data. Forms are complex types of
documents because, unlike regular documents, their semantic structure is dense
and not dominated by big blobs1 of structural elements like paragraphs, images.

To make paper or flat-pdf documents reflowable (see footnote 1), we need
to extract its semantic structure at multiple levels of hierarchy. PDFs contain
only low-level elementary structures such as text, lines. PDFs do not contain
any metadata about other higher-order structures, and therefore, there is a need
to retrieve such constructs. Much of previous work looks at regular documents
comprising of coarse structural elements that span a large area in the document
image, e.g., paragraphs, figures, lists, tables [30,41,49]. But, such studies leave
out documents having the most complicated structures, i.e., forms. Forms have
dense and intricate semantic structures, as shown in Fig. 1(right). In many forms,
the structure is induced due to the presence of large empty areas, like in Fig. 2b.
They also have a deeper hierarchy in structure as compared to other documents,
as shown in Fig. 1(left). We build our method focusing on the hardest cases,
i.e., form documents and show that this method generalizes well and establishes
new-state-of-art across different document datasets.

To extract the hierarchical form structure, we identify several composite
structures like TextBlocks, Text Fields, Choice Fields, Choice Groups that com-
prise of basic entities like TextRuns and Widgets as illustrated in Fig. 1(left).

1 Please refer to supplementary for more visualisations.
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Fig. 2. Fragment of a form document

We define a TextRun as a group of words present in a single line and Widgets
as empty spaces provided to fill information in forms. A TextBlock is a logical
block of self-contained text comprising of one or more TextRuns; a Text Field
comprises of a group of one or more Widgets and a caption TextBlock describing
the content to be filled in the field. Choice Fields are Boolean fields used for
acquiring optional information. A Choice Group is a collection of such Choice
Fields and an optional Choice Group Title, which is a TextBlock that describes
instructions regarding filling the Choice Fields. Figure 1(left) illustrates different
semantic structures present in a form document at different hierarchical levels.

We started with fully CNN (FCNNs) based segmentation network since they
have been shown to perform well on natural images. However, we found that
they perform poorly on form documents as shown in Experiments section. Even
FCNNs [17,47,49] focusing on document structure extraction perform well at
only extracting coarse structures in documents. They do not perform well at
extracting closely spaced structures in form images. Since they process the entire
image in a single forward pass, due to memory constraints, they downscale the
original image before providing it as input to their model. Moreover, down-
scaling of input makes it difficult to disambiguate closely spaced structures,
especially in dense regions and leads to merging of different structures. These
gaps in current solutions became the motivation behind our current research. In
this work, we propose a method to extract the lower-level elements like TextRuns
and Widgets along with higher-order structures like Fields, ChoiceGroups, Lists,
and Tables. Our key contributions can be summarised as:

– We propose a prior and sub-strips based segmentation mechanism to train a
document segmentation model on very high resolution (1800× 1000) images.
Further, our network architecture does not require pre-training with Ima-
genet [8] or other large image datasets.

– We perform hierarchical semantic segmentation and show it leads to bet-
ter structure extraction for forms. We also compare different variants of our
approach to highlight the importance of shared hierarchical features.

– We propose bi-directional 1d dilated conv blocks to capture axis parallel
dependency in documents and show it is better than equivalent 2d dilated
conv blocks.
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Fig. 3. HighRes model predicts a single choice group correctly. Two strips cut across
group causing NoPrior model to split it since it did not have prior from previous strip.
We train our model to predict crisp masks through convex hull.

– We introduce a new human-annotated Forms Image dataset, which contains
bounding boxes of a complete hierarchy of semantic classes and all the struc-
tures present in the images.

– We compare our method with semantic segmentation baselines, including
DeeplabV3+ (state of the art for semantic segmentation), which uses Ima-
genet pre-training, outperforming them significantly.

Our strip based segmentation helps to mitigate the memory limitation on
GPU while training a neural network on high-resolution images. However, strip-
based segmentation without prior can potentially fail to predict continuous
semantic structures that span across multiple strips (Fig. 3). Hence we intro-
duce a prior based strip segmentation, where each image strip’s prediction is
cached on the GPU and provided as prior concatenated with the input while
predicting the segmentation mask of the subsequent strip. Structures that typi-
cally span a large area of a form or document like tables and lists could be pro-
cessed at a lower resolution, but they significantly benefit from the 1D dilated
conv network. The hierarchical 1D dilated conv network was introduced to train
multi-level hierarchy segmentation together in a single network, so that it learns
to predict consistent segmentation masks across these hierarchies [4,27].

Our method is currently being used in Adobe AEM Forms as Automated
Form Conversion Service2 enabling digitisation to modern HTML based forms.

2 Related Work

Document structure analysis started as heuristic-based methods [9,14,15,46]
based on handcrafted features [24] for extracting paragraphs and graphics. Most
of the recent deep-learning based approaches are based on fully-convolution neu-
ral network (FCN) [6,17,47,49] and avoid any heuristic-based approaches. These
FCN’s are trained to generate semantic segmentation [29] for the rasterized ver-
sion of the document. FCNs have also been used to locate and recognize hand-
written annotations in old documents [23]. [48] proposed a joint text detection
and recognition model. They used a region proposal network which detects the
beginnings of text lines, a line following model predicts a sequence of short
2 https://docs.adobe.com/content/help/en/aem-forms-automated-conversion-

service/using/introduction.html.

https://docs.adobe.com/content/help/en/aem-forms-automated-conversion-service/using/introduction.html
https://docs.adobe.com/content/help/en/aem-forms-automated-conversion-service/using/introduction.html
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bounding boxes along the text-line, which is then used to extract and recognize
the text. We employ our high resolution segmentation network to extract and
disambiguate closely spaced textruns and textblocks from form images.

Table detection has been the key focus of some works like [2,16,17,26,37].
In [16], table region candidates were chosen based on some loose rules which
were later filtered using a CNN. In [17], an FCN was proposed, having a multi-
scale architecture which had two branches where one was dedicated to table
segmentation while the other was used to find contours. After that, an addi-
tional CRF (Conditional Random Field) was used to refine the segmentation
output further. We propose a multi-branch architecture to segment hierarchical
structures that overlap in same region in a form. For tables, we compare our
model with [17] on marmot dataset, one of the largest publicly available table
evaluation dataset [10]. While there are other works [34,41] that perform table
decomposition into rows and columns (which our model is capable of doing),
we discuss table detection only in the scope of this paper. Other works like [45]
introduced a large dataset of 5.5 million document labels focusing on detecting
bounding boxes for figures using an Overfeat [42] network, trained over image
embedding generated using ResNet-101.

It is evident that FCN based segmentation approaches have led to great
advancement in document structure extraction. However, a few approaches have
also tried other network architectures and input modalities such as text. [21,28]
are some of the multi-modal approaches proposed to extract named entities from
invoices. Other network architectures such as Graph Neural Networks (GNNs)
have been explored in [35,39] for detecting tables in invoice documents and
parsing table structure, respectively. In a related domain of document classifi-
cation also, CNN based methods have been explored in recent times. [43] used
them for document verification. Moreover, [50] proposed HAN to create sentence
and document embedding in a hierarchical fashion using a multi-level attention
mechanism. Document classification has also been explored using multi-modal
models [3] by extracting visual and textual features from MobileNet [19] and
FastText [5] respectively. These features are later on concatenated to learn a
better classification model.

In domains such as biomedical imaging and remote sensing, semantic segmen-
tation in high resolution has been explored. [53] uses past slice’s mask along the
z-axis as prior for the entire 2d cross-section and marks out the entire ROI. They
convert prior masks into features by a separate net, which are used in decoding.
In our approach, each strip prior is partially filled, and only the beginning of ROI
is known. Also, we use the mask as prior with the image, which reduces model
parameters. Similarly some works use tiles with context mask [20], but without
prior [40,54]. However for documents, width length slices are required because
most context is spread horizontally & tile-wise context passing would make it
harder to understand context spread across the width. [25,33,38] do iterative
refinement of segmentation with different strategies. However, our method does
iterative prediction instead of refinement for getting HighRes masks.
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Multi-modal Semantic segmentation has been proposed in [49] to extract
figures, tables, lists, and several other types of document structures. A text
embedding map for the entire page of the document image gets concatenated
with the visual feature volume in a spatially coherent manner such that there is
a pixel to text correspondence. We use their approach as one of our baselines on
forms. We do not compare with object detection methods like [18] since we found
they often merge close structures in dense documents and rather chose better
segmentation baseline - DeepLabV3+ [7], which is the current state-of-the-art
in semantic segmentation.

3 Methodology

In this section, we discuss our proposed model to extract various structures from
documents like widgets, fields, textblocks, choice-groups etc. For documents,
especially in the case of forms, the semantic structure extends extensively in
both vertical and horizontal directions. For many structures such as widgets
and fields, it may even extend to empty spaces in the input image requiring the
model to predict objects in parts where there is no explicit visual signal. Also, the
higher-level structures are composed of lower-level elements and it is necessary
to make fine grained predictions at different levels. This leads to our motivation
to use a hierarchical dilated 1D conv based semantic segmenter to capture long-
range relationships and predict multiple masks at different hierarchies that are
mutually consistent. Finally, to address the issue of dense text documents and
forms, we modify the network input mechanism by enabling a tile stitching
behavior in our network while performing segmentation to train it at higher
resolutions.

3.1 Network Pipeline

We convert the RGB input image into grayscale and resize the grayscale image
having height and width (IH × IW ) to (H × w) such that IW scales to w and
IH gets scaled by the same ratio, i.e., w/IW . The resulting image is further
cropped or padded with zeros to a size of h × w. h is kept larger than H to
accommodate elongated document images. We divide the input image into over-
lapping horizontal strips. Let Sh be strip height, Oh be overlap height between
consecutive strips, SegNet is our segmentation network, and SegMsk denote
segmentation mask. Following this notation, Algorithm 1 describes our method
where the network predicts the segmentation mask of different strips in succes-
sion. Each strip’s mask prediction uses the predicted mask for the previous strip
as prior. We copy logits corresponding to all classes from segmentation output
masks to prior mask having many channels with each channel dedicated to one
class.

As stated earlier, we use a dilated 1D conv architecture to predict precise and
uniform segmentation masks. Our network broadly comprises of three compo-
nents, Image Encoder (IE), Context Encoder (CE), and Output Decoder (DE).
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Algorithm 1: Stripwise, prior based image segmentation
1 Input: Image (Img) of size h×w, strip height(Sh) and overlap height in-between strips(Oh)
2 Output: Segmentation mask (OutMsk) of size h × w

// Initialize SegMsk, PriorMsk and StripCount
3 for x ← 0 to w, y ← 0 to Sh do
4 SegMsk[y, x] ← 0,
5 PriorMsk[y, x] ← 0,

6 end
7 StripCount ← 1 + (h − Sh)/(Sh − Oh)

// Now process strips one by one
8 for step ← 0 to StripCount do

// Concat SegMsk with PriorMsk
9 for x ← 0 to w, y ← 0 to Sh do

10 InpImg[y, x] ← Img[(Sh − Oh) ∗ step + y, x] || PriorMsk[y, x]
11 end

// Predict the segmentation mask and propagate the gradients
12 SegMsk ← SegNet(InpImg)

// Copy overlapping area of the segmentation mask into prior mask
13 for x ← 0 to w, y ← 0 to Oh do
14 PriorMsk[y, x] ← SegMsk[Sh − Oh + y, x]
15 end

// Calculate the vertical offset for output
16 y start ← (Sh − Oh) ∗ step
17 vh ← Sh

18 if step < StripCount − 1 then
19 vh ← Sh − Oh

20 end
// Collect prediction in OutMsk

21 for x ← 0 to w, y ← 0 to vh do
22 OutMsk[y start + y, x] ← SegMsk[y, x]
23 end

24 end

We concatenate a prior mask to each image strip and feed it into the Image
Encoder (IE) to generate features at multiple granular levels. The final features
of IE, are then processed through a dilated 1D conv based Context Encoder
(CE), which generates features capturing contextual dependencies. All these sets
of features from CE and IE is then passed to Output Decoder (DE) to gener-
ate segmentation masks for different semantic structure levels. We would now
explain each of these modules in greater detail.

3.2 Network Architecture

Image Encoder. Figure 4 depicts the architecture of Image Encoder (IE) that
comprises of multiple convolution layers, max-pooling layers. As shown in the
figure, the first conv layer has 3×3 kernel with a 64 channel output. The param-
eters of the remaining layers are highlighted using the same notation. Each
convolution layer has a stride of 1 unless specified, the third conv layer in Image
Encoder has a stride of 2 and is denoted by “1/2” in the figure. Similarly, all
the max-pooling layers have a stride of 2 by default. The output of these con-
volutions is passed on to the Context Encoder. We extract several intermediate
features (detail1, detail2, detail3, detail4) from the Image Encoder that act as
skip connections [31] and are used by the decoder.
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Fig. 4. Detailed overview of our network architecture.

Context Encoder. The context encoder (CE) is composed of four bidirectional
1D dilated conv blocks (BDB). Each BDB contains a vertical dilated block fol-
lowed by a horizontal dilated block. The dilated blocks consist of four dilated
conv layers [51] that work in parallel on the same feature volume at different
dilation rates, as seen in Fig. 4. The BDB processes the feature volume in vertical
direction, and subsequently, its outputs are processed in a horizontal direction.
Each BDB’s output is fed to the next BDB, and final output is fed to a CNN
decoder to predict the segmentation mask at all levels of the hierarchy.

Output Decoder. The network consists of a single decoder that has multi-
ple heads for generating segmentation maps for different levels in hierarchy. It
up-samples it by passing it through a transposed convolution layer [32]. The up-
sampled features are subsequently passed through another conv layer. Finally,
these features are concatenated with another feature volume detail4, obtained
from Image Encoder. The decoder branch repeats the sequence of such opera-
tions multiple times, as shown in Fig. 4. Each convolution in the decoder branch
has a stride of 1, and each transpose conv, depicted as convT in Fig. 4, has
a stride of 2 by default. The different segmentation heads on the penultimate
layer of the decoder are used to predict segmentation masks for different spa-
tially overlapping classes like widget and fields. The first segmentation head
predicts the lowest level of the semantic structure (TextRun and Widget), and
the other segmentation heads output prediction corresponding to higher levels
of hierarchy. Such a network design helps in segregating the classes according to
hierarchy since the container groups, and their constituent classes are predicted
in separate masks.
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4 Experiments

4.1 Datasets

Forms Dataset: We used our rich hierarchical Forms Dataset3 comprising of
52,490 human annotated Form images. These forms are from diverse domains
such as automobile, insurance, finance, medical, government (court, military,
administration). We employed annotators to annotate the form images to mark
the bounding box of different structures in the form image and also asked them
to mark the constituent elements that comes lower in the hierarchy for each
structure. We split the dataset into 48,256 images for training and 3,234 images
for validation. We used a separate set of 1,300 test images for the final evaluation
of our model with the baselines and to perform ablation studies.

Marmot Dataset: We evaluate and compare our model trained on Forms
Dataset on the Marmot Dataset [10]. This dataset is one of the largest pub-
licly available Table evaluation dataset. It contains 2000 document images corre-
sponding to an approximately equal number of English and Chinese documents.

RVL-CDIP: The dataset comprises of 400k greyscale images divided into 16
different classes. We select 518 images (mostly scanned) from invoice class anno-
tated with table regions as done by [39] to evaluate and compare our framework
on table detection.

ICDAR 2013: We also evaluate our approach on the table decomposition task
on ICDAR 2013 dataset [11] where the goal is to decompose tabular regions into
rows and columns. It comprises of two sets of pdfs - US and EU split. We extract
the images from the pdfs with the corresponding ground truth for tables. We
evaluate our model trained a) only on ICDAR datset and b) additional forms
data, outperforming state of the art in both settings.

4.2 Implementation Details

We set w = 1000, h = 1800, Sh = 600, Oh = 200 for the SegNet model defined
in Sect. 3. We slice the high resolution input image into 4 overlapping horizontal
strips. All the convolution and deconvolution layers have ReLU activation. We
train our model at a batch size of 32 on 8 Tesla V100 GPUs in parallel. We use
AdaDeltaOptimizer [52] to train the parameters of our model with an exponen-
tially decaying learning rate using 1 × 10−1 as the starting learning rate and
a decay factor of 0.1. Please refer to Fig. 4 for specific configuration details of
different network layers. To enable the network to predict concise masks, we use
convex hull [12] to determine segmentation masks.

3 A part of the dataset will be made available at https://github.com/flamingo-eccv/
flamingo-data.

https://github.com/flamingo-eccv/flamingo-data
https://github.com/flamingo-eccv/flamingo-data
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Table 1. Mean IoU of different ablation methods for several hierarchical form struc-
tures.

Structure → Text Widget Text ChoiceGroup Text Choice Choice

Model ↓ Run Block Title Field Field Group

Lowresnet (ours) 89.31 82.17 88.49 69.03 81.93 65.85 72.61

NoPriorNet (ours) 91.46 84.79 89.88 78.89 86.19 79.42 80.14

2D-DilatedNet (ours) 91.63 85.91 89.71 79.1 87.34 81.95 81.11

Highresnet (ours) 92.7 87.32 90.55 80.87 88.87 84.05 83.01

Table 2. Precision-Recall numbers for the different hierarchical form structures on the
different ablation models computed with an IoU threshold of 0.7.

Model → Lowresnet NoPriorNet 2D-DilatedNet Highresnet

Structure ↓ P R F1 P R F1 P R F1 P R F1

TextRun 72.8 55.0 62.6 79.1 66.9 72.5 80.0 66.7 72.7 80.2 67.3 73.2

Widget 52.8 51.8 52.3 69.2 70.6 69.9 71.0 71.5 71.2 75.0 75.4 75.2

TextBlock 51.0 45.6 48.2 69.6 71.6 70.6 68.6 70.4 69.5 71.2 72.5 71.9

Text Field 43.1 53.4 47.7 66.7 78.0 71.9 69.9 79.7 74.5 73.4 82.5 77.7

ChoiceGroup title 48.2 41.0 44.3 83.2 81.8 82.5 82.0 80.8 81.4 85.0 84.9 84.9

Choice Field 28.3 33.3 30.6 69.8 74.9 72.2 71.7 76.6 74.1 77.7 81.5 79.6

ChoiceGroup 26.5 33.1 29.4 32.5 43.8 37.3 34.4 43.6 38.5 37.8 44.5 40.9

4.3 Results

Model Evaluation and Ablation Studies
On Forms dataset, we train our high resolution model for predicting TextRuns,
Widgets, TextBlocks, ChoiceGroup Titles, ChoiceFields, TextFields and Choice
Groups such that its decoder predicts structures at various levels of hierarchy.
The first hierarchy comprises of TextRuns and Widgets, the second comprises of
TextBlocks and ChoiceGroup Titles, the third hierarchy comprises of TextFields
and ChoiceFields while the fourth comprises of Choice Groups only. We add
another class - Border, surrounding each structure and make the network predict
this class to enable it to disambiguate different objects and generalise better.
We refer to this network configuration as Highresnet. We perform ablations estab-
lishing gains from our high resolution segmentation network by comparing it
with: 1) Lowresnet - a low resolution variation of Highresnet that takes input
image at 792 resolution and predicts hierarchical segmentation masks for the
entire image in a single forward pass; 2) NoPriorNet - A Highresnet variation
where we divide the input image into horizontal strips with no overlap between
consecutive strips. In this variant, the segmentation mask predicted for a strip is
not given as prior for the subsequent strip prediction; 3) 2D-DilatedNet - where
the horizontal (vertical) 1d dilated conv layers in our network’s context encoder
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Table 3. Mean IoU comparison between our Lowresnet model and its variant.
Lowresnet-1 to Lowresnet-4 are trained specifically for a single hierarchy only while
LowresnetMD comprises of shared encoder but separate decoders for different hierar-
chies in a single model.

Structure → Text Widget Text ChoiceGroup Text Choice Choice

Model ↓ Run Block Title Field Field Group

Lowresnet-1 (ours) 87.75 80.11 – – – – –

Lowresnet-2 (ours) – – 87.42 63.95 – – –

Lowresnet-3 (ours) – – – – 80.8 63.07 –

Lowresnet-4 (ours) – – – – – – 70.55

LowresnetMD (ours) 86.42 78.96 86.87 65.67 79.28 62.79 69.37

Lowresnet (ours) 89.31 82.17 88.49 69.03 81.93 65.85 72.61

are replaced with 2d dilated conv layers with exactly same dilation rates and
kernel parameters (each 1 × 9 or 9 × 1 kernel is replaced with 3 × 3 kernel).
We use pixel mean Intersection over Union (MIoU) to evaluate different models.
We summarise MIoU of different ablations in Table 1. We also estimate object
level recall and precision (Table 2) and compare with ablation methods. For this,
we consider a predicted structure as correct match if the IoU of its predicted
mask is above a threshold (0.7) with an expected structure mask. Object-level
extraction plays a crucial role in deciding the quality of final re-flow
conversion. We, therefore, report these numbers to assess the perfor-
mance of final structure extraction.

Compare Highresnet with Lowresnet: It can be seen that by extracting
hierarchical structure in high resolution, Highresnet is able to improve the MIoU
scores significantly over all classes. Similar trend is observed for object level per-
formance (Table 2 and Table 3).

Compare Highresnet with NoPriorNet: Adding predicted segmentation
mask as prior while making prediction for subsequent strip in a page improves
the MIoU scores. Further these improvements in MIoU leads to a significant and
even better improvement in object extraction performance (Table 2 and 3).

Compare Highresnet with 2D-DilatedNet: It can be seen that using 1d
dilated convs performs slightly better than 2d dilated convs (having same num-
ber of parameters) in terms of MIoU. However such improvements result in
profound impact on object level performance.

Ablation on Importance of Detecting Hierarchies Simultaneously:
To analyse the importance of segmenting different hierarchical structures
together, we consider different variants of our Lowresnet where we train 4 dif-
ferent models, one for each hierarchy separately: Lowresnet-1 for textruns and
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Fig. 5. Left: Visualisations showing segmentation masks predicted by DLV3+ (top
row), MFCN (middle row), and our method Highresnet (bottom row) for a sample
form image. Right: Visualisation of List and Table Segmentation masks on our model
and baselines respectively: For each of the two images, MFCN, DLV3+ and Lowresnet-
TL predictions are shown in top right, bottom left and bottom right subparts.

Table 4. Mean IoU comparison between the baseline methods and our model on
different form structures.

Structure → Text Widget Text ChoiceGroup Text Choice Choice

Model ↓ Run Block Title Field Field Group

DLV3+ NoImagenet 80.05 71.2 79.61 18.69 66.91 33.59 39.61

DLV3+ Imagenet 81.63 77.73 83.44 48.09 76.26 50.12 56.11

MFCN 77.81 47.58 71.33 29.76 39.55 28.1 35.43

Lowresnet (ours) 89.31 82.17 88.49 69.03 81.93 65.85 72.61

Highresnet (ours) 92.7 87.32 90.55 80.87 88.87 84.05 83.01

widgets, Lowresnet-2 for textblocks and choice group title, Lowresnet-3 for text
fields and choice fields, and Lowresnet-4 for choice groups. For these variants
we scale down the number of filters in each convolution layer by 2 so that the
number of parameters in each variant is scaled down by 4. Since there are 4
such variants, together combined they have same number of parameters as our
Lowresnet model. As can be seen in Table 3, the Lowresnet model has signif-
icantly better MIoU for all the structures compared with models trained for
individual hierarchy levels. This shows that predicting hierarchical structures
simultaneously results in better hierarchical features that benefit structures
across the hierarchies (for instance, choice group title, choice field and choice
group are inter-dependent). We further investigate this through training a vari-
ant LowresnetMD which comprises of the same encoder as in Lowresnet but
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Table 5. Comparison of precision-recall for the different hierarchical form structures
between baseline and our method computed with an IoU threshold of 0.7. *CG Title -
ChoiceGroup Title, **CG - ChoiceGroup

Model → DLV3+ DLV3+ MFCN LowRes HighRes

NoImagenet Imagenet Net (ours) Net (ours)

Structure ↓ P R F1 P R F1 P R F1 P R F1 P R F1

TextRun 57.4 35.1 43.5 63.0 38.1 47.5 58.7 45.9 51.5 72.8 55.0 62.6 80.2 67.3 73.2

Widget 37.0 32.7 34.7 58.7 53.4 55.9 14.3 26.6 18.6 52.8 51.8 52.3 75.0 75.4 75.2

TextBlock 52.3 47.5 49.8 57.3 53.3 55.2 17.4 22.3 19.5 51.0 45.6 48.2 71.2 72.5 71.9

TextField 15.6 14.5 15.0 29.6 23.8 26.4 4.2 27.6 7.4 43.1 53.4 47.7 73.4 82.5 77.7

CG Title* 46.3 11.2 18.1 59.9 41.3 48.9 10.6 20.8 14.1 48.2 41.0 44.3 85.0 84.9 84.9

ChoiceField 22.0 14.8 17.7 31.8 23.5 27.0 8.9 19.5 12.2 28.3 33.3 30.6 77.7 81.5 79.6

CG** 4.5 6.8 5.4 14.2 19.4 16.4 1.3 6.0 2.2 26.5 33.1 29.4 37.8 44.5 40.9

Table 6. Comparison of MIoU, object level precision, recall, F1 scores of our method
with the baselines for Table and List on Forms Dataset.

Model → DLV3+ DLV3+ MFCN Lowresnet-TL

Metric ↓ NoImagenet Imagenet

Table List Table List Table List Table List

MIoU 69.9 55.7 77.9 65.1 48.1 22.1 79.83 63.60

P 20.6 17.4 35.2 29.8 4.09 1.49 55.71 55.55

R 50.0 26.5 60.4 38.4 59.375 23.67 77.20 52.29

F1 29.2 21.0 44.4 33.6 7.66 2.81 62.89 53.73

comprises of four different decoders corresponding to each hierarchy level. The
encoder features are shared between different decoders in LowresnetMD. Each
decoder has same architecture and parameters as in the decoder of Lowresnet.
It can be seen in Table 3 that predicting hierarchical structures together at the
last layer in Lowresnet is beneficial compared to having separate decoders in
LowresnetMD, even though the latter has more number of trainable parame-
ters. This is because the shared hierarchical features upto the last layer helps
in predicting different structures better as compared to having independent fea-
tures for different hierarchies through separate decoders.

Comparison with Baselines. We consider two baselines - DeepLabV3+ [7]
(DLV3+), which is the state of the art for semantic segmentation tasks on natu-
ral images and Multimodal FCNN (MFCN) [49] designed for extracting several
complex structures in documents. The baseline segmentation models segment
the input image into a flattened hierarchy. To address this, we process output of
penultimate layer of the baseline models through 4 separate FC layers to obtain
hierarchical masks using data schema similar to Highresnet. We train baselines
on RGB images at a resolution of 792× 792 following an aspect ratio preserving
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Table 7. Comparison of table detection precision-recall numbers on Marmot and RVL-
CDIP datasets and table decomposition on ICDAR2013 dataset

Method (IoU) Marmot English Marmot Chinese RVL-CDIP ICDAR2013

P R F1 P R F1 P R F1 P R F1

MSMT-FCN (0.8) 75.3 70.0 72.5 77.0 76.1 76.5 – – – – – –

MSMT-FCN (0.9) 47.0 45.0 45.9 49.3 49.1 49.1 – – – – – –

Lowresnet-TL (0.8) 75.2 72.2 73.7 71.7 77.4 74.4 – – – – – –

Lowresnet-TL (0.9) 61.2 64.6 62.8 62.3 70.5 66.1 – – – – – –

GNN-Net [39] (0.5) – – – – – – 25.2 39.6 30.8 – – –

Lowresnet-TL (0.5) – – – – – – 43.6 65.4 52.3 – – –

Baseline [44] (0.5) – – – – – – – – – 93.4 93.4 93.4

Lowresnet-TL (0.5) – – – – – – – – – 93.9 94.3 94.1

+FormsData (0.5) – – – – – – – – – 94.7 95.7 95.2

resize. For DLV3+, we train both with and without imagenet pre-trained weights
for the Resnet-101 backbone variants. For MFCN, loss for different classes is
scaled according to pixel area covered by elements of each class (calculated over
the dataset) as described in their work. Table 4 compares the MIoU of our app-
roach with baselines while Table 5 compares the object level F1 score. As can
be seen, our model Highresnet significantly outperforms both baselines on all
form structures. In particular, DLV3+ without imagenet pre-training performs
poorly on segmenting different form structures. The pre-trained version performs
much better but our Highresnet significantly outperforms it without requiring
imagenet pre-training with large improvements in MIoU scores.

Figure 5(Left) illustrates segmentation masks predicted by different baseline
methods, and our model on a sample form image (see footnote 1). Baseline meth-
ods merge different elements and hierarchical structures such as TextBlocks and
Fields. In contrast, our model predicts crisp segmentation masks while extracting
all such structures. For choice group, the baseline methods predict incomplete
segmentation mask while our model captures long-range dependencies among its
constituent elements and predict the complete mask.

Evaluation on Other Higher Order Constructs. In this section, we discuss
the performance of our model at extracting other higher order structures like
Lists and Tables. These structures are relatively more evident and span large
regions in a page reducing the need to disambiguate them in high resolution.
Consequently, we train a separate low resolution (792 × 792) version of our
proposed network similar to Lowresnet which we refer to as Lowresnet-TL to
predict these structures. In order to compare the performance of this network,
we also train networks for the two baselines for extracting Tables and Lists
simultaneously. Table 6 compares the MIoU of our method with the baseline
models and the Fig. 5(Right) illustrates the network outputs for the task of
Table and List segmentation. It can be seen that Lowresnet-TL significantly
outperforms both the baselines, specifically it outperforms imagenet pre-trained
DLV3+ while itself not requiring imagenet pre-training.
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We also compare precision-recall of Table predictions of Lowresnet-TL on
Marmot Dataset with previous best method – Multi-Scale Multi-Task FCN
(MSMT-FCN ) [17] in Table 7. It can be seen that Lowresnet-TL performs similar
to MSMT-FCN for an IoU threshold of 0.8. However, Lowresnet-TL performs
significantly better than MSMT-FCN for higher IoU threshold of 0.9 indicating
our architecture is able to predict crisper predictions. On RVL-CDIP, our model
outperforms GNN-Net [39] which is state of the art for table detection on this
dataset. We also evaluate our method for task of table decomposition into rows
an columns on ICDAR 2013 dataset and compare it against [44]. The numbers
reported are average of precision, recall and F1 obtained for rows and columns
as done by [44]. We train our model in two settings - one using ICDAR2013
data only (using same train-test split) and secondly by adding our forms data
(105 tables). We apply post processing on network outputs where we filter row
predictions based on area threshold and extend row mask horizontally to obtain
completed row predictions and apply similar transformation for columns. As can
be seen our method outperforms [44] (Table 7).

5 Conclusion

We propose a novel neural network training mechanism to extract document
structure on very high resolution. We observe that higher resolution segmenta-
tion is beneficial for extracting structure, particularly on forms since they posses
highly dense regions. We show that a single network hierarchical segmentation
approach leads to better results on structure extraction task. In addition, we also
show that 1D dilated conv based model captures long range contextual dependen-
cies while segmenting different hierarchical constructs. Various ablation studies
show the effectiveness of our high resolution segmentation approach and net-
work architecture design. We compare our method with different semantic seg-
mentation baselines outperforming them significantly on our Forms Dataset for
several structures such as TextBlocks, Fields, Choice Groups etc. Additionally,
our model trained on Forms Dataset outperforms prior art for table detection
on Marmot and ICDAR 2013 dataset.
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Abstract. Where people look when watching videos is believed to be
heavily influenced by temporal patterns. In this work, we test this
assumption by quantifying to which extent gaze on recent video saliency
benchmarks can be predicted by a static baseline model. On the recent
LEDOV dataset, we find that at least 75% of the explainable informa-
tion as defined by a gold standard model can be explained using static
features. Our baseline model “DeepGaze MR” even outperforms state-of-
the-art video saliency models, despite deliberately ignoring all temporal
patterns. Visual inspection of our static baseline’s failure cases shows
that clear temporal effects on human gaze placement exist, but are both
rare in the dataset and not captured by any of the recent video saliency
models. To focus the development of video saliency models on better cap-
turing temporal effects we construct a meta-dataset consisting of those
examples requiring temporal information.

Keywords: Gaze prediction · Saliency · Video · Temporal modelling ·
Model evaluation

1 Introduction

The human visual system processes information from the environment selec-
tively. Several attention mechanisms limit the amount of information to be pro-
cessed and thus enable efficient perception of the world (e.g., [9]). The most obvi-
ous form of attention is the shifting of gaze, which orients the high-resolution
fovea towards areas of interest.

Modelling those gaze shifts is an important topic in computer vision. Predic-
tive models of human gaze have the potential to advance our understanding of
human visual attention, for example by aiding the development of hypotheses
that can be tested with human subjects [7]. Besides their scientific usefulness,
such models have various technical applications. They can be used for graphic
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design [6], automated cropping, video compression [11] or other computer vision
tasks (e.g., [48]).

Great progress has been made recently in predicting where people look in
still images. With the use of pre-trained models the performance improved from
1/3 to more than 80% of explainable information explained (e.g., [25,27]). Since
the human visual system developed in a dynamic environment, there is growing
interest to also model human gaze on videos. Previous studies revealed that
motion patterns are an important factor attracting visual attention [8,16,39]. All
recent video gaze models therefore are based on temporal modeling components
such as recurrent units or spatiotemporal convolutions to capture those dynamic
patterns.

To which degree those temporal patterns influence human gaze on natural
videos and to which degree the recent performance improvements in video gaze
prediction can be attributed to capturing these effects, however, has not been
evaluated thoroughly so far. With our work we aim at filling this gap, by pro-
viding a method to measure the influence of temporal patterns on human gaze.
We construct a static baseline model that by design cannot capture temporal
effects and compare its performance to a gold standard model estimating the
total information in the ground truth gaze data. The performance difference to
the gold standard then represents an upper bound to the influence of temporal
effects on the respective dataset. Furthermore, by looking at the largest fail-
ure cases of our static baseline, we can identify situations in the dataset where
human gaze is driven by temporal patterns. Evaluating gaze prediction models
on those situations then lets us draw conclusions about the capabilities of models
to predict temporal effects.

