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Preface

In 1996, the 18th Annual Symposium of the Deutsche Arbeitsgemeinschaft für
Mustererkennung (DAGM) was hosted by the recently established research group
on image processing of the University of Heidelberg, headed at that time by a
single associate professor (Jähne) at the Interdisciplinary Center for Scientific
Computing (IWR).

This year, it was a pleasure to host again the 29th Annual Symposium of
the DAGM in Heidelberg. Meanwhile, image processing at the IWR consists of
three Chairs (Hamprecht, Schnörr, Jähne). It will be complemented in 2008 by
the Heidelberg Center for Image Processing (HCI) and involve eight industrial
partners as founding members.

This development reflects the fact that image processing and pattern recog-
nition are research and business areas which keep growing in both volume and
importance. The Fraunhofer Institute for Technological Trend Analysis (INT,
Euskirchen) has recently identified image processing and pattern recognition
among the “scientific-technical areas of the future”1, and the National IT Sum-
mit has called for a strategic research effort to foster the real-world awareness of
IT systems in its 2006 white paper on “HighTech Strategies for the Information
Society.” Such systems should be able to “understand” and to orient themselves
in their environment, and the development of sophisticated techniques for image
processing and pattern recognition is a prerequisite to meet these challenges.

DAGM made English its sole conference language in 2001. Since then, it
has continuously strenghtened its position as the most important conference on
pattern recognition and related fields (image processing, computer vision, ma-
chine learning) for the German-speaking community. It is increasingly attracting
scientists from all over Europe and beyond.

The selection of contributions as oral or poster presentation does not signify
a quality grading. Consequently, posters and oral presentations were given the
same number of pages in these proceedings. The accepted papers have roughly
been sorted by subject area, and within each section alphabetically by first
author. During the symposium, much space was devoted to discussions by ex-
tending both the poster sessions and the discussions following the presentations.

We were honored to have the following three invited speakers at the
symposium:

– SabineHuffel (KULeuven,Belgium), Quantification and Classification ofMag-
netic Resonance Spectroscopic Images with Applications in Cancer Diagnosis

– Robert Massen (University of Applied Sciences, Constance and Baumer In-
spection GmbH, Germany), History of the German Machine Vision Industry
and Its Influence on Academic Research

1 www.zukunftsstiftung.at/innovationstag/pdf/Technologie-
%20und%20Innovationstrends Kretschmer.pdf



VI Preface

– Shimon Ullman (Weizmann Institute of Science, Israel), Image Interpreta-
tion by Feature Hierarchies

We would like to extend our sincere thanks to:

– All authors and attendees who helped make this symposium a success
– All reviewers from the Program Committee whose dedication and timely

reporting helped ensure the punctuality of the selection process
– UniTT, Barbara Werner and Karin Kubessa-Nasri for their commitment to

ensuring a smooth organization
– Our own labs who helped in the elimination of many of the typos that

remained in the final submissions
– Björn Andres and Thorsten Dahmen for their help with the compilation of

the proceedings

Last but not least, we would like to thank:

– Robert Bosch GmbH (Gold Corporate Contributor),
– MVTec Software GmbH (Silver Corporate Contributor),
– Basler, PCO imaging, Philips, Silicon Software, Stemmer, and Volume

Graphics (Bronze Corporate Contributors)

for their donations that allowed, in particular, low registration fees for students.

We were happy to host the 29th Annual Symposium in Heidelberg and look
forward to DAGM 2008 in Munich!

September 2007 Fred Hamprecht
Christoph Schnörr

Bernd Jähne
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Prizes 2006

Olympus Prize

The Olympus Prize 2006 was awarded to

Daniel Keysers and Andrés Bruhn

for their outstanding contributions to the area of pattern recognition and
image understanding.

DAGM Prizes

The main prize for 2006 was awarded to:

Paul Ruhnau, Annette Stahl, Christoph Schnörr : On-line Variational
Estimation of Dynamical Fluid Flows with Physics-Based Spatio-temporal
Regularization

Simon Winkelbach, Sven Molkenstruck, Friedrich M. Wahl : Low-Cost Laser
Range Scanner and Fast Surface Registration Approach

Further DAGM prizes for 2006 were awarded to:

Janina Schulz, Thorsten Schmidt, Olaf Ronneberger, Hans Burkhardt, Taras
Pasternak, Alexander Dovzhenko, Klaus Palmet : Fast Scalar and Vectorial
Grayscale-Based Invariant Features for 3D Cell Nuclei Localization and
Classification

Edgar Seemann, Bernt Schiele: Cross-Articulation Learning for Robust
Detection of Pedestrians
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Self-calibration with Partially Known Rotations

Ferid Bajramovic and Joachim Denzler

Chair for Computer Vision, Friedrich-Schiller-University Jena
���������	
���������������������������
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��������������������������������
�

Abstract. Self-calibration methods allow estimating the intrinsic camera param-
eters without using a known calibration object. However, such methods are very
sensitive to noise, even in the simple special case of a purely rotating cam-
era. Suitable pan-tilt-units can be used to perform pure camera rotations. In this
case, we can get partial knowledge of the rotations, e.g. by rotating twice about
the same axis. We present extended self-calibration algorithms which use such
knowledge. In systematic simulations, we show that our new algorithms are less
sensitive to noise. Experiments on real data result in a systematic error caused by
non-ideal hardware. However, our algorithms can reduce the systematic error. In
the case of complete rotation knowledge, it can even be greatly reduced.

1 Introduction

For many computer vision tasks, the intrinsic camera parameters have to be known.
Classic calibration uses a calibration pattern with known geometry and easily detectable
features to establish correspondences between known 3D points and 2D image points.
However, having to use such a pattern is not very convenient and sometimes impos-
sible. Luckily, there are self-calibration methods, which estimate the intrinsic camera
parameters from images taken by a moving camera without knowledge about the scene.
For an overview, the reader is referred to the literature [1]. An important special case is
self-calibration from a purely rotating camera as introduced by Hartley [2,1].

However, most self-calibration methods are very sensitive to noise [3,1]. They work
well at low noise levels, but most often have serious problems at higher noise levels. On
the other hand, in many practical situations, additional knowledge is available, which
can be used to increase the robustness of self-calibration. De Agapito, Hayman and Reid
[6] exploit a priori knowledge on the intrinsic parameters by using a MAP estimator.
In this paper, we focus on rotation knowledge. Hartley [2] mentions the possibility to
incorporate known rotation matrices into the nonlinear refinement step and reported
greatly improved self-calibration results. Frahm and Koch [4,5] have presented a linear
approach that uses known relative orientation provided by an external rotation sensor.

In practice, however, there are cases in between no and full rotation knowledge.
For example, a pan-tilt-unit is often used to perform rotations about one of two phys-
ical rotation axes at a time. To the best of our knowledge, using such a priori infor-
mation to improve self-calibration has not been systematically studied. In this paper,
we give an overview of di�erent kinds of partial rotation information with real pan-
tilt-units in mind, and show how this knowledge can be incorporated into a nonlinear

F.A. Hamprecht, C. Schnörr, and B. Jähne (Eds.): DAGM 2007, LNCS 4713, pp. 1–10, 2007.
c� Springer-Verlag Berlin Heidelberg 2007



2 F. Bajramovic and J. Denzler

self-calibration procedure. We demonstrate the improvements gained by our new algo-
rithms in systematic simulations and also in experiments with real hardware.

The paper is organized as follows: In Section 2 we give a repetition of self-calibration
for a rotating camera. Section 3 describes how partial rotation information can be in-
corporated into the self-calibration procedure in various situations. Our new algorithms
are evaluated in Section 4. Finally, we give conclusions in section 5.

2 Self-calibration of a Rotating Camera

2.1 Camera Model

First of all, we introduce the camera model and some notation. The pinhole camera
model [1,7] is expressed by the equation �p � K pC, where pC is a 3D point in the cam-
era coordinate system, p � (px� py� 1)T is the imaged point in homogeneous 2D pixel

coordinates, � � 0 is a projective scale factor and K
def
� (( fx� s� ox)� (0� fy� oy)� (0� 0� 1))T

is the camera calibration matrix, where fx and fy are the e�ective focal lengths, s is
the skew parameter and (ox� oy) is the principal point. The relation between a 3D point
in camera coordinates pC and the same point expressed in world coordinates pW is
pC � Ro pW � t, where Ro is the orientation of the camera and t is the position of its op-
tical center. Thus, pW is mapped to the image point p by the equation �p � K(Ro pW� t).

2.2 Linear Self-calibration

We will give a very brief repetition of Hartley’s linear self-calibration algorithm [2,1]
for a purely rotating camera. In this situation, without loss of generality, we can assume
t � 0. Taking a second image p� � (p�x� p�y� 1)T of the point pW with camera orientation
R�

o then results in �� p� � KR�

o pW, where �� � 0 is another scale factor. The points p
and p� correspond. By eliminating pW, we get (cf. [1]):

���p� � KRK�1 p with R
def
� R�

oRT
o and ���

def
� ���� . (1)

In this formulation, R is the relative camera rotation. The transformation ��� p� � Hp
maps p to p�, where H

def
� KRK�1 is the infinite homography. It is related to the dual

image of the absolute conic �� def
� KKT by the equation ��

� H��HT . Now, given
n � 2 rotations of the camera (not all about the same axis), the self-calibration problem
can be solved linearly by the following algorithm:

Input: A set of point correspondences � (pi� j� p�i� j) � 1 � i � n� 1 � j � mi �, where
n � 2 is the number of image pairs and mi is the number of point correspondences
for pair i. For numerical reasons [1,8], we normalize pixel coordinates throughout
the paper to the range [�1� 1] by applying a translation and an isotropic scaling.

1. For each image pair i, estimate the inter-image homography H�

i from the point cor-

respondences of image pair i and enforce det(Hi) � 1 by setting Hi � det(H�

i )
�

1
3 H�

i .
2. Solve the set of equations ���

� Hi�
�HT

i � 1 � i � n � for �� (linear least squares).
3. Compute K from �

�
� KKT , e.g. by Cholesky decomposition of (��)�1.

Note that Hartley and Zisserman [1] require the homographies Hi to be expressed with
respect to a common reference image. It is obvious that this requirement is not neces-
sary, as only the relative orientations Ri of pairs of views are required.
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2.3 Nonlinear Refinement

With equation (1) in mind, the self-calibration problem for a rotating camera with con-
stant intrinsic parameters K can be defined as the solution of the following optimization
problem (similar to Hartley’s and Zisserman’s nonlinear refinement [1]):

K � argmin
K

min
(Ri � SO(3))1�i�n

n�

i�1

mi�

j�1

d
�
KRiK�1 pi� j� �

��

i� j p
�

i� j

�2
, (2)

where SO(3) � � R � �3�3 � RRT
� I � det(R) � 1 � denotes the rotation group and

d(	� 	) is the Euclidean distance of 2D points in homogeneous coordinates. There are
two advantages of the nonlinear formulation of the problem. First, the distance d(	� 	)
is a geometrically meaningful measure on the point correspondences. Second, the con-
straint, that K is constant, will be enforced directly, which is impossible for the homog-
raphy estimation part of the linear algorithm. The nonlinear optimization problem in
equation (2) can be solved by finding a good initial approximation to the solution and
refining that using a local nonlinear optimization algorithm. We use a modern second
order Trust Region algorithm [9]. The initial solution for K is provided by the linear
self-calibration method described above. The rotation matrices can be initialized as fol-
lows: compute Ri � K�1Hi K and enforce the constraint Ri � SO(3) by setting all
singular values of Ri to one. The gradient and the Hessian of the objective function
in equation (2) (and all variants that will follow in the rest of the paper) can be gained
symbolically in “closed form”. We will leave out the details, as automatic di�erentiation
methods can be applied.

2.4 Zero Skew

For modern cameras, we can often assume zero skew s � 0 [1]. This assumption can be
easily incorporated into the optimization problem by initially setting s � 0 and remov-
ing s from the set of optimization parameters. In the linear algorithm, the assumption
can also be applied [1].

3 Improved Self-calibration with Partially Known Rotations

Rotation information can be available to several di�erent extents. The various cases of
partially known rotations are summarized in Figure 1. We will subsequently explain
these cases, and show how each kind of a priori knowledge can be incorporated into the
nonlinear self-calibration procedure by presenting appropriate variants of equation (2)
with modified parameterizations of the rotations Ri. Even though the new formula-
tions may look more complicated, decreasing the dimension of the parameter space
will (hopefully) reduce the over-adaptation to noise. Despite that, in the cases with
known values of some parameters, the algorithms simply cannot introduce errors by
misestimating them.
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�

��

� �

�

common rotations (7)

unknown rotations (5) common axes (6)

known rotations (5�)

� known� angles (8)

� known� angles (7)

known axes (6�)

Fig. 1. Cases of partially known rotations. The arrows indicate additional rotation knowledge,
and “� known� angles” means that, additionally, rotation angles are known up to a common scale
factor. Numbers refer to equations, where (5�) and (6�) mean that a variation of the equation with
fewer optimization parameters is used. Further explanations can be found in the text.

3.1 Unknown Rotations

Our starting point for using partial rotation information is the optimization problem
in equation (2). First, we have a closer look at the rotation matrices. Enforcing the
constraint Ri � SO(3) during the optimization can implicitly be achieved by using a
minimal parameterization such as exponential parameters as suggested by Ma, Soatto,
Kosecka and Sastry [10]. A rotation matrix R can be represented by a vector w �

(w1�w2�w3)T using Rodrigues’ formula [10]:

R � Rod(w)
def
� I �

S(w)

w


sin(
w
) �
S(w)2


w
2
(1 � cos(
w
)) , (3)

using the skew symmetric matrix S(w)
def
� ((0��w3�w2)� (w3� 0��w1)� (�w2�w1� 0))T . The

related axis-angle parameterization separates the rotation axis v and angle � explicitly
at the cost of one additional parameter and the constraint 
v
 � 1:

R � Rod(v� �)
def
� I � S(v) sin(�) � S(v)2(1 � cos(�)) � Rod(�v) . (4)

We prefer the axis-angle parameterization over exponential parameters only in cases of
appropriate a priori knowledge, e.g. if v is known. For the following reasons, we do not
use unit quaternions, even though they are very popular:

– They do not provide a minimal parameterization, as they have four parameters, and
the unit quaternion constraint is required (similar to axis-angle).

– The close relationship between exponential parameters and the axis-angle repre-
sentation helps pinpoint the precise di�erences between the various cases of partial
rotation knowledge, as will become evident in the rest of the paper.

– There is no clear agreement as to which parameterization is best [11].

Applying exponential parameters to equation (2), we get the following nonlinear opti-
mization problem, which has a total of 3n � 5 parameters:

K � argmin
K

min
(wi)1�i�n

n�

i�1

mi�

j�1

d
�
KRod(wi)K�1 pi� j� �

��

i� j p
�

i� j

�2
. (5)

For the initialization of the nonlinear optimization problem, we need to compute the
rotation parameters wi from the rotation matrices Ri [10].
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3.2 Rotation About Two Axes Only

If the pan-tilt-unit is actively controlled for the purpose of self-calibration, it is possible
to restrict rotations to be about one of the two physical rotation axes of the pan-tilt-unit
at a time, such that there are only two mathematical rotation axes in total (Figure 1:
“common axes”). In this case, rotations only have one parameter each (the rotation
angle) and there are two degrees of freedom for each rotation axis. From a theoretical
point of view, we can generalize this and allow r � n rotation axes instead of only two.
This results in n � 2r � 5 parameters. To obtain a suitable version of the optimization
problem in equation (5), we replace exponential parameters by axis-angle and use only
r instead of n rotation axes. Finally, we add constant indices ki as a priori knowledge,
which assign the correct rotation axis vki to the rotation with index i, and get:

K � argmin
K

min
(�i)1�i�n� (vk)1�k�r

vk
 � 1 for all k

n�

i�1

mi�

j�1

d
�
KRod(�i� vki)K�1 pi� j� �

��

i� j p
�

i� j

�2
. (6)

Note that this formulation uses one parameter too much for each axis vk. In this one
case we trade minimality for simplicity and ignore the constraints 
vk
 � 1 during the
optimization. To initialize the common rotation axes, we take the average over all inde-
pendent estimates which belong to the same axis. Throughout the paper, an according
strategy is applied whenever two or more rotations have common parameters. If the ro-
tation axes are known (Figure 1: “known axes”), the parameters vk are constant and need
not to be optimized, and we have a minimal parameterization with 5 � n parameters.

3.3 Rotation Angles Known Up to Scale

Things simplify even more if we have knowledge about the rotation angle. Using a
pan-tilt-unit, relative rotation angles are often known in some device specific unit. If
the pan-tilt-unit is calibrated and provides a mapping from machine units to radians,
we get the actual angles. Otherwise, we assume a linear mapping from angles �i in ma-
chine units to radians �i: �i � �ki�i, where �ki is the unknown scale factor, which may
be specific to each of the r rotation axes. This results in a total of 5 � 3r parameters
for r unknown but fixed rotation axes (Figure 1: “common axes � known� angles”). To
formulate an appropriate optimization problem, we begin with equation (5). We encode
each axis and scale factor by one vector uk. For each actual rotation, the appropriate
vector uki is multiplied by the known angle in machine units �i to produce the exponen-
tial parameters (wi in equation (5)). We now minimize over the vectors uk:

K � argmin
K

min
(uk)1�k�r

n�

i�1

mi�

j�1

d
�
KRod(�iuki )K�1 pi� j� �

��

i� j p
�

i� j

�2
. (7)

If the rotation axes are known (Figure 1: “known axes � known� angles”), we start with
the formulation in equation (6). The angles �i are replaced by �ki�i, and the values �k

are the new optimization parameters (5 � r parameters in total):

K � argmin
K

min
(�k)1�k�r

n�

i�1

mi�

j�1

d
�
KRod(�ki�i� vki )K�1 pi� j� �

��

i� j p
�

i� j

�2
. (8)
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3.4 Common Rotations

It may be possible to control the pan-tilt-unit such that all rotations about each physical
axis share the same angle (which we do not need to know). In other words, there are only
two (or more generally: r) unknown rotation matrices (Figure 1: “common rotations”).
Mathematically, this situation is a special case of equation (7) if we set �i � 1 for all i.
Thus, there is again a total of 5 � 3r parameters. This case is also a direct special case
of equation (5) with fewer rotation parameters.

3.5 Known Rotations

Finally, rotations can be known completely (“known rotations”). In practice, such data
can be provided by a dedicated rotation sensor (Figure 1: “known rotations”). Calibrated
pan-tilt-units, as described above, are a further possibility (“known axes � known� an-
gles” plus known scale factors �k). To get an appropriate optimization problem, we ob-
serve that this is a special case of each case presented above. We choose equation (5).
The rotation parameters wi are now constant and need not to be optimized.

This situation with only five parameters has already been briefly mentioned by Hart-
ley [2], who used a similar nonlinear formulation. Frahm and Koch [4,5] investigated
this case in more detail and presented a linear algorithm. Note, however, that these
approaches cannot benefit from only partially known rotations.

3.6 A Note on Real Pan-Tilt-Units

All rotation knowledge in equation (2) and the above mentioned reformulations is ex-
pressed in the camera coordinate system. In the cases “common axes” and “common
rotations”, this seems uncritical at first sight, but really is an issue, as will be explained
in this section. In the cases “known axes” and “known rotations” the problem is quite
obvious: the alignment of the rotation axes with the camera coordinate system needs to
be known. The additionally complicating issue, which is relevant to all cases of partial
rotation knowledge, is that the alignment of the rotation axes with the camera coordinate
system is typically not constant even though the camera is rigidly mounted onto (or into)
the pan-tilt-unit. In most (if not all) pan-tilt-units, one of the rotation axes is placed “on
top” of the other one. This means that the camera coordinate system is rigidly mounted
relative to one of the rotation axes only. In case of the Directed Perception PTU-46-
17.5, the pan mechanism rigidly rotates the tilt axis and the camera. However, the tilt
mechanism only rotates the camera and does not a�ect the pan mechanism. Thus, tilting
changes the alignment of the pan axis relative to the camera coordinate system. We can
avoid this problem by keeping the tilt setting constant for all pan rotations, e.g. by first
performing pan rotations and then tilt rotations.

4 Experiments

In the experiments, we investigate all cases of partially known rotations shown in
Figure 1. We also include the linear standard algorithm. By simulation, we demon-
strate how the influence of noise reduces when using partial rotation knowledge. We
also present results for real hardware.
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4.1 Simulation

For the simulation, we use a virtual pinhole camera with parameters f (GT)
x � f (GT)

y �

100, s(GT)
� 0, o(GT)

x � 150, o(GT)
y � 100. In normalized pixel coordinates, the values

are: f (GT�N)
x � f (GT�N)

y � 2�3, s(GT�N)
� o(GT�N)

x � o(GT�N)
y � 0. These parameters are

of course unknown to the self-calibration algorithms. Point correspondences are gen-
erated by projecting 100 3D points into the camera twice – before and after rotating
the camera about its X or Y axis. Each resulting 2D point is modified by uniformly
distributed, additive noise in the range [���2� ��2] � [���2� ��2]. We systematically
perform experiments for di�erent values of the noise parameter �. If one of the result-
ing 2D points of a corresponding pair lies outside of the image area [0� 300] � [0� 200],
the pair is discarded. The 3D points are randomly generated by a uniform distribution
on the cuboid [�15000� 15000]� [�10000� 10000]� [�10000� 10000] (in pixel units).
As an alternative, more diÆcult situation, we change the values of some parameters as
follows: f (GT)

x � f (GT)
y � 400 (normalized: f (GT)

x � f (GT)
y � 8�3), 2000 3D points.

We perform a series of ten (relative) rotations about the Y axis followed by another
ten rotations about the X axis. The rotation angle is 10Æ for each rotation. The initial
configuration for the first sequence of rotations is Ro � Rod((0��25Æ� 0)T ), and Ro �

Rod((0� 0��25Æ)T ) for the second one. We measure the error of the self-calibration result
K(N) by computing the Frobenius norm of the di�erence between K(N) and the ground
truth data K(GT�N), both expressed in normalized pixel units: eF �

���K(N)� K(GT�N)
���

2
. If the

self-calibration fails, e.g. because �� is not positive definite, we set eF � �. Each expe-
rimental setup is simulated 100 times with identical parameters. For the final evaluation,
we compute the median of eF over all 100 runs.

Results: Figure 2 (left) shows the results of the simulation in the simple situation. You
can clearly see the improvements gained by using partial rotation knowledge. As ex-
pected, a greater amount of rotation knowledge leads to better results. The linear algo-
rithm is outperformed by the nonlinear ones, and additional rotation knowledge further
improves the results. However, there is a clustering in the plots: “common axes”, “com-
mon axes � machine angles” and “common rotations” perform almost equally well.
The same is the case for “known axes” and “known axes � machine angles”. Obvi-
ously, in this experiment, knowing rotation angles up to scale does not further improve
self-calibration. However, there is a pronounced di�erence between “common axes”,
“known axes” and completely “known rotations”. Knowing only “common axes” is al-
ready better than “unknown rotations”, although this is clearly visible only for high
noise levels. Note how these results agree with the hierarchy in Figure 1.

The results for the diÆcult situation are shown in Figure 2 (right). Note that the
scale of the error axis is more than ten times larger in the right plot revealing that
this situation is actually a lot more diÆcult. As far as the ranking of the algorithms
is concerned, the main impression is the same. However, there are a few interesting
di�erences to the simple situation. The most striking one is the large improvement
gained by completely “known rotations”. Beginning with noise level � � 6, there is
now also an improvement gained by knowing angles up to scale in the case of “common
axes”. However, in the case “known axes � known� angles” there is a serious problem.
The reason for this might be some bad local minimum, which cannot be overcome
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Fig. 2. Median of Frobenius error eF for various noise levels �. Left: simple situation ( f (GT)
x �

f (GT)
y � 100). Right: diÆcult situation ( f (GT)

x � f (GT)
y � 400). Note the di�erent scalings of the Y

axes.
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Fig. 3. Median of Frobenius error eF for various noise levels � with the assumption of zero skew.
Left: simple situation ( f (GT)

x � f (GT)
y � 100). Right: diÆcult situation ( f (GT)

x � f (GT)
y � 400). Note

the di�erent scalings of the Y axes.

in the restricted seven dimensional space given a bad initialization for the angle scale
parameters. A further possible explanation would be problems during the optimization
caused by ill-conditioned Hessians, as might occur if the initialization is too bad.

The results for the zero skew variants of the algorithms are shown in Figure 3. The
first important observation is that the error is reduced further. However, the improve-
ment gained by (correctly) assuming zero skew is di�erent for the various algorithms.
As the good algorithms seem to gain less, the di�erence between the results for the
various types of partial rotation knowledge is much smaller, but still visible. The case
of completely “known rotations” distinguishes surprisingly well from the rest.
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Table 1. Median Frobenius errors eF and median relative errors in percent on the normalized focal
length er � 100� f (N)

x � f (GT�N)
x �� f (GT�N)

x for the experiments on real data ( f (GT�N)
x � 2�4098)

base algorithm zero skew variant
t10 t5 o10 o5 t10 t5 o10 o5

algorithm eF er eF er eF er eF er eF er eF er eF er eF er

linear 1.11 35 1.13 35 1.29 38 1.24 38 1.11 35 1.13 34 1.26 37 1.23 38
unknown rotation 1.04 36 1.06 35 1.24 44 1.20 40 1.04 35 1.06 35 1.21 44 1.18 40
common axes 1.00 35 1.04 34 1.13 41 1.13 38 0.99 34 1.04 34 1.13 41 1.12 38
� known� angles 0.99 34 1.01 34 1.13 37 1.15 36 0.98 33 1.00 33 1.13 37 1.14 36
common rotations 0.99 34 1.01 34 1.13 37 1.15 36 0.98 33 1.00 33 1.13 37 1.14 36
known axes 1.17 37 1.15 35 1.34 44 1.22 40 0.97 33 1.03 33 1.05 38 1.08 37
� known� angles 1.12 35 1.13 35 1.30 38 1.24 38 1.11 35 1.13 34 1.26 37 1.23 38
known rotations 0.12 2 0.12 2 0.17 2 0.15 2 0.12 2 0.12 2 0.17 2 0.15 2

4.2 Real Camera

For the experiments with real hardware, we use a Sony DFW-VL500 progressive scan
firewire camera mounted onto a Directed Perception PTU-46-17.5 pan-tilt-unit such
that the tilt axis is parallel to the X axis of the camera coordinate system, and the pan
axis for tilt setting 0 is parallel to the Y axis. Note that this setup violates the pure
rotation assumption, i.e. the translation vector t is not zero. Lacking ideal hardware,
we nonetheless assume rotation about the X and Y axis of the camera coordinate sys-
tem. Note that this problem is not specific to our approach, but common to the vast
majority of the rotational self-calibration literature. We also adopt the further common
simplification of ignoring camera distortions.

The pan-tilt-unit performs two rotation subsequences similar to the setup in the sim-
ulation. We use two di�erent scenes for the experiments: a wall with artificial tex-
ture (t), which is well suited for point tracking, and a typical oÆce environment (o).
For each scene, we record one sequence with 10Æ rotations and another one with 5Æ

rotations. Each of the four sequences (t10, t5, o10, o5) is repeated ten times with
a randomly modified initial pan-tilt configuration. The videos are available online at
������������	
�����	���
	���
������������	�. To get point corres-
pondences, we track up to 200 points using KLT tracking [12]. All points which could
be tracked from the beginning to the end of each 5Æ or 10Æ subsequence, respectively,
are used as point correspondences.

A ground truth estimation of the camera parameters is performed using Zhang’s [13]
method. As in the simulation, we compute the median (over ten sequences) of the Frobe-
nius error of the self-calibration results in normalized pixel units. The results are listed
in Table 1. For all algorithms, except for “known rotations”, the error is very large.
Actually, the focal lengths fx and fy are severely overestimated throughout the exper-
iments. The reason for this is very probably a violation of model assumptions: pure
rotation about the optical center and a distortion-free camera. Given the good optics
of the test camera, we expect the non-ideal pan-tilt-unit to cause most of the system-
atic error. Note, however, that our algorithms with partial rotation knowledge are able

http://www4.informatik.uni-jena.de/selfcalib
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to reduce the systematic error in most cases. The algorithm with completely “known
rotations” can even greatly reduce it and produce reasonable results.

5 Conclusions

We have presented improvements for rotational self-calibration with partially known
rotations, which are available, e.g., when using a pan-tilt-unit to rotate the camera. The
knowledge is exploited by restricting the rotation parameterization in a nonlinear self-
calibration algorithm. In systematic simulations, we showed that our new algorithms
can reduce the sensitivity to noise. The experiments on real data revealed a system-
atic error, probably caused by non-zero translation. Our algorithms with partial rotation
knowledge were able to reduce this error. In case of full rotation knowledge, the re-
maining error was very small in comparison.

As future research, given the problems with the non-ideal pan-tilt-unit, we plan to
extend our approach to be able to deal with the case of constant non-zero translation.
We also plan to extend our formulation of partial rotation knowledge such that we do
not have to express the rotation axes in the camera coordinate system.
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Abstract. Real-time active 3D range cameras based on time-of-flight
technology using the Photonic Mixer Device (PMD) can be considered
as a complementary technique for stereo-vision based depth estimation.
Since those systems directly yield 3D measurements, they can also be
used for initializing vision based approaches, especially in highly dynamic
environments. Fusion of PMD depth images with passive intensity-based
stereo is a promising approach for obtaining reliable surface reconstruc-
tions even in weakly textured surface regions.

In this work a PMD-stereo fusion algorithm for the estimation of
patchlets from a combined PMD-stereo camera rig will be presented. As
patchlet we define an oriented small planar 3d patch with associated sur-
face normal. Least-squares estimation schemes for estimating patchlets
from PMD range images as well as from a pair of stereo images are de-
rived. It is shown, how those two approaches can be fused into one single
estimation, that yields results even if either of the two single approaches
fails.

1 Introduction

Vision-based passive stereo systems [1] and active systems such as structured
light or laser scanners [2] are complementary methods to measure 3D depth of
a scene. However, the application domain of all this systems is restricted. For
instance the algorithmic complexity of stereo systems is quite high and they are
not applicable in case of weakly textured surfaces. Laser scanners and structured
light approaches on the other hand cannot cope with moving objects, because
capturing is not instantaneous for this systems.

A new promising development for the area of surface reconstruction, that is
able to cope with those caveats of the existing techniques, is the Photonic Mixer
Device (PMD), which measures distances directly for a two dimensional field of
pixels based on the time of flight of incoherent, modulated infrared light. Re-
cently PMD cameras have been developed that are capable of capturing reliable
depth images directly in real-time. Those cameras are compact and affordable,
which makes them attractive for versatile applications including surveillance and
computer vision [3]. The successful application of this technology in Structure
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from Motion [4], motion capturing [5] and face tracking[6] have been demon-
strated.

In [7] the complementary nature of stereo vision based systems and PMD
cameras is discussed qualitatively and a simple method for fusing the informa-
tion gathered from those two system is proposed. Yet neither a quantitative
comparison of both systems nor a statistically optimal fusion is done. Recently,
a systematic and quantitative comparison of both approaches was investigated
in [8]. The evaluation showed that a combination of both approaches, either by
initialisation of stereo with PMD, or by fusion of both methods, could prove
beneficial. However, no systematic analysis of a statistically optimal fusion of
both modalities exists.

The main contribution of this work is therefore the development of a statisti-
cally optimal fusion of both systems based on the estimation of patchlets [9], i.e.
small planar surface patches with an associated surface normal, being a very useful
surface representation for tasks such as segmentation [10] and visualization [11].

First a short introduction to the technology underlying the PMD image forma-
tion will be given in section 2 in order to provide some background information.

Then in section 3 two least-squares estimation schemes for the PMD images
as well as for the stereo images will be presented and it will be shown, how
optimal estimates for the patchlets together with their covariance matrices can
be obtained. While the PMD camera provides direct geometric measurements,
which are used in the estimation of the patchlet, the stereo matching is based on
estimating a local homography between the images [12,13,14], which optimally
aligns the image intensities between the stereo image pair [15,16,17]. Because
both estimation schemes have the same structure, a fused estimation using input
data from both sources is possible.

In section 4 a brief quantitative analysis of the three approaches on synthetic
images for different noise levels will be presented and some surface reconstruc-
tions from real images will be shown.

2 The PMD-Camera

We will first give some background information on the Photonic Mixer Device
(PMD), which is a semiconductor structure based on CCD- or CMOS-technology
[18]. Integrated in an image sensor array it is capable of modulating the current
that is generated by received light intensities in every single pixel. This can
be utilized to build affordable cameras that are able to measure depth with
high precision. One such camera is shown in figure 3. It mainly consists of a
camera with the PMD sensor and light emitter arrays that are used to send out
modulated light. The light is reflected by 3D scene points and received by the
PMD image sensor.

The depth measurement performed with a detector using the Photonic Mixer
Device is based on the time of flight principle. Different approaches for measuring
the time-of-flight with light exist [19]. One method suitable for the use with the
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PMD is to modulate the emitted light intensity with a periodic pattern. Depend-
ing on the ”time of flight” a phase shift of the periodic pattern is observable.
The PMD-Camera is able to extract this phase shift in every pixel.

Though different intensity modulations using square waves or pseudo noise
coding are possible, the use of a sinusoidal signal is technically well realizable
[20]. Generally an intensity wave I(x, t) = I0 + IA cos(2πνm(t + x

c ) + ϕ0) with
modulation frequency νm, propagation speed c and initial phase ϕ0 is sent out.
At two points x0 and x1 of the wave the phase shift

Δϕ = 2πνm(x1 − x0)/c (1)

is observable. Extracting this shift from the wave therefore delivers the distance
between x0 and x1. Due to the repetitive nature of the wave the non-ambiguous
wavelength of the measurement is λmax = c/νm. The effective measurement
range is λmax

2 because light wave has to return to its source to be detected.
Typically a modulation frequency of νm = 20MHz is used which gives the camera
7.5 meters of unambiguous depth range. Reflections from distances beyond this
range might cause measurement errors due to phase wrapping, however usually
the reflected light intensity is too small to cause such errors. For very small
distances below 2m, the reflected strong light intensity might cause nonlinear
saturation effects which might limit the accuracy and cause bias [3]. Therefore,
the usable range was chosen between 2 − 7.5 meters.

The phase difference is measured by cross correlation between the sent and
received modulated signal by the PMD chip. Since the resolution of the phase
difference measurement is independent from distance, the achievable depth reso-
lution is independent from scene depth. This is in contrast to stereo triangulation
where depth accuracy is proportional to inverse depth.

After taking depth calibration and lens distortions [21,3] into account, the
model of a central perspective projection for the geometric description of the
PMD-Camera measurements can be utilized.

3 Estimation of Patchlets

In the following two patchlet estimation schemes for PMD images as well as
stereo images based on the Gauss-Markoff-Model [22] will be presented. Because
the structure of both estimations is identical, both approaches can easily be
fused, which will be shown in section 3.3.

3.1 Estimation of Patchlets from PMD Images

The PMD-camera determines for each ray direction corresponding to pixel x its
distance λ to the optical center. If the camera geometry is given by a projection
matrix [23, p.141f] as

P3 = K3(R3|t3) (2)
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then the corresponding 3d point is obtained directly from the distance λ as

X =
λRT

3 K−1
3 x√

xT K−T
3 K−1

3 x
− RT

3 t3 (3)

This 3d point lies on the plane (nT , d)T , if

XT n + d = 0 (4)

or equivalently
(√

xT K−T
3 K−1

3 xtT
3 R3 − λxT K−T

3 R3

)
n′ =

√
xT K−T

3 K−1
3 x (5)

using the substitution n′ = n
d to parameterize the plane. This expression is

linear in the plane parameters n′ so that initial values are easily computed.
Solving this expression for the unknown depth λ yields

λ =
√

xT K−T
3 K−1

3 x
tT
3 R3n

′ − 1
xT K−T

3 R3n′ (6)

Now using the Jacobian

aT (x, λ, n′
0) =

∂λ

∂n′ (7)

=

√
xT K−T

3 K−1
3 x

(
xT K−T

3 R3n′
)2

(
xT K−T

3 R3n
′tT

3 R3 −
(
tT
3 R3n

′ − 1
)
xT K−T

3 R3

)
(8)

the Taylor expansion of this expression then yields for every point on the plane

aT (x, λ, n′
0)︸ ︷︷ ︸

aT
i

(n′ − n′
0)︸ ︷︷ ︸

Δn′

≈ λ −
√

xT K−T
3 K−1

3 x
tT
3 R3n

′
0 − 1

xT K−T
3 R3n′

0︸ ︷︷ ︸
Δli

(9)

In the following section a similar expression will be derived for the stereo
system.

3.2 Estimation of Patchlets from Stereo Images

Given a calibrated stereo system with the first camera being

P1 = K1(I 3|03) (10)

and the second camera being

P2 = K2(R2|t2) (11)
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with the known rotation matrix R and translation vector t, the homography
relating points on the plane (nT , d)T from the first into the second camera is
given by [23, p.314]

H = K2

(
R2 − t2

nT

d

)
K−1

1 (12)

which is linear in the vector n′ = n
d . Hence, points on the plane are transformed

according to

x2 = H(n′)x1 = K2R2K−1
1 x1 − ((xT

1 K−T
1 ) ⊗ (K2t2))n′ (13)

We now assume, that the grey value of corresponding points is equal in the
two images. Using the Euclidean normalization function

h(x) = h

⎛
⎝

u
v
w

⎞
⎠ =

1
w

(
u
v

)
(14)

this is expressed in terms of the two images I1 and I2 as

I1(h(x1)) = I2(h(x2)) (15)

or substituting equation (13)

I1(h(x1)) = I2(h(K2R2K−1
1 x1 − ((xT

1 K−T
1 ) ⊗ (K2t2))n′)) (16)

Applying chain rule, the partial derivatives of this expression are given by

bT (x1, n
′) =

∂

∂n′ I2(h(K2RK−1
1 x1 − ((xT

1 K−T
1 ) ⊗ (K2t))n′)) (17)

= −(∇I2)(h(H(n′)x1))J(H(n′)x1)K2t2xT
1 K−T

1 (18)

with the Jacobian of the normalization function being

J =
∂

∂x
h =

(
1
w 0 − u

w2

0 1
w − v

w2

)
(19)

Hence, the Taylor expansion of equation (16) yields for every point on the
plane

bT (x1, n
′
0)︸ ︷︷ ︸

bT

j

(n′ − n′
0)︸ ︷︷ ︸

Δn′

≈ I1(h(x1)) − I2(h(H(n′
0)x1))︸ ︷︷ ︸

Δmj

(20)

This equation is compatible with equation (9), so that a fused best linear unbi-
ased estimation is possible as shown in the next section.
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3.3 The Fused Estimation

Using a window containing N points from the PMD depth image and M points
from the stereo intensity images on the patchlet, the plane parameter updates
may be estimated iteratively as [22]

Δ̂n′ =

⎛
⎝

N∑
i=1

σ−2
li

aia
T
i +

M∑
j=1

σ−2
mj

bjb
T
j

⎞
⎠

−1 ⎛
⎝

N∑
i=1

σ−2
li

aiΔli +
M∑

j=1

σ−2
mj

bjΔmj

⎞
⎠

(21)
having the expected covariance matrix

Σn̂′n̂′ =

⎛
⎝

N∑
i=1

σ−2
li

aia
T
i +

M∑
j=1

σ−2
mj

bjb
T
j

⎞
⎠

−1

(22)

where σ2
mj

is twice the variance of the image noise for stereo pixels and σ2
li

is
the variance of the distance uncertainty of the PMD camera. Note, that those
quantities need only be specified up to scale so that only the relative weighting
between the stereo system and the PMD system is required.

To specify this relative weighting the variance factor can be estimated from
the residuals as

σ̂2
0 =

1
N + M − 3

⎛
⎝

N∑
i=1

σ−2
li

(Δli − aT
i Δn′)2 +

M∑
j=1

σ−2
mj

(Δmj − bT
j Δn′)2

⎞
⎠ (23)

By looking at the variance factors resulting from estimations with N = 0 and
M = 0 respectively the relative weights can be determined.

Putting everything together we obtain three different patchlet estimation al-
gorithms, namely using only the depth images, using the depth image for ini-
tialization (cf. equation (5)) and the stereo images for the estimation and finally
a fused approach using all available data. In the following section those three
alternatives will be compared.

4 Results

For evaluating the performance of the fused estimation scheme a stereo-rig was
used, which is shown in figure 3. It consists of two Sony cameras which deliver
images with a resolution of 1024 × 768 pixels and a field of view of 40◦ × 32◦.
The PMD camera in the middle is PMDTechs model 3K-s with a resolution of
64×48 pixels over a viewing angle of 22◦×17◦. Hence, we used windows of 20×20
pixels in the intensity images and windows of 3×3 pixels in the depth images in
order to cover approximately the same viewing angle with both systems. The rig
was calibrated using a calibration pattern so that the internal parameters of each
of the three camera as well as the relative poses of all cameras with respect to the
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Fig. 1. Left: Expected standard deviation of estimated patchlet distance against im-
age noise standard deviation. Right: Average distance of the estimated patchlets from
ground truth against image noise standard deviation.
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Fig. 2. Left: Expected standard deviation of estimated patchlet angle against image
noise standard deviation. Right: Average angular distance of the estimated patchlets
from ground truth against image noise standard deviation.

left stereo camera are known. The stereo system had a baseline of approximately
30 cm and the orientation was close to standard stereo geometry.

We started by generating synthetic data using the calibration parameters of
the real rig to produce three images of a well-textured plane 3m in front of the
camera. We then added white noise of different standard deviation to the three
images and estimated 100 patchlets on the surface. The distance of the estimated
patchlets from the ground truth as well as the expected standard deviation of the
distance is plotted against the added image noise in figure 1. The expected ac-
curacy plotted on the left hand side is worst for the approach depending solely
on the PMD images due to the low resolution of the depth image. The accu-
racy is better for the estimation initialized with the depth image and optimized
using the intensity images. Best results are expected for the completely fused ap-
proach. However, as the patchlets are estimated at equally distant sample-points
rather than only at positions of high intensity gradient, the mean distance from
the ground truth is worse for the texture-dependent intensity based estimation
than for the other two approaches and the variation is high over the set of
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Fig. 3. Left: The Rig used to obtain the results. It consists of two color cameras that
frame the PMD-Camera. Right: One of the stereo images.

Fig. 4.Left: Patchlets from purely depth based estimation. Middle: Patchlets from stereo
based estimation using depth initialization. Right: Patchlets from fused estimation.

patchlets. On the average the purely depth based approach performed best and
the fused approach, being an average over both, lies somewhere in between. This
is depicted on the right hand side of figure 1.

Figure 2 shows the same analysis for the normal angle. On the right hand side
the angular difference to the ground truth is plotted against the image noise while
on the left hand side the expected accuracies are plotted. Here the purely depth
map based method is inferior to the intensity based estimation while the fused
approach yields the best results.

Now we will present some results on real data. We used the rig depicted on
the left hand side of figure 3 and took a picture of the scene shown on the right
hand side. The resulting patchlets are depicted in figure 4. We removed patch-
lets, where the angular accuracy was below a common threshold of 10◦ in order
to demonstrate the capabilities of the different methods. On the left hand side of
figure 4 the remaining patchlets for the purely depth image based estimation are
shown. It can be seen, that the angular accuracy of the patchlet estimation in-
creases with distance for the depth image, because the surface covered increases
and the distance measurement accuracy is equal over the whole image. Further
observe, that the dark regions are measured slightly off the plane. The middle
picture shows the remaining patchlets for the intensity based estimation with
depth initialization. As expected only the textured regions of the image yield
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good patchlets. Finally the fused estimate yields the patchlets depicted on the
right hand side of figure 4. As expected, the best accuracy is achievable using
the statistically optimal fused method.

5 Conclusion

We have presented a fused estimation scheme for patchlet based surface recon-
struction from stereo images as well as PMD range images. It has been shown,
how the two systems can be integrated yielding more accurate surface recon-
structions than either system alone.

The PMD camera yields an accurate direct distance measurement for each
pixel and is therefore required for initializing each of the three proposed algo-
rithms. However, the low resolution of current PMD cameras is the major factor
limiting the stand-alone applicability of such a system.

Stereo intensity based systems on the other hand have a much higher reso-
lution but their depth accuracy is depending on texture and object distance.
Furthermore some initialization is required for those systems to work robustly.

Hence, both systems can be considered complementary in terms of resolution,
depth accuracy and scene coverage. The proposed fusion of both approaches
therefore constitutes a method for obtaining accurate and robust scene recon-
structions including surface normals using a camera rig such as the one depicted
in figure 3.
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Abstract. Robot self-localization using a hemispherical camera system
can be done without correspondences. We present a view-based approach
using view descriptors, which enables us to efficiently compare the image
signal taken at different locations. A compact representation of the im-
age signal can be computed using Spherical Harmonics as orthonormal
basis functions defined on the sphere. This is particularly useful because
rotations between two representations can be found easily. Compact view
descriptors stored in a database enable us to compute a likelihood for
the current view corresponding to a particular position and orientation
in the map.

1 Introduction

Omnidirectional vision has become increasingly popular for the purpose of robot
localization during the last years. Many approaches rely on compact image
descriptors [21,1,5], [11,8] (using principal component analysis) [19,18] (using
Fourier descriptors), [13] (using Haar integrals) to store and compare views effi-
ciently. There are also approaches combining both compact descriptors and local
features, e.g. [14].

We present a view-based method for robot localization in a known environ-
ment. A mobile robot equipped with an omnidirectional camera system provides
a spherical image signal s(θ, φ), i. e. an image signal defined on a sphere. In our
experiments performed so far, the omnidirectional images were obtained from a
simulated ultra-wide angle lens camera mounted face up on the robot, yielding
rectangular images which can be mapped on the semi-sphere in a straightforward
manner. These images were converted into view descriptors, i. e. low dimensional
vectors (Fig. 1). The robot localization task is performed by comparing the cur-
rent view descriptor to those stored in a database of views. Given a suitable
distance metric, this yields a likelihood of the robot location. The image de-
scriptors used here are not rotation invariant; due to their particular structure
it is possible to estimate the orientation (rotation compared to a reference pose)
of the current view. Our view representation is obtained by performing a linear

F.A. Hamprecht, C. Schnörr, and B. Jähne (Eds.): DAGM 2007, LNCS 4713, pp. 21–31, 2007.
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Omnidirection view
with planar image plane

Omnidirectional view
projected on hemisphere

low order representation
of omnidirectional view

Fig. 1. Computing an omnidirectional image signal from a planar wide angle image.
The resulting hemispherical image signal is reflected at the equator to obtain an spher-
ical image signal. The right image is a visualization of a low order Spherical Harmonic
descriptor that approximates the omnidirectional image signal.

spectral transform, that is by expanding the spherical image signal s(θ, φ) in
orthonormal basis functions bi(θ, φ) according to

s(θ, φ) =
∑

i

ai · bi(θ, φ). (1)

This is possible for any square integrable signal s(θ, φ) defined on the sphere.
Let b denote the complex conjugate of b. We obtain the coefficients ai by

ai =
∫ 2π

0

∫ π

0

s(θ, φ) · bi(θ, φ) · sin θ dθ dφ. (2)

Our approach benefits from using Spherical Harmonics (Fig. 3) as basis func-
tions bi since they show the same nice properties concerning rotations which the
Fourier basis system has with respect to translations. Rotations are mapped into
a kind of generalized phase changes.

All views in the database are labeled with their corresponding location in the
map (see Fig. 2); thus finding a match in the database – in principle – solves the
localization task. We briefly discuss some obvious problems such as variations
in illumination and impact of occlusions in Sec. 6. For each given view at an
initially unknown robot position and orientation, a figure of (dis-)similarity to
any other view in the database can be generated directly from the compact

Fig. 2. A known environment is represented by a map containing view descriptors.
These are obtained from images taken at reference positions.
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vector representation of these views; this allows for more sophisticated temporal
self-localization strategies [22], e. g. using particle filters.

In order to compare a given descriptor to those stored in a database, an op-
eration has to be performed on the descriptor that corresponds to (virtually)
de-rotating the corresponding view. Hence, for finding a measure of similarity
between two views, de-rotation has to be performed as an integral part of the
comparison. The estimation of 3D rotation between spherical signals has been
investigated in different contexts in the last years [16,17,15,10]. For our applica-
tion, a fast solution is of particular importance since we have to compare many
pairs of descriptors. It is therefore useful to exploit group theoretical properties
of Spherical Harmonics in order to eliminate those descriptors which cannot cor-
respond to the same image signal (=pruning a search tree). This can be done by
comparing the ‘amplitude spectrum’ while disregarding the ‘phase’.

The following sections deal with some essential mathematical characteristics
of Spherical Harmonics, de-rotation and similarity measurement. The paper is
concluded with a description of our experimental setup and the experimental
results that we have obtained so far.

2 Spherical Harmonics

Here we emphasize some facts about Spherical Harmonics (Fig. 3) which are of
particular interest for the matching and self localization task. For further group
theoretical facts see [16] and [6]. Let

N�m =
√

2�+1
2

(�−|m|)!
(�+|m|)! , � ∈ N0, m ∈ Z (3)

and P�m(x) the Associated Legendre Polynomials [23].

The Spherical Harmonics Y�m(θ, φ) are defined as

Y�m(θ, φ) = 1√
2π

· N�m · P�m(cos θ) · eimφ (4)

with eimφ being a complex-valued phase term. � (� > 0) is called order and
m (m = −�..+�) is called quantum number for each �. Note that slightly different
notations of this definition exist. Some authors disregard the so called Condon-
Shortley phase (−1)m in the definition of the associated Legendre polynomials.
We do not omit this factor and conform to the notation of [23,12].

Spherical Harmonics have several properties that we would like to exploit
in the following sections: Each set of Spherical Harmonics of order � forms an
orthonormal basis of dimension 2�+1; Spherical Harmonics of orders 0 . . . � form
an orthonormal basis of dimension (� + 1)2, i. e.

∫ 2π

0

∫ π

0

Y�m(θ, φ) · Y�′m′(θ, φ) · sin θ dθ dφ = δ��′ · δmm′ (5)

where δ�m is the Kronecker delta function. The complex conjugate of a Spherical
Harmonic function is simple to obtain:

Y�,−m(θ, φ) = (−1)m · Y�m(θ, φ). (6)
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Fig. 3. A Spherical Harmonic function is a periodic function on the unit sphere which
has � maxima. The rows show Spherical Harmonics of orders � = 0, 1, 2, 3; columns
show m = 2� + 1 functions for each order �.

To approximate a signal s(θ, φ), i. e.

s(θ, φ) =
∞∑

�=0

�∑
m=−�

a�m · Y�m(θ, φ) (7)

we need to compute the coefficients a�m using Eq. 2

a�m =
∫ 2π

0

∫ π

0

s(θ, φ) · Y�m(θ, φ) · sin θ dθ dφ. (8)

In practice, this is done using Spherical Harmonics of order � = 0 up to a small
number, e. g. � = 4. It may also be useful to use real-valued Spherical Harmonics
as defined in [12]. Eq. 6 implies that the number of coefficients stays the same
for real-valued or complex-valued Spherical Harmonics. Hints on implementation
can be found in [3,7].

3 Rotation Estimation

For general robot self-localization, we have to determine the 3D rotation be-
tween two Spherical Harmonic representations of image signals. This problem
has already been investigated [2], and more recently in [15,16,10]. As an initial
test case, we have chosen a mobile robot moving on a plane. For this particular
application we only need to deal with 1D rotation estimation.

3.1 Rotations

The 3D case. Recall that Spherical Harmonics of order � form a basis. Any
3D rotation can be expressed as a linear transformation (i. e. multiplication
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with an unitary matrix U�) and does not mix coefficients of different order �.
Hence rotations retain the distribution of spectral energy among different orders
[16]. This is a unique characteristic of Spherical Harmonics which makes them
so particularly useful, amongst others for the purpose of robot ego-localization
pursued here. Applying a 3D rotation to a spherical function represented by
coefficients ajk yields new coefficients bjk according to
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The 1D case: rotation about Z-axis. Since the robot moves on a plane in our
current configuration, the problem of de-rotation is simplified somewhat. Recall-
ing the definition of the complex-valued Spherical Harmonics, the implications
of a rotation of ϕ about the Z-axis are as follows:

Y�m (θ, φ + ϕ) = 1√
2π

· N�m · P�m (cos θ) · ei m (φ+ϕ) = ei m ϕ · Y�m (θ, φ) .

The rotation matrix becomes much simpler because it changes into a diagonal
matrix with elements e−imϕ:
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3.2 De-rotation

Currently our implementation is based on direct non-linear estimation of ϕ sim-
ilar to the method described in [17]. In this method, the 3D-rotation ΛR for
view descriptors a and b is determined such that ||b − ΛR a||22 is minimized.
This corresponds to the mean square signal difference between both signal ap-
proximations integrated over the sphere, as it will be discussed in more detail
later in Sec. 4.1. The constraint of mere 1-axis rotation which has been main-
tained in our experiments so far, leaving full 3D, 6 DoF pose estimation to
future investigations, leads to simplifications: we have to determine the angle ϕ
that minimizes

∑
�

∑�
m=−�(b�m − e−imϕ a�m)2. We emphasize that full 3D de-

rotation is possible [17,16] for other robot configurations, that is, the spherical
harmonic approach is even more interesting and attractive in that case.
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4 Localization

4.1 Similarity Measure

Similarity between two image descriptors, a for signal g(θ, φ) and b for sig-
nal h(θ, φ), can be defined in a natural way. We define the dissimilarity Q as the
squared difference of the two regarded image signals in the Spherical Harmonic
domain up to order �:

Q =
∫ 2π

0

∫ π

0

(g(θ, φ) − h(θ, φ))2 · sin θ dθ dφ

Eq. 7
=

∫ 2π

0

∫ π

0

( ∞∑
�=0

�∑
m=−�

(a�m − b�m) · Y�m(θ, φ)

)2

· sin θ dθ dφ

Eq. 5
=

∞∑
�=0

�∑
m=−�

∞∑
�′=0

�′∑
m′=−�′

(a�m − b�m) · (a�′m′ − b�′m′) · δ��′ · δmm′ = ||a − b||22

This result is of course not very astonishing, taking into account the fact that
the regarded basis signals form an orthonormal basis. The measure Q is of course
sensitive to any rotation between the signals. Hence, to find the minimum dis-
similarity of two view descriptors we must de-rotate them first.

4.2 A Concept for a Rotation Invariant Similarity Measure

As we mentioned in Sec. 3.1, the norms of the subgroups of coefficients belonging
to Spherical Harmonics of the same order are invariant to arbitrary 3D rotations
of the signal. Thus L2 norms, one for each order of Spherical Harmonics, can be
considered as a kind of energy spectrum of the omnidirectional signal.

This energy spectrum is an efficient means for comparing pairs of spherical
signals [9]. With a proper metric which should be derived from statistical models
of the signal and the expected noise, spherical signals can be compared to each
other even without performing the ‘de-rotation’. If the energy spectrum is iden-
tical or similar, the particular spherical signals can be identical but they need
not to be so. However, if their energy spectra are significantly different, both
signals cannot be identical.

4.3 Robot Localization Algorithm

Robot localization can be done the following way:

For each reference location

1. use the fast rotation invariant similarity measure to drop unlikely views,
2. try to find the best matching rotation for the current image descriptor and

de-rotate the current descriptor,
3. compute the similarity according to Sec. 4.1.
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This yields a similarity map, which in all our experiments performed so far,
has a distinct extremum at the true location of the robot. It can, however, also
contain other extrema, i. e. different poses which have a similar likelihood. Con-
sidering the fact that man-made environments have certain regularities, which
may result in similar views at several distinct positions, this is not too aston-
ishing, forming a general problem of view-based navigation. At each instant,
however, we have prior knowledge about the robots previous course and its pre-
vious pose(s), which is presumably always sufficient to disambiguate the current
pose estimation process. Such strategies are well-known in robot navigation, and
have been, amongst many others, described by Thrun et al. [22] (‘Monte Carlo
Localization’), or Menegatti et al. [19] (using other image descriptors).

5 Experimental Results

For our experiments, we currently use simulated image data rendered by ray trac-
ing software. Using the 3D modeling software Blender [4], we have created an
artificial environment resembling an office area, which provides an experimental
area for a simulated robot (see Fig. 4). An upwards facing wide-angle perspective
camera with a field of view of approx. 172.5◦ yields the simulated input images
of the robot. The resulting images can be projected onto a hemisphere. This
hemispherical signal is extended to a full spherical signal by suitable reflection
at the equator. Subsequently, the spherical signal can be approximated by Spher-
ical Harmonics. Of course, a direct expansion of the 2D wide-angle images into
Spherical Harmonics is possible without the detour of projecting the perspective
signal onto the sphere. We use Spherical Harmonics up to order � = 4. The
reflection across the equator introduces an additional symmetry to the spher-
ical image signal. Hence, additional constraints exist on the coefficients of the
Spherical Harmonics.

Prior to performing a localization of the robot, we must create a set of
reference frames and calculate its corresponding view descriptors. The view-
attributed map needed for performing the robot localization must be computed
beforehand; in a real application, the robot and a precision localization device
will be driven through the envisaged environment while the views and the cor-
responding poses are recorded.

For our localization experiment, we have rendered a series of frames with
the robot moving along a fixed path (Fig. 4(a)). To obtain realistic sequences
of images, each taken at a definite position, a sequence of poses is recorded by
a control script while the robot moves along a given path. The resulting list is
then used to place the camera for the rendering process.

The images in Fig. 5 are maps of the simulation environment showing a mea-
sure corresponding to the likelihood of the robot location, calculated at discrete
positions along the motion path. Note that these positions are in general not
aligned with the grid and the heading direction of the robot is not aligned with
the direction the grid was built with.



28 H. Friedrich et al.

(a) Environment from bird’s eye per-
spective. The path of the robot is marked.

(b) Simulated view of a normal camera
facing forwards.

(c) Robot with camera facing upwards.
(d) Wide angle view facing upwards.

Fig. 4. Views of our simulated office environment

Fig. 5. These plots show the dissimilarity between current view descriptors obtained
at six different positions of the path of the robot and the reference views from the
database. The shown results have been obtained using a position grid with a spacing
of 0.2 m and a total of 4636 view descriptors. Dark areas mark likely positions; white
crosses mark the true position. The lower row additionally uses the rotation invariant
measure to drop view descriptors beforehand if their energy spectra deviate excessively.
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6 Next Steps Towards Realistic View Representations:
An Outlook

So far, the view-based representation of the environment in which self-localization
shall be performed has been described as a static one, where only one spherical
view for each reference location has to be regarded. However, every realistic envi-
ronment in which a robot will move is subject to various changes, particularly in
illumination. Therefore, the content of the database has to consider this appropri-
ately. We propose to represent the set of possible views (under varying illumination
etc.) by a stochastic model of low order, as extracted from a larger training set of
images. We denote such a model here as a ‘dynamic spherical view model’ (DSVM).
In the case of ‘normal’ rectangular image areas, such models have already been
successful for (non-spherical) background modeling [20]. Such a stochastic model
inherently induces a suitable and statistically correct metric for the matching pro-
cess, i. e. the Mahalanobis distance induced by the covariance matrix of the dy-
namic spherical view model.

In conventional 1D or n-D signal processing a second order description of
the signal statistics in terms of covariance functions is sufficient to derive a
canonical representation of the signal. This canonical representation is basically
the result of a linear transform into a new coordinate system such that the
covariance between any pair of different spectral coefficients is zero (principal
component analysis [PCA] or Karhunen-Loeve transform [KLT]). The transfer
of this approach to the spherical domain leads to a very practical statistical
model for signal processes defined on the spherical domain. Using such a model,
a PCA representation of spherical stochastic processes (here: spherical stochastic
models for typical omnidirectional signals) can be developed.

The spherical PCA model for omnidirectional signals is a highly practical
means for performing any kind of signal processing for incomplete spherical data.
For example, it allows to compare a given spherical signal with other signals
stored in a database even if the input signal contains areas where the signal
value is not known or very largely destroyed (occlusions, . . . ). The potential and
usefulness of a statistically correct procedure for comparing incomplete data
cannot be overestimated.

These statistical extensions of the self-localization approach using Spherical
Harmonics still remain to be performed in investigations planned for the near
future. We hope that by the paper presented here the feasibility of the baseline
approach and the attractiveness of using Spherical Harmonics for omnidirectional
vision and recognition could be conveyed.
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Abstract. We present an approach for estimating the 3D position and
in case of articulated objects also the joint configuration from segmented
2D images. The pose estimation without initial information is a challeng-
ing optimization problem in a high dimensional space and is essential for
texture acquisition and initialization of model-based tracking algorithms.
Our method is able to recognize the correct object in the case of multiple
objects and estimates its pose with a high accuracy. The key component
is a particle-based global optimization method that converges to the
global minimum similar to simulated annealing. After detecting poten-
tial bounded subsets of the search space, the particles are divided into
clusters and migrate to the most attractive cluster as the time increases.
The performance of our approach is verified by means of real scenes and a
quantative error analysis for image distortions. Our experiments include
rigid bodies and full human bodies.

1 Introduction

Finding the 3D position and rotation of a rigid object in a set of images from
calibrated cameras without any initial information is a difficult optimization
problem in a 6-dimensional space. The task becomes even more challenging for
articulated objects where the dimensionality of the search space is much higher,
e.g., a coarse model of a human skeleton has already 24 degrees of freedom
(DoF) yielding a 30-dimensional space. Although the initial pose is essential
for many state-of-the-art model-based tracking algorithm, e.g. [1,2,3], relatively
little attention was paid to the initialization of rigid and articulated models. A
manual initialization is usually required, which is time demanding and assumes
some expertise on the model and on the world coordinate system.

Depending on the image features, there are several techniques for pose estima-
tion in the literature. Edge-based approaches, e.g. [4,5,6], align curves or lines of
the model to detected edges. They work best for homogeneous objects, however,
textured objects and cluttered background typically involve many edges that are
not related to the model. Texture-based approaches [7,8] use correspondences be-
tween the textured model and an image for pose estimation. Separate from the
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Fig. 1. From left to right: a) 3D model of object. b) Potential bounded subsets of
the search space. c) Projection of the mesh. The pose is correctly estimated.

fact that they require textured surfaces for self-initialization, the texture needs
to be registered to the model beforehand, i.e., a manual initialization is done for
the texture acquisition during preprocessing.

Our approach for solving the initialization problem estimates the pose of rigid
and articulated objects by minimizing an energy function based only on the sil-
houette information. Although we are not restricted to silhouettes, the object
region has the advantage that it is an appearance independent feature that can
be easily extracted from a single frame, e.g. by background subtraction. Since
an initial guess is not available, local optimization algorithm like iterative clos-
est point (ICP) [9,10] are not suitable for this task. For finding the exact pose,
we use a novel particle-based global optimization, called interacting simulated
annealing [11], that converges to the global optimum similar to simulated an-
nealing [12]. In order to deal with multiple objects, we extend the work in [11]
by clustering the particles with respect to previously detected bounded subsets
of the search space.

After a brief introduction to interacting simulated annealing in Section 2,
we give details of our method in Section 3. In Section 4, some extensions for
human bodies are explained. The experimental results are discussed in Section 5
followed by a brief conclusion.

2 Interacting Simulated Annealing

Interacting particle systems are well-known as particle filter [13] and approximate
a distribution of interest ηt by ηn

t :=
∑n

i=1 π(i)δX(i) , where δ is the Dirac measure
and X(i) are n random variables, termed particles, weighted by π(i). In the case
of interacting simulated annealing (ISA), the distribution is proportional to a
Boltzmann-Gibbs measure

gt(dx) = exp (−βt V (x)) λ(dx), (1)

where V ≥ 0 is the energy function to minimize, βt is an annealing parameter
that increases with t, and λ is the Lebesgue measure.
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Algorithm 1. Interacting Simulated Annealing Algorithm
1. Initialization

– Sample x
(i)
0 from η0 for all i

2. Selection
– Set π(i) ← exp(−βt V (x

(i)
t )) for all i

– For i from 1 to n:
Sample κ from U [0, 1]
If κ ≤ εtπ

(i) then
� Set x̌

(i)
t ← x

(i)
t

Else
� Set x̌

(i)
t ← x

(j)
t with probability π(j)

∑n
k=1 π(k)

3. Mutation
– Sample x

(i)
t+1 from Kt(x̌

(i)
t , ·) for all i and go to step 2

In contrast to particle filter that estimate the posterior distribution for a se-
quence of images, we apply ISA for estimating the global optimum in still images
where no initial information is available. For this purpose, the steps Selection
and Mutation of Algorithm 1 are iterated until the global minimum of V is well
approximated. During the selection, the particles are weighted according to a
given energy function V where greater weight is given to particles with a lower
energy. The weights associated to the particles refer to the probability that a
particle is selected for the next step. We used the parameter εt = 1/

∑n
k=1 π(k)

for selection since it has slightly better convergence properties than εt = 0, see
for instance [14,11]. If a particle is not accepted with probability εtπ

(i), a new
particle is selected from all particles, e.g. by multinomial sampling. The selec-
tion process removes particles with a high energy while particles with a low
energy are reproduced each time they are selected. An overview of various re-
sampling schemes can be found in [15]. In the second step, the selected particles
are distributed according to Markov kernels Kt specified by a modified dynamic
variance scheme, which we propose in Section 3.4.

While the annealing scheme prevents the particles from getting stuck in lo-
cal minima, the dynamic variance scheme focuses the search around selected

Fig. 2. Particles at t = 0, 5, 10, 15 and 19 for ISA. Particles with a higher weight are
brighter, particles with a lower weight are darker. The particles converge to the pose
with the lowest energy as t increases. Most left: Equally weighted particles after
initialization. Most right: Estimate after 20 iterations.
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particles. When t increases only particles with low energy are selected and the
search is concentrated on a small region, see also Figure 2. Indeed, it has been
shown that ISA approximates a distribution ηt that becomes concentrated in the
region of global minima of V as t tends to infinity provided that the annealing
scheme βt increases slow enough and the search space is bounded [16]. In [11],
the authors evaluated several annealing schemes and parameter settings. In our
experiments, a polynomial scheme, i.e.

βt = (t + 1)b for some b ∈ (0, 1), (2)

performed well with b = 0.7.

3 Clustered Optimization

3.1 Initial Subsets

Having a binary image for each camera view, where pixels that belong to the
foreground are set to 1 else to 0, the pixels are first clustered with respect to
the 8-neighbor connectivity. In order to make the system more robust to noise,
clusters covering only a very small area are discarded. In the next step, the 4
corners of the bounding box of each cluster are determined and the projection
ray for each corner is calculated. The projection rays are represented as Plücker
lines [17], i.e., the 3D line is determined by a normalized vector d and a moment
m such that x × n = m for all x on the line. Provided that two projection rays
from different views are not parallel, the midpoint p of the shortest line segment
between the two rays l1 and l2 is unique and can be easily calculated. If the
minimum distance between l1 and l2 is below a threshold, p is regarded as a
corner of a convex polyhedron. After 8 corners of the polyhedron are detected
for two clusters from two different views, the bounding cube is calculated as
shown in Figure 1 b). In the case of more than two available camera views, each
pair of images – starting with the views containing the most clusters – is checked
until a polyhedron is found. The corners are similarly refined by calculating the
midpoint of the shortest line segment between a ray from another view and a
corner of a polyhedron. The resulting bounding cubes provide the initial bounded
subsets of the search space. We remark that the algorithm is not very sensitive
to the thresholds as long as the searched object is inside a bounding cube. This
can be achieved by using very conservative thresholds.

3.2 Particles

Since we know the 3D model, the pose is determined by a vector in R
6+m, i.e.,

each particle is a 6 + m-dimensional random vector where m is the number of
joints. The rigid body motion M is represented by the axis-angle representation
given by the 6D vector (θω, t) with ω = (ω1, ω2, ω3) and ‖ω‖2 = 1. The mappings
from θω to a rotation matrix R and vice versa can be efficiently computed by
the Rodriguez formula [18] and are denoted by exp(θω) and log(R), respectively.
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Since ISA approximates a distribution by finite particles, we take the first
moment of the distribution as estimate of the pose, i.e., the mean of a set of
rotations r(i) weighted by π(i) is required.1 This can be done by finding a geodesic
on the Riemannian manifold determined by the set of 3D rotations. When the
geodesic starting from the mean rotation in the manifold is mapped by the
logarithm onto the tangent space at the mean, it is a straight line starting at
the origin, see [19]. The tangent space is called exponential chart. Hence, the
weighted mean rotation r̄ satisfies

∑
i

π(i)
(
r̄−1 
 r(i)

)
= 0, (3)

where r(j) 
 r(i) := log
(
exp(r(j)) · exp(r(i))

)
and r−1 := log

(
exp(r)T

)
. The

weighted mean can thus be estimated by

r̂t+1 = r̂t 


(∑
i π(i)

(
r̂−1
t 
 r(i)

)
∑

i π(i)

)
. (4)

3.3 Initialization

Due to multiple objects as shown in Figure 1, each particle belongs to a certain
cluster C given by the bounding cubes and denoted by x(i,C). At the beginning,
a small number of particles is generated with different orientations located in the
center of the cube for each cluster. The complete set of particles is initialized by
randomly assigning each particle the values of one of the generatedparticles. After-
wards, each particle is independently diffused by a normal distribution with mean
x(i,C) and a diagonal covariance matrix with fixed entries except for the transla-
tion vector t where the standard deviations are given by the edge lengths of the
cube divided by 6 such that over 99.5% of the particles are inside the cube.

3.4 Mutation

The dynamic variance scheme for the mutation step is implemented by cluster
dependent Gaussian kernels K

(C)
t with covariance matrices Σ

(C)
t proportional

to the sampling covariance matrix of each cluster:2

Σ
(C)
t :=

d

|C| − 1

n∑
i=1
i∈C

(x(i,C)
t − μt)ρ (x(i,C)

t − μt)T
ρ , μt :=

1
|C|

n∑
i=1
i∈C

x
(i,C)
t , (5)

where |C| is the number of particles in cluster C and ((x)ρ)k = max(xk, ρ) for
the kth dimension. The value ρ > 0 ensures that the variance does not become

1 The density could also be estimated by kernel smoothing from the particles in order
to take the peak of the density function as estimate. However, kernel smoothing is
more expansive than calculating the first moment of a density and it also needs to
be performed in the space of 3D rotations.

2 Samples from a multivariate normal distribution N (μ, Σ) can be drawn via a
Cholesky decomposition Σ = AAT : x = μ + Az where z is drawn from N (0, I).
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zero for any dimension. In practice, we set d = 0.4 and compute only a sparse
covariance matrix, see also Section 4.

3.5 Selection

Since each particle defines the pose of the model, the fitness of a particle x ∈ R
6+m

can be evaluated by the difference between the original image and the template
image that is the projected surface of the model. For this purpose, we apply a
signed Euclidean distance transformation [20] on the silhouette image Iv and on
the template Tv(x) for each view v. The energy function is defined by V (x) :=
α
r

∑r
v=1 Vv(x) with

Vv(x) :=
1

2|T +
v (x)|

∑

p∈T+
v (x)

|Tv(x, p) − Iv(p)| + 1
2|I+

v |
∑

p∈I+
v

|Tv(x, p) − Iv(p)|, (6)

where I+ denotes the set of strictly positive pixels of an image I. The normal-
ization constant α = 0.1 ensures that V is approximately in the range between
0 and 10, which is suitable for the selected annealing scheme.

The resampling step is cluster independent, i.e., the particles migrate to the
most attractive cluster where the particles have more weight and give more
offspring. At the end, there are no particles left where the silhouettes do not fit
the model, see Figure 1 c).

Fig. 3. From left to right: a) Estimated pose without noise. The error is less than
1mm (median). b) Silhouettes are randomly distorted by 500 white and 500 black
circles. c) Median estimate with error less than 4cm.

4 Human Bodies

While for rigid bodies the correlation between the parameters is neglected due
to computational efficiency, correlation between connected joints in the human
skeleton are incorporated. That is, the correlation of the joints that belong to
the same skeleton branch, e.g. the left leg, are calculated in the dynamic variance
scheme (5) while correlations with joints to other branches are set to zero.
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In order to focus the search on poses with higher probabilities, prior knowl-
edge is incorporated into the energy function as soft constraint. The probability
of a pose ppose is estimated by a Parzen-Rosenblatt estimator with Gaussian
kernels [21,22] over a set of subsamples from different motions from the CMU
motion database [23]. Since the dependency between the joints of the upper body
and the joints of the lower body is low, the sample size can be reduced by split-
ting ppose up into two independent probabilities pu

pose and pl
pose, respectively.

Hence, the energy function is extended by

V (x) :=
α

r

r∑
v=1

Vv(x) − η

2
ln

(
pu

pose(x)pl
pose(x)

)
, (7)

where η = 2.0 regulates the influence of the prior. Moreover, the mean and the
variance of the joints in the training data is used to initialize the particles. To
get rid of a biased error from the prior, the final pose is refined by ICP [9,10]
that is initialized by the estimate of ISA.

5 Results

For the error analysis, synthetic images with silhouettes of the bear were gener-
ated by projecting the model for 3 different views. The error was measured by

Fig. 4. Estimates for a real scene. 3 views were segmented for the bear and 4 views for
the human (Only one is shown). Most left: Silhouettes from background subtraction.
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Fig. 5. Average error of the estimates for different numbers of iterations and 200 parti-
cles (left) and for different numbers of particles and 25 iterations (right). 200 particles
and 25 iterations are sufficient for rigid bodies.

Fig. 6. Estimates for 12 poses from a motion sequence from the CMU database (The
estimated poses of the human model are projected onto the silhouette images). Each
row shows one of the three views.
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the Euclidean distance between the estimated 3D position and the exact posi-
tion. Each simulation was repeated 25 times and the average errors for different
numbers of particles and iterations are plotted in Figure 5. The estimates for
200 particles and 30 iterations are very accurate with a median error less than
1mm, see Figure 3 a). The influence of distorted silhouettes is simulated by ran-
domly drawing first a fixed number of white circles and then black circles. Holes,
dilatation and erosion are typically for background subtraction and change the
outcome of the Euclidean distance transform. The diagrams in Figure 5 show
that our method performs also well for distorted silhouettes. In the case of 500
white and 500 black circles, the error of the median estimate shown in Figure 3
is still less than 4cm. The performance for a human body with 30 DoF was
tested by generating synthetic images with silhouettes for 12 single poses from
a sequence of the CMU database that was not used for the prior. The estimates
are given in Figure 6. The average error of the joints for 400 particles and 40
iterations was 1.05◦. Results for a real scene with background subtraction are
shown in Figure 4. For images of size 1004 × 1004 pixels, the computation cost
is given by number of views × number of iterations × number of particles ×
0.0346 seconds.

6 Discussion

We proposed an accurate and robust approach, which relies on a global opti-
mization method with clustered particles, for estimating the 3D pose of rigid
and articulated objects with up to 30 DoF. It does not require any initial infor-
mation about position or orientation of the object and solves the initial problem
as it occurs for tracking and texture acquisition. Our experiments demonstrate
that the correct pose is estimated when multiple objects appear. It could also
be extended to the case when the object is not visible by rejecting estimates
with an high energy. In general, our method can be easily modified for certain
applications, e.g., by including prior as we did for humans. Other possibilities
are multi-cue integration and exploitation of an hierarchical structure, however,
these features are object specific and not suitable for a general solution.
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11. Gall, J., Potthoff, J., Schnörr, C., Rosenhahn, B., Seidel, H.P.: Interacting and
annealing particle systems – mathematics and recipes. J. of Mathematical Imaging
and Vision (to appear, 2007)

12. Kirkpatrick, S., Jr., C.G., Vecchi, M.: Optimization by simulated annealing. Sci-
ence 220(4598), 671–680 (1983)

13. Doucet, A., de Freitas, N., Gordon, N. (eds.): Sequential Monte Carlo Methods in
Practice. Springer, New York (2001)

14. Gall, J., Rosenhahn, B., Seidel, H.P.: An Introduction to Interacting Simulated
Annealing. In: Human Motion - Understanding, Modeling, Capture and Animation,
Springer, Heidelberg (to appear, 2007)

15. Douc, R., Cappe, O., Moulines, E.: Comparison of resampling schemes for particle
filtering. In: Int. Symposium on Image and Signal Processing and Analysis, pp.
64–69 (2005)

16. Moral, P.D.: Feynman-Kac Formulae. In: Genealogical and Interacting Particle
Systems with Applications, Springer, New York (2004)

17. Stolfi, J.: Oriented Projective Geometry: A Framework for Geometric Computa-
tion. Academic Press, Boston (1991)

18. Murray, R., Li, Z., Sastry, S.: A Mathematical Introduction to Robotic Manipula-
tion. CRC Press, Boca Raton, FL (1994)

19. Pennec, X., Ayache, N.: Uniform distribution, distance and expectation problems
for geometric features processing. J. of Mathematical Imaging and Vision 9(1),
49–67 (1998)

20. Felzenszwalb, P., Huttenlocher, D.: Distance transforms of sampled functions.
Technical Report TR2004-1963, Cornell Computing and Information Science
(2004)

21. Gall, J., Rosenhahn, B., Brox, T., Seidel, H.P.: Learning for multi-view 3d tracking
in the context of particle filters. In: Bebis, G., Boyle, R., Parvin, B., Koracin,
D., Remagnino, P., Nefian, A., Meenakshisundaram, G., Pascucci, V., Zara, J.,
Molineros, J., Theisel, H., Malzbender, T. (eds.) ISVC 2006. LNCS, vol. 4292, pp.
59–69. Springer, Heidelberg (2006)

22. Brox, T., Rosenhahn, B., Kersting, U., Cremers, D.: Nonparametric density estima-
tion for human pose tracking. In: Franke, K., Müller, K.-R., Nickolay, B., Schäfer,
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Unambiguous Dynamic Diffraction Patterns for
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Abstract. The projection of fixed patterns in active 3d measurement
systems is deteriorated by ambient lighting. Moreover classic projection
patterns lead to ambiguities during pattern detection in the digital signal
processing phase. Therefore a dynamic, diffraction based pattern projec-
tion system is introduced which can adapt to ambient lighting conditions.
For error-free laser pattern detection a method for the design of unam-
biguous projection patterns is presented.

1 Introduction

Active optical 3d measurement systems use pattern projection for triangulating
depth profiles of textureless objects or scenes. In situations with low ambient
lighting, structured light approaches like gray code projections with additional
phase shift can be used which illuminate the whole measurement space with
incoherent light. The pattern contrast is reduced in situations with stronger am-
bient lighting. In order to improve the performance coherent laser projectors
can be used which are capable of bundling their intensity by diffraction – if they
are based on dynamic diffraction gratings. This paper describes the generation
of arbitrary laser patterns based on a Liquid Crystal on Silicon (LCoS) mi-
crodisplay used as a dynamic phase grating. Having the opportunity to generate
arbitrary laser patterns, an algorithm for the creation of unambiguous patterns
is presented. In contrast to normal evenly spaced patterns, every point can be
detected and assigned to its correct source without ambiguities, even when oc-
clusion, wrong or missing detections occur.

2 Classic Triangulation

Laser patterns for 3d measurement can be realized with a laser projector either
based on geometrical optics using mirrors for beam redirection or wave optics
for beam diffraction. While redirection is based on temporally intensity modu-
lation of the total pattern – like line by line scanning, complex phase modulated
diffraction patterns are displayed simultaneously.

To use either projection method in conjunction with a camera for depth profile
measurement the system has to be calibrated for example by using the algorithm
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presented by Zhang [1]. The extrinsic parameters position and orientation as well
as the intrinsic parameters focal length and distortion have to be determined.
While this is a typical procedure for camera calibration, the projector has first
to be modelled as an inverse camera.

With known geometry the whole triangulation process uses vector algebra.
Pattern points are modelled as straight lines

x3d = xP,0 + rxRay (1)

originating from the optical centre xP,0 of the projector, whereas lines in the
pattern are planes in the object space.

Centres of pattern points are detected using Gaussian fitting over several
pixels in the camera image. The corresponding ray is assigned by selecting the
2d projection of the 3d straight line with the minimum distance to the detected
centre.

2.1 Classic Patterns

Typical patterns for laser projections are lines or dot structures. Since lines
consume much laser intensity and cannot be used for 2d depth profiles in one
measuring process this paper concentrates on discrete dot structures which can
be projected by the LCoS based spatial light modulator (SLM).

Typical diffraction gratings use a fixed phase distribution with structure sizes
in the nanometre range on a glass substrate. With their fixed phase function they
project a fixed diffraction pattern, for example 19×19 points with constant inter
beam angle. The fixed grating cannot adapt to different lighting conditions and
even worse: Most patterns do not allow an unambiguous detection as described
in Sect. 4.

3 LCoS Microdisplays as Dynamic Phase Gratings

Switching from static phase gratings to a SLM, diffraction patterns can be pro-
jected dynamically. Since amplitude gratings have little diffraction efficiency, a
phase grating based on a HD-LCoS microdisplay with high fill ratio was used
for high efficiency. To project an intensity distribution of I(u, v) = |G(u, v)|2
the corresponding phase distribution φ(x, y) with values between 0 and 2π can
be calculated. Input laser plane g(x, y) and diffraction pattern plane G(u, v) are
mathematically linked through the diffraction grating with phase shift ejφ(x,y)

by a Fourier transformation in the Fraunhofer region [4]:

G(u, v) = |G(u, v)|ejφ(u,v) = F{g(x, y)} = F{|g(x, y)|ejφ(x,y)} . (2)

Therefore the phase distribution can be calculated using an iterative Fourier
transform approach as described in [2,3].

As an example for a classical triangulation pattern an 18 × 18 dot matrix is
depicted in Fig. 1 with the calculated phase distribution according to [2] and
the measured intensity of the laser pattern.
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Fig. 1. Blueprint of 18 × 18 pattern (top left), phase distribution (bottom left), mea-
sured intensity of 1st diffraction order (right)

4 Unambiguous Patterns for Error Free Triangulation

To understand the ambiguity of triangulation patterns the projector and camera
geometry in object space is shown in Fig. 2. An easy case with the projector
centred above the camera with just a x-axis rotation is sketched without loss
of generality. The projection pattern is a 3 × 3 dot matrix with constant inter
beam angle. The intersections of each ray with the object space as well as their
projections on the border of the image space are marked. Each 3d ray (1) can
be projected to a 2d line

x2D = Px3Dz−1 (3)

in the 2d image space which passes through its projected border point, the
entrance into the image space.

Remembering epipolar geometry of multiview systems [5] the projector can
be regarded as a second, inverse camera. Every projected ray of the projector
has an epipolar line in the camera image where its detected reflection can be
found. In Fig. 2 the epipolar lines are parallel since their epipol is at infinity in
a constellation with the baseline parallel to the image plane. Both camera and
projector have the same z-value of zero in camera coordinates. Depending on the
projector positioned before (z > 0) or behind (z < 0) the camera, the epipolar
lines are either diverging or converging. Therefore the minimum distance be-
tween all epipolar lines is reached either at the border of the image considering
divergent lines or at the imaged point of infinity of a ray if the rays are converg-
ing. The minimum distance between epipolar lines is named 2d conflict distance
within this paper.

If this distance gets too small, detected pattern points cannot be assigned to
their corresponding ray. If the distance gets close to zero as for the three spots
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Fig. 2. Projection of 3d object space

in the centre column in this example, the situation gets ambiguous. The 3d ray
path in object space has the same 2d projection for all three lines. Solving the
correspondence problem for these three lines is impossible, if only one pattern
point was not detected due to occlusion or contrast problems.

In bigger projection patterns this effect can escalate and corrupt lots of sample
points, not only of the same column or row if the orientation between projector
and camera changes to a slightly more complex setup.

Knowing the intrinsic matrix of a projector

KP =

⎡
⎣

fx 0 cx

0 fy cy

0 0 1

⎤
⎦ (4)

the field of view in both directions can be calculated. In case of the laser pro-
jector the field of view can be calculated even easier knowing the illuminating
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wavelength λ and the structure size px,y of the pixel elements in the LCoS mi-
crodisplay according to

δx,y = arcsin
(

λ

px,y

)
. (5)

This enables the calculation of the important intersection points of Fig. 2 with
all 3d border planes of the imaged object space. Knowing the field of view reveals
the border planes’ normal vectors

nright = [−1, 0, tan(δx/2)]T nleft = [−1, 0, − tan(δx/2)]T

ntop = [0, 1, − tan(δy/2)]T nbottom = [0, 1, tan(δy/2)]T . (6)

The conflict distance in pixel between every ray pair is noted in the conflict
distance matrix

CPattern =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 a21 a31 · · · aN1

a12 0 a32 · · · aN2

a13 a23 0
. . .

...
...

...
...

. . . aN(M−1)

a1M a2M a3M a(N−1)M 0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (7)

This matrix serves as basis for all projection pattern designs. It brands all
elements smaller than dmin as conflicting. The sum of all conflicting elements in
one column or row indicates the number of conflicts between the corresponding
ray and all others. The total cost of one ray is calculated as the sum of all
distances of one ray in one column or row

c(m) =
1∑N

n=1 CPattern(n, m)
. (8)

4.1 Modification of Desired Patterns

Instead of designing new unambiguous patterns a way of modifying desired pat-
terns is introduced.

The total cost function (8) is not appropriate for optimizing the pattern.
Rather the conflict distance matrix CPositions for all possible ray positions has
to be calculated. Having a spatial light modulator for beam diffraction or a step
motor positioned mirror for beam redirection in mind, there exist N discrete
horizontal and M discrete vertical positions forming a total of N · M possible
ray positions. CPositions thus consists of 2(N · M)2 elements.

With CPattern having conflicting elements smaller than dmin, the desired pat-
tern has to be modified. The pattern itself is represented by a pattern matrix
P with dimension N × M for all possible rays as illustrated in Fig. 1 (top left)
and Fig. 4 (top left). As a trivial solution the most conflicting elements with the
highest total cost (8) could be deleted. A more refined method is described here.

Within an iterative process, rays are translocated to less conflicting positions,
until all conflicts are solved. Only one ray is moved within every iteration cycle.
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To decide which ray has to be moved to which neighbouring position, a cost
function is computed for each of the N ·M possible positions at the start of each
iteration. During evaluation the inverse minimum conflict distance

c(n, m) =
1

min (CPositions(u, v)|[u, v] ∈ Patternpoints)
(9)

with Patternpoints as the set of indices of active pattern points in P proved to
be a good cost indicator.

Selected rays have to be moved to neighbouring positions with the aim to get
a conflict-free, unambiguous projection pattern. Using (9) as the cost indicator,
the most conflicting rays have to be moved first. Due to the two competing
optimization goals

– pattern conflict avoidance and
– pattern affinity to the desired pattern,

a rating function for neighbouring positions [n, m] compared to the actual posi-
tion [nactual, mactual] within a maximum distance dmax is needed

v(n, m) =
c(n, m)/c(nactual, mactual)

d
− MExtra(n, m) . (10)

To avoid deadlock situations of rays oscillating between two positions because
the surrounding positions are even more expensive, an extra cost memory MExtra

is introduced. It raises the price of a previous position, when a ray is moved.
After a few iterations the ray will leave the deadlock positions, since they get
more and more expensive. To prevent wasted positions, the extra cost memory
is halved every iteration, so that formerly used positions can be automatically
reused after some time – maybe the whole neighbourhood of rays has changed
in the meantime leading to a cheap settling position for other rays.

During the iteration the neighbouring position with the best improvement

max(v(n, m)|d < dmax) (11)

for the most conflicting ray is selected as the new position and the cost function
(9) has to be recalculated.

Always choosing the most conflicting ray can also end up in a deadlock situa-
tion, if the ray travels around neighbourhood positions which are all conflicting.
They get more extra cost, but with the extra cost being halved every iteration
they might be cheap enough for the ray to restart the circle.

First moving other rays away can lead to a better situation for the previously
most conflicting ray. Therefore a ray memory MRay is used which adds extra
cost to a formerly moved ray – not its position. This memory is also halved every
iteration. The rays are sorted according to their cost c(n, m) and indexed. The
ray with the highest cost has index 1 at first. With MRay added, the resulting
minimum is the index of the ray to be moved next:

rayindex = min (index(sort(c(n, m))) + MRay) . (12)
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Fig. 3. Projection pattern with conflicts

Fig. 4. Pattern modification

4.2 Simulation Results

To demonstrate the effects of ambiguous and unambiguous patterns, a trian-
gulation setup with given depth map is simulated. The projector is positioned
top right of the camera at xP,0 = [0.1 m, 0.1 m, 0 m]T with an orientation of



Unambiguous Dynamic Diffraction Patterns 49

Fig. 5. Modified projection pattern with specified 5 pixel minimum distance

Border point s1

Border point s2

OC camera

Continuous straight line Discrete straight line

Approximation
with discrete

pattern positions

Straight line between OC projector
and OC camera

N x M  projection pattern

Fig. 6. Maximum number of conflict free, discrete rays in the projection pattern matrix

[−5◦, −10◦]T . As an example a 9 × 9 dot pattern with a field of view of 30◦ is
projected into the scene. All ray paths are simulated as well.
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In Fig. 3 the ambiguities between ray 18, 41, 64 or 34, 57 and others can be
seen. The ray paths are close and even overlapping.

The pattern modification according to Sect. 4.1 is shown in Fig. 4. The original
desired pattern P is at the top left, CPositions at the top right, the number of
conflicts for every iteration step can be seen at the bottom right, the cost matrix
(9) as well as the extra cost memory, total cost matrix and the ray memory after
the last iteration step are also visualized.

After 20 iterations the modified pattern is conflict free. A minimum distance
of dmin = 5 pixel was the preset for this run of the modification algorithm.

As depicted in Fig. 5 the ray paths of the modified, unambiguous projection
pattern always keep the preset minimum distance of 5 pixel. No matter where
they hit the object plane, the detected dots can be assigned to the correct rays
without ambiguities.

4.3 Estimation of Parallel Unambiguous Projection Rays

Often it is necessary to know the maximum number of unambiguous rays for a
triangulation setup. Knowing extrinsic and intrinsic parameters of projector and
camera, the vector xP,0 − xC,0 between the optical centres can be calculated.
The straight 2d line in the pattern matrix P in Fig. 6 which is orthogonal to this
vector and passing the image centre, intersects the image border at the positions
s1 and s2.

Getting the element CPositions(s1, s2) reveals the conflict distance from these
two rays – the distance between the two entrance points into the 2d image. The
maximum number of unambiguous rays

nmax =
CPositions(s1, s2)

dmin
(13)

is only correct for continuous positions on the line between s1 and s2. Although
the pattern matrix P only offers N × M discrete positions, continuous positions
on the line can be approximated with discrete pattern points beside it, verifying
this estimation even for patterns with discrete positions. In Fig. 6, nmax is seven.

5 Conclusion

In situations with high or varying ambient lighting, projection patterns for tri-
angulation based depth profile measurement need to be changed adaptively.
A way for the dynamic generation and projection was introduced: iterative
Fourier transform algorithms enable the calculation of phase distributions for a
LCoS based dynamic phase grating used for the projection of desired diffraction
patterns.

The ambiguity of classic projection patterns which leads to assignment prob-
lems between recognized pattern spots and corresponding projection rays in
the signal processing phase is described. An algorithm for modifying desired
projection patterns to eliminate ambiguities is introduced, which enables an as-
signment process without critical plausibility decisions – occlusions, wrong or
missing detections have no influence.
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The proposed projection patterns are not bound to diffraction based laser
projections but can be applied to any kind of projection from conventional in-
coherent up to temporally triggered pattern projectors.
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Abstract. In the two-view case, point matching constraints are rep-
resented by the fundamental matrix. In the three-view case, the point
matching constraints are indirectly represented by three trifocal tensors
corresponding to the three camera matrices. A direct representation of
the point matching constraints can be obtained by applying suitable
transformations on the trifocal tensors. This paper discusses some issues
related to point matching constraints. First, it presents a novel approach
for deriving the constraints in terms of a generator space. Second, it
shows that the resulting set of linearly independent constraints is 10-
dimensional for the three-view case, a result which deviates from the
literature on this subject. Third, in the case that the cameras have non-
co-linear focal points, 9 of these 10 constraints can be obtained in a
straight-forward way from the three fundamental matrices which we have
in the three-view case. The last constraint can be obtained from the fun-
damental matrices but in a non-trivial way. The main result of the paper
is a better understanding of the properties related to point matching
constraints in three dimensions and how they are related to the corre-
sponding two-view constraints.

1 Introduction

Matching constraints for points or lines in two or more images which correspond
to the same point or line in 3D space is a well-explored area in computer vision.
The basis is the standard representation of the mapping from a 3D point to a
2D point in terms of the pin-hole camera model :

yk ∼ Ck x, (1)

where Ck is the k-th camera matrix and x and yk are homogeneous representa-
tions of a 3D point and its 2D image projection in the k-th camera. The symbol ∼
represents equality up to scaling.

The camera matrix Ck has a 1-dimensional null space Nk spanned by nk

which is the homogeneous representation of the camera focal point (or camera
center). C+

k is the pseudo-inverse of Ck, satisfying Ck C+
k = I and Pk = C+

k Ck

where Pk is the projection operator onto Nk. CT
k and C+

k have a 3-dimensional
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range which we can identify as N⊥
k . An epipole eij is the mapping of focal point

j with camera i: eij = Ci nj .
In the two-view case, x is projected onto two camera image points y1,y2 by

means of two distinct cameras C1,C2. A constraint on the two image points can
be described as

yT
1 F12 y2 = (y1 ⊗ y2) · F12 = 0, (2)

where F12 is the fundamental matrix corresponding to cameras 1 and 2, which
can be computed directly from their matrices or estimated from a sufficiently
large set of corresponding image points [2,1,3,4]. This constraint allows us to
make a simple check whether or not two image points can correspond to the
same 3D point. It should be noted that the constraint is necessary but not
sufficient for y1 and y2 to correspond to the same x. Consequently, if (2) is
satisfied, the point pair y1,y2 can be said to be in hypothetical correspondence,
which may be confirmed or rejected by further processing, e.g., comparing local
image features in or around the two points. In the following presentation, Fij

denotes the fundamental matrix related to cameras i and j. It is assumed that the
camera focal points (camera centers) of the two cameras are distinct, otherwise
the concept of a fundamental matrix is not well-defined.

The standard approach for dealing with three-view matching constraints is
described in terms of so-called trifocal tensors [5,6,7,4]. Let C1,C2,C3 be the
three cameras which are assumed to have distinct focal points and let x and
L be a 3D point and a 3D line which intersect. Let yk be the homogeneous
representation of the 2D point given by the mapping of x in camera k, and let
lk be the dual homogeneous representation of the 2D line given by the mapping
of L in camera k. For this case, there exists a trifocal tensor T1, a third order
tensor on R

3, such that
(y1 ⊗ l2 ⊗ l3) · T1 = 0. (3)

If instead the projection of x is in views 2 or 3, there exist trifocal tensors T2

and T3 also for these cases. All three trifocal tensors can be derived from the
camera matrices C1,C2,C3 only or estimated from a sufficiently large set of
corresponding points and lines.

Clearly, the trifocal tensors provide matching constraints between correspond-
ing point and lines in the three different views. By applying suitable transfor-
mations on a trifocal tensor, however, matching constraints for corresponding
points in all three views can be obtained. For example, T1 can be transformed
into nine tensors T̃1,k, k = 1, . . . , 9 such that

(y1 ⊗ y2 ⊗ y3) · T̃1,k = 0 (4)

for image coordinates yk corresponding to the same 3D point x. The transfor-
mations which take place on the trifocal tensors are independent of the camera
matrices and simply imply that the lines l2 and l3 are replaced by the symbols
y2× and y3×, where y2 and y3 are image points in views 2 and 3 which lie
on lines l2 and l3, respectively. The same type of transformations can also be
applied to T2 and T3 resulting in two more sets of 3 × 3 epipolar constraints.
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In total the three trifocal tensors produce 3 × 9 = 27 constraints for corre-
sponding points in three images. Already in [6] it was pointed out that the 9
point constraints which are produced from one trifocal tensor are linearly depen-
dent. It is shown that 5 of the functional expressions which combine the elements
of the tensor and the homogeneous image coordinates can be obtained from the
other 4 by means of suitable linear combinations. The conclusion is that there
are only 4 linearly independent constraints from each trifocal tensor, and since
there are 3 such tensors, there must be in total 12 linearly independent point
matching constraints for the three-view case, [4].

This analysis made on the number of linearly independent constraints is, how-
ever, not entirely correct. If we allow the coefficients of the linear combinations
to take arbitrary forms, e.g., including the image coordinates, in fact any set
of the constraints is linearly dependent of the others. For example, consider the
two constraints

c1(y1,y2,y3) = 0
c2(y1,y2,y3) = 0. (5)

Multiply the first equation by the left hand side of the second and the second
by the left hand side of the first:

c2(y1,y2,y3) c1(y1,y2,y3) = 0
c1(y1,y2,y3) c2(y1,y2,y3) = 0, (6)

and now we have two linearly dependent equations regardless of how c1, c2 are
related. In view of this result, it appears more relevant to consider the number
of linearly independent constraints which can be obtained by using coefficients
which are independent of the image coordinates or, equivalently, how large is the
smallest set of linearly independent tensors T̃i,k for i = 1, 2, 3 and k = 1, . . . , 9.
As will be demonstrated in Section 4, this number is smaller than 12.

Another issue related to the point matching constraints derived from the tri-
focal tensors is how they may be related to the two-view constraints described
by the corresponding fundamental matrices. The literature describes such rela-
tions, for example (1) a canonical set of three camera matrices can be computed
from the three fundamental matrices, (2) from them the three trifocal tensors
can be computed using the standard methods, and (3) by applying the above
mentioned transformations the point matching constraints are obtained [4,8].
However, the concatenation of the three operations (1)–(3) results in a non-
trivial mapping which does not reveal any explicit relations between the point
matching constraints in two and three views.

1.1 This Paper

This paper presents a novel approach for deriving matching constraints, Sec-
tion 2. This approach is then applied to point matching constraints in both two
(Section 3) and three views (Section 4). As a result, we first obtain an explicit
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representation of the three-view point matching constraints in terms of a partic-
ular subspace of a particular vector space, and its dimensionality can easily be
determined to be 10. In Section 5 the expressions which generate the two-view
matching constraints, i.e. the fundamental matrices, are compared with the three
view constraints and it can easily be seen that 9 of the latter can be obtained
directly from the first. This result is valid for the case when the camera focal
points are not co-linear. The 10-th dimension of the space of constraints can still
be obtained from the fundamental matrices, but in a non-trivial way.

2 Matching Constraints

A common approach for the two cases of matching constraints discussed here
is to start with a 3D point x. In each camera view x is projected onto an
image coordinate yk, (1). Then, a (multiplicative) joint image coordinate Yjoint

is constructed as a tensor product of yk from all views. This implies that Yjoint ∼
CjointX, where Cjoint is a joint camera mapping and X is either x⊗x or x⊗x⊗x.
Let X denote the linear span of all such X, for all possible choices of x, and let
N denote the null space of Cjoint. The interesting space G is then defined as

G = intersection of N⊥ and X⊥ or, equivalently,
G = orthogonal complement of span(N, X) (7)

since it contains the generating tensors G of the matching constraints. For G ∈ G
it follows that (C+

joint)
T G is a matching constraint, denoted F for the two-view

case and T̃ for the three-view case. This follows directly from

Yjoint · ((C+
joint)

T G) ∼ (Cjoint X)T (C+
joint)

T G =

= XT CT
joint (C+

joint)
T G =

= XT (C+
joint Cjoint)T G =

= XT P G = XT G = 0, (8)

where P = C+
joint Cjoint is the projection operator onto N⊥. The second last

equality follows from G ∈ N⊥ and the last equality follows from G ∈ X⊥ and
X ∈ X . Notice that since G ⊂ N⊥ it follows that there are no null vectors
of Cjoint in G and, consequently, the dimensionality of G gives the number of
linearly independent constraints.

In the following sections, this approach is applied to corresponding points in
two and three views. This is done by describing in more detail the structure of the
tensors Yjoint,Cjoint,X,G,P, and the vector spaces N, G, and X . In particular,
the dimension of G is discussed in detail since it determines the number of
linearly independent epipolar constraints.

The approach for constructing the matching constraints can be compared to
the method presented in [9]. By means of the so-called Grassmannian tensor it
is shown how matching constraints can be derived for the N -view case, resulting
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in explicit expression for the fundamental matrix or trifocal tensors in terms of
the camera matrices. That approach, however, does not give a clear account for
the dimensionality of the resulting constraints for the all-point case or how the
two-view and three-view constraints are related. The approach proposed here,
on the other hand, deals with both these issues and does so without a heavy
mathematical formalism.

3 Point Matching Constraint in Two Views

Let x be a 3D point and consider its projection onto the two camera views:

y1 ∼ C1 x, y2 ∼ C2 x. (9)

Form a joint image coordinate Y12 as

Y12 = y1 ⊗ y2 ∼ (C1 x) ⊗ (C2 x) = (C1 ⊗ C2) (x ⊗ x). (10)

With this relation at hand, we also define a joint camera mapping C12 = C1⊗C2

which allows us to write

Y12 ∼ C12 (x ⊗ x) = C12 X12 (11)

for X12 = x ⊗ x. Let X12 denote the linear span of X12 for all x. The null
space of C12, denoted N12, is 7-dimensional, and its orthogonal complement
N⊥

12 = N⊥
1 ⊗ N⊥

2 is 9-dimensional (7 + 9 = 16 = dim(R4 ⊗ R
4)). Define

C+
12 = (C+

1 ⊗ C+
2 ) (12)

which is a pseudo-inverse of C12 since

C+
12C12 = (C+

1 ⊗C+
2 ) (C1 ⊗C2) = (C+

1 C1) ⊗ (C+
2 C2) = P1 ⊗P2 = P12, (13)

where P12 is a projection operator onto N⊥
12.

Next, we define

G12 = intersection of N⊥
12 and X⊥

12 (14)

or, equivalently,

G12 = orthogonal complement of span(N12, X12). (15)

It was said above that dim(N12) = 7 and since X12 is the space of symmetric
second order tensors on R

4, we have dim(X12) = 10. However, nk ⊗ nk for
k = 1, 2 lie in both of these two spaces, which otherwise are linearly independent.
Consequently, dim(G12) = 16 − (7 + 10 − 2) = 1.

G12 contains generating tensors for a two-view epipolar constraint. Since G12

is 1-dimensional it is characterized by any non-zero element of this space. Let
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p1 and p2 be the dual homogeneous representations of two distinct 3D planes
which both includes the two focal points n1 and n2. This implies that

G12 = p1 ⊗ p2 − p2 ⊗ p1 (16)

is an element of N⊥
12. This G12 is a representation of the line which passes

through both n1 and n2 in dual Plücker coordinates. Finally, it is also the case
that G12 ∈ X⊥

12 since GT
12(x⊗x) = 0 for any x. This implies that G12 is spanned

by G12 in (16), and that a two-view epipolar constraint F is given by

F = (C+
12)

T (p1 ⊗ p2 − p2 ⊗ p1). (17)

The fact that this F constitutes a matching constraints follows (8).

4 Point Matching Constraint in Three Views

Let x be a 3D point and consider its projection onto the three camera views
which we assume have distinct focal points:

y1 ∼ C1 x, y2 ∼ C2 x, y3 ∼ C3 x (18)

By means of the three-view joint camera matrix

C123 = C1 ⊗ C2 ⊗ C2 (19)

a three-view joint image coordinate Y123 can be defined as

Y123 = y1 ⊗ y2 ⊗ y3 ∼ (C1 x) ⊗ (C2 x) ⊗ (C3 x) =
= (C1 ⊗ C2 ⊗ C3) (x ⊗ x ⊗ x) = C123 (x ⊗ x ⊗ x) = C123 X123 (20)

where X123 = x⊗x⊗x. Let X123 denote the linear span of X123 for all possible x.
C123 has a 37-dimensional null space N123 which, in turn, has a 27-dimensional
orthogonal complement N⊥

123 = N⊥
1 ⊗N⊥

2 ⊗N⊥
3 (37+27 = 64 = dim(R4 ⊗ R

4 ⊗
R

4)). The joint camera mapping C123 has a pseudo-inverse:

C+
123 = C+

1 ⊗ C+
2 ⊗ C+

3 (21)

which properties generalizes from (13) so that

P123 = C+
123C123 = P1 ⊗ P2 ⊗ P3 (22)

is a projection operator onto N⊥
123.

We now define the space of generating tensors G123 as

G123 = intersection of N⊥
123 and X⊥

123, or, equivalently,
G123 = orthogonal complement of span(N123, X123). (23)

We know that dim(N123) = 37 and since X123 is the space of completely sym-
metric third order tensors on R

4, we have dim(X123) = 20. However, nk⊗nk⊗nk
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for k = 1, 2, 3 lies in both of these two spaces, which otherwise are linearly inde-
pendent, implying that dim(G123) = 64 − (37 + 20 − 3) = 10. Next, we describe
a basis of G123.

Apart from being distinct, here we consider the case that the focal points
are also not co-linear. This implies that there is a unique 3D plane p00 which
includes all focal points. Furthermore, we can also choose three arbitrary planes,
p12,p23,p31, each of which is distinct from p00 and also includes two of the focal
points:

pij includes focal points ni and nj for ij = 12 or 23 or 31. (24)

This amounts to four distinct 3D planes which are represented by four linearly
independent vectors p00, p12, p23 and p31. Given these planes, the following
relations are at hand

P1 p00 = P2 p00 = P3 p00 = p00

Pi pij = Pj pij = pij (25)

Define the 10 linearly independent tensors

G123,1 = p00 ⊗ p12 ⊗ p00 − p12 ⊗ p00 ⊗ p00

G123,2 = p00 ⊗ p12 ⊗ p23 − p12 ⊗ p00 ⊗ p23

G123,3 = p00 ⊗ p12 ⊗ p31 − p12 ⊗ p00 ⊗ p31

G123,4 = p00 ⊗ p00 ⊗ p23 − p00 ⊗ p23 ⊗ p00

G123,5 = p12 ⊗ p00 ⊗ p23 − p12 ⊗ p23 ⊗ p00

G123,6 = p31 ⊗ p00 ⊗ p23 − p31 ⊗ p23 ⊗ p00

G123,7 = p00 ⊗ p00 ⊗ p31 − p31 ⊗ p00 ⊗ p00

G123,8 = p00 ⊗ p12 ⊗ p31 − p31 ⊗ p12 ⊗ p00

G123,9 = p00 ⊗ p23 ⊗ p31 − p31 ⊗ p23 ⊗ p00

G123,10 = p12 ⊗ p23 ⊗ p31 − p31 ⊗ p12 ⊗ p23 (26)

Given Equations (22) and (25), it follows directly that

P123 G123,k = (P1 ⊗ P2 ⊗ P3) G123,k = G123,k (27)

which means that G123,k ∈ N⊥
123 for k = 1, . . . , 10. Also, each G123,k is defined

such that
(x ⊗ x ⊗ x) · G123,k = 0 (28)

for any x ∈ R
4, i.e., G123,k ∈ X⊥

123 and, consequently, G123,k ∈ G123, k =
1, . . . , 10. All G123,k are linearly independent which follows from the linear in-
dependence of p00,p12,p23,p31. Consequently, G123,k, k = 1, . . . , 10 is a basis of
G123 and

T̃k = (C+
123)

T G123,k, k = 1, . . . , 10 (29)

is a set of 10 linearly independent constraints, as proved by (8).
The case of co-linear focal points is not discussed here, but leads to the same

conclusion; the space G is 10-dimensional and it is possible to construct a basis
for G which, due to the co-linearity, is different from what is shown in (26).
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5 How F and T̃k Are Related

In this section we will investigate how the 10-dimensional space of point matching
constraints for the three-view case is related to the three fundamental matrices
which correspond to the three cameras.

The constraint generator G123,1 can be rewritten as

G123,1 = p00 ⊗p12 ⊗p00 −p12 ⊗p00 ⊗p00 = (p00 ⊗p12 −p12 ⊗p00)⊗p00. (30)

This means that the constraint T̃1 is given by

T̃1 = (C+
123)

T G123,1 = (C+
12 ⊗ C+

3 )T (p00 ⊗ p12 − p12 ⊗ p00) ⊗ p00 = (31)

= ((C+
12)

T (p00 ⊗ p12 − p12 ⊗ p00)) ⊗ (C+
3 ⊗ p00). (32)

Since p00 and p12 are distinct and include the focal points n1 and n2 it follows
from Section 3 that p00 ⊗p12 −p12 ⊗p00 is a generator of F12, the fundamental
matrix related to images 1 and 2:

T̃1 = F12 ⊗ (C+
3 p00) (33)

This discussion can be applied to all generators G123,k and corresponding con-
straints T̃k for k = 1, . . . , 9. The results is that all these 9 matching constraints
in three views are directly related to matching constraints in two views. They
are produced as the tensor product between a fundamental matrix and some
vector in R

3, e.g., the vectors of an ON-basis.
The remaining matching constraint, T̃10, which is generated by the generator

G123,10, can also be derived from the fundamental matrices although not in the
same straight-forward manner. To do this, however, we must assume that the
camera focal points are not co-linear and that the fundamental matrices are
compatible, i.e., that they satisfy

eT
13 F12 e23 = eT

21 F23 e31 = eT
32 F31 e12 = 0 (34)

relative to the epipoles eij [4]. These conditions are sufficient for assuring that
the following transfer operations of points and lines are consistent over several
transfers. In the ideal case they are always valid, but may not be so if the
fundamental matrices have been estimated from noisy data.

The three planes p12,p23,p31 defined in (24) are epipolar planes. This means
that

l12 = (C+
1 )T p12, l23 = (C+

2 )T p23, l31 = (C+
3 )T p31 (35)

are epipolar lines relative to the epipoles e12, e23, e31, respectively. In the same
way,

l21 = (C+
2 )T p12, l32 = (C+

3 )T p23, l13 = (C+
1 )T p31 (36)

are epipolar lines relative to the epipoles e21, e32, e13, respectively. The last three
epipolar lines can also be given by transferring of the first lines:

l21 ∼ FT
12[e12]×l12, l32 ∼ FT

23[e23]×l23, l13 ∼ FT
31[e31]×l31, . (37)
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Now we can insert all these relations into the expressions for T̃10 given by Equa-
tions (26) and (29). This gives

T̃10 = (C+
123)

T (p12 ⊗ p23 ⊗ p31 − p31 ⊗ p12 ⊗ p23) =

= (C+
1 )T p12 ⊗ (C+

2 )T p23 ⊗ (C+
3 )T p31−

− (C+
1 )T p31 ⊗ (C+

2 )T p12 ⊗ (C+
3 )T p23 =

= l12 ⊗ l23 ⊗ l31 − l13 ⊗ l21 ⊗ l32 =

= l12 ⊗ l23 ⊗ l31 − α FT
31[e31]×l31 ⊗ FT

12[e12]×l12 ⊗ FT
23[e23]×l23 (38)

where α is a constant to be determined. This can, for example, be done by
choosing two arbitrary matching points y1 and y2 in views 1 and 2, respectively,
i.e., points which satisfy the epipolar constraint yT

1 F12 y2 = 0. These points
uniquely determine a point y3 in the third view:

y3 = (FT
12y1) × (FT

23y2). (39)

Now we have matching points in all three views and they must satisfy the epipo-
lar constraint (y1 ⊗ y2 ⊗ y3) · T̃10 = 0. From this constraint, α can be found by
solving a linear equation assuming that none of the points are lying on one of
the epipolar lines.

In the case that all the above mentioned assumptions are valid, this α is
uniquely determined regardless of how the matching points are found. By making
different choices of the epipolar lines l12, l23, l31 the result is different instances of
T̃10, parameterized by the 3D point x0 where the three epipolar planes cross. All
these instances are linearly independent of T̃1, . . . , T̃9 and together with these
9 constraints, they span the same 10-dimensional constraint space independent
of x0.

In a practical situation, where the fundamental matrices are determined from
noisy data, the matrices may not be compatible unless this condition is taken
into account during their estimation. In the case of incompatible matrices, the
estimation of T̃10 as well as the resulting space of constraints are more ambigu-
ous. This implies that compatibility of the fundamental matrices is important if
the three-view point matching constraints are determined from estimated funda-
mental matrices. Alternatively, in most practical situations it should be sufficient
with the 9 point matching constraints which can be directly derived from the
fundamental matrices and the final constraint dimension can be disregarded.

6 Summary

This paper has presented a novel approach to the derivation of matching con-
straints (Section 2) which only requires a basic understanding of tensor algebra;
inner and outer products, and basic linear algebra; null spaces and intersection
of vector spaces. When applied to point matching constraints in two and three
views it shows that there are 10 linearly independent constraints in the three-
view case, Section 4. In Section 5 it was shown that, in the case that the camera
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focal points are not co-linear, 9 of these 10 constraints can be obtained by a
simple linear transformation from the three fundamental matrices. The 10-th
constraint can also be produced from the fundamental matrices, but in a more
complicated way and can in most cases be assumed to be redundant.

A practical side of this result is that, in the non-co-linear case for three views,
if the corresponding fundamental matrices already are given (or estimated), 9
of the 10 three-view constraints can be obtained directly by means of simple
linear transformations of the fundamental matrices. This operation has a much
lower computational complexity than computing the canonical camera matrices
from the fundamental matrices, computing the trifocal tensors from the camera
matrices and transforming the trifocal tensors to point matching constraints.
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Abstract. This paper presents a novel multi-view camera system that
produces real-time single view scene video which sees through the static
objects to observe the dynamic objects. The system employs a training
phase to recover the correspondences and occlusions between the views
to determine the image positions where seeing through would be nec-
essary. During the runtime phase, each dynamic object is detected and
automatically registered between the views. The registered objects are
learned using an appearance based method and they are later used to
superimpose the occluded dynamic objects on the desired view. The oc-
clusion detection is done using a very efficient and effective method. The
system is very practical and can be used in real life applications including
video surveillance, communication, activity analysis, and entertainment.
We validated the system by running various tests in office and outdoor
environments.

1 Introduction

The video produced by a camera with a 2D sensor array, i.e., the 2D video of
a scene, is not sufficient to represent all the dynamic information about the 3D
world. Yet, using 2D videos of real scenes to obtain dynamic real world infor-
mation is very common in Computer Vision research and everyday life because
of the wide availability and low cost of 2D cameras. One partial solution to the
insufficiency of 2D videos is to use a multi-camera system to gather more than
one 2D video of the scene from different angles. However, this solution intro-
duces new problems such as occlusion analysis and it also makes the system
more complex in terms of automatic or manual processing. To handle this com-
plexity, it is desirable to produce a single “occlusion-free” 2D video of the scene
using the images from a multi camera system. In order to establish a see through
effect, the occluded dynamic objects of the scene would be clearly superimposed
on the static scene objects that cause the occlusions. Such a system would be
very useful both for automated and manual processing. For example, there are

F.A. Hamprecht, C. Schnörr, and B. Jähne (Eds.): DAGM 2007, LNCS 4713, pp. 62–71, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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monocular object tracking systems for which occlusion is a serious problem. The
blob based method of Haritaoglu et al. [3] uses a monocular method for the
surveillance of people. Since it uses only 2D images from a single view, it relies
on the detection of the blob merging for the occlusion detection. These types of
tracking systems would benefit from our monocular “occlusion-free” scene im-
ages where the occluded humans are already marked clearly. Similar monocular
object tracking methods include techniques that use object contours for occlu-
sion detection, e.g. [5], and techniques that use depth ordering for the occlusion
detection, e.g. [9]. An “occlusion-free” scene image would also be very useful
for direct human interaction for entertainment, for communication, and also for
manual video surveillance. For example, if we consider a security personnel of a
department store, it might cause fatigue or some critical delays to switch between
views of the store security cameras continuously. Using a single “occlusion-free”
view to eliminate switching between views might be a better alternative for the
manual activity tracking.

B

(b)

B

A
Main

camera

Helper

camera

A
B

(c)

A’ B

(d)

(a)

Fig. 1. (a) A scene containing a wall and a dynamic sphere. (b) View of the scene from
main camera. (c) View of the scene from second camera. (d) “Occlusion-free” view of
the scene for the main camera view.

In this paper, we present a novel system that uses a multi-camera setup to
gather information about a scene and produce an “occlusion-free” view of the
scene where the dynamic occluded objects are clearly marked (see Figure 1).
The system is very efficient and it can work in real time on a general purpose
home computer. The presented system includes an off-line training about the
scene that will recover all the occluded regions. After the training, the system
can work in real time to produce a 2D “occlusion-free” video of the scene from
the point of view of one of the cameras.



64 A. Yildiz and Y.S. Akgul

There are systems in the literature addressing the occlusion problems with
the multi-view camera setups. One category of such systems [8,4] uses the tech-
nique called synthetic aperture focusing, which requires about 100 cameras to
simulate a very large physical aperture. Since large apertures receive light rays
from many directions, it is possible to eliminate small occlusions and create new
“see through” images. Our system is fundamentally different from these systems
because we use only a few cameras instead of hundreds. Even though our system
requires an off-line training about the scene, it is efficient enough to work in real
time after the training. Finally, we do not place any restrictions on the occlusion
size.

The rest of this paper is organized as follows: The detailed description of the
proposed system is provided in Section 2. We provide the experimental results
of the system in Section 3. Finally, we include a discussion about system usage
possibilities, system limitations, and concluding remarks in Section 4.

2 “Occlusion-Free” Video Generation

Our approach in producing “occlusion-free” videos is based on using one or more
helper cameras (i) to detect if a dynamic scene element is occluded on the main
view, and (ii) to use the previously learned appearance of the occluded dynamic
object image to superimpose on the main view. This means that the “occlusion-
free” video will be produced from the viewing angle of the main camera. There
are three basic assumptions of the system about the real world: (i) all the dy-
namic objects are always in contact with a 3D plane Π such as the ground,
(ii) the static objects of the scene are stationary and the occlusions are always
caused by the stationary objects, (iii) and the camera image planes have one of
their axes roughly parallel to the plane Π . Although these assumptions might be
seen as limitations of the system, they hold for a very wide range of real world
applications because the scene elements that cause the occlusions are usually
stationary, such as the walls of aisles in department stores, vertical columns in
buildings, or heavy furniture in office environments. In addition, almost all work
environments have planar grounds and the cameras can always be positioned
with their X axes parallel to the ground.

The proposed system has two phases: training time and run time. The training
is responsible for recovering the occluded image regions between the views. It
also finds a perspective transform Mij between the plane Πi of helper camera i
and the plane Πj of the main camera j.

The direct way to perform the training of the scenes is to recover the 3D
structure first using calibrated cameras. The recovered 3D structure would pro-
duce the occluded image regions and the perspective transforms. However, this
approach is very difficult to implement in real life because establishing correspon-
dences between two cameras with very different view points is not a trivial task.
There are techniques in the literature that recover the occluded image regions
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directly such as the work of Zitnick and Kanade [10], but such techniques are
not very helpful in our case because we need to find the image regions between
views that correspond to occluded areas.

We developed a structured light solution for a more practical recovery of the
occluded regions and their corresponding matches in the other views. Although,
the structured light solution works very well indoors, for outdoor applications
we need to switch to a laser scanner solution or the occlusion detection needs to
be done manually.

2.1 Finding Occluded Areas Using Structured Light

Structured light has been used extensively to establish correspondences between
camera pairs or between camera-projector pairs. One class of structured light
methods, e.g. [2], uses color coding to project patterns on the scene, and the
projected color patterns are used to find correspondences. These types of systems
assume that the scene does not change the colors of the projected patterns. The
other type of structured light systems project different patterns over time on the
same scene under the assumption that the scene stays stationary. Gray codes [1]
are one of the most popular among these methods and we employ an adaptation
because our training stage is stationary and these methods are more robust
against different types of objects in the scene. Our structured light method is
similar to Scharstein and Szeliski [7]. The main difference of our work is that
we use coded maps to resolve occlusion matches because our camera angles are
very different compared to the stereo cameras used in [7]. Figure 2 (a-d) shows
the result of this process for a scene with two occlusions (showing only low-order
unique code bits).

(a) (b)

(e)

(c) (d)

Fig. 2. (a) Main view of the scene with two occlusions. (b) Helper view of the scene.
(c) low order u codes for the main view. (d) low order u codes for helper view. (e)
Occluded areas found on the helper view.
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Finding the occluded areas and their matches in the other images is the major
task of the training phase. Although it is not required for a general solution, our
occlusion detection method becomes very practical and robust if the structured
light source is placed very close to the main view camera position with a roughly
similar orientation. By using the unique codes, we find the occluded areas and
the shadows which are the image regions where the unique codes cannot be found
due to the occlusions. To find the occluded areas on the helper views, we find
the shadow area Om

i on unique code-map of each helper view i. We fit a convex
hull for each Om

i as shown in Figure 2-e to a scene with two occluded regions.
We also use a minimum threshold value on the area of the regions so that we do
not match shadows due to noise and other effects. If more than one projector is
used, the structured light sources can be placed at other positions in the scene.

The last step of the training process is to find the perspective transformation
between the views so that at runtime we can process the data that comes from
the other views.

2.2 Perspective Transform Between Views

We need to define the mathematical relationship between views so that during
the runtime if an occlusion of a dynamic object is detected, the information
about that object can be taken from the other views. A perspective transform
is sufficient to explain this relationship because our system assumes that all
objects are in contact with the ground plane as explained in Section 2. Once the
perspective transform between the images of the planes on two different views is
estimated, the position of the dynamic occluded object on the main view can be
estimated using the position of the object in the other views. We can estimate
the perspective transform between the views using at least four corresponding
points on the images of the plane. Note that it is trivial to automatically pick
unique codes that belong to the plane by choosing points near the occluded
regions. If there is no structural light available as in outdoor scenes, it is also a
very convenient task to pick these points manually because this process will be
done only once during the training time.

To find the perspective transform Mij from view i to view j, we use

[wx wy w]Tj = Mij [x y 1]Ti , (1)

where [x/w y/w]j is a point from main view j and [x y]i is the correspond-
ing point from helper view i. One can select more than four correspondences
and solve the overdetermined linear system using least-squares to calculate the
perspective matrices for a more robust solution.

2.3 Run-Time

During the run time, the system performs a two step algorithm for each frame
from all helper views. The first step is to find blobs and decide whether blobs
are inside any occluded area. The second step is to decide what to do with the
blob.
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First, the blob Bk
i that belongs to the dynamic object k is found on the helper

view i, which can be done by subtracting the estimated background image from
the current frame of the view i. Due to the system assumption of the planar
environments, the dynamic object k has to intersect the ground plane Πi at
least in one 3D position. The projection of this position on the helper view i,
which is called the ground touching point(gtp), pk

i , can be found easily: it is the
pixel within the object blob Bk

i with the highest y value, assuming the coordinate
center is on the upper left corner of the frame. It is guaranteed that pk

i ∈ Πi

and pk
i ∈ Bk

i , so if the position of this pixel is transformed using the perspective
transformation matrix between the helper view i and the main view, we can
obtain the corresponding point on the main view. The corresponding main view
point is calculated with the equation

pk
j = Mijp

k
i , (2)

where pk
i is gtp of the blob Bk

i on view i, and pk
j is the corresponding point on

view j, which is chosen to be the main view. Note that at this time, for a given
pixel r ∈ Bk

i , the system knows if it is occluded by checking if r ∈ Om
i for all m

as explained in Section 2.1.
As mentioned before, having all the occluded regions Om

i at hand is not nec-
essary. The perspective transformation will help to check if a blob is occluded or
not. Once a blob Bk

i is found on the helper view i, its gtp pk
i can be transformed

to the main view to check if there is any blob standing where the transformed
gtp points on the main view. If there is, then it is decided that the blob Bk

i

is not occluded, otherwise it is occluded. This also makes it possible to adapt
the system to changing occlusions and to changing backgrounds. To keep the
things simple and to gain speed on computation, in our current experiments the
occluded areas are found in the training phase.