Applying this method to the recent LEDOV dataset [20] and state-of-the-art
video gaze models we arrive at the following conclusions: (1) Human gaze place-
ment on the videos contained in the LEDOV dataset is largely driven by spatial
appearance. (2) Clearly identifiable temporal effects on human visual attention
exist, but occur rarely in the videos considered. (3) We need to construct suit-
able video data sets to enable learning based models to capture temporal effects.
Indeed, we show that all other recent video gaze models with the capacity for
temporal modelling fail in the same situations as our restricted model.

We explicitly note that the main contribution of our work are above findings
and the proposed evaluation method that we need to come to those findings,
but not the static baseline model that is required for our analysis. Interestingly
though, our baseline model outperforms state-of-the-art video gaze prediction
models on the LEDOV and DIEM [34] datasets—despite deliberately ignoring
all temporal information.

To enable other researches to apply our proposed evaluation method more
easily, we collect a meta-benchmark from existing datasets that contains the
situations requiring temporal information revealed by our analysis. The perfor-
mance of new models on this meta-benchmark indicates how much an improved
predictive performance can be attributed to better handling of temporal effects.
We will make this meta-benchmark as well as our pre-trained baseline model
publicly available.
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2 Related Work

Substantial progress has been made on the task of gaze prediction for free view-
ing of images. While the influential model by Itti and Koch [18], inspired by
Treisman and Gelade’s feature integration theory [45], was devised to explain
effects observed in visual search originally, it also achieved first successes in
predicting where people look. Since then, more than 50 models have been pro-
posed predicting probable gaze locations based on image content (for a recent
comparison see, e.g., [12]). As in other areas of computer vision, the advent
of deep learning gave rise to models greatly improving state-of-the-art perfor-
mance [15,24,27,35,46]. DeepGaze II [27], the current state of the art model on
the MIT Saliency Benchmark [5], captures 81% of the explainable information
gain on that dataset (explainable information gain is an information-theoretic
analogue of explainable variance, see [25] for details).

In contrast, gaze prediction for videos only recently attracted more attention.
Several datasets and models have been developed, but neither a widely accepted
benchmark nor an estimate of the amount of explainable information in those
datasets exist. This makes an evaluation of the state of the field difficult.

Recently, two video gaze datasets have been introduced that are large enough
to train deep neural network based models: LEDOV [20] and DHF1K [47].
More recently, Wang et al. also provided gaze recordings for video segmentation
datasets [48]. The gaze recordings provided by Mathe and Sminichescu [32] for
the Hollywood and UCF-Sports dataset are large enough for deep learning based
approaches, but most of the subjects have not been recorded in the free-viewing
setting. Several small datasets exists that provide high-quality recordings (e.g.,
DIEM [34], for an overview see [20]).

Starting with an extension of the Itti and Koch model to videos [16,17],
several models predicting gaze specifically for videos have been proposed
[10,13,14,30,38,40,41,51–53]. The performance of video gaze models has been
greatly improved with the advent of deep learning. Bazzani et al. [3] trained
a recurrent neural network based on features extracted from a spatiotemporal
DNN predicting gaze using a mixture of Gaussians. The models by Wang et
al. [47] and Wu et al. [50] pair convolutional LSTM units with an attention
mechanism. Bak et al. [2] proposed a two-stream network using optical flow in
parallel to RGB features. This two-stream approach has also been combined
with convolutional LSTM units by [19,20] and with convolutional GRU and an
attention mechanism by [28]. Linardos et al. [31] proposed a model based on an
exponential moving average of frame-wise features. Very recently, [33] and [43]
proposed spatio-temporal encoder-decoder networks for video gaze prediction.
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3 Methods

The main objective of our work is to evaluate the influence of temporal patterns
on human gaze. To that end, we propose a baseline model that cannot learn
temporal patterns by design but predicts human gaze on videos solely relying
on static appearance. This baseline model is then compared to a gold standard
model as an estimate of the total information in the ground truth gaze data.
The performance difference between those models represents an upper bound of
the influence of temporal patterns on human gaze placement.

3.1 Center Bias

The center bias is an important lower baseline. It is obtained by blurring and
normalizing a histogram of all gaze positions in the training set. As humans tend
to look at the center of images [44] and videos are usually recorded such that
interesting objects are in the middle of videos, there is a clear bias in the gaze
data towards the center of the videos. The center bias therefore represents a
prior distribution of gaze position independent of visual content. Predicting this
spatial prior for every frame yields a lower baseline, comparable to the chance
level performance in classification tasks.

The center bias is much stronger in the beginning of each video due to the
subjects fixating the center of the screen before each trial. As described later,
we ignore this effect by not evaluating on the first 15 frames and confirmed
experimentally that a stationary center bias models the remaining data well.
Furthermore, we optimized the blur size using a grid search.

3.2 Gold Standard Model

The maximal performance that gaze prediction models can achieve is limited by
the consistency of the subjects and varies from frame to frame. We use a gold
standard model [49] to measure the inter-subject variability of the gaze positions.
The model predicts where each subject looked given the ground truth informa-
tion from all other subjects on the same frame. This is done by blurring the gaze
positions of all but one subject and performing leave-one-out cross validation.
Moreover, the prediction of the gold standard model is mixed with a uniform
distribution to handle outliers. The gold standard therefore predicts subjects to
look where other subjects look with a high probability, and to randomly look
anywhere on the image with a small probability defined by the mixing coeffi-
cient. The optimal blur size of the gaussian filter and the mixing weight of the
uniform distribution are determined using a grid search.

A high gold standard performance indicates very consistent gaze locations
across all subjects and vice versa. Therefore, the gold standard model yields an
estimate of the maximal performance that can be achieved for every frame. All
reported gold standard performances refer to the leave-one-subject-out perfor-
mance.
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3.3 Static Baseline Model

Our proposed evaluation method requires a static baseline model that cannot
handle temporal effects by design. Initial experiments revealed that DeepGaze II
[27], the current state-of-the-art model for images, achieves a very competitive
performance when simply applied to videos frame-by-frame (see Sect. 4). How-
ever, this instantaneous model ignores delays due to the required processing in
the human brain. This suggests a way to improve the DeepGaze II architecture
for videos by averaging deep features over multiple recent video frames. Based on
this approach, we propose a space-time separable variant of DeepGaze II using a
temporal box filter as static baseline model (see Fig. 1), which we call DeepGaze
Mean Readout (DeepGaze MR).
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Fig. 1. Architecture of our static baseline model “DeepGaze MR”: A feature represen-
tation is extracted from individual frames in a fixed size window using the VGG-19
network. A non-linear readout network transforms this representation into a priority
map by first averaging the feature channels over time, and then applying a series of
1× 1 convolutions. The resulting map is then resized, blurred, weighted by the center
bias, and normalized to obtain the final prediction.

Input to our model is a fixed length window of consecutive frames, which
is used to predict the gaze distribution on the last frame (“target frame”) in
this window. We use a window length of 16 frames, which was the optimal value
found using a grid search (see supplement for details).

Backbone. Our model applies the VGG-19 network pretrained on Imagenet
[42] to every frame individually and extracts the representation from the last
convolutional layer (conv5 4) after the nonlinearity. We keep the parameters of
the backbone fixed to prevent overfitting.

Readout. A non-linear readout network is used to transform the feature repre-
sentation into a priority map of probable gaze locations. The readout network
first averages the feature representation over time. A series of 1× 1 pixel convo-
lutions is then used to non-linearly combine the feature channels to the priority
map. Layer Normalization [1] is used after all but the last convolutional layer
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to stabilize training. As non-linearity we use the softplus function, which is a
smooth approximation of the commonly used ReLU and avoided units zero-
ing out early in training. We use three convolutional layers with 32, 32, and
one channel, respectively. This optimal instantiation of the readout network has
been found using a random search (see supplement for details).

Finalization. Finally, the output of the readout network is turned into the pre-
dicted probability distribution: First, the priority map is resized to the resolution
of the input. It is then smoothed using a Gaussian with learnable standard devi-
ation per x and y dimension. The logarithm of the center bias density from the
training set is added to the map using a learnable weight, acting as a spatial
prior. Finally, a softmax is applied to obtain the predicted spatial probability
distribution of gaze locations.

Training. Our model is trained using maximum-likelihood learning (Kümmerer
et al. [26] suggest that this allows for best metric scores in all classic saliency
metrics). Thus, the loss function is the average log-density at gaze locations for
each frame. We use the Adam optimizer [23] with a learning rate of 0.01, which
is decreased by a factor of ten after one and five epochs. In each epoch, only one
random target frame per video is used for training. Experiments confirmed, that
this training scheme is sufficient for our model to converge.

Since our model averages features over time, it is by design not able to rep-
resent temporal patterns such as movements, or appearing and disappearing
objects.

4 Experiments

In this section, we evaluate our baseline models described above on recent video
gaze datasets. We then analyse the baseline predictions in comparison to state-
of-the-art video gaze models to better understand the importance of temporal
effects in video saliency.

The evaluation of gaze prediction models comes with challenges: different
evaluation protocols and metrics typically lead to inconsistent model rankings.
Building on recent work to better understand this evaluation process, we first
describe and motivate the model evaluation approach used in this work.

4.1 Metrics

A large number of metrics exist that are used to evaluate gaze predictions (for
a review see [4]). As typically used, these metrics give rise to inconsistent model
rankings. Kümmerer et al. [26] proposed to adapt a probabilistic setting, i.e.,
to formulate models so that they predict spatial probability distributions, train
them for log-likelihood and differentiate between predictions and derived saliency
maps. In this way, consistent model ratings can be achieved.

We adopt this setting in our work, and use information gain (average log-
likelihood per fixation compared to the center bias, [25]) as our primary metric.
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To enable a comparison to models that did not use a probabilistic approach, we
additionally evaluate the AUC [22], NSS [36], CC [21], KLDiv [29,37] and SIM
[22] metrics to judge the performance of our model relative to state-of-the-art.
To obtain an overall score for a model, the metrics are applied to the prediction
for every frame individually, and then averaged first over frames and then over
videos.

4.2 Datasets

The main dataset for this work is the LEDOV dataset [19]. It contains 538
short videos (11s on average) with eye tracking data of 32 subjects. The authors
removed smooth pursuits and saccades and artificially stabilized fixations dur-
ing their preprocessing, so this dataset does not allow to investigate the pre-
cise dynamics of individual gaze trajectories. However, the dataset covers the
common factors driving human gaze placement sufficiently well to develop and
compare models. All videos have been rescaled to 640× 360px and resampled to
30 Hz. Models from other groups are evaluated using the resolutions and frame
rates that the respective models have been trained on.

For additional analyses we are using the DIEM dataset [34] (84 videos, 66
subjects on average, mean duration 95.2 s). The videos have been padded to
match the viewing conditions reported in the paper and rescaled to 640× 480px.

The DHF1K dataset [47] is comparable in scope to LEDOV, but contains
artifacts in the provided gaze maps. As those artifacts affect the model scores and
make it impossible to properly evaluate the gold standard model, we excluded
this dataset from our analysis. In the supplemental information we provide more
details on this issue together with overall performance results which suggest that
our conclusions are also valid for DHF1K.

For all datasets, the subject had to fixate the center of the screen before each
trial. We do not evaluate models on the first 15 frames to ignore the centered
gaze due to the experimental paradigm.

4.3 Performance Results

In Table 1, we show the performances of our baselines and other recent gaze mod-
els on LEDOV. Despite deliberately ignoring all temporal effects, DeepGaze MR
performs very well and explains as much as 75% of the explainable information
(as a comparison, the state-of-the-art for images on MIT1003 is 81%). Moreover,
DeepGaze MR performs substantially better than DeepGaze II which confirms
the effectiveness of our proposed adaptations. Interestingly, in AUC our model
matches the gold standard performance, which might be due to the fact that
AUC saturates very quickly. Furthermore, the AUC metric might suffer from
the leave-one-subject-out cross validation applied in the gold standard.

We further compare the performances of our baselines to recent video gaze
prediction models: The DeepVS model [19,20] allows the most direct comparison,
as it was trained on the LEDOV dataset as well. ACLNet [47], SalEMA [31],
TASED-Net [33] and STRA-Net [28] are recent video gaze models developed
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on the DHF1K dataset [47]. For all models, we used the published weights and
adapted size and frame rate of the input videos to match the samples encountered
in the respective model training. As the results in Table 1 show, DeepGaze MR
clearly outperforms all evaluated previous state-of-the-art models on the LEDOV
dataset across all metrics, despite being designed as a static baseline model.

Table 1. Performance comparison of recent gaze prediction models on the LEDOV
dataset. The information gain can only be evaluated for models that predict a spatial
probability distribution. All models have been applied using the published weights.
TASED-NET, SalEMA, ACLNet and STRA-Net have been trained on the DHF1K
dataset, DeepGaze II on SALICON and MIT1003.

LEDOV val

Model IG % AUC CC KLDiv NSS SIM

Center bias 0 0 0.833 0.157 3.521 1.546 0.062

TASED-Net [33] - - 0.887 0.647 3.214 3.498 0.496

STRA-Net [28] - - 0.890 0.610 2.315 3.324 0.460

SalEMA [31] - - 0.890 0.596 2.573 3.331 0.466

ACLNet [47] - - 0.892 0.587 1.905 3.156 0.430

DeepVS [19] - - 0.894 0.397 2.445 3.098 0.210

DeepGaze II [27] 1.216 62.8 0.908 0.588 1.259 3.368 0.434

DeepGaze MR 1.445 74.6 0.917 0.665 1.105 3.857 0.498

Gold standard 1.961 100 0.917 - - 4.992 -

LEDOV test

Model IG % AUC CC KLDiv NSS SIM

Center bias 0 0 0.844 0.142 3.689 1.585 0.057

SalEMA [31] - - 0.897 0.590 2.377 3.152 0.465

TASED-Net [33] - - 0.897 0.650 2.965 3.361 0.505

ACLNet [47] - - 0.898 0.573 1.667 2.922 0.435

STRA-Net [28] - - 0.899 0.597 2.024 3.130 0.466

DeepVS [19] - - 0.903 0.394 2.398 3.081 0.218

DeepGaze II [27] 1.117 61.0 0.909 0.606 1.195 3.403 0.447

DeepGaze MR 1.367 75.5 0.920 0.667 1.035 3.657 0.506

Gold standard 1.810 100 0.920 - - 4.676 -

Additionally, we evaluated the models on the DIEM dataset. The size of
the dataset is rather small (84 videos), therefore we did not train but only
evaluate the models on this dataset. As the results in Table 2 show, our model
performs clearly better than all other video saliency methods on this dataset
except TASED-Net [33]. Interestingly, the original DeepGaze II model for images
performs even better than the variant adapted to videos.
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The performances on DIEM are worse than those on LEDOV for two reasons.
First, this dataset is much harder as the videos in this dataset contain much more
temporal activity. Second, the domain gap to LEDOV is rather large, as DIEM
contains cuts and many objects not present in LEDOV. The good performance
of DeepGaze II on this dataset could therefore be explained by the much broader
range of objects it has seen during training. Moreover, DeepGaze II is applied
purely frame-by-frame, so it probably copes better with the many cuts in DIEM.

4.4 Analyzing Temporal Effects

In the following, we try to better understand the influence of temporal infor-
mation on gaze placement. As motivated earlier, we use the information gain
difference of the gold standard and DeepGaze MR as an estimator of the infor-
mation that is not captured by our model. Since the model cannot learn temporal
patterns by design, temporal effects on human gaze placement should result in
large differences to the gold standard.

In Fig. 2 we plot the distribution of those differences grouped by video. The
median remaining information is close to 0bit for roughly half of the videos
in the validation set. This indicates that our static baseline model successfully
predicts gaze positions on a large number of frames. However, the results also
clearly show two kinds of failure cases: (1) There are some videos for which
the average performance gap to the gold standard is large. For the first three
videos in the plot, the median difference is almost 2bit. (2) For other videos
there is a large number of outlier frames whose performance gap is much greater
than for most of the other remaining frames in the video. As our model is not
able to exploit temporal structure by design, they should include cases in which
temporal patterns affect human gaze placement.

We analyze the found failure cases in more detail by visualizing them in
Figs. 3 and 4. We plot the NSS scores of the models over time (bottom) and
visualize the model log predictions at interesting frames (top, frame position
indicated by dashed lines in the NSS plot). As SalEMA averages features and
thus cannot handle temporal effects by design, we don’t consider it in this case
study. The figures reveal three common factors that strongly influence where
people look and are difficult for all models:

Interactions between objects occur in several of the videos. Here, most
subjects look at the interaction point, not at the objects themselves. This is
clearly observable in Fig. 4b, when the child is feeding the giraffe or in Fig. 3a
when the robot is grabbing objects.

Suddenly appearing objects have a very strong ability to attract human
attention as well. As can be seen in Fig. 4a the shifting of the gaze to the appear-
ing text is very consistent across all subjects. We assume that this effect can
be observed with suddenly appearing objects in general, but cannot verify this
hypothesis properly due to the small number of samples. A related effect is the
appearing of the two persons due to the camera motion in Fig. 4d. They also
clearly attract attention, however much less than the sudden appearing of the
text in Fig. 4a.
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Table 2. Performance comparison of recent gaze prediction models on the full DIEM
dataset. Due to the small number of videos, none of the models has been trained on
this dataset.

DIEM

Model IG % AUC CC KLDiv NSS SIM

Center bias 0 0 0.892 0.436 1.511 2.053 0.341

DeepVS [19] - - 0.853 0.424 2.070 2.096 0.309

SalEMA [31] - - 0.911 0.576 1.743 2.987 0.465

STRA-Net [28] - - 0.914 0.595 1.975 3.069 0.477

TASED-Net [33] - - 0.914 0.621 2.098 3.194 0.493

ACLNet [47] - - 0.914 0.558 1.468 2.826 0.428

DeepGaze MR 0.660 43.1 0.920 0.602 1.091 3.116 0.471

DeepGaze II [27] 0.674 44.0 0.926 0.619 1.058 2.898 0.477

Gold standard 1.531 100 0.940 - - 4.659 -

Fig. 2. Distribution of the unexplained information across frames in the LEDOV val-
idation set (x-axis shows distinct videos). The remaining explainable information is
estimated by the difference of our model to the gold standard in bit using the infor-
mation gain metric. The videos marked are the largest failure cases of our model.

Movements of objects also clearly have the potential to change which parts
of a scene are observed. In Fig. 4c, none of the subjects looks at the gymnast’s
arms or hands, but all are looking at his torso that is moving in the respective
scene. This stands in contrast to most cases in which humans appear, where
subjects tend to look at people’s hands or faces. Also global camera movements
seem to be able to shift people’s gaze towards the side of the direction of the
movement, as indicated in Fig. 4d. However the effect in this example is small and
entangled with the appearing persons. A closer investigation would be necessary
to address this effect.

The temporal effects described are compiled from the qualitative analysis
of our model’s largest failure cases. As their number is small, the list given is
most likely not exhaustive. Moreover, it is not possible to reliably draw any
general conclusions about the relative strengths of those effects. However, the
cases presented clearly reveal the existence of such temporal effects and show
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Fig. 3. Failure cases with a high average difference to the gold standard: (a) Most of
the subjects look at the robot’s hand while it puts a glass into a dishwasher. The models
however distribute their prediction over the whole robot. (b) After roughly two seconds
a small penguin becomes visible under the big penguin in the foreground, shifting the
gaze of most subjects to the small penguin for the rest of the video. Markers on the
x-axis of the NSS plots indicate frames that are part of our proposed meta-benchmark
(see Sect. 4.5).

that they are not captured by all recent video gaze models that should have the
capacity to model them.

4.5 Evaluating Temporal Modelling

The detailed analysis of the failure cases in the previous section showed that
none of the considered models was able to correctly predict cases in which tem-
poral information influences where people look. As our proposed method requires
training and evaluating two baseline models, the hurdle to apply it is quite high.
To facilitate applying our method to new models, we propose a principled new
meta-benchmark consisting of those hard cases.

Our meta-dataset contains all frames of videos where our static baseline’s
information gain is at least 1bit worse than the gold standard (indicated by
markers on the x-axis of the NSS plots in Figs. 3 and 4). We propose to run the
models on the full videos, but only average the performances over the frames
included in our meta-dataset. This evaluation scheme discards roughly 80% of
the frames in LEDOV and 65% of the frames in DIEM. As our model cannot
learn temporal effects by design, gaze on the discarded frames can be explained
by spatial features. The performance on the remaining frames reflects the ability
of models to handle cases in which temporal information is necessary much better
than existing benchmarks.
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Fig. 4. Failure cases due to localized events: (a) A text suddenly appearing draws
almost all attention for a short time, whereas the models predict people to mainly look
at the person talking. (b) When a child is feeding a giraffe, the subjects’ attention
focuses at their interaction point and not at the giraffe’s head that is looked at during
the remainder of the video. (c) Gaze concentrates on the gymnast’s torso during a
swinging exercise, whereas other body parts are much less looked at. (d) Two persons
enter the scene due to the movement of the camera, which temporarily attracts the
attention of most of the subjects.
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Table 3. Performance of state-of-the-art models on our proposed meta-benchmark,
which discards frames in which the information gain of our model is more than 1bit
less as the gold standard. As our model cannot exploit temporal patterns, the reported
performances reflect the ability to handle cases in which temporal information is needed
to predict where people look much better.

Meta-Benchmark: LEDOV & DIEM

Model IG % AUC CC KLdiv NSS SIM

Center bias 0 0 0.853 0.274 2.580 1.679 0.195

DeepVS [19] - - 0.854 0.337 2.599 2.152 0.225

SalEMA [31] - - 0.887 0.477 2.584 2.596 0.394

STRA-Net [28] - - 0.889 0.497 2.681 2.658 0.39

ACLNet [47] - - 0.891 0.483 2.044 2.579 0.377

TASED-Net [33] - - 0.893 0.583 2.995 2.855 0.430

DeepGaze MR 0.528 24.2 0.898 0.454 1.568 2.458 0.365

DeepGaze II [27] 0.787 36.1 0.908 0.507 1.420 2.693 0.389

Gold Standard 2.182 100.0 0.948 - - 5.093 -

In Table 3 we report the model performances on this meta-benchmark derived
from LEDOV and DIEM. As indicated by our previous analysis, all models con-
sidered in this work perform poorly. As this benchmark was derived from failure
cases of our model, the performance reduction of our model is disproportionally
large. When using DeepGaze II as a baseline model, our model performs much
better in this meta-benchmark (see supplement for details).

5 Discussion

Human gaze on dynamic stimuli such as videos is hypothesized to be strongly
driven by temporal patterns in the stimuli, e.g., temporal popup and motion
[8,16]. In this work, we measured the importance of temporal features in video
saliency. To that end, we developed and analysed DeepGaze MR, a static base-
line model predicting gaze positions on the LEDOV dataset, and compared it’s
performance to a gold standard model. DeepGaze MR is adapted from the suc-
cessful DeepGaze II model for still images and is not able to learn temporal
patterns by design. Nevertheless, our model outperforms previous state of the
art with a large margin on the LEDOV dataset and captures 75% of the explain-
able information gain.

When we analyzed failure cases of our model, we found clear temporal effects
that drove the subject’s gaze such as sudden appearances and movements and,
to a certain degree, also interactions. We found that the gold standard perfor-
mance and therefore the consistency among subjects is very high in those cases.
This confirms the hypothesis that temporal patterns are an important factor
influencing human gaze placement.
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Given this importance of temporal effects, we would expect a good video
saliency model to predict human gaze in those cases well. While our model
wasn’t able to capture those effects by design, we found that all other models
we tested consistently failed to capture those effects either. In particular, this
is the case also for models like DeepVS, ACLNet, STRA-Net and TASED-Net
that have explicitly been designed to capture temporal patterns.

We argue that the main reason for this shortcoming is a deficiency of the
datasets used to train video saliency models. Temporal patterns in the videos
can influence gaze placement in ways that are highly consistent over subjects
(Fig. 4, see also [8,16]). However, these effects turn out to be rare compared to
the influence of spatial patterns such as faces on gaze placement. We suppose
that they are so rare that current state-of-the-art models do not benefit from
investing modelling capacity into modelling them. This difficulty for learning-
based approaches to handle rare, but important, events correctly is a general
problem relevant for many fields. In autonomous driving, for example, it is crucial
to handle rare events correctly, e.g. when children running onto the street.

Several aspects can contribute to tackling this issue: the model architecture,
the loss function and the datasets.

Adding general temporal modelling components, as done by previous works
on video saliency, has shown to be ineffective to learn temporal effects. However,
our study reveals distinct temporal effects on human gaze. Models might benefit
from adding modules that are explicitly designed to detect effects that we know
to be relevant, such as appearing objects.

To evaluate models predicting gaze on videos, image-based metrics are typ-
ically applied per frame and averaged. As a result, some of the failure cases
seen above do not substantially affect the overall model performance as those
effects tend to be short compared to the whole video. This is opposed to our
subjective impression of the clear failure of the model on those samples. A loss
function that penalizes such failures more visibly would align the benchmark
results better with human judgement.

We see the most fundamental need for improvement in the datasets. Obvi-
ously, one could explicitly collect and add cases of relevant temporal patterns to
the training datasets. In particular, it would be possible to have multiple valida-
tion datasets tailored towards effects that might be considered relevant, such as
appearing objects, motion and interactions. In this way, one can quantitatively
judge how well new models incorporate effects that researchers consider relevant
for understanding behaviour, but that are rare in the usual training datasets.

Finally, we introduced a meta-benchmark derived from existing datasets
that allows to quantify the ability of models to handle those temporal effects
much better: Instead of averaging performances over all frames, we only consider
frames in which the information gain of our model is more than 1bit smaller than
the gold standard. As our model cannot learn temporal patterns, only frames
are discarded in which spatial information is sufficient. The low performance
of existing models on this meta-dataset confirms our previous analysis. We will
make a list of the frames we considered in this study available. In the future,
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our proposed benchmark could be improved by considering more datasets and
by improving our spatial baseline model.
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30. Leborán, V., Garćıa-Dı́az, A., Fdez-Vidal, X.R., Pardo, X.M.: Dynamic whitening
saliency. IEEE Trans. Pattern Anal. Mach. Intell. 39(5), 893–907 (2017). https://
doi.org/10.1109/TPAMI.2016.2567391

https://doi.org/10.1080/13506280444000661
https://doi.org/10.1080/13506280444000661
https://doi.org/10.1038/35058500
https://doi.org/10.1109/34.730558
https://doi.org/10.1007/978-3-030-01264-9_37
http://arxiv.org/abs/1709.06316
https://doi.org/10.1016/j.cviu.2004.10.009
https://doi.org/10.1073/pnas.1510393112
https://doi.org/10.1007/978-3-030-01270-0_47
https://doi.org/10.1109/TIP.2019.2936112
https://doi.org/10.3758/s13428-012-0226-9
https://doi.org/10.3758/s13428-012-0226-9
https://doi.org/10.1109/TPAMI.2016.2567391
https://doi.org/10.1109/TPAMI.2016.2567391


Measuring the Importance of Temporal Features in Video Saliency 683

31. Linardos, P., Mohedano, E., Nieto, J.J., O’Connor, N.E., Giro-i-Nieto, X., McGuin-
ness, K.: Simple vs complex temporal recurrences for video saliency prediction. In:
British Machine Vision Conference (BMVC), September 2019

32. Mathe, S., Sminchisescu, C.: Actions in the eye: dynamic gaze datasets and learnt
saliency models for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell.
37(7), 1408–1424 (2015). https://doi.org/10.1109/TPAMI.2014.2366154

33. Min, K., Corso, J.J.: TASED-Net: temporally-aggregating spatial encoder-decoder
network for video saliency detection. In: The IEEE International Conference on
Computer Vision (ICCV), pp. 2394–2403, October 2019

34. Mital, P.K., Smith, T.J., Hill, R.L., Henderson, J.M.: Clustering of gaze during
dynamic scene viewing is predicted by motion. Cogn. Comput. 3(1), 5–24 (2011).
https://doi.org/10.1007/s12559-010-9074-z

35. Pan, J., et al.: SalGAN: visual saliency prediction with generative adversarial net-
works. arXiv:1701.01081 [cs], January 2017

36. Peters, R.J., Iyer, A., Itti, L., Koch, C.: Components of bottom-up gaze allocation
in natural images. Vision. Res. 45(18), 2397–2416 (2005). https://doi.org/10.1016/
j.visres.2005.03.019

37. Rajashekar, U., Cormack, L.K., Bovik, A.C.: Point-of-gaze analysis reveals visual
search strategies. In: Human Vision and Electronic Imaging IX, vol. 5292, pp. 296–
306. International Society for Optics and Photonics, June 2004. https://doi.org/
10.1117/12.537118

38. Ren, Z., Gao, S., Chia, L.T., Rajan, D.: Regularized feature reconstruction for
spatio-temporal saliency detection. IEEE Trans. Image Process. 22(8), 3120–3132
(2013). https://doi.org/10.1109/TIP.2013.2259837

39. Rosenholtz, R.: A simple saliency model predicts a number of motion popout phe-
nomena. Vision. Res. 39(19), 3157–3163 (1999). https://doi.org/10.1016/S0042-
6989(99)00077-2

40. Rudoy, D., Goldman, D.B., Shechtman, E., Zelnik-Manor, L.: Learning video
saliency from human gaze using candidate selection. In: The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 1147–1154, June 2013

41. Seo, H.J., Milanfar, P.: Static and space-time visual saliency detection by self-
resemblance. J. Vis. 9(12), 15–15 (2009). https://doi.org/10.1167/9.12.15

42. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: ICLR 2015, May 2015

43. Sun, Z., Wang, X., Zhang, Q., Jiang, J.: Real-time video saliency prediction via
3d residual convolutional neural network. IEEE Access 7, 147743–147754 (2019).
https://doi.org/10.1109/ACCESS.2019.2946479

44. Tatler, B.W.: The central fixation bias in scene viewing: selecting an optimal view-
ing position independently of motor biases and image feature distributions. J. Vis.
7(14), 4–4 (2007). https://doi.org/10.1167/7.14.4

45. Treisman, A.M., Gelade, G.: A feature-integration theory of attention. Cogn. Psy-
chol. 12(1), 97–136 (1980). https://doi.org/10.1016/0010-0285(80)90005-5

46. Vig, E., Dorr, M., Cox, D.: Large-scale optimization of hierarchical features for
saliency prediction in natural images. In: The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 2798–2805 (2014)

47. Wang, W., Shen, J., Guo, F., Cheng, M.M., Borji, A.: Revisiting video saliency: a
large-scale benchmark and a new model. In: The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 4894–4903, June 2018

48. Wang, W., et al.: Learning unsupervised video object segmentation through visual
attention. In: The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 3064–3074, June 2019

https://doi.org/10.1109/TPAMI.2014.2366154
https://doi.org/10.1007/s12559-010-9074-z
http://arxiv.org/abs/1701.01081
https://doi.org/10.1016/j.visres.2005.03.019
https://doi.org/10.1016/j.visres.2005.03.019
https://doi.org/10.1117/12.537118
https://doi.org/10.1117/12.537118
https://doi.org/10.1109/TIP.2013.2259837
https://doi.org/10.1016/S0042-6989(99)00077-2
https://doi.org/10.1016/S0042-6989(99)00077-2
https://doi.org/10.1167/9.12.15
https://doi.org/10.1109/ACCESS.2019.2946479
https://doi.org/10.1167/7.14.4
https://doi.org/10.1016/0010-0285(80)90005-5


684 M. Tangemann et al.

49. Wilming, N., Betz, T., Kietzmann, T.C., König, P.: Measures and limits of mod-
els of fixation selection. PLoS ONE 6(9), e24038 (2011). https://doi.org/10.1371/
journal.pone.0024038

50. Wu, X., Wu, Z., Zhang, J., Ju, L., Wang, S.: SalSAC: a video saliency predic-
tion model with shuffled attentions and correlation-based ConvLSTM. In: Thirty-
Fourth AAAI Conference on Artificial Intelligence. AAAI Press, February 2020

51. Zhang, L., Tong, M.H., Cottrell, G.W.: SUNDAy: saliency using natural statistics
for dynamic analysis of scenes. In: Proceedings of the 31st Annual Meeting of the
Cognitive Science Society, pp. 2944–2949. AAAI Press, Cambridge (2009)

52. Zhong, S.h., Liu, Y., Ren, F., Zhang, J., Ren, T.: Video saliency detection
via dynamic consistent spatio-temporal attention modelling. In: Twenty-Seventh
AAAI Conference on Artificial Intelligence. AAAI Press, July 2013

53. Zhou, F., Bing Kang, S., Cohen, M.F.: Time-mapping using space-time saliency.
In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 3358–3365, June 2014

https://doi.org/10.1371/journal.pone.0024038
https://doi.org/10.1371/journal.pone.0024038


Searching Efficient 3D Architectures
with Sparse Point-Voxel Convolution

Haotian Tang1, Zhijian Liu1(B), Shengyu Zhao1,2, Yujun Lin1, Ji Lin1,
Hanrui Wang1, and Song Han1

1 Massachusetts Institute of Technology, Cambridge, USA
{zhijian,songhan}@mit.edu

2 IIIS, Tsinghua University, Beijing, China

Abstract. Self-driving cars need to understand 3D scenes efficiently and
accurately in order to drive safely. Given the limited hardware resources,
existing 3D perception models are not able to recognize small instances
(e.g., pedestrians, cyclists) very well due to the low-resolution voxeliza-
tion and aggressive downsampling. To this end, we propose Sparse Point-
Voxel Convolution (SPVConv), a lightweight 3D module that equips the
vanilla Sparse Convolution with the high-resolution point-based branch.
With negligible overhead, this point-based branch is able to preserve
the fine details even from large outdoor scenes. To explore the spec-
trum of efficient 3D models, we first define a flexible architecture design
space based on SPVConv, and we then present 3D Neural Architecture
Search (3D-NAS) to search the optimal network architecture over this
diverse design space efficiently and effectively. Experimental results val-
idate that the resulting SPVNAS model is fast and accurate: it outper-
forms the state-of-the-art MinkowskiNet by 3.3%, ranking 1st on the
competitive SemanticKITTI leaderboard�. It also achieves 8–23× com-
putation reduction and 3× measured speedup over MinkowskiNet and
KPConv with higher accuracy. Finally, we transfer our method to 3D
object detection, and it achieves consistent improvements over the one-
stage detection baseline on KITTI.

1 Introduction

3D perception models have received increased attention as they serve as the eyes
of autonomous driving systems: i.e., they are used to understand the semantics
of the scenes to parse the drivable area (e.g., roads, parking areas). As the
safety of the passenger is the top priority of the self-driving cars, 3D perception
models are required to achieve high accuracy and low latency. Also, the hardware
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(a) Large 3D Scene (b) Low Resolution (0.8m)

Fig. 1. Small instances (e.g., pedestrians and cyclists) are hard to be recognized at a
low resolution (due to the coarse voxelization or the aggressive downsampling).

resources on the self-driving cars are tightly constrained by the form factor (since
we do not want a whole trunk of workstations) and heat dissipation; therefore,
it is crucial to design efficient 3D models with low computational resource, e.g.,
memory.

Researchers have mainly exploited two 3D data representations: point cloud
and rasterized voxel grids. As analyzed in Liu et al. [22], point-based meth-
ods [18,29,32] waste up to 90% of their time on structuring the irregular data,
not on the actual feature extraction. On the other hand, voxel-based methods
usually suffer from the low resolution: the resolution of dense voxels [22,25]
is strictly constrained by the memory; the sparse voxels [6,9] require aggres-
sive downsampling to achieve larger receptive field, leading to low resolution at
deeper layers. With low resolution (see Fig. 1), multiple points or even multiple
small objects may be merged into one grid and become indistinguishable. In
this case, small instances (e.g., pedestrians and cyclists) are at a disadvantage
compared to large objects (e.g., cars). Therefore, the effectiveness of previous
3D modules is discounted when the hardware resource is limited and resolution
is low.

To tackle these problems, we propose a new 3D module, Sparse Point-Voxel
Convolution (SPVConv) that introduces a low-cost high-resolution point-based
stream to the vanilla Sparse Convolution, which helps to capture the fine details.
On top of the new SPVConv module, we further present 3D Neural Architec-
ture Search (3D-NAS) to search an efficient network architecture. We refer our
whole framework as Sparse Point-Voxel Neural Architecture Search (SPVNAS).
Fine-grained channel numbers in the search space allow us to explore efficient
models; progressive depth shrinking is introduced for training SPVNAS with
elastic depth stably. Experimental results validate that our model is fast and
accurate: compared to MinkowskiNet, it improves the accuracy by 3.3% with
lower latency. It also achieves 8–23× computation reduction and 3× measured
speedup over MinkowskiNet and KPConv, while offering higher accuracy. We
also transfer our method to KITTI for 3D object detection and achieve consis-
tent improvements over previous one-stage detection baseline.
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The contribution of this paper has three aspects:

1. We design a lightweight 3D module, SPVConv, that pays attention to both
local fine details and neighborhood relationship. It boosts the accuracy on
small objects, which used to be challenging under limited hardware resource.

2. We boost the efficiency of the module by 3D-NAS: a fine-grained search space
offers model efficiency balanced against accuracy; the progressive shrinking
gets rid of re-training from scratch and reduces deployment complexity over
various hardware platform and conditions.

3. Our method outperforms all previous methods with a large margin and ranks
1st on the competitive SemanticKITTI leaderboard. It can also be transferred
to the object detection task and achieve consistent improvements.

2 Related Work

2.1 3D Perception Models

Increased attention has been paid to 3D deep learning, which is important for
LiDAR perception in autonomous driving. Previous research [5,25,31,53,61]
relied on the volumetric representation and vanilla 3D convolution to process the
3D data. Due to the sparse nature of 3D representation, the dense volumetric
representation is inherently inefficient and it also inevitably introduces informa-
tion loss. Therefore, later research [29] proposes to directly learn on 3D point
cloud representation using a symmetric function. To improve the neighborhood
modeling capability, researchers define point-based convolutions on the geomet-
ric [18,24,32,41,44,45,55,56] or semantic [52] neighborhood. There are also 3D
models tailored for specific tasks such as detection [27,28,30,36–38,57,59] and
instance segmentation [11,14,15,58] built upon these primitives.

Recently, some research started to pay attention to efficient 3D deep learning
primitives. Riegler et al. [34], Wang et al. [49,50] and Lei et al. [16] proposed
to reduce the memory footprint of volumetric representation using octrees. Liu
et al. [22] analyzed the efficiency bottleneck of point-based deep learning methods
and proposed Point-Voxel Convolution. Graham et al. [9] and Choy et al. [6]
proposed Sparse Convolution which accelerates the volumetric convolution by
skipping non-activated regions.

2.2 Neural Architecture Search

Designing neural networks is highly challenging and time-consuming. To allevi-
ate the burden of manually designing neural networks [13,23,35,60], researchers
have introduced neural architecture search (NAS) to automatically design the
neural network with high accuracy using reinforcement learning [63,64] and evo-
lutionary search [19]. A new wave of research starts to design efficient mod-
els with neural architecture search [42,43,54], which is very important for the
mobile deployment. However, conventional frameworks require high computation
cost (typically 104 GPU hours) and considerable CO2 emission [40]. To this end,
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researchers have proposed different techniques to reduce the computation cost (to
102 GPU hours), such as differentiable architecture search [20], path-level bina-
rization [4], single-path one-shot sampling [10], and weight sharing [2,17,39,46].
Besides, neural architecture search has also been used in compressing and acceler-
ating neural networks, such as pruning [3,12,21] and quantization [10,47,48,51].
Most of these methods are tailored for 2D visual recognition, which has many
well-defined search spaces [33]. To the best of our knowledge, neural architecture
search for 3D deep learning is under-studied. Previous research on VNAS [62]
only focus on 3D medical image segmentation, which is not suitable for general-
purpose 3D deep learning.

Table 1. Point-Voxel Convolution [22] is not suitable for large 3D scenes. If processing
with sliding windows, the large latency is not affordable for real-time applications. If
taking the whole scene, the resolution is too coarse to capture useful information.

Input Voxel Size (m) Latency (ms) Mean IoU

PVConv [22] Sliding Window 0.05 35640 –

Entire Scene 0.78 146 39.0

SPVConv (Ours) Entire Scene 0.05 85 58.8

3 SPVConv: Designing Effective 3D Modules

We revisit two recent 3D modules: Point-Voxel Convolution [22] and Sparse Con-
volution [6] and analyze their bottlenecks. We observe that both of them suffer
from information loss (caused by coarse voxelization or aggressive downsampling)
when the memory is constrained. To this end, we introduce Sparse Point-Voxel
Convolution (SPVConv), to effectively process the large 3D scene (as in Fig. 2).

3.1 Point-Voxel Convolution: Coarse Voxelization

Liu et al. [22] proposed Point-Voxel Convolution where the 3D input are repre-
sented in high-resolution points and convolution is applied over low-resolution
voxel grids. Specifically, the point-based branch transforms each point individ-
ually, and the voxel-based branch convolves over the voxelized input from the
point-based branch.

PVCNN (which is built upon Point-Voxel Convolution) can afford the reso-
lution of at most 128 in its voxel-based branch on a single GPU (with 12 GB of
memory). For a large outdoor scene (with size of 100m×100m×10m), each voxel
grid will correspond to a fairly large area (with size of 0.8m×0.8m×0.1m). In this
case, the small instances (e.g., pedestrians) will only occupy a few voxel grids
(see Fig. 1). From such few points, PVCNN can hardly learn any useful informa-
tion from the voxel-based branch, leading to a relatively low performance (see
Table 1). Alternatively, we can process the large 3D scenes piece by piece so that
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each sliding window is of smaller scale. In order to preserve the fine-grained infor-
mation, we found empirically that the voxel size needs to be at least lower than
0.05m. In this case, we have to run PVCNN once for each of the 244 sliding win-
dows, which will take 35 seconds to process a single scene. Such a large latency
is not affordable for most real-time applications (e.g., autonomous driving).

3.2 Sparse Convolution: Aggressive Downsampling

Volumetric convolution has always been considered inefficient and prohibitive to
be scaled up. Lately, researchers proposed Sparse Convolution [6,9] that skips
the non-activated regions to significantly reduce the memory consumption. More
specifically, it first finds all active synapses (denoted as kernel map) between the
input and output points; it then performs the convolution based on this kernel
map. In order to keep the activation sparse, it only considers these output points
that also belong to the input point cloud.

As such, Sparse Convolution can afford a much higher resolution than the
vanilla volumetric convolution. However, the network cannot be very deep due
to the limited computation resource. As a result, the network has to downsample
very aggressively in order to achieve a sufficiently large receptive field, which is
very lossy. For example, the state-of-the-art MinkowskiNet [6] gradually applies
four downsampling layers to the input point cloud, after which, the voxel size
will be 0.05 × 24 = 0.8m. Similar to Point-Voxel Convolution, this resolution is
too coarse to capture the small instances (see Fig. 3).

Fig. 2. Overview of SPVNAS: we first train a super network composed of SPVConv lay-
ers and supports elastic depth and width. Then, we perform computation-constrained
3D-NAS to obtain best candidate model.
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3.3 Solution: Sparse Point-Voxel Convolution

In order to solve the problem of both modules, we present Sparse Point-Voxel
Convolution as shown in Fig. 2. The point-based feature transformation branch
always keeps high-resolution representation. The voxel-based branch applies
Sparse Convolution to efficiently model over different receptive field size. Two
branches communicate at negligible cost through sparse voxelization and devox-
elization.

Our Sparse Point-Voxel Convolution operates on:

– sparse voxelized tensor representation S = {(ps
m,fs

m), v}, where ps
m =

(xs
m,ys

m,zs
m) is the grid coordinates and fs

m is the grid feature vector of
m-th nonzero grid, v is the voxel size for one grid in the current layer;

– point cloud tensor representation T = {(pt
k,f

t
k)}, where pk = (xk,yk,zk) is

the point coordinates and fk is point feature vector of k-th point.

Sparse Voxelization. We start from introducing the voxel-based neighborhood
aggregation branch in Fig. 2. We first transform the high-resolution point cloud
representation T to a sparse tensor S by sparse voxelization:

p̂t
k = (x̂t

k, ŷ
t
k, ẑ

t
k) = (floor(xt

k/v),floor(yt
k/v),floor(zt

k/v)), (1)

fs
m =

1
Nm

n∑

k=1

I[x̂t
k = xs

m, ŷt
k = ys

m, ẑt
k = zs

m] · f t
k, (2)

where I[·] is the binary indicator of whether p̂t
k belongs to the voxel grid ps

m,
and Nm is the normalization factor (i.e., the number of points that fall in the m-
th nonzero voxel grid). Such formulation, however, requires O(mn) complexity
where |S| = m, |T | = n. With typical values of m,n at the order of 105, the
naive implementation is impractical for real time applications.

To this end, we propose to use the GPU hash table to accelerate the sparse
voxelization and devoxelization. Specifically, we first build a hash table for all
activated points in the sparse voxelized representation (where the key is the 3D
coordinates, and the value is the index in the sparse voxelized tensor), which can
be finished in O(n) time. After that, we iterate over all points, and for each point,
we use its coordinate as the key to query the corresponding index in the sparse
voxelized representation. As the lookup over the hash table requires O(1) time
in the worst case [26], this query step will in total take O(m) time. Therefore,
the total time of coordinate indexing will be reduced from O(mn) to O(m+ n).

Feature Aggregation. We then perform neighborhood feature aggregation
on the sparse voxelized tensor using a sequence of Sparse Convolution resid-
ual blocks [6]. We parallelize the kernel map operation in Sparse Convolution
(see Sect. 3.2) on GPU with the same hash table implementation in sparse vox-
elization, which offers 1.3× speedup over Choy et al.’s latest implementation.
Both our method and the baseline have been upgraded to this accelerated imple-
mentation.
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Sparse Devoxelization. With transformed neighborhood features and a sparse
tensor representation, we hope to transform it back to the point-based represen-
tation so that information from both branches can be fused later. Similar to [22],
we choose to interpolate a point’s feature with its 8 neighbor voxel grids using
trilinear interpolation instead of naive nearest interpolation.

Point Transformation and Feature Fusion. We directly apply MLP on
each point to extract individual point features, and then fuse the outputs of two
branches with an addition to combine the complementary information provided.
Compared against Sparse Convolution, MLP layers only cost little computation
overhead (4% in terms of #MACs) but introduce important fine details into the
information flow.

4 3D-NAS: Searching Efficient 3D Architectures

Even with our module, designing an efficient neural network is still challenging.
We need to carefully adjust the network architecture (e.g., channel numbers and
kernel sizes of all layers) to meet the constraints for real-world applications (e.g.,
latency, energy, and accuracy). To this end, we introduce 3D Neural Architecture
Search (3D-NAS), to automatically design efficient 3D models (as in Fig. 2).

4.1 Design Space

The performance of neural architecture search is greatly impacted by the design
space quality. In our search space, we incorporate fine-grained channel numbers
and elastic network depths; however, we do not support different kernel sizes.

Fine-grained Channel Numbers. The computation cost increases quadrati-
cally with the number of channels; therefore, the channel number selection has
a large influence on the network efficiency. Most existing neural architecture
frameworks [4] only support the coarse-grained channel number selection: e.g.,
searching the expansion ratio of the ResNet/MobileNet blocks over a few (2–3)
choices. In this case, only intermediate channel numbers of the blocks can be
changed; while the input and output channel numbers will still remain the same.
Empirically, we observe that this limits the variety of the search space. To this
end, we enlarge the search space by allowing all channel numbers to be selected
from a large collection of choices (with size of O(n)). This fine-grained channel
number selection largely increase the number of candidates for each block: e.g.,
from constant (2–3) to O(n2) for a block with two consecutive convolutions.

Elastic Network Depths. We support different network depth in our design
space. For 3D CNNs, reducing the channel numbers alone cannot achieve signifi-
cant measured speedup, which is very different from the 2D CNNs. For example,
by shrinking all channel numbers in MinkowskiNet [6] by 4× and 8×, the number
of MACs will be reduced to 7.5 G and 1.9 G, respectively. However, although
#MACs is drastically reduced, their measured latency on the GPU is very simi-
lar: 105 ms and 96 ms (measured on a single GTX 1080Ti GPU). This suggests
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that scaling down the number of channels cannot offer us with very efficient mod-
els, even though the number of MACs is very small. This might be because 3D
modules are usually more memory-bounded than 2D modules; #MACs decreases
quadratically with channel number, while memory decreases linearly. Motivated
by this, we choose to incorporate the elastic network depth into our design space
so that these layers with very small computation (and large memory cost) can
be removed and merged into their neighboring layers.

Small Kernel Matters. Kernel sizes are usually included into the search space
of 2D CNNs. This is because a single convolution with larger kernel size can
be more efficient than multiple convolutions with smaller kernel sizes on GPUs.
However, it is not the case for the 3D CNNs. From the computation perspective,
a single 2D convolution with kernel size of 5 requires only 1.4× more MACs than
two 2D convolutions with kernel sizes of 3; while a single 3D convolution with
kernel size of 5 requires 2.3× more MACs than two 3D convolutions with kernel
sizes of 3 (if applied to dense voxel grids). This larger computation cost makes it
less suitable to use large kernel sizes in 3D CNNs. Furthermore, the computation
overhead of 3D modules is also related to the kernel sizes. For example, Sparse
Convolution [6,9] requires O(k3n) time to build the kernel map, where k is the
kernel size and n is the number of points, which indicates that its cost grows
cubically with respect to the kernel size. Based on these reasons, we decide to
keep the kernel size of all convolutions to be 3 and do not allow the kernel size to
change in our search space. Even with the small kernel size, we can still achieve a
large receptive field by changing the network depth, which can achieve the same
effect as changing the kernel size.

4.2 Training Paradigm

Searching over a fine-grained design space is very challenging as it is impossible
to train every sampled candidate network from scratch [42]. Motivated by Guo et
al. [10], we incorporate all candidate networks into a single super network so that
the total training cost can be reduced from O(n) to O(1): we train the super
network once, and after that, each candidate network can be directly extracted
from this super network with inherited weights.

Uniform Sampling. At each training iteration, we randomly sample a can-
didate network from the super network: randomly select the channel number
for each layer, and then randomly select the network depth (i.e.the number of
blocks to be used) for each stage. The total number of candidate networks to be
sampled during training is very limited; therefore, we choose to sample different
candidate networks on different GPUs and average their gradients at each step
so that more candidate networks can be sampled. For 3D, this is more critical
because the 3D datasets usually contain fewer training samples than the 2D
datasets: e.g.20 K on SemanticKITTI [1] vs.1M on ImageNet [7].

Weight Sharing. As the total number of candidate networks is enormous, every
candidate network will only be optimized for a small fraction of the total sched-
ule. Therefore, uniform sampling alone is not enough to train all candidate
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networks sufficiently (i.e., achieving the same level of accuracy as being trained
from scratch). To this end, we adopt the weight sharing technique so that every
candidate network can be optimized at each iteration even if it is not sampled.
Specifically, given the input channel number Cin and output channel number
Cout of each convolution layer, we simply index the first Cin and Cout channels
from the weight tensor accordingly to perform the convolution [10]. For each
batch normalization layer, we similarly crop the first c channels from the weight
tensor based on the sampled channel number c. Finally, with the sampled depth
d for each stage, we choose to keep the first d layers, instead of randomly sam-
pling d of them. This ensures that each layer will always correspond to the same
depth index within the stage.

Progressive Depth Shrinking. Suppose we have n stages, each of which has
m different depth choices from 1 to m. If we sample the depth dk for each stage
k randomly, the expected total depth of the network will be

E[d] =
n∑

k=1

E[dk] = n× m + 1
2

, (3)

which is much smaller than the maximum depth nm. Furthermore, the probabil-
ity of the largest candidate network (with the maximum depth) being sampled
is extremely small: m−n. Therefore, the largest candidate networks are poorly
trained due to the small possibility of being sampled. To this end, we introduce
progressively shrinking the depth to alleviate this issue. We divide the training
epochs into m segments for m different depth choices. During the kth training
segment, we only allow the depth of each stage to be selected from m − k + 1
to m. This is essentially designed to enlarge the search space gradually so that
these large candidate networks can be sampled more frequently.

4.3 Search Algorithm

After the super network is fully trained, we use evolutionary architecture search
to find the best architectures under a certain resource constraint.

Resource Constraints. We use the number of MACs as the resource constraint.
For the 3D CNNs, the number of MACs cannot be simply determined by the
input size and network architecture: e.g., Sparse Convolution only performs the
computation over the active synapses; therefore, its computation is also related
to the kernel map size, which is determined by the input sparsity pattern. To
address this, we first estimate the average kernel map size over the entire dataset
for each convolution layer, and we can then measure the number of MACs based
on these statistics.

Evolutionary Search. We automate the architecture search with evolutionary
algorithm [10]. We first initialize the starting population with n randomly sam-
pled candidate networks. At each iteration, we evaluate all candidate networks
in the population and select the k models with the highest accuracies (i.e., the
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fittest individuals). The population for the next iteration is then generated with
(n/2) mutations and (n/2) crossovers. For each mutation, we randomly pick
one among the top-k candidates and alter each of its architectural parameters
(e.g., channel numbers, network depths) with a pre-defined probability; for each
crossover, we select two from the top-k candidates and generate a new model
by fusing them together randomly. Finally, the best model is obtained from the
population of the last iteration. During the evolutionary search, we ensure that
all the candidate networks in the population always meet the given resource con-
straint (otherwise, we will resample another candidate network until the resource
constraint is satisfied).

5 Experiments

We conduct experiments on 3D semantic segmentation and 3D object detection
for outdoor scenes. Benefit from our designed module (SPVConv) and neural
architecture search framework (3D-NAS), our model (denoted as SPVNAS) con-
sistently outperforms previous state-of-the-art methods with lower computation
cost and measured latency (on an NVIDIA GTX1080Ti).

5.1 3D Scene Segmentation

We first evaluate our method on 3D semantic segmentation and conduct experi-
ments on the large-scale outdoor scene dataset, SemanticKITTI [1]. This dataset
contains 23,201 LiDAR point clouds for training and 20,351 for testing, and it
is annotated from all 22 sequences in the KITTI [8] Odometry benchmark. We
train all models on the entire training set and report the mean intersection-over-
union (mIoU) on the official test set under the single scan setting. We provide
more implementation details and experimental results in the appendix.

Results. As in Table 2, our SPVNAS outperforms the previous state-of-the-
art MinkowskiNet [6] by 3.3% in mIoU with 1.7× model size reduction, 1.5×

Table 2. Results of outdoor scene segmentation on SemanticKITTI: our SPVNAS
outperforms the state-of-the-art MinkowskiNet with 2.7× measured speedup.

#Params (M) #MACs (G) Latency (ms) Mean IoU

PointNet [29] 3.0 – 500 14.6

PointNet++ [32] 6.0 – 5900 20.1

PVCNN [22] 2.5 42.4 146 39.0

KPConv [45] 18.3 207.3 279 58.8

MinkowskiNet [6] 21.7 114.0 294 63.1

SPVNAS (Ours) 2.6 15.0 110 63.7

12.5 73.8 259 66.4
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computation reduction and 1.1× measured speedup. We further downscale our
SPVNAS by setting the resource constraint to 15G MACs. This offers us with a
much smaller model that outperforms MinkowskiNet by 0.6% in mIoU with 8.3×
model size reduction, 7.6× computation reduction, and 2.7× measured speedup.
In Fig. 3, we also provide some qualitative comparisons between SPVNAS and
MinkowskiNet: our SPVNAS has lower errors especially for small instances.

Table 3. Results of outdoor scene segmentation on SemanticKITTI: our SPVNAS
outperforms the 2D projection-based DarkNets by more than 10% in mIoU.

#Params (M) #MACs (G) Latency (ms) Mean IoU

DarkNet21Seg [1] 24.7 212.6 73 47.4

DarkNet53Seg [1] 50.4 376.3 102 49.9

SPVNAS (Ours) 1.1 8.9 89 60.3

We further compare our SPVNAS with 2D projection-based models
in Table 3. With the smaller backbone (by removing the decoder layers), SPV-
NAS outperforms DarkNets [1] by more than 10% in mIoU with 1.2× measured
speedup even though 2D convolutions are much better optimized by modern
deep learning libraries. Furthermore, our SPVNAS achieves higher mIoU than
KPConv [45], which is the previous state-of-the-art point-based model, with 17×
model size reduction, 23× computation reduction and 3× measured speedup.

5.2 3D Object Detection

We also evaluate our method on 3D object detection and conduct experiments on
the popular outdoor scene dataset, KITTI [8]. We follow the generally adopted
training-validation split, where 3,712 samples are used for training and 3,769
samples are left for validation. We report the mean average precision on the test
split using the official evaluation code (with 40 recall positions) under 3D IoU
theresholds of 0.7 for car, 0.5 for cyclist and pedestrian. We refer the readers to
the appendix for additional results on the validation set.

Results. We compare our method against SECOND [57], the state-of-the-art
single-stage model for 3D object detection. SECOND consists of a sparse encoder
using 3D Sparse Convolutions and a region proposal network that performs 2D
convolutions after projecting the encoded features to the bird’s-eye view (BEV).
We reimplement and retrain SECOND: our implementation already outperforms
the results in the original paper [57]. As for our model, we only replace the 3D
Sparse Convolutions in SECOND with our SPVConv while keeping all the other
settings the same for fair comparison. As summarized in Table 4, our SPVCNN
achieves significant improvement in cyclist detection, for which we argue that the
high-resolution point-based branch carries more information for small instances.
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(a) Error by MinkowskiNet (b) Less error by SPVNAS (c) Ground Truth

Fig. 3. MinkowskiNet has a higher error recognizing small objects and region bound-
aries, while SPVNAS recognizes small objects better thanks to the high-resolution
point-based branch.

Table 4. Results of outdoor object detection on KITTI: our SPVCNN outperforms
SECOND in most categories especially for the cyclist.

Car Cyclist Pedestrian

Easy Mod Hard Easy Mod Hard Easy Mod Hard

SECOND [57] 84.7 76.0 68.7 75.8 60.8 53.7 45.3 35.5 33.1

SECOND (Repro.) 87.5 77.9 74.4 76.0 59.7 52.9 49.1 41.7 39.1

SPVCNN (Ours) 87.8 78.4 74.8 80.1 63.7 56.2 49.2 41.4 38.4

6 Analysis

Our SPVNAS significantly outperforms the previous state of the art, Minkowsk-
iNets with better efficiency. After carefully examining the per-class performance
of both methods on the test split (Table 5), we find that SPVNAS has very
large advantage (up to 25%) on relatively small objects such as pedestrians and
cyclists, which justifies our design of a high resolution point-based branch in
SPVConv. In this section, we provide more detailed analysis on the effectiveness
of SPVConv and also perform ablation experiments on our 3D-NAS pipeline to
further explain the benefit of SPVNAS.
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Table 5. Results of per-class performance on SemanticKITTI: SPVNAS has a large
advantage on small objects, such as bicyclist and motorcyclist.

Person Bicycle Bicyclist Motorcycle Motorcyclist

MinkowskiNet [6] 60.9 40.4 61.9 47.4 18.7

SPVNAS (Ours) 65.7 51.6 65.2 50.8 43.7

(+4.8) (+11.2) (+3.3) (+3.4) (+25.0)

6.1 Sparse Point-Voxel Convolution

We analyze the effectiveness of SPVConv by comparing the point and sparse-
voxel activations from the last SPVConv layer in SPVCNN. The model is trained
on part of SemanticKITTI [1] training set with the ninth sequence left out for
visualization. Specifically, we first calculate the norm of point/sparse voxel fea-
tures from each point. Then, we rank the feature norms from both branches sep-
arately and define points with top 10% largest feature norm from each branch
respectively as activated points of that branch. In Fig. 5 we show the top 50%
activated points of the point-based branch with red color and all other points
with gray color. Clearly, the point branch of our SPVCNN learns to attend to
small objects such as pedestrians, cyclists, trunks and traffic signs. As a result,
our method does achieve compelling performance on these small classes.

Fig. 4. Average percent of activated points on voxel/point branches from all 19 classes
of SemanticKITTI [1] dataset: the point-branch attends to smaller objects as the red
bar is much higher.

We also collect the statistics of class-wise averaged percentage for activated
points from both point-based and sparse voxel-based branch in Fig. 4. On small
objects, the percentage of activated points from the point-based branch is sig-
nificantly higher than the sparse voxel-based branch. For some classes like the
bicyclist, more than 80% of its points are activated on the point branch, which
validates that our observation in Fig. 5 is general.
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Fig. 5. The point-based branch learns to put its attention on small instances (i.e.,
pedestrians, cyclists, traffic signs). Here, the points in red are the ones with the top
5% largest feature norm in the point-based branch. (Color figure online)

6.2 Architecture Search
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Fig. 6. An efficient 3D module (SPVConv) and a well-designed network architecture
(3D-NAS) are equally important to the final performance of our SPVNAS.

In Fig. 6 we show the MACs (Fig. 6a) and latency (Fig. 6b) tradeoff curves on
SemanticKITTI [1]. Manually designed SPVCNN and MinkowskiNets with uni-
form channel shrinking are the baselines. Clearly, a better 3D module (SPVConv)
and a well-designed network architecture contribute equally to the performance
boost. Remarkably, the improvement over MinkowskiNets exceeds 6% mIoU at
110 ms latency. We believe the improvement comes from the non-uniform chan-
nel scaling and depth selection in our 3D-NAS. In the original MinkowskiNets [6]
or SPVCNN, 77% of the total MACs is concentrated on the upsampling stages.
However, this ratio is reduced to 47% to 63% in 3D-NAS, making computation
more balanced and downsampling stages more emphasized.
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Fig. 7. Evolutionary Search has better sample effi-
ciency comparing with Random Search.

We also compare our evo-
lutionary search method with
random architecture search to
prove that the succeed of 3D-
NAS doesn’t entirely come from
the search space. As is shown
in Fig. 7, random architecture
search has poor sample effi-
ciency in our search space: the
best model at the 20th genera-
tion performs even worse than
the best model in the 4th gen-
eration. In contrast, our evolu-
tionary search is capable of pro-
gressively finding better archi-
tecture as iteration increases,
and the final best architecture performs around 4% better than the best one
in the first generation.

7 Conclusion

We present Sparse Point-Voxel Convolution (SPVConv), a novel module for effi-
cient 3D deep learning, especially for small object recognition. With SPVCNN
built upon the SPVConv module, we solve the problem that Sparse Convolution
cannot always keep high resolution representation and that Point-Voxel Con-
volution doesn’t scale up to large outdoor scenes. We then propose 3D-NAS,
the first AutoML method for 3D scene understanding, to greatly improve the
efficiency and performance of SPVCNN. Extensive experiments on outdoor 3D
scene benchmarks demonstrates that SPVNAS models are lightweight, fast and
powerful. We hope that this work will inspire more future research on efficient
3D deep learning model design.

Acknowledgement. We thank MIT Quest for Intelligence, MIT-IBM Watson AI Lab,
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Research Awards for providing the computational resource.

References

1. Behley, J., et al.: SemanticKITTI: a dataset for semantic scene understanding of
LiDAR sequences. In: ICCV (2019)

2. Cai, H., Gan, C., Wang, T., Zhang, Z., Han, S.: Once for all: train one network
and specialize it for efficient deployment. In: ICLR (2020)

3. Cai, H., et al.: AutoML for architecting efficient and specialized neural networks.
IEEE Micro 40(1), 75–82 (2019)

4. Cai, H., Zhu, L., Han, S.: ProxylessNAS: direct neural architecture search on target
task and hardware. In: ICLR (2019)



700 H. Tang et al.

5. Chang, A.X., et al.: ShapeNet: an information-rich 3D model repository. arXiv
(2015)

6. Choy, C., Gwak, J., Savarese, S.: 4D spatio-temporal convNets: minkowski convo-
lutional neural networks. In: CVPR (2019)

7. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale
hierarchical image database. In: CVPR (2009)

8. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI
dataset. IJRR 32(11), 1231–1237 (2013)

9. Graham, B., Engelcke, M., van der Maaten, L.: 3D semantic segmentation with
submanifold sparse convolutional networks. In: CVPR (2018)

10. Guo, Z., et al.: Single path one-shot neural architecture search with uniform sam-
pling. In: ECCV (2020)

11. Han, L., Zheng, T., Xu, L., Fang, L.: OccuSeg: occupancy-aware 3D instance seg-
mentation. In: CVPR (2020)

12. He, Y., Lin, J., Liu, Z., Wang, H., Li, L.J., Han, S.: AMC: autoML for model
compression and acceleration on mobile devices. In: ECCV (2018)

13. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile
vision applications. arXiv (2017)

14. Jiang, L., Zhao, H., Shi, S., Liu, S., Fu, C.W., Jia, J.: PointGroup: dual-set point
grouping for 3D instance segmentation. In: CVPR (2020)

15. Lahoud, J., Ghanem, B., Pollefeys, M., Oswald, M.R.: 3D instance segmentation
via multi-task metric learning. In: ICCV (2019)

16. Lei, H., Akhtar, N., Mian, A.: Octree guided CNN with spherical kernels for 3D
point clouds. In: CVPR (2019)

17. Li, M., Lin, J., Ding, Y., Liu, Z., Zhu, J.Y., Han, S.: GAN compression: efficient
architectures for interactive conditional GANs. In: CVPR (2020)

18. Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: PointCNN: convolution on
X -transformed points. In: NeurIPS (2018)

19. Liu, C., et al.: Progressive neural architecture search. In: ECCV (2018)
20. Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable architecture search. In:

ICLR (2019)
21. Liu, Z., et al.: MetaPruning: meta learning for automatic neural network channel

pruning. In: ICCV (2019)
22. Liu, Z., Tang, H., Lin, Y., Han, S.: Point-voxel CNN for efficient 3D deep learning.