The second step is to decide what to do with the blob Bk
i and will work

differently for the occluded and non-occluded blobs. Let us first consider that
object k is not standing on the occluded area, i.e. pk

i /∈ Om
i for any m. This

means that the object k is visible from both the view i and the main view j.
The system will now memorize both appearances Bk

i and Bk
j of the object k

as a pair. Later this memory of appearances will be used to estimate the main
view appearance of an occluded blob. To memorize, first, the system finds the
corresponding object (if there is any) on the main view. It is sufficient to search
the neighborhood of the point pk

j (Equation 2) on the main view to find the
corresponding blob Bk

j . If there is such a blob, then Bk
i and Bk

j are registered
as a pair

(
Bk

j , Bk
i

)
t
for the time frame t, resizing all blobs into a fixed bounding

box. Note that, if we have more than one helper camera and if the same blob is
visible from more than one helper view, then the above pair becomes an ordered
set. Note also that this process is actually a simple appearance based object
recognition learning technique.

Let us consider the other case where object k on the helper view i is on
the occluded area, i.e. ∃ Om

i and pk
i ∈ Om

i . It is obvious that there would be no
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matching blob on the main view at the corresponding position shown by the
transformation (Equation 2). However, this position is very important because
it marks the image region where the object k would have been shown if there
were no occlusions. This means that if we had the appearance of the occluded
dynamic object k from the main camera angle, we could have superimposed it
at this location. Unfortunately, we do not have the occluded object image from
the main camera view at this time instant because the object is only visible from
the helper camera(s) and it is occluded for the main camera. However, it is very
likely that the main camera has seen the dynamic object k many times while it
was not occluded, which means that the system has a number of image pairs for
this object in the memory. Therefore, making a search on the image pairs in the
memory would retrieve this image. An optimization with the formula

min S(Bk
i , Bi(t, l)), (3)

performs this search to produce the image pair whose first component includes
the image that we need to superimpose on the main view. S(Bi, Bj) is a function
that takes two blob images and returns a similarity value. Bi(t, l) iterates over
the second component of the blob pair

(
Bl

j , B
l
i

)
t

for all blob pairs of view i, all
frames t, and all blobs l. If the result from Formula 3 is lower than a threshold
value, then the system does not have the image of the occluded object from the
main camera view. In this case, the image to be painted on the main view can
be chosen as the image of Bk

i . In other words, the blob detected on the helper
view can directly be drawn on the main view at the position where the object
would be standing. The direct application of the above method causes blinks in
the generated video because the consecutively superimposed images might not
be continuous. A considerable improvement for this approach is implemented
in our system: it is known that moving objects like humans make periodical
and continuous movements. Therefore, when the system does not have the im-
age of the occluded object from the main camera view, the consequent main
camera view appearances for the last match could be used for superimposing
for most of the cases. In other words, given two image sequences starting with
similar frames, we expect that these sequences will include similar images for
the next few frames. In our experiments, 5 to 10 consequent frames are superim-
posed from the same sequence if we cannot find any matches. If the system still
cannot find a suitable match, the helper view blob Bk

i itself is painted on the
main view.

The activity detection and runtime module has to be very efficient because
our system needs to process frames in real time. As a result, the blob storage
and retrieval functions cannot be very complex. So, we used a basic Sum of
Squared Differences (SSD) approach to implement the function S of Formula 3
due to its efficiency, as the registered pairs are at fixed size. Since the system
has the blobs (masks) and appearances, only the pixels within the intersection
of silhouettes of appearances are taken into SSD computation. Other alternatives
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for this effective appearance based approach would include employing a full scale
object recognition module which would hurt the performance of the system in
terms of running times.

3 Experiments

We tested our system both for experimental office environments and for more
challenging outdoor environments. The office setup uses two CCD cameras and
an ordinary projector to project patterns onto the scene. For the outdoor setup,
however, we entered the plane Π correspondences and the occluded region Om

i

parameters manually because ordinary projectors are not very effective outdoors.
Using a field laser scanner would achieve the same task if automatization is
needed as in [6]. Figure 3 and Figure 4 shows some selected frames from the
output of the experiments.

Main Camera Helper Camera

Fig. 3. Indoor experiment: A stapler object is pulled by a string behind an occlusion

Visual inspection of the results indicates that the system works very well for
the more controlled office environments. All the occluded frames are handled
very nicely and the occluded object positions are superimposed at the correct
positions. The system also performs favorably for the outdoor experiments but
there are some improvements that need to be made. Most of the problems with
the outdoor experiments actually come from the blob detection phase which has
to be very fast. If the blobs are detected correctly, then the rest of the system
works very well. We observed that Formula 3 returns an acceptable appearance
to be superimposed on the main camera view for most of the frames. We also
observed that the system can process more than 15 frames per second for almost
all the experiments on a regular computer.
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Main Camera Helper Camera

Fig. 4. Outdoor experiment: A person passing behind an occlusion
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4 Discussion and Conclusions

We presented a multi-view camera system that produces real-time “occlusion-
free” videos of scenes with stationary occlusions. The system is applicable in
many practical tasks, such as in automated and manual video surveillance, en-
tertainment, and human activity analysis. The system has several components
each of which is optimized for speed because of the real time requirements.

We are working on several system improvements. The system currently uses
a simple activity detection algorithm, which can be improved to include any
gradual changes in the scene. It is also possible to handle changes in the static
environments by double checking if a detected blob has a corresponding blob
on the main view instead of an occlusion. Such an improvement is feasible and
it can easily lead to the elimination of the training phase. It is also possible to
improve the appearance based blob recognizer module of the system by utilizing
a more sophisticated and efficient storage and retrieval system.

Overall, we are very encouraged with the current results and we think that
this system will find many real world applications with great success.
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Abstract. This contribution presents a novel approach to the challeng-
ing problem of model selection in motion estimation from sequences of
images. New light is cast on parametric models of local optical flow.
These models give rise to parameter estimation problems with highly
correlated errors in variables (EIV). Regression is hence performed by
equilibrated total least squares. The authors suggest to adaptively select
motion models by testing local empirical regression residuals to be in ac-
cordance with the probability distribution that is theoretically predicted
by the EIV model. Motion estimation with residual-based model selec-
tion is examined on artificial sequences designed to test specifically for
the properties of the model selection process. These simulations indicate
a good performance in the exclusion of inappropriate models and yield
promising results in model complexity control.

1 Introduction and Related Work

In their well-known contribution [1], Black and Jepson propose to estimate op-
tical flow independently for segmented spatiotemporal regions. Parameters of
optical flow models are hence allowed to depend on non-trivial subsets of the
spatiotemporal volume. The exploitation of the full potential of this approach
involves the three challenging problems of motion segmentation, noise estima-
tion and motion model selection. These problems are connected by the fact
that violations of suitable models that exceed the scale of noise indicate seg-
ment borders. Gheissari et al. [2] comprehensively discuss this interrelation and
demonstrate how local optical flow estimation, motion segmentation and motion
model selection can be incorporated into an unsupervised motion segmentation
framework. This paper focuses on the selection of suitable parametric optical
flow models. While a simple model fails to approximate data of higher intrinsic
complexity under low noise conditions, a complex model is prone to over-fitting
in the presence of noise. Various information criteria have been proposed that
penalize model complexity in order to avoid over-fitting. Among the most pop-
ular are Akaike’s Information Criterion [3] as well as the Bayesian Information
Criterion [4]. In the context of motion estimation, the model selection problem
has been discussed by Wechsler et al. [5] as well as by Gheissari et al. [2]. How-
ever, “[. . . ] none of the existing model selection criteria is capable of reliably
identifying the true underlying model [. . . ]. The main reason is that the available
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information theoretic model selection criteria are based on the assumptions that
noise is very small and the data size is large enough” [2]. Hence, Gheissari et al.
suggest to consider the constraint surfaces of parametric models as thin plates
and to penalize the strain energy of these plates according to a physical model.
They show a successful application of this surface selection criterion (SSC) in
a motion segmentation framework. As the SSC incorporates only second order
derivatives of the model surfaces, it cannot be used to distinguish different lin-
ear models. Moreover, if information on the distribution of noise is available
from camera calibration measurements or noise estimation, probabilistic model
selection criteria that incorporate this information should be employed. This pa-
per is intended to fill the gap between information theoretic penalization and
heuristic surface modeling. Following the general idea of Cootes et al. [6], we
suggest to assess parametric optical flow models by measuring the discrepancy
between the empirical distribution of regression residuals and the probability
density function (PDF) predicted from theory. This paper is organized as fol-
lows. In the next section, we formalize the concept of local optical flow to cast
new light on the interrelation of optical flow estimation, motion segmentation
and motion model selection. In terms of local optical flow, we then outline in
section 3 the specifics of parameter estimation with respect to motion model se-
lection. This includes equilibrated total least squares (ETLS) estimation under
a suitably defined Errors-in-Variables (EIV) model. In section 4, the probabil-
ity distribution of regression residuals is derived from the EIV model. Section
5 deals with simulations conducted to test the proposed model selector for its
specific properties. We applied this method to artificial sequences featuring gray
value structure on multiple scales. Real world video data as well as standard
benchmark sequences such as the Yosemite sequence are not suitable to test for
the specifics of model selection as the model selector has no intrinsic capability
of overcoming the aperture problem.

2 Local Optical Flow

We formalize the concept of local optical flow in order to strengthen the in-
terrelation of optical flow estimation, motion segmentation and motion model
selection. If nx, ny, nt, nc ∈ IN, P = {1, . . . , nx} × {1, . . . , ny} × {1, . . . , nt} and
C = {0, . . . , nc} then, the mapping g : P → C shall be referred to as an ir-
radiance signal. Moreover, any mapping g : IR3 → IR shall be termed an ideal
irradiance signal. Herein, for x ∈ P , g(x, y, t) may represent the mean irradi-
ance onto the pixel indicated by (x, y) over the time interval indicated by t as
measured with the finite intensity range and resolution given by C [7].

Definition 1 (Optical Flow). Let g : IR3 → IR be an ideal irradiance signal
such that the first partial derivatives of g exist and let (u, v)T : IR3 → IR2. Then,
(u, v)T shall be referred to as a field of optical flow precisely if

∂tg + u∂xg + v∂yg = 0 (1)

holds, which is is the well-known brightness change constraint equation (BCCE).
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Definition 2 (Local Optical Flow). Let g : IR3 → IR be an ideal irradiance
signal such that the first partial derivatives of g exist and let (u, v)T : IR3×IR3 →
IR2. Moreover, let ω : IR3 × IR3 → IR+

0 such that ∀x ∈ IR3 : ω(x, x) > 0. Then,
(u, v)T shall be referred to as a field of local optical flow with respect to ω
precisely if

∀x, x′ ∈ IR3 : ω(x, x′)(∂tg(x′) + u(x, x′)∂xg(x′) + v(x, x′)∂yg(x′)) = 0 . (2)

The mapping ω shall then be referred to as an aperture function and, for all
x ∈ IR3, the set Uω(x) := {x′ ∈ IR3|ω(x, x′) > 0} shall be termed the motion
neighborhood of x. In this paper, we refer to (2) as the local brightness change
constraint equation (LBCCE).

(Local) optical flow is often considered in conjunction with parametric models
of u and v of which the parameters are estimated such that (1) and (2), respec-
tively hold approximately. A way of looking at the definition of local optical
flow is the following: Fix an x ∈ IR3. Now, the estimation of (u, v)T from the
LBCCE for x is indeed the estimation of optical flow (u′, v′)T : IR3 → IR2 at
this pixel on the data Uω(x) namely, ∀x′ ∈ IR3 : u′(x′) = u(x, x′) ∧ v′(x′) =
v(x, x′). Moreover, local optical flow (u, v)T : IR3 × IR3 → IR2 comprises opti-
cal flow (u′, v′)T : IR3 → IR2 as the special case in which it is assumed that
∀x, x′ ∈ IR3 : u(x, x′) = u′(x′) ∧ v(x, x′) = v′(x′) i.e., for all x′ ∈ IR3,
(u(x, x′), v(x, x′)) is independent of x. The generality of the LBCCE affords
that Uω(x) need not be, for instance, topologically connected and that, for
x1, x2 ∈ IR3 such that x1 �= x2, Uω(x1) and Uω(x2) need neither be disjoint
nor otherwise related. The aim in motion segmentation is to find a suitable
aperture function ω that partitions the preimage of the irradiance signal i.e.,
∀x1, x2 ∈ IR3 : Uω(x1) = Uω(x2) ∨ Uω(x1) ∩ Uω(x2) = ∅. In terms of local
optical flow, the classical approach by Lucas and Kanade [8], to estimate op-
tical flow for small identical spatiotemporal neighborhoods of each pixel, is to
consider, for a given extension ds, dt ∈ IR+

0 of these neighborhoods, the aper-
ture function ω such that ∀(x, y, t)T , (x′, y′, t′)T ∈ IR3: ω((x, y, t), (x′, y′, t′)) =
Θ(ds − |x′ − x|)Θ(ds − |y′ − y|)Θ(dt − |t′ − t|) (with Θ denoting the Heaviside
step function). Black and Jepson [1] investigate several parametric models of
local optical flow, among these the local planarity assumption.

Definition 3 (Local Planarity (LPL)). Let (u, v)T : IR3 × IR3 → IR2 and
ω : IR3 × IR3 → IR+

0 . Then, (u, v)T shall be called locally planar with respect to
ω precisely if ∃p1, . . . , p8 : IR3 → IR ∀(x, y, t)T = x ∈ IR3 ∀(x′, y′, t′)T = x′ ∈
Uω(x):

(
u(x, x′)
v(x, x′)

)
=

(
p1(x)
p2(x)

)
+

(
p3(x) p4(x)
p5(x) p6(x)

) (
x′ − x
y′ − y

)

+
(

(x′ − x)2 (x′ − x)(y′ − y)
(x′ − x)(y′ − y) (y′ − y)2

) (
p7(x)
p8(x)

)
. (3)

More restrictive models are obtained from LPL by imposing constraints on the
parameter functions such as those to be found in Table 1. Given the LPL model,
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Table 1. Parametric local optical flow models obtained from restrictions imposed on
LPL. k indicates the number of parameter functions.

Code k Description Restriction on LPL

LPL 8 Planar none
LAF 6 Affine p1 = p2 = 0
LDR 4 Divergence and Rotation p1 = p2 = 0, p3 = p6, p4 = −p5

LSS 4 Stretch and Shear p1 = p2 = 0, p3 = −p6, p4 = p5

LC 2 Constant p1 = p2 = p3 = p4 = p5 = p6 = 0

define ag : IR3 × IR3 → IR8, bg : IR3 × IR3 → IR and p : IR3 → IR8 such that
p := (p1, . . . , p8)T and ∀(x, y, t)T = x, (x′, y′, t′)T = x′ ∈ IR3:

ag(x, x′) := ω(x, x′)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂xg(x′)
∂yg(x′)

(x′ − x)∂xg(x′)
(y′ − y)∂xg(x′)
(x′ − x)∂yg(x′)
(y′ − y)∂yg(x′)

(x′ − x)2∂xg(x′) + (x′ − x)(y′ − y)∂yg(x′)
(x′ − x)(y′ − y)∂xg(x′) + (y′ − y)2∂yg(x′)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4)

bg(x, x′) := −ω(x, x′)∂tg(x′) . (5)

Then, the LBCCE shall be written as

∀x, x′ ∈ IR3 : aT
g (x, x′)p(x) = bg(x, x′) . (6)

Analogous definitions of ag, bg and p exist for the parametric models LAF, LDR,
LSS and LC. Optimized linear shift invariant (LSI) operators with finite impulse
response (FIR) [9] are used to compute derivatives of (non-ideal) irradiance
signals. The preimage of such a signal is finite and so is hence Uω(x) for all
x ∈ P 1. Finiteness allows to express (6) as a set of systems of equations.

Definition & Proposition 4 (LPL Data). Let g : P → C be an irradiance
signal, ω : P × P → IR+

0 such that ∀x ∈ P : ω(x, x) > 0. Let ∀x ∈ P : Uω(x) =
{x′ ∈ P |ω(x, x′) > 0}, m : P → IN and ∀x ∈ P : x′

1, . . . , x
′
m(x) such that

{x′
1, . . . , x

′
m(x)} = Uω(x). Moreover, consider ag and bg as defined in (4) and

(5), respectively. Then,

Ag(x) :=

⎡
⎣

aT
g (x, x′

1)
· · ·

aT
g (x, x′

m(x))

⎤
⎦ and bg(x) :=

⎡
⎣

bg(x, x′
1)

· · ·
bg(x, x′

m(x))

⎤
⎦ . (7)

1 Only pixels x ∈ P at suitable distance to the border of P such that the derivatives
can be computed for all x′ ∈ Uω(x) are considered.
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shall be termed the data matrix and data vector, respectively of the LPL model.
The LBCCE (6) is then equivalent to

∀x ∈ P : Ag(x)p(x) = bg(x) . (8)

3 Parameter Estimation

We assume gray values to be corrupted by additive noise. The additive EIV
model claims the existence of a true signal τ : P → C and, for all x ∈ P , a
random variable ε(x) (noise) such that

∀x ∈ P : g(x) = τ(x) + ε(x) . (9)

Through the use of LSI operators, derivatives are approximated by linear com-
binations of gray values. The overlap of FIR masks in the computation of these
derivatives at nearby pixels introduces correlation to the entries of Ag and bg. As
these entries are linear in the derivatives, they can be decomposed with respect
to (9) into

Ag(x) = Aτ (x) + Aε(x) and bg(x) = bτ (x) + bε(x) . (10)

In the EIV model, it is assumed that Aτ (x)p(x) = bτ (x) holds exactly as op-
posed to (8) which may be violated by the errors. As discussed comprehensively
by Van Huffel [10], total least squares (TLS) would be the unique (with proba-
bility one) maximum likelihood estimator of the parameters p(x) if the entries of
the matrix [Ag(x), bg(x)] stemmed from a multivariate normal distribution with
zero mean and covariance matrix σ21l. If these entries were known to be uncorre-
lated with zero mean and equal variance, TLS would still be a strongly consistent
estimator. But in the present case, mutual correlation is introduced by the over-
lapping FIR masks of derivative operators. The idea in equilibration is to derive
from the covariance matrices of the vectors vec([Ag(x), bg(x)]) (column-wise
vectorization of the matrix [Ag(x), bg(x)]) square equilibration matrices WL(x)
and WR(x) to estimate p̂(x) by TLS on the data WL(x)[Ag(x), bg(x)]WT

R (x)
instead of [Ag(x), bg(x)]. WT

R (x)p̂(x) is then taken as an estimate of the ini-
tial problem. Mühlich [11] derives properties of equilibration matrices from the
perturbation theory of eigenvectors and presents an algorithm to compute these
iteratively from the covariance matrices of the vectors vec([Ag(x), bg(x)]). If the
aperture function ω : P × P → IR+

0 depends, for all x, x′ ∈ P , only on the
difference x′ − x, there exist an m ∈ IN such that ∀x ∈ P : |Uω(x)| = m as well
as a common covariance matrix C ∈ IRm×(k+1) (k being the number of model
parameters) such that

∀x ∈ P : cov(vec([Ag(x), bg(x)])) = cov(vec([Aε(x), bε(x)])) = C . (11)

The equilibration matrices WL ∈ IRm×m and WR ∈ IR(k+1)×(k+1) are in this
case independent of x. Equilibration in the context of motion model selection is
discussed in detail in [12]. The effect of equilibration is illustrated in Figure 1.
It can be seen that the unequilibrated data is highly correlated as well as that
some correlation remains after equilibration.
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Fig. 1. LC (k = 2) local optical flow estimation from identical cuboidal 3×3×3 motion
neighborhoods (m = 27) is considered. Left: Identical covariance matrix C ∈ IR81×81 of
the vectors vec([Ag(x), bg(x)]), with structure owing to FIR masks. Middle: Covariance
matrix of vec(WL[Ag(x), bg(x)]W T

R ). Right: Unity matrix.

4 Residual Analysis

If the distribution of noise in the gray values is known, we propose to test regres-
sion residuals to be in accordance with the theoretically expected distribution.
Given ETLS estimates p̂ : P → IRk, the residuals are given by the mapping
r̂ : P → IRm such that

∀x ∈ P : r̂(x) := WL[Ag(x), bg(x)]WT
R

(
p̂(x)
−1

)
. (12)

In principle, the theoretical PDF of these residuals is determined by the joint
PDF of the entries of Ag(x) and bg(x). The latter is obtained from the EIV
model, the motion models, and the derivative operators. However, there is a
direct influence to the residual PDF by the factor [Ag(x), bg(x)] as well as an
indirect influence by the PDF of the estimates p̂(x). In the following, we assume
p̂ to be deterministic. Then, the residuals (12), expressed as

∀x ∈ P : r̂(x) =

((
p̂(x)
−1

)T

WR ⊗ WL

)

︸ ︷︷ ︸
=: R(x)

vec([Ag(x), bg(x)]) , (13)

are obtained from the deterministic linear mapping defined by the matrix R(x),
applied to the vector vec([Ag(x), bg(x)]) of which the covariance matrix (11) is
known. The covariance matrices of the residual vectors are therefore given by
Cr : P → IRm×m such that ∀x ∈ P : Cr(x) := cov(r̂(x)) = R(x)CRT (x). From
the Cholesky factorizations L : P → IRm×m such that LLT = Cr follows that
ŝ := L−1r̂ is decorrelated i.e.,

∀x ∈ P : cov(ŝ(x)) = 1lm , (14)
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while ∀x ∈ P : E(ŝ(x)) = L−1(x)R(x)E(vec([Ag(x), bg(x)])). From (10) follows
E(vec([Ag(x), bg(x)])) = vec([Aτ (x), bτ (x)])+E(vec([Aε(x), bε(x)])). Under the
assumption that the entries of [Aε(x), bε(x)] have zero mean, it follows

∀x ∈ P : E(ŝ(x)) = L−1(x)WL[Aτ (x), bτ (x)]WT
R

(
p̂(x)
−1

)
. (15)

In practice, it depends on the appropriateness of the parametric model as well
as on the empirical distribution of noise whether or not

[Aτ (x), bτ (x)]WT
R

(
p̂(x)
−1

)
= 0 (16)

holds, in which case it follows from (15) that

E(ŝ(x)) = 0. (17)

If, in addition, the noise in the gray values is i.i.d. according to a normal distri-
bution with known variance then, it follows from (14) and (17) that the entries
of the decorrelated residual vector ŝ(x) from ETLS estimation form a set of
independent standard normally distributed random variables. We therefore sug-
gest to adaptively test this set of residuals, for each pixel x ∈ P , to be standard
normally distributed. Deviations from the standard normal distribution are then
taken as indications of inappropriateness of the motion model. We have therefor
employed the Kolmogorov-Smirnov test, Pearson’s χ2 test, the Anderson-Darling
test as well as the absolute difference of the vectors of the first 2,3,4 and 5 non-
centered moments of the empirical and theoretical distribution.

5 Application and Results

In order to allow for motion estimation on real world video data or standard
benchmark sequences such as the Yosemite sequence, the model selector has to
be incorporated into a motion estimation framework that is capable of handling
the aperture problem. If the model selector was examined separately on real data,
the aperture problem as well as a possible incoherence of the true displacement
and optical flow due to changes in illumination would distract from properties of
the model selection process. Benchmark results from motion estimation frame-
works on the other hand include effects from all components, be it confidence
measures, motion segmentation or noise estimation techniques. Hence, in order
to specifically test for properties of the model selector, we generated a variety of
sequences from given two-dimensional displacement fields by warping of an ini-
tial frame. Gray value structure on multiple scales was introduced to this frame
in order to avoid the aperture problem. Zero mean Gaussian noise was added
to the sequences. In this special case, no framework is needed. A systematic
study of the discrepancy between the true displacement field and optical flow
estimates on this data can be trusted to indicate precisely the properties of the
model selection process. Results from model selection are shown in Figure 2 for
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Fig. 2. Model selection from 11x11x3 motion neighborhoods of simulated sequences
at 0.5% noise-to-signal amplitude ratio by comparison of 5 moments of the residual
distribution. a) displacement field of the types sequence, b) according model selection,
c) displacement field of the current sequence, d) according model selection.

a sequence featuring motion patterns of different parametric form (top) as well
as for a simulated continuous current (bottom). From the different shading in
Figure 2b, it can be seen that model selection is in accordance with the true dis-
placement field. Motion patterns are identified correctly. The incidental choice
of overly complex models is explained by the fact that a higher order model with
the additional parameters correctly estimated as zero cannot be distinguished
from the simpler model by means of residual analysis. The most complex model
is correctly selected at motion discontinuities. Apart from the identification of
motion patterns, an important application of model selection is to limit model
complexity with respect to noise. While a complex model is appropriate at low
noise levels model complexity has to be controlled with increasing noise in or-
der to avoid over-fitting. Figure 3 shows the effect of model selection on the
mean deviation of optical flow estimates from the true displacement field at
0.5%, 3% and 10% noise added to the continuous current sequence. The means
were taken over the entire sequence. Amplitude and direction of the deviation
were calculated together with the well-known angular error. Global choices of a
single model (left part of each bar graph) are compared to adaptive model selec-
tion per pixel. In the latter case, errors from different (the selected) models are
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Fig. 3. Mean errors of optical flow estimation from 9x9x3 motion neighborhoods of
a simulated continuous 2D current at different noise levels (top to bottom). Results
for the models LC (C), LSS (S), LRD (R), LAF (A) and LPL (P), as well as for the
adaptively selected models chosen by the KS test (k), the χ2 test (x), the AD test
(a) and the absolute difference of the vectors of the first 2,3,4 and 5 moments of the
empirical and the theoretical distribution.

cumulated in the mean. Regardless which of the models LC (C), LSS (S), LRD
(R), LAF (A) and LPL (P) is chosen globally, a situation exists in which the er-
ror is intolerably high compared to another model. This effect from global model
assumptions causes a problem in applications with complex motion patterns and
changing noise where a complex model, although needed to yield good estimates
at low noise, performs weak at increasing noise levels. Considering model selec-
tion by Pearson’s χ2 test (x) or the Anderson-Darling test (a) which are the
best performing model selectors, it can be seen from the top row of figure 3
that these adaptive estimators yield errors comparable to those obtained from
the best global choices. The reason is that the residual-based model selector
precisely excludes inappropriate models. At 3% and 10% noise, global model
choices exist which are favorable to adaptive model selection. Nevertheless, the
discrepancy is tolerable if the aim is to exclude the most complex models which
perform poorly in this case. Results in model complexity control hence prove to
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be useful for applications where noise as well as the complexity of the displace-
ment field vary. The slight limitation in model complexity control at high noise
is due to the idealization of parameter estimates to be deterministic. However,
this is not a principle drawback of residual analysis in motion model selection
and effects are tolerable.

6 Conclusion and Perspectives

We have demonstrated that statistical testing of regression residuals is a viable
approach to the model selection problem in motion estimation. The residual-
based model selector is capable of precisely excluding inappropriate models. Its
performance in model complexity control makes this model selector a particu-
larly useful tool for applications where noise as well as the complexity of the
displacement field vary. Slight limitations of the proposed method with tolerable
effects are due to the idealization of equilibrated total least squares estimates
to be deterministic. The incorporation of approximations to the distribution of
TLS estimates is a promising starting point for future research.
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Calibration of a Multi-camera Rig from

Non-overlapping Views
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Abstract. A simple, stable and generic approach for estimation of rel-
ative positions and orientations of multiple rigidly coupled cameras is
presented in this paper. The algorithm does not impose constraints on
the field of view of the cameras and works even in the extreme case when
the sequences from the different cameras are totally disjoint (i.e. when no
part of the scene is captured by more than one camera). The influence of
the rig motion on the existence of a unique solution is investigated and
degenerate rig motions are identified. Each camera captures an individ-
ual sequence which is afterwards processed by a structure and motion
(SAM) algorithm resulting in positions and orientations for each cam-
era. The unknown relative transformations between the rigidly coupled
cameras are estimated utilizing the rigidity constraint of the rig.

1 Introduction

Rigidly coupled cameras with non overlapping views appear in many scenar-
ios: In the automotive industry f.e. rear view cameras and blind spot cameras
gain popularity, sewer inspection systems equipped with two antipodal cam-
eras are commercial available and also in surveillance applications multiple non-
overlapping cameras are used. In many of these situations the relative position
of these cameras is of interest.

General methods estimating these rig parameters assume that the cameras
have overlapping views such that points lying in these views can be used to
register the positions of the cameras with each other [1,2]. This paper suggests
an approach for rig parameters estimation from non-overlapping views using
sequences of time-synchronous poses of each camera. Such poses can be ob-
tained from SAM algorithms on synchronously captured image sequences. The
presented approach works in three stages:

Internal camera calibration: First, the internal calibration of each camera
on the rig is computed using standard techniques [4]. The internal camera
calibration consists of the focal length, principal point, skew and lens distor-
tion parameters.

Pose estimation: Second, the external pose of each camera in the rig is com-
puted for each frame in arbitrary coordinate systems using SAM techniques
[5,1]. Note that without further knowledge the geometry can only be recon-
structed up to scale and hence the coordinate systems of the reconstructions
of the cameras are related by a similarity transform.

F.A. Hamprecht, C. Schnörr, and B. Jähne (Eds.): DAGM 2007, LNCS 4713, pp. 82–91, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Rig calibration: The scale of each coordinate system and the internal posi-
tions and orientations of the rigidly coupled cameras are estimated using
constraints between poses resulting from the previous stage. Nonlinear opti-
mization techniques can be used for refinement.

The paper is organized as follows: After reviewing previous work, the theoretic
foundation of the algorithm is explained. Degenerate cases are identified and
solutions for these cases are suggested. Finally experiments with synthetic and
real data are presented.

2 Previous Work

Sequence reconstruction algorithms profit from rigidly coupled cameras. Frahm
e.a. proposed a method for stabilizing 3D scene reconstruction by utilizing images
of a moving rig [3]. Broader views of the scene could be reconstructed by using
a multi-camera system. In order to perform such a task one has to determine
the relative transformations between the cameras of the rig in addition to the
intrinsic parameters of each camera (i.e. focal length and principal point). There
are many approaches registering the poses of a set of cameras with each other.
Most of these approaches, such as metric calibration of a stereo-rig [2], rely on an
overlapping field of view. An approach to align non-overlapping image sequences
has been made by Caspi and Irani [6] for the case of multi-camera systems
sharing the same projection center, but not for general multi camera system.
The task at hand is closely related to the field of hand-eye-estimation such as
[7] which faces a similar problem: The (fixed) relation between poses measured
in different coordinate frames, e.g. between a sensor mounted onto a robot’s
hand and the hand itself must be estimated. In a similar manner a multi-camera
system with cameras fixed in a rig can be interpreted as a hand-eye system where
a motion sensor is lacking but pose information can be retrieved from multiple
image sequences.

3 Theoretical Background

In the following, superscripts are used to identify a specific time and subscripts
are used to identify a specific camera in the rig. For example Cκ

i denotes the
center of projection of camera i at time κ.

3.1 Rigid Transformations

The change between two Cartesian reference frames is described by a similarity
transformation. Each similarity transformation is of the form

T =
(

λR C
0T 1

)
, (1)

where λ ∈ IR accounts for the different scales of coordinate systems, R ∈ IR3×3

is an orthogonal rotation matrix describing the relative orientation and C ∈ IR3
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is the translation between the two reference frames. When the scale λ is equal to
1, T is also called Euclidean transformation. Using projective space, the change
of reference frame of a projective point vector can be achieved by simple matrix
vector multiplication Xtarget = TXsource. The concatenation of two subsequent
changes of reference frames T1 and T2 can be computed by a simple matrix
multiplication

T = T2T1. (2)

3.2 Reference Frames and Transformations

The reconstructions from each individual camera are usually given in separate
reference frames. The different reference frames are defined next.

Camera Reference Frames: We assume that each reconstruction is described
in the coordinate system whose origin and orientation matches the position and
orientation of the first camera and whose scale is given such that the baseline
between the first two cameras equals 1 as our SAM algorithm delivers. The
pose of each camera i at each time κ is described in the reference frame of the
reconstruction by its orientation Rκ

i and position Cκ
i . Obviously the initial pose

of each camera is then given by R0
i = I and Ci

i = (0 0 0)T . These reference
frames are denoted as camera coordinate system. Each physical camera in the
rig has an associated camera reference frame.

Local Reference Frames: Obviously the choice of the first camera for the
definition of the camera reference frame is somewhat arbitrary. Any other time
κ �= 0 could be chosen for the definition of position and orientation of reference
frame resulting in the local coordinate system. The Euclidean transformation T κ

i

relating the camera reference frame with the i-th local reference frame is given by

T κ
i =

(
Rκ

i Cκ
i

0T 1

)
. (3)

A local reference frame can be defined for each frame from each sequence result-
ing in an overall of m = KN reference frames. Here N denotes the number of
cameras and K denotes the number of frames in each sequence.

Global Reference Frame: Working with multiple reference frames easily
becomes confusing and error-prone. Hence without the loss of generality a ded-
icated master camera is chosen and the associated reference frame is chosen as
the global coordinate system. The master camera is identified with the subscript
index i = 0. All other cameras are denoted as slave cameras.

3.3 Relations Between Reference Frames

The transformation between the global reference frame and each local refer-
ence frame of the slave camera i at time κ can be computed in two alternate
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Fig. 1. Relations between cameras in the
rig

ways. Either by first transforming to
the local reference frame of the master
camera at time κ and afterward using
the unknown similarity transforming
ΔTi to get to the local reference frame
of the slave camera i at time κ

T κ
0 ΔTi, (4)

or alternatively, by first changing into
the camera reference frame ΔTi and
afterward using the Euclidean trans-
form T κ

i to get to the destination

ΔTiT
κ
i . (5)

This relation is illustrated in figure 1.

4 Estimation of the Rig Parameters from Poses

Equations (4) and (5) must result in the same transformation and hence

T κ
0 ΔTi = ΔTiT

κ
i (6)

must hold for each time κ = 1, . . . , K and each slave camera i = 1, . . . , N .
Equation (6) can be decomposed into one constraint regarding only orientations

Rκ
0ΔRi = ΔRiR

κ
i (7)

and one constraint linking both orientations and positions

Rκ
0ΔCi + Cκ

0 = ΔλiΔRiC
κ
i + ΔCi. (8)

Note that the scale Δλi has no influence on (7) because it appears on both sides.
Except from the scale factor, this result equals the well-known relation between
the different coordinate frames in the hand-eye calibration problem [7], where
the master camera defines the sensor frame and the slave camera defines the
hand frame.

4.1 General Motion

When the motion of the rig is general, i.e. when it rotates and translates, a
two step approach is feasible. First the orientation is recovered using (7) and
afterward it is utilized for the recovery of position and scale using equation (8).
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Recovery of Orientation: There has been extensive work on solving orienta-
tion equations such as (7). Early solutions [8] represent rotations by 3×3-rotation
matrices, resp. 9-vectors, resulting in straight forward linear formulations. These
approaches tend to be error-prone and suffer from difficulties in enforcing the
orthogonality constraint on the resulting matrix. Seminal contribution such as
[9] represent rotations by unit quaternions and hence reduce the number of vari-
ables from 9 to 4. Further on, the unit length constraint for quaternions is far
simpler to enforce than orthogonality [10]. Replacing the rotation matrices by
quaternions q in (7) we obtain

qκ
0 · Δqi = Δqi · qκ

i , or equivalently (Tqκ
0

− T ∗
qκ

i
)Δqi = 0, (9)

where Tq, T ∗
q define left and right multiplication with quaternion q = (w, x, y, z)T

i.e., (see [11])

Tq =

⎛
⎜⎜⎝

w −x −y −z
x w −z y
y z w −x
z −y x w

⎞
⎟⎟⎠ , T ∗

q =

⎛
⎜⎜⎝

w −x −y −z
x w z −y
y −z w x
z y −x w

⎞
⎟⎟⎠ . (10)

Hence we derive the following linear system of equations with unknowns Δqi =
(Δwi, Δxi, Δyi, Δzi)T , fulfilling |Δqi| = 1,

⎛
⎜⎜⎝

wκ
0 − wκ

i −xκ
0 + xκ

i −yκ
0 + yκ

i −zκ
0 + zκ

i

xκ
0 − xκ

i wκ
0 − wκ

i −zκ
0 − zκ

i yκ
0 + yκ

i

yκ
0 − yκ

i zκ
0 + zκ

i wκ
0 − wκ

i −xκ
0 − xκ

i

zκ
0 − zκ

i −yκ
0 − yκ

i xκ
0 + xκ

i wκ
0 − wκ

i

⎞
⎟⎟⎠

︸ ︷︷ ︸

⎛
⎜⎜⎝

Δwi

Δxi

Δyi

Δzi

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
0
0
0

⎞
⎟⎟⎠ ,

Aκ
i

(11)

at each time step κ = 1, . . . , K. Apparently one pair of corresponding poses for
each camera suffices for the estimation of the internal rotation parameters when
the rig motion includes sufficient orientation change. When the rig is purely
translating, equation (11) degenerates and can no longer be solved. A detailed
investigation of the degenerate case of purely translating motion is presented in
section 4.2. Computation of the rotation matrices from unit quaternions can be
found in [11]. The quaternion constraint can be explicitly modelled by using the
Lagrangian multiplier as described in [7].

Recovery of Position and Scale: Once an estimate for the internal rotation
ΔRi of slave camera i has been found, the internal position ΔCi and scale Δλi

can be found by solving the linear system (8), obtaining the linear system

(
I − Rκ

0 ΔRiCκ
i

)
︸ ︷︷ ︸

(
ΔCi

Δλi

)
= Cκ

o .

Bκ
i

(12)

The system (12) consists of 3 equations per pose correspondence and 4 unknowns
and hence at least 2 corresponding pose pairs for each slave camera are necessary
for a unique solution.
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4.2 Pure Translation

When the rig motion is purely translational, the relative orientations qκ
0 and qκ

i

in (11) are both given by the quaternion representing zero rotation (1, 0, 0, 0)T

and the matrix Aκ
i becomes zero. Even when the rotation of the rig is very small,

Aκ
i is close to zero and the system (11) becomes ill-conditioned1. Fortunately this

situation can easily be detected simply by looking at the orientations Rκ
i . The

estimation of the Cκ
i is not possible in this case, however internal orientation

and scale can still be estimated. Assuming that the local rotations Rκ
i are each

equal to I and considering only the directions cκ
i = Cκ

i

‖Cκ
i ‖ , equation (8) becomes

ΔRic
κ
i = cκ

0 , (13)

which can be solved linearly in closed form using the quaternion representation
[10]. Because a rotation does not change the length of a vector, the scale can
be estimated without knowledge about ΔRi. Mean and variance of the scale are
computed using poses from different times κ:

Δλκ
i =

|Cκ
0 |

|ΔRiCκ
i | =

|Cκ
0 |

|Cκ
i | , Δλi =

N∑
n

Δλn
i

N
, σ2

λi
=

N∑
n

(Δλn
i − Δλi)2

N
.

(14)

4.3 Nonlinear Refinement

It is obvious that errors in the estimation of the internal rotation will inflict
the estimation of the internal translation and scale. Once an estimate for the
rig parameters has been found via the LLS approach as described in section 4.1,
nonlinear refinement can be used to simultaneously estimate internal orientation,
position and scale. The error functional

f(Δqi, ΔCi, Δλi) =
K∑

κ=1

|Aκ
i Δqi|2 + |Bκ

i

(
ΔCi

Δλi

)
− Cκ

0 |2 (15)

is minimized using a Levenberg-Marquardt method.

4.4 MAP Refinement

Experiments on real image data revealed that the error functional in (15) is
very sensitive to noise. However the situation improved when the scale was held
fixed at an approximate value during estimation. To circumvent this problem,
the error functional from (15) is augmented by a maximum a posteriori (MAP)
term for the scale resulting in

f(Δqi, ΔCi, Δλi) =
K∑

κ=1

|Aκ
i Δqi|2 + |Bκ

i

(
ΔCi

Δλi

)
− Cκ

0 |2 +
(Δλi − λi)2

σ2
λi

,

with the prior guess of the scale λi and uncertainty σ2
λi

computed using (14).
1 This is also visible in (12) where Bκ

i grows ill-conditioned when the rotation Rκ
0

observed by the master camera is close to I .
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5 Experiments

Experiments on synthetic pose data precede experiments on synthetic image
data and finally experiments on real image sequences are presented.

5.1 Synthetic Pose Data

Synthetic pose data corrupted with normal distributed error is used for the
tests. It is generated as follows: First N random rig parameters ΔRi, ΔCi,
Δλi and K random master poses Rκ

0 , Cκ
0 are generated. Afterwards the asso-

ciated slave poses are computed by applying the rig parameter to the master
pose and rotating the resulting ground truth slave pose by ε degrees around
a randomly chosen axis to simulate errors resulting from the pose estimation
process.

Linear Model Comparison: To compare both linear algorithms (i.e. the
purely translational model and the general motion model) the errors are com-
puted under a variety of different conditions, namely different orientations and
different input error accuracies. Figure 2 compares the errors of both models and
illustrates the equal error boundary for both algorithms.

Sensitivity to Input Pose Errors: To analyze the dependency of the esti-
mation results on noise of the input data, tests on a large number of randomly
generated input poses are performed. Figure 3 shows the average resulting ori-
entation error of the estimated internal orientations and translations dependent
on the input error ε for the linear general motion approach and for the nonlinear
optimization. Four input pose pairs were used for each test. The calibration error
grows approximately linearly with the input pose error ε.
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Fig. 2. Comparison of the two linear models. (a): Errors of both models on dependency
of rotation and input orientation accuracy. (b): Equal error boundary for general motion
model and rotation only model. In conditions above the equal error boundary, the
general motion model yields more accurate results than the purely translational model.
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5.2 Synthetic Image Sequences

A synthetic rig consisting of two cameras moves in a synthetic scene resulting in
two sequences of synthetically generated images consisting of 500 frames each.
The SAM results are transformed in a global coordinate system such that the
rig constraints strictly hold on the first two frames. Note that the pose estimates
from the SAM algorithm have a rotation error of up to 0.4 degree (figure 4(a)).
ΔRκ

i = Rκ
i (Rκ

0 )T is estimated from the two orientations for each frame and the
error with the respect to ground truth is plotted for each frame in figure 4(a).

The dependency of the calibration error on the number of input poses (i.e.
frames) is shown in figure 4(b) for the linear estimation methods with general
motion model and for the nonlinear estimation. The input poses again derive
from the SAM results on the synthetic image sequences. It can be seen that the
estimation results do not improve significantly for K ≥ 10.
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Table 1. Rig calibration results for (a) overlapping and (b) non-overlapping sequence

method orientation position scale

(a) Bouget 56.94◦ ± 0.54◦ (25.2 ± 0.2, −3.9 ± 0.3, 11.5 ± 0.06) 28cm ± 0.66cm
(a) our approach 57.56◦ (25.8, −3.2, 11.4) 28.37cm

(b) our approach 158.14◦ (0.9, −7.4, −13.3) 15.29cm

Fig. 5. Photo of real rig (a) and 3D model of the rig calibration estimate (b)

5.3 Real Image Sequences

Two physical setups were investigated: One with overlapping views for the com-
parison with a marker based algorithm, and a non-overlapping sequence for
demonstration purposes.

Overlapping Sequence: The physical setup consists of two cameras at a dis-
tance of approximately 30cm with a relative yaw angle of about 60◦. The rig
calibration is computed using (i) the calibration toolbox from [12] resulting in
external poses for each frame. The relative transform is computed robustly as
the average over 24 frames. Additionally the rig calibration is estimated (ii) us-
ing the suggested MAP refinement algorithm. To enhance stability a RANSAC
algorithm is used in combination with our approach. The orientation difference
between the two results (i) and (ii) was 0.62◦, the direction difference of the
two resulting translation vectors was 1.52◦, and the translation length error was
about 1.33 percent (see table 1(a)). The rig calibration result is in the same
order of magnitude as the result from the marker based approach.

Non-overlapping Sequence: For the non-overlapping sequence the cameras
were rotated approx. about 160◦ with respect to each other and set up at with a
distance of about 15cm. Figure 5 shows a photo of the rig and a 3D model with
the reconstructed rig parameters. The rig internal translation is roughly along
the optical axis such that the cameras look in opposite directions. The rig was
rotated around its center and translated slightly parallel to the image planes
such that the sequences do not overlap. The estimated internal rig rotation was
158.14◦ around axis (0.4, 0.74, 0.51)T , and the internal translation direction was
estimated to be (0.06, −0.48, −0.87)T with length 15.29cm (see table 1(b)). The
resulting calibration meets the expectation by qualitative evaluation. Future
work will include tests on non-overlapping sequences with ground truth data
available.
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6 Conclusions

A novel approach for the estimation of rig parameters using non-overlapping
sequences was introduced. Two nonlinear refinement algorithms for the rig pa-
rameters have been proposed and tested on synthetic poses and on synthetic and
real image sequences. It has been shown that the achievable accuracy resides in
the same order of magnitude as marker based approaches achieve. In addition,
the calibration can also be achieved in a non-overlapping setup where no marker
calibration is possible. Of course the accuracy is dependent on the results of the
SAM algorithm.

Future Work. Future work could investigate the benefit of direct integration
of the calibration process into the SAM algorithm. Also other methods circum-
venting the dependency of the calibration on SAM results should be found and
investigated. Because we do not depend on visual image information, poses re-
ceived from sensor data can also be utilized for camera alignment.
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Abstract. The measurement of fluid flows is an emerging field for op-
tical flow computation. In a number of such applications, a tracer is
visualized with modern digital cameras. Due to the projective nature of
the imaging process, the tracer is integrated across a velocity profile. In
this contribution, a novel technique is presented that explicitly models
brightness changes due to this integration. Only through this modeling
is an accurate estimation of the flow velocities feasible. Apart from an
accurate measurement of the fluid flow, also the underlying velocity pro-
file can be reconstructed. Applications from shear flow, microfluidics and
a biological applications are presented.

1 Introduction

Recently, modern techniques of motion estimation have made their arrival in
the field of fluid dynamic measurements. Here, the main emphasis has been on
regularizing the flow field, either by div-curl regularization [1] or by modeling
the flow field based on physical constraints [2,3].

Apart from regularizing the flow field, brightness changes play an important
role in a number of fluid dynamic applications. Often, due to transport phenom-
ena the density of tracers change. The same holds true for temperature fields
in the case of thermographic visualizations. An accurate modeling of these in-
tensity changes based on the transport phenomena is fundamental to achieving
accurate flow estimates. Moreover, apart from the flow field, additional informa-
tion can be extracted from estimating parameters of brightness change models.
These can be the air-water net heat flux from infrared image sequences of the
air-water interface or chemical reactions from satellite remote sensing. These are
important parameters in their own right.

For flow visualization, scalar quantities such as tracer particles or dyes are
added to the flow. Also, heat can be used to visualize interfacial fluid flow.
These scalars are visualized with digital or thermographic cameras, respectively.
Due to the projective nature of the imaging process, the scalar concentration is
integrated along the line of sight of the imaging optics. Depending on the flow
configuration and the imaging set-up, frequently an integration across velocity
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Fig. 1. Flow between parallel plates. The bottom plate is stationary, the upper one
moving to the right at the velocity U . In a an additional pressure gradient dp/dx < 0
is driving the fluid, in b Plane Couette flow is shown (dp/dx = 0).

profiles has to be performed. In the case of parabolic flow profiles this process is
also known as Taylor dispersion [4]. The visualized structures appear to diffuse
anisotropically due to the integration. Very often, this unwanted effect cannot
be circumvented experimentally. In this contribution, general motion models will
be presented that explicitly model the projective process across flow profiles of
different orders. This makes it feasible to accurately estimate the velocity and
reconstruct the three dimensional flow profile at the same time.

Based on the novel motion models, the model parameters are estimated in a
local extended structure tensor framework. If physically based regularization is of
interest to the application, the presented framework can readily be incorporated
into variational frameworks. However, this is not the topic of this contribution.
The novel framework will be applied to shear flow configurations, microfluidics
and biological applications.

2 Flow Profiles

2.1 Plane Couette Flow

The equation of motion for a flow of uniform density ρ is given by the Navier-
Stokes equation for an incompressible fluid [5]:

du

dt
= g − 1

ρ
∇p +

μ

ρ
∇2u = −1

ρ
∇pd + ν∇2u, (1)

where μ is the viscosity and ν = μ/ρ is the kinematic viscosity. g is the accel-
eration of gravity and ∇p is a pressure gradient incident on the fluid. u is the
fluid velocity we are interested in. The dynamic pressure is given by pd = p − ps

and g = 1/ρ · ∇ps results from the hydrostatic pressure for a fluid at rest.
Such a flow is generally driven by a combination of an externally imposed

pressure gradient and the motion of the upper plate at uniform velocity U , as
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Fig. 2. Sketch of a marker in plane Couette Flow during time steps t1 − t4 in a. The
marker is written at time t0. It is sheared due to the flow. Shown in b is the depth
integration of the marker, as visualized with the camera.

shown in Figure 1. The two plates are separated by the distance δ. Applying the
appropriate boundary conditions [5] this results in the equation

u(z) =
z · U

δ
− z

2μ

dp

dx
(δ − z) . (2)

In the case of plane Couette flow, illustrated in Figure 1b, the flow is driven
by the motion of the upper plate alone, without any externally imposed pressure
gradient. For this case, Equations (2) reduces to

u(z) =
z · U

δ
(3)

Plane Couette flow is a very good approximation for a number of shear driven
flows. It can be used to describe the velocity structure at the wind driven sheared
interface between atmosphere and ocean, particularly in the event of a surfactant
covered interface. This is due to the fact that surfactants suppress waves and
can be thought of as a rigid interface.

For a number of scientific and industrial applications, it is of interest to accu-
rately measure the flow and velocity profile of the plane Couette flow. This is a
straightforward task when the flow is accessible from the side (along the y-axis
in Figure 1). In this case the velocity can be measured at a range between the
two plates and the gradient with respect to z computed.

Very often, it is not possible to measure the fluid flow in this fashion, since
the flow is not accessible from the side. This can either be due to the minute
separation of the plates in microfluidic applications or because a very small
boundary layer is modulated by relatively high waves at the air-water interface.

The velocity profile in plane Couette flow is given by Equation (3). This leads
to the time dependence x = z

δ U · t = z
μτ · t of the position of a marker attached

to the flow at t = t0 = 0. Here the viscous shear τ is given by τ = μ/δU .
It shall be assumed that the fluid elements are marked at time t0 = 0 with an

appropriate technique. For microfluidic applications, such a technique relies on
the activation of caged dyes with a XeF Excimer laser. At the air-water interface,
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Fig. 3. A sketch of the intensity profile of the dye for a Poiseuille flow at three times
t1-t3 is shown in a together with the velocity profile v(z). The projection of these
profiles onto one plate as seen by the camera is shown in b.

water parcels are heated up with ca CO2 laser and visualize with an infrared
camera. Without taking the Lambert-Beer law into consideration and thus no
attenuation with depth, the marker highlights a homogeneous three dimensional
structure inside the viscous boundary layer. A sketch of such a structure is
presented in Figure 2a.

Once the structure is written at time t0, it is sheared due to the velocity profile
as indicated in the same figure in successive time steps t1 − t4. In the imaging
process the dimension of depth z is lost through integration. The projection of
intensities I onto the surface at z = δ is given by

I(x, t) =
∫ δ·x

U·t

δ·(x−c)
U·t

1 dz =
x · δ

t · U − (x − c) · δ

t · U =
c · δ
t · U

=
μ · c

t · τ
(4)

Here c denotes the width of the area marked, as can be seen in Figure 2.
Differentiating Equation (4) with respect to time leads to

dI

dt
=

d

dt

(
c · δ
t · U

)
= −1

t
I. (5)

Estimating the velocity of the intensity structures subject to a plane Couette
type shear flow with a linear velocity gradient can thus be computed by solving
the differential equation dI/dt = −(t)−1I which can be written in an extension
of the well known brightness change constraint equation (BCCE) [6] as

dI

dt
= u1

∂I

∂x
+ u2

∂I

∂y
+

∂I

∂t
= −1

t
I. (6)

Rewriting this equation in vector notation leads to

dI

dt
= d� · p =

[
1
t I

∂I
∂x

∂I
∂y

∂I
∂t

]
·
[
1 u1 u2 1

]� = 0 . (7)

This equation can be thought of as the motion equation of density structures
visualized through integration across a plane Couette type flow.
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a b

Fig. 4. In a and b two frames of a microfluidic image sequence are shown. The impli-
cation of Taylor dispersion can be clearly observed. Structures seem to diffuse in the
direction of fluid flow [7].

2.2 Plane Poiseuille Flow

In Poiseuille flow, the configuration is similar to that of Couette flow. Once
more, a fluid is bounded by two infinite plates separated by a distance δ = 2 · b.
However, for Poiseuille flow both plates are stationary (Uδ = U0 = U = 0)
and the flow is driven only by a pressure difference dp/dx. In this configuration,
Equation (2) reduces to

u(z) = − z

2μ

dp

dx
(δ − z) = − z

μ

dp

dx

(
b − z

2

)
=

a

2
z2−a·b·z with a =

1
μ

dp

dx
. (8)

This type of flow and the associated quantities are visualized in the sketch of
Figure 3 a.

Similar to plane Couette flow as presented in Section 2.1, plane Poisseuille
flow has a broad range of applications, especially in microfluidics. In these types
of applications it is important to measure the velocity of fluid parcels in between
parallel plates. However, due to the boundary conditions of the microfluidic
devices, it is not possible to visualize the cross section of the flow. A marker
such as a caged dye is introduced into the fluid and a pattern is written to the
fluid at time t = 0. In later times, this structure is sheared by the parabolic
velocity profile developed by the Poiseuille flow. The 2D cut of this process is
shown for three time steps t1-t3 in Figure 3a. Through this projection, it appears
as though the structure written to the fluid is smeared in the direction of the
fluid flow over time. This process which might appear similarly to anisotropic
diffusion, is also known as Taylor dispersion [8]. An image of this type of process
can be seen in Figure 4.

The marker is visualized through one of the plates, leading to an integration
of the dye with respect to depth z. This results in

I =
∫ b±

√
b2+ 2(x+c)

at

b±
√

b2+ 2x
at

1dz =

√
b2 +

2 · (c + x)
a · t

−
√

b2 +
2 · x
a · t . (9)
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The projected intensity structure is given by Equation (9). This structure can
be developed in a Taylor series around t = 0. This results in

I =

√
2
t

(√
c + x

a
−

√
x

a

)
+

b2
√

t

2
√

2

(√
a

c + x
−

√
a

x

)
+ O

(
t3/2

)
. (10)

Differentiating the first term of the expansion in time leads to

dI

dt
=

d

dt

(√
2
t

(√
c + x

a
−

√
x

a

))
= − 1

2t
I. (11)

Estimating the velocity of the intensity structures subject to Taylor dispersion
can thus be computed by solving the differential

dI

dt
= u1

∂I

∂x
+ u2

∂I

∂y
+

∂I

∂t
= − 1

2t
I. (12)

This linear differential equation can be rewritten in vector notation which
leads to

dI

dt
= d� · p =

[
1
2tI

∂I
∂x

∂I
∂y

∂I
∂t

]
·
[
1 u1 u2 1

]� = 0. (13)

2.3 n-th Order Velocity Profiles

For a number of fluid flow configuration, the velocity profile can be approximated
to leading order by

u(z) = A · zn, (14)

where A is a term independent of z and t. The integration across the profile
results in

I =
∫ n

√
x

A·t

n
√

x−c
A·t

1 dz = n

√
x

A · t
− n

√
x − c

A · t . (15)

Differentiating this expression with respect to time directly leads to the fol-
lowing differential equation

dI

dt
= u1

∂I

∂x
+ u2

∂I

∂y
+

∂I

∂t
= − 1

n · t
I, (16)

which can be written in vector notation giving

dI

dt
= d� · p =

[
1
ntI

∂I
∂x

∂I
∂y

∂I
∂t

]
·
[
1 u1 u2 1

]� = 0. (17)

It is quite easy to see that this is a generalization of the previous cases of plane
Couette flow (n = 1), compared to Equation (6) and (7) and of plane Poiseuille
flow (n = 2), compared to Equations (12) and (13).
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Fig. 5. In a a sketch of velocity profiles v(z) ∼ zn with n ∈ {2, 4, 6, 10, 20, 60}. The
higher the order n the better the approximation of a constant profile as shown in b. In
the xylem of plants, the flow can be approximated by a number of small hollow tubes
with a Poiseuille flow in between, as shown in b.

The both relevant flow configuration between parallel plates discussed so far
have been plane Couette flow and plane Poiseuille flow. It might seem superfluous
to expand the model to n-th order. However, there are flows for which higher
order flow profiles are relevant. In Figure 5a the velocity profiles for a range of
higher order models is sketched. It becomes apparent, that the central part of
the profile becomes increasingly flat. Choosing ever higher order up to lim

n→∞, we
end up with a constant velocity profile with sharp edges. Water carrying tissue
in plants can be approximated by an array of Poiseuille flows as sketched in
Figure 5b. For an increasing number of such small ”‘pipes”’, this flow can be
approximated by this lim

n→∞ flow.

It is interesting to note that the motion Equations (16) and (17) reduce to

dI

dt
= u1

∂I

∂x
+ u2

∂I

∂y
+

∂I

∂t
= − 1

n · t I, and
lim

n → ∞ dI

dt
= 0, (18)

which is the standard BCCE [6]. This means that in the case of a constant veloc-
ity profile with depth, integration over depth does not matter and the standard
BCCE can be used for estimating velocities of projected quantities. Intuitively
this does make sense and is quite an expected behavior.

3 Parameter Estimation

The technique of simultaneously estimating optical flow and change of image
intensity is well known in literature [9,10,11,12]. Details of the technique em-
ployed in the context of this manuscript are an extension of the structure tensor
approach [13] and have been explained previously [14]. Accuracy improvements
were introduced in [15] and [16].

Basically, the relevant constraint equations (7), (13) and (17) provide one
constraint in two unknowns leading to an ill-posed problem. This can be solved
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Fig. 6. a Relative error for Gaussian test sequences with two different velocities (u1 =
0.625 pixel/frame and u2 = 1.25 pixel/frame) and varying noise levels. b Comparison
of measured values (red circles) compared to ground truth measurement (solid blue
line). Error bars: deviations in three successive frames. c Measurements conducted in a
small wind wave facility. d Perfusion measurements of the center vein of a ricinus leaf.

from additional constraints. A commonly made assumption is that of a locally
smooth motion field. Therefore, the aforementioned constraint equations can
be pooled over a local neighborhood, leading to an overdetermined system of
equations. This system can be solved for the parameter v using a weighted total
least squares approach [17].

4 Applications

In order to test the presented motion models, test measurements were performed.
First, the basic applicability was tested on synthetic sequences. The injection of
a tracer into Couette and Poiseuille flow was modeled and the integration was
performed. The distribution of the tracer in the projection plane was modeled
to be a 2D Gaussian. This test pattern was corrupted with normally distributed
noise of varying standard deviation. Also different flow velocities were simu-
lated. The results of these measurements are shown in Figure 6a for the case of
Poiseuille flow. It should also be noted that the velocity computed is that of the
center layer in between the two plates. From this center plate velocity, the full
flow profile can be reconstructed.
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Apart from measurements on simulated data, the technique was also tested
on real world measurements with ground truth. To test the performance on mi-
crofluidic flow, a spatially homogeneous pressure driven flow was set up in a mi-
crofluidic chamber [18]. Ground truth was derived from accurate measurements
of the water flow through the chamber. Results are presented in [7] and reca-
pitulated in Figure 6b. The slight bias in some measurements can be attributed
to calibration errors of the flow meter [7]. The data points were measured by
integrating over the center part of three frames. The standard deviation was com-
puted over the same area of the three frames. It can clearly be seen that there
exists a good agreement between measurement and ground truth. For most data
points, the ground truth value is well within the error bar.

At the air-water interface, measurements have been conducted by heating up
patches of water with an CO2 laser leading to similar patterns as in the microflu-
idic case. From the velocity profile of Couette flow, the shear at the interface
can be computed leading to the friction velocity u�, an important parameter for
parameterizing air-water interactions. This parameter has been measured with
an alternative instrument for ground truth. The comparison of these measure-
ments is presented in Figure 6c. These measurements have been the first time
that this parameter could be measured directly [19]. The difficulty of measuring
this parameter is reflected in deviations to the standard measuring technique.

Similar to the microfluidic application, ground truth measurements have been
performed in a botanical applications [20]. The leaf of a ricinus plant was perfused
and thus the pressure driven water flow through it was measured. A CO2 laser
was used for writing patterns on the leaf and these patterns were visualized with
an infrared camera. The velocity of these structures were measured and compared
to the perfusion measurements. The results showing excellent agreement are
presented in Figure 6d for different flow velocities [20].

5 Conclusion

In this contribution, motion models were presented incorporating brightness
changes due to the integration of a tracer across velocity profiles. These mod-
els connect the motion of an object in the scene with gray value changes in
the acquired image sequences. This brightness change is very similar in appear-
ance to anisotropic diffusion. Expressions for first- and second-order flow profile
have been developed as well as general n-th order profiles. Applications of these
models were presented, including shear flow at the air-water interface, Poiseuille
flow in pressure driven microfluidic applications and an n-th order model in an
botanical application. The validity of the presented motion models was tested
on simulations as well as on ground truth image sequences. The parameters of
these motion models were estimated in a local structure tensor approach. Only
through this approach is the accurate estimation of fluid flow possible. This
made the presented applications feasible for the first time. This framework can
be readily extended to incorporate physically based regularization to increase
accuracy of the results further.
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timation for particle image velocimetry. Exp. in Fluids 38, 21–32 (2005)
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Abstract. Typical tracking algorithms exploit temporal coherence, in
the sense of expecting only small object motions. Even without exact
knowledge of the scene, additional spatial coherence can be exploited
by expecting only a rigid 3d motion. Feature tracking will benefit from
knowing about this rigidity of the scene, especially if individual fea-
tures cannot be tracked by themselves due to occlusions or illumination
changes. We present and compare different approaches of dealing with
the spatial coherence in the context of tracking planar scenes. We also
show the benefits in scenes with occlusions and changes in illumination,
even without models of these distortions.

1 Introduction

Tracking features is one of the preliminaries for many further processing steps,
like e.g. 3d reconstruction. Efficient tracking algorithms exploit the temporal
coherence of feature locations in successive frames [1,2]. The basic idea is that
small camera or object motions between a pair of views will only lead to small
motions of the tracked features in the images.

If a static scene is observed with a moving camera, the motion of features
is further constrained by the rigidity of the scene. This is also valid for rigidly
moving objects as parts of more general, dynamic scenes. In typical tracking
algorithms, this spatial coherence is not taken into account. In cases of occlu-
sions, unsuitable viewing angles or illumination changes in parts of the scene,
knowledge about the coherent motion can predict and constraint the location of
features and hence drastically improve tracking robustness, even without models
of illumination or occlusion.

Planar structures, as they are abundant in man-made environments, are par-
ticularly attractive for spatial coherence constraints. The points on each plane
itself have a highly coherent motion, which can be modeled with the well-known
homography transformations. But also for several, rigidly moving planes, motion
constraints have been developed [3,4].

Our major contribution is to incorporate the spatial coherence resulting from
a rigid scene motion into the tracking process for planar scenes. To achieve this,
we use a parameterization of the plane induced homographies with inherent
rigidity constraints, by expressing them in terms of plane parameters, which are
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constant over time, and camera parameters, which are constant for all planes
observed in one image.

We compare this approach to two different possibilities of dealing with the
spatial coherence. As one alternative, the rigid motion is ignored and the planes
are tracked by independently estimating one homography per plane and view.
The second alternative is a constrained homography estimation [4], where the
same over-parameterization is used, but additionally the rigidity of motion is
explicitly formulated and enforced as a constraint on the parameters. Our new
formulation will also give insights, when and why such constraints can be applied.

The proposed approach can be seen as an intensity-based bundle adjustment
problem [5]. It is also highly related to model based tracking approaches [6,7],
where an explicit 3d model of the static scene or object is known, while the
camera or object poses are estimated. Similarly a completely known camera
calibration can be used to estimate the scene geometry from image intensities [8].
In our system, both the scene geometry and camera poses are included in the
estimation process, while the intrinsic camera parameters are assumed to be
known. In addition to the more robust tracking process, also 3d information is
gathered this way.

2 Tracking Planes

Before introducing any constraints arising from rigid motions, we will outline the
basic tracking process used in our work. The theoretical foundations of tracking
planar scenes are shortly revised and formulated as a non-linear optimization
problem. Also several practical issues of such a tracking system are accounted
for, providing the basis for reliable tracking of planar features.

2.1 Intensity-Based Tracking

The task of tracking is to locate an object observed in a reference image I0

in another image It taken at time t. It is assumed that the appearance of the
object is identical in the two intensity images. The positions of the points x on
the object have been affected by a motion, which is modeled by the function f :

I0(x) = It(f(p,x)) (1)

where p are the parameters of the motion between two particular images. The
problem is to determine these parameters p, given the two images, a region of
interest in the first image (i.e. a set of points x), and a motion model.

From equation (1), an error function ε(p) can be formulated. It has proved
beneficial to use a compositional approach [2]. The overall motion is therefore
decomposed into a previously estimated motion with parameters p′ and a part
to be estimated further on with the unknown parameters p:

ε(p) =
∑
x

(It(f(p′, f(p,x))) − I0(x))2 = dT (p)d(p) (2)

Here d(p) are the residuals for all sample points x stacked into one vector.
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With standard methods from non-linear optimization, this error function ε can
be iteratively minimized by optimizing the motion parameters p. As a general
optimization scheme, the Newton Iteration is used, resulting in:

pi+1 = −
(

∂2

∂p2
i

ε(pi)
)−1

∂

∂pi
ε(pi) (3)

For least squares problems, it is common to reduce the computational effort of
evaluating derivatives of ε(p) by assuming that second order derivatives of d(p)
are negligible. This leads to the Levenberg-Algorithm used in our work:

∂2

∂p2
ε(p) ≈

(
∂

∂p
d(p)

) (
∂

∂p
d(p)

)T

+ λId

In the more specific task of tracking, a further approximation was intro-
duced [1] to avoid recomputing the gradients online in each step of the iteration:

∂

∂x
It(f(p′,x)) ≈ ∂

∂x
I0(x)

2.2 Tracking of Planar Objects

The motion model f for the tracking process yet has to be specified. It is well
known that points residing in one common 3d plane π are transferred between
two images by a common projective 2d-2d transformation, a homography. Such
a homography is characterized by 8 independent parameters, stored as p(π),
resulting in the following motion model for planar surfaces:

f(p(π),x) =
1

p31x + p32y + p33

(
p11x + p12y + p13

p21x + p22y + p23

)

Due to the temporal coherence, the location of the plane in the previous frame
can be assumed as a good prediction of the location in the next frame, and is
hence used as a starting point for the iteration.

Several refinements can be employed to achieve a more stable tracking pro-
cess. One of the most common is to use a resolution hierarchy and apply a coarse
to fine optimization of the motion parameters. This way, larger displacements
of the tracked object can be handled [9]. Also different motion models like an
affine motion are frequently assumed to approximate the full projective trans-
formation [1]. We use such simplifying motion models to initialize the estimation
of the more general models, i.e. in the optimization problem of equation (2), at
first only the parameters p13 and p23 of a pure translation are estimated until
convergence, then the six parameters of an affine transformation and finally the
full set of eight parameters, each utilizing the previous steps as an initializa-
tion. Finally note that some of the partial derivatives of the motion model are
quadratic in the pixel coordinates x, others are linear and some are constant.
A preconditioning of the problem, like a coordinate normalization of the x to
the interval [0...1], hence dramatically improves the numerical stability of the
algorithm [10].
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3 Rigid Motion Constraints

As depicted in figure 1, the system presented so far can readily be used to
estimate independent homographies for several independent planes. With the
planes rigidly aligned to each other in a common 3d world coordinate system, the
spatial coherence provides additional constraints on the homographies, however.
We will first prove this by a counting argument on the number of parameters
and degrees of freedom. Then we will present one possible constraint in greater
detail and show applicability for tracking multiple planes under rigid motion.

3.1 Motivation of Static Scene Constraints

Each individual homography is determined by 8 independent parameters. To
formulate a multiplane tracking problem with independent homographies, a total
of 8p(v − 1) parameters is therefore needed for p planes and v views. This also
includes one reference view for each plane.

If a global, rigid motion is assumed, the actual number of degrees of freedom
is much less. Each camera or scene motion can then be expressed as an Euclidian
transformation with 6 dof. The projection with intrinsic parameters adds 5 dof,
such that there is a total of 11v dof for v views of the scene. Further each plane
in 3d space has 3 dof. The global position, orientation and scaling of the scene
are not relevant for the tracking problem, hence removing 7 dof. Altogether the
number of degrees of freedom is hence 11v+3p−7, or even less in case of constant
or known camera intrinsics.

This indicates that the 8p(v − 1) parameters of independent homographies
are overdetermined and constraints can be applied to enforce the globally rigid
motion of the scene. With unknown intrinsic parameters, it is easy to count that
such constraints are possible for 2 views of at least 4 planes [3], or for 4 views of
at least 2 planes [11], but also for 3 views of at least 3 planes. With unknown but
constant intrinsic parameters, further constraints can be expected for 2 views of
at least 3 planes, or even for a single plane observed in at least 5 views. While it
is simple to show the existence of such constraints, only the two first mentioned
have been formulated explicitly.

Note that extending these constraints to more views or more planes is not
always trivial, as the scaling of the homography matrices, the ninth parameter
of the 3 × 3 transformation matrix, cannot be recovered from image data alone.
A comprehensive summary and ideas on such extensions were presented in [4].

3.2 Constrained Tracking

In the following, we will shortly review the constraint for 2 views of at least
4 planes [3]. The advantage of this constraint is that it can be directly used to
incorporate spatial coherence into a system tracking multiple planes between two
frames. The other known constraint developed in [11] is based on the slightly
more complex planar homologies and requires the estimation of at least 4 frames
to be performed at once.
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Fig. 1. The three approaches of tracking with the knowledge of rigid motions from left
to right: Independent estimation of the planes, independent estimation with a rigid
motion constraint at each step and combined estimation of all planes in a bundle

Let πi be the 3d plane defined by nT
i X = di, with the plane normal ni

and the distance di to the origin. Let R and t be the relative rotation and
translation between two images, and K1 and K2 the projections into the images.
The homography Hi transferring points on πi between the two images is then:

Hi = K2RK−1
1 + 1

di
K2t nT

i K−1
1

= H∞ + q vT
i

(4)

Let the 9-vector hi be composed of the entries of the homography matrix Hi. If
n of these vectors are stacked in one big 9 × n matrix H, this can be written as:

H =

⎛
⎝h1 ... hn

⎞
⎠ =

⎛
⎝h∞ ... h∞

⎞
⎠ +

⎛
⎝

q 0 0
0 q 0
0 0 q

⎞
⎠(

v1 ... vn

)

=

⎛
⎝

q 0 0
0 q 0 h∞
0 0 q

⎞
⎠

︸ ︷︷ ︸
9×4

(
v1 ... vn

1 ... 1

)

︸ ︷︷ ︸
4×n

(5)

Obviously, H has at most rank 4. It follows that for 2 views of at least 4 planes,
the homographies induced under a rigid motion reside in a 4d subspace of all
possible homographies in dynamic scenes.

It is particularly easy to incorporate this constraint into a tracking problem
with multiple planes π1, ..., πI and parameters p(C) =

{
p(π1), ...,p(πI)

}
. The

planes are no longer tracked independently now, but as a whole. The objective
function from equation (2) is therefore extended by a sum over all planes:

ε(p(C)) =
∑

i

∑
x∈πi

(
It(f(p′(πi), f(p(πi),x))) − I0(x)

)2

(6)

Note the parameters p(C) computed in the nonlinear optimization process will
be a stacked version of all the p(πi) computed for the individual planes πi in the
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independent homography tracker from 2.2. This is because the parameters of the
j-th homography only depend on observations of points on the j-th plane. The
derivative ∂

∂p(πj) ε(p(C)) in equation (3) will be non-zero only for terms i = j,

and a block-diagonal structure will result for the Hessian matrix ∂2

∂p(πj) 2 ε(p(C)).

The main difference is, after computing new parameters p(C) and composing
them with the previous estimation, the constraint from equation (5) is applied,
as shown schematically in figure 1. This way, the spatial coherence resulting from
a rigid motion is enforced for the homographies at each iteration step.

4 Minimal Parameterization

As an alternative to using an over-parameterization and enforcing constraints
afterwards, we propose to use a minimal set of parameters from the beginning,
and estimate them as a bundle, as sketched in figure 1. We will first outline the
idea of such an approach, then present the resulting optimization problem, and
finally give some ideas for an implementation.

4.1 Tracking as Bundle-Adjustment

The objective function used in the following is essentially the same as in equation
(6), except that another sum is taken over all the frames of the image sequence.
As the main difference, the motion function f is no longer parameterized using 8
independent entries. Instead we use decomposition (4) to define the homography
matrices in terms of plane parameters and camera motions relative to a reference
view. Accordingly, instead of solving for the 8p(v − 1) independent homography
parameters, we try to find optimal view poses and plane parameters.

Note that the parameters optimized for one plane are now influenced by its
observations in multiple views, as well as the parameters for one camera pose are
influenced by all planes observed in that view. Due to this, the tracking problem
actually becomes an intensity-based bundle adjustment problem [5]. The spatial
coherence is enforced, as the plane parameters are identical for all the views and
the camera parameters of one view are identical for all planes.

4.2 Parameterization of Homographies

The decomposition of homographies given in (4) still allows different parameter-
izations of camera poses and planes. In the following we will shortly present and
motivate the one chosen in this work.

First note, this decomposition arbitrarily fixes the world coordinate system
to the camera of the first view. Without loss of generality, we take this as the
common reference view for all planar patches in the tracking problem. This
simplifies the problem, but can be overcome easily, as was shown e.g. in [7].

A plane πi has 3 degrees of freedom, but we use 4 parameters and define it
by the equation nT

i X = di. The vector ni is normalized to length 1 at each step
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of the iteration. Although dividing by di might avoid this normalization, a sin-
gularity is then introduced for planes passing the origin of the world coordinate
system, and an ill-conditioned system for planes nearby such a configuration.

For the camera translation t, a simple 3-vector is used. The camera orientation
is represented by a quaternion, again having 4 parameters for 3 degrees of free-
dom. With a compositional approach and enforcing the normalization constraint
directly in the optimization, only the 3 independent parameters contribute to
the iterative update steps [12].

With the overall set of parameters p(B), the motion model fi for the i-th plane
then is:

fi(p(B),x) = Proj
(

K2

(
T(

1
qq∗q)T(q′) +

1
di

tnT
i

)
K−1

1 x
)

(7)

Here, Proj(x) computes the projection of x to inhomogeneous coordinates, T(q)
creates the rotation matrix equivalent to rotation with quaternion q, and q′

results from the previous iterations of the compositional optimization process.
In our setting, the free parameters are q, t, ni and di, while we assume the

intrinsic parameters K1 and K2 to be known. For the non-linear optimization,
one has to compute derivatives of ε and hence fi with respect to the unknowns,
which are not shown here for lack of space.

4.3 Implementation Issues

As typical for bundle-adjustment problems, many sparse matrices appear in the
derivatives and allow for an efficient implementation [5]. We will not go into the
details at this point, as an efficient implementation is not the main scope of this
work.

To further increase the computational speed of processing an image sequence,
a sliding window can be applied. The idea is to take into account only the latest v
images and compute only the latest v camera poses, instead of all parameters for
the whole sequence. Also the idea of using a resolution hierarchy is transferred
easily to this formulation of the tracking problem.

A critical point about bundle-adjustment and non-linear optimization in gen-
eral is the initialization of the iteration. In our current implementation, new
planes are initialized such that they are facing straight to the camera with the
plane normal parallel to the optical axis, and the distance from the optical center
is arbitrarily set to 1. For each new view, the camera pose is initialized with the
pose estimated for the previous frame. Convergence to a stable, local optimum
has not been a problem in our experiments.

5 Experiments

We have performed several experiments to evaluate the different methods, and
especially to show the benefits of using the spatial coherence in the tracking
process. We will first describe the used setup, before presenting the results.
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Fig. 2. The red, green, blue and yellow polygons mark planar patches tracked through
an image sequence. Despite the severe occlusion in the middle image, the locations of
the regions are correctly estimated. This is based solely on the knowledge of observing
a rigid scene, no occlusion models are applied.

Fig. 3. The colored polygons mark tracked, planar regions. Although the appearance of
the CD-cover in the middle of the scene drastically changes due to specular reflections,
the knowledge of observing a static scene allows successful tracking.

5.1 Basic Setup

For the experiments, image sequences of a static scene of books and boxes were
recorded with a handheld camera. Planar regions were manually marked in the
first image to initialize the tracking. As only the camera was moving, these
tracked features were underlying a global, rigid motion.

During tracking, a resolution hierarchy with 3 levels was used. For the bundled
tracking, a sliding window over the last 10 frames was applied. Otherwise the
parameters were identical for all compared methods.

As mentioned in section 4.3, the implementation is not yet optimized for speed.
With planes densely covering about 70% of the 640×480 images, the tracker
with independent homographies currently reaches about 7.5 fps, the constraint
based tracker about 1.5 fps and the tracker with a minimal parameterization
about 0.1 fps on a Intel Pentium 4 with 3.4 GHz and 1GB RAM. With further
optimizations, realtime or close to realtime performance seems possible.

5.2 Experimental Evaluation

The tracking accuracy can hardly be expected to improve by imposing static
scene constraints. In fact, as the homographies now have to fulfill more conditions
than with an independent estimation, the ability to fit the observations even
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Table 1. Average tracking durations in percent of the sequence duration. Each row is
for one sequence, each column for one of the presented tracking approaches.

sequence independent constrained minimal

box1 71.87 71.87 100.00
box2 29.79 31.58 100.00
box occlude 53.33 57.66 100.00
books1 69.61 54.34 100.00
books2 72.80 73.60 100.00

decreases slightly. The main benefit however is the improved robustness in cases,
where a single plane cannot be estimated from the image data. We hence compare
the average tracking duration as a measure for the robustness.

In table 1, the average tracking durations are given for the test sequences.
In the setups box1 and box2, planes are temporarily seen with a very small
viewing angle. The sequence box occlude additionally features an occlusion,
where one of the planes is covered to approx. 50% by an object in front (see
figure 2). Finally, the sequences books1 and books2 show surfaces with specular
reflections (see figure 3 for an excerpt of books2).

In all of the cases, tracking the planes independently does not succeed. The
constrained homography estimation does slightly improve the tracking robust-
ness. With the tracker using a minimal parameterization, the regions are suc-
cessfully tracked despite all distortions. Note that no models of illumination or
occlusions are required, but instead the knowledge suffices that all image motion
is due to just one, rigid scene motion.

The performance of the constraint based tracker most likely is poor, because
only a rigid motion between two frames is enforced. This is close to the minimal
configuration of where the method can be applied at all, and hence imposes
only a weak constraint on the homography estimation. An extension to multiple
frames is possible [4], but currently not used. For the tracker with minimal
parameterization, a sliding window of 10 frames was applied, hence enforcing a
rigid motion between several frames and imposing a much stronger constraint.

6 Conclusions

For tracking problems, the temporal coherence has frequently been used as a
helpful cue when tracking features through an image sequence. The basic idea
is that features only underlie a small motion, if the camera motion between
successive frames is small. We additionally proposed the idea of spatial coherence
as a second important cue for tracking. As an example, the rigid 3d motion of a
planar scene can be exploited for tracking the features, even if they are partially
occluded or their appearance drastically changes.

To evaluate this concept, we have presented three different tracking
approaches. The first was ignoring the spatial coherence by tracking features
independently of each other. The second was basically still tracking features
independently, but then enforcing the constraint of one common, rigid 3d
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motion upon the feature locations. Finally we proposed a third approach, using
a minimal parameterization to directly realize the spatial coherence in terms of
a constant 3d geometry of the tracked object or scene.

We used the scenario of tracking piecewise planar objects or scenes, as con-
straints enforcing a rigid motion for such scenes are readily available [3,11].
These constraints are very inflexible however, e.g. requiring at least 4 planes to
be visible in the scene. Also we did not investigate the extensions to multiple
views presented in [4]. Instead we developed a formulation as an intensity-based
bundle-adjustment problem [5], which we believe to be a lot more flexible.

In the experiments we showed that spatial coherence in itself, without any
models of illumination or occlusion, does significantly improve the tracking ro-
bustness. Especially in situations, where individual planes cannot be tracked,
the knowledge about the location of other planes can be exploited to estimate
the positions of occluded features.
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Abstract. The detection of moving objects is crucial for robot navi-
gation and driver assistance systems. In this paper the detectability of
moving objects is studied. To this end, image correspondences over two
and three frames are considered whereas the images are acquired by a
moving monocular camera. The detection is based on the constraints
linked to static 3D points. These constraints (epipolar, positive depth,
positive height, and trifocal constraint) are discussed briefly, and an al-
gorithm incorporating all of them is proposed. The individual constraints
differ in their action depending on the motion of the object. Thus, the
detectability of a moving object is influenced by its motion. Three types
of motions are investigated: parallel, lateral, and circular motion. The
study of the detection limits is applied to real imagery.

1 Introduction

Robots and autonomous vehicles require the knowledge about objects moving in
the scene in order to avoid collisions with them. Beside radar and lidar sensors
also cameras can be utilized to observe the 3D scene in front of the vehicle. In this
paper up to three images taken by a moving monocular camera are evaluated.
Since we do not know a priori where moving objects are in the scene we cannot
check for them directly. However, given the optical flow (image correspondences)
and the ego-motion we are able to triangulate the viewing rays yielding recon-
structed 3D points. If the 3D point is actually a static point the reconstruction
will be fine, but if the actual 3D point is moving the reconstruction will fail (in
general). What does this mean?

A reconstructed 3D point has to fulfill certain constraints in order to be a
valid static 3D point. If it violates any of them the 3D point is not static, hence
it must move. Thus, the detection of moving objects is based on the constraints
a static point fulfills.

Although many constraints exist, there are some kinds of motion which (nearly)
fulfill all constraints and thus are not detectable. This paper investigates these
detection limits, and is organized as follows: At first (section 2) the available con-
straints are discussed. In section 3 an error metric is developed combining all con-
straints. Based on this metric the detection limits are investigated in section 4.
Experimental results are given in section 5.
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Fig. 1. Epipolar constraint. The image of the second view is shown. The camera moves
along its optical axis. An object moves lateral w.r.t. the camera inducing an horizontal
optical flow shown by the correspondences x1 ↔ x2 and x′

1 ↔ x′
2. The subscripts 1

and 2 denote entities in the first and the second view, respectively. x2 does not lie on
the epipolar line l2 inducing the epipolar error de. x′

1 moves along its epipolar line l′2
and thus fulfills the epipolar constraint. e2 is the epipole.

Please note that the ego-motion, i.e. the motion of the camera from frame
to frame, must be known in order to perform the detection. Furthermore, the
location of the camera with respect to the road (ground plane) is required.
The information is considered as given here. Specifically, it is assumed that the
fundamental matrix, the road homography between the first two views, and the
trifocal tensor are given.

The reader is referred to [1,3,7] which address the estimation of the ego-
motion. Beside these two-view methods one can estimate the ego-motion over
all three views [9].

2 Constraints for Static 3D Points

In this section we discuss briefly the constraints a static 3D point fulfills. On
the basis of traffic scenarios we will see how each constraint acts on different
kinds of motion. Thereby we differentiate between parallel motion (preceding
and overtaking objects), and lateral motion (crossing objects).

The first three constraints, discussed in detail in [5], apply for correspondences
over two frames. The fourth constraint is applicable if correspondences over three
views are available. Each individual constraint raises the quality of detection.

– Epipolar Constraint
The epipolar constraint expresses that the viewing rays of a static 3D point
(the lines joining the projection centers and the 3D point) must meet. A mov-
ing 3D point in general induces skew viewing rays violating the constraint.
Figure 1 illustrates it.

– Positive Depth Constraint
The fact that all points seen by the camera must lie in front of it is known as
the positive depth constraint. It is also called cheirality constraint. If viewing
rays intersect behind the camera, as in figure 2a, the actual 3D point must
be moving.
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Fig. 2. Side view: Positive depth (a) and positive height (b) constraint. The camera
is moving from c1 to c2. A 3D point on the road is moving from Z1 to Z2. In (a) the
traveled distance of the point is greater than the distance of the camera (overtaking
object). The triangulated 3D point Zt lies behind the camera, violating the positive
depth constraint. In (b) the traveled distance of the point is smaller (preceding object).
The triangulated 3D point Yt lies underneath the road, violating the positive height
constraint.

X1X3

c1

c2

c3

Xt23

Xt12

X2

Epipolar Plane

Fig. 3. Trifocal Constraint. The camera observes a lateral moving 3D point (X1 to X3)
while moving itself from c1 to c3. The triangulated point of the first two views is Xt12.
The triangulation of the last two views yields Xt23 which does not coincide with Xt12

violating the trifocal constraint.

– Positive Height Constraint
All 3D points must lie above the road. If viewing rays intersect underneath
the road, as in figure 2b, the actual 3D point must be moving.

– Trifocal Constraint
A triangulated 3D point utilizing the first two views must triangulate to the
same 3D point when the third view comes into consideration. This constraint
is also called trilinear constraint. In figure 3 it is violated.

3 Error Metric Combining All Constraints

With the constraints described above, the objective is to measure quantitatively
to which extent these constraints are violated. The resulting measurement func-
tion, called error metric, shall be correlated to the likelihood that the point is
moving, i.e. higher values indicate a higher probability.
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Fig. 4. Combined error metric. The image of the second view is shown. The camera
moves along its optical axis observing a lateral moving point x1 ↔ x2 ↔ x3. The closest
point to x2 fulfilling the two-view constraints is xf2. The error arising from two-views
is the distance d2. Transferring the points x1 and xf2 into the third view yields xf3.
If the observed 3D point was actually static its image x3 would coincide with xf3.
However, the 3D point is moving which causes the trifocal error d3. The overall error
is d = d2 + d3. Note, that in general x1 and xf3 do not lie on the epipolar line l2.

The error metric is developed in two steps. First, the two-view constraints
are evaluated taking view one and two into account. Afterwards, the trifocal
constraint is evaluated using the third view, too.

3.1 Two-View Constraints

An error metric combining the two-view constraints has been introduced in [5]. It
measures the distance of a given image point in the first view to the closest point
fulfilling all constraints (epipolar, positive depth, and positive height constraint).
For the ease of computational complexity image points in the second view are
considered noise free. We use this metric here but swap the roles of the views,
i.e. we compute the error (distance) in the second view. This is illustrated in
figure 4.

We first consider the correspondence x1 ↔ x2 in the views one and two. The
closest point to x2 fulfilling the two-view constraints is xf2. It lies on the epipolar
line l2 = Fx1 with F the fundamental matrix. Note that the vector from xf2 to
x2 is not necessarily perpendicular to l2. The distance d2 between xf2 and x2 is
the error arising from the first two views. For the computation of d2 see [5].

3.2 Three-View Constraint

We now add the third view and consider the correspondence x1 ↔ x2 ↔ x3.
As the point xf2 is defined such that it fulfills the two-view constraints the re-
constructed 3D point arising from the triangulation of the points x1 and xf2

constitute a valid 3D point. This 3D point is projected into the third view yield-
ing xf3. The measured image point x3 will coincide with xf3 if the observed 3D
point is actually static. Otherwise there is a distance d3 (figure 4) between them
which we call trifocal error. xf3 is computed via the point-point-point transfer
using the trifocal tensor [2]. This approach avoids the explicit triangulation of
the 3D point.
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The overall error combining the two-view constraints and the three-view con-
straint is d = d2 + d3. It measures the minimal required displacement in pixels
necessary to change a given correspondence into a correspondence belonging to
a valid static 3D point.

4 Detection Limit

In this section we deal with the key question: Utilizing the different constraints,
which kinds of motion are detectable and to which extent? In order to detect a
moving object reliably the error metric developed in section 3 must be greater
than a certain threshold T , whereas the threshold should reflect the noise in
the correspondences (optical flow). A reasonable choice is T = 3σ with σ the
standard deviation of the correspondences.

In the following we consider the three most frequent kinds of motion in traffic:
parallel, lateral and circular motion. We model the motion of the camera and the
object as shown in figure 5. It is not necessary to investigate camera rotations
about its projection center, since they do not influence the detection limit. One
can always compensate these rotations by a virtual inverse rotation.

vox

vcz

c1

z

h

voz

object plane

road plane

z

r

h

vo

vc

c1

road plane

object plane

(a) (b)

Fig. 5. Motion model utilized for the investigation of the detection limit. The cameras
projection center in the first view is c1. The moving object is modeled as a plane. (a)
Linear motion: The (object)plane moves parallel (w.r.t. the camera) with speed voz

and lateral with speed vox. The distance of the camera to the object is z, to the road
it is h. The camera moves along its optical axis with speed vcz. (b) Circular motion:
Both, camera and object, move along a circle with radius r. The tangential speed of
the camera is vc, that of the object is vo.

4.1 Linear Motion

The detection limits for the linear motions (parallel and lateral motion) are
illustrated by means of three examples:

1. Overtaking object: The object moves parallel to the camera but faster.
vcz = 30km/h, voz = 40km/h, vox = 0km/h



Detectability of Moving Objects 117

1. Overtaking object 2. Preceding object 3. Crossing object
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Fig. 6. Detection limits for different kinds of linear motion and constraints. The images
show the first view (compare to fig. 5). They are truncated at row 290, since below
there is no object but the road. Inside the black regions the motion is not detected.
The contour lines 2T and 4T are also shown. The red point marks the epipole, the red
cross is the point of collision. Further explanation is given in the text.

2. Preceding object: The object moves parallel to the camera but slower.
vcz = 30km/h, voz = 20km/h, vox = 0km/h

3. Crossing object: The object moves lateral to the camera.
vcz = 30km/h, voz = 0km/h, vox = −5km/h

The subscripts stand for: c = camera, o = object, z = longitudinal direction,
x = lateral direction. Anti-parallel motion (vcz > 0km/h, voz < 0km/h, vox =
0km/h) is not of interest here, since it is completely not detectable [4]. In the
examples other important parameters are: focal length f = 1000px, principal
point (x0, y0) = (320, 240), height of camera above the road h = 1m, distance to
object z = 20m, time between consecutive frames Δt = 40ms.

The detection limits of the linear motions are shown in figure 6. Each image
shows the first view. Inside the black regions the error metric is lower than
T = 0.5px (assuming a std. dev. in the correspondences of σ = 0.167px). Parts
of the object seen in these regions are not detected as moving. There is one
important point in the image: the point of collision. This is the point where the
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camera will collide with the object, provided that the object is slower than the
camera. We will see that this dangerous point is not detectable in many cases.

The first row of figure 6 considers the epipolar constraint only. As can be
seen parallel motion is not detected at all. Lateral motion is detected to a high
extent. The black region is shaped like a bow tie.

In the second row the positive depth constraint is added. Overtaking objects
are now detected. The error metric in this case is identical to the motion parallax
induced by the plane at infinity. The optical flow of points at infinity is zero
(camera does not rotate). Thus, the motion parallax is equal to the length of
the measured optical flow. The contour lines (lines where the error metric takes
on a constant value) are circular around the epipole. Preceding objects are still
not detected. In the case of lateral motion the bow tie is cracked. The motion is
also detected between the epipole and the point of collision due to the violation
of the positive depth constraint.

The use of the positive height constraint (third row) gains the power of de-
tection for the image part below the horizon. In the cases of parallel motion
(overtaking and preceding objects) the error metric below the horizon is iden-
tical to the motion parallax induced by the road plane. It is possible to detect
preceding objects but it is a challenging task. Lateral motion benefits from the
positive height constraint only on the right-hand side of the epipole.

Adding the trifocal constraint yields the best achievable results. The parallel
motion profits mainly from the larger driven distance of the camera, since the
camera moves from c1 to c3 (not just to c2). This just increases the signal to noise
ratio. Similar results would be obtained if only the first and the third view would
be evaluated. This does not hold for the lateral motion. The trifocal constraint
allows a detection also to the left of the epipole.

The reason for that is given in figure 3. There the camera moves from c1 to
c3 observing a point moving from X1 to X3. A situation is chosen such that
the trajectories of the camera and the point are co-planar. They move within
the epipolar plane. Considering the first two views the two-view constraints are
fulfilled. The viewing rays meet perfectly in the point Xt12. This point lies in
front of the cameras and above the road. Consequently, this kind of motion is not
detected over two views alone. Considering the third view reveals the motion,
since the triangulated point Xt23 of the second and third view is different from
Xt12.

We have seen that in case of the linear motion the strength of the trifocal
constraint is not very high. The trifocal constraint shows its strength if the
cameras translational direction changes over time as it is the case in the circular
motion.

4.2 Circular Motion

The circular motion is modeled as shown in figure 5b. To demonstrate the detec-
tion limit for this case we consider an example similar to the ”preceding object”
example: vc = 30km/h, vo = 20km/h, z = 20m, and r = 100m.
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Fig. 7. Detection limit in the case of circular motion. The images show the first view
(compare to fig. 5b). They are truncated at row 274, since below there is no object
but the road. Inside the black regions the motion is not detected. The contour lines 2T
and 4T are also shown. The red point marks the epipole, the red cross is the point of
collision. (a) Epipolar constraint. (b) + positive depth constraint. (c) + positive height
constraint. (d) + trifocal constraint.
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Fig. 8. Detection limit in the case of circular motion with tripled time period Δt
compared to figure 7. (a) Epipolar + positive depth + positive height constraint. (b)
+ trifocal constraint.

Figure 7 shows the detection limit. Although the object is slower than the
camera, which was a problem for the parallel motion case, the circular motion is
detected to a high extent (fig. 7a). With the positive depth constraint taken into
account the entire region to the left of the epipole is detected. It seems that the
trifocal constraint (fig. 7d) just shrinks the black region, meaning that it only
improves the signal to noise ratio. This is, however, not true. If we triple the
time period Δt = 120ms the black region vanishes (figure 8b). Consequently, the
entire object is detected as moving and so is the point of collision. The power of
the two-view constraints is insufficient to detect that point.
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Taking more than three views into account just increases the signal to noise
ratio and hence shrinks the black regions but does not change the shapes of the
contour lines (unless camera and object accelerate differently).

5 Experimental Results

In this section we apply the study on the detection limit to real imagery. Fur-
ther, we detect the moving objects based on the measured optical flow and the
proposed error metric d2. The detection result is compared to the theoretical
detection limit.

(a) (b)

Fig. 9. Experimental result. (a) Original image with two moving vehicles in front. (b)
The semi-transparent yellow region shows the image region where the motion is not
detectable. The measured optical flow vectors are classified as static (blue / dark) and
moving (magenta / bright).

Figure 9a shows two vehicles driving in front of the camera (ego-vehicle).
They are faster than the camera and move parallel to it. First, the detection
limit is computed. To this end, the distance to the objects and the speed of
them are required. The on-board radar sensor provides this information: z =
16.5m and voz = 62.9km/h. The speed of the camera, retrieved by odometry,
is vcz = 53.5km/h. With this information together with the camera calibration
the non-detectable region computes to that shown in figure 9b. Thereby the
two-view constraints are considered.

The actual detection of the vehicles is carried out by the evaluation of the
two-view error metric d2 utilizing the measured optical flow. Radar data are
ignored. The required ego-motion as well as the road homography are estimated
using [6]. Flow vectors with d2 > T = 1.7px are classified as moving. The result
is shown in figure 9b. One can see that the theoretical detection limit matches
well to the practical one.

The vehicle on the right side is completely detected whereas only the lower
part of the vehicle in the middle of the image is detected.
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6 Conclusion

We have presented the detection limits of independently moving objects utilizing
all available constraints existing for static 3D points. We have seen that:

– Objects which are faster than the camera are detected to a higher extent
than those which are slower. That is a pity because slower objects are the
dangerous ones. We will not collide with a faster object.

– In the event of linear motion the dangerous point of collision is not detected
at all, what an irony of fate!

– The trifocal constraint emphasizes its potential if the motion of the camera is
circular (non-linear). Then the point of collision is detectable (in principle).
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(FAS), Löwenstein, Germany, pp. 78–88 (2006)

5. Klappstein, J., Stein, F., Franke, U.: Monocular Motion Detection Using Spatial
Constraints in a Unified Manner. In: IEEE Intelligent Vehicles Symposium (IV),
Tokyo, Japan, pp. 261–266 (2006)

6. Klappstein, J., Stein, F., Franke, U.: Applying Kalman Filtering to Road Homog-
raphy Estimation. In: Workshop on Planning, Perception and Navigation for Intel-
ligent Vehicles in conjunction with IEEE International Conference on Robotics and
Automation (ICRA), Rome, Italy (2007)

7. Nistér, D.: An efficient solution to the five-point relative pose problem. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence (PAMI), June 2004, pp.
756–770 (2004)

8. Torr, P.H.S., Zisserman, A., Murray, D.W.: Motion Clustering using the Trilinear
Constraint over Three Views. In: Mohr, R., Wu, C. (eds.) Europe-China Workshop
on Geometrical Modelling and Invariants for Computer Vision, pp. 118–125. Xidan
University Press/Springer–Verlag (1995)
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Abstract. We propose a model-based camera pose estimation approach,
which makes use of GPU-assisted analysis-by-synthesis methods on a
very wide field of view (e.g. fish-eye) camera. After an initial registration,
the synthesis part of the tracking is performed on graphics hardware,
which simulates internal and external parameters of the camera, this way
minimizing lens and perspective differences between a model view and a
real camera image. We show how such a model is automatically created
from a scene and analyze the sensitivity of the tracking to the model
accuracy, in particular the case when we represent free-form surfaces by
planar patches. We also examine accuracy and show on synthetic and
on real data that the system does not suffer from drift accumulation.
The wide field of view of the camera and the subdivision of our reference
model into many textured free-form surfaces make the system robust
against moving persons and other occlusions within the environment and
provide a camera pose estimate in a fixed and known coordinate system.

1 Introduction and Previous Work

Camera tracking is nowadays used in many applications, e.g. robotics, visual
navigation or augmented reality [16,8]. It can suffer from poor localization of
visual features, ill-posed estimation (aperture problem, too small field of view),
drifting references and occluded or moving scene content. To overcome these
issues we propose a fish-eye camera as a visual pose sensor, which captures the
surrounding scene in an offline phase and can then be used in an online phase
for real-time tracking. Fish-eye cameras have the advantage that they have a
very wide field of view compared to a standard perspective camera. Therefore
they always “see” large parts of the static scene even if objects or persons move
and occlude parts of the background and when the camera rotates. Furthermore,
pose estimation is better conditioned than for perspective cameras [9,17,18]. In
our approach, the scene in which the camera moves does not need to be set up
with expensive calibrated markers as in [3] and can therefore be any location
which provides textured surfaces for tracking, e.g. outdoor in front of a building.

During the last years several online camera tracking systems have been pro-
posed: Commercially available systems (e.g. [3]) need special calibrated markers,
fast structure-from-motion [1] is prone to drift on long sequences due to a missing
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absolute reference. Object tracking approaches usually cannot cope with clutter
and occlusion as moving objects or persons within the scene [11]. Other systems
tend to jitter, because they apply fast 2D feature extraction methods to every
single image [5,2], which can suffer from few features or poor feature localization
and have to be regularized by temporal pose filtering. Our system overcomes
these limitations. The key idea is that feature tracking is improved by compen-
sating the features’ appearances with respect to 3D viewpoint and lens effects,
which can efficiently be done on graphics hardware with sub-pixel accuracy. The
approach is separated into an offline and an online phase. During the offline
phase, a very wide field of view camera (e.g. fish-eye with 180◦) is moved within
a scene and a structure-from-motion-approach [1] is applied to reconstruct the
environment as a textured triangle mesh. Since no time-constraints are imposed
during offline-processing, an optimal batch tracking with bundle adjustment and
multi-camera depth estimation is possible, yielding high quality models. Next,
robust 2D features (e.g. MSER [7]) are extracted from reference images, their 3D
coordinates are computed and the features are stored in a database according
to [4]. The textured triangle mesh and the robust features database serve as an
offline reference model.

In the online phase, robust features are extracted from the first image and
matched to the robust features of the offline database similar to [4]. Using
these correspondences an approximate camera pose is estimated for initialization
of the system. Our contribution here focuses on the subsequent tracking part of
the online system: From the approximate pose, we synthesize a fish-eye image
of our offline model using the same (intrinsic and extrinsic) camera parameters
as the real fish-eye camera has (see section 2). We need to minimize the differ-
ence between rendered and real camera image to obtain the correct camera pose.
However, since we want to cope with outliers and moving scene content, we do
not use a direct gradient based approach to estimate the pose parameters as
in [11] but search for local 2D offsets of individual free-form surfaces using the
KLT [6]. From the exact locations of the surfaces in the camera image we can
compute the final camera pose as described in section 3. Section 4 is dedicated to
the evaluation of the system on real and synthetic data followed by a conclusion.

2 Spherical Camera

We propose to use a wide field-of-view camera, e.g. with a fish-eye lens, which
has a nearly linear and isotropic relation between distance in pixels to the prin-
cipal point and the angle between the ray and the optical axis[17]. Fleck [10]
calls this the equidistant projection. A comparison between spherical and per-
spective cameras regarding tracking can be found in [9], who showed that pose
estimation is more accurate with a wider field of view and that the lower angular
resolution of the fish-eye lens is more than compensated by its wide field of view.
Furthermore, such a camera covers a larger solid angle and therefore features can
be seen for a longer period of time in image sequences. Let P () be the function
that computes a 2D image point xi from a 3D scene point Xi, which takes care of
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all internal and external camera parameters of our real camera (CCD size, lens
distortion, camera pose p, ...): P (p, k, Xi) = xi

P is actually composed of extrinsic camera parameters, i.e. the pose p (po-
sition and orientation), and intrinsic camera parameters k, which describe the
mapping of 3D points in the camera coordinate system to image coordinates. The
internal parameters do not change, since they depend only on the lens and the
hardware, we are going to estimate the pose. We describe the internal camera pa-
rameters with the function Kk(), where Kk() maps projection rays in the camera
coordinate system to 2D points in the image depending on a vector of internal
parameters k. Therefore when we measure an image point xi in any camera we
can use K−1

k to compute the ray that maps a 2D image point onto the unit
sphere within the camera coordinate system. We define the mapping from world
coordinates to normalized camera coordinates by P̂ : P̂ (p, Xi) = K−1

k (xi) = x̂i

where P̂ is only a function of the pose and the 3D point. k can be determined by
calibration [13]. If the effects of Kk() are removed from the image measurement,
we compute on rays in the camera coordinate system, which is easily applicable
for all camera models with a single center of projection.

In a similar way we can synthesize fish-eye images using the graphics hard-
ware: Given a camera position, we render 6 perspective views in all 6 directions
(cube-mapping of environment). Afterwards we stitch these images together to
form a fish-eye image (displacement mapping). This exploits again that for each
pixel in the fish-eye image, we know the ray and therefore the coordinates where
a perspective camera observes this ray. This can be efficiently implemented us-
ing OpenGL/CG and runs directly on the graphics hardware. Furthermore we
combine the zBuffer values to produce a spherical depth map in a similar way.

3 Camera Tracking

We will first review the offline model generation process and the general system
aspects, then we will study the online correspondence search and pose estimation.

3.1 Offline Model Generation

During the offline phase a video of the scene is captured systematically by scan-
ning the possible range of viewpoints that will be used during online processing.
In this way we learn a 3D reference model for later use. The intrinsics of the
fish-eye camera are known [13], therefore coordinates in the image can be iden-
tified with rays in the camera coordinate system. First we perform a feature
based reconstruction of the camera path similar to [1] using correspondences
from the KLT tracker [6]. Next we generate depth maps by applying a cylindri-
cal rectification method in 3D (again a way of abstracting from the underlying
camera distortion) to the fish-eye images to use a standard stereo algorithm. The
results are fused to robustify the depth maps (for example see figure 1). From
these depth maps, free-form surface models can be built which are represented
by textured triangle meshes. If a very fine resolution is chosen, the real surfaces
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Fig. 1. Left: 3D view of cube-mapped environment (perspective views) Middle:Fish-
eye image with center, 45◦, 90◦, 135◦ and 180◦ field of view circles, Right: Example of
Reconstructed Fish-eye Depth Map

are approximated quite well at the cost of a huge number of triangles. If on the
other hand a very coarse resolution is chosen, the free-form surfaces are actu-
ally approximated by only few planar patches (triangles), which can be rendered
more efficiently. Those regions which have been tracked well over long time in
the offline phase are obviously visible from several viewpoints and serve as a hint
for the online phase where to register the triangle mesh with the camera image.

The textured triangle mesh is a reconstructive model of the scene: It represents
the scene well in the sense that we can render a virtual view of the scene from
any given viewpoint. However, when the camera is switched on during the online
phase, no prior information is given about the viewpoint and we have to initially
register the camera with respect to the scene, i.e. we also need a discriminative
model. We solve this by creating a database of robust features (e.g. MSER[7])
as described in [4], which allows efficient recognition of scene parts.

3.2 Online Pose Estimation

Once we have set up the model we start the online phase, where the system reg-
isters against the database [4] and begins the tracking. The registration is robust
and needs no approximate pose. However, the subsequent tracking approach is
much faster and also more accurate, therefore the database is only used when
the system is lost.

Correspondences between Image and Model. Given an approximate pose,
the model is rendered and the true pose is computed from the displacement vec-
tors between regions of the rendered image and the real camera image. By using
a fish-eye lens we have all the advantages in visibility and geometrical stability,
however the appearance of the model is quite different between distant camera
poses. Therefore we need the rendering to undistort these effects by warping the
model image into the new viewpoint and allowing to establish correspondences
using standard techniques like KLT. After the free-form surfaces are rendered, we
check geometrically which ones are projected into the virtual image and search
for textured regions with a minimum size (e.g. 7x7 pixels) inside each free-form
surface projection. We save its center point xi and create its corresponding 3D
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Fig. 2. From Left to Right, Top Row: Perspective Depth Map and Two Reduced Trian-
gle Meshes (87724, 6882 triangles), Bottom Row: Ground Truth Fish-eye Image (left)
and Photometric Difference for a sample view from meshes above

point Xi by back-projecting the viewing ray onto the model (using the depth
from the renderer). This delivers a 3D model feature.

We start individual gradient-based minimizations [6] of the intensity differ-
ences at these locations xi between the patches in synthesized and real image.
This is more robust than a gradient-based global optimization of the pose across
the whole image (as in [11]), since several scene parts may be occluded by per-
sons or other unmodeled objects and it is hard to decide within one iteration
step, which pixels should be used and which not. For a whole free-form surface
we can test the projection error to see whether it is an outlier. Furthermore, the
difference minimization is always carried out between a synthesized image and
the actual camera image. This way, the offline model serves as a global refer-
ence and we will not accumulate drift as it would be the case when one tracks
from camera image to camera image. The rendering can be seen as a fish-eye
compensation of the patch for tracking. For simplicity, we use the standard KLT
tracker, since our prediction (the rendered image) is usually very close. However,
if illumination changes occur it is easy to use a more light insensitive version.

Robust Pose Estimation. The resulting 2D-3D correspondences are then
processed in a robust non-linear pose estimator (M-Estimator with Huber error
function h() to limit the influence of mismatches), which starts at the predicted
pose and minimizes the ray error for all 2D-3D correspondences. More precisely,
the position xi and the covariance matrix Cxixi from the KLT tracker in the orig-
inal image are transformed to position x̂i and a covariance Ĉi which is obtained
through an unscented transform[15]. Now the Mahalanobis distance between x̂i
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and the ray of the 3D point is minimized, where the transformed covariance Ĉi

of the tracked point defines the Mahalanobis error metric.
∑

i

h
(
(x̂i − P̂ (p, Xi))T Ĉ−1

i (x̂i − P̂ (p, Xi))
)

→ min

We are looking for the pose p which minimizes the sum of these distances for
all points. Once the pose is computed it is possible to render another fish-eye
image from that pose and performing the KLT step again, this way iterating
towards an even better pose. If and how many iterations are needed depends
on the quality of the pose prediction and therefore mainly on the speed and
smoothness of camera movement and the speed of computation. Within the
camera movement, the rotation is the most critical part, because fast rotations
change the fish-eye image more drastically than fast translations (when assuming
a certain distance from the scene). In [14] it was found that the critical point is
mainly the ability of the KLT tracker to establish the correspondence between
rendered and real image at all and that no significant improvement could be
observed when rendering more than two times.

4 Experiments

In this contribution the focus is on the analysis-by-synthesis part of the tracking,
therefore we assume an approximate initialization in the following evaluation is
given. We will compare the approach based on a synthetic scene for ground truth
and a real outdoor scene.

4.1 Ground Truth Experiments

As synthetic ground truth we used a model of a real living room scene with
real textures as reconstructed by the offline modeling part (see figure 2). The
model is fused from four perspective depth maps of the scene, consists of 1.2
million triangles (the bounding box is about 5m x 4m x 2m) and we generated
a sequence of 350 fish-eye images (140◦ field of view, camera translation about
1.5m, rotation in all directions, where the vertical axis rotations dominate by up
to 80◦) with ground truth pose information.

Sensitivity to Model Accuracy. The accuracy of the pose estimation de-
pends on the goodness of the model used for tracking. Therefore, we compared
rendering speed and average pose estimation accuracy (figure 3) at varying res-
olutions of the triangle mesh for tracking (figure 2). The number of triangles is
reduced from 1.200.000 down to 1.600 by a combination of depth map resolution
reduction and quad tessellation similar to what has been proposed in [12].

The main result of this evaluation is not surprising: With increasing number of
triangles rendering performance goes down; if the GPU resource limit is reached,
real-time tracking becomes infeasible. The pose estimation error decreases about
logarithmically with increasing number of triangles. In the extreme case of only a
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Fig. 3. Model detail in number of triangles. Left: Pure Rendering Frame-rate, Right:
Average Orientation and Position Error on Living Room Sequence.

few triangles the scene is actually represented by planar patches, which showed to
be only usable as long as the underlying scene is planar. Otherwise the rendering
does not fulfill the undistortion goal: the rendered and the camera image look
significantly different and cannot be matched by the KLT tracker. Only those
points are found which actually do lie on planes and are approximated well.

Comparison of different algorithms. The system has been compared
against a) incremental structure-from-motion using the same camera (140◦ FOV)
but no model and b) model-based tracking with a 40◦ FOV perspective cam-
era with the same number of pixels and same number of surfaces (of which the
perspective camera sees not all at once). Pose error is given as position (transla-
tional) error in cm and orientation error in degree (axis-angle representation of
the rotation between the ground truth camera and the estimated camera). The
sequence is run forward and backward, generating a total of 700 frames with im-
age 1 and 700 at identical pose. The results in figure 4 show that the model-based
fish-eye tracking outperforms both other approaches. The error is constantly low
over the complete sequence (average errors: position: 0.3 cm, orientation: 0.1◦).

The structure-from-motion algorithm a) has no prior model and generates the
model on the fly. Therefore, the average pose error is higher than with the model.
Scale was fixed such that the tracking can be compared with the model-based
approaches. Drift does not accumulate very much since all features are visible in
most images, however we see an error increase as the camera moves away from
the initial position. We deliberately left out the bundle adjustment, which would
clearly help, but which is not feasible in real-time applications. Average position
error is about 2 cm, average orientation error 0.3◦.

The perspective model-based tracking b) on the other hand has difficulties in
distinguishing between camera rotation and camera translation, which can be seen
from the high correlation between orientation and translation error in figure 4.
Furthermore it does only see about 100 of the about 500 free-form surfaces in the
model at a given time because of its limited field of view. The errors are much
higher with average position error 4 cm and orientation error 0.8◦.
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Fig. 4. Algorithm comparison on ground truth living room sequence (350 images for-
ward+backward). Left: Fish-eye Model Tracking, Center: Fish-eye Structure-From-
Motion, Right: Perspective Model Tracking (40◦ FOV) with triple error range.

Real outdoor fish-eye sequence. To prove the applicability of our method
we evaluate a real sequence (see also figure 1), which consists of 1400 images
of 1200 × 1600pixels, that were taken with a fish-eye lens covering a viewing
angle of 185◦. The camera was moved handheld and translated approximately
6m sidewards while panning up to 90◦. The filmed buildings were up to 20m
away and 12m in height. The camera path was reconstructed with the structure
from motion approach using the full fish-eye images as explained earlier. The
resulting depth map was used to create a mesh yielding a 3D model of the scene
which consists of 90303 triangles (compare figure 5, left).

Without ground-truth data, the verification of the estimated camera path is
difficult. One way to check for consistent model and camera path reconstruction
is to augment the model into a sequence. The right image of figure 5 shows an
augmentation of the model rendered with the estimated camera parameters. In
order to provide an augmentation which is distinguishable from the background
image, the texture of the model was replaced by its gradient magnitude. While
evaluating the model tracking, the difference images between the original image
and the rendered model view were monitored. This qualitative evaluation showed
that the observable tracking error was in the range of one pixel.

In order to analyze potential accumulation of errors in pose estimation for long
sequences, 360 consecutive images of the real sequence were processed forward
and backwards several times, starting at the middle of the sequence. The central
image position is reached eight times and compared to the first pose, which
should always be the same. Figure 5 shows the extent of this path which is
approximately 2 meters to the left and to the right of the middle camera (green).
Looping through this sequence resulted in 2160 images for tracking. Given the
pose for the first (central) image, the camera poses for this “oscillating” sequence
are estimated using SfM tracking and model based tracking with 400 features
for both. Model based tracking uses only one rendering iteration.

Table 1 (top two rows) compares the error development at the middle image
over consecutive passes of a looped sequence using tracking on fish-eye images,
but without a model. Although the error is not constantly growing with each
pass an error increase is visible. On the other hand the tracking error observed
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Fig. 5. Left: Perspective view on reference model and extent of camera movement used
for drift measurement. The camera is going forward/backward from one end of this path
to the other. It passes the green middle camera, where the pose estimation is compared
to previous and following passes (see table 1). Right: augmentation of model view and
real image using estimated parameters. The texture used for the augmentation is the
gradient magnitude of original texture, strong gradient edges colored in red.

Table 1. Pose error evaluation for a looped image sequence, which passed the image
under inspection eight times. The SfM rows show the position and orientation error
using a structure from motion based tracking and how pose estimation has drifted
when passing this image. The model rows prove the avoidance of error accumulation
when tracking is supported by a model.

pass 1 pass 2 pass 3 pass 4 pass 5 pass 6 pass 7 pass 8

ΔT SfM 2.57 cm 1.92 cm 1.92 cm 2.79 cm 2.41 cm 1.06 cm 3.53 cm 3.22 cm
Δφ SfM 0.098◦ 0.085◦ 0.085◦ 0.11◦ 0.11◦ 0.02◦ 0.13◦ 0.14◦

ΔT Model 0.73 cm 0.82 cm 0.69 cm 0.73 cm 0.84 cm 0.68 cm 0.73 cm 0.81 cm
Δφ Model 0.047◦ 0.047◦ 0.046◦ 0.047◦ 0.048◦ 0.046◦ 0.047◦ 0.047◦

using the model (last two rows) is confined and does not increase over consecutive
passes. This confirms that the system does not drift. Furthermore the pose error
is smaller at all times when compared with the SfM tracking.

5 Conclusion

We have discussed a camera tracking system, which first builds a textured model
from the environment and afterwards uses the model in an analysis-by-synthesis
approach for tracking. The graphics hardware is exploited to render a distortion-
compensated and perspectively warped model image with an approximate pose.
Since this compensates the effects of the wide-angle lens, now full advantage can
be taken of the fish-eye properties, which proved to be superior to perspective
cameras in tracking. It was shown that there is no drift accumulation over time
and therefore the system is well-suited to work on infinitely long image sequences.
The accuracy of the model approximation should fit well the free-form surfaces,
since planar approximations of curved surfaces degrade the accuracy. On current
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GPUs a model complexity of about 100.000 triangles is feasible. We showed the
applicability of the approach by using a model of a real outdoor building and a
semi-artificial living room sequence.
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Abstract. Confidence measures are important for the validation of op-
tical flow fields by estimating the correctness of each displacement vector.
There are several frequently used confidence measures, which have been
found of at best intermediate quality. Hence, we propose a new confidence
measure based on linear subspace projections. The results are compared
to the best previously proposed confidence measures with respect to an
optimal confidence. Using the proposed measure we are able to improve
previous results by up to 31%.

1 Introduction

Optical flow calculation is a crucial step for a wide variety of applications ranging
from scientific data analysis and medical imaging to autonomous vehicle control
and video compression. Methods for optical flow computation can be distin-
guished into local and global approaches. Most local approaches are either based
on the idea of Lucas and Kanade [7], Bigün [11] or on the method of Anandan
[2], where an energy term is minimized for each pixel individually under utiliza-
tion of a small neighborhood. Global techniques usually follow the concept of
Horn and Schunck [8], which implements prior knowledge on the flow field by
spatio-temporally relating neighboring flow estimates by means of global energy
functionals. One of the most accurate methods recently has been proposed by
Bruhn et al. [9] and combines the advantages of both approaches.

Confidence measures are indispensable to assess and improve the quality of
optical flow fields. In 1994, in their landmark paper Barron and Fleet [3] stated
that ”confidence measures are rarely addressed in literature” even though ”they
are crucial to the successful use of all [optical flow] techniques”. Using the in-
formation provided by confidence measures, the accuracy of the estimated flow
field can be improved by integrating the confidence measure into the calculation
method or by postprocessing, e.g. removing and reconstructing incorrect flow
vectors. We have to distinguish between confidence and situation measures. De-
spite different concepts, both types of measures have been used as confidence
� The authors thank the German Research Foundation (DFG) for funding this work

within the priority program ”Mathematical methods for time series analysis and
digital image processing” (SPP1114).
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measures in literature. Situation measures assess the mere possibility of an accu-
rate flow computation and yield a low value for example in cases of occlusions,
transparent structures, severe noise, aperture problems and homogeneous re-
gions. However, the actual displacement vector is not necessarily considered and
can be assessed as unreliable despite its correctness. In contrast, confidence mea-
sures evaluate the correctness of a given flow vector independent of the situation
in the sequence. A comparison of known situation and confidence measures can
be found in [1]. So far, for variational methods only one general type of explicit
confidence measures has been proposed in [10]. The idea is to use the inverse of
the global energy functional in order to detect violations of the flow computation
model. For the well-known structure tensor method proposed by [11] the only
confidence measures that have been proposed actually belong to the class of sit-
uation measures, as they do not take into account the displacement vector at all
when assessing its correctness, e.g. the gradient of the image or other measures
described in [4,13,12]. Furthermore, the quality of these measures is unsatisfac-
tory as we have pointed out in [1]. We have also proposed several variational
data terms such as the brightness constancy equation and various regulariz-
ers [6,5] as confidence measures for the structure tensor method. In fact, these
measures turned out more reliable than situation measures, but still did not
obtain accurate results. This is mainly due to the problem that each measure
assumes a specific flow computation model, which cannot be valid in any situ-
ation. Therefore, we propose a new confidence measure for the structure tensor
method that is adaptable to the current flow computation problem by means
of unsupervised learning. In fact, the measure can be used for all optical flow
fields that have been computed with no or minor smoothness assumptions. Even
ground truth data which is generally unavailable is not necessary as the model
can be learned either from a set of ground truth flow fields or from a previously
computed flow field. The linear subspace projection method has been applied
for the estimation of optical flows before, directly by Black et al. in [17] and
by means of Markov Random Fields by Roth and Black in [16]. In contrast to
these approaches, where only spatial information is used, we extend the subspace
method to include temporal information of the flow field and derive a new con-
fidence measure. The concept of our confidence measure is based on the idea of
learning typical displacement vector constellations within a local neighborhood.
The resulting model consists of a set of basis flows, a linear subspace of the flow
field, that is sufficient to reconstruct 99% of the information contained in the
flow field. Displacement vectors that cannot be reconstructed by this model are
considered unreliable. Hence, the reconstruction error is chosen as confidence
measure. It performs better than previously proposed confidence measures and
obtains a substantial gain of quality in several cases.

2 Definitions

Let a given image sequence I be defined on a time interval [0, T ] as

I : Ω × [0, T ] → R, Ω ⊆ R
2 (1)
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The notion ”optical flow” refers to the displacement field u of corresponding
pixels in subsequent frames of an image sequence

u : Ω × [0, T ] → R
2 (2)

Then a confidence measure is a mapping c from the image sequence and a two-
dimensional displacement vector to the interval [0..1]:

c : I × u → [0..1] (3)

There is an infinite number of possible displacement vector constellations. Hence,
none of the previously proposed models is able to represent all of them. Using
given ground truth flow fields or computed flow fields we try to derive as much
information as possible from the samples in order to incorporate this informa-
tion into the learned flow model. Since much of the information contained in
a flow field is only obvious in the temporal domain, the inclusion of temporal
information is indispensable. However, it is rarely used in literature.

3 Linear Subspace Projections

In order to learn the linear subspace model any unsupervised learning method
can be used. We apply principal component analysis (PCA) and use a set of given
displacement fields for the training. They consist of a horizontal and a vertical
flow component. To compute the principal components a spatially and tempo-
rally distributed neighborhood containing both components is read into a single
vector using a lexicographic order. The matrix containing a large number of such
sample vectors will be called M . The idea of PCA is to find a low-dimensional
subspace which preserves as much information (variance) of the dataset as pos-
sible and in which the different dimensions of the data are decorrelated. The
covariance of the matrix M represents the correlation of the dataset along each
two dimensions. Hence, the goal is to find a new basis system, where the covari-
ance of each two dimensions is zero, that means the covariance matrix of M is
diagonal. As the covariance matrix of M is symmetric and positive definite it
can be diagonalized. We can obtain such a basis system by finding an orthogonal
matrix S and applying the similarity transformation

D = ST Cov(M) S (4)

e.g. using Givens rotations. The matrix S then contains the eigenvectors of the
covariance matrix of M , which form the new basis system. In order to reduce the
dimensionality of the data to a meaningful subspace, the axes representing the
least information (the smallest variance) of the dataset can be removed. These
are the eigenvectors with the smallest eigenvalues. We can select the number of
eigenvectors containing the fraction δ of the information of the original dataset
by choosing k of the n eigenvectors vi sorted by decreasing eigenvalue such that

∑k
i=1 vi∑n
i=1 vi

≥ δ (5)
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With the eigenvectors (”eigenflows”) we can now approximately reconstruct
any displacement vector neighborhood Nx centered on position x by a linear
combination of the k selected eigenflows using the reconstruction function r

r(Nx, k) =
k∑

i=1

αivi + m , m =
1
n

n∑
i=1

si (6)

where si are the data samples in the columns of M . In order to obtain the
coefficient vector α containing the eigenflow coefficients αi, it is sufficient to
project the sample neighborhood Nx into the linear subspace spanned by the
eigenflows using the transformation

α = ST (Nx − m) (7)

Figure 1 shows examples for eigenflows derived from computed flow fields. Using
temporal information the resulting eigenflows can represent complex temporal
phenomena such as a direction change, a moving motion discontinuity or a mov-
ing divergence.

The linear combinations of the previously derived eigenflow vectors represent
typical flow field neighborhood constellations. Depending on the training data
the information contained in the learned model varies. If ground truth flow fields
are used many sample sequences are necessary to include most of the possible
flow constellations. However, as only very few sequences with ground truth exist
the resulting eigenflows only represent an incomplete number of constellations.
In contrast, it is possible to compute the flow for a given sequence and use ex-
actly this computed flow as input for the unsupervised learning algorithm. In
this way the resulting model will be well adapted to the current flow problem.
However, if the flow computation method does not allow certain displacement
vector constellations the trained linear subspace will not be sufficient to rep-
resent these constellations either, as all training samples are derived from the
computed flow field. This is for example the case if the flow computation model
demands a smooth flow field, which leads to the problem that the sample flows
do not contain any flow edges. In both cases, if we learn from insufficient ground
truth flows or from incorrect, computed flow fields, the problem that correct
flow constellations cannot be reconstructed from the eigenflows persists. We will
compare both methods.