In: NeurIPS (2019)
23. Ma, N., Zhang, X., Zheng, H.T., Sun, J.: ShuffleNet v2: practical guidelines for

efficient CNN architecture design. In: ECCV (2018)
24. Mao, J., Wang, X., Li, H.: Interpolated convolutional networks for 3D point cloud

understanding. In: ICCV (2019)
25. Maturana, D., Scherer, S.: VoxNet: a 3D convolutional neural network for real-time

object recognition. In: IROS (2015)
26. Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms 51(2), 122–144 (2001)
27. Qi, C.R., Chen, X., Litany, O., Guibas, L.J.: ImVoteNet: boosting 3D object detec-

tion in point clouds with image votes. In: CVPR (2020)
28. Qi, C.R., Litany, O., He, K., Guibas, L.J.: Deep hough voting for 3D object detec-

tion in point clouds. In: ICCV (2019)
29. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for

3D classification and segmentation. In: CVPR (2017)
30. Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum pointNets for 3D object

detection from RGB-D data. In: CVPR (2018)



Searching Efficient 3D Architectures with Sparse Point-Voxel Convolution 701

31. Qi, C.R., Su, H., Niessner, M., Dai, A., Yan, M., Guibas, L.J.: Volumetric and
multi-view CNNs for object classification on 3D data. In: CVPR (2016)

32. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learn-
ing on point sets in a metric space. In: NeurIPS (2017)

33. Radosavovic, I., Johnson, J., Xie, S., Lo, W.Y., Dollar, P.: On network design
spaces for visual recognition. In: ICCV (2019)

34. Riegler, G., Ulusoy, A.O., Geiger, A.: OctNet: learning deep 3D representations at
high resolutions. In: CVPR (2017)

35. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2:
inverted residuals and linear bottlenecks. In: CVPR (2018)

36. Shi, S., et al.: PV-RCNN: point-voxel feature set abstraction for 3D object detec-
tion. In: CVPR (2020)

37. Shi, S., Wang, X., Li, H.: PointRCNN: 3D object proposal generation and detection
from point cloud. In: CVPR (2019)

38. Shi, S., Wang, Z., Shi, J., Wang, X., Li, H.: PV-RCNN: point-voxel feature set
abstraction for 3D object detection. In: TPAMI (2020)

39. Stamoulis, D., et al.: Single-path NAS: designing hardware-efficient convNets in
less than 4 hours. In: Brefeld, U., Fromont, E., Hotho, A., Knobbe, A., Maathuis,
M., Robardet, C. (eds.) ECML PKDD 2019. LNCS (LNAI), vol. 11907, pp. 481–
497. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46147-8 29

40. Strubell, E., Ganesh, A., McCallum, A.: Energy and policy considerations for deep
learning in NLP. In: ACL (2019)

41. Su, H., et al.: SPLATNet: sparse lattice networks for point cloud processing. In:
CVPR (2018)

42. Tan, M., et al.: MnasNet: platform-aware neural architecture search for mobile. In:
CVPR (2019)

43. Tan, M., Le, Q.V.: EfficientNet: rethinking model scaling for convolutional neural
networks. In: ICML (2019)

44. Tatarchenko, M., Park, J., Koltun, V., Zhou, Q.Y.: Tangent convolutions for dense
prediction in 3D. In: CVPR (2018)

45. Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.:
KPConv: flexible and deformable convolution for point clouds. In: ICCV (2019)

46. Wang, H., et al.: HAT: hardware-aware transformers for efficient natural language
processing. In: ACL (2020)

47. Wang, K., Liu, Z., Lin, Y., Lin, J., Han, S.: HAQ: hardware-aware automated
quantization with mixed precision. In: CVPR (2019)

48. Wang, K., Liu, Z., Lin, Y., Lin, J., Han, S.: Hardware-centric autoML for mixed-
precision quantization. Int. J. Comput. Vis. 128(8), 2035–2048 (2020). https://doi.
org/10.1007/s11263-020-01339-6

49. Wang, P.S., Liu, Y., Guo, Y.X., Sun, C.Y., Tong, X.: O-CNN: octree-based convo-
lutional neural networks for 3D shape analysis. SIGGRAPH 36(4), 1–11 (2017)

50. Wang, P.S., Liu, Y., Guo, Y.X., Sun, C.Y., Tong, X.: Adaptive O-CNN: a patch-
based deep representation of 3D shapes. SIGGRAPH Asia 37(6), 1–11 (2018)

51. Wang, T., et al.: APQ: joint search for network architecture, pruning and quanti-
zation policy. In: CVPR (2020)

52. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic
graph CNN for learning on point clouds. SIGGRAPH 38(5), 1–12 (2019)

53. Wang, Z., Lu, F.: VoxSegNet: volumetric CNNs for semantic part segmentation of
3D shapes. TVCG (2019)

54. Wu, B., et al.: Fbnet: hardware-aware efficient convnet design via differentiable
neural architecture search. In: CVPR (2019)

https://doi.org/10.1007/978-3-030-46147-8_29
https://doi.org/10.1007/s11263-020-01339-6
https://doi.org/10.1007/s11263-020-01339-6


702 H. Tang et al.

55. Wu, W., Qi, Z., Fuxin, L.: PointConv: deep convolutional networks on 3D point
clouds. In: CVPR (2019)

56. Xu, Y., Fan, T., Xu, M., Zeng, L., Qiao, Y.: SpiderCNN: deep learning on point
sets with parameterized convolutional filters. In: ECCV (2018)

57. Yan, Y., Mao, Y., Li, B.: SECOND: sparsely embedded convolutional detection.
Sensors 18(10), 3337 (2018)

58. Yang, B., et al.: Learning object bounding boxes for 3D instance segmentation on
point clouds. In: NeurIPS (2019)

59. Yang, Z., Sun, Y., Liu, S., Shen, X., Jia, J.: STD: sparse-to-dense 3D object detector
for point cloud. In: ICCV (2019)

60. Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolu-
tional neural network for mobile devices. In: CVPR (2018)

61. Zhou, Y., Tuzel, O.: VoxelNet: end-to-end learning for point cloud based 3D object
detection. In: CVPR (2018)

62. Zhu, Z., Liu, C., Yang, D., Yuille, A., Xu, D.: V-NAS: neural architecture search
for volumetric medical image segmentation. In: 3DV (2019)

63. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In:
ICLR (2017)

64. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures
for scalable image recognition. In: CVPR (2018)



Towards Reliable Evaluation of
Algorithms for Road Network

Reconstruction from Aerial Images

Leonardo Citraro(B), Mateusz Koziński, and Pascal Fua
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Abstract. Existing connectivity-oriented performance measures rank
road delineation algorithms inconsistently, which makes it difficult to
decide which one is best for a given application. We show that these
inconsistencies stem from design flaws that make the metrics insensitive
to whole classes of errors. This insensitivity is undesirable in metrics
intended for capturing overall general quality of road reconstructions.
In particular, the scores do not reflect the time needed for a human to
fix the errors, because each one has to be fixed individually. To provide
more reliable evaluation, we design three new metrics that are sensitive
to all classes of errors. This sensitivity makes them more consistent even
though they use very different approaches to comparing ground-truth
and reconstructed road networks. We use both synthetic and real data
to demonstrate this and advocate the use of these corrected metrics as
a tool to gauge future progress.

1 Introduction

Reconstruction of road networks from aerial images is an old computer vision
problem. It has been tackled almost since the inception of the field in the 1970s [4,
13,26,28]. Yet, it is still open and is addressed by many recent papers [5,6,9,10,
19,21–25,33]. One pitfall however, is that the metrics used to gauge performance
often prove to be inconsistent. It is not unusual for a method to perform well
according to one popular metric and poorly according to another. Trusting to
one single metric can therefore be misleading and can hamper progress.

This situation arises from the fact that assessing the quality of a road graph
is hard. The quality assessment should not only depend on the spatial accuracy
of the reconstructed road centerline but also on the topology of the network
these centerlines form. The first is relatively easy to quantify while the second
is much more difficult and there is no generally accepted way of doing it. This
is because comparing the predicted topology to the ground truth one amounts
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to solving a complex graph-matching problem for which no efficient algorithm
exists. Current topology-aware metrics are therefore hand-crafted to perform a
simplified comparison, with some constraints of the full graph-matching problem
relaxed. They fall into three main categories: the metrics that compare the junc-
tions, or road intersections, in the two graphs, ones that compare the lengths of
the paths connecting random pairs of junctions, and ones that match small sub-
graphs. Unfortunately, as we will show, all these metrics correlate poorly with
the number of topological discrepancies—missed road branches, unwarranted or
missing connections—between the two graphs. This makes it hard to use them
to reason about the number of mistakes present in a reconstruction and the cost
of fixing them.

In this paper, we show that these inconsistencies arise from design flaws in
currently popular metrics and propose ways to fix them. We incorporate these
fixes into three topologically-aware metrics that capture a large range of errors
and balance their contributions in the final score. We show that this makes
them more consistent both with each other and with the number of topological
discrepancies. Our contributions are therefore:

– An in-depth analysis of existing metrics that exposes their lack of sensitivity
to certain types of errors and the resulting lack of consistency when using
them to compare different algorithms.

– Three new measures free from this problem and that we advocate for future
algorithm evaluation.

We make the code for computing our measures publically available. In the
remainder of the paper, we first describe existing metrics and their shortcomings.
We then introduce our new metrics and test them on synthetic and real data.

2 Existing Metrics

Road networks are often represented by graphs whose nodes have a double func-
tion. They serve as control points that enable modeling potentially curvy road
segments and represent road intersections, and end points. Let us assume we are
given a predicted graph and a ground truth graph, whose similarity we want to
assess. Comparing these two networks that are similar, but not identical, is non-
trivial. Doing this in a graph-theoretic way can be viewed as an NP-complete
graph matching problem [30]. In this section, we review strategies commonly
used to circumvent this problem.

One such approach is to first project the graphs to point clouds, by represent-
ing graph edges as sequences of closely spaced points, and then to evaluate the
spatial overlap of these point clouds. Chamfer and Hausdorff measures may be
employed to evaluate the sum and maximum of distances from each point in one
set to its closest point in the second set. However, Chamfer and Hausdorff do not
measure connectivity and are not sensitive to connectivity-oriented errors, like
small gaps in roads, or predicting two closely spaced roads in place of a single

https://www.epfl.ch/labs/cvlab/
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real road. Such errors are common in road network reconstructions from aerial
images, and that is why these metrics are typically not used to evaluate them.

Task-specific measures are used in some problems involving predicting graphs
from images, but they do not generalize to the case of road networks. The DIA-
DEM score [15], used for comparing reconstructions of neuronal morphologies,
relies on the assumption that both graphs have tree-like topologies. The Rand
index [2,14], used for comparing segmentations of neuronal cells in microscopy
images, compares the presence or absence of connections between pixel pairs
in the prediction and annotation. In road lane reconstruction [3,16,17,20], the
evaluation involves comparing the number of predicted lanes to the number of
the annotated ones. These comparisons are not well suited for city-scale road
networks, which form a single connected component with thousands of loops.

In this paper, we focus specifically on metrics for evaluating connectivity
of road networks reconstructed from aerial images. Several metrics have been
developed for this purpose, and they can be classified into four main cate-
gories, depending on whether they are pixel-based, junction-based, path-based,
or subgraph-based. We now review these four classes of existing metrics and
argue that they all ignore particular type of errors.

2.1 Pixel-Based Metrics

Road delineation can be understood as foreground/background segmentation
problem. The quality of the segmentation can be evaluated in terms of the
precision P = |TP|

|PP| and recall R = |TP|
|AP| , where PP is the set of pixels pre-

dicted to be foreground, AP is the set of pixel labeled as foreground, and
TP = PP ∩ AP. When a single number is preferred, either the intersection-
over-union IoU = TP

PP∪AP , or the f1-score F1 = 2/( 1
P + 1

R ) is used.

Correctness/Completeness/Quality (CCQ). To account for the fact that the
position of the pixels estimated to be foreground might be slightly off, the defi-
nitions of precision and recall were relaxed in [29,32] to allow small shifts in pixel
location. correctness is the relaxed precision, completeness the relaxed recall, and
quality is the equivalent of intersection over union.

Discussion. CCQ is adequate to gauge segmentation quality but does not cap-
ture connectivity of the predicted road maps. This makes it insensitive to topo-
logical errors, for example, road breaks smaller than the allowed shift between the
annotation and the prediction. We demonstrate this insensitivity experimentally
in Sect. 4.1. The indifference of the pixel-based metrics to connectivity variations
inspired the creation of the path- and junction-based metrics, described below.

2.2 Path-Based Metrics

The idea behind path-based metrics is that if two graphs are similar, so should
paths connecting any pair of their nodes via a sequence of edges. Edges that
appear in one graph and not in the other result in measurably different paths.
There are two main ways to measure such differences.
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Too Long / Too Short (TLTS). In [31], it was proposed to compare the length
of the shortest path between randomly-chosen but corresponding pairs of nodes
in the predicted and ground-truth networks. Here, and in the metrics that we
describe below, the correspondences are found simply by randomly selecting a
point in one graph and taking its closest point from the other graph. A path in
the predicted graph is classified as correct if its length is within 5% of that of the
path in the ground-truth graph, and as too-long, or too-short otherwise. A path
is marked infeasible if its end points are not connected in the other network. The
percentage of correct paths is used to assess the quality of a delineation and the
other percentages serve to characterize the errors.

Average Path Length Similarity (APLS). The alternative to counting too
long/short paths is aggregating path differences. This has been proposed first
for evaluating road network reconstructions from GPS tracks [1,18] and, more
recently, for image-based reconstructions [12], in the form of the Average Path
Length Similarity score

1 − 1
|P|

∑

(p>,pest)∈P
min

{
1,

|l(p>) − l(pest)|
l(p>)

}
, (1)

where p> is a ground-truth path, pest the corresponding predicted one and l(.)
denotes the path length. The set P is obtained by sampling pairs of points in
one graph, retrieving the corresponding pairs in the other graph, and computing
the shortest paths between them.

Discussion. TLTS and APLS are better at capturing topological differences
than pixel-based scores, but they suffer from major flaws. Since both metrics rely
on the comparison of the length of shortest paths, false positive roads that do
not alter the length of these are completely neglected. Moreover, since paths are
sampled independently, multiple paths from a graph can be compared to a single
path in the other graph. This makes the scores insensitive to the errors made by
predicting one road where many closely spaced roads exist and predicting more
than one road where there is just one, as shown in Fig. 1.

2.3 Junction-Based Metric (JUNCT)

The path-based metrics capture the topological similarity indirectly. A more
direct approach [5], is to compare the degree of corresponding nodes with at
least three incident edges, called junctions. The correspondences are established
greedily by matching closest nodes. For each ground-truth junction v that is
matched to a predicted junction u, the per-junction recall fv,correct is taken to
be the fraction of edges incident on v that are also captured around u. Similarly,
the false discovery rate—one minus precision—fu,error is taken to be the fraction
of edges incident on u that do not appear around v. For unmatched junctions,
fv,correct = 0 and fu,error = 1, respectively. These per-junction scores are then
aggregated



Towards Reliable Evaluation of Reconstructed Road Networks 707

ncorrect =
∑

v∈V
fv,correct , nerror =

∑

u∈U
fu,error ,

Fcorrect =
ncorrect

|V| , and Ferror =
nerror

nerror + ncorrect
,

where |V| is the number of ground-truth junctions.

Discussion. The main issue with JUNCT is that it only accounts for nodes with
three or more incident edges. This disregards what happens at road end points
and makes the metric insensitive to interruptions in predicted networks. In other
words, a predicted network where all the roads are broken in the middle still
receives a perfect score. Moreover, a node that lacks k − 2 out of its k incident
edges is penalized more than any other, because it is no longer considered a
junction. This amounts to saying that a road junction with only two correctly
predicted incident roads is completely misclassified, a conclusion that is hard
to justify. The top of Fig. 2 illustrates this problem: An edge is missing from a
junction with three incident edges, which results in ncorrect = 0

3 instead of 2
3 .

2.4 Subgraph-Based Metric (SUBG)

In [7], it is suggested to compare the sets of locations accessible by traveling a
predefined distance away from corresponding points in two graphs. To this end, a
starting location is randomly selected in the ground truth network, and its closest
point in the predicted network is identified. Then, local subgraphs are extracted
by a breadth-first exploration of the graphs away from the starting locations.
The computation of the score is based on spatial coincidence of ‘control points’
inserted at regular intervals to the subgraphs. A control point is considered to
be matched, or a true positive, if it lies sufficiently close to a control point in
the other network. Unmatched control points in the predicted, and annotated
subgraphs are treated as false positives and false negatives, respectively. Sam-
pling and matching of local subgraphs is repeated many times, and precision and
recall are computed from the total counts of matched and unmatched control
points.

Discussion. As the starting point is always sampled from the ground truth
network, the false positive roads that are sufficiently far from any ground truth
road are not covered by control points. In consequence, SUBG is not sensitive to
such errors. Moreover, since multiple control points of the ground truth network
can be matched to the same control point in the prediction, errors consisting in
predicting just one instead of two closely spaced roads go unnoticed.

2.5 Summary

One might imagine that the metrics were deliberately designed to expose some
errors and suppress the others in the interest of some specific application. How-
ever, no trace of such intentions can be found in the original publications. All the
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ground truth

predicted

length diff.

final score

ground truth

predicted

path precision

final score

(a) The existing path length statistics TLTS, APLS.
Both sampled paths (green) and their matches (cyan)
overlap. As a result, the scores do not capture the differ-
ence between the networks.

(b) Our new path-based score (OPT-P). Paths do not
overlap and the score captures the difference between the
networks.

Fig. 1. A comparison of (a) the existing path-based statistics and (b) our new path
score. Three paths are sampled from the predicted network (overlayed in green), and
matched to the ground truth network (the matching chains are highlighted in cyan).
The unmatched parts of the paths are highlighted in red. Removed parts of the networks
are shown in dotted gray. See Sect. 2.2 for the definition of the APLS and TLTS and
Sect. 3.1 for OPT-P. (Color figure online)

studied metrics were proposed for general-purpose evaluation of road network
reconstructions, their insensitivity was never reported before, and seems to be
an artifact of relaxing the underlying graph-matching problem to independent
comparison of junctions, paths, and subgraphs. In many cases, the insensitivity
is not immediately obvious from the design of the metric alone, and in Sect. 4.1
we propose a benchmark dataset for exposing it. In Sect. 3, we show that these
flaws can be removed by careful metric design.

3 New Metrics

In Sect. 2, we identified weaknesses of existing metrics that make them insensitive
to whole classes of errors, such as producing unwarranted breaks and spurious
roads, or merging parallel but distinct roads. Here, we introduce new metrics
that are sensitive to all these errors.

3.1 Path-Based Metric (OPT-P)

In Sect. 2.2 we argued that TLTS [31] and APLS [12] are insensitive to false
positive predictions that do not affect the length of the shortest paths, for exam-
ple, ones that run close to other predicted roads. We illustrate such a case in
the left part of Fig. 1. We therefore introduce a new path-based metric OPT-P,
not affected by this insensitivity. It involves computing RP , which can loosely
be interpreted as path recall, and PP , which plays the role of path precision.
In contrast to earlier metrics, we do not sample or match paths independently.
Instead, we ensure that no two paths sampled from a graph share the same edges,
and that any two sampled paths are matched to two disjoint sets of edges in the
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other graph. Moreover, when matching a pair of paths, we not only compare
their lengths, as done in existing metrics, but also ensure that their trajectories
run close in the image. This makes PP sensitive to the types of false positive
road predictions that the TLTS and APLS miss.

More precisely, we developed an iterative path sampling and matching
scheme. To compute recall, we iteratively sample a path from the ground truth
network and match it to the predicted network. Using the match, we compute
our measure of connectivity as described in the next paragraph. We then remove
the sampled path from the ground-truth network to ensure that no two paths
share the same edges. We also remove the matched edges from the predicted net-
work in order to guarantee that no edge from the predicted network is matched
to two different paths. We iterate until one of the networks has no more edges.
Figure 1 illustrates this process. Precision is computed similarly, but the roles of
the networks are exchanged.

Matching a path π to a graph is performed using the Viterbi algorithm, and
more details of this procedure can be found in the appendix. If possible, the path
is projected to a chain of connected graph nodes. If the whole path cannot be
matched to a single chain due to disconnections in the predicted graph, its sub-
paths are still matched to connected chains whenever possible. This matching
induces a partitioning of the path π into a set of segments S(π), such that each
s ∈ S(π) maps to a different chain. If the path π exists in the graph and has
no disconnections, S(π) contains only one segment. In case of disconnections
|S(π)| > 1 and |S(π)| = 0 if π does not exist in the graph.

To compute PP and RP , we use the matched segments S(π) to estimate
the probability that a sub-path of π, with end points selected randomly and
with uniform probability along π, is connected in the target network. The sub-
path is connected in the target network only if its both end-points lie on the
same path segment s. The probability of such event is Pπ =

∑
s∈S l(s)2

l(π)2 , where
l(.) denotes path length. Note that, if the matched path is entirely connected,
then |S(π)| = 1, and this probability is Pπ = 1. When the matched path has
disconnections, |S(π)| > 1 and Pπ < 1 . We define path recall as the average of
these probabilities over all paths π ∈ Π sampled from the ground truth network
RP = 1

|Π|
∑

π∈Π Pπ. The path precision PP is computed according to the same
formula, but with paths sampled from the predicted network and matched to
the ground truth one.

3.2 Junction-Based Metric (OPT-J)

As discussed in Sect. 2.3, the junction score JUNCT [5] is insensitive to road
interruptions and excessively penalizes junctions that lack k−2 out of k incident
edges. To address these shortcomings, we propose a new junction score OPT − J,
including the junction precision PJ and recall RJ . As for JUNCT, computing
OPT − J involves matching feature nodes in the two networks and comparing
the numbers of edges incident on them. Unlike in JUNCT, where the set of
features comprises only junctions – nodes with at least three incident edges – we
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Fig. 2. A comparison of the existing junction score (a) to our junction score (b). Feature
points are marked as black dots, matches in green and unmatched features in red. For
readability, we only consider the features on the horizontal lines, and assume the vertical
lines continue indefinitely. Candidate and actual edge matches are depicted by hollow
nodes. Unmatched hollow nodes are not penalized. See Sect. 2.3 for the definition of
JUNCT and Sect. 3.2 for the definition OPT-J. (Color figure online)

use both junctions and endpoints as features. Moreover, we enable matching a
feature of one graph not only to a feature of the other graph, but also to any point
on its edge. This gives our metric the desired sensitivity to unwarranted road
breaks and prevents excessively penalizing specific patterns of missing edges.
Figure 2 illustrates the differences between JUNCT and OPT − J.

We denote a match by (i, j), where i belongs to the ground truth and j to
the predicted graph, and both are features, or one of them is a feature, and the
other is its closest point on an edge. We perform greedy matching with the cost
of a match cij = αdij + |oi − oj |, where oi is the number of edges incident on
i if i is a feature and by convention oi = 2 if i is a point on an edge. dij is the
distance between i and j. α is a parameter of the score. We only allow a feature
to be matched once, but we do not constrain the number of features matched
to a single edge. We only consider matches (i, j) such that i and j are within a
predefined small distance dmax.

We denote the set of matches M , the sets of unmatched ground truth fea-
tures by F−

gt and the set of unmatched predicted features by F−
est. We estimate

the number of true positive incident edges as TPJ =
∑

(i,j)∈M min{oi, oj}, the
number of predicted edges as PPJ =

∑
(i,j)∈M oj +

∑
j∈F −

est
oj , and the num-

ber of ground truth edges as APJ =
∑

(i,j)∈M oi +
∑

i∈F −
gt

oi. We compute the

precision and recall as PJ = TPJ

PPJ
and RJ = TPJ

APJ
.

3.3 Subgraph-Based Metric (OPT-G)

In Sect. 2.4 we have exposed the lack of sensitivity of the local graph comparison
SUBG [7] to false positive roads that are far away from ground truth roads
and to errors involving missing one of several closely spaced roads. To remove
this lack of sensitivity, we propose a new score OPT-G. Like SUBG, OPT-
G is based on comparing sets of graph locations accessible by traveling a short
distance in the graph from a randomly selected starting point. To prevent distinct
roads that parallel each other closely from being matched to a single one in the
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existing SUBG proposed OPT-G

Fig. 3. The difference between the existing subgraph-based score SUBG and our
subgraph-based score OPT-G. A single starting point is shown in both the predicted
network (as filled blue circle) and the ground truth networks (as a filled green circle).
The networks are drawn with dashed gray and solid black lines, respectively. All the
control points in the ground truth network (hollow green circles) are within a match-
ing distance (visualized with light blue disks) from the control points in the predicted
network (hollow blue circles). This makes the existing score insensitive to the missing
road. In our score, the matching is one-to-one (visualized by light blue lines). In result,
some of the control points remain unmatched (marked in red), which gives the score
sensitivity to the missing road. (Color figure online)

other graph, we force the matching to be one-to-one. In addition, unlike in the
old score, we sample the starting points both in the ground-truth and predicted
graphs, which makes the score sensitive to false positive, as shown in Fig. 3.

To compute the score, we iteratively sample a starting point in one of the
graphs. We then find its closest point in the other graph. Using breadth-first
graph traversal, we crop out subgraphs accessible by traveling a predefined dis-
tance from the starting points. Control points are inserted at equal intervals
during the traversal. We then perform a one-to-one matching of control points
from the two graphs by the Hungarian algorithm, with the cost of matching two
points equal to the Euclidean distance between them. Only points within a pre-
defined distance are matched. Calculation of the score is based on the number
of matched and unmatched control points. We define subgraph-based precision
as PG = TPG

PPG
and subgraph-based recall as RG = TPG

APG
, where TPG is the total

number of matched control points, PPG is the number of control points in the
predicted graph and APG is the number of control points in the ground truth
graph.

4 Experiments

In this section, we first use synthetic data to compare the behavior of the current
and new performance metrics. We will show that current ones are insensitive to
certain types of errors, while ours capture all of them. We then evaluate all the
metrics on real data and use them to compare state-of-the-art road reconstruc-
tion methods.
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Fig. 4. Example pairs of road networks from the benchmark dataset.

4.1 Synthetic Data

We created a synthetic benchmark dataset from crops of road networks from [5].
Its purpose is to enable the analysis of the responses of the metrics to varying
numbers of errors of a single type, for different types of errors.

We formed the dataset by duplicating the selected crops to emulate pairs of
‘ground truth’ and ‘predicted’ networks. We then perturbed the graphs by intro-
ducing a controlled number of errors that are representative of those encountered
in practice.

– Interruptions: Unwarranted breaks in roads.
– Overconnections: Spurious additional roads connecting randomly selected

pairs of points.
– Perturbations: displacing graph nodes from their true locations without dis-

connecting the roads.
– Doubled roads: Spurious copies of road segments shifted slightly and con-

nected to the originals.
– Doubled roads-ground truth: Same as above, but the copies are added to the

ground-truth, to emulate roads missing from the prediction.
– False positives far away from true roads: To simulate them, we removed part

of the ground truth while keeping the prediction unchanged.

Figure 4 depicts example graphs from our dataset. As shown in Fig. 7, similar
errors appear in real reconstructions. In Fig. 5, we plot the behavior of all the
metrics as a function of the number of perturbations. If a metric is sensitive to
a particular kind of error, the curve will exhibit a large slope. By contrast, if the
metric is insensitive to that kind of error, the curve will be flat. Note that the
curves for our new metrics are never flat, which indicates that are adequately
sensitive to all the kinds of errors listed above. Unfortunately, this cannot be
said of the existing metrics.
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Fig. 5. Sensitivity of the existing and the new scores to different types of errors. The
plots that exhibit lack of sensitivity are outlined in red. Our proposed metrics do not
exhibit any of such insensitivity. See Sect. 4.1 for details. Best viewed in color.

4.2 Real Data

We now turn to the recent road delineation algorithms, and analyze their pre-
dictions for the publicly available Roadtracer [5] and DeepGlobe [11] datasets.
To do so we used publicly available algorithms implementations, and ones whose
authors kindly shared with us the delineation results:
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Fig. 6. This work was inspired by the observation that existing metrics are inconsistent.
We compared road reconstruction algorithms in pairs, by visualizing the differences
of their scores for each city of the RoadTracer test set.Bars extending to the right
express preference for the first delineation method and ones extending to the left for
the second. The results produced by our metrics (bottom) are far more consistent
than ones produced by existing metrics (top). While, for a single pair of methods, it
is possible to pick a triplet of existing metrics that give roughly consistent results, we
show in Fig. 8 that their correlation is much weaker than for our scores.

– Segmentation. Segmentation-based approach where the output probability
map is thresholded and skeletonized. We use the prediction provided in [5]
for the Roadtracer dataset and our own implementation of UNet [27] for
DeepGlobe.

– RoadTracer. Iterative graph construction where node locations are selected
by a CNN [5].

– Seg-Path. Unified approach to segmenting linear structures and classifying
potential connections. [24]

– DeepRoad. Image segmentation followed by post-processing focused at fixing
missing connections [21].

– RCNNUNet. Recursive image segmentation with post-processing for graph
extraction [33].

– MultiBranch. A recursive architecture co-trained in road segmentation and
orientation estimation [6].

– LinkNet. An encoder-decoder architecture [8] co-trained in segmentation and
orientation estimation [6].

Comparing Reconstruction Methods. A performance measure is meant to be used
to compare methods and, ultimately, to decide which one is best. In this section,
we show that this is difficult to do using existing metrics because they tend to
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Fig. 7. Crops of a road network of (left) Pittsburgh and (right) Montreal and
their reconstructions from aerial images. Left : Predictions by seg-path [24] and rcnn-
unet [33]. Right : Predictions by roadtracer and segmentation both provided by [5]
Bottom: Differences of the metrics for the two reconstructions.

Fig. 8. Analysis of the correlations. Left : A matrix of correlations of the scores com-
puted for the maps reconstructed by different methods on the roadtracer dataset. The
correlation coefficients of the old scores are outlined in green, the correlation coefficients
of the new scores in blue. Right : The average correlation of all possible existing score
triplets (blue bars) against the average correlation of the three new scores (dashed red
line). Our metrics show better correlation than the existing ones. (Color figure online)

return different rankings. By contrast, ours are far more consistent. To show
this, we performed the following experiment.

For each individual metric, we computed the differences of the scores it
returns for two different delineation methods in a specific city of the RoadTracer
dataset. These differences are depicted in Fig. 6 by colored bars that extend to
the left when the score of the first method is higher than that of the second and
to the right otherwise. It is almost impossible to discern a clear pattern at the
top of the figure where we plotted the bars corresponding to the existing metrics.
By contrast, our metrics deliver a far clearer picture.
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Table 1. Values of the existing and the new scores computed for road networks recon-
structions by different methods on the RoadTracer and DeepGlobe datasets. Our scores
rank the methods much more consistently.

Existing scores New scores

CCQ TLTS APLS JUNCT SUBG OPT-P OPT-J OPT-G

�dataset corr. comp. qual. corr. 2l+2s Fcor Ferr f1 f1 pre. rec. f1 pre. rec. f1 f1

RoadTracer Roadtracer [5] 0.681 0.615 0.478 0.422 0.174 0.595 0.763 0.129 0.812 0.710 0.597 0.458 0.519 0.801 0.758 0.779 0.683

Segmentation [5] 0.775 0.649 0.546 0.346 0.190 0.625 0.728 0.137 0.782 0.704 0.645 0.488 0.556 0.820 0.760 0.788 0.690

Seg-path [24] 0.647 0.755 0.535 0.483 0.137 0.678 0.925 0.355 0.754 0.688 0.443 0.581 0.503 0.649 0.882 0.748 0.662

DeepRoadMapper [21] 0.842 0.474 0.435 0.071 0.235 0.243 0.422 0.203 0.514 0.477 0.651 0.271 0.383 0.822 0.524 0.640 0.482

RCNN-Unet [33] 0.830 0.719 0.626 0.291 0.353 0.594 0.723 0.120 0.790 0.729 0.672 0.510 0.580 0.827 0.759 0.792 0.707

DGlobe LinkNet [6] 0.778 0.803 0.653 0.632 0.107 0.660 0.682 0.234 0.722 0.819 0.727 0.761 0.744 0.782 0.793 0.787 0.789

MultiBranch [6] 0.804 0.826 0.687 0.684 0.101 0.699 0.734 0.185 0.773 0.843 0.740 0.792 0.765 0.805 0.810 0.807 0.813

Segmentation [27] 0.545 0.841 0.495 0.720 0.138 0.618 0.941 0.542 0.616 0.787 0.520 0.859 0.648 0.582 0.872 0.698 0.724

A possible interpretation of this result is that some type of problems are
encountered more often in specific cities. As the existing metrics are more sen-
sitive to some kinds of errors than others, that would explain the discrepancies.
This would not necessarily be an issue if the metrics were designed to measure
different, possibly uncorrelated, qualities of interest. However, they are typi-
cally used as overall quality measures and to demonstrate the advantage of one
method over the others. In this context their inconsistency is an issue, and the
greater consistency of our proposed measures is a distinct advantage.

In Fig. 7, we visualize fragments of two predicted networks. The scores on the
bottom of the figure show the comparison by the existing scores is inconclusive.
As we have seen in the benchmark experiment, APLS and TLTS are insensitive
to overconnections therefore they positively react to overconnected graphs as
seg-path predictions. On the other hand, OPT-P, which is based on the same
principle, takes spurious roads into account and agree with the other metrics. In
term of cost of fixing the errors, an operator would spend more time removing
spurious roads from seg-path than by adding the missing connection in rcnn-unet.
More visual comparisons are provided in the supplementary material.

Correlation Analysis. In contrast to the consistency analysis we just discussed we
now turn to compare correlations between the various metrics. On the left side of
Fig. 8 we show the correlations between pairs of scores on the RoadTracer dataset
and on the right side we compare the average correlation of all possible triplets
of existing metrics to that of our three new scores. To evaluate the consistency
of a score triplet, we average correlations for all pairs within the triplet. Either
way, it can be seen that our metrics are far more correlated among themselves
than any pair of triplet of the other ones.

Comparing State-of-the-Art Methods. We now use both existing and new met-
rics to compare state-of-the-art road reconstruction methods. As can be seen in
Table 1, on the RoadTracer dataset, existing metrics favor RoadTracer, RCN-
NUNet, or Seg-Path. By contrast, the proposed metrics consistently point to
RCNNUNet. Moreover, all of them rank Segmentation second and Seg-Path and
RoadTracer compete for the third place with very similar scores in all our met-
rics. As seen in the bottom part of Table 1 this also holds for the DeepGlobe data.



Towards Reliable Evaluation of Reconstructed Road Networks 717

The existing scores are less inconsistent than for the RoadTracer dataset, with
TLTS favoring segmentation while other scores prefer MultiBranch, but our met-
rics all agree on MultiBranch. Note also that precision- and recall-related scores
for OPT-J and OPT-P show recurring patterns whereas CCQ and JUNCT
do not.

5 Conclusion

We were surprised to discover that all the existing scores for evaluation of road
network reconstructions suffer from design faults that make them insensitive to
particular types of errors. Our experiments show that the concerns this rises
about the reliability of evaluation by means of these scores are justifiable –
one could overturn the results of a study by carefully selecting the score used
for evaluation. We have demonstrated that correcting the flaws of the existing
metrics leads to improved consistency – our three new metrics are much more
coherent than the old ones, despite the fact that each of them is computed in a
different way.

We have focused on road network reconstructions, but the proposed scores
can be used for comparing any curvilinear networks.
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Foundation.