4 A Confidence Measure from Eigenflows

To evaluate the confidence of a given flow vector we have to consider its validity
within its spatio-temporal context, that is within its neighborhood Nx of flow
vectors. Given a number of k model parameters, e.g. eigenflows, a confidence
measure can be derived based on the assumption that displacement vectors are
the more reliable within their neighborhood the better they can be reconstructed
from the eigenflows, which represent typical flow constellations. Hence, the re-
construction error of the flow vector will serve as confidence measure:

c(x, u) = ϕ(u, r(Nx, k)) (8)
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Fig. 1. Examples for eigenflows calculated from computed flow fields using spatial and
temporal information; the inclusion of temporal information allows the representation
of complex temporal phenomena such as a flow direction change (top), a moving motion
discontinuity (center) and a moving divergence (bottom)

The size of the neighborhood Nx of course has to be the same as for the eigen-
flows. The function ϕ represents the error measure evaluating the similarity
between the calculated flow vector u and the reconstructed vector r(Nx, k).

The correctness of computed flow fields is usually evaluated in terms of the
angular error. Thus, we will use this error measure to define the function ϕ. Let
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the displacement vectors u = (u1, u2) be represented as 3-dimensional vectors of
unity length u = 1√

u2
1+u2

2+1
(u1, u2, 1). Then we can derive the function ϕ based

on the angular error α:

ϕ(u, v) = 1 − α(u, v) , α(u, v) =
arccos(u · v)

π
(9)

The new confidence measure will be called pcaReconstruction measure.
Our proposed method may fail on rare occasions of untypical flows encoun-

tered in the imaged data. These are singular events which in case of underrep-
resentation in the training data may not be adequately incorporated into our
basic PCA framework. A range of more refined algorithms have been developed
in the field of statistical learning. Some of these might solve this problem, such
as multiclass PCA [18] or partial least squares regression.

5 Evaluation of Confidence Measures

For the comparison of the proposed confidence measures to the best previously
proposed confidence measures, we use the technique presented in [1]. It is based
on the gradual sparsification (successive removal of least reliable flow vectors to
reduce the computation error) of the flow fields. The following problems, which
make a fair comparison very difficult, have been stated and solved in [1].

1. The confidence measures are bounded by the interval [0,1], but they all follow
different scales, which do not necessarily span all possible values. Therefore
a comparison of absolute confidence values is impossible.

2. The confidence values are often highly non-linear.

The basic idea for the comparison of a given to the optimal confidence map is to
compare the sparsification order of both confidence measures. In this way non-
linearities and different scales do not influence the result. Thus, ground truth
for a given confidence measure is necessary. It is defined using the angular error
of the computed flow vector u(x) and the ground truth flow vector g(x)

copt(x) = ϕ(u(x), g(x)) (10)

In [1] we have proposed the confidence measure quality value (CMQV) for the
evaluation of a given confidence measure. Let Q be the set of all pixels q in
the image sequence. The intuition is to ”punish” any deviation from the opti-
mal sparsification order. This punishment P (q) at pixel q is weighted by the
”damage” D(q) this error in the sparsification order causes. D(q) is defined as
the difference in the error that could have been removed in this situation and
the error that has been removed by eliminating the current flow vector. Finally
the quality value of the confidence measure is calculated as the average over all
punishment values weighted by the damage values for all pixels in the image
sequence.

CMQV (Q) :=

∑
q∈Q P (q)D(q)

|Q| (11)
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6 Results

The test of the proposed confidence measure is carried out as described in [1]. We
use four test sequences to compare our results to previously known confidence
measures based on the CMQV values defined in 11: the Marble and Yosemite
sequences as well as the Street and the Office sequences [14] shown in Figure 2.

Fig. 2. A sample frame of each Marble, Yosemite, Street and Office sequence

Table 1. CMQV values scaled by a factor of 100 for the pcaReconstruction measure
on all four test sequences for eigenflows based on ground truth flow fields (top) and on
computed flow fields (bottom); parameters: number n and spatio-temporal size (x,y,t)
of eigenflows in the format (n, x=y, t)

Marble Yosemite Street Office

ground truth 2.01 (2, 11, 5) 1.81 (6, 3, 1) 1.64 (4, 9, 3) 2.35 (14, 3, 3)

computed 1.98 (5, 19, 5) 1.72 (5, 3, 1) 1.60 (4, 9, 5) 2.38 (5, 3, 3)

Table 2. Comparison of new confidence measure (pcaReconst) to 9 best known confi-
dence measures; the CMQV values are scaled by a factor of 100

Marble Yosemite Street Office

anisoFlowReg (1.85) pcaReconst (1.72) isoFlowReg (1.44) pcaReconst (2.38)
isoImReg (1.86) structCt (2.49) anisoFlowReg (1.47) spaceTimeReg (3.45)

isoFlowReg (1.86) isoImReg (2.96) pcaReconst (1.60) timeReg (3.49)

tvReg (1.88) crossCorr (3.02) tvReg (1.61) anisoImReg (3.50)

homReg (1.88) anisoImReg (3.06) anisoImReg (1.64) isoImReg (3.50)

anisoImReg (1.93) structEv3 (3.06) isoImReg (1.78) tvReg (3.50)

pcaReconst (1.98) ssd (3.06) homReg (1.78) anisoFlowReg (3.51)

timeReg (2.02) anisoFlowReg (3.08) spaceTimeReg (1.93) homReg (3.56)

spaceTimeReg (2.23) isoFlowReg (3.09) structEv3 (1.96) isoFlowReg (3.60)

laplaceConst (2.55) homReg (3.20) hessConst (2.13) structCt (3.94)

We use the CMQV values as basis for the comparison of the proposed confi-
dence measure and the best known measures from literature. A flow field calcu-
lated by the structure tensor method with the same parameters as in [1] (7x7x7
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Fig. 3. Comparison to optimal confidence, left: optimal confidence map, right: pcaRe-
construction confidence map
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flow optimal derivative filters of Scharr [15], structure tensor integration scale
σ=4) is used for the confidence measure test. As explained above, for the com-
putation of eigenflows ground truth or computed flow fields can be used. Table 1
shows the best experimentally determined parameters (number n and spatio-
temporal size (x,y,t) of eigenflows in the format (n,x=y,t)) for the pcaRecon-
struction measure for each sequence based on eigenflows computed from ground
truth and calculated flow fields.

The results show that the difference between the eigenflows learned from
ground truth and from computed flow fields is almost negligible. The results
are even slightly better for computed flow fields in three of the four sequences.
Hence, we can conclude that ground truth flow fields are not absolutely neces-
sary for the successful application of the proposed confidence measure. Table 2
contains the ten best confidence measures for the four sequences. The best previ-
ously proposed confidence measures are based on energy terms (similarity terms
or regularizers) of global flow computation methods. Most of them are derived
from [6,5,4] and are assembled and compared in [1].

The results show that the proposed pcaReconstruction confidence measure
always ranges among the seven best (out of 33) known confidence measures. For
the Marble and the Street sequence the results are comparable to those of the
best known confidence measure. In contrast to that, the results on the Yosemite
and the Office sequence are far superior to those of the best known confidence
measure as the CMQV values could be reduced by 31%. This corresponds to an
average reduction of the CMQV value by 11.8 %. The resulting confidence maps
compared to the optimal confidence are depicted in Figure 3.

7 Summary and Conclusion

We have presented a new confidence measure based on linear subspace pro-
jections using unsupervised learning. It can be used in combination with any
flow computation method not demanding strong smoothness constraints, e.g.
the structure tensor method. Ground truth sequences, which are usually unavail-
able, are not necessary to obtain high quality results - instead the performance
is slightly superior for models learned from computed flow fields. Tests indicate
that for the chosen test sequences the new measure significantly outperforms
previously proposed measures.
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Abstract. Global optical flow techniques minimize a mixture of two
terms: a data term relating the observable signal with the optical flow,
and a regularization term imposing prior knowledge/assumptions on the
solution. A large number of different data terms have been developed
since the first global optical flow estimator proposed by Horn and Schunk
[1]. Recently [2], these data terms have been classified with respect to
their properties. Thus, for image sequences where certain properties
about image as well as motion characteristics are known in advance,
the appropriate data term can be chosen from this classification. In this
contribution, we deal with the situation where the optimal data term
is not known in advance. We apply the Bayesian evidence framework
for automatically choosing the optimal relative weight between two data
terms as well as the regularization term based only on the given input
signal.

1 Introduction

Motion estimation in image sequences is of crucial importance in computer vi-
sion, it has a wide range of applications spanning from robot navigation over
medical image analysis to video compression. The motion of a single object, i.e.
its displacement vector from frame to frame, which can be inferred from bright-
ness changes in the image sequence is denoted as the optical flow vector. The
set of all optical flow vectors is called the optical flow field. In order to infer
the optical flow field from observable entities, e.g. the gray values in an image
sequence, a functional relationship between the optical flow field and the ob-
servable image signal has to be established. A large number of different types
of these observation equations has been proposed [2], their properties have been
analyzed and classified. It is not very surprising that the simple brightness con-
stancy assumption gives most accurate results when the model assumption - all
brightness changes are due to motion - is fulfilled. But if the model assumption
is only slightly violated, the accuracy breaks down, leading to highly erroneous
results. One way to deal with brightness changes that are not caused by motions
is to model the brightness change and optical flow simultaneously [3]. Another
way is to relate the optical flow with the signal by observation equations that
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are less sensitive to brightness changes that are not caused by motion [2]. Since
they actually disregard parts of the available information, these more robust ob-
servation equations have the drawback that they give less accurate results than
the simple brightness constancy assumption in case if the model assumption is
fulfilled. Furthermore, the most accurate of these illumination-insensitive obser-
vation equations induce an orientation dependency such that they are only valid
for certain classes of motion [2]. In order to find the best compromise between
the different models, it has been proposed to use a combination of different ob-
servation equations. But how to find the optimal weight between the different
models? The present contribution aims at answering this question which was
open so far. It extends the Bayesian evidence framework for choosing the opti-
mal regularization parameter in global optical flow methods presented in [4,5].
Whereas in [4,5] only the optimal weight between data term and regularization
term is estimated, the proposed method chooses also the optimal weights be-
tween two different model assumptions: the brightness constancy assumption
and the generalized constancy assumption that includes the proposed observa-
tion equation proposed in [2] as well as the brightness constancy assumption and
a new observation equation designed for multiplicative brightness chances.

2 Global Optical Flow Estimation

In the following we describe the image sequence intensity values as a continuous
function s(x), x = (x, y, t) defined on the continuous Euclidian space denoted
as the space-time volume A. In order to estimate the optical flow field from the
image sequence, a functional relationship, the observation equation, between
the signal s(x) and the optical flow field u(x), has to be established. A simple
relation can be derived by the assumption that all intensity variations are due to
motion such that the brightness of the signal keeps constant through its evolution
in space-time

s(x(t), y(t), t) = c . (1)

This implies the total time derivative to be zero leading to the brightness con-
stancy constraint equation (BCCE)

gxux + gyuy + gt = 0 ⇔ gT uh = 0 , (2)

where we have defined g = (∂xs, ∂ys, ∂ts)
T and uh = (ux, uy, 1). Since it is

fundamentally impossible to solve for uh by a single linear equation (aperture
problem), additional constraints have to be found and employed. The assump-
tion of spatial [6] or spatiotemporal [7,8] constancy of the flow field u in a local
neighborhood V allows the accumulation of all BCCEs in V for a weighted least
squares or total least squares optical flow estimation, but this provides the de-
sired disambiguation of optical flow only if the spatial gradients of the image
signal vary inside of the regarded neighborhood V . Simoncelli [9] provides a
further regularization of the problem by introducing a prior probability density
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function (pdf) which penalizes large optical flow vectors. Whereas local methods
minimize a loss function (a residual) over a local area V ⊂ A, global methods
[1,10,11,12] estimate the optical flow field by minimizing an error functional (or
error function if u is considered on a discrete grid) over the whole space-time.
The necessary additional constraint is incorporated by a regularization term ρ(u)
(ρ denotes an operator acting on the optical flow u) imposing supplementary in-
formation on the solution, e.g. the optical flow field should be smooth except for
motion boundaries [10]. This means that going from local to global methods is to
jump from the simple constant flow assumption directly to expressing smooth-
ness by functionals on derivatives of the resulting flow function. We emphasize
here that imposing slightly more complicated local flow models, such as affine,
polynomial, etc is still a valid and viable alternative. The regularization parame-
ter λ in global approaches specifies the influence of the regularization term ρ(u)
relative to the data term ψ

(
gT uh

)
, (ψ=real symmetric positive function that is

monotonically increasing). There is a certain tradition of estimating the optical
flow field by minimizing

J(u) =
∫

A

(
ψ

(
gT uh

)
+ λρ(u)

)
dx (3)

with respect to the optical flow field u(x). In principle, the argument of the data
term function ψ(.) could be the residual of any valid observation equation. If the
brightness constancy assumption does not hold, e.g. due to global brightness
changes, (2) does not properly describe the relation between the optical flow
and the observable signal any more. One way to deal with this situation is to
introduce more complex equations modeling the brightness change and optical
flow simultaneously [3]. The drawback is the increase of model parameters that
has to be estimated from the input signal. In cases where one is not interested
in the brightness model parameters but only in the optical flow it is often more
efficient to relate the optical flow with features that are less sensitive to violations
of the brightness constancy assumption [2]. A simple and rather popular strategy
is to consider the constancy of the spatial gradient of the signal

∇s(x(t)), y(t), t) = c . (4)

As in the case of the BCCE, the total time derivative is zero leading to the
following equations, denoted as the generalized BCCE (GBCCE) in the following

gxxux + gxyuy + gxt = 0 ⇔ gT
x uh = 0 (5)

gyxux + gyyuy + gyt = 0 ⇔ gT
y uh = 0 , (6)

where we have defined gx =
(
∂2

xs, ∂x∂ys, ∂x∂ts
)T and gy =

(
∂y∂xs, ∂2

ys, ∂y∂ts
)T

respectively. The optical flow is then, as for the case of the brightness constancy
assumption, estimated by minimizing the energy functional where we exchange
the data term in (3) by ψ1

(
gT

x uh

)
+ ψ1

(
gT

y uh

)
. The gain in robustness with

respect to illumination changes has to be payed with the introduction of direc-
tional information in the constancy assumption, i.e. the orientation of the spatial
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gradients. This means that spatial features are required not to change their orien-
tation through the image sequence, e.g. objects should not to perform a rotation.
One way to cope with this limitation is to introduce observation equations based
on rotationally invariant features as proposed in [2]. The drawback of this strat-
egy is the apparently poorer performance when compared with the generalized
BCCE on an image sequence with violation of the brightness constancy assump-
tion. In [2] a linear combination of different data terms has been proposed. An
open question is the choice of the relative weight between both data term and
also the choice of the regularization term in this context. This contribution fills
this gap by presenting a method for estimating the optimal weights based only
on the information delivered by the input signal. In the following we propose
alternative illumination change robust feature, the derivative of the logarithm
of the signal. Let us assume that the observed signal factorizes into a signal
that fulfills the brightness constancy assumption and a term that describes the
brightness changes that are not caused by motion. If we consider as a feature
the spatial gradient of the logarithm of the signal ∇ log f = ∇ log γ + ∇ log χ,
the feature separates in the sum of a term that depends on the signal which
variations describe the motion and another term that describe all other bright-
ness changes. Taking the total derivative with respect to the time yields the two
equations

d∇ log f

dt
=

d∇ log γ

dt
+

d∇ log χ

dt
. (7)

If we now assume that χ changes only very slowly in spatial direction, its spatial
derivative becomes approximately zero and since per definition d∇ log γ

dt = 0,
equations (7) lead to the two linear observation equations

hxxux + hxyuy + hxt = 0 ⇔ hT
x uh = 0 (8)

hyxux + hyyuy + hyt = 0 ⇔ hT
y uh = 0 , (9)

where we have defined hi = ∂i log f .
In the next section, the variational formulations of the energy functions are re-

formulated into their statistical equivalent formulation and then the Bayesian ev-
idence framework is presented for estimating the optical flow and model weights
simultaneously.

3 Bayesian Motion Estimation

In a Bayesian formulation (see e.g. [9]), the optical flow is estimated via a pdf
which connects the observable signal or its gradient with the entity of interest, the
optical flow. In order to design such a pdf, we assume a regular grid in space-time
considering only signal values and optical flow vectors on the knots of the grid.
Since N knots in space-time are isomorphic to the Euclidian space R

N , the signal
and the optical flow field can be expressed by a set of vectors. The gradients w of
the optical flow components u as well as the gradients g of the signal components
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s can be written in a compact matrix vector equation w = Hu ∈ R
6N , g =

Ps ∈ R
3N . In the Bayesian framework, not only the measured gradients g =

(g(x1), g(x2), ..., g(xN )), but also the estimated parameters u are considered
as random variables with corresponding pdfs p(u) and p(g), respectively. Prior
knowledge about u is incorporated into the estimation framework via the prior
pdf p(u). The maximum a posteriori (MAP) estimator infers the optical flow
field by maximizing the posterior pdf p(u|g). Using Bayes’ law, the posterior
pdf can be expressed by the likelihood function p(g|u), the prior pdf p(u) and
the gradient pdf p(g)

û = arg max
u

{
p(g|u)p(u)

p(g)

}
(10)

= arg min
u

{− ln(p(g|u)) − ln(p(u))} . (11)

The term in the bracket on the right side of equ.(11) is denoted as the objective
function L. For Gibbs fields with the partition functions ZL(α), Zp(β), the
energies JL(g|u, α) and Jp(u, β) and the corresponding hyper-parameters α, β,
the objective function becomes

L = JL(g|u, α) + Jp(u, β) + ln (ZL(α)Zp(β)) . (12)

Note that we parameterize the likelihood energy by multiple hyper-parameters
α that weigh different observation models and the prior by one prior hyper-
parameter. In the following we describe the likelihood and prior energy for the
case of the optical flow estimation. Subsequently, the Bayesian evidence frame-
work for estimating the hyper-parameters is presented.

4 Likelihood Functions and Prior Distributions for
Motion Estimation

The likelihood function relates the observable input signal s with the optical
flow field u. If errors in the spatial gradients can be neglected compared to errors
in the temporal gradients, the residuum εj of the BCCE’s can be assumed to
be independent of the optical flow field gT

sju + gtj = εj [13]. Modeling each
random variable εj as identical independent distributed, the joint pdf is simply
the product p(εt) =

∏N
j=1 p(εtj) of the individual pdfs whereas each pdf is

modeled by an exponential distribution. The equations (5), (6), (8) and (9)
of the gradient brightness constancy assumption can be reformulated in the
same way leading to the corresponding distributions p(εxt) =

∏N
j=1 p(εxtj) and

p(εyt) =
∏N

j=1 p(εytj), respectively. Due to the linear relationship between the
residuum and the temporal gradients gtj , we obtain the following likelihood
functions

p(gkt|u, gks, αk) =
1

ZL(αk)
exp

⎧
⎨
⎩−αk

N∑
j=1

ψ1

(
gT

kjuhj

)
⎫
⎬
⎭ , (13)
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where we have introduced g1 = g, g2 = gx and g3 = gy for notational convenient
reasons.If we now assume the different error variables εj, εxj and εyj to be
statistically independent, we can combine all likelihood functions yielding

p({gjt}|u, {gjs}, {αj}) =
3∏

j=1

p(gjt|u, gsj , αj) (14)

Note that the statistical independence between components of the same gradient
is in fact fulfilled, if the temporal gradients are approximated by 1D derivative
filter masks. In that case, the error variables of the GBCCE are linear combina-
tions of error variables of the neighborhood of εj that do not intersect. In the
following, we assume the two hyper-parameters belonging to the GBCCE model
are equal reducing the total number of hyper-parameters to α1 for the BCCE
model and α2 for the GBCCE model.

The prior pdf encodes our prior information/assumption of the optical flow
field. The prior pdf corresponding to the smoothness assumption reads

p(u) =
1

Zp(β)
e−β

∑ N
j=1 ψ2(|wj |2) , (15)

where ψ2 is again a positive symmetric function.

5 Bayesian Model Selection

In order to determine the likelihood hyper-parameters α = (α1, α2, ..., αL) as
well as the prior hyper-parameter β, we extend the evidence approach presented
in [4,5] from one likelihood hyper-parameter to at least theoretical arbitrary
number of likelihood parameters. The reason which allows us for doing so is
mainly based on the assumed statistical independence of the likelihood function
at different positions in space-time. Note that this is only approximatively true
since they are actually correlated due to the overlapping derivative filter masks.
We firstly review the main idea of the Bayesian evidence framework before pre-
senting the extensions in more detail. The evidence framework is based on the
MAP estimation, i.e. maximizing p(α, β|g) of the hyper-parameters using the ev-
idence p(g|α, β) which is in fact the likelihood function of the hyper-parameters
(α, β). Multiplying the evidence with the hyper-parameter prior p(α, β) yields
the joint pdf p(g, α, β) of the gradient field and hyper-parameters that is pro-
portional to the desired posterior pdf p(g|α, β), i.e. we can obtain the MAP
estimate by maximizing also the joint pdf. In the following we assume a con-
stant hyper-parameter prior such that it is sufficient to consider the evidence for
estimating the hyper-parameters. The evidence can be obtained from the joint
pdf p(u, g|α, β) of the gradient field g and the optical flow field u by marginal-
izing over the optical flow field. The hyper-parameters are then estimated by
minimizing the negative logarithm of posterior with respect to α and β for the
present realization of the gradient field g. In [4] the evidence for the likelihood
parameter and the prior hyper-parameters has been derived. In [5] the approach



148 K. Krajsek and R. Mester

has been extended to two prior hyper-parameters. Following the derivation in [4],
we obtain the approximated evidence for multiple likelihood hyper-parameters

p̃(g|α, β, û) =
(2π)N

Z̃L(α)Z̃p(β) detQ
1
2

exp
(
−Ĵ

)
. (16)

where û denotes the optical flow field that maximizes the posterior pdf p(u|g, α, β)
and Ĵ the energy of the joint pdf p(g, u|α, β) taken at û. The matrix Q denotes
the Hessian of the joint pdf energy J(u, g) taken at the maximum of the posterior
pdf p(u|g, α, β). The partition function are analytically tractable

Z̃L(α) ∝
∏
j

α
−N/2
j , Z̃p(β) ∝ β−N (17)

due to the Gaussian approximation of prior and likelihood. Note that since we are
only interested in the functional dependency on the hyper-parameters, we can
get rid of the proportional factors in (17) by maximizing the negative logarithm
of the evidence. Since the computation of the determinant detQ is not feasible
for usual image sequence sizes, a further approximation has to be performed. For
computing detQ, we neglect interactions between different pixels, i.e. Q becomes
block diagonal which is in fact the zero order zone determinant expansion [14]
of the matrix Q. Then the determinant of Q(û, α, β) factorizes into the product
of determinants of Qj(û, α, β) = Aj +Bj . The approximated objective function
for the hyper-parameters then becomes

L(û, α, β) ∝ Ĵ +
1
2

N∑
j=1

ln
(
det Q̂j

)
+

N

2

L∑
n=1

log(αn) + N log(β) . (18)

and the hyper-parameters are estimated by minimizing L. Since û itself de-
pends on the hyper-parameters α, β we have to apply an iterative scheme for
estimating the optical flow field and the hyper-parameters simultaneously, i.e.
we estimate the optical flow for fixed hyper-parameters and estimate then the
hyper-parameters using the previously estimated optical flow. This procedure is
repeated until convergence.

6 Experiments

In this section, the performance of our Bayesian Model selection (BMS) al-
gorithm is presented where we combine either the BCCE (with the likelihood
hyper-parameter α1) with the generalized BCCE (GBCCE) with the spatial
gradient of the signal (with the likelihood hyper-parameter α2) or the spatial
gradient of the logarithm of the signal (with the likelihood hyper-parameter α3).
We applied the energy function ψi(x2) = ξ2

i

√
1 + x2/ξ2

i for all prior and like-
lihood terms where ξi is a free parameter that is to be determined by training
data. For the experiment we used three image sequences, together with their
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Table 1. Results (expressed by the average angular error (AAE)) of the Bayesian
model selection (BMS) experiment with the three image sequences: ’Diverging Tree’,
’Yosemite’ and ’Office’ and the linear combination of two out of three models have
been applied. The image sequences fulfill either the brightness constancy assumption,
obey a linear decrease of the global brightness with three different gradients κ =
0.05, 0.1, 0.15 or an exponential brightness decay with three different decay constants
ζ = 0.025, 0.05, 0.075.

Diverging Tree κ = 0 κ = 0.05 κ = 0.1 κ = 0.15 ζ = 0.025 ζ = 0.05 ζ = 0.075

α1 = 1; α2 = 0 1.11 19.89 38.69 59.51 13.12 22.23 29.39

α1 = 0; α2 = 1 1.56 2.93 5.39 11.59 2.66 3.57 4,43

BMS(α1, α2) 1.28 3.46 6.62 15.72 3.23 4.29 5.57
α1 = 0; α3 = 1 1.49 1.62 1.82 7.17 1.55 1.83 1.99

BMS(α1, α3) 1.27 1.55 1.72 7.54 1.52 1.68 1.77
Yosemite
α1 = 1; α2 = 0 1.84 14.09 31.38 47.25 9.02 17.21 24.73

α1 = 0; α2 = 1 2.07 2.38 3.07 4.38 3.21 3.65 4.15

BMS(α1, α2) 1.72 2.24 3.04 4.66 2.17 2.56 3.02
α1 = 0; α2 = 1 3.12 3.12 3.12 3.12 3.12 3.12 3.12

BMS(α1, α3) 2.19 2.66 2.67 2.67 2.65 2.66 2.66
Office
α1 = 1; α2 = 0 3.28 20.2 31.63 48.54 18.37 26.51 31.77

α1 = 0; α2 = 1 3.77 4.33 5.32 6.87 4.22 4.81 5.41

BMS(α1, α2) 3.21 4.43 6.17 9.37 4.29 5.23 6.36
α1 = 0; α2 = 1 3.68 3.70 3.72 3.79 3.69 3.70 3.71

BMS(α1, α3) 3.66 3.65 3.65 3.72 3.65 3.64 3.64

true optical flow 1: ’Yosemite’ (without clouds), ’Diverging Tree’ and ’Office’.
The derivatives occurring in the BCCE were designed according to [15] and are
of size 9 × 9 × 9. The optical flow u and the hyper-parameters α1, α2/α3 and β
were simultaneously estimated by minimizing the objective function (18).

For performance evaluation, the average angular error (AAE) [16] was
computed. We optimized all free parameters, i.e. the pre-smoothing of the im-
age sequences, the parameter ξi of the energy functions and the prior hyper-
parameter (for cases where the hyper-parameters are not estimated) according
to the known ground truth of the ’Diverging Tree’ sequence. The algorithm is
then applied to the ’Yosemite’ and ’Office’ sequence with this fixed parameters.
We apply the algorithm to the original image sequences and to the image se-
quences that obey either a global linear brightness change with three different
gradients κ = 0.05, 0.1, 0.15 or an exponential brightness decay with the decay
constants ζ = 0.025, 0.05, 0.075. Figure 1 (upper left and upper middle) shows
two consecutive frames of the ’Office’ image sequence with a linear decrease of
brightness with κ = 0.1. The experimental results are depicted in table 1. Note

1 The ’Diverging Tree’ sequence has been taken from Barron’s web-site, the ’Yosemite’
sequence from ”http://www.cs.brown.edu/people/black/images.html” and the ’Office’
sequence from ”http://www.cs.otago.ac.nz/research/vision/” .
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Fig. 1. Upper figures (from left to right): first frame of the ’Office’ sequence; second
frame of the ’Office sequence’ with κ = 0.1; estimated flow field using α1 = 1 and
α2 = 0 for κ = 0; Lower figures(from left to right):estimated flow field using α1 = 1
and α2 = 0 for κ = 0.1; estimated flow field using BMS for κ = 0.1; ratio of both
likelihood hyper-parameters α2/α1 vs. κ for the BMS algorithm.

that the overall brightness change from one frame to another is rather weak but
leads to rather strong erroneous results for the BCCE model (α1 = 1, α2 = 0).
The BMS approach gives the most accurate results when applied to the ’test im-
age sequences’ ’Yosemite’ and ’Office’ when compared to fixed models, i.e. only
one data term is applied, whose parameters have been tuned to the ’Diverg-
ing Tree’ sequence . When the brightness constancy assumption is violated the
BSE method increases the weight of the second likelihood hyper-parameter α2

(see figure 1 lower right) in a wide rage depending on the strength of the bright-
ness change leading also to accurate results. Note that in some cases the GBBCE
model gives more accurate results than the BMS approach for the sequences with
overall brightness changes. But if the optimal model is not known in advance the
proposed method estimates automatically the optimal weights between the two
models - resulting in most accurate results if the BCCE model is fulfilled and
also in most cases in accurate results if the BCCE model assumption is violated.

7 Summary and Conclusion

In this contribution, we presented a Bayesian model selection technique for au-
tomatically determining the optimal weights between two data terms in global
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optical flow methods. We demonstrated the proposed approach with three mod-
els: the brightness constancy assumption and gradient brightness constancy as-
sumption of the signal and its logarithm. Further work will examine the expan-
sion of the proposed method to a larger number of models to be selected or
weighted. Further research will also focus on the application of the method to
the regularization term, i.e. a linear combination of different regularization terms
is applied and the optimal weights should optimally be chosen by the Bayesian
evidence framework.
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Abstract. Since years variational methods belong to the most accurate tech-
niques for computing the optical flow in image sequences. However, if based on
the grey value constancy assumption only, such techniques are not robust enough
to cope with typical illumination changes in real-world data. In our paper we
tackle this problem in two ways: First we discuss different photometric invari-
ants for the design of illumination-robust variational optical flow methods. These
invariants are based on colour information and include such concepts as spher-
ical/conical transforms, normalisation strategies and the differentiation of loga-
rithms. Secondly, we embed them into a suitable multichannel generalisation of
the highly accurate variational optical flow technique of Brox et al. This in turn
allows us to access the true potential of such invariants for estimating the optical
flow. Experiments with synthetic and real-world data demonstrate the success of
combining accuracy and robustness: Even under strongly varying illumination,
reliable and precise results are obtained.

1 Introduction

The recovery of the displacement vector field (optical flow) between two consecutive
frames of an image sequence is a classical problem in computer vision. In this con-
text, variational methods play an important role, since they allow to incorporate various
model assumptions in a transparent way and they yield dense flow fields. Numer-
ous modifications have been introduced since the first variational approaches of Horn
and Schunck [8] and Nagel [12]: More recent techniques such as [3,11,4] combine
discontinuity-preserving regularisers that respect motion boundaries, robust data terms
that improve the performance with respect to outliers and noise, and hierarchical op-
timisation strategies that handle large displacements. This has led to highly accurate
methods. Moreover, efficient numerical schemes allow for a real-time computation of
the results [5].

However, there is one topic that has hardly been addressed in the literature on varia-
tional optical flow methods, but which is of fundamental importance for their applica-
bility in practice: the robustness of the estimation under realistic illumination changes.
Such illumination changes include for instance shadow/shading, specular reflections
and globally varying illumination [7,18]. They can provide severe perturbations for im-
portant applications such as robot navigation or driver assistance systems.

F.A. Hamprecht, C. Schnörr, and B. Jähne (Eds.): DAGM 2007, LNCS 4713, pp. 152–162, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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So far, most of the illumination-robust optical flow techniques in the literature are
local methods: They are easy to implement, but they give non-dense flow fields and do
not belong to the currently best performing techniques in terms of error measures. In
particular, estimation techniques for colour image sequences are very popular [14,6,18].
Usually, such methods make use of photometric invariants that are derived from the HSI
colour space [6,18], from normalised RGB channels [6], or from the rφθ representation
that is obtained via the spherical coordinate transform (SCT) [18]. These expressions
are in general invariant under illumination changes of multiplicative and/or additive
type. Alternatively, in the context of grey value image sequences, different methods
have been proposed that tackle the illumination problem by an explicit modelling of
the underlying physical process [13,7]. In this case, the optical flow field and the pa-
rameters of the illumination model have to be estimated simultaneously. A last class of
methods, that are also applicable to grey value image sequences, makes use of image
derivatives [17]. However, one should note that derivatives are only invariant under ad-
ditive illumination changes. Thus, they may not be optimal with respect to realistically
varying illumination that always contains a multiplicative part [18].

In face of these strategies and the increasing accuracy of variational methods in the
last few years, it becomes evident why recently more efforts have been made to em-
bed such concepts into a suitable variational framework: Prominent examples are the
techniques of Brox et al. [4] and Papenberg et al. [15] that are based on higher order
image derivatives, as well as the method of Kim et al. [9] that models the illumina-
tion changes in an explicitly way. However, with respect to variational techniques that
make use of photometric invariants, only one approach is known to us: Barron and
Klette [2] incorporate a single invariant expression as part of a multichannel framework
into the classical method of Horn and Schunck [8]. Since photometric invariants com-
bine most of the advantages of derivative and model based approaches – they allow for
the modelling of multiplicative and additive illumination changes without requiring the
estimation of any additional model parameters – it is surprising that there has been no
further research done in this direction.

Thus, the goal of the present paper is twofold: First, it shall provide an overview
of the most important concepts to design photometric invariants for colour sequences.
Secondly, by embedding these invariants into the highly accurate optical flow technique
of Brox et al. [4], it shall investigate the true potential of recent variational optical flow
methods under realistic illumination conditions.

Our paper is organised as follows. In Section 2 we give a short review on the dichro-
matic reflection model and discuss the basic properties of photometric invariants. This
discussion allows us to propose five different invariants in Section 3. How these invari-
ants can be incorporated into a suitable variational framework is then demonstrated in
Section 4. Finally, we investigate the performance of the new method in Section 5. The
summary in Section 6 concludes this paper.

2 The Dichromatic Reflection Model

In order to understand the basic concept behind photometric invariants, it makes sense
to start by giving a short review of the dichromatic reflection model [16,18]. This model
describes the observed RGB colour c(x) = (R(x), G(x), B(x))� at a certain location
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x = (x, y)� as sum of an interface reflection component ci(x) and a body reflec-
tion component cb(x):

c(x) = ci(x) + cb(x). (1)

While the interface reflection component is caused by specularities or highlights, the
body reflection is directly related to the (Lambertian) reflection of the matte body. Phys-
ical characteristics of the camera are not modelled explicitly by this equation.

Under spectrally uniform illumination, these two terms can be decomposed further.
They can be factorized into the overall intensity e, the geometrical reflection factor
m(x) and the reflectance colour ĉ(x). Thus, equation (1) becomes

c(x) = e
(
mi(x) ĉi(x) + mb(x) ĉb(x)

)
, (2)

which actually describes a linear combination of the two reflectance colours ĉi and ĉb

with the corresponding geometric reflection factors mi and mb as weights. At this
point one should note that the interface reflectance colour ĉi cannot be arbitrary: Since
we have assumed a spectrally uniform illumination, it is restricted to pure achromatic
colours, i.e. grey values of any type. This in turn means that all three channels of ĉi

have equal contributions, i.e. R̂i(x) = Ĝi(x) = B̂i(x) =: wi(x).
If we furthermore assume a neutral interface reflection (NIR) [10], the value wi(x)

of all three interface channels becomes independent of the location. By defining the
vector 1 = (1, 1, 1)� we can thus rewrite the dichromatic reflection model as

c(x) = e
(
mi(x) wi 1 + mb(x) ĉb(x)

)
. (3)

One should note that this equation is equivalent to the formulation considered in [18].
However, for a better understanding, we have made all the simplifications explicit.

Now we are in the position to give a concrete definition of photometric invariants:
Photometric invariants are those expressions that are constructed from the observed
colour c and that are at least independent of one of the three photometric variables
e, mb or mi. In general, three different classes of photometric invariants can be dis-
tinguished: (i) Invariants with respect to global multiplicative illumination changes –
these expressions are only independent of the light source intensity e. (ii) Invariants
with respect to shadow and shading – these expressions are independent of the light
source intensity e and the geometric body reflection factor mb, at least for matte sur-
faces (i.e. mi =0). (iii) Invariants with respect to highlights and specular reflections –
these expressions are independent of all three photometric variables e, mb and mi.

3 Photometric Invariants

After we have discussed the dichromatic reflection model, let us now investigate the
main design principles behind photometric invariants. To this end, we consider the
colour c(x) at a certain point x in terms of its three components R(x), G(x) and B(x),
respectively. Then, three main strategies for designing invariants are proposed in the
literature: normalisation techniques, the differentiation of logarithmised channels, and
the transformation to other colour spaces in terms of spherical/conical coordinates. Let
us now discuss all three concepts in detail.



Illumination-Robust Variational Optical Flow with Photometric Invariants 155

3.1 Normalisation Techniques

The first concept that we consider for designing photometric invariants is the transfor-
mation of the RGB colour space by means of normalisation [6]. In general, this trans-
formation can be formulated as

(R, G, B)� �→
(

R

N
,
G

N
,
B

N

)�
, (4)

where N is a normalisation factor that depends on R, G and B. Such a proceeding
yields a so-called chromaticity space. Two popular representatives for chromaticity
spaces are the arithmetic and the geometric chromaticity space that are based on the
normalisation by the arithmetic mean N = (R + G + B)/3 or the geometric mean
N = 3

√
RGB, respectively. However, with respect to the degree of invariance their

behaviour is identical: By plugging the dichromatic reflection model (3) into equa-
tion (4), one can see that in both cases the photometric variables e and mb cancel out
(if mi = 0). Thus, both the arithmetic and the geometric normalisation strategy yield
expressions that are invariant under shadow and shading.

3.2 Log-Derivatives Strategies

A second class of strategies for creating photometric invariants is the computation of
derivatives of the logarithmised colour channels. In the case of first order differential
operators this yields the mapping

(R, G, B)� �→
(
(ln R)x, (ln R)y, (ln G)x, (ln G)y , (ln B)x, (ln B)y

)�
, (5)

where subscripts denote partial derivatives, i.e. Gx = ∂G/∂x. However, in contrast to
the previous strategy this concept is not invariant with respect to shadow and shading:
Only the overall intensity e is eliminated for mi = 0, since the geometric reflection
factor mb depends on the location x and thus does not vanish. Therefore log-derivatives
are only invariant under changes of the image intensity.

Nevertheless, this strategy may be an interesting upgrade possibility for techniques
that are originally based on image derivatives such as the ones in [17,4,15]. By loga-
rithmising the colour channels before the computation, such methods are able to handle
global multiplicative illumination changes instead of global additive ones. Moreover, if
the spatial variations of the geometric reflection factor mb are rather small, such a strat-
egy also provides a reasonable degree of invariance with respect to shadow and shading.

3.3 Spherical and Conical Transforms

The last concept for designing invariants that we discuss in this section is the consider-
ation of other colour spaces that are obtained via spherical or conical transforms. Such
colour spaces are e.g. the HSV and the rφθ colour space [6,18]. Let us start our dis-
cussion with the HSV colour space. This colour space represents each colour in terms
of hue, saturation and value. While the hue describes the pure colour and the satu-
ration stands for the achromatic/grey component, the value corresponds to the actual
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brightness. If we define M =max(R, G, B) and m=min(R, G, B), the corresponding
transformation is given by:

(R, G, B)� �→

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

H =

⎧
⎨
⎩

G−B
M−m × 60◦, R ≥ G, B,

(2 + B−R
M−m ) × 60◦, G ≥ R, B, (mod 360◦) ,

(4 + R−G
M−m ) × 60◦, B ≥ R, G,

S = M−m
M

V = M .

(6)

Evidently, the hue is invariant under both shadow and shading as well as highlights and
specularities. However, since it involves the ratio of colour channel differences, it also
discards the most information of all invariants. The other two channels are less robust:
While the saturation allows to cope at least with shadow and shading, the value channel
is not invariant at all.

In contrast to the HSV colour space that describes the RGB colours in terms of a
cone, the rφθ colour space is obtained via a spherical transformation of the RGB coor-
dinates. This transformation is given by

(R, G, B)� �→

⎧⎪⎨
⎪⎩

r =
√

R2 + G2 + B2

θ = arctan
(

G
R

)
.

φ = arcsin
( √

R2+G2√
R2+G2+B2

) (7)

Here, r denotes the magnitude of the colour vector and θ and φ are the two angles that
describe longitude and latitude, respectively. As one can easily verify, both angles θ and
φ are invariant with respect to shadow and shading. However, the colour magnitude r
is no photometric invariant.

4 Variational Optical Flow Computation

Since we are interested in incorporating the previously discussed photometric invariants
into a variational framework, let us briefly recall the basic idea behind variational meth-
ods. To this end, let us consider an image sequence f(x, t), where x = (x, y)� denotes
the location within a rectangular image domain Ω and t ≥ 0 denotes time. Then, varia-
tional optical flow methods compute the dense displacement field u = (u, v)� between
two consecutive frames f(x, t) and f(x, t+1) as minimiser of an energy functional
with the general structure

E(u) = ED(u) + α ES(u) , (8)

where ED(u) and ES(u) denote the data and the smoothness term, respectively, and
α > 0 is a scalar weight that steers the degree of smoothness. While the data term
penalises deviations from constancy assumptions – e.g. the constancy of the grey value
of objects – the smoothness term regularises the often non-unique local solution of the
data term by assuming (piecewise) smoothness of the result.
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4.1 A Multichannel Approach for Photometric Invariants

Having explained the main idea behind variational methods, let us now derive a suitable
model for computing the optical flow. Such a model must not only permit the integration
of our photometric invariants into the data term, it should also allow the estimation of
highly accurate optical flow fields. In order to satisfy both demands, we propose to
compute the optical flow as minimiser of an energy functional E(u) with data term

ED(u) =
∫

Ω

ψD

( N∑
i=1

γi |fi(x+u, t+1)−fi(x, t)|2
)

dx dy (9)

and smoothness term

ES(u) =
∫

Ω

ψS

(
|∇u|2 + |∇v|2

)
dx dy . (10)

Here, ∇u = (ux, uy)� and ∇v = (vx, vy)� denotes the spatial gradient of the flow
component u and v, respectively.

This energy functional can be considered as a 2-D multichannel extension of the
high accuracy technique of Brox et al. [4]. However, instead of assuming constancy on
the grey value and its spatial derivatives, our method is based on the assumption that
for corresponding objects in both frames the N different photometric invariants given
by the channels fi remain constant. Thus, for instance, we consider in the case of the
spherical coordinate transform constancy assumptions on both channels of the image
sequence f = (f1, f2) = (φ, θ) which can be obtained from the original colour image
sequence f =(R, G, B) using equation (7) . In this context, the scalars γi > 0 serve as
weights that steer the importance of the different channels. In order to allow for a correct
estimation of large displacements, all photometric constancy assumptions are employed
in their original nonlinear form. Moreover, both the data and the smoothness term are
penalised in a non-quadratic way - to render the approach more robust to outliers and
noise in the case of the data term and to preserve motion boundaries by modelling a
piecewise smooth flow field in the case of the smoothness term. For both purposes the
regularised version of the L1-norm is used. It is given by ψ(s2) =

√
s2 + ε2, where ε

is a small regularisation parameter. In our case ε is set to 10−3.

4.2 Minimisation

In order to minimise the previously proposed energy functional, one has to solve its
Euler-Lagrange equations. These equations are given by the following coupled pair of
nonlinear partial differential equations (PDEs):

0 = ψ′
D(...)

( N∑
i=1

γi

(
fi(x+u, t+1)−fi(x, t)

) ∂

∂x
fi(x+u, t+1)

)

+ α div
(
ψ′

S

(
|∇u|2 + |∇v|2

)
∇u

)
, (11)

0 = ψ′
D(...)

( N∑
i=1

γi

(
fi(x+u, t+1)−fi(x, t)

) ∂

∂y
fi(x+u, t+1)

)

+ α div
(
ψ′

S

(
|∇u|2 + |∇v|2

)
∇v

)
, (12)
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where ψ′
D(...) is an abbreviation for

ψ′
D(...) = ψ′

D

( N∑
i=1

γi |fi(x+u, t+1)−fi(x, t)|2
)

.

After discretising these equations by means of finite difference approximations, the
resulting nonlinear system of equations is solved via two nested fixed point iterations
and a coarse-to-fine warping strategy as proposed in [4]. Alternatively, also a real-time
capable multigrid scheme could be used [5].

5 Experiments

In our first experiment, we investigate the usefulness of different photometric con-
stancy assumptions with respect to spatially varying multiplicative and additive illu-
mination changes (using a Gaussian model). To this end, we consider frame 10 and
11 of the Street sequence available at http://of-eval.sourceforge.net and

Fig. 1. Robustness of the φθ constancy assumption under varying illumination. Top Row: (a)
Frame 11 of the Street sequence (200 × 200). (b) Frame 11 with spatially varying mul-
tiplicative illumination. (c) Frame 11 with spatially varying multiplicative and additive
illumination. Bottom Row: (d) Ground truth (magnitude plot). (e) Computed result for (a) and
(b). (f) Computed result for (c). Colour images and flow fields are available at http://www.
mia.uni-saarland.de/bruhn/dagm07/flowfields/index.html.
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Table 1. Comparison of the different illumination invariants for the Street sequence in its orig-
inal form (orig.), with locally varying multiplicative illumination (mult.) and with locally vary-
ing multiplicative and additive illumination (mult.+add.). All weights γi have been set to one.
The remaining parameters have been optimised with respect to the average angular error (AAE).
#Ch = number of channels.

Concept #Ch AAE orig. AAE mult. AAE mult. + add.
Standard RGB 3 2.65◦ 43.44◦ 43.44◦

Colour Space HSL (Hue) 1 4.28◦ 4.28◦ 4.28◦

spherical (φ, θ) 2 2.07◦ 2.07◦ 3.37◦

Normalisation RGB (arithm. mean) 3 2.22◦ 2.22◦ 3.71◦

RGB (geom. mean) 3 2.26◦ 2.26◦ 5.64◦

Log-Derivatives ∇ ln(RGB) 6 2.89◦ 3.04◦ 4.35◦

Brox et al. (2-D) RGB + ∇ RGB 9 2.64◦ 3.89◦ 3.92◦

create two strongly degraded variants of frame 11 with heavily varying illumination
(cf. Figure 1). The different photometric constancy assumptions and the corresponding
results in terms of the average angular error [1] are listed in Table 1. As one can see,
the standard RGB constancy assumption fails completely under varying illumination.
Thereby, the error of 43.44◦ refers to a zero displacement field which means in turn
that the underlying method could not make any use of the provided information. In
contrast, all techniques based on photometric invariants perform favourably. In particu-
lar the constancy assumption on the φθ channels gives excellent results: With average
angular errors up to 2.07◦, it does not only outperform the hue channel, that offers a
higher degree of invariance at the expense of discarding too much information, it also
provides better results for the sequence with spatially varying multiplicative illumina-
tion changes than the 2-D RGB Brox et al. for the sequence without. Compared to the
best result in the literature that is known to the authors – the result of 4.85◦ by Weickert
and Schnörr [19] – this improvement is even more drastical. Thus it is not surprising
that the corresponding flow fields of the φθ-channels in Figure 1 show a precise estima-
tion of the optical flow: The shape of the car is well preserved and the camera motion
is also estimated accurately.

In our second experiment, we analyse the performance of the different photometric
invariants with respect to typical illumination changes in real-world data. To this end,
we consider the left frames 205 and 207 of the DIPLODOC Road stereo sequence avail-
able at http://tev.itc.it/DATABASES/road.html. As one can see from
the computed results in Figure 2, the method based on the standard RGB constancy
assumptions has again severe problems. Instead of compensating for the varying illu-
mination between both frames, it interprets this change as a global motion in upward
direction (street). Since the ego-motion of the camera system induces a divergent flow
field, this estimation is completely wrong. However, once again our techniques based
on photometric constancy assumptions give very good results. The φθ-channels and
the normalised RGB values (using the geometric mean) even allow to detect the pedes-
trian at the lower left border of the image – in spite of the severely changed illumination
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Fig. 2. Results under real illumination conditions Top Row: (a) Left frame 205 of the Road
stereo sequence of the DIPLODOC project (size 320 × 240). (b) Left frame 207. (c) Flow
with RGB constancy assumption (magnitude plot). Middle Row: (d) Hue constancy assump-
tion. (e) φθ constancy assumption. (f) Normalised RGB constancy assumption (arithm.). Bottom
Row: (g) Normalised RGB constancy assumption (geom.). (h) Log-derivative constancy assump-
tion. (i) 2-D Brox et al. (2-D). Colour images and flow fields are available at http://www.
mia.uni-saarland.de/bruhn/dagm07/flowfields/index.html.

conditions. This confirms our findings from the first experiment: If suitable photometric
invariants are embedded within an accurate variational framework, they may render the
underlying method highly robust with respect to realistic changes of the illumination.
However, as the first experiment has also shown, one has to be careful not to discard
too much information, since otherwise the quality of the estimation decreases.

6 Summary and Conclusions

Photometric invariants and variational methods are two successful concepts in image
analysis that have emerged without many interactions so far. In our paper we have
demonstrated the benefits of combining them in order to solve a challenging computer
vision problem: dense and highly accurate motion estimation under realistic changes of
the illumination conditions. We have thereby shown that the performance of variational
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optical flow methods can be significantly improved, if traditional constancy assump-
tions are replaced by photometric invariants.

It is our hope that this research serves as another step that helps to bridge the gap
between mathematically well-founded theories and more robust real-life applications.
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Abstract. Tracking 3D objects from 2D image data often leads to jittery tracking
results. In general, unsmooth motion is a sign of tracking errors, which, in the
worst case, can cause the tracker to loose the tracked object. A straightforward
remedy is to demand temporal consistency and to smooth the result. This is often
done in form of a post-processing. In this paper, we present an approach for online
smoothing in the scope of 3D human motion tracking. To this end, we extend
an energy functional by a term that penalizes deviations from smoothness. It is
shown experimentally that such online smoothing on pose parameters and joint
angles leads to improved results and can even succeed in cases, where tracking
without temporal consistency assumptions fails completely.

1 Introduction

Tracking 3D objects from 2D images is a well known task in computer vision with
various approaches such as edge based techniques [8], particle filters [7], or region-
based methods [14,1], just to name a few. Due to ambiguities in the image data, many
tracking algorithms produce jittery results. On the other hand, smoothing assumptions
of the observed motion can be made due to the inertness of the masses of involved
objects. This means, that it is physically unlikely that an object continuously moved by
a robot arm or human hand is rapidly changing the direction or even jittering, unless
there are physiological diseases. Many tracking procedures do not take this property
into account. Hence, the outcome tends to wobble around the true center of the tracked
object. To receive a more appealing outcome, the results are often smoothed in a second
post-processing step. However, jittery results often indicate errors or ambiguities during
tracking. Thus, introducing temporal consistency already during the estimation, can
help to eliminate errors at the root of the problem.

In case of human motion capturing and animation, several approaches exist in the
literature to smooth motions of joints during synthesis. Bruderlin et al. [3] use a multi
target motion interpolation with dynamic time warping in a signal based approach or
Sul et al. [16] and Ude et al. [17] propose an extended Kalman filter. While these works
have only addressed the smoothing of joint angles, the smoothing of 3D rigid body
motions has been addressed in other works: Chaudhry et al. [6] smooth Euler angles
and translation vectors. Shoemake [15] proposes quaternions for rotation animation
(and interpolation) combined with translation vectors. Park et al. [12] use a rational
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interpolating scheme for rotations by representing the group with Cayley parameters
and using Euclidean methods in this parameter space. Belta et al. [4] propose a Lie-
group and Lie-algebra representation in terms of an exponential mapping and twists to
interpolate rigid body motions.

All these works concentrate on the synthesis, smoothing, and interpolation of given
motion patterns, whereas in this work we smooth estimated motions online during a
tracking procedure: we use a previously developed markerless motion capture system,
which performs image segmentation and pose tracking of articulated 3D free-form sur-
face models. In complex scenes (e.g. outdoor environments), we frequently observed
the effect of motion jitter as a precursor to tracking failure. Therefore, in this work,
we supplement a penalizer to the existing error functional in order to reduce large jit-
ter effects. Whereas the penalizer term for joint angles (as scalar functions) is pretty
straightforward, the challenging aspect is to formalize penalizers for rigid body mo-
tions. To achieve this, we use exponentials of twists to represent rigid body motions
(RBMs) and a logarithm to determine from a given RBM the generating twist, simi-
lar to the motion representation in [11,12]. The gradient of the penalizer leads to linear
equations, which can easily be integrated in the numerical optimization scheme as addi-
tional constraints. In several experiments in the field of markerless motion capture, we
demonstrate the improvements obtained with the integrated smoothness assumptions.
As we cannot give a complete overview on the vast variety of existing motion capture
systems, we refer to the surveys [9,10].

2 Foundations

In this section, we introduce mathematical foundations needed for the motion penalizer,
in particular the twist representation of a rigid body motion and the conversion from the
twist to the group action as well as vice-versa. Both conversions are needed later in
Section 4 for the smoothing of rigid body motions.

2.1 Rigid Body Motion and Its Exponential Form

Instead of using concatenated Euler angles and translation vectors, we use the twist
representation of rigid body motions, which reads in exponential form [11]:

M = exp(θ ξ̂ ) = exp

(
ω̂ v

03×1 0

)
(1)

where θ ξ̂ is the matrix representation of a twist ξ ∈ se(3) = {(v, ω̂)|v ∈ R
3, ω̂ ∈ so(3)},

with so(3) = {A ∈ R
3×3|A = −AT }. The Lie algebra so(3) is the tangential space of all

3D rotations. Its elements are (scaled) rotation axes, which can either be represented as
a 3D vector or a skew symmetric matrix:

θω = θ

⎛
⎝

ω1
ω2
ω3

⎞
⎠ , with ‖ω‖2 = 1 θω̂ = θ

⎛
⎝

0 −ω3 ω2
ω3 0 −ω1

−ω2 ω1 0

⎞
⎠ . (2)

A twist ξ contains six parameters and can be scaled to θξ for a unit vector ω . The pa-
rameter θ ∈ R corresponds to the motion velocity (i.e., the rotation velocity and pitch).
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For varying θ , the motion can be identified as screw motion around an axis in space.
The six twist components can either be represented as a 6D vector or as a 4×4 matrix:

θξ = θ (ω1,ω2,ω3,v1,v2,v3)T , ‖ω‖2 = 1, θ ξ̂ = θ

⎛
⎜⎜⎝

0 −ω3 ω2 v1
ω3 0 −ω1 v2

−ω2 ω1 0 v3
0 0 0 0

⎞
⎟⎟⎠ . (3)

se(3) to SE(3). To reconstruct a group action M ∈ SE(3) from a given twist, the ex-

ponential function M = exp(θ ξ̂ ) = ∑∞
k=0

(θξ̂ )k

k! must be computed. This can be done
efficiently via

exp(θ ξ̂ ) =
(

exp(θω̂) (I −exp(θω̂))(ω ×v)+ωωT vθ
0 1

)
(4)

and by applying the Rodriguez formula

exp(θω̂) = I + ω̂ sin(θ )+ω2(1−cos(θ )). (5)

This means, the computation can be achieved by simple matrix operations and sine and
cosine evaluations of real numbers. This property was exploited in [2] to compute the
pose and kinematic chain configuration in an orthographic camera setup.

SE(3) to se(3). In [11], a constructive way is given to compute the twist which generates
a given rigid body motion. Let R ∈ SO(3) be a rotation matrix and t ∈ R

3 a translation
vector for the rigid body motion

M =
(

R t
0 1

)
. (6)

For the case R = I, the twist is given by

θξ = θ (0,0,0,
t

‖t‖ ), θ = ‖t‖. (7)

In all other cases, the motion velocity θ and the rotation axis ω are given by

θ = cos−1
(

trace(R)−1
2

)
, ω =

1
2sin(θ )

⎛
⎝

r32 − r23
r13 − r31
r21 − r12

⎞
⎠ .

To obtain v, the matrix

A = (I −exp(θω̂))ω̂ +ωωT θ (8)

obtained from the Rodriguez formula (see Equation (4)) needs to be inverted and mul-
tiplied with the translation vector t,

v = A−1t. (9)

This follows from the fact that the two matrices which comprise A have mutually
orthogonal null spaces when θ �= 0. Hence, Av = 0 ⇔ v = 0. We call the transformation
from SE(3) to se(3) the logarithm, log(M).
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2.2 Kinematic Chains

Our models of articulated objects, e.g. humans, are represented in terms of free-form
surfaces with embedded kinematic chains. A kinematic chain is modeled as the con-
secutive evaluation of exponential functions, and twists ξi are used to model (known)
joint locations [11]. The transformation of a mesh point of the surface model is given
as the consecutive application of the local rigid body motions involved in the motion of
a certain limb:

X ′
i = exp(θ ξ̂ )(exp(θ1ξ̂1) . . .exp(θnξ̂n))Xi. (10)

For abbreviation, we note a pose configuration by the (6 + n)-D vector χ = (ξ ,θ1, . . . ,
θn) = (ξ ,Θ) consisting of the 6 degrees of freedom for the rigid body motion ξ and the
nD vector Θ comprising the joint angles. In the MoCap-setup, the vector χ is unknown
and has to be determined from the image data.

2.3 Pose Estimation from Point Correspondences

Assuming an extracted image contour and the silhouette of the projected surface mesh,
closest point correspondences between both contours can be used to define a set of
corresponding 3D rays and 3D points. Then a 3D point-line based pose estimation al-
gorithm for kinematic chains is applied to minimize the spatial distance between both
contours: for point based pose estimation each line is modeled as a 3D Plücker line
Li = (ni,mi), with a unit direction ni and moment mi [11]. For pose estimation the re-
constructed Plücker lines are combined with the screw representation for rigid motions.
Incidence of the transformed 3D point Xi with the 3D ray Li = (ni,mi) can be expressed
as

(exp(θ ξ̂ )Xi)3×1 ×ni −mi = 0. (11)

Since exp(θ ξ̂ )Xi is a 4D vector, the homogeneous component (which is 1) is neglected
to evaluate the cross product with ni. This nonlinear equation system can be linearized in
the unknown twist parameters by using the first two elements of the sum representation
of the exponential function:

exp(θ ξ̂ ) =
∞

∑
i=0

(θ ξ̂ )i

i
≈ (I +θ ξ̂ ). (12)

This approximation is used in (11) and leads to the linear equation system

((I +θ ξ̂ )Xi)3×1 ×ni −mi = 0. (13)

Gathering a sufficient amount of point correspondences and appending the single equa-
tion systems, leads to an overdetermined linear system of equations in the unknown
pose parameters θ ξ̂ . The least squares solution is used for reconstruction of the rigid
body motion using Equation (4) and (5). Then the model points are transformed and a
new linear system is built and solved until convergence. The final pose is given as the
consecutive evaluation of all rigid body motions during iteration.
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Since joints are expressed as special screws with no pitch of the form θ j ξ̂ j with
known ξ̂ j (the location of the rotation axes is part of the model) and unknown joint
angle θ j . The constraint equation of an ith point on a jth joint has the form

(exp(θ ξ̂ )exp(θ1ξ̂1) . . .exp(θ jξ̂ j)Xi)3×1 ×ni −mi = 0 (14)

which is linearized in the same way as the rigid body motion itself. It leads to three
linear equations with the six unknown twist parameters and j unknown joint angles.

3 Markerless Motion Capture

The motion capturing model we use in this work can be described by an energy func-
tional, which is sought to be minimized [13]. It comprises a level set based segmenta-
tion, similar to the Chan-Vese model [5], and a shape term that states the pose estimation
task:

E(Φ , p1, p2,χ) = −
∫

Ω

(
H(Φ) log p1 +(1−H(Φ)) log p2 +ν|∇H(Φ)|

)
dx

︸ ︷︷ ︸
segmentation

+λ
∫

Ω
(Φ −Φ0(χ))2dx

︸ ︷︷ ︸
shape error

(15)

The function Φ ∈ Ω �→ R serves as an implicit contour representation. It splits the
image domain Ω into two regions Ω1 and Ω2 with Φ(x) > 0 if x ∈ Ω1 and Φ(x) < 0 if
x ∈ Ω2. Those two regions are accessible via the step function H(s), i.e., H(Φ(x)) = 1
if x ∈ Ω1 and H(Φ(x)) = 0 otherwise. Probability densities p1 and p2 measure the
fit of an intensity value I(x) to the corresponding region. They are modeled by local
Gaussian distributions [14]. The length term weighted by ν > 0 ensures the smoothness
of the extracted contour.

By means of the contour Φ , the contour extraction and pose estimation problems are
coupled. In particular, the projected surface model Φ0 acts as a shape prior to support
the segmentation [14]. The influence of the shape prior on the segmentation is steered
by the parameter λ = 0.05.

Due to the nonlinearity of the optimization problem, an iterative minimization scheme
is chosen: first the pose parameters χ are kept constant, while the functional is mini-
mized with respect to the partitioning. Then the contour is kept constant, while the pose
parameters are determined to fit the surface mesh to the silhouettes (Section 2.3).

4 Penalizing Motion Jitter

To avoid motion jitter, the idea is to extend the energy functional in (15) by an additional
error term that penalizes deviations of the estimated pose from a smooth prediction
generated from the poses of previous frames.

Such a prediction χ = (ξ ,Θ) (as global pose) can be computed by means of the joint
angle derivatives,

Θ = Θ s
t + ∂Θ s

t = Θ s
t +(Θ s

t −Θ s
t−1), (16)



168 B. Rosenhahn et al.

and the twist that represents the predicted position,

ξ̂ = log
(

exp(ξ̂t)exp(ξ̂t−1)−1 exp(ξ̂t)
)

, (17)

see Section 2.1. The deviation of the estimate χ = (ξ ,Θ) from the prediction can now
be measured by

ESmooth = | log
(

exp(ξ̂ )exp(ξ̂ )−1
)

|2 + |Θ −Θ |2. (18)

Notice that the deviation of the rigid body motion is modeled by the minimal geodesics
between the current and predicted pose.

This error value is motivated from the exponential form of rigid body motions: since
we linearize the pose, see (13), we have to do exactly the same here. The derivative of
the joint angles is simply given by Θ −Θ . To compute the motion derivative we can
apply the logarithm from Section 2.1 to get a linearized geodesic [11]. This follows
from the fact that the spatial velocity corresponding to a rigid motion generated by a
screw action is precisely the velocity generated by the screw itself. To see this, we first
set

exp(ξ̂ ′) := exp(ξ̂ )exp(ξ̂ )−1, (19)

with ξ ′ = log(exp(ξ̂ )exp(ξ̂ )−1). Let g(0) ∈ R
3 be a point transformed to

g(θ ) = exp(ξ̂ ′θ )g(0). (20)

The spatial velocity of the point is given by [11]

V̂ = ġ(θ )g−1(θ ). (21)

Since,
d
dt

(exp(ξ̂ ′θ )) = ξ̂ ′θ exp(ξ̂ ′θ ), (22)

we have

V̂ = ġ(θ )g−1(θ ) (23)

= ξ̂ ′θ̇ exp(ξ̂ ′θ )g(0)g−1(θ ) (24)

= ξ̂ ′θ̇g(θ )g−1(θ ) = ξ̂ ′θ̇ . (25)

After setting θ̇ = 1 (θ = t), the linearized penalizer term acts as additional linear
equation to the pose constraints which further regularize the equations,

∂ESmooth

∂ χ
= (log(exp(ξ̂ )exp(ξ̂ )−1),Θ −Θ)
 = 0. (26)

Equation (26) yields an additional constraint for each parameter that draws the so-
lution towards the prediction. Note that we do not perform an offline smoothing in a
second processing step. Instead, the motion jitter is penalized online in the estimation
procedure, which does not only improve the smoothness of the result, but also stabilizes
the tracking.
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5 Experiments

The experiments are subdivided into indoor and outdoor experiments. The indoor
experiments allow for a controlled environment. The outdoor experiments demonstrate
the applicability of our method to quite a tough task: markerless motion capture of
highly dynamic sporting activities with non-controlled background, changing lighting
conditions and full body models.

Fig. 1. Left: Example frames of a knee bending sequence. Right: Quantization of outcome: Red:
without penalizer, blue: with penalizer. The Penalizer function is suited to penalize rapid move-
ment changes during tracking, not the smaller ones.

5.1 Indoor Experiments

For indoor experiments we use a parameterized mesh model of legs, represented as
free-form surface patches.

Figure 1 shows in the left several consecutive example frames of a knee-bending
scene in the lab environment. The smaller images in the first row show 4 example feet
positions without a smoothness assumption and the last row shows feet positions with
such an assumption. The motion jitter in these four consecutive frames is suppressed.
The effect is quantified in the right of Figure 1. Here we have overlaid knee angles. The
red values indicate the result of the system without the jitter penalizer and the blue one
is the outcome with the incorporated penalizer. As can be seen, the penalizer decreases
rapid motion changes, but maintains the smaller ones. The red peak around frame 50 is
due to a corrupted frame, similar to the one in Figure 3

5.2 Outdoor Experiments

In our outdoor experiments we use two full body models of a male and female person
with 26 degrees of freedom. Different sequences were captured in a four-camera setup
(60 fps) with Basler gray-scale cameras. Here we report on a running trial and a coupled
cartwheel flick-flack sequence, due to their high dynamics and complexity.

Figure 2 summarizes results of the running trial: all images have been disturbed
by 15% uncorrelated noise and random rectangles of random color and size. Tracking
is successful in both cases, with the smoothness assumption and without it. However,
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Fig. 2. Running trial of a male person. Top: The images have been disturbed with uncorrelated
noise of 15% and random rectangles of random color and size. Bottom: Comparison of (some)
joint angles: Red: Without jitter penalizer, black: with jitter penalizer. The curves reveal, that with
the jitter penalizer the motion is much smoother.

Fig. 3. Tracking in an outdoor environment: corrupted frames can cause larger errors, which are
avoided by adding the penalizer function

the diagram reveals that the curves with a smoothness constraint are much smoother.
A comparison with a hand-labeled marker-based tracking system revealed an average
error of 5.8 degrees between our result and the marker-based result. More importantly,
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Fig. 4. Red: Tracking fails, Blue: Tracking is successful

Fig. 5. Example frames of the (successful tracked) Cartwheel-Flick-Flack sequence in a virtual
environment. The small images show one of the four used cameras.

the variance between our method and the marker-based method has been reduced from
12 degrees to 5 degrees by using the jitter penalizer.

Another impact of our approach is shown in Figure 3: when grabbing images of a
combined cartwheel and flick-flack, some frames were stored completely wrong, re-
sulting in leg crossings and self intersections. Due to the smoothness term, the rapid leg
movement is reduced and self-intersection avoided. Because of such noise effects, the
tracking fails in the latter part of the sequence, see Figure 4, whereas it is successful with
the integrated smoothness constraint. This shows that the smoothness assumption can
make the difference between a successful tracking and an unsuccessful one. Figure 5
shows key frames of the successfully tracked sequence.

6 Summary

In this work, we have presented an extension of a previously developed markerless
motion capture system by integration of a smoothness constraint, which suppresses 3D
motion jitter during tracking. In various experiments we have shown that the outcome
is smoother and more realistic. There is no need for a second processing step to post-
smooth the data. We have further shown that the additional penalizer can be decisive
for successful tracking. It also acts as a regularizer that prevents singular systems of
equations. In natural scenes, such as human motion tracking or 3D rigid object tracking,
the results are generally improved, since an assumption of smooth motion is reasonably
due to the involved inertness of masses.



172 B. Rosenhahn et al.

References

1. Bray, M., Kohli, P., Torr, P.: Posecut: Simultaneous segmentation and 3d pose estimation
of humand using dynamic graph-cuts. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV
2006. LNCS, vol. 3952, pp. 642–655. Springer, Heidelberg (2006)

2. Bregler, C., Malik, J., Pullen, K.: Twist based acquisition and tracking of animal and human
kinematics. International Journal of Computer Vision 56(3), 179–194 (2004)

3. Bruderlin, A., Williams, L.: Motion signal processing. In: SIGGRAPH ’95: Proceedings of
the 22nd annual conference on Computer graphics and interactive techniques, New York,
NY, USA, pp. 97–104. ACM Press, New York (1995)

4. Belta, C., Kumar, V.: On the computation of rigid body motion. Electronic Journal of Com-
putational Kinematics 1(1) (2002)

5. Chan, T., Vese, L.: Active contours without edges. IEEE Transactions on Image Process-
ing 10(2), 266–277 (2001)

6. Chaudhry, F.S., Handscomb, D.C.: Smooth motion of a rigid body in 2d and 3d. In: IV ’97:
Proceedings of the IEEE Conference on Information Visualisation, Washington, DC, USA,
p. 205. IEEE Computer Society Press, Los Alamitos (1997)

7. Deutscher, J., Reid, I.: Articulated body motion capture by stochastic search. Int. J. of Com-
puter Vision 61(2), 185–205 (2005)

8. Drummond, T.W., Cipolla, R.: Real-time tracking of complex structures for visual servoing.
In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) Vision Algorithms: Theory and Practice.
LNCS, vol. 1883, pp. 69–84. Springer, Heidelberg (2000)
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Abstract. This article introduces a technique for region-based pose tracking of
multiple objects. Our algorithm uses surface models of the objects to be tracked
and at least one calibrated camera view, but does not require color, texture, or
other additional properties of the objects. By optimizing a joint energy defined on
the pose parameters of all objects, the proposed algorithm can explicitly handle
occlusions between different objects. Tracking results in simulated as well as real
world scenes demonstrate the effects of occlusion and how they are handled by
the proposed method.

1 Introduction

This article deals with 2-D–3-D pose tracking of multiple objects, which is the task
to pursuit the 3-D positions and orientations of known 3-D object models from a 2-D
image data stream [7]. Pose tracking has a wide range of applications, e.g. self local-
ization and object grasping in robotics, or camera calibration. Although the initial work
of Lowe [10] was published more than a quarter of a century ago, pose tracking is still
a challenging problem, especially in scenes with cluttered backgrounds, partial occlu-
sions, noise, or changing illumination.

A problem similar to pose tracking is pose estimation. The difference is that there
is usually no initial pose given in pose estimation, but only a single pose must be esti-
mated. In this article, we will concentrate on pose tracking and not on pose estimation.
Thus, the problem to find the necessary approximate model pose for the first frame will
not be discussed.

A lot of different approaches for pose tracking have been considered [6]. A common
idea is to use feature matching. The features used range from points [1] over lines [3] to
more complex features such as vertices, t-junctions, cusps, three-tangent junctions, limb
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and edge injections, and curvature L-junctions [9]. Drummond and Cipolla used edge-
detection to achieve real-time tracking of articulated object with their iterative algorithm
[5]. In [2], Agarwal and Triggs describe learning-based methods that use regression for
human pose tracking. Another learning based approach was proposed by Taycher et
al. in [16], in which an undirected conditional random field is used. Moreover, methods
based on neural networks [17] have been introduced. Another possible approach to pose
tracking is to match a surface model of the tracked object to the object region seen in
the images. In doing so, the computation of this region yields a typical segmentation
problem. It has been suggested to optimize a coupled formulation of both problems
and to solve simultaneously for both the contour and the pose parameters via level sets
[4]. In [13], it was proposed to estimate the 3-D pose parameters by minimizing an
energy function directly defined on the images, i.e. without using segmentation as an
intermediate step. In the present paper, we build upon this framework.

Most works on 3D tracking concentrate on a single object that used to be fully visible
in the image. Usually, the techniques run into severe problems when objects occlude
each other. In the present work, we deal with such scenes that contain multiple, partially
occluding objects, and show that the corresponding problems can be avoided, if the
occlusions are explicitly modeled in the tracking framework. Some related works on
multiple object tracking are those in [8], where particle filters and a Gibbs sampler are
employed for 2-D tracking of a changing number of objects. The same problem is solved
in [15] with a Rao-Blackwellized sequential Monte Carlo method. As both works state
only a 2-D tracking in the image domain, they are very restricted in handling mutual
occlusions.

Our paper is organized as follows: In the following section, we will briefly review the
basics of pose estimation from 2-D–3-D point correspondences. After that, an approach
for pose tracking of single objects is described in Section 3, followed by an explanation
how the algorithm can be extended to yield improved results by tracking several objects.
Experimental results are presented in Section 5. Section 6 concludes with a summary.

2 Pose Estimation from 2-D–3-D Point Correspondences

This section introduces basic concepts and notation and briefly describes the point-
based pose estimation algorithm in [12]. The main idea is to use 2-D–3-D point cor-
respondences (xi,qi), i.e. 3-D points xi on the object model, which are visible as 2-D
points qi in an image, to find the rigid motion of the object. Section 3 shows how such
point correspondences are obtained with our method.

2.1 Rigid Motion and Twists

A rigid body motion in 3-D, i.e. an isomorphism that preserves orientation and dis-
tances, can be represented as m(x) := Rx + t, where t ∈ R

3 is a translation vector and
R ∈ SO(3) is a rotation matrix with SO(3) := {R ∈ R

3×3 : det(R) = 1}. By means of
homogeneous coordinates, we can write m as a 4 × 4 matrix M:

m((x1,x2,x3)T ) = M(x1,x2,x3,1)T =
(

R3×3 t3×1
01×3 1

)
x . (1)
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Rigid motions are of interest to us, since a rigid body can only perform a rigid motion.
The set of all rigid motions is called the Lie group SE(3). To every Lie group there is
an associated Lie algebra, whose underlying vector space is the tangent space of the Lie
group evaluated at the origin. The Lie algebras associated with SO(3) and SE(3) are
so(3) := {A ∈ R

3×3|AT = −A}, and se(3) := {(ν,ω)|ν ∈ R
3,ω ∈ so(3)}, respectively.

Since elements of se(3) can be converted to SE(3) and vice versa, we can represent rigid
motions as elements of se(3). Such elements are called twists. This is advantageous
since a twist has only six parameters while an element of SE(3) has twelve. Both have
six degrees of freedom, though.

Since elements of so(3) and se(3) can be written both as vectors ω = (ω1,ω2,ω3),
ξ = (ω1,ω2,ω3,ν1,ν2,ν3) and as matrices,

ω̂ =

⎛
⎝

0 −ω3 ω2
ω3 0 −ω1

−ω2 ω1 0

⎞
⎠ ∈ so(3), ξ̂ =

(
ω̂ ν

03×1 0

)
∈ se(3) , (2)

we distinguish these two ways of representing elements by a hat sign. Thus, the matrix
ξ̂ and the vector ξ are always two different representations of the same element. A twist
ξ ∈ se(3) can be converted to an element of the Lie group M ∈ SE(3) by the exponential
function exp(ξ̂ ) = M. This exponential can be computed efficiently with the Rodriguez
formula. For further details we refer to [11].

2.2 From 2-D–3-D Point Correspondences to a Linear Least Squares Problem

Let (q,x) be a 2-D–3-D point correspondence, i.e. let x ∈ R
4 be a point in homoge-

neous coordinates on the 3-D silhouette of the object model and q ∈ R
2 its position

in the image. Furthermore, let L = (n,m) be the Plücker line [14] through q and the
corresponding camera origin. The distance of any point a to the line L given in Plücker
form can be computed by using the cross product: ‖a×n−m‖, i.e., a ∈ L if and only if
‖a × n − m‖= 0.

Our goal is to find a twist ξ such that the transformed points exp(ξ̂ )xi are close to the

corresponding lines Li. Linearizing the exponential function exp(ξ̂ ) = ∑∞
k=0

ξ̂ k

k! ≈ I + ξ̂
(where I is the identity matrix), we like to minimize with respect to ξ :

∑
i

∥∥∥∥
(

exp
(

ξ̂
)

xi

)
3×1

×ni −mi

∥∥∥∥
2

≈ ∑
i

∥∥∥∥
((

I + ξ̂
)

xi

)
3×1

×ni −mi

∥∥∥∥
2

→ min, (3)

where the function ·3×1 : R
4 �→ R

3 removes the last entry, which is 1.
Evaluation yields three linear equations of rank two for each correspondence (qi,xi).

Thus, three correspondences are sufficient to obtain a unique solution of the six param-
eters of the twist. Usually, there are far more point correspondences and one obtains
a least squares problem, which can be solved efficiently with the Householder algo-
rithm. Since the twist ξ only corresponds to the pose change it is usually rather small,
which justifies the linearization. In order to also allow for larger motions, we iterate this
minimization process. This comes down to a variant of the Gauss-Newton method.
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3 Region-Based Model Fitting

A lot of existing contour-based pose estimation algorithms expect an explicit contour to
establish correspondences between contour points and points on the model surface. This
involves a matching of the projected surface and the contour. Here we avoid explicit
computations of contours and contour matching. Instead, we stick to [13] and seek to
adapt the pose parameters in such a way that the projections of the surface optimally
split all images into the object and the background region. For simplicity, we will first
review this setting for a single rigid object. The extension to multiple objects, which is
the main focus of this paper, will be explained later in Section 4.

3.1 Energy Model

Like in a segmentation task, we seek an optimal partitioning of the image domain Ω .
This can be expressed as minimization of the energy function

E(ξ ) = −
∫

Ω

(
P(ξ ,q) log p1 +(1−P(ξ ,q)) log p2

)
dq , (4)

where the function P : R
6 × Ω � (ξ ,q) �→ {0,1} is 1 if and only if the surface of the

3-D model with pose ξ projects to the point q in the image plane. P splits the image
domain into two parts, in each of which different feature distributions are expected.
These distributions are modeled by probability density functions (pdf) p1 and p2. Such
pdfs also occur in variational segmentation methods [4], where a functional similar to
this function is sought to be minimized. However, while in variational segmentation
algorithms the partitioning is represented by a contour, i.e. a function, (4) implies only
six optimization variables. Moreover, there is no need for a regularization of the object
boundary, which can reduce the accuracy of tracking [13]. In order to model the image
features by pdfs, we first have to decide which features should be modeled. For the
experiments presented later, we have used the color in CIELAB color space.

Since the two pdfs p1 and p2 are unknown, we must assume an underlying model to
estimate them. We track objects with uniform appearance by means of a non-parametric
Parzen density and object with a varying appearance with a local Gaussian distribution
[4]. Since there is not enough data available to accurately estimate a multi-dimensional
pdf, we consider the separate feature channels to be independent. Thus, the total prob-
ability density function is the product of the single channel densities. As soon as the
estimated pose changes, and thus the induced partitioning, p1 and p2 are recomputed.

3.2 Minimization

Since E(ξ ) in (4) is a multi-dimensional function on an open domain, we know from
basic calculus that ∇E(ξ ) must vanish at a minimum of E(ξ ). However, this nonlinear
equation system is far too complex to be solved directly. Hence, we make use of a
gradient descent that should result in the desired pose that minimizes E(ξ ) locally. In
order to compute the gradient of E(ξ ), we assume that the function P is differentiable.
Then we get:

∇E(ξ ) =−
∫

Ω
(∇P(ξ ,q)(log p1 − log p2))dq . (5)
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Thus, the energy function (4) is minimized by moving each point on the contour of
the projected model to the direction indicated by the gradient ∇P. This movement is
transfered to corresponding 3-D points on the surface model by using the framework
from Section 2. In this way, we estimate the rigid body motion necessary to change the
2-D silhouette in such a way that different features are separated more clearly.

More precisely, we create 2-D–3-D point correspondences (qi,xi) by projecting sil-
houette points xi, using the current pose ξ , to the image plane where they yield qi. Each
image point qi obtained in this way which seems to belong to the object region – i.e.
those points for which p1(qi) is greater than p2(qi) – will be moved in outward normal
direction to a new point q′

i. Points where p1(qi) < p2(qi) holds will be shifted into the
opposite direction to q′

i, respectively. In order to compute the normal direction ∇P, we
use Sobel operators. Experimental results indicate that the length l := ‖q1 − q2‖ of the
shift vector should be set to a constant depending on the sequence, since the results
from experiments with varying l were inferior to those obtained with a constant l.

The 2-D–3-D point correspondences (q′
i,xi) obtained in this way are used in the

point based pose tracking algorithm explained above to get a new pose. This forms
one optimization step. This step is iterated until the pose changes induced by the force
vectors will start to mutually cancel each other. We stop iterating when the average pose
change after up to three iterations is smaller than a given threshold. Before changing
frames in an image sequence, we predict the object’s pose in the new frame by linearly
extrapolating the results from the two previous frames. This prediction is very simple
and fast, but leads to improved results in case of fast moving objects.

4 Extension to Multiple Objects

The tracking algorithm presented in the last section works fine if there is only a single
object in the scene. In this section, we discuss possible problems that can occur as soon
as there is more than one object to be tracked and how the tracking framework can be
extended in order to deal with such scenes.

4.1 Uncoupled Tracking of Multiple Objects

The basic idea when tracking n objects simultaneously is as follows: Instead of mini-
mizing the energy function (4), which depends on only one pose, the goal is to minimize
an energy function depending on the poses of all objects ξ1, . . . ,ξn, i.e.

E(ξ1, . . . ,ξn) = −
n

∑
i=1

∫

Ω

(
Pi(ξi,q) log pi,1 +(1−P(ξi,q)) log pi,2

)
dq . (6)

This function can be minimized in basically the same way as in the single object case:
After projecting every object to the image plane, 2-D–3-D point correspondences are
gathered along the 2-D silhouette of each object. These correspondences are adapted
depending on the pdfs for the inside and outside regions and used to estimate a new
pose. Once the movement of one object is below the requested threshold, the iterations
on this object can be stopped.
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Fig. 1. Leftmost: Here, the 3-D movement which the objects perform is illustrated in the two
available views; The puncher moves from the white to the yellow pose while the tea box moves
from the cyan to the green pose. The arrows indicate the directions in which the two objects
move. Left: Tracking result for frame 9 with uncoupled tracking. This is the first frame in which
the estimated pose of the puncher is imprecise due to the occlusions. Right: Tracking result for
frame 17 with uncoupled tracking. As explained in Section 4.1, the estimated pose of the puncher
is close to the yellow tea box and is thus incorrect. Rightmost: Tracking result for frame 17 with
the proposed coupled algorithm. It can be seen that the estimated pose is far better when using
the proposed algorithm. Top: View 1, Bottom: View 2.

One problem that can occur, though, is that one object might occlude a large por-
tion of another object. Although the algorithm can deal with occlusions up to a certain
extend, it must fail if too much of the object to be tracked is occluded in the image(s).

To understand the problem, consider Figure 1. In this simulation with 20 frames,
the projected model of a tea box (yellow) moves from left to right while the projected
model of a puncher (green) moves from right to left. Both objects also rotate slowly.
The projections of the models overlap in frames 5 to 16 (first view) and from frame 7
until the end of the sequence (second view). Since the models actually penetrate each
other, the projection of the puncher is in front of the projected tea box in some places
while it is the other way round in other places.

Since the objects are obviously clearly separated from each other as well as from
the background, and since two views are available, this scene should be very easy to
track. As can be seen in this figure, the green puncher is not tracked correctly with
the current algorithm. This happens because most of the puncher is occluded from the
yellow tea box for some frames, i.e. large parts of the puncher region contain yellow
pixels. Consequently, the information of the puncher being mainly yellow is included
into the pdfs. The algorithm tries to follow the motion of this “mostly yellow” puncher,
in fact following the occluding yellow tea box.

4.2 Coupling the Tracking

To solve the problem described in the last section, we change the energy function (6)
in such a way that each image point is considered as inside the object region for at
most one point. To achieve this, we define Oi(ξi,q) as the set of all 3-D points on the
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object model of the ith object in the pose ξi that are projected to the image point q.
Furthermore, for the normal Euclidean metric d, let di(ξi,q) := d(Oi(ξi,q),C) be the
minimal distance from the camera origin C to a 3-D point in the set Oi(ξi,q), i.e.

di(ξi,q) := min
x∈Oi(ξi,q)

{d(x,C)} . (7)

Finally, define

vi(ξ1, . . . ,ξn,q) =

{
1 if di(ξi,q) = min j∈{1,...,n}{d j(ξ j,q)} ,

0 else .
(8)

Then, the integral to be minimized is:

E(ξ1, . . . ,ξn) = −
n

∑
i=1

∫

Ω

[
vi(ξ1, . . . ,ξn,q)Pi(ξi,q) log pi,1

+(1−vi(ξ1, . . . ,ξn,q)P(ξi,q)) log pi,2
]
dq . (9)

In other words, the function Pi(ξi,q) is multiplied by a visibility indicator function
vi(ξ1, . . . ,ξn,q), which is 1 if there is no point closer to the camera origin on a different
object that is also projected to q, and 0 else. Note that this is a more complex setting
than simply stating that one object is in front of another, because the objects can also
partially occlude each other.

Algorithmically, this means that those parts of the projected objects which are oc-
cluded by another object are discarded in the calculation of the object interior. This
results in different pdfs, a different silhouette and thus different 2-D–3-D point corre-
spondences.

Additionally, instead of using all points on the new silhouette for pose estimation,
only those points which are on the 2-D silhouette before and after omitting the occluded
model parts are used. This is advantageous because, although such points are on the
visible silhouette of the projected model, the corresponding 3-D points are not on the
2-D model silhouette as seen from the camera.

The reason why those points are not used might get clearer when looking at the
idea behind the pose tracking algorithm: Every contour point “votes” for the direction
in the image in which the projected model should move to get closer to the contour
of the actual object seen in the image. Thus, the point would benefit from moving the
projected model into that direction. However, the points that will be omitted would not
benefit: Such a point is either below the other object (if it is moved in outward normal
direction) or in the object interior (if it is moved in inward normal direction) after any
amount of movement. In both cases, it is not a silhouette point any more, and cannot be
used for object tracking anymore.

In contrast to the uncoupled case, every object must be tracked until every object
movement is below the requested threshold. This is necessary because every part of the
integral depends on all poses, which is not the case for uncoupled tracking.

Although it is possible to choose different parameters for each object (e.g. a different
parameter l, a different threshold, other image features etc.), this vastly increases the
number of parameters. For the experiments presented here, all parameters are equal for
all tracked objects.
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Fig. 2. First row: Four input images (frames 8, 15, 22 and 29) of one of the views. The arrows
indicate the movement of the objects. Leftmost: Input views for frame 9, including the indepen-
dent Gaussian noise with a standard deviation of 256. Left: Contours of the tracking results of
frame 9, shown in images without noise. Note the multiple occlusions. Right: Pose results for
frame 26 of this sequence. Again, the noise that was added for the pose tracking was removed for
the presentation of the results. The black ellipses show areas where it is possible to see that the
tracking of the teapot is not optimal due to the noise. Rightmost: Pose results obtained without
noise in frame 26. Middle row: View 1, Last row: View 2.

5 Experiments

In this section, we show several tracking results for different objects obtained with the
proposed algorithm.

Since the scene shown in Figure 1 is very simple, we present another simulated
scene (cf. Figure 2) that was degraded with uncorrelated Gaussian noise with a standard
deviation of 256. This time, an additional third object (a teapot projected in dark red)
must be tracked. All objects move in a circle with radius 7cm around a certain point
with a speed of one full rotation every 25 frames. Since the yellow tea box and the
green puncher circle around the same center, the tea box occludes the puncher in some
frames while it is the other way round in other frames. The red teapot performs only a
slight movement when seen from the first view and a strong movement as seen from the
second view, which further complicates the tracking. As can be seen, simple simulated
scenes in which the objects are clearly distinguished can be tracked even with a high
amount of noise and in the presence of several occlusions.

In Figure 3, tracking results for a real world stereo scene are shown. In this scene,
the objects to be tracked are built from Lego Duplo R© bricks. The object built with
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Fig. 3. From Left to Right: Tracking results for frame 10, 90, 140 and 170 of three Lego Duplo
objects. (cropped) Top: View 1, Bottom: View 2.

Fig. 4. From Left to Right: Input images for frame 110 and tracking results of the three Lego
Duplo objects for the frames 50, 80 and 110 (cropped). Top: View 1, Bottom: View 2. Note that
the blue object is nearly completely occluded in the second view of frame 110.

blue, light green, and dark green bricks moves between the two objects build from red,
yellow, and ocher bricks. Thus, it both occludes and is occluded. As can be seen, all
three objects have been tracked simultaneously with the proposed algorithm.

Figure 4 shows tracking results for another stereo sequence in which three different
objects have been tracked. Again, the objects have been made from Lego Duplo bricks.
One of the objects is made from blue bricks while the other two are made from red
bricks. Although the blue object is nearly completely occluded in the second view, the
tracking results with the new algorithm are still good.

6 Summary

We have presented a region based method for coupled pose tracking of multiple ob-
jects that can handle an arbitrary number of objects. In particular, the simultaneous
3-D tracking of multiple objects allows to model mutual occlusions of these objects
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explicitly. We introduced a visibility function for this purpose. This way, even cases
where two objects partially occlude each other are handled correctly. We presented
tracking results for simulated as well as real world scenes to demonstrate that the pro-
posed algorithm is able to track different objects in different scenes.
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Abstract. In this paper we extend a multi-camera model for simultane-
ous estimation of 3d position, normals, and 3d motion of surface patches
[17] to be able to handle brightness changes coming from changing illumi-
nation. In the target application only surface orientation and 3d motion
are of interest. Thus color related surface properties like bidirectional
reflectance distribution function do not need to be reconstructed. Con-
sequently we characterize only changes of the brightness using a second-
order power series. We test two new models within a total least squares
estimation framework using synthetic data with ground truth available.
Motion estimation results improve severely with respect to the brightness
constancy model when brightness changes are present in the data.

1 Introduction

Our target application is plant leaf growth analysis at a time range of minutes
and spatial resolution of several micrometers. Growth is the divergence of the
motion vector field projected onto the leaf surface, thus we need very accurate
subpixel motion estimates. As temporal resolution is not 30Hz ’real-time’ but
minutes, image acquisition at multiple camera positions may be done by a single
camera mounted on a moving stage as long as overall acquisition time for one
’time instance’ is only a few seconds. Thus we can use elaborate camera setups
at low cost like e.g. a 5 × 5 camera grid with grid-spacing even smaller than
physical camera dimensions instead of really using 25 cameras (as e.g. in [13]).

In our experiments we illuminate the scene using 880nm light emitting diodes
resulting in a directed, but not completely homogeneous illumination. We are
restricted to this, as plants react on visible light. While this is no issue for 3d
reconstruction, it is a major problem when measuring motion using a brightness
constancy assumption. When plant leaves grow, they change their position and
surface orientation with respect to the stationary illumination. Even if bright-
ness changes due position change could be suppressed by optimally homogeneous
illumination, brightness changes due to surface orientation change remain signifi-
cant. These changes depend on the bidirectional reflectance distribution function
(BRDF) of the leaf surface, thus there is no way to suppress this change exper-
imentally without disturbing the plant.

Related Work. Estimating parameters of dynamic scenes like 3d surface posi-
tion and orientation as well as motion of objects is a problem central to computer

F.A. Hamprecht, C. Schnörr, and B. Jähne (Eds.): DAGM 2007, LNCS 4713, pp. 184–193, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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a b c d

e f g h

Fig. 1. Motion estimation of cube moving towards camera with spot light moving
around cube center. (a, e): first and last image taken with central camera. (b–d):
color coded model errors (projected on contrast reduced cube) for models without (b),
constant temporal (c), and spatially varying temporal brightness change (d). Below the
model errors, scaled motion estimates for the models are depicted, respectively (f–h).

vision research. For subpixel motion estimation as needed here, as well as stereo
reconstruction optical flow techniques are applied successfully since many years
[10,12] and became more and more accurate [1,9,2,15]. More complex models
like affine motion [5,6], scene flow [20] and physics-based brightness changes
[4,7] have been proposed. Stereo reconstruction extensions to curved surfaces
[11] and depth estimation via optical flow and epipolar geometry [18] have been
presented recently. Simultaneous motion and stereo analysis are addressed in
[19,21,3,17]. The currently richest optical-flow-like model for local scene recon-
struction [17] handles translational motion of slanted surfaces. There the basic
idea is to interpret the camera position (sx, sy) as additional data dimensions.
Hence all image sequences (x-y-t data blocks) acquired by a 2d camera grid are
interpreted as a 5d-Volume in x-y-sx-sy-t-space. The scene model boils down to
be an affine optical flow model with 3 dimensions (sx, sy, t) behaving like time
dimension in an usual affine optical flow model.

Our Contribution.Two extensions of that model [17] need to be addressed in or-
der to be applicable to our application: rotational motion and brightness changes.
In the current paper we only deal with brightness changes. Thereforewe closely fol-
low [17] in the derivation of the geometrical part of the model, including all approx-
imations, even though we will have to change them for rotational motion in future
work. Thus, we will not look at rotating objects under nonmoving illumination
in this paper, but all our tests use translating objects and rotating illumination.
This means that only synthetic sequences fully fulfill the model presented here.
Thus we are restricted to synthetic data for now. Without modeling brightness
changes motion estimates are corrupted by illumination changes, cmp. Fig. 1b,f.
Being an optical-flow-likemodel we follow [7] for physics-basedbrightness changes.
The models derived there assume spatially constant brightness change parameters
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leading to severe inaccuracies when illumination changes spatially (Fig. 1c,g). We
therefore also model spatial changes of temporal changes leading to more accurate
motion estimates (Fig. 1d,h).

Paper organization. We derive the differential model including brightness
changes in Sec. 2 followed by a description of parameter estimation and disen-
tangling of parameters (Sec. 3). We then present experiments showing the per-
formance of the known and new models for various brightness changes (Sec. 4).

2 Derivation of the Model Equation

This section derives the constraint equation describing local changes in data
acquired with a camera grid, following [17]. It combines a 3d object/motion
model, a camera model and a brightness change model. For completeness we
briefly present the full derivation, but focus on the brightness change model.

The dynamic surface patch is modeled by its geometry X, which can be de-
scribed by its initial world coordinate position (X0, Y0, Z0), velocity (Ux, Uy, Uz)
and X- and Y -slopes Zx and Zy (i.e. surface normal (−Zx, −Zy, 1))

X(ΔX, ΔY, t) =

⎛
⎝

X
Y
Z

⎞
⎠ =

⎛
⎝

X0 + Uxt + ΔX
Y0 + Uyt + ΔY
Z0 + Uzt + ZxΔX + ZyΔY

⎞
⎠ (1)

with time t and local world coordinates (ΔX, ΔY ). It is projected into the images
by pinhole cameras at world coordinates (sx, sy, 0), looking in Z-direction

(
x
y

)
=

f

Z

(
X − sx

Y − sy

)
(2)

A camera grid samples camera position space equidistantly. The cameras convert
light intensity L into image intensities I (i.e. gray values). In order to derive a
model for dI/dt, the temporal changes visible in the data, we look into the
dependencies of L. In this paper, a translating surface patch is illuminated by
a spatially smoothly varying, translating and rotating light source (see Sec. 1).
Direction ni of incident irradiance E may vary smoothly with time and space
but reflectance direction nr is kept constant.1 Visible light intensity i.e. reflected
radiance L depends on incident irradiance E and on the patch’s bidirectional
reflectance distribution function (BRDF) B (cmp. e.g. [8]) according to

L(X(ΔX, ΔY, t), t, nr) = B(X(ΔX, ΔY, t), ni(t), nr)E(ΔX, ΔY, t, ni(t)) (3)

and the BRDF depends on the material and hence on the position on the surface
patch as well as the directions of incidence ni and reflectance nr. We assume
that the material does not change with time and therefore

B(X(ΔX, ΔY, t), ni(t), nr) = B(X(ΔX, ΔY, 0), ni(t), nr) (4)
1 Reflectance direction nr obviously also varies with pixel position in the cameras, but

for this paper we do not use this extra information.
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If the BRDF is smooth enough, which is typically given at sufficient angular dis-
tance from specularities, changes due to smoothly changing incidence direction
ni(t) can be modeled using a smooth function hB(t) with hB(0) = 1

B(X(ΔX, ΔY, t), ni(t), nr) = B(X(ΔX, ΔY, 0), ni(0), nr)hB(t) (5)

Being spatially inhomogeneous the moving irradiance E changes not only by a
time dependent factor, but by a factor also varying smoothly in space

E(ΔX, ΔY, t, ni(t)) = E(ΔX, ΔY, 0, ni(0))hE(ΔX, ΔY, t) (6)

Here again hE(ΔX, ΔY, t) is a smooth function with hE(ΔX, ΔY, 0) ≡ 1. Plug-
ging Eq. 5 and Eq. 6 in Eq. 3 the reflected radiance L becomes

L(X(ΔX, ΔY, t), t) = L(X(ΔX, ΔY, 0), 0)hB(t)hE(ΔX, ΔY, t) (7)

We assume image intensities I to be proportional to the radiance L, i.e. the
characteristic curve of the used camera to be linear, and therefore

I(X(ΔX, ΔY, t), t, sx, sy) = I(X(ΔX, ΔY, 0), 0, sx, sy) exp(hI(ΔX, ΔY, t)) (8)

where hI(ΔX, ΔY, t) := ln(hB(t)hE(ΔX, ΔY, t)). The sought for temporal
derivative of Eq. 8 is thus

d
dtI = I(X(ΔX, ΔY, 0), 0, sx, sy) exp(hI(ΔX, ΔY, t)) d

dthI(ΔX, ΔY, t)
= I(X(ΔX, ΔY, t), t, sx, sy) d

dthI(ΔX, ΔY, t)
(9)

The most common assumption in optical-flow-like approaches is brightness con-
stancy, boiling down to hI(ΔX, ΔY, t) ≡ 0. Haussecker and Fleet [7] derive
models for changing surface orientation and a moving illumination envelope ap-
proximating hI as a second order power series respecting temporal changes only

hI(ΔX, ΔY, t) ≈ hHF (t, a) :=
2∑

i=1

ait
i (10)

where a1 and a2 are treated as local constants in the estimation process. Look-
ing at Fig. 1f and g we observe that for highest accuracy this is not sufficient.
Therefore we introduce a more accurate approximation of hI explicitly modeling
spatial variations still respecting hI(ΔX, ΔY, 0) ≡ 0

hI(ΔX, ΔY, t) ≈ h(ΔX, ΔY, t, a) :=
2∑

i=1

(ai + ai,xΔX + ai,yΔY ) ti (11)

The temporal derivative of h is then

f(ΔX, ΔY, t, a) :=
d
dt

h(ΔX, ΔY, t, a) =
2∑

i=1

i (ai + ai,xΔX + ai,yΔY ) ti−1

(12)
using the notation a = (a1, a2, a1,x, a1,y, a2,x, a2,y). Following [17] the brightness
change model is finally formulated as total differential dI = Ifdt or

Ixdx + Iydy + Isxdsx + Isy dsy + Itdt = Ifdt (13)

where lower indices at I indicate partial derivatives, e.g. Ix = ∂I/∂x.
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2.1 Combination of Patch-, Camera-, and Brightness-Models

We will now briefly summarize how to combine the dynamic surface patch
(Eq. 1), camera model (Eq. 2) and the brightness change model (Eq. 13). A
more detailed and comprehensive derivation can be found in [17].

Points (X, Y, Z) of a surface element (Eq. 1) are projected onto the camera
chip at pixel position (x, y) via Eq. 2

(
x
y

)
=

f

Z

(
X0 + Uxt + ΔX − sx

Y0 + Uyt + ΔY − sy

)
(14)

At fixed surface locations with constant ΔX and ΔY differentials dx and dy are
(

dx
dy

)
=

f

Z

(
(Ux − Uz

x
f )dt − dsx

(Uy − Uz
y
f )dt − dsy

)
(15)

being nonlinear in Uz as Z = Z0 +Uzt+ZxΔX +ZyΔY . Using image-based ex-
pressions 3d optical flow, disparity, local pixel coordinates, and projected slopes

ux = f
Z0

Ux, uy = f
Z0

Uy, x = x0 + Δx, Δx=
f(1−Zx

x
f )

Z0
ΔX, zx = Zx

Z0(1−Zx
x
f )

uz = − 1
Z0

Uz, v = − f
Z0

, y = y0 + Δy, Δy =
f(1−Zy

y
f )

Z0
ΔY, zy = Zy

Z0(1−Zy
y
f )

(16)
omitting Uzt in Z by the assumption |Z0| � |Uzt| and linearizing f/Z by

−f

Z0 + ZxΔX + ZyΔY
≈ v + zxΔx + zyΔy (17)

we get an affine-optical-flow-like model [6] when plugging all this into Eq. 13
(

Ix

Iy

) [(
vdsx + (ux + x0uz) dt
vdsy + (uy + y0uz) dt

)
+

(
zxdsx + uzdt zydsx

zxdsy zydsy + uzdt

) (
Δx
Δy

)]

+Isxdsx + Isy dsy + Itdt − Ifdt = 0
(18)

where all nonlinear terms coming from multiplications with zxΔx and zyΔy are
suppressed. We decompose Eq. 18 into data vector d and parameter vector p:

d = (Ix, Iy, IxΔx, IxΔy, IyΔy, IyΔx,
Isx , Isy , It, I, IΔx, IΔy, It, ItΔx, ItΔy)T

p = ( vdsx + (ux + x0uz) dt, vdsy + (uy + y0uz) dt,
zxdsx + uzdt, zydsx, zydsy + uzdt, zxdsy,
dsx, dsy, dt, b1dt, b1,xdt, b1,ydt, b2dt, b2,xdt, b2,ydt)T

(19)

where f has been substituted by the novel brightness change model from Eq. 12
and the brightness change parameters are

b1 = −a1 b1,x = −a1,x
Z0

f(1−Zx
x
f ) b1,y = −a1,y

Z0
f(1−Zy

y
f )

b2 = −a2 b2,x = −a2,x
Z0

f(1−Zx
x
f ) b2,y = −a2,y

Z0
f(1−Zy

y
f )

(20)

For simpler brightness models or when a 1d camera grid is used (i.e. dsy =
0) terms with non-existing parameters are simply omitted. Eq. 18 is a model
equation of the form dT p = 0 (cmp. Eq. 19).
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3 Parameter Estimation

Also for total least squares parameter estimation we closely follow [17]. For
every 5d-pixel a constraint equation of the form dTp = 0 is given. To get an
over-determined system of equations, we assume that all equations within a local
neighborhood Ω are solved by the same parameter vector, i.e. dT

i p = ei for all
pixels i in Ω, with errors ei. The errors are minimized in weighted L2-norm

||e|| = ||Dp|| = pTDTWDp =: pTJp
!= min (21)

with Dij = (di)j and a diagonal matrix W containing the weights. As in [17]
Gaussian weights with variance σ2 are used (see Sec. 4). The matrix J is called
structure tensor. For a 2d camera grid the space of solutions p̃ is spanned by
the 3 eigenvectors to the smallest eigenvalues of J. From these eigenvectors the
sought for parameters are derived by linear combination of the eigenvectors p̃
such that all but exactly one component of {dsx, dsy, dt} vanish. From the linear
combination with dt �= 0 and dsx = dsy = 0, we calculate motion and bright-
ness change components. First uz is derived and then used to calculate ux and
uy from the first and second component of this linear combination. From the
other 2 eigenvector combinations with dt = 0 we derive depth and normals. The
parameters v, zx, zy and uz occur twice in the model (Eq. 18) and therefore
can be estimated independently from different components and/or different lin-
ear combinations of the eigenvectors. The estimates for these parameters can
be combined according to their error estimates, provided that their covariance
matrix (see [14]) is diagonal. This is made sure by suitable coordinate transfor-
mations in x-y-space (for uz) or sx-sy-space (for v, zx, and zy).

4 Experiments

We show a systematic error analysis using sinusoidal patterns, and a reconstruc-
tion of a cube with a high contrast noise texture raytraced with povray [16].

4.1 Sinusoidal Pattern

Sinusoidal pattern data is used to evaluate systematic errors and noise depen-
dence of the estimation process. In Fig. 2 two images of such a sequence are
shown. The wavelengths are 8 pixel in x- and 80 pixel in y-direction and ampli-
tude changing according to Eq. 11. We generated data sets for different values
of brightness change parameters a1, a1,x, a2, and a2,x, but not for a1,y and
a2,y as they work like the respective x-parameters. The other parameters are
UX = UY = ZX = ZY = 0, Z0 = 100, f = 10 and UZ = 0.1. As performance
measure for a parameter Q we use the mean absolute value either of the relative
error if Qref �= 0 or of the absolute error if Qref = 0

Qrel =
1
N

N∑
i

|Qi − Qref |
|Qref | Qabs =

1
N

N∑
i

|Qi − Qref | (22)
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a b

Fig. 2. Sinusoidal pattern data. (a, b): first and last image taken at central camera
position, a1 = a1,x = 0, a2 = −0.2 and a2,x = −0.002 (cmp. Eq. 11).
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Fig. 3. Mean absolute value of relative or absolute error of brightness change param-
eters a1 (top) and a2 (bottom) versus the brightness change parameters a1, a1,x, a2,
and a2,x. Noise free data.

where the sum runs over all pixels not suffering from border effects and the
lower indices rel stand for ’relative error’, abs for ’absolute error’ and ref for
’reference’. Parameter estimation was done according to Sec. 3, with weighting
matrix W implemented via a 65-tab Gaussian with standard deviation σ = 16.

The first experiment evaluates systematic error of and cross talk between
brightness change parameters. In Fig. 3 errors of a1 and a2 versus brightness
change parameters a1, a1,x, a2, and a2,x are shown. We observe that the relative
error of a1 is well below 0.5% if a1 < 1 and then moderately raises. This is due
to the fact that temporal derivatives of the data It become less and less accurate
when exponential behavior of the data becomes more and more prominent. The
same explanation holds for the linear error increase of a2 with increasing a2.
And as local brightness changes due to a1,x come close to changes due to a1 if
a1 = a1,xΔX for the same local patch, we expect and observe severe cross talk
between a1,x and a1, more severe for the model not containing a1,x. This is also
true for a2,x and a2, but there the cross talk is the same for both models, thus
modeling a2,x is of no advantage here. Further a1 is almost independent of a2
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Fig. 4. Mean absolute value of relative error of UZ versus the brightness change pa-
rameters a1, a1,x, a2, and a2,x. Noise free (top row) and noisy data (bottom).

and a2,x, as well as a2 of a1. But while a2 does depend on a1,x if a1,x is not
modeled, the error of a2 is about 1 to 2 orders of magnitude smaller if a1,x is
modeled. The positive effect on accuracy of the method if a1,x is modeled is even
higher for UZ , as we see next.

In Fig. 4 results for UZ,rel versus brightness change parameters are shown,
using noise free data and data with Gaussian noise of standard deviation σn =
0.025 being 2.5% of the amplitude of the signal at t = 0. As before all parameters
except the one on the ordinate have been kept fix. UZ is the most relevant
motion parameter, because errors in UZ directly also influence UX and UY (see
the first 2 components of the parameter vector p in Eq. 19). Let us first look
at the noise free case. As soon as a1 is significantly larger than 0 the brightness
constancy model immediately breaks down, errors get unacceptably high. For
the two other models UZ does not react on small a1 and only weak for larger
values of a1. When brightness changes due to a1,x are present only the model
containing spatial changes remains stable, brightness constancy and Haussecker-
Fleet-like models have severe problems. Looking at UZ,rel with changes due to
a2 or a2,x we observe that a2 and a2,x cause similar errors in UZ . This is in
complete consistency with our earlier observation in Fig. 3. While all models
behave the same for small absolute value of a2 or a2,x, the brightness constancy
model rapidly breaks down at |a2| ≈ 0.1 or |a2,x| ≈ 0.02. Comparing errors of
UZ for noise free and noisy data sets, we see only a small effect when a2 or a2,x

are close to 0. For larger a2 or a2,x the plots for noisy and noise free data look
almost identical. Also for large a1 and a1,x errors remain unchanged. But for
smaller a1 and a1,x the influence of noise can be quite high. We observe that
errors increase from well below UZ,rel = 0.01 up to nearly UZ,rel = 0.1.

We conclude that modeling a1,x is worth the effort while a2,x does not really
help. Noise may be an issue, thus it has to be kept as low as possible.
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4.2 Synthetic Cube

Temporal image sequences with 9 images were created at 25 positions of a 2d 5×5
camera grid using povray [16]. For the whole cube ground truth is UX = UY =
0mm/frame, UZ = 2mm/frame, and ZY = 0. At the left side ZX ≈ 1.73=̂60◦

and on the right ZX ≈ 0.577=̂30◦. As one can see in Fig. 1a and e, a noise
texture with high contrast is mapped on the sides of the cube and in addition to
the ambient illumination a spot light rotates around the center of the cube such
that it moves from right to left. In Fig. 1b-d the numerical model error, i.e. the
largest of the 3 smallest eigenvalues of the structure tensor is depicted as color
overlay on the central input image. For the brightness constancy model (Fig. 1b)
error is highest. Modeling spatially constant brightness changes (Fig. 1c) errors
reduce, but at the edge of the cube and at the border of the spotlight they are
still high. With spatially varying temporal changes errors again become smaller,
visible only at the edge of the cube. The components UX and UY of the motion
vectors shown in Fig. 1f-h are scaled by a factor 135 relatively to UZ in order
to visualize estimation errors (UX and UY should be 0). Even with this large
accentuation of errors motion vectors estimated with the richest model point
in the correct direction almost everywhere. The other models yield much less
accurate vector fields.

5 Summary and Outlook

In this paper we extended the brightness constancy model presented in [17] by
brightness change parameters. They are derived as a power series approximation
of the changes in reflected radiance due to (1) changes of illumination direction
and (2) changes in incoming light intensity caused by moving inhomogeneous
incident irradiance. While the first effect may be modeled by spatially constant
temporal changes, the latter one causes spatially variant temporal changes. The
sinusoidal pattern experiments reveal that modeling spatial variations of bright-
ness changes result in increased motion estimation accuracy with respect to a1,x,
but not with a2,x (cmp. Eq. 11). Motion vector fields of a translating cube illu-
minated by a moving spotlight have been estimated using brightness constancy
assumption and brightness change model with or without spatial changes. The
richest model yields significantly better results than the other ones.

In future work we will extend this model to be able to handle rotating objects.
Rotation leads to divergence visible in the image data, currently used for the
estimation of UZ , leading to erroneous motion estimates.
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Abstract. Recursive estimation or Kalman filtering usually relies on
explicit model functions, that directly and explicitly describe the ef-
fect of the parameters on the observations. However, many problems in
computer vision, including all those resulting in homogeneous equation
systems, are easier described using implicit constraints between the ob-
servations and the parameters. By implicit we mean, that the constraints
are given by equations, that are not easily solvable for the observation
vector.

We present a framework, that allows to incorporate such implicit con-
straints as measurement equations into a Kalman filter. The algorithm
may be used as a black-box, simplifying the process of specifying suitable
measurement equations for many problems. As a byproduct, the possi-
bility of specifying model equations non-explicitly, some non-linearities
may be avoided and better results can be achieved for certain problems.

1 Introduction

Recursive estimation or Kalman filtering is a classical technique [10] and has
been widely used in computer vision [15] and photogrammetry [4]. All those
recursive estimation schemes assume a functional model, where the observations
are explained by an explicit function in the unknown parameters.

However, many problems encountered in computer vision naturally result in
implicit constraints between the observations and the parameters [6,8,13,7]. For
instance, all problems resulting in homogeneous equation systems fall into this
class. Although it is always possible to reduce the solution of an implicit problem
to the solution of an explicit problem [11, p.231ff], to our knowledge no recursive
estimation scheme is readily available in this case. The main goal of this paper is
to provide a recursive estimation scheme, that can be applied to such problems
comprising of implicit constraints in a black-box manner thereby simplifying the
task of recursive estimation from the modeling point of view. The scope is not
to present a run-time optimized estimation scheme tailored specifically for the
task of structure-from-motion, as the proposed method is a framework, which is
applicable in a much broader context.
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The Kalman filter consists of two parts, namely a time update and a measure-
ment update. The scope of our work is not the time update but the measurement
update, for which we will present a solution based on implicit constraints.

Recently the Kalman filter based on the unscented transformation [9] has
obtained a lot of attention, which aims at improving the stochastic properties
of the filter. Our work on the other hand aims at simplifying the specification
of measurement equations, which are often much easier and straightforward to
derive as implicit functions. By allowing more freedom in the task of modeling
a certain problem the effects arising from non-linearities in the model equations
can possibly be reduced resulting in more stable algorithms.

We will demonstrate the applicability of our approach for the task of on-
line structure-from-motion from image sequences, which may be modeled using
explicit functions [2] as well as using implicit functions (see section 3.1). The
two approaches will be compared in section 3.2.

We are aware that a lot of highly optimized non-linear methods for the task of
on-line structure-from-motion from image sequences are available [14,5,3], which
exploit the specific structure of the normal equation matrix. However, this is not
the scope of our paper as the presented methods are applicable to a variety of
problems beyond structure-from-motion, which can be specified using implicit
functions. The structure-from-motion problem is only used to demonstrate the
applicability of the proposed method, as it is well-known to many researchers
and test-sequences are readily available.

In the following section a recursive estimation scheme based on implicit func-
tions will be derived. Section 2.3 summarizes the results and presents an easily
applicable algorithm based on the derived equations. Finally we will compare
the presented method to [2] in section 3.

2 Recursive Estimation Using Implicit Functions

2.1 Estimation Using Implicit Functions

We will now derive a recursive estimation scheme for the case of implicit con-
straints, which are functions relating the parameters p and the observations l as

g(p̃, l̃) = 0 . (1)

Note, that such implicit functions are often much easier derived than explicit
functions of the form l̃ = f(p̃). The best linear unbiased estimate of the param-
eter vector p̂ given observations l together with their covariance matrix C ll may
be obtained iteratively by solving the linear normal equation system [4, p.85]

AT(BTC llB)−1AΔ̂p = AT(BTC llB)−1cg (2)

using the Jacobians at appropriate initial values

A =
∂g(p, l)

∂p

∣∣∣∣
l̂,p̂

B =
∂g(p, l)T

∂l

∣∣∣∣
l̂,p̂

(3)



196 R. Steffen and C. Beder

the contradiction vector

cg = −g(p̂, l̂) − BT(l − l̂) = −g(p̂, l̂) + BTv (4)

and the residual of the observations

v = l̂ − l = C llB(BTC llB)−1(cg − AΔ̂p) . (5)

In the following we will analyze the effect additional observations have on this
estimation scheme.

2.2 Recursive Estimation

The task of recursive estimation is now to incorporate additional observations
into the model. Hence, the model equation is augmented by a second implicit
constraint block [

g1(p̃, l̃1)
g2(p̃, l̃2)

]
= 0 . (6)

Applying the same reasoning as before the solution of this new model equation
may be obtained using the new normal equation system with

AT(BTC llB)−1A =
[
AT

1

AT
2

] ([
BT

11 BT
21

BT
12 BT

22

] [
C 11 C 12

C 21 C 22

] [
B11 B12

B21 B22

])−1 [
A1

A2

]
(7)

on the left hand side and

AT(BTC llB)−1cg =
[

AT
1

AT
2

] ([
BT

11 BT
21

BT
12 BT

22

] [
C 11 C 12

C 21 C 22

] [
B11 B12

B21 B22

])−1 [
cg1

cg2

]
(8)

on the right hand side with the respective Jacobians in the block matrices.
In the following we will assume that the two observation blocks are stochas-

tically independent, i.e. C 12 = C 21 = 0 , as well as functionally independent, i.e.
B12 = B21 = 0 . Observe that this is analogous to classical recursive estimation
with explicit functions in the Kalman filter. Now we can reformulate the left
hand side of the normal equation system

AT(BTC llB)−1A = AT
1 (BT

1 C 11B1)−1A1 + AT
2 (BT

2 C 22B2)−1A2 (9)

as well as the right hand side of the normal equation system

AT(BTC llB)−1cg = AT
1 (BT

1 C 11B1)−1cg1 + AT
2 (BT

2 C 22B2)−1cg2 . (10)

Using the substitution W = BTC llB the final solution, that incorporates both
observations l1 and l2, may be obtained iteratively as

Δ̂p = (AT
1 W−1

11 A1 + AT
2 W−1

22 A2)−1(AT
1 W−1

11 cg1 + AT
2 W−1

22 cg2) . (11)

In the following the dependence on the first set of observation l1 should be
removed.
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The goal of recursive estimation is now to derive such a solution Δ̂p2 for the
combined constraints using the solution of the first constraint block g1 repre-
sented by Δ̂p1 and its covariance matrix Q p̂p̂11 as well as the new constraint
block g2 together with the new observations l2 and their covariance matrix C 22.
In order to achieve this goal equation (11) may be re-written as

Δ̂p2 = (AT
1 W−1

11 A1︸ ︷︷ ︸
Q−1

p̂p̂11

+AT
2 W−1

22 A2)−1

︸ ︷︷ ︸
Q p̂p̂22

(AT
1 W−1

11 c̄g1︸ ︷︷ ︸
Q−1

p̂p̂11
Δ̂p1

+AT
2 W−1

22 cg2 + AT
1 W−1

11 Δcg1)

(12)
with the contradictions being separated into

cg1 = c̄g1 + Δcg1 . (13)

Observe that the contradictions for the first contradiction block g1 change due
to the change of parameters resulting from the new contradiction block g2, due
to the dependence on p̂ of equation (4). As a consequence the residuals for the
observations of the first contradiction block change as well

v1 = C 11B1W−1
11 (c̄g1 + Δcg1 − A1Δ̂p2) (14)

= C 11B1W−1
11 (c̄g1 − A1Δ̂p1)︸ ︷︷ ︸

v̄1

+ C11B1W−1
11 (Δcg1 − A1(Δ̂p2 − Δ̂p1))︸ ︷︷ ︸

Δv1

.(15)

The expression Q p̂p̂22
in equation (12) is the inverse of a sum and can be

decomposed as follows [11, p.37]

Q p̂p̂22
= Q p̂p̂11

− Q p̂p̂11
AT

2 (W 22 + AT
2 Q p̂p̂11

A2)−1A2Q p̂p̂11
(16)

= Q p̂p̂11
− FA2Q p̂p̂11

(17)
= (I − FA2)Q p̂p̂11

(18)

with F being the well known gain matrix. Note that this update does not involve
the inversion of the full normal equation matrix. Substituting this back into
equation (12) we obtain

Δ̂p2 = (I − FA2)Q p̂p̂11
Q−1

p̂p̂11
Δ̂p1 + (I − FA2)Q p̂p̂11

AT
2 W−1

22 cg2 + (19)

(I − FA2)Q p̂p̂11
AT

1 W−1
11 Δcg1

= Δ̂p1 − FA2Δ̂p1 + Fcg2 + (I − FA2)Q p̂p̂11
AT

1 W−1
11 Δcg1 (20)

using the identity [11, p.37]

F = (I − FA2)Q p̂p̂11
AT

2 W−1
22 . (21)

The only remaining part still depending on l1 is now the change of the contra-
dictions (see equation (4))

Δcg1 = cg1 − c̄g1 = −g1(p̂2, l̂1) + BT
1 v1 + g1(p̂1, l̂1) − BT

1 v̄1 . (22)
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In order to get rid of this remaining dependence on the previous observations
observe, that the whole first contradiction block in the Kalman filter is encoded
in the first two moments of the parameter vector only. We therefore replace the
first constraint block by a direct observation of the parameters itself, i.e. l1 = p̂1

and C 11 = Q p̂p̂11 , so that

g1(p̂1, l1) = p̂1 − l1 = 0 (23)

immediately fulfills the constraint and therefore c̄g1 = 0, v̄1 = 0 and Δ̂p1 = 0.
Furthermore the Jacobians are given by A1 = I and B1 = −I .

Now equation (20) simplifies to

Δ̂p2 = Fcg2 + (I − FA2)Δcg1 (24)

with
Δcg1 = −g1(p̂2, l̂1) − v1 (25)

and equation (14) boiling down to

v1 = −Δcg1 + Δ̂p2 . (26)

For the second contradiction block we can compute the residuals

v2 = C 22B2W−1
22 (cg2 − A2Δ̂p2) (27)

and the contradictions

cg2 = −g2(p̂2, l̂2) + BT
2 v2 . (28)

We now have derived all required equations for incorporating an additional
implicit constraint into an estimation. In the following section those equations
will be summarized and put together into an easily applicable algorithm.

2.3 The Final Algorithm

We will now summarize the recursive estimation algorithm, which can be applied
as a black-box if only the Jacobians of the implicit model function are supplied.
From a previous estimation or prediction step of the filter, a current state vec-
tor p1 together with its covariance Qp1p1

is known. We now gather additional
observations l2 together with their covariance matrix C 22 in a subsequent mea-
surement step. The following algorithm may then be applied to update the state
vector accordingly.

1. set Δ̂p2 = 0
2. set p̂2 = p1

3. set v1 = 0
4. set v2 = 0, hence l̂2 = l2
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5. iterate until Δ̂p2 is sufficiently small
(a) compute Jacobians A2 and B2 at p̂2 and l̂2
(b) compute the gain matrix F as shown in equation (17)
(c) compute cg2 according to equation (28)
(d) compute Δcg1 according to equation (25)
(e) compute Δ̂p2 according to equation (24)
(f) update p̂2 with Δ̂p2

(g) compute v1 according to equation (26)
(h) compute v2 according to equation (27)
(i) update l̂2 with v2

6. compute Q p̂p̂22
according to equation(18)

After the algorithm is converged we finally obtained the updated state vector
p̂2 together with its covariance matrix Q p̂p̂22

. The only problem specific part is
the computation of the Jacobians in step 5a, which has to be adapted by the
user. This completes the measurement update using the implicit constraint and
a subsequent time update may be performed.

3 Results

The algorithm presented in the previous section is applicable to a broad range of
problems. In the following we will demonstrate the applicability of the framework
for the task of structure-from-motion using a single camera [2]. We will first
briefly sketch the involved model equations and then give some results on a test
sequence, where we will compare our approach to [2].

3.1 Model Equations

In [2] a popular model for on-line structure from motion using a single camera
is presented, which uses the following state vector

p =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

rW

qRW

vW

ωR

X1

...
Xi

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(29)

comprising of the camera state followed by a set of features parameters. The
uncertainty is coded in the covariance matrix Qpp, which is a square matrix of
equal dimension. The camera trajectory is represented by its actual position rW ,
orientation quaternion qRW , velocity vector vW and angular velocity vector ωR.
The 3d point coordinates are represented by their Euclidean points Xi.

The time update for the camera position and orientation can easily be com-
pute as

p̂ =
(

rW
new

qRW
new

)
=

(
rW + vW Δt

qRW × q(ωRΔt)

)
(30)
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where velocity, angular velocity and Euclidean points do not change. The un-
certainty of the predicted state is computed using error propagation and adding
some system noise (see [2]). We will use this time update model in both ap-
proaches we compare.

In the approach of [2] the measurement model is based on the co-linearity
equations, which can be written as homogeneous equations

xi = λiPX i with P = KR(q) [I3×3| − r] . (31)

Rewriting this in Euclidean coordinates, we get {ui, vi} as image coordinate
observations

ui =
P11Xi + P12Yi + P13Zi + P14

P31Xi + P32Yi + P33Zi + P34
(32)

vi =
P21Xi + P22Yi + P23Zi + P24

P31Xi + P32Yi + P33Zi + P34
(33)

which are explicit functions in the observations as required by the classical
Kalman filter. The fraction introduces a degree of non-linearity into the model
equations, that could be avoided using implicit functions.

As our approach is able to cope with implicit functions, we re-formulate the
co-linearity constraint using the cross-product as follows: Introducing the matrix

S(t) =
(

0 −t3 t2
t3 0 −t1

)
(34)

the co-linearity equations can be stated as implicit equation

S(xi)PXi = −S(PXi)xi = 0 . (35)

Obviously, those implicit constraints are equivalent to the explicit constraints.
Also observe that they are also non-linear in the camera pose parameters. How-
ever, there is no fraction involved, so that the effects introduced by the non-
linearity turn out to be reduced, as will be seen in the next section.

3.2 Experimental Evaluation

In order to assess the performance of the presented technique for the non-linear
structure-from-motion problem, we used the well-known rotating dinosaur se-
quence depicted in figure 1, where ground-truth camera calibration and orienta-
tion data were available. We extracted point features and tracked them across
the sequence.

Because the initialization of a Kalman filter based reconstruction approach is
known to influence the result significantly (see [12], [1]), we used the result of a
bundle adjustment of the first five frames for initialization of both approaches.
New points, that were introduced into the estimation, were initialized at the
centroid of the point cloud and given a large initial covariance matrix.

We estimated the camera trajectory and the 3d point cloud using the approach
based on explicit functions presented in [2] as well as using our own approach
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Fig. 1. Left: A single frame of the well-known rotating dinosaur sequence. The sequence
consists of 36 images rotated in 10◦ steps around the dinosaur. Ground-truth for the
camera calibration, position and rotation is available and will be used to quantify
the performance of the presented methods. Right: Camera positions and orientations
computed using a bundle adjustment of tracked feature points. The frame marked
in black is the last in the sequence. Note that the features were tracked, so that no
correspondences between the first and the last frame were used to close the loop.

Fig. 2. The mean distances and standard deviations of the estimated projection centers
to the ground truth for both methods with simulated noise plotted against the frame
number

based on implicit functions as described in the previous section. Both algorithms
were initialized using the same values, and the system noise and time update
model were identical. Furthermore we iterated the measurement update until
convergence for both approaches unlike proposed in [2], where only one iteration
is performed.

To evaluate the new algorithm, we added noise to the ground truth obser-
vations, estimated the projection centers based on the noisy data with both
methods and compared the results with the ground truth projection centers. We
ran the experiment 20 times. The results can be observe in figure 2. We see that
the proposed approach improves the accuracy of the estimated parameters.

Figure 3 shows the distance of the estimated projection centers to the ground
truth projection centers plotted against the frame number of the real data.
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Fig. 3. The distances of the estimated projection centers to the ground truth for both
methods plotted against the frame number

Observe, that the recursive estimation scheme based on the implicit function
performs slightly better after the 15th frame.

4 Conclusion

We presented a new type of recursive estimation framework in a Kalman filter
approach, which enables us to use implicit constraint functions, rather than
being restricted to explicit ones. By allowing implicit constraints, not only the
task of modeling recursive estimation schemes is eased significantly, but also
those could lead to more linear models in the estimation part of a Kalman filter,
which improves the robustness of such approaches.

We demonstrated the feasibility of this new algorithm for the task of structure-
from-motion from monocular image sequences. The proposed implicit constraints
turned out to be more robust than the explicit model used by [2] on our test
sequence.

The presented method is applicable to a broad range of computer vision prob-
lems, including all those resulting in homogeneous equation systems, so that a
lot of estimation task might benefit, which is a topic of further research. Fur-
thermore it might be interesting, how the proposed measurement update might
improve the performance of recursive estimation tasks in combination with the
unscented transformation in the time update equations.

A MATLAB reference implementation of the presented estimation algorithm
is available at www.ipb.uni-bonn.de/∼richard/imEKF/.
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Abstract. The extraction of a parametric global motion from a motion
field is a task with several applications in video processing. We present
two probabilistic formulations of the problem and carry out optimization
using the RAST algorithm, a geometric matching method novel to mo-
tion estimation in video. RAST uses an exhaustive and adaptive search
of transformation space and thus gives – in contrast to local sampling
optimization techniques used in the past – a globally optimal solution.
Among other applications, our framework can thus be used as a source
of ground truth for benchmarking motion estimation algorithms.

Our main contributions are: first, the novel combination of a state-
of-the-art MAP criterion for dominant motion estimation with a search
procedure that guarantees global optimality. Second, experimental re-
sults that illustrate the superior performance of our approach on syn-
thetic flow fields as well as real-world video streams. Third, a significant
speedup of the search achieved by extending the model with an additional
smoothness prior.

1 Introduction

We address the estimation of the dominant parametric motion from a sequence
of video frames. Such dominant motion is usually equated with background mo-
tion, and its precise and robust estimation is required for several applications
in the context of video analysis, like motion-based segmentation or motion com-
pensation (which again serves as a building block in modern video encoders or
in video mosaicing).

Like most practical video processing systems, we estimate a global paramet-
ric motion from a field of local motion probes – a problem that is difficult due
to measurement noise, inaccuracies of the previous motion estimation step, and
deviant foreground motion. In terms of dominant motion estimation, such fore-
ground motion probes are “outliers” that have to be recognized and discarded
during the fitting process.
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We view the problem from a parameter estimation perspective and propose
two Bayesian formulations, one of them including a smoothness prior. The result-
ing optimization problems are solved using the RAST algorithm [3]. While other
methods are based on a local sampling of search space and do not guarantee op-
timal solutions, RAST performs an adaptive, but exhaustive branch-and-bound
search and finds the global optimum. This fact is proven by experimental results
on synthetic motion fields as well as real-world video data.

Our main contributions are: first, the novel combination of a state-of-the-art
MAP criterion with a search procedure that guarantees global optimality up to
any accuracy desired. Second, experimental results that illustrate the superior
performance of our approach on synthetic flow fields as well as real-world video
streams. Third, a novel extension to the RAST algorithm with a smoothness
prior that leads to a better search strategy with a significant speedup.

2 Related Work

Motion interpretation has often been called a “chicken-egg” problem: motion
estimation is inaccurate without knowledge of motion boundaries due to the
aperture problem [1], while on the other hand motion segmentation requires
local motion estimates.

Methods to solve this problem can be divided into direct and indirect (or
“feature-based” [8]) methods. Approaches from the first category jointly esti-
mate motion and group it into coherent regions. Some estimate a parametric
motion over image regions – like regression [1], mixture models [9], clustering
methods [16] or formulations imposing additional shape priors [4]. Other direct
methods are nonparametric and assume piecewise smoothness of the motion
field, which leads to formulations related to Markov Random Fields [12,17].

In contrast to this, indirect methods are two-step procedures: first, a motion
field is estimated using correlation-based techniques [15], feature tracking [14]
or optical flow. The result forms the input to a segmentation step, which must
cope with local outliers and inaccuracies due to noise in the measurement pro-
cess, error-prone motion estimation, and foreground objects in motion. For this,
greedy local search procedures have been used in the past, like robust least
squares, RANSAC [5], least median of squares or least trimmed squares [10].

Since local errors in the motion estimation step cannot be undone, indirect
methods do not reach the robustness of direct ones. Nevertheless, they offer
simple and fast alternatives that are more popular in practice, and are applied
to several video processing tasks, like in state-of-the-art video codecs or video
mosaicing [13]. Our approach belongs to this second category. More precisely, we
assume a motion field is given and focus on the motion interpretation step.

3 Statistical Framework

We assume that a motion field D = {(x1, v1), .., (xn, vn)} of 2D positions xi

associated with 2D motion vectors vi is given. These probes can correspond to
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a dense optical flow field or to sparse probes obtained from block matching or
tracked point features.

The task is now to extract a parametric motion vθ : R2 → R2 that fits D
“well”, i.e. vi ≈ vθ(xi). Such parameterized motion has proven a simple and
often sufficiently accurate approximation to projected 3D scene motion. From
the parameterizations proposed in the literature [8,13], we choose the similar-
ity transform consisting of a rotation by an angle α, a scaling s (e.g., due to
zooming), and a translation (dx, dy)T .

As an optimality criterion, we use a statistical formulation of the problem, i.e.
we choose the global motion θ̂ = (ŝ, α̂, d̂x, d̂y) that maximizes the posterior:

θ̂ = arg max
θ

P (θ|D) = argmax
θ

P (D|θ) · P (θ) (1)

3.1 Criterion Q1: Local Independence

For our first formulation, we assume a uniform prior P (θ) and independent
motion probes drawn from a distribution p(vi|θ). If we also neglect competitive
foreground motion and use isotropic Gaussian noise to model inaccuracies of
motion estimation and of the capturing process, p(vi|θ) is a Gaussian distribution
with mean vθ(xi) and diagonal covariance σ2I. In practical flow fields, however,
outliers occur – again, due to inaccuracies of the motion estimation process, but
also due to foreground objects moving in a different direction. Since we do not
have prior knowledge about the motion of such objects, we assume a uniform
distribution p(vi|θ) = c of foreground motion. This gives a more realistic scenario
including outliers:

p(vi|θ) ∝ max
(
N (vi; vθ(xi), σ2I), c

)
(2)

We insert this term into the overall likelihood and obtain

p(D|θ) =
∏

i

p(vi|θ). (3)

Maximizing this is equivalent to maximizing the following quality function de-
rived from the log-likelihood (for a detailed derivation, see [18]):

Q1(θ) =
∑

i

max
(

1 − (vi − vθ(xi))2

ε2
, 0

)
=:

∑
i

q(vi, θ). (4)

The only free parameter of this ML criterion, ε, determines the allowed deviation
of a background motion sample from the parametric motion vθ. Note that Q1

consists of local contributions q(vi, θ) from the single flow samples, which are
in the following referred to as the support of a local flow probe vi for a global
motion θ. This support is zero exactly if vi deviates by ε or more from the model
motion vθ(xi) (i.e. if vi is regarded as an outlier). Thus, the evaluation of Q1

provides a segmentation of the motion field into background and foreground.
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3.2 Criterion Q2: Spatial Coherence Prior

The optimality criterion Q1 introduced in Equation (4) is derived from the like-
lihood and neglects the spatial coherence with which motion occurs in real-world
videos. Like other researchers before, we use this fact by formulating an addi-
tional prior related to formulations in Markov Random Fields [1,6,17].

For this, we first introduce a segmentation as a labeling of the motion vec-
tors L : {x1, .., xn} → {0, 1} such that L(xi) = Li = 1 iff vi belongs to the
background (which is the case exactly if q(vi, θ) > 0). Note that – given such
a labeling – we can automatically compute a motion θ(L) as a least squares
solution over the motion probes in the background region L−1(1). This is why –
instead of searching for a motion θ – we instead search for an optimal labeling
by maximizing the posterior:

P (L|D) ∝ P (D|L) · P (L) = P (D|θ(L)) · P (L) (5)

The first term corresponds to the likelihood criterion from Equation (3). For the
prior P (L), we define a neighborhood structure over the motion field sites {xi}
(for example, 4-connectedness on a regular grid of sites xi), which again induces
cliques of neighbor sites (all pairs of sites (xi, xj) which are adjacent). Let C
denote the set of all such cliques. Then we define P (L) as:

P (L) ∝
∏

(xi,xj)∈C
e−U(i,j) (6)

with U(i, j) = LiLj · c1 + (1 − LiLj) · c2. This leads to the overall posterior

P (L|D) ∝
∏

i

p(vi|θ) ·
∏

(xi,xj)∈C
e−U(i,j) (7)

maximizing which is again equivalent to maximizing a simpler quality criterion
(a detailed derivation is again given in [18]):

Q2(θ) = Q1(θ) + γ
∑

(xi,xj)∈C
LiLj (8)

where Q1 is the quality from Equation (4). The free parameter γ > 0 determines
the weight of spatial coherence relative to the goodness-of-fit term Q1. It depends
on c, c1, and c2, and is set manually in practice.

3.3 Optimization Using RAST

Both criteria Q1 and Q2 can be highly non-convex for motion fields in practice
such that techniques based on a sparse sampling of the space of possible motions
may get caught in local minima. We present an alternative based on a full search
of parameter space. Though more time-consuming, it is made feasible using an
adaptive search strategy. Our approach is called RAST (Recognition by Adaptive
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Search of Transformation space) [3]1. It has been applied in the domain of ge-
ometric matching before, but is novel to dominant motion estimation in video.
RAST is based on a branch-and-bound strategy: starting with the full parameter
space, a parameter subset is iteratively chosen and subdivided into two parts by
splitting along one parameter. We obtain subsequently finer subsets until fin-
ishing with a sufficiently small region corresponding to our estimate θ̂ (the user
can define the accuracy of the solution via this stopping criterion). The search
is guided into promising regions of parameter space by managing subsets in a
priority queue, i.e. for each subset an upper bound U of the quality is computed
and used to reinsert the subset into the priority queue.

The key part of the search is the computation of U . For Q1, the associated
bound is U1 =

∑
i ui, i.e. for each motion probe we find out (e.g., using interval

arithmetic [2]) if it can contribute to any global motion in the subset. For Q2,
U2 = U1 + γ ·

∑
(i,j)∈C uij with uij = 0 if ui = uj = 0 and uij = 1 otherwise.

i.e. after computing U1, an additional linear sweep through the motion probes is
required to increment the bound for each pair of adjacent potential background
sites.

4 Experiments

The most important capability of our approach is its optimality: the combination
of our statistical framework and the RAST optimization guarantees an optimal
solution up to any accuracy desired given a state-of-the-art statistical model –
a fact that is proven by quantitative experiments on synthetic motion fields,
which provide a controlled framework for evaluation with a well-known known
ground truth segmentation and ground truth motion. To validate that our model
is adequate in practice, we also present results for real-world video data.

4.1 General Setup

All input motion fields – synthetic or extracted from video – are defined at
16 × 16 macroblock positions (though our approach is not restricted to this
setup). For video streams, motion is estimated using the MPEG-4 video codec
XViD2 [15]. Global motion is parameterized using a similarity transform. The
following methods are tested:

1. Our Framework: We test our framework for both quality functions Q1 and Q2

(ε = 2.3, γ = 1). The 4-dimensional similarity transform space searched by
RAST should contain all reasonable motion between adjacent video frames.
We choose: σ ∈ [0.9, 1.1], α ∈ [−0.1, 0.1], (dx, dy) ∈ [−40, 40]2 . Search is
stopped if the evaluated subset has dimensions smaller than (0.0002)2 ×
(0.1)2. This means, the solution is determined with an accuracy of 0.1 pixels
for the translation, 0.0002 rad for the rotation, and 0.0002 for the scale.

1 Open source implementation at http://www.iupr.org/˜chl/multirast.tar.gz
2 www.xvid.org
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(a) (b) (c)

Fig. 1. (a) A synthetic motion field with three blobs each moving in different directions.
(b) and (c) Motion estimation results on synthetic blob data. (b) shows the average
segmentation error (depending on the fraction of the screen occupied by competitive
foreground motion), (b) the squared error of the estimated x translation relative to the
ground truth.

2. Least Squares: standard least squares regression is equivalent to maximizing
a quality function similar to Q1, but with a pure Gaussian motion vector
density instead of a truncated Gaussian one. It is thus expected to perform
poorly when competitive foreground motion occurs and serves as a baseline.

3. Robust Least Squares: this method alternately computes least squares motion
estimates and discards motion samples from D that deviate further than an
outlier threshold σ. Our implementation generates a sequence of solutions
by decreasing σ according to the schedule σk+1 = 0.95 · σk until σ < 2.3.

4. RANSAC: Random Sample Consensus (RANSAC) [5] is a popular Monte
Carlo procedure with excellent robustness to outliers and noise [7,11]. It is
based on an iterated random subsampling of D. The probability of failure
decreases with the number of iterations, but never reaches 0, such that op-
timality is not guaranteed. RANSAC is tested for both Q1 and Q2.

5. XViD Dominant Motion Estimation: this is the dominant motion estimation
component that the XViD codec uses for compression purposes. The imple-
mentation is comparable to robust least squares, but with a more greedy
outlier rejection strategy.

4.2 Synthetic Flow Fields

In a first experiment, we use synthetic flow fields of blob regions moving in front
of a moving background with the purpose of simulating the phenomena of noise
and spatial coherence in real-world video frames.

Like the example illustrated in Figure 1(a), all motion fields are derived from
a dominant motion and three foreground motions. The background motion is
randomly drawn from [−0.05, 0.05]× [0.95, 1.05]× [10, 10]2. Also, three blobs are
initialized with a random motion from {0} × {1} × [−16, 16]2. All blobs are of
the same size such that they – when non-overlapping – occupy a certain frac-
tion f ∈ {0.4, 0.6, 0.7} of the field. Also, isotropic Gaussian noise with standard
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(a) (b) (c)

Fig. 2. (a) A frame from the mobile sequence. (b) and (c) Motion segmentation (red
vectors belong to the background, white ones to the foreground) and difference between
motion-compensated frames for XViD (b) and RAST (c). For XViD, a wrong estimate
leads to a poor motion compensation on the upper left part of the frame.

deviation σ ∈ {1.0, 1.3, 1.6, 2.0, 2.3} is added to each motion vector, obtaining a
total of 1000 motion fields.

Numerical results for all test methods except the XViD codec (which we apply
to real-world videos only) and least squares (which performed much worse than
all other methods) are given in Figures 1(b) and 1(c). In Figure 1(b), the average
segmentation error is plotted against the fraction f occupied by the foreground,
reaching from 0.4 to 0.7. Note that some intrinsic segmentation error results
from outliers due to noise. The rate of such outliers – and thus the segmentation
error – constantly drops with f . Our framework gives lower segmentation error
rates than all other methods. The robust least squares method tends to break
at high foreground fractions. Between RAST and RANSAC (100 iterations), a
difference of about 1 % in segmentation error can be observed.

In Figure 1(c), we plot the average error of the estimated motion (more pre-
cisely, for the x-translation parameter) for the noise level σ = 2.0 against the
foreground fraction f . Again, our framework shows the best performance. The
average mean squared error remains below 0.2 pixels. Also, it can be observed
that Q1 and Q2 give a similar performance.

4.3 Test Sequences “Mobile” and “Snooker”

To validate its performance on real-world video data, we first apply our frame-
work to MPEG-4 motion vectors derived from the “mobile and calendar” test
sequence3. The sequence shows a textured background behind three foreground
objects, each moving in a different direction approximately perpendicular to the
optical axis. We subsampled the sequence in the temporal domain at 1 fps, ob-
taining 11 frames 22 × 18 macroblocks each. One frame is shown in Figure 2
together with motion estimates for XViD and RAST. The motion visualization
is layed over a motion-compensated difference image. For the RAST result, the
difference is low except for foreground regions. For the XViD result, it can be
3 http://www.m4if.org/resources.php
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Fig. 3. Motion support results for (a) the mobile test sequence (11 frames) and (b) the
snooker test sequence (90 frames)

seen that parts of the background (on the upper left) have been classified as
foreground and have thus been poorly compensated for.

Figure 3(a) illustrates the motion support Q1 for several test methods, plotted
over the frames of the mobile test sequence. For RANSAC and RAST, the ML
formulation was used.

We also compared the average processing time of RAST for both criteria Q1

(2.85 sec./frame, 1.6 Ghz Pentium M) and Q2 (1.07 sec./frame). Interestingly,
the spatial prior – though demanding an extra sweep through all motion samples
for the evaluation of a subset – leads to a significant speedup (62 %) that can be
observed throughout all of our experiments. Obviously, spatial coherence helps
to discard bad motion hypotheses early that are scattered over the field, and to
guide search into promising regions of transformation space. This insight might
be interesting in the geometric matching domain where RAST was developed.

Comparable results can be observed for our second test sequence “snooker”
captured from a TV sports broadcast (90 frames), showing a snooker player
tracked by a camera with a strong translation. The support Q1 for the sequence
is plotted in Figure 3(b) (for RANSAC, 20 iterations were used). Again, XViD
and least squares give relatively poor results. RANSAC and robust least squares
perform comparable to our method, but fail occasionally.

For both sequences, the support for our approach serves as an upper bound
for the performance of other methods.

4.4 Test Sequence “Foreman”

In this experiment, we test the performance of our approach for motion segmen-
tation on a subsampled version of the MPEG-4 test video sequence “foreman”
(80 frames) that comes with a ground truth segmentation mask. The sequence
shows strong, chaotic camera motion and a highly non-planar background.

Again, we tested several methods, for RAST and RANSAC (100 iterations) in-
cluding the spatial prior (Q2). Segmentation results are compared to the ground
truth on block basis (mixed blocks showing more than 5 % of both foreground and
background pixels are ignored). The resulting error rates are given in
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method segmentation
error rate

RAST 0.24

RANSAC 0.25

Robust LQ 0.26

XViD 0.33

LQ 0.41

(a) (b) (c)

Fig. 4. (a) Average segmentation error rates for the foreman sequence. (b) A frame from
the foreman sequence, and (c) a typical segmentation result evaluated using MPEG-4
ground truth segmentation masks. Blue blocks are ignored, red blocks are misclassified.

Figure 4 (a), a sample segmentation is illustrated in Figure 4 (b) and (c). Our
method gives the best results, followed by RANSAC and robust least squares. A
high intrinsic error occurs due to two reasons (besides inaccuracies in the motion
estimation step): first, the object stands still in some frames and is missed by
motion segmentation. Second, the 4D motion model implicitly assumes a pla-
nar background surface perpendicular to the optical axis. Since this assumption
is heavily violated in the foreman sequence, the optimal motion fit cannot be
determined in some frames.

5 Discussion

We have presented a framework for the indirect estimation of a global motion
from a given motion field. Our method is based on two alternative probabilistic
formulations of the problem: an ML criterion assuming independence of motion
samples, and an extension with a spatial coherence prior enforcing piecewise-
smooth motion. The optimization of the resulting quality functions is done using
RAST, an approach novel to dominant motion estimation in video.

The most important capability of our framework is that our method – in
contrast to local search procedures used in the past – guarantees an optimal
solution up to any user-defined accuracy. We demonstrate this superior per-
formance on synthetic motion data showing blobs moving in front of a noisy
background motion, as well as on several real-world video sequences. Though
greedy search procedures may be fast, attractive solutions for online processing,
they do not guarantee global optimality. In this context, our framework might
provide ground truth for benchmarking global motion estimation in video.

Another novelty we present is the combination of RAST optimization with a
spatial prior formulation. In our experiments, we measured a significant speed-
up using this extension. Obviously, this approach helps to guide the adaptive
search into more promising regions of parameter space – an insight that might
be interesting for RAST applications in the area of geometric matching and
object recognition.
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Abstract. Variational methods are among the most successful
approaches to calculate the optical flow between two image frames. A
particularly appealing formulation is based on total variation (TV)
regularization and the robust L1 norm in the data fidelity term. This
formulation can preserve discontinuities in the flow field and offers an
increased robustness against illumination changes, occlusions and noise.
In this work we present a novel approach to solve the TV-L1 formula-
tion. Our method results in a very efficient numerical scheme, which is
based on a dual formulation of the TV energy and employs an efficient
point-wise thresholding step. Additionally, our approach can be acceler-
ated by modern graphics processing units. We demonstrate the real-time
performance (30 fps) of our approach for video inputs at a resolution of
320 × 240 pixels.

1 Introduction

The recovery of motion from images is a major task of biological and artificial
vision systems. The main objective of optical flow methods is to compute a
flow field estimating the motion of pixels in two consecutive image frames. Since
optical flow is an highly ill-posed inverse problem, using pure intensity-based
constraints generally results in an under-determined system of equations, which
is generally known as the aperture problem. In order to solve this problem some
kind of regularization is needed to obtain physically meaningful displacement
fields.

In their seminal work [13], Horn and Schunck studied a variational formulation
of the optical flow problem.

min
u

{∫

Ω

|∇u1|2 + |∇u2|2 dΩ + λ

∫

Ω

(I1(x + u(x)) − I0(x))2 dΩ

}
. (1)

I0 and I1 is the image pair, u = (u1(x), u2(x))T is the two-dimensional dis-
placement field and λ is a free parameter. The first term (regularization term)
penalizes high variations in u to obtain smooth displacement fields. The second
term (data term) is also known as the optical flow constraint. It assumes, that
the intensity values of I0(x) do not change during its motion to I1(x + u(x)).

Since the Horn-Schunck model penalizes deviations in a quadratic way, it has
two major limitations. It does not allow for discontinuities in the displacement

F.A. Hamprecht, C. Schnörr, and B. Jähne (Eds.): DAGM 2007, LNCS 4713, pp. 214–223, 2007.
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field, and it does not handle outliers in the data term robustly. To overcome
these limitations, several models including robust error norms and higher or-
der data terms have been proposed. Since discontinuities in the optical flow
appear often in conjunction with high image gradients, several authors replace
the homogeneous regularization in the Horn-Schunck model with an anisotropic
diffusion approach [15,19]. Other proposed modifications substitute the squared
penalty functions in the Horn-Schunck model with more robust variants. Blake
and Anandan [5] apply estimators from robust statistics and obtain a robust
and discontinuity preserving formulation for the optical flow energy. Aubert et
al. [3] analyze energy functionals for optical flow incorporating an L1 data fi-
delity term and a general class of discontinuity preserving regularization forces.
Papenberg et al. [16] employ a differentiable approximation of the TV (resp.
L1) norm and formulate a nested iteration scheme to compute the displacement
field.

Most approaches for optical flow computation replace the nonlinear intensity
profile I1(x+u(x)) by a first order Taylor approximation to linearize the problem
locally. Since such approximation is only valid for small displacements, additional
techniques are required to determine the optical flow correctly for large dis-
placements. Scale-space approaches [1] and coarse-to-fine warping (e.g. [2,14,7])
provide solutions to optical flow estimation with large displacements.

In several applications, such as autonomous robot navigation, it is necessary to
calculate displacement fields in real-time. Real-time optical flow techniques typ-
ically consider only the data fidelity term to generate displacement fields [10,18].
One of the first variational approaches to compute the optical flow in real-time
was presented by Bruhn et al. [8,9]. In their work a highly efficient multi-grid
approach is employed to obtain real-time or near real-time performance. The aim
of their approach is very similar to our objective: obtaining robust and disconti-
nuity preserving solutions for optical flow with highly efficient implementations.
Nevertheless, we utilize a completely different solution strategy as described in
the next sections.

2 TV-L1 Optical Flow

In the basic setting two image frames I0 and I1 : (Ω ⊆ R
2) → R are given. The

objective is to find the disparity map u : Ω → R
2, which minimizes an image-

based error criterion together with a regularization force. In this work we focus
on the plain intensity difference between pixels as the image similarity score.
Hence, the target disparity map u is the minimizer of

∫

Ω

{
λφ (I0(x) − I1(x + u(x))) + ψ(u, ∇u, . . .)

}
dx, (2)

where φ (I0(x) − I1(x + u(x))) is the image data fidelity, and ψ(u, ∇u, . . .) de-
picts the regularization term inducing the shape prior. λ weights between the



216 C. Zach, T. Pock, and H. Bischof

data fidelity and the regularization force. Selecting φ(x) = x2 and ψ(∇u) =
|∇u|2 results in the Horn-Schunck model [13].

The choice of φ(x) = |x| and ψ(∇u)) = |∇u| yields to the following functional
consisting of an L1 data penalty term and total variation regularization:

E =
∫

Ω

{
λ|I0(x) − I1(x + u(x))| + |∇u|

}
dx. (3)

Although Eq. 3 seems to be simple, it offers some computational difficul-
ties. The main reason is that both the regularization term and the data term
are not continuously differentiable. One approach is to replace φ(x) = |x| and
ψ(∇u) with differentiable approximations φε(x2) =

√
x2 + ε2 and ψε(∇u) =√

|∇u|2 + ε2, and to apply a numerical optimization technique on this slightly
modified functional (e.g. [12,7]).

In this paper we employ a rather different approach. In [11] Chambolle pro-
posed an efficient and exact numerical scheme to solve the Rudin-Osher-Fatemi
energy [17] for total variation based image denoising. In the following, we will
describe how to adopt this approach for the optical flow case.

2.1 The 1D Stereo Case

In this section we restrict the disparities to be non-zero only in the horizontal
direction, e.g. a normalized stereo image pair is provided. Hence, u(x) reduces
to a scalar u(x), and we use the (sloppy) notation x + u(x) for x + (u(x), 0)T .
The following derivation is based on [4], but adapted to the stereo/optical flow
setting. At first, we linearize image I1 near x + u0, i.e.

I1(x + u) = I1(x + u0) + (u − u0) Ix
1 (x + u0),

where u0 is a given disparity map and Ix
1 is the derivative of the image intensity

I1 wrt. the x-direction. Using the first order Taylor approximation for I1 means,
that the following procedure needs to be embedded into an iterative warping
approach to compensate for image nonlinearities. Additionally, a multi-level ap-
proach is employed to allow large disparities between the images.

For fixed u0 and using the linear approximation for I1, the TV-L1 functional
(Eq. 3) now reads as:

E =
∫

Ω

{
λ|u Ix

1 + I1(x + u0) − u0 Ix
1 − I0| + |∇u|

}
dx. (4)

In the following, we denote the current residual I1(x + u0) + (u − u0) Ix
1 − I0

by ρ(u, u0, x) (or just ρ(u) by omitting the explicit dependency on u0 and x).
Moreover, we introduce an auxiliary variable v and propose to minimize the
following convex approximation of Eq. 4:

Eθ =
∫

Ω

{
|∇u| + 1

2θ
(u − v)2 + λ|ρ(v)|

}
dx , (5)
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where θ is a small constant, such that v is a close approximation of u. This
convex minimization problem can be optimized by alternating steps updating
either u or v in every iteration:

1. For v being fixed, solve

min
u

∫

Ω

{
|∇u| + 1

2θ
(u − v)2

}
dx. (6)

This is the total variation based image denoising model of Rudin, Osher and
Fatemi [17].

2. For u being fixed, solve

min
v

∫

Ω

{
1
2θ

(u − v)2 + λ |ρ(v)|
}

dx. (7)

This minimization problem can be solved point-wise, since it does not depend
on spatial derivatives of v.

An efficient solution for the first step (Eq. 6) was proposed in [11], which uses a
dual formulation of Eq. 6 to derive an efficient and globally convergent scheme.
Since this algorithm is an essential part of our method, we reproduce the relevant
results from [11]:

Proposition 1. The solution of Eq. (6) is given by

u = v − θ divp , (8)

where p = (p1, p2) fulfills

∇(θ divp − v) = |∇(θ divp − v)| p , (9)

which can be solved by the following iterative fixed-point scheme:

p k+1 =
p k + τ∇(div p k − v/θ)
1 + τ |∇(div p k − v/θ)| , (10)

where p 0 = 0 and the time step τ ≤ 1/8.

The next proposition characterizes the minimizer of the second part (Eq. 7):

Proposition 2. The solution of the minimization task in Eq. 7 is given by the
following thresholding step:

v = u +

⎧
⎨
⎩

λ θ Ix
1 if ρ(u) < −λ θ (Ix

1 )2

−λ θ Ix
1 if ρ(u) > λθ (Ix

1 )2

−ρ(u)/Ix
1 if |ρ(u)| ≤ λ θ (Ix

1 )2.
(11)

This means, that the image residual ρ(v) is allowed to vanish, if the required
step from u to v is sufficiently small. Otherwise, v makes a bounded step from
u, such that the magnitude of the residual decreases.

The proposition above can be shown directly by analyzing the three possible
cases, ρ(v) > 0 (inducing v = u − λ θ Ix

1 ), ρ(v) < 0 (v = u + λ θ Ix
1 ) and ρ(v) = 0

(v = u − ρ(u)/Ix
1 ).
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2.2 Generalization to Higher Dimensions

In this section we extend the method introduced in the previous section to optical
flow estimation, i.e. an N -dimensional displacement map u is determined from
two given N -D images I0 and I1. The first order image residual ρ(u, u0, x) wrt.
a given disparity map u0 is now I1(x+u0)+〈∇I1, u−u0〉−I0(x). Additionally,
we write ud for the d-th component of u (d ∈ {1, . . . , N}).

The generalization of Eq. 5 to more dimensions is the following energy:

Eθ =
∫

Ω

{∑
d

|∇ud| +
∑

d

1
2θ

(ud − vd)2 + λ|ρ(v)|
}

dx. (12)

Similar to the stereo setting, minimizing this energy can be performed by alter-
nating optimization steps:

1. For every d and fixed vd, solve

min
ud

∫

Ω

{
|∇ud| +

1
2θ

(ud − vd)2
}

dx. (13)

This minimization problem is identical to Eq. 6 and can be solved by the same
procedure. Note, that the dual variables are introduced for every dimension,
e.g. Eq. 8 now reads as

ud = vd − θ divpd. (14)

2. For u being fixed, solve

min
v

∑
d

1
2θ

(ud − vd)2 + λ |ρ(v)| . (15)

The following proposition generalizes the thresholding step from Proposition 2
to higher dimensions:

Proposition 3. The solution of the minimization task in Eq. 15 is given by the
following thresholding step:

v = u +

⎧
⎨
⎩

λ θ ∇I1 if ρ(u) < −λ θ |∇I1|2
−λ θ ∇I1 if ρ(u) > λθ |∇I1|2
−ρ(u)∇I1/|∇I1|2 if |ρ(u)| ≤ λ θ |∇I1|2.

(16)

This proposition essentially states, that the N -dimensional optimization prob-
lem can be reduced to a one-dimensional thresholding step, since v always lies
on the line l⊥ going through u with direction ∇I1 (for every x). This can be seen
as follows: The first part in Eq. 15,

∑
d(ud − vd)2/2θ, is basically the squared

distance of v to u, and the second part, λ |ρ(v)|, is the unsigned distance to
the line l : ρ(w) = 0, i.e. I1(x + u0) + 〈∇I1, w − u0〉 − I0(x) = 0. If we
consider all vμ with a fixed distance μ to u, then the functional in Eq. 15
is minimized for the vμ closest to the line l (with minimal normal distance).
This is also valid for the true minimizer, hence the optimum for Eq. 15 is on l⊥.
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In addition, the one-dimensional thresholding step in gradient direction can be
applied (Proposition 2), resulting in the presented scheme.

3 Implementation

This section gives details on the employed numerical procedure and on the GPU-
accelerated implementation for the proposed TV-L1 optical flow approach. Al-
though the discussion in Section 2.2 is valid for any image dimension N ≥ 2, our
GPU-based implementation is specifically tailored for the case N = 2.

3.1 Numerical Scheme

The generally non-convex energy functional for optical flow (Eq. 3) becomes a
convex minimization problem after linearization of the image intensities (Eq. 4),
but this linearization is only valid for small displacements. Hence, the energy
minimization procedure is embedded into a coarse-to-fine approach to avoid
convergence to unfavorable local minima. We employ image pyramids with a
downsampling factor of 2 for this purpose. Beginning with the coarsest level,
we solve Eq. 3 at each level of the pyramid and propagate the solution to the
next finer level. This solution is further used to compute the coefficients of the
linear residual function ρ by sampling I0 and I1 using the corresponding pyra-
mid levels. Hence, the warping step for I1 takes place only once per level. ∇I1

is approximated by central differences. At the beginning of a new level, v is ini-
tialized with u, and all pd are set to 0. At the coarsest level, the displacement
field u starts with 0.

Avoiding poor local minima is not the only advantage of the coarse-to-fine
approach. It turns out, that the filling-in process induced by the regulariza-
tion occurring in textureless region is substantially accelerated by a hierarchical
scheme as well.

The minimization procedure alternates one step of the fixed-point scheme to
update all pd (and therefore u, Eq. 10) with the thresholding step from Propo-
sition 3 to improve v. The implementation of the fixed-point update (Eq. 10)
uses backward differences to approximate divp and forward differences for the
numerical gradient computation in order to have mutually adjoint operators [11].

3.2 Acceleration by Graphics Processing Units

Numerical methods working on regular grids, e.g. rectangular image domains,
can be effectively accelerated by modern graphics processing units (GPUs). We
employ the huge computational power and the parallel processing capabilities of
GPUs to obtain a fully accelerated implementation of our optical flow approach.
The GPU-based procedure is essentially a straightforward Cg implementation
of the numerical schemes (Eqs. 10 and 16) with few modifications described as
follows.
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If we write down the alternating minimization steps explicitly, iteration k
performs the following updates on u, v and pd:

1a. vk+1 ← TH(uk)

1b. uk+1
d ← vk+1

d − θ divpk
d for d ∈ {1, 2}

2. pk+1
d ← pk

d + τ/θ∇uk+1
d

1 + τ/θ|∇uk+1
d |

for d ∈ {1, 2},
(17)

where TH(·) denotes the thresholding step from Eq. 16. These steps can be
immediately implemented on the GPU by appropriate fragment programs using
two rendering passes.1 The first pass implements steps 1a and 1b from Eq. 17.
The values vk+1 are used only temporarily within the shader program and need
not to be saved explicitly. uk+1 is written to the target texture. The second
shader program corresponds with step 2 from Eq. 17. It turns out, that the
utilization of the fragment processors can be improved by updating u and pd for
two pixels simultaneously. The shader programs work on the left and on the right
half of the images in parallel, with appropriate handling of border pixels. Our
implementation encodes the two components of u using full 32-bit precision, and
the overall four components of p1 and p2 are compressed to 16-bit half precision
floating point numbers.

We currently use a fixed but tunable number of iterations on each level in
our implementation, since determining the maximum update |uk+1 − uk| still
requires an expensive reduction operation even on modern GPUs.

4 Results

At first, we provide timing results for our optical flow approach depicted in
Table 1. Two hardware setups were used to obtain the timing results: a desktop
PC equipped with a NVidia GeForce 7800 GS card, and a high-end laptop sup-
plied with a NVidia GeForce Go 7900 GTX graphics board. The timing results
were obtained under the Linux operating system with recent OpenGL graphics
drivers and the Cg 1.5 toolkit. The timings in Table 1 are given in frames per
second for the depicted fixed number of iterations on each level of the image
pyramid. The measured times include the texture uploads to video memory and
the final visualization of the obtained displacement field. The timing results in-
dicate, that real-time performance with more than 30 frames per second can
be achieved at 256 × 256 pixels resolution with our approach. Frames from a
live video demo application are shown in Figure 1, which continuously reads im-
ages from a firewire camera and visualizes the optical flow for adjacent frames.
Real-time performance can be achieved with the mobile hardware setup.

1 A single pass variant using only one shader program is possible as well, but the
observed performance is inferior in almost all cases.
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Table 1. Observed frame rates at different image resolutions and with varying number
of iterations on our tested hardware

GeForce 7800 GS GeForce Go 7900 GTX

Image resolution 50 It. 100 200 50 It. 100 200

128 × 128 56 32.1 17.5 95 57.6 30.9
256 × 256 18 9.6 5 34.1 17.5 8.9
512 × 512 5 2.6 1.3 9.3 4.7 2.3

(a) First frame (b) Second frame (c) Optical flow field

Fig. 1. Captured frames and generated optical flow field using our live video applica-
tion. The image resolution is 320 × 240, and 50 iterations are performed on each level
of the image pyramid. The framerate is close to 30 frames per second in this setting.
The flow field is visualized using hue to indicate the direction and intensity for the
magnitude.

Figure 2 shows common test sequences for optical flow, in particular the Et-
tlinger Tor, the Rheinhafen and the Yosemite sequences, and their respective flow
fields. The results for these datasets indicate, that the reduced 16-bit resolution
for the dual variables pd does not severely affect the quality of the obtained flow
fields. Table 2 specifies the obtained average angular error (AAE) of the flow
field for the Yosemite dataset wrt. the provided ground truth. If the completely
homogeneous sky region is excluded from the AAE calculation, the flow field
is essentially converged after 50 iterations. Enabling more iterations yields to
slightly inferior results, since the TV-L1 energy favors piecewise constant flow
fields in the limit. If the sky region is included in the evaluation, the AAE error
decreases by increasing the number of iterations. In this case the flow field in
the sky region converges relatively slowly to the zero displacement.

Table 2. Average angular error for frame 8 and 9 of the Yosemite sequence at different
number of iterations

50 It. 150 250

Without sky 2.85◦ 2.88◦ 2.89◦

With sky 5.06◦ 3.7◦ 3.27◦
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(a) Frame 5 (b) Frame 6 (c) Flow field, 9.3 fps

(d) Frame 1130 (e) Frame 1131 (f) Flow field, 29.1 fps

(g) Frame 8 (h) Frame 9 (i) Flow field, 27.2 fps

Fig. 2. Sample images and obtained flow fields for the Ettlinger Tor (512×512 pixels),
the Rheinhafen (320×240 pixels) and the Yosemite (320×256 pixels) sequences

5 Conclusion

We presented a novel approach for efficient optical flow estimation using a TV-
L1 energy functional. We developed a novel fast numerical scheme which can
be efficiently implemented on modern graphics processing units. With this we
can show real-time performance using online video streams. The correctness and
quality of our implementation is demonstrated on several datasets.

Future work includes the extension of our approach to handle color images
as well. Additionally, other image similarity measures, e.g. based on intensity
gradients, need to be further explored. The edge preserving nature of total vari-
ation can be enhanced, if a suitable weighted TV-norm/active contour model is
applied [6]. Future work will address the incorporation of these feature for stereo
and optical flow estimation.

Finally, switching from an OpenGL-based implementation to the newer CUDA
GPU programming framework is expected to increase the observed performance
substantially.
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Abstract. Magnetic resonance spectral images provide information on
metabolic processes and can thus be used for in vivo tumor diagnosis.
However, each single spectrum has to be checked manually for tumor-
ous changes by an expert, which is only possible for very few spectra in
clinical routine. We propose a semi-supervised procedure which requires
only very few labeled spectra as input and can hence adapt to patient
and acquisition specific variations. The method employs a discrimina-
tive random field with highly flexible single-side and parameter-free pair
potentials to model spatial correlation of spectra. Classification is per-
formed according to the label set that minimizes the energy of this ran-
dom field. An iterative procedure alternates a parameter update of the
random field using a kernel density estimation with a classification by
means of the GraphCut algorithm. The method is compared to a single
spectrum approach on simulated and clinical data.

1 Introduction

One major challenge in image processing is to exploit spatial correlation in 2-D
images. Certain imaging techniques, however, are not only able to record one
spatially resolved scalar signal, but provide a full vector of different features per
pixel. Spectral images are examples of such multidimensional data sets and are
in common use, e.g. in satellite remote sensing or non-invasive diagnostics. If
the mapped process can be assumed to exhibit some spatial correlation, combin-
ing the information of the spectral and spatial dimension will allow for better
decisions than the interpretation of one spectrum alone, especially with noisy
spectra. Often these two sources of information are processed in a consecutive
manner by first analyzing the spectral image spectrum-by-spectrum, and then
using the spatial context in a second post-hoc step on the label map resulting
from the spectrum-wise processing.

Magnetic resonance (MR) spectroscopy is a non-invasive diagnostic method
used to determine the relative abundance of specific metabolites at arbitrary
locations in vivo. Characteristic changes in the spectral pattern can be linked to
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specific changes of the tissue, providing means for the grading and localization of
tumors, e.g. in brain, breast and prostate [1]. Magnetic resonance spectroscopic
imaging (MRSI) allows to acquire such spectra on two- or three-dimensional
grids. Each spectrum is represented by a vector of several hundred spectral
channels and shows a low number of relevant resonance lines, e.g. 5-10 for MR
spectra of the brain. When searching for tumorous changes of the spectrum,
pattern recognition methods can be applied to evaluate the data in a highly
automated fashion and to guide the radiologist to the relevant regions of the
spectroscopic image [2,3,4,5,6].

Typically, a limited number of spectra are diagnosed manually by a physician,
providing patient-specific, diagnostic information on the tumor. In the follow-
ing we propose an approach for the detection and localization of brain tumors
which uses this information in a flexible, semi-supervised classifier for an adap-
tive processing of the complete spectral image. It allows both to process spectral
information and to exploit the spatial correlation of the data in a coherent, highly
adaptable framework (section 2). Our approach relies on common chemometric
models in the classification of the spectral information and on a spatial model,
motivated by Bayesian image processing, for the spatial regularization. Seeking
for a time-efficient implementation in the clinical setting, we propose an efficient
solver based on the GraphCut algorithm in an iterative strategy. Finally the
algorithm is tested on simulated and real data, with results shown in section 3.

2 Spatio-spectral Classification Model

The classification of spatio-spectral data can be separated into two tasks: the
inference on the spectral signal alone, a learning problem on highly collinear
data, and the formulation of a spatial model on the resulting label map combin-
ing information from the single-voxel spectral model with a spatial smoothness
assumption on the labels.

2.1 Spectral Model

In the following let Xi = (X1
i , . . . , Xp

i ) represent a p-dimensional spectrum, and
Yi a binary random variable taking values in {0, 1}, with Yi = 0 for healthy and
Yi = 1 for tumorous tissue.

Given appropriate training data, the information of a spectrum Xi can be
mapped to low dimensional scores, e.g. to the probabilities of either showing
characteristic tumorous changes of the spectral pattern (with posterior distri-
bution π(Yi = 1|Xi)), or to be within the normal range of spectra originating
from healthy tissue (π(Yi = 0|Xi)). The posterior probability can be estimated
with any method, linear (e.g. linear discriminant analysis, partial least squares
regression) or nonlinear (e.g. support vector machines, mixture discriminant
analysis), parametric or nonparametric, generative or discriminative. A regu-
larization, however, might be indicated, as collinearity between the channels of a
spectrum often leads to intrinsic dimensionalities well below the nominal length
of the feature vector.
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In the current application we have chosen an approach which combines the
strong regularization of a chemometric spectral model and the variability of a
nonparametric classifier. By assuming a flat prior on the classes (π(Yi = 0) =
π(Yi = 1)) and by Bayes’ rule, it suffices to estimate π(Xi|Yi = 0) and π(Xi|Yi =
1) to predict the most probable assignment of the spectrum Xi. For this, we
used a Parzen kernel density estimator with bandwidth chosen according to
Silverman’s “rule-of-thumb” [7] on a reduced feature subspace defined by the
first two principal components of an external training set.

2.2 Spatio-spectral Model

All N spectra X = {X1, . . . , XN} lie, by acquisition, on a regular 2-D or 3-D
Cartesian grid. The task is to identify each spectrum Xi with either healthy or
tumorous tissue. It is assumed that a tumor is significantly larger than the spa-
tial sampling distance, leading to spatial smoothness of the predicted classes. In
order to incorporate this smoothness assumption into the spatio-spectral model,
a graph-based method was used. Thus the structure of the spectral image is rep-
resented by an undirected graph G = (S, E), with vertices S and edges E, with
each site s ∈ S representing a voxel of spectral acquisition and the set of edges
E representing the neighborhood relation and therefore the spatial coupling of
the random variables {Yi}. In our experiments we chose the set E to be de-
rived from the rectangular 2-D Cartesian acquisition grid, i.e. a 4 neighborhood
system, which uses at most pairwise interactions between labels Y = {Yi} and
therefore keeps efficiency in inference and classification.

One of the most widely used methods for modeling spatial interaction are ran-
dom fields, introduced to image processing by Besag [8], a generative approach
to classification. As shown in [9] it is often advantageous to use discriminative
models, i.e. a model for p(Y|X). Therefore a discriminative random field (DRF)
[10] (a subgroup of conditional random fields [11]) with penalty term given by
a parameter-free function was used. The single-site potential is formulated to
reflect the information of the spectral model, and is given by

ssp(Yi|Xi) = − log π(Yi = 1|Xi) · Yi − log π(Yi = 0|Xi) · (1 − Yi) (1)

and the pair-potential, responsible for the spatial coupling of the labels, is

pp(Yi, Yj|X) =
{

ν · γ(Xi, Xj) · |Yi − Yj | if Xi ∼ Xj

0 else (2)

where Xi ∼ Xj means that Xi and Xj originate from connected vertices,
γ(Xi, Xj) gives the penalty incurred when Yi and Yj are classified to different
classes, and ν governs the trade-off between the purely voxel based classification
and the spatial smoothness of the label map. For each spectral image X this in-
duces the following probability distribution on {0, 1}N , which is an Ising model
on Y given X [12]:

p(Y|X) =
1
Z

exp

⎛
⎝−

N∑
i=1

ssp(Yi|Xi) −
N∑

i,j=1

pp(Yi, Yj|X)

⎞
⎠ (3)
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Fig. 1. Point ‘x’ and its four neighbors ‘o’ with the posterior distribution in the feature
space of the spectral model and decision border indicated; Left: label of sample ‘x’ will
flip for low ν, due to different classification of ‘o’ and weak support for classification;
Right: label of ‘x’ has strong evidence and will not flip, though all neighbors are
classified differently

and the sought classification is given as the maximum a posteriori (MAP) es-
timate of this distribution, which corresponds to using the Bayes estimator for
the zero-one loss function. According to ssp(Yi|Xi), the spectrum Xi is classified
to the most probable class. If two neighboring vertices si and sj are assigned to
different classes, a penalty γ(Xi, Xj) is incurred, which depends on the similar-
ity of the two spectra Xi and Xj . In contrast to the DRF as used in [10], the
penalty is given as a function and not inferred from training data, leading to a
significant decrease of the number of parameters to be estimated. In the current
model we have chosen the square root of the Perona-Malik tensor [13]

γ(Xi, Xj) =
1√

|Xi − Xj |2 + 1
(4)

with |Xi−Xj| denoting a distance between the features of Xi and Xj used in the
spectral model, i.e. in this case the Cartesian distance of the projection into the
subspace spanned by the first two principal components. The function penalizes
the assignment of different labels to neighboring spectra, unless they are very
dissimilar. An illustrative example is shown in figure 1. The amount of evidence
needed for such a classification is governed by the trade-off parameter ν.

A similar model for object extraction by GraphCut has been proposed by
Boykov and Funka-Lea [14].

2.3 Semi-supervised Solution

The posterior distributions π(Yi|Xi) are not known in the beginning, as a non-
parametric kernel density estimator is used to model both class densities. To op-
timally adapt to different patients, this estimate is obtained in a semi-supervised,
patient dependent manner. In clinical practice, a limited number of spectra in
the MRSI is always checked and diagnosed by the physician. The resulting labels,
which are optimally adapted to the data, are used for the initialization of the
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estimate of the posterior distributions π(X |Y = 0) and π(X |Y = 1). To this end,
a kernel density estimate is performed for each class separately, in the reduced
two-dimensional feature space spanned by the first principal components of the
spectra. As the hand-assigned labels should not change in the iteration process
the single-site potentials for these spectra are changed to ssp(Yi|Xi) = ∞·(1−Yi)
for a tumor label and ssp(Yi) = ∞ · Yi otherwise.

With this first estimate of the class distributions and with an initial value for
ν, the classification, corresponding to the maximum probability state of the dis-
tribution given in equation (3), can be efficiently calculated by using Bayes the-
orem to obtain π(Yi|Xi) from π(Xi|Yi) and the GraphCut algorithm [15,16,17].
The latter is an instance of the well known MinCut/MaxFlow algorithm from
graph theory. This results in an updated classification of the spectra which, in
the next iteration, is used for an update of the kernel density estimation used to
obtain the single-site potentials via Bayes theorem. These two steps are iterated
until no spectra changes its classification in subsequent iterations. In our exper-
iments we found that hardly ever more than four iterations were needed until
convergence.

This iterative procedure obviously is a version of Dempster’s Expectation-
Maximization [18] with hard class assignments. It is essential for this approach
to start with a good initialization (Fig. 2). Using spectra showing an ambiguous
spectral pattern leads to a significantly worse classification result, compared to
an initialization with spectra showing a clear pattern for either class.

Fig. 2. Simulated data described in chapter 3; Left: true classification, Middle: clas-
sification after initialization with spectra showing a clear spectral pattern, Right:

classification after initialization with spectra with ambiguous spectral pattern

It is often desirable to show the confidence in the classification. To this end,
Gibbs sampling [19] from the posterior distribution p(Y|X) can be used, a
Markov Chain Monte Carlo method [20]. In order to employ a Gibbs sampler,
the local characteristics have to be known, which can easily be calculated to be

p(Yi|Y1, . . . , Yi−1, Yi+1, . . . , YN ,X) =
1
Ẑ

exp

⎛
⎝ssp(Yi|Xi) +

∑
j:j∼i

pp(Yi, Yj|X)

⎞
⎠

(5)
with Ẑ denoting the normalization constant.
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3 Experiments

The method was tested both on simulated data providing ground truth for a
quantitative analysis, and on real data in order to evaluate the practicability in
the clinical setting. The artificial data set consisted of 93 simulated MRSI-data
sets from three patients (representing three different tumor geometries) with 16%
noise on a 64×64-grid (for details see [21]). The first two principal components
were calculated in a leave-“one patient”-out fashion, and all spectra of the hold-
out patient were projected onto these directions. To imitate the physician, three
spectra, having a posterior probability of at least 95%, were randomly selected
per class for initializing the kernel density estimation. The hyper-parameter ν
of the spatio-spectral coupling was optimized in an additional, internal cross-
validation loop. For evaluation the spatio-spectral classification was repeated
ten times with different initializations. For comparison, the classification without
coupling (ν = 0) was also tested.

The algorithm was also tested on 67 MRSI with a spatial resolution of 16×16
acquired from 14 patients under routine protocol during pre-therapeutic diag-
nostic and follow up on a 1.5T MR scanner at the German Cancer Research
Center (dkfz), Heidelberg. Standard signal processing comprised Fourier trans-
formation of the temporal resonance signal, water peak removal and phasing of
the spectrum to its real part. Spectra containing artifacts were singled out using
the NoN-score [22], and pair potentials in (2) involving these spectra were set to
zero. The spectra were projected onto the first two PCA-directions calculated
from an independent, clinically validated set of spectra (for details see [3,4]).

For the initialization of the algorithm on this clinical data set, two tumorous
and two healthy spectra were hand-selected and labeled in each MRSI. The trade-
off parameter ν depends on the spatial resolution of the MR scanner and the
signal-to-noise ratio of the acquired data. As both can be assumed constant and
since no ground truth was available, three MRSI slices from different patients
were randomly selected, hand-labeled and ν fixed to the value, that gave the
smallest cross-validation error. Classification results were compared against the
single-voxel results of the external classifier already used in [3].

4 Results

Using the model in eq. (3) on the simulated data with the iterative optimiza-
tion procedure described in section 2.3 on the simulated data, a mean accuracy
of 98.7% was obtained, with an average true positive rate of 97.5% for tumor-
ous tissue (standard deviation 17.0 · 10−4) and a true negative rate of 98.8%
on healthy tissue (standard deviation 6.6 · 10−4). The single-voxel classification
without spatial regularization reached a mean classification accuracy of 98.2%,
with a true positive rate of 94.3% for tumor (standard deviation 114 ·10−4), and
99.1% for normal spectra (standard deviation of 5.4 · 10−4). The spatial regular-
ization increased the classification accuracy and reduced the variance, leading to
better classification results especially on tumorous tissue. Comparing the aver-
age over 500 samples from the posterior distribution (3) with the MAP estimate,
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Fig. 3. First: ground truth; Second: MAP-estimate for posterior distribution; Third:

single-voxel based classification; Fourth: average over 500 samples from the posterior
distribution in eq. (3)

calculated via GraphCut, shows the ambiguity of the classification only along the
tumor border, indicated by the blurred contours of the tumorous region (Fig. 3,
fourth image).

The low SNR of the data led to speckle noise and misclassification in the single-
voxel processing (Fig. 3), which was the main reason for the worse performance
of this approach. Spectra well within the healthy region which were classified as
tumorous (Fig. 3, third image) in the single spectrum approach, were classified
correctly if the spatially coupled model was used for classification (Fig. 3, second
image).

Adapting the algorithm to different patients by using the semi-supervised
initialization is of major importance for the good classification results. Using
spectra from a different patient in initializing the spectral model often led to
disastrous results, to the extent that the tumor is not detected at all or unneces-
sarily large regions are classified as tumorous (Fig. 4). Using the patient-specific
labels assigned by an expert as initialization for the spectral model guarantees
an automatic adaption to patient variation and ensures high-quality classifica-
tion, independent of patient characteristics. From the simulated data, we observe

Fig. 4. Left: ground truth; Right: solution of the spatio-spectral model by initializing
the density estimate with labeled spectra from a different patient

that the main advantages of the spatio-spectral classification are on the one side
its ability to adapt optimally to the patient, by using the semi-supervised ini-
tialization, which ensures a highly accurate and reliable classification. On the
other hand, it is able to remove isolated misclassifications, depending on the
distinctiveness of the spectral pattern. A similar result might be achieved by
using morphological operators in a post-hoc processing step, but, in contrast to
the proposed approach, all “label islands” will be removed, irrespective of the
probability of the voxel belonging to the assigned class. Trading spatial smooth-
ness of the probabilistic result map with the support of a different classification
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of neighboring spectra by their distance in feature space is one of the main
advantages of the presented approach.

On the real data set a high agreement between the results of the spatio-
spectral and single voxel approaches could be observed in those voxels which
were assigned a high confidence to one of the classes by the single voxel classifier.
Voxels with a less stringent assignment were preferably classified according to
their neighborhood by the spatio-spectral classifier. A detailed inspection of these
cases showed that a main source for these contradicting results was a low quality
of the respective spectra, e.g. caused by a low SNR or showing small shifts of
the resonance lines. Visual inspection of the spectrum belonging, for example, to
voxel (a) in the second image of figure 5 shows that a low data quality was the
most likely reason for an assignment to the “intermediate” class by the single-
voxel classifier of [3], while the spectral pattern was in fact “healthy”, a label
predicted also under a slight spatial regularization (Fig. 5, second image). As a

Fig. 5. First, Third: Single-voxel classification according to [3], red indicating tumor,
green indicating healthy, saturation indicating confidence in respective classification,
Second: MAP estimate of spatially restricted model (eq. 3) for area indicated by white
square in first image; Fourth: Average over 500 samples from the posterior distribution
(eq. (3)) for area indicated by white square in third image

second example, pixel (b) is surrounded by six voxels of tumorous tissue. The
spatially regularized classification of the low quality spectrum leads to a distinct
“tumor” assignment as opposed to “intermediate” by the single-voxel classifier.
Here, the decision for “tumor” is in accordance with the visual inspection of the
MR spectrum.

Comparing whole confidence maps of the single-voxel classification (Fig. 5,
third image) and the spatio-spectral model (mean over 500 samples from the
posterior (3), Fig. 5, fourth image), shows that a consideration of neighborhood
information increases the confidence in the assigned labels on low quality data
significantly.

Overall, we find that a main advantage of the spatio-spectral classification
is its ability to adapt optimally to the individual spectral image, by using the
semi-supervised initialization ensuring a highly accurate and reliable classifica-
tion. Using the patient-specific labels assigned by an expert as initialization for
the spectral model guarantees an automatic adaption to patient variation and
a high-quality classification, independent of patient characteristics. In addition,
the present approach is able to trade local support of a decision with the global
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support from the labels in its neighborhood. While in a standard post-hoc pro-
cessing, for example, morphological operators remove all regions below a certain
size in the result map, irrespective of the spectral information of the voxels
belonging to these areas, the proposed spatio-spectral classification is able to
remove isolated misclassifications depending on the distinctiveness of the spec-
tral pattern. On MRSI it is thus able to differentiate between misclassifications
resulting from low data quality, often resulting in random class assignments of
single spectra, and strongly supported labels of isolated tumor voxels in an oth-
erwise healthy neighborhood.

5 Conclusion

In this paper we have shown that adapting to patient characteristics can be effi-
ciently incorporated into spatially regularized models operating both in spatial
and spectral dimension of the magnetic resonance spectroscopic image. By us-
ing a DRF with a very versatile single-site potential, obtained from a class-wise
kernel density estimate, and a parameter-free penalty function, it is possible to
use the few labels generated in standard clinical procedure to segment spectral
images with optimal adaption to the patient. An iterative procedure using the
GraphCut algorithm was introduced and the necessity of customization to the
patient and usage of spatial information was shown.
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Abstract. The ability of a segmentation algorithm to uncover an in-
teresting partition of an image critically depends on its capability to
utilize and combine all available, relevant information. This paper inves-
tigates a method to automatically weigh different data sources, such that
a meaningful segmentation is uncovered. Different sources of information
naturally arise in image segmentation, e.g. as intensity measurements,
local texture information or edge maps. The data fusion is controlled
by a regularization mechanism, favoring sparse solutions. Regularization
parameters as well as the clustering complexity are determined by the
concept of cluster stability yielding maximally reproducible segmenta-
tions. Experiments on the Berkeley segmentation database show that
our segmentation approach outperforms competing segmentation algo-
rithms and performs comparably to supervised boundary detectors.

1 Introduction

Image segmentation is widely recognized as an important step in low-level com-
puter vision and a prerequisite for subsequent image analysis tasks. It is, for
example, employed in medical image analysis or SAR imagery based land-usage
classification. The problem of partitioning an image into semantically meaning-
ful regions can be cast as a clustering problem: The n pixels of an image are
considered as objects to be clustered; the segmentation into k ∈ [n] 1 homo-
geneous regions is often represented by an assignment matrix W ∈ {0, 1}n×k,
where wiν = 1 iff object i is assigned to segment ν. Clustering principles rely
on a notion of similarity between at least pairs of objects. Different sources of
similarity information about objects (pixels) naturally arise in many application
scenarios. In image segmentation such information sources (or cues) may, e.g.,
consist of intensities, edge maps, local texture information, color information
etc. These examples underline the need for data fusion combined with feature
selection/weighting which endows clustering algorithms with the capability to
emphasize relevant information.

In this work, we consider a non-negative matrix factorization (NMF) formu-
lation of the pairwise clustering problem and integrate the data fusion approach
1 We use the short-hand [n] := {1, . . . , n}.
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into it where we build on and substantially extend the previous approach in [5] in
the following ways: (i) We use the Frobenius norm instead of the KL divergence
for the NMF allowing us to demonstrate the generality of the fusion approach,
(ii) a refined version of the stability-based model selection scheme is used and
(iii) a large-scale experimental evaluation on the Berkeley Segmentation Data-
base (BSDS) demonstrates that (1) our proposal outperforms other standard
segmentation algorithms and (2) is competitive with supervised boundary de-
tection procedures on this database [9].

Some work has been devoted to feature selection and weighting in clustering.
In [11] a variant of k-means has been studied using Fisher’s criterion to assess the
importance of features. In [12] and [6], Gaussian mixture model approaches to
feature selection were discussed. Kernel Target Alignment [1] based methods try
to maximize the (normalized) correlation coefficient between a given labelling
and a convex/conic combination of basis kernels.

Algorithms for NMF [7] have recently found a lot of attention, and our pro-
posal is particularly inspired by the recent work in [8] and [3]. The interplay
between clustering and NMF has been investigated in [17], [2] and [5].

2 Grouping by Non-negative Matrix Decomposition

We phrase the clustering problem in a pairwise setting, where objects are char-
acterized by mutual (dis-) similarity relations. Often, there are multiple ways
of measuring the similarity between different objects and each such assessment
gives rise to a similarity sij between objects i and j, where we assume symmetry
sji = sij , and bounded-ness sij < ∞. For n objects, the similarity data can
be summarized in an n × n similarity matrix S = (sij) ∈ R

n×n. The notion of
clustering refers to the organization of objects into groups (clusters) so that ob-
jects in the same cluster are more similar to each other than to those in different
groups. This notion can be phrased formally by assuming that the similarities
sij are proportional to the probability of a joint occurrence of objects i and j,
i.e. sij ∝ p(i, j). This co-occurrence can be explained by a categorial, latent class
variable with realizations ν ∈ [k]. Hence, p(i, j) =

∑k
ν=1 p(i, j|ν)p(ν) reflects the

probability that objects i and j belong to the same group. Assuming conditional
independence p(i, j|ν) = p(i|ν)p(j|ν), one can simplify the expression to

p(i, j) = p(i)p(j|i) = p(i)
k∑

ν=1

p(ν|i)p(j|ν). (1)

The interesting term is p(j|i), as here the de-marginalization in terms of the
latent cluster variable comes into play. Clustering can be achieved by finding an
NMF based on the similarities S (as estimate for P).

Standard NMF aims at finding a decomposition of S ∈ R
m×n
+ , often in two

non-negative matrices W ∈ R
m×k
+ and H ∈ R

n×k
+ , where k � min(m, n) such

that S ≈ WH�. Two common formulations of the NMF problem rely on the
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Frobenius norm and the KL divergence. Finding the best approximation of S in
WH� w.r.t. the Frobenius norm amounts to solving

minW∈R
m×k
+ ,H∈R

n×k
+

‖S − WH�‖2
F . (2)

The purpose of this section is to show that a variety of clustering criteria can be
captured in the ‖ · ‖2

F -based NMF approach to clustering – demonstrating the
generality of the fusion method described later. For the clustering problems the
standard algorithms can be applied due to the formal equivalences.

Let us assume that the decomposition in eq. (1) exists. Set H := (p(i|ν)) ∈
[0, 1]n×k and W := (p(ν|i)) ∈ [0, 1]n×k and let D := diag(p(1), . . . , p(n)). Then,
P := (p(i, j)) can be written as P = DWH�. Boundary and normalization
constraints are: W ≥ 0, H ≥ 0, 1�

n H = 1�
k and W1k = 1n. In the classification

case, the entries of H may be regarded as class-conditional likelihoods, while
the entries of W reflect assignment probabilities. It makes sense to assume that
D = 1

nIn. This way, one obtains: If P = DZ, Z = WH�, is symmetric, then Z
is symmetric iff D = 1

nIn. If D = 1
n In, Z is doubly stochastic. Adding double

stochasticity, symmetry and normalization constraints to eq. (2) gives a valid
pairwise grouping model optimizable by alternating minimization. To ensure
consistency of the probability estimates Wdiag(1�

n W)−1 = H has to hold. This
yields a symmetric factorization: With ΔΔΔ = diag(1�

n W)−1/2 and Q := WΔΔΔ
a symmetric decomposition Z = QQ� is sought. The CP algorithm in [17]
optimizes this form. For hard clustering, Q�Q = Ik holds. Based on this, the
following is easy to show:

Lemma 1. Let Q ∈ R
n×k
+ , such that, QQ� is doubly stochastic and Q�Q = Ik,

then a unique, binary matrix W ∈ {0, 1}n×k with W1k = 1n exists, such that
Q = W(W�W)−1/2.

For the symmetric factorization, Q is an optimal solution to the problem

min
Q∈R

n×k
+

‖S − QQ�‖2
F s.t. QQ�1n = 1n, Q�Q = Ik. (3)

According to lemma 1, a feasible solution to (3) uniquely determines a hard clus-
tering solution. One also easily obtains that the mathematical program given
in problem (3) is invariant under additive shifts and scalar multiplication ap-
plied to the input similarity matrix S. S can always be shifted to positive semi-
definiteness (c.f. [13]); thereby, one can safely assume that S is an empirical
kernel function. As a consequence, one can easily show [13] that problem (3) is
equivalent to solving the kernel k-means problem. Hence, kernel k-means can be
captured in a constrained NMF problem and, the respective algorithm can be
used to solve (3). This result can be extended. The symmetric decomposition
problem minQ∈R

n×k
+

‖S−QQ�‖2
F s.t. Q�Q = Ik yields for the Normalized Cut

([16],[2]): An optimal solution to this for S̃ = ΔΔΔ−1/2SΔΔΔ−1/2 with ΔΔΔ = diag(S1n)
is an optimal solution to the Normalized Cut. Note, that the non-negativity and
orthogonality constraints ensure, that qiν > 0 iff i belongs to class ν.
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3 Fusion of Information Sources

After having demonstrated how pairwise clustering problems can be formulated
as NMF problems, we study fusing multiple similarity measurements. The NMF
perspective allows us to propose a generic procedure for combining multiple infor-
mation sources for several standard grouping methods. In practical applications,
the similarity of objects can be assessed in multiple, say, l ∈ N, different ways:
the similarity of proteins can be quantified based on sequence similarity, protein-
protein interaction maps, gene expression profiles and so forth. The l different
ways to assess protein similarity give rise to l similarity matrices S1, . . . ,Sl with
Sa = (s(a)

ij ). There might be spurious, inconclusive or irrelevant information in
some of the matrices and, ideally, this should be discarded. On the other hand,
each individual measurement may only convey partial, incomplete information
and only the weighted combination may provide the complete picture. Our aim
is to introduce a method that can cope with both extremes.

Assume that there is a categorical source selection random variable χij ∈ [l]
which is i.i.d. for each pair of objects. Using this random variable, the observed sim-
ilarity s̄ij between objects becomes a random quantity by s̄ij = s

(χ)
ij . Again, a fac-

torization Z of S̄ is sought by minimizing the Frobenius norm between data S̄ and
approximation Z. The objective function becomes the random variable ‖S̄(χχχ) −
Z‖2

F , where χχχ = (χij) denotes the collection of all source selection variables. De-
pending on the realization of χij one out of the l possibilities for s̄ij is selected. In
practice, inference needs to be made about the variables χχχ and their distribution.
To this end, one may average over all choices for χij ∈ [l] which amounts substitut-
ing s̄ij with its expectation Eχ∼ααα[s(χ)

ij ] =
∑

a αas
(a)
ij . Instead of making inference

about χχχ, one now has to infer ααα from the data. For fixed ααα, S̄(ααα) :=
∑

a αaSa is
the aggregated similarity matrix and describes an interpretable weighting of infor-
mation sources. Here, we assume the similarities Sa to be suitably re-normalized.
Hence, the average similarity s̄ij(ααα) becomes a mixture of individual similarities
s
(a)
ij , i.e. a mixture of different perspectives on the set of n objects.
Given a factorization Z, we may want to be the least committal to a certain

selection (on average) of input similarities. Therefore, adopting the maximum en-
tropy (ME) principle for the estimation of ααα is a natural choice. The ME principle
tells us to pick the distribution maximizing the entropy H(ααα) while respecting
constraints of the form Eχ∼ααα [c(χ)] ≤ ϑ. Here, we choose ca := ‖Sa − Z‖2

F , so
that the entropy of ααα should be maximized while maintaining an approximation
error of at most ϑ. This gives rise to the mathematical program

max
ααα

H(ααα) s.t. c�ααα ≤ ϑ, 1�
l ααα = 1, ααα ≥ 0. (4)

By considering the equivalent formulation

min
ααα

c�ααα − ηH(ααα) s.t. 1�
l ααα = 1, ααα ≥ 0, (5)

one easily gets that the optimal solution to eq. (4) is the Gibbs distribution:

αa ∝ exp(−ca/η). (6)
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For η → ∞ one gets αa = 1/l, while for η → 0, only one source is selected; the
estimates become the sparser the more the individual ca differ. The parameter
η enables us to explore the space of similarity combinations. We postpone for
now the issue of selecting a value for η (c.f. sec. 4).

3.1 Model Optimization

For fixed ααα, all NMF-based clustering methods from sec. 2 can be applied to the
(fixed) mixture S̄(α). Hence, a simple nested alternating minimization approach
is adopted to find both, ααα and an approximation Z to S̄(ααα): Fix ααα to find an op-
timal factorial approximation Z of S̄(ααα) and, then, given the fixed factorization,
find the optimal ααα. This strategy leads to a sequence of estimates monotonously
decreasing the cost in each iteration. In this optimization, the entropy constraint
has a self-stabilizing effect on the estimates of ααα.

4 Model Selection Using Cluster Stability

We have two free parameters, the number of classes k and the parameter η; both
are user-supplied or estimated from the data. For a fully unsupervised procedure,
the stability concept [4] is used: for both parameters one looks for solutions being
highly reproducible. The stability assessment can be regarded as generalization
of cross-validation relying on the dissimilarity of solutions generated from mul-
tiple sub-samples. In a second step, solutions obtained from these sub-samples
are extended to the complete data by an appropriate predictor. Hence, multiple
classifications of the same data are obtained whose similarity can be measured.
For two clustering solutions W,W′ ∈ {0, 1}n×k, we define their disagreement as
d(W,W′) = minπ∈Sk

(1 − 1
n

∑n
i=1

∑k
ν=1 wiνwiπ(ν)) where Sk is the set of per-

mutations on [k]. The measure quantifies the 0-1 loss after the labels have been
permuted so that the two clustering solutions are in best possible agreement.
d is a metric on the equivalence classes of partitions modulo permutation. The
optimal permutation can be determined in O(k3).

We refine the stability method of [4]: In the stability analysis, one might
observe high instability for a certain pair of values (η, k), but there can be
several locally stable solutions which are conflicting: E.g. a bi-modal distribution
of clustering solutions can happen either due to symmetries in the distribution
or because the data admits different interpretations where – depending on the
sample – one interpretation dominates. This is amplified by the combination
of sources. For such cases, we adopt a local perspective: for every η and k, we
look for highly similar clustering solutions and establish a local stability score by
considering the fraction of solutions belonging to the same cluster of clustering
solutions. This way one gets a detailed picture of the variability structure. For
each pair (η, k), we draw b ∈ N sub-samples and compute solutions on the sub-
samples which are extended to the full sample by a prediction step. The pairwise
similarity between the solutions can be evaluated using d; it can be used in order
to look for clusters of highly similar solutions. This poses a pairwise clustering
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problem, which operates on label matrices: Instead of fixing the number of classes
for it, we select a threshold ε � 1 and require solutions to have an average within-
cluster disagreement of less than ε(1− 1

k ), i.e. for m assignment matrices Wj in
the same cluster of labellings the inequality 1

m

∑m
i=1

∑m
j=1 d(Wi,Wj) < ε(1− 1

k )
has to hold. The quantity on the lhs are the per cluster costs whose sum is
measured by the pairwise clustering cost function [13]. This strategy is justified
since: the expected distance of randomly drawn solutions is upper bounded by
(1− 1

k ) and it is natural to look for homogenous, non-random clusters of clustering
solutions. The threshold ε effectively controls the number of clusters by requiring
solutions to have an average within-cluster disagreement of less than ε(1 − 1

k ).2

In practice, Ward’s method [15] is used. To get a single solution per solution
cluster, representatives need to be selected. We achieve this by simply picking
the “median” element in the respective solution cluster, which minimizes the
distance to all other solutions in its cluster. For each (k, η), the local stability
score of a solution cluster is the fraction of labellings in that cluster. Given the
scores, each pair (k, η) can be ranked based on the stability measurements.

To generalize a clustering solution to a set of previously unseen objects is
important for stability assessments, but also necessary for large scale computa-
tions. The predictor is based on linear interpolation: Assume an initial fit using
N � m � n objects and that we have to predict class memberships for r addi-
tional objects, whose similarity to the initially given m objects is summarized
in S̃ ∈ R

r×m. 3 Let wiν be the “posterior” estimated for the i-th object in
the data set used for the original fit. The weighted, normalized similarity be-
tween a new object o and object i is p̂io := s̃oi/

∑
j s̃oj . One can think of p̂io

as estimate for p(i|o). The posterior woν for a new object o is approximated by
ŵoν =

∑
1≤i≤m wiν p̂io, being an interpolation of the woν . Classification can be

performed by the Maximum A Posteriori (MAP) rule, argminνŵoν . The proce-
dure requires O(mrk) steps to make predictions for r novel objects.

5 Experimental Evaluation

We apply our proposal to the 100 test images in the Berkeley Image Segmentation
Database (BSDS) [9].4 Generally, it is difficult to objectively assess the quality
of image segmentations. This database has the crucial benefit that human beings
manually created segmentations which can be used for experimental evaluations.
The images in the BSDS have 481×321 pixels, which need to be labelled, and are
represented in the LUV space. To the LUV image, a spatial averaging filter was
applied. Localized frequency information was collected by computing responses
of Gabor filters on 3 scales for 4 orientations for the wavelengths 2, 4 and 8
pixels resulting in 3 × 4 single-channel images. For each scale, all orientations
have been collapsed into a single image. For comparability to other procedures,
2 For the experiments we set ε = 1 · 10−1.
3 Given the decomposition into Q and Q� one can recover W using the lemma 1.
4 The database can be accessed via
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/.

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
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we employ the Euclidean scalar products to arrive at similarities; this choice
limits the possibilities of our proposal and non-linear kernels are expected to
improve results.

For the experiments, the NMF formulation in eq. 3 was used. The number of
segments was varied in 2–5. Five different values of the regularization parameter
η were selected. For every (k, η) pair, b = 20 re-samples were drawn. Following
the strategy sketched above, we predict class memberships for objects not taken
into account during an initial learning phase. To this end, ≈ 5000 image sites
on a fixed grid are pre-selected. For model selection, sub-samples consisting of
≈ 2500 sites are generated from these points. The prediction step generalizes
solutions to all objects not included in the sub-sample.

Comparison of Aggregated Segmentations with the BSDS: The BSDS contains
100 test images which have been manually segmented by several human beings.
As human ground-truth, the BSDS contains aggregated, soft edge maps obtained
from averaging the human-generated maps. The database was used to bench-
mark boundary detection algorithms in [10]. Unfortunately, there is no generally
agreed-upon measure for comparing segmentations. Attempts to address this
problem, e.g. in [9], suffer from pathologies rendering the assessment question-
able. For benchmarking, a matching measure is employed that takes a pair of
soft boundary maps as input. Despite all the potential shortcomings of measur-
ing the performance of a segmentation algorithm with a measure designed for
benchmarking boundary detection algorithms, it may still shed light on some
properties of an algorithm.5 We have, therefore, chosen this method to evaluate
the quality of our proposal. The standard benchmarking procedure of the BSDS
varies a threshold t on the soft boundary maps, so that several pairs (rt, pt) of
precision-recall values are obtained. The final score obtained from the matching
of two boundary maps is then defined as the maximum attainable F-measure
maxt ft. For comparison of the methods, the results for all stable choices of pa-
rameter values (η, k) considered in the local stability assessment and re-samples
are aggregated into a single soft boundary map for each image.

The comparison on the benchmark includes the three supervised boundary de-
tectors as discussed in [10]: The algorithm Brightness/Color/Texture Gradients
(BCTG) employs locally measured brightness, color, and texture gradients to
detect boundaries. It is the best performing boundary detector in this study and
in [10]. The second best algorithm, Brightness / Texture Gradients (BTG) relies
only on local brightness and texture information and neglects color. The third
and simplest pure boundary detection method taken from [10] is the Color Gra-
dient (CG) method that takes only color information into account. In addition
to these boundary detectors, we have additionally applied k-means clustering
(KM) and a Gaussian mixture model (GMM) to the naively stacked feature
5 The measure was designed for assessing the performance of boundary detectors. An

algorithm producing segmentations is a special type of boundary detector, which
is, however, forced to produce closed, connected segment boundaries. This severely
constrains the possibly detected boundaries in comparison to those obtained from
mere boundary detector in view of the BSDS benchmarking methodology.
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Fig. 1. The figure summarizes the outcome of the comparison of segmentation algo-
rithms using the Berkeley Segmentation Database (BSDS)

Fig. 2. A sample of aggregated edge maps: Original images are depicted in the left
column. The human segmentations in the next column are compared to the output of
the algorithms. The third column shows the results for the ME approach. F-scores are
0.85, 0.81 and 0.72 (top-down).

vectors. Furthermore, the ME weighting scheme is called FMEWS. We have also
included the multi-grid based segmentation method from [14].

Figure 1 summarizes the results of the study in a box plot, where each plot
shows the distribution of F-scores for the respective methods. The scores have
been computed with the boundary detection benchmark measure for all 100 test
images. In addition to that, the median, lower and upper quartile over the 100
maximal F-scores are given in table 1 for all algorithms. Only best results have
been taken into account. The two best performing measures are the supervised
boundary detectors from [10], BTG and BCTG. The best unsupervised segmen-
tations are obtained with FMEWS. The strongest competing grouping method
is the multi-grid method from [14], which we outperform. k-means (KM) as
well as Gaussian mixture models (GMMs) are clearly outperformed by all other
clustering methods. Figure 2 shows edge maps and their scores.
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Fig. 3. A sample of (in-) stable segmentations along with the input images obtained
for varying η and k as produced by FMEWS. The local stability score is = 1 in columns
1–3. Unreliable segmentations can often be detected by lack of stability (for the last
column local stability is 0.1).

Table 1. (Rounded) Median, lower and upper quartile values (Med, LQ and UQ) of
maximal F-scores of the different methods under consideration

CG BTG BCTG KM GMM M-Grid FMEWS

UQ. 0.66 0.74 0.75 0.68 0.66 0.71 0.71

Med. 0.59 0.67 0.69 0.62 0.60 0.63 0.65

LQ. 0.53 0.60 0.61 0.56 0.53 0.57 0.58

Stable Segmentations: The goal of local stability assessment is to automati-
cally infer meaningful segmentations instead of considering aggregated boundary
maps. For stable segmentations, segments often consist of one or more object
predominant in a scene. Figure 3 demonstrates this for several images. Thereby,
such segmentations provide what supposedly their usage is, e.g., to extract sensi-
ble pre-processing information for a subsequent object detection stage. Similarly,
highly instable solutions are observed for inaccurate, noisy solutions. Observing
instability generally renders the inferred structure questionable as the segmen-
tations exhibit a high variability. We conclude, that the proposed local stability
measure gives a reasonable indication about presence or absence of structure.

6 Conclusions

An approach to combining similarity data from multiple sources was introduced
and evaluated for image segmentation. Clustering has been phrased as NMF
problem, where weights have been introduced. By way of ME inference, a mech-
anism was devised to control the sparsity of the weights. Cluster stability was
refined and employed to determine both, regularization parameter as well as
number of clusters. The refined model selection strategy was demonstrated to
yield meaningful segmentations in practice. The experiments on the Berkeley
Segmentation Database show that our proposal outperforms other segmentation
algorithms, and is competitive with supervised boundary detectors.
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Abstract. This paper presents a bottom-up approach for fast segmen-
tation of natural images. This approach has two main stages: firstly, it
detects the homogeneous regions of the input image using a colour-based
distance and then, it merges these regions using a more complex distance.
Basically, this distance complements a contrast measure defined between
regions with internal region descriptors and with attributes of the shared
boundary. These two stages are performed over the same hierarchical
framework: the Bounded Irregular Pyramid (BIP). The performance of
the proposed algorithm has been quantitatively evaluated with respect
to ground-truth segmentation data.

1 Introduction

Image segmentation is typically defined as the low-level process of grouping pixels
into clusters which present homogeneous photometric properties. However, if the
goal of the segmentation process is to divide the input image in a manner similar
to human beings, then this definition is not valid. Natural images are generally
composed of physically disjoint objects whose associated groups of image pixels
may not be visually uniform. This makes extremely difficult to formulate what
should be recovered as a region from an image or to separate complex objects
from a natural scene [4].

In order to reduce the complexity of segmenting real objects from their back-
ground, the particular application could be taken into account. In these cases,
the higher-level information is known a priori and it can be used to group the
image pixels into logical regions that resemble the real objects. To maintain the
generality of use, several authors have proposed generic segmentation methods
which are based neither on a priori knowledge of the image content nor on any ob-
ject model [1,3]. These approaches typically combine a pre-segmentation stage
with a subsequent perceptual grouping stage. Basically, the pre-segmentation
stage conducts the low-level definition of segmentation as a process of grouping
pixels into homogeneous clusters and the perceptual grouping stage performs a
domain-independent grouping which is mainly based on properties like the prox-
imity, similarity, closure or continuity. Although the final obtained regions do not
always correspond to the natural image objects, they provides a mid-level seg-
mentation which is more coherent with the human-based image decomposition.

F.A. Hamprecht, C. Schnörr, and B. Jähne (Eds.): DAGM 2007, LNCS 4713, pp. 244–253, 2007.
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Thus, it must be considered as a precursor to the detection of the real salient
objects in the image.

This paper presents a segmentation approach which is also divided into these
two successive stages. The pre-segmentation stage groups the image pixels into a
set of regions whose spatial distribution is physically representative of the image
content. The size of this set of regions is commonly very much less than the original
number of pixels. Thus, these regions constitute an efficient image representation
that replaces the pixel-based image representation. Besides, these regions preserve
the image geometric structure as each significant feature contain at least one re-
gion. Our approach accomplishes this pre-segmentation stage by means of an ir-
regular pyramid: the Bounded Irregular Pyramid (BIP). The BIP combines the
2x2/4 regular structure with an irregular simple graph. The regular decimation
is applied in the homogeneous parts of the image, while the heterogeneous parts
are decimated using a classical irregular process [6,7]. The perceptual grouping
stage groups the set of homogeneous regions into a smaller set of regions taking
into account not only the internal visual coherence of the obtained regions but
also the external relationships among them. For managing this process, a hierar-
chical segmentation operator (HSO) can be applied [1]. The hierarchical structure
is well-adapted to the parallel manipulation of regions, permitting to simultane-
ously group several regions. Thus, the perceptual organization of the image can
be represented by a tree of regions, ordered by inclusion [1]. The roots of the tree
is a set of regions which represent the entire scene and the leaves are the finest de-
tails. To achieve this perceptual grouping, the proposed approach generates a set
of new pyramid levels over the previously built BIP. However, while the nodes of
the pre-segmentation pyramid are merged taking into account a colour criterion,
the similarity among nodes of these new levels is defined using a more complex dis-
tance which takes into account information about their common boundaries and
internal features like their colour or size.

The proposed method is related to the previous works of Arbelaez and Cohen
[1,2] and Huart and Bertolino [3]. In all those papers, the perceptual group-
ing is achieved by means of a hierarchical process. Besides, they employ a pre-
segmentation stage prior to the perceptual grouping stage: Arbelaez and Cohen
propose to employ the extrema mosaic technique [2], and Huart and Bertolino use
the localized pyramid [3]. Our approach is very related to this last work. Thus,
it uses different decimation techniques in the homogeneous and heterogeneous
regions of the input image. The main difference with [3] is that both decima-
tions are performed simultaneously using the BIP, being unnecessary to previ-
ously detect the homogeneous areas of the input image. The pre-segmentation
stage uses a colour distance to group image pixels into homogeneous regions
in a fast manner. The roots of these regions constitute the base level of the
perceptual grouping stage. Thus, the perceptual grouping is integrated into the
same hierarchical structure. However, the distance employed to achieve this last
stage is significantly more complex, complementing the colour contrast between
regions with attributes extracted from the local boundary which they shared
and internal region features.
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The rest of the paper is organized as follows: Section 2 describes the pro-
posed approach. It briefly explains the main aspects of the pre-segmentation
stage, which is based on previous works of Marfil et al. [6,8]. This section also
describes the perceptual grouping process and the distance employed to group
these homogeneous regions. These two stages are achieved using the Bounded
Irregular Pyramid (BIP). The experimental results revealing the efficiency of the
proposed method are presented in Section 3. The paper concludes along with
discussions and future work in Section 4.

2 Perception-Based Segmentation Approach

2.1 Pre-segmentation Stage

Pyramids are hierarchical structures which have been widely used in segmen-
tation tasks [7]. Instead of performing image segmentation based on a single
representation of the input image, a pyramid segmentation algorithm describes
the contents of the image using multiple representations with decreasing res-
olution. Pyramid segmentation algorithms exhibit interesting properties when
compared to segmentation algorithms based on a single representation. Thus,
local operations can adapt the pyramidal hierarchy to the topology of the im-
age, allowing the detection of global features of interest and representing them
at low resolution levels [3].

The Bounded Irregular Pyramid (BIP) is a mixture of regular and irregular
pyramids whose goal is to combine their advantages. A 2x2/4 regular structure
is used in the homogeneous regions of the input image and a simple graph struc-
ture in the non-homogeneous ones. The mixture of both structures generates an
irregular configuration which is described as a graph hierarchy in which each
level Gl = (Nl, El) consists of a set of nodes, Nl, linked by a set of intra-level
edges El. Each graph Gl+1 is built from Gl by computing the nodes of Nl+1

from the nodes of Nl and establishing the inter-level edges El,l+1. Therefore,
each node ni of Gl+1 has associated a set of nodes of Gl, which is called the
reduction window of ni. This includes all nodes linked to ni by an inter-level
edge. The node ni is called parent of the nodes in its reduction window, which
are called sons. Two nodes ni and nj of Nl are said to be adjacent or neighbours
at level l, if their corresponding reduction windows wi and wj are neighbours at
level l − 1. Two reduction windows wi ∈ Nl−1 and wj ∈ Nl−1 are neighbours if
there are at least two nodes nr ∈ wi and ns ∈ wj which are connected by an
intra-level edge er,s ∈ El−1. The set of nodes in Nl which are neighbours of a
node ni ∈ Nl is called the neighbourhood of ni. An intra-level path is a sequence
of ordered nodes linked by intra-level edges. Two nodes ni ∈ Nl and nj ∈ Nl

are said to be connected if there exists an intra-level path that includes them
both. Equivalently, an inter-level path is a sequence of ordered nodes linked by
inter-level edges. Two nodes ni ∈ Np and nj ∈ Nq are said to be connected if
there exits an inter-level path that includes them both. The receptive field ri of
a node ni ∈ Nl is the set of nodes at level 0 which are connected to it by an
inter-level path.
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The successive levels of the hierarchy are built using a regular decimation
process and a union-find strategy. Therefore, there are two types of nodes: nodes
belonging to the 2x2/4 structure, named regular nodes, and virtual nodes or
nodes belonging to the irregular structure. In any case, two nodes ni ∈ Nl

and nj ∈ Nl which are neighbours at level l are linked by an intra-level edge
eij ∈ El. This mixture of processes inside the same hierarchical structure presents
interesting properties. Thus, the irregular part of the BIP allows to solve the
main problems of regular structures: their inability to preserve connectivity or
to represent elongated objects [8]. On the other hand, the BIP is computationally
efficient because its height is constrained by its regular part [7].

The proposed approach uses a BIP structure to accomplish the segmentation
task. In this hierarchy, the first levels perform the pre-segmentation stage using
a colour-based distance to group pixels into homogeneous regions. In order to
introduce colour information within the BIP, all the nodes of the structure have
associated 3 parameters: chromatic phasor S � H(n), luminosity V (n) and area
A(n), where S, H and V are the saturation, hue and value of the HSV colour
space. The chromatic phasor and the luminosity of a node n are equal to the
average of the chromatic phasors and luminosity values of the nodes in its re-
duction window. The area of a node is equal to the sum of the areas of the nodes
in its reduction window, i.e. the cardinality of its receptive field.

The employed similarity measurement between two nodes is the HSV colour
distance. Thus, two nodes are similar or have a similar colour if the distance
between their HSV values is less than a similarity threshold T . This threshold
is not fixed for all levels. Its mathematical expression is the following:

T (l) = Tmax ∗ α(l) (1)

being

α(l) =
{

1 − l
Lreg

∗ (1 − α) if l ≤ Lreg

α if l > Lreg
(2)

Lreg is the highest level of the regular part of the BIP. This threshold takes
into account that usually the receptive field of a vertex in a high level is bigger
than the receptive field of a vertex in a low level. Therefore, the linking of two
vertices of a high level implies the merging of two larger regions at the base.
This threshold makes more difficult this linking process at upper levels.

The graph G0 = (N0, E0) is a 8-connected graph where the nodes are the
pixels of the original image. The chromatic phasors and the luminosity values of
the nodes in G0 = (N0, E0) are equal to the chromatic phasors and luminosity
values of their corresponding image pixels. Then, the process to build the graph
Gl+1 = (Nl+1, El+1) from Gl = (Nl, El) is the following:

1. Regular decimation process. In order to perform this decimation, each regular
node has associated two parameters: homogeneity Hom(i, j, l) and parent
link Parent(i, j, l). Hom(i, j, l) of a regular node is set to 1 if the four nodes
immediately underneath present a similar colour (according to the threshold
T (l)) and their homogeneity values are equal to 1. Otherwise, it is set to 0.
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If the node (i, j, l) is a node of the regular structure with Hom(i, j, l) = 1,
then the parent link of the four cells immediately underneath (sons) is set
to (i, j). It indicates the position of the parent of a regular node in its upper
level. A regular node without parent has its parent link set to a NULL value.
Parent links represent the inter-level edges of the regular part of the BIP.
All the nodes of G0 = (N0, E0) are initialized with Hom(i, j, 0) = 1 and
A(i, j, 0) = 1. Table 1 summarizes this stage in pseudocode, where d(·, ·) is
the HSV colour distance and ComputeColour() determines the colour of the
input node using the nodes in its reduction window.

2. Parent search and intra-level twining. Once the regular structure is gener-
ated, there are some regular orphan nodes (regular nodes without parent).
From each of these nodes (i, j, l), a search is made for the most similar regular
node with parent in its 8-neighbourhood ξ(i,j,l) (see Table 1). If this neigh-
bour node is found, the node (i, j, l) is linked to the parent of this neighbour
node. On the contrary, if for this node a parent is not found, then a search is
made for the most similar regular neighbour node without parent to link to
it (see Table 1). If this node is found, then both nodes are linked, generating
a virtual node at level l + 1.

3. Virtual parent search and virtual node linking. Each virtual orphan node ni

searches for the most similar virtual node with parent in its neighbourhood
ξni (see Table 1). If for ni a parent is found, then it is linked to it. On the
other hand, if a parent is not found, the virtual orphan node ni looks for
the most similar virtual orphan node in its neighbourhood to generate a new
virtual node at level l + 1 (see Table 1).

4. Intra-level edge generation in Gl+1. The intra-level edges of Gl+1 are computed
by taking into account the neighbourhood of their reduction windows in Gl.

The hierarchy stops to grow when it is no longer possible to link together
any more nodes because they are not similar. In order to perform the pre-
segmentation, the orphan nodes are used as roots. The receptive field of each
of these nodes is a region of the pre-segmented image. The described method
has been tested and compared with other similar pyramid approaches for colour
image segmentation [7]. This comparative study concludes that the BIP runs
faster than other irregular approaches when benchmarking is performed in a
standard sequential computer. Besides, the BIP obtains similar results than the
main irregular structures. Fig. 1.b shows the pre-segmentation images associated
to the images in Fig. 1.a.

2.2 Perceptual Grouping Stage

After the local similarity pre-segmentation stage, grouping regions aims at sim-
plifying the content of the obtained partition. As it was pointed out by [3], two
constraints are respected for an efficient grouping process: first, although all
groupings are tested, only the best groupings are locally retained; and second,
all the groupings must be spread on the image so that no part of the image is
advantaged. For managing this grouping, the BIP structure is used: the roots of
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Table 1. Pseudo-code for the regular decimation, parent search and intra-level twin-
ning and virtual parent search and virtual node linking steps of the pre-segmentation
stage (see text for details)

//Regular decimation process
for i=0:SizeX[l], for j=0:SizeY[l],
if (Hom(i,j,l) & Hom(i+1,j,l) & Hom(i,j+1,l) & Hom(i+1,j+1,l))
if (d((i,j,l),(i+1,j,l))<T(l) & d((i,j,l),(i,j+1,l))<T(l) &
& d((i,j,l),(i+1,j+1,l))< T(l))
Parent(i,j,l)=(i/2,j/2);Parent(i+1,j,l)=(i/2,j/2);
Parent(i,j+1,l)=(i/2,j/2);Parent(i+1,j+1,l)=(i/2,j/2);
Hom(i/2,j/2,l+1)=1; ComputeColour((i/2,j/2,l+1));

end if

//Parent search and intra-level twining
for i=0:SizeX[l], for j=0:SizeY[l],
if (Hom(i,j,l) & Parent(i,j,l)==NULL)
dmin=T(l);sel=NULL;
for each (m,n,l) ∈ ξ(i,j,l),
if (Parent(m,n,l)!=NULL & d((i,j,l),(m,n,l))<dmin)
dmin=d((i,j,l),(m,n,l));sel=(m,n,l);

if (sel!=NULL) Parent(i,j,l)=Parent(sel);
else
dmin=T(l);
for each (m,n,l) ∈ ξ(i,j,l),
if (Parent(m,n,l)==NULL & d((i,j,l),(m,n,l))<dmin)
dmin=d((i,j,l),(m,n,l));sel=(m,n,l);

if (sel!=NULL) CreateVirtualNode((i,j,l),sel);
end else

end if

//Virtual parent search and virtual node linking
for i=0:NumberOfVirtualNodes[l],
if (Parent(ni)==NULL)
dmin=T(l);sel=NULL;
for each (nm) ∈ ξni,
if (Parent(nm)!=NULL & d(ni,nm)<dmin)
dmin=d(ni,nm);sel=(nm);

if (sel!=NULL) Parent(ni)=Parent(sel);
else
dmin=T(l);
for each (nm) ∈ ξni,
if (Parent(nm)==NULL & d(ni,nm)<dmin)
dmin=d(ni,nm);sel=(nm);

if (sel!=NULL) CreateVirtualNode(ni,sel); virtualnodes=true;
end else

end if
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Fig. 1. a) Original images; b) pre-segmentation images; and c) obtained regions after
the perceptual grouping

the pre-segmented regions are considered as virtual nodes which constitute the
first level of the perceptual grouping multiresolution output. Successive levels
can be built using the virtual parent search and virtual node linking scheme pre-
viously described in Section 2.1, but, in order to achieve the perceptual grouping
process, a specific distance must be defined.

This distance uses the colour information stored in the nodes of the pyramid
for measuring the colour contrast between image regions. In order to speed up
the process, a global contrast measure is used instead of a local one. It avoids to
work at pixel resolution. The contrast measure is complemented with internal
regions properties and with attributes of the boundary shared by both regions.
To perform correctly, the nodes of the BIP which are associated to the perceptual
grouping multiresolution output store statistics about the HSV values of the
roots generated by the pre-segmentation stage which are linked to them. Then,
the distance between two nodes ni and nj is defined as

Υ (ni, nj) = d(ni, nj) · min(bi, bj)
bij

· min{Ai, Aj} (3)

where bij is the length of the common boundary between ni and nj , and {bi, Ai}
and {bj, Aj} the total length of the boundaries and area of the nodes ni and nj ,
respectively.

In order to build a new hierarchy level Gl+1, the virtual parent search and vir-
tual node linking process described in Section 2.1 is applied. However, a different
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threshold value Tperc is employed. The grouping process is iterated until the num-
ber of vertices remains constant between two successive levels. Fig. 1.c shows the
set of regions associated to the images in Fig. 1.a. It can be noted that the ob-
tained regions do not always correspond to the set of natural objects presented in
the image, but they provide an image segmentation which is more coherent with
the human-based image decomposition.

3 Experimental Results

In order to evaluate the performance of the proposed approach, the Berkeley
Segmentation Dataset and Benchmark (BSDB) has been employed1[9]. In this
dataset, the ground-truth data is provided by a large database of natural im-
ages, manually segmented by human subjects. The methodology for evaluating
the performance of segmentation techniques is based on the comparison of ma-
chine detected boundaries with respect to human-marked boundaries using the
Precision-Recall framework [10]. This technique considers two quality measures:
precision and recall. The precision (P ) is defined as the fraction of boundary
detections that are true positives rather than false positives. Thus, it quantifies
the amount of noise in the output of the boundaries detector approach. On the
other hand, the recall (R) is defined by the fraction of true positives that are
detected rather than missed. Then, it quantifies the amount of ground-truth de-
tected. Measuring these descriptors over a set of images for different thresholds
of the approach provides a parametric Precision-Recall curve. The F -measure
combines these two quality measures into a single one. It is defined as their
harmonic mean:

F (P, R) =
2PR

P + R
(4)

Then, the maximal F -measure on the curve is used as a summary statistic for
the quality of the detector on the set of images. The current public version of the
dataset is divided in a training set of 200 images and a test set of 100 images. In
order to ensure the integrity of the evaluation, only the images and segmenta-
tions from the training set can be accessed during the optimization phase. Fig. 1
shows the partitions on the higher level of the hierarchy for five different im-
ages. The optimal training parameters on the test set have been chosen. It can
be noted that the proposed approach is able to group perceptually important
regions in spite of the large intensity variability presented on several areas of the
input images. The pre-segmentation stage provides an oversegmentation of the
image which overcomes the problem of noisy pixels, although bigger details are
preserved in the final segmentation results (e.g., the legs of the bird in Fig. 1.c).

The F -measure associated to the individual results ranged from bad to sig-
nificantly good values. Thus, the F -measure value of all images in Fig. 1 is over
0.75. On the contrary, Fig. 2 shows several images which have associated a low
F -measure value. The main problems of the proposed approach are due to its
inability to deal with textured regions. Thus, the background, zebras or tigers
1 http://www.cs.berkeley.edu/projects/vision/grouping/segbench/
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Fig. 2. a) Original images; and b) obtained regions after the perceptual grouping

in Fig. 2 are divided into a set of different regions. In any case, the maximal
F -measure obtained from the whole test set is 0.65. Although this value is less
than the F -measure obtained by Arbelaez [1], it is similar to the value pro-
vided by other methods like the gradient paradigm implemented by Martin et
al [10]. This approach optimizes, with respect to the BSDB, the combination of
local discontinuities in feature channels like brightness, color and texture. The
main advantage of the proposed method is that it provides these results at a
relative low computational cost. Thus, the processing times associated to the
pre-segmentation stage are typically less than 200 ms, meanwhile the percep-
tual grouping stage takes less than 150 ms to process any image on the test set.
Therefore, the processing time of the segmentation approach is less than 350 ms
for any image on the test set.

Finally, the proposed method requires choosing values for a set of parameters.
These parameters are:

– The colour threshold, Tmax, which determines the maximum distance be-
tween two colours that are considered similar at the pre-segmentation
stage.

– The parameter α determines the colour threshold employed in the highest
levels of the hierarchy in the pre-segmentation stage.

– The threshold value Tperc, which determines the maximum distance between
two nodes that are considered similar at the perception-based stage.

In order to choose these parameters, several combinations were selected and the
best values were chosen. In our tests, the best choices for the thresholds were
Tmax=50, α=0.8 and Tperc=150.

4 Conclusions and Future Work

This paper presents a new perception-based segmentation approach which is
totally defined in the framework of the Bounded Irregular Pyramid. Thus, the
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pre-segmentation and perceptual grouping stages are combined into the same
structure, without being necessary to define any threshold to bound these stages.
The pre-segmentation is achieved using a colour-based distance and it works
faster than similar hierarchical approaches [7]. The roots of the regions defined
by the pre-segmentation stage are the first level of the hierarchy associated to
the perceptual grouping stage. This second stage employs a distance which is
also based on the colour difference between regions, but it includes information
of the area and boundary of each region. The processing time of this second
stage is also reduced because the obtained pre-segmentation regions constitute
an efficient image representation.

Future work will be focused on testing different perception-based grouping
parameters [5], studying its repercussion in the efficiency of the method. Besides,
it is necessary that the pre-segmentation stage takes into account a texture
measure to characterize the image pixels.
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Abstract. Image segmentation based on pairwise pixel similarities has
been a very active field of research in recent years. The drawbacks com-
mon to these segmentation methods are the enormous space and proces-
sor requirements. The contribution of this paper is a general purpose
two-stage preprocessing method that substantially reduces the involved
costs. Initially, an oversegmentation into small coherent image patches -
or superpixels - is obtained through an iterative process guided by pixel
similarities. A suitable pairwise superpixel similarity measure is then
defined which may be plugged into an arbitrary segmentation method
based on pairwise pixel similarities. To illustrate our ideas we integrated
the algorithm into a spectral graph-partitioning method using the Nor-
malized Cut criterion. Our experiments show that the time and memory
requirements are reduced drastically (> 99%), while segmentations of
adequate quality are obtained.

1 Introduction

The segmentation of images into meaningful regions is an important task of
computer vision. One common approach is the definition of a similarity measure
Φ(i, j) between two image pixels i, j based on e.g. color, texture, proximity or
contour information. Let N in the following denote the number of image pixels.
Usually from Φ a N × N similarity matrix W is derived with Wij = Φ(i, j). W
may be interpreted as an adjacency matrix for an undirected weighted graph
G = (V, E), whose nodes V represent the image pixels which are connected by
the affinity-weighted edges in E. In order to receive a partition of the image an
arbitrary method may be applied to W . The most popular methods are spectral
graph partitioning [1,2], deterministic annealing [3] and stochastic clustering [4].
Unfortunately, for most problems W easily becomes very large and unmanage-
able. For example, given a relatively small 400 × 300 image (N = 120000) W
contains 14.4 billion entries and requires about 53.6 GB of memory at single
precision. Thus prevalently the number of connections per pixel is restricted.

We present a two-step preprocessing method which substantially reduces the
time and memory requirements such that even much larger problems may be
addressed by any pairwise grouping algorithm. The remainder of this paper is
organized as follows: In Sect. 2 we discuss related work. We present our algo-
rithm in detail in Sect. 3. The Normalized Cut grouping method into which we

F.A. Hamprecht, C. Schnörr, and B. Jähne (Eds.): DAGM 2007, LNCS 4713, pp. 254–263, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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integrated our algorithm is reviewed in Sect. 4. In Sect. 5 we present the results
of our method applied to the segmentation of synthetic and natural images.

2 Related Work

A very common procedure to make pairwise grouping methods tractable is the
creation of a sparse version of the similarity matrix by zeroing entries, i.e. by
removing edges from the graph representation. Shi and Malik [1] proposed the
approximation of W by setting a cutoff radius in the image plane such that
each pixel is connected to only a few of its neighbors. Alternatives include the
zeroing of randomly chosen entries and of, e.g. the smallest matrix entries. This
approach was confirmed to be very effective by [5]. However, this requires all
matrix elements to be calculated. Fowlkes et al. [5] utilize the Nyström method
to approximate the similarity matrix. Initially, a set of randomly chosen sample
pixels and their corresponding connections to all other pixels are extracted. This
small portion of the similarity matrix is then used to estimate all remaining
connections. The major reduction of the computational effort is achieved by cal-
culating the row sums of the approximated similarity matrix without the need to
estimate all matrix entries. Hence, this approach is attractive for methods that
actually require the row sums of W . Keuchel and Schnörr [6] propose a singular
value decomposition (SVD) approximation method for W based on probabilis-
tic sampling. Sharon et al. apply a multiscale method to find an approximate
solution to normalized cut measures [7].

Several pairwise segmentation techniques may take advantage of the men-
tioned approximations but not all can do so [8]. More general approaches [8, 9]
generate a suitable oversegmentation of the image in terms of a preprocessing
step. Ideally this oversegmentation does not miss any boundaries. It thus can be
used to derive a new (much smaller) similarity matrix by means of a pairwise
measure for the obtained image patches. This in turn is used to feed the pair-
wise grouping method. Keuchel et al. [8] created an irregular oversegmentation
using the mean shift algorithm. The image patch affinities are described using a
region feature, e.g. the mean color. Malik et al. [9] proposed to use a sparsified
version of the complete similarity matrix in order to separate the image into
patches. However, this procedure still does not reduce the costs, as a convenient
approximation scheme for W is still required.

In this paper, we propose a method that provides a suitable oversegmentation
and concurrently exploits the availability of a pairwise pixel similarity measure.
In our approach an oversegmentation into small coherent image patches is ob-
tained in an iterative manner. The algorithm offers a clean interface and may
be easily integrated into existing pairwise grouping methods.

3 Our Approach

The high spatial resolution of modern images makes optimization on the level
of pixels intractable [10]. However, image pixels are no natural entities, being
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rather a consequence of the digital discretization process. For these reasons we
define image elements as small coherent image patches which we refer to as
superpixels [10].

The interpretation and preferences of superpixels can be compared to a jigsaw
puzzle. The superpixels are the pieces that make up the segments which reveal
the complete image. With increasing size of the tiles the jigsaw gets easier and
can be completed significantly faster. This analogy reveals two important aspects
our algorithm is based on:

1. The superpixels must respect the boundaries of the true segmentation.
2. The size of the superpixels limits the resolution of the segmentation. Any

true segment smaller than the superpixel size cannot be correctly segmented.

For the creation of superpixels our algorithm solely requires the pairwise pixel
similarity function Φ. This allows for the use of clever implementation schemes,
e.g. a caching mechanism. In our experiments we stored the information needed
for the similarity function (e.g. color) and performed the computation on the fly.

3.1 Oversegmentation into Superpixels

The superpixel segmentation is calculated in a two-step process. An initial tiling
of the image plane is achieved which is then adapted to the local image structure.
Figure 1 shows an example of the superpixel segmentation. To obtain the initial
segmentation into k superpixel segments, Ren et al. apply the Normalized Cut
algorithm which produces superpixels of similar size and shape [10]. This fact
is exploited by our approach which uses a raw segmentation into hexagonal
superpixels. We decided for a regular hexagonal grid (see Fig. 2a) as it offers
beneficial properties over other tilings [11]. Choosing a proper value for k may
require a training stage [10]. However, this shall not be addressed in the scope
of this paper. We choose k given a predefined minimum size of the segments, i.e.
the granularity of the superpixels is user–supplied.

Starting from this raw segmentation the segments then adapt iteratively to
the local image structure characterized by the pairwise pixel similarities. The

(a) (b) (c) (d)

Fig. 1. An example of a superpixel segmentation using color information for k = 400
at a sampling rate of rsp = 0.01 and m = 30 iterations (see text for explanations).
(a) the original image from the Berkeley Segmentation Dataset [12]; (b) a reference
segmentation; (c) the final superpixel segmentation; (d) a reconstruction of (b) from the
superpixel segmentation: each superpixel is assigned to the segment with the maximum
overlapping area [10].
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(a) 0 iterations (b) 5 iterations (c) 15 iterations (d) 30 iterations (e) Final result

Fig. 2. Superpixel segmentation process. The background shows the superpixel seg-
mentation of the current iteration. The dark outline constitutes the reconstruction of a
reference segmentation [10]. (a) The original image (see Fig. 1) is partitioned into ap-
proximately k = 400 hexagons. (b) - (d) Given this raw segmentation the segments are
iteratively adapted to the local image structure. (e) The final superpixel segmentation
after region merging to obtain a maximum of k = 400 image patches.

similarity between a pixel i and a segment s can be defined as the average of the
similarities between i and all the pixels in s, namely simp(i, s) = 1

|s|
∑

j∈s Φ(i, j).
For a set S of concurrent image patches the most likely segment si ∈ S is the
one having maximum similarity to pixel i, i.e.

si = arg max
s∈S,s\{i}

simp(i, s) = arg max
s∈S,s\{i}

1
|s|

∑
j∈s

Φ(i, j) . (1)

The pixel i is ignored in any segment as it would bias the result. Since the
computational effort depends on the size of the segments we introduce a function
Rn(·) which returns n randomly selected elements from a set of pixels. Modifying
(1) an estimation for the most suitable segment ŝi for a pixel i is then

ŝi = arg max
s∈S,s\{i}

1
n

∑
j∈Rn(s)

Φ(i, j) . (2)

The initial segments adapt to the local image conditions in the following way:

1. For each boundary pixel i of the current segmentation identify the set P of
feasible superpixel segments (P will contain the neighboring and the current
superpixels. Hence most similarities are ignored.). Select the new superpixel
ŝi from P according to (2).

2. Repeat step 1 until a stopping criterion is fulfilled.
3. Merge the smallest superpixels until a maximum of k superpixel segments is

left. The spreading of the pixels is again calculated using (2).

For reasons of simplicity, in our experiments we used color and proximity infor-
mation to characterize the pairwise pixel similarity, see Sect. 5.2 for details. The
number n of random samples used in step 1 is set to a fraction rsp of the size
of the current superpixel segment. In the following rsp will be referred to as su-
perpixel sampling rate. A preset number of m iterations was chosen as stopping
criterion. (Alternatives may include the supervision of the number of consecutive
fails to assign boundary pixels of the current segmentation to a new superpixel,
but this shall not be discussed here).
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Figures 1 and 2 show the results for an 481×321 image taken from the Berkeley
Segmentation Dataset [12] at a sampling rate of 1% for k = 400 superpixels and
m = 30 iterations. To obtain these results in overall ≈ 8 million calls have been
made to Φ, which corresponds to 0.04% of all pairwise pixel similarities.

3.2 Definition of a Pairwise Superpixel Similarity

By hypothesis the true segmentation can be computed from the k image patches
obtained through the oversegmentation of an image according to Sect. 3.1. To
make the superpixels viable for a pairwise grouping method, a pairwise super-
pixel similarity measure has to be defined on the basis of the pairwise pixel
similarity measure. A straightforward expansion of the measure of similarity
simp(i, j) between a pixel i and a segment s given in (1), to the similarity of two
image segments s1 and s2 is obtained using the average similarity of each pixel
of s1 to the segment s2, namely:

sims(s1, s2) =
1

|s1|
∑
i∈s1

simp(i, s2) =
1

|s1| |s2|
∑
i∈s1

∑
j∈s2

Φ(i, j) . (3)

However, the calculation of all pairwise superpixel similarities requires to com-
pute all pairwise pixel similarities, which is exactly what we wanted to avoid.
By means of the function Rn(·) which gives n randomly selected elements for
any set of pixels, (3) can be modified. An estimation Φ̂(s, t) for the similarity
between superpixel segments s and t is then given by:

Φ̂(s, t) =
1

n1n2

∑
i∈Rn1(s)

∑
j∈Rn2 (t)

Φ(i, j) . (4)

The numbers n1, n2 of random samples can be adapted for each segment using
the superpixel sampling rate rsp introduced in the previous section.

By providing a suitable pairwise pixel similarity function Φ along with the
parameters for the superpixel segmentation, i.e. k (the number of superpixels),
rsp (the superpixel sampling rate) and the number of iteration steps m, the
according superpixel similarity measure Φ̂ can be computed. This may be easily
plugged into an arbitrary pairwise grouping method, e.g. [1].

4 The Normalized Cut Framework

The Normalized Cut framework introduced by Shi and Malik [1] provides a pair-
wise grouping method inspired by spectral graph theory. Image segmentation is
described in terms of a graph partitioning problem. Recall that W may be inter-
preted as an adjacency matrix for an undirected weighted graph G = (V, E).
Let A, B be a partition of the graph, i.e. A ∪ B = V , A ∩ B = ∅. The Normal-
ized Cut criterion allows to evaluate the quality of a partition by extracting the
global impression of an image:

Ncut(A, B) =
cut(A, B)
assoc(A)

+
cut(A, B)
assoc(B)

, (5)
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where cut(A, B) =
∑

i∈A,j∈B Wij and assoc(A) =
∑

i∈A,j∈V Wij . The determi-
nation of the best partition is a NP-complete problem. However, fast approxi-
mation methods exist. Let D be a diagonal matrix with Dii =

∑N
j=1 Wij . The

optimal partition can be computed as follows:

y = argminNcut = arg min
y

yT (D − W )y
yT Dy

, (6)

with y ∈ {a, b}N being a binary indicator specifying the group membership for
each pixel in either A or B. If y is relaxed to take on real values (6) can be
optimized by solving the generalized eigenvalue system (D − W )y = λDy. The
eigenvector y with the second smallest corresponding eigenvalue can be used to
recursively compute a bipartition of the image. We suppose to check l evenly
spaced possible splitting points, such that the resulting partition has the best
Ncut value. A complete image segmentation is obtained by further splitting the
computed segments, starting e.g. with the largest of the current segments. Any
two segments which differ in size for a maximum allowable ratio e are both split.
The partition with minimum Ncut value is accepted. The segmentation process
can be stopped, e.g. after t partitions, or when a partition exceeds the maximum
Ncut value cmax.

Our algorithm is plugged into this framework by calculating an approximative
similarity matrix Ŵst = Φ̂(s, t) from the superpixel segmentation.

5 Experiments

5.1 Segmentation of a Test Case

In the 25 × 25 images I0 displayed in Figs. 3a-3b, the dark and light segments
ID
0 and IB

0 were created from the normal distribution N(μ = 0, σ = 0.1) and
N(μ = 1.2, σ = 0.1), respectively. The image segmentation I0 = ID

0 ∪ IB
0 was

taken as ground truth. The difficulty of the segmentation task was increased by
minimizing the difference of the means of the probability distributions of the dark
and light segments in I0. We therefore formally introduce a problem difficulty
p ∈ [0, 0.75]. Each image Ip is derived from I0 according to: ID

p = ID
0 + p

2 and
IB
p = IB

0 − p
2 . The similarity of two pixels i, j is given by the Gaussian weighted

Euclidean distance function Φ(i, j) = exp
(
− |xi − xj | /2σ2

)
, where xi is the

intensity value of pixel i. The quality of the Ncut bipartition provided by the
eigenvector with the second smallest eigenvalue is estimated using the Jaccard
coefficient [13]: J(T, S) = n11(n11 + n10 + n01)−1 ∈ [0, 1]. Here, T is the true
solution and S the segmentation to evaluate; n11, n01 and n10 denote the number
of pairs of elements within the same segment in both S and T , only in S and only
in T , respectively. For each problem difficulty the parameter σ was optimized by
testing several evenly spaced values in the non-approximated segmentation. The
number of iterations during the superpixel segmentation was fixed to m = 30.

The results of this experiment are presented in Fig. 3. As expected, the num-
ber of superpixels used directly influences the quality of the segmentation as well
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Fig. 3. Top row: Benchmark images of size 25 × 25 used for evaluating the quality of
our approximation scheme. (a) The benchmark image I0 of difficulty p = 0. (b) The
benchmark image I0.75 of maximum difficulty p = 0.75. Second and last row: A study
of the segmentation quality depending on the problem difficulty for different configu-
rations of the algorithm in 500 trials. The non-approximated solution to the similarity
matrix is denoted “Complete W”. (c) The optimum value for σ that maximizes the
Jaccard score. (d) Comparison of the segmentation quality for different numbers of
superpixel segments at a sampling rate of rsp = 1. (e) Estimation of the segmentation
quality at different sampling rates given a fixed number k = 20 of superpixels. (f)
Empirical analysis of the running time for the segmentations of (e).

as the computational effort of our algorithm. Interestingly, for a large number of
sampling rates the results are of similar quality and compare to the segmentation
quality of the Normalized Cut algorithm. The computation of the segmentation
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(a) rsp = 0.1 (b) rsp = 0.01 (c) k = 700

Fig. 4. Color image segmentations of our algorithm using color and proximity infor-
mation. The images are taken from the Berkeley Segmentation Dataset [12] and are of
a size of 481 × 321 pixels. Column (a) shows the segmentation on the basis of k = 700
superpixels at a sampling rate of 10%, the average segmentation time was about 4
minutes. In column (b) the images were segmented using the same configuration but a
lower sampling rate of 1%. The running time decreased to less than 1 minute. (c) shows
the superpixel segmentations obtained during the segmentation of (a) after m = 30
iterations. Results on the complete dataset are available at effpixsegment.oneder.de.
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using the complete similarity matrix W took at average 4.5 seconds. In con-
trast, Ŵ could be computed in about 0.045 seconds, using 20 superpixels and a
sampling rate of 64%. Approximately 99% savings in calculation time and 97%
savings in memory requirements could be achieved at a quality loss of just 15%.

5.2 Segmentation of Natural Images

To present some segmentations of real world images, 481×321 color images from
the Berkeley Segmentation Dataset are used [12]. The pairwise pixel similarities
are calculated according to: Φ(i, j) = exp

(
− ‖C(i)−C(j)‖2

σci
− ‖X(i)−X(j)‖2

σsl

)
, where

C(·) is the 3-dimensional vector in the nearly perceptual uniform L*a*b* color
space and X(·) the spatial location of the image pixels i, j. The parameters are
set to 15% of the range of the feature distance function, i.e. σci = 0.15 · dmax,
and σsl = 0.15 · D, where dmax denotes the maximum color distance between
randomly chosen pairs of pixels and D is the length of the image diagonal.
The Normalized Cut implementation was parametrized with: l = 50, e = 0.5,
cmax = 0.5, t = 10 (see Sect. 4). A fixed number of m = 30 iterations of the
superpixel segmentation was computed.

Figure 4 summarizes some segmentation results (without any postprocessing)
for two different configurations of the segmentation algorithm. The first group
of segmentations was obtained at a sampling rate of rsp = 0.1 and k = 700.
The whole segmentation process for an image at this configuration took about 4
minutes in unoptimized Java code on a Pentium 4 with 3GHz. The second group
was achieved at a sampling rate of rsp = 0.01 and k = 700. The computation took
at average less than one minute. A direct comparison to the non-approximated
version is not possible as the complete similarity matrix does not fit into memory.
However, to estimate the savings of our approximation scheme the number of all
calls to Φ was compared with the number of all pairwise pixel similarities. For
the two given configurations we calculated a fraction of 0.75% and 0.03% which
resembles to reductions in the order of 99.25% and 99.97% compared to the real
solution. The segmentation quality of course highly depends on Φ which in our
case utilizes color and proximity information only. The integration of suitable
proximity, texture and contour cues [9] would yield better results.

6 Conclusion

We presented a general approach toward making grouping methods based on
pairwise pixel similarities applicable to real world problems. The technique is
very straightforward and may be plugged into existing systems as a preprocessing
step. The pixels are replaced by small coherent image patches - the superpixels.
In order to make the superpixels utilizable in a pairwise grouping method, in
the second step a new pairwise similarity measure for the superpixels is defined.
It relies on the basis of the pairwise pixel similarity function used in the itera-
tive superpixel creation. We demonstrated the integration into the Normalized
Cut framework. The speed and memory requirements for segmentation can be
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reduced drastically without loosing significantly in quality. The savings of our
approximation scheme are in the order of > 99% of the original problem size.
The reconstructed segmentations are good approximations of the original. De-
pending on the granularity of the superpixels, some less significant details in the
human segmentation may be lost (see Fig. 1). However, we yield comparable
results as other approximation and speed–up techniques [8,7,10]. Segmentation
results and the source code are available at effpixsegment.oneder.de.
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Abstract. Autonomous collision avoidance in vehicles requires an accurate sep-
aration of obstacles from the background, particularly near the focus of expan-
sion. In this paper, we present a technique for fast segmentation of stationary
obstacles from video recorded by a single camera that is installed in a moving
vehicle. The input image is divided into three motion segments consisting of the
ground plane, the background, and the obstacle. This constrained scenario allows
for good initial estimates of the motion models, which are iteratively refined dur-
ing segmentation. The horizon is known due to the camera setup. The remaining
binary partitioning problem is solved by a graph cut on the motion-compensated
difference images.

Obstacle segmentation in realistic scenes with a monocular camera setup has
not been feasible up to now. Our experimental evaluation shows that the proposed
approach leads to fast and accurate obstacle segmentation and distance estimation
without prior knowledge about the size, shape or base point of obstacles.

1 Introduction

Year by year, thousands of people die in car accidents. Many of those accidents could be
avoided or alleviated by autonomous collision avoidance systems providing for faster
and more adequate reaction of the driver. In this paper we propose a key component for
an assistance system, namely a framework for segmenting stationary distant obstacles in
the direction of the moving vehicle. See Fig. 1 for an example of a stationary obstacle in
the vehicle corridor. Stationary objects pose a particular challenge. Moving objects can
easily be detected by optical flow based methods or - in vehicle application - by radar.
Accurate segmentation allows for the verification of obstacle hypotheses and enables
the driver assistance system to decide whether there is enough space to drive around the
obstacle.

Three aspects are of critical importance for such an obstacle segmentation system.
Firstly, the segmentations must be generic in the sense that they cannot rely on specific
assumptions regarding the color or shape of the obstacles. Secondly, it needs to provide
reliable segmentations in particular when objects are still far from the driving vehicle,
i.e. where the obstacle is close to the focus of expansion (FOE), thus leaving enough
time to induce obstacle avoidance strategies. This is typically a challenge, because at
such an early stage the obstacle covers only a small portion of the image and the relative
pixel motion is very small [10]. Thirdly, a useful collision avoidance system requires
the segmentations results in real-time.

F.A. Hamprecht, C. Schnörr, and B. Jähne (Eds.): DAGM 2007, LNCS 4713, pp. 264–273, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Fig. 1. Motion segmentation of a stationary obstacle in 36 m distance from monocular video.
Notice the two cones, which are difficult to capture by means of their gray value.

In recent time, the graph cut has become very popular for fast computation of glob-
ally optimal solutions to binary partitioning problems [2,3,6]. The graph cut method
gave rise to numerous interesting applications in computer vision. In [9], a stereo cam-
era and ternary graph cuts are employed to separate a person in front of the camera from
the background. In two successive works, the approach was modified to work also with
monocular video by relying (predominantly) on the difference image of a moving per-
son [5,13] in front of a static background. For our application, such approaches would
not work as the entire scene is moving due to the strong ego-motion of the car. General
motion segmentation with graph cuts, without a specific application in mind, has been
suggested [1,12]. Mathematically, such unconstrained motion segmentation is a highly
ill-posed problem. In addition to the partitioning also the motion fields in the regions
have to be estimated. In contrast to segmentation based on difference images as used
in [5] and [13], motion segmentation cannot be solved in a globally optimal manner
anymore. The iteration of segmentation and motion estimation is likely to end up in
unsatisfactory local minima.