References

1. Ahmed, M., Fasy, B., Hickmann, K., Wenk, C.: A path-based distance for street
map comparison. ACM Trans. Spat. Algorithms Syst. 1(1), 31–328 (2015)

2. Arganda-Carreras, I., et al.: Crowdsourcing the creation of image segmentation
algorithms for connectomics. Front. Neuroanat. 9, 142 (2015)

3. Bai, M., Máttyus, G., Homayounfar, N., Wang, S., Lakshmikanth, S., Urtasun, R.:
Deep multi-sensor lane detection. In: CoRR abs/1905.01555 (2019)

4. Bajcsy, R., Tavakoli, M.: Computer recognition of roads from satellite pictures.
IEEE Trans. Syst. Man Cybern. SMC 6(9), 623–637 (1976)

5. Bastani, F., et al.: Roadtracer: automatic extraction of road networks from aerial
images. In: Conference on Computer Vision and Pattern Recognition (2018)

6. Batra, A., Singh, S., Pang, G., Basu, S., Jawahar, C., Paluri, M.: Improved road
connectivity by joint learning of orientation and segmentation. In: Conference on
Computer Vision and Pattern Recognition, June 2019

7. Biagioni, J., Eriksson, J.: Inferring road maps from global positioning system
traces: survey and comparative evaluation. Trans. Res. Rec. J. Trans. Res. Board
2291(1), 61–71 (2012)

8. Chaurasia, A., Culurciello, E.: Linknet: exploiting encoder representations for effi-
cient semantic segmentation. In: CoRR abs/1707.03718 (2017)

9. Cheng, G., Wang, Y., Xu, S., Wang, H., Xiang, S., Pan, C.: Automatic road detec-
tion and centerline extraction via cascaded end-to-end convolutional neural net-
work. IEEE Trans. Geosci. Remote Sens. 55(6), 3322–3337 (2017)



718 L. Citraro et al.

10. Chu, H., et al.: Neural turtle graphics for modeling city road layouts. In: Interna-
tional Conference on Computer Vision (2019)

11. Demir, I., et al.: DeepGlobe 2018: a challenge to parse the earth through satellite
images. In: Conference on Computer Vision and Pattern Recognition, June 2018

12. Etten, A.V., Lindenbaum, D., Bacastow, T.: Spacenet: a remote sensing dataset
and challenge series. CoRR abs/1807.01232 (2018)

13. Fischler, M., Tenenbaum, J., Wolf, H.: Detection of roads and linear structures in
low-resolution aerial imagery using a multisource knowledge integration technique.
Comput. Vis. Graph. Image Process. 15(3), 201–223 (1981)

14. Funke, J., et al.: Large scale image segmentation with structured loss based deep
learning for connectome reconstruction. IEEE Trans. Pattern Anal. Mach. Intell.
41(7), 1669–1680 (2018)

15. Gillette, T., Brown, K., Ascoli, G.: The DIADEM metric: comparing multiple
reconstructions of the same neuron. Neuroinformatics 9, 233–245 (2011)

16. Homayounfar, N., Ma, W., Lakshmikanth, S., Urtasun, R.: Hierarchical recurrent
attention networks for structured online maps. In: Conference on Computer Vision
and Pattern Recognition, pp. 3417–3426 (2018)

17. Homayounfar, N., Ma, W., Liang, J., Wu, X., Fan, J., Urtasun, R.: DAGMap-
per: learning to map by discovering lane topology. In: International Conference on
Computer Vision, October 2019

18. Karagiorgou, S., Pfoser, D.: On vehicle tracking data-based road network gener-
ation. In: Proceedings of the 20th International Conference on Advances in Geo-
graphic Information Systems, pp. 89–98 (2012)

19. Li, Y., Zhang, X., Chen, D.: CSRNet: dilated convolutional neural networks for
understanding the highly congested scenes. In: Conference on Computer Vision
and Pattern Recognition (2018)

20. Liang, J., Homayounfar, N., Ma, W., Wang, S., Urtasun, R.: Convolutional recur-
rent network for road boundary extraction. In: Conference on Computer Vision
and Pattern Recognition, pp. 9512–9521 (2019)

21. Máttyus, G., Luo, W., Urtasun, R.: DeepRoadMapper: extracting road topology
from aerial images. In: International Conference on Computer Vision, pp. 3458–
3466 (2017)

22. Mnih, V.: Machine Learning for Aerial Image Labeling. Ph.D. thesis, University of
Toronto (2013)

23. Mnih, V., Hinton, G.E.: Learning to detect roads in high-resolution aerial images.
In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol.
6316, pp. 210–223. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-15567-3 16
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3 LTCI, Télécom Paris, Institut Polytechnique de Paris, Palaiseau, France

4 Fondazione Bruno Kessler, Trento, Italy

Abstract. Continual Learning (CL) aims to develop agents emulating
the human ability to sequentially learn new tasks while being able to
retain knowledge obtained from past experiences. In this paper, we intro-
duce the novel problem of Memory-Constrained Online Continual Learn-
ing (MC-OCL) which imposes strict constraints on the memory overhead
that a possible algorithm can use to avoid catastrophic forgetting. As
most, if not all, previous CL methods violate these constraints, we pro-
pose an algorithmic solution to MC-OCL: Batch-level Distillation (BLD),
a regularization-based CL approach, which effectively balances stabil-
ity and plasticity in order to learn from data streams, while preserving
the ability to solve old tasks through distillation. Our extensive exper-
imental evaluation, conducted on three publicly available benchmarks,
empirically demonstrates that our approach successfully addresses the
MC-OCL problem and achieves comparable accuracy to prior distillation
methods requiring higher memory overhead (Code available at https://
github.com/DonkeyShot21/batch-level-distillation).

Keywords: Continual Learning · Online learning · Memory efficient

1 Introduction

A well-known problem in deep learning is the tendency of Deep Neural Networks
(DNNs) to catastrophically forget the knowledge acquired from old tasks when
learning a new task. Differently from humans, who have the natural ability to
selectively retain knowledge obtained through past experience when facing a new
problem or task, a DNN, trained on a given data distribution, tends to be dras-
tically affected when new training data drawn from a different distribution are
provided, losing the ability to solve the past task(s). Continual Learning (CL) [17]
investigates this stability-plasticity dilemma: how can a DNN be adapted to solve
a new task without losing the ability to deal with previously seen tasks?
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Fig. 1. Illustration of the proposed Memory-Constrained Online Continual Learning
setting, where two constraints should be satisfied: (1) No information should be trans-
ferred between data batches and between tasks; (2) No memory can be allocated for
auxiliary networks or network expansions.

Due to the relevance of its applications, in the last few years, the computer
vision research community has put considerable effort into developing CL meth-
ods. Previous work in the field can be categorized according to the strategy used
to mitigate catastrophic forgetting [17]. Replay-based methods [5,13,26,31], for
instance, alleviate forgetting by storing old data or synthesizing virtual sam-
ples from the past. Parameter-isolation approaches [22,28] dedicate specific por-
tions of the network parameters to each task. Finally, regularization-based meth-
ods [1,8,15,20] introduce additional regularization terms in the loss function to
encourage the stability of the network with respect to the previous tasks. Specif-
ically, regularization may be obtained using a distillation-like [12] approach or
enforcing a prior on the model parameters. In the first case, the network is
encouraged to keep the predictions consistent with respect to the old tasks [20].
Prior-based methods, on the other hand, estimate and store a prior on the param-
eter distribution which indicates the importance of each parameter with respect
to the old tasks [15].

Online Learning (OL) studies optimization methods which can operate with
a stream of data: learning goes on as the data are collected [9,17]. A typical appli-
cation of OL are those scenarios in which training data cannot be stored (e.g.,
due to memory restrictions or data privacy concern). While classic OL assumes
i.i.d. data sampling over a single task, in this paper we deal with Online Con-
tinual Learning (OCL), where data are provided with a sequential stream and
the data distribution undergoes drastic changes when a new task is introduced.
Previous works in this field [3,4] mainly focus on the task-free scenario, in which
no task-boundary information is provided. However, the solutions they propose
rely on either a buffer or a generator to replay data from previous time steps.
On the one hand, the buffer-based solution violates a strict online regime, where
training data from past time steps should be discarded. On the other hand,
a generator network involves a big memory and computational overhead that
needs to be allocated on purpose.
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Conversely, in this paper, we introduce a novel problem, Memory-Constrained
Online Continual Learning (MC-OCL), where we impose strict memory con-
straints during the course of training. Specifically, we want to minimize the
memory overhead, while preserving the utility of the network. This implies the
network to discard all the unnecessary information for inference. Specifically, we
argue that a memory-efficient OCL approach should satisfy the two conditions
(see Fig. 1): (1) No information should be passed from a generic time step s to
time step s + 1, except the network itself; (2) No memory can be allocated for
network expansions or dedicated as auxiliary networks. Note that constraint (1)
does not only imply that each batch is treated independently but also excludes
information pass through subsequent tasks. The proposed constraints are partic-
ularly relevant for those application scenarios in which the network is deployed
on devices with small memory footprint (e.g. robots or smartphones) or in which
past images cannot be stored due to privacy issues.

Currently, existing CL solutions cannot deal with the proposed MC-OCL
scenario. In fact, replay-based methods [13,24,26] need to either explicitly store
(part of the) training samples (violating constraint (1)) or to train an ad-hoc
generator network (violating constraint (2)). Even regularization-based methods
using distillation [8,20] either need to store the model output probabilities (vio-
lating constraint (1)) or task-specific networks (violating constraint (2)) in order
to produce distillation information on the fly. Finally, parameter-isolation based
methods [22,28] which select a subset of the network parameters for each task,
assume that task-specific information (e.g. mask in [22]) can be transferred from
different tasks and do not perform data stream processing on a mini-batch basis
(violating constraint (1)).

In this paper, we propose a conceptually simple yet empirically powerful solu-
tion to the MC-OCL problem called Batch-level Distillation (BLD), in which
distillation information is re-generated at each time step without violating con-
straint (1). Our approach is articulated into two main phases. In the first stage,
the warm-up, data of the current batch are exploited to perform a first gradient
descent step minimizing the cross-entropy loss over the new task classifier. The
predictions of the old task classifiers are stored in a probability bank that is
required in the second stage, referred to as joint training. In this stage, both
the distillation and the new task learning are performed, adopting a dynamic
weighting strategy that uses the gradient norm computed in the warm-up stage.
We extensively evaluate the proposed solution on three widely-used benchmarks:
MNIST [18], SVHN [23] and CIFAR10 [16]. Our results demonstrate that BLD
achieves comparable accuracy to state of the art distillation methods despite the
imposed memory constraints.

To summarize, our contributions are the following:

• We introduce a realistic yet challenging OCL setting which operates under
extreme memory constraints (MC-OCL).

• We propose the notion of Batch-level Distillation (BLD) as a viable solution
to the MC-OCL problem.
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• An extensive empirical study is carried out which confirms the effective alle-
viation of forgetting despite the strict memory constraints.

2 Related Work

Over the past few years, Continual Learning [15,17] has received increased inter-
est in computer vision. Indeed, CL is highly relevant for several applications.
For instance, for object recognition it is very desirable to dispose of deep models
which are able to recognize new object classes, while retaining their knowledge on
the categories they have been originally trained for. Previous CL methods can be
roughly categorized into three main groups [17]: regularization-based [1,8,15,20],
parameter-isolation based [22,28] and replay-based [13,24,26] methods.

Data-focused regularization-based methods [8,20] develop from the idea of
applying the distillation paradigm [12] to prevent catastrophic forgetting. One of
the earlier approaches in this category is Learning without Forgetting (LwF) [20],
where a distillation loss is introduced to preserve information of the original
classes considering the output probabilities. LwF exploits data from the original
classes during training when the classifier is trained to recognize novel cate-
gories. Recently, the concept of distillation has been extended to attention and
segmentation maps [6,8].

Prior-focused regularization-based methods [1,15] consider the network
parameter values as a source of knowledge to be transferred and operate by
penalizing changes of parameters relevant for old tasks when learning on the
new task. These approaches mostly differ in the way parameter relevance is
computed. A prominent work in this category is Elastic Weight Consolidation
(EWC) [15], where parameter update rules are obtained approximating the pos-
terior as a Gaussian distribution. Differently, Aljundi et al. propose Memory
Aware Synapses (MAS) [1], an approach that estimates the network weight
importance using small perturbations of the parameters.

Parameter-isolation based approaches [22,28] address catastrophic forgetting
by allocating specific model parameters to each task. For instance, in [22] a fixed
architecture is considered and parts that are specific for some previous tasks are
masked out while training on novel tasks. Rusu et al. [28] proposed Progressive
Neural Networks (PNNs), a framework which transfers across sequences of tasks
by retaining a pool of pre-trained models and learning connections in order to
get useful features for the novel task.

Replay-based methods alleviate catastrophic forgetting by either storing [5,
13,26,31] or by artificially generating [24,29] images of previous tasks, often
referred to as exemplars. Based on this idea Rebuffi et al. propose ICARL where
a strategy to select exemplars in combination with a distillation loss is intro-
duced. Subsequent works [7,31] further analyze exemplars selection strategies.
Differently, other works [24,29,30] propose to employ generative networks to gen-
erate synthetic data of old tasks. However, these methods significantly depend
on the network capacity and struggle to generate high-quality images.
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Our approach belongs to the category of data-focused regularization-based
methods, as it also attempts to counteract catastrophic forgetting through distil-
lation. However, differently from previous methods we focus on an online setting
where no information is passed through different tasks and batches.

Recently, few works in CL have considered an online CL setting [2–4,19].
However, they mostly focus on task-free continual learning, developing method-
ologies to automatically detect task boundaries and address the online learn-
ing problem benefiting from specific buffers. Our work develops with a differ-
ent perspective as we aim to design an OCL framework maintaining memory
requirements at minimum, thus assuming that no information is retained when
processing the next batch in the data stream.

Finally, MER [27] and OML [14] are two recent meta-learning approaches to
continual learning. However, the former needs a very large buffer (1k samples
per task). On the other hand, OML, does not require any buffer, but works with
very short tasks, while we use much larger datasets. Also, OML is based on an
offline meta-pretraining, while we train the whole network from scratch.

3 Memory-Constrained Online Continual Learning

3.1 Problem and Notation

Without loss of generality, a typical CL scenario can be formalized assuming a
set T = {T1, ..., Tn} of n different tasks, where each task is characterized by a
different joint probability distribution Pt of the raw images x ∈ Xt and the class
labels y ∈ Yt. During time t, a new task Tt is presented to the DNN (see Fig. 2)
and the goal is to learn Tt without catastrophically forgetting T1, ...Tt−1. Note
that not only the set of images Xt is task-specific, but so is the corresponding
set of possible labels Yt. Following common practice in CL literature, we assume
that the task-change event is known, and when a new task Tt+1 arrives we
ask the network to learn to classify the new images according to Yt+1, being
simultaneously able to solve the old tasks.

In this paper, we assume that our classification network is composed of a
backbone, the feature extractor Ψ , and multiple heads Φ = {φ1, . . . , φn}, where
the t-th head φt is composed of a linear classifier with a softmax activation
which computes task-specific classification probabilities over Yt. In addition, φt

also accepts an optional temperature parameter τ .
In the proposed MC-OCL setting the memory overhead must be kept at

minimum. To fulfill this requirement we set several constraints. We impose that,
when learning a new task Tt, the only memory overhead are the parameters
of each task-specific classifier φt, while Ψ is shared over all the tasks and no
other high-capacity network can be used to solve the CL problem (constraint
(2)). In addition, it is reasonable to suppose that the complete dataset of the
task cannot fit in memory. Consequently, standard batch training procedures
consisting in observing several times each sample cannot be applied. Training
must be addressed following an online formulation. More precisely, we assume
that only a mini-batch of data B associated with task Tt is available at every
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 Stage  Stage

...
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Fig. 2. Overview of BLD : considering the current batch B, we proceed in two stages.
In the warm-up stage, we perform a first gradient descent step minimizing the cross-
entropy loss over the new task classifier. The predictions of the old task classifiers are
stored in a probability bank. The joint training stage performs knowledge distillation
to prevent forgetting, and new task learning employing a dynamic weighting strategy
that uses the gradient norm computed in the warm-up stage.

time step. Importantly B contains only a few data (e.g., a few dozen images).
This “mini-batch” based relaxation of the typical OL scenario [9] is commonly
adopted in other COL settings [2]. Moreover, in our MC-OCL setting, every
information, except the network parameters, must be discarded after processing
each batch B (constraint (1)). B is used to update the network weights, but no
explicit information can be stored or passed to the next batch processing step.

3.2 Batch-Level Distillation

In this section, we describe the proposed method, named Batch-level Distillation
(BLD). Inspired by [20], we adopt a formulation based on knowledge distillation
to mitigate catastrophic forgetting. Our distillation approach is composed of
two main stages, both depending only on the current mini-batch data B which
is sampled from the data distribution of the current task Tt and on the network
parameters θ. The overall pipeline is illustrated in Fig. 2. The first stage, named
warm-up stage, is introduced in order to enable the use of knowledge distillation
in the second stage, named joint training stage.

The key idea of distillation for CL, is to use a regularization loss which
prevents that the predictions of the old task classifiers are significantly modified
when learning the new task. Since we only have available a mini-batch B of data,
we propose to apply the distillation paradigm at the mini-batch level rather than
at the dataset level. In other words, we enforce that, while learning the new task,
the predictions of the old classifiers do not change much between the beginning
and the end of the current mini-batch processing. This regularization and the
new-task loss are optimized together in the joint training stage.

In order to use a distillation regularization, we need to estimate the predic-
tions of the old task classifiers before updating the network parameters. This is
the main purpose of the warm-up stage. In addition to computing the old task
predictions, the warm-up stage also performs a first learning step by minimizing
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the new task loss. As detailed in Sect. 3.4, this initial learning step is required
in order to perform distillation in the second stage. Finally, the warm-up stage
is also used to estimate the gradient norm that is later used in the second stage
to obtain a dynamic weighting of the different loss terms. We now provide the
details of the two stages.

3.3 Warm-Up Stage

The purpose of this first stage is threefold: collecting distillation data (used only
in the second stage), starting learning the new task on the current batch and
estimate the norm of the new task loss. The details of the warm-up stage are
provided in Algorithm 1.

Algorithm 1: Warm-up Stage
Input : Current network (Ψ , Φ, θ), current batch B with labels y,

learning rate αw, temperature τ
v = Ψ(B; θ) // feature extraction

Ŷ = ∅ // initialize empty probability bank

for o ∈ {1, ..., t − 1} // for every past task

ŷo = φo(v, τ ; θ) // compute predictions

Ŷ ← Ŷ
⋃{ŷo} // fill probability bank

end
Lt = H(φt(v; θ),y) // compute warm-up loss

Gw = ∂Lt
∂θ

// compute warm-up gradient

θ′ = θ − αwGw // parameter update

return θ′, Ŷ , ||Gw||
Specifically, let θ be the set of all the parameter values in Ψ and Φ. Consider-

ing an image xb ∈ B, we use the current feature extractor Ψ to get vb = Ψ(xb; θ).
We introduce the notation v = {vb, 1 ≤ b ≤ |B|} to indicate all the images of
the current batch, and we simply write v = Ψ(B; θ).

Then, we use these features to compute the predictions for the new images
using the old task classifiers. More specifically, for each old task To, we estimate
ŷo = {ŷo

b , 1 ≤ b ≤ |B|} = φo(v, τ ; θ), where τ is the temperature of the softmax.
These probability vectors are then appended to a probability bank Ŷ . At the
end of the warm-up stage, Ŷ will contain the predicted probabilities for every
image of the batch according to every old classifier. This memory is later used
for distillation in the second stage but it is released before receiving the next
data batch. Since the number of classes is relatively small (hence, each ŷo

b is
a low-dimensional vector), the memory required to store Ŷ remains negligible
compared to the memory space used by the batch of input images and the
network parameters.

The previously computed features v are used also by the new-task classifier
for computing the standard cross-entropy loss. Specifically, given the features v
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and their corresponding one-hot labels y ∈ {0, 1}|B|×|Yt|, we use:

Lt = H (φt(v; θ),y) = −
|B|∑

b=1

yb · log φt (vb; θ) . (1)

Then, the gradient Gw = ∂Lt

∂θ is computed, and the parameters of the network
are updated using the standard gradient descent. The warm-up stage also returns
the norm of the gradient ||Gw||, which is used for the parameter normalization in
the second stage (joint training stage). In practice, since the norm of the gradient
is computed layer-wise (see later), it can be obtained during the backward pass
without storing the gradient of the whole network.

To conclude this stage, the memory used by the intermediate variables (e.g.
v and θ) is released. At this point, the memory contains the parameters θ′, the
batch B, the probability bank Ŷ and the norm of the gradient ||Gw||.

3.4 Joint Training Stage

We now provide the description of the joint training stage. The goal of this
stage is to update the network parameters with respect to the new task while
preserving the knowledge of the previous tasks. The details are provided in
Algorithm 2.

Algorithm 2: Joint Training Stage
Input : Current network (Ψ , Φ, θ′), current batch B with labels y, old

task probability bank Ŷ , learning rate αj , temperature τ ,
gradient-balancing factor λ, norms of the gradients ||Gw||.

v′ = Ψ(B; θ′) // feature extraction

Ld =
∑t−1

o=1 H(φo(v′, τ ; θ′), ŷo) // compute distillation loss

Gj = ∂Ld

∂θ′ // distillation gradient

Gj ← λ ||Gw||
||Gj || Gj // balance the distillation gradient

Lt = H(φt(v′; θ′),y) // compute new task loss

Gj ← Gj + ∂Lt

∂θ′ // accumulate new task gradient

θ′′ = θ′ − αjGj // parameter update

Return : θ′′

Using the current batch B and the updated feature extractor Ψ(·; θ′), we get
v′ = {v′

b, 1 ≤ b ≤ |B|} = Ψ(B; θ′). Note that the features v′ are different from v,
computed in the warm-up stage, because of the parameter update in Algorithm 1.
Then, we use the old-task classifiers φo (for every old tasks To) to predict the
output probabilities using v′. Following a distillation approach, we want that the
predictions φo(v′, τ ; θ′) should not differ much from the initial values ŷo ∈ Ŷ .
To measure this change in the predictions, we use a cross-entropy loss between
the initial and current predicted probability distributions:

Ld =
t−1∑

o=1

H(φo(v′, τ ; θ′), ŷo) = −
t−1∑

o=1

|B|∑

b=1

ŷo
b log

(
φo(v′

b, τ ; θ′)
)
. (2)
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It is worth noting that the distillation loss is used only in the joint training stage
and not in the warm-up stage. The reason for this choice is that, in the warm-
up stage, the distillation loss Ld would have a zero gradient since φo(v′

b, τ ; θ) =
φo(vb, τ ; θ) = ŷo

b . Because of the first gradient descent step in the warm-up stage,
we obtain non-null gradients for the distillation loss in the second stage. This
observation mainly motivates our two-stage pipeline.

The distillation loss gradient is weighted using a normalization factor. Specif-
ically, given the distillation gradient Gj = ∂Ld

∂θ′ and the cross-entropy gradi-
ent norm ||Gw|| computed in the warm-up stage, the gradient is multiplied by
λ ||Gw||

||Gj || . The intuition behind this normalization is that we want to balance the
two gradients in a dynamic way while training. The parameter λ is a static
parameter that adjusts the weight of the distillation and the cross-entropy gra-
dients, accounting for the possible imbalance originated with the unconstrained
warm-up update. Finally, we use the new-task classifier φt to compute the net-
work predictions and its resulting cross-entropy loss Lt. Assuming that the norm
of the gradient of this loss does not change drastically between the two stages
(i.e., ||Gw|| � ||∂Lt

∂θ′ ||), we can sum Gj with ∂Lt

∂θ′ (all the gradient terms have a
balanced contribution).

For sake of simplicity, we used above the notation ||Gw||
||Gj || , which includes the

gradients of all the layers of the network. In practice, we actually compute the
norms separately for each layer, because in this way the memory cost can be
kept extremely small and, empirically, we observed that this leads to a more
stable training.

The joint training stage can be iterated several times. Empirically, we found
iterating twice to be beneficial. Note that, in the second iteration of this stage,
Ld and Lt are computed at the value θ′′ obtained from the first iteration.

Before proceeding to the next batch, all the memory (including the proba-
bility bank Ŷ ) is released, except for the parameters θ′′.

3.5 Memory Efficient Data Augmentation

Data augmentation is a widely-used technique in CL. However, in the extreme
memory constraint scenario, standard data augmentation procedures cannot be
used since it would result in an important memory cost. We propose a specific
data-augmentation procedure that is integrated in our BLD framework. We use
a set of data augmentation techniques (e.g., image cropping, flip, rotation, color
jittering etc.) in order to artificially populate B. In the warm-up stage, when fill-
ing the probability bank Ŷ , we also store the transformation type (e.g. rotation)
and possible parameters (e.g. angle). However, we do not store the transformed
images. Consequently, the memory cost of data augmentation remains negligible
with respect to the batch and network memory sizes. In the joint training stage,
when computing the feature v′, we read the transformation information stored
together with the probability bank and use it to re-generate the transformed
images. The transformed image is then provided as input to the feature extrac-
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tor. In this way, we use the same data augmentation in the two stages without
requiring to store all the augmented images.

4 Experiments

4.1 Experimental Protocol

Datasets. We measure the performance of the proposed solution to MC-OCL
using accuracy on three publicly available and widely used datasets.

The MNIST [18] and SVHN [23] datasets are composed of images depicting
digits. In our experiments, both datasets are split into different tasks with non-
overlapping classes. We choose not to perform experiments on the permuted
variant of MNIST, since it has been shown to be a poor benchmark for CL [10].
Some previous works [2,3,21] prefer to extract a small subset of the samples for
training. Instead, consistently with the most prior art, we use all the training
data available. This choice enables us to assess which methods are robust to a
large number of gradient steps and which are not.

CIFAR10 [16] is also split into disjoint tasks as in [2,4], with the difference
that, given the memory constraints we introduce, we cannot store any data
and therefore we are unable to perform validation. Consequently, we use all the
training samples for training.

For all datasets we split the data into 2 and 5 tasks, which generates subsets
of 5 and 2 classes respectively. This enables finer behavioral analysis of the
model with respect to short and long task sequences. The splits are performed
randomly, but, for fairness, we run all methods on the same splits to minimize
the bias that different splits could introduce in the evaluation.

Implementation Details. Throughout all experiments, regardless of the
dataset and the number of tasks, we employ a ResNet18 [11] as a feature extrac-
tor. As per Sect. 3.2, on top of the feature extractor we use a classifier composed
of a linear layer and a softmax. As soon as a new task starts, a new classifier is
instantiated with randomly initialized weights and biases.

For all experiments that only require a single sweep through the data we train
on batches composed of 20 images, randomly sampled from a task-specific subset
of data. We found this batch size to be the right trade-off for our experiments,
since it well approximates the online setup without preventing the model from
properly learning new tasks. These batches are then transformed 50 times and
forwarded into the network. The gradients generated by all losses are averaged
over these transformations. Note that these operations do not require any addi-
tional memory, since the transformations can be applied right before the forward
pass, without storing the augmented images, and gradients can be averaged in-
place. For the details on this matter refer to Algorithm1 and 2. In Pytorch [25]
this can be implemented by calling backward() multiple times (one for each
transformation) without performing any optimization steps in-between.

Two iterations are performed for every joint training stage, with learning
rate αj set to 10−4, while the warm-up stage is performed only once with a
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learning rate αw = 10−2 · αj . The parameter λ has a value of 2. For offline
LwF [20], instead, batches contain 500 images each and only one transformation
is computed per batch. Depending on the dataset and the number of tasks we
train the model for a different number of epochs, ranging from 10 epochs for
MNIST (5-tasks) to 120 epochs for CIFAR10 (2-task) with learning rate equal
to 10−4. For all the methods, we run each experiment 5 times and report the
average accuracy. Note that our method (BLD) is trained using only one epoch.

4.2 Experimental Evaluation

Baselines. Our method can be accommodated among regularization-based
methods, which in turn can be divided into prior-based and data-driven cat-
egories. However, we do not consider prior-based baselines such as EWC [15]
as they have been shown to work poorly in the online setting [2], and do not
satisfy the MC-OCL constraints. Instead, we include an extensive comparison
with LwF [20], which is the most similar data-driven method to ours. Therefore,
we consider the following reference baselines:

• Finetune. It trains continuously as the data for the new task is available
without any attempt to avoid forgetting;

• Batch-level L2, denoted as L2, is a näıve baseline we devised specifically for CL
with extreme memory constraints. For every incoming batch it saves a copy
of the parameters before the model gets updated. Subsequently, it proceeds
to update the network, first with a warm-up step, similar to the warm-up we
perform for our method, and then with a series of joint steps. These joint
steps are the result of the back-propagation of two losses: the cross-entropy
loss with respect to the current task and the L2 loss between current and
previous parameters.

• Offline LwF [20] (upper-bound) trained using multiple passes through the
data, sampled i.i.d.. We use a variable number of epochs, depending on the
size and the complexity of the dataset, while the batch size is fixed.

• Single-pass LwF [20] is a modified version of LwF, in which only a single-pass
through the data is performed. The distillation mechanism is implemented
as in the original offline version. Note that, although each sample is only
processed once, this variant can not be considered fully online because it still
needs to compute the predictions for the whole task beforehand.

Results and Analysis. Table 1 shows the performance of the evaluated meth-
ods on MNIST, CIFAR10 and SVHN on the 2-task scenario. Looking at the
results of the Finetune model, the difference in performance between the two
tasks T0 and T1 shows that the Finetune model suffers from catastrophic forget-
ting. The difference is especially important in the case of the MNIST (18.8%) and
CIFAR10 (25.2%) datasets. We observe that L2 mitigates this catastrophic for-
getting issue reaching a higher average accuracy in the three datasets, at the cost
of a higher memory consumption. BLD consistently improves the performance
over all the datasets. Our method, obtains better scores on the task T0 compared
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Table 1. Final test accuracy on MNIST, CIFAR10 and SVHN with 2 tasks

Method MNIST CIFAR10 SVHN

T0 T1 Avg. T0 T1 Avg. T0 T1 Avg.

MC-OCL Finetune 80.8 99.6 90.2 60.4 85.6 73.0 78.9 95.5 87.2

L2 91.7 99.6 95.7 70.7 84.0 77.4 82.8 96.2 89.5

BLD 89.6 99.5 94.5 70.0 86.0 78.0 88.2 96.2 92.2

Single-pass LwF 98.2 99.7 98.9 75.7 85.8 80.7 91.5 95.6 93.5

Offline LwF 99.5 99.8 99.7 89.6 93.0 91.3 93.9 96.3 95.1

to the Finetune baseline. For CIFAR10 and SVHN, we also observe that BLD
outperforms Finetune on T1, possibly due to the fact that some information
from T0 has been used to improve the performance on T1 (forward-transfer).
Overall, BLD reaches the best performance in two datasets out of three. Only
L2 performs slightly better on MNIST but requiring much more memory.

When it comes to comparing to the offline baseline that can have access to
each image several times, we observe that our method can bridge half of the
gap between Finetune and the offline LwF on the MNIST and SVHN datasets.
Interestingly, BLD is able to obtain results close to the single-pass LwF on the
SVHN dataset even though the latter breaks constraint (1) of MC-OCL.

Concerning the 5-tasks experiments, results are reported in Table 2, 3 and 4
for the MNIST, CIFAR10 and SVHN datasets, respectively. Note that, for every
method, we also report the memory overhead. More specifically, we report the
memory storage that is required by every method while training on the current
batch (Intra-batch), when switching between batches (Inter-batch) and for data
storage in the case of non-online methods. We report memory in bytes.

Table 2. Final test accuracy on MNIST with 5 tasks

Method MNIST Memory overhead

T0 T1 T2 T3 T4 Avg. Intra-batch Inter-batch Data
storage

MC-OCL Finetune 66.6 68.0 76.8 91.8 99.8 80.6 – – –

L2 54.9 55.7 85.7 94.0 99.8 78.0 44.8 MB – –

BLD 78.0 82.5 93.0 96.4 99.7 89.9 32 kB – –

Single-pass LwF 98.2 99.4 98.5 99.8 99.8 99.1 384 kB 384 kB 2 MB

Offline LwF 99.5 99.6 98.0 99.8 99.8 99.3 384 kB 384 kB 2 MB

In the three datasets, we again observe strong catastrophic forgetting in the
case of the Finetune model. Again, L2 prevents forgetting to some extent but it
has a high intra-batch memory overhead since it requires to store a copy of the
network parameters. Despite its lower memory overhead, our approach reaches
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Table 3. Final test accuracy on CIFAR10 with 5 tasks

Method CIFAR10 Memory overhead

T0 T1 T2 T3 T4 Avg. Intra-batch Inter-batch Data
storage

MC-OCL Finetune 59.6 58.2 66.8 80.2 97.0 72.3 – – –

L2 75.5 65.3 73.5 81.3 96.8 78.5 44.8 MB – –

BLD 83.4 83.2 79.5 88.1 97.0 86.2 32 kB – –

Single-pass LwF 81.2 83.6 81.1 88.5 96.5 86.2 320 kB 320 kB 36.8 MB

Offline LwF 93.8 94.1 91.6 96.2 98.3 94.8 320 kB 320 kB 36.8 MB

Table 4. Final test accuracy on SVHN with 5 tasks

Method SVHN Memory overhead

T0 T1 T2 T3 T4 Avg. Intra-batch Inter-batch Data
storage

MC-OCL Finetune 65.9 60.6 77.5 87.6 98.4 78.0 – – –

L2 75.2 61.8 90.9 93.4 98.1 81.3 44.8 MB – –

BLD 78.5 79.6 92.1 95.7 98.1 88.8 32 kB – –

Single-pass LwF 78.9 91.5 94.3 95.6 98.2 91.7 469 kB 469 kB -

Offline LwF 97.7 97.8 97.2 98.7 98.9 98.1 469 kB 469 kB 47.2 MB

the best performance on the three datasets with a significant margin with respect
to L2 (+11.9%, 7.7% and 7.5%, respectively). This result is extremely interesting
since it shows that BLD can prevent the network from drifting and forgetting
even for longer sequences of tasks.

When it comes to offline methods, they both outperform our proposed
method. Nevertheless, we observe that BLD reaches the same performance as
Single-pass LwF on CIFAR10, which requires access to the complete training set
of the current task. This requirement leads non-negligible data storage depend-
ing on the dataset (from 2 MB to 47 MB for SVHN). Note that, the data storage
requirement grows linearly with the size of the dataset. In addition, we observe
that both methods require an intra-batch memory overhead approximately ten
times higher than our approach.