It turns out that the obstacle segmentation task considered here actually does provide
additional information and constraints. In the following, we will show which additional
information is available and how it can be imposed in the graph cuts based segmentation
scheme. Experimental results confirm that the integration of additional information will
lead to reliable segmentations of obstacles from a driving vehicle.

2 Obstacle Segmentation with Graph Cut

The system is continuously fed with live gray scale video data I : Ω × [0, ∞) → R

represented as 2-D gray value fields It(x, y) at time t and image points x = (x, y)�

in camera coordinates. As soon as another frame becomes available, it is segmented
into obstacle and non-obstacle regions, based on the last two frames and the previous
segmentation. This is done by computing a binary labeling Lt(x) of each pixel x =
(x, y)� in a region of interest (ROI) Ωs ⊂ Ω of the image It at time t, such that

Lt(x) =
{

1 if x obstacle
0 otherwise. (1)

The ROI is the area around the focus of expansion, where potential obstacles in the
driving corridor are located. Its size corresponds to the image size of mapped obstacles.
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Fig. 2. Motion-compensated difference images. From left to right: original gray value input
images and difference images for foreground (Ef ) and background (Eb) based on the quadratic
difference between the motion-compensated image It−1 and image It after the last iteration. The
camera translation was 1.9 m. Hf and Hb denote foreground and background motion.

Approximate obstacle distance estimates are given from an obstacle detection system,
which will be described in Section 4.

Segmentation by grouping similar gray values is not sensible in our context because
the gray value of different obstacles is not fixed and may be similar to the gray value of
the street. We therefore base the labeling on motion information. The classical approach
to segmentation minimizes an energy on the labeling of the form

E(Lt) = EData(Lt) + αESmooth(Lt) . (2)

2.1 WarpCut

In the following we show how to design the data term in Eq. 2 which is optimally suited
for the segmentation of obstacles in the driving corridor of a moving vehicle. While
traditionally the data term aims at segmenting the intensities [2] or the motion field
[1,12], in this paper we propose to segment the warped image.

We assume that the scene is static and all image motion is caused by the camera
installed in the moving vehicle. The camera motion is approximately known from odo-
metric measurements of the vehicle. Due to the given scenario we impose the following
assumptions:

1. The street is approximately planar. Hence, the image motion in this area is de-
scribed by a homography Hs. The homography can be approximated from the
known camera motion and the camera parameters.

2. Visible object points on distant obstacles have approximately the same depth. Ap-
plying the weak perspective camera model, the motion field in the obstacle region
is affine, which can be expressed by another homography Ho.

3. Finally, the background region, i.e., the region above the horizon can be approxi-
mated as a plane at infinity, which leads to a third homography Hb.

Consequently, there are three regions, each with a different motion model. The sep-
aration of the obstacle region from the other two regions is done by the sought seg-
mentation of the obstacle. The street and background region are separated a-priori by a
horizontal line y = yhor that can be derived analytically from the camera parameters
which leaves us with a binary partitioning problem.
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The key idea of differentiating between obstacles and background is to penalize
the difference between the current frame and motion-compensated (warped) previous
frame. Separate motion predictions are computed for the obstacle and the non-obstacle
regions. Notice that for the presented application this is much more sensible than the
approaches described in [5,13] as it allows to drop the assumption of a static camera.
The motion-compensated images are composed as follows:

Imc
0,t−1(x) =

{
It−1(Hb(x)) y < yhor

It−1(Hs(x)) y ≥ yhor
, (3)

Imc
1,t−1(x) = It−1(Ho(x)) . (4)

Values between grid points are determined by bilinear interpolation. Figure 2 shows
the motion-compensated difference images of the introductory example in Figure 1 for
Lt = 1 and Lt = 0, respectively. The data term evaluates the consistency between the
warped previous image and the current image. It consists of the sum over the squared
differences between both images:

EData(Lt) =
∑

x∈Ωs

(It(x) − Imc
Lt(x),t−1(x))2 . (5)

2.2 Spatio-temporal Regularity of the Labeling

Additionally to the data consistency term, our energy model incorporates assumptions
on the spatial and temporal regularity of the labeling:

ESmooth = ESpatial + βETemporal . (6)

The spatial regularity is measured by the geodesic length of the segmentation bound-
ary. In particular, the boundary length is locally weighted by the gray value difference
along the boundary. With N being the set of pairs of pixel neighbors (here we use an
8-neighborhood) the spatial regularity constraint reads

ESpatial(Lt) =
1
2

∑
(p,q)∈N

[Lt(p) �= Lt(q)]
‖p − q‖

(
1 − |It(p) − It(q)|

Imax

)
(7)

with Imax being the maximum possible gray value. Given two boundary pixels, the
energy takes its maximum for equal gray values and decreases linearly.

In addition to spatial regularity, we impose temporal regularity of the labeling setting

ETemporal(Lt) =
∑
x∈It

[Lt(x) �= Lt−1(x)] . (8)

Two aspects are considered here: the spatial smoothness of the labeling and the size of
the segments. For relatively small camera movement in stationary scenes one expects
the current segmentation to be close to the most recent one. Additionally, we set the
parameter β according to the validity of the most recent segmentation. As we explain
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in the next section, the scale of the foreground region is used to determine the obstacle
distance. With known distance, segmentation size, and calibrated camera an obstacle
size is deduced. β in our case can be seen as a switch. The parameter is set to zero for
unrealistic obstacle size or distance from a given prior (for example in the beginning β is
set to zero as no prior segmentation exists). However, β could be continuously changed
if other post-processing algorithms are used to evaluate the current segmentation result.

The total energy can be minimized globally via the graph min cut method [6,4].

3 Adaptation of the Motion Fields

The segmentation above was solely based on pre-computed motion fields, derived from
the approximate camera motion and assumptions on the planarity of the involved struc-
tures. In order to improve the segmentation, we propose to iteratively refine these mo-
tion fields. This is related to estimating the camera motion (ego-motion) from the image
data [8] but aims at estimating the scene depth for static scenes. Based on the gray value
constancy in 5, one can apply an incremental warping technique as originally proposed
in [11] and later extended to non-translatory motion. This is detailed for our motion
model in the following.

For the homographic motion model H∗, ∗ ∈ {o, b, s}, a point x in a given frame is
associated with the point

H∗(h, x) =

⎛
⎜⎝

h1,1·x+h1,2·y+h1,3
h3,1·x+h3,2·y+1

h2,1·x+h2,2·y+h2,3
h3,1·x+h3,2·y+1

⎞
⎟⎠

in the previous frame, where h ∈ R
8 is a parameter vector. Given an estimate h0 of

these parameters, one can generate an estimate of the motion-compensated frames for
the parameters h0 + Δh:

Imc
∗,t−1(h

0 + Δh, x)≈It−1(H∗(h0, x)) + ∇It−1(H∗(h0, x))
dH∗(·, ·)

dh

∣∣∣∣
x,h=h0

Δh .

This is introduced into our objective function Edata(·)
∑

x∈R∗

(
It(x) − Imc

∗,t−1

(
h0 + Δh, x

))2

where the region R∗ is given by all points associated with the respective model. When
setting the derivative w.r.t. Δh to zero, one can solve for the update (with simplified
notation):

Δh=
∑

x∈R∗

(
dH∗
dh

(x)�∇It−1(x)�∇It−1(x)
dH∗
dh

(x)
)−1

·
∑

x∈R∗

(
It(x − Imc

∗,t−1(h
0, x)

)
∇It−1(x)

dH∗
dh

(x) .
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Such warping schemes are also known as the Gauss-Newton method. In our case,
they allow homography estimation without the knowledge of point-correspondences.

In contrast to the segmentation with fixed motion fields, the iteration of graph cuts
and motion field adaptation usually does not result in a global optimum anymore. A
prior for the homography parameters is given by the car odometer.

4 Initial Obstacle Detection and Depth Estimation

Our segmentation model is based on the restriction of the labeling domain to a region
of interest around the focus of expansion. Moreover, the initial motion field in the ob-
stacle region depends on the obstacle’s distance to the camera. Although the detection
of obstacles is not the focus of this paper, we briefly review a method that has recently
been proposed in [14] and which we adopted in order to trigger the segmentation. Al-
ternatively, one could use active sensors, such as radar or lidar, for this purpose.

Assume an image point xt belonging to a static world point at (X, Y, Z)�. The
camera translates by (TX , TY , TZ)� in camera coordinates from frame It to It+1. Then
the world point at t + 1 will be projected to

xt+1 = f
Z+TZ

(
X + TX

Y + TY

)

=
Z

Z + TZ︸ ︷︷ ︸
s

f

Z

(
X
Y

)

︸ ︷︷ ︸
x

+ f
Z+TZ

(
TX

TY

)
.

Hence, the distance Z of the point can be inferred from the scaling s of x with
respect to the focus of expansion. For obstacle detection, we track a number of points
over multiple frames using the region tracker in [7]. Distance estimates at locations that
are not consistent with the ground plane are considered as potential obstacle points.
This way, stationary obstacles within 50 m are detected at interactive frame-rates. For a
comparative test we refer to [14]. Given the location and distance of potential obstacle
points allows to define the region of interest in which we compute the segmentation. The
interest region is chosen large enough to capture obstacles up to a size of 10 m × 3 m.

In the same manner, one can derive an accurate depth estimate for the obstacle from
the scaling of the obstacle region segmented by our approach. Such estimates are then
used to verify the depth estimate from region tracking. Notice that the initial region
tracking step can be replaced by other sensors such as radar. The segmentation is veri-
fied by comparing its distance estimate with the distance predicted by the region based
tracker. If the deviation is smaller than 5%, the segmentation is considered trustworthy.
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5 Results

We evaluated the method in some real world scenarios. For all the experiments we show
in this section, the parameters have been kept fixed. In particular, we set α = Imax and
β = 5

Imax
with Imax = 255. The camera had a focal length of 8mm, which corresponds

to approximately 800 pixels.

Fig. 3. Closeup of segmentation for an obstacle in 17 m distance. The middle image shows
the warped foreground with the foreground energy. The right image shows the warped ground
plane and according energy. Color warmth denotes higher gray value difference compared to the
current image. Notice the correct segmentation across the shadow boundary and the incorrect
segmentation of the traffic cone due to occlusion.

Figure 3 demonstrates the accuracy of the segmentation even in areas close to the
base point of the obstacle. In these areas the motion model of the street is almost iden-
tical to the motion field of the obstacle. As the segmentation is based on differences
between those models, the segmentation is much more sensitive to noise here. The
correct segmentation even along the bottom of the car reveals the robustness of the
overall method even in these critical areas. Another reason for inaccuracies are occlu-
sions of the ground plane by the obstacle. The traffic cone, for instance, is not perfectly
segmented due to this fact. Apart from occlusion artifacts, however, the segmentation
result is very precise. Moreover, the algorithm runs at interactive frame rates of 5 fps
including obstacle detection and segmentation.

Figure 4 shows another result for a scenario with two differently colored obstacles.
The color of the gray car actually fits very well to large parts of the background region.
Clearly, an intensity based segmentation with graph cuts, as shown in the Figure, is not
appropriate here. On the other hand, the motion cues used in the proposed approach can
segment the two obstacles very well, though they are still 53 m away. However, with
the general motion segmentation approach the obstacles are not segmented from the
background and, hence, distance and size estimates are not possible. The motion paral-
lax (motion difference between ground plane and obstacle) decreases non-linearly with
increasing distance. Thus, it is quite small in this case. Nevertheless, there is enough
difference to outline the shape of the obstacles without implying any prior shape knowl-
edge using our WarpCut algorithm.

The plots in Figure 5 show the size and distance estimates of the approaching ob-
stacle from Figure 7 by means of segmentation. The ideal values are indicated by the
straight lines. The estimates by the segmentation are very good. This emphasizes the
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Fig. 4. Motion segmentation and distance estimation for different color obstacles in 53 m
distance from monocular vision alone. The camera translation was 2.6 m between the frames.
The right plots show the region of interest with motion segmentation (top) and gray value seg-
mentation (bottom) for the same frames. Clearly, gray value segmentation is not suitable for the
segmentation of different colored obstacles in scenes with arbitrary background.

Fig. 5. Distance and obstacle size estimation for the example with one obstacle (ground truth:
4.19 m×1.83 m) in Figure 1

Fig. 6. Detection of a gap between obstacles. Taking the center of mass for the distance mea-
surements results in one detected object. The gap between the two trucks is ignored.

precise segmentation of the obstacle throughout the video sequence, pictured with ex-
tracted frames in Figure 7.
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Fig. 7. Segmentation and distance estimation from monocular video. The segmentation and
distance estimation of the stationary obstacle proves to be precise throughout the video sequence.
The early detection and localization of the obstacle leaves time to induce obstacle avoidance
strategies.

Figure 6 shows that obstacle segmentation is more than just obstacle detection. The
segmentation allows to detect gaps between obstacles and to measure the size of these
gaps in order to decide whether it is possible to drive through this gap. Common radar
sensors, for instance, would only consider the center of mass and detect a single ob-
ject. This example demonstrates the relevance of segmentation for autonomous colli-
sion avoidance. Similar scenarios appear in robot navigation.

6 Conclusions

We presented a method for accurate stationary obstacle segmentation from motion in
monocular video. In particular, we propose to obtain segmentations based on inten-
sity differences of the current frame and motion-compensated versions of the previous
frame. As spatially regularized segmentations are desired in a real-time context, en-
ergy minimization via graph cuts on such warped images proved to be very useful. For
the motion segmentation to be robust, we exploited a number of assumptions that are
reasonable in the context of obstacle segmentation. Experimental results confirmed the
validity of these assumptions in several scenes and demonstrated the robust and accurate
segmentation of obstacles. Moreover, we showed that from the scaling of the obstacle
region in time, one can accurately estimate the obstacle’s distance. Also conclusions
about obstacle dimensions can be deduced.
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Abstract. Research on EEG based brain-computer-interfaces (BCIs)
aims at steering devices by thought. Even for simple applications, BCIs
require an extremely effective data processing to work properly because
of the low signal-to-noise-ratio (SNR) of EEG signals. Spatial filtering is
one successful preprocessing method, which extracts EEG components
carrying the most relevant information. Unlike spatial filtering with Com-
mon Spatial Patterns (CSP), Adaptive Spatial Filtering (ASF) can be
adapted to freely selectable regions of interest (ROI) and with this, arti-
facts can be actively suppressed. In this context, we compare the perfor-
mance of ASF with ROIs selected using anatomical a-priori information
and ASF with numerically optimized ROIs. Therefore, we introduce a
method for data driven spatial filter adaptation and apply the achieved
filters for classification of EEG data recorded during imaginary move-
ments of the left and right hand of four subjects. The results show, that
in the case of artifact-free datasets, ASFs with numerically optimized
ROIs achieve classification rates of up to 97.7 % while ASFs with ROIs
defined by anatomical heuristic stay at 93.7 % for the same data. Oth-
erwise, with noisy datasets, the former brake down (66.7 %) while the
latter meet 95.7 %.

1 Introduction

Steering wheel chairs, prostheses or technical instruments we use every day only
by thoughts is the proximal goal of research in context with brain-computer-
interfaces (BCIs). This is mainly beneficial for handicapped people or people
suffering from the locked-in-syndrome. In the long term, it could additionally
enrich the everyday life for all people.

The technical approach we use for ”reading thoughts” consists in recognizing
patterns of recorded electroencephalogram data (EEG) from different subjects.
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For example, motor imagery leads to a decrease of the variance of the EEG in
specific frequency bands over the motor cortex [1]. This event-related desyn-
chronization (ERD) can be used to infer the intention of the user of the BCI
[2]. The main problem in this context is the low signal-to-noise-ratio (SNR) of
the recorded EEG. This has led to the development of spatial filters, extracting
that component of the EEG that carries the most relevant information about
the classification task. One of the most successful algorithms for spatial filter-
ing in the context of BCIs is the Common Spatial Patterns (CSP) algorithm
([3], [4]). For two conditions (i.e., imaginary movement of right and left hand),
it minimizes the variance of one dataset, while maximizing the variance of the
other dataset. This leads to spatial filters that enable very good classification
results in combination with linear classification algorithms. However, the CSP
algorithm is not robust against artifacts like eye activity or mental states that
are not induced by the imagination of the specific movement.

To overcome this disadvantage we use the Adaptive Spatial Filters (ASF)
algorithm [5]. In ASF, it is presumed that the imagination of a specific movement
causes a change of the EEG in one specific location of the cortex. Since it is well
known that imaginary movements of a limb cause an ERD in that part of the
motor cortex representing the specific limb [1], this a-priori knowledge can be
used to design a spatial filter that attenuates all EEG activity not originating
in this region of interest (ROI). With ASFs, we thus only pick out information
originating from the desired sources, and eliminate unwanted EEG activity.

To obtain a good adaptation of the spatial filters to the desired EEG sources,
it is necessary to estimate their true origins. This estimation can be based on
heuristic a-priori knowledge or on source localization by solving data driven op-
timization problems. The former does not require time-consuming computation
while the latter does. Hence, numerical optimization is not the choice for online
capable BCIs. In this context, our intention is to analyze the performance of
heuristic filter adaptation compared to numerically optimized filter adaptation.
We expect that this will help to improve the performance of ASFs and show
the achievable limits. More precisely, in [5] experiments with motor imagery of
the left and right hand were performed. Two ASFs were trained with a-priori
information about the approximate positions of the left and right motor cortex.
These positions were heuristically assumed as spherical regions with 5 mm radius
and midpoints located on a sphere around the center of the head with radius
6.6 cm, at the points, where radial projections of C3 and C4 cut this sphere. This
assumption was based on anatomical knowledge about the human brain, but for
sure, it does not exactly hold for all subjects. This raises the following question:
Is there a better way to define the regions of interest (ROI)? Or more precise:
How far is the location of a numerically optimized ROI from the heuristic one?
By setting up a method to numerically optimize the position of the sources for
preprocessed training data, and by comparing the achieved classification results
with the results achieved using heuristically adapted spatial filters, we will give
the answer to this question.
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The structure of the paper is the following. In Section 2, the ASF algorithm
is briefly reviewed and the numerical optimization of the ROI is described. In
Section 3, we will apply heuristically adapted ASFs as well as numerically opti-
mized ASFs on EEG data of four subjects, and compare the achieved classifica-
tion results. A discussion of the different results and some prospects on future
research will conclude the paper in Section 4.

2 Methods

2.1 Adaptive Spatial Filters

An adaptive spatial filter tries to minimize the signal variance of sources outside
a region of interest, while leaving unchanged the signal variance of sources inside
the ROI. It can be described by a filter vector w ε IRM , with M the number of
EEG electrodes. Applying it on a signal x(t) ε IRM returns the signal y(t) ε IR,
caused by sources inside the ROI:

y(t) = wT x(t). (1)

The filter vector w can be found by

w∗ = argmax
w

{f(w)} with f(w) =
wT Rx̃(t)w

wT Rx(t)w
, (2)

where Rx(t) is the covariance matrix of measured EEG data while Rx̃(t) denotes
the covariance matrix of model generated EEG data, that shows only activity
of sources originating in the ROI. For the latter, a four-shell spherical head
model is used to compute the electrical field at a position ri ε IR3 (i.e., the
EEG signal x̃i(t) of the i-th EEG electrode, i = 1 . . .M , with M the number of
EEG electrodes) caused by an electric dipole at position r′ ε IR3 [6]. The basic
equation therefore is described by

Φ(ri, t) = x̃i(t) = l(ri, r
′)T p(t). (3)

l(ri, r
′) : IR3 × IR3 �→ IR3 denotes the leadfield equations, describing the pro-

jection strength of a dipole at position r′ with moment p(t) ε IR3 on a position
ri outside the head with respect to conductive and geometric properties of the
head model. Hence, with (3) we can compute the signal x̃(t) of all EEG elec-
trodes for a given dipole source and adapt a spatial filter to this dipole source
by solving (2). This maximizes signal variance, which may seem contradictory
to the goal of finding ERDs of an EEG-Signal, i.e., decreases of variance. But
these steps are independent. At first we want to attenuate the variance of all
EEG sources not within the ROI with an optimal spatial filter found by (2).
Then we can proceed with the variance information originating within the ROI
to vote for an ERD or not. The process of predefining a ROI can be carried
out by applying a-priori information about cortex positions or by data driven,
numerical optimization, i.e., source estimation.
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2.2 Optimizing the Region of Interest

While in [5] the ROI was chosen heuristically, we will now address the question
how the ROI can be optimized numerically. We will utilize source localization for
this purpose, i.e., we will try to localize the origin of the ERD changes observed
during motor imagery. The aim in source estimation is to find sources which
give the best approximation of EEG data generated by a suitable model of EEG
conduction, e.g., a dipole placed inside a four-shell head model, to real EEG
data taken from an eligible training set. If a good aproximation is obtained,
the estimated source locations should be quite close to the true source locations
inside the human brain. Therefore, adapting the ASFs to the estimated sources
should increase the achievable classification rate.

As we use the signal variance in each ROI as a classification paradigm, we look
for a dipole that gives the best approximation of the variance of the measured
EEG data. Hence, we perform source estimation using the variance of EEG data.
The main steps for estimating the source locations consist in creating a training
dataset and in constructing a suitable cost function.

Creation of the Training Dataset. We create a training dataset from EEG
data measured during motor imagery of the left and right hand (four subjects,
150 trials of 10 s per condition, see chapter 3.1 or [5] for details of the ex-
perimental setup) using the data processing chain depicted in Fig. 1. At first,
to reduce artifacts, we perform Independent Component Analysis (ICA) using
the extended Infomax algorithm [7] as implemented in [8], and manually re-
ject those components that are obviously induced by eye activity. All remaining
components are reprojected onto the observation space. Then, the most reac-
tive frequency band for each subject is determined heuristically. This is done
by computing ERD/ERS changes for electrodes C3 and C4 situated over the
motor cortex across all trials, and determining that frequency band that shows
the highest ERD during motor imagery relative to a baseline during rest. Af-
terwards, a sixth-order butterworth bandpass (BP) filter is applied to the data,
extracting the most reactive subject specific frequency band. Then, we take the
same data intervals of motor imagery that are used for later classification as
basis for our optimization (6.5 s per each condition and trial). Subsequently, the
variance of the chosen interval is computed for each trial condition, imagina-
tion of left-hand-movement (IL) and imagination of right-hand-movement (IR),
and averaged over all proper trials. At this point, we have two M -dimensional
variance vectors for each subject: variance vector of condition IL and variance
vector of condition IR. Now, as we want to extract the distinction of these two
conditions, we build the difference between them. Only the negative outcomes
of this difference will be used, because we are interested in the decrease of the
variance (ERD). Positive outcomes are set to zero. Finally, the absolute values of
the remaining variances are computed, since only absolute (positive) variances
can be modeled. The result forms the data input for the optimization problem,
which is described in the next subsection.
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Fig. 1. Data processing chain to compute the training dataset for each subject. See
text for more details.

Derivation of the Cost Function. Before we go to the next step of the dipole
source estimation, let us assume the following:

– The superposition of many sources originating in each region of interest can
be represented by only one single electric dipole.

– For each condition, a dipole can be characterized by a time-invariant di-
pole position vector r′ and a dipole moment vector p(t) with time-invariant
orientation, each ε IR3.

– The EEG data is of zero mean (due to bandpass filtering) and of stationary
variance during each training condition.

Now, we will derive a cost function J(r′, p) : IR3 × IR3 �→ IR. In general, the
cost function should express the difference of the reconstructed signal variance
and the signal variance of the training set. Our choice is

J [r′, p(t)] = ‖ σ2
x(t) − σ2

x̃(t)
‖2
2 (4)

with σ2
x(t) the variance of the training set data x(t) and σ2

x̃(t)
the variance of

the model generated data x̃(t), each ε IRM . Now, let us consider the signal of one
single EEG channel xi(t) ε IR. We can expand the difference of the variances by
expressing the variance operators as sample variances (zero-mean assumption)
such that

σ2
xi[n] − σ2

x̃i[n] =
1

2N

N∑
n=−N

xi[n]2 − 1
2N

N∑
n=−N

x̃i[n]2, (5)

where the variances are computed over 2N data samples. According to (3), the
model generated signal x̃i(t) of the i-th EEG electrode can be written as

x̃i[n] = l(ri, r
′)T p[n] (6)

which is the dot product of the leadfield equations and the dipole moment vector
p[n] ε IR3×1. With (6), we can rewrite the model built signal variance to

σ2
x̃i[n] =

1
2N

N∑
n=−N

[l(ri, r
′)T p[n]]2. (7)
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Now, we express the dipole moment vector p[n] by an amplitude s[n] ε IR and a
normalized moment p̃ ε IR3×1, which is independent of n due to our assumptions
(time-invariant orientation):

p[n] =
p[n]

‖p[n]‖2
s[n] = p̃ s[n]. (8)

We further get

σ2
x̃i[n] =

1
2N

N∑
n=−N

[l(ri, r
′)T p̃]2 s[n]2. (9)

The normalized moment vector p̃ is completely determined by two angles, which
are denoted as θ and ϕ in the following . We can merge together all the nonlin-
early influencing variables into a function g(r, r′, θ, ϕ) : IR3 × IR3 × IR × IR �→ IR
and write (9) as

σ2
x̃i[n] = g(ri, r

′, θ, ϕ)2
1

2N

N∑
n=−N

s[n]2 = g(ri, r
′, θ, ϕ)2 σ2

s . (10)

The second equation sign holds, as we assumed the signal variance to be sta-
tionary for one training condition (σ2

s denotes the variance of s[n]). Now, let’s
consider all available EEG channels. We can construct a M -dimensional variance
vector σ2

x̃[n]
by just stacking all M components on top of each other, which re-

sults in

σ2
x̃[n]

=

⎛
⎜⎜⎜⎜⎜⎜⎝

g(r1, r
′, θ, ϕ)2 σ2

s
...

g(ri, r
′, θ, ϕ)2 σ2

s
...

g(rM , r′, θ, ϕ)2 σ2
s

⎞
⎟⎟⎟⎟⎟⎟⎠

= diag{ggT } σ2
s (11)

with g = g(r′, θ, ϕ) : IR3 × IR × IR �→ IRM . As the electrode positions r1, ..., rM

are well known, they are not mentioned as arguments of g. Then, the final cost
function yields to

J(r′, p) = J(r′, θ, ϕ, σ2
s) =

∥∥∥∥
1

2N
diag{XXT} − diag{ggT } σ2

s

∥∥∥∥
2

2

(12)

with X ε IRM×2N the data sample matrix, containing 2N data samples of all
M EEG channels. Now, an inequality constraint for this cost function is neces-
sary, because we are only interested in sources located inside the brain (i.e., the
innermost sphere of the head model). Hence, our optimization problem can be
expressed by

min
r′,θ,ϕ,σ2

s

{J(r′, θ, ϕ, σ2
s)} s. t. ‖r′‖2 ≤ R (13)

with R ε IR the radius of the innermost head model sphere. If this optimization
problem is numerically solved for a given training dataset, we retrieve an opti-
mized dipole position r′

opt and optimized moment parameters θopt, ϕopt, σ
2
s,opt.
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The optimization problem (13) is solved using sequential quadratic program-
ming as implemented in the Matlab optimization toolbox. To avoid getting stuck
in local minima, an equally with 4 cm spaced, three-dimensional grid of start
vectors r′

0,k (k = 1 . . .K, with K = 32 the number of grid points) is processed
to find the best global start vector. For each grid point k, optimal moment para-
meters are computed by minimizing the cost function J(r′ = r′

0,k, θ, ϕ, σ2
s). We

also perform the optimization under the constraint of radially oriented dipole
moments:

min
r′,θ,ϕ,σ2

s

{J(r′, θ, ϕ, σ2
s)} s. t. ‖r′‖2 ≤ R (14)

⎛
⎝

sin(θ) cos(ϕ)
sin(θ) sin(ϕ)

cos(θ)

⎞
⎠ = c r′

with c ε IR. This constraint is due to the fact that the cortical columns in the
motor cortex are usually oriented radially to the surface of the cortex [9].

Based on the optimized position of the electric dipole, we create the ROI
by placing a spherical dipole grid with radius 5 mm around the midpoint r′

opt,
while ensuring that no dipole lies outside the innermost sphere of the head model.
The moment of each grid dipole is determined by either the optimized moment
parameters in the case of unconstrained dipole orientation (13), or by the radial
constraint in the case of the radially constrained optimization problem (14).

3 Results

In this chapter, we will briefly describe the setup of the experiment that delivered
the EEG data used for the comparison of heuristically and numerically adapted
spatial filters. More detailed information can be found in [5]. Afterwards, we
will present the classification results achieved with each of the two different
adaptation methods.

3.1 Experimental Setup

Four male subjects (S1, S2, S3, S4) took part in the experiment. They were 26,
30, 27 and 24 years old. Wearing an EEG cap with 128 electrodes, the subjects
had to perform imaginary movements of the right and left hand, according to
the direction of an arrow projected on a screen. The experiment was divided
into 300 trials, each of 10 s length. The presentation of the arrow started at 3 s
after the beginning of the actual trial and ended with the beginning of the next
trial. The pointing direction of the arrow was selected from a list, created by
randomizing 150 left directions and 150 right directions. In the first 3 s of each
trial, a fixation cross replaced the arrow. The EEG data of each subject was
recorded with 500 Hz sampling frequency using a common average reference.
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3.2 Experimental Results

Per subject, we performed a heuristic as well as a numerical spatial filter adapta-
tion as described in the methods sections. The resulting ASFs were then applied
on two frequency bands of the EEG data. The first frequency band was found
during the numerical optimization (see 2.2) while the second frequency band
has been fixed between 20 Hz and 30 Hz, as ERD related to motor imagery
can also be observed for these frequencies. Then, we computed the variance for
each spatially filtered signal within 3.5 s and 10 s of each trial. This delivered a
four-dimensional feature vector for each kind of filter and each trial, whereas two
dimensions represent the activity in the ROI for the condition IR per spectral
band and the other dimensions the activity in the ROI for the condition IL per
spectral band. These feature vectors were then classified by using leave-one-out
cross validation with Fisher Linear Discriminant Analysis [10].

The results of the classification are listed in Tab. 1. For the subjects S2 and
S3, numerical optimization enhanced the classification rate according to our
expectation from 81.0 % to 85.7 % and from 93.7 % up to 97.7 %. For the
other subjects, a-priori classification still achieved the best classification results.
The ROIs of the subjects S2 and S3 (radial constraint), for which numerical
optimization improved the classification results, differ from the heuristically set
ROIs with 2.38 cm (S2, IL), 1.56 cm (S2, IR), 1.65 cm (S3, IL) and 1.97 cm
(S3, IR).

Table 1. Classification results achieved with heuristically and numerically optimized
spatial filters for subjects 1-4

Subject Frequency band 1 heuristic ASF numerically optimized ASF
unconstrained radial constraint

1 17 − 18 Hz 54.3 % 48.3 % 52.7 %
2 12 − 14 Hz 81.0 % 83.7 % 85.7 %
3 12 − 14 Hz 93.7 % 96.5 % 97.7 %
4 12 − 14 Hz 95.7 % 52.0 % 66.7 %

4 Discussion

Considering only numerically optimized filters, the adaptation using radially
constrained dipoles delivered better classification results than adaptation with
unconstrained dipole orientations. This may be due to a higher artifact resistance
of the constrained optimization problem. This property becomes clearly visible
by comparing the variance topographies of subject S3 shown in Fig. 2. Using
unconstrained numerical adaptation (Fig. 2, [b]), the model built EEG variance
reproduces both, the activity of the motor cortex and the artifacts observed in
the region of the occipital lobe. This does not happen with a radially constrained
dipole (Fig. 2, [c]).
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[a] [b] [c]

Fig. 2. Variance topographies of subject S3 and condition IR, computed from measured
EEG data [a], from unconstrained dipole modeled data [b], and from radial constrained
dipole modeled data [c]

[a] [b] [c] [d]

Fig. 3. Variance topographies of subject S4, computed from measured EEG data for
IL [a], IR [b] and from model built data variance for IL [c], IR [d]

The collapse of the numerical methods for the data of subject S1 can be
explained by the in principle poorly classifiable data set. It shows up many
artifacts. Hence, a data driven approach to feature extraction must lead to worse
results than one which is strictly independent of training data. The heuristic
approach ignores artifacts and extracts the existing classifiable information that
corresponds to the assumptions made. The poor classification rate in the case of
numerically optimized filter adaptation for subject S4 might be surprising, as the
result with a heuristically adapted spatial filter constitutes 95.7 %. But if we take
a look at the measured EEG variance of this subject (Fig. 3), the reason becomes
evident: There exists a second significant activation region for each condition (IL,
IR), which is situated over the parietal cortex. This observation suggests that,
contrary to most subjects, subject S4 recruits motor as well as parietal areas
for motor imagery. The numerical filter adaptation method introduced in this
paper is not able to handle such an occurrence, as we assumed only one activation
region for each trial condition. Future work in this context should extend this
method, to enable it to adapt to more than one activation region.

In summary, it was shown that numerical optimization of the ROI of an ASF
can enhance the quality of the extracted features and thus lead to better classi-
ficaton results. This increase in classification accuracy however is not significant
and requires an almost artifact-free data set. Furthermore, for those two sub-
jects that showed an improvement in classification accuracy, the centers of the
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heuristically chosen and numerically optimized ROIs differed on average by
1.89 cm with an average improvement in classification accurcay of 4.35 %. This
suggests that mispositioning of the ROI by several centimeters only results in
moderate decreases of classification accuracy.

We thus conclude that numerical optimization of the ROI of ASFs is a vi-
able option if artifact-free training data is available, and very high classification
accuracies are desired. However, heuristic positioning of the ROI achieves clas-
sification accuracies close to those obtainable by numerical optimization of the
ROI without the lack of robustness associated with data driven optimization
techniques.

References

1. Pfurtscheller, G., Lopes, F.H.: Event-related EEG/MEG synchronization and de-
synchronization: basic principles. Clinical Neurophysiology 110, 1842–1857 (1999)

2. Pfurtscheller, G., Neuper, C., Flotzinger, D., Pregenzer, M.: EEG-based discrimina-
tion between imagination of right and left hand movement. Electroencephalography
and Clinical Neurophysiology 103, 642–651 (1997)

3. Ramoser, H., Mueller-Gerking, J., Pfurtscheller, G.: Optimal spatial filtering of
single trial EEG during imagined hand movement. IEEE Transactions on Rehabil-
itation Engineering 8(4), 441–446 (2000)

4. Blanchard, G., Blankertz, G.: BCI competition 2003 - data set IIa: Spatial pat-
terns of self-controlled brain rythm modulations. IEEE Transactions on Biomedical
Engineering 51(6), 1062–1066 (2004)

5. Grosse-Wentrup, M., Gramann, K., Buss, M.: Adaptive spatial filters with prede-
fined region of interest for EEG based brain-computer-interfaces. In: Schölkopf, B.,
Platt, J., Hoffman, T. (eds.) Advances in Neural Information Processing Systems
19, MIT Press, Cambridge, MA (2007)

6. Cuffin, B.N., Cohen, D.: Comparison of the magnetoencephalogram and electroen-
cephalogram. Electroencephalography and Clinical Neurophysiology 47(2), 132–
146 (1979)

7. Lee, T.W., Girolami, M., Sejnowski, T.J.: Independent component analysis using
an extended infomax algorithm for mixed subgaussian and supergaussian sources.
Neural Computation 11, 417–441 (1999)

8. Delorme, A., Makeig, S.: EEGlab: an open source toolbox for analysis of singletrial
EEG dynamics including independent component analysis. Journal of Neuroscience
Methods 134(1), 9–21 (2004)

9. Nunez, P.L., Shrinivasan, R.: Electric Fields of the Brain. In: The Neurophysics of
EEG, 2nd edn., Oxford University Press, Oxford (2006)

10. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, Chich-
ester (2000)



High Accuracy Feature Detection for Camera

Calibration: A Multi-steerable Approach
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Abstract. We describe a technique to detect and localize features on
checkerboard calibration charts with high accuracy. Our approach is
based on a model representing the sought features by a multiplicative
combination of two edge functions, which, to allow for perspective dis-
tortions, can be arbitrarily oriented.

First, candidate regions are identified by an eigenvalue analysis of the
structure tensor. Within these regions, the sought checkerboard features
are then detected by matched filtering. To efficiently account for the
double-oriented nature of the sought features, we develop an extended
version of steerable filters, viz., multi-steerable filters. The design of our
filters is carried out by a Fourier series approximation. Multi-steerable
filtering provides both the unknown orientations and the positions of
the checkerboard features, the latter with pixel accuracy. In the last
step, the feature positions are refined to subpixel accuracy by fitting a
paraboloid. Rigorous comparisons show that our approach outperforms
existing feature localization algorithms by a factor of about three.

1 Introduction

Accurate camera calibration is a basic prerequisite for many image processing
and computer vision algorithms. Jean-Yves Bouguet’s camera calibration tool-
box (http://www.vision.caltech.edu/bouguetj/calib doc/) [1,2] has be-
come a de facto standard for this problem, mainly for three reasons: simple
usage, high estimation quality and free availability as Matlab and C code. Ad-
ditionally, its C version is part of the OpenCV library distributed by Intel.

Camera calibration from a set of M input images can be divided into two
steps: first extract some feature points, for instance on a checkerboard grid,
and then use these points to estimate internal and external camera parameters,
see fig. 1. The second step is the actual calibration, where the camera model
parameters are estimated. Recent papers focus on this part, e.g., by introducing
advanced distortion models [3]. Here, however, we will improve the first step
of the complete procedure. Evidently, the estimation quality of any calibration
scheme can only be as accurate as the quality of the feature points which are
used as input for the parameter estimation step.

Any type of camera calibration requires some visual features on a calibration
object which can be detected in its images as robustly and accurately as possible.

F.A. Hamprecht, C. Schnörr, and B. Jähne (Eds.): DAGM 2007, LNCS 4713, pp. 284–293, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Corner Extraction Camera Calibration� � �set of
images

point
correspondences

camera
parameters

Fig. 1. Camera calibration from images is a two-step procedure: first, a set of point
correspondences between world and image coordinates has to be extracted in the input
images and then, these points are the input for a non-linear optimization of the sought
camera parameters

Common choices for feature points are centers of gravity (of circles or squares),
intersections of a line grid, corners, or patterns like the checkerboard pattern.
However, centers of gravity are not invariant to perspective distortions, line-
based approaches can lead to problems due to varying line thicknesses, and
corner-based approaches suffer from biased estimates (see e.g. [4] for a discussion
of fitting parametric models to corners). Checkerboard-based approaches, on
the contrary, avoid localization bias due to their symmetry and have therefore
become the most widely used choice for (2D) calibration patterns recently.

Bouguet’s toolbox uses a sub-pixel extension of the famous Harris corner de-
tector [5] which finds prominent regions in the following way: Let f(x, y) denote
an image signal and let g = ∇f denote its gradient. Then

S =
∫

Ω

ggT , (1)

where Ω is an area of local integration, defines the so-called structure tensor
[6]. Its two eigenvalues λ1 and λ2 characterize the image region centered at
x = (x, y)T : two small eigenvalues indicate a homogeneous region, one small and
one large eigenvalue indicate a linear feature and two large values finally denote
features which usually allow exact localization. If the image is known to contain
features such as corners or checkerboard crossings, one can safely assume that
the corresponding regions can be found by looking for two large eigenvalues.
Harris therefore introduced the following measurement for corner strength:

Mc = λ1λ2 − κ(λ1 + λ2)2 . (2)

The tuning parameter κ penalizes regions where the sum but not the product is
high, i.e., it penalizes lines or edges. Reasonable values are in the range 0.1±0.05.

Other advanced general feature detectors exist, for instance in the SIFT [7]
algorithm, but for camera calibration, their use remains limited. In contrast to
applications like motion detection, tracking, panorama stitching, 3D modelling
or object recognition, we do not have to consider general objects – there is no
need to extract every possible bit of information regardless of form or scale.
Instead, we have a pretty good model of what the image of a known calibration
pattern should look like. Our novel approach to corner detection is therefore
based on designing filters specifically for images of the widely used checkerboard
calibration patterns.

An existing signal model directly calls for a correlation-based feature detection
approach, but what exactly is our signal model? Due to perspective distortions,
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Fig. 2. A synthetic checkerboard image (left), the same image with added Gaussian
noise (center; SNR = 10 dB), and a region of interest around a crossing (right). It can
be seen that checkerboard crossings are characterized by two independent edges.

images of checkerboard crossings are black-and-white patterns characterized by
two independently varying local orientations, see fig. 2, which generate a large
family of possible patterns. For any correlation-based approach, this is problem-
atic: Assuming that each angle shall be sampled in 5 degree steps, we would
need 722/2 = 2592 checkerboard templates (the 2 in the denominator is due to
the symmetry of the checkerboard pattern). The resulting computational load
would be absolutely prohibitive.

As a solution, we present a novel feature detection approach which is based on
an extension of the concept of steerable filters [8] to multi-steerability. Steerable
filters have been used in [9] to detect edges and lines. Unfortunately, these linear
feature never allow an exact feature localization; only the component orthogonal
to the orientation direction can be determined (aperture problem, [10]). There-
fore, steerable filters have not been used in exact feature localization yet. In this
paper, we will show how to extend the steerable filter concept to a multi-steerable
detector which allows high precision feature localization.

2 Design of Double-Steerable Filters for Modelling
Checkerboard Patterns

Let f(x) denote an image within which we seek a feature which can be modelled
as a template f0(x). Then filtering the image with a filter h(x) = f0(−x) yields
an output image measuring how strong the feature is present at each location x.
This principle is known as matched filter [11]. Its application to the detection of
a family of features is, in general, computationally inefficient, but for one special
class of filters, namely rotated versions of some given template, the steerable filter
approach introduced by Freeman and Adelson in [8] offers a convenient solution:
by limiting the class of possible (unrotated) templates to those templates which
can be represented in polar coordinates in the form

h(r, φ) =
P∑

p=−P

ap(r) exp(jpφ) , (3)

one can represent any rotated version of h(r, φ) as a linear combination of ν base
filters, where the minimum number for ν is given as the number of non-zero
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Fig. 3. The steerable filter concept: applying differently rotated filters for arbitrary
rotation angles (left) is computationally expensive, while limiting oneself to a class of
steerable filters allows a very fast implementation: compute some weights and sum up
precomputed filter results

Fourier coefficients in (3). (Note that, in slight abuse of notation, we will always
denote an image template as h, regardless whether it is represented in Cartesian
or polar coordinates.) Following the notation of Freeman & Adelson and others,
let us define a rotation operator: hα(r, φ) = h(r, φ − α). Different variants for
designing steerable filters exist, but they all have in common that rotation can
be expressed as linear combination of a set of base templates:

hα(r, φ) =
ν∑

a=1

wa(α)ha(r, φ) . (4)

Here, ha denote the set of base filters. Evidently, the whole dependency on
the steering angle is encapsulated in the weight coefficients wa. The linearity of
steerable filters allows to exchange the order of filtering and summation, see fig. 3,
thus allowing to precompute a set of filtered images and obtain the correlation
between image and template for any given position and angle by a weighted sum
of filtered images. Hence, the computational load for correlation-based feature
detection is reduced considerably.

In [9], Jacob and Unser applied this rotated matched filter approach to the
detection of edges and lines in images. Unfortunately, steerable filters are lim-
ited to features which are characterized by a single steering parameter, viz.,
the orientation angle of the linear feature. Perspectively distorted checkerboard
patterns, however, are characterized by two independently varying orientations.

The key idea of our approach now is the following: can we combine two edges
in such a way that they represent a checkerboard and, furthermore, the result is
steerable again – but now with two steering angles? In mathematical form, this
can be expressed as

hα,β
check = hα

edge ◦ hβ
edge (5)

where ◦ is some operator, and we now have to examine whether we can find
a mathematical function that fulfills this requirement. Evidently, the sought
operator must work for every point in the template individually, i.e.,

hout = h1 ◦ h2 ⇔ hout(x) = h1(x) ◦ h2(x) for all x ∈ Ω (6)
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× = × =

Fig. 4. Creation of a checkerboard pattern as product of two individually rotated
idealized edges. If black corresponds to −1 and white to 1, this construction principle
does not only hold for α = 0◦ and β = 90◦ (left), but also for arbitrary angles like
α = 20◦ and β = 130◦ (right).

where Ω is the size of the templates. The graphical representation in fig. 4
visualizes that the desired steering properties automatically follow if we ‘only’
find a mathematical representation for four equations:

white ◦ white = white white ◦ black = black

black ◦ white = black black ◦ black = white .

A solution is easily found by identifying white with 1, black with -1, and ◦ with
(point-by-point) multiplication. Note also that these four equations show that
the sought operator must be non-linear. Having defined the scaling of black and
white, we now multiply two steerable filters:

hα(r, φ) · hβ(r, φ) =
ν∑

a=1

ν∑
b=1

wa(α)wb(β)︸ ︷︷ ︸
w∗

a,b(α,β)

ha(r, φ) · hb(r, φ)︸ ︷︷ ︸
h∗

a,b(r,φ)

. (7)

The result can again be represented as a linear combination of base functions
h∗

a,b which can be computed as point-by-point products of the base functions for
the standard steerable filter. In a similar way, the new weight coefficients w∗

a,b are
found as products of the individual weights; therefore, they now depend on two
angles, i.e., we have thus introduced a novel double-steerable filter. Extension to
multi-steerability is straightforward.

Generating checkerboard patterns with two arbitrary orientations from (5)
now implies replacing idealized edges with approximated steerable edge functions.
Different approaches for this problem exist: Jacob and Unser [9] used a linear
combination of derivatives of the Gaussian function; this has the big advantage
of always yielding Cartesian-separable filters. Other authors [12] are interested
in phase-invariant behavior [13] which means that the filter response should not
depend on the signal orthogonal to some orientation; most importantly, lines
and edges should lead to the same energy of the filter response. To comply
with our needs of multi-steerable edge function approximation, we will propose
a novel design concept. This concept is based on the observation that an edge is
polar-separable which directly allows a Fourier series expansion. We set

h(r, φ) = q(r)hang(φ) (8)

with radial function

q(r) =
{

1 r ≤ rmax

0 else (9)
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(a) P = 1 (b) P = 5 (c) P = 9 (d) P = 13 (e) hcheck(x)

Fig. 5. Checkerboard patterns created by two steerable Fourier expansions of edge-
functions for Fourier coefficients p = 1, 3, . . . , P . The higher P is chosen, the better the
steerable filter approximates the idealized template shown in (e). A radial weighting
can be added if desired.

and idealized angular edge function

hideal
ang (φ) =

{
1 0 ≤ φ < π

−1 −π ≤ φ < 0 . (10)

Note that the radial function q(r) can be designed separately since it does not
influence steerability; the disc chosen in (9) is mainly used because of its simplic-
ity. The Fourier approximation of (odd) order P to the angular function hideal

ang (φ)
rotated by α then is

hα
ang(φ) =

4
π

P∑
p=1,3,...

1
p

sin(p(φ − α)) . (11)

Multiplying with radial function (9) yields the (single-)steerable template (8).
This template has P+1 non-zero Fourier coefficients; therefore, we need ν = P+1
base filters ha(r, φ) which can be chosen exactly in the same way as in Freeman’s
paper: the approximated edge is rotated to P+1 equidistant angles in the interval
[0◦, 180◦). Consequently, the weights wa(α) can be computed as in Freeman’s
work. One advantage of this Fourier approach (in comparison to other known
steerable filter design concepts) is that increasing the approximation order P
allows to increase the approximation quality at the price of higher computational
complexity. Fig. 5 shows how the pattern converges to the idealized checkerboard
when increasing P .

Having defined the checkerboard pattern as a double-steerable filter, we can
now define the principle of multiply rotated matched filtering: A multi-oriented
feature has M independent orientation angles φ1, . . . , φM and is represented by
a template fφ1,...,φM

multi (x). A measure of how strong this feature is present in an
image f(x) at a fixed position x0 is Bmax(x0):

Bmax(x0) = max
φ1,...,φM

f � fφ1,...,φM

check

∣∣∣
x=x0

= max
φ1,...,φM

f ∗ hφ1,...,φM

check

∣∣∣
x=x0

(12)

where � and ∗ denote correlation and convolution, respectively. In analogy to
(single) rotated matched filtering, we define hφ1,...,φM

multi (x) = fφ1,...,φM

multi (−x) to be
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the corresponding filter kernel and maximize the cross-correlation of the image
patch centered at x0 and the multiply rotated template, thus assigning estimated
orientation angles φ̂1(x0), . . . , φ̂M (x0) to each image point x0. In contrast to the
detection of linear structures in [9], we are not limited by the aperture problem
anymore; this generalized approach also allows exact localization of the sought
features in addition to the estimation of orientation angles.

So far, this approach allows to detect checkerboard pattern at pixel accuracy.
Next, we discuss how to extend the approach to sub-pixel accuracy, and how to
increase computational efficiency.

3 Finding Checkerboard Crossings with Sub-pixel
Accuracy

Our algorithm consists of three steps: we first determine a list of candidate
points, then apply our double-steerable filter (DSF) at these candidate positions
to estimate the correlation strengths and, third, fit a paraboloid to each local
maximum. The apex of this paraboloid is taken as feature location.

Our double-steerable filter makes correlation-based checkerboard crossing de-
tection feasible, but nevertheless, the angle optimization in it remains the costly
part of the procedure. To reduce the computational load, we therefore preprocess
with the aim of applying the DSF only where crossings are likely to be found.
Over the entire image, we compute the standard structure tensor S, and subse-
quently only consider those points which are both sufficiently textured and do
not represent linear structures, i.e., where the structure tensor exhibits two large
eigenvalues. This can be tested using trace and determinant only, i.e., without
computing eigenvalues:

trS > t1 and
detS
trS

> t2 . (13)

Usually at most a few percent of all pixels qualify as candidate points, unless
low resolution images or images with many checkerboard tiles are used. Only
for the image points fulfilling these criteria, we compute the double-orientation
structure tensor [14] (occluding model) and solve for two orientations. For every
candidate point, these two orientations are then used as initial values for a
Levenberg-Marquardt optimization of the two DSF angles α and β.

Having found the best fitting double steerable filter, we find the local maxima
of the correlation and fit a paraboloid to the 9 correlation values in a 3 × 3-
neighborhood around each local maximum. Its apex is taken as the final feature
location. If not all 8 neighbors of a maximum at pixel resolution were classified as
candidates before (unlikely, but it can happen), then some values are missing in
the paraboloid fitting step. In such rare cases, the DSF is applied to the missing
pixels before carrying out the sub-pixel fitting step.

We do not optimize for angles and crossing position simultaneously because it
would require an interpolation step to generate a pseudo-continuous image func-
tion. On the other hand, the correlationvalues around the true sub-pixel maximum
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could be approximated extremely well with a second-order Taylor expansion, so
fitting a paraboloid to the available correlation values at integer positions near
maxima is mathematically justified – and also yields very good results.

4 Results

We tested our algorithm on both synthetic and real data. Experiments on syn-
thetic data with known ground truth enable measuring the root mean square
(RMS) error of the localization over varying signal-to-noise ratios (SNRs). This
also allows a comparison to the corner finder from Bouguet’s calibration toolbox.
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Fig. 6. Left: RMS angular error for our approach over varying SNR. Right: RMS
localization error over SNR of our approach (dark) and Bouguet’s corner finder (light).

Our experimental setup was as follows: for SNRs from −5 dB to 20 dB in steps
of 2.5 dB using additive white Gaussian noise, we calculated 10 noisy realizations
for each of three different synthetic input images, resulting in 30 realizations for
each noise level. For each realization, we estimated the locations of the crossings
in an 8 × 8 tiles checkerboard, i.e., 49 inner crossings. Subsequently, the RMS
error was computed. Then the average RMS error of the 30 estimation results
was plotted against the noise level. The same was done for Bouguet’s corner
finder. Here, we even gave Bouguet’s corner finder an unfair advantage: it needs
an initial value, which we always initialized with the true optimum. The results
of both algorithms are shown in fig. 6. The pixel error of our approach is roughly
one third of Bouguet’s approach. For low noise levels, our algorithm achieves a
localization accuracy of 0.028 pixels (Bouguet: 0.084). The accuracy of the angle
estimates was approximately 1.25◦ for low and medium noise levels. This result
was achieved with approximation order P = 5.

Apart from its increased accuracy and robustness, another advantage of our
approach is that it needs neither initial values of approximate crossing positions
nor assumptions such as small lens distortions. The design of our double-steerable
filters makes searching the whole image for crossings feasible. One example,
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Fig. 7. Left: Estimated crossings in a calibration image taken with an Olympus “CF
H-180 AL” endoscope. Right: Image patch and fitted signal model in the marked region
of interest. Horizontal orientations are estimated with a slightly increased error because
of interlacing artefacts (also visible in image patch).

where the semi-automatic corner finder of Bouguet fails, is the calibration image
shown in fig. 7, which was acquired through a wide-angle endoscope; this im-
age exhibits extreme distortions which make (semi-)automatic detection of the
crossings difficult. For this 1100× 900 pixel image, our approach written in pure
Matlab code (i.e., no precompiled C parts) needs approximately one minute on a
3 GHz Dual Pentium computer. This is acceptable for calibration (and definitely
less tedious than clicking on all crossings by hand). Note that even the crossings
in the strongly distorted regions near the image border were found.

A small bias in the angle estimation can appear if the transition from black
to white is not symmetric around the true edge position (overexposure, under-
exposure, non-linearities). However, due to the symmetry of the checkerboard
pattern, it only rotates the estimated edges, but the positions of the crossings,
which we are primarily interested in, are not affected by this bias.

5 Conclusion and Summary

We have developed a new approach to detect and localize the crossings in checker-
board pattern charts for camera calibration. Its basis is a model characterizing
the sought features by multiplicatively combining two edges which are scaled to
the range [−1, 1]. To allow for perspective distortions, these edges may exhibit
arbitrary orientations. The key ingredient of our approach is a multisteerable fil-
ter algorithm, which permits efficient matched filtering. The filters are designed
using a Fourier series expansion, thus allowing to determine the approximation
quality to an ideal edge function by a single parameter. Multisteerable matched
filtering then provides not only feature location, but also the orientations, which
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are determined by Levenberg-Marquard optimization. In our ongoing work, these
angles will be used for, e.g.: (i) checking the plausibility of the detected crossings:
the estimated orientations must be compatible to the orientations of neighbor-
ing crossings, (ii) exploiting additional information for the optimization of the
camera parameters, (iii) speeding-up the detection by a sequential detection of
crossings: one (or more) already detected crossings plus their orientations di-
rectly tell us where to look for the neighboring crossings.

Our technique exhibits two major advantages in comparison to existing ap-
proaches. Firstly, fully automatic corner extraction is possible – as we have shown,
even in rather noisy conditions – because the whole image can be processed at low
computational cost. Secondly, the availability of a signal model ensures much lower
feature localization errors. In comparison to the corner finder in Bouguet’s camera
calibration toolbox, the localization RMSE of our approach is lower by a factor of
three.

Matlab demonstration code for double-steerable filters can be downloaded from
www.lfb.rwth-aachen.de/en/highlights/multi steerable filters.html.
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Abstract. Thinning on binary images is an iterative layer by layer ero-
sion until only the “skeletons” of the objects are left. This paper presents
an efficient parallel 3D surface–thinning algorithm. A three–subiteration
strategy is proposed: the thinning operation is changed from iteration to
iteration with a period of three according to the three deletion directions.

1 Introduction

Skeleton is a region–based shape feature that is extracted from binary image
data. A very illustrative definition of the skeleton is given using the prairie–fire
analogy: the object boundary is set on fire and the skeleton is formed by the
loci where the fire fronts meet and quench each other [4]. In discrete spaces, the
thinning process is a frequently used method for producing an approximation to
the skeleton in a topology–preserving way [7]. It is based on digital simulation of
the fire front propagation: border points of a binary object that satisfy certain
topological and geometric constraints are deleted in iteration steps. The entire
process is repeated until only the “skeleton” is left.

A simple point is a point whose deletion (or addition) does not alter the
topology of the picture [10]. Sequential thinning algorithms delete simple points
which are not end–points, since preserving end–points provides important in-
formation relative to the shape of the objects. Curve thinning (i.e. a thinning
process for extracting medial line) preserves line end–points while surface thin-
ning (i.e. a thinning process for extracting medial surface) does not delete surface
end–points.

Parallel thinning algorithms delete a set of simple points simultaneously. A
possible approach to preserve topology is to use subiteration–based approach
[6]: the thinning operation is changed from iteration to iteration with a period
of n (n ≥ 2); each iteration of a period is then called a subiteration where only
border points of certain kind can be deleted. Since there are six kinds of ma-
jor directions in 3D pictures, 6–subiteration thinning algorithms were generally
proposed [3,5,8,9,12,13,18,19]. Note, that 3–, 8–, and 12–subiteration algorithms
were also developed [14,15,16].

In this paper, a non–conventional 3–subiteration surface thinning algorithm
is proposed. Some experiments are made on synthetic objects and it is demon-
strated that the new algorithm is computationally efficient.

F.A. Hamprecht, C. Schnörr, and B. Jähne (Eds.): DAGM 2007, LNCS 4713, pp. 294–303, 2007.
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2 Basic Notions

Let p be a point in the 3D digital space Z
3. Let us denote Nj(p) (for j = 6, 18, 26)

the set of points j–adjacent to point p (see Fig. 1a). The sequence of distinct
points 〈x0, x1, . . . , xn〉 is a j–path of length n ≥ 0 from point x0 to point xn in
a non–empty set of points X if each point of the sequence is in X and xi is
j–adjacent to xi−1 for each 1 ≤ i ≤ n. (Note that a single point is a j–path
of length 0.) Two points are j–connected in the set X if there is a j–path in X
between them. A set of points X is j–connected in the set of points Y ⊇ X if
any two points in X are j–connected in Y .
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Fig. 1. The frequently used adjacencies in Z
3 (a). The set N6(p) of the central point

p ∈ Z
3 contains the central point p and the 6 points marked U=u(p), N=n(p), E=e(p),

S=s(p), W=w(p), and D=d(p). The set N18(p) contains the set N6(p) and the 12 points
marked “�”. The set N26(p) contains the set N18(p) and the 8 points marked “•”. The
special local neighbourhood of the proposed algorithm (b). The new value of a black
point p depends on N26(p) (marked “�”) and six additional points (marked “�”).

The 3D binary (m,n) digital picture P is a quadruple P = (Z3, m, n, B) [7].
Each element of Z

3 is called a point of P . Each point in B ⊆ Z
3 is called a

black point and value 1 is assigned to it. Each point in Z
3\B is called a white

point and value 0 is assigned to it. Adjacency m belongs to the black points
and adjacency n belongs to the white points. A black component (or object) is
a maximal m–connected set of points in B. A white component is a maximal
n–connected set of points in B ⊆ Z

3.
We are dealing with (26, 6) pictures. It is assumed that any picture contains

finitely many black points.
A black point is called border point in (26, 6) pictures if it is 6–adjacent to

at least one white point. A border point p is called U–border point if the point
marked by U=u(p) in Fig. 1a is white. We can define N–, E–, S–, W–, and
D–border points in the same way. A black point p is called interior point if it is
not border point (i.e. u(p), n(p), e(p), s(p), w(p), and d(p) are all black points).
A black point is called simple point if its deletion does not alter the topology of
the picture [7].
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We propose a new surface thinning algorithm for extracting medial surfaces
from 3D (26, 6) pictures. The deletable points of the algorithm are border points
of certain types and not surface end–points (i.e. which are not extremities of sur-
faces). The proposed algorithm uses the following characterization of the surface
end–points: a black point is surface end–point in a picture if it is border point and
it is not 6-adjacent to any interior point. Note, that the same characterization
has been used by other authors [1,11].

3 The New Thinning Algorithm

Each conventional 6–subiteration 3D thinning algorithm uses the six deletion
directions that can delete certain U–, D–, N–, E–, S–, and W–border points,
respectively [3,5,8,9,12,13,18,19]. In our 3–subiteration approach, two kinds of
border points can be deleted in each subiteration. The three deletion directions
correspond to the three kinds of opposite pairs of points, and are denoted by UD,
NS, and EW. The first subiteration assigned to the deletion direction UD can
delete certain U– or D–border points; the second subiteration associated with
the deletion direction NS attempt to delete N– or S–border points, and some
E– or W–border points can be deleted by the third subiteration corresponding
to the deletion direction EW. The proposed algorithm is given as follows:

Input : picture P = (Z3, 26, 6, B)
Output : picture P ′ = (Z3, 26, 6, B′)
3-subiteration thinning(B,B′)
begin

B′ = B;
repeat

B′ = deletion from UD(B′); /* 1st subiteration */
B′ = deletion from NS(B′); /* 2nd subiteration */
B′ = deletion from EW(B′); /* 3rd subiteration */

until no points are deleted ;
end.

The new value of a black point depends on the values of 26+6 = 32 additional
points. The considered special neighbourhood is presented in Fig. 1b.

Deletable points in a subiteration are given by a set of matching templates.
A black point is deletable if at least one template in the corresponding set of
templates matches it.

The deletion rule corresponding to the first subiteration is given by the set of
templates TUD (see Fig. 2). Note that Fig. 2 shows only the ten base templates
U1–U5, D1–D5. Additionally, all their rotations around the vertical axis belong
to TUD, where the rotation angles are 90◦, 180◦, and 270◦.

It is easy to see that the complete TUD contains 2 · (1 + 4 + 4 + 2 + 4) = 30
templates. This set of templates was constructed for deleting some simple points
which are neither surface end–points nor extremities of surfaces. The deletable
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Fig. 2. Base templates U1–U5, D1–D5 and their rotations around the vertical axis
form the set of templates TUD assigned to the deletion direction UD. Note, that a
point p deleted by templates D1–D5 and their rotated version must be 6–adjacent to
at least one interior point.

Notations: each position marked “p”, “•”, “�”, and “♣” matches a black point;
each position marked “◦” matches a white point; each “·” (“don’t care”) matches
either a black or a white point.

Configurations “CU” and “CD”, and using different symbols for black template
positions help us to prove the topological correctness of the algorithm.
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points of the other two subiterations (corresponding to deletion directions NS
and EW) can be obtained by proper rotations of the templates in TUD. Note
that choosing another order of the deletion directions yields another algorithm.
The proposed algorithm terminates when there are no more black points to be
deleted. Since all considered input pictures are finite, it will terminate.

Although the proposed algorithm may seem complicated, in fact it can be
simply implemented and it runs efficiently. We can state that a border point is
to be deleted from deletion direction UD if:

( ( d(p) is interior point and u(p) is white ) or
(u(p) is black and p is 6–adjacent to interior point and d(p) is white )

) and f(x0, x1, . . . , x24) = 1,

where f is a Boolean–function of 25 variables derived from the set of templates
TUD. It is easy to see, that function f can be given by a pre-calculated 225 bit ≡ 4
Mbyte (unit time access) look-up-table. The considered 25 variables correspond
to 25 points in N26(p) (see Fig. 3). More details concerning the implementation
of 3D thinning algorithms are presented in [17].
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Fig. 3. Indices of the 25 Boolean variables (i.e. the considered points in N26(p)). Note,
that investigating the point marked “�” is not needed. Since the deletion rule of a
subiteration can be derived from the deletion rule of the reference subiteration UD by
the proper rotation, the indexing scheme of a subiteration corresponds to the proper
permutation of positions assigned to the reference subiteration.

4 Discussion

Thinning algorithms have to take care of the following four aspects:

1. forcing the “skeleton” to retain the topology of the original object (i.e. topol-
ogy has to be preserved);

2. providing “shape preservation” (i.e. significant features of the original object
are to be produced);

3. forcing the “skeleton” to be in its geometrically correct position (i.e. in the
“middle” of the object);

4. producing “maximal” thinning (i.e. the desired “width” of the “skeleton” is
one point).
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The topological correctness (the 1st requirement) of the proposed algorithm
is shown in Section 5.

Shape preservation (the 2nd requirement) is a fairly important requirement,
too. For example, an object having same shape as letter “b” cannot be thinned
to a circular shape. The aim of the thinning is not to produce the topological
kernel [2] of an object: the thinning differs from shrinking. That is the reason
why end–point criteria are used in thinning. It is easy to see that surface–end
points are removed by none of our templates (see Fig. 2).

Geometrical correctness (the 3rd requirement) of the extracted skeleton is
mostly achieved by the subiteration (multi–directional) thinning approach. An
object is to be shrunk uniformly from each direction.

It is rather difficult to prove that the 4th requirement about maximal thinning
is satisfied. Due to the used surface end–point criterion, the produced skeleton
may contain 2–point thick surface patches [1,11]. It is easy to overcome this
problem (e.g., by applying the final thinning step proposed by Arcelli et al. [1]).

Our algorithm has been tested on objects of different shapes. Here we present
five examples (see Figs. 4–5).

Fig. 4. Two synthetic pictures containing a 140 × 140 × 50 horse and a 45 × 45 × 45
cube (top); and their skeletons produced by the proposed surface–thinning algorithm
(bottom)
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Fig. 5. Three synthetic pictures containing a 45 × 45 × 45 cube with one, two, and
three hole(s), respectively (top); and their skeletons produced by the proposed surface–
thinning algorithm (bottom)

The computation time of a thinning process depends on the complexity of an
iteration step and the required number of iteration steps. The 3–subiteration 3D
thinning strategy has been compared with other subiteration–based approaches
with periods of 6, 8, or 12. It has been shown that the 3–subiteration approach
requires the least number of iterations [16]. If we use unit time access look-up-
tables (corresponding the deletion rules of the considered algorithms) and our
efficient implemetation method [17] is applied, then 3–subiteration algorithms
are the fastest subiteration–based ones. The efficiency of the proposed method
is illustrated in Table 1.

Note, that the new algorithm differs greatly from the existing 3–subiteration
surface–thinning algorithm [16] in its surface end-point characterization and
deletion rule. While in the earlier work a black point p is a surface end-point if
u(p) = d(p) = 0 or n(p) = s(p) = 0 or e(p) = w(p) = 0 (see Fig. 1a), in the
new algorithm a black point is surface end–point if it is border point and it is
not 6-adjacent to any interior point. In addition, the set of matching templates
corresponding to a deletion rule of the earlier 3–subiteration surface–thinning al-
gorithm contains only 26 templates [16] in contrast to the 30, used in this work.
Consequently, the new and the earlier algorithms produce significantly different
medial surfaces.
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Table 1. Computation times for the considered five kinds of test pictures. The imple-
mented surface–thinning algorithm was run under Linux on an Intel Pentium 4 CPU
2.80 GHz PC. (Note, that only the thinning itself was considered; reading the input
volume and the 4 MB look-up-table, and writing the output image were not taken into
account.).

test picture size number of object points running time (sec.)

140 × 140 × 50 92 534 0.146

45 × 45 × 45 91 125 0.074

93 × 93 × 93 804 357 0.377

141 × 141 × 141 2 803 221 1.465

45 × 45 × 45 81 000 0.033

93 × 93 × 93 714 984 0.405

141 × 141 × 141 2 491 752 1.493

45 × 45 × 45 74 250 0.028

93 × 93 × 93 655 402 0.343

141 × 141 × 141 2 284 106 1.389

45 × 45 × 45 67 500 0.029

93 × 93 × 93 595 820 0.393

141 × 141 × 141 2 076 460 1.271

5 Verification

The proposed 3–subiteration thinning algorithm is topology preserving for (26, 6)
pictures [7]. It is sufficient to prove that reduction operation given by the set of
templates TUD is topology preserving. If the first subiteration of the algorithm
is topology preserving, then the other two ones are topology preserving as well,
since rotation of the deletion templates do not alter their topological properties.
Therefore, the proposed algorithm is topology preserving, since it is composed
of topology preserving reductions.

We make use of the following result for (26, 6) pictures:

Theorem 1. [10] Black point p is simple in picture (Z3, 26, 6, B) if and only if
all of the following conditions hold:

1. the set (B\{p}) ∩ N26(p) contains exactly one 26–component; and
2. the set (Z3\B)∩N6(p) is not empty and it is 6–connected in the set (Z3\B)∩

N18(p).

Theorem 1 shows that the simplicity in (26, 6) pictures is a local property; it can
be decided in view of the 3 × 3 × 3 neighbourhood of a given point.

We need to consider what is meant by topology preservation when a number of
black points are deleted simultaneously. We use the following sufficient conditions
for parallel reduction operations:
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Theorem 2. [14] Let F be a parallel reduction operation on (26, 6) pictures.
Then F is topology preserving, if for all pictures P = (Z3, 26, 6, B), all of the
following conditions hold:

1. for all points p ∈ B that are deleted by F and for all sets Q ⊆ (N18(p)\{p})
∩ B that are deleted by F , p is simple in the picture (Z3, 26, 6, B\Q); and

2. no black component contained entirely in a 2× 2× 2 configuration in Z
3 can

be deleted completely by F .

Unfortunately, there is no room to present the detailed proof concerning the
topological correctness. Our proof is based on the following properties of the
deletion rule of the first subiteration given by the set of templates TUD (see
Fig. 2):

1. Each template in TUD deletes only simple points.
2. The simplicity of a deletable point p does not depend on the points that

coincide with a template position marked “♣” and “·”.
3. Black points that coincide with template positions marked “�” cannot be

deleted by any template in TUD.
4. Let us investigate the configuration “CU” (and its rotations around the

vertical axis) and assume that central point p is black and it can be deleted
by a template in U1–U5 (or their rotations). Then the followings hold:
– If point q is black, then it cannot be deleted by any template in TUD.
– If point a is black and it can be deleted by a template in TUD, then point

b is white.
– If points a and c are black and they can be deleted by a template in TUD,

then point d is white.
5. Let us investigate the configuration “CD” (and its rotations around the

vertical axis) and assume that central point p is black and it can be deleted
by a template in D1–D5 (or their rotations). Then the followings hold:
– If point q is black, then it cannot be deleted by any template in TUD.
– If point a is black and it can be deleted by a template in TUD, then point

b is white.
– If points a and c are black and they can be deleted by a template in TUD,

then point d is white.
6. If a black point p can be deleted by a template in TUD, then p must be

6–adjacent at least one interior point. Hence p cannot be in a small object
contained entirely in a 2 × 2 × 2 configuration in Z

3.

Condition 1 of Theorem 2 can be seen with the help of properties 1–5. Condi-
tion 2 of Theorem 2 is obvious by property 6. Therefore, the proposed algorithm
is topology preserving for (26, 6) pictures.
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Abstract. It is well known that linear filters are not powerful enough
for many low-level image processing tasks. But it is also very difficult
to design robust non-linear filters that respond exclusively to features
of interest and that are at the same time equivariant with respect to
translation and rotation. This paper proposes a new class of rotation-
equivariant non-linear filters that is based on the principle of group in-
tegration. These filters become efficiently computable by an iterative
scheme based on repeated differentiation of products and summations of
the intermediate results. Our experiments show that the proposed filter
detects pollen porates with only half as many errors than alternative
approaches, when high localization accuracy is required.

1 Introduction

In image processing the term ’filter’ is mostly related to the special class of image
transformations that is characterized by the fact that they are equivariant with
respect to the group of translations. If F is an image transformation, then it is
said to be equivariant with respect to a mathematical group G, if gF(x) = F(gx)
holds for all images x and all g ∈ G. Here the expression gx denotes the action of
the group on the image x. If F is linear in x and G is the group of translations, it
is just a convolution of the image with some kernel function known as the impulse
response. For nonlinear image transformation this concept is generalized by the
so called Volterra filters.

In this work we develop image transformations that are not only equivariant
with respect to translations but also with respect to rotations in the image
plane. That is, we consider the special Euclidean group of motion SE(2) as the
equivariance group. For linear filters the generalization is straight-forward, the
only further restriction to an ordinary linear filter is that the impulse response
has to be rotationally symmetric. For nonlinear transformation the answer is not
quite as simple. We need some kind of generalization of Volterra’s principle to
SE(2). It will turn out that the concept of group integration gives us such a tool
by hand.

Complex calculus provides powerful mathematical concepts for the analysis
of 2D rotation. For a fast and cheap computation of our filter we propose a spe-
cial type of kernel function, which has its origin in complex calculus. Basically,

F.A. Hamprecht, C. Schnörr, and B. Jähne (Eds.): DAGM 2007, LNCS 4713, pp. 304–313, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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it is a Gaussian-windowed holomorphic function. The Gaussian controls the lo-
cality and scale of the filter, while the holomorphic part determines the filter
characteristics.

The paper is organized as follows: in the following subsection we give references
to work that is related to ours. In Section 2 we present the holomorphic filter
and show an efficient way of implementation together with a training scheme for
the filter parameters. Section 3 presents experiments on microscopical images.
The task is to detect so called porates, which are small pores on the surface of
pollen grains.

1.1 Related Work

The idea of group integration (GI) to obtain invariants has its origin in classical
invariant theory. In pattern recognition it is widely used to obtain invariants
that can be used for indexing large image or shape databases for fast retrieval.
For an introduction to GI in the field of pattern recognition see [2]. Applications
for shape retrieval can be found, e.g., in [9] or [10]. We will use GI to project
a nonlinear image transformation onto a rotation- and translation equivariant
transformation (see [11]).

Volterra filters are nonlinear transformations that are equivariant with respect
to translations. They are widely used in the signal processing community and
also find applications in image processing tasks (e.g. [14,6]).

Steerable filters, introduced in [3], are a common tool in early vision and image
analysis. For 2D rotations steerable filters get a very simple form in complex
notation and are closely related to complex filters [12].

The generalized Hough transform (GHT) [1] is a major tool for the detection
of arbitrary shapes. Many modern approaches [5,4] for object detection and
recognition are based on this idea that local parts of the object cast votes for
the putative center of the object. If the proposed filter algorithm is used in
the context of object detection, it may be interpreted as some kind of voting
procedure for the object center. This interpretation will later help us to design
the scale parameters of the filter.

2 Holomorphic Filters

The image function is represented by a square integrable complex function de-
fined on the complex plane C. It is denoted by x, an element of L2(C). The
’pixels’ of x, i.e. its function values are written in plain face x(z) = (x)(z),
where z = u + iv and (u, v) are the cartesian pixel coordinates. The complex
conjugate is denoted by z̄ = u − iv. The area measure in the complex plane
is denoted by dzz̄, which is in ordinary cartesian dzz̄ = du dv. For further in-
troduction in complex analysis see, e.g., [13]. By calligraphic letters, e.g. A, we
denote image transformations, i.e. mappings from L2(C) into itself. The special
Euclidean group usually acts on the image function by

(gx)(z) := x(e−iφ(z − t)), (1)
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where φ is a rotation angle and t a translational shift. We use a small g for
denoting the group representation to distinguish it formally from the naturally
induced group action on an image transformation A which is given by

(TgA)[x] := gA[g−1x].

By this definition the fixpoint property TgA = A is identical to the equivariance
of the image transformation A[gx] = gA[x].

The natural extension of a linear image transformation to a non-linear, ho-
mogeneous transformation of nth order is given by

(A[x])(z0) =
∫

Cn

x(z1) . . . x(zn)a(z0, z1, . . . , zn)dz1z̄1 . . . dznz̄n

The function a, the kernel, completely describes the transformation. We propose
to use kernels of the following form

a(z0, . . . , zn) = h(z0, . . . , zn)e−
�n

k=0 λk|zk|2

where λk ∈ R and h is anti-holomorphic in zk for k < p and holomorphic for
k ≥ p, i.e. we can write h as follows

h(z0, z1, . . . , zn) =
∑

i0,...,in

αi0,...,in z̄i0
0 . . . z̄

ip−1
p−1 zip

p . . . zin
n ,

where the sum is (n+1)-fold with indices ik ≥ 0 that are bounded by some finite
cutoff index m. The αi0,...,in ∈ C are some expansion coefficients which have to
be learned. The natural parameter p will later help us to design the rotation
equivariance condition more freely. The choice of the above kernel is driven by
the following observation. In [8] Perona introduced the concept of computing
optimal steerable approximations of certain image templates. He computed a
bank of optimal filters for an elongated edge template. In fact, this bank is very
similar to the kernels zie−λ0|z0−t|2 for i = 0, . . . , n. As edges are one of the most
important image features it seems reasonable to choose such functions as the
basis for our kernel function. Additionally, this type of kernel can be computed
very quickly by the use of complex derivatives as we will see below.

To make the image transformation A equivariant with respect to the Euclidean
motion we use the principle of group integration. We integrate the basis image
transformation A over all possible group actions, i.e.

H[x] =
∫

SE(2)

(TgA)[x] dg =
∫

SE(2)

gA[g−1x] dg .

It is easy to show that, if H converges then it is a SE(2)-equivariant transfor-
mation. After inserting all the definitions from above we obtain

(H[x])(z0) =
∑

i0+..+ip−1=
ip+..+in

αi0,...,in(−1)i0 g(i0)
0 ∗

(
n∏

k=1

(x ∗ g(ik)
k )

)
, (2)



Holomorphic Filters for Object Detection 307

where ∗ denotes a convolution and (g(i)
k )(z) = z̄ie−λk|z|2 for k < p and (g(i)

k )(z) =
zie−λk|z|2 for k ≥ p (for a detailed derivation see [11]). At first several feature
images x∗g(i)

k are computed. They act like some kind of neighborhood descriptors
of each pixel. The larger the Gaussians in g(i)

k the larger the corresponding
neighborhood. According to the constraint i0+. . .+ip−1 = ip+. . .+in, all possible
point-wise products of such descriptor images are computed. This constraint
achieves the rotation equivariance of the filter. Note, that for p = 0 the condition
is unsatisfiable. Finally, everything is summed up weighted by the parameters
αi0,...,in .

2.1 Differential Formulation

The convolutions with the functions g(i)
k are computationally expensive, even if

we use a fast Fourier transform or a decomposition into separable filters to speed
it up. We will use complex differential calculus to figure out a more efficient way.
Actually the function g(i)

k is proportional to the ith order complex derivative of
a Gaussian gk := g(0)

k , that is

∂

∂z̄

(
z(i−1)e−λk|z|2

)
= −λkzie−λk|z|2 ,

where the partial derivative with respect to z̄ is defined by ∂
∂z̄ = 1

2 ( ∂
∂x + i ∂

∂y ).
Correspondingly, the z-derivative is defined by ∂

∂z = 1
2 ( ∂

∂x − i ∂
∂y ). Inserting this

relation into equation (2) and using the fact that convolutions and derivations
commute on an unbounded domain gives

(H[x])(z) = g0 ∗

⎛
⎜⎝

m∑
i0=0

∂i0

∂zi0

∑
i0+..+ip−1=

ip+..+in

βi0,...,in

n∏
k=1

(x(ik)
k )(z)

⎞
⎟⎠ ,

where we used the abbreviation x(i)
k = ∂i

∂zi (x ∗ gk)(z) for k < p and x(i)
k =

∂i

∂z̄i (x ∗ gk)(z) for k ≥ p. The parameters βi0,...,in are related to the former by
βi0,...,in := (−1)i0αi0,...,in

∏n
k=0(−λk)−ik . For a detailed derivation see [11]. We

only have to compute n + 1 convolutions with Gaussians, the remaining steps
are computations of derivatives which can be performed quickly by the use of
finite difference schemes. The computation is sketched in Algorithm 1.

After the initial convolutions with the Gaussians, we have to compute m
derivatives. By an iterative scheme the number of outer z-derivatives can be
reduced to m. The number of multiplications is at most of order mn. Of course
there is much space for optimization by making use of intermediate results.

To further reduce the number of convolutions we assume that λ1 = . . . = λn.
So, we have to compute the derivatives only for one blurred image x1. In Figure 1
a workflow graph of a filter with order n = 2 and p = 1 and m = 3 is shown.
One can see that we only need to keep the m ’derivative’-images in memory. The
rest can be accomplished in place.
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Algorithm 1. Filter Algorithm y = H[x]
Input: x
Output: y
1: Initialize filter output y := 0
2: Convolve xk := gk ∗ x for k = 1, . . . , n.
3: Compute derivatives x(i)

k for k = 1, . . . , n and i = 1, . . . , m.
4: for i0 = m : −1 : 1 do
5:

y := y +
∂

∂z

�
�

i0+..+ip−1=
ip+..+in

βi0,...,in

n�

k=1

x(ik)
k

6: end for
7: Let y := y + β0,...,0x1

8: Convolve y := g0 ∗ y

Fig. 1. The workflow of a second order-filter (n = 2, p = 1). The holomorphic func-
tion is expanded up to a degree of m = 3. The star ’*’ in the circle is indicating a
convolution of the two incoming images. The dot ’·’ or the plus ’+’ indicate the point
wise multiplications or addition of the incoming images, and a squared dot a multi-
plication of the input with itself. The labels at the arrows indicate a multiplication or
differentiation, respectively.

2.2 The Training of the Filter Parameters

As the filter is linear in the parameters β = (βi0,...,in) a simple linear regression
scheme can be applied to adapt the parameters. For a given input image x and
a desired output image y we have to minimize J(β) = ||Hβ [x] − y||2, which can
be accomplished by solving the normal equations (for details see [11]).
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3 Experiments

Before starting with the experiments let us clarify some details of the imple-
mentation. For speed reasons, we use the FFT to perform the initial and final
convolutions (line 2 and line 8 in Algorithm 1). As already pointed out we want
to approximate the differentiation (line 3 and 4) by a finite difference scheme.
Higher order derivatives are obtained by multiple applications of the first order
derivative. This approach is rather crude and inaccurate, because the approxima-
tion errors are accumulated by multiple applications of the rough approximation.
But it helps to speed up the algorithm and for low orders the effect is not too
hazardous. The important issue is that the errors behave ’isotropically’, such
that the rotation behavior and hence the rotation equivariance is not destroyed.
In Figure 2 we try to illustrate the errors which occur when the expansion degree
gets too high. We compute the function g(8)

0 in three different ways. First it is
computed by the direct use of the formula z8e−λ0|z|2 in an ’accurate’ way. Then
we iteratively apply a first order finite difference operator Δ1 or alternatively a
second order operator Δ2 on the plain Gaussian g0

0. The difference operators are
given by

Δ1=

�
���

0 i 0
1 0 −1
0 −i 0

�
��� Δ2=

�
���������

0 0 −i
8 0 0

0 0 i 0 0
−1
8 1 0 −1 1

8
0 0 −i 0 0
0 0 i

8 0 0

�
���������

.

Figure 2 shows that the approximations obviously produce artifacts around the
origin. These artefact’s are not compliant with the original rotation behavior
anymore. The accurate version in Figure 2 a) has a rotation symmetry of degree
8, the error introduced by the first order scheme has a rotation symmetry of
degree 4, i.e. the rotation equivariance of the filter is partially destroyed. One
can see that the second order scheme substantially reduces this error, while
doubling the computationally load. In the experiments we exclusively used the
first-order approximations. We found that, despite the high errors even for low
degrees, it makes no difference in practice whether we use Δ1 or Δ2 up to degrees
of about 8.

a) b) c)

Fig. 2. The real part of the function g(8)
0 in a 32 × 32 grid is shown. In image a) it is

computed explicitly, in b) by a crude approximation with finite difference operator Δ1

of first order. Image c) shows a approximation with second order finite differences by
the use of Δ2.
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All experiments are performed on a Pentium 4, 2.8GHz with MATLAB. The
time consuming parts are implemented in C + + using the MEX -interface.

3.1 Analyzing Pollen Grains

Analysis techniques for data acquired by microscopy typically demand for a ro-
tation and translation invariant treatment. The microscopical images of particles
like cells, pollen grains or spores have usually no predetermined orientation. In
this experiment we use the holomorphic filter for the analysis of pollen grains.

Palynology, the study and analysis of pollen, is an interesting topic with very
diverse applications like pollen-forecasts or in forensics. An important feature of
certain types of pollen grain are the so called porates that are small pores on the
surface of the grain. Their relative configuration is crucial for the determination
of the species. We want to use the proposed filter to detect such porates. The
input images are acquired by transmitted light microscopy, i.e. there may be
varying illumination and contrast conditions. Such changes should not have an
impact on the detection results. To make the filter invariant against additive
change of the gray values the filter must not depend on zero degree x(0)

1 expres-
sions because they carry the information about the local mean of the images.
The contrast changes affect the images by a scaling of the gray values. As the
local maxima of the filter response will serve as detection hypotheses, a gray
scale change will not affect the detection results, because we use a homogeneous
filter.

A third order filter (n = 3) with degree m = 5 is used. We choose p = 2, i.e.
we search for monomes that fulfill i0 + i1 = i2 + i3. We found 55 monoms fulfill-
ing this selection rule, while not violating the gray value invariance constraint
from above. One example is (i0, i1, i2, i3) = (4, 1, 3, 2). Besides, finding all non-
redundant monoms under certain constraints is not a trivial task. The choice
of λ0 and λ1 = λ2 = λ3 is motivated by interpreting the filter as some kind of
generalized Hough transform [1]. Imagine that the object, in our case the porate,
consists of several parts (just for imagination, the parts are actually the pixels of
the object). Each part performs some kind of ’voting’ for the putative center of
the object. The part at position z is described by the derivatives (x(i)

1 )(z), which
serve as the local descriptors. The size of such hypothetical parts is determined
by the width of the input Gaussian g1. The filter maps these local descriptors of
the parts onto a ’voting’ function for the object center. The size of the impact
of the voting function depends on the parameter λ0. It has to be chosen, such
that also the parts at the outer border have an influence on the decision for the
object center. Hence, the width of the output Gaussian should be at least half
of the diameter of the object. The images we use in this experiment are of size
about 200 × 200. A porate has an approximate diameter of 40 pixels (compare
to Figure 3). So we used an output Gaussian with λ0 = 1

202 . The input Gaussian
has a size of about λ1 = 1

22 .
For the design of filter parameters β we used eight betula (birch) pollen, four

of them are shown on the left of Figure 3. Each pollen grain possess 3 porates.
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Fig. 3. Example for the porate detection. On the left you see the original input image.
On the right the output of the filter. For visualization filter responses below zero are
set to zero. The local maxima of the filter output are marked in the left image by red
circles.

The target output image is just an indicator image for the porate center. It
contains everywhere zeros except at the object center location where the pixel
is set to one. The object centers were manually labeled.

3.2 Results

The filter response for the training image is shown on the left of Figure 3. The com-
putation time for this filter is just under 200ms. The local maxima of the filter re-
sponse are marked in the original image by red circles. We only show up those local
maxima that are above a certain threshold. Obviously, the filter performs very well
for the test image and also for an unknown image on the right of Figure 3.

To measure the performance of our system we collected a test set of 150
segmented pollen grains with about 500 porates at all. The pollen in the dataset
are sometimes contaminated with dust and dirt particles, which may cause false
positive detections. All porate centers were manually labeled. As the porates are
not always in the equatorial pose it is sometimes difficult to define an objective
ground truth.

We define a detection to be successful if the local maxima of the filter response
is at most 10(20) pixels apart from the labeled center (a porate has a diameter of
about 40 pixels). All local maxima of the filter responses are collected as detec-
tion hypotheses. The filter strength at the putative detection sites are assigned
to each hypothesis as a confidence value.

We compared our approach with two different methods. In a first approach
we extract SIFT-features at DoG-interest points (following [5]). For compactifi-
cation of the features we used a PCA. Based on the SIFT(PCASIFT)-features
we perform a GHT-like probabilistic voting procedure as done in the ISM model
[4]. To achieve rotation invariance we steered the features at the gradient’s main
orientation and cast votes relative to the orientation as it is done in [7]. For
training we used agglomerative clustering to obtain local appearance clusters.
The training set is the same as for the holomorphic filter. As the porate dataset
does not require a scale invariant treatment the Hough voting map is only two
dimensional, just the location of the object. Local maxima of the smoothed vot-
ing map serve as detection hypotheses, the absolute values of the maxima as a
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detect prec. HOLO SIFT PCASIFT INVFEAT

10 px 27% 48% 46% 49%
20 px 22% 26% 22% 48%
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Fig. 4. Equal error rates and 1-Precision/Recall graphs for the porate test set. Left
graph: with high detection accuracy of 10 pixels. Right graph: with low detection
accuracy of 20 pixels.

confidence value. We also tried to use a three dimensional voting map of object
position times orientation, but we found that it mostly performed worse, because
we got a lot of spurious local maxima and the final localization of the objects
was very poor. Secondly, we used an approach (INVFEAT) which extracts a set
of rotation invariant features for each pixel and classifies them whether they are
an object center or not. As features we use multiple complex derivatives, that
is fk,j = dk+jx1

dzkdz̄j , up to an order of 8 resulting in 8 · 9/2 = 36 features per pixel.
Rotation invariance is obtained by just taking the absolute value of the feature
images |fk,j | as it was done in [12]. To keep the running times comparable to
our approach we used a linear classifier for classification and the same training
procedure as for our approach.

In Figure 4 we give equal error rates and 1-Precision/Recall graphs for the
considered dataset. We made two runs with 10 and 20 pixels detection accuracy.
In comparison to our approach (HOLO) the localizations of SIFT and PCASIFT
detections are much more imprecise. This might be explained by the imprecise
localization of the keypoints which are the basis for the subsequent voting. Our
approach does not have such problems because all pixels are taken under con-
sideration. For a low detection precision of 20 pixels, PCASIFT can slightly
outperform HOLO in a certain threshold area. Only INVFEAT is able to finally
detect nearly all porates by the cost of very high false positive rates.

4 Conclusion

We propose a rotation and translation equivariant image transformation. The
output of the holomorphic filter is polynomial in terms of the individual filter
responses of a special kind of steerable filter. Thereby the monoms are chosen
such that the rotation equivariance is fulfilled.
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The filter is applied for rotation invariant detection of objects in microscop-
ical images. Compared to a GHT-based approach relying on SIFT features our
approach is competitive for microscopical data. The holomorphic filter provides
a much more precise localization of the object, because it does not rely on an
intermediate representation by uncertain localized keypoints. Another drawback
of the keypoint-based approach is that in fuzzy regions of low contrast no key-
points are detected and hence a detection becomes impossible. The holomorphic
filter does not have such problems because all pixels are taken into account. Of
course, for more complex vision problems the non-parametric GHT-based ap-
proaches will outperform the holomorphic filter, because the model complexity
of the filter is very limited. But otherwise, due to the small number of parame-
ters, the filter is able to show better generalization ability for certain data.
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Abstract. In this paper, the properties of a novel color image filtering
technique capable of impulse noise removal and edge enhancement are
analyzed. The new filtering design is a generalization of the well known
Vector Median Filter. The proposed filtering class is minimizing the cu-
mulated dissimilarity measure of a group of pixels from the filtering win-
dow. The described filter is computationally efficient, easy to implement
and very effective in suppressing impulsive noise, while preserving image
details and strongly enhancing its edges.

1 Introduction

Noise, arising from a variety of sources, is inherent to all electronic image sensors
and therefore usually the noisy signal has to be processed by a filtering algorithm
that removes the disturbances, while maintaining the original image structures,
[1, 2, 3, 4]. Quite often noise corrupting the image is of impulsive nature and
mostly it is caused by the sensor malfunctions in the image formation process,
aging of the storage material or transmission errors due to natural or man-made
sources, [5, 6]. In order to alleviate the problem, much research effort has been
directed towards the development of filtering techniques which can cope with
image noise, while simultaneously preserving image details and enhancing edges
in color images.

In this paper, we analyze a noise filtering design with edge enhancing ca-
pabilities, [7]. We show that extending the VMF using the peer group concept
introduced in [8, 9], it is possible to efficiently remove impulsive noise while
sharpening the color image edges.

2 Peer Group Vector Median Filter

Let the color image be defined as a two-dimensional matrix of size N1 ×N2 con-
sisting of pixels xi = (xi1, xi2, xi3), indexed by i, which gives the pixel position
on the image domain. Components xik, for i = 1, 2, . . . , N , N = N1 ·N2 and
k = 1, 2, 3 represent the color channel values.

To remove the impulse noise, various filtering approaches based on the or-
dering of vectors belonging to the filtering window have been proposed, [1].
The most popular ordering scheme called reduced or aggregated ordering assigns
an aggregated dissimilarity measure to each color pixel from the filtering win-
dow. The aggregated dissimilarity measure assigned to pixel xi is defined as

F.A. Hamprecht, C. Schnörr, and B. Jähne (Eds.): DAGM 2007, LNCS 4713, pp. 314–323, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Rn
i =

∑n
j=1 ρ(xi, xj), xi, xj ∈ W , where ρ(·) denotes the chosen dissimilarity

measure between color image pixels. The scalar accumulated dissimilarity mea-
sures are then sorted and the associated vectors are correspondingly ordered:
Rn

(1) ≤ . . . ≤ Rn
(n) ⇒ xn

(1) ≤ . . . ≤ xn
(n).

In this paper, we will focus on the vector median defined using the accumu-
lated sum of distances between vectors, which serves as a dissimilarity measure.
The vector median of a set of vectors belonging to a filtering mask W is defined
as the vector xn

(1) from W for which the sum of distances to all other vectors
belonging to W is minimized, xn

(1) = argminx∈W

∑n
j=1 ‖x − xj‖γ , where ‖ · ‖γ

denotes the Lγ norm (usually L1 or L2 is used), with ‖x‖γ = (
∑m

k=1 |xk|γ)1/γ ,
and m is the dimension of the vector x, [10].

The VMF is the most popular vectorial operator intended for the removal of
the spikes injected into the color image by the impulse noise process. This filter
is very efficient at reducing the impulses, preserves sharp edges and linear trends,
however it does not preserve fine image structures, which are treated as noise
and therefore generally the VMF tends to generate or preserve blurry images.
This unwanted feature of the VMF is very important, as much of the image
information is contained in its edges and sharp edges are pleasing to humans
and are desirable in computer vision applications.

The review of the literature devoted to various filters intended to increase the
quality of color images leads to the conclusion that simultaneous noise cancella-
tion and edge enhancement is quite a challenging task. In this paper we analyze
a design which can accomplish the two seemingly contradictory aims, [7].

In the new approach the generalized vector median is the vector xα
(1) for which

the sum of α smallest distances to other vectors from W is minimized. In other
words the output of the PGVMF is the pixel centrally located within a peer
group of α pixels with minimal aggregated dispersion, expressed as the sum of
distances.

If the distance between the vector xi and xj is denoted as ρi,j , then we can
order the set of distances ρi,j , for j = 1, . . . , n and obtain the following sequence:
ρ
(1)
i ≤ . . . ≤ ρ

(α)
i ≤ . . . ≤ ρ

(n)
i , where ρ

(k)
i is the k-th smallest distance from xi

and ρ
(1)
i = ‖xi − xi‖ = 0. For each pixel in the filtering window the cumulated

sum Rα
i is calculated: Rα

i =
∑α

k=1 ρ
(k)
i , and the output of the generalized VMF

is the pixel for which the trimmed sum of distances Rα is minimized, [7].

3 Filtering Efficiency

For the evaluation of the efficiency of the proposed filter, a series of experiments
has been performed utilizing natural and artificial color images contaminated
by impulse noise. For the generation of noisy images the impulsive uniform
or random-valued noise, which changes randomly all the color channels of the
percentage p of the image pixels was applied.

For the measurement of the restoration quality, the Root Mean Squared Error
(RMSE) expressed through the Peak Signal to Noise Ratio (PSNR) was used.
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a)

R G B

b)

R G B

Fig. 1. Synthetic test images with their RGB channels

a) b) c)

Fig. 2. Edge enhancing and noise attenuating properties of the PGVMF as compared
with the VMF: a) blurry test image distorted by impulsive noise of p = 0.1, b) VMF
output, c) filtering result obtained using the PGVMF with α = 6

For the evaluation of the detail preservation capabilities of the proposed filtering
design the Mean Absolute Error (MAE) has been utilized.

In order to evaluate the edge enhancing and noise cancellation properties of
the proposed filter, a synthetic, blurry color test image has been prepared, (see
Fig. 1a). This image has been contaminated by 10% impulsive noise as shown
in Fig. 2a. Figure 2b depicts the output of the VMF when applied to the noisy
test image. As can be noticed the VMF removes the impulse noise and preserves
the blurred edges. This behavior is not present when inspecting the output of
the PGVMF filter, which is able to enhance image edges while suppressing the
impulsive noise, (Fig. 2c).

The edge enhancing abilities of the PGVMF are clearly visible in Fig. 3 which
depicts the blue channel intensity plot of the middle row of Fig. 1a. As can
be observed, the VMF (α = 9) removes the impulses and retains the roof-
like edges. The PGVMF besides the cancellation of the spikes introduced by
the noise process, strongly enhances the edges, producing steep, step-like image
discontinuities as shown in Fig. 4.

The overall good noise reduction abilities of the proposed filter class are pre-
sented in Figs. 5a, b, which show the dependence of the PSNR and MAE on the
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Fig. 3. Plots of the blue channel intensity of the middle row of the enhanced noisy
test image depicted in Fig. 2a. Note the steep edges generated by PGVMF, (α = 6).

(a) test image (b) noisy test image

(c) VMF (d) PGVMF, α = 6

Fig. 4. Visualization of the edge enhancing and noise reduction capabilities of the
generalized VMF: (a, b) 3D representation of the inverted blue channel of the test
images depicted in Figs. 2a, b, (c) result of the VMF, (d) output of the PGVMF with
α = 6.

noise intensity level and α parameter value of the PGVMF when restoring the
LENA noisy image.

As can be observed, the PGVMF with α > 3 is comparable with the VMF
in terms of the objective noise reduction efficiency measures. The edge enhanc-
ing effect caused a small decrease of the PSNR and is also reflected by higher
MAE values. However, excellent noise reduction properties are visible in the
case of uniform noise, for high contamination rates (p ∈ [30%, 70%]). In the case
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(a) MAE (b) PSNR

(c) MAE (d) PSNR

Fig. 5. Dependence of PSNR and MAE measures on the contamination intensities for
the LENA test image, (a, b) and the artificial test image shown in Fig. 1b, (c, d).

of strong impulse noise the PGVMF excels over VMF independently of the α
parameter.

As can be seen in Figs. 5a, b for low contamination levels the image restoration
quality measures are worse than the ones obtained when applying the standard
VMF. However, this effect is caused by the edge sharpening of the proposed
filter. In order to validate this, a series of experiments was performed on a test
color image shown in Fig. 1b which has the property that the VMF and also
PGVMG do not change any of its pixels. Thus, as the image does not contain
any edges, injecting the noise, we are able to examine the real noise reducing
capabilities of the PGVMF.

Figures 5c, d show that for the test image without any edges the proposed
filtering design is superior to the VMF, which indicates that the PGVMF has
overall better noise cancellation properties for the whole range of contamination
levels.

The satisfying efficiency of the newly proposed filtering design is confirmed in
Tab. 1 which provides the comparison of the quality measures obtained using the
PGVMF and various denoising techniques. The results of experiments performed
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Table 1. Comparison of the new filtering design with some of the denoising tech-
niques using the LENA test image contaminated with impulse noise of intensity
p = 30%. Filters used for comparison with the Peer Group Vector Median Filter
(PGVMF) with α = 5: Vector Median Filter (VMF) in the RGB and Lab color space,
Directional Distance Filter (DDF), Basic Vector Directional Filter (BVDF), Fast Mod-
ified Vector Median Filter (FMVMF), Adaptive Nearest Neighbor Filter, (ANNF), Hy-
brid Directional Filter (HDF), Digital Path Approach, (DPA), Fast Peer Group Filter
(FPGF) [1,2,3,4,11,12].

FILTER MAE PSNR NCD

NONE 23.20 13.85 0.2610
PGVMFα=5 4.39 29.54 0.0482

VMFRGB 4.79 28.48 0.0527
VMFLab 4.99 27.97 0.0524

DDF 4.81 28.49 0.0521
BVDF 5.91 25.46 0.0569

FMVMF 2.22 29.97 0.0235
ANNF 7.61 26.89 0.0899
HDF 5.19 28.21 0.0656
DPA 4.79 29.65 0.0511

FPGF 2.51 29.26 0.0272

a) b) c) d)

Fig. 6. PGVMF noise reduction efficiency as compared with the VMF: a) part of the
test image PARROTS, b) noisy image contaminated by impulse noise of p = 0.4, c)
output of VMF, d) output of PGVMF with α = 6

on the LENA image contaminated by impulse noise of p = 30% show that the
presented filter yields better or comparable results as the state of the art filters.
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(a) PGVMF, α = 6, 2 iterations (b) VMF, 2 iterations

(c) VR, (VMF) (d) VR, (PGVMF)

Fig. 7. Performance of the Vector Range edge detector applied on the noisy test
image, (p = 0.3) filtered with VMF and PGVMF: a) VMF and b) PGVMF output, c)
VR edge detector output when applied on the noisy test image filtered with VMF, d)
result of VR when performed on the noisy test image filtered with PGVMF

The good efficiency of the proposed algorithm in the presence of uniform
impulsive noise with high contamination level (p = 0.4) is demonstrated in
Fig. 6. The visual inspection of the outputs of VMF and PGVMF reveals that the
latter not only performs better with regard to noise cancellation ability, but also
produces an image with strong, visually pleasing edges. It can be also observed
that the VMF heavily softens the image and retains noisy pixels grouped into
clusters, (blotches) which is a well known drawback of this filtering technique.
This negative effect is not present when evaluating the output of the new filter
which is able to better discriminate between the original, undisturbed samples
and pixels injected to the image by the impulsive noise process.

The proposed filter intended primarily for noise reduction can also be used for
sharpening color images. Figure 7a shows a part of the the test image PEPPERS
and Fig. 7b depicts its sharpened version obtained using the PGVMF with α = 6.
As can be observed the sharpness of the image is significantly increased, no false
colors are generated and cleaner-looking image is produced.

The edge enhancing properties of the newly designed filter can be exploited in
the task of edge detection in color images. Figures 7b and 7c present the output
of the Vector Range edge detector defined as the distance between the vectors
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LENA PARROTS

Fig. 8. Dependence of the PSNR measure on the iteration number, for test images
contaminated with impulse noise, (p = 0.1)

(a) test image (b) α = 4 (c) α = 6 (d) α = 9, VMF

Fig. 9. Root signals of the test image WOMAN for the PGVMF and VMF

xn
(1) and xn

(n) from the filtering window W , when performed on the noisy test
image filtered with the VMF and PGVMF. As can be seen the quality of the
edge maps is increased when the pre-filtering with the described PGVMF filter
is performed.

Another advantage of the proposed filter is its quick convergence to the root
signal as depicted in Fig. 8. This figure also shows that for low contamination
intensities, best filtering results are achieved in the first iteration. The quick
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convergence of the proposed algorithm can be used for the segmentation pur-
poses. Figure 9 shows the root signals of the PGVMF and VMF. Again the
obtained PGVMF outputs have sharp edges and the detail preservation proper-
ties can be tuned by proper value of the α parameter.

4 Computational Complexity

In order to determine the VMF output, first we need to compute n(n − 1)/2
distances between pixels belonging to the filtering mask. The computation of
one Euclidean distance requires 2 additions, 3 subtractions, 3 multiplications
and a calculation of the square root. Then we need to build n aggregated sums
of distances Rn

i , which requires (n − 1) additions and we have to find the small-
est value of Rn

i , for xi ∈ W , which can be accomplished performing (n − 1)
comparisons.

To find the PGVMF output we need the same number of distances as in the
case of VMF. In order to find the accumulated sum of α distances, we have to
sort (n − 1) distances from the pixel under consideration to all other pixels in
W . Using the quicksort algorithm, this requires (n − 1)(n − 2)/2 comparisons
in the worst case, which increases the complexity of the algorithm. However, to
build the accumulated sum of distances Rα

i , we only need (α − 2) additions of
sorted distances, instead of (n − 1) in the VMF method. Finally, we have to
find the smallest value of Rα

i , as in the case of VMF, for which we need (n − 1)
comparisons.

So, the PGVMF differs from the VMF, in the additional sorting of the (n−1)
distances for each pixel in W and also in the calculation of aggregated sum of
distances, for which we need fewer additions than in the VMF. In this way, the
additional computational burden is to some extent compensated by the decreased
number of necessary additions.

For the VMF with a 3 × 3 window, we need 36 distances, which require
36 · 9 = 324 operations. Then we need to perform 9 · 8 = 72 additions and 8
comparisons, which gives a total of 404 operations. The PGVMF also requires
324 operations for the calculation of the distances, and additionally in the worst
case (8 · 7/2) · 9 = 252 comparisons for the sorting operation and (α − 2) · 9
additions. Finally, we also need 8 comparisons to find the smallest Ri, which
outputs the x(1) vector. Thus, for the 3 × 3 window, the PGVMF with α = 6
requires 324+252+36+8 = 620 operations. The real, necessary total number of
operations is significantly smaller, as on average the quicksort algorithm needs
fewer calculations and the computationally demanding sorting, can be termi-
nated after the α smallest distances are found. Moreover, for higher α values in
order to find the accumulated distances Rα

i , it is favorable to find the (n − α)
highest distances and to subtract them from the sum of all distances associated
with a pixel under inspection.

As shown, the computational complexity of the VMF and the proposed filter
are comparable, and they can be further decreased applying less demanding
vector norms and fast implementations of the vector median algorithm.
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5 Conclusions

In this paper, the properties of a novel filtering design has been examined. The
proposed filter can be regarded as a generalization of the standard Vector Median
Filter. Besides its excellent noise reducing capabilities, its unique feature is its
ability to enhance color image edges. This effect is really beneficial as in many
applications sharp image edges are desired to enable the success of further image
processing steps.

The novel filter is easy to implement and its computational complexity is
comparable with the VMF. The edge enhancing properties of the new filter
make it a valuable tool for the enhancement of noisy and blurred color images.
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Abstract. Deblurring is important in many visual systems. This paper
presents a novel approach for nonstationary blurred image reconstruction
with ringing reduction in a variational Bayesian learning and regulariza-
tion framework. Our approach makes effective use of the image statisti-
cal prior and image local spatial conditions through the whole learning
scheme. A nature image statistics based marginal prior distribution is
used not only for blur kernel estimation but also for image reconstruction.
For an ill-posed blur estimation problem, variational Bayesian ensemble
learning can achieve a tractable posterior using an image statistic prior
which is translation and scale-invariant. During the deblurring, nonsta-
tionary blurry images have stronger ringing effects. We thus propose an
iterative reweighted regularization function based on the use of an image
statistical prior and image local spatial conditions for perceptual image
deblurring.

1 Introduction

In the digital imaging world, images are often degraded due to blur and noise.
These degradations heavily influence the implementation, automation, and ro-
bustness of many visual systems. The primary goal of blind image deconvolution
is to uniquely define the convolved signals only from one observed image without
any other information. It gives opportunities not only for valuable contributions
in solving ill-posed problems but also for the practical demands in early vision.

According to the image degradation model, g = h ∗ f + η, where g ∈ L2(Ω) is
an observed image function and Ω ⊂ R

2 an open bounded domain, the problem
is to estimate the original image f with unknown noise η and point spread
function (blur kernel) h. The two-dimensional convolution can be expressed as
h ∗ f = Hf = Fh, where H and F are block-Toeplitz matrices and can be
approximated by block-circulant matrices with certain boundary conditions.

Due to the complexity of blurring, we classify blurred images into three main
groups, shown in Fig. 1. The first group in Fig. 1(a) is spatial-invariant blurring.
That is, the blur kernel is uniform and stationary for the entire image and can be
approximated by one parametric blur kernel like a Gaussian kernel, motion ker-
nel etc. The second group in Fig. 1(b) can be approximated by spatial-invariant
blurring. Such a blur kernel is uniform but nonstationary, i.e., the blur kernel

F.A. Hamprecht, C. Schnörr, and B. Jähne (Eds.): DAGM 2007, LNCS 4713, pp. 324–334, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Image Statistics and Local Spatial Conditions 325

Fig. 1. a|b|c columns. (a) Entirely, uniform and relatively stationary blurred image.
(b) uniform and nonstationary blurred image. (c) nonuniform, partially blurred image.

cannot be simply represented by a single parametric model. The estimation of
blur kernels can thus be considered as a generalization from parametric to non-
parametric approximation. The third group in Fig. 1(c) is partial-blurring. Such
images are nonuniform spatial-variant blurred and the image deblurring should
not influence unblurred regions [1]. In this paper, we focus on the restoration of
such nonstationary blurred images.

The Bayesian estimation provides a structured way to include prior knowl-
edge concerning the quantities to be estimated. The Bayesian approach is, in
fact, the framework in which the most recent blur kernel estimation methods
have been introduced, e.g, simultaneous kernel estimation and image restoration
[2], estimating Bayesian hyperparameters [3], factorizing kernels into parametric
models [4], [5], and measuring the strength of discontinuities in Gaussian scale
space [6], etc. However, these methods are limited in certain parametric models
to stationary blurred images.

Based on variational Bayesian approaches [7], [8], Miskin and Mackay [4], [5]
have firstly applied this method to deal with blind deconvolution using a prior
on raw pixel intensities. Results are shown on synthesized image blur. Using an
image statistical prior, Fergus et al. [9] have extended this method for removing
camera shaking blur from a single blurred image. The blur kernel is estimated
and interpolated in high-accuracy using a multi-scale approach [10]. Although
the ringing effect has been observed by Fergus et al., the image deblurring is di-
rectly using an extended Richardson-Lucy (RL) method without using an image
statistical prior and local spatial conditions for deblurring. Inspired by Fergus’s
et al., in our approach, we use an image statistical prior not only for kernel
estimation but also for weighted space-adaptive image deblurring with ringing
reduction.

For image deblurring, ringing effects and amplified noise influence the results
due to Gibbs phenomena in the Fourier transformation. One type of ringing
effects often happens around edges and discontinuities due to the high frequency
loss during blurring. The other type of ringing effects is due to the mismatch
between nonstationary real blurred images and stationarity assumptions. Such
phenomena have been observed by [2], [9], [11]. Since most original scenes are
without ringing, such restoration results are usually undesirable. Therefore, the
deblurring approach needs to be designed for both types of ringing reduction.



326 H. Zheng and O. Hellwich

Furthermore, in Bayesian estimation, a generic prior model needs to repre-
sent common descriptive or generative information from an observed image.
Such prior distributions can be translation and scale-invariant for representing
a global image. Natural image statistics based prior learning has such properties
to represent image structure, textures [12], discontinuities and blurred edges
[9]. On the other hand, natural images are often inhomogeneous with piecewise
uniform regions separated by edges and discontinuities. Therefore, the measure
of distributions of local edges, textures as well as the pixel intensity values can
be used as local spatial conditions for ringing reduction in image reconstruction.

Different from Fergus’s work [9], [4], [5], our approach has several effects. First,
through some observations and experiments, we classify natural blurred images
into three main groups so that we can design an efficient method. Second, in
contrast to previous work [4], [5], [9], [13], natural image statistics is used not
only for kernel estimation in a global image but also for piecewise image recon-
struction in a newly designed regularization function. Therefore, we obtain an
approach, which can use the scale-invariant statistical prior for kernel estimation
and integrate local spatial conditions for deblurring with ringing reduction.

2 Variational Bayesian Modeling for Kernel Estimation

During the image blurring period, the changes of image discontinuities and edge
gradients are larger and more representative than the changes in the piece-
wise homogeneous regions. Therefore, we construct a probabilistic model based
on marginal distributions of image gradients. We process the gradients of f
and g and construct the new convolution equation using the original equation
g = h ∗ f + η. Suppose we have a model which tells how a number sequence
∇f = ∇f(1), ..., ∇f(t) transforms into a sequence ∇g = ∇g(1), ..., ∇g(t), we
then have ∇g(t) = ∇f(t) ∗ h + η(0, σ2) with zero-mean identical and indepen-
dently distributed (iid) Gaussian noise.

Based on this model, the Bayesian MAP estimation utilizes an input P (∇g)
to achieve two convergent posteriors p(h)and p(∇f), and is formulated in,

p(∇f, h|∇g) = p(∇g|∇f, h)P (∇f, h)/p(∇g) ∝ p(∇g|∇f, h)P (∇f)P (h) (1)

In order to apply this model, the model needs to be given in probabilistic terms,
which means stating the joint distribution of all the variables in the model. In
principle, any joint distribution can be regarded as a model, but in practice, the
joint distribution will have a simple form. Here, in p(∇f, h|∇g), we can easily
obtain a more stable prior distribution, e.g., the log-histogram of image gradients.
The prior P (∇f) on the restored image gradients is a Gaussian mixture model.
The blur kernel prior P (h) is a mixture of K blur kernel parametric models with
exponential distributions. Some constraints are used for applying the equation
such as non-negativity, and energy preservation during the deblurring.
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Fig. 2. a|b|c|d
e|f |g|h . Comparison of marginal distribution of blurred and unblurred gradients.

(a)(b) Blurred image. (c)(d)Unblurred image. (e)(f) Histogram and Log-histogram (y)
of gradients ∇xI . (g)(h) Histogram and Log-histogram (y)of gradients ∇yI .

2.1 Natural Image Statistics for Global Prior Learning

A generic prior distribution can be incorporated into a probability distribution as
a prior model which will bias learning algorithms. For this objective, a translation
and scale-invariant prior can be obtained via natural image statistics.

From a combination of psychophysical and computational approaches, Field
[14], [15] has presented that real cluttered images obey heavy-tailed distributions
in their gradients. The distribution of gradients has most of its mass on small val-
ues but gives significant probability to large values in a Student’s t-distribution.
Later, Olshausen et al. [15] have proposed an approach to understanding such
response properties of visual neurons and their relationship to the statistical
structure of natural images in terms of efficient coding. In image processing,
[10], [16] have shown the non-Gaussian nature of the probability distribution,
e.g., high kurtosis, heavy tails; it can be approximated in an exponential func-
tion family with exponent less than 1. These heavy-tailed natural image priors
have shown in many state-of-the-art methods, e.g., image segmentation [1], [12],
denoising [10], [17], removing camera shake [9], etc.

To compute such distributions, one way is to compute the joint statistics of
derivative filters at different locations, sizes or orientations [13]. The other way
is to observe marginal statistics of more complicated feature detectors [18]. We
extend these methods to yielding a translation and scale invariant prior. For
example, Fig. 2 illustrates this fact and shows several natural images and their
histograms of gradient magnitudes. Similar histograms are observed for vertical
derivative filters and for the gradient magnitude ∇Ix and ∇Iy.

2.2 Variational Bayesian Ensemble Learning for Kernel Estimation

Based on the Eq. 1, we can easily find that marginalizing the posterior distri-
bution is difficult. We cannot take a point estimate (e.g., the MAP estimate)
because this leads to overfitting. Therefore it is necessary to approximate the
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posterior density by a more tractable form for which it is possible to achieve any
necessary probability mass of the posterior.

Variational ensemble learning [7], [19], [4], [9] is a method for parametric ap-
proximations of the posterior distributions. It assumes a Gaussian distribution
or another parametric distribution, in which the mean and the variance are al-
lowed to evolve during the learning process. The distributions for each estimated
gradient and blur kernel element are represented by their mean and variance.
The original full posterior p(∇f, h|∇g) is then approximated by a tractable dis-
tribution q(∇f, h) by minimizing the Kullback-Leibler information which acts
as a distance measure between the two distributions. It is formulated as,

KL{q(∇f, h)||p(∇f, h|∇g)} =
∫

q(∇f, h) ln
q(∇f, h)

p(∇f, h|∇g)
d∇fdh (2)

=
∫

q(∇f, h) ln
q(∇f, h)

p(∇g|∇f, h)P (∇f, h)
d∇fdh + ln p(∇g)

The Kullback-Leibler information is greater than or equal to zero, with equality
if and only if the two distributions, p(∇f, h|∇g) and q(∇f, h) are equivalent.

Training and learning the approximating ensemble can be done by assuming
a fixed parametric form for the ensemble (for instance assuming a product of
Gaussian). As a consequence, the parameters of the distributions can be set
to minimize the cost function. Therefore, the q(∇f, h) → q(∇f, h, σ2) can be
further approximated by adding a noise prior σ−2(inverse variance) in the form
of a Gamma distribution. Thus, we have hyper-parameters x, y : p(σ2|x, y) =
Γ (σ−2|x, y). The variational posterior is q(σ−2) in a Gamma distribution. If we
note that the term p(∇g) is constant over all the models, we can define a cost
function CKL to obtain the optimum approximating distribution,

CKL = KL{q(∇f, h, σ2)||p(∇f, h|∇g)} − ln p(∇g) (3)

=
∫

q(∇f) ln
q(∇f)
p(∇f)

d∇f +
∫

q(h) ln
q(h)
p(h)

dh +
∫

q(−σ2) ln
q(−σ2)
p(−σ2)

d(−σ2)

where the subindex of CKL denotes the variables that are marginalized over
in the cost function. In general, they are the unknown variables of the model.
Because of the product form of the true posterior density, the cost function CKL

can be factorized into a sum of simpler terms. The Kullback-Leibler measure will
be sensitive to probability mass in the true posterior distribution rather than
the absolute value of the distribution itself.

3 Iterative Reweighted Energy Function for Deblurring

In this section, we first discuss the deblurring error and ringing effects which are
closely related to local spatial structures within an image. Then we propose an
iterative reweighted energy function using natural image statistical prior weights
and image local spatial conditions for deblurring with ringing reduction.
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According to g = h ∗ f + η, using the Tikhonov-Miller regularized solution,
the restored image F̂ in the frequency domain is,

F̂ (u, v) =
H∗(u, v)

|H(u, v)|2 + α|L(u, v)|2 G(u, v) = T (u, v)G(u, v) (4)

where G, H, F are the DFT of g, h, f , respectively, (u, v) are the spatial frequency
variables, L(u, v) represents a regularizing operator with a regularization para-
meter α. T (u, v) deviates from the inverse of the blur kernel H−1(u, v). The
deviation is expressed by the error spectrum E(u, v; α) = 1 − T (u, v; α)H(u, v).
The restored image F̂ in the frequency domain is given by,

F̂ (u, v) = T (u, v; α)[H(u, v)F (u, v) + η(u, v)] (5)
= F (u, v) − E(u, v; α)F (u, v) + (1 − E(u, v; α))H−1η(u, v) (6)

where the restoration error is ‖F̂ (u, v) − F (u, v)‖. On the right side, the second
term denotes the error due to the use of filter T , i.e., a regularization error;
the third term presents the noise η magnification error. There exists an optimal
value α between two types of errors. The noise magnification error has a global
degrading effect resulting from the observed noise. Also, the regularization error
is a function of F , and its effect will therefore be related strongly to the local
spatial structures encountered within the image. Ringing effects can be seen as a
structure dependent phenomenon and can be classified as a regularization error.

Therefore, we propose an iterative reweighted regularization function which
can use the measure distributions of local edges, textures as well as the pixel in-
tensity values for image deblurring. Similar to Eq. 1, p(g|f, h) follows a Gaussian
distribution and p(f) is prior with some constraint conditions,

J (f |g, h) ∝ argmin{1
2

∑
w1(g(x) − h(x) ∗ f(x))2 +

1
2
λ

∑
w2(c1(x) ∗ f(x))2}

where J (f |h, g) = − log{p(g|f, h)p(f)} express that the energy cost J is equiv-
alent to the negative log-likelihood of the data [19], [2], [1]. λ is a regularization
parameter that controls the trade-off between the fidelity to the observation and
smoothness of the restored image. The smoothness constraint c1(x) is an regular-
ization operator and usually is a high-pass filter. The energy function achieves an
optimal result by searching for f minimizing the reconstruction error (g−h∗f)2

and the weights prior w2 controlling f to be satisfactorily smooth.
The weights w1 and w2 reduce these ringing effects adaptively to achieve

better visual evaluation. w1 = 1, if the data at x is reliable, otherwise w1 = 0;
the image weight w2 = 1/[1+kσ̂2

f(x)], σ̂2
f (x) is the local variance of the observed

image g(x) at x in a P × Q window, k is a contrast parameter. However, it is
difficult to directly compute such local variances in a small moving window for a
single blurred image and its unknown ideally restored image. In contrast to most
existing approaches [2], [9], we use the distributions of statistical edge gradients
as the local prior weights, which can bias the results. We use a w′

2 = expkσ̂2
f (x)

from a general exponential function family which has effects similar to w2 [20].
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The heavy-tailed curve of w′
2 is directly controlled by using the image statistical

prior distribution. The cost function of this equation is minimized in an iterative
reweighted optimization approach [21] via conjugate gradient descent.

4 Experiments and Discussion

Experiments on real blurred images are carried out to demonstrate the effective-
ness of our algorithm. We perform our experiments on entirely nonstationary
blurred images which are collected from videos and photos in real environments.

4.1 Implementation of Blur Kernel Estimation and Deblurring

We firstly present the implementation of blur kernel estimation in the variational
Bayesian ensemble learning. Sequentially, we describe the deblurring with ringing
reduction in our suggested iterative reweighted energy function.

Weakly-Supervised Variational Bayesian Learning. According to the cost
function CKL in Eq. 3, the parameters of the distributions are minimized alter-
nately using the coordinate descent method. The most crucial part is the initial
value that we choose the means of the distributions q(h) and q(∇f) (a trained
prior distribution from another similar type of blurred images). The variance σ2

is given high value due to the uncertainty of the initial value. The minimization
is repeated until the change in CKL becomes negligible. The ensemble learning
algorithm is provided online by Miskin and Mackay [4]. Furthermore, multi-scale
[10], [9] and multigrid [22] methods have been proven to be very useful in com-
puter vision. These methods can avoid local minima. Following Fergus et al. [9]
and Simoncelli [10], we implement our algorithm using multi-scale based coarse-
to-fine refinements. At the coarsest level, the blur kernel is initialized at a very
coarse level. The initial estimation for ideal image gradients is then adapted to
the blur kernel till the edge gradients distribution is well adjusted. At the finest
resolution, the blur kernel is fully interpolated.

Iterative Reweighted Energy Function for Deblurring with Ringing
Deduction and Denoising. During the image deconvolution, most of the
ringing effects are generated either by the non-accurate blur kernels or by spatial-
variant blur around the objects. Our suggested regularization function is de-
signed based on the analysis of ringing effects. The weight distributions in the
energy function can be approximated by using image statistical prior distribu-
tions which can be computed from other same types of learned blurred images.
During image deblurring and image reconstruction, the conjugate gradient de-
scent method minimizes the residual error in an iterative manner. The weight
distribution is automatically updated based on the previously iterative restored
image results in the spatial domain. Therefore, it needs more computation time.
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Fig. 3. a|b|c. (a) Blur degraded images. (b) Restored image using the normal RL
method with ringing effects. (c) Restored images using the suggested method.

Fig. 4. a|b|c columns. (a) Blur degraded images. (b) Restored image using a similar
method in [9]: multi-scale based RL method. (c) Restored images using the suggested
method with natural image statistical prior weights and space-adaptive smoothing.

4.2 Deblurring and Reconstruction on Nonstationary Blurred Data

To evaluate this algorithm, the performance of the approach has been investi-
gated by using different types of real images. In these experiments, first, we show
that it is easy to get ringing effects in normal deblurring methods. Second, we
reconstruct several types of blurred images and compare the results with other
methods. Finally, we make a summary of the suggested approach.
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Fig. 5. a|b|c. Identified blur kernels with respect to the image of people, street and
horse, respectively. (a) for people. (b) for horse. (c) for street.

The first experiment is performed for an indoor image, shown in Fig. 3. Based
on the estimated blur kernel in Fig. 5(a), we reconstruct this image using two
methods. We can easily find that the classical Richardson-Lucy (RL) method
can achieve sharp deblurring results but suffers from stronger ringing effects.
Fig. 3(c) is reconstructed using our suggested method with natural image statis-
tical prior weights and space-adaptive smoothing. Compared to the RL method,
the reconstructed result in our method is smoother and without ringing effects.

The second experiments present image restoration on blurred images to
demonstrate the deblurring and restoration results of the proposed algorithm.
The restored images are illustrated in Fig. 4 and their identified blur kernels
are shown in Fig. 5, respectively. In this experiment, we compare our deblurring
with a multi-scale based RL methods that was used by Fergus et al. [9]. From the
results, we note that the multi-scale RL method can achieve sharp restoration re-
sults but the noise is also amplified, shown in Fig. 4(b) column. Our method can
achieve the sharp deblurring results with more smoothing surfaces due to differ-
ent reconstruction mechanism, shown in Fig. 4(c). In this experiment, we show
three blurred images with different illumination, contrast and environments. The
first image is an indoor image of a person, the second image of a copper sculpture
has some reflections, and the third one has cluttered movements in the evening.
The results show the robustness of image deblurring and reconstruction of the
suggested approach for different types of nonstationary real blurred images.

From these experiments, we note that these estimated blur kernels cannot
be simply represented by a parametric model. The reason is the random move-
ments and different noise influences (illumination, projective distortion based
blur changing, reflections etc.) during the image formation period. In a sense,
based on natural image statistics, we can estimate blur kernels in a variational
Bayesian learning method and restore and reconstruct the images sequentially
in an iterative reweighted energy function. On the other hand, we also note that
image noise is smoothed during image deconvolution in our approach.

5 Conclusions and Future Work

In this paper, we have suggested a new approach for weak-supervised image
deconvolution with ringing reduction. The integration of variational Bayesian
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learning and natural image statistics can achieve high-accuracy blur identifica-
tion. Furthermore, based on the analysis of ringing and noise effects, we have
proposed an iterative reweighted energy function for image deblurring and per-
ceptual image reconstruction. In particular, the approach makes effective use of
the natural image statistics prior through the learning scheme. By alternating
the radius of the natural image statistics, the image statistical prior distribution
is not only used for blur kernel estimation in a single blurred image but also used
as the local spatial prior weights for image deblurring and reconstruction with
ringing reduction in an iterative reweighted energy function. A thorough evalua-
tion has shown that the proposed approach has more flexibilities for identifying
and restoring blurred images with ringing reduction in real environments.
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Abstract. We propose an unsupervised “local learning” algorithm for
learning a metric in the input space. Geometrically, for a given query
point, the algorithm finds the minimum volume ellipsoid (MVE) cover-
ing its neighborhood which characterizes the correlations and variances
of its neighborhood variables. Algebraically, the algorithm maximizes the
determinant of the local covariance matrix which amounts to a convex
optimization problem. The final matrix parameterizes a Mahalanobis
metric yielding the MVE metric (MVEM). The proposed metric was
tested in a supervised learning task and showed promising and competi-
tive results when compared with state of the art metrics in the literature.

1 Introduction

The fact that many learning algorithms, supervised, unsupervised, or semi-
supervised, depend mainly on a “representative” and a “meaningful” distance
metric in the input space, imposes the problem of finding such a metric in the
very core problems of machine learning algorithms. The various benefits pointed
out in [5,6,9] of having a metric that can better describe similarities in the ab-
sence of a priori knowledge or side–information [5,9], point to the need for such
metrics. This is reflected in the current literature by many new algorithms that
tackled the problem directly and indirectly [5,6,7,8,9,11,12], and showed promis-
ing results in that regard. The contribution of this paper builds on this research
with an algorithm for learning a new distance metric in the input space. The
new metric, called the minimum volume ellipsoid metric (MVEM), can be seen
as a generalization of existing metrics induced by recent learning algorithms.

Two main objectives and advantages lie behind the MVEM design. First, it
is desirable to have a metric that does not depend on a priori knowledge, side
information as in [5,9], or data labels as in [6,7]. Second, the metric should not
depend on the learning paradigm. That is, for any two points x, y ∈ R

d, labeled
or unlabeled, from a training set or test set, it is desirable to replace ‖x − y‖2

by a distance function D(x,y) which carries more information on the similarity
between x and y.

Our outlook is statistical, with a motivation rooted in robust statistics, and
links to maximum likelihood estimation (MLE) with Gaussian distributions. The
MVEM is a parameterized version of the general Mahalanobis distance func-
tion with a special structure imposed on the symmetric positive definite matrix

F.A. Hamprecht, C. Schnörr, and B. Jähne (Eds.): DAGM 2007, LNCS 4713, pp. 335–344, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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defining the metric. The special structure stems from combined statistical and
geometrical properties, with a useful algebraic interpretation that is used later in
the proposed algorithm for learning the MVEM. The proposed algorithm, called
MiniVenn (or minimum volume ellipsoid of nearest neighbours), depends primar-
ily on the concept of locality in the input space. For a given query point, with
its assigned neighborhood (k-Nearest-Neighbors, or ε-ball), similarities between
the query point and its neighbors can be found by means of the neighborhood’s
covariance matrix (i.e. local covariance). In an ideal setting, if the query point
is the mean of a normally distributed neighborhood, the covariance matrix de-
fines an ellipsoid which, in principle, should approximately 1 cover (or enclose)
the neighborhood 2. The induced Mahalanobis distance can measure the sim-
ilarity between the mean and the neighboring points while taking correlations
and variances into consideration. With real life data, however, this is hardly the
case. Due to the obvious non-normality of the neighboring points with respect to
the query point, the curse of dimensionality effect, nonlinearity of the data, and
noise, such an ellipsoid poorly covers the desired neighborhood and the induced
metric becomes unreliable.

The first motivation for the proposed MVE approach to define a metric stems
from the above observation. If the ellipsoid is reshaped to cover the desired
neighborhood, as MLE with a Gaussian component does, one can expect that
the covariance matrix will better reflect the local structure. Another primary
motivation, stems from the statistics literature [14], where the Mahalanobis dis-
tance is well known to expose outliers by assigning them very large distance
values. Therefore, should the Mahalanobis distance be well parameterized by
an accurate estimate of the covariance matrix, one can expect more accurate
distances and similarity measures [14].

The paper is organized as follows: First, the motivation for the MVEM is
presented in Section 2. Section 3 presents the algorithm for learning the MVEM,
followed by a review of related work and similarities with other metric learn-
ing algorithms. Experimental results are illustrated in Section 4, and finally,
conclusions are drawn in Section 5.

2 Motivation for the MVEM

The Euclidean distance has been and is still extensively used and embedded
in many algorithms of the pattern recognition and machine learning literature.
There are many reasons, however, that render the Euclidean metric completely
inappropriate. First, if the norm is to deal with very high dimensional structured
data, the curse of dimensionality and its consequences are inevitable. Second,
effects of the random noise in the data and missing values will be reflected in the
Euclidean metric. Third, despite an adequately sized training set, it is very likely
that the data set is not balanced, resulting in high and low density areas in the
1 Due to the infinite support of the Gaussian.
2 The axes of the ellipsoid lie along the eigenvectors of the covariance matrix, and the

squares of the axes’ lengths are its eigenvalues.
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input space, causing fragile estimation of densities and intrinsic dimensionality.
Moreover, the very definition of the Euclidean metric ignores the effect of scale,
variance and correlations of and among the variables. Thus the Euclidean metric
may not reflect the true geometry of the underlying manifold structure of points
under consideration.

The Mahalanobis distance, on the other hand, is well known in the robust
statistics literature as an outlier detector [14]. It exposes outliers by assigning
them very large Mahalanobis distances. This, however, depends on an accurate
estimate of the covariance matrix that parameterizes this distance. An intuitive
approach for obtaining such an estimate is via MLE with Gaussian components.
This, however, requires a large number of samples, and converges to a local
optimum which might result in an unnecessarily large variance. Our proposed
approach is to use a robust estimator for the covariance matrix parameteriz-
ing the Mahalanobis distance, where robustness is defined in a statistical sense
[17,18]. The MVE [15,16] is such a robust estimator with desirable properties
such as intuitive geometric meaning, its formulation as a convex optimization
problem which has a global unique solution, and its minimum variance.

2.1 Properties of the Mahalanobis Distance

The Euclidean distance between two points, x = (x1, . . . , xd)T and y = (y1, . . . ,
yd)T , in the d-dimensional space R

d is defined as: DE(x,y) =
√

(x − y)T (x − y).
It follows that all non zero points with the same distance from the origin o,
satisfy: x2

1+· · ·+x2
d = c2, c ∈ R

+, which is the equation of a spheroid. This means
that all components of an observation x contribute equally to the Euclidian
distance from x to the origin or any other reference point. Hence, DE(x,y) is
meaningful when the data have an equal variance across all its dimensions.

Real life data, however, are usually measurements from various sources at
different scales, and are subject to various noise sources. To account for such
variability, each component can be assigned a weight that is proportional to
the amount of variation across its values, such that components with high
variability should receive less weight than those with low variability. Let u =
(x1/s1, . . . , xd/sd), and v = (y1/s1, . . . , yd/sd); then, the distance between u
and v will be: DE(u,v) = DΣ(x,y) =

√
(x − y)T Σ−1(x − y) where Σ =

diag(s2
1, . . . , s

2
d), and s2

j is the variance of the data across dimension j. Now
the distance from x to the origin equals DΣ(x,o) =

√
xT Σ−1x, and all points

with the same distance to the origin satisfy: (x1/s1)2 + · · · + (xd/sd)2 = c2,
which is the equation of an ellipsoid centered at the origin with its principal
axes aligned to the coordinate axes.

By considering correlations between components, this will allow the ellipsoid
to rotate its axes and to increase/decrease its size, yielding the well known gen-
eral form of the distance between two points x and y, the Mahalanobis distance:
DΣ(x,y) =

√
(x − y)T Σ−1(x − y), where Σ is a symmetric positive definite

matrix, Σ � 0. Consequently, points with the same distance to the origin sat-
isfy: xT Σ−1x = c2, which is the general equation of an ellipsoid centered at the
origin.
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The general Mahalanobis distance enjoys all the properties of distance func-
tions that are defined on a metric space. That is, for any three points x, y,
and z in R

d, the following are satisfied: Symmetry: DΣ(x,y) = DΣ(y,x), Non
negativity: DΣ(x,y) > 0 if x �= y, Self reflection: DΣ(x,y) = 0 if x = y, and
Triangle inequality: DΣ(x,y) ≤ DΣ(x, z) + DΣ(z,y). Also, it is worth noting
that the Euclidean distance can be considered as a special case of the general
Mahalanobis form by letting Σ = I, where I is the identity matrix. Alternatively,
the general Mahalanobis distance can be seen as a projecting the original x on
the space of Σ−1/2 and using the Euclidean metric in that space.

2.2 Robust Statistics and the MVE Estimator

Robust statistics [17,18] is the stability theory of statistical procedures. It sys-
tematically investigates the effects of deviations from modeling assumptions on
known procedures, and if necessary, develops new better procedures [18]. The
primary concern of robust statistics is distributional robustness, i.e. the shape
of the true underlying distribution deviates slightly from the assumed model
(usually the Gaussian law) [17]. Another concern of paramount importance is
the design of estimators that can tolerate a large number of outliers before the
estimate is affected. Such estimators are known to have a high breakdown point
(BP). Finding robust multivariate location and scatter estimators is crucial to
make other multivariate techniques such as principal component analysis and
discriminant analysis more robust. In addition, distances based on these es-
timators are more precise than regular ones, and are better suited to expose
outliers [14].

The MVE estimator [15,16] is a robust estimator for location (mean) and
scatter (covariance matrix) with the highest possible BP value (50%). Geomet-
rically, the estimator finds the minimum volume ellipsoid covering, or enclosing
a given set of points. The MVE estimator is a generalization of the least median
of squares (LMS) estimator [15,16] for high dimensional data sets, with the extra
property of being equivariant to translation, scaling, orthogonal projection and
affine transformations. Formulation of the MVE covering a data set is illustrated
in the next section.

3 The Minimum Volume Ellipsoid

We consider the problem of finding the minimum volume ellipsoid (MVE) cov-
ering a set. Let X = {xi | 1 ≤ i ≤ m,xi ∈ R

d} be a bounded set, where m is the
number of vectors, and d is the dimensionality of the input space. The minimum
volume ellipsoid that covers X is known as the Löwner − John Ellipsoid of the
set X and is denoted Elj [2]. The Elj can be parametrized as follows:

Elj = {x | ‖Σx − b‖2 ≤ 1}, (1)
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where Σ ∈ R
d×d, Σ � 0, x and b ∈ R

d, and its center is Σ−1b. The general
ellipsoid can be seen as the inverse image of the Euclidean unit ball under an
affine transformation. Using the fact that Σ � 0, it follows that [2]:

V(Elj) ∝ det(Σ−1) ∝ 1
det(Σ)

, (2)

where V(Elj) is the volume of the ellipsoid Elj . Finding the minimum volume
ellipsoid covering X can be formulated as follows:

min
Σ

log det(Σ−1) or equivalently (3)

max
Σ

log det(Σ) (4)

subject to ‖Σxi − b‖2 ≤ 1, i = 1, . . . , m,

where the variables of this minimization are Σ and b, with an implicit con-
straint that Σ � 0 which forces the induced distance function to respect all
the previously mentioned properties of a metric. The minimization in (3) is a
convex optimization problem since the objective and the constraints are convex
in the variables Σ and b. This is very useful since, theoretically, it allows a
global minimum to be found away from local minima. The details of this convex
optimization problem are elaborated in [2].

Computing the minimum volume ellipsoid bounding or enclosing a data set
can be done in several ways, and the interested reader can see [7,3,13] for a nice
review. At the current stage of our research, all our experiments used the CVX
MATLAB toolbox for Disciplined Convex Programming [10]. CVX is a general
purpose solver that implements an interior point method algorithm that scales
efficiently with small to medium size problems.

3.1 The MVE Metric and the MiniVenn Algorithm

The basic idea of the MVEM is that the metric is learned from the perspective
of the point itself, should it be a training or a test point, labeled or unlabeled.
This should make the metric independent from the learning paradigm since it
does not depend on labels as in [6,7], nor on side–information [5,9]. In other
words, the metric tries to answer this question, How does a point perceive the
similarity between itself and other neighboring points? Based on the concept of
locality, the metric tries to find the fine differences between a point and its local
neighbors, and major differences between the neighborhood and other points in
the space.

To find such a metric, we present the Minimum Volume Ellipsoid of Nearest
Neighbors (MiniVenn) algorithm, shown in Algorithm 1. Given a query point xq,
the algorithm finds the MVE with xq as its center and covering its m nearest
neighbors. Recalling the relation in (2), the MiniVenn actually finds a symmetric
positive definite matrix with maximum determinant that can parameterize a
Mahalanobis distance function from the perspective of xq. The MiniVenn starts
by finding the m nearest neighbors of xq using the Euclidean metric; this is
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Algorithm 1. Minimum Volume Ellipsoid of Nearest Neighbors (MiniVenn):
finds a symmetric positive definite matrix Σq with maximum determinant
.

Require: Xn×d, xq, and m, where X is the training set with n d-dimensional samples,
xq is the query point, and m ≥ d + 1 is a hyper-parameter that controls the size of
the neighborhood.

1: Find the set Xq that has the m nearest neighbours of xq using the Euclidean metric.
2: Find the MVE with center xq that covers Xq using the following convex optimiza-

tion:

max
Σ

log det(Σq)

subject to ‖Σqxj − b‖2 ≤ 1, 1 ≤ j ≤ m, xj ∈ Xq

‖Σqxq − b‖2 = 0

{The second constraint insures that xq will be the center of the MVE, since its
center is defined as Σ−1

q b.}
3: return Σq

equivalent to considering a spheroid around the query point that covers its m
nearest neighbors. Starting from the Euclidean metric is equivalent to setting
the initial covariance matrix to the identity matrix which simply reflects our
a priori assumption that all variables are independent with zero mean and unit
variance. This can also be considered as bootstrapping the MVE metric. Next,
the convex optimization in (3), reshapes the spheroid into a MVE covering the
same set, thereby learning the variances and correlations within and across all
variables. The learned Σq will be used to measure the Mahalanobis distance from
any point x to xq. Note that in terms of distances, for any two points x,y ∈ R

d,
DΣx(x,y) = DΣx(y,x) by symmetry. However DΣx(x,y) �= DΣy(x,y) since the
reference covariance matrix is different.

The advantage of the MVEM stems from its flexibility to be used in any learn-
ing paradigm. In an unsupervised setting, and with existence of side–information
[5,9], similar samples can be grouped in the same MVE, with the center being
their mean. The same applies in the semi–supervised context, when given par-
tially labeled data, which is similar to clustering with side–information. In both
cases, m acts as a hyper–parameter that controls clustering affinity.

For supervised learning, two scenarios can take place for learning the metric.
In the first, one can learn a full metric DΣ : R

d × R
d :	→ R, where MiniVenn will

find a MVE for each training point xi (i.e. Σi). On the one hand, in concept,
this makes the MVEM relatively close to the metric found in [5]. On the other
hand, as an algorithmic approach, this makes MiniVenn close to the initial step
of manifold learning algorithms such as [11,12], albeit without the dimensionality
reduction step. The second scenario, on the contrary, learning can be done online
using the lazy learning approach [4], where the MVE is computed only on request
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when a query point xq is presented to the training set, and m can be optimized
by cross validation. In both scenarios, since there is a training phase to optimize
m, the MVEM will generalize well on unseen data sets.

3.2 Links to Other Metric Learning Algorithms

Before proceeding, let us review some basic identities. Let A ∈ R
d×d � 0 be a

symmetric positive definite matrix; then, by eigen decomposition, A = V ΛV T ,
Λ = diag(λ1, · · · , λd), where the λjs are the eigenvalues of A, and the columns
of V are its eigenvectors. Then, det(A) =

∏d
j=1 λj � 0, and det(A−1) =∏d

j=1 1/λj � 0. Also, ‖A‖2
F = ‖V ΛV T ‖2

F = ‖Λ‖2 � 0.
Algorithms found in [5,6,7,8] learn, in general, a parametrized Mahalanobis

metric of the form DA(x,y) =
√

(x − y)A−1(x − y), and differences between
these algorithms are due to the different structures imposed on A. The work in
[5,7,8] directly finds an A−1 with minimum ‖A−1‖2

F , i.e. a MVE, accompanied
with another term that stems from the problem context, such as minimization of
classification error, minimization of distances between similar points, or learning
relative relations between points, which ultimately leads to the different flavors of
algorithms. Alternatively, the metric in [6] finds directly a matrix A−1 � 0 that
minimizes the Kullback–Leibler divergence between an observed and a desired
distribution that will collapse classes to a single point.

The MVEM is relatively close to [5], with no explicit restriction on A to encode
similar samples differently than all other samples, as this is left to the parameter
m in the MiniVenn algorithm (1). This can be considered as letting the data
speak for itself, but it will be interesting to apply some local constraints similar
to those found in [5,9]. Moreover, it does not group similar points together;
rather, it is a locally based algorithm. Unlike the proposed methods in [6,7,8],
the MVEM does not have any constraints from the problem context; rather, it is
the parameter m that is adjusted according to the problem context, and hence
the flexibility of the algorithm.

The concept of parameterized Mahalanobis distances also has interesting links
with some recent manifold learning algorithms. Charting a manifold [11] and
Manifold Parzen Window [12], initially, fix a Gaussian at each training point
and then find a local covariance matrix A based on the neighboring samples.
To overcome the poor representation of local covariance matrices, MPW has
an embedded dimensionality reduction step by means of spectral decomposition
of A, and flattens those components with very small singular values. This acts
as a regularized MLE with a Gaussian component, thereby yielding Gaussian
pancakes, i.e. a Mahalanobis distance based on a low dimensional projection.
In charting a manifold, however, the charting step includes a maximum likeli-
hood estimation, i.e. directly maximizing det(A−1) (see [2] p. 355), yielding a
rotation and an increase of the ellipsoid size, thereby covering a more represen-
tative neighborhood. However, neither of the two approaches guarantees a small
variance for their estimate.
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4 Experimental Results

The experimental setting was designed to validate the MVEM concept and to
show its potential. Since the primary objective is to have a metric that can
replace the Euclidean metric in any learning paradigm, it is intuitive to evaluate
the “pure” impact of the new metric without additional aid or complexities
from sophisticated learning algorithms. That is, select a simple algorithm that
depends solely on the Euclidean metric and replace this metric with the proposed
MVEM. The basic and classical k–Nearest Neighbors classifier (k = 1) meets
such specifications, where optimization of the hyper–parameter m can be based
on the training error. Given a training set and a test set, we find the nearest
neighbor of each test point using the MVEM.

Table 1. Error rates(%) for EUC, LM, RCA, XING, and MVEM on eleven data sets
from the UCI repository using one–out–of–sample criterion

DataSet classes size dim. EUC LM RCA XING MVEM

Liver Disorders (bupa) 2 345 6 37.7 38.5 34.5 37.6 35.6
Glass 7 214 9 26.2 34.1 28.5 26.2 23.8
Ionosphere 2 351 34 11.4 16.2 8.3 12.5 8.8
Iris 3 150 4 4.0 2.7 4.0 2.6 2.6
New–Thyroid 3 215 5 5.1 6.9 4.1 5.1 3.2
Diabetes (pima) 2 768 8 32.0 32.4 30.4 32.0 30.4
satImage 6 4435/2000 36 10.6 12.4 22.4 10.6 10.0
Sonar 2 208 60 17.8 24.5 15.9 17.7 15.4
WDBC 2 569 30 9.1 7.9 8.8 9.1 8.4
Wine 3 168 12 4.5 7.3 2.2 10.1 2.8
Yeast 10 1484 6 48.2 46.9 47.2 no convergence 47.5

The MVEM was compared with four other metrics (or metric learning al-
gorithms). Initially, the MVEM was compared to the regular Euclidean metric
(EUC), and the Local–Mahalanobis (LM) metric obtained by the local covari-
ance matrix of each test point and its m neighbors from the training set, where
m is also optimized based on the training error. Next, the source codes for XING
[5] and RCA [9] were downloaded from the authors’ web sites in order to com-
pare their performance with the MVEM. XING [5] and RCA [9] algorithms were
specifically designed for unsupervised learning with side–information. Unlike the
MVEM, these algorithms not only depend on side–information; it is the amount
of available side–information that determines their performance. By providing
all the true labels for these two algorithms, the uncertainty in the labels is elim-
inated, and the algorithms should perform at their best.

All five metrics (or algorithms); EUC, LM, RCA [9], XING [5], and MVEM
were run on eleven problems from the UCI Machine Learning Repository [1],
shown in Table 1, with various sizes, dimensionalities, and difficulties. Except
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Fig. 1. Error difference bars for EUC, LM, RCA, and XING when compared with
MVEM. A positive difference implies that the MVEM is better than the other metric,
and negative difference implies the contrary.

for the Sat–Image data set which had explicit training and test sets, the error
rates, shown in Table 1, are based on a one–out–of–sample performance using
n runs where n is the number of samples in the data set. In order to speed–up
the CVX solver, as a preprocessing step, principal component analysis (PCA)
was applied to all data sets, except bupa, new–thyroid, pima, and yeast, to keep
99% of their total variance. PCA was obtained from the Sat–Image training set,
and from the training set after each split, from all other data sets. The hyper–
parameter m (for the case of MVEM and LM) was optimized based on the best
training error on the Sat–Image data set, and on the leave–one–out training
error after each split for all other data sets.

Discussion: Figure 1 shows error difference bars between all metrics and the
MVEM. It can be seen that in overall performance, the MVEM is consistently
as good or better than other metrics for most of the cases. In the light of these
results, it is worth noting that, in the cases where RCA is slightly better, it is
important to recall that RCA was designed for the case when partially labelled
data are available, and it achieved this performance when it was provided with
the full set of data labels. This is unlike the MVEM which did not use such extra
information during its training phase. This makes the MVEM very promising
for learning problems where the samples are not labelled, partially labelled, or
manually annotated with side–information.
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5 Conclusion

We have introduced an unsupervised local–learning algorithm for learning a
metric in the input space. The metric has desirable statistical and geometrical
properties, the corresponding algorithm does not depend on side–information,
and showed promising and competitive results when compared with state of the
art metric learning algorithms that depend on side–information.
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Abstract. A natural (human) eye can easily detect large visual patterns
or objects emerging from spatially distributed discrete entities. This as-
pect of pattern analysis has been barely addressed in literature. We pro-
pose a biologically inspired approach derived from the concept of visual
attention to associate together the distributed pieces of macro level pat-
terns. In contrast to the usual approach practiced by the existing models
of visual attention, this paper introduces a short-term excitation on the
features and locations related to the current focus of attention in paral-
lel to the spatial inhibition of return. This causes the attention system
to fixate on analogous units in the scene that may formulate a mean-
ingful global pattern. It is evident from the results of experiments that
the outcome of this process can help in widening the scope of intelligent
machine vision.

1 Introduction

A human observer instantly recognizes the patterns formed by arrangement of
discrete pieces, such as those given in figure 3, even in the presence of substantial
amount of distractors. The individual stars in the European Union flag are of
course recognizable patterns by themselves but the macro-level pattern of a
circle also has significant meaning for the human vision. This aspect of intelligent
viewing helps us in understanding the structures created by spatially distributed
items such as shape of a formation of airplanes in an air show, a pattern formed
by light bulbs in a signboard, or a design presented by arrangement of windows
in an architectural building. Establishing such a relationship is also needed while
reading text on large billboards that may be written with horizontal, vertical, or
even diagonal arrangement of letters. In psychology this phenomenon is related
to the concept of similarity based perceptual grouping [1].

Most of the existing work in this area, such as [2], considers two or already
known number of components of distributed patterns in man-made images to for-
mulate a group. We extend the scope to previously unknown number of objects
in natural images using a biologically plausible model based upon the phenom-
enon of visual attention that is utilized by natural vision systems for intelligent
viewing. The presented solution will help in picking together the dispersed pieces
of the global patterns in a successive sequence so that they could be provided to
a higher level recognition process.

F.A. Hamprecht, C. Schnörr, and B. Jähne (Eds.): DAGM 2007, LNCS 4713, pp. 345–354, 2007.
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The next section presents the literature related to perceptual grouping and
the existing approaches of visual attention modelling. The third section presents
the proposed model that includes an explicit influence of behavior in the atten-
tion model while introducing the modules for fine grained feature excitation and
inhibition in the system. These innovations give rise to a new behavior, we name
it as examine, which tends to proceed towards the solution of the above men-
tioned problem. The fourth section explains the details of the examine behavior
and then the fifth one presents the results of the proposed model in context of
integrating parts of distributed patterns followed by a discussion on the achieve-
ments from the presented work.

2 Related Work

The concept of grouping texture elements using local conspicuous features called
Textons [3] has been a significant influence on methods for perceptual grouping.
Perception of patterns from random dot distributions known as Glass Patterns
[4] also has a history of many decades, but these methods have a specific area
of application with special restrictions on the input that they can process. The
efforts on recognizing dot patterns under gestalt theory are also a step towards
determining global structures in the images. One example of such methods is
[5], which extracts the perceptual segments of dots grouped together based upon
their relative locations and then analyzes the shape of segments. The work in
[6] discusses extraction of skeletal shape from 2D dot patterns using self orga-
nizing neural networks. The method in [7] uses orientation-tuned receptive field
mechanism for determining the local orientation in order to group adjacent to-
kens consisting of positions and attributes. These methods generally require two
restrictions on the input. Firstly the dots should have known size and/or other
features and secondly, they should be present in a near neighborhood to each
other. Hence, ability to process only a restricted type of artificial data rather
than natural images is a major shortcoming.

Another area having relevance to the work discussed in this paper is the illu-
sory contour perception [8] in which completion of imaginary edges is performed
between spatially distributed items. Markov random fields have been applied
in [9] for completing broken contours in simple images while [10] performs an
attentional approach to highlight components of similarly oriented contours in
natural images. The work in [11] separates similarly oriented items in images
using Gabor responses. The methods mentioned here and other such examples
concentrate either on a single feature, mainly orientation, or perform grouping
for a specific task using specialized input. On the other hand, the proposed
method is an attempt to perform generalized grouping in unrestricted natural
scenes as part of the effort to achieve intelligent vision as performed by the
biological organisms.

As the proposed solution is based upon artificial visual attention, hence we
mention some of the existing models in context of the attention behaviors that
they demonstrate. The famous model discussed in [12] and [13] mainly deals
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with search behavior but uses a bottom-up procedure to achieve the target.
The recent modification in the model presented in [14] introduces a top-down
influence by adjusting weights of feature maps in order to facilitate early pop
out of the target. Recent experiments reported by the same group reveal the fine
grained nature of the top-down attention, meaning that it is not only the weights
of feature maps but the feature values as well that help a target object to pop
out first [15]. We have modeled this fact in our approach by explicit excitation
on feature values like color, eccentricity, and size etc. The selective tuning model
[16] remains in a behavior resembling to explore as it does not apply top-down
conditions to excite the search target and lets the salient items pop-out during
a process involving bottom-up saliency and spatial inhibitions. The models of
[17] and [18] are restricted only to exploration while the model given in [19]
discusses both explore and search behavior by integrating bottom-up and top-
down biasing in the process of hierarchical selectivity.

The model of [20] considers three behaviors of explore, search, and detect
changes while [21] implements explore and search for dynamic scenes. Work on
the early developments in the model proposed here can be seen in [22], [23], and
[24] where the main emphasis was on explore behavior under the static scenes
scenario. Here the model is enhanced to deal with dynamic scenes using memory
based mechanism for inhibition of return. Moreover, a new behavior of examine is
introduced that performs the task of perceptual grouping for spatially distributed
patterns by applying excitation on the features of the previously attended object.

3 Proposed Model of Attention

The first major difference of the proposed model of attention from the other
models is its region-based nature. Most of the existing models make copies of the
input at different scales and apply the attention processes on the pixels of these
scaled images whereas a late clustering is implemented to satisfy the needs of
object recognition during top-down influence. This leads to fuzzy and dislocated
activity clusters and the focus of attention is also unusable by a recognition
process. The proposed method first applies a clustering algorithm that produces
suitable input for use of the attention process [25] and applies the procedures of
visual attention on these pixel clusters. This approach offers many advantages
like acceleration in computation, precise localization of activity clusters, and
reusability of attention focus into the recognition algorithms.

Figure 1 presents the architectural diagram of the overall model in which a
feature extraction function F constructs the feature maps which are combined
using the function W that uses weighted averaging to construct a master saliency
map. Details of these two functions can be seen in [23] and [24]. The pop-out
selection mechanism P picks the highest salient location as the focus of atten-
tion which is used by the biasing mechanisms to apply inhibition or excitation
according to the active attention behavior handled by module B. The top-down
influence affects excitations, inhibitions, and the weights of the feature maps in
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Fig. 1. Architectural diagram of the proposed attention model

order to locate an externally defined target. In this paper we confine our detailed
discussion on the fine grain feature excitation and spatial inhibition owing to
their active role in the examine behavior.

The fine grain feature excitation and inhibition components included here are
innovative enhancements in the attention modeling as the existing models apply
the top-down or bottom-up influences only by managing weights of the feature
maps. The recent experiments on attention such as [15] and [26] suggest that the
attention mechanism can excite or inhibit particular values (or a range of values)
of features, for example a certain range of hue or some angle of orientation. We
include these aspects into our model of attention, which give a feedback to the
inhibition/excitation function I. Details of the biasing functions related to the
proposed examine behavior are discussed in the next section.

4 The Examine Behavior

In order to solve the problem of grouping the components of spatially distributed
patterns, formed by similar small pieces, we propose a temporary excitation in
the feature values resembling the recently attended object coupled with a spatial
inhibition on the already attended locations. As we are considering the dynamic
input consisting of many frames per second in which the clusters get updated
after arrival of each frame, a memory oriented mechanism is introduced for appli-
cation of biasing effects. This is also an innovation in contrast to the traditional
inhibition maps used by the contemporary models. The examine behavior works
by placing the feature values of the previous pop-out into the feature excita-
tion memory (FEM), denoted by M e, and its location into the spatial inhibition
memory (SIM) denoted by M s. As the features to be excited remain more or
less the same during a cycle of examining, hence the length of Me is set to only
one item. On the other hand the series of locations attended by the system have
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Fig. 2. Execution cycle of examine behavior

to be inhibited in order to avoid revisiting of the same objects hence the SIM
has a length of m items. We take m = 13. Hence

M s = {M s
k}, k ∈ {1, 2, . . . , m} .

For the latest focus of attention k is set to 1 and it rises with the age of M s
k in

M s. The overall structure of the examine behavior is sketched in figure 2.
The input for the proposed model is a list of regions R, constructed from

the given input frame, containing n regions in which each region is denoted by
Ri. Each Ri contains necessary information about the concerned region such
as average hue in the region, average saturation, mean intensity, coordinates of
the vertices of the bounding rectangle, values of all features from the feature
space F, and a list of pointers to the immediate neighbors of Ri in the same list
(denoted by ηi). Let St

f (Ri) be the saliency of Ri with respect to feature f at
time t then the spatial inhibition on Ri is applied as follows:

St+1
f (Ri) = St

f (Ri) · δ ∀i ∈ R & f ∈ F when Ds(Ri, M
s
k) < rinh∀k ∈ {1, 2, ..m}

where δ is the spatial inhibition factor such that 0 < δ < 1, Ds(Ri, M
s
k) is the

spatial distance between the considered region Ri and the region in the memory
location M s

k , and rinh is the radius in which inhibition takes effect. Excitation
is applied to the regions in R that are not in M s and have nearness in features
with the last attended region saved in excitation memory Me. Hence

St+1
f (Ri) = St

f (Ri) · γi ∀i ∈ R & f ∈ F, Ri /∈ M s when Df (Ri, M
e) < θf ,

where Df (Ri, M
e) gives the difference between Ri and M e in terms of feature

f , θf are threshold values and γi is the excitation factor such that γi > 1. The
value of γi is inversely proportional to the distance of Ri from M e hence it is
modeled as

γi =
c · rinh

Ds(Ri, M e)
,

where c is a scaling factor to keep γi ≥ 1 and Ds(Ri, M
e) is the spatial distance

between Ri and the previously excited location M e. To some extent the examine
behavior has similarity with search or track behaviors but that would require
an inhibition on all objects that differ in features from the target. We do not
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perform such inhibition in order to allow the system to examine the neighborhood
of the attended object so that it could establish relationship even with non-
similar surrounding items when no similar objects exist nearby. On the other
hand, search and track looks for only one object in a dynamic scene whereas the
proposed behavior deals with many objects having common features. Although
this discussion is beyond the scope of this paper but such facility can help in
learning to integrate pieces of complex objects that do not have common features
as well, for example relating together the center of a sunflower with its petals.

5 Results

Experiments were performed using a large set of test images in which high level
patterns composed by small objects were present. Figure 3 demonstrates some of
these test cases. The model was first executed in exploration mode until it fixated
on one of the components of the macro-level pattern and then the behavior was
switched to examine in order to highlight this pattern in the subsequent saccades.
The images of the European Union flag and the night drive scene were among
the samples in which a few saccades had to be made before entering the required
pattern as visible in figure 4 (a) and (d) where the first focus of attention (marked
by 1 in the small rectangle) is outside the main pattern. It is observable in the
output given in figure 4 that the model has successfully selected the components
of the global pattern in a suitable sequence that follows a scan path reflecting
the shape of the respective pattern (figure 5). The circle of stars is picked with
fair accuracy, the formation of airplanes is also picked but the scan path needs
to be corrected to form a triangle, the letters on the sign board are attended
in a suitable sequence that can facilitate reading of the message, and the road
side marked by cat eyes is also followed correctly. The arrow formed by the
yellow light bulbs and the petals of sunflowers are picked but in an unexpected
order while the letter ’2’ and the rectangle were picked in a correct sequence
that highlights their shape. One component at the top left of the digit ’2’ is
missed because the attention moved away from it while following the perceptual
group. Due to the attentional nature of the method the sequence of fixations is
highly dependant on the visual saliency of the individual items in comparison
to their neighborhood that may pull attention of the system before the other
items. Hence the scan path may not always draw the concerned shape but this
problem can be tackled by normalizing the curve using the points of fixation as
guiding information.

The output of the system using the test image given in figure 3 (g) very clearly
demonstrates the ability of the method to maintain its focus on the pattern
under examination even in presence of distractors that posses higher saliency
as compared to the components of the pattern. For example, the rectangles
with orange and red colors have higher color saliency than the green ones but
the system continues to examine the pattern due to excitation of the examined
features. The distracting saliency in the image can be noted by running the
system only under exploration behavior. Figure 6 shows output of exploration
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Fig. 3. Some images from the data set for experimentation. (a)EU flag (b)air show
(c)signboard (d)road at night marked by cat eyes (e)arrow (f)digit 2 formed by oriented
rectangles (g)rectangle formed by green boxes (h)circular patterns formed by sunflower
petals.

Fig. 4. Locations fixated under examine behavior

Fig. 5. Scan paths followed by the saccades. Attended regions are also highlighted in
(c) to demonstrate the possible utility of the system in reading large graphic texts.

Fig. 6. Output of attention under explore behavior. (Left to right) First three figures
show FOA under explore behavior using the proposed method and the last three are
results using the model of [12].
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using the proposed system and the model of [12] using some selected test cases.
It is obvious from these results that the fixations under the traditional attention
process do not attempt to gather pieces of a high level pattern.

6 Discussion

For a quantitative evaluation of the results from the proposed method we use
a scheme adapted from [10]. The test images were presented to human sub-
jects and they were asked to mark the pieces of the most prominent pattern
in each. Copies of the same images having low visual quality, obtained by se-
lecting a highly lossy option during JPEG compression, were also used in these
experiments. The number of the marked locations were recorded for each case
and plotted as a bar graph. Data from the output of the proposed model was
collected by counting the locations marked by the system under examine behav-
ior. Figure 7(a) shows outcome of this comparison. The proposed system gave
identical results as the human subjects on patterns formed by moderately sized
components in images with good visual quality. The performance dropped when
the pattern components were very small (e.g. in cat eyes image) or do not have
clear boundaries (e.g. the petals in the sunflower image). Due the dependency of
the model on segmentation, the low image quality of the input causes a signif-
icant decline in its performance while the human observers maintain the same
efficiency as long as the pattern components remain visible for the eye.

Fig. 7. Performance analysis of the proposed model. (a) Comparison with human sub-
jects in terms of grouping distributed pieces of the most prominent pattern in images
given in figure 3 (b) Performance against quality of image. (c) Performance against
salient distractors.
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The method proposed here depends upon mainly two factors to give good
performance. Firstly, it is dependant on the quality of images used as input.
Highly compressed images that have noisy shape representations cause decline
in performance of the system. Figure 7(b) plots the percentage of fixations placed
outside the examined pattern against the quality of image. The actual number
of pattern components were obtained by getting the patterns marked by human
subjects while different magnitudes of image quality were produced by selecting
the parameter of quality during JPEG compression. Low quality of input has
minor affect on human observation but significantly degrades performance of the
artificial system in the current state of technology. Figure 7(c) shows the effect
of presence of highly salient distractors on the performance. It is clear from the
results that there is less effect of the presence of distractors that could distract
attention in competition to the pattern components. Images of normal quality
(without insertion of compression noise) were used in the second experiments.

At this point it is difficult to provide a quantitative comparison of results
with the existing methods because such aspect of pattern analysis has not been
directly considered in the literature so far and also there are no benchmarks
available yet to perform such evaluation. There are many different facets that
demand extensive research such as improving the robustness while selecting the
component patterns, methods to correlate the components to understand the
formed shape, or even an alternate mechanism to perform the same task.

The behavior discussed in this paper is modeled based upon a hypothesis best
suited to explain the phenomenon of studying the patterns formed by disjoint
components. Psychophysical experiments to prove its existence in the natural
vision are yet to be done. Experiments on the model have shown success of
the proposed method in advancing towards solution of the said problem that
can lead to superior ability of pattern analysis, recognition, and learning in the
artificial vision systems.
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Abstract. Glaucoma is one of the most common causes of blindness
and it is becoming even more important considering the ageing society.
Because healing of died retinal nerve fibers is not possible early detec-
tion and prevention is essential. Robust, automated mass-screening will
help to extend the symptom-free life of affected patients. We devised
a novel, automated, appearance based glaucoma classification system
that does not depend on segmentation based measurements. Our purely
data-driven approach is applicable in large-scale screening examinations.
It applies a standard pattern recognition pipeline with a 2-stage classifi-
cation step. Several types of image-based features were analyzed and are
combined to capture glaucomatous structures. Certain disease indepen-
dent variations such as illumination inhomogeneities, size differences, and
vessel structures are eliminated in the preprocessing phase. The “vessel-
free” images and intermediate results of the methods are novel represen-
tations of the data for the physicians that may provide new insight into
and help to better understand glaucoma. Our system achieves 86 % suc-
cess rate on a data set containing a mixture of 200 real images of healthy
and glaucomatous eyes. The performance of the system is comparable to
human medical experts in detecting glaucomatous retina fundus images.

1 Introduction

Glaucoma is one of the most common causes of blindness with a mean prevalence
of 4.2% for ages above 60 years. This disease is characterized by changes in the
eyeground (fundus) in the region of the optic nerve head (ONH): (i) enlarge-
ment of the excavation, (ii) disc hemorrhage, (iii) thinning of the neuroretinal
rim, (iv) asymmetry of the cup between left and right eye, (v) loss of retina nerve
fibers, and (vi) appearance of parapapillary atrophy. It is induced by the pro-
gressive loss of retinal nerve fibers in the parapapillary region. Although those
lost fibers cannot be revitalized and there is no possibility for healing glaucoma,
the progression of the disease can be stopped [1].
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Nowadays, diagnosis is commonly done by physicians who examine the eye
fundus using an ophthalmoscope or digital retina images acquired by devices
like the Heidelberg Retina Tomograph (HRT) [2] or the Kowa NonMyd fundus
camera.

1.1 State of the Art

In the domain of retina image analysis, automated methods already exist for
certain tasks, for instance determination of components of the eyeground (e.g.
segmenting the vessels [3] or the ONH [4,5]). These measurements can be used
for automated diagnosis of diseases such as diabetic retinopathy [6] or glau-
coma. Existing image-based glaucoma detection methods work on HRT images.
Swindale et al. [7,8] models a smooth two-dimensional surface that is fitted to
the optic nerve head in topography images. Detection of glaucomatous damages
can be done via global shape measures of the optic disc (cup and disc area,
height variation in HRT images) [9]. This global shape approach is compared
with a sector-based analysis by Iester et al. [10]. Zangwill evaluated optic disc
parameters and additional parapapillary parameters via Support Vector Ma-
chine (SVM) for detecting glaucoma [11]. Greaney states that the detection of
glaucoma via separately applied, shape-based methods on different modalities
(confocal laser scanning ophthalmoscopy, scanning laser polarimetry, optical co-
herence tomography) is not better than qualitative assessment of the optic disc
by ophthalmologists [12]. All of these shape approaches assume a valid segmenta-
tion of the optic disc. However, segmentation based techniques have one major
drawback: small errors in segmentation may lead to significant change in the
measurements and thus the estimation and diagnosis.

1.2 Our Approach

We build a robust, automated glaucoma detection system using color fundus
images in a data-driven way. Therefore, image-based features are provided that
are new in the domain of glaucoma detection. This, so called appearance based,
approach is well-known from object and face recognition [13,14]. The technique
is based on statistical evaluation of the data and does not depend on explicit
outlining of the optic disc, as required for global or sector-based shape analysis.
Consequently, preprocessing and image-based feature extraction has a major
influence on the classification process.

This work shows the influence of different image-based features on the accu-
racy of glaucoma classification from fundus images. We analyze different types
of features (pixel intensity values, textures, spectral features, and parameters of
a histogram model) that are intended to capture glaucomatous structures and
evaluate the results using three different classifiers (naive Bayes classifier, k-
nearest neighbor, and Support Vector Machine). They were used to classify the
computed features as is, in combination with an attribute preselection method,
and with an iterative attribute selection by AdaBoosting. The combination of
features is also considered.
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2 Methods

The image processing is structured in a standard 3-stage pipeline: (i) prepro-
cessing, (ii) image-based feature extraction, (iii) classification. In this work, the
preprocessing steps are not changed during the experiments.

2.1 Preprocessing

Our previous studies [15] showed that appearance-based approaches perform
better on images with less disease independent variations. For this reason, a
normalization of the three major variations is applied.

The inhomogeneous illumination caused by deviations in the complex acqui-
sition process are compensated by robust homomorphic surface fitting [6]. Also,
the vessel branches in the images vary much in size, location and shape among
individual cases and introduce a high variance in the data that suppresses vari-
ations due to the disease itself. Thus, we roughly segment blood vessels and
spatially inpaint them to gain a “vessel-free” image. These images, as shown in
Fig. 1, provide a novel image representation with irrelevant parts excluded that
support physicians in diagnosing glaucoma.

Fig. 1. Vessel inpainting on color fundus image: Original color fundus image (left),
image with vessel mask overlayed in black (center), “vessel-free” fundus image (right)

The neuroretinal rim is the most important region for detecting glaucoma
[16]. We normalize the images such that the ONH is centered in all images and
appears in the same size. The images are scaled to an uniform size of 128 × 128
pixels.

2.2 Image-Based Feature Extraction

We propose four feature extraction methods that provide complementary in-
formation with different spatial and frequency resolutions. Their influence on
glaucoma classification is evaluated in this paper.

Pixel Intensity Values: The standard appearance based approach takes pixel
intensity values directly as a high dimensional feature vector [13] as input of
a dimension reduction algorithm. We considered principal component analysis
(PCA) as an unsupervised and linear discriminant analysis (LDA) as a super-
vised method to reduce dimensionality. As evaluated in [15], thirty principal
components capture at least 95% of data variation.
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Textures: The local spatial and spatial-frequency information is characterized
by textures. To capture the structural changes caused by glaucoma, we provide a
set of Gabor filter banks [17] on preprocessed images. The filter is performed for
rotation angles θ = 0◦, 45◦, 90◦, 135◦ and frequencies u0 = 2k

√
2 for k = 0, . . . , 6.

The dimension of each of the computed 28 filter responses (128 × 128px) is
reduced by PCA separately. The resulting eigenspaces are then concatenated to
a single (28 · 30)-dimensional space.

FFT Coefficients: The frequency spectrum contains global frequency informa-
tion that is translation invariant. We calculate the real and imaginary response as
well as the magnitude of the coefficients of the Fast Fourier Transform (FFT). A
dimension reduction via PCA is performed on the three responses and combined
to a (3 · 30)-dimensional space.

Histogram Model: Histograms provide a compact summary of the data
distribution in an image. The histogram of an image is relatively invariant to
translation and rotation of objects. Comparing histograms of different images
is particularly well applicable to the problem of recognizing global intensity
changes. The histograms of the preprocessed retina images show three major
structural parts corresponding to the background, the papilla rim, and the cup.

The expected variation in the images because of the disease is also represented
in the histograms. The increasing cup area and the decreasing rim area cause
a shift of the intensity distribution towards higher values. We fit a Gaussian
mixture model of three normal distributions to the histogram by a maximum
likelihood estimation and the computed distribution parameters, namely the
mean, variance and weight, serve as features. The 10% and 90% quantiles and
the maximum of the histogram are also taken into consideration.

2.3 Classification

Classifiers: The ability of each image-based feature extraction method to sep-
arate glaucoma and non-glaucoma cases is quantified by the results of three
classifiers. Classifiers achieve good results if their underlying separation model
fits well to the distribution of the sample data. As the underlying data distribu-
tion is unknown, we tested different classifiers.

Naive Bayes Classifier: This probabilistic classifier directly applies the Bayes
rule to determine the probability of a test sample belonging to a class. Three
assumptions are made: the feature data is normally distributed, the predictive
attributes are conditionally independent given the class, and no hidden or latent
attributes influence the prediction process [18].

k-Nearest Neighbor Classifier (k-NN): The k-NN classifier as instance-based clas-
sifier, does not assume a specific distribution of the feature data. It adapts well
to the sample data, but also tends to overfit. It is also sensitive to noise and to
irrelevant features. It is applied with k = 5 neighbors.
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Support Vector Machine: This linear classifier determines a maximum-margin
and soft hyperplane that best separates the considered classes. The data is nor-
malized and transformed via the non-linear radial basis kernel. We use the ν-
SVM with penalization parameter ν = 0.5 and cost-parameter c = 1 [19].

Classification Enhancement: The feature data distribution might not op-
timally fit to the classifiers’ data model. We analyze the effect of two known
methods to improve classification result.

(i) Feature selection removes attributes from the initial set. Features that are
highly correlated to a class and have a low correlation to other attributes are
kept [20] and the reduced set is used for classification.

(ii) AdaBoosting is a classification scheme to improve classification results.
The method iteratively applies one arbitrary classifier. AdaBoosting is able to
improve results especially of weak learners on real-world data and is robust to
overfitting [21].

Feature Combination: To further improve the classification correctness and
robustness, we investigated two ways of combining the four image-based feature
types.

(i) Feature Merging concatenates all available feature spaces to a new high
dimensional space (970 dim.) that is used for classification.

(ii) 2-stage classification applies the probability score of belonging to the glau-
coma class, obtained from each of the four classifiers, as new feature vector input
to another classifier.

3 Evaluation

For evaluation, we took images from the Erlangen Glaucoma Registry (EGR)
that contains thousands of records of multi-modal fundus images from a long-
term screening study. Diagnosis was made by an ophthalmologist based on anam-
nesis, image data and other measurements. The images were acquired by a
Kowa NonMyd α-D digital fundus camera that produced lossless compressed
RGB photographs of size 1600×1216 pixels, using a 20◦ field of view and nasal
positioning (papilla-centered).

We evaluated the above described image-based feature extraction methods
and classifiers on a test set of 100 preprocessed images (50 healthy and 50 glau-
comatous). With this set, the measures were calculated for cross-validation tests
and for classification experiments with separated training and test data. The
PCA/LDA models, i.e. the eigenimages, as well as the training of the classifiers
in the case of separated training and test sets was done with another image set
of 100 images (also 50 healthy and 50 glaucomatous cases).

For all experiments we computed the overall classification correctness and the
F-measure for healthy (Fh) and glaucomatous eyes (Fg), which is the harmonic
mean of sensitivity and precision. To mark promising and robust configurations,



360 R. Bock et al.

Table 1. Classification performance of the four feature extraction methods. Configu-
rations with “best”-criterion are labeled bold.

Data Classifier Structure
Cross-validation Train-Test

Correct (%) Fh Fg Correct (%) Fh Fg

PCA on intensities
(30 dim.)

Bayes
nothing 73 0.72 0.74 48 0.43 0.52

AdaBoost 75 0.76 0.74 64 0.65 0.63
FeatureSel 77 0.75 0.79 63 0.67 0.58

kNN
nothing 77 0.75 0.79 68 0.75 0.57

AdaBoost 74 0.75 0.73 70 0.75 0.63
FeatureSel 82 0.82 0.82 70 0.75 0.62

SVM
nothing 83 0.81 0.85 81 0.83 0.78
AdaBoost 80 0.78 0.82 79 0.82 0.75
FeatureSel 85 0.85 0.85 73 0.76 0.69

PCA on textures
(840 dim.)

Bayes
nothing 69 0.67 0.70 44 0.44 0.44

AdaBoost 69 0.70 0.67 70 0.67 0.72
FeatureSel 76 0.76 0.76 60 0.62 0.57

kNN
nothing 55 0.21 0.69 64 0.73 0.45

AdaBoost 64 0.49 0.72 66 0.74 0.51
FeatureSel 80 0.76 0.83 73 0.77 0.67

SVM
nothing 67 0.57 0.73 60 0.71 0.35

AdaBoost 60 0.41 0.70 76 0.77 0.74
FeatureSel 80 0.78 0.82 81 0.83 0.79

PCA on FFT
(90 dim.)

Bayes
nothing 74 0.73 0.75 47 0.40 0.52

AdaBoost 83 0.83 0.83 59 0.55 0.62
FeatureSel 78 0.77 0.79 72 0.76 0.66

kNN
nothing 75 0.71 0.78 66 0.74 0.50

AdaBoost 74 0.74 0.74 71 0.77 0.60
FeatureSel 83 0.82 0.84 69 0.74 0.62

SVM
nothing 76 0.74 0.77 76 0.79 0.71
AdaBoost 77 0.76 0.78 72 0.76 0.67
FeatureSel 83 0.82 0.84 73 0.77 0.67

Histogram model
(10 dim.)

Bayes
nothing 71 0.69 0.73 58 0.60 0.55

AdaBoost 73 0.71 0.75 65 0.69 0.60
FeatureSel 71 0.69 0.73 45 0.32 0.54

kNN
nothing 81 0.80 0.82 54 0.50 0.57

AdaBoost 72 0.67 0.77 54 0.50 0.57
FeatureSel 69 0.69 0.68 42 0.39 0.44

SVM
nothing 73 0.72 0.74 61 0.61 0.60
AdaBoost 80 0.80 0.80 85 0.00 0.92
FeatureSel 70 0.69 0.71 39 0.30 0.46

LDA on intensities
(30 dim.)

Bayes
nothing 78 0.78 0.78 55 0.52 0.58

AdaBoost 77 0.78 0.76 68 0.71 0.65
FeatureSel 79 0.78 0.80 67 0.71 0.61

kNN
nothing 79 0.78 0.80 68 0.75 0.57

AdaBoost 81 0.80 0.83 74 0.78 0.68
FeatureSel 84 0.84 0.84 69 0.75 0.60

SVM
nothing 82 0.80 0.84 76 0.80 0.71
AdaBoost 78 0.78 0.78 68 0.75 0.57
FeatureSel 80 0.79 0.81 69 0.75 0.60

we defined a “best”-criterion for each feature extraction set. The best configura-
tion within a set has a Fg ≥ 0.60 and Fh ≥ 0.60 in the cross-validation test as
well as in the separated training and test sets experiments and maximum sum
of F-measures Fg + Fh.
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(a) (b) (c) (d)

Fig. 2. (a) “Vessel-free” fundus image, (b)-(c) the first three absolute eigenimages of
PCA on intensities. Bright regions indicate high influence on the features.

Table 2. Classification performance of merged features and 2-stage classification

Data Classifier Structure
Cross-validation Train-Test

Correct (%) Fh Fg Correct (%) Fh Fg

Feature Merging
(970 dim.)

Bayes
nothing 71 0.69 0.72 45 0.43 0.47

AdaBoost 79 0.80 0.78 63 0.58 0.67
FeatureSel 76 0.76 0.76 68 0.71 0.64

kNN
nothing 60 0.33 0.71 63 0.72 0.45

AdaBoost 71 0.69 0.73 66 0.74 0.51
FeatureSel 81 0.79 0.83 67 0.74 0.56

SVM
nothing 72 0.65 0.77 61 0.72 0.38

AdaBoost 61 0.42 0.71 62 0.72 0.71
FeatureSel 84 0.83 0.85 80 0.82 0.77

2-stage Classification
(4 dim.)

Bayes
nothing 84 0.85 0.86 80 0.82 0.76

AdaBoost 82 0.82 0.82 80 0.82 0.77

kNN
nothing 81 0.80 0.82 80 0.82 0.77

AdaBoost 80 0.80 0.80 78 0.81 0.74

SVM nothing 85 0.86 0.84 80 0.82 0.77
AdaBoost 86 0.83 0.88 80 0.82 0.77

In the first step, we tested the four feature extractions with the different
classifier types as described in Section 2. Each feature configuration was applied
as is, in combination with attribute selection or AdaBoosting. The classification
results are given in Table 1. We also computed features based on a LDA model
(trained with the separated training set) and classified them according to our
scheme. The result is shown in Table 1. The absolute eigenimages generated by
PCA on intensities (see Fig. 2) show regions of the fundus with high influence
to the features. Those regions might point to relevant glaucomatous areas and
help in understanding glaucoma.

In the second step, we evaluated the performance of the feature combinations.
Feature merging results are stated in the first block of Table 2. Two stage clas-
sification combines the four best classifiers for each feature extraction method.
For each feature extraction the class probability for glaucoma was taken as an
input to a second classification step. As these features are only 4 dimensional,
there was no need for feature selection. The classification result is shown in the
second block of Table 2.
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4 Results and Discussion

The classification performance using each feature extraction method separately
shows that the correctness varies between 55% and 85% in cross-validation. Also
each feature extraction method itself has varying classification correctness and
F-measures for the different classifier configurations. The SVM separates the fea-
tures most robustly and is always part of configurations labeled with the “best”-
criterion. The configurations with “best”-criterion achieve F-measures between
0.72 and 0.81 for healthy case and between 0.74 and 0.85 for glaucomatous case
in case of cross-validation. They are always using SVM for classification. Only
in case of high dimensional feature space as with PCA on textures (840 dim.)
feature selection is necessary to avoid problems with the curse of dimensionality
and to achieve similar success rates as PCA on intensities. Although the PCA on
pixel values (Fg = 0.85) and on texture (Fg = 0.82) shows slight better results
than PCA on FFT (Fg = 0.77) and the histogram model (Fg = 0.74), all config-
urations show a reasonable discriminative power. Comparing the two dimension
reduction techniques, LDA shows a smaller variance in the results than PCA.
The SVM also classifies the LDA features best.

In case of the feature merging, the highest success rate and F-measures (Fg =
0.85, Fh = 0.83) are obtained if a feature selection is done before using the SVM
in case of cross-validation. In 2-stage classification, the class-probabilities of the
“best”-labeled classifier configurations are used as second stage features. This
scheme shows success rates with F-measures over 0.80 for all classifier configu-
rations in case of cross-validation. Classification on separate training and test
set shows consistent, but slight inferior F-measures. The highest success rate of
all experiments (86%) is gained by SVM with AdaBoosting with Fh = 0.83 and
Fg = 0.88.

As stated in [12], experienced observers achieve an average Fg = 0.79 and
Fh = 0.91 by qualitative assessment of optic nerve head stereophotographs (63
normal and 29 glaucomatous subjects). Regarding classification on separate test
and training set, we gain a slightly inferior performance (Fg = 0.77) while we
get Fh = 0.82 for normals.

5 Conclusion

We presented a novel automated glaucoma classification system using digital
fundus images. In contrast to the commonly used segmentation based measure-
ments, it is purely data-driven and uses image-based features that are new in the
domain of glaucoma recognition. We evaluated several combinations of image-
based features and classifier schemes on a set of 200 real fundus images. The
2-stage classification with SVM produced 86% success rate. The performance
of the fully automatic system presented here is comparable to medical experts
in detecting glaucomatous eyes and it could be used in mass-screenings. The
important features automatically identified by the methods also provide a novel
representation of the data for the physicians and may help to better understand
glaucoma.
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Abstract. Most face recognition systems are based on some form of
batch learning. Online face recognition is not only more practical, it is
also much more biologically plausible. Typical batch learners aim at min-
imizing both training error and (a measure of) hypothesis complexity.
We show that the same minimization can be done incrementally as long
as some form of ”scaffolding” is applied throughout the learning process.
Scaffolding means: make the system learn from samples that are neither
too easy nor too difficult at each step. We note that such learning be-
havior is also biologically plausible. Experiments using large sequences
of facial images support the theoretical claims. The proposed method
compares well with other, numerical calculus-based online learners.

1 Introduction

Face recognition is becoming one of the most researched problems in Computer
Vision. The available literature is increasing at a significant rate, and even the
number of conferences and special issues entirely devoted to face recognition is
growing. Access to inexpensive cameras and computational resources has allowed
researchers to explore the problem from many different perspectives, see the
survey [5].

Humans are very competent when it comes to recognize faces. A number of
face recognition systems have been based, at least partially, on psychophysical
or neurophysiological findings related to face recognition in humans. The use
of biologically-inspired features for discrimination is a prominent example, with
Gabor features topping the list.

Other work has tackled online face recognition. The interest, however, seems to
have been mainly practical, rather than based on biological plausibility
considerations. In particular, attempts have been made at alleviating the high
computational cost of the most common feature selection model used in face
recognition, namely Principal Component Analysis (PCA). Incremental PCA
[6] aims at updating the PCA basis incrementally and is computationally effi-
cient for large scale problems. Incremental algorithms have been also proposed
for classification. Incremental SVM [4], for example, is a computationally effi-
cient version of the successful SVM (Support Vector Machines) classifier, which
typically requires solving a quadratic programming (QP) problem in a number
of coefficients equal to the number of training samples.

F.A. Hamprecht, C. Schnörr, and B. Jähne (Eds.): DAGM 2007, LNCS 4713, pp. 365–374, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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The ideal situation would be to find a technique that is both sound from a
theoretical viewpoint and plausible from a biological viewpoint. This work pro-
poses a novel incremental learning algorithm that is heavily inspired by biological
plausibility aspects. The paper is organized as follows. Section 2 describes the
notion of complexity minimization, and proposes an incremental learning frame-
work for face recognition. Experiments are shown in Section 3. Finally the main
conclusions and ideas for future work are outlined.

2 Incremental Learning

As mentioned above, batch supervised learning is behind the vast majority of
face recognition systems. A principled way to avoid overfitting in supervised
learning is the use of complexity penalization. A well-known complexity penal-
ization technique is Structural Risk Minimization (SRM) [2]. SRM is a procedure
that considers hypotheses ranging from simple to complex. For each hypothesis
the error in the training set is measured. Basically, the best hypothesis is that
which minimizes the sum of its error in the training set and (a measure of) its
complexity: argminH etraining(H) + Complexity(H).

Hypothesis complexity can be assimilated (although not strictly) to its number
of parameters. The more parameters the more the discriminating power, but
also the larger its complexity. Hypothesis complexity is commonly measured as
a norm in the hypothesis parameter space. This form of complexity penalization
has been used in face recognition for some time. In particular, Support Vector
Machines [11], which is based on SRM, has been shown to give better results
than other techniques for many tasks.

In a complexity penalization framework a search is made for the minimum
hypothesis variation with respect to the ”zero” hypothesis. The zero hypoth-
esis corresponds to the origin of the functional space, the hypothesis of zero
complexity or capacity (i.e. that with no discriminating power). This complex-
ity penalization approach can be made incremental if a search is made for the
minimum variation with respect to the current hypothesis, while achieving con-
sistency with a set of new training samples, see Figure 1.

In complexity penalization techniques a search is made for the simplest hy-
pothesis that is consistent with the training samples (xy , yi), yi = {±1}, i =
1, .., n. Hypotheses are generally represented in a functional Reproducing Kernel
Hilbert Space (RKHS), a convenient tool from functional analysis [1]. In RKHSs,
functions are represented by coefficients or coordinates. The function itself is re-
produced as a sum of the coefficients multiplied by symmetric kernel functions
centered at the training samples. For classification, the decision function is given
by:

sig

(
f(x) =

n∑
i=1

ciyiK(x, xi)

)
(1)

The functional to minimize is, [8]:

Jn = en + λ||f ||2 (2)
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Fig. 1. One-step (batch) complexity minimization (left), incremental complexity min-
imization (right)

where en = 1
n

∑n
i=1 Err(yi, f(xi)) is the error on the n training samples and

||f ||2 is the norm of the hypothesis considered. This last term, sometimes called
regularizer, penalizes the complexity of the hypothesis. For a given kernel and
set of training samples, learning algorithms search for a set of non-negative c
coefficients that minimize Eq. 2.

Let us divide the learning process in two stages. Let us suppose that we form
a hypothesis f ′ = f + ·f , where f is the hypothesis obtained from the first n−m
samples and ·f the hypothesis obtained for the m samples. Let ef

n−m represent
the training error in the first n − m samples with hypothesis f , and ef

n the
training error with hypothesis f using all the n samples. Then:

Jn = ef ′

n + λ||f ′||2 = ef ′

n + λ||f + ·f ||2 =
= ef ′

n + λ||f ||2 + λ|| · f ||2 + 2λ < f, ·f >=

= ef ′

n + ef
n−m − ef

n−m + e·fm − e·fm + λ||f ||2 + λ|| · f ||2 + 2λ < f, ·f >=

= Jn−m + Jm + ef ′

n − (ef
n−m + e·fm) + 2λ < f, ·f > (3)

Note that both f and ·f are vectors in a function space. < ·, · > is the dot
product of that space. Summarizing Equation 3, we have:

Jn = Jn−m + Jm + α + 2λβ (4)

where:

α = ef ′

n − (ef
n−m + e·fm) (5)

β = < f, ·f > (6)
(7)

Our objective is to minimize Jn by minimizing the right hand side of Eq. 4, in
an incremental fashion. That is, we want to minimize Jn in steps, first minimizing
Jn−m and then Jm. The terms α and β would then have to be minimized too.
Having minimized Jn−m in a previous step, suppose that we minimize Jm. If
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m is sufficiently small, e·fm can be made arbitrarily close to zero. On the other
hand, if m is kept fixed, the difference ef ′

n − ef
n−m decreases as n grows. Thus, if

m is kept fixed α decreases as n grows. Note that m << n does not hold at the
beginning of learning, and so it may be necessary to start with a batch learning
run in which more than m samples are used in the first step (this, however, was
not necessary in the experiments reported below).

Finally, let us turn our attention to the term β. Recall that we are interested
in minimizing Jn through the minimization of the right hand side of Eq. 4.
Therefore, we have to enforce:

|β| = | < f, ·f > | ≈ 0 , (8)

Note also that:

f(·) =
n−m∑
i=1

ciyiK(·, xi) (9)

and

· f(·) =
m∑

j=1

djyj+n−mK(·, xj+n−m) , (10)

ci and dj being the coefficients obtained in the minimization of Jn−m and Jm,
respectively. Samples (x1, y1), ... (xn−m , yn−m) are used for minimizing Jn−m,
while (xn−m+1, yn−m+1), ... (xn, yn) are used for minimizing Jm. Then (see [7]):

< f, ·f >=
n−m∑
i=1

m∑
j=1

ciyidjyj+n−mK(xi, xj+n−m) (11)

Now let us suppose for simplicity that m = 1, then:

· f(·) = djyj+n−1K(·, xj+n−1) , (12)

and

< f, ·f > =
n−1∑
i=1

ciyidjyj+n−1K(xi, xj+n−1) =

= djyj+n−1

n−1∑
i=1

ciyiK(xi, xj+n−1) (13)

When sample xj+n−1 arrives, it would be classified by the (at that moment)
current hypothesis using the sign of:

f(xj+n−1) =
n−1∑
i=1

ciyiK(xj+n−1, xi) =

=
n−1∑
i=1

ciyiK(xi, xj+n−1) (14)
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Then, from Eqs. 13 and 14 we see that:

< f, ·f >= djyj+n−1f(xj+n−1) (15)

Our original requirement of Eq. 8 is therefore equivalent to:

|djyj+n−1f(xj+n−1)| ≈ 0 (16)

Note that when the incoming sample is correctly classified by the current
hypothesis the product yj+n−1f(xj+n−1) of Eq. 16 is larger than zero (in that
case the signs are equal). On the contrary, when the incoming sample is incor-
rectly classified by the current hypothesis the product is negative 1. This means
that Eq. 8 only holds for samples that are neither too ”easy” (i.e. a sample cor-
rectly classified, with yj+n−1f(xj+n−1) >> 0), nor too ”difficult” (i.e. a sample
incorrectly classified, with yj+n−1f(xj+n−1) << 0).

Above, m = 1 was used out of simplicity, although in practice m should be
at least 2. It can be shown that for m = 2 the dot product is made up of
two summands, each similar to the right hand side of 15. The interpretation is
the same: the dot product will be low when the (two) new samples are neither
too easy nor too difficult for the current hypothesis. Note that this theoretical
requirement is in line with what occurs in human learning, where learning only
progresses if there is scaffolding, see [12]. Consequently, this framework would
work if we make the learner process samples that are neither too easy nor too
difficult at each step. Such approach would be closely related to what is known
as active learning.

Another form of achieving scaffolding will be used here. First, note that the
left hand side of (16) could be kept low if the coefficient dj of each new sample is
adjusted: the larger the dot product the smaller the adjusted dj to use. This way,
the larger the dot product (which is a measure of similarity of the new sample
to the previous ones) the less weight of the of the new sample in the hypothesis.

There is another possibility. Similarities depend on the kernel function K(x, y)
(see Eq. 1). In kernel learning this function is commonly considered a similarity
measure ([9,10]), which has to be defined a priori. The larger its value, the larger
the similarity between samples x and y. A typical kernel function is the RBF
kernel:

K(x, y) = exp
(

−||x − y||2
p2

)
(17)

The larger p the larger the similarity values given by the RBF kernel. Now in
this context, what are too-easy and too-difficult samples? The former are samples
that are very similar to other (previously seen) samples of its same class, while
the latter are samples that are very similar to other (previously seen) samples
of the opposite class. Therefore, the value of p is important here: a large p will
give large similarity values and thus too-easy and too-difficult samples.

1 The dj are always non-negative, it is a requirement imposed in the minimization
process, see [2].
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Scaffolding can be achieved by making the p values dependent on the absolute
dot products. That is, the larger the absolute dot product of a new sample the
smaller the p to use in the kernel associated to that sample. Such approach
requires the dot product of Eq. 15 to be calculated for each new sample. The
coefficients dj and yj+n−1 are obtained after the minimization of ·f , which can be
done in constant time (assuming m is kept fixed). The term f(xj+n−1) requires
evaluating f for each new sample, which has a cost O(

∑n
i=1 i) = O(n(n+1)

2 ) =
O(n2+n

2 ), n being the number of samples processed.
Once the dot product is calculated, the new sample will contribute to the

hypothesis of Eq. 1 with a kernel p value dependent on the absolute dot product.
The larger the absolute dot product the smaller the p used. The exact function
used to achieve this will be shown below.

3 Experiments

The incremental learner introduced above was tested in a face recognition prob-
lem. The experiments required a large number of images per individual. The EN-
CARA2 system was used to collect a number of face image sequences. ENCARA2
is a face detection and normalization system that can detect and track people in
real-time, see [3]. ENCARA2 tries to confirm that images actually contain a face
and, if so, normalize them so as to be recognized. The final result is a set of frontal
face images, normalized and ready to be recognized, see Figure 2.

Fig. 2. Four (partial) face image sequences obtained with the ENCARA2 system

Twenty-five sequences were used, one for each individual. Each sequence had
300 normalized images of 39x43 pixels. Thus, a total of 7500 images were used
in the experiments. PCA was initially applied (over the whole set of 40 training
images per class, retaining 10 coefficients. Note that, in practice, PCA would
be applied to an initial large set of labeled samples. The obtained basis images
would then be used from that moment on to transform any incoming image to
the new space, exactly as it would have to be done in a batch mode system. It
is important to note that this paper is introducing an incremental classifier, not
an incremental input space transform.
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Fig. 3. Error obtained using the batch and incremental learning modes using p = 800
(i.e. the p which gave the minimum batch error). The horizontal axis is the number of
training samples per class. In order to speed up the experiments, only four n values
were calculated for the batch learner. Median of 10 runs.

An SVM classifier with Radial Basis Function (RBF) kernel (Eq. 17) was used.
SVM is a binary classifier. (N(N − 1))/2 binary classifiers were used for N -class
classification. In a first experiment the test error rate of the batch learner was
obtained for the values of p = {100, 200, 400, 800, 1600, 3200, 6400, 12800}, using
40 training samples. Error rates for p = 100 and p = 12800 were 59.4% and
6.4%, respectively. The best batch error (1.13%) was obtained for p = 800.

In the figures below, ’Incremental*’ is the performance of the incremental
learner using the strategy mentioned above. The strategy consists of making the
p value associated to the new sample dependent on the corresponding absolute
dot product: the larger the absolute dot product, the smaller the assigned p.
When the current hypothesis is f(x) and a new sample xi is received, the p′i
value to use will be given by p′i = pinitial · K−|dotproduct|, where pinitial is the
base p value (i.e. the one used in batch mode) and K > 1 is a constant. Note
how the dot product is the same as that of Eq. 15. With this equation, the
larger the absolute dot product, the smaller the assigned p. The value of K for
p′i equation was obtained using 130 samples -not used for training- per individual
as a validation set. Figure 3 shows the results for p = 800. Note that in this case
pinitial = 800. ’Incremental’ is the performance of the incremental learner using
always that pinitial value.

More importantly, the ’Incremental*’ approach gives lower error than ’incre-
mental’. This difference is statistically significant. A t-test was made with the
null hypothesis ”means of Incremental and Incremental* errors are equal” vs.
”mean of Incremental* is smaller”. For n = 40 the t-test p-value was 1.2∗10−11,
a negligible support for the null hypothesis. This confirms the idea that the scaf-
folding strategy of penalizing too-easy and too-difficult samples has a positive
effect. Therefore, the experimental results allow to infer that this incremental
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Fig. 4. Learning curves of the three compared learners

0 50 100 150 200 250
0

2

4

6

8

10

12

14

16

training samples

t
i
m
e
 
(
s
)

2 6 9 5

batch
incremental
incremental*
ISVM

0 50 100 150 200 250
0

10

20

30

40

50

60

training samples

t
i
m
e
 
(
s
)

2

89

131

156batch
incremental
incremental*
ISVM

Fig. 5. Computational cost of the compared learners. Measures taken for 2-individual
recognition. Left: p = 800, right: p = 100.

learning framework can work as long as the learner somehow processes samples
that are not too-easy or too-difficult.

How well does the proposed learner compare with other incremental learners?
In order to answer this we studied the learner proposed by Cauwenberghs and
Poggio [4]. This state-of-the-art incremental SVM learner (ISVM in what follows)
is based on retaining the Karush-Kuhn-Tucker conditions on all previously seen
data, while adding a new sample to the hypothesis. According to their authors,
ISVM is an exact online method. That is, it theoretically gives the same results
as the equivalent batch learner. ISVM is an example of a number of incremental
learners based on practicality considerations. These learners are generally based
on properties of advanced numerical calculus. Figure 4 shows the learning curves
of the three compared learners. The ISVM error at n = 40 is slightly closer to
the batch error (batch=1.29%, incremental*=1.51%, ISVM=1.45%).

Figure 5 compares the computational cost of the three learners. The left figure
shows that, for the best batch p value of 800, ISVM is much faster than the other
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learners. However, the theoretical computational cost of ISVM is O(s2), s being
the number of support vectors. For p = 800 the number of support vectors is
low (they appear as numbers in the figure). For p = 100 (the figure on the right)
the number of support vectors is larger, and ISVM rates even worse than the
batch learner. Incremental* has a computational cost of O(n2+n

2 ). n2+n
2 < n2,

which suggests that Incremental* may outperform ISVM for particularly com-
plex problems where a large number of support vectors are needed. Incremental*
has a storage cost of O(n) (i.e. just the hypothesis itself).

In batch learning, the learner has all of the training samples available from
the beginning and thus it can select those that define a good discrimination
boundary (i.e. the so-called support vectors). In incremental learning, this is not
possible, for only some of the training samples have been given to the learner
at a given moment. The natural approach in this case is to gradually span the
input space with similarity functions centered in the received training samples.
The last processed samples have smaller similarity radii than the first ones. This
is what the proposed learner does. The similarity functions are the kernels. The
p parameter acts as a radius. The assigned p values decrease with n because the
dot products (which represent similarity to the previous samples) increase.

The proposed learner has at least three aspects of a strong biological plausi-
bility. First, it is an online learner. Second, it requires scaffolding to learn. Third,
it always classifies each incoming sample with the current hypothesis, being the
result of that classification what can make the learner update the hypothesis.

4 Conclusions

A number of existing batch learners used in face recognition, including those
based on Support Vector Machines, aim at minimizing both training error and
(a measure of) hypothesis complexity. Inspired by biological plausibility consid-
erations, especially those related to the learning process itself, in this work it has
been shown that the same complexity minimization can be done incrementally as
long as the learning process is aided by some form of ”scaffolding”, where sam-
ples processed by the learner are neither too easy nor too difficult. Within this
framework, the feasibility of online learning, both in terms of error difference
with respect to batch learning and computational cost at each step, crucially
depends on scaffolding. Although there are other ways to achieve scaffolding, a
gradually decreasing kernel parameter has been used here. The proposed method
has been analyzed in experiments and compared with one state-of-the-art incre-
mental learner. The results show that it compares favorably in terms of biological
plausibility and computational and storage cost.

The proposed method seems to be a departure from mainstream approaches
in face recognition. We note that this may be only a particular instantiation of a
general class of learners that have features generally not found in previous face
recognition research, notably a marked biological plausibility of the learning
process. Further algorithms may be possible that, like this one, rely on such
considerations.
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Short-Term Tide Prediction

Nils Hasler1 and Klaus-Peter Hasler2
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2 Bremischer Deichverband am rechten Weserufer

Abstract. Ever since the first fishermen ventured into the sea, tides
have been the subject of intense human observation. As a result, com-
putational models and ‘tide predicting machines’, mechanical computers
for predicting tides have been developed over 100 years ago. In this work
we propose a statistical model for short-term prediction of sea levels at
high tide in the tide influenced part of the Weser at Vegesack. The pre-
dictions made are based on water level measurements taken at different
locations downriver and in the German Bight. The system has been in-
tegrated tightly into the decision making process at the Bremen Dike
Association on the Right Bank of the Weser.

1 Introduction

The marine industries have always greatly relied on tides. The tide phase gov-
erns currents in the coastal regions and many harbours are only accessible when
certain water levels are exceeded. So, in order to allow scheduling harbour util-
isation and docking and sailing times it is important to predict the times and
expected water levels for high and low water.

Another important application of water level forecast can be found in disaster
control. Here the authorities attempt to predict storm surges and other abnormal
tidal behaviour. This allows them to take actions such as closing flood barrages
and flood gates, to warn the population, or even to declare a national state of
emergency.

Traditional tide calendars and tide tables provide a good starting point for
many naval applications. These calendars are computed assuming that water
levels are solely a product of the superposition of influences from different ce-
lestial bodies. Water level prediction systems normally focus on forecasting the
deviation from the astronomically predicted tide called tide surge. Tide surge
is assumed to be primarily a result of the influence of wind on the water. Yet,
besides wind speed and direction, water salinity, temperature, and atmospheric
pressure have been found to have an influence on tide surge [4]. As we are con-
cerned with very short-term predictions only, we accept that these additional
properties can be assumed to be constant and their influence is implicitly con-
tained in the water level measurements we incorporate into the prediction.

In this paper we introduce a statistical approach to very short-term tide pre-
diction. Namely, we focus on the interval 3 to 5 hours before the expected high
tide because this is the time frame in which the Bremischer Deichverband am
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rechten Weserufer1 (BDVR) needs to come to its decisions concerning closing
flood barrages and flood gates. While these decisions are frequently made, it
may also become necessary to take further action such as alarming the emer-
gency committee.

Our approach employs a statistical model using water level measurements at
five different locations downriver and in the German Bight to predict the water
level at high tide at Vegesack which is a downriver suburb of Bremen, situated in
the tide influenced region of the Weser. Additionally, wind direction and speed
are incorporated to improve the prediction. Figure 1 shows the locations of the
tide gauges on a map of the German Bight.

Fig. 1. Tide gauges used for predicting the water level at Vegesack

Water level prediction for the German Bight is also done by the Bundesamt
für Seeschifffahrt und Hydrographie2 (BSH) but their forecasts are focussed on
a different timespan. Since they are primarily targeting the marine industries
water levels are predicted semi-automatically 6 to 72 hours in advance. Due to
this different target time we are able to produce more accurate forecasts although
their prediction provides a valuable second opinion on the matter.

The rest of the paper is structured in the following way. Section 2 introduces
previous approaches to water level prediction. Section 3 details our approach.
Section 4 provides validation of prediction results and a summary is provided in
Section 5.

1 Bremen Dike Association on the Right Bank of the Weser.
2 German Federal Maritime and Hydrographic Agency.
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2 Previous Work

Traditionally, only astronomical influences were included into tide forecasts.
These were later enhanced by a number of shallow-water constituents to ac-
count for different topologies of the sea floor. The parameters are computed
using the so-called Harmonic Analysis which is described in more detail below.
Despite their simplicity these models are still widely in use since they provide
the only means to make long-term predictions. This allows the computation
of tide tables and calendars. As these forecasts do not incorporate up-to-date
weather information, they are unable to achieve the accuracy of more advanced
approaches.

A simple, yet effective statistical system, is used by the BSH. It computes
the tide surge as the linear combination of a limited number of carefully chosen
parameters. The weights for the linear combination are computed by minimising
the prediction error on historical data [4].

Other approaches have included the use of neural networks [5], Kalman filters
[8] and chaos theoretical approaches [6].

The most sophisticated systems to date employ three-dimensional simulations
of relevant parts of the ocean, incorporating wind, temperature, humidity, and
atmospheric pressure data which are provided as input from weather forecast
simulations [4].

2.1 Harmonic Analysis

The classical Harmonic Analysis, which was originally developed by Sir William
Thomson (the later Lord Kelvin) around 1867, assumes that water levels can be
modelled as the superposition of sinusoidal influences of the sun and the moon
on the sea [7]. Fitting sines whose frequencies are the linear combination of
multiples of the rotation and precession speeds of the celestial bodies relative to
the earth to historical tide data leads to a number of constituents as explained
by Foreman [1]. Which and how many frequencies to choose depends on the
location the predictor is to be generated for and has to be decided manually.
In the following vi represents the ith component’s speed and ϕi its phase. Ai is
the amplitude of the constituent and y(t) the water level measured at time t.
Unfortunately, as a result of increased friction on the ocean floor, the influence of
some harmonics lag behind the astronomically predicted phase. Thus, the phases
have to be estimated as well as their amplitudes instead of being derived from
more accurate astronomical observations.

Commonly, the following equation, derived from the above assumptions, is
minimised with respect to the error E to obtain an optimal fit to historical
water level measurements y(t).

E =
∑

t

(A0 +
N∑

i=1

Ai cos(vit + ϕi) − y(t))2
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In [7] Thomson and Tait describe a mechanical device that integrates these
constituents to predict the water level at a given location. Similar tide predicting
machines were in use in various countries until the 1960s.

3 Approach

In a nutshell, we try to predict the water level at high tide at Vegesack on
the Weser using a statistical approach that relies on time series of water level
measurements taken downriver and in the German Bight up to the time the
prediction is made. Additionally, the inclusion of wind speed and direction mea-
surements proved worthwhile.

As the prediction primarily relies on water level measurements it is interesting
to investigate what the best encoding of these water levels is. The two considered
encodings include using the raw measurement values directly and employing the
classical tide surge encoding. Considering the standard deviations of measured
tide levels y and the difference between the astronomically predicted tide levels p
and the measured levels called tide surges or surge water levels s = y−p it may
seem advantageous to predict tide surges, since the tide surge is not scattered
as widely around its mean as the raw water levels.

std(shigh) = 36.3 cm < std(yhigh) = 42.7 cm

Yet, experimentation showed that predicting actual water levels produces slightly
more accurate results.

Of the four possible encodings only two need to be investigated further. Pre-
dicting tide surges from water levels or vice versa is not worth considering be-
cause the information about the expected water level is not available to one side
of the equation. The achievable accuracies are consequently limited.

Thus only the two remaining variantswere compared.While the cross-validation
accuracy of the tide surge based prediction reached 24.8 cm, the accuracy achieved
by predicting water levels from water levels could be estimated to be 6.6 cm. The
better result could probably be achieved because the prediction relies on water lev-
els measured only hours before the predicted event. Since astronomical influences
change in the order of days, they can be assumed to be constant during the pre-
diction time span. Their influence is already implicitly included in the water level
measurements used in the forecast.

3.1 Wind Direction

In contrast to these results, it was possible to significantly increase the effec-
tiveness of wind measurements, originally available in polar coordinates. Wind
levels in this representation are, as Solomantine et al. mention in [6], not suffi-
ciently correlated with the high tide to be of any significant use. The approach
the BSH follows is to use the projections of the wind vector onto the coordinate
axes as input features. We extended this approach to time dependent projection
on different directions.
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During the time before the astronomically predicted high tide the correlations
between wind speed and direction and high tide yhigh or tide surge shigh are given
in Figure 2. Since the maximum of these values remains below 0.4, we agree with
Solomantine et al. [6] that this is not sufficient to be used directly as a feature.

Fortunately, this problem can be alleviated by assuming that only the com-
ponent of the wind in a certain direction contributes significantly to the tide
surge. While this direction is presumed to be invariant between different tides it
is allowed to change during the timespan leading up to the high tide.

To compute the most important wind direction ω(t) we projected the mea-
sured wind vectors on unit vectors sampling the unit circle in steps of 1◦. We
then calculated the correlation with the observed water level yhigh or the tide
surge shigh. The wind direction with the highest correlation was then chosen for
ωy(t) and ωs(t) respectively. It is interesting to note that the correlation with
shigh is significantly higher than the correlation with yhigh (see fig. 3). This find-
ing is not surprising because tide surge is primarily caused by wind. However, in
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Fig. 5. The best wind direction at the position the tidal wave is situated at at the
given time

spite of this convincing edge, the derived wind directions are almost the same, as
shown in figure 4. This explains why the difference in prediction accuracy using
the two models proved to be minimal.

Interestingly, as can be seen in Figure 3 the wind loses influence on the out-
come of the water level at high tide in the last two hours before high tide. To
explain this phenomenon consider Figure 5 which plots wind directions and cor-
relations into a map of the Friesian Coast. Wind directions are plotted to the
positions the tidal wave is expected to be at at the corresponding time.

Obviously, in order to achieve good results, measurements have to be taken
during the same phase in the tide cycle. Unfortunately, the phase cannot be
determined exactly as low and high tide not only vary in level but exhibit high
variance in time when compared to the expected events as predicted by the
harmonic analysis.

So again two different possibilities for anchoring the measurements in time
had to be evaluated. On the one hand the tide cycle can be estimated at low or
high tide. The first prediction is due approximately 30 minutes after low tide can
be detected at the tide gauge Vegesack. Fortunately, since Vegesack is also the
place the prediction is made for, the temporal correlation between low water and



Short-Term Tide Prediction 381

high water is quite high. Thus, anchoring the measurements at this point in time
is a reasonable approach. On the other hand the astronomically predicted cycle
can be used for anchoring the prediction. We could not find a great difference in
prediction error with either method, so we settled for using the detected time of
low tide.

These investigations result in the final formulation of the feature vector used
initially for training the model and ultimately for predicting water levels. The
vectors are generated by concatenating water level measurements and projected
wind speeds taken every minute from three hours before low water at Vegesack
until the prediction is made, that is 30–150 minutes after low water at Vegesack
or three to five hours before high tide at Vegesack.

3.2 Principal Component Analysis

The third preprocessing step, a principal component analysis (PCA) as described
in [2] was used to reduce the dimensionality of the feature vector. By reducing the
dimensionality of the data the training time could be reduced tremendously. In
comparison with running the optimisation without reducing the dimensionality
the observed loss in accuracy could not be found to deteriorate the results. On the
contrary, the prediction error could be minimised by choosing the right number
of principal components. For the different models that were computed 6 to 56
principal components proved to be optimal.

3.3 Training

Finally, the overdetermined linear system Ax = y was solved in a least-squares
fashion to determine the coefficients x of the linear predictor. Here the rows of A
are the feature vectors and the corresponding rows of y specify the water levels
or tide surges that are to be predicted.

By combining the PCA and the linear predictor the prediction model can be
reduced to a single scalar product.

ypred = x · fPCA = x · (E f) = (xT E) · f

Here ypred is the predicted water level, fPCA the feature vector as reduced by
the PCA, E the matrix of used eigenvectors, and f the original feature vector.

4 Validation

The prediction model is computed based on measurements logged by the BDVR
in the period from November 1999 to October 2002. Unfortunately, since some
measurements are not complete only 1902 of 2117 tide cycles were available for
training. For validating the system we used k-fold cross-validation as described
by Kohavi [3] employing 10 folds.

Since the system has been installed at the BDVR for several months now and
the functionality has reached a stable state, we can also evaluate the accuracy
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Table 1. Standard deviations and biases of the predictor by the BSH and our system
computed at different times before high tide

BSH 5h 4h 3h

standard deviation [cm] 30.5 15.5 13.2 8.9
bias [cm] 6.3 4.3 1.7 0.06
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Fig. 6. Error distribution of predictions the BSH made compared to our method com-
puted 5h, 4h, and 3h before high tide

of the live system for the months January and February 2007 and compare
our predictions with the forecasts of the BSH. Figure 6 displays the relative
frequencies of prediction errors for this period. The cases where tide gauges failed
and we were subsequently unable to compute a prediction have been omitted
from the evaluation. Table 1 summarises the standard deviations and biases of
the predictors in Figure 6. Clearly, the more data is available the more accurate
the predictor becomes.

Unfortunately, we were unable to achieve the accuracy on live data that was
estimated on the test set specified in Section 3. This is probably a result of
the constantly changing depth and consequently changed streaming properties
of the Weser. In order to allow larger ships to enter the harbours in Bremen,
Brake, and Nordenham the Weser is frequently deepened. As the training data
is several years old and the Weser has since been deepened, it is possible that
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Fig. 7. Water levels and wind speeds around the storm event Kyrill

the model does not represent reality any longer. Apart from this, we would like
to stress that as a result of the frequent storms in the winter months predictions
are particularly hard to do.

4.1 Kyrill

One disadvantage of statistical prediction systems in general is that they are
not particularly good at predicting extreme weather conditions because only
very little training data is available for these cases. Unfortunately, these are also
the conditions that a prediction system is commonly measured by. So we would
now like to present an example of a recent storm that challenged our system.
The storm Kyrill that reached hurricane-strength even in the Northern German
Planes raged in the night from 18 January to 19 January 2007. At this point our
system was already installed and Kyrill provided the first real online test.

The three predictions that were made 5h, 4h, and 3h before expected high tide
forecasted 139 cm, 131 cm, and 157 cm above median high tide respectively. The
final outcome was 145 cm. While deviation of 12 cm may not seem very accurate,
the last prediction by the BSH was 200–250cm above median high tide. Since
the system is statistical in nature, it is hard to tell how it could have foreseen
a tide so much lower than was generally expected. Yet, we presume that on the
one hand the wind speeds our station picked up were not as high as some of the
reported speeds. The highest wind speed we measured corresponds to 8 Bft and
the wind direction was only westerly, not corresponding very well to the most
significant wind direction. So the overall mean wind speed was registered as only
6Bft (see fig. 7). This significantly lower wind speed probably caused the system
to estimate such a low water level.

5 Summary

We have described a statistical short-term water level prediction system that has
been installed at the BDVR. By integrating the system into the decision making
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process that has to take place twice a day a few hours before high tide, our
system proved to be a valuable addition to the tools available to the human in
charge. We showed that the accuracy of the approach is superior to the prediction
provided by the BSH, although we target a different prediction time span.

The trial period showed, however, that it is necessary to extend the fault-
tolerance of the system as frequently one or more tide-gauges fail and the pre-
diction becomes unusable. If a tide gauge fails for a few minutes interpolating
the missing measurements proved reasonable. Unfortunately, if a tide gauge be-
comes unavailable for an extended period of time, this approach is unfeasible.
To overcome these limitations we propose to train specific models for different
states of failure. For example a model using just the measurements from Veg-
esack could be generated. Preliminary experiments showed that this approach
is practical but the accuracy of the prediction necessarily deteriorates for these
models.
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Abstract. In this paper we propose a generative statistical approach for
the three dimensional (3D) extraction of the branching structure of un-
foliaged deciduous trees from urban image sequences. The trees are gen-
eratively modeled in 3D by means of L-systems. A statistical approach,
namely Markov Chain Monte Carlo – MCMC is employed together with
cross correlation for extraction. Thereby we overcome the complexity and
uncertainty of extracting and matching branches in several images due
to weak contrast, background clutter, and particularly the varying order
of branches when projected into different images. First results show the
potential of the approach.

1 Introduction

Trees are an essential component of three dimensional (3D) urban information.
They add a natural touch and influence the character of an urban scene con-
siderably. Because of their difficult and thus costly acquisition, they are often
neglected in 3D urban data sets. This is particularly true if their partially very
distinctive shape and texture is to be represented.

Our basic goal is to extract and 3D reconstruct individual unfoliaged decidu-
ous trees from image sequences. Deciduous trees are popular in cities worldwide
further away from the equator, as they provide shadow in summer and yet let
through most of the light in winter. Thus, they often form the majority of trees
in urban areas. From a practical point of view images for data acquisition in
cities will often be taken when the trees are unfoliaged as facades etc. are then
more readily visible. For us this has the big advantage that one can directly see
the branching structure which one can only guess from the foliaged tree.

From a scientific point of view extracting the branching structure in 3D by
matching from multiple images is a difficult problem nobody to our knowledge
has ever even tried to solve. Extraction and matching of branches is difficult
because of bad contrast, clutter by background objects, and because the order
of the branches even in neighboring images can vary considerably due to the
pronounced 3D structure of trees.

Former work has mostly dealt with tree extraction in aerial images and par-
ticularly recently laser scanner data. Much work focuses on forests. The only
approach we mention here is [1] as they also use a statistical (Reversible Jump)
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Markov Chain Monte Carlo – (RJ)MCMC [2] approach to model trees, in their
case by a spatial point process.

Work for terrestrial urban images is more limited. In [3] foliaged deciduous
trees are segmented in color images based on their texture. There is neither a
segmentation of individual trees nor any 3D interpretation. Also [4] focuses only
on a two dimensional (2D) interpretation, yet for individual trees. The model is
based on the particular symmetries of coniferous trees. [5] is mostly concerned
with the animation of trees. For their 3D extraction first a volume is generated by
intersecting the view cones resulting from the tree silhouettes in multiple images.
The voxels of the volume are colored with the average brightness from the rays
from the different images. A branching process is started at the ground extending
into dark areas assumed to correspond to the trunk or branches. The given
results are plausible, but there is much human intervention involved. The most
sophisticated approach today is [6]. 3D volumes are generated as in [5]. From
the volumes 3D medial axes are constructed. The medial axes are constrained to
“botanical fidelity of the branching pattern and the leaf distribution” [6] via an
open Lindenmayer-, or in short L-system [7]. Again, a lot of manual interaction
is employed to generate results which are good in terms of visualization.

In this paper we show how by means of generative statistical modeling it be-
comes feasible, to match branches in wide-baseline image sequences taken uncon-
strained with a standard consumer camera in spite of the problems stated above.
We assume, that we can orient images highly precisely by an automatic orienta-
tion procedure in the spirit of [8], yet making use of calibration via the five-point-
algorithm [9], determining matches by a least-squares procedure highly precisely
and bundle-adjusting everything [10]. We note, that our modeling should be use-
ful to find trees in much more explicit laser-scanner data, though the latter is
linked to more effort for data acquisition.

In Section 2 the basic idea of generative statistical extraction employing L-
systems for the modeling of the 3D characteristics of trees is described. We use
statistical sampling in the form of MCMC to generate the parameters of an
L-system which comply with the data as described in terms of likelihood.

The generation of 3D hypotheses, their 2D projection and verification are de-
scribed in Sections 3 and 4. Hypotheses for trunks are generated from vertical
lines matched in several images. For the branches suitable prior distributions for
the parameters are discussed particularly focusing on issues with the branching
angles. The verification of new hypothesis is currently done using the (normal-
ized) cross correlation coefficient (CCC) as (a substitute for) likelihood. After
presenting fist results which show the potential of the approach in Section 5, the
paper ends up with conclusions.

2 Generative Statistical Extraction Using L-Systems

Branches of trees are difficult to extract from terrestrial urban image sequences
due to their weak contrast and background clutter from other objects, e.g.,
facades or other trees. As we want to construct 3D models of trees, we need to
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⇒

Fig. 1. Left: Stochastical sampling based on an L-system results in a 3D tree hypothesis –
left / right: Projection of a new branch (red) into three empty images with randomly
textured background

match the branches. Because of the complex 3D structure of trees, the ordering
constraint, i.e., a point left of another point on an epipolar line in one image is
also left of the corresponding point on the epipolar line in the other image, often
employed to guide matching, is often not valid even for images taken close to each
other. All this means that the bottom-up extraction of branches and matching
them in 3D does not seem promising and suitable constraints describing the
structure of trees are needed for their 3D reconstruction.

In our case the structure of trees is described in terms of their growing, or
more particularly branching, by an L-system [7]. It is a parallel string rewriting
system representing branching structures in terms of bracketed strings of sym-
bols with associated numerical parameters, called modules. The simulation of
branching starts with an initial string (axiom) and proceeds in a sequence of
steps. By means of productions all modules in the predecessor string are substi-
tuted by successor modules. Whether a production is applicable can depend on a
predecessor’s context, values of parameters, and like in our case on random fac-
tors (also called stochastic L-systems). By means of context-sensitive L-systems
interactions between plant parts can be represented. We do not use this for our
simple first proof-of-concept implementation described in this paper, although it
would certainly be helpful. By recursively using the same productions, L-systems
represent self-similarity, an important biological characteristic of plants.

The modeling with L-systems results in tree-like structures. Yet, L-systems
alone only give means to generate and also visualize trees. For their extraction
from images, they need to be linked to a means for extraction. We decided to
employ a generative statistical approach based on MCMC and L-systems, where
likely candidates of branches are generated by stochastical sampling and are
verified by comparing simulated and real images.

Figure 1 presents the basic idea of our approach. After extracting the trunk
as described below, branches are grown randomly guided by appropriate prior
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distributions and are projected into the images via the given highly precisely
known orientation parameters. The simulated images are then matched to the
given images. As model for the background clutter we use Gaussian noise.

Linking stochastic sampling, L-systems, and likelihood from the images ren-
ders it possible to find a tree structure very similar to that of the real tree. I.e.,
while L-system and MCMC alone can produce a typical tree, e.g., a beech, the
link with the likelihood in the images results into a beech with the particular
characteristics that can be seen in the images.

3 3D Hypotheses Generation

While we focus on the branches, the basic part of many trees and particularly
those we are interested in is the trunk. For it we extract lines, assuming that
trunks correspond to thick, mostly vertical lines. The vertical direction is pre-
sumed to be known approximately by basically taking images horizontally. It
usually can be improved by computing the vertical vanishing point from the
vertical edges of trunks or on facades as we focus on urban scenes. Found verti-
cal lines, i.e., hypotheses for trunks, are verified by matching in several images.
We use the trifocal tensor [11] derived from our highly precisely known orienta-
tion parameters to predict from lines in two images a hypotheses for a line in a
third image. We further assume that the position of the tree is determined by
the trunk.

The scope of this proof-of-concept paper is limited to the first several levels
of branches. We right now assume, that the upper stages of branches with very
thin twigs might be grown stochastically to just match the image density, but it
is to be seen if and on which level of branching this is a valid assumption.

A new branch is modeled in 3D object-space as a cylinder with known begin
and the following parameters (the vertical direction is assumed to be approxi-
mately known (cf. above) and the x- and y-axis are taken from the local coordi-
nate system of the first camera after aligning it with the vertical direction):

– Azimuth: angle with x-axis of branch projected into horizontal plane
– Inclination: angle between branch and horizontal plane
– Length
– Diameter

MCMC should basically sample the azimuth with a uniform distribution be-
tween 0◦ and 360◦ (cf. blue horizontal dashed line in Fig. 2, right). However, if
a limited number of images is taken forming an acute angle together with the
trunk as, e.g., the blue area for the three images in Fig. 2, left, accepted branches
trend to concentrate in the area of the acute angle. The reason for this is, that
in the center of the tree there is usually the vertical trunk, or there are at least
only very few thicker vertical branches. All branches with whatever inclination
generated in a vertical plane inside the acute angle or close to it will be more
likely accepted as they are projected onto the trunk in all given views and are
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Fig. 2. Left: Area (blue) where for a smaller number of closely-spaced cameras a con-
centration of hypotheses can occur as hypotheses are not disambiguated from a larger
viewing angle – right: Prior distribution (red) for azimuth (with 0◦ at central camera)
helps to reduce the concentration – original uniform distribution as blue dashed line

Fig. 3. Prior distribution of inclination – Darker color means higher probability

not disambiguated from another viewing angle. One solution that we have de-
vised for this consists in a modified prior distribution for the azimuth as given
as red line in Fig. 2, right.

In combination with the azimuth only a half circle is needed for the inclination
(cf. Fig. 3). Moreover, for most types of trees, the majority of branches look
upwards. We thus have devised a prior distribution for the inclination shown in
Fig. 3 with darker color denoting higher probabilities.

For length and diameter normal distributions are considered. Our first exper-
iments were conducted with a mean of 1 meter for the length for the first level of
branches. The diameter is set to a fixed value. For the higher levels of branches
we use contraction coefficients.

4 2D Projection and Evaluation

The generated hypotheses are projected into the 2D images, to be evaluated
there by comparing the simulated images constructed from the projected hy-
potheses with the given images. The projection of 3D cylinders entails a larger
computational effort. As we do many of these projections in MCMC, we decided
for the proof-of-concept prototype, where we did not want to use a graphical
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processing unit (GPU) due to missing experience with its programming, to use
a simple and efficient 2D representation derived from the 3D representation. An-
other reason for this is that the projection of the branches results into patches
of nearly constant brightness anyhow. The chosen 2D representation consists of
trapezoids. The color is taken as average of the trunk. A trapezoid is described
by the following four parameters:

– Direction: angle with x-axis
– Length
– Width of begin
– Width of end

The parameters of the trapezoid are obtained in the following way: The centers
of the begin and the end are obtained by projecting the centers of the circles,
i.e., the end points of the axis, delimiting the cylinder on both sides, into the
image via

x′ = PX

with (homogeneous) 3D points X, image points x′, and the projection matrix
P [11]. To compute reasonable approximations for the widths, we connect the
end points of the axis of the cylinder with the camera center and determine one
of the normals to this vector. The distance between the projections of the end
point of the axis and of the intersection point of the normal with the cylinder
surface equals half the width in the image.

The projection of a hypothesis is compared with the corresponding original
image i by means of the cross correlation coefficient CCCi for the intensities com-
puted by HSI color transformation. To compare different hypotheses, the whole
images have to be compared with the projections of the complete 3D models.
As MCMC sampling consists of a larger number of iterations, the comparison
has to be efficient. This is done by an incremental update of only those parts of
the 2D projection and the corresponding variances and covariances, which have
been changed.

The CCCi values for the n individual images are combined via multiplication
into a global CCC value

CCC =
n∏

i=1

CCCi .

Multiplication is used as we interpret the CCCi values as likelihoods and we
assume independence of the images given the 3D model. Additionally, we found
empirically that this conservative combination helps to sort out bad hypotheses
early. We are aware that the actual size of CCCi values can be far from correct
likelihoods. Yet, our experiments give evidence to assume that they are propor-
tional to correct likelihoods. A function linking raw CCCi values and likelihoods
could be obtained by determining a statistics of CCCi values for a larger number
of known correct and incorrect hypotheses for branches at a certain level. This
is subject of further work.
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We found empirically that it is not useful to sample all parameters of a branch
at the same time. Thus, the MCMC sampling of the parameters is done sequen-
tially. First, only azimuth and inclination are jointly varied over 1000 iterations
while the length is kept fixed. The latter is optimized only afterwards with 500 it-
erations. In future work we plan to relax the sequential sampling via conditional
probabilities controlling which parameter to sample next.

5 Results

Fig. 4 and 5 show first results. The input data consists of an image triplet for the
former and an image quadruple for the latter, both taken unconstrained with a
hand-held 5 Megapixel camera. As output we obtain a VRML (virtual reality
modeling language) model describing the trunk and the first two levels of the
main branching system of the trees.

⇒

Fig. 4. Extraction from an image triplet limited to the the trunk and the first two
levels of branches – intermediate stage of processing projected into images (left) and
final result (right)

The scenes, taken on different continents under very different lighting condi-
tions demonstrate, that we can basically determine branches on the first two lev-
els. Yet, we note that our proof-of-concept implementation still misses branches
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Fig. 5. Extraction from an image quadruple limited to the trunk and the first two
levels of branches – images (top) and result (bottom) showing the tree, the cameras as
(green) pyramids and points used by the orientation procedure

and reaches only a limited accuracy. We assume that with more experience and
particularly by using more levels and RJMCMC, the latter to dynamically gen-
erate and delete competing hypotheses via the jumps, we will be able to drop
most wrong hypotheses as they will be substituted by better fitting hypotheses.

6 Conclusions

We have proposed a generative statistical approach for the extraction of the
branching system of unfoliaged trees. By combining the descriptive power for
trees of L-systems with statistical sampling by means of MCMC and simple cross
correlation we are able to extract partially occluded branches with possibly weak
contrast from image sequences as shown by our first results.
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Concerning future work, we first want to generalize the implemented L-system
in the direction of open L-systems [7]. We might need to change the parame-
terization away from the vertically centered azimuth and inclination angles to
a more local representation based on branching angles. Yet, we note that gen-
erative statistical modeling is not confined to L-systems. We basically just need
a means to construct realistic trees that can be efficiently controlled. For this,
e.g., also [12] could be a good basis.

Parameters such as contraction rates or branching angles could be learned
by extracting a larger number of trees leading to priors probably conditional
to the branching level. As already noted above, by correlating against trees
and representative samples of the background, a function to upgrade correlation
coefficients to likelihoods could also be learned.

An important question will be to decide, how many branches are to be formed
on a level and how many levels are appropriate for the tree, i.e., to control
the complexity. E.g., for our proof-of-concept implementation, if we had not
limited the branching level, a small tree could keep growing, even though new
branches are just hallucinated into the background, as there is no obvious way
of stopping. This leads to the issue of model selection. The idea is to balance
the complexity of a hypothesis, i.e., the size of the tree or more particularly the
number of parameters, against its likelihood according to the data. For this, the
theory developed for compositional systems [13] might prove helpful, possibly
also in conjunction with RJMCMC, to dynamically add and delete hypotheses,
the latter, if better solutions evolve.
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Abstract. Cascades of classifiers constitute an important architecture
for fast object detection. While boosting of simple (weak) classifiers pro-
vides an established framework, the design of similar architectures with
more powerful (strong) classifiers has become the subject of current re-
search. In this paper, we focus on greedy strategies recently proposed
in the literature that allow to learn sparse Support Vector Machines
(SVMs) without the need to train full SVMs beforehand. We show (i)
that asymmetric data sets that are typical for object detection scenarios
can be successfully handled, and (ii) that the complementary training
of two sparse SVMs leads to sequential two-stage classifiers that slightly
outperform a full SVM, but only need about 10% kernel evaluations for
classifying a pattern.

1 Introduction

Cascades of classifiers constitute an important architecture for fast object detec-
tion. A well-known and promiment example is the work of Viola and Jones [4]
on face detection based on a cascade of boosted weak classifiers that only require
simple image convolutions for feature extraction and thresholding. This frame-
work is not directly applicable to kernel classifiers like support vector machines
(SVMs), for instance, because boosting based on such strong classifiers as com-
ponents is less effective. In many applications, however, the flexibility of kernel
machines is a decisive advantage, as they can be applied to arbitrary features
and pattern representations including histograms, sets, graphs, etc. This raises
the question of how to design structured architectures for efficient classification
using kernel machines as components.

Accordingly, this problem has spurred research recently. Related work can be
roughly, but not disjointly, classified

– into approaches [6,5,8,11,1] to the design of Reduced Support Vector Ma-
chines (RSVMs) that require less computational costs than the standard
SVM for classifying a pattern, and

– into approaches [10,5,7,9] that exploit SVMs (either reduced or not) as com-
ponents of a structured architecture for classification.

Regarding the former class of approaches, RSVMs require only a fraction of
kernel evaluations for classifying a pattern, either by computing a sparse subset
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of the support vectors of the full SVM [6,1], or by computing a novel small set
of vectors in order to replace the support vectors altogether [5,11]. Additionally,
wavelet approximations of these latter vectors have been investigated in [8] in
order to efficiently evaluate the arguments (i.e. dot products between pattern
vectors) to which the kernel function is applied.

The latter class of approaches, on the other hand, is focusing on structured
SVM-based classification for face detection. Heisele et al. [10] studied a hierarchy
of linear SVMs including a single nonlinear SVM as top node. Thresholds were
tuned for optimizing classification performance and speed, followed by feature
selection. Romdhani et al. [5] proposed a single chain of SVMs that is optimized
also by threshold tuning, and by approximating a fully nonlinear SVM that has
to be computed beforehand, whereas a decision tree with linear SVMs is sug-
gested in [9]. Finally, Sahbi and Geman [7] recently presented a tree-structured
hierarchy of SVMs that again is optimized by the reduced set technique used in
[5] and threshold selection, and is operating on an application specific partition-
ing of the space of patterns (faces) according to different poses.

Contribution. In this paper, we assess two different direct greedy strategies
[6,1] for designing reduced SVMs (RSVMs) in connection with the sequential
combination of two nonlinear RSVMs. Such two-stage classifiers form the core
of any recursively designed larger structured architecture. Figure 1 illustrates
the basic idea underlying the design of RSVMs.

The rationale behind our choice is as follows: Firstly, we focus on direct RSVM
computation rather than on approximations of fully nonlinear SVMs, in order to
avoid the need to train the latter beforehand. Secondly, we refrain from the com-
putation of novel representatives of support vectors as done in [5,11] because this
relies on complex optimization problems that are sensitive to initialization, step
sizes, etc. Corresponding problems can easily interfere with our main objective,
the assessment of structured architectures to classification using RSVMs. Finally,
in order to meet error rate specifications, we prefer training with asymmetric
costs over threshold tuning because the latter is known to result in classifiers
that are not ROC-optimal [3].

Organization. The two greedy strategies [6,1] for designing RSVMs are de-
scribed in sections 2 and 3. We slightly modified the latter approach by including
a bias term (threshold) into the RSVM decision function that is also determined
during training. In section 4, we report the results of numerical experiments ad-
dressing the following aspects: Validation of the implementation using standard
benchmark data, performance evaluation for fixed classifier complexities, coping
with asymmetric data and training costs, complementary design of two-stage
RSVM classifier.

Notation. False/true and negative/positive error rates are abbreviated with
FNR, FPR, TNR and TPR, respectively, and expressed as percentage %. k(x, y)
denotes an admissible kernel function (e.g. Gaussian), Km a m×m kernel matrix,
and km(x) the vector km(x) = (k(x1, x), . . . , k(xm, x))�.
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Fig. 1. Illustration of RSVMs. From left to right: (i) Level-lines of two Gaussian
distributions and the decision line of the Bayesian classifier. The Bayes error is L∗ ≈
16.465%. (ii) The Bayesian classifier and a sample of 200 patterns. (iii) The decision
surface of the standard SVM trained with all sample patterns, and with optimized
parameters. The number of support vectors is 93. The error rate is Lfull ≈ 17.005%.
(iv) A RSVM with 4 support vectors indicated by circles. The error rate Lred ≈ 17.71%
is only slightly worse than that of the standard SVM, whereas the kernel evaluations
have been reduced by a factor of about 23.

2 RSVM-1: Design by Feature Subset Search

The approach of Franc and Hlavac [6] to the design of RSVMs with fixed classifier
complexity involves two phases that we describe next:

(i) Search for an optimal subset of samples Xm ⊂ Xn = {x1, . . . , xn} , m � n.
(ii) Compute a classifier with computational costs proportional to the evaluation

of km(x).

Let φ(·) denote the feature mapping induced by k(x, y), that is k(x, y) = φ(x) ·
φ(y). To simplify notation, we treat φ(·) as any other vector.

In phase (i), the subset Xm is iteratively determined as Xr = {x1, . . . , xr} ⊂
Xn for r = 2, . . . , m, m < n, such that for each r < m, the next pattern to be
included satisfies

xr+1 = argmax
x∈X\Xr

dr(x) ,

where dr(x) is the distance of φ(x) to the subspace spanned by φ(x1), . . . , φ(xr).
It is straightforward to check that this distance between φ(x) and its orthogonal
projection Prφ(x) is given by

d2
r(x) = ‖φ(x) − Prφ(x)‖2

= k(x, x) − 2kr(x)�βx + β�
x Krβx , βx = K−1

r kr(x) .

After termination of the greedy search Xm is given, and based on the Cholesky
factorization Km = U�U , all feature vectors φ(xi) , xi ∈ Xn, are approximated
by their projections

(
Pmφ(xi)

)
·
(
Pmφ(xj)

)
= β�

i Kmβj = β�
i U�Uβj =: γ�

i γj .
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As a result, each training pattern xi ∈ Xn is represented by a vector γi ∈ R
m.

In phase (ii) of the approach, we compute a standard SVM with X replaced by
Γ := (γ1, . . . , γn):

min
w,b

{1
2
‖w‖2 + C+

∑
yi>0

ξi + C−
∑
yi<0

ξi

}
, s.t. Dy(Γ�w + be) ≥ e − ξ , ξ ≥ 0 .

Here, Dy denotes the diagonal matrix with the class variables yi ∈ {+1, −1}. In
order to classify a novel pattern x, we compute its representative γx = Uβx =
UK−1

m km(x) and evaluate the decision function

fm(x) = w�γx + b , w = ΓDyα =
ns∑
i=1

αiyiγi .

Re-inserting the definitions of γx and γi, these two steps amount to compute

fm(x) =
ns∑
i=1

αiyiβ
�
i km(x) + b ,

with ns denoting the number of support vectors. Note that the computational
complexity is dominated by the fixed number of m kernel evaluations km(x).

3 RSVM-2: Direct Greedy-Based Design

We outline a slight modification of the approach [1]. The modification concerns
asymmetric training costs and the inclusion of a bias b into the decision function

fm(x) = w�φ(x) + b = β�km(x) + b , w =
m∑

i=1

βiφ(xi) .

Similar to the previous section, the basic idea is to perform a greedy search of an
optimal subset φ(x1), . . . , φ(xm) in feature space, and to train directly a RSVM
by minimizing the primal objective function

E(β, b) =
1
2
β�Kmβ +

C+

2

∑
yi>0

max
{
0, 1 −

(
β�km(x) + b

)}2

+
C−
2

∑
yi<0

max
{
0, 1 +

(
β�km(x) + b

)}2

with the following Newton-like iteration: Let k be the iteration counter, (βk, bk)
the current iterate, and I+ and I− denote the indices of training patterns whose
regularization term does not vanish: 1−yi

(
βk ·km(x)+bk

)
> 0. Then we compute

(βk+1/2, bk+1/2) = (βk, bk) −
[
HE(βk, bk)

]−1∇E(βk, bk)
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followed by the line search

(βk+1, bk+1) = argmin
t∈[0,1]

E
(
(1 − t)(βk, bk) + t(βk+1/2, bk+1/2)

)
.

The gradient and the Hessian are given by

∇E(β, b) =
(

Kmβ + C+K�
I+,m(fI+ − yI+) + C−K�

I−,m(fI− − yI−)
C+e�I+(fI+ − yI+) + C−e�I−(fI− − yI−)

)
,

HE(β, b) =
(

Km + C+K�
I+,mKI+,m + C−K�

I−,mKI−,m C+K�
I+,meI+ + C−K�

I−,meI−

C+e�I+KI+,m + C−e�I−KI−,m C+|I+| + C−|I−|

)
,

where |I+|, |I−| denote the respective number of indices, eI+ , eI− are one-vectors
of the corresponding dimensions, and fI+ , fI− and KI+,m, KI−,m are vectors and
matrices, respectively, formed by selecting decisions function values fm(xi) and
the rows of Km as indexed by I+, I−.

During the greedy search procedure, this parameter fitting is done for increas-
ing dimensions r = 2, . . . , m. For fixed r and minimizing parameters (β, b) , β ∈
R

r, the criterion for selecting the next pattern xr+1 is the largest change of
the energy determined by optimizing the two variables minβr+1,b E(βr+1, b) with
β = (β1, . . . , βr) kept fixed.

4 Numerical Performance Evaluation

This section summarizes our experimental evaluation of RSVM-1 and RSVM-2
under various aspects. With the exception of the real data experiment reported
in subsection 4.5, all experiments were conducted with computer-generate data
in order to determine the test error rates accurately.

4.1 Validation of the Implementation

The approach described in section 3 reproduced the performance measures re-
ported in [1] for the benchmark data sets [2]. For example, Figure 2 shows the
average error rate (%) as a function of the number of support vectors.

10 15 20
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20

25

30

35

Fig. 2. Average error rate (%) of the RSVM-2 for the Banana data set [2] as a function
of the number m of support vectors
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Fig. 3. Left: Training set for a 2-class problem. The standard SVM returns
FNR/FPR(%)=0.45/2.12 and 68 support vectors. Center: Error rate (thick line)
and FNR/FPR (thin lines) for the RSVM-2 that significantly outperforms RSVM-
1 (cf. Table 1). Right: The first 6 SVs and the corresponding decision line of the
RSVM-2 (FNR/FPR(%)=0.51/4.93). On the average, RSVM-2 shows an acceptable
performance at about 10% computational costs of a standard SVM.

Table 1. Performance of the reduced SVMs for various fixed classifier com-
plexities. RSVM-2 considerably outperforms RSVM-1. The standard SVM returns
FNR/FPR(%)=0.45/2.12 and 68 support vectors.

# SVs 4 10 15 20 30

RSVM-1: FNR/FPR (%) 47.86/56.13 40.74/18.01 14.44/13.93 2.14/8.48 0.39/2.50

RSVM-2: FNR/FPR (%) 13.98/7.40 0.45/4.21 0.25/3.10 0.22/2.88 0.21/2.72

4.2 Performance for Fixed Classifier Complexity

In compare the different greedy strategies underlying RSVM-1 and RSVM-2,
respectively, we fixed the classifier complexities to m ∈ {4, 10, 15, 20, 30} and
evaluated the FNR and FPR of both reduced machines. The details are given in
Figure 3 and Table 1.

It turned out that RSVM-2 is consistently superior to RSVM-1 and shows an
performance comparable to the full SVM while needing only 10% of the number
of support vectors on the average.

4.3 Asymmetric Training Data

We performed an evaluation of RSVM-1 and RSVM-2 similar to the previous
section, but with asymmetric training sets and asymmetric training costs. This
situation is typical for detection scenarios where a large number of background
patterns are easily available for training, whereas the number of object patterns
is limited. A priori, it is not clear whether greedy search breaks down in such
situations. Figure 4 and Table 2 provide the quantitative details.

While the RSVM-2 perform as well as in the symmetric case (previous sub-
section), the performance of the RSVM-1 becomes even worse. Likewise, the
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Fig. 4. Left: An asymmetric training set (fore-/background samples = 1/10). The
standard SVM returns FNR/FPR(%)=3.79/0.86 and 92 support vectors for symmetric
training costs, and FNR/FPR(%)=1.08/2.16 and 153 support vectors for an asymmet-
ric choice of the training costs. Center: Error rate (thick line) and FNR/FPR (thin
lines) for the RSVM-2 trained with symmetric costs, that significantly ourperforms
RSVM-1 also in such asymmetric scenarios (cf. Table 2). The greedy optimization, how-
ever, mainly focuses on the larger background sample set (lower dashed line), yielding
a suboptimal overall performance Right: Asymmetric training costs enables to steer
the greedy search and to optimize the overall performance (note that the ordinate-
scale differs from the figure in the middle). For 15 support vectors, that is about 10%
classification costs of the full SVM, the RSVM-2 returns FNR/FPR(%)=0.2/3.5.

Table 2. Performance of the reduced SVMs for various fixed classifier complexities and
asymmetric training costs. RSVM-2 considerably outperforms RSVM-1. The standard
SVM returns FNR/FPR(%)=1.08/2.16 and 153 support vectors.

# SVs 4 10 15 20 30

RSVM-1: FNR/FPR (%) 54.59/32.15 51.74/12.40 43.00/10.79 1.87/6.34 0.87/2.85

RSVM-2: FNR/FPR (%) 14.92/6.44 4.25/4.82 0.2/3.5 0.21/3.03 0.41/2.98

relationship of approximation quality and computational complexity of the
RSVM-2 relativ to the fully nonlinear SVM did not change noticeably.

4.4 Two-Stages Sparse SVM Classification

The objective of this section is to show that in principle two sparse SVMs can
be combined sequentially without loss of classification performance, but at con-
siderably reduced computational classification costs. Being inferior to RSVM-2,
we did not consider RSVM-1 in this context, and we simply denote RSVM-2 by
RSVM in this section. We use subscripts 1 and 2 for the RSVM at stage 1 and
2, respectively.

Figure 5, left and right, show two RSVMs designed as stage-1 and stage-2
classifiers. The RSVM at stage 1 was asymmetrically designed so as to yield a
very low FNR. For the stage-2 RSVM, only those background patterns were used
for training that were accepted as false positives at stage 1. This is reasonable
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Fig. 5. Sequential classification by two RSVM-2. Both stages were trained by
direct greedy optimization. Left: Asymmetrically trained stage-1 RSVM with mini-
mal FNR (fraction of missed objects). Right: Stage-2 RSVM asymmetrically trained
on positive examples and false positives accepted by the stage-1 RSVM. The overall
performance is FNR/FPR(%) = 0.52/0.45 (see text for more details).

because in practice typically a large number of background patterns are available.
The performance data of the two classifiers are:

FNR1/FPR1(%) = 0.0035/15.83 (#SV = 7)
FNR2/FPR2(%) = 0.51/2.84 (#SV = 14)

Then the overall performance is

FNR = FNR2TPR1 + FNR1 ≈ 0.51% , FPR = FPR2FPR1 ≈ 0.45% ,

which compares favourably with the full SVM (see the caption of Figure 3).
The average computational costs per pattern are largely dominated by the

first-stage classifier which typically requires 10% computation time relative to
the full SVM. Assuming that the second RSVM has twice the number of support
vectors, that is 20%, and that an object occurs at 0.1% of all image locations,
than the two-stage classifier requires on the average about

0.2 (0.001 TPR1 + 0.999 FPR1) + 0.1 ≈ 13%

of the computation time of the full SVM.

Evaluation of benchmark data. We also applied the two-stages classifier
combining a very sparse RSVM at stage 1, followed by the RSVM designed as
reported in section 4.1, using the bechmark data[2], and averaged the results
over the corresponding 100 training-test pairs of data sets. The effective number
of support vectors is the sum of #SVs of the first machine plus #SVs of the
second machine multiplied by the acceptance rate of the first machine.

Table 3 shows that in comparison to [1] the classification cost can be further
reduced without a significance loss of performance.
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Table 3. Benchmark evaluation of the two-stages sparse SVM. The effective number of
SVs minimizes the classification costs and yields comparable classification performance.

Dataset Our Cascade Keerthi et al [1] SVM[1]

Effictive #SVs Error #SVs Error #SVs Error

Breast 4.67(0.66) 26.80(4.92) 12.1(5.6) 29.22(2.11) 185.8(16.44) 28.18(3.00)

Diabetis 6.48(0.54) 26.32(2.28) 13.8(5.6) 23.47(1.36) 426.3(26.91) 23.73(1.24)

German 4.41(0.63) 27.80(2.45) 14.0(7.3) 24.90(1.50) 630.4(22.48) 24.47(1.97)

Ringnorm 9.79(0.19) 2.04(0.28) 12.9(2.0) 1.97(0.57 ) 334.9(108.54) 1.68(0.24)

Thyroid 5.45(0.41) 5.61(2.41) 10.6(2.3) 5.47(0.78 ) 57.80(39.61) 4.93(2.18)

Waveform 9.16(0.40) 12.75(1.33) 14.4(3.3) 10.66(0.99 ) 246.9(57.80) 10.04(0.67)

4.5 Real Data

Although specific applications are not within the scope of this paper, we report
the performance of the RSVM-2 for an experiment with real data, to assure that
the findings reported above generalize to other data sets.

For a real-world challenge, we considered head detection on a set of 1042
images containing humans in various poses at approximately the same scale. We
divided the data-set into 603 training images and 439 test images, such that there
are no two images of individuals under similar conditions in the test set, and all
are mutually distinct to the training set. As a result, we may expect realistic
general performance measures. From these images, small patches of size 32x32
were extracted at the head location (provided by the user), and the popular
SIFT-features [12] were computed from the patches. We used 4x4 location and
8 orientation bins resulting in 128-dimensional feature vectors. Contrary to the
original formulation, we did no local orientation or scale normalization.

For the background, we computed 9934 features at locations not containing
any heads, which we divided into 4967 training and 4967 test features. Note
the asymmetry in the data, with a ratio of background/foreground of ≈ 8/1 for
training and ≈ 11/1 for testing.

Training a fully nonlinear SVM with asymmetric costs resulted in 1720 support
vectors and error rates FNR/FPR (%) = 14.35/1.39. The RSVM-2 showed a com-
parable performance, FNR/FPR (%) = 10.02/4.11, for only 47 support vectors,
however, that is with classification costs reduced by a factor of about 36!