Ablation Study. We perform an in-depth ablation study to evaluate each com-
ponent of the proposed method. In addition to the Finetune and the L2 baselines
described above, we compare with the following variants of our models: Alter-
nated, a model that does not perform joint updates but simply alternates between
a learning step on the new task and a distillation step, and No-balancing, a vari-
ant of our model that uses our two-stage approach but where the cross-entropy
Lt and distillation Ld losses are not dynamically balanced. More precisely, this
method is equivalent to our full model replacing ||Gw||

||Gj || with 1 in Algorithm 2. In
Table 5, Full denotes the full model as described in Sect. 3.
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Table 5. Ablation study on the CIFAR10 datatset with 2 and 5 tasks

(a) 2 tasks (5 classes each)

Method T0 T1 Avg.

Finetune 60.4 85.6 73.0

L2 70.7 84.0 77.4

Alternated 57.8 85.8 71.8

No-balancing 61.4 86.3 73.8

Full 70.0 86.0 78.0

(b) 5 tasks (2 classes each)

Method T0 T1 T2 T3 T4 AVG

Finetune 59.6 58.2 66.8 80.2 97.0 72.3

L2 75.5 65.3 73.5 81.3 96.8 78.5

Alternated 77.7 74.5 70.2 87.1 96.9 81.3

No-balancing 78.5 72.9 74.9 85.0 96.9 81.6

Full 83.4 83.2 79.5 88.1 97.0 86.2

The results of the ablation study are reported in Table 5. As previously
observed, the Finetune model suffers from catastrophic forgetting. The forget-
ting problem is even clearer on the 5-task setting. As in previous experiments,
L2 helps preventing forgetting but breaks our proposed constraints. Alternated
improves the performance on the 5-task setting but deteriorates on the 2-task
setting, showing that naively alternating between new task learning and distil-
lation is not enough in our challenging scenario. Conversely, we observe that the
No-balancing model improves the performance with respect to Finetune in both
settings. Note that, in the 2-task setting, No-balancing and the full model out-
perform Finetune on T1. This shows that our two-stage pipeline might produce
some forward transfer from task T0 to T1. On the 5-task setting, the gain of
No-balancing is more important (+9.3% with respect to Finetune and +0.9%
with respect to alternated). Finally, using our dynamic gradient weighting with
balancing leads to further improvement reaching the highest performance. The
gain in performance is consistent over all the tasks and is especially clear for the
first tasks. This ablation study experimentally confirms the importance of the
two-stage approach and the dynamic gradient weighting.

5 Conclusions

In this paper we proposed setting that allows us to study continual learning
under extreme memory constraints. More precisely, we impose two constraints:
1) No information is passed between batches and tasks; 2) No auxiliary network
can be used. To tackle this setting that cannot be addressed by the current
methods, we introduced Batch-level Distillation. Based on knowledge distillation,
our approach proceeds in two stages where, first, we start learning the new
task classifier and compute old classifier predictions, and then, we perform a
joint training using both distillation and the new task loss. We evaluated our
method on three publicly available datasets and show that BLD can efficiently
prevent catastrophic forgetting. As future work, we plan to extend BLD to other
problems such as image segmentation and object detection.
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Abstract. While unsupervised domain adaptation methods based on
deep architectures have achieved remarkable success in many computer
vision tasks, they rely on a strong assumption, i.e. labeled source data
must be available. In this work we overcome this assumption and we
address the problem of transferring knowledge from a source to a tar-
get domain when both source and target data have no annotations.
Inspired by recent works on deep clustering, our approach leverages
information from data gathered from multiple source domains to build a
domain-agnostic clustering model which is then refined at inference time
when target data become available. Specifically, at training time we pro-
pose to optimize a novel information-theoretic loss which, coupled with
domain-alignment layers, ensures that our model learns to correctly dis-
cover semantic labels while discarding domain-specific features. Impor-
tantly, our architecture design ensures that at inference time the result-
ing source model can be effectively adapted to the target domain with-
out having access to source data, thanks to feature alignment and self-
supervision. We evaluate the proposed approach in a variety of settings
(Code available at https://github.com/willi-menapace/acids-clustering-
domain-shift), considering several domain adaptation benchmarks and
we show that our method is able to automatically discover relevant
semantic information even in presence of few target samples and yields
state-of-the-art results on multiple domain adaptation benchmarks.

Keywords: Unsupervised learning · Domain adaptation · Deep
clustering

1 Introduction

The astonishing performance of deep learning models in a large variety of appli-
cations must be partially ascribed to the availability of large-scale datasets with
abundant annotations. Over the years, several solutions have been proposed to
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Fig. 1. In the Unsupervised Domain adaptation (UDA) setting, a model is trained
combining labeled images from one or several source domains and unlabeled images
from the target domain. In the unsupervised clustering setting, unlabeled images from
the same domain are grouped into visually similar images. We introduce the Unsu-
pervised Clustering under Domain Shift (UCDS) setting where we leverage unlabeled
source domain data to improve target domain clustering.

avoid prohibitively expensive and time-consuming data labeling such as trans-
fer learning [25] or domain adaptation [6] strategies. In particular, unsuper-
vised domain adaptation (UDA) methods [2,10,16–18,22,26,28,41] leverage the
knowledge extracted from labeled data of one (or multiple) source domain(s)
to learn a prediction model for a different but related target domain where no
labeled data are available. This strategy is illustrated in Fig. 1-left.

Over the last decade, increasing efforts have been devoted to develop deep
architectures for UDA and promising results have been obtained in several appli-
cations such as object recognition [2,17,34], semantic segmentation [10], depth
estimation [42], etc. While effective in many tasks, current UDA methods rely on
a key assumption: annotations associated with data from the source domain(s)
must be available. In this paper, we argue that this assumption may hinder the
use of UDA in many practical applications. For instance, relaxing the constraints
of disposing of labeled source data can broaden the applicability of knowledge
transfer methods to tasks and scenarios where gathering annotations is challeng-
ing or even impossible (e.g. medical).

A possible alternative to supervised training is unsupervised clustering
(Fig. 1-center). Clustering is a class of unsupervised learning methods that are
designed to group images in such a way that images in the same group contain
similar content. Recently, some works [4,9,12] have shown that appropriately
designed deep architectures can be successfully used to discover clusters in a
training set and perform representation learning. By opposition to UDA, clus-
tering does not require any annotation. However, it relies on the assumption
that all the data belongs to the same domain. If this condition is not fulfilled,
clustering algorithms would tend to group data according to the visual style
associated to their domain and not according to their semantic content.
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Motivated by these observations, in this paper, we propose a new setting,
Unsupervised Clustering under Domain Shift (UCDS), (see Fig. 1-right) where
we assume that we dispose of data from different known domains but no class
labels are available in both source and target domains. Our approach develops
under the assumption that, while no annotations from source data are available,
still we may benefit from the access to multiple datasets, i.e. to multiple source
domains. This is very reasonable as in many practical applications it is very
likely to dispose of several datasets collected under different conditions.

Our method develops from the intuition that, by combining multiple domains
with different visual styles, we can obtain clusters based on the semantic content
rather than on stylistic or texture features. Importantly, by leveraging multiple
source domains, we show that the target domain can be clustered accurately even
when target data is limited. Our method is organized in two steps. First, a novel
multi-domain deep clustering model is learned which, by seamlessly combining
domain-specific distribution alignment layers [2] and an information-theoretic
loss permits to discover semantic categories across domains. In a subsequent
step, target data are exploited to refine the learned clustering model by simul-
taneously matching source features distributions with domain-alignment layers
and by maximizing the mutual information between the class assignments of
pairs of perturbed samples. Recalling these elements, we name our algorithm
ACIDS: Adaptive Clustering of Images under Domain Shift.

The major advantage of our two-stage pipeline is that it does not require
source and target data to be available simultaneously. Consequently, our setting
differs from classical UDA and unsupervised transfer learning scenarios [6,25]
since only the source model is provided to the unlabeled target domain. Dis-
carding the source data at adaptation time can broaden the applicability of our
framework to tasks and scenarios that suffer from transmission or privacy issues.
Our extensive experimental evaluation demonstrates that our approach success-
fully discovers semantic categories and outperforms state of the art unsuper-
vised learning models on popular domain adaptation benchmarks: Office-31 [29],
PACS [14] and Office-Home [37] dataset.

Contributions. To summarize, the main contributions of this work are: (i) We
introduce a new setting, Unsupervised Clustering under Domain Shift (Fig. 1-
right), where we learn a semantic predictor from unsupervised target sam-
ples leveraging from multiple unlabeled source domains; (ii) We propose an
information-theoretic algorithm for unsupervised clustering that operates under
domain shift. Our method successfully integrates the data-augmentation strat-
egy typically used by deep clustering methods [12] within a feature alignment
process; (iii) We evaluate our method on several domain adaptation benchmarks
demonstrating that our approach can successfully discover semantic categories
even in the presence of domain shift and with few target samples.
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2 Related Works

In the following we review previous approaches on UDA, discussing both sin-
gle source and multi-source methods. Since we propose a deep architecture for
unsupervised learning under domain shift, we also review related work on deep
clustering.

Domain Adaptation. Earlier UDA methods assume that only a single source
domain is available for transferring knowledge. These methods can be roughly
categorized into three main groups. The first category includes methods which
align source and target data distributions by matching the distribution statistical
moments of different orders. For instance, Maximum Mean Discrepancy, i.e. the
distance between the mean of domain feature distributions, is considered in [17,
18,36,37], while second order statistics are used [22,26,33]. Domain alignment
layers derived from batch normalization (BN) [11] or whitening transforms [31]
are employed in [2,16,21,28].

The methods in the second category learn domain-invariant representations
considering an adversarial framework. For instance, in [7] a gradient reversal
layer is used to learn domain-agnostic representations. Similarly, ADDA [35]
introduces a domain confusion loss to align the source and the target domain
feature distributions. The third category of methods consider a generative frame-
work (i.e., GANs ([8]) to create synthetic source and/or target images. Notable
works are CyCADA [10], I2I Adapt [23] and Generate To Adapt (GTA) [30].
Our method is related to previous works in the first category, as we also leverage
domain-alignment layers to perform adaptation. However, we consider a radi-
cally different setting where no annotation is provided in the source domain and
only the source model (and not the source data) is exploited at adaptation time.

While most previous works on UDA consider a single source domain, recently
some works have shown that performance can be considerably improved by lever-
aging multiple datasets. For instance, in [21] multiple latent source domains are
discovered and used for transferring knowledge. Recently, Deep Cocktail Net-
work (DCTN) [40] introduce a distribution-weighted rule for classification which
is combined with an adversarial loss. M3SDA is described in [27]: it reduces the
discrepancy between the multiple source and the target domains by dynamically
aligning moments of their feature distributions.

Differently from these methods, ACIDS does not assume annotations in the
source domain. One related work to ours is [20] where information from multiple
source domains is exploited for constructing a domain-dependency graph and
then used when the target data are made available. However, in [20] an entropy
loss for target model adaptation is considered, which we experimentally observe
is less effective than our proposal self-supervised loss. Our method is also related
to recent domain generalization (DG) methods [1,15]. In fact, similarly to DG,
we also assume that source and target data are not simultaneously available.
However, differently from DG, we make use of target data for model adaptation
when they are available.
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(a) Training on Sources (b) Adaptation on Target

Fig. 2. Illustration of the ACIDS framework for UCDS. In the training stage (Fig. 2a),
images are clustered by maximizing mutual information between the predictions from
the original and transformed images. Domain alignment is addressed combining a Batch
Normalization (BN) alignment technique with a novel mutual information minimizing
formulation. In the adaptation phase (Fig. 2b), domain shift is handled by combining
BN alignment with a specific mutual information maximization procedure.

Deep Clustering. Over the last few years, unsupervised representation learn-
ing has attracted considerable attention in the computer vision community. Self-
supervised learning approaches mostly differ in the self-supervised losses used to
learn feature representations. Notable examples are methods which derive indi-
rect auxiliary supervision from spatial-temporal consistency [38], from solving
jigsaw puzzles [24] or from colorization [13].

Recently, some studies have attempted to derive deep clustering algorithms
which simultaneously discover groups in training data and perform representa-
tion learning. For instance, DEC [39] makes use of an autoencoder to produce
a latent space where cluster centroids are learned. DAC [5] casts the cluster-
ing problem into pairwise-classification using a convolutional network to learn
feature representations. In [4] DeepCluster, an iterative clustering procedure is
devised which adopts k-means to learn representations and uses the subsequent
assignments as supervision. Similarly, in [9] an end-to-end clustering approach
is proposed where an encoder network is trained with an alternate scheme.
Recently, Ji et al. propose Invariant Information Clustering (IIC) [12], where
a deep network is learned with an information-theoretic criterion in order to
output semantic labels, rather than high dimensional representations. Our app-
roach is inspired by this method. However, we specifically address the problem
of transferring knowledge from source to target domains.
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3 Proposed Method

In this section, we introduce the proposed ACIDS fully unsupervised multi-
source domain adaptation framework. The design of the source training frame-
work is guided by two motivations. First, we need to take advantage of the
different domains in order to obtain clusters that correspond to semantic labels
rather than domain-specific image styles. Second, the network must learn image
representations that can be transferred to any unknown target domain.

We assume to observe S source domains Is composed of images, each depict-
ing an object from C different object categories. In this work, we assume that
C is known a priori but we do not dispose of image labels. We propose to
learn image representations allowing to cluster source images according to the
unknown category labels. Our goal is to adapt the representation learned on the
source domains in order to predict labels on a target domain It. In this adapta-
tion stage, we consider that we do not dispose of the images from I1, . . . , IS . To
this aim, we employ a deep neural network φθ : I → Z with parameters θ that
predicts cluster assignments probabilities. To obtain network outputs Z ∈ [0, 1]C

that can be interpreted as probability vectors, φθ is terminated by a layer with
a softmax activation function.

In Sect. 3.1 we describe the objective used to cluster source images. In order
to ensure clustering based on semantic labels and not on domain-specific styles,
we introduce in Sect. 3.2 a novel information-theoretic alignment mechanism
based on the minimization of mutual information between domains and cluster
assignments. Here, we also detail our batch normalization alignment layers that
complement the framework. Adaptation on the target domain is described in
Sect. 3.3.

3.1 Multi-domain Clustering with Mutual Information

Let i ∈ I =
S⋃

s=1
Is be an image from the domain d ∈ 1..S. Both i and d are

treated here as random variables. We consider that we dispose of a set of image
transformations T . After sampling a transformation t ∈ T , we obtain a trans-
formed version of the image i denoted as i′. Following the approach of [12], we
train φθ in such a way that, first, it returns the same output for both i and i′ and,
second, it returns different outputs for different images. This double objective
can be achieved by maximizing the mutual information between the predictions
from i and i′ with respect to the network parameters:

max
θ

MI(z, z′) (1)

where z = φθ(x) and z′ = φθ(x′) are the network cluster assignment predic-
tions. To estimate the mutual information MI(z, z′), we need to compute the
joint probability of the cluster assignment Pcc′ = P (z=c, z′ =c′) where c ∈ 1..C
and c′ ∈ 1..C are all the possible cluster indexes. This probability is estimated
by marginalization over the current batch. Let us assume to observe a batch
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composed of N unlabeled images {ins }N
n=1 ⊂ Is from each of S source domains.

We have:

Pcc′ = P (z=c, z′ =c′) =
∑S

s=1 P (d=s)P (z=c, z′ =c′|d=s)

= 1
SN

∑S
s=1

∑N
n=1 φθ(ins ).φθ(ins

′)� (2)

Similarly, we estimate the marginal distribution:

Pc = P (z=c) =
1
S

S×N∑

s=1,n=1

φθ(ins ) and P ′
c = P (z=c′) =

1
S

S×N∑

s=1,n=1

φθ(ins
′).

From these probability distributions, the mutual information loss is given by:

MI(z, z′) =
C∑

c=1

C∑

c′=1

Pcc′ ln
Pcc′

Pc.Pc′
(3)

3.2 Domain Alignment

Feature Alignment via Mutual Information Minimization. Training the
network φθ only via the maximization of (3) may lead to solutions where input
images are clustered according to the domain information rather than their
semantics. To tackle this problem, feature distribution from the different domains
should be aligned in such a way that the classifier cannot cluster images accord-
ing to the domain. We propose to address this domain alignment problem by
the combination of two complementary strategies.

First, we propose to formulate domain alignment as a mutual information
optimization problem. The key idea of ACIDS alignment strategies is that cluster
assignment z should be independent from the domain d of the input image.
Consequently, the mutual information between the predicted label z and the
image domain d must be minimal. To this aim, we estimate the joint probability
distribution P (z, d) by marginalization:

P (z, d) =
1
N

S∑

s=1

N∑

n=1

1(s = d)φθ(ins ) (4)

Similarly to (3), we can estimate MI(z, d). Note that this mutual information
loss leads to an extremely limited computation overhead compared to alternative
solutions such as adversarial approaches.

Even though minimizing MI(z, d) enforces alignment between the domains,
this formulation does not take advantage of the image transformation framework
described in Sect. 3.1. In order to further use the potential of our data augmen-
tation approach, we propose to use the transformed image to favor domain align-
ment. More specifically, for every transformation t ∈ T , the cluster assignment z′

should be independent from the domain d of the input image. In other words, the
mutual information MI(z′, d|t) should be minimized for every transformation t.
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Here again, the mutual information MI(z′, d|t) is computed via marginalization
similarly to MI(z, z′) and MI(z, d).

This mutual information minimization is both lightweight and efficient. Nev-
ertheless, it acts only according to a top-down strategy, since alignment is
imposed only on the output of the network and not in the early layers. Con-
sequently, we propose to complement our framework with a feature alignment
strategy based on batch normalization that acts all over the network.

Feature Alignment via Batch Normalization. We consider that the net-
work φθ embeds Batch normalization (BN) layers. We adopt the idea of previous
works [2,16,19] and perform domain adaptation by updating the BN statis-
tics. The main assumption behind this strategy is that the domain-shift can
be reduced by aligning the different source feature distributions to a Gaussian
reference distribution. We consider that we observe S batches of images, one
from each of the S source domains. Assuming a given BN layer, {xn

s }N
n=1 and

{xn
s

′}N
n=1 denote the features, corresponding to domain s, in input to the BN

layer for each image and the transformed counterpart respectively. We compute
the batch statistics for each domain separately:

∀s ∈ {1..S}, μ̂s =
1

2m

N∑

n=1

(xn
s + xn

s
′) σ̂2

s =
1

2m

N∑

n=1

[(xn
s − μ̂s)

2 + (xn
s

′ − μ̂s)
2] (5)

For a given input x computed from an image of the domain s, the output of
the normalization layer is computed as follows:

x̂ = γ
x − μs√
σ2

s + ε
+ β (6)

where γ and β are the usual affine transformation parameters of the BN layer,
while ε ∈ R is a constant introduced for numerical stability. Note that the
affine transformation parameters are shared among the different domains. This
strategy guarantees that every BN layer outputs feature distributions from every
domain with a mean value equal to 0 and a variance equal to 1. The main advan-
tage of ACIDS framework is twofold. First, it does not require any additional
loss that would imply more hyper-parameter tuning to obtain good convergence.
Second, adaptation on the target data can be performed without accessing the
source data.

3.3 Training and Adaptation Procedures

Overall Objective Function. In the previous section, we detailed how we
estimate three different mutual information terms. The term MI(z, z′) must be
maximized while MI(z, d) and MI(z′, d|t) must be minimized. Consequently
the total minimization objective function can be written:

L = −MI(z, z′) + MI(z, d) +
1
T

∑

t∈T
MI(z′, d|t). (7)

where T is that cardinality of T .
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Improving Stability. The computation of the mutual information MI(z, z′)
is based on the estimation of the marginal probability matrix Pcc′ ∈ R

C×C .
Following a standard SGD approach, this matrix is computed for every batch.
However, estimating this full probability matrix from a small batch can be inac-
curate when the number of classes C is high. In addition, increasing the batch
size may lead to memory issues. Practically, we observed in our preliminary
experiments, that a large batch size is critical to obtain satisfying convergence
of the IIC model. In our context, the issue appears to be even stronger since
the images originate from different domains. Our assumption is that the higher
variance of the features, despite feature alignment, leads to gradients with higher
variance and unstable training. To tackle this issue, we propose to robustify the
estimation of the marginal probability matrices using a moving average strategy.
Considering that Pcc′ is the matrix associated to the current batch, the mutual
information in Eq. (3) is computed using P̃cc′ :

P̃cc′ = αPcc′ + (1 − α)P̂cc′ (8)

where P̂cc′ is the probability matrix P̃cc′ estimated on the previous batch and α
is a dynamic parameter. From a probabilistic point of view, this formulation can
be understood as a stronger marginalization since the distribution is estimated
considering in Eq. (2) not only on the N samples of the current batches but
also the past batches. This estimation is correct under the assumption that the
network φθ did not change too much in past SGD steps.

Adaptation to the Target Domain. At test time, we dispose of images
from the target domain {inτ }Nτ

n=1 ∈ Iτ . However, we assume that we do not
dispose anymore of the training data from the source domains. Adaptation is
performed using two successive procedures. First, in order to align the feature
distribution of the target data with the source distributions, we estimate the
statistics of the inputs of each BN layer as in Eq.(5). The output of each BN
layer is then computed according to Eq. (6). Second, our model is adapted using a
variant of the mutual formulation used at training time and described in Sect. 3.1
computed only on the target domain Iτ . We argue that in an unsupervised
setting it is beneficial to treat samples with high prediction confidence differently
from the ones with low confidence [32]. The rationale is to drive low confidence
predictions towards certainty represented by high confidence predictions while
not altering the latter. We propose to treat images iτ with a prediction confidence
larger than a given threshold ε as fixed points whose output class prediction
c must be replicated by the corresponding transformed image i′τ . This differs
from the mutual information approach employed in Sect. 3.1 where the output
correspondence is achieved only implicitly and an incorrect class assignment to
image i′τ may negatively alter the prediction of iτ as well, causing instability.
We define:

φ̃θ(i) =

{
1(c = arg max φθ(i)) if maxφθ(i) ≥ ε

φθ(i) otherwise
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Table 1. Ablation results on the PACS dataset: (i) training is performed on a single,
merged source domain (ii) training performed on a single source domain, (iii) removed
feature alignment via mutual information minimization, (iv) removed BN feature align-
ment + (iii); (v) no target adaptation, (vi) target adaptation using entropy instead of
mutual information. Accuracy (%) on target domain.

Target domain: A C P S Avg

Merged source (i) 23.6 32.8 31.2 28.2 29.0

Single source A (ii) – 31.0 45.8 28.7 –

Single source C (ii) 31.0 – 42.5 35.0 –

Single source P (ii) 33.0 33.8 – 30.5 –

Single source S (ii) 25.0 30.2 37.2 – –

w/o domain mi loss (iii) 27.4 24.3 50.9 23.0 31.4

w/o BN alignment (iv) 23.7 34.3 38.6 23.0 22.1

w/o target adaptation (v) 34.8 36.5 44.2 40.8 39.1

entropy target adaptation (vi) 29.2 36.6 29.7 41.0 34.1

ACIDS 42.1 44.5 64.4 51.1 50.5

Pcc′ =
1
N

N∑

n=1

φ̃θ(inτ ).φθ(inτ
′)� and Pc = P (z=c) =

N∑

n=1

φ̃θ(inτ )

Then, we compute the mutual information term MI(z, z′) in Eq. 3 using the
newly defined Pcc′ and Pc. This newly defined mutual information loss no longer
suffers from the wrong i′τ prediction problem because the arg max operation
stops gradient propagation in the high confidence predictions, fixing them and
making the model focus on low confidence ones.

4 Experiments

In this section, we evaluate the effectiveness of ACIDS on three widely used
domain adaptation datasets and perform an ablation study showing the impor-
tance of each component of our method.

Datasets. The PACS [14] dataset is a domain adaptation dataset composed
of 9,991 images divided in 7 classes spanning 4 different domains: Photo (P),
Art (A), Cartoon (C) and Sketch (S). The different domains of PACS represent
a rich variety of visual characteristics, from natural images to sketches, which
cause large semantic gaps and make it a challenging domain adaptation dataset.

The Office31 dataset [29] contains 4,110 images divided in 3 different domains
and 31 classes, namely: Amazon (A), DSLR (D) and Webcam (W).

The Office-Home [37] dataset is a larger domain adaptation benchmark con-
taining about 15,500 images belonging to 65 different classes across 4 domains:



746 W. Menapace et al.

Art (A), Clipart (C), Product (P), RealWorld (R). In addition to containing
domains with a large variety of visual characteristics, the dataset presents the
challenge of a large number of classes.

Evaluation Protocol. We perform multiple evaluations of our model, consid-
ering at each time one of the domains as the target and the remaining ones as the
source domains. We train the model until convergence on all the sources. Then,
the target domain becomes available and the source domains are discarded. At
adaptation time we instantiate the domain-specific BN parameter for the target
domain and perform their estimation using the newly available target images.
This provides the starting point for the adaptation phase which proceeds until
convergence on the target domain. In all our experiments we report the accuracy
score computed on the target domain.

Implementation Details. We use a randomly initialized ResNet-18 as the
backbone of our model. Following [12], we adopt an overclustering strategy that
fosters the model to learn more discriminant features. Instead of using only a
single head with a number of outputs equal to C, we add an auxiliary overclus-
tering head with a larger number of outputs and train the two in alternating
epochs. Joint training was also considered as an alternative, but performance
was negatively affected. We use respectively 49, 155 and 130 output units in the
auxiliary head for the PACS, Office-Home and Office31 datasets respectively.
Moreover, in order to increase robustness to bad head initialization and facili-
tate convergence, we replicate both the standard and the overclustering head 5
times and compute the losses for the current batch on each of them, using the
average loss as the optimization objective. Further implementation details are
reported in supplementary material.

4.1 Ablation Study

In this section, we present the results of our ablation study evaluating the impact
of each of the components of ACIDS. We produce different variations of our
method obtained as follows: (i) Training is performed on a single source domain
created by merging all the source domains; (ii) Training is performed only on a
single source domain, while the others are discarded; (iii) The feature alignment
via mutual information mechanism proposed in Sect. 3.2 is removed; (iv) Both
the feature alignment via mutual information minimization mechanism and the
Batch normalization feature alignment mechanism are removed, relying only on
the mutual information clustering loss during training; (v) No target adaptation
is performed; (vi) During adaptation the mutual information clustering loss is
replaced by a prediction entropy maximization loss with threshold.

We report the quantitative results on the PACS dataset in Table 1. The abla-
tion (iii) confirms the importance of using the mutual information loss for feature
alignment during training. An analysis of the produced label assignments which



Learning to Cluster Under Domain Shift 747

we report in the supplementary material, in fact, shows that without this align-
ment mechanism the model produces clusters based on the domain rather than
the underlying classes. The effect is that the network focuses more on learning
style differences between domains rather than on semantic features, resulting in
degraded performance. Removing also the BN feature alignment mechanism (iv)
exacerbates the alignment problems, producing features that are not representa-
tive of the image’s semantics. Moreover, training using only a single domain as
the source (ii) shows a loss in performance with respect to multi-source training,
highlighting that the model acquires stronger generalization capabilities when
given information about the multiple sources. Furthermore, (i) shows that it is
beneficial to instantiate different BN parameters for each source domain, oth-
erwise, the domain shift between the multiple source domains would not be
mitigated. Lastly, the proposed mutual information procedure for target adap-
tation outperforms the entropy-based target domain adaptation method (vi)
which causes a degradation in time of the performance after a small gain in the
first few epochs.

In the supplementary material we report an additional ablation on the α
parameter introduced in Sect. 3.3.

4.2 Comparison with Other Methods

We now present a comparison of ACIDS against different baseline methods.
We employ two popular deep clustering methods as the first baselines, namely
IIC [12] and DeepCluster [4]. In both cases, we train the model using only the
target data. The choice of IIC is motivated by its similarity to our method and
by its state-of-the-art clustering performance [12]. For fairness, we make use of
a ResNet-18 backbone on both methods and train them on the target domain.
Besides, we introduce two variations of IIC that include source information: IIC-
Merge: We train IIC on a dataset obtained by merging all the source and the
target domain together; IIC+DIAL: Following [3], we insert domain-specific BN
layers into IIC and jointly train on all source domains plus the target domain.
We also compare our method with a continuous domain adaptation strategy used
in [20] where we use ACIDS for training on the sources but adopt an entropy loss
term for the target adaptation phase which is performed online. We also provide
upper bounds for our method’s performance given by SOTA domain adaptation
algorithms using labeled source domains.

We report the performance of our method on the PACS dataset in Table 2.
Our method performs substantially better than the DeepCluster and IIC base-
lines in the Art, Cartoon and Sketch domains with accuracy gains in the range
from 2.3% to 4.9% with respect to IIC, while on the Photo domain our approach
does not reach its performance. Moreover, our adaptation procedure outperforms
the continuous domain adaptation baseline whose entropy loss does capture the
semantic aspects given by our mutual information approach. The comparison
with the upper bounds shows instead the obvious advantage of using supervi-
sion on the source domains. Due to the large difference of this setting with the
proposed one, we omit these upper bounds from the successive evaluations.
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Table 2. Comparison of the proposed approach with SOTA on the PACS dataset.
Accuracy (%) on target domain. MS denotes multi source DA methods.

Source
supervision

C,P,S→A A,P,S→C A,C,S→P A,C,P→S Avg

DeepCluster [4] × 22.2 24.4 27.9 27.1 25.4

IIC [12] × 39.8 39.6 70.6 46.6 49.1

IIC-Merge [12] × 32.2 33.2 56.4 30.4 38.1

IIC [12] + DIAL [3] × 30.2 30.5 50.7 30.7 35.3

Continuous DA [20] × 35.2 34.0 44.2 42.9 39.1

ACIDS × 42.1 44.5 64.4 51.1 50.5

AdaBN [16] � 77.9 74.9 95.7 67.7 79.1

DIAL [3] � 87.3 85.5 97.0 66.8 84.2

DDiscovery [21] MS � 87.7 86.9 97.0 69.6 85.3

Jigsaw [1] MS � 84.9 81.07 98.0 79.1 85.7

AutoDIAL [2] MS � 90.3 90.9 97.9 79.2 89.6

Table 3. Comparison of the proposed approach with SOTA on the Office31 dataset.
Accuracy (%) on target domain.

D,W→A A,W→D A,D→W Avg

DeepCluster [4] 19.6 18.7 18.9 19.1

IIC [12] 31.9 34.0 37.0 34.3

IIC-Merge [12] 29.1 36.1 33.5 32.9

IIC [12] + DIAL [3] 28.1 35.3 30.9 31.4

Continuous DA [20] 20.5 28.8 30.6 26.6

ACIDS 33.4 36.1 37.5 35.6

In Table 3 we report the performance of ACIDS on the Office31 dataset. The
proposed approach achieves state of the art results, performing better than both
DeepCluster and IIC on all domains with accuracy gains from 0.5% to 2.1% with
respect to the strongest baseline.

Lastly, Table 4 shows the results obtained on the Office-Home dataset. The
proposed approach performs significantly better than the DeepCluster base-
line on each domain and performs better than IIC on the Clipart and Product
domains. Similarly to the results on the PACS dataset, our target adaptation
procedure performs better than the continuous domain adaptation strategy.
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Table 4. Comparison of the proposed approach with SOTA on the Office-Home
dataset. Accuracy (%) on target domain.

C,P,R→A A,P,R→C A,C,R→P A,C,P→R Avg

DeepCluster [4] 8.9 11.1 16.9 13.3 12.6

IIC [12] 12.0 15.2 22.5 15.9 16.4

IIC-Merge [12] 11.3 13.1 16.2 12.4 13.3

IIC [12] + DIAL [3] 10.9 12.9 15.4 12.8 13.0

Continuous DA [20] 10.2 11.5 13.0 11.7 11.6

ACIDS 12.0 16.2 23.9 15.7 17.0

Fig. 3. Comparison of the proposed approach with SOTA on the Office-Home dataset
in the limited target data scenario. Labels express the target domain (A,C,P or R) and
the percentage of images used in the target domain.

4.3 Limited Target Data Scenario

One of the major advantages of ACIDS is the possibility of extracting semantic
features from the source domains that directly transfer to the target domain.
This makes it particularly suitable for the task of domain adaptation when few
target samples are available. We repeat the same experiments of Sect. 4.2 on the
Office-Home dataset where the source domains are not altered and we consider
a target domain built by randomly sampling a given portion of images in each
class of the original target domain. We show the numerical results in Fig. 3. We
achieve a large performance boost compared to the baselines, in particular, we
achieve an average 4.1% and 4.9% increase in accuracy with respect to IIC when
10% and 5% of the target images are available. Note that DeepCluster is not able
to operate in the 5% scenario due to an insufficient number of target samples.

5 Conclusions

In this paper, we propose a novel domain adaptation setting and show it is pos-
sible to transfer knowledge from multiple source domains to a target domain
when both sources and target data have no annotations. Our method makes use
of a novel information-theoretic loss for feature alignment and couples it with
domain-alignment layers to discover semantic labels from the source domains.
When target data becomes available, we perform adaptation without requiring
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the availability of source data. We achieve state-of-the-art performance on three
widely used domain adaptation datasets and show a clear advantage of the pro-
posed approach under low target data conditions. Future works will consider the
adaptation of the approach to the unsupervised segmentation scenario.
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Abstract. Deep neural networks are vulnerable to adversarial attacks.
Though various attempts have been made, it is still largely open to fully
understand the existence of adversarial samples and thereby develop
effective defense strategies. In this paper, we present a new perspec-
tive, namely gradient leaking hypothesis, to understand the existence of
adversarial examples and to further motivate effective defense strategies.
Specifically, we consider the low dimensional manifold structure of natu-
ral images, and empirically verify that the leakage of the gradient (w.r.t
input) along the (approximately) perpendicular direction to the tangent
space of data manifold is a reason for the vulnerability over adversar-
ial attacks. Based on our investigation, we further present a new robust
learning algorithm which encourages a larger gradient component in the
tangent space of data manifold, suppressing the gradient leaking phe-
nomenon consequently. Experiments on various tasks demonstrate the
effectiveness of our algorithm despite its simplicity.