5 Conclusions

We compared two greedy strategies recently proposed for the direct design of
reduced nonlinear SVMs. One of these strategies, suggested in [1], performed
uniformly well irrespective of the nature of the data set, and also in asymmetric
situations that are typical for object detection scenarios.

It should be pointed out that the factor of decreasing computational costs
reported in this paper has to be multiplied by the acceleration factors reported
in [8], that are obtained by an independent technique as discussed in section 1.



404 R. Karim et al.

We showed that the complementary design of two reduced SVMs results in
sequential two-stage classifiers that may even outperform fully nonlinear SVMs.
Such classifiers may form the core of larger structured classifiers using RSVMs
as components. This will be investigated in our future work.

Acknowledgement. This work has been supported by the European Marie
Curie Research Training Network VISIONTRAIN (contract number MRTN-CT-
2004-005439).
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8. Rätsch, M., Romdhani, S., Teschke, G., Vetter, T.: Over-complete wavelet ap-
proximation of a support vector machine for efficient classification. In: Kropatsch,
W.G., Sablatnig, R., Hanbury, A. (eds.) Pattern Recognition. LNCS, vol. 3663, pp.
351–360. Springer, Heidelberg (2005)

9. Zapién, K., Fehr, J., Burkhardt, H.: Fast support vector machine classification using
linear SVMs. In: 18th International Conference on Pattern Recognition (ICPR
2006), vol. 3, pp. 366–369. IEEE, Los Alamitos (2006)

10. Heisele, B., Serre, T., Prentice, S., Poggio, T.: Hierarchical classification and feature
reduction for fast face detection with support vector machines. Pattern Recogni-
tion 36(9), 2007–2017 (2003)

11. Wu, M., Schölkopf, B., Bakir, G.: A direct method for building sparse kernel learn-
ing algorithms. J. Mach. Learning Res. 7, 603–624 (2006)

12. Lowe, D.G.: Distinctive image features from scale-invariant keypoints.
Int. J. Comp. Vision 60(2), 91–110 (2004)

http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm


How to Find Interesting Locations in Video:

A Spatiotemporal Interest Point Detector
Learned from Human Eye Movements

Wolf Kienzle1, Bernhard Schölkopf1, Felix A. Wichmann2,3,
and Matthias O. Franz1

1 Max-Planck Institut für biologische Kybernetik, Abteilung Empirische Inferenz,
Spemannstr. 38, 72076 Tübingen
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Abstract. Interest point detection in still images is a well-studied topic
in computer vision. In the spatiotemporal domain, however, it is still
unclear which features indicate useful interest points. In this paper we
approach the problem by learning a detector from examples: we record
eye movements of human subjects watching video sequences and train a
neural network to predict which locations are likely to become eye move-
ment targets. We show that our detector outperforms current spatiotem-
poral interest point architectures on a standard classification dataset.

1 Introduction

Interest point detection is a well-studied subject in the case of still images [14],
but the field of spatiotemporal detectors for video is fairly new. Currently, there
exist essentially two methods. The earlier one is a spatiotemporal version of the
Harris corner detector [4] proposed by Laptev [9]. This detector has been shown
to work well in action classification [15]. However, spatiotemporal corners are a
relatively rare event, resulting in overly sparse features and poor performance
for many real-world applications [1,11]. To remedy this, the periodic detector
was introduced by Dollár [1]. It responds to simpler spatiotemporal patterns,
namely intensity changes in a certain frequency range. The authors show that
a simple recognition framework based on this detector outperforms the Harris-
based approach of [15].

As both of these approaches are relatively new, they are still far from being as
well-understood and empirically justified as their spatial counterparts. Clearly,
spatiotemporal corners and temporal flicker of a single frequency are only a
subset of all potentially interesting events in a video. Here, we present a new
approach to spatiotemporal interest point detection. Instead of designing new
interesting spatiotemporal features, we learn them from an already working and
very effective interest point detector: the human visual system. Our basic idea

F.A. Hamprecht, C. Schnörr, and B. Jähne (Eds.): DAGM 2007, LNCS 4713, pp. 405–414, 2007.
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is to record eye movement data from people watching video clips and train a
small neural network model to predict where people look. Used as an interest
point detector, the neural network is shown to outperform existing methods on
the same dataset which has been used as a benchmark for both the Harris and
the Periodic detector.

The connection between eye movements and interest operators has been made
before by several authors. In [13], a biologically inspired attention model was
used for object recognition in images. The idea of designing an interest point
detector directly from eye movement data was recently proposed in [7,8]. They
found that humans attend to center-surround patterns, similar to what is already
being used in some engineered detectors, e.g., [10]. However, their approach only
considers still images, and they do not report how their system performs on
typical computer vision tasks.

2 Eye Movements

The human visual system has its highest resolution at the center of gaze, or
fovea, which covers about one degree of visual angle. In fact, a disproportionately
large amount of cortical processing power is devoted to this small area. Towards
the periphery, both resolution and processing power decrease quickly [17]. As a
consequence, a visual scene does not enter the visual system as a whole, but is
sampled by the eyes moving from one location to another. During eye movements,
the center of gaze is either held fixed over a constant image area during fixations,
follows moving objects during smooth pursuit, or changes rapidly during saccades
in which visual input is mostly turned off (saccadic suppression) [2]. The choice
of which image regions become saccade targets is not random, however. In part,
it can be explained by typical patterns in the local image structure occurring at
fixated image locations [12,8]. Thus, the human eye movement mechanism bears
a resemblance to interest point detectors in that it uses local image statistics to
decide where to sample visual input for subsequent processing.

The aim of this work is to build an interest point detector that imitates this
effect. To this end, we recorded eye movement data from 22 human subjects. Each
subject viewed 100 short clips from the movie Manhattan (1979), presented on
a 19” monitor at 60cm distance at 24 frames per second with a resolution of
640×480 pixels. Each clip was 167 frames long (about seven seconds), and the
clips were sampled uniformly from the entire film (96 min) such that no cuts
occurred during a clip. Each subject viewed all 100 clips in random order and
with blanks of random duration in between. No color transform was applied, since
the movie is black and white. Eye movements were recorded using an Eyelink II
tracker, which, after careful calibration, yielded measurements of typically 0.3
degrees accuracy. Figure 1 shows three frames from an example clip together
with the recorded fixations from all 22 subjects.

In a post-processing step we discarded all fixations that occurred before frame
38 or after frame 148 to ensure a sufficient number of video frames both be-
fore and after each fixation. Also, a set of background (negative) examples was
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Frame #079 Frame #088 Frame #097

Fig. 1. Recorded eye movements on a sample video from our dataset (Section 2).
Fixations from all 22 users are shown as circles (there are no markers for subjects
which did not fixate, but moved their eyes during the respective frame).

generated using the same fixation positions, but with the video data taken from
wrong, i.e., randomly chosen clips. This way of generating background examples
is common practice in eye movement analysis and prevents artifacts caused by
the non-uniform sampling prior due to the limitations of the viewing field and
head motion in the eye tracking setup [12]. Finally, we split the set of all fixations
and background points into a training set (18691 samples), and a test set (9345
samples). The training set was used for designing the learned detector (Section
3.3), the test set was used to compare the three interest point algorithms in
terms of how well they predict human fixations (Section 4.1).

3 Spatiotemporal Interest Point Detectors

3.1 The Spatiotemporal Harris Detector

The spatiotemporal Harris detector is due to Laptev [9] and extends the widely-
used Harris corner detector [4] to the time axis. Analogously to the spatial
case, the spatiotemporal Harris detector is based on the 3 × 3 second-moment
matrix M , which describes the local gradient distribution, spatially at scale σ
and temporally at scale τ . Interest points are computed as the local maxima of
the quantity

SH = detM − k(trace M)3, (1)

where k = 0.005 is an empirical constant [9], corresponding to the well-known
magic number 0.04 in the original spatial detector [4]. Here, we refer to SH as
the saliency function of the detector, according to the biological term saliency
[5] which is used to describe the interestingness of locations in an image. Note
that the output of the detector is a discrete set of locations, while SH is defined
on the entire video clip. In practice, a second set of scales σi, τi is used for
the integration of the moment matrix over a spatiotemporal window [9], usually
taken to be a multiple of σ, τ . Throughout this paper we used the implementation
from [1], with the default setting of σi = 2σ, τi = 2τ . Thus, the detector has two
free parameters, the spatial scale σ and the temporal scale τ .
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Response (Harris) Response (Periodic) Response (Learned)

Maxima (Harris) Maxima (Periodic) Maxima (Learned)

Fig. 2. Qualitative comparison of detector responses SH (eq. 1), SP (eq. 2), and SL

(eq. 3). The blended checkerboard texture in the top row illustrates detector responses
on frame 88 from Figure 1. The bottom row shows the corresponding regional (2D)
maxima. Parameters were set to σ = 2, τ = 3 for all detectors.

The response of the spatiotemporal Harris detector can be characterized sim-
ilarly to the 2D case: the saliency function SH , or cornerness, is large if the
spatiotemporal gradient varies significantly in all three dimensions. Laptev in-
tuitively describes the detected events as split or unification of image structure
and as spatial corners changing direction. The applicability of this concept to
action classification was shown in [15]. SH computed on the center frame of our
sample sequence in Figure 1 is shown in Figure 2 (left column). The highest
values are achieved where the racket passes the black bar in the background.

It should be mentioned that in the conceptual simplicity of the spatiotemporal
Harris detector lies also a possible drawback. Clearly, the time axis is not just a
third image dimension, such as in volume data [3], but it describes a very different
entity. Perhaps not surprisingly, it was found that the 3D-Harris detector can
lead to unsatisfactory results, in that it tends to produce too few interest points
[1,11]. This has given rise to the development of the Periodic detector, which we
describe in the following section.

3.2 The Periodic Detector

The so-called Periodic detector was proposed by Dollár [1] as an alternative to
Laptev ’s method. In Dollár ’s approach, the image is smoothed spatially and then
filtered temporally with a quadrature pair of one-dimensional Gabor filters. The
squared outputs of the two Gabor filters are added to get the saliency function

SP =
2∑

i=1

(I ∗ G(σ) ∗ Fi(τ, ω))2 (2)
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where I denotes the 3D image, G(σ) is a 2D spatial Gaussian filter with standard
deviation σ, and F1(τ, ω), F2(τ, ω) are 1D temporal Gabor filters with frequency
ω and scale τ (with odd and even phase, respectively, as illustrated in Figure 3,
right plot). Interest points are again the local maxima of the saliency function
over space and time. In the implementation we use [1], the frequency is fixed
to ω = 0.5/τ . In effect, this detector has the same parameters as the Harris
detector, namely σ for the spatial scale and τ for the temporal scale.

Intuitively, the saliency SP is large where image intensity changes temporally
at a rate ω = 0.5/τ . Accordingly, the authors [1] refer to this detector as the
Periodic detector. Figure 2 shows its output on frame 88 of our example sequence
(Figure 1). This suggests that, as intended [1], SP takes significant values in
larger regions than the Harris measure SH .

3.3 The Learned Detector

The Harris and Periodic detector are based on analytic descriptors of local image
structure assumed to be useful for computer vision applications. The interest
point detector we propose here is instead based on image features selected by
the human visual system.

The architecture of our detector is motivated by that of the Periodic detector
(2). It consists of a simple feed-forward neural network model with sigmoid basis
functions

SL = b0 +
k∑

i=1

αi tanh(I ∗ G(σ) ∗ Wi + bi), (3)

i.e., the input video I is first convolved with a spatial Gaussian low pass G
of width σ, then by k temporal filters Wi. The k filter outputs are fed into
tanh nonlinearites (with bias bi) and then added together using weights αi and
a global bias term b0. Note that this generalizes the Periodic detector to an
arbitrary number of arbitrarily shaped input filters: instead of two quadratic
basis functions we now have k sigmoids, and the temporal filters will be fitted
to the eye tracking data instead of being fixed Gabor filters. Additionally, each
basis function contributes to the output SL with a different weight and bias.

In the learning step, we fit the saliency function (3) to our recorded eye
movement data: we optimize the filters Wi, the weights αi, and the biases bi

using regularized logistic regression, i.e., by minimizing

E =
m∑

i=1

(yisi − log(1 + exp si)) + λ

k∑
i=1

α2
i (4)

Here, the si are the values of SL at the training samples (see Section 2). The
corresponding labels yi are set to 1 if i is a fixation, and 0 if it is a background
example. Note that this corresponds to a maximum a posteriori estimate in a
logit model, i.e., the learned saliency function SL has a probabilistic interpreta-
tion: it equates to the logarithmic odds ratio of a fixation by a human observer,
SL = P (Y = 1|I)/P (Y = 0|I). To carry out the optimization of (4) we used a
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Fig. 3. The 19-tap temporal filters from the Learned (left) and the Periodic (right)
detector. Shown on the horizontal axis is the time relative to the beginning of a pre-
dicted fixation (horizontal gray line). Note that both detectors have different offsets in
time, corresponding to the values which are optimal in terms of predictivity (cf. Table
1): −7 and −5 frames (w.r.t. the central tap) for the Learned and Periodic detector,
respectively .

scaled conjugate gradient method [16]. Prior to training, the training data were
denoised to 95% variance by projecting out the least significant PCA compo-
nents. The network weights were initialized to random values.

During learning, several design parameters have to be set: the regularization
parameter λ, the number of filters k, and the spatial scale σ of the Gaussian.
The size of the temporal filter Wi was set to 19 frames which corresponds to
three times the value of τ = 3 in the Harris and the periodic detector, the
standard setting used in [1,11] and also throughout this paper. Additionally, we
introduce a temporal offset Δt, which denotes the position of the center of the
temporal filters Wi relative to the beginning of a fixation. The rationale behind
this is that the time at which a fixation is made does not necessarily coincide
with the time at which the video contains the most useful information to predict
this. As an example, the typical saccade latency, i.e., the time between seeing
something interesting and making a saccade is 150−200ms (6−8 frames at 24
fps) [2]. The design parameters were found via 8-fold cross-validation, where
the performance was measured in area under the ROC curve (ROC score), the
standard measure for predicting eye movements [7]. The search space was a 4D
grid with log2 σ ∈ [−1 . . .8] in steps of 2/3 ranging from single pixels to the full
screen, Δt = −29 . . .9 in steps of 2, k = 1, 2, 5, 10, 20, and log10 λ = −4, −2, 0, 2.
We found a clear performance peak at σ = 1, Δt = −7, k = 5 and λ = 0.01. We
will refer to the detector trained with these parameters in the following as the
learned detector.

The right plot in Figure 2 shows the output SL on our example sequence
from Figure 1. Note that, similarly to the periodic detector, our detector has
a large response over extended areas. Interestingly, the largest Harris response
(at the racket) leads to a high response, too. The five learned filter kernels Wi
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are shown in Figure 3 (left plot). As found during learning, the optimal temporal
alignment of the filter kernels is at Δt = −7, which centers them at about 300ms
before the fixation event. Examining the shape of the learned kernels, we find
that all kernels have a steep slope 200ms before the fixation event, which means
that the detector is tuned to temporal intensity changes occurring at that time.
Interestingly, this matches very well with the typical saccade latency of 150-200
ms, i.e., the time between deciding to make and making a saccade (the saccades
themselves are typically very short (20-50ms)). Note that we did not put any
such assumption into the design of our detector. Therefore, this property must
stem from the data, meaning that our detector has in fact learned a biologically
plausible feature of bottom-up saliency.

4 Experiments

4.1 Eye Movement Prediction

For still images it has been shown that simple local image statistics such as in-
creased RMS contrast attract the human eye [12]. As most spatial interest point
detectors strongly respond to local contrast, they do in fact explain some of the
variance in human eye movements. For time-varying images, it is known that
flicker and motion patterns attract our attention [2]. Since the Harris and Peri-
odic detector respond to such features, we expect a significant correlation with
human eye movements in this case as well. To quantify this, we computed ROC
scores of the saliency functions RH (Harris), RP (Periodic), and RL (Learned) on
our test set (Section 2). ROC scores are the standard measure for eye movement
prediction [8]. In still images, the state-of-the-art for purely bottom-up (based on
image content only) models is around .65 [8]. Note that this seemingly low score
makes perfect sense, since eye movements are also controlled by more high-level,
top-down factors, such as the observers thoughts or intentions [18], which are
not considered by bottom-up models by construction.

Here, we compare the three detectors in terms of how well they predict human
fixation locations. To reduce the inherent advantage of the Learned detector—
which was built for this task—we also trained the free parameters of the Harris
and the Periodic detector: analogously to Section 3.3, we fixed τ = 3 and opti-
mized σ and Δt on the training set via cross-validation. Test ROC scores (aver-
aged over eight random subsets of the test set, ± standard error) are shown in
Table 1, together with the optimal values for σ and Δt found in cross-validation.
This shows that our detector outperforms the two others by a large margin,
reaching state-of-the-art performance. This is not surprising since we specifically
designed the Learned detector for this, while the others were not. Another obser-
vation is that the optimal temporal offset Δt is very similar in all three cases, and
in agreement with the typical saccadic latency of 6 − 8 frames (cf. Section 3.3).
Also, all detectors have scores significantly above chance level, which means
that they are indeed related to the spatiotemporal features that the human eye
is attracted to.
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Table 1. How human eye movements are prediced by spatio-temporal interest point
detectors (Section 4.1)

Detector ROC score log2σ Δt

Learned .634 ±.007 0.0 -7

Periodic .554 ±.015 -1.0 -5

Harris .522 ±.005 3.3 -8

4.2 Action Classification

We have seen that the Learned detector outperforms existing methods in terms
of predicting eye movements. This, however, should be regarded only as a proof
of concept, since our main interest is to solve actual computer vision problems,
not to predict eye movements. To make a fair comparison, we tested our detector
within the domain for which the Harris and Periodic detectors were designed.
We used the KTH action classification dataset [15], which was also used by
the inventors of the Harris and Periodic detector to test their approaches. The
dataset contains 598 videos (160×120 pixels, several seconds long) of 25 people
performing 6 different actions (walking, jogging, running, boxing, handwaving,
handclapping) under varying conditions (indoor, outdoor, different scales). Fig-
ure 4 shows one example frame from each class.

In this experiment, we adapt Dollár ’s method for video classification, as used
in [1,11]). The original method is based on the periodic detector. At each interest
point, a block of video data (a cuboid) is extracted. Then, a codebook is built
by applying PCA and K-means clustering. That way, a video is described by
the histogram of its cuboids, quantized to the codebook entries. As multiclass
classifier on top of this feature map, [1] train RBF (Radial Basis Function) SVMs
and [11] use pLSA (probabilistic Latent Semantic Analysis). To test our approach
we use Dollár ’s Matlab code with all settings to standard (in particular σ = 2,
τ = 3), but with the Periodic detector replaced with our Learned detector. The
periodic detector uses a threshold of 0.0002 on SP below which all local maxima
are rejected. For our detector, a natural choice for this threshold is zero, since
SL can be interpreted as the log odds of a fixation where SL = 0 corresponds to
a fixation probability above .5.

As in [11], we compute a leave-one-out estimate of the test error by training on
the data of 24 persons, and testing on the remaining one. This is repeated 25 times.
Codebooks are generated using 60,000 random samples of the training cuboids,
100 PCA components and 500 centers in K-means. Classification is done with a
hard margin linear SVM. The confusion matrix and the average accuracy (the
mean of the diagonal elements of the confusion matrix) are shown in Figure 4.
This shows that our method outperforms previous approaches. Note that we in-
tentionally kept most of the settings in Dollár ’s original method in order to isolate
the effect that the new interest point detector has on the performance. We there-
fore expect that our results improve further if we tune the entire system to suit
our detector best.
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our method 82.8

Niebles et al. [11] 81.5

Dollár et al. [1] 81.2

Schüldt et al. [15] 71.7

Ke et al. [6] 63.0

Fig. 4. Action classification results.
Top left: The KTH action classifi-
cation dataset [15]. Top right: The
confusion matrix of our classifica-
tion system, which uses the Learned
interest point detector. Bottom
left: A comparison against existing
algorithms.

4.3 Real-Time Demo and Matlab Implementation

For many applications it is vital that interest points can be computed very effi-
ciently. Being conceptually similar to the periodic detector, the learned detector
works also very efficiently. With five (eq. 3) instead of two (eq. 2) temporal
filters, we expect the number of operations to be about 2.5 times higher. A
demo application which shows the learned saliency function SL superimposed
onto a webcam feed in real-time (as in Figure 2, top right) can be downloaded
at http://www.kyb.mpg.de/∼kienzle. The Matlab code for detecting interest
points, which plugs into Dollár ’s feature extraction framework [1], is provided
at the same location.

5 Discussion

We have presented a new spatiotemporal interest point detector based on a very
simple neural network which predicts where a human observer would look in a
given video. The detector was trained on real eye movement data and we showed
that it predicts the location of human eye movements on independent test clips
with state-of-the-art accuracy. We also tested our approach in a computer vi-
sion environment. We found that the learned detector, plugged into a simple
classification framework, outperforms previous action classification methods on
a large real-world dataset. This indicates that a biologically inspired measure of
interestingness can be indeed beneficial for computer vision applications. This
is a nontrivial result, since existing detectors were specifically designed for com-
puter vision problems, whereas our detector was designed to mimic human eye
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movements. A possible drawback of our present approach is that the detector
is spatiotemporally separable, which makes it blind to time-varying spatial pat-
terns, such as the direction of motion. We are currently working on an improved
version which takes this into account.
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Abstract. This paper presents a reliable coin recognition system that
is based on a registration approach. To optimally align two coins we
search for a rotation in order to reach a maximal number of colinear
gradient vectors. The gradient magnitude is completely neglected. After
a quantization of the gradient directions the computation of the induced
similarity measure can be done efficiently in the Fourier domain. The clas-
sification is realized with a simple nearest neighbor classification scheme
followed by several rejection criteria to meet the demand of a low false
positive rate.

1 Introduction

The goal of a coin recognition system is to automatically sort and classify high
volumes of coins with high accuracy within a small amount of time. In 2003
ARC Seibersdorf research GmbH created the sorting device called Dagobert [1].
The recognition unit of Dagobert is able to discriminate between over 600 differ-
ent coin types based on over 2000 different coin faces. In 2006 ARC Seibersdorf
formulated together with the MUSCLE1 Network of Excellence and the PRIP,
Vienna University of Technology the Coin Image Seibersdorf (CIS) Competi-
tion 2006 2 to foster the development of robust coin recognition algorithms. The
present paper proposes the price winning algorithm.

The proposed system roughly follows the ideas in [1]. The similarity of two
coin images is computed by the use of registration techniques. In a first step the
translational pose of the coin is determined by a segmentation algorithm that
makes an estimate of the coin’s radius and its center. The comparison of two
coins is done by aligning them with respect to their rotational pose, i.e. we have
to optimize only one parameter, which makes the registration feasible. Having
defined a similarity measure any classification scheme may be used. Because of
the highly reliable embossing process for the coins we believe that a registration
technique is the first choice to reach good results. The only difficulty is to find
robust similarity measures that tolerate the, sometimes severe, abrasion and
fouling of the coins, but still give response for the reliable embossment which
determines the class membership. Additionally this similarity measure has to be

1 http://www.muscle-noe.org/
2 http://muscle.prip.tuwien.ac.at/index.php
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computable in a fast manner such that the resulting algorithm can cope with
large databases.

The article is organized as follows: In the following subsection we give a short
overview over related work. In Section 2 we present our algorithm for coin seg-
mentation that is based on the Hough transform. In Section 3 we present the
features that are used for alignment and similarity computation followed by some
implementation details. The classification scheme is presented in Section 4. Fi-
nally we show results on the CIS Benchmark datasets. In Section 6 we give a
conclusion and ideas for further improvement.

1.1 Previous Work

Recent approaches for coin recognition can roughly be divided in methods based
on rotational invariant features and methods based on registration. In [5,6] in-
variant features are used to compare coins in a rotational invariant manner. In
[5] very high false positive rates are reported. In [1,7] the similarity computation
is based on registration techniques. It seems possible that these approaches are
able to fulfill the reliability demanded in the benchmark specifications.

2 Coin Segmentation

In [1] a simple segmentation scheme is used which works by thresholding the
grayvalues. This approach is based on the assumption that the coins itself are
brighter than its background. Having a look at the benchmark database this
is mostly but not always the case. So, we have to search for another solution.
The Hough transform is known to be a very robust segmentation tool. We use
a generalized Hough transform (GHT) [2] to segment the coins. In [3] the same
method was used for a fast segmentation of cell-nuclei. We use a three dimen-
sional voting space, namely the two coordinates of the coin’s center and its radius
r. Let us call the gray-valued image function I : R

2 �→ R and the voting function
P : R

3 �→ R. The idea is to let each pixel cast a vote for possible circle centers at
particular radii. To keep the running time low the votes are performed only for
those points that are colinear with current gradient vector. Formally we search
maxima of the following function

P (x, r) =
∫

R2

(
δ
(
x + r ∇I(y)

||∇I(y)||
)

+ δ
(
x − r ∇I(y)

||∇I(y)||
))

||∇I(y)|| dy,

where δ is some indicator function giving contribution whenever its argument is
nearby zero, for example a gaussian or a rectangle-function. Each gradient in the
image votes for a possible center of the coin, where the hypothetical center has
to be along the gradient’s direction. Since we do not know whether the coin is
darker or brighter than the background we have to vote in positive and negative
direction.

Before starting to compute the integral we blur the image with a first-order
IIR-Filter to get smooth gradients. The computation of the integral is straight-
forward. Just run linearly over the image I and compute the gradient ∇I(y) and
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its magnitude. Now for every position y and for discrete radii values ri accumu-
late the voting function at positions y+ri

∇I(y)
||∇I(y)|| and y−ri

∇I(y)
||∇I(y)|| with weight

||∇I(y)||. The shape of the accumulation depends on the indicator function δ.
We just round the estimated coordinates to the nearest integers and accumu-
late the single pixels. After all accumulations are done the voting function P
is smoothed by an IIR-Filter. Hence, the indicator function is just the impulse
response of this filter.

Since we know that there is only one coin present in a image, we can use a
hierarchical voting scheme to get better estimates for the radius. For a first rough
estimate we take 16 different values for the radius covering the whole range of
possible coin sizes. After the determination of the first maximum we distribute
again 16 radius bins around the first rough estimate. Overall we repeat this
procedure four times resulting in an accurate estimate. On an Intel P4 2.8Ghz
the overall segmentation procedure needs less than one second for one image. In
Figure 1 we show three examples of segmented coins.

a) b) c)

Fig. 1. Coins segmented by our algorithm. Coin a) and b) have very bad contrast
conditions, however our algorithm is able to make a good segmentation. In c) a section
of a coin is shown where our algorithm makes a small mistake. Due to a strong circle-
like structure at the border of the coin the estimated radius is a little bit too small.
However, this is a systematical error, and if it happens for every coin from the specific
class it shall not confuse the classification algorithm.

3 Feature Extraction and Registration

Having a look at the benchmark database one can guess that the actual gray
values of the images are not very discriminative. In [1] a Canny Edge-Detector is
used to compute more reliable features. This is, of course, a much better idea than
working on the plain gray values, but it has still some disadvantages. At first,
the results depend heavily on the choice of the parameters of the edge-detector.
These parameters have to be chosen properly depending on the illumination
conditions and the quality of the images. And secondly, the orientation of the
edges are completely neglected. We want to follow a different approach. We want
to use solely the direction of the gradients in the image and totally neglect its
magnitude. This has the advantage that we are independent of illumination and
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contrast changes. One can argue that only considering the direction is a very
dirty approach, since we also compute gradient directions in homogeneous, flat
regions where theoretically the gradient has to be zero and hence no reliable
direction exists. But however, there are several reason to follow this idea. First,
if the direction in homogeneous regions can be assumed to be equidistributed
with respect to its angle, then the similarity measure can be designed such that
this regions give only a constant bias. Further, we do not need any threshold, i.e.
we never need to decide whether there is an edge or not. This advantage becomes
important considering Figure 2. Due to abrasion coins show typical patterns near
structural steps and edges. One can see several slight gradients near the edges. It
would be ignorant to neglect this information. An algorithm, which makes only
use of edges has problems to also incorporate this information.

Fig. 2. Abrasion effects. Due to abrasion several slight gradients are introduced near
the edges. Not only the edges contain structural information that may be considered,
also putative flat regions contain valuable structure. Our algorithm also uses this in-
formation for recognition.

During segmentation we determined the radius and center of the coin. From
now on we assume that the center is shifted to the origin and the radius is
normalized to 1. For convenience we represent the image I in polar coordinates
I(r, ϕ) with r ∈ [0, 1] and ϕ ∈ [0, 2π]. The basis for our features is the normalized
gradient image g = (gr, gϕ)T given by

gr(r, ϕ) =
∂rI

ε +
√

(∂rI)2 + (r∂ϕI)2
, gϕ(r, ϕ) =

r∂ϕI

ε +
√

(∂rI)2 + (r∂ϕI)2
,

where ε is a small positive constant avoiding division by zero. We choose the
radial and tangential derivatives because they do not change while rotating the
coin. A rotation of the coin just shifts the ϕ coordinate of g cyclically. Based on
the gradient image we compute the angle image a ∈ [0, π] given by

a(r, ϕ) = sign(gϕ(r, ϕ)) arcsin(gr(r, ϕ))

describing the angle to the tangent of the circle. The sign modification leads
to invariance against inverting the contrast. We found that it is not important
whether an edge is descending or ascending, because, e.g. by dirt or abrasion of
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the coin, the contrast conditions are sometimes inverted. So only one half of the
circle is represented by this function, the other half is mapped by point reflection
to the former. The function a is now used for comparing two coins. Let a and
a′ be two feature functions from two different coins, we define their correlation
function by

c(φ) =
∫ 2π

0

∫ 1

0

δ(a(r, ϕ) − a′(r, ϕ − φ)) drdϕ,

where δ is again some indicator function deciding whether two angles are different
or equal. It can be imagined as a delta distribution, for example. So c(φ) counts
how often the angles of the gradients of the two coins coincide at a specific
relative angle φ. The maximum value of c is defined as our similarity measure

k(a, a′) = max
φ∈[0,2π]

c(φ) (1)

It is well known that the computation of a cross correlation function which
is based on the scalar product can be efficiently done in the Fourier domain.
But c is not an ordinary scalar product; to get us into the position to apply
the Fourier transform we first have to rewrite our correlation function. For any
function g there exists the so called convolutional square root g1/2, which fulfills
the following relation

g(x − y) =
∫

R

g1/2(x − z)g1/2(z − y) dz.

Using this formula for our indicator function δ we can rewrite the correlation

c(φ) =
∫ 2π

0

∫ 1

0

∫

R

δ1/2(a(r, ϕ) − z)︸ ︷︷ ︸
f(r,φ,z)

δ1/2(z − a′(r, ϕ − φ))︸ ︷︷ ︸
f ′(r,ϕ−φ,z)

dzdrdϕ.

Indeed we introduced an additional integration but now c(φ) looks like an or-
dinary correlation of two functions f and f ′, which can efficiently be com-
puted in the Fourier domain. Let us call f(r, φ, z) our final feature function
and f̃(r, k, z) =

∫
f(r, ϕ, z)e−ikϕdϕ its Fourier transform with respect to the

angle parameter. The feature with respect the z-parameter can be interpreted
as a some kind of indicator function contributing whenever there is a gradient
with the specific angle z in the original image.

Using the Fourier features the Fourier representation of c(φ) looks then

c̃(k) =
∫ 1

0

∫

R

f̃∗(r, k, z)f̃ ′(r, k, z) drdz,

where ·∗ is the complex-conjugate. The last step is just to transform c̃(k) back
into the spatial domain and search for its maxima.
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Fig. 3. Sketch of the feature extraction process. After the computation of radial and
angular gradients the angle function a(r, ϕ) is computed. For clarity we only visualize
the yellow marked upper left corner of the image. In the a(r,ϕ) the arrow-tips are
omitted because the sign of the direction does not count anymore. One can see that
also regions with relatively low gradient magnitude contain valuable, structured infor-
mation. In the last step the directions are discretized in six discrete directions. Finally
one binary feature image is created for each direction.

3.1 Implementation

Preprocessing and Gradient Computation. Given the segmented image in carte-
sian coordinates we first applied a blur using the same IIR-filter used for segmen-
tation. To get the polar gradient image we directly sample the gradients from
the blurred image with 1024 steps in angular direction and 256 steps in radial
direction using bilinear interpolation. We used a stepsize of 1 pixel in the original
image for computing the finite differences for the gradient. In radial direction we
only sample from 0 to 0.9, i.e. we leave out the outer 10 percent of coin, because
it seems that it mostly contains useless information (see also [1]). Then we blur
the image again with the IIR-filter and downsample it to the desired size; for the
competition we use a size of 256 × 64. Finally we normalize the gradients and
compute the angles according to the equations from above.
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Discretizing the Angles and Final Feature Computation. The gradient angle pa-
rameter z is discretized in M steps, i.e. we have a stepwidth of Δz = π/M . So
the final feature image consists of M binary images of size 256× 64. The binary
image with number i contains entries whenever a(r,ϕ)

Δz falls within the interval
[i, i+1] with 0 ≤ i < M . In Figure 3 we visualize the algorithm. Having a closer
look at the angle function a(r, ϕ) one can see that also regions with relatively
low gradient magnitude contain valuable information.

To become more robust against small gradient changes we additionally use
some kind of ’inverse’ bilinear interpolation (also called fuzzy histograms, see
[4]) to generate the entries. For each entry the two nearest pixel get a contribu-
tion depending linearly on the distance to the pixel’s center. We also conduct
some smoothing in radial direction to be robust against small shifts in radial
direction. Such radial shifts usually come from small errors during the segmen-
tation process.

Finally the Fast Fourier Transform (FFT) of the feature function in ϕ direction
can be precomputed to speed up the comparison later, i.e. we compute the FFT
of the rows of the binary feature images on the right of Figure 3.

4 Classification

For classification we use a very simple nearest neighbor scheme. This is mainly
due to complexity and memory considerations. For example, considering the
feature parameters used for the competition, one feature is of size 256 · 64 · 6 ·
sizeof(float) = 392KByte. The training database consists of over two thousand
different coin types, so we already need nearly one GigaByte storage. Although,
the training set provides a set of different samples per type, we only use one
sample for training. But still, a whole scan of those would take about 6 seconds
on a Pentium P4 2.8Ghz for just one side of the coin, while the benchmark
specifications only allowed about 5 seconds to classify one coin, which involves
the scan for both sides. To meet this goal we have to restrict to search only in a
subset of the two thousand training images. Since we have a good estimate of the
radius of the examined coin, the search is only performed in some neighborhood
of the estimated radius. We search in a range of 2Δ = 4mm around the estimated
radius. Mostly, the search includes around 200 comparison depending on the
coin’s radius, that is a speed up of a factor of 10 in comparison to an exhaustive
search. After the algorithm has determined the nearest neighbors within this
range it is checked whether the predicted labels for the front and backside of
the coin are consistent. If they do not, the coin is immediately rejected and
classified as unknown. Otherwise we compute a prediction confidence C which is
based on the similarity scores, thickness, radius and angle pose differences. First
we normalize the similarity scores. Imagine that two images are compared that
have totally random gradient orientation, then their similarity is expected to be
k = 256 ·64/6 ≈ 2730. Hence, we normalize the similarity score by k′ = k−2730.
We further compute the thickness differences Δt1 and Δt2 for the front and
backside of the coin to its matched partners from the training database. And we



422 M. Reisert, O. Ronneberger, and H. Burkhardt

Fig. 4. Complete workflow of the classification system. After segmentation of the coins
the features f̃(k, r, z) according to section 3 are computed. Then, nearest neighbors
are searched with respect to the similarity measure (1). The search is only performed
within a neighborhood of the estimated radius, not on the whole database. If the nearest
neighbors of both coin sides agree the coin is a possible candidate for acceptance,
otherwise it is immediately rejected. Finally additional rejection criteria are checked
and some classes get a special treatment.

do the same for the radius. Due to the construction of the coin acquisition system
front and backside of the coin should have a fixed rotational pose relation. We
found that the relation is slightly unreliable, but we also included it with a small
weight in our confidence score,

C = k′
1k

′
2 exp

(
− (Δr1 + Δr2)

0.17 mm
− (Δt1 + Δt2)

0.07 mm
− (Δφ)

10◦

)
.

If this confidence is below 10−5 the coin is rejected. Additionally, we will make a
reject if the thickness difference is above 0.25mm or the Δφ is above 70◦. Besides,
all this additional reject criteria do not have too much influence on the overall
performance, the most powerful rejection criteria is definitely the consistency of
the votes for the front and backside of the coin. In Figure 4 we give a rough
overview over the complete classification system.
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5 Experiments

We conducted some experiments to get good settings for the parameters. We
found that for the angular/radial resolution 256× 64 is a good trade-off betwees
accuracy and speed of the classification. In general one can say that the higher
the resolution the better the results, while the ratio 256/64 = 4 seems to be
optimal and should be kept fix. As already mentioned we use 6 discritization
steps for the z-resolution.

Table 1. Experimental results for all three tranches (left) and the competetion re-
sults (right). RC is the number of classes which got at least one correct classification.
(T/F)(P/N) means True/False Positives/Negatives. TP+TN gives the total number of
correct classification. FN+TN is the total number of rejects, i.e. the number of coins
classified as unknown. FP gives the number of unknown coins, which are classified to
some known class and the number of known coins classified to a wrong known class.
The assessment score is calculated by score = RC*25 + TP+TN - 100*(FP).

Tranche 1A (no rej.) 1A 1B 1C

RC 322 320 309 398

TP+TN (%) 97.64 97.27 97.20 94.31

FN+TN (%) 5.20 5.64 5.94 9.42

FP (%) 0.06 0.02 0.02 0.03

Ass. Score 17211 17527 17245 19081

FR MA

339 278

97.24 67.31

5.18 32.50

0.0 2.21

18199 -8419

In Table 1 we show the obtained results on the CIS benchmark dataset. The
system shows very good performance, classification rate are mostly above 97%
and the false positive rate is very low. In the first column results for tranche
1A with no additional reject criteria are shown. Obviously the additional crite-
ria improve the system; less false positives and only marginal shrinkage of the
classication rate can be observed, and hence also a higher assessment score is
obtained. Further we show results for tranches 1B and 1C with the additional
reject criteria. On all tranches, together 30000 coins, we have in total 7 coins
which are wrongly classified to be known, while they are labeled as unknown.
Six of these coins are very similar to known coin classes or are wrongly labeled.
The results for the final competition results are also reported (details in [9]). Our
results (FR) are compared to an approach based on invariant features (MA) [8].

6 Conclusions

We presented a coin recognition system which is based on gradient directions
only. The results show that the directional information is enough to build a
reliable classification system while the system is very robust to illumination and
contrast changes. We have shown that the demand of a very low false positive rate
is possible to reach. There might be several improvements of the system. Further
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fitting of the parameters like resolution, oversampling multiplier or smoothing
width may improve the accuracy of the system. More sophisticated reject criteria
and confidence values could also help to avoid false positives. Unfortunately the
test set sizes of ten thousand coins are still to small to validate false positive
rates of 0.01 percent.
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Recognition. LNCS, vol. 4174, Springer, Heidelberg (2006)

4. Siggelkow, S., Burkhardt, H.: Improvement of Histogram-Based Image Retrieval and
Classification. In: Proceedings of the International Conference on Pattern Recogni-
tion, vol. 3, pp. 367–370 (2002)

5. Haber, Ramoser, Mayer, Penz, Rubik: Classification of coins using an eigenspace
approach. Pattern Recognition Letters 26(1), 61–75 (2005)

6. Fukumi, M., Omatu, S., Takeda, F., Kosaka, T.: Rotation-invariant neural pattern
recognition system with application to coin recognition. IEEE Transactions in Neural
Networks 3(2), 272–279 (1992)

7. Adameck, M., Hossfeld, M., Eich, M.: Three color selective stereo gradient method
for fast topographic recognition of metallic surfaces. In: Proceedings of Electronic
Imaging, Science and Technology, Machine Vision Application in Industrial Inspec-
tion XI, vol. SPIE 5011, pp. 128–139 (2003)

8. van der Maaten, L., Boon, P.: COIN-O-MATIC: A fast system for reliable coin
classification. In: MUSCLE CIS Coin Recognition Competition Workshop (2006),
http://muscle.prip.tuwien.ac.at

9. Nölle, M., Rubik, M., Hanbury, A.: Results of the MUSCLE CIS Coin Compe-
tition 2006. In: MUSCLE CIS Coin Recognition Competition Workshop (2006),
http://muscle.prip.tuwien.ac.at

http://muscle.prip.tuwien.ac.at
http://muscle.prip.tuwien.ac.at


3D Invariants with High Robustness to Local

Deformations for Automated Pollen Recognition

Olaf Ronneberger, Qing Wang, and Hans Burkhardt

Albert-Ludwigs-Universität Freiburg, Institut für Informatik, Lehrstuhl für
Mustererkennung und Bildverarbeitung, Georges-Köhler-Allee Geb. 052,
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Abstract. We present a new technique for the extraction of features
from 3D volumetric data sets based on group integration. The features
are invariant to translation, rotation and global radial deformations.
They are robust to local arbitrary deformations and nonlinear gray value
changes, but are still sensitive to fine structures. On a data set of 389 con-
focally scanned pollen from 26 species we get a precision/recall of 99.2%
with a simple 1NN classifier. On volumetric transmitted light data sets of
about 180,000 airborne particles, containing about 22,700 pollen grains
from 33 species, recorded with a low-cost optic in a fully automated
online pollen monitor the mean precision for allergenic pollen is 98.5%
(recall: 86.5%) and for the other pollen 97.5% (recall: 83.4%).

1 Introduction

Nearly all worldwide pollen forecasts are still based on manual counting of pollen
in air samples under the microscope. Within the BMBF-founded project “OM-
NIBUSS” a first demonstrator of a fully automated online pollen monitor was
developed, that integrates the collection, preparation and microscopic analysis
of air samples. Due to commercial interests, no details of the developed pattern
recognition algorithms were published within the last three years. This is the
first time that we show how this machine works behind the scenes.

Challenges in pollen recognition. Due to the great intra class variability and
only very subtle inter-class differences, automated pollen recognition is a very chal-
lenging but still largely unsolved problem. As most pollen grains are nearly spher-
ical and the subtle differences are mainly found near the surface, a pollen expert
needs the full 3D information (usually by “focussing through” the transparent
pollen grain). An additional difficulty is that pollen grains are often agglomerated
and that the air samples contain lots of other airborne particles. For a reliable mea-
surement of high allergenic pollen (e.g. Artemisia. A few such pollen grains per m3

of air can already cause allergic reactions) the avoidance of false positives is one
of the most important requirements for a fully automated system.

State of the art. Almost all published articles concerning pollen recognition
deal with very low numbers of pollen grains from only a few species and use
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manually prepared pure pollen samples, e.g. [1]. Only [4] used a data set from
real air samples containing a reasonable number of pollen grains (3686) from
27 species. But even on a reduced data set containing only 8 species and dust
particles, the recall was only 64,9% with a precision of 30%.

Main Contribution. In this paper we describe the extension of the Haar-
integration framework [9,6,7,8] (further denoted as “HI framework”) to global
and local deformations. This is achieved by creating synthetic channels con-
taining the segmentation borders and employing special parameterized kernel
functions. Due to the sparsity of non-zero-values in the synthetic channels the
resulting integral features are highly localized in the real space, while the frame-
work automatically guarantees the desired invariance properties.

For efficient computation of these integrals we make use of the sparsity of
the data in the synthetic channels and use a Fourier or spherical harmonics
(“SH”) series expansion (for the desired rotation invariance) to compute multiple
features at the same time.

a) volume rendering of

confocal data set

b) horizontal and vertical

cuts of confocal data set

c) horizontal and vertical cuts

of transmitted light data set

Fig. 1. 3D recordings of Betula pollen grains. In transmitted light microscopy the
recording properties in z-direction (the direction of the optical axis) are significantly
different from those in the xy-direction, because the effects of diffraction, refraction
and absorption depend on the direction of the transmitted light. Furthermore there
is a significant loss of information in z-direction due to the low-pass property of the
optical transfer function.

2 Material and Methods

Data Sets. To demonstrate the generality of the proposed invariants and com-
pare them to earlier results, we use two different pollen data sets in this article.
Both contain 3D volumetric recordings of pollen grains.

The “confocal data set” contains 389 pollen grains from 26 German pollen
taxa, recorded with a confocal laser scanning microscope (fig 1a,b). For further
details on this data set refer to [6].

The “pollen monitor data set” contains about 180,000 airborne particles in-
cluding about 22,700 pollen grains from air samples that were collected, prepared
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and recorded with transmitted light microscopy from the online pollen monitor
from March to September 2006 in Freiburg and Zürich (fig. 1c). All 180,000
particles were manually labeled by pollen experts.

Segmentation. To find the 3D surface of the pollen grains in the confocal data
set, we use the graph cut algorithm described in [2]. The original data were first
scaled down. The edge costs to source and sink were modeled by a Gaussian
distribution relative to the mean and minimum gray value. We added voxel-to-
voxel edges to the 124 neighborhood, where the weight was a Gaussian of the
gray differences. The resulting binary mask was then smoothly scaled up to the
original size.

The first step in processing the pollen monitor data set is the detection of
circular objects with voxel-wise vector based gray-scale invariants, similar to
those in [8]. For each detected circular object the precise border in the sharpest
layer is searched: As parts of the object border are often missing or not clear, we
use snakes to find a smooth and complete border. To avoid the common problem
of snakes being attracted to undesired edges (if plain gradient magnitude is used
as force field), we take the steps depicted in fig 2.

a) sharpest layer b) found edges c) weighted edges d) final snake

1. Applying modified Canny edge
detection.
As pollen grains have a nearly
round shape, the edges that are
approximately perpendicular to
the radial direction are more rele-
vant. We replace the gradient with
its radial component in the orig-
inal Canny edge detection algo-
rithm.

2. Model-based weighting of the
edges.
The curvatures and relative loca-
tions of the edges are analyzed
and each edge is given a different
weight. Some edges are even elim-
inated. As a result, a much clearer
weighted edge image is obtained.

3. Employing snakes to find the
final border.
The initial contour is chosen to be
the circle found in the detection
step. The external force field is the
so-called “gradient vector flow”
[10] computed from the weighted
edge image

Fig. 2. Segmentation of transmitted light microscopic images

2.1 Construction of Invariants

For the construction of invariants we use the combination of a normalization
and Haar-integration [9,6,7,8](see eq. (1)) over a transformation group con-
taining rotations and deformations (Haar-integration has nothing to do with
Haar wavelets). In contrast to the very general approach in [6], we now use the
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object center and the outer border found in the segmentation step to extract
more distinctive features describing certain regions of the object.

T [f ](X) :=
∫

G

f(gX)dg

G : transformation group
g : one element of the transformation group

dg : Haar measure
f : nonlinear kernel function
X : n-dim, multi-channel data set

(1)

Invariance to translations. Invariance to translations is achieved by moving
the center of mass of the segmentation mask to the origin. The final features are
quite insensitive to errors in this normalization step, because they are computed
“far” away from this center and only the direction to it is used.

Invariance to rotation. Invariance to rotation around the object center is
achieved by integration over the rotation group. In the confocal data set we can
model a 3D rotation of a real-world object by a 3D rotation of the recorded volu-
metric data set (see fig. 1b). In contrast to this, the transmitted light microscopic
image stacks from the pollen monitor data set show very different characteristics
in xy- and z-direction, (see fig. 1c). A rotation around the x- or y-axis of the
real-world object results in so different gray value distributions, that it is more
reasonable to model only the rotation around the z-axis, resulting in a planar
rotation invariance.

Invariance to global Deformations and Robustness to local Deforma-
tions. The deformation model consists of two parts. The global deformations
are modeled by a simple shift in radial direction er, which depends only on the
angular coordinates (see figure 3a). For full 3D-rotations described in spherical
coordinates x = (xr , xϕ, xϑ) this model is

x′ = x + γγγ(x) with γγγ(x) = γ(xϕ, xϑ) · er(xϕ, xϑ) . (2)

For rotations around the z-axis described in cylindrical coordinatesx=(xr , xϕ, xz)
we get

x′ = x + γγγ(x) with γγγ(x) = γ(xϕ) · er(xϕ) . (3)

Please note, that this deformation is well defined only for r > −γ(ϕ), which is
no problem in the present application, because the features are computed “far”
away from the center.

The smaller local deformations are described by an arbitrary displacement
field D(x) such that

x′ = x + D(x) (4)

(see fig. 3b). For the later partial Haar-integration [3] over all possible realizations
of this displacement field, it is sufficient to know only the probability for the
occurrence of a certain relative displacement r within this field as

p
(
D(x + d) − D(x) = r

)
= pd (r; ‖d‖) ∀x,d ∈ IR3 , (5)
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a) Global deformation model (radial) b) Local deformation model (arbitrary)

Fig. 3. Possible realizations of the deformation models

where we select pd (r; ‖d‖) to be a rotationally symmetric Gaussian distribution
with a standard deviation σ = ‖d‖ · σd.

While we achieve full invariance to radial deformations by full Haar-integration
we can only reach robustness to local deformations by partial Haar-integration.
But this non-invariance in the second case is exactly the desired behavior. In com-
bination with appropriate kernel functions this results in a continuous mapping of
objects (with weak or strong local deformations) into the feature space.

The kernel functions. Instead of selecting a certain fixed number of kernel
functions, we introduce parameterized kernel functions here. Embedded into the
HI framework, each new combination of kernel parameters results in a new in-
variant feature. For multiple kernel parameters, we now have a multidimensional
invariant feature array describing the object.

Robustness to gray value transformations. To become robust to gray value trans-
formations the information is split into gradient direction (which is very robust
even under nonlinear gray value transformations) and gradient magnitude. This
was already successfully applied to the HI framework in [8] and to confocal pollen
data sets in [5].

Synthetic channels with segmentation results. To feed the segmentation informa-
tion into the HI framework we simply render the surface (confocal data set) or
the contour of the sharpest layer (transmitted light data set) as delta-peaks into
a new channel S and extend the kernel-function with two additional points that
sense the gray value in this channel. The only condition for this technique is
that the computation of the synthetic channel and the action of transformation
group can be exchanged without the result being changed (i.e., we must get the
same result if we first extract the surface and then rotate and deform the volume
and vice versa).

Resulting kernel function. To achieve the requested properties we construct 4-
point kernels, where 2 points of the kernel a1 and a2 sense the segmentation
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channel and the other 2 points b1 = a1 +q1 and b2 = a2 +q2 sense the gradient
∇X of the gray values relative to the information in the segmentation channel,

k1[p](S, X) = S(a1) · ‖∇X‖(b1) · δ

(
c1 − a1

‖a1‖
· ∇X

‖∇X‖
(
b1

))

·S(a2) · ‖∇X‖(b2) · δ

(
c2 − a2

‖a2‖
· ∇X

‖∇X‖
(
b2

)) (6)

while the delta-functions restrict the kernel to “see” only gradients with the given
“direction” c1 and c2. Not all combinations of a1, a2, q1, q2, c1 and c2 make
sense, because the Haar integration returns identical features for all kernels that
are equivalent under the given transformation group. Furthermore for certain
combinations, only trivial features will be returned. To ensure, that only non-
trivial and non-identical features are created, we introduce the low-dimensional
parameterization p. Examples of this kernel function are depicted in figure 4.
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Fig. 4. Action of the transformation group on the selected 4-point kernel functions

As mentioned above, the resulting “structural” features are fully invariant to
the global radial deformations. To also extract the shape information, we select
the parameterized kernel

k2[a1,a2](S) = ‖γγγ(a1)‖S(a1) · ‖γγγ(a2)‖S(a2) , (7)

that operates on the synthetic channel. When we use the simple scheme of creat-
ing the synthetic channels described above, the resulting features are equivalent
to the magnitude of the Fourier coefficients of the contour in the 2D case and
spherical harmonic (“SH”) coefficients for the surface in the 3D case.

2.2 Fast Simultaneous Computation of the invariants

With the group of radial deformations Gγ , the group of arbitrary deformations
GD and the group of rotations GR the final Haar integral becomes:

T =
∫

GR

∫

Gγγγ

∫

GD

f
(
gRgγγγgDS, gRgγγγgDX

)
p(D) dgD dgγ dgR , (8)
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where p(D) is the probability for the occurrence of the local displacement field
D. The transformation of the data set is described by (gX)(x) =: X(x′), where

x′ = Rx︸︷︷︸
rotation

+ γγγ(Rx)︸ ︷︷ ︸
global deformation

+ D
(
Rx + γγγ(Rx)

)
︸ ︷︷ ︸
local deformation

. (9)

To ensure a strong coupling of a′
1 and b′

1 (and a′
2,b

′
2 accordingly) we only use

kernels, where these two points will be treated equally by the global transforma-
tion, i.e., the kernel must fulfill the condition γγγ(Rai) = γγγ(Rbi), ∀R (illustrated
by thick connections in fig 4). The transformed kernel points are

a′
i(R,γγγ,D) = Rai + γγγ(Rai) + D

(
Rai + γγγ(Rai)

)

b′
i(R,γγγ,D) = Rbi + γγγ(Rai) + D

(
Rbi + γγγ(Rai)

)
.

(10)

Now inserting the kernel into the Haar integral gives:

T =
∫

GR

∫

Gγγγ

∫

GD

S(a′
1) · ‖∇x′X‖

(
b′

1

)
· δ

(
c1 − a1

‖a1‖
· ∇x′X

‖∇x′X‖
(
b′

1

))

· S(a′
2) · ‖∇x′X‖

(
b′

2

)
· δ

(
c2 − a2

‖a2‖
· ∇x′X

‖∇x′X‖
(
b′

2

))

· p(D) · dD
(
Ra1 + γγγ(Ra1)

)
· dD

(
Rb1 + γγγ(Ra1)

)

· dD
(
Ra2 + γγγ(Ra2)

)
· dD

(
Rb2 + γγγ(Ra2)

)

· dγγγ(Ra1) · dγγγ(Ra2)
· dR ,

(11)

where ∇x′ denotes the del operator in the transformed coordinate system. The
uncommon notation like dγγγ(Ra1) is necessary, because each displacement field is
described here with an infinite number of parameters (one displacement for each
location in the 3D space). During the integration the outer integral continuously
“selects” the integration parameter for the inner integral.

If the synthetic channel is created from a single surface or contour and if
we can assume a star-shaped object (which is granted for all considered pollen
types) we will find for every given R only one nonzero response of S during the
integration over all deformations γγγ(Rai). By defining this coordinate as s(Rai)
we see that the integral only returns nonzero values for

s(Rai) = a′
i

⇒ γγγ(Rai) = s(Rai) − Rai − D
(
Rai + γγγ(Rai)

)
,

(12)

which allows to eliminate the direct dependency of b′
i on γγγ(Rai):

b′
i = s(Rai) + Rbi − Rai + D

(
Rbi + γγγ(Rai)

)
− D

(
Rai + γγγ(Rai)

)
. (13)

With the additional precondition that the probability for the occurrence of a
certain relative displacement r only depends on the distance of the two consid-
ered points (5) we can fully eliminate the dependency of the global transfor-
mation γγγ(Rai) and replace the four integrals over the local displacement field
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p(D)·dD
(
Ra1+γγγ(Ra1)

)
·. . . by the integration over all relative displacements ri

weighted with their probability pd (r1; ‖d1‖) · pd (r2; ‖d2‖) dr1dr2. The resulting
b′

i is
b′

i(R, ri) = s(Rai) + Rbi − Rai + ri . (14)

and
‖di‖ = ‖Rbi + γγγ(Rai) − Rai − γγγ(Rai)‖ = ‖bi − ai‖

By the substitution of qi := bi − ai the full Haar integral can be written as

T =
∫

GR

∫

IR3

‖∇x′X‖
(
b′

1

)
δ

(
c1 − a1

‖a1‖
· ∇x′X

‖∇X‖
(
b′

1

))
pd (r1; ‖q1‖) dr1

∫

IR3

‖∇x′X‖
(
b′

2

)
δ

(
c2 − a2

‖a2‖
· ∇x′X

‖∇X‖
(
b′

2

))
pd (r2; ‖q2‖) dr2 dR . (15)

After integration over the local deformations, this results in two scalar functions
defined on a sphere (or a cylinder), that are “scanned” by a simple two-point-
kernel, which allows to use the framework introduced in [7] for fast but still fully
rotation invariant approximation of the solution. For 3D rotations this framework
uses a spherical-harmonics series expansion, and for planar rotations around the
z-axis it is simplified to a Fourier series expansion.

Parameterization. For the experiments described in this paper we only used
kernels with ‖q1‖ = ‖q2‖ and c1 = c2. For the application on the confocal data
set (allowing full 3D rotations) this results in 3 parameters for the kernel: The
distance q to the segmentation surface, the relative direction of the gradient c
and the desired angular resolution n. For the application on the pollen monitor
data set (rotational invariance only around the z-axis), q is split into a radial
distance qr to the segmentation border and the z-distance to the central plane
qz.

For the computation, each voxel of the dense 3D data is first projected into
the sparse representation in the 4D kernel parameter space, defined by each
“arm” of the kernel function (q, c, ϕ, ϑ for confocal data and qr, qz, c, ϕ for the
pollen monitor data). The advantage of this sparseness is that fine detail infor-
mation from the original images “survive” the smoothing effects of the partial
Haar-integration over the local deformation model and the extraction of rotation
invariant features.

For the selected kernels with ‖q1‖ = ‖q2‖ and c1 = c2 a further reduction of
the complexity can be achieved, because the final features are only a nonlinear
combination of the magnitudes of the computed SH- / Fourier coefficients. As
this final recombination does not introduce additional informations we can omit
it, and instead use the magnitudes of the SH- / Fourier coefficients directly.

The best sampling of the parameter space of the kernel functions (correspond-
ing to the inner class deformations of the objects), was found by cross validation
on the training data set, resulting in Nqr ×Nqz ×Nc×n = 31×11×16×16 = 87296
“structural” features (using kernel function k1) and 8 “shape” features (using
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kernel function k2). For combination into one feature vector the structural fea-
tures were normalized to unit sum and the shape features were multiplied by
0.01 . For the confocal data set this resulted in Nq × Nc × n = 64 × 7 × 2 = 896
“structural” features (using kernel function k1). The “shape” features were not
yet used here. For both data sets, σd, describing the allowed local deformations,
was set to 0.1 .

3 Experiments

Experimental setup. For the confocal data set a simple 1 Nearest Neighbor
classifier (using the L1-norm) was used.

The pollen monitor data set was split to approximately equal sized sets by
using the air samples with an even index as training set and that with odd
index as test set. From the training set only the “clean” (not agglomerated, not
contaminated) pollen and the “non-pollen” particles from a few samples were
used to train the support vector machine (SVM) using the RBF-kernel (radial
basis function) and the one-vs-rest multi-class approach. The best parameters
were selected using cross-validation on the training data set. After that the
resulting SVM was used to classify all particles (about 100,000) in the training
set and the false classified “non-pollen” objects were added to the final SVM-
training set.

The detection step (before segmentation) only finds circular objects. For the
very few non-circular (fortunately also non-allergenic) species like pinus, often
only fragments are segmented. These fragments are simply labeled as “non-
pollen”.

Results. On the confocal data set we got a recognition rate of 99.2% with the
simple 1NN classifier using a leave-one-out test, which is a significant improve-
ment to best published 1NN result on the same data set: 94,5% [5]

Table 1. Confusion matrix for pollen monitor samples. The pollen grains that the
biologists were not able to recognize (“indeterm.”) were left out from the statistics.
Due to space limitations only the recall of the results with “no rejection” are given.

with rejection no rejection

rej. no p. Cory. Alnu. Betu. Poac. Arte. other recall (%) recall (%)

indeterm. (826) (1518) (5) (8) (23) (40) (3) (461)
no pollen 1882 77430 1 7 3 1 0 119
Corylus 14 6 75 0 0 0 0 0 78.9 86.3
Alnus 96 41 0 751 2 0 0 0 84.4 90.8
Betula 86 10 1 4 933 1 0 0 90.1 95.7
Poaceae 84 7 0 0 1 576 0 10 85.0 92.5
Artemisia 6 0 0 0 0 0 24 0 80.0 96.7
other pollen 814 195 1 4 5 3 1 5126 83.4 93.6

precision (%) 96.2 98.0 98.8 99.1 96.0 97.5

mean precision (allergenic): 98.5% 93.8%
mean recall (allergenic): 86.5% 93%
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On the pollen monitor data set, for allergenic pollen species, we got a mean
precision of 98.5% at a recall of 86.5% or a precision of 93.8% at a recall of 93%
depending on the selected rejection scheme. The details are shown in table 1. Due
to the limited space only the results of the 5 allergenic pollen taxa are explicitly
listed, the remaining 28 pollen taxa were combined into the row “other pollen”.
Objects were rejected, when the SVM returned no or more than one positive
decision values. The results in the small table on the right “no rejection” were
obtained by always assigning the class with the highest decision value.

There were several air samples with 100% precision and 100% recall and other
with very low recall, mainly caused by extreme climate conditions (e.g. snow
flakes, that melted on the air sample and created a big cluster of particles in
multiple layers) or malfunction of the pollen monitor (e.g. vibrations during the
recording of the image stack, misadjustment of the optics , etc.)

4 Conclusions and Outlook

The integration of deformation models into the feature extraction seems to be
a central step for a reliable recognition of biological structures. At least for the
presented application on automated pollen recognition this technique produced
results that are better than all comparable results published elsewhere (e.g.,
[1,4]). Furthermore it has proven to also work outside the clean laboratory world
in a real routine application. Anyhow, we can expect that pollen recognition still
remains a challenging research area. In pollen monitor data sets from more than
only one machine, one year and two cities, the variations will be even larger.
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Abstract. We present a model for learning convex kernel combinations
in classification problems with structured output domains. The main
ingredient is a hidden Markov model which forms a layered directed
graph. Each individual layer represents a multilabel version of nonlinear
kernel discriminant analysis for estimating the emission probabilities.
These kernel learning machines are equipped with a mechanism for find-
ing convex combinations of kernel matrices. The resulting kernelHMM
can handle multiple partial paths through the label hierarchy in a consis-
tent way. Efficient approximation algorithms allow us to train the model
to large-scale learning problems. Applied to the problem of document
categorization, the method exhibits excellent predictive performance.

1 Introduction and Related Work

Kernel methods have been successfully applied to a variety of classification prob-
lems with structured output domains. Typical learning tasks of this kind are
defined by hierarchical (multi-)labelings where the class membership of an ob-
ject is characterized by multiple partial paths through a labeling tree. However,
there is a general problem with using kernels which carries over to hierarchical
classification: the lack of interpretability of the decision functions in abstract
feature spaces makes it difficult to extract further insights into the nature of a
given problem. For standard learning settings (i.e. flat hierarchies), it has been
proposed to address this problem by using multiple kernels together with some
combination rules, where each of the kernels measures different aspects of the
data. Methods for learning sparse kernel combinations have the potential to
extract relevant measurements for a given task. Moreover, the use of multiple
kernels addresses the problem of data fusion.

We present a method for learning kernel combinations which explicitly ad-
dresses the problem of hierarchical multilabel classification in structured output
domains. The main ingredient is a hidden Markov model (HMM). The HMM
uses a variant of nonlinear kernel discriminant analysis (NKDA) [15,16] as a
building block for estimating the emission probabilities. The presented variant
of NKDA is capable of learning sparse combinations of kernel matrices in mul-
tilabel settings. The sparsity is obtained by way of adaptive ridge regression
(AdR).
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The contribution of this work is twofold. On the one hand we present a novel
strategy for learning kernel combinations that extends previous approaches to
multilabel settings. On the other hand, these multilabel classifiers are arranged
as layers in a hierarchical hidden Markov model that is capable of handling
structured output domains. Inference in this model consists of reconstructing
the most probable path(s) through the label hierarchy. We apply this method
to the problem of document classification, where the kernel combination mech-
anism is not only useful for selecting among different text kernels, but also for
automatically selecting the model complexity.

Existing algorithms for combining kernels recast the problem either as a
quadratically constrained quadratic program (QCQP), [11], as a semi-infinite
linear program (SILP), [18], or within a sequential minimization optimization
(SMO) framework, [2]. Methods for selecting kernel parameters have also been
introduced in the boosting literature, see e.g. [4] or in the context of Gaussian
processes, see e.g. [3]. However, none of these approaches has been extended to
handling hierarchical multilabels consistently. Hierarchical classification prob-
lems, on the other hand, have been addressed by several authors, mostly in the
context of document classification, see e.g. [14,1]. Many of these approaches use
kernels, and some of them can handle incomplete hierarchical labelings, i.e. mul-
tiple partial paths through the hierarchy. None of these models, however, has
been extended to learning kernel combinations.

The kernelHMM bridges this gap by introducing a method for learning convex
combinations of kernel matrices for structured output domains. It can handle
multiple partial paths in arbitrary (layered) graphs. It is conceptually similar to
the model in [1], but differs in that its generative model allows us to efficiently
combine different kernels. The use of discriminant analysis in HMMs has been
proposed previously, see e.g. [10].

2 The kernelHMM

Let us assume that the output domain is comprised with a layer-wise structure,
which for instance could form a hierarchical dependency among the classes.
We will, however, not restrict ourselves to strict hierarchical orderings in that
we allow arbitrary transitions between consecutive layers, see figure 1. If the
original structure of the learning problem is of a more general form, we will
include “dummy” nodes to enforce a layer structure.

By identifying each layer l in the graph as the possible values of a discrete
random variable Y(l), we arrive at a hidden Markov model for representing struc-
tured output domains. Assuming that we are given observations X (l) gener-
ated by a distribution p(X (l)|Y(l)) in each of the layers, we can identify the
values of the random variables Y(l) as the emitting nodes in an automaton
graph: each node within a certain layer emits vectors in some feature space
x

(l)
i ∈ F

(l) according to p(X (l)|Y(l)). We start with a very simple Gaussian
model in which all M (l) nodes in one layer share a common covariance ma-
trix: p(X (l) = x(l)|Y(l) = m) = N(x(l); μm, Σ). This model will be successively
refined for learning kernel combinations and handling multiple labels.
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Sparse kernel combinations. We first observe that the ML parameters of the
Gaussian model above can be computed by way of linear discriminant analysis
(LDA): it is well known in the literature [7] that the LDA solution effectively
computes ML estimates in a Gaussian mixture model with common covariance.
LDA computes a projection β = argmax β�SBβ s.t. β�SW β = 1, where
SB,W denote the between and within class scatter matrices. The analogy with
the ML estimates comes from the fact that in the subspace spanned by β, squared
Euclidean distances to class centroids equal Mahalanobis distances in the original
space (up to a constant C):

‖x�β − μ�
mβ‖2 = (x − μm)�Σ−1(x − μm) + C. (1)

This result carries over to the M -class case where LDA computes as sequence
of projections β1, . . . , βM−1. It has been shown in [8] that the LDA vectors can
be found by first regressing the response matrix Z (which in each row encodes
the class membership of an observation xi as a binary (0, 1)-vector) against the
data matrix X (which contains the observations as row vectors). This regression
step is followed by an eigen decomposition which finally yields the LDA vectors.
Since there are only M −1 nonzero eigenvalues corresponding to the M −1 LDA
vectors, one can use a transformed response matrix Z ′ which has only M − 1
columns and fulfills a certain orthogonality constraint, see [8].

Reformulating LDA as indicator regression procedure has the advantage that
one can easily regularize the fits by adding some penalty function, like ω · β�β
in the case of ridge regression, where ω denotes a predefined regularization con-
stant. A different way of regularization called adaptive ridge regression has been
proposed in [6], where each input dimension is penalized separately:

∑
j ωjβ

2
j .

For d variables, the individual penalties ωj are coupled to fulfill the balancing
constraint 1

d

∑
j

1
ωj

= 1
λ , where λ is again a predefined regularization constant.

It has been shown that this model is equivalent to �1-penalized (or LASSO) re-
gression which produces sparse fits in the sense that typically many of the input
variables disappear from the model. Instead of selecting single features, however,
we want to derive a model for selecting kernel matrices. The first step towards
such a model for sparse kernel combinations is a slight variation of adaptive
ridge regression: instead of d individual penalties we divide the d variables into
J blocks containing m variables each (for simplicity in notation we assume that
there exists an integer m such that d = J ×m). We then let the variables within
the blocks share a common penalty. Following [6] it is numerically advantageous
to introduce new variables γj,i =

√
ωi/λ βj,i , ci =

√
λ/ωi. Formally, we have

to minimize ∑M−1
k=1 ‖yk − XDcγk‖2 + λγ�

k γk, (2)

subject to c�c = d, ci > 0, where Dc denotes a diagonal matrix of the com-
ponents of c. The target vectors yk, k = 1, . . . , M − 1 are the columns of the
response matrix Z ′ (see above), and c denotes the vector of shared (transformed)
penalties c = (c1, . . . , c1, . . . , cJ , . . . , cJ )�.

Note that for given weights c, eq. (2) defines a standard ridge-regression prob-
lem in the transformed data X̃ = XDc. It is well-known in the kernel literature
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that the solution vectors γ̂k lie in the span of these input data, i.e. γ̂k = X̃�αk,
which means that the data enter the model only in form of the Gram matrix (or
Mercer kernel) X̃X̃�. Since we have assumed that a weight ci is shared over a
whole block of m features, we can decompose this kernel as a weighted sum of
J individual kernels:

K := X̃X̃� =
∑J

j=1 c2
jX̃(j)X̃

�
(j) =:

∑J
j=1 c2

jKj. (3)

with X̃(j) denoting a (n×m) sub-matrix of X̃ consisting of one block of m input
features. With the above expression we have arrived at the desired framework
for learning sparse combinations of kernel matrices: the kernel matrices Kj in (3)
which have been formally introduced by partitioning an initial feature set into
J feature blocks can be substituted by arbitrary kernels fulfilling the positive-
semidefiniteness condition of valid dot product matrices. On the technical side,
we have to minimize the “kernelized” version of eq. (2)

∑M−1
k=1 ‖yk − (

∑J
j=1 c2

jKj)αk‖2 + λα�
k (

∑J
j=1 c2

jKj)αk (4)

subject to c�c =
∑J

j=1 c2
j = d, ci > 0.

The optimal weights c are found iteratively by a fixed-point algorithm similar
to that proposed in [6]

(c2
j )new = J

�M−1
k=1 c2

j �α�
k Kj �αk�M−1

k=1

�
J
l=1 c2

l
�α�

k Kl�αk
. (5)

Note that in every layer l we are using the above equation for computing non-
linear kernel discriminant analysis (NKDA) projections of vectors x

(l)
i in some

kernel-induced feature space F (l). Given these projections in all layers of our
HMM with Gaussian emission probabilities in the associated kernel spaces, we
can then compute the likelihood of a sample for which we have access to observa-
tions at any layer of the graph. Typically, however, we have observations only at
the leaf-nodes, which suggests replicating the observations in every layer. With-
out a sparsifying mechanism such replications would lead to a severe modeling
problem, since now the replicated variables would be conditionally independent
given the values of the hidden variables Y(l). Since in every layer we compute
sparse combinations of kernels, however, we typically end up with almost or-
thogonal feature spaces F (l) which might justify the conditional independence
assumption (at least on a qualitative level).

Individual covariances per class. The above model is rather restrictive in
that it uses a “pooled” covariance matrix shared by all mixture components in a
certain layer. This assumption might be violated in practice, for instance in the
presence of “dummy” classes that contain samples from many individual classes,
see figure 3 for an example of this kind. The flexibility of Mercer kernels, how-
ever, helps to overcome this problem. While a pooled covariance model leads
to linear class boundaries, individual covariances produce quadratic discrimi-
nant functions. In our regression context, we can easily simulate such quadratic
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discriminant functions by augmenting the set of kernels by quadratic variants
thereof: given an initial kernel function which computes dot products in some
feature space, k(x1, x2) = φ(x1) · φ(x2), a quadratic kernel of the form

kquad(x1, x2) = (1 + φ(x1) · φ(x2))2 = (1 + k(x1, x2))2 (6)

implicitly maps into the space of quadratic polynomials and, thus, allows us to
switch from linear decision boundaries to quadratic ones. Note that this increased
flexibility of the decision functions is the essential difference between individual
covariances and a pooled one.

Multiple labels. The origin of multiple labels might be many-fold. A document
might contain one paragraph about sports and another one about politics. If we
have decided to consider the whole document as one entity, such a situation
gives rise to use a multi-label (sports,politics). A different situation might occur
if the document deals explicitly with the influence of politics on sports. In such
a situation we can expect that each paragraph will contain keywords from both
topics. Using the common “bag-of-words” representation, however, both situa-
tions would be similar in the sense that both documents will contain a mixture of
keywords which are typical for both sports and politics, so that we might model
the generative process as a mixture of topic-specific word distributions.

Another reason might be a discordant collective of supervisors, giving rise to
fractional labels: for instance, 70% of the supervisors voted for category sports
and 30% for politics. On the technical side, however, we might represent such
label uncertainty again by assuming a generative process in form of a mixture
of topic-specific word distributions.

A conceptually different reason for multilabels, however, might be the decision
of a single supervisor that a document belongs to both sports and politics and
that it contains words which are neither typical for each of the single categories,
so that the underlying generative process cannot be modeled as a mixture dis-
tribution. While such situations might occur theoretically, we believe that in the
context of document categorization with “bag-of-words” encoding the generative
mixture model over category-specific word distributions is more plausible.

Thus we represent a document by its bag-of-words vectors and model the gen-
erative process as a mixture of topic-specific distributions over a label set L with
mixture weights πm: p(x) =

∑
m∈L

πmp(x|Y = ym) =
∑

m∈L
πmN(x; μm, Σ).

We fit such a Gaussian model with mean μm and covariance Σ in each layer of
the HMM. The mixing proportions are estimated uniformly as πm = 1/|L|, if
the m-th class is a member of the label set L, and zero otherwise.

In practice, the fractional labels are treated as the outcome of one (super-
vised) E-step in the EM algorithm, and the optimization reduces to finding
the ML parameters in one M-step, given a collection of (possibly) multilabeled
documents. This M-step estimate can be carried out by an augmented and
weighted discriminant analysis which again can be reformulated as a regres-
sion problem, followed by an eigen decomposition, see [7]. On the technical side,
we only have to replace the (binary) response matrix Z with its probabilistic
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counterpart Z̃ that encodes the fractional labels. In [7] this matrix Z̃ is called
“blurred response matrix”. Thus, we can still use the adaptive ridge penalties for
finding sparse combinations of kernel matrices as described in the last section.
Concerning the estimates for the transition probabilities associated with the
edges in the automaton graph, we simply compute the (weighted) empirical
frequencies of (fractional) class membership in the training set.

Predicting the class memberships for new test objects amounts to finding
the most likely paths through the automaton graph. In the ideal case, the bag-
of-words vector of a document belonging to classes sports and politics will be
identified as a mixture of both categories with mixing weights πsports and πpolitics

summing to one. This observation suggests to sort the individual paths according
to their likelihood and to select the number of labels assigned to an observation
by thresholding this ordered sum, i.e. by finding the smallest integer k such that

∑
k πordered

k ≥ θ. (7)

In practice we learn the optimal threshold θ on a validation set.

Efficient implementation. If we can hold objects of the size of one kernel
matrix in the main memory, the M − 1 minimizing vectors α̂k, k = 1, . . . , M − 1
in eq. (4) can be found simultaneously in a very efficient way by employing block
conjugate gradient methods, [5]. If the memory capacity is exceeded, we propose
to approximate the multiclass discriminant analysis classifiers by a probabilistic
pairwise coupling approach [9] where we only have to keep kernels of two classes
in the main memory.

The problem of finding the most likely paths can be solved efficiently via
the Tree-Trellis variant of Viterbi algorithm [19] with a time complexity that
is linear in both the number of nodes and the length of the paths (i.e. the
number of layers in the HMM) and which scales like k log k in the number k of
paths.

EBEB EB

Fig. 1. A flat hierarchy (left), two hierarchical layers (middle), additional “dummy”
node to complete partial paths (right). Each layer l contains emitting nodes which
correspond to the values of a random variable Yl. Hierarchical multilabels correspond
to multiple paths from the leftmost node (“begin”) to rightmost one (“end”).
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3 Experiments

One of the major applications for hierarchical multilabel models is the classi-
fication of documents. For example, a document that belongs to the category
football is also likely to belong to the category sports. Neglecting these depen-
dencies typically leads to a decline of predictive performance.

We tested our approach on the Reuters Corpus Volume 1 (RCV1) database,
[13]. This dataset consists of 4 super-classes (MCAT, GCAT, ECAT, CCAT)
which are refined hierarchically. We used the expanded hierarchy which contains
a 117 node forest of Reuters Topics categories.

The documents are represented by 8 different kernel matrices: a linear kernel
K lin-TF that directly works on a TFIDF-weighted bag-of-words vectors, a RBF
kernel Krbf

ij = exp(−D2
ij/σ1) with D2

ij denoting the Euclidean distance between
the bag-of-words vectors xi and xj of documents i and j, a probabilistic text
kernel (KNU

2 )ij = exp(−a‖xi − xj‖1) that has been shown to be the best kernel
among a family of probabilistic kernels introduced in [12], and a uniform (i.e. non
TFIDF-weighted) bag-of-words kernel K lin-u. In order to let the model decide
whether or not to choose individual covariances per class, we also included for
each of the above kernels their quadratic counterparts K*-quad

ij = (1 + K∗
ij)

2.
In the training phase we used the dataset lyrl2004 vectors train.dat1, which

contains bag-of-words representations for 23149 documents. For estimating the
free model parameters, we divided this set into 2/3 training and 1/3 validation
examples. One of these free parameters is the regularization constant λ (see
eq. 4). In order to make the different kernels comparable we propose the following
normalization step which involves another set of parameters: we first train the
model only with the linear kernel and select the optimal regularization λ. For
each of the other kernels we optimize a scaling parameter δ which rescales a kernel
matrix according to K ′ = δ · K. Some of the kernels have a second parameter
(e.g. the width of the RBF kernels) which is optimized together with δ on a grid
of values according to best performance on the validation set.

Further parameters of the model are the transition- and emission probabilities
in the HMM. The former were learned on the labeled training documents. The
emission probabilities are derived from the probabilistic outputs of the layer-
wise NKDA classifiers. The threshold θ in eq. 7 is optimized by computing the
precision-recall curve on the validation set and optimizing it for the maximum
F1-value (i.e. the harmonic mean of precision and recall). For assessing the
predictive performance, we have randomly chosen a test set of 40000 documents,
sampled from the files lyrl2004 vectors test pt0-3.dat.

Figure 3 shows an example of the learned kernel weights for separating the
classes “E3” ↔ “GWEA” and “C1” ↔ “Ex” (we used the pairwise coupling ap-
proach for computing the discriminant analysis classifiers). These two examples
nicely demonstrate the capability of the model to select appropriate class mod-
els: while in the first example a pooled covariance matrix has been chosen (the

1 http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/lyrl2004 rcv1v2
README.html
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BEGIN

CCATECAT
GCATMCAT

5678910111213141516171819202122232425262728293031323334353637383940414243

44454647484950515253545556575859606162636465666768697071727374757677787980

81828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127

C1151129130131132

END

Fig. 2. The HMM for the RCV1 corpus. “Dummy” nodes are marked in green

linear kernels dominate), the problem of separating the first subclass “C1” (node
no. 5 in figure 2) in the CCAT hierarchy from the “dummy” class “Ex” (node
no. 17 in figure 2) in the ECAT tree seems to require more complex Gaussians
with individual covariances. Overall, the linear and the rbf-kernel are the most
important ones, followed by the probabilistic text kernel KNU

2 .

lin−TF quad−TF rbf rbf−quad K2 K2−quad lin−u quad−u

0
1

2
3

E3<−>GWEA

lin−TF quad−TF rbf rbf−quad K2 K2−quad lin−u quad−u

0.
0

0.
5

1.
0

1.
5

C1<−>Ex

Fig. 3. The learned kernel weights for separating classes “E3” ↔ “GWEA” and “C1”
↔ “Ex”. The kernels are (from left to right): linear-TFIDF, quadratic-TFIDF, rbf,
rbf-quadratic, KNU

2 , KNU-quadratic
2 , linear-unweighted, quadratic-unweighted.

In order to quantify the predictive performance, we compare our results with
those presented in [17], where only the CCAT subtree was under consideration.
Other labels counted only as indicators for not belonging to the CCAT class.
We emulated this setting by collapsing all other nodes to a path of “dummy”
nodes that “shortcuts” the CCAT subtree. We measured the performance by way
of precision/recall and F1 (harmonic mean of the latter) measures based on all
labels in all predicted paths through the HMM (with exception of the “shortcut”
path summarizing the non-CCAT documents). The kernelHMM outperforms the
other methods in terms of higher recall and F1 values. Since we compared our
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results with those published in [17] and their experimental setup might have
differed from ours (the desription of the setup in [17] is very vague, they might
have used different training sets, stemming, TFIDF weights, etc.), however, this
comparison should be interpreted carefully. Concerning the features used in the
classifier, we would like to emphasize that our approach necessarily differs from
that in [17], since it was our goal to extend the latter by using multiple kernels.

Table 1. Prediction performance for the CCAT label hierarchy

Alg. P R F1

H-SVM (taken from [17]) 92.3 63.4 75.1
H-M3-lH̃ (taken from [17]) 85.4 68.3 75.9

KernelHMM 85.1 71.8 77.9

On the full hierarchy (i.e. on all four subtrees) we obtain the following preci-
sion/recall/F1 values: P = 0.89, R = 0.75, F1= 0.813. These values coincide with
the results of the best methods presented in [13]. We further tested the influence
of learning kernel combinations by switching off the kernel selection mechanism
(i.e. simply adding all kernels), which yielded a lower F1-value of 0.803. The
availability of such sparse combinations allows the user to get detailed insights
into preferred kernels (mostly linear and rbf) and the appropriate model com-
plexity: in most cases pooled covariance models are sufficient. When separating
dummy nodes from others, however, individual covariances are preferred.

4 Discussion

Structured output domains as well as objects that belong to more than one
category are common in many applications. Several methods have been proposed
for problems of this kind, the most of which employ kernels in order to allow
nonlinear decision rules. A potential shortcoming of kernel models, on the other
hand, is the lacking interpretability of the inferred decision rules. For standard
(i.e. non-hierarchical) models this problem has been addressed by using multiple
kernels together with a strategy to learn weighted combinations.

This work focuses on the combined problem of learning kernel combinations in
hierarchical multilabel scenarios. The key ingredient is a HMM architecture that
uses a multilabel version of nonlinear kernel discriminant analysis as building
blocks. The capability of learning convex combinations of kernel matrices is
based on using adaptive ridge penalties. While the standard adaptive ridge model
presented in [6] selects individual input features, our version leads to a nonlinear
model of discriminant analysis that combines different kernel matrices.

From the experiments we conclude that our model exhibits state-of-the-art
predictive performance for the problem of document categorization. Due to the
built-in capability of learning convex kernel combinations, the model can auto-
matically adjust to different learning tasks in the hierarchical levels. The identi-
fication of dominant kernels might lead to a better understanding of important
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aspects in representing documents. Last but not least, there exist highly effi-
cient approximation algorithms for training the kernelHMM model, which make
it possible to address large-scale problems like the Reuters RCV1 corpus.
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Abstract. We address the problem of describing the mean object for a
set of planar shapes in the case that the considered dissimilarity measures
are semi-metrics, i.e. in the case that the triangle inequality is generally
not fulfilled. To this end, a matching of two planar shapes is computed by
cutting an appropriately defined graph the edge weights of which encode
the local similarity of respective contour parts on either shape. The cost
of the minimum cut can be interpreted as a semi-metric on the space of
planar shapes. Subsequently, we introduce the notion of a mean shape
for the case of semi-metrics and show that this allows to perform a shape
retrieval which mimics human notions of shape similarity.

1 Introduction

To decide whether two given objects are similar to one another and to cluster
subsets of similar objects is an important challenge in Computer Vision. In
the last years, this problem has been tackled for shapes by defining dissimilarity
measures [6]. These measures proved themselves as useful in the context of shape
recognition, clustering, classification and statistical modeling [5,9]. In particular,
the study of metrics has been very promising to generalize statistical concepts
like average objects or standard deviations [9]. But not every useful dissimilarity
measure is a metric [3,2]. Indeed, most of them are semi-metrics, i.e. they violate
the triangle inequality. But how can the statistical concept of a mean shape be
defined, if there is no metric at hand? Since an embedding into an Euclidean
space is not possible, we will approach the question of defining a template for
a given collection of shapes only by studying the given semi-metric. The semi-
metric that we like to study exemplarily is an energy functional that arises in
the context of shape matching.

1.1 Dissimilarity Measures for Shapes

In order to abstract from location and rotation, the term shape refers to a com-
plete class C of closed curves c : S

1 → R
2 embedded in the plane R

2. This
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class shall be invariant under rigid body transformations, i.e. translations and
rotations. The set of all these shapes form a Riemannian manifold [8]. Any con-
tinuous transformation from one shape into another can be represented by a
path in this curved space and geodesics, i.e. paths of minimal length, define a
metric on these spaces [8,5]. Since only such paths are allowed that are placed
inside the manifold, we are talking of intrinsic paths.

From a practical point of view, we often like to compare two different planar
shapes. This task of matching two different shapes has been approached by
minimizing a given functional [7]. Such a matching functional can be used as
dissimilarity measure, just like the intrinsic length presented above.

1.2 Dissimilarity Measures and Statistics

Since the classical mean for a collection of objects is only defined if these objects
are elements of a vector space, the generalization of a mean object has been of
broad interest. In the case of manifolds, the Karcher mean [4] was introduced
as minimum of an energy function and the concept of this metric-oriented mean
has been applied to shape spaces [5]. Since distance functions that are robust
to outliers will typically violate the triangle inequality [3], we are interested in
such semi-metrical distance functions. Semi-metrics have been already consid-
ered for segmentation tasks [7,2]. But to the best of our knowledge, there are
no statistical approaches for semi-metrics since there is no canonical definition
of a mean object. In this paper, we will overcome this limitation by presenting
a generalization of the Karcher mean for semi-metrics to which we will refer as
shape template. These templates will be used to describe the center of a cluster
and to perform the task of retrieving similar shapes from a given database. Be-
cause the definition of a mean within a manifold does not use the exterior vector
space, such a template provides an intrinsic mean.

This paper is organized as follows. In Section 2, we propose an approximation
scheme for matching an arbitrary collection of shapes. In Section 3, the result
of this synchronistic shape matching will be used to construct a template for a
given shape cluster. This cluster template will be used to retrieve similar shapes
from a database. In Section 4, we analyze the runtime of the given methods and
show some retrieving results for the well known LEMS database. In particular,
we experimentally verify that this proposed intrinsic mean gives rise to superior
retrieval rates. In Section 5, we will provide a conclusion of our work.

2 Shape Matching

In this section, we will present a method to solve the shape matching task for
more than two given shapes. To this end, we first present the shape matching
method developed in [10] for two different shapes by cutting a specific planar
graph. Subsequently, we consider the more general problem of simultaneously
matching multiple shapes and propose an efficient approximative solution.
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C1

C2

m1 m2

M

Fig. 1. Matching. Left hand side: Matching two shapes amounts to computing a
correspondence between pairs of points on both shapes. Right hand side: Instead of
looking for a mapping M : C1 → C2, a matching m = (m1, m2) : S

1 → S
1 × S

1 is
defined on the parameterization domains.

2.1 Matching of Two Shapes Via Graph Cut

As a shape C we understand the class of closed curves c : S
1 → R

2 that is
invariant under rigid body motions. These shapes form the shape space S. Since
it is well known that the curvature κ : S

1 → R is a unique description of every
shape C, the shape space can be described in terms of these curvature functions1:

S :=
{

κ : S
1 → R

∣∣∣∣
∫

S1
exp

[
i

∫ t

0

κ(τ)dτ

]
dt = 0

}
(1)

By the definition of S, all rigid body motions are eliminated and we can fo-
cus on the non-rigid shape transformations. To decide whether two shapes are
similar, we want to detect local transformations like stretching and contraction.
Therefore, we are looking for a correspondence mapping that maps the points
of one shape to the corresponding points on the second shape. Since the points
of a shape define an arbitrary subset of the plane R

2, it is much simpler to
find the correspondence directly on the parameterization domain S

1 – see also
Figure 1. To ensure that a matching covers both parameterization domains ex-
actly once, a matching consists of two orientation preserving bijective mappings
m1, m2 : S

1 → S
1 that simultaneously sample the points of both parameteriza-

tion domains. The space of all these sampling mappings will be called Diff+(S1).
Given two shapes C1 and C2 with their curvature functions κ1 resp. κ2, we are
interested in a matching m ∈ Diff+(S1)×Diff+(S1) that minimizes the following
functional

Eκ2
κ1

(m) =
∫

S1
[(κ1 ◦ m1 − κ2 ◦ m2)(s)]2dm(s). (2)

In this functional, the data term (κ1 − κ2)2 is therefore integrated along the
matching s �→ (m1(s), m2(s)). Since dm(s) = ‖m′(s)‖ ds holds, the smoothness
1 For a detailed study of this manifold, we are referring to [5].
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C1

C2

Fig. 2. Left hand side: Sampling two shapes C1 and C2 by N points, we receive a
squared graph (filled vertices). If we copy the bottom line onto the top and the received
construction to the right (blank vertices), every matching can be represented by a path
from the matching vertex (a, 0) to the vertex (a + N, N). By identifying (a, 0) with
(a + N, N), every matching becomes a shortest cycle. Right hand side: Every cycle
in G describes a cut on the dual graph G∗ (dashed edges). A minimal graph cut in G∗

has therefore the same weight as the shortest cycle in G.

term m′ is directly coupled to the data term. Using (2), a distance function on
the shape space S can be defined as follows.

Definition 1 (Shape Distance). Given two shapes C1, C2 ∈ S with their cur-
vature functions κ1 : S

1 → R and κ2 : S
1 → R resp., we will call

dist(C1, C2) := min
m∈Diff+(S1)2

Eκ2
κ1

(m)
1
2 (3)

the distance of these shapes. Every matching fulfilling this minimum will be called
a minimal matching of C1 and C2.

It is well known that the calculation of this semi-metrical distance can be done
by finding the shortest path in a graph. In Figure 2, the appropriate graph
G = (V, E, w) is sketched. The vertices (x1, x2) ∈ V represent a possible match
between c1(x1) and c2(x2) and the data term of this vertex is (κ1(x1)−κ2(x2))2.
Therefore, the weight w of any edge (x1, x2) → (y1, y2) carries the value of the
path integral along this edge. If we sample each shape by N points, any path from
(a, 0) to (a + N, N) describes a matching. Hence, dist(C1, C2) can be calculated
by finding an initial correspondence (a, 0) and afterwards the path of minimal
weighted length from (a, 0) to (a+N, N). Given an initial correspondence (a, 0),
the classical way to calculate the shortest path length is the Dynamic Time
Warping (DTW) method which takes linear time in the size of the given graph.
Testing all initial correspondences leads therefore to a runtime of O(N3) [3,7].

On the other hand, if we identify any possible initial matching (a, 0) with
(a+N, N), the graph becomes a cylinder and the formerly shortest path describes
a shortest cycle on this cylindrical graph. Whitney proved in [12] that for any
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planar graph G, there is a one-to-one relationship between cycles on G and
cuts in the dual graph G∗. Therefore, the value of a minimal edge cut will be
dist(C1, C2)2. Mathematically, this can be summarized in the following theorem.

Theorem 1. Let C1 and C2 be two shapes with their curvature functions κ1 :
S

1 → R and κ2 : S
1 → R resp. Then, the following equation holds

dist(C1, C2)2 = min
X∗⊂E∗

X∗ edge set of
a graph cut in G∗

∑
e∗∈X∗

w(e) (4)

Proof. For a detailed proof, we are referring to [10]. ��

To calculate the graph cut, we use the algorithm presented in [1]. In Section 4,
we will analyze the runtime of this method in comparison to the shortest path
method. We will demonstrate that for similar shapes the graph cut method is
favorable over the shortest path method.

2.2 Synchronistic Shape Matching

After introducing the shape matching of two shapes, the question arises how a
whole collection of shapes can be set in correspondence. Since any shape carries
some artifacts according to the chosen discretization, a matching between two
shapes could emphasize these artifacts and hence provide a matching that does
not coincide with the human notion of point correspondence. If a synchronistic
matching of a whole collection of shapes is to be achieved, the noisy artifacts
of one shape shall be inhibited by the other shapes. To provide a synchronistic
shape matching is therefore a challenging task and the goal of this subsection.

Analogously to (2), we define a functional for the synchronistic shape match-
ing. Given a collection T = {C1, . . . , Cn} of n shapes, a matching m consists
of n different mappings mi ∈ Diff+(S1) that minimize the pairwise curvature
differences. Let κ1, . . . , κn be the curvature functions of the shapes C1, . . . , Cn

resp. Then, we like to minimize the following functional.

ET (m) =
∫

S1

n∑
i,j=1

[(κi ◦ mi − κj ◦ mj)(s)]2dm(s) (5)

To calculate any synchronistic shape matching is a computationally chal-
lenging task. Analogously to Section 2.1, we can find the matching mapping
m ∈ Diff+(S1)n by searching for a closed circle in a n-dimensional grid. If we
use a sampling rate of 100 points for every shape, we would need ten billion grid
points to match a small collection of five shapes. Since this is too expensive, we
are interested in an approximation scheme.

Given a matching mapping m = (m1, . . . , mn), the mapping (mi, mj) ∈
Diff+(S1)2 describes a matching between the two shapes Ci, Cj ∈ T . Since
mi,j := (mi, mj) does not necessarily minimize (2), we can reformulate the
functional (5) as a compromise between (2) and the property that mi,j and
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Fig. 3. Synchronistic Shape Matching. If we compare the first two shapes, we
receive a matching that cannot detect the two missing fingers. If we add a third shape
(middle), the matching can be improved using (6). The last two images represent the
matching according to γ = 10−6 and γ = 10−4. Note that the location of the sixth and
eighth shape point have been changed.

mj,k describe mi,k. As abbreviation, we like to introduce m̃i,j := m2
i,j ◦ (m1

i,j)
−1

for a given pairwise matching mi,j = (m1
i,j , m

2
i,j). With this notation, mi,j be-

comes the graph of m̃i,j and the described compromise can be formulated as the
following functional.

ET ((mi,j)i,j=1,...,n) =
n∑

i,j=1

Eκj
κi

(mi,j)+ (6)

γ·
n∑

i,j,k=1

∫

S1
‖(m̃i,j − m̃k,j ◦ m̃i,k)(s)‖2 dmi,j(s),

Note that (6) is a major relaxation of (5). Instead of the n matching functions
m1, . . . , mn, we are dealing now with the n2 binary matching functions mi,j =
(m1

i,j , m
2
i,j) ∈ Diff+(S1)2. To solve (6), we start with the matchings mi,j that

minimize (2). Then iteratively, every matching mi,j is improved according to
(6) using the predefined mi,j . Since we assume that all shapes are similar, we
use the proposed graph cut method to solve the binary matchings during the
whole iteration process. This is done according to the result in Section 4 that
for similar shapes the graph cut method outruns the DTW method. In Figure 3,
we see how the synchronistic shape matching improves a given matching.

3 Shape Classification Given a Synchronistic Matching

In this section, we will present a way to describe a shape cluster using the
synchronistic shape matching of Section 2.2. For this purpose, we present a
generalization of the Karcher mean [4] for the space S in respect to the semi-
metric dist(·, ·). Afterwards, we show that this template improves the retrieval
result considerably.

3.1 Cluster Template

Given a set T = {C1, . . . , Cn} of training shapes, we want to tackle the problem
of finding the center of this shape cluster. Thus, we are looking for a template
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CT that is close to all shapes in T . The next definition describes this task as a
minimization problem.

Definition 2 (Template). Given a collection T = {C1, . . . , Cn} of shapes with
the curvature function κ1, . . . , κn resp. Moreover, let (mi,j)i,j=1,...,n be a mini-
mum of (6). Then a minimum κT of the functional

κ �→
n∑

i=1

∫

S1
[(κ ◦ m1

1,i − κi ◦ m2
1,i)(s)]

2dm1,i(s). (7)

is called a template of the cluster T .

Note that we used the synchronistic shape matching for a realignment of all
shapes in the training set T . Therefore, the Euler-Lagrange equation of (7) is
linear and the template is therefore easy to calculate. While the intrinsic mean
constructed above will generally not correspond to a meaningful shape, we shall
demonstrate that it form an excellent basis for shape retrieval.

3.2 Cluster-Based Retrieval

In the Section 3.1, we presented a method to find a template CT for a given
cluster T . Now, we want to retrieve from a database those shapes that are
similar to the shapes of T . Therefore, we have to decide if an arbitrary shape
fits to a given cluster T . We are doing this by calculating the distance of a given
shape C to the template CT . If this distance is small enough, we classify C as an
element of T . If different clusters T1, . . . , Tk are at hand, we choose the following
algorithm:

1. Given a shape C ∈ S, calculate for every i = 1, . . . , k the distances di =
dist(C, CTi).

2. Find i0 := argmini di.
3. If di0 < λi0 , classify C as a shape of cluster Ti0 .
4. Otherwise, state that C cannot be classified properly.

The choice of λi for a given cluster Ti is important for the appropriate descrip-
tion of the class Ti. In fact, we may choose λi differently for different clusters.
In Section 4, we will present a representative example to show how well this
classification method works.

4 Experimental Results

In this section, we will analyze the proposed methods on real shapes. For this
purpose, we use the shapes that are provided by the LEMS laboratory of the
Brown University [11] and apply the curvature descriptor introduced in [10].
In detail, we analyze the runtime of the graph cut algorithm in comparison
to the classical method using Dynamic Time Warping (DTW). Afterwards, we
demonstrate how well shapes can be retrieved with the help of the introduced
cluster template.
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Fig. 4. Runtime comparison. The runtime of the DTW and the proposed graph cut
method are plotted against the sampling rate of both shapes. In the first two cases the
graph cut matching works faster than the classical DTW approach. The plots indicate
that the graph cut method should be favored over DTW if one expects similar shapes.
Otherwise, one should benefit of the granted constant DTW runtime.

Fig. 5. Clustering. On the left hand side, the pairwise dissimilarity of six given
shapes according to dist(·, ·) are color-coded. On the right hand side, 40 shapes are
projected into the Euclidean plane based on their pairwise distance. In general, this
projection will not preserve pairwise distances since dist(·, ·) is not a metric. But even
this approximation indicates that the distance function incorporates the human notion
of shape similarity.

4.1 Runtime Comparison

The bottleneck of the classical DTW method is the search for an initial corre-
spondence. If a complete search over all possible initial matchings is done, the
runtime is always O(N3) for a fixed sampling rate of N points per shape. On
the other hand, the runtime of the graph cut method depends very much on
the input data. Figure 4 demonstrates the runtime of the graph cut method in
respect to the DTW method. The plots indicate that the matching of two shapes
is very fast with the graph cut method, if these shapes are similar to one an-
other. One the other hand for distinctively different shapes, the classical DTW
method outruns the graph cut method. Therefore, we used the DTW method to
cluster the whole database. But for the template calculation of a given cluster,
we always used the proposed graph cut method.
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Fig. 6. Shape-based Retrieval. Using one of the training shapes (boxed) as a repre-
sentative for retrieval gives an unsatisfactory retrieval performance: In order to extract
all hands from the data base one needs to determine the 15 best hits.

Fig. 7. Template-based Retrieval. We define a template based on the framed
shapes. The eleven best hits correspond to all hand shapes in the database. This shows
that the distance to the proposed intrinsic mean provides for superior retrieval perfor-
mance than using an individual template as done in Figure 6.

4.2 Proposed Retrieval Method

The presented retrieval method works in two phases – the learning phase and the
retrieval phase. In the learning phase, the shapes that define a shape class were
matched via the proposed synchronistic shape matching and thus define a tem-
plate. During the second phase, the distance between the calculated templates
and the unknown shapes from a database are calculated. According to this dis-
tance, the unknown shapes can be classified. On the left hand side of Figure 5,
we see an example of how well the dissimilarity measure function dist(·, ·) divides
the shape database into appropriate clusters. Nonetheless, the question how the
number of cluster can be estimated is still unsolved. Therefore, we applied a
4-means run for a subset of the LEMS database that is projected via multidi-
mensional scaling on the right hand side of Figure 5. Since Figure 5 illustrates
that the class ray and the class human are very easy in respect to the given
database, we want to analyze the retrieval for the class hand. Figure 6 shows
the classical retrieval according to one selected shape. We need 15 shapes to find
all eleven hand shapes. Since the database consists of only eleven hand shapes,
it is remarkable that the first eleven hits according to the template-based (cf.
fig. 7) retrieval are in fact these shapes. Note that the learned shapes are not
necessarily the best hits. Due to the semi-metric, the template can be closer to
some shapes than to others.
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5 Conclusion

In this paper, we introduced a generalization of the Karcher mean for semi-
metrical spaces. To this end, we approximate the computationally infeasible
simultaneous matching of n shapes by a consistent iteration of pairwise match-
ings. The latter problem can be solved by computing the minimal cut through
a graph whose nodes encode the local similarity of respective contour parts on
each shape. The presented experiments indicate that for the matching of similar
shapes, this graph cut approach provides a speed-up factor up to 4 relatively to
the classical method using Dynamic Time Warping (DTW). Just as humans have
no problem in finding the correspondence on two similar shapes, the proposed
method finds an initial match and the complete correspondence simultaneously
and faster than the usual approach via DTW.

In a shape retrieval experiment on the LEMS database, we demonstrated that
the proposed intrinsic mean for semi-metrical shape spaces provides for superior
retrieval performance than individual shape instances do.
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Abstract. This paper presents a real-time system for vision-based
pedestrian recognition from a moving vehicle-mounted catadioptric cam-
era. For efficiency, a rectification of the catadioptric image using a virtual
cylindrical camera is employed. We propose a novel hybrid combina-
tion of a boosted cascade of wavelet-based classifiers with a subsequent
texture-based neural network involving adaptive local features as final
cascade stage. Within this framework, both fast object detection and
powerful object classification are combined to increase the robustness of
the recognition system. Further, we compare the hybrid cascade frame-
work to a state-of-the-art multi-cue pedestrian recognition system utiliz-
ing shape and texture cues. Image distortions of the objects of interest
due to the virtual cylindrical camera transformation are both explicitly
and implicitly addressed by shape transformations and machine learning
techniques. In extensive experiments, both systems under consideration
are evaluated on a real-world urban traffic dataset. Results show the con-
tributions of the various components in isolation and document superior
performance of the proposed hybrid cascade system.

1 Introduction

The real-time detection of pedestrians from a moving camera is a challenging
and important problem. Worldwide, more than 476,000 pedestrians are involved
in traffic accidents each year where approximately 8% are fatal accidents [20]. In
urban traffic environments, difficulties arise from highly cluttered environments
and a limited field of view of conventional vison-based systems. Catadioptric
camera systems [13] providing a hemispherical field of view are able to moni-
tor a much larger area surrounding the vehicle [6], particularly with regard to
blind spots, where pedestrians are at increased risk. Motivated by this situa-
tion, we address the recognition of pedestrians from a moving vehicle-mounted
catadioptric camera in an urban environment.

2 Previous Work

A large body of research has been done in the field of vision-based pedestrian
recognition using conventional cameras [10]. Most techniques determine region
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of interests (ROIs) in a pre-processing step based on object motion [7], stereo
[12] or a sliding window approach [5,15,17]. Further processing of ROIs incor-
porates cues such as shape and texture. Explicit shape-based recognition has
been proposed employing both discrete [12] and continuous [4] representations.
Texture-based approaches often employ classification techniques involving local
texture-based features [16], where both adaptive [23] and non-adaptive [5,14,17]
features are available. Recently, a fast variant of the sliding window approach
has been proposed [21], consisting of a cascade of several wavelet-based detec-
tors, where fast detectors in the early cascade stages are combined with more
complex (but slow) detectors in the final cascade layers. In each cascade stage,
features are selected by AdaBoost [8], controlled by user-supplied performance
criteria. Up to now, there has been no work done on pedestrian recognition using
catadioptric cameras, which requires appropriate rectification of the catadiop-
tric image to gain efficiency. Most systems only incorporate low-level obstacle
detection based on motion [9] or disparity [2] bypassing an actual classification
step, which is necessary to distinct pedestrians from arbitrary obstacles.

Optical systems can be separated into two kinds, dioptric and catadioptric
ones [13]. The former includes vision systems using lenses to enlarge the field of
view. The largest field of view possible for this kind of cameras is approximately
180◦. By contrast, catadioptric cameras are systems that combine mirrors and
lenses to achieve a larger field of view. Catadioptric systems in turn can be
separated into single viewpoint systems and non-single viewpoint systems. Sin-
gle viewpoint catadioptric systems measure only the intensity of light passing
through a single point called effective viewpoint. In contrast to non-single view-
point systems, the image can be transformed to new views because every light
ray maps a picture element to a distinct direction.

In this work, we consider the detection and classification of pedestrians from
a moving catadioptric camera in an urban environment. We employ a rectifica-
tion of the catadioptric image using a virtual camera with a cylindrical image
plane. This simplifies the appearance of pedestrians and allows to make use of
additional constraints, e.g. the ground-plane constraint, for added efficiency. We
propose an extension to the boosted wavelet-based cascade framework [21] by
using a texture-based neural network involving adaptive local features as final
cascade stage. This hybrid cascade architecture combines fast object detection
and powerful object classification in a unified framework to increase the robust-
ness of the recognition system. In extensive experiments involving a dataset
captured in urban traffic, we compare the novel hybrid cascade framework to
a state-of-the-art multi-cue pedestrian recognition system based on [12], where
shape-based detection is combined with texture-based classification.

3 Reference Pedestrian Recognition Systems

3.1 Boosted Cascade of Haar-Like Features

Many pedestrian recognition systems employ a combination of a multi-scale
sliding window approach and powerful classification techniques, i.e. [5,17]. The
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cascade framework [21,22] provides an efficient extension to such systems by in-
troducing a cascade of increasingly complex detectors based on simple rectangu-
lar features (similar to Haar-wavelets) that can be evaluated very fast. The early
cascade layers are designed to quickly determine candidate regions in the image
which are then processed by more complex (but slower) detectors in the later
cascade stages. In each cascade layer, AdaBoost [8] is used to construct a clas-
sifier based on a weighted linear combination of optimal features. Additionally,
training samples are re-weighted to focus the training process on misclassified
examples. Each cascade layer is trained on a new dataset consisting of the initial
pedestrian training samples and a new set of non-pedestrian samples which is
generated by collecting false positives of the cascade up to the previous layer
on a set of images which do not contain any pedestrians. Subsequent layers are
added to the cascade until user-specified performance criteria are met.

3.2 Shape-Texture-Based Pedestrian Recognition

Pedestrian recognition systems combining multiple orthogonal cues, i.e. depth,
motion, shape, texture [10,12], have been shown to reach state-of-the-art per-
formance by making maximum use of the available image information. In case
of monocular images, two prominent pedestrian attributes are shape and tex-
ture. In this work, we consider a monocular version of the PROTECTOR system
[12] as performance reference by employing the shape-based pedestrian detection
module in combination with the texture-based pedestrian classification module.

Shape-based detection [12] is achieved by efficient matching of an exemplar-
based shape hierarchy to the image data at hand. The shape hierarchy is
constructed off-line in an automatic fashion from a set of pedestrian shape tem-
plates covering different scales and poses. On-line matching involves traversing
the shape hierarchy with the Chamfer distance [3] between a shape template
and an image sub-window as a smooth and robust similarity measure. Image lo-
cations, where the similarity between shape and image is above a user-specified
threshold, are considered detections.

Detections of the shape matching step are subject to verification by a texture-
based pattern classifier. Here, we employ a multi layer feed-forward neural net-
work operating on local adaptive receptive field features (referred to as NNLRF
in the remainder) [23], which has shown to strike a good balance between classi-
fication performance and computational efficiency [16]. Further, [16] has shown,
that adaptive features are key to the performance of the NNLRF classifier which
are particularly superior to non-adaptive features, i.e. Haar-like wavelets. The
training set for the NNLRF classifier consists of a set of pedestrian samples and
non-pedestrian samples which were obtained by collecting false positives of the
shape detection module with a relaxed threshold setting.

4 Catadioptric Image Transformation

In this section, we will describe the transformations which are necessary to
use the catadioptric image to perform efficient pedestrian detection. Remaining
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Fig. 1. Left: Diagram and physical catadioptric camera system. Upper right: catadiop-
tric image captured from the camera, lower right: transformed image using a virtual
cylindrical camera.

distortions of the pedestrian shape and texture, which are due to the specific
camera setup, are handled both explicitly and implicitly, as follows. In case of
the shape templates of the shape-texture-based detector (see Section 3.2), we
propose to explicitly transform the existing set of templates by generating “vir-
tual” shapes based on known camera geometry. This is motivated by the fact
that exact shape contours are usually manually labeled in a laborious and costly
process. Further, we want to reuse existing shape templates for comparison pur-
poses instead of obtaining new shape templates. In contrast, distortions in the
pedestrian texture are implicitly learned by the pattern classifiers using manu-
ally labeled bounding boxes which are much easier to obtain from the rectified
images.

4.1 Catadioptric Camera Model

The catadioptric camera used in our system consists of a hyperbolic mirror and
a perspective camera. This ensures that all light rays pass through a single point
which is one of the two foci of the hyperboloid (f0 in Fig. 1). The center of
projection of the pinhole camera is placed in such a way that it coincides with
the second focus f1.

A two-sheet hyperboloid is given by (Z−c)2

a2 − X2+Y 2

b2 = 1 where a > 0 is the
semimajor axis, b > 0 the semiminor axis of the hyperboloid and c =

√
a2 + b2.

Given an arbitrary point X = (X, Y, Z)T , the corresponding point X0 on the
hyperbolic mirror is given by the intersection of a line g = f0 + λ(X − f0) (see
Fig. 1), with

λ1,2 =
b2

±a||X|| + cZ
, ||X|| =

√
X2 + Y 2 + Z2. (1)

Here, the intersection with the mirror is given by λ1 (see [19]), thus X0 = λ1X,
if the origin of the coordinate system is placed in f0. The point X0 on the
hyperbolic mirror is perspectively projected to X0, which is the image of X0.



460 W. Schulz, M. Enzweiler, and T. Ehlgen

The optical center of this perspective projection is defined by the second focal
point f1 = (0, 0, 2c)T of the hyperboloid. See Fig. 1 (upper right) for an example
of catadioptric image acquisition.

4.2 Virtual Cylindrical Camera Transformation

In contrast to conventional planar perspective cameras where pedestrians, stand-
ing on the ground, appear in an upright position, the catadioptric camera model
maps pedestrian appearance to multiple orientations under non-linear distor-
tions. The instantiation of a pedestrian model to sufficiently capture the whole
appearance space would either be very complex or require a large number of
training patterns. Further, constraints to restrict the search space, e.g. the
ground-plane constraint, where pedestrians are assumed to stand in an upright
position on the ground, are complex to incorporate.

Hence, we opted for a transformation of the catadioptric image to obtain
a perspective image using a virtual camera model with a cylinder as image
plane. The cylindrical camera preserves the aspect ratio of objects with a small
horizontal extent and offers a wide field of view. Pedestrians on the ground-plane
appear in an upright position which significantly constrains the appearance space
and facilitates compact pedestrian models. Further, points at equal distances
from the camera map to lines in the cylindrical representation, allowing for a
direct application of the ground-plane constraint.

A cylinder is defined in world coordinates X2 + Y 2 = 1, with cylinder height
Z, such that the axis of symmetry of the cylinder is orthogonal to the ground-
plane. The cylindric surface is subsampled using a discrete grid. Each point
on the surface grid, Xg = (Xg, Yg, Zg)T (represented as Xc = (θc, φc, 1)T in
cylinder coordinates, with elevation θc, azimuth φc and unit radius), is projected
to the catadioptric image plane, yielding xg, using the transformation described
in Section 4.1. The pixel intensity is sampled from the catadioptric image at
location xg and assigned to Xg. Finally, the cylindric surface is unfolded to a
two-dimensional image, with elevation θ corresponding to the image y-axis and
azimuth φ comprising the image x-axis (see Fig. 1).

Remaining distortions in the objects of interest depend on the properties and
the position of the physical camera. For instance, in case of an elevated viewpoint
the common assumption that pedestrians have their torso and all extremities in the
same distance from the camera (i.e. they are “flat”), is no longer valid. Thus, non-
linear distortions are introduced which have to be handled by the pedestrian model
underlying the detector. See Fig. 2 (left). The straightforward way to handle these
distortions is to use a larger training set which includes distorted examples. While
bounding box labels to train texture-based pattern classifiers are relatively easy to
obtain, the generation of discrete shape templates, which are used in shape-based
approaches, requires much more manual effort.

Hence, we propose a technique to generalize the shape-texture-based detector
(see Section 3.2) to arbitrary camera setups, by transforming existing valuable
shape templates, guided by camera calibration. Given a set of shape templates,
that were obtained using a camera setup C0, each shape is projected to world
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Fig. 2. Left to right: Pedestrian seen from an elevated viewpoint. 3-D shape transfor-
mation. A modified shape template, back-projected by the virtual cylindrical camera
at distances of 10m, 5m, 2m and 1m from the camera.

coordinates using prior knowledge about the objects of interest, i.e. the ground-
plane constraint. In world coordinates, shape templates are modified to simulate
object properties such as human gait patterns. At this point, appropriate trans-
formations are applied explicitly to (parts of the) shape contour points while
incorporating heuristics about physical properties and constraints. For instance,
the legs of pedestrians can be transformed to simulate a full human stride. Or-
thogonally to an explicit transformation of shape contour points, model-based
approaches to create virtual shapes can be incorporated [11]. Finally, the mod-
ified shapes are projected back using a second camera setup C1, yielding the
transformed set of shape templates.

Fig. 2 depicts an example of the transformation of shape templates which were
acquired using a conventional planar pinhole camera at a height of 1.25m, to be
used with our cylindrical camera setup with a camera height of 2.1m. Here, the
legs of the pedestrian shape have been modified in z-dimension simulating a hu-
man stride and transformed to the cylindrical view to explicitly model non-linear
distortions occurring from the elevated view point. Other sources of distortions
can be handled by using the same technique.

5 Hybrid Cascade Framework

While the boosted cascade framework using local non-adaptive wavelet-based
features (see Section 3.1) has been shown to yield good performance on real-time
object detection problems, c.f. [21], it suffers from two significant drawbacks.
Firstly, while the local rectangular image features can be computed very fast,
their representational capabilities are limited. In an extensive experimental study
[16], where several combinations of state-of-the-art features and classifiers have
been investigated, it was shown that local features which are able to adapt to
the underlying image data outperform non-adaptive local features. Secondly,
the feature selection process involving AdaBoost [8] in each cascade layer is
a greedy technique, where features and their weights are iteratively determined
and linearly combined. Thus, neither the selected features nor the corresponding
weights can be regarded as the global optimum for the whole cascade. While
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Fig. 3. Hybrid cascade framework overview. A NNLRF classifier is appended to
a boosted wavelet-based cascade to combine fast object detection and powerful
classification.

extensions to the AdaBoost procedure addressing these drawbacks have been
proposed [18], we opt for a hybrid combination of the boosted cascade with
a powerful neural network classifier using local receptive fields (NNLRF, see
Section 3.2).

In the hybrid cascade framework, as shown in Fig. 3, the NNLRF classifier
is appended to the original n-layer wavelet-based cascade as additional layer
n+1. Similar to the training process of the cascade framework (see Section 3.1),
the NNLRF classifier is trained on the initial pedestrian dataset and a new set
of non-pedestrian samples, generated by scanning the boosted cascade over a
set of non-pedestrian images and collecting false-positives. Hence, the limitation
of the non-adaptive wavelet-based features is eliminated by the richer set of
adaptive local receptive field features of the NNLRF. Online detection involves
matching the whole n+1-layer cascade in a sliding window fashion to the image
data at hand. Here, the early n cascade layers provide fast identification of
candidate regions which are subject to classification by the complex (and slow)
NNLRF classifier in the final cascade stage. Thus, the proposed hybrid cascade
framework unifies fast object detection and powerful object classification in a
single framework to increase the robustness of the whole recognition system.

6 Experimental Evaluation

In this section, we evaluate the performance of the proposed hybrid cascade
framework and compare it to a shape-texture-based detector (see Section 3.2)
on a real-world urban traffic dataset under daytime conditions. Our training set
consists of approx. 35 different persons occurring in 1,398 rectified images (see
Section 4.2). From these images 2,134 labeled pedestrian examples are available.
Other than assuming pedestrians standing in an upright position, we pose no
constraints on pose and appearance. Negative training samples are acquired from
the same images by collecting false positives of the corresponding detectors for
each system under consideration. Here, resulting negative samples contain a bias
towards more “difficult” patterns. All training examples were commonly scaled
to 9 × 18 (cascade) and 18 × 36 (NNLRF), including a border of a few pixels in
order not to lose contour information. See Fig. 4. Additionally, an independent
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Fig. 4. Positive (left) and negative (right) examples from the dataset
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Fig. 5. ROC performance comparison of pedestrian recognition systems under consid-
eration, along with the performance of individual system components

hierarchy of 2,959 pedestrian shapes is available for the shape-texture-based
detector. This hierarchy has been adapted to our custom camera setup to include
5,918 shapes by generating virtual shapes, as denoted in Section 4.1. The cascade
makes use of a set of pre-defined rectangular features of size up to 3 × 3 pixels,
whereas the NNLRF classifier employs 5×5 pixel local adaptive receptive fields.

All systems are tested on an independent image sequence comprising 689
images and 992 pedestrian labels (created from approx. 15 different real-world
persons). No real-world pedestrian appears in both training and test set. Perfor-
mance evaluation is subject to the following criteria: The detectors are applied
to the test set images (540 × 400), where rectification allows to use the ground-
plane constraint to restrict the search space: pedestrians are assumed to stand
in upright position on the ground. The system output is compared to manually
labeled ground-truth by comparing the 2D locations and size. Any system entity
Es is compared to any ground-truth sample Eg using bounding box coverage,
where a correct detection is given by cov(Es, Eg) > 0.2. ROC curves are created
by varying the system output thresholds: the threshold of the successive lay-
ers for the cascade architecture, NNLRF threshold for both the hybrid cascade
and the shape-texture-based detector and a threshold on the Chamfer distance
measure in case of the shape-based detector running in isolation. See Fig. 5.

In a first experiment, the effect of extending the shape hierarchy for the shape-
based detector with transformed shapes (see Section 4.1) is evaluated without
any subsequent texture classification. From Fig. 5 one observes that extending
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Table 1. Frame-level processing time comparison

Pedestrian Recognition System Processing Time (Frames / Second)
Basic / Extended Shape Detector 2.8 fps
Shape-Texture Detector 2.5 fps
Wavelet-Based Cascade 5.1 fps
Hybrid Cascade 4.9 fps

the shape hierarchy with transformed shapes significantly improves performance
by approx. 50 % (basic vs. extended shape detector). Not surprisingly, the per-
formance of the boosted wavelet-cascade (30 layers) (Section 3.1), which utilizes
richer texture-based features, is superior to the shape-based detector which is
restricted to the shape cue (wavelet-based cascade vs. extended shape detector).

Further, both the boosted wavelet-cascade and the shape-based detector are
augmented by a subsequent NNLRF classifier yielding the proposed novel hy-
brid cascade framework (see Section 5) and the shape-texture-based detector
(see Section 3.2). Interestingly enough, the addition of the NNLRF classifier sig-
nificantly improves the performance of both systems up to a factor of two: at
equal detection rates, false positives are reduced by 50 % (extended shape de-
tector vs. shape-texture detector and wavelet-based cascade vs. hybrid cascade).
Here, the hybrid cascade framework outperforms all other approaches under
consideration, in particular the state-of-the-art shape-texture-based pedestrian
recognition system (see Section 3.2).

Frame-level processing time has been evaluated using implementations in
C/C++ on a 3.2 GHz Pentium IV processor, see Table 1. Compared to a regular
wavelet-based cascade system, the proposed hybrid cascade architecture shows
a significant increase in detection performance, paid for only with a minor in-
crease in processing time (5.1 fps vs. 4.9 fps). The cascade architecture provides
efficient and fast rejection of non-pedestrian areas in the image. In [15], it is
shown that support vector machines (SVM) yield even better classification per-
formance compared to the NNLRF, however at a significantly lower processing
speed (up to 20 times slower). We therefore regard the NNLRF as state-of-the-art
compromise between representational capability and processing speed.

7 Conclusion

We have introduced a framework for real-time pedestrian recognition using a
catadioptric camera. A virtual camera transformation has been presented which
allows to combine a wide field of view with efficient detection using the ground
plane constraint. The wavelet-based cascade framework has been extended to a
hybrid formulation unifying fast detection and powerful classification by adding
an NNLRF classifier as final cascade stage. The proposed hybrid cascade system
achieves superior performance in comparison to a state-of-the-art shape-texture-
based detector [12] at real-time processing speeds. Future work could involve
additional ROI generation, e.g. using stereo or motion cues as well as the incor-
poration of other classifiers than the NNLRF, e.g. support vector machines.
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Abstract. In this article we present EANT, a method that creates
neural networks (NNs) by evolutionary reinforcement learning. The
structure of NNs is developed using mutation operators, starting from
a minimal structure. Their parameters are optimised using CMA-ES.
EANT can create NNs that are very specialised; they achieve a very
good performance while being relatively small. This can be seen in ex-
periments where our method competes with a different one, called NEAT,
to create networks that control a robot in a visual servoing scenario.

1 Introduction

As universal function approximators, artificial neural networks (NNs) are capable
of modelling complex mappings between the inputs and outputs of a system
up to an arbitrary precision [1]. However, with an increase in complexity of a
given task the required complexity of the NN also increases. Such a complex
NN is difficult to develop due to the high dimensionality of the space in which
its parameters live. This so-called “curse of dimensionality” has always been a
significant obstacle in machine learning problems [2].

NNs are characterised by their structure (topology) and their parameters
(which includes the weights of connections) [3]. A number of learning methods
exist for generating them. Most of these methods, like the popular “backprop-
agation” algorithm [3, chap. 7], are methods to adjust the parameters of the
network to a given problem, but not its structure. When using such methods the
structure of the network has to be fit to the problem beforehand and “by hand”,
i.e. by the designer of the software. Once the structure is fixed, its parameters
are learned. These traditional approaches exhibit the following two problems:

1. The common approach to pre-design the network structure can be difficult
or even infeasible for complicated tasks. It may also result in overly complex
networks if the designer cannot find a small structure that solves the task.

2. Determining the network parameters by local optimisation algorithms like
gradient descent-type methods is impracticable for large problems. It is
known from mathematical optimisation theory that these algorithms tend to
get stuck in local minima. They only work well for very simple (e.g., convex)
problems or if an approximate solution is known beforehand.
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We have previously developed a method, called EANT, “Evolutionary Acqui-
sition of Neural Topologies”, that automatically learns both the structure and
the parameters of a NN to find a solution to a given problem [4,5]. Both learning
parts use evolutionary algorithms (EAs) [6], global optimisation methods that
are less prone to get stuck in local minima. With these algorithms the NN is
learned from scratch by reinforcement learning [7].

In this article we present recent improvements to EANT that further acceler-
ate the generation of networks that perform well. In order to validate our claim
we also present for the first time an experimental comparison of EANT and
NEAT, a similar method.

The remainder of this article is organised as follows. Section 2 contains an
overview over related methods for evolutionary NN learning and describes our
approach to the solution. In Section 3 we formulate the visual servoing problem
that is used for testing the NN learning methods. Section 4 contains results from
experiments with EANT and NEAT; Section 5 concludes the article.