Keywords: Gradient leaking · DNNs · Adversarial robustness

1 Introduction

Deep neural networks (DNNs) have shown impressive performance in a variety
of application domains, including computer vision [13], natural language pro-
cessing [18] and cybersecurity [6]. However, it has been widely recognized that
their predictions could be easily subverted by the adversarial perturbations that
are carefully crafted and even imperceptible to human beings [27]. The vulner-
ability of DNNs to adversarial examples along with the design of appropriate
countermeasures has recently drawn a wide attention.
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Fig. 1. An illustration of gradient leaking. If the manifold and decision boundaries are
relatively flat, the robust distance in this case is approximately the order of O(cos(θ))
(θ is the angle between gradient direction and the tangent space) of the theoretical
longest distance on the manifold.

Recent years have witnessed the development of many kinds of defense algo-
rithms. However, it still remains a challenge to achieve robustness against adver-
sarial attacks. For example, defenses based on input transformation or random-
ization usually give obfuscated gradients [1] and hence could be cracked by adap-
tive attacks. Defenses such as adversarial training [17] and controlling Lipschitz
constants [20] will significantly decrease the gradient norm of the model loss
function, which may sacrifice the accuracy on natural images. The difficulty in
designing defense algorithms is partly due to the unclear reason for the existence
and pervasiveness of adversarial examples. Though various attempts have been
made including the linearity of the decision boundary [8], insufficiency of sam-
ples [25], the concentration property of high dimensional constraints [26] and the
computational constraints [2], it is still an open question to explore the intrinsic
mechanism of adversarial examples and design better defense algorithms.

In our paper, we analyze the existence of adversarial examples from the per-
spective of the data manifold, and propose a new hypothesis called Gradient
Leaking Hypothesis. When analyzing the adversarial robustness at a given data
point (which is classified correctly as class y), we focus on the adversarial gra-
dient, i.e. the gradient of the objective function in untargeted attack such as
the negative predicted likelihood function of class y. As is illustrated in Fig. 1,
the ideal direction of adversarial gradient lies in (the tangent space of) the data
manifold, so that only the necessary gradient to classify the dataset remains.
However, through extensive analysis we find that in most normally trained mod-
els, the gradient points to a nearly perpendicular direction to the data manifold,
resulting in the leakage of gradient information and weak robustness in adver-
sarial attacks. In such cases, adversarial examples can be found outside of but
very close to the data manifold. As shown in the figure, the perturbation norm
of the adversarial is the order of cos(θ) relative to that in the ideal case.

As the adversarial gradient is approximately perpendicular to the decision
boundary between the original class and the class of the adversarial example,
a more intuitive description of gradient leaking is that the decision boundary
is nearly parallel to the data manifold, which implies vulnerability to adver-
sarial attacks. To show its reason visually, we illustrate an inspiring example
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Fig. 2. An illustrative case when gradient leaking happens (a), and our method to
train a robust classifier through preprocessing the dataset (b).

in Fig. 2(a). The data points are distributed in different colored regions cor-
responding to the different classes. We identify an approximate 1-dimensional
data manifold shown as the black parabolic curve (we exaggerate the distance
from data points to the manifold in the figure). The dataset is linearly separa-
ble shown as the purple line. However, it is nearly parallel to the data manifold,
which does not correspond to a robust classifier. The adversary could perturb the
data points in a perpendicular direction to the data manifold, suggesting that
gradient leaking happens. We see that vulnerability to the adversarial attack
is usually caused by some small-scale features (e.g., the direction perpendicular
to the decision boundary in Fig. 2(a)) which are easily learned by the classifier
since they might be highly correlated to the labels. This is also in line with
recent studies such as [11] which demonstrate that adversarial examples can be
attributed to the non-robust features useful for classification.

Based on the above analysis, we present a novel data preprocessing framework
to reduce gradient leaking during training, thereby enhancing the adversarial
robustness. We first make the data manifold flat by projecting the dataset to the
PCA principal subspace to eliminate the small-scale features mentioned above.
After that, we add independent noise in the normal space of the data manifold
to enforce the classifier to learn a decision boundary nearly perpendicular to
the data manifold. The result is illustrated in Fig. 2(b), in which we change the
data distribution to learn a robust classifier that remains a high accuracy on
the original dataset. Extensive experiments demonstrate that we can obtain a
more robust model in image classification and face recognition tasks. By simply
preprocessing images before training, we can achieve a 2–3 times improvement
on the mean perturbation norm of adversarial examples under a powerful �2-BIM
attack. Our algorithm is nearly orthogonal to other methods and can be easily
integrated with them. As an example, we integrate our method with the Max-
Mahalanobis center (MMC) loss training [19], and reach much higher robustness
compared to the baseline MMC. The robustness of our obtained model is close
to that of the model trained by adversarial training [17], yet with a much higher
clean accuracy and much lower training time cost.
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Contribution. In this paper, (1) we propose a novel Gradient Leaking Hypoth-
esis to explain the existence of adversarial samples and analyze its possible mech-
anisms under an empirical investigation; (2) and we present a novel algorithm
of robust learning based on our hypothesis, yielding superior performance in
various tasks.

2 Related Work

[2] analyzes four opinions on adversarial samples. The authors point out that
though robust models could exist, the requirement of robustness and compu-
tational efficiency might contradict in specific task. Our analysis and empirical
evidence support the idea that there is a trade-off between “easiness to learn”
and robustness. [25] claims that sampling complexity may be the reason for
adversarial samples, but we point out that having more samples on the manifold
may not help if the gradient leaking is not suppressed efficiently.

The authors in [7] analyze the geometric properties of DNN image classifiers
in the input space. They show that DNNs learn connected classification regions,
and the decision boundary in the vicinity of data points is flat along most direc-
tions. But they claim the results reflect the complex topological properties of
classification regions. We believe that it could happen in spaces with simple
topology (for example, homeomorphic to R

D) caused by gradient leaking.
[11] points out that adversarial examples are highly related to the presence

of non-robust features, which are brittle and incomprehensible to humans. They
distill robust features from a robust model. Our work bridges the inherent geom-
etry of data manifold and the robustness of features, and could be considered
as developing a way to quantitatively study the reliance of classifier on these
non-robust features, and using them to improve the robustness of DNNs.

The authors of [9] systematically suggest a framework of Gaussian noise ran-
domization to improve robustness. They inject isotropic Gaussian noise, whose
scale is trainable through solving the Min-Max optimization problem embedded
with adversarial training, at each layer on either activation or weights. Our noise
adding procedure could be seen as a variant considered as a subspace selection
procedure to add Gaussian noise on the input.

Defense-GAN [24] shows that by projecting data points to lower-dimensional
manifold during inference time, the classifier can be more robust. Their defense
partially relies on obfuscated gradients [1] and is only tested on MNIST. By
contrast, our method is applied to the training process, able to obtain a robust
classifier used in a vanilla way, and more scalable to larger datasets.

3 Gradient Leaking Hypothesis

In this section, we first present the Gradient Leaking Hypothesis formally, and
analyze its relationship with robustness empirically.
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3.1 Preliminary

In general, the data points {xi} in a natural image dataset lie on a manifold M

embedded in R
D, which is called the ambient space. The intrinsic dimension of

M, n, is generally much lower than D. A tangent space of M on x (denoted as
TxM) can be defined as

TxM :=
{

v
∣∣∣∃ differentiable curve γ : [−ε, ε] → M, γ(0) = x, s.t. v =

dγ

dt

∣∣∣
t=0

}
,

which is a linear subspace of RD. Moreover, the normal space on x (denoted
as NxM) is the orthogonal complement of the tangent space TxM.

3.2 Gradient Leaking

We now formally present the gradient leaking hypothesis. Without loss of gener-
ality, we consider a two-class classification problem. Typically, we want to learn
a prediction function h : RD → [0, 1] such that h(x) = p(y = 1|x). Assuming
that all the data points are on the manifold M, then the restriction of h on M

(denoted by h|M(x)) completely determines training loss and testing accuracy. In
other words, if we have a function e defined on R

D such that ∀x ∈ M, e(x) = 0,
then h + e shares the same training/testing statistics with h since they are the
same on M. However, the adversarial robustness of h + e and h could be very
different, since adversarial examples usually do not lie on the manifold M. This
is an ambiguity of the functions in R

D, when they share the same values on M.
Considering this ambiguity issue, we need to specify an extension of some

given h|M(x) to R
D for adversarial robustness. Specifically, the following is a

desirable property suggesting adversarial robustness of an extension h:

∀x ∈ M,∇h(x) ∈ TxM, (1)

which means that the prediction does not change if x is perturbed in a perpen-
dicular direction of the manifold tangent space. Intuitively, the adversary cannot
perform the attack successfully by only perturbing the input image away from
the manifold. We note that the tangent component of ∇h(x) is indispensible to
enable the value of h(x) to vary on the manifold to classify the dataset, and
hence intuitively, Eq. (1) describes an ideal case to maintain the accuracy while
improving robustness.

In reality, however, the classifier is usually inclined to make its gradient
nearly perpendicular to the tangent space of the data manifold. We call this
phenomenon gradient leaking. Formally speaking, we propose Gradient Leak-
ing Hypothesis as follows:

Let h denote the learned prediction function in typical machine learning
tasks and x ∈ M. If we decompose the gradient into the tangent space and
normal space as ∇h(x) = v‖ + v⊥, where v‖ ∈ TxM and v⊥ ∈ NxM, then
‖v‖‖ � ‖v⊥‖.
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The hypothesis suggests that even if h is a good classifier on the manifold M,
it may fail to be robust since it puts too much of its gradient in the normal
space of the manifold. An geometric description of gradient leaking is that the
hypersurface {x : h(x) = c} for c ∈ (0, 1) is nearly parallel to the data manifold,
while in the ideal case they should be perpendicular to each other. When c = 0.5,
the hypersurface {x : h(x) = c} is the decision boundary, so gradient leaking
basically means that the decision boundary is along the data manifold.

An illustrating case when gradient leaking happens is shown in Fig. 3. The
data manifold is the green sine-wave surface, in which the part above the blue
surface is in one class, and the part below the blue surface is in the other class.
The blue surface itself seems a natural choice to classify the two classes since it is
nearly linear, but the classifier using it as the decision boundary is not a robust
classifier, since we can change its prediction by perturbing the data point up or
down slightly. This aligns with our gradient leaking hypothesis since the blue
surface is nearly parallel to the data manifold. A more robust decision boundary
should be perpendicular to the data manifold, but it must be wave-like as well,
making it more difficult to learn in practice.

Fig. 3. Illustration of the gradient leak-
ing phenomenon. The green surface is the
data manifold (all of the data points are
on it), and the label is decided by whether
the data point is above or below the blue
surface. However, if the blue surface is
chosen as the decision boundary, then gra-
dient leaking occurs and the classifier is
not robust. (Color figure online)

Intuitively, the non-robust classi-
fier corresponding to the blue surface
utilizes the direction of fluctuation of
the data manifold, which could be
rather small despite correlating with
the true label well. We call such direc-
tions small-scale features, and call their
opposite, the main spanning direction
of the data manifold, large-scale fea-
tures. Similar cases of gradient leaking
happens in real datasets as well, since
there exist such small-scale features like
textures. We assume that in the learn-
ing procedure, the classifier would rely
on the most discriminative dimensions, which may be small-scale but linear sep-
arable. We perform a data poisoning experiment on CIFAR10 (see Appendix E)
to verify the hypothesis that the preference for small scale features may cause
the classifier to be non-robust.

Our hypothesis can explain the limitation of the present methods. For exam-
ple, the gradient regularization methods [12,23] or Lipschitz limited meth-
ods [5,15] assume that one could design a robust model by making the gradient
norm smaller. Adversarial training [8] has shown a great performance which can
reduce the gradient norm considerably. However, these methods do not distin-
guish between the tangent space and the normal space, and cannot preserve
the useful gradient component in the tangent space while reducing that in the
normal space. Our hypothesis suggests that to improve robustness, we should
focus on the direction instead of the norm of the gradient. Moreover, simply
increasing the number of training data points may not help much [4], because
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αd vs. d αd vs. epoch (Dense) αd vs. epoch (Wide)

Fig. 4. Average PCA proportion of the gradient on CIFAR10.

points sampled from the data manifold tell the classifier nothing about what its
prediction should be outside of the manifold.

3.3 Empirical Study

In this section, we empirically show that the gradient leaking phenomenon widely
exists in DNNs.

Evaluation Metric. To detect the gradient leaking phenomenon in the real
scenario, it is expected that we can clearly recognize the tangent space and
normal space on each point at a low cost, which demands an efficient way to
represent the data manifold approximately. Among various choices, in this paper,
we resort to the PCA subspace since it is convenient yet effective for manifold
representation. Specifically, suppose the PCA eigenvectors are {v1, v2, ..., vD} in
a descending order of corresponding eigenvalues, which is an orthogonal basis
of the ambient space. We refer to the d-dimensional PCA (principal) subspace
as spanned by {v1, v2, ..., vd}, where d � D. We define an evaluation metric of
gradient leaking, with the PCA principal subspace serving as an approximation
to the local tangent space. For a data point x, suppose g = ∇f(x) is the adver-
sarial gradient where f is some loss function w.r.t. the label of x. Then a larger
proportion of g in the PCA subspace indicates less gradient leaking, which can
be calculated as

αd(g) =
∑d

i=1(g
�vi)2

‖g‖22
. (2)

We note that for d1 < d2, 0 ≤ αd1(g) ≤ αd2(g) ≤ 1. By drawing a curve of αd(g)
to d ∈ {1, 2, ...,D}, complete information of g can be recovered.

Existence of Gradient Leaking Phenomenon. We conduct experiments on
CIFAR10 (D = 32 × 32 × 3 = 3072) by training two different state-of-the-art
network architectures, namely DenseNet [10] and Wide-ResNet [31]. We also
conduct experiments on CASIA-WebFace, a dataset for face recognition, but
leave the results to Appendix C due to space limitation. To evaluate the extent



760 Y. Li et al.

Table 1. Statistics of 8 pretrained models on ImageNet.

Model inc res50 res152 vgg ens hgd iat iat-den R2

Accuracy 0.769 0.740 0.751 0.694 0.764 0.787 0.602 0.639

1/Mean grad norm 0.115 0.197 0.157 0.272 0.264 0.248 1.535 1.743 0.904

α400 0.011 0.020 0.021 0.018 0.037 0.014 0.145 0.152 0.940

α1241 0.053 0.102 0.103 0.096 0.146 0.060 0.284 0.296 0.878

α6351 0.333 0.449 0.465 0.628 0.559 0.314 0.588 0.612 0.319

Mean pert norm 0.199 0.190 0.306 0.262 1.084 0.540 1.952 2.332 –

of gradient leaking, we calculate the average PCA proportion of the gradient
over the dataset as1

αd � 1
N

N∑
n=1

αd(∇f(xn)). (3)

We show the curve of αd vs. d at the last epoch in Fig. 4(a). It can be seen that
the component of gradients in the PCA principal subspace is far less than the
component of images in the same subspace, indicating that the model relies on
small-scale features to classify, i.e. leaks gradient outside of the data manifold.

Meanwhile, we also explore the property of the adversarial perturbation direc-
tion here. We try to perturb the original input x such that the perturbed sample
is misclassified, and find such smallest �2-perturbation δ(x) by the �2-BIM attack
[14] implemented by Foolbox [21]. Then we calculate αd for d = {1, 2, ...,D} in
the same way except that ∇f(xn) is replaced by δ(xn), and draw the curve in the
same figure. The PCA proportion of the gradient and the adversarial perturba-
tion is almost identical, suggesting that the direction of adversarial samples could
be seen as a first-order effect2, hence reducing the gradient leaking phenomenon
at data points should be a good option for improving the robustness.

Furthermore, we explore the trends of gradient leaking along the training
process. For the training model, we plot αd to the training epochs for d = 300
and 800 in Fig. 4(b) on DenseNet and in Fig. 4(c) on Wide-ResNet3. At Epoch
0 (before training), gradient leaking is severe since the model has no knowledge
of the data manifold then. At Epoch 1, the model leaks the least proportion of
gradients since it learns to classify the data points in the data manifold during the
first epoch. However, the gradient leaking becomes more and more notable in the
remaining epochs. This validates our conjecture that small-scale features might
be preferred by DNNs when they are discriminative and easy for classification.
In the beginning of training, the models discover the data manifold and learn to
classify with the large-scale features along the manifold. However, DNNs would

1 We omit the dependence of the loss function f on the label of xn.
2 Though the distance may be affected by the non-linearity introduced by softmax.
3 In CIFAR10, PCA with d = 300 and 800 preserve 96.85% and 99.40% of the energy

of the image dataset respectively.
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finally discover such small-scale features and use them to improve classification
performance at the expense of robustness.

Gradient Leaking as an Indicator of Robustness. Having established that
gradient leaking phenomenon exists when training typical neural architectures,
we empirically study the relationship between the robustness and the tensity of
gradient leaking. We note that the norm of the gradient might not be the best
indicator of robustness, since that for example, an image with a rather small
gradient norm could also have an adversarial example in its neighborhood.

We analyze 8 models trained on ImageNet, in which 4 are normally trained
models (‘inc’: Inception-v3, ‘vgg’: VGG-16, ‘res50’: ResNet-v1-50, ‘res152’:
ResNet-v2-152) and 4 are models which are intended to be robust (‘ens’:
Inception-ResNet-v2 through ensemble adversarial training [28], ‘hgd’: An
ensemble of networks with a high-level representation guided denoiser [16], ‘iat’:
a ResNet-152 model through large-scale adversarial training [29], ‘iat-den’: the
‘iat’ model with feature-denoising layers [29]). We conduct the experiments on
the first 1000 images in the validation set. The results are shown in Table 1.
The d in αd is chosen as 400, 1241 and 6351 since they correspond to preserving
90%, 95% and 99% of the energy respectively after the images are projected to
the PCA subspace. In the last column, we show the coefficient of determination
R2 of the linear regression which predicts the mean perturbation norm of the
adversarial example we find by �2-BIM (the last row). Note that according to
Fig. 1, the perturbation norm of adversarial examples should be approximately
proportional to

√
αd. We hence show R2 w.r.t.

√
αd instead of αd here. We find

that compared with the reciprocal of mean gradient norm, α400 turns out to be
a better indicator of the mean perturbation norm which represents adversarial
robustness.4

Discussion. From the validation in the real scenario, we find that

1. Gradient leaking widely exists in DNNs. Considering that the PCA subspace
can be much larger than the real data manifold, it might be worse than we
already observed and be a reason for adversarial vulnerability.

2. Adversarial vulnerability is a first order phenomenon in the sense that the
adversarial perturbation direction aligns with the gradient direction well.

3. During the training procedure, the gradients concentrate on main components
at first, and then leak gradually, showing a clear dynamics of changing the
gradients’ direction to fit the small-scale features.

4. Small-scale features are preferred by DNNs. They could even generalize well
on the testing dataset, but we need to reduce their effect in robustness-
sensitive tasks.

4 R2 w.r.t.
√

α1241 and
√

α6351 deteriorate perhaps because the intrinsic dimension of
the data manifold should be much smaller than 1241.
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4 Adversarial Defenses

With our discussion above, making gradients lie in the tangent space of data
manifold might be a central mission to construct a robust classifier. Hence, we
propose to improve robustness by suppressing the gradient leaking phenomenon.

4.1 Making the Data Manifold Flat

To deal with gradient leaking, we consider modifying the training dataset to
make the data manifold ‘flat’. Taking Fig. 3 as an example, we propose to project
the data manifold onto the blue surface, making the currently shown decision
boundary invalid. It forces a model with sufficient expressive power to learn to
classify with a more robust feature such as the coordinate along the blue surface
(although the decision boundary could be more complicated).

Specifically, we propose to project the training dataset to its PCA principal
subspace before training, so that the fluctuation of data manifold is partially
eliminated. Note that in evaluation (Sect. 3.3), we consider the data manifold as
the PCA hyperplane since they are similar in the large-scale stretching direction;
however, they are very different in the training process as we mentioned above.
Formally speaking, we project each data point x as5

x ←
d∑

i=1

〈x, vi〉vi,

before training, where d is a hyperparameter representing the dimension of the
PCA subspace, and v1, v2, ..., vd are the d principal eigenvectors. We note that
we perform PCA projection during training process instead of during testing
process, which suffices to improve robustness significantly. The time cost of com-
putation of PCA principal eigenvectors is relatively small (see Appendix A).

4.2 Adding Noise in the Normal Space

A more direct way to suppress gradient leaking is to perform data augmentation
so that the loss of the classifier would be large if the decision boundary is not
perpendicular enough to the data manifold. The idea is best illustrated in Fig. 2.
Figure 2(a) shows the original data distribution in which regions of two different
colors represent two categories of data points. We recognize the black parabolic
curve as the 1-D approximate data manifold. Figure 2(b) (approximately) shows
that by adding noise independent of the label in the normal direction of the
data manifold , the augmented data can force the classifier to learn a decision
boundary that is perpendicular to the data manifold.

Adding noise in the normal space is in contrast to the previously introduced
idea of flattening the data manifold. In Sect. 4.1, we actually did not impose
constraints upon the classifier, but made it easier for it to learn the robust

5 For clarity, we assume the dataset has been centralized so that x = 1
N

∑N
n=1 xn is 0.
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Algorithm 1. Modifying training data for training robust models
Input: A training data point x; with the N × D training dataset X = [x1, ..., xN ]�,

dimension d of PCA subspace, dimension m of the subspace to add noise, noise
scale c > 0.

Output: Modified training data point x′.
1: Perform spectral decomposition on the covariance matrix C = 1

N

∑N
n=1(xn −

x)(xn − x)� (where x = 1
N

∑N
n=1 xn) as

C =
∑D

i=1 λiviv
�
i , λ1 ≥ λ2 ≥ ... ≥ λD;

2: Compute the components of x − x on V = [v1, v2, ..., vD] as
a ← V �(x − x);

3: Projecting x to the PCA subspace:
For the ith component of a: ai ← 0, for i = d + 1, d + 2, ..., D;

4: Add noise:
ai ← c

√
λiξi, with ξi

i.i.d.∼ N (0, 1) for i = d + 1, d + 2, ..., d + m;
5: Reconstruction:

x′ ← V a + x;
6: return x′.

decision boundary. Each of the two methods can be independently applied in
theory. However, it is difficult to access the tangent space or the normal space
in a general data manifold. But if we combine the two methods together, thanks
to the fact that the dataset has been projected into a PCA hyperplane, we
can access (a subspace of) the normal space easily by identifying it as the space
spanned by remaining PCA eigenvectors orthogonal to the principal hyperplane.

Specifically, utilizing the PCA basis and combining with the method in
Sect. 4.1, we modify the training data x as

x ←
d∑

i=1

〈x, vi〉vi +
D∑

i=d+1

σiξivi,

where ξi
i.i.d.∼ N (0, 1) and {σi}D

i=d+1 is a set of hyperparameters which could be
set in a principled way. In this view, by adding label-irrelevant noise, we make
the small-scale directions, i.e. {vd+1, ..., vD} hardly utilized by the model for
classification even if the decision boundary is highly non-linear, thus suppressing
gradient leaking.

Contrast to former robust learning methods by randomization like [9] in
which authors add isotropic Gaussian noise to weights or inputs of each layer,
our method augments the dataset with Gaussian noise in the direction of PCA
eigenvectors and in the specific subspace of small-scale features. To maximize the
efficiency of injected noises, for a small value of integer m (e.g. m = 10), we set
σi = 0 for all i > d+m while setting σi to be a relatively large value for d+1 ≤
i ≤ d + m. With a subspace of lower dimension, the efficiency of noise sampling
to cover the space could be much higher. Meanwhile, we find that this not only
reduces the gradient component in the subspace spanned by {vd+1, ..., vd+m}
but also reduces the gradient components along other eigenvectors with small
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eigenvalues. A possible explanation is that by preventing the convolution kernel
from being activated by some patterns, it will also drop other similar features
(e.g. of similar frequency).

To summarize, we present our algorithm to preprocess the training data in
Algorithm 1. Note that for d + 1 ≤ i ≤ d + m, we set σi = c

√
λi which means

that the scale of the ith dimension of the modified training dataset is c times
larger than before.

5 Experiments

5.1 Primary Experiments

In this section, we apply our defense algorithm to improve the robustness upon
the baseline training algorithm. We first present the experimental setup, and then
report the quantitative results to demonstrate the effectiveness of our algorithm.

Experiment Setup
Dataset. We test our algorithms on two datasets, namely CIFAR10 (shown
here) and CASIA-WebFace (see Appendix D).

Backbone Models. Same as in Sect. 3.3, namely DenseNet and Wide-ResNet.

Metric. We report the testing error rate on clean data (Err), the mean/median
perturbation norm (Pert) that represents the robustness (higher is better), the
mean gradient norm ‖g‖2 (Grad) (lower is better) and αd defined in Eq. (3) as
relevant quantities of robustness (higher is better).

Attack Method. We perform �2-C&W attack [3] implemented in Foolbox 2.3.0
with default parameters, which is the strongest attack among the ones (including
PGD [17], DDN [22], BIM and C&W) we have tested in Foolbox.

Experimental Results. We compare three different types of training methods,
namely the ordinary training method (‘ord’), our proposed algorithm (‘noise’)
(with hyperparameters c = 10 and m = 10), and a degenerated version of our
algorithm (‘pca’) by skipping the step of adding noise, i.e. Algorithm 1 without
Line 4. In the testing phase (including robustness evaluation), we directly feed
the original test image (without any preprocessing) into the trained models.

We report the experimental results in Table 2. The subscript of each method
name refers to the dimension of PCA subspace d. With a suppression of utiliza-
tion of small-scale features, our method consistently outperforms the ordinary
models in terms of the robustness although there are different degrees of accu-
racy degeneration for clean images. It, from another side, provides an evidence



Defense Against Adversarial Attacks via Controlling Gradient Leaking 765

Table 2. CIFAR10 results of DenseNet and Wide-ResNet. The mean/median pertur-
bation norm are in the ‘Pert’ column.

Method DenseNet Wide-ResNet

Err Grad α300 α800 Pert Err Grad α300 α800 Pert

ord 5.92 0.248 0.040 0.273 0.090/0.085 9.08 0.195 0.056 0.352 0.113/0.100

pca800 6.97 0.123 0.244 0.817 0.160/0.155 9.7 0.091 0.253 0.845 0.193/0.178

noise800 8.82 0.140 0.460 0.988 0.208/0.192 10.49 0.076 0.512 0.978 0.251/0.233

pca300 11.71 0.075 0.713 0.973 0.256/0.240 13.75 0.050 0.667 0.910 0.308/0.283

noise300 16.53 0.060 0.942 0.988 0.308/0.265 19.09 0.027 0.843 0.881 0.320/0.299

trades 21.22 0.009 0.416 0.639 0.664/0.579 19.37 0.008 0.446 0.673 0.725/0.639

that the robust features are more difficult to learn and may not be that dis-
criminative. To compare with the state-of-the-art method, we train TRADES
[32], an adversarial-training method, on the two architectures and report the
results in the table. Although there remains a gap of robustness (perturbation
norm) between our method and TRADES, our improvement of robustness has
been significant, with controllable and less deterioration of accuracy on clean
data than TRADES. Moreover, in Sect. 5.2 we will propose a stronger defense
by integrating our data preprocessing procedure into other defense algorithms.

The results also show that αd becomes larger as we reduce the dimension of
d and add noise in the normal space, which is highly related to the improvement
of robustness. They also provide a strong evidence that for normally trained
models, the gradient component leaks in the normal space. Our results are in
line with our theory that the projection of the gradient on the manifold is a
more essential attribute of the classification function. For instance, the DenseNet
model trained by noise800 method has a higher gradient norm than pca800 which
should imply less robustness, but actually its average perturbation distance is
higher than pca800. This, however, aligns with the improvement of α300 and
α800. The contradictory phenomenon cannot be explained without the insight of
gradient leaking that the additional Gaussian noise on the normal space further
suppresses gradient leaking. We also note that the αd value of TRADES, the
most robust model among those listed in the table, is relatively small compared
with αd of our methods. This is perhaps because our perspective of gradient
leaking cannot address the issue of in-manifold robustness, and also because
our PCA approximation of the data manifold is rather rough. Nevertheless, less
gradient leaking still correlates with and promotes stronger robustness well.

5.2 Integration into Other Defense Algorithms

Our method is light-weight and can be naturally integrated with other defense
methods. To further boost the robustness, we provide an exemplary result by
integrating it with a recently proposed method of Max-Mahalanobis center
(MMC) loss [19]. Roughly speaking, it proposes to replace the softmax cross-
entropy (SCE) loss with MMC loss which acts upon the layer just before the
logits layer.
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Table 3. The experimental results using MMC loss on CIFAR10.

Attack Training method Clean Untargeted Targeted

ε = 0 8 16 24 32 8 16 24 32

PGD10 SCE 93.5 3.9 2.9 2.2 1.9 0.0 0.0 0.0 0.0

MMC 92.5 25.6 11.7 5.9 3.7 45.5 29.2 20.2 14.2

MMC-P-500 90.3 42.5 30.6 21.4 15.9 57.9 46.5 37.6 30.4

MMC-P-300 87.9 43.9 33.4 25.5 20.6 56.5 46.6 38.9 32.7

SCE-AT 84.0 50.5 20.9 11.2 8.7 68.2 36.5 14.6 4.3

MMC-AT 83.3 54.2 40.1 35.1 30.8 63.2 50.8 44.2 39.3

PGD50 SCE 93.5 3.8 3.1 2.3 1.8 0.0 0.0 0.0 0.0

MMC 92.5 9.2 4.8 3.3 2.2 26.9 16.6 12.7 9.5

MMC-P-500 90.3 24.9 15.1 11.3 9.1 41.4 30.3 26.6 22.9

MMC-P-300 87.9 29.2 20.1 17.1 14.8 41.0 30.9 27.9 24.7

SCE-AT 84.0 48.9 17.4 9.6 8.2 66.6 28.0 6.0 1.0

MMC-AT 83.3 51.1 35.4 31.2 27.8 60.9 44.8 40.2 35.7

To further reduce gradient leaking, we preprocess our training data accord-
ing to our algorithm before feeding them into the MMC training process, result-
ing in a even stronger defense denoted as MMC-P. We conduct experiments
on CIFAR10 in which we simply project the dataset to 500/300-dimensional
PCA subspace as the preprocessing procedure. We report results of MMC
and MMC-P in Table 3. The robustness is evaluated using �∞ PGD attacks
(see Appendix B for evaluation under �2 attacks) with different settings (tar-
geted/untargeted, 10/50 iteration steps), and we show the natural accuracy
(ε = 0) and the robustness accuracy under attacks with different �∞ perturbation
bounds ε = 8, 16, 24, 32. In PGD10, we adopt the step size 2, 3, 4, 5 respectively
for ε = 8, 16, 24, 32; in PGD50, we set the step size to 2 in all cases. We utilize
the C&W loss [3] (instead of the ordinary cross-entropy loss) which constitutes a
stronger attack, so the robustness accuracy we report is lower than that in [19].

We found despite that the MMC baseline is satisfactory, our proposed MMC-
P outperforms the vanilla MMC by a large margin with a simple data prepro-
cessing step. To compare with the state-of-the-art methods, we report the per-
formance of MMC-AT (adversarial training (AT) [17] using MMC loss) proposed
in [19], which is adversarially trained using 10-step targeted PGD attack under
perturbation bound ε = 8. We note that it is stronger than vanilla AT (i.e.
SCE-AT in the table). Experimental results show that despite the remaining
gap of robustness between MMC-P and MMC-AT, MMC-P is still a competitive
defense compared with the state-of-the-art AT methods since it brings a sat-
isfactory robustness performance with less sacrifice in accuracy on clean data.
Meanwhile, MMC-P is more convenient to use, and much faster to train. The
results demonstrate that our method can further boost the robustness perfor-
mance of some well-developed methods by integrating with them naturally.
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6 Conclusion and Future Work

We reveals a possible path named “gradient leaking” to explain the existence and
properties of adversarial samples. We further develop a method to examine the
gradient leaking phenomenon, analyze its relationship with existence of adver-
sarial samples, and further propose a novel method to defend against adversarial
attacks based on the hypothesis, which adopts the linear dimension reduction
and randomization technique before training. It brings an explainable robustness
improvement with little extra time cost.

In the future, the mechanism of gradient leakage still requires a theoretical
explanation, which may include the aspects of learning methods, data distribu-
tion and network architecture. A better data manifold representation method
from which the local tangent space can be identified, such as VAE and localized
GAN as suggested in [30], may lead us to deeper understanding of data mani-
fold, more accurate estimate of gradient leaking, and more impressive robustness
improvement. Combining our methods with other defense algorithms and figur-
ing out how they work together could also be a potential direction.
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Abstract. In this work we review the coarse-to-fine spatial feature pyra-
mid concept, which is used in state-of-the-art optical flow estimation net-
works to make exploration of the pixel flow search space computationally
tractable and efficient. Within an individual pyramid level, we improve
the cost volume construction process by departing from a warping- to a
sampling-based strategy, which avoids ghosting and hence enables us to
better preserve fine flow details. We further amplify the positive effects
through a level-specific, loss max-pooling strategy that adaptively shifts
the focus of the learning process on under-performing predictions. Our
second contribution revises the gradient flow across pyramid levels. The
typical operations performed at each pyramid level can lead to noisy,
or even contradicting gradients across levels. We show and discuss how
properly blocking some of these gradient components leads to improved
convergence and ultimately better performance. Finally, we introduce
a distillation concept to counteract the issue of catastrophic forgetting
during finetuning and thus preserving knowledge over models sequen-
tially trained on multiple datasets. Our findings are conceptually simple
and easy to implement, yet result in compelling improvements on rel-
evant error measures that we demonstrate via exhaustive ablations on
datasets like Flying Chairs2, Flying Things, Sintel and KITTI. We estab-
lish new state-of-the-art results on the challenging Sintel and KITTI 2012
test datasets, and even show the portability of our findings to different
optical flow and depth from stereo approaches.

1 Introduction

State-of-the-art, deep learning based optical flow estimation methods share a
number of common building blocks in their high-level, structural design. These
blocks reflect insights gained from decades of research in classical optical flow
estimation, while exploiting the power of deep learning for further optimization
of e.g. performance, speed or memory constraints [14,37,44]. Pyramidal repre-
sentations are among the fundamental concepts that were successfully used in
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optical flow and stereo matching works like [3]. However, while pyramidal repre-
sentations enable computationally tractable exploration of the pixel flow search
space, their downsides include difficulties in the handling of large motions for
small objects or generating artifacts when warping occluded regions. Another
observation we made is that vanilla agglomeration of hierarchical information
in the pyramid is hindering the learning process and consequently leading to
reduced performance.

In this paper we identify and address shortcomings in state-of-the-art flow
networks, with particular focus on improving information processing in the pyra-
midal representation module. For cost volume construction at a single pyramid
level, we introduce a novel feature sampling strategy rather than relying on
warping of high-level features to the corresponding ones in the target image.
Warping is the predominant strategy in recent and top-performing flow meth-
ods [14,44] but leads to degraded flow quality for fine structures. This is because
fine structures require robust encoding of high-frequency information in the fea-
tures, which is sometimes not recoverable after warping them towards the target
image pyramid feature space. As an alternative we propose sampling for cost
volume generation in each pyramid level, in conjunction with the sum of abso-
lute differences as a cost volume distance function. In our sampling strategy
we populate cost volume entries through distance computation between features
without prior feature warping. This helps us to better explore the complex and
non-local search space of fine-grained, detailed flow transformations (see Fig. 1).

Using sampling in combination with a per-pyramid level loss max-pooling
strategy further supports recovery of the motion of small and fast-moving
objects. Flow errors for those objects can be attributed to the aforementioned
warping issue but also because the motion of such objects often correlates
with large and underrepresented flow vectors, rarely available in the training
data. Loss max-pooling adaptively shifts the focus of the learning procedure
towards under-performing flow predictions, without requiring additional infor-
mation about the training data statistics. We introduce a loss max-pooling vari-
ant to work in hierarchical feature representations, while the underlying concept
has been successfully used for dense pixel prediction tasks like semantic segmen-
tation [30].

Our second major contribution targets improving the gradient flow across
pyramid levels. Functions like cost volume generation depend on bilinear inter-
polation, which can be shown [19] to produce considerably noisy gradients. Fur-
thermore, fine-grained structures which are only visible at a certain pyramid
level, can propagate contradicting gradients towards the coarser levels when they
move in a different direction compared to their background. Accumulating these
gradients across pyramid levels ultimately inhibits convergence. Our proposed
solution is as simple as effective: by using level-specific loss terms and smartly
blocking gradient propagation, we can eliminate the sources of noise. Doing so
significantly improves the learning procedure and is positively reflected in the
relevant performance measures.
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Fig. 1. Optical flow predictions from our model on images from Sintel and KITTI.

As minor contributions, we promote additional flow cues that lead to a more
effective generation of the cost volume. Inspired by the work of [15] that used
backward warping of the optical flow to enhance the upsampling of occlusions, we
advance symmetric flow networks with multiple cues (like consistencies derived
from forward-backward and reverse flow information, occlusion reasoning) to
better identify and correct discrepancies in the flow estimates. Finally, we also
propose knowledge distillation to counterfeit the problem of catastrophic forget-
ting in the context of deep-learning-based optical flow algorithms. Due to a lack
of large training datasets, it is common practice to sequentially perform a num-
ber of trainings, first on synthetically generated datasets (like Flying Chairs2
and Flying Things), then fine-tuning on target datasets like Sintel or KITTI.
Our distillation strategy (inspired by recent work on scene flow [18] and unsu-
pervised approaches [20,21]) enables us to preserve knowledge from previous
training steps and combine it with flow consistency checks generated from our
network and further information about photometric consistency.

Our combined contributions lead to significant, cumulated error reductions
over state-of-the-art networks like HD3 or (variants of) PWC-Net [2,15,37,44],
and we set new state-of-the-art results on the challenging Sintel and KITTI
2012 datasets. We provide exhaustive ablations and experimental evaluations on
Sintel, KITTI 2012 and 2015, Flying Things and Flying Chairs2, and significantly
improve on the most important measures like Out-Noc (percentage of erroneous
non-occluded pixels) and on EPE (average end-point-error) metrics.

2 Related Work

Classical Approaches. Optical flow has come a long way since it was introduced
to the computer vision community by Lucas and Kanade [23] and Horn and
Schunck [13]. Following these works, the introduction of pyramidal coarse-to-
fine warping frameworks were giving another huge boost in the performance of
optical flow computation [4,34] – an overview of non learning-based optical flow
methods can be found in [1,9,35].

Deep Learning Entering Optical Flow. Many parts of the classical optical flow
computations are well-suited for being learned by a deep neural network. Initial



IOFPL - Improving Optical Flow on a Pyramid Level 773

work using deep learning for flow was presented in [40], and was using a learned
matching algorithm to produce semi-dense matches then refining them with a
classical variational approach. The successive work of [29], whilst also relying
on learned semi-dense matches, was additionally using an edge detector [7] to
interpolate dense flow fields before the variational energy minimization. End-to-
end learning in a deep network for flow estimation was first done in FlowNet [8].
They use a conventional encoder-decoder architecture, and it was trained on a
synthetic dataset, showing that it still generalizes well to real world datasets
such as KITTI [11]. Based on this work, FlowNet2 [16] improved by using a
carefully tuned training schedule and by introducing warping into the learning
framework. However, FlowNet2 could not keep up with the results of traditional
variational flow approaches on the leaderboards. SpyNet [27] introduced spatial
image pyramids and PWC-Net [36,37] additionally improved results by incorpo-
rating spatial feature pyramid processing, warping, and the use of a cost volume
in the learning framework. The flow in PWC-Net is estimated by using a stack of
flattened cost volumes and image features from a Dense-Net. In [15], PWC-Net
was turned into an iterative refinement network, adding bilateral refinement of
flow and occlusion in every iteration step. ScopeFlow [2] showed that improve-
ments on top of [15] can be achieved simply by improving training procedures.
In the work of [28], the group around [36] was showing further improvements
on Kitti 2015 and Sintel by integrating the optical flow from an additional, pre-
vious image frame. While multi-frame optical flow methods already existed for
non-learning based methods [6,10,41], they were the first to show this in a deep
learning framework. In [44], the hierarchical discrete distribution decomposi-
tion framework HD3 learned probabilistic pixel correspondences for optical flow
and stereo matching. It learns the decomposed match densities in an end-to-end
manner at multiple scales. HD3 then converts the predicted match densities into
point estimates, while also producing uncertainty measures at the same time.
Devon [22] uses a sampling and dilation based deformable cost-volume, to iter-
atively estimate the flow at a fixed quarter resolution in each iteration. While
they showed good results on clean synthetic data, the performance on real images
from KITTI was sub-optimal, indicating that sampling alone may not be suffi-
cient. We will show here, that integrating a direct sampling based approach into
a coarse-to-fine pyramid together with LMP and Flow Cues can actually lead to
very good results. Recently, Volumetric Correspondence Networks (VCN) [43]
showed that the 4D cost volume can also be efficiently filtered directly without
the commonly used flattening but using separable 2D filters instead.

Unsupervised Methods. Generating dense and accurate flow data for supervised
training of networks is a challenging task. Thus, most large-scale datasets are
synthetic [5,8,17], and real data sets remained small and sparsely labeled [25,26].
Unsupervised methods do not rely on that data, instead, those methods usually
utilize the photometric loss between the original image in the warped, second
image to guide the learning process [45]. However, the photometric loss does not
work for occluded image regions, and therefore methods have been proposed to
generate occlusion masks beforehand or simultaneously [24,42].
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Distillation. To learn the flow values of occluded areas, DDFlow [20] is using a
student-teacher network which distills data from reliable predictions, and uses
these predictions as annotations to guide a student network. SelFlow [21] is
built in a similar fashion but vastly improves the quality of the flow predictions
in occluded areas by introducing a superpixel-based occlusion hallucination tech-
nique. They obtain state-of-the-art results when fine-tuning on annotated data
after pre-training in a self-supervised setting. SENSE [18] tries to integrate opti-
cal flow, stereo, occlusion, and semantic segmentation in one semi-supervised
setting. Much like in a multi-task learning setup, SENSE [18] uses a shared
encoder for all four tasks, which can exploit interactions between the differ-
ent tasks and leads to a compact network. SENSE uses pre-trained models to
“supervise” the network on data with missing ground truth annotations using
a distillation loss [12]. To couple the four tasks, a self-supervision loss term is
used, which largely improves regions without ground truth (e.g. sky regions).

3 Main Contributions

In this section we review pyramid flow network architectures [36,44], and propose
a set of modifications to the pyramid levels (§ 3.2) and their training strategy
(§ 3.3), which work in a synergistic manner to greatly boost performance.

3.1 Pyramid Flow Networks

Pyramid flow networks (PFN) operate on pairs of images, building feature pyra-
mids with decreasing spatial resolution using “siamese” network branches with
shared parameters. Flow is iteratively refined starting from the top of the pyra-
mid, each layer predicting an offset relative to the flow estimated at the previous
level. For more details about the operations carried out at each level see § 3.2.

Notation. We represent multi-dimensional feature maps as functions I l
i : Il

i →
Rd, where i = 1, 2 indicates which image the features are computed from, l is
their pyramid level, and Il

i ⊂ R2 is the set of pixels of image i at resolution l.
We call forward flow at level l a mapping F l

1→2 : Il
1 → R2, which intuitively

indicates where pixels in I l
1 moved to in I l

2 (in relative terms). We call backward
flow the mapping F l

2→1 : Il
2 → R2 that indicates the opposite displacements.

Pixel coordinates are indexed by u and v, i.e. x = (xu, xv), and given x ∈ Il
1, we

assume that I l
1(x) implicitly applies bilinear interpolation to read values from

I l
1 at sub-pixel locations.

3.2 Improving Pyramid Levels in PFNs

Many PFNs [36,44] share the same high-level structure in each of their levels.
First, feature maps from the two images are aligned using the coarse flow esti-
mated in the previous level, and compared by some distance function to build
a cost volume (possibly both in the forward and backward directions). Then,
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I1 I2 I2→1

Fig. 2. Sampling vs. Warping. Left: Warping leads to image ghosting in the warped
image I2→1; Also, neighbouring pixels in I1 must share parts of their search windows
in I2→1, while for sampling they are independently sampled from the original image
I2. Right: A toy example; a) Two moving objects: a red line with a black dot and a
blue box. Warping with F gt

1→2 leads to ghosting effects. b) Zooming into lowest pyramid
resolution shows loss of small details due to down-scaling. c) Warping Il2 with the flow
estimate from the coarser level leads to distortions in Il2→1 (the black dot gets covered
up). Instead, direct sampling in Il2 with a search window(gray box) that is offset by
the flow estimate avoids these distortions and hence leads to more stable correlations.

the cost volume is combined with additional information from the feature maps
(and optionally additional “flow cues”) and fed to a “decoder” subnet. This sub-
net finally outputs a residual flow, or a match density from which the residual
flow can be computed. A separate loss is applied to each pyramid layer, provid-
ing deep supervision to the flow refinement process. In the rest of this section,
we describe a set of generic improvements that can be applied to the pyramid
layers of several state of the art pyramid flow networks.

Cost Volume Construction. The first operation at each level of most pyramid
flow networks involves comparing features between I l

1 and I l
2, conditioned on the

flow F l−1
1→2 predicted at the previous level. In the most common implementation,

I l
2 is warped using F l−1

1→2, and the result is cross-correlated with I l
1. More formally,

given I l
2 and F l−1

1→2, the warped image is given by I l
2→1(x) = I l

2(x + F l−1
1→2(x))

and the cross-correlation is computed with:

V warp
1→2 (x, δ) = I l

1(x) · I l
2→1(x + δ) = I l

1(x) · I l
2(x + δ + F l−1

1→2(x + δ)), (1)

where δ ∈ [−Δ,Δ]2 is a restricted search space and · is the vector dot product.
This warping operation, however, suffers from a serious drawback which occurs
when small regions move differently compared to their surroundings.

This case is represented in Fig. 2: A small object indicated by a red line moves
in a different direction than a larger blue box in the background. As warping
uses the coarse flow estimate from the previous level, which cannot capture
fine-grained motions, there is a chance that the smaller object gets lost during
the feature warping. This makes it undetectable in I l

2→1, even with an infinite
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Fig. 3. Predicted optical flow and end point error on KITTI obtained with HD3 from
the model zoo (top) and our IOFPL version (bottom). Note how our model is better
able to preserve small details.

cost volume range (CVr/CV-range) δ. To overcome this limitation, we propose
a different cost volume construction strategy, which exploits direct sampling
operations. This approach always accesses the original, undeformed features I l

2,
without loss of information, and the cross-correlation in Eq. (1) now becomes:

V samp,Corr
1→2 (x, δ) = I l

1(x) · I l
2(x + δ + F l−1

1→2(x)). (2)

For this operator, the flow just acts as an offset that sets the center of the
correlation window in the feature image I l

2. Going back to Fig. 2, one can see
that the sampling operator is still able to detect the small object, as it is also
exemplified on real data in Fig. 3. In contrast to [22], our approach still uses the
coarse to fine pyramid and hence doesn’t require dilation in the cost volume for
large motions. In our experiments we also consider a variant where the features
are compared in terms of Sum of Absolute Differences (SAD) instead of a dot
product:

V samp,SAD
1→2 (x, δ) = ‖I l

1(x) − I l
2(x + δ + F l−1

1→2(x))‖1. (3)

Loss Max Pooling. We apply a Loss Max-Pooling (LMP) strategy [30], also
known as Online Hard Example Mining (OHEM), to our knowledge for the first
time in the context of optical flow. In our experiments, and consistent with the
findings in [30], we observe that LMP can help to better preserve small details
in the flow. The total loss is the sum of a pixelwise loss �x over all x ∈ I1, but we
optimize a weighted version thereof that selects a fixed percentage of the highest
per-pixel losses. The percentage value α is best chosen according to the quality
of the ground-truth in the target dataset. This can be written in terms of a loss
max-pooling strategy as follows:

L = max

{ ∑
x∈I1

wx�x : ‖w‖1 ≤ 1 , ‖w‖∞ ≤ 1
α|I1|

}
, (4)

which is equivalent to putting constant weight wx = 1
α|I1| on the percentage of

pixels x exhibiting the highest losses, and setting wx = 0 elsewhere.
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LMP lets the network focus on the more difficult areas of the image, while
reducing the amount of gradient signals where predictions are already correct. To
avoid focussing on outliers, we set the loss to 0 for pixels that are out of reach
for the current relative search range Δ. For datasets with sparsely annotated
ground-truth, like e.g. KITTI [11], we re-scale the per pixel losses �x to reflect
the number of valid pixels. Note that, when performing distillation, loss max-
pooling is only applied to the supervised loss, in order to further reduce the
effect of noise that survived the filtering process described in § 3.4.

3.3 Improving Gradient Flow Across PFN Levels

Our quantitatively most impacting contribution relates to the way we pass gra-
dient information across the different levels of a PFN. In particular, we focus
on the bilinear interpolation operations that we implicitly perform on I l

2 while
computing Eqs. (1), (2) and (3). It has been observed [19] that taking the gradi-
ent of bilinear interpolation w.r.t. the sampling coordinates (i.e. the flow F l−1

1→2

from the previous level in our case) is often problematic. To illustrate the reason,
we restrict our attention to the 1-D case for ease of notation, and write linear
interpolation from a function f̂ : Z → R:

f(x) =
∑

η∈{0,1}
f̂(�x� + η) [(1 − η)(1 − x̃) + ηx̃] , (5)

where x̃ = x − �x� denotes the fractional part of x. The derivative of the inter-
polated function f(x) with respect to x is:

df

dx
(x) =

∑
η∈{0,1}

f̂(�x� + η)(2η − 1). (6)

The gradient function df
dx is discontinuous, for its value drastically changes as

�x� crosses over from one integer value to the next, possibly inducing strong
noise in the gradients. An additional effect, specific to our case, is related to the
issues already highlighted in § 3.2: since F l−1

1→2 is predicted at a lower resolution
than level l operates at, it cannot fully capture the motion of smaller objects.
When this motion contrasts with that of the background, the gradient w.r.t.
F l−1
1→2 produced from the sampling at level l will inevitably disagree with that

produced by the loss at level l − 1, possibly slowing down convergence.
While [19] proposes a different sampling strategy to reduce the noise issues

discussed above, in our case we opt for a much simpler work around. Given
the observations about layer disagreement, and the fact that the loss at l − 1
already provides direct supervision on F l−1

1→2, we choose to stop back-propagation
of partial flow gradients coming from higher levels, as illustrated in Fig. 4.

Evidence for this effect can be seen in Fig. 5, where the top shows the develop-
ment of the training loss for a Flying Chairs 2 training with an HD3 model. The
training convergence clearly improves when the partial flow gradient is stopped
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Fig. 4. Left: network structure – flow estimation per pyramid level; gradients are
stopped at red cross; right: cost volume computation with sampling vs. warping. (Color
figure online)
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Fig. 5. Top: Loss of model decreases when the flow gradient is stopped; bottom: partial
gradients coming from the current level loss and the next level via the flow show a
negative Normalized Cross Correlation (NCC), indicating that they oppose each other.

between the levels (red cross in Fig. 4). On the bottom of the figure the Normal-
ized Cross Correlation (NCC) between the partial gradient coming from the next
level via the flow and the current levels loss is shown. On average the correlation
is negative, indicating that for each level of the network the partial gradient that
we decided to stop (red cross), coming from upper levels, points in a direction
that opposes the partial gradient from the loss directly supervising the current
level, thus harming convergence. Additional evidence of the practical, positive
impact of our gradient stopping strategy is given in the experiment section § 4.2.

Further evidence on this issue can be gained by analyzing the parameters
gradient variance [38] as it impacts the rate of convergence for stochastic gradient
descent methods. Also the β-smoothness [33] of the loss function gradient can
give similar insights. In the supplementary material (section § A) we provide
further experiments that show that gradient stopping also helps to improve these
properties, and works for stereo estimation and other flow models as well.

3.4 Additional Refinements

Flow Cues. As mentioned at the beginning of § 3.2, the decoder subnet in each
pyramid level processes the raw feature correlations to a final cost volume or
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direct flow predictions. To provide the decoder with contextual information, it
commonly [36,44] also receives raw features (i.e. I l

1, I l
2 for forward and backward

flow, respectively). Some works [15,17,39] also append other cues, in the form of
hand-crafted features, aimed at capturing additional prior knowledge about flow
consistency. Such flow cues are cheap to compute but otherwise hard to learn for
CNNs as they require various forms of non-local spatial transformations. In this
work, we propose a set of such flow cues that provides mutual beneficial informa-
tion, and perform very well in practice when combined with costvolume sample
and LMP (see § 4.2). These cues are namely forward-backward flow warping,
reverse flow estimation, map uniqueness density and out-of-image occlusions,
and are described in detail in the supplementary material (§ B).

I1 KITTI GT

Inference after Things3D distilled pseudo GT

Fig. 6. Illustration of our data distillation process. Left to right: input image and asso-
ciated KITTI ground truth, dense prediction from a Flying Things3D-trained network
and pseudo-ground truth derived from it.

Knowledge Distillation. Knowledge distillation [12] consists in extrapolating
a training signal directly from another trained network, ensemble of networks,
or perturbed networks [31], typically by mimicking their predictions on some
available data. In PFNs, distillation can help to overcome issues such as lack of
flow annotations on e.g. sky, which results in cluttered outputs in those areas.
Formally, our goal is to distill knowledge from a pre-trained master network (e.g.
on Flying Chairs2 and/or Flying Things) by augmenting a student network with
an additional loss term, which tries to mimic the predictions the master produces
on the input at hand (Fig. 6, bottom left). At the same time, the student is also
trained with a standard, supervised loss on the available ground-truth (Fig. 6, top
right). In order to ensure a proper cooperation between the two terms, we prevent
the distillation loss from operating blindly, instead enabling it selectively based
on a number of consistency and confidence checks (refer to the supplementary
material for details). Like for the ground-truth loss, the data distillation loss is
scaled with respect to the valid pixels present in the pseudo ground-truth. The
supervised and the distillation losses are combined into a total loss

L = αLS + (1 − α)LD (7)
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with the scaling factor α = 0.9. A qualitative representation of the effects of our
proposed distillation on KITTI data is given in Fig. 7.

4 Experiments

We assess the quality of our contributions by providing a number of exhaustive
ablations on Flying Chairs, Flying Chairs2, Flying Things, Sintel, Kitti 2012 and
Kitti 2015. We ran the bulk of ablations based on HD3 [44], i.e. a state-of-the-
art, 2-frame optical flow approach. We build on top of their publicly available
code and stick to default configuration parameters where possible, and describe
and re-train the baseline model when deviating.

HD3 Modelzoo Ours Ours Distilled

I 2
→
1
(x
)

er
ro
r

F
2→

1
(x
)

Fig. 7. Qualitative evaluation on KITTI, comparing the HD3 modelzoo (left), our
version with all contributions except distillation (center), and with distillation (right).

The remainder of this section is organized as follows. We provide i) in § 4.1
a summary about the experimental and training setups and our basic modifi-
cations over HD3, ii) in § 4.2 an exhaustive number of ablation results for all
aforementioned datasets by learning only on the Flying Chairs2 training set,
and for all reasonable combinations of our contributions described in § 3, as well
as ablations on Sintel, and iii) list and discuss in § 4.3 our results obtained on the
Kitti 2012, Kitti 2015 and Sintel test datasets, respectively. In the supplementary
material we further provide i) more technical details and ablation studies about
the used flow cues, ii) smoothness and variance analyses for gradient stopping
and its impact on depth from stereo or with a PWC baseline iii) ablations on
extended search ranges for the cost volume, and iv) ablations on distillation.

4.1 Setup and Modifications over HD3

We always train on 4xV100 GPUs with 32GB RAM using PyTorch, and obtain
additional memory during training by switching to In-Place Activated Batch-
Norm (non-synchronized, Leaky-ReLU) [32]. We decided to train on Flying
Chairs2 rather than Flying Chairs for our main ablation experiments, since it
provides ground truth for both, forward and backward flow directions. Other
modifications are experiment-specific and described in the respective sections.
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Flow - Synthetic Data Pre-Training. Also the Flying Things dataset provides
ground truth flow for both directions. We always train and evaluate on both
flow directions, since this improves generalization to other datasets. We use a
batch size of 64 to decrease training times and leave the rest of configuration
parameters unchanged w.r.t. the default HD3 code.

Flow - Fine-Tuning on KITTI. Since both the Kitti 2012 and the Kitti 2015
datasets are very small and only provide forward flow ground truth, we fol-
low the HD3 training protocol and join all KITTI training sequences for the
final fine-tuning (after pre-training on Flying Chairs2 and Flying Things). How-
ever, we ran independent multi-fold cross validations and noticed faster conver-
gence of our model over the baseline. We therefore perform early stopping after
1.6k (CVr±4)/1.4k (CVr±8) epochs, to prevent over-fitting. Furthermore, before
starting the fine-tuning process of the pre-trained model, we label the KITTI
training data for usage described in the knowledge distillation paragraph in § 3.4.

Flow - Fine-Tuning on Sintel. We only train on all the images in the final
pass and ignore the clean images like HD3 for comparability. Also, we only use
the forward flow ground truth since backward flow ground truth is unavailable.
Although not favorable, our model can still be trained in this setting since we
use a single, shared set of parameters for the forward and the backward flow
paths. We kept the original 1.2k finetuning iterations for comparability, since
our independent three-fold cross validation did not show signs of overfitting.

Table 1. Ablation results when training HD3 CVr± 4 on Flying Chairs2 in comparison
to the official model zoo baseline, our re-trained baseline and when adding all our
proposed contributions. Results are shown on validation data for Flying Chairs2 and
Flying Things (validation set used in the original HD3 code repository), and on the
official training data for Sintel, Kitti 2012 and Kitti 2015, due to the lack of a designated
validation split. (Highlighting best and second-best results).
GradientSamplingFlowSADLMP Flying Chairs2 Flying Things Sintel final Sintel clean Kitti 2012 Kitti 2015
Stopping Cues EPE [1]Fl-all [%]EPE [1]Fl-all [%]EPE [1]Fl-all [%]EPE [1]Fl-all [%]EPE [1]Fl-all [%]EPE [1]Fl-all [%]

HD3 baseline model zoo 1.439 7.17 20.973 33.21 5.850 14.03 3.70 8.56 12.604 49.13 22.67 57.07
HD3 baseline – re-trained 1.422 6.99 17.743 26.72 6.273 15.24 3.90 10.04 8.725 34.67 20.98 50.27

✓ ✗ ✗ ✗ ✗ 1.215 6.23 19.094 26.84 5.774 15.89 3.72 10.51 9.469 44.58 19.07 53.65
✓ ✗ ✓ ✗ ✗ 1.216 6.24 16.294 26.25 6.033 16.26 3.43 9.98 7.879 43.92 17.97 51.14
✓ ✓ ✗ ✗ ✗ 1.208 6.19 17.161 24.75 6.074 15.61 3.70 9.96 8.673 45.29 17.42 51.23
✓ ✓ ✓ ✗ ✗ 1.186 6.16 19.616 28.51 7.420 15.99 3.61 9.39 6.672 32.59 16.23 47.56
✓ ✓ ✓ ✓ ✗ 1.184 6.15 15.136 25.00 5.625 16.35 3.38 9.97 8.144 41.59 17.13 52.51

✓ ✗ ✗ ✗ ✓ 1.193 6.02 44.068 40.38 12.529 17.85 5.48 10.95 8.778 42.37 19.08 51.13
✓ ✓ ✓ ✗ ✓ 1.170 5.98 15.752 24.26 5.943 16.27 3.55 9.91 7.742 35.78 18.75 49.67
✓ ✓ ✓ ✓ ✓ 1.168 5.97 14.458 23.01 5.560 15.88 3.26 9.58 6.847 35.47 16.87 49.93

4.2 Flow Ablation Experiments

Here we present an extensive number of ablations based on HD3 to assess the
quality of all our proposed contributions. We want to stress that all results in
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Table 1 were obtained by solely training on the Flying Chairs2 training
set. More specifically, we report error numbers (EPE and Fl-all; lower is better)
and compare the original HD3 model zoo baseline against our own, retrained
baseline model, followed by adding combinations of our proposed contributions.
We report performance on the target domains validation set (Flying Chairs2),
as well as on unseen data from different datasets (Flying Things, Sintel and
KITTI), to gain insights on generalization behavior.

Our ablations show a clear trend towards improving EPE and Fl-all, espe-
cially on the target domain, as more of our proposed improvements are inte-
grated. Due to the plethora of results provided in the table, we highlight some
of them next. Gradient stopping is often responsible for a large gap w.r.t. to
both baseline HD3 models, the original and our re-trained. Further, all variants
with activated Sampling lead to best- or second-best results, except for Fl-all
on Sintel. Flow Cues give an additional benefit when combined with Sampling

but not with warping. Another relevant insight is that our full model using all
contributions at the bottom of the table always improves on Fl-all compared to
the variant with deactivated LMP. This shows how LMP is suitable to effec-
tively reduce the number of outliers by focusing the learning process on the
under-performing (and thus more rare) cases.

Table 2. Ablation results on Sintel, highlighting best and second-best results. Top:
baseline and Flying Chairs2 & Flying Things pre-trained (P) models only. Bottom:
results after additional fine-tuning (F) on Sintel.

Fine-tuned Gradient Sampling Flow SAD LMP CV Flying Things Sintel final Sintel clean
Pretrained Stopping Cues range ±8 EPE [1] Fl-all EPE [1] Fl-all EPE [1] Fl-all

HD3 baseline – re-trained 12.52 18.06% 13.38 16.23 % 3.06 6.39%
P ✓ 7.98 13.41% 4.06 10.62 % 1.86 5.11%
P ✓ ✓ ✓ ✓ ✓ 7.06 12.29% 4.23 11.05 % 2.20 5.41%
P ✓ ✓ ✓ ✓ ✓ ✓ 5.77 11.48% 4.68 11.40 % 1.77 4.88%

F 19.89 27.03% (1.07) (4.61 %) 1.58 4.67%
F ✓ 13.80 20.87% (0.84) (3.79 %) 1.43 4.19%
F ✓ ✓ ✓ ✓ ✓ 14.19 20.98% (0.82) (3.63 %) 1.43 4.08%
F ✓ ✓ ✓ ✓ ✓ ✓ 11.80 19.12% (0.79) (3.49 %) 1.19 3.86%

We provide additional ablation results on Flying Things and Sintel in Table 2.
The upper half shows PreTrained (P) results obtained after training on Flying
Chairs2 and Flying Things, while the bottom shows results after additionally
fine-tuning (F) on Sintel. Again, there are consistent large improvements on
the target domain currently trained on, i.e. (P) for Flying Things and (F) for
Sintel. On the cross dataset validation there is more noise, especially for sintel
final that comes with motion blur etc., but still always a large improvement over
the baseline. After finetuning (F) the full model with CVr±8 shows much better
performance on sintel and at the same time comparable performance on Flying
Things to the original baseline model directly trained on Flying Things.
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4.3 Optical Flow Benchmark Results

The following provides results on the official Sintel and KITTI test set servers.

Sintel. By combining all our contributions and by using a cost volume search
range of ±8, we set a new state-of-the-art on the challenging Sintel Final test
set, improving over the very recent, best-working approach in [2] (see Table 3).
Even by choosing the default search range of CVr±4 as in [44] we still obtain
significant improvements over the HD3-ft baseline on training and test errors.

Kitti 2012 and Kitti 2015. We also evaluated the impact of our full model on
KITTI and report test data results in Table 4. We obtain new state-of-the-art
test results for EPE and Fl-all on Kitti 2012, and rank second-best at Fl-all on
Kitti 2015. On both, Kitti 2012 and Kitti 2015 we obtain strong improvements
on the training set on EPE and Fl-all. Finally, while on Kitti 2015 the recently
published VCN [43] has slightly better Fl-all scores, we perform better on fore-
ground objects (test Fl-fg 8.09 % vs. 8.66 %) and generally improve over the
HD3 baseline (Fl-fg 9.02 %). It is worth noting that all KITTI finetuning results
are obtained after integrating knowledge distillation from § 3.4, leading to sig-
nificantly improved flow predictions on areas where KITTI lacks training data
(e.g. in far away areas including sky, see Fig. 7). We provide further qualitative
insights and direct comparisons in the supplementary material (§ C).

Table 3. EPE scores on the Sintel test
datasets. The appendix -ft denotes fine-
tuning on Sintel.

Training Test

Method Clean Final Clean Final

FlowNet2 [16] 2.02 3.14 3.96 6.02
FlowNet2-ft [16] (1.45) (2.01) 4.16 5.74
PWC-Net [36] 2.55 3.93 - -

PWC-Net-ft [36] (2.02) (2.08) 4.39 5.04
SelFlow [21] 2.88 3.87 6.56 6.57

SelFlow-ft [21] (1.68) (1.77) 3.74 4.26
IRR-PWC-ft [15] (1.92) (2.51) 3.84 4.58
PWC-MFF-ft [28] - - 3.42 4.56

VCN-ft [43] (1.66) (2.24) 2.81 4.40
ScopeFlow [2] - - 3.59 4.10
Devon [22] - - 4.34 6.35

HD3 [44] 3.84 8.77 - -
HD3-ft [44] (1.70) (1.17) 4.79 4.67

IOFPL-no-ft 2.20 4.32 - -
IOFPL-ft 1.43 (0.82) 4.39 4.22

IOFPL-CVr8-no-ft 1.77 4.68 - -
IOFPL-CVr8-ft 1.19 (0.79) 3.58 4.01

Table 4. EPE and Fl-all scores on the
KITTI test datasets. The appendix -ft
denotes fine-tuning on KITTI. Ours is
IOFPL.

Kitti 2012 Kitti 2015

Method EPE EPE Fl-noc [%] EPE Fl-all [%] Fl-all [%]
train test test train train test

FlowNet2 [16] 4.09 - - 10.06 30.37 -
FlowNet2-ft [16] (1.28) 1.8 4.82 (2.30) 8.61 10.41
PWC-Net [36] 4.14 - - 10.35 33.67 -

PWC-Net-ft [36] (1.45) 1.7 4.22 (2.16) 9.80 9.60
SelFlow [21] 1.16 2.2 7.68 (4.48) - 14.19

SelFlow-ft [21] (0.76) 1.5 6.19 (1.18) - 8.42
IRR-PWC-ft [15] - - - (1.63) 5.32 7.65
PWC-MFF-ft [28] - - - - - 7.17

ScopeFlow [2] - 1.3 2.68 - - 6.82
Devon [22] - - 6.99 - 14.31
VCN [43] - - - (1.16) 4.10 6.30

HD3F [44] 4.65 - - 13.17 23.99
HD3F-ft [44] (0.81) 1.4 2.26 1.31 4.10 6.55

IOFPL-no-ft 2.52 - - 8.32 20.33 -
IOFPL-ft (0.73) 1.2 2.29 1.17 3.40 6.52

IOFPL-CVr8-no-ft 2.37 - - 7.09 18.93 -
IOFPL-CVr8-ft (0.76) 1.2 2.25 1.14 3.28 6.35
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5 Conclusions

In this paper we have reviewed the concept of spatial feature pyramids in context
of modern, deep learning based optical flow algorithms. We presented comple-
mentary improvements for cost volume construction at a single pyramid level,
that i) departed from a warping- to a sampling-based strategy to overcome issues
like handling large motions for small objects, and ii) adaptively shifted the focus
of the optimization towards under-performing predictions by means of a loss
max-pooling strategy. We further analyzed the gradient flow across pyramid lev-
els and found that properly eliminating noisy or potentially contradicting ones
improved convergence and led to better performance. We applied our proposed
modifications in combination with additional, interpretable flow cue extensions
as well as distillation strategies to preserve knowledge from (synthetic) pre-
training stages throughout multiple rounds of fine-tuning. We experimentally
analyzed and ablated all our proposed contributions on a wide range of stan-
dard benchmark datasets, and obtained new state-of-the-art results on Sintel
and Kitti 2012.

Acknowledgements. T. Pock and M. Hofinger acknowledge that this work was sup-
ported by the ERC starting grant HOMOVIS (No. 640156).
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