2 Methods for Evolutionary Learning of Neural Networks

In this section we review existing methods on evolutionary neural network (NN)
learning and present our own algorithm, EANT. The paradigm is to learn both
the structure (topology) and the parameters of NNs with evolutionary algorithms
(EAs) without being given any information about the nature of the problem.
The development of networks is realised through reinforcement learning [7]. This
means that candidate solutions which have been generated by the EA are evalu-
ated by testing them on the target application. A scalar value of their “fitness”
is fed back to the algorithm to help it judge and determine what to do with
this candidate. These learning algorithm do not depend on the availability of
input-output pairs of the NN as supervised learning methods do.

2.1 Overview over Existing Methods

Until recently, only small NNs have been evolved by evolutionary means [8].
According to Yao, a main reason is the difficulty of evaluating the exact fitness
of a newly found structure: In order to fully evaluate a structure one needs to
find the optimal (or, some near-optimal) parameters for it. However, the search
for good parameters for a given structure has a high computational complexity
unless the problem is very simple (ibid.).

In order to avoid this problem most recent approaches evolve the structure and
parameters of the NNs simultaneously. Examples include EPNet [9], GNARL [10]
and NEAT [11]. EPNet uses a modified backpropagation algorithm for parameter
optimisation (i.e. a local search method). The mutation operators for searching
the space of neural structures are addition and deletion of neural nodes and con-
nections (no crossover is used). A tendency to remove connections/nodes rather
than to add new ones is realised in the algorithm. This is done to counteract
the “bloat” phenomenon (i.e. ever growing networks with only little fitness im-
provement; also called “survival of the fattest” [6]). GNARL is similar in that
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is also uses no crossover during structural mutation. However, it uses an EA for
parameter adjustments. Both parametrical and structural mutation use a “tem-
perature” measure to determine whether large or small random modifications
should be applied—a concept known from simulated annealing [12]. In order to
calculate the current temperature, some knowledge about the “ideal solution”
to the problem, e.g. the maximum fitness, is needed.

The author groups of both EPNet and GNARL are of the opinion that us-
ing crossover is not useful during the evolutionary development of neural net-
works [9,10]. The research work underlying NEAT, on the other hand, seems to
suggest otherwise. The authors have designed and used a crossover operator that
allows to produce valid offspring from two given NNs by first aligning similar
or equal subnetworks and then exchanging differing parts. Like GNARL, NEAT
uses EAs for both parametrical and structural mutation. However, the probabil-
ities and standard deviations used for random mutation are constant over time.
NEAT also incorporates the concept of speciation, i.e. separated sub-populations
that aim at cultivating and preserving diversity in the population [6, chap. 9].

2.2 Developing Neural Networks with EANT

EANT, “Evolutionary Acquisition of Neural Topologies”, is an evolutionary re-
inforcement learning system that realises NN learning with EAs both for the
structural and the parametrical part [4]. EANT features a unique and compact
genetic encoding that uses a linear genome to represent a NN together with its
parameters. The linear genome encodes the topology of the NN implicitly by
the order of its elements (genes). The following gene types exist: neurons, inputs
to the network, bias neurons, forward connections and recurrent connections.
Linear genomes can be evaluated, without decoding, similar to the way math-
ematical expressions in postfix notation are evaluated. For example, a neuron
gene is followed by its input genes. In order to evaluate it, one can traverse the
linear genome from back to front, pushing inputs onto a stack. When encounter-
ing a neuron gene one pops as many genes from the stack as there are inputs to
the neuron, using their values as input values. The resulting evaluated neuron
is again pushed onto the stack, enabling this subnetwork to be used as an input
to other neurons. Connection genes make it possible for neuron outputs to be
used as input to more than one neuron. Together with the bias neurons that are
implemented as having a constant value of 1.0, the linear genome can encode
any NN in a very compact format. The length of the linear genome is equal to
the number of synaptic network weights.

The steps of our algorithm, shown in Figure 1, are explained in detail below.

Initialisation: EANT usually starts with minimal initial structures. An mini-
mal network has no hidden layers or recurrent connections, only 1 neuron per
output, connected to some or all inputs. EANT gradually develops these simple
initial structures further using the structural and parametrical EAs discussed be-
low. On a larger scale new neural structures are added to a current generation of
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Fig. 1. The EANT algorithm. Please note that CMA-ES has its own optimisation loop
which creates in EANT a nested loop.

networks. We call this “structural exploration”. On a smaller scale the current
structures are optimised by changing their parameters: “structural exploitation”.

Structural Exploitation: At this stage the structures in the current EANT
population are exploited by optimising their parameters. Parametrical muta-
tion in a previous version of EANT was implemented using evolution strategies
(ES) [6]. This means that the strategy parameters in the EA, e.g. the standard
deviation for random mutation, were themselves adapted by an EA. This has the
advantage that the system needs even less knowledge of the problem than with a
different EA, like evolutionary programming. However, using ES for parametrical
mutation has the following disadvantages:

1. After a strategy parameter has been adapted it takes many applications of
the mutation operator on the corresponding network parameter until the
new value of the strategy parameter can be judged. Even then it is unclear
when looking at the change in fitness value whether the network performs
better/worse because of this adapted strategy parameter or because of other
changes that happened during those many generations.

2. The number of strategy parameters adds to the number of total parameters
in the system, increasing even further the dimensionality of the space in
which ideal parameters are searched.

Disadvantage 1 can be ignored in settings where a very large population size is
used. However, it does matter in the context of NN development where large
population sizes are prohibitive unless the problem is very simple.

For these reasons newer versions of EANT use CMA-ES (“Covariance Matrix
Adaptation Evolution Strategy”) [13] in their parameter optimisation. CMA-ES
is a variant of ES that avoids random adaptation of the strategy parameters.
Instead, the search area that is spanned by the mutation strategy parameters,
expressed here by a covariance matrix, is adapted at each step depending on
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the parameter and fitness values of current population members. CMA-ES uses
sophisticated methods to avoid things like premature convergence and is known
for fast convergence to good solutions even with multi-modal and non-separable
functions in high-dimensional spaces (ibid.).

Selection: The selection operator determines which population members are
carried on from one generation to the next. Our selection in the outer, structural
exploration loop is rank-based and “greedy”, preferring individuals that have a
larger fitness. In order to maintain diversity in the population, it also compares
individuals by structure, ignoring their parameters. The operator makes sure
that not more than 1 copy of an individual and not more than 2 similar individ-
uals are kept in the population. “Similar” in this case means that a structure was
derived from an another one by only changing connections, not adding neurons.
Again, no network parameters are considered here.

Structural Exploration: In this step new structures are generated and added
to the population. This is achieved by applying the following structural mutation
operators to the existing structures: Adding a random subnetwork, adding or re-
moving a random connection and adding a random bias. Removal of subnetworks
(i.e. neurons together with all their connections) is not done as we found out
that this almost never helps in the evolutionary process. The same is valid for a
crossover operator, modelled after the one used in NEAT, which is currently not
used. New hidden neurons are connected to approx. 50% of inputs; the exact
percentage and selection of inputs are random to enable stochastic search for
new structures.

Differences to Other Methods: EANT is closely related to the methods
described in the related work section above. One main difference is the clear
separation of structural exploration and structural exploitation. By this we try
to make sure a new structural element is tested (“exploited”) as much as possi-
ble before a decision is made to discard it or keep it, or before other structural
modifications are applied. Another main difference is the use of CMA-ES in
the parameter optimisation. This should yield more optimal parameters more
quickly, which is necessary when large networks are to be created. Further dif-
ferences of EANT to other recent methods, e.g. NEAT, are a small number of
user-defined algorithm parameters (the method should be as general as possible)
and the explicit way of preserving diversity in the population (unlike speciation).

3 The Visual Servoing Task

In order to study the behaviour of EANT and other algorithms on large problems
we simulate the visual servoing setup shown in Figure 2. The robot is equipped
with a camera at the end-effector and has to be steered towards an object of
unknown pose. This is achieved in the visual feedback control loop depicted in
Figure 2. In our system a NN shall be used as the controller, determining where
to move the robot on the basis of the object’s visual appearance.
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Fig. 2. Robot arm with object and the corresponding visual feedback control loop

The object has 4 identifiable markings, see Figure 2. Its appearance in the
image is described by the image feature vector yn ∈ IR8 that contains the 4 pairs
of image coordinates of these markings. The desired pose relative to the object is
defined by the object’s appearance in that pose by measuring the corresponding
desired image features y� ∈ IR8 (“teaching by showing”). Object and robot are
then moved to a start pose. The object’s position is unknown to the controller.
The input to the controller is the image error Δyn := y� − yn and additionally
the 2 distances in the image of the diagonally opposing markings, resulting in a
10-dimensional input vector. The output of the controller is a relative movement
of the robot in the camera coordinate system: (Δx, Δy, Δz) ∈ IR3.

From a mathematical point of view, visual servoing is the iterative minimisa-
tion of an error functional that describes differences of objects’ visual appear-
ances, by moving in the search space of robot poses. The traditional solution is
equivalent to an iterative Gauss-Newton method to minimise the image error,
with a linear model (“Image Jacobian”) of the objective function [14,15].

In our case a NN is developed as a controller by reinforcement learning. For the
assessment of the fitness (performance) of a network N it is tested by evaluating
it in the simulated visual servoing setup. For this purpose 1023 different robot
start poses and 29 teach poses (desired poses) have been generated. Each start
pose is paired with a teach pose to form a task. These tasks contain all ranges
and directions of movements. For each task, N is given the visual input data
corresponding to the start and teach poses, and its output is executed by a
simulated robot. In order to facilitate easy comparison between different neural
networks only one movement is calculated and executed for each of these tasks.
The fitness function F (N) measures the negative RMS (root mean square) of
the remaining image errors after this robot movement, over all tasks. This means
that our fitness function F (N) always takes on negative values with F (N) = 0
being the optimal solution. F (N) is calculated as follows:

F (N) := −

√√√√√ 1
1023

1023∑
i=1

⎛
⎝1

4

4∑
j=1

‖(y�)2j−1,2j − (yi)2j−1,2j‖2
2 + b(yi)

⎞
⎠ (1)

where yi denotes the new image features after executing one robot movement
starting at start pose i, and (y)2j−1,2j shall denote the vector comprising of the
2j−1th and 2jth component of a vector y. The inner sum of (1) thus sums up the
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squared deviations of the 4 marker positions in the image. b(y) is a “badness”
function that adds to the visual deviation an additional positive measure to
punish potentially dangerous situations. If the robot moves such that features
are not visible in the image or the object is touched by the robot, b(y) > 0,
otherwise b(y) = 0. The function b is defined such that it usually takes on
values ≤ 1. All image coordinates are in the camera image on the sensor and
have therefore the unit 1 mm. The sensor (CCD chip) in this simulation measures
8
3 mm × 2mm. The average (RMS) image error is −0.85 mm at the start poses,
which means that a network N that avoids all robot movements (e.g. a NN with
all weights = 0) has F (N) = −0.85.

4 Experimental Comparison of EANT and NEAT

In order to validate learning methods we use the visual servoing simulation de-
scribed above, with 1023 start poses and the same definition of the fitness func-
tion F , as in equation (1). The 10 inputs and 3 outputs to the neural networks
(NNs) are also defined as above. The computationally expensive evaluation of
F , requiring 1023 NN evaluations and simulated robot movements makes it a
priority to develop networks with as few evaluations F (N) as possible.

4.1 The NEAT System

NEAT by Stanley and Miikkulainen [11] has already been briefly introduced in
Section 2.1. It uses one evolutionary optimisation loop in which structures and
parameters of NNs are mutated, and networks recombined using a crossover op-
erator. The implementation of NEAT used here is the Java-based NEAT4J which
is available as a SourceForge project (http://neat4j.sourceforge.net/). For
reference the original NEAT code by Stanley has also been analysed.

The initial population of NEAT4J consists of randomly generated networks
without hidden layers that are either fully or sparsely connected (at an option).
In each generation the population is split into a number of species so that each
two compatible individuals belong to the same species. The split is done us-
ing a compatibility measurement that incorporates network size, difference of
weights and number of different genes. New species are created if necessary. If a
species has a good average fitness, its size will be increased, otherwise the size
is decreased. Species become extinct if their size becomes zero or they excess
a certain age. The best individual of each species is kept together with their
offspring. New members of a species are spawned by crossover and mutation
from their parents who are selected among the best individuals in this species.
Mutation is done by a stochastic update of weights and structure. Nodes and
connections are added with certain probabilities, but never removed. Existing
connections can, however, be switched on and off by toggling a flag.

Search for Optimal NEAT4J Parameters: Unfortunately, there is no sug-
gestion how NEAT’s 13 evolution and 9 speciation parameters should be set. We
have tried many settings and found out that the values from the examples of
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Fig. 3. Results from 5 runs each of EANT and NEAT

the original NEAT mixed with those of NEAT4J form a suitable starting point.
The settings were then adapted to tune the system for our visual servoing task.

NEAT tends to enlarge networks if the probability of toggling connections
on/off is low and slows down the growing of networks if it is high. We decided to
reduce the probability of toggling (PToggleLink 0.0001) so as to enable NEAT4J
to sufficiently optimise the network weights before adding a lot of structure. For
the same reason we also decreased the probabilities for structural mutation (PAd-
dLink=0.0025, PAddNode=0.00125) after some test runs but left the probabili-
ties for weight changes high (PMutation=0.25, PWeightReplaced=0.85). NEAT
reacts very strongly to bias neurons and tends to add many of them. However,
this made the evolution process get stuck without improving the fitness in a
few test runs. We therefore deactivated biases altogether (which makes sense,
considering the visual servoing task). An appropriate population size is hard
to calculate but concerning the fitness increase over (wall-clock) time a smaller
population size usually works better than a bigger. Hence, we tested two sizes of
populations, 30 and 150. In most cases the smaller population only performed
slightly worse. We did not note a significant change in the test outcome when
varying parameters for speciation, so we set the number of species to 1.

4.2 The EANT System

The EANT system which was described in detail in section 2.2 was used with
the following parameters:

– up to 30 individuals in the structural exploration (global population size)
– each individual spawns 2 children through structural mutation
– 2 parallel optimisations of the same individual by CMA-ES
– stop criteria for CMA-ES: maximum standard deviation in covariance matrix

less than 0.00005 or iteration (CMA-ES generation) number over 500.

4.3 Results and Discussion

Figure 3 shows the development of the best individual’s fitness value and size. Re-
sults from 5 experiments each of EANT and NEAT are shown, plotted against the
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generation number, the determining factor for the complexity of the networks. It
can be seen that after around 25,000 generations the fitness values in NEAT reach
-0.33 (better runs) and -0.38 (worse runs). They do not improve significantly fur-
ther until generation 100,000, at which point the experiments were stopped. In
EANT, a significant increase in fitness value can be seen up to generation 15 (and
further, as different experiments show). After 5 generations the average best indi-
vidual has a fitness of -0.27, which increases to -0.23 at generation 15.

An analysis of the network sizes shows that NEAT’s resulting networks are
still “sparse”, as that initialisation option was used. The best performing network
has 17 genes, with only 2 hidden neurons. Only 1 gene was added between
generation 3,000 and 100,000, which explains why the fitness does not increase
any further. However, without the “sparse” option NEAT generates networks
with sizes approx. 80–100 after 3,000 generations; their fitness is around -0.89
to -0.66. EANT’s network sizes are larger due to the different initialisation. The
mean size at generation 5 is 55 (fitness -0.27), size increasing slower as time goes
on, with a mean size of 83 at generation 15 (fitness -0.23).

The fitness values are (modulo b(·)) the remaining RMS errors in the image
after the robot movement. Both methods quickly develop networks that reduce
the image error from the initial -0.85 to as low as -0.23 with 1 robot movement.
This is a very good result if one compares to the traditional Image Jacobian
approach. Calculating the robot movement using the (undamped) product of
the Image Jacobian’s pseudoinverse with the negative image error, a standard
method [15] yields a fitness of -0.61. The two methods differ in the way networks
are generated, and it looks like NEAT performs worse in this scenario. Only
when the networks are small and the probability of structural change is low
compared to parametrical change can NEAT optimise networks well with its
EA. If some options influence NEAT to produce larger networks they have a
significantly worse performance compared to EANT networks of the same size.
This could mean that NN parameters in NEAT are not optimised as well, or
many structural elements exist that do not help the task well, or both.

Overall, EANT created better networks than NEAT and required less para-
meter tuning to run successfully.

5 Conclusions and Future Work

In this article we have presented EANT, a method to develop both the struc-
ture and the parameters of neural networks (NNs) by evolutionary reinforcement
learning. EANT differs from other recent methods by implementing a clear sep-
aration of structural and parametrical development and the use of CMA-ES
during parameter optimisation. In order to validate EANT, it was used with a
complete simulation of a visual servoing scenario to learn NNs by reinforcement
learning. The same task was given to NEAT [11], a similar method. Results from
the experiments show that both evolutionary methods can develop networks that
make “useful” robot movements, decreasing the image error and thereby moving
towards the goal. The performance of both methods is also significantly better
than the traditional visual servoing approach.
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A comparison of both methods showed that the NNs created by EANT always
have a significantly better performance. NEAT performs good when configured
to keep network sizes very small, but then the development of networks comes to
a halt, showing almost no improvement over a long runtime. For similar network
sizes, EANT’s NN perform much better.

For these experiments EANT’s parameter optimisation with CMA-ES has
been reduced in complexity to make a fair comparison possible; previous exper-
iments used many more CMA-ES generations [5]. Our current work is to study
the dependence of EANT on these and other CMA-ES parameters.
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Abstract. Although lasers are widely used for welding in precision engi-
neering industry, it is still a challenge to achieve high accuracy in creating
and positioning welding spots at extremely high processing speed.

Towards this end, we propose a system for monitoring the welding
process in order to ensure good quality of the welding spots. Our tech-
nology enables high speed image acquisition confocally to the laser beam
with a direct view onto the melt. This innovative system permits accu-
rate estimation of the melt pool’s position and radius, which, however,
must be performed at frame rates above 200 fps. We therefore employ
fast correlation based approaches for sampling the melt pool’s contour
and robustly fitting a circle to it. In addition, the approaches enable
sputter detection via outlier classification.

To assess the performance of each presented method, extensive ex-
periments are conducted. The proposed paradigms can furthermore be
conveniently adapted to a variety of problems dealing with rapid shape
estimation in noisy environments.

1 Introduction

Lasers permit to create narrow but deep weldings and they offer contact-free
assembling at highest processing speed – among others, these advantages have
resulted in an increased use of lasers in the precision engineering industry [1].
However, a profitable use of laser welding, especially in this branch of industry,
requires the generation of welding spots at high speed and with high accuracy
in size and position. To meet these requirements in industrial environments, it
is indispensable to monitor the laser welding process to detect flaws as early as
possible. We therefore observe directly the evolution of the pool of melt caused
by the laser while the laser pulse is applied. To this end, we employ a confocal
laser welding system, which provides a special extension for high speed image
acquisition.

The thus acquired image sequences show welding processes of copper and steel
performed with a Nd:YAG laser. An additional laser is used for illuminating
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the scene, which allows a direct view onto the generated melt pool without any
influence of laser induced plasma. In contrast to plasma monitoring (see Fig. 1a),
our direct approach dramatically improves the melt pool estimation (see Fig. 1b)
and facilitates further assessment, such as sputter detection, due to the increased
amount of relevant details in the images.

The images are captured with a frame rate of 5000 fps using a high-speed
CMOS camera, since the welding processes last only 10 ms to 20 ms. However,
the throughput of the image processing system, which is predetermined by the
cycle time of the welding system (i.e. the time slot between two laser spots), has
to be at least 200 fps to prevent the welding machine from stalling. At this rate
the parameters, viz. radius and position of the melt pool, have to be estimated
in a manner resistant to noise or sputters of the melt.

We therefore present approaches to rapidly estimate these parameters and to
detect flaws via robustly fitting a circle to the melt pool’s contour and perform
basic error classification. For contour estimation, we utilize a novel contour sam-
pling method via correlation of radial profiles with step edge prototypes. To infer
the desired parameters from the thus sampled contour, four approaches are ap-
plied and compared. The approaches are: a completely newly designed method,
adapted types of the Hough Transform, Least Median of Squares regression and
RANSAC (RANdom SAmple Consensus).

Recent experiments have shown that the main ideas presented here can be con-
veniently adapted to various estimation problems such as fast position recognition
of bearings in industrial vision and cell recognition for early cancer diagnosis.

The paper is organized as follows: First, our welding and image acquisition
system is described. Second, the algorithms for melt pool parameter estimation
are introduced. Then, the results of extensive experiments are presented and
comparisons of the algorithms are made. The paper concludes with a discussion
and an outlook for ongoing work.

2 Welding and Image Acquisition System

Unlike other approaches, which use the radiation of the laser induced plasma for
process monitoring with a spatially integrating photo detector (often a photo
diode), we employ a special setup which allows the acquisition of 2D images con-
focally with the laser. This setup is known as Coaxial Process Control -system
(CPC-system) [4], [5]. Compared to a photo diode system, the CPC-system, when
equipped with a high speed camera, provides image data with much more relevant
information for the welding process and a strongly increased resolution. To obtain
melt pool images without being disturbed by plasma radiation, we extended the
basic CPC-system, which is composed of a Nd:YAG laser, a dichroit and a camera,
see Fig. 2. As illustrated, the Nd:YAG laser partly shares its optical path with the
camera. This is implemented via the dichroit, which reflects the laser wavelength
but is transparent for the wavelengths the camera should capture. With only this
basic CPC setup, however, the camera would capture the radiation of the laser
induced plasma, which prevents a direct view onto the melt.
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(a) (b)

Fig. 1. Frames of a welding sequence:
(a) Meltpool without additional illumi-
nation (b) with additional illumination –
direct view onto the melt pool

CMOS camera

Illumination
(diode laser)

Nd:YAG laser
Dichroitic
mirror

Beam
splitter

Plasma

Melt pool

Work piece

Optic,
Bandpass

Fig. 2. Welding system with extension
for image acquisition and additional
illumination [5]

To cope with this problem, we extended the setup by using a second beam split-
ter in front of the camera,which introduces an additional illumination from a diode
laser with a wavelength of 830 nm. Additionally, we place an appropriate bandpass
filter in front of the camera. The passband of this bandpass is tuned to a small band
around 830 nm, where the radiation emitted by the plasma is close to zero. This
means, in turn, that the plasma is translucent in this small band and, therefore,
we obtain the desired direct view onto the melt pool shown in Fig. 1b).

3 Parameter Estimation

This section describes several techniques for estimating the radii and positions
of the melt pools in the image sequences. We concentrate on approaches which
use information about the melt pool’s contour and fit a circle to estimate radius
and position. The advantage of this contour-based method over blob based ap-
proaches and derivatives based on matching of entire melt pool frames with sets
of prototypes [7], is the higher achievable throughput and the possibility for local-
izing defects such as sputters in the contour. Conventional approaches, working
on entire images, such as the standard Hough Transform [3] are computationally
far too expensive. In contrast to the Hough Transform, high throughput can
be obtained with the computationally inexpensive fast boundary point analysis
in [7] but the robustness of this method to outliers is weak.

To comply with both throughput and robustness constraints, we first esti-
mate contour points, and then robustly fit a circle to these points. Since there
are various approaches for robust fitting [6], [3], [8], a rigorous comparison, as
mentioned in the introduction, is made.
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3.1 Contour Point Estimation

The starting points for the algorithms – except for the Hough Transform, which
operates on correlation values – are the points extracted from the melt pool’s
contour. To estimate these points with low computational effort, we consider
n radial profiles of the melt pool images and correlate each profile with a pre-
computed set of step edges. The positions of the radial profiles for n = 8 are
highlighted in Fig. 3.

Fig. 3. Melpool with highlighted
positions of eight radial profiles
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Fig. 4. Radial profile of the top left corner with
estimated step edge referring to the sought con-
tour point. Dotted line: Offset which has to be
compensated with a gray value shift.

Before the correlations are computed, both the step edges and the profiles have
to be freed from their offsets which result in a shift of the gray values. With this
operation, the gray values corresponding to the melt pool pixels become negative
and the background values become positive. It is important that the symmetry
of these values in the radial profile is roughly identical with the symmetry in
the precomputed step edges to yield a high accuracy in estimating the edge’s
position. This leads to a normalization by subtracting the gray value offset.
Normalization is followed by correlation computation, which we conveniently
implemented as a matrix multiplication. This is similar to linear convolution via
multiplication with a Toeplitz matrix and can be described as

y = H · x , (1)

where y denotes the correlation vector, H is the Toeplitz-Matrix, which is com-
posed of the precomputed step edge prototypes and x represents the gray values
of the radial profile. An example with idealized x is
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As can be seen, the precomputed step prototypes are stacked in H, which, with
these ideal models, degenerates to a triangular matrix. Obviously, the second
line in H fits the best to x – consequently, the second entry in y exhibits the
maximum value. The corresponding contour point can now be determined via
the position of the maximum value in y.

The challenge in estimating contour points this way is to accurately estimate
the gray value offset for normalization because its value varies from frame to
frame. We therefore implemented a normalization method by computing the
offsets as the mean values of the profiles and the step edges. Thus, these offsets
adapt to brightness variations and are insensitive to noise e.g. resulting from bad
pixels in the camera’s sensor. However, the increased adaptivity and robustness
result in the loss of the triangular form of H.

3.2 Robust Fitting Algorithms

The contour sampling described above is highly robust to noise because always
entire profiles are correlated. However, the obtained contour points are still influ-
enced by sputters or bright reflections in the melt, which should not degrade the
melt pool parameter estimation. Therefore, a robust fitting of the circle model
with these detected points is vital. We address this challenging task by develop-
ing a new approach called “Least Distances (L. Dist.)” and by adapting three
widely used paradigms for robust regression to the problem at hand.

Least Distances (“L. Dist.”). Compared to the techniques, to be introduced
in the following, this approach is closest tailored to the problem stated above,
since it uses the highest degree of prior knowledge about the welding process for
fitting and rejecting outliers.

Our algorithm is based on the fact that the material to be welded melts contin-
uously. Consequently, the melt pool’s radius increases smoothly over successive
frames. Thus, undisturbed contour points are distinguished from those disturbed
by, e.g., sputter, by evaluating the distance of each contour point to the preceding
circle. With this approach we thus make use of the temporal dependencies between
the melt pool’s parameters of successive frames, due to the physics of welding.

The trusted contour points, chosen by this method and used for circle fitting,
are those mt = n/2 points (n = number of contour points, n ≥ 8), which have
the smallest Euclidean distance to the preceding circle. However, to ensure that
the trusted points are reasonably distributed, the contour is divided into four
quadrants and from each quadrant, at least one point (namely the point with
the smallest distance) is selected. This procedure should help to better cope with
melt pools which are not perfectly round.

After contour point selection, the circle is fitted via Least Mean Squares to
the mt trusted points.

Hough Transform. The common ground of “L. Dist.” (and the following meth-
ods) is the attempt of fitting a circle to contour points extracted first. Thus, only
the maxima of the correlation vectors y in (1) are considered, since they repre-
sent the points where the contour most likely is to be. However, the strengths of
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these maxima and the existence of secondary maxima are not considered. These
downsides can be addressed by the Hough Transform [3] for finding the circle,
whose contour points maximize the correlation in sum over all contour points.

As mentioned before, on our current platform (2.66 GHz, Intel Core2Duo PC),
the standard Hough Transform (denoted by “Hough Ext.”) can not comply with
the stringent real time constraints. Its performance is in the following therefore
provided more as a reference. However, the limited number of correlation vectors
y, the possibility to eventually shrink the Hough accumulator space by invoking
additional prior knowledge, and the possibility of further speedup via a lookup
table for the pixels to be accumulated, make it an earnest alternative candi-
date for our application. We thus implemented a trimmed-down and accelerated
version, called “Hough Ltd.” which inherently makes use of the temporal depen-
dencies described in 3.2 by utilizing the previously estimated circle parameters
as initial guess for defining a small sliding search space around these.

RANSAC. The most commonly used approach for robust fitting in industrial
vision is RANSAC, introduced by Fishler and Bolles [2]. Unlike “Hough Ltd.”
or “L. Dist”, RANSAC solely uses the given shape model for outlier rejection.
For the problem at hand, we implemented RANSAC with the following steps:

1. Select a set of p = 3 contour points randomly (three points are required to
determine a circle),

2. Construct a circle through these,
3. Count the number of points which lie within an error tolerance of εmax to

the circle (so-called inliers),
4. If the number of inliers is greater than some threshold nmin, do least squares

circle fitting for all inliers, else repeat the above process, i.e. start again at 1.,
until a maximum number mmax of trials is reached.

Least Median of Squares. Slightly different to RANSAC, but as well solely
based on the shape model, is Least Median of Squares Regression (LMedS),
which solves the nonlinear minimization problem

min med
i

r2
i , (3)

where r2
i denotes the squared residual, i.e. the squared distance of the remaining

contour points to the fitted circle. Although (3) looks very similar to Least Mean
Squares regression, a closed form solution of this expression is not available.
Thus, LMedS has to perform a search in the space of possible estimates generated
from data. The procedure we implemented for n given points is composed of the
following steps [8]:

1. Draw m random subsamples of p = 3 different points,
2. Construct circles through the points of the subsamples,
3. Determine the median of the squared residuals for each circle,
4. Pick the circle yielding the smallest median,
5. Consider the distance of all points to the picked circle and reject points with

distances > t,
6. Fit a circle via least mean squares with the remaining points.
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In contrast to Least Mean Squares, LMedS can resist the effect of 50% of gross
outliers in data. Step 5 and 6 help to compensate the poor efficiency of LMedS
in the presence of Gaussian noise. According to Rousseeuw in [6], t calculates to

t = M

(
3.7065 +

18.5325
n − p

)2

, (4)

where M denotes the minimal median.

4 Results

This section presents the performances and error rates of the described algo-
rithms compared with a hand selected ground truth. The algorithms were coded
in Matlab and executed on a standard PC (Intel Core2Duo, 2.66 GHz, 2 GB
RAM). The database for evaluation contains approximately 1020 frames (and
the corresponding ground truths) taken from 12 different welding sequences of
copper and steel. As mentioned in the introduction, these sequences are recorded
with a high-speed camera with 128 × 128 pixels at 5000 fps. The welding is per-
formed with a Nd:YAG Laser (1064 nm wavelength) and the scene is confocally
illuminated with a diode laser (830 nm wavelength). All the presented images
exhibit a field of view of 0.8 × 0.8 mm2.

To assess the algorithms for both sequences with well-behaved melt pools and
sequences with high defect rates (due to sputters and reflections, see Fig. 6)
separately, each of these is split into two parts. The first part typically exhibits
well-behaved melt pools and the second part exhibits higher defect rates – it
can be observed that the defect rate increases with the radius, which in turn
increases with the frame number and time, see Fig. 6.

For comparison, the error rates ε1, ε2 and ε are computed from the areas in
pixels, which are correctly or incorrectly classified by the algorithms compared
with ground truths. More specifically, ε1 is the probability of background pixels
which are misclassified as melt pool pixels (“false positive rate”), ε2 is the prob-
ability of the melt pool pixels being misclassified as background (“false negative
rate”) and ε is the total error rate.

The settings of the algorithms, used for obtaining the following results, are
listed in Tab. 1. All settings are carefully chosen to yield reasonable results with
the algorithms. In case of LMedS, m is specified to ensure that the probability of
drawing at least one completely undisturbed combination is 99% in the presence
of 50% disturbed contour points. The results obtained with these settings are
depicted in Tab. 2 and Fig. 5.

As can be observed, the two approaches, viz. “L. Dist.” and “Hough Ltd.”,
exploiting temporal dependencies due to the continuity in melt pool changes,
perform better than the other approaches and yield moderate error rates. How-
ever, among these two, “L. Dist.” exhibits higher throughput while “Hough Ltd.”
is slightly better in total error rate ε. The error rates depicted in Tab. 2 might,
however, be further improved by optimizing the normalization described in
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Table 1. Global settings for the different robust fitting algorithms

Global setting n = 16 number of radial profiles

RANSAC

p = 3 initial set of points
εmax = 4 pix. error tolerance for inliers
nmin = 4 minimum number of inliers
mmax = 80 maximum number of trials

LMedS
p = 3 initial set of points
m = 44 number of initial subsamples

L. Dist. mt = 8 number of trusted points

Hough Ext. s(y, x, r) = 64
+8
−8 , 64

+8
−8 , 5

+72
0 search space in y, x, r direction

Hough Ltd.
s(y, x, r) = i

+2
−2
y , i

+2
−2
x , i

+5
−5
r search space

iy, ix, ir parameters of preceding circle
(first initialized with: 64, 64, 15)

Table 2. Results for the different ro-
bust fitting algorithms (‘Part’ refers to
the splitting of the sequences into two
parts, ε1 = false positive rate in %, ε2 =
false negative rate in %, ε = total error
rate in %, fps = frames per second with a
2.66 GHz Core2Duo, Matlab code).

Algorithm Part ε1 ε2 ε fps

RANSAC
1 8.2 1.5 6.1 446.3
2 12.5 2.2 8.3 442.9

LMedS
1 6.8 0.7 4.9 220.9
2 10.8 1.1 6.8 221.0

L. Dist.
1 5.0 2.0 4.1 1084.3
2 8.3 1.8 5.7 1084.2

Hough Ext.
1 5.2 0.7 3.8 39.6
2 10.3 0.9 6.3 39.6

Hough Ltd.
1 5.0 4.8 4.2 867.5
2 8.6 0.7 5.5 867.7

2 4 6 8 10 12

Hough Ltd. 2

Hough Ext. 2

L. Dist. 2

LMedS 2

RANSAC 2

Hough Ltd. 1

Hough Ext. 1

L. Dist. 1

LMedS 1

RANSAC 1

ε in %

Fig. 5. Boxplot of the total error rate
for both sequence parts (“RANSAC 1”
e.g. indicates the error rates for part 1 of
the sequences, obtained with RANSAC).
The lines in the boxes mark the medians,
the boxes encompass the two inner quar-
tiles of the quantity of results, whereas
the “whiskers” and crosses mark the two
remaining outer quartiles.

section 3.1, because the algorithms tend to overestimate the size of the melt
pools (ε1 is greater than ε2 – see Tab. 2).

4.1 Edge Model Improvement and Sputter Detection

In case of severe disturbances due to reflections in the melt, the edge model of-
fers the possibility for further improvement. Fig. 6, row a) shows detected contour
points with the standard edge model – it can be observed that some contour points
are disturbed by reflections in the melt. However, most of these reflections arise in
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the inner parts and not on the periphery of the melt pools. Consequently, a small
(dark) rim of molten material between reflection and background remains. This
can be exploited by adapting the precomputed edge prototypes, which is straight-
forwardly done by inserting stripes of zeros,which cover the inner melt pool region,
into the prototypes. As a consequence, the inner parts of the melt pool no longer
count for correlation and thus, reflections in these parts no longer disturb the melt
pool estimation (see Fig. 6 row b)).

In addition to melt pool estimation, the contour based approach offers the
benefit for sputter detection without major effort. A sputter is simply recognized
as a contour point lying beyond a threshold distance dt outside the fitted circle.
Fig. 6 (see sputter points) shows an example for melt pool estimation with “L.
Dist.” and sputter detection (dt ≥ 4 pixels like in RANSAC). The accuracy of
sputter detection may be increased by detecting more contour points, which of
course decreases the detection rate. However, “L. Dist.” still yields a throughput
of 338 fps with n = 60 radial profiles.

trusted point rejected point sputter pointLegend:

a)

b)

Frame: 15 17 31 53

Fig. 6. Melt pool evolution during a welding process of copper. The contour points and
circles are obtained with “L. Dist.”. Row a): contour points obtained with idealized
edge prototypes, row b): contour points and circles obtained with an initial additional
stripe of zeros in the edge prototypes.

5 Conclusions

We presented approaches for process monitoring in laser welding via high speed
and robust estimation of melt pool parameters. To this end, we employed a
special setup with confocal illumination and a bandpass filter in front of the
camera to acquire images without influence of plasma radiation. The obtained
images thus allow the desired parameter estimation.
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All approaches presented in this contribution are based on contour sampling
via correlation of step edge prototypes with radial profiles of the images. This
sampling is followed by parameter estimation, where two approaches, which use
process-pertinent knowledge to achieve the best performance. The main ideas
of these algorithms can be easily adapted to other industrial and medical vision
tasks as recent experiments have shown.

Our ongoing work is on the extension of the algorithms towards an increased
robustness to discontinuities in the background e.g. caused by adjacent melt
pools which, in turn, paves the way for monitoring of welding seams.
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Abstract. Model-based image interpretation extracts high-level infor-
mation from images using a priori knowledge about the object of interest.
The computational challenge is to determine the model parameters that
best match a given image by searching for the global optimum of the
involved objective function. Unfortunately, this function is usually de-
signed manually, based on implicit and domain-dependent knowledge,
which prevents the fitting task from yielding accurate results.

In this paper, we demonstrate how to improve model fitting by learn-
ing objective functions from annotated training images. Our approach
automates many critical decisions and the remaining manual steps hardly
require domain-dependent knowledge. This yields more robust objective
functions that are able to achieve the accurate model fit. Our evalua-
tion uses a publicly available image database and compares the obtained
results to a recent state-of-the-art approach.

1 Introduction

Model-based image interpretation systems exploit a priori knowledge about ob-
jects, such as shape or texture. The model contains a parameter vector p that
represents its configuration, including position, rotation, scaling, and deforma-
tion. These parameters are usually mapped to the surface of an image, via a set
of feature points, a contour, or a textured region.

Model fitting is the computational challenge of finding the model parame-
ters that describe the content of the image best [1]. This task consists of two
components: the fitting algorithm and the objective function. The objective func-
tion yields a comparable value that determines how accurately a parameterized
model fits to an image. In this paper, smaller values denote a better model fit.
Depending on context, they are also known as the likelihood, similarity, energy,
cost, goodness or quality functions. The fitting algorithm searches for the model
parameters p that optimize the objective function. Since the described methods
are independent of the used fitting algorithm, this paper shall not elaborate on
them but we refer to [1] for a recent overview and categorization.

Problem Statement. Fitting algorithms have been the subject of intensive
research and evaluation. In contrast, the objective function is usually determined
ad hoc and heuristically, using the designer’s intuitions about a good measure of
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Fig. 1. The traditional procedure for designing objective functions (left), and the pro-
posed method for learning objective functions from annotated training images (right)

fitness. Afterwards, its appropriateness is subjectively determined by inspecting
its result, evaluated on example images and example model parameterizations. If
the result is not satisfactory the objective function is tuned or redesigned from
scratch, see Figure 1 (left). The consequences are that this design approach
requires much implicit and domain-dependent knowledge. Its iterative nature
also makes it a time-consuming process of unpredictable duration. Furthermore,
the best model fit is not objectively determined.

Solution Idea. In contrast, this paper explicitly formulates the properties of
ideal objective functions and gives a concrete example of such a function based
on manual image annotations. Unfortunately, it is impossible to obtain ideal
objective functions for real-world scenarios. Therefore, we propose to learn the
objective function from comprehensive training data specified by the ideal objec-
tive function. This methodology approximates the ideal objective function and
therefore achieves high accuracy. It automates most steps and the remaining
manual steps require little domain-dependent knowledge, see Figure 1 (right).
Furthermore, the design-inspect loop is eliminated, which makes the time re-
quirements predictable.

Section 2 describes the design approach and points out its shortcomings.
Section 3 specifies properties of ideal objective functions. Section 4 explains the
proposed approach in detail. Section 5 experimentally evaluates the obtained re-
sults. Section 6 refers to related work and Section 7 summarizes our contributions
and suggests further work.

2 Manually Designing Objective Functions

In order to explain the proposed technique, this paper utilizes a two-dimensional,
deformable, contour model of a human face according to the Active Shape Model
approach [2]. The model parameters p=(tx, ty, s, θ, b)T describe the transla-
tion tx and ty, the scaling s, the rotation θ and the deformation b. The func-
tion cn(p) computes the location of the nth contour point with 1≤n≤N .

Model-based image interpretation requires determining the model that fits
best to the image. For this reason, the objective function f(I, p) computes the
fitness between the model parameters p and the image I. According to common
approaches [2], we split the objective function into N local parts fn(I, x), one for
each contour point cn(p). These local functions evaluate the image variations
around the corresponding contour point and give evidence about its fitness.
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Note, that the search on local objective functions fn(I, x) is conducted in pixel
space x∈R

2, whereas the search on global objective function f(I, p) is conducted
in parameter space p∈R

P with P=dim(p). The result of the global objective
function is the sum of the local function values, as in Equation 1. From now on,
we will concentrate on local objective functions fn, and simply refer to them as
objective functions.

f(I, p) =
N∑

n=1

fn(I, cn(p)) (1)

Objective functions are usually designed by manually selecting salient features
from the image and mathematically composing them. The feature selection and
the mathematical composition are both based on the designer’s intuition and
implicit knowledge of the domain. In [3] for instance, the objective function is
computed from edge values of the image. Each contour point is considered to be
located well if it overlaps a strong edge of the image. A similar objective function
is shown in Equation 2, where 0≤E(I, x)≤1 denotes the edge magnitude.

fe
n(I, x) = 1 − E(I, x) (2)

As illustrated with the example in Figure 2, the design approach has com-
prehensive shortcomings and unexpected side-effects. 2a) visualizes one of the
contour points of the face model as well as its perpendicular towards the contour.
2b) and 2c) depict the content of the image along this perpendicular as well as
the corresponding edge magnitudes E(I, x). 2d) shows the value of the designed
objective function fe

n along the perpendicular. Obviously, this function has many
local minima within this one-dimensional space. Furthermore, the global mini-
mum does not correspond to the ideal location that is denoted by the vertical
line. Because of this amount of local minima, fitting algorithms have difficulty
in finding the global minimum. Even if an algorithm found the global minimum,
it would be wrong, because it does not correspond to the ideal location.

3 The Properties of Ideal Objective Functions

This section makes the observations from Figure 2 explicit by formulating two
properties P1 and P2. We call an objective function ideal once it has both of
them. The mathematical formalization of P1 uses the ideal model parameters p�

I ,
which are defined to be the model parameters with the best fitness to a specific
image I. Similarly, cn(p�

I) denote the ideal contour points.

P1: Correctness: The global minimum corresponds to the best model fit.

∀x(cn(p�
I) �= x) ⇒ fn(I, cn(p�

I)) < fn(I, x)

P2: Uni-modality: The objective function has no local extrema.

∃m∀x (m �= x) ⇒ fn(I, m) < fn(I, x) ∧ ∇fn(I, x) �= 0
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Fig. 2. a) Contour point with perpendicular, b) Image data, c) Edge magnitudes,
d) Designed objective function fe

n, e) Ideal objective function f�
n, f) Training data,

g) Learned objective function f�
n; Note, b) – g) are taken along that perpendicular

visible in a). The vertical line represents the location of the ideal contour point cn(p�
I).

Note that P2 guarantees that any determined minimum represents the global
minimum. This facilitates search, because fitting algorithms can not get stuck
in local minima. Thereby, the global minimum m does not need to correspond
to the best fit. This is only required by the independent property P1.

f�
n(I, x) = |x − cn(p�

I)| (3)

We now introduce a concrete instance of an ideal objective function f�
n(I, x),

defined in Equation 3. It computes the distance between the ideal contour
point cn(p�

I) and a pixel x located on the image surface. A significant feature
of f�

n is that it uses the ideal parameters p�
I to compute its value. This implies

that f�
n cannot be applied to previously unseen images, because p�

I is not known
for these images.

4 Learning Robust Objective Functions

This section explains the five steps of our approach that learns objective func-
tions from annotated training images, see Figure 1 (right). The key idea behind
the approach is that f�

n has the properties P1 and P2, and it generates the
training data for learning an objective function f �

n(I, x). Therefore, this learned
function will also approximately have these properties. Since it is “approximately
ideal” we will refer to it as a robust objective function.
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4.1 Annotating Images with Ideal Model Parameters

We manually annotate a set of images Ik with 1≤k≤K with the ideal model pa-
rameters p�

Ik
. These parameters help to compute the ideal objective function f�

n

in Equation 3. This annotation is the only laborious step in the entire proce-
dure of the proposed approach, whereat the time need remains predictable. An
experienced human needs about one minute to determine the ideal parameters
of our face model for one image. Figure 3 shows four images that are annotated
with the ideal parameters of our face model. Note that for synthetic images, p�

I

is known, and can be used in such cases. For real-world images, however, the
ideal model parameters depend on the user’s judgment.

Fig. 3. Four images that are manually annotated with the ideal face model

4.2 Generating Further Image Annotations

According to P1, the ideal objective function returns the minimum f�
n(I, x)=0 for

all image annotations. This data is not sufficient to learn f �
n, because training

data must also contain image annotations, for which f�
n(I, x)�=0. To acquire

these annotations, x must be varied. General variations move x to any position
within the image, however, it is more practicable to restrict this motion in terms
of distance and direction.

Therefore, we generate a number of displacements xk,n,d with −D≤d≤D that
are located on the perpendicular to the contour line with a maximum distance Δ
to the contour point. Taking only these relocations facilitates the later learning
step and improves the accuracy of the resulting calculation rules. This procedure
is depicted in Figure 4. The center row depicts the manually annotated images,
for which f�

n(I, xk,n,0)=f�
n(I, cn(p�

Ik
))=0. The other columns depict the displace-

ments xk,n,d �=0 with f�
n(I, xk,n,d �=0)>0 as defined by P1. At these displacements

values of f�
n are obtained by applying Equation 3

Due to different image sizes, the size of the visible face varies substantially.
Distance measures, such as the return value of the ideal objective function, error
measures and Δ, should not be biased by this variation. Therefore, all distances
in pixels are converted to the interocular measure, by dividing them by the pixel
distance between the pupils.
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Fig. 4. In each of the K images each of the N contour points is annotated
with 2D+1 displacements. Manual work is only necessary for annotating d=0, which
is depicted in the middle row. The other displacements are computed automatically.
Note Δ in the upper right image that indicates the learning radius. The unit of the
ideal objective function values and Δ is the interocular measure.

4.3 Specifying Image Features

Our approach learns a mapping from Ik and xk,n,d to f�
n(Ik, xk,n,d), which is

called f �
n(I, x). Since f �

n has no access to p�
I , it must compute its value from the

content of the image. Instead of learning a direct mapping from x and I to f�
n,

we use a feature-extraction method [1]. The idea is to provide a multitude of
image features, and let the learning algorithm choose which of them are relevant
to the computation rules of the objective function.

In our approach, we use Haar-like image features of different styles and sizes [4],
see Figure 5, which greatly cope with noisy images. These features are not only
computed at the location of the contour point itself, but also at locations within
its vicinity specified by a grid, see Figure 5. This variety of image features enables
the objective function to exploit the texture of the image at the model’s contour
point and in its surrounding area.
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Fig. 5. The set of A=6·3·5·5=450 features utilized for learning the objective functions

4.4 Generating Training Data

The result of the manual annotation step (Section 4.1) and the automated an-
notation step (Section 4.2) is a list of K(2D +1) image locations for each of the
N contour points. Adding the corresponding target value f�

n yields the list in
Equation 4.

[ Ik, xk,n,d , f�
n(Ik, xk,n,d) ] (4)

[ h1(Ik, xk,n,d), . . . , hA(Ik, xk,n,d) , f�
n(Ik, xk,n,d) ] (5)

with 1≤k≤K, 1≤n≤N, −D≤d≤D

We denote image features by ha(I, x), with 1≤a≤A. Each of these features
returns a scalar value. Applying each feature to Equation 4 yields the training
data in Equation 5. This step simplifies matters greatly. We have reduced the
problem of mapping images and pixel locations to the target value f�

n(I, x), to
mapping a list of feature values to the target value.

4.5 Learning the Calculation Rules

The local objective function f �
n maps the values of the features to the value of f�

n.
This mapping is learned from the training data by learning a model tree [5].
Model trees are a generalization of decision trees. Whereas decision trees have
nominal values at their leaf nodes, model trees have line segments, allowing them
to also map features to a continuous value, such as the value returned by f�

n.
They are learned by recursively partitioning the feature space. A linear function
is then fitted to the training data in each partition using linear regression. One
of the advantages of model trees is that they tend to use only features that are
relevant to predict the target values. Currently, we are providing A=450 image
features, as illustrated in Figure 5. The model tree selects around 20 of them for
learning the calculation rules.

After these five steps, a local objective function is learned for each contour
point. It can now be called with an arbitrary pixel x of an arbitrary image I.

5 Experimental Evaluation

This section evaluates learned objective functions in the context of face model
fitting. Thereby, we gather 500 images of frontal faces from the Internet.
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5.1 Visualization of Global Objective Functions

Figure 6 visualizes how the value of the global objective function depends on
varying pairs of parameters from the parameter vector p. The deformation pa-
rameter b1 determines the angle at which the face model is viewed, and b2 opens
and closes the mouth of the model. As proposed by Cootes et al. [3] the defor-
mation parameters vary from −2σ to 2σ of the deviation within the examples
used for training the deformable model. It is clearly visible that the learned
global objective function is closer to be ideal than the edge-based function. The
plateaus with many local minima arise because they are outside of the area on
which the objective function was trained. In these areas, the objective function
cannot be expected to be ideal.

5.2 Comparison to a State-of-the-Art Approach

In a further experiment, we compare our approach to a state-of-the-art model
fitting approach using the BioID database [6]. Figure 7 shows the result of our
fitting algorithm using a learned objective function (solid line). We determine
the point-to-point distance between the results of the fitted models and the an-
notated models. Figure 7 visualizes the result of our experiment. The x-axis
indicates the point-to-point distance measure between the manually specified

Fig. 6. Comparing the behavior of the edge-based (left column) to the learned (right
column) global objective function, by varying pairs of parameters
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Fig. 7. The initial position of the face model (dashed line) is highly improved by fitting
it with a learned objective function (solid line)

models and the results of the fitting step and the y-axis indicates their cu-
mulative percentage. Model fitting using our learned objective function (solid
curve) improves global face localization (dashed line). 95% of all faces are fitted
within a distance measure of 0.12 by applying the learning approach. Applying
only global face localization the distance measure for locating 95% of the faces
is 0.16. That corresponds to an up to 30% higher deviation from the annotated
model parameters. The set-up of this experiment is directly comparable to the
one of [7] in terms of the utilized image database and the format of the obtained
results. Their approach conducts template matching in order to determine fa-
cial feature points. The quality of our results is comparable to those of [7], who
achieved the fitting of 90% of the faces within a distance measure of 0.075 and
96% within a distance measure of 0.15. In our experiment 90% of all faces are
fitted within a distance measure of 0.09 and the distance measure for fitting 96%
is 0.13.

6 Related Work

The insights and the approach of Ginneken et al. [8] are most comparable to
our work. They consider objective functions to be ideal if they fulfill properties
similar to P1 and P2. Annotated training images serve for learning local objec-
tive functions. Their approach also determines relevant image features from a
set of image features. However, they do not learn the objective function from an
ideal objective function but manually specify calculation rules. Therefore, their
approach aims at obtaining Property P1 but does not consider Property P2.
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Furthermore, their approach turns out to be slow, which is a direct result from
applying the k-Nearest-Neighbor classifier.

Currently, model fitting is often conducted using Active Appearance Mod-
els [2], which do not only contain the contour of the object but also the texture
of the surface as it appears in the training images. The objective function is
usually taken to be the sum of the square pixel errors between the synthesized
texture of the model and the underlying image. Model fitting aims at minimizing
this error by conducting a gradient decent approach. Obviously, this approach
matches P1 very well. However, this approach does not consider P2 at all. There-
fore, model fitting only achieves reasonable results within a small convergence
area around the ideal model parameters.

7 Summary and Outlook

In this paper, we formalize the properties of ideal objective functions and give
a concrete example of such functions. Since designed objective functions are far
from ideal. Therefore, we have developed a novel method that learns objective
functions from annotated example images. This approach automates many crit-
ical decisions and the remaining manual steps require less domain-dependent
knowledge. The resulting objective functions are more accurate, because au-
tomated learning algorithms select relevant features from the many features
provided and customize each local objective function to local image conditions.
Since many images are used for training, the learned objective function gener-
alizes well. Using a publicly available image database, we verify that learned
objective functions enable fitting algorithms to robustly determine the best fit.

Ongoing research applies our method to tracking three-dimensional models
through image sequences. They exploit knowledge from the current image to
bias search in the next image, which makes them perform fast and accurately.
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Abstract. The relationship between geometric folding of the chromatin
fiber and genome function is a key issue in cell biology. We propose dif-
ferent approaches based on statistical shape theory to investigate the
geometric variability of chromatin folding in nuclei of interphase human
fibroblasts. Our main purpose is to assess the degree of variability of
folding of the chromatin fiber, measured by fluorescent in situ hybridiza-
tion, using BAC probes in combination with 3D confocal microscopy.
We employ point-based registration, the complex Bingham distribution,
generalized Procrustes analysis, and the Kendall spherical coordinate
system. The approaches have been applied using 337 3D multi-channel
microscopy images. We have analyzed the geometric structure formed by
gene-rich highly expressed genomic regions and areas that are gene-poor
and have a low transcriptional activity. It turned out that the structure
formed by these genomic regions exhibit high shape variation, however,
most of them can be characterized by a non-uniform shape distribution.

1 Introduction

The common model of the 3D structure of chromatin assumes that the DNA
folds around histone octamers, forming arrays of nucleosomes in a 10 nm fiber,
which folds into 30 nm diameter chromatin filament. Remarkably, little is known
about higher order folding, despite the fact that the 3D organization of the chro-
matin fiber plays an important role in the control of gene expression [1]. In this
work we are interested in the 3D geometric properties of large-scale chromatin
fiber of interphase cells. The general motivation consists in relating geometric
information to genome function, in order to obtain a better understanding of
how the large-scale chromatin structure affects gene regulation in normal and
abnormal cells (for recent surveys on this issue we refer to [2] and [3]). The main
purpose of our work is to analyze the variability of the 3D geometric structure
formed by different genomic regions identified by fluorescent in situ hybridization
(FISH) with bacterial artificial chromosome (BAC) probes. We have acquired
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337 three-color 3D confocal microscopy images of nuclei of human fibroblasts in
which three genomic regions were FISH labelled on the q-arm of chromosome
1. In this way each image contains a cell nucleus with three spots, representing
three genomic regions on the same chromosome, that form a triangle, denoted
as BAC-triangle (see Fig. 1, top left and bottom). We analyze the gene-rich and
highly expressed genomic regions (called ridges [4]) and the gene-sparse genomic
regions showing low gene expression (called anti-ridges). To assess the variability
of the structures labelled by the BACs we propose different approaches.

Prior to a statistical evaluation we first apply 3D point-based registration to
transform the BACs onto the x-y plane. The purpose is to normalize the data
and to reduce the dimensionality of the problem from 3D to 2D. Second, we per-
form statistical shape analysis to evaluate the shape variability of the datasets.
Our analysis is based on the following two approaches: The complex Bingham
distribution model [5], which involves one parameter that characterizes the de-
gree of variability of the data, and the generalized Procrustes Analysis (GPA)
[6], which captures the dominant variation of the data. In addition, we employ
Kendall’s spherical coordinate system [7] to visualize the shape distribution of
the BAC-triangles. According to our knowledge statistical shape analysis has
not yet been used to assess the variability of the 3D structure of chromatin
fibers.

Fig. 1. Top left: One section of a 3D original microscopy image of a cell nucleus; Top
right: Relation between BACs and groups of datasets; Bottom: 3D visualization of a
cell nucleus and three BACs
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2 3D Image Data

Our study is based on 3D microscopy images of human fibroblasts, which were
stained by fluorescence in situ hybridization (FISH). The images are multi-
channel images and have a resolution of 512 × 512 × 100 voxels. The data was
acquired in five different groups according to the scheme sketched in Fig. 1, top
right. For subsequent groups there is an overlap of two BACs. For example,
within group 1 the BACs 1,2,3 are stained, whereas in group 2 the BACs 2,3,4
are stained. In total, we have acquired 337 datasets that are divided into 10
groups: 5 groups for BACs with low expression level (anti-ridges BACs) and 5
groups for BACs with high expression level (ridge BACs). Each group represents
three different BACs (forming BAC-triangles) which were observed in about 30
cells. The labeled BACs appear as fluorescent spots in the images. To localize
the spots, we apply threshold-based segmentation and compute the centers of
gravity of the BACs.

Besides the real datasets we have generated two sets of simulated data which
serve as reference datasets. First, we created 50 triangles with low variability. The
vertices of the triangles are isotropic normally distributed N(μ, σ), where σ =
0.05 and the mean side length of the triangles is 0.82. We denote this dataset by
”stable triangles”. Also we created a dataset ”random triangles” which consists of
50 triangles, whose vertices are uniformly distributed within a unit cube.

3 Methods

3.1 Point-Based Rigid Registration

Prior to applying different techniques from statistical shape theory, we employ
3D point-based rigid registration (translation, rotation) to transform all 3D
BAC-triangles onto the x-y plane (reference system). 3D point-based registra-
tion can be formulated as follows. Given k source points pi, and k target points
qi, the task is to find a rigid transformation R such that

∑k
i=1 ‖qi −pi ◦ R‖2 is

minimized. To register BAC-triangles (k = 3) onto the x-y plane, we arbitrarily
selected a triangle in this plane as the target structure, and applied the algorithm
of Horn [8]. After registration, each vertex of the triangles can be represented
by a 2D coordinate or a complex number.

Note, that generally a random 2D triangle is labeled clockwise or counter-
clockwise. However, the two labeling orders are equivalent for a 3D triangle, be-
cause the counter-clockwise order and the clockwise order can be transformed to
each other by a 3D rotation. It means that after 3D point-based registration there
is exclusively one kind of labeling order of triangles, i.e. either only clockwise or
only counter-clockwise. This is called removing the reflection shape [7].

3.2 Complex Bingham Distribution

After having transformed the BAC-triangles onto the x-y plane, we use the
complex Bingham distribution to model the shape distribution. This technique
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provides an elegant framework for the analysis of 2D shape data [7]. The main
advantage is that only one parameter is involved and that this parameter char-
acterizes the degree of shape variability, e.g., it indicates whether the shape
distribution of triangles has the tendency to be uniform. Below, we introduce
the complex Bingham distribution in the context of our application.

Given a set of n triangles (number of vertices k = 3), which have been trans-
formed onto the x-y plane. Each triangle can be represented by a 3D complex
vector z̃i = (z̃i1, z̃i2, z̃i3), where z̃ij ∈ C, i = 1, ..., n, and j = 1, 2, 3. A central
issue is to examine whether the shape distribution of these triangles is uniform.
In this case the shape of the triangles is random. First we have to remove un-
desirable effects from scaling and translation. To perform this step we need a
special transformation (for details we refer to [7]). The transformed triangles
are represented by 2D complex vectors zi = (zi1, zi2). The complex Bingham
distribution has the following rotation-invariant probability density function:

f(z) = c(A)−1 exp(z∗Az) (1)

where A is a (k − 1) × (k − 1) Hermitian matrix, c(A) is the normalizing con-
stant, and z∗ represents the complex conjugate of the transpose of z. In the case
of triangles (k = 3) A has two distinct eigenvalues λ1 and λ2 where λ1 > λ2.
In order to investigate the form of the shape distribution, we need to determine
λ1 and λ2, and examine whether λ1 and λ2 are approximately zero. If this is
the case, then the triangles tend to have a uniform distribution in shape space.
However, in our application the eigenvalues generally cannot be close to zero.
The reason is, that for a uniform shape distribution both labeling orders for
triangles must be included, however, 3D triangles only have one labeling order.

The eigenvalues of A can be computed based on:

c(A) = 2π2
k−1∑
j=1

aj exp(λj), a−1
j =

k−1∏
i�=j

(λj − λi) (2)

Note, that the Bingham distribution remains unchanged if a constant is added
to all eigenvalues. The consequence is that for the λi there is no unique solution.
Fortunately, this non-uniqueness can be conveniently removed by setting the
largest eigenvalue to zero without lost of generality. In our case, we set λ1 = 0,
which implies that the second eigenvalue λ2 is negative. Then only one parameter
remains, which makes our analysis easier. Hence

c(A) = 2π2(
1

−λ2
+

exp(λ2)
λ2

) (3)

λ2 is usually estimated by means of maximum-likelihood estimation (MLE).
First let S =

∑n
i=1 ziz∗i be the (k − 1) × (k − 1) complex sum of squares and

products matrix. In the case of triangles (k = 3) S has two positive and distinct
eigenvalues, i.e. l1 > l2 > 0. Note that l1+ l2 = n. The log-likelihood for the data
reads: L = l2λ2 − n log[c(A)] where l2 is the smaller eigenvalue of the matrix S
defined above.
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Test of Uniformity To answer the question whether the data has a random
shape, i.e., whether the BAC-triangles have uniform shape distribution, we per-
form the following statistical test. Generally, the shape space of 2D triangles is a
spherical space instead of an Euclidean space. Its southern hemisphere contains
all triangles with clockwise labeling, whereas all triangles with counter-clockwise
labeling are located on the northern hemisphere. However, the shape space of 3D
triangles consist of just one hemisphere [7], since 3D triangles have only one kind
of labeling as mentioned above. Thus standard methods of directional statistics,
which are particularly designed for statistics of spherical data, are not suited.
However, the uniformity on the full sphere implies the uniformity on its both
hemispheres. Therefore, one possible solution to overcome this drawback is to
map half of the 3D triangles onto the other hemisphere. If the mapped dataset
is uniform, then the original one is also uniform. To perform the mapping, for
each triangle we randomly assign either its original or its reflected shape as input
data. Using this scheme half of the data are located on the northern hemisphere
and half of the data are located on the southern hemisphere. Subsequently we
apply a statistical test on the spherical data as described by Mardia and Jupp
[9]. First we need to establish the sum of squares and products matrix Ŝ, where
the corresponding eigenvalues are l̂1 and l̂2. The test statistic F = 3(l̂1 − l̂2)2/n
has a chi-squared distribution, i.e. F � χ2

3. This value can be used to determine
whether the data is uniform, which is the case for large values of F at a certain
significance level, e.g., for the upper 1% quantile of χ2

3 we have the value 11.34.

3.3 Generalized Procrustes Analysis (GPA)

Apart from the evaluation based on the complex Bingham distribution we also
investigate the dominant shape variation of BAC-triangles. The generalized Pro-
crustes analysis (GPA) uses principal components to characterize the main ten-
dency of structural variability (the term ”generalized” indicates, that there are
more than two objects involved).

First, it is necessary to compute the full Procrustes estimate of the mean shape
[7] for a set of triangles. Afterwards, one can examine how the triangles vary
with respect to the mean shape. For this purpose we take advantage of principal
components analysis (PCA) of the Procrustes residuals [7]. Let the real vectors
ri, i = 1, ..., n be the Procrustes residuals, and M be the sample covariance
matrix of ri, i.e. M = 1

n

∑n
i=1(ri−r)(ri−r)T where r = 1

n

∑
ri. The orthonormal

eigenvectors of M denoted by γi, are the principal components (PCs) of M with
corresponding eigenvalues λi. The percentage of variability captured by the ith
PC is 100λ2

i /
∑

λ2
i . The effect of the i−th PC can be visualized by adding r on

the mean shape, where r = r + cλ
1/2
i γi for a range of values of the standardized

PC score c, typically c = ±3.

3.4 Kendall’s Spherical Coordinates

To visualize the shape distribution of triangles we use Kendall’s spherical co-
ordinate system. Using this coordinate system each triangle is mapped to one
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point on a sphere. The points on the southern hemisphere represent the reflec-
tion shape of those triangles on the northern hemisphere. Furthermore, the two
poles of the sphere correspond to an equilateral triangle and its reflection shape,
whereas the flat triangles are found in the regions close to the equator. In our
case, the reflection shapes of the triangles have been removed after 3D point-
based registration. Hence we need to consider only one hemisphere of Kendall’s
spherical coordinate system. Before constructing this coordinate system it is
necessary to compute Kendall’s coordinates (u, v) ∈ R

2 for each triangle (for de-
tails we refer to [7]). The Kendall’s coordinates can be converted into Kendall’s
spherical coordinates using the following formula:

x =
1 − r2

2(1 + r2)
, y =

u

1 + r2
, z =

v

1 + r2
(4)

where r2 = u2 + v2. Using (4) every triangle can be mapped to a point on the
sphere.

Since we need to consider the shape distribution only on one hemisphere, we
take advantage of the polar aspect of the Lambert-azimuthal equal-area pro-
jection to visualize our data. In this projection the north pole of the sphere is
mapped to the center of one circle, whereas the equator is represented by the
circle self.

3.5 Multidimensional Scaling (MDS)

To reconstruct the 3D structure of the BACs we apply multidimensional scaling
(MDS). As input MDS uses a distance matrix. With this approach it is assumed
that the shape variation of the BAC-triangles is relatively low. To establish the
distance matrix in our application, we use the mean distances between each two
BACs.

4 Experimental Results

For all datasets described in section 2 above we have applied 3D point-based
rigid registration. As an example, Figs. 2a,b show the results of the registration
for the real datasets AR1 and AR2. Figs. 2c,d visualize the datasets of the
stable triangles and the random triangles. The registration removes the reflection
shapes in the 2D plane. Therefore the transformed triangles can be evaluated
using the complex Bingham distribution. Tab. 1 lists the values of |λ2| for all
real datasets. The larger the value of |λ2|, the lower is the shape variability of
the triangles. For a comparison, we have also calculated the |λ2| value for the
stable and random triangles yielding |λs| = 162.52 and |λr| = 5.63, respectively.
Apparently, the real data are far from stable shapes. Except AR2 and AR4 all
datasets are not random, since their |λ2| values are larger than |λr |. We have also
applied the test of uniformity described in section 3.2 using a significance level
of 1% yielding χ2

3;0.01 = 11.34. The listed values for F in Tab. 1 reveal that all
datasets except AR2 and AR4 are not uniformly distributed. This confirms the
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Fig. 2. Results after 3D point-based registration: Datasets AR1 (a), AR2 (b), stable
triangles (c) and random triangles (d)

Table 1. Computed absolute values of λ2 and result of the uniformity test for the real
datasets

Anti-ridge BACs Ridge BACs

AR1 AR2 AR3 AR4 AR5 R1 R2 R3 R4 R5

|λ2| 12.28 5.07 8.32 4.52 9.07 10.17 11.35 6.70 10.06 6.69

F 104.2 2.21 49.99 5.56 28.36 52.48 28.81 20.32 41.13 38.26

result using the complex Bingham distribution and the |λ2| values. Moreover,
we can draw the same conclusion, if we use the heuristic criterion that the mean
length of the triangles should be larger than three times the standard deviation
of isotropic normally distributed vertices (which corresponds to a threshold value
of |λ2| = 6.3).

In Fig. 3 the results of the generalized Procrustes Analysis (GPA) are shown.
Figs. 3a,b refer to the real datasets AR1 and AR2, and Figs. 3c,d to the sta-
ble and random triangles. The small circles represent the mean shape of the
triangles (mean triangle). The vectors (circles attached to line segments) in-
dicate the direction and magnitude of the variation along a certain principal
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Fig. 3. GPA results including the percentage of variability captured by the i-th PC:
Datasets AR1 (a), AR2 (b), stable triangles (c), and random triangles (d)

component (PC) of the Procrustes residual. Generally the first PC captures the
most dominant variation. In comparison to the random triangles (Fig. 3d), both
real datasets have a larger dominant variation along the first PC compared to
the other PCs. However, the other two PCs still have a relatively high variability,
in particular, compared to the stable triangles. Note that the magnitude of the
vectors for dataset AR1 is smaller than for dataset AR2. Analysing all 10 real
datasets it turns out that all BACs-triangles possess high shape variability.

Fig. 4 illustrates the shape distribution of the BAC-triangles using Kendall’s
spherical coordinate system. The points for dataset AR1 are located primarily
in one quarter of the large circle. In contrast, the points for the dataset AR2
are scattered randomly, which is similar to the random dataset. The points of
the stable dataset aggregate into a small region as expected. These observations
agree with the computed |λ2| values of the complex Bingham distribution.

Finally we show the feasibility of multidimensional scaling (MDS). Fig. 5
displays the polygon through all investigated five anti-ridge and five ridge BACs
(based on mean distances between every two BACs as mentioned above). It turns
out that the structure of the anti-ridge BACs coils more compactly than that
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Fig. 4. Kendall’s spherical coordinate system using Lambert’s azimuthal equal-area pro-
jection. The north pole is represented by the center of the large circle. The results corre-
spond to the datasets AR1 (a), AR2 (b), stable triangles (c), and random triangles (d).

Fig. 5. Result of multidimensional scaling of anti-ridge and ridge BACs displayed from
two different perspectives

of ridge BACs, which is what we expect. This is an interesting result, since we
applied MDS although knew (based on the analysis above) that two of the ten
dataset groups are randomly distributed.

5 Conclusion

We have presented different approaches based on statistical shape theory for
analysing and assessing the variability of large-scale structure formed by genomic
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regions (BACs) on chromatin fibers of interphase cells. Our real data is divided
into the two groups: anti-ridge BACs and ridge BACs. Additionally, stable and
random datasets have been simulated and used as reference datasets. To evaluate
the data we have used 3D point-based rigid registration, the complex Bingham
distribution, generalized Procrustes Analysis (GPA), and Kendall’s spherical co-
ordinate system. From our experiments it turned out that all of the investigated
dataset groups exhibit high shape variation, however, most of them can be char-
acterized by a non-uniform shape distribution. This means that the structure
of most of them is not random. We have also used multidimensional scaling to
reconstruct the 3D structure based on the given BACs.
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Abstract. In the research area of historical documents it is of high inter-
est to reconstruct the process of the emergence of a historical typesetted
document. Therefore, the chronological order of the different versions of
a typesetted document has to be reconstructed. This is done by manually
finding differences in two versions and then deciding on the order between
these two versions. In this paper we present an approach to automate
the search for differences in both images. This approach uses a globally
optimal image matching technique to overlay both images and colors the
differences accordingly. We also present a real-world application for this
approach on digitized versions of a historical book.

1 Introduction

For historians it is of interest to see how typesetted historical documents have
evolved over different versions. At that time, printing a book was mostly a man-
ual process: each letter of each page had to be typesetted manually and printing
had also to be done manually. This allowed the typesetter to change characters
or even words between the different printings of the book. These modifications
allow today’s historians to detect the chronological order of the printing of the
books.

The process of chronologically sorting the versions starts with a very basic
task: finding differences in the two versions. Currently this process has to be
done manually: one person reads a version aloud and the other person checks
whether the second version contains the same text or not.

This process is costly and time consuming. This first approach to automate
the process would be the use of optical character recognition (OCR): however,
an OCR-based approach does not work, as current optical character recognition
systems do not give reliable results on historical document images. One main
problem is the missing support for old fonts. Furthermore, textual noise from the
facing book page, presence of many speckles, missing parts of the page and bro-
ken characters present frequent and challenging image defects that will further
reduce OCR performance. Examples can be found in Figure 1.
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(a) Textual noise (b) Noise speckles (c) Missing parts

(d) Broken characters

Fig. 1. Examples for different types of defects in historical document images

Therefore, as a first step to automate this process, we present a method for
visualizing differences on a pixel basis in the two documents. The resulting image
allows the operator to quickly find relevant differences.

Another strong constraint is that, in our case, only limited influence on the
digitization process is possible: some versions are scanned from microfilm, oth-
ers from paper-based copies. Most images are available in black and white only.
This dramatically reduces the available methods for noise removal and qual-
ity improvement for degraded document image, as many methods dealing with
historical documents work on grey-scale images.

Considering all these problems, we concluded that first of all a global match-
ing between two versions of the same document image has to be established.
Therefore, scale, rotation and translation parameters have to be found that al-
low matching both images. This matching can then be used in later steps to
allow comparison of smaller regions or even characters or parts of characters.

Visualizing the differences in historical document images by image matching,
as presented in this paper, is closely related to image registration. Many different
approaches have been presented for various kinds of tasks: in the field of medical
images [MV98] solutions to many practical problems could be found. But also
for many other applications, much work has been done. A good overview in this
domain can be obtained in [Bro92] and [ZF03].

In the area of document image understanding, different methods for docu-
ment image registration have been developed: Spitz et al. [Spi97] proposed a
method for duplicate finding of document images by a text-based signature.
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Other methods use the OCR output for registration. Liang et al. [LDD06] pro-
pose a registration method used for mosaicing camera-based document images,
where registration is done using PCA-based SIFT descriptors.

As using OCR is no option for historical document images, feature point
matching, as done in [LDD06] is a promising way to solve the problem. But as
our document images are available only in binarized form, other point of interest
as well as other features and a more robust matching method have to be chosen.

In Section 2 our approach is explained. In Section 4 results are presented.
Finally Section 5 concludes this paper. Unfortunately, due to the specialized
nature of this problem and due to the absence of any ground-truthed dataset
for this purpose, no quantitative evaluation could be done. An overview over the
system can be found in Figure 2.

Fig. 2. System overview: first connected components are extracted as points of inter-
est in both images. Then the optimal transformation given by scale, translation and
rotation is computed to match the two sets of interest points. In the end, both images
are overlaid.

2 Historical Document Image Matching

Given two images I and M . The goal is to find a set of parameters that allows to
overlay both images as exact as possible. We define a perfect overlay as the set
of parameters that matches the centers of all connected components of image I
to the corresponding positions in image M , given that I is obtained by rotating,
translating and scaling of M . Thus the quality function to optimize is the number
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of matching center points of the connected components. The 4 parameters that
need to be found are the angle of rotation, the translation in horizontal and
vertical direction and the scaling factor.

The method we used to determine the best parameters describing the trans-
formation of the image I onto the image M is called RAST (Recognition by
Adaptive Subdivision of Transformation Space) and was first presented by Breuel
[Bre92]. This method is capable of finding globally optimal transformation pa-
rameters while avoiding to search the whole parameter space. This allows an
optimal matching to be found and not, as currently done in many other proce-
dures, only a locally optimal one.

RAST intelligently searches the whole parameter space R = [0, 2π)×R
2×R

∗
+

for the globally optimal parameter set. The pseudo-code, taken from [Bre01],
can be found in Figure 3.

The algorithm starts with enqueueing the whole parameter space (line 05).
Then the region with the highest upper bound is taken from the queue (line
08). This is then subdivided into two parts (line 10 and 13). The two sub-
regions are enqueued, if the upper bound for the quality for the subregion is
higher than the currently best quality (line 19). Finally, if the remaining region
is small enough, which strongly depends on the application, it is saved as possible
solution.

Computing the upper bound of the quality of a parameter region is the main
challenge. Given a parameter region, for each model point the possible target po-
sitions are computed and the bounding rectangle of these positions is extracted.
This rectangle is used to determine if the point of interest of image M can be
matched to a point of interest in image I. If this is the case, the quality is in-
creased. Repeating this for all interest points in M leads to the upper bound for
the quality. Computing this upper bound can be quite costly if the number of
interest points is high. A more detailed description can be found in [Bre01].

To reduce the computing time needed to compute the upper bound for the
quality, a pre-filtering step is added: instead of comparing all interest points of
image M to all image interest points of image I, a pre-selection is done: only
points that are “similar” are used as potential matches.

2.1 Filtering Using Fourier Descriptors of the Boundary

Using Fourier descriptors to describe boundaries of connected components is a
widely used method. Many examples of very different applications of this tech-
nique exist, e.g. for shape-based retrieval [ZL01]. As we want to match document
images based on connected components positions, one would expect, that a con-
nected component representing an “a” will be matched to another connected
component also representing an “a” and not to one representing an “x”. There-
fore, basing the filtering on features representing the contour of a connected
component is a reasonable choice. Another advantage of the Fourier descrip-
tors for the boundary is that they can be made less sensitive to noise by only
considering the n first Fourier descriptors.
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01 Queue active;
02 Region result = nil;
03
04 void match() {
05 enqueue(active, initial_region);
06
07 while(not_empty(queue)) {
08 Region current = dequeue(active) ;
09
10 Region left = expand(split_left(current));
11 if (left != nil) enqueue(active, left);
12
13 Region right = expand(split_right(current));
14 if (right != nil) enqueue(active, right);
15 }
16 }
17
18 Region expand(Region r) {
19 if (quality(r) <= quality(result)) return nil;
20
21 if (region_is_small_enough(r)) {
22 result = r ;
23 return nil ;
24 }
25
26 return r ;
27 }

Fig. 3. Pseudo-Code for the RAST algorithm [Bre01]

To obtain the Fourier descriptors of a connected component, the following
steps have to be done:

– Step 1: Extraction of the boundary pixels. This is done using Pavlidis algo-
rithm [Pav82]. A sequence of pixel positions is obtained.

– Step 2:“Conversion” of the contour to a sequence of complex values: a pixel
position (x, y) is regarded as complex number x + îy.

– Step 3: Perform the Fast Fourier Transform (FFT) on the complex num-
ber signal. The result is a sequence of complex numbers called “Fourier
descriptors”.

Depending on the starting position of the pixel sequence describing the con-
tour, the Fourier descriptors change. In order to be invariant to the starting
position of the contour (this will happen frequently as images are rotated), the
phase information is ignored and only the magnitude of the Fourier descriptor
is used.

To define the similarity between two Fourier descriptor sequences, the mean
of the differences of the magnitudes of the descriptors is taken.
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Fig. 4. Example of similarity based on Fourier descriptors of the boundary. The left-
most component in each row is a component from the image, the following are the most
similar components from the model.

For each model point only the n most similar image points are taken as pos-
sible matches, where n = 25 showed to be a reasonable value. The number n
should be high enough to ensure that the correct match is also in the list. It
should not be too high as it will increase the time needed to estimate the up-
per bound. An example for some components together with their most similar
components can be found in Figure 4.

3 Implementation Details

To reduce the number of connected components a connected component based
filtering step has been added, as the most interesting connected components are
the one that represent some character. This removes components that are to
small or too big compared to the mean component size.

For the similarity measure of the contours only the 64 first Fourier descriptors
are used as they contain enough information to give a rough description of the
contour. This number may vary depending on the resolution of the document
image.

Finally, as the image size of the available images is about 3400 × 4400 pix-
els, reasonable initial parameter space is defined by −900 to +900 pixels for
translation in horizontal direction, −600 to +600 pixels for translation in verti-
cal direction, a scale factor reaching from 0.9 to 1.1 and a rotation angle from
−0.2rad to 0.2rad. A wider initial search space is also possible but increases the
memory and time needs for finding the optimal parameter set.

4 Results

We tested our method on 69 pages of the book “De monade numero et figura
liber Consequens Quinque De Minimo Magno & Mensura item De innumerabilis
immenso & infigurabili; seu De Universo & De Mundis libri octo” written by
Bruno Giordano. Two versions of the 69 pages were available. As no ground-
truth for the given document images is available and as, to our best knowledge,
no publically available dataset with historical document images and ground truth
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(a) (b)

(c) (d)

Fig. 5. Examples of correct matches. In Figure (d) one of the two document images
was severely degraded. Nevertheless the matching overlaid the two images well.

is available, the only measure for success is visual inspection of the resulting
images. This showed that the overlapping worked well in most cases. There are
no examples where the matching was totally wrong. In some cases the overall
matching was correct, but locally small discrepancies could be noticed. Example
images where the matching worked well can be found in Figure 5.
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Fig. 6. Examples of resulting images containing differences. The differences are marked
with a red rectangle.

In Figure 6 two examples of significant differences between the two versions
of the book can be seen.

In a few images, there are parts of the page that do not fit as well as other
parts. Most of these publicly matchings are due to distortions that can not
be described by translation, rotation and scaling alone, as e.g. book curling.
Examples can be seen in Figure 7.

A limited evaluation concerning the speed up factor obtained by using the
highlighting method showed, that for two untrained persons reading the text
aloud an checking for differences, about 5 minutes were needed to process a
typical page (a part of the page can be seen in Figure 6 (a)). Checking the
overlaid images to find the missing “e” took in mean about 1 minute. Although
the number of tested persons is too small to be objective, one can conclude that
this technique can speed up this process significantly.

5 Conclusion

In this paper we presented a first approach to automatically highlight differ-
ences in different versions of the same historical document. We used an globally
optimal image matching technique allowing to find the optimal values for the
scale, translation and rotation. Using these parameters, both images are overlaid,
allowing the operator to identify quickly the differences between both versions.

As ground-truthed data is not yet available for this specialized problem, no
quantitative evaluation could be done. However, we showed the usefulness of the
highlighting approach for finding differences by measuring the time needed for
a single person to find a word-level difference.

A main problem concerning this method is that it only is capable of matching
images deformed by a similarity transform. This explains why curled pages are
not matched perfectly (Figure 7). As dewarping curled pages is still an open
problem, a local adaption of the obtained parameters on a connected component
basis could be a good way to deal with this problem.

Furthermore, the current method is only applicable if the overall page is not
changed by a small modification made in the text. This assumption does not
hold for modern documents, as often changing a word results in different line
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(a) Whole Page (b) Detail

(c) Whole Page (d) Detail

Fig. 7. Examples of resulting images that do not fit perfectly in all regions. This is due
to non-similarity transforms on one of the images, e.g. book curling.
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breaks and also a different number of lines. But for modern document images,
in contrast to historical document images, OCR is in most cases reliable which
allows a string-based comparing of two versions of a document.
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Abstract. We consider the problem of simultaneously registering sev-
eral images to a 3D model. We propose a global approach based on
mutual information that extends previous methods to incorporate the
color, and does not require segmentation or feature extraction. We give a
stochastic model for joint optimization of multiple image-to-model align-
ment and we propose a heuristic to solve it. Experiments with synthetic
models showed that our algorithm is robust to varying illumination and
surface characteristics. Experiments with real data showed that we can
achieve very good accuracy even for an object with highly specular sur-
face, in moderate lighting conditions.

1 Introduction

A common framework for creating textured 3D models consists of two steps:
firstly the geometry is built, and secondly the texture is mapped from pho-
tographs. The texture registration step searches for the projective transforma-
tion between the 3D model and the 2D images by solving the camera calibration
problem. The parameters that define the projective transformation correspond
to the parameters of the camera that acquired the image.

Classical closed-form and iterative numerical solutions for the camera calibra-
tion problem use point-feature pair correspondences [4]. Other methods involve
more complex features such as silhouettes [6] and lines [2]. If several images are
available, it is possible to use 2D-2D pair-features from images to improve the
accuracy of the registration [6], [8].

Intensity-based registration techniques rely on global measures such as photo-
consistency and mutual information, avoiding feature extraction. Viola and Wells
use the mutual information between the normals to the surface and the intensity
image to align a 3D model to the image [11]. Several images acquired by a system
of cameras with known relative poses were registered to a 3D model using image-
model mutual information [7] and photo-consistency [1]. The photo-consistency
registration criterion is based on the assumption that any point on a surface with
ideal Lambertian reflectance appears with the same color in all images where it is
visible. In [5], photo-consistency was used to register two images with unknown
relative pose to a 3D model.

We consider the problem of registering several images with unknown rela-
tive poses to a 3D model. Our solution extends the intensity-based approaches
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from [7], [1], and [5], considering both image-model and image-image mutual
information as registration criteria. The contributions of our work are:

– we extend the mutual information registration method to several uncali-
brated cameras;

– we propose a stochastic optimization model for the joint registration of sev-
eral images to a 3D model;

– we show in experiments the advantages of our approach for complex illumi-
nation and surface characteristics;

– we experimentally confirm good accuracy of mutual information for texture
registration even for a model with a highly specular surface.

In Section 2 we shortly review the texture registration by maximization of
mutual information and we introduce the extension to consider color. In Section
3 we present a model for stochastic joint optimization and we give a heuristic
solution. In Section 4 we show and discuss the experimental results, and in
Section 5 we draw the conclusions and give some outlines for future work.

2 Texture Registration by Maximization of Mutual
Information

Let x be a point on the surface of the 3D model that is visible in the texture
image and T the 3D-2D projective transformation. Let u(x) be the normal to the
surface in x and v(T (x)) the intensity value in the image. The value of v(T (x))
is given by the rendering equation and depends on the radiance in the scene,
the BRDF of the surface in x and the normal to the surface u(x). The goal of
the texture registration is to find the transformation T . Since the BRDF and
the radiance are not known, Viola and Wells propose to directly exploit the
relation between u(x) and v(T (x)) by means of mutual information (MI) [11]. A
random variable x on the 3D model that is visible in the image allows defining
the random variables ’normal’ u(x), ’intensity’ v(T (x)), and ’normal-intensity’
(u(x), v(T (x))). From their entropies we can define the MI between the normals
to the surface and the intensity image (equations (1)). The MI between u(x) and
v(T (x)) is maximized when T aligns the model to the image.

Viola and Wells propose a gradient-based search for the optimal transforma-
tion T and a fast method to estimate the gradient of the MI with respect to T .
If we consider a random variable y, its entropy h(y) can be estimated from two
independent samplings of y. One sampling is used to estimate the probability
density function with the Parzen window method [3], which is then evaluated
on the second sampling. The complexity of the method is quadratic in the size
of the samplings. The MI between u(x) and v(T (x)) is estimated from small
subsamplings of the data (order of tens of points). When defined in this way, the
MI can be differentiated with respect to T .

I(u(x), v(T (x))) = h(u(x)) + h(v(T (x))) − h(u(x), v(T (x)))
d

dT I(u(x), v(T (x))) = d
dT h(v(T (x))) − d

dT h(u(x), v(T (x)))
(1)
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Due to the small random subsampling of data, the estimation of the MI gra-
dient is stochastic. Viola and Wells use stochastic gradient descent as the opti-
mization procedure. The subsamplings are changed at each iteration and T is
updated in the direction of the gradient. Local maxima of MI can be avoided
due to the inherent noise of the gradient.

In [9], a 3D model with reflectance values mapped on its surface was registered
to color images using the method of Viola and Wells (the reflectance values were
obtained during 3D scanning). The MI has become popular especially in medical
image registration.

We extended Viola and Wells’ algorithm to register several textures on a 3D
model by considering images that contain common patches of the model. If a
patch of the surface is visible in two images, we will simply say that the images
overlap.

We define image-image MI functions for each overlap. Given two overlapping
images i and j with corresponding projective transformations Ti and Tj, let x
be a random point on the surface visible in both images. The MI between the
colors vi(Ti(x)) and vj(Tj(x)) of the images i and j is then:

I(vi(Ti(x)), vj(Tj(x))) = h(vi(Ti(x))) + h(vj(Tj(x))) − h(vi(Ti(x)), vj(Tj(x)))
(2)

This extension adds the full color information of the images to the registra-
tion objective functions. In our implementation we defined the image-image MI
from the chrominance components I and Q of the YIQ color space. The image-
image MI is parameterized by the projective transformations associated with
both images, and it is maximized when both images are aligned to the model.
The gradient estimation follows the same procedure as for the image-model MI.

Compared to other registration criteria, the MI does not need the existence
of any 3D-2D feature, including visible outlines in the image, and does not make
assumptions on the unknown parameters of the rendering function. It is robust
to illumination conditions and even to occlusions [11]. One problem when using
the MI objective function is that the value of the global maximum cannot be
estimated. In contrast, when registration is done with point correspondences, for
instance, the global optimum corresponds to 0 projection error.

2.1 Camera Model

The optimization model does not make assumptions on the projective transfor-
mation T , and consequently on the camera model. In our implementation we
considered the pinhole camera model [4] with four distortion coefficients (two
for radial distortion and two for tangential distortion). The intrinsic parame-
ters field-of-view, optical center, and distortions, were calibrated using Zhang’s
method [12]. Any of the intrinsic parameters can be further optimized using the
mutual information objective functions. We considered the intrinsic parameters
fixed and we optimized only the extrinsic parameters. The rotation matrix was
parameterized by axis-angle form for its advantages over Euler angles in the
iterative optimization [10].
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3 A Stochastic Optimization Model for Global Texture
Registration

For the joint registration of several images to a 3D model we formulated image-
model and image-image MI objective functions. When all images are aligned
to the model, all objective functions are maximized. If only the image-model
MI functions are considered, each set of camera parameters corresponds to one
objective function. In this case the iterative gradient-based optimization updates
each set of parameters in the direction of the corresponding gradient. When
also image-image MI functions are considered, we estimate several gradients for
the parameters of each camera, corresponding to the MI with the model and
with other overlapping images. In each iteration we must choose the direction
for optimization based on the these gradients. In this section we motivate and
discuss the fusion of the gradients for the update direction.

Let n be the number of cameras (images), ti the approximate parameters for
camera i, t∗i the optimal parameters for camera i and δi the error.

ti = t∗i + δi for i = 1, . . . , n (3)

Let gi,0 be the estimated gradient of the MI between the image i and the
model, gi,j be the estimated gradient of the MI between the image i and the
(overlapping) image j and g∗i,j the true value of the gradient. Let εi,j be the
error introduced in the estimation of the gradient by the data subsampling. Let
overlap(i, 0) state the existence of the overlap between texture i and the model
(it is always true), and, for j �= 0, overlap(i, j) the existence of the overlap
between the textures i and j, then:

gi,j = g∗i,j + εi,j , for i = 1, . . . , n, j = 0, . . . , n, if overlap(i, j) = true (4)

Let us consider the objective functions corresponding to the image i. Since
all of them are maximized for the correct alignment, any linear combination
of these functions with positive weights has the global optimum for the same
camera parameters. On the other hand, we expect the other local optima to
be less related. For example, the image-model MI objective function relies on
normals and intensities in comparison to image-image MI objective functions
that are based on colors.

Therefore, we think that, in general, a linear combination of the objective
functions has a more emphasized global optimum and faded local optima (that
are not global) than any of the individual functions. Since the gradient of the
summed objective functions is the sum of the gradients, we look for an update
direction as a linear combination of individual gradients.

We observe another positive effect of this formulation. The gradients of the
objective functions are perturbed by the estimation errors εi,j as artifacts of sub-
sampling. Since the subsamplings are independent, the errors are independent,
and their effect is not increased after the linear combination.
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The update directions have the form:

gi =
n∑

j=0,overlap(i,j)

wi,jgi,j for i = 1, . . . , n, j = 0, . . . , n (5)

The canonical approach is to assign equal weights for each gradient. Following
similar intuitive reasoning as above, an even better update direction may be
estimated if the weights of the gradients are correlated with the probability that
the current estimation lies in the region of attraction of the global optimum
of the corresponding objective function. In the following subsection we give a
heuristic for this problem.

3.1 Weighted Gradient Fusion

Before defining the weights from equation (5), we introduce some additional
variables. The gradient of MI is ’consistent’ if its direction does not change
considerably for consecutive iterations. For the gradient of MI between items i
and j at iteration k, we define the ’instantaneous consistency’ ck(i, j) and the
’consistency’ Ck(i, j):

ck(i, j) = 1
2 (cos(gk−1,i,j , gk,i,j) + 1) for k ≥ 1

Ck(i, j) = (1 − α)Ck−1(i, j) + αck(i, j) for k ≥ 1, 0 ≤ α ≤ 1 (6)

We start with initial values zero for c0(i, j) and C0(i, j). gk,i,j is the estimation
gi,j at iteration k. Ck(i, j) measures the consistency over a sequence of itera-
tions, where the most recent instantaneous consistencies have a larger weight.
A gradient has low consistency if the MI function has poor convexity, if εi,j is
considerable in (4), or if an optimum is already attained. In the implementation
α was set to 0.05.

We introduce the ’alignment’ variable Ak(i, j) to measure the alignment be-
tween the items i and j. The alignment at iteration k is estimated as the maxi-
mum value of consistency for that gradient:

Ak(i, j) = max
l=1,...,k

Cl(i, j) (7)

A large value of Ak(i, j) does not mean that i and j are aligned at iteration k, but
rather it indicates that the parameter estimation lies on the region of attraction
of a pronounced local optimum. We can estimate that the texture i attained a
pronounced local optimum after k iterations if the consistency Ck(i, 0) is small
but the alignment Ak(i, 0) large.

We may now define the weights for equation (5):

wi,j = C(i, j)A(j, 0)(1 − C(j,0)
A(j,0) ), for i = 1, . . . , n, j = 1, . . . , n

wi,0 = C(i, 0), for i = 1, . . . , n
(8)

For simplicity, we omitted the iteration number k in (8). The weights are re-
computed in each iteration. From equations (6) and (7) it follows that wi,j are



522 I. Cleju and D. Saupe

between 0 and 1. The weight wi,j (j > 0) is large when the alignment between
the texture j and the model is large but the consistency is small (image j and the
model are possibly aligned), and when the gradient between i and j is consistent.

4 Implementation Issues and Experimental Validation

We implemented our texture registration method on a point-based framework
[13]. We present results for optimization of the extrinsic parameters of the cam-
eras. The probabilities used in the stochastic framework were estimated us-
ing 6-dimensional gradients. We used different updating step sizes for rotation
and translation. In each iteration, the updating direction was normalized sepa-
rately for rotation/translation, and we made steps in the updating direction. We
are currently working on implementing optimization with adaptive step sizes.
For each experiment presented in Fig. 2, the optimization consisted in 2000
iterations.

We compared three registration algorithms. The first algorithm uses only
image-model MI (Viola TR MI), the second uses equal weights of the gradi-
ents in equation (5) (Canonical TR MI), and the third algorithm uses adaptive
weights computed using equation (8) (Weighted TR MI). For a fair comparison,
we restricted the computation for the estimation of the gradients (the number of
kernel estimations in the Parzen window method) to obtain the same computa-
tion effort for all methods. In all experiments we used three texture images, all
overlapping. Correspondingly, there are 3 times more MI objective functions for
Canonical TR MI and Weighted TR MI than for Viola TR MI. We used sub-
sampling sizes of 100 points for Viola TR MI and of 58 for the other two, thus
having roughly the same number of kernel estimations in the Parzen window
method (the complexity is quadratic in subsampling sizes). Almost all the run-
time was spent for gradient estimation. The corresponding speed was roughly
100 iterations per second for each texture, on a Pentium 4 at 3 GHz. From time
to time full z-buffer projections have to be done (once for hundreds of iterations).
Disregarding cache-memory issues and full z-buffer projections, the running time
is independent on the size of the model.

We evaluated the accuracy of the registration using ground truth. For the real
case, we estimated the extrinsic camera parameters 5 times, each time with 20-
25 point correspondences chosen interactively, and we averaged the parameters.
Two types of errors can be defined: parameter error (matrix distance between
optimized parameters and ground truth) and projection error. The projection
error is the root mean squared distance from the projections of all points of the
3D model on the image plane using optimized parameters to the projections
obtained by true parameters [5]. We averaged the errors for the images.

The characteristics of the experiments are summarized in the table. Images
of the models are shown in Fig. 1. We randomly perturbed the ground truth
(rotation and translation) to simulate initial inexact parameters, and ran the
optimization algorithms.
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Details Experiment Index
1 2 3 4 5 6

Model Name Square1 Square2 Square3 Square4 Trilobite Shakyamuni

Model Type Synthetic Real

No. Points 40 000 726 027 1 693 444

Reflectance Isotropic Anisotropic -

Surface Type Diffuse and Specular Diffuse -

Light Directional Directional and Ambient DirectionalLight Tube

Photographs 3 Rendered 3 Real

Resolution 800 × 600 1062 × 864 2048 × 1536

Overlap Total Partial

Ground Truth Known Estimated

For experiments 1-4 we used planar square models with normals, colors, diffuse
and specular surface reflectance coefficients introduced as a mixture of Gaussians
(e.g., the normals were bump mapped) with the same distribution of the vari-
ances. The first three models have the surface properties distributed all over the
surface. One half of the fourth model has perturbed normals and white color;
the other half constant normal and varying color (Fig. 1). For the first three ex-
periments we used images with the whole models, and for the fourth experiment
each image covers about 60% of the model, containing the two different halves
in different ratios.

In experiment 5 we used the Trilobite model from Arius3D (www.arius3d.com).
The model was acquired with a special high resolution scanner capable of sampling
the color, and we simulated the photographs by rendering.

The last experiment was performed with the Shakyamuni model from the Uni-
versity of Konstanz (www.inf.uni-konstanz.de/cgip/projects/surfac). The pho-
tographs were taken in a room illuminated by one light tube (about 2 meters in
length), placed at the ceiling at about 5 meters from the model. We show results
for registration of three images taken from front, front-left and front-right. The
images were used at full resolution, without any preprocessing. For visual assess-
ment of the registration, we drew two vertical and two horizontal lines on the
model (see Fig. 1, bottom left) and we show close views with the model textured
with initial and optimized parameters.

We show the results in Fig. 2 plotting the average projection error in pixels
over all texture images versus the initial projection error before optimization.
We observed a decrease of accuracy when ambient light (experiment 2) and
varying reflectance coefficients (experiment 3) were introduced. The accuracy of
Canonical TR MI and Weighted TR MI was similar, considerably higher than
Viola TR MI.

In the experiment 4, Weighted TR MI gave the best accuracy for all runs,
performing considerably better than Canonical TR MI. For the settings of this
experiment, the global optima of some objective functions were pronounced,
while other objective functions had many local optima. In particular, the
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Fig. 1. Models used for evaluation. Top row: Square4 (left), Trilobite (middle), and
Shakyamuni (right). Bottom row: part of Shakyamuni photo (left), remark the hand
drawn lines; renderings with initial registration (middle) and optimized registration
(right) of three photos.
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Fig. 2. Comparison between Viola TR MI (dashed), Canonical TR MI (dashdot), and
Weighted TR MI (solid) for experiments 1 (upper left) to 6 (bottom right), for several
initial parameters. The plots show initial projection error (horizontal axis) versus final
projection error (vertical axis) in pixel units. The errors are averaged for all images.

image-model MI was a good objective function for only one of the images. Our
heuristic identified and assigned higher weights to the gradients of the functions
with pronounced global optima.
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For the Trilobite model, in 6 out of 10 runs of Viola TR MI the error increased.
The other two algorithms achieved the best results out of our experiments: the
projection errors of Canonical TR MI were under 0.8 pixels, and the largest
error of Weighted TR MI was 1.8 pixels, while the other 9 errors were under
1.2 pixels. We see two causes for the better accuracy of Canonical TR MI and
Weighted TR MI for the Trilobite model as compared to the synthetic models.
Firstly, specular coefficients associated to the surface of the synthetic models
allowed modelling of more complex BRDF. Secondly, the distribution of the
surface properties on the synthetic models determined MI objective functions
with many local maxima.

The most visible features in the images with the Shakyamuni model are the
specular highlights, and this may pose serious problems for other registration
algorithms. The compared methods gave very good results, with slightly worse
performance of Viola TR MI. We were even able to register images from an
initial average error of about 60 pixels. The visual difference between renderings
with estimated ground truth parameters and optimized parameters cannot be
perceived.

It is difficult to present direct comparisons to other registration algorithms.
Our accuracy is significantly better than the one reported in [5], mean projection
error of 5-6 pixels for 512×512 resolution images, and also much faster. Involving
only mutual information, the algorithm is conceptually simpler than [8], and
does not require the texture image to contain the entire object for the purpose
of silhouette extraction as in [8] and [6].

5 Conclusions and Future Work

We motivated and proved experimentally the advantages of joint registration
of several images to a 3D model using the mutual information. By considering
the image-image mutual information, introduced in this paper, we improved
significantly the registration accuracy in all experiments. Our heuristic for the
weighted gradient fusion clearly outperformed the canonical approach in only
one experiment. We are looking for other heuristics, for instance choosing the
update direction using a voting scheme among gradients. Similar methods may
be used to adjust the computational effort, e.g., by allocating more run-time to
estimate the gradients of the relevant objective functions.

We will study the performance of our algorithm for optimization of the intrin-
sic camera parameters. After obtaining a good estimation for extrinsic camera
parameters with the method described above, a similar refining optimization step
should consider all camera parameters. We want to improve the optimization by
adaptive step sizes in the gradient descent, using for instance the consistency
of the gradient (defined in this paper). This can be combined with a multi-
resolution approach proposed in other registration methods. Finally, we will
complete the texture mapping framework by implementing the texture fusion
for 3D point based models.
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Abstract. We consider the problem of non-rigid, point-to-point regis-
tration of two 3D surfaces. To avoid restrictions on the topology, we
represent the surfaces as a level-set of their signed distance function.
Correspondence is established by finding a displacement field that mini-
mizes the sum of squared difference between the function values as well
as their mean curvature. We use a variational formulation of the problem,
which leads to a non-linear elliptic partial differential equation for the
displacement field. The main contribution of this paper is the applica-
tion of an adaptive finite element discretization for solving this non-linear
PDE. Our code uses the software library DUNE, which in combination
with pre- and post-processing through ITK leads to a powerful tool for
solving this type of problem. This is confirmed by our experiments on
various synthetic and medical examples. We show in this work that our
numerical scheme yields accurate results using only a moderate number
of elements even for complex problems.

1 Introduction

Virtually all methods in pattern recognition and image analysis rely on prior
knowledge about the problem to be solved. Often, this prior knowledge is given
in the form of statistical information acquired from a set of representative exam-
ples. In order to be able to extract meaningful information from several objects
of a class, the objects have to be brought into correspondence. That is, to every
point in a reference object, one needs to find the corresponding point in all the
examples. The problem of establishing correspondence is known as the registra-
tion problem.

In this article we consider the problem of dense point-to-point registration
of two 3D surfaces. Surface registration is a common problem and has been
researched extensively (see [6] for a comprehensive survey). Most common ap-
proaches to surface registration are either formulated directly in terms of the
given surface triangulation or require the surfaces to be parameterized. The ap-
proach we propose in this paper is to represent the surfaces as the zero-level set
of the signed distance function to the surface. This formulation yields a prob-
lem description that is independent of the topology of the surface. Further, it
leads naturally to a variational formulation and allows us to apply the powerful
mathematical methods developed in this field (see e.g. [9]).
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While our method is general and can be applied to many surface registration
tasks, our particular motivation stems from two problems in medical imaging.
The goal is to build a statistical model of the human skull and the femur bone
respectively. The human skull is a complex structure and finding a suitable
surface parametrization is deemed infeasible. For registration of the femur, the
advantage of our representation is that correspondence is established for a neigh-
borhood around the surface, which helps later to fit the inner structures of the
bones.

The idea of surface registration using a level-sets representation of the sur-
faces has been described earlier [18,14]. For the mathematical formulation, our
contribution is the inclusion of an additional curvature term in the model that
drives the registration in direction tangential to the surface, similar to [12]. The
difference to our work is that the curvature is calculated on the parametrization,
while we extend the curvature feature to the whole space.

This formulation and its relation to the well known Thirion’s Demons algo-
rithm [17] has been detailed in [13]. The main contribution of this paper is a
memory-efficient and flexible representation of the data using adaptive finite el-
ements together with its numerical implementation using the DUNE library [2].
The finite element representation gives the flexibility to represent fine details
where this is needed (e.g. around the surface) while providing a sparse represen-
tation of the function. Further, the numerical method can be easily parallelized.

This paper is structured as follows: In Section 2 we present the mathemati-
cal model of our approach. Section 3 describes the finite element discretization
and the numerical procedure we employ to solve the registration problem. The
feasibility of our approach is illustrated in Section 4 where we show registration
results for medical 2D and 3D examples. A more detailed study of the algorithm
including variation of parameters and a comparison with a finite difference im-
plementation in ITK [11] is published in [3].

2 Mathematical Model

In this section we present the mathematical model we use for surface registration.
In general, registration is an ill-defined problem. The notion of correspondences
can greatly vary for different applications. For our application, we define three
criteria a good registration has to fulfill: 1) the surfaces should be accurately
matched, 2) the curvature at corresponding points should be similar and 3) the
deformation should be smooth. In the remainder of this section, we will make
these notions precise.

2.1 Level-Set Representation

A common way to model a surface is by representing it as the zero level set of
an auxiliary function I : IRn → IR. This means that the surface Γ is given as:

Γ := {x ∈ IRn | I(x) = 0}.
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The main advantage of the level-set representation is the independence of the
surface’s topology. In practice, the most common choice for representing a given
surface Γ ⊂ IRn through a level set function is to use the signed distance function
to Γ :

I(x) := dΓ (x) =

⎧⎪⎨
⎪⎩

dist(x, Γ ) x ∈ outside(Γ ),
0 x ∈ Γ,

−dist(x, Γ ) x ∈ inside(Γ ),
(1)

where dist(x, Γ ) is the Euclidean distance from x to Γ and the inside and outside
of Γ have to be assigned in some meaningful way. When calculated on a rectan-
gular domain Ω ⊂ IRn, the distance function can be interpreted as an image over
Ω. This leads to the problem of intensity based, non-rigid image registration.
In fact our formulation of the problem has been derived from Thirion’s Demon
algorithm, one of the most widely used image-registration algorithms.

2.2 Thirion’s Demons

In his landmark paper, Thirion [17] proposed a method for three-dimensional,
non-rigid image registration. Originally formulated in a heuristic manner as an
optical flow like algorithm, it was later rigorously studied and formalized. In par-
ticular, Modersitzki [15] as well as Cachier et al. [16], have presented variational
formulations of the Demons Algorithm, on which we base our work.

The Demons algorithm corresponds essentially to the variational problem of
minimizing the functional

J [u] = D[u] + αR[u],

where
D[u] =

1
2

∫

Ω

1
QI (x) (I0(x + u(x)) − I1(x))2 dx

is a distance measure, and

R[u] =
1
2

3∑
l=1

∫

Ω

|∇ul|2 dx

is a regularization term. Here I0 and I1 are the images defined on Ω and
u : Ω → R

3 is the displacement field to be calculated. The parameter α ∈ R

controls the influence of the regularizer. The weight QI is chosen as QI(x) =
|∇I0(x)|2 + (I0(x) − I1(x))2, motivated by Thirion’s original formulation. See
[16] for a detailed discussion and interpretation of this term.

The registration problem is thus to find the deformation field u, that solves
the following variational problem:

J [u] = D[u] + α R[u] → min . (2)

From the calculus of variations, it is known that any solution has to fulfill the
Euler-Lagrange equation:

1
QI(x) (I0(x + u(x)) − I1(x))∇I0(x + u(x)) − α�u(x) = 0, ∀x ∈ Ω. (3)
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(a) (b)

Fig. 1. Two skulls colored according to their mean curvature

This is a non-linear elliptic partial differential equation, which can, for example,
be solved using the numerical method presented in Section 3.

2.3 Curvature Guided Registration

Thirion’s Demons algorithm was designed for the registration of medical images
(e.g. CT images), that feature meaningful information on the whole domain.
In our approach the only information comes from the surface that represents
the zero-level set. Furthermore, on the zero-level set, the value is by definition
zero everywhere. We have no information about features that could guide the
registration in surface direction. Hence corresponding points are, apart from
the influence of the smoothing term R, only sought in the direction normal to
the level sets. The resulting correspondences on the zero-level do therefore not
necessarily correspond to meaningful features. For a large class of objects, cor-
responding points in two surfaces have similar curvature. Therefore, we use the
mean curvature at a point as an additional feature to be matched. Figure 1 illus-
trates that for registration of human skulls, the curvature is indeed a reasonable
feature to include.

We extend the functional including an additional term which leads to a match-
ing of the curvature

C[u] :=
1
2

∫

Ω

1
QH(x) (H0(x + u(x)) − H1(x))2 dx.

where H0(x) and H1(x) are the mean curvatures at point x for I0 and I1, re-
spectively. The weight QH(x) is chosen analogously to QI(x). The registration
problem is now to find u that solves the following problem:

J [u] := D[u] + βC[u] + αR[u] → min . (4)

The Euler-Lagrange equation is extended in the obvious way, leading to

− α�u = F (u) (5)

with

F (u) := I0(x+u(x))−I1(x)
QI (x) ∇I0(x + u(x)) + H0(x+u(x))−H1(x)

QH (x) ∇H0(x + u(x)) .
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3 Finite Element Discretization

In this section we describe the steps taken for computing the solution u for given
data I0, I1, H0, and H1 from (5). In [15], Modersitzki showed that the Demons
algorithm can be interpreted as a simple fix point iteration scheme for the non-
linear elliptic equation (5). The solution u is obtained from an initial solution
u0 by iteratively performing the computation

un+1 = un + τ (α�un + F (un)) .

Alternatively, we can interpret this equation as a forward Euler step for the heat
equation

∂tu − α�u = F (u) (6)

with step size τ . In this presentation we will focus on deriving methods for
computing large time solutions u = u(t, x) of (6). Since we are interested in the
large time limit we use as the initial conditions simply u(0, x) = 0 in all our
calculations. For the simulations shown here we have used Neumann boundary
conditions.

Since the elliptic operator in the heat equation leads to a severe time step
restriction, coupling the time step τ to the mesh width h via τ = O(h2), we use
an implicit time discretization for the elliptic part of (6). To avoid problems with
the nonlinear term F (u) we want to discretize this term in an explicit fashion.
Fixing a time step τ , and using the abbreviation un(x) ≈ u(nτ, x) we propose
the following semi-implicit scheme:

un+1 − τα�un+1 = un + τF (un). (7)

This approach is similar to Thirion’s approach with the exception that the elliptic
term is treated implicitly. Similarly higher order implicit/explicit Runge-Kutta
schemes for the time discretization can be used [5].

It remains to specify the spatial finite element discretization of the image do-
main. We use a Discontinuous Galerkin Finite Element approach. This method
is very well suited for this type of problem and can be easily used with locally
adapted grids and domain decomposition strategies for parallelization on distrib-
uted memory computers. Given a tessellation Th = {Ti}i∈I of the computational
domain Ω into non overlapping elements (see Figures 4 and 2a in the following
Section), this scheme follows the same ideas as the standard Galerkin method [7]
but employs a discontinuous ansatz space: V k

h := {vh : vi ∈ Pk(Ti) for i ∈ I}.
Here vi ≡ vh|Th

and Pk(Ti) denotes the space of polynomials on the element Ti

of order k. Note that there are no continuity assumptions between elements.
Now, a variational formulation for the implicit and the explicit part

Limpl := u − τα�u, Lexpl := u + τF (u) (8)
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of the semi-implicit scheme (7) is derived: The explicit part is easily discretized
on an element Ti by:

∫

Ti

Lexpl,iϕ =
∫

Ti

(ui + τF (ui))ϕ dx (9)

for all ϕ ∈ Pk(Ti).
Due to the discontinuous ansatz space, the discretization of the elliptic term

is slightly more complicated as in the standard Galerkin approach. We employ
the approach known as the local Discontinuous Galerkin method, rewriting for
given uh ∈ Vh the second order equation Limpl,h = uh − τα�uh as a system of
first order equations

vh = ∇uh, Limpl,h = uh − ατ∇ · vh .

Limpl,h is now computed from the variation formulation:
∫

Ti

viϕ =
∫

∂Ti

[uh]ϕ −
∫

Ti

uh∇ϕ , (10)
∫

Ti

Limpl,iϕ =
∫

Ti

uhϕ −
∫

∂Ti

τα[vh]ϕ +
∫

Ti

ταvh∇ϕ, (11)

for all ϕ ∈ Pk(Ti); we have used the abbreviation [vh] to denote the jump of a
discrete function vh ∈ Vh over element boundaries. For more details see [10,4].

For constructing the tessellation we use the ALUGrid library [1] using hexa-
hedral meshes in 3d and triangular meshes in 2d with non-conforming local
adaptivity and the possibility of domain decomposition and dynamic load bal-
ancing for parallel computations. The whole numerical scheme is implemented
using the generic grid concept from the software library DUNE [2] and the dis-
cretization methods from the DUNE-FEM package [8]. Since the DUNE library
is implemented in C++ the incorporation of the solution algorithm into the ITK
framework [11] presents no major problems so that the pre- and post-processing
facilities developed here can be directly used.

4 Results

For the results presented here, the shapes have been aligned prior to registration,
to remove large translational and rotational parts. In all the computation we used
τ = 1, α = 1, and β = 1. Using larger values of τ can increase the convergence
rate of the numerical scheme and due to the implicit treatment of the elliptic
operator does not lead to instability of the scheme; the same holds for smaller
values of α but in both cases the smoothness of the displacement field u is
decreased in an unsatisfactory manner. For the spatial discretization we have
used k = 0, 1, 2 i.e., constant, linear, and quadratic polynomials on each element
and also higher order time-discretization schemes. Here, we only show results
with k = 1 together with a first order semi-implicit time discretization scheme.
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(a) (b)

Fig. 2. Registration of two 2D-slices through the femur. Figure 2a shows the outline
of the shapes and the discretization of the images, while Figure 2b shows the resulting
displacement field.

To increase the rate of convergence and to take advantage of the possibilities
offered by local grid adaptation, we start the computation using a coarse grid
of less than 100 elements and after performing a number of iterations on this
coarse grid, refine the grid elements on which

max{|I0(x)|, |I0(x + un(x))|, |I1(x)|} < R

holds for a given value of R. The indicator R is then decreased and the iteration
process is repeated. The full details of the algorithm and a study of the influence
of the parameters are published in [3].

4.1 Registration of a Femur

As a first test, we register two 2D slices of a 3D femur bone. Figure 2a shows
the two shapes to be registered and the locally adapted tessellation of the image
domain. The shape of the slice is well matched and the resulting correspondences
are reasonable as demonstrated in Figure 2b where we also show the resulting
displacement field.

In Figure 3 we see the registration results for the 3D femora from our database.
The image shows that the registered image matches the shape of the target
accurately. The discretization used is illustrated in Figure 4a. We see that the
resolution is highest around the surface and hence we can represent fine details
where this is necessary.

4.2 Registration of a Skull

As a further example, we consider the registration of two skulls. The discretiza-
tion used is illustrated in Figure 4b.

As previously mentioned, one of the main motivation for the level-set rep-
resentation was to register surfaces of arbitrary topology. In this example the
data is noisy and the topology of the skulls differ due to segmentation artifacts
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(a)

(b) (c)

Fig. 3. The reference femur (a) is registered onto a target (b). In (c), the registration
result is shown together with the adaption level (blue=2, red=5).

(a) (b)

Fig. 4. The discretization for the representation of the skull surfaces and the femur
(refinement levels represented by color)

(a) (b) (c)

Fig. 5. The labelling of a reference skull (a) is automatically transformed to a target
skull (b), (c). Computation time for the skull registration was 4.5 hours on a AMD
Opteron 2.4GHz.

and the limited resolution of the original CT-image. Still the shape is accurately
matched as can be seen in Figure 5. Although not the main motivation of this
work, an immediate application is atlas-based labeling of a target skull. This is
illustrated in Figure 5, where the mandible is labeled in a reference skull and the
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labeling is transformed to an unlabeled target skull using the calculated defor-
mation field u. Moreover, this provides us with a test to validate the quality of
the registration result. It can be seen, that the mandible is correctly identified
in the target skull.

5 Discussion

Our results demonstrate that even on quite coarse grids and for complex reg-
istration problems, the finite element method leads to very good results. Even
the challenge posed by the registration of the human skull was met by the al-
gorithm. The advantage of the local grid adaption for this type of problem is
evident, since mainly the neighborhood of the surface must be well resolved
while outlying regions can be treated with a far lower resolution without reduc-
ing the quality of the match. In the calculation for the 3D femura, the resulting
finest grid consisted of less than 400.000 hexahedra, compared to more than 10M
points used in our ITK implementation. A similar reduction was achieved for the
skull example. Also the finite element formulation seems to be very robust, so
that additional strategies like using smooth low resolution images do not seem
to be required for the convergence of the scheme. The implicit treatment of the
elliptic part also enhances the stability of the method so that a wide range of
parameters can be used with this scheme.

The consequent focus on the formulation of the problem as a PDE offers a wide
range of further approaches for computing the displacement field, e.g., higher
order schemes or pre-conditioning strategies like multigrid approaches. These can
lead to a further increase in the efficiency of the scheme. The DUNE package
used for our implementation is based on a generic interface both for the grid
structure and the numerical scheme, thus allowing for a generic implementation
of the solution method including local adaptivity and dynamic load balancing.
We can therefore easily apply different numerical schemes to the registration
problem, such as continuous Galerkin discretizations, fully implicit time stepping
schemes or direct methods for the non-linear elliptic equation, and compare these
with the method presented here. We will study the possibilities offered by this
concept in future work.
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Abstract. We introduce a new approach for spline-based elastic im-
age registration using both point landmarks and intensity information.
As underlying deformation model we use Gaussian elastic body splines
(GEBS), which are analytic solutions of the Navier equation under Gaus-
sian forces and are represented by matrix-valued basis functions. We also
incorporate landmark localization uncertainties represented by weight
matrices. Our approach is formulated as an energy-minimizing functional
that incorporates landmark and intensity information as well as a reg-
ularization based on GEBS. Since the approach is based on a physical
deformation model, cross-effects in elastic deformations can be handled.
We demonstrate the applicability of our scheme based on MR images of
the human brain. It turns out that the new scheme is superior to a pure
landmark-based as well as a pure intensity-based scheme.

1 Introduction

Image registration plays an increasingly important role in biomedical applica-
tions. A main challenge is to cope with the broad range of applications as well
as the large spectrum of imaging modalities. In many applications it is not quite
clear which type of image information is optimal. Concerning the underlying
transformation model generally nonrigid or elastic schemes have to be used (for
a survey see, e.g., [1]). Elastic registration approaches are, in general, based on
an energy functional or the related partial differential equation. Typically, the
solution is computed numerically using finite differences or the finite element
method, which, however, is generally computationally expensive.

Alternatively, spline-based approaches can be used for elastic registration,
which can be subdivided into schemes based on a uniform grid of control points,
where typically B-splines are used (e.g., [2,3,4,5,6]), and schemes based on a
nonuniform grid of control points (e.g., [7,8,9,10,11,12,13,14,15,16,17]). The lat-
ter type of schemes generally requires a smaller number of control points (land-
marks). Examples of such schemes are based on thin-plate splines (TPS, e.g.,
[7,10,11,13]), elastic body splines (EBS, e.g., [8]), and Gaussian elastic body

F.A. Hamprecht, C. Schnörr, and B. Jähne (Eds.): DAGM 2007, LNCS 4713, pp. 537–546, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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splines (GEBS, e.g., [15,17]). TPS are based on the bending energy of a thin
plate, which represents a relatively coarse deformation model for biological tis-
sues. In comparison, EBS and GEBS are derived from the Navier equation,
which describes the deformation of elastic tissues (bodies). GEBS in comparison
to EBS have the advantage that more realistic forces are incorporated.

Regarding the used image information, approaches are often based on ei-
ther landmarks or intensity information. Main advantages of landmark-based
approaches are computational efficiency, the fact that they can cope with large
geometric differences, as well as the relatively easy and intuitive incorporation
of user-interaction. In contrast, main advantages of intensity-based approaches
are that more image information is taken into account and that no segmenta-
tion is necessary. In recent years, approaches that combine landmark-based and
intensity-based methods have gained increased attention since advantages of
both types of methods can be combined (e.g., [18,19,11,20,3,21,22,5,23]). How-
ever, so far only relatively few spline-based registration approaches exist that
integrate both types of information. Typically, the intensity information is only
used to determine optimal positions of the control points (e.g., [14,17]) or to
establish landmark correspondences (e.g., [4]), i.e. the landmark and intensity
information is not directly combined. In addition, often a physical deforma-
tion model is not used (e.g., [19,3,4,5,6]) or higher order splines are required
(e.g., [22]).

Moreover, in landmark-based registration approaches generally an interpola-
tion scheme is applied that forces corresponding landmarks to exactly match
each other (e.g., [8,4,15,17]). To include landmark localization uncertainties,
approximation schemes have been proposed, for example, for TPS [10] and
GEBS [16]. Note, however, that in these approaches only landmarks have been
used but not intensity information. In [24] both types of information are com-
bined, however, the regularization of the deformation field has been heuristically
motivated.

In contrast to previous spline-based registration approaches, the central idea
of our approach is to directly combine the landmark and intensity informa-
tion in a single energy functional as well as to include a regularization based
on GEBS, which are analytic solutions of the Navier equation. In addition, we
incorporate landmark localization uncertainties. Since GEBS are represented
by matrix-valued non-radial basis functions and include a material parameter
(Poisson ratio ν) that defines the ratio between transverse contraction and lon-
gitudinal dilation of an elastic material, the registration scheme integrates an
improved physical deformation model, where the components of the deforma-
tion field w.r.t. the different dimensions are coupled, i.e. cross-effects can be
handled (which is not the case for, e.g., TPS). Moreover, since GEBS incorpo-
rate Gaussian forces we have a free parameter (the standard deviation) to control
the locality of the transformation, and, therefore, GEBS are well-suited for the
registration of local differences.
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2 Spline-Based Registration Using Landmark and
Intensity Information

2.1 Interpolating and Approximating GEBS

In the following, we briefly describe the interpolating and approximating GEBS
approach. Interpolating GEBS are based on the Navier equation of linear elas-
ticity (e.g., [25])

μΔu + (λ + μ)∇ (divu) + f = 0 (1)

with the displacement vector field u and body forces f . Given Gaussian forces
fσ(x) = c fσ(r)=c (

√
2πσ)−3 exp(− r2

2σ2 ) with x = (x, y, z)T , r =
√

x2 + y2 + z2,
and the standard deviation σ, an analytic solution of the Navier equation (1) can
be derived [15]. The resulting matrix-valued basis function Gσ (a 3 × 3 matrix)
reads (up to a constant factor)

Gσ(x) =

(
αr2 + σ2

r3
erf(r̂) − β

e−r̂2

r2

)
I +

(
r2 − 3σ2

r5
erf(r̂) + 3β

e−r̂2

r4

)
xxT (2)

where r̂ = r/(
√

2σ), α = 3 − 4ν, β = σ
√

2/π, and erf(x) = 2√
π

∫ x

0 e−ξ2
dξ. I

denotes the 3 × 3 identity matrix and ν is the Poisson ratio ν = λ/(2λ + 2μ),
0 ≤ ν < 0.5 with the Lamé constants μ, λ > 0 describing material properties.
Using the interpolation condition qi = u(pi), the scheme for elastic registration
is given by

u(x) = x +
n∑

i=1

Gσ(x − pi) ci (3)

where pi and qi (i = 1, . . . , n) denote the positions of the n landmarks of the
source and target image, respectively. The coefficients ci represent the strength
and direction of the Gaussian forces.

Approximating GEBS incorporate the condition qi ≈ u(pi) and 3 × 3 covari-
ance matrices Σi defining anisotropic localization uncertainties of the landmarks
i = 1, . . . , n. The energy-minimizing functional consists of an elastic term JElastic

representing the elastic energy according to the Navier equation as well as a data
term JData,L which incorporates the landmark errors. The quadratic Lagrange
function is given by [16]

LData,L =
1

nλA

n∑
i=1

fσ(x − pi) (qi − u(x))T
Σ−1

i (qi − u(x)) (4)

where λA > 0 denotes the regularization parameter. The corresponding PDE to
the combined functional JElastic + JData,L can be stated as

μΔu + (λ + μ)∇ (divu) + ∇u LData,L = 0, (5)

and represents an extension of the Navier equation. The solution to (5) can be
analytically derived and it is the same as in the case of interpolation.
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2.2 Combining Landmark and Intensity Information

The scheme described above has been used for landmark-based elastic regis-
tration. Below, we describe a new hybrid approach where both landmark and
intensity information is incorporated and GEBS are used as underlying deforma-
tion model. To compute the deformation field u for registering the source image
g1 with the target image g2, we introduce the functional

JHybrid(u) = JData,I

(
g1, g2,uI

)
+λIJI

(
u,uI

)
+λLJL

(
u,uL

)
+λE JEl.(u) (6)

which consists of four terms. Besides the searched deformation field u, (6) com-
prises two deformation fields uI and uL that are computed based on the intensity
and landmark information, respectively (λI , λL, and λE are scalar weights). Con-
cerning the intensity information, the first term of (6) represents an intensity
similarity measure between the deformed source and target image. As similarity
measure we here use the sum-of-squared intensity differences

JData,I

(
g1, g2,uI

)
=

∫ (
g1

(
x + uI(x)

)
− g2(x)

)2
dx. (7)

The second term JI couples the intensity-based deformation field uI with u
using a weighted Euclidean distance. Since the approach is based on GEBS, we
here use Gaussian forces fσI (r) as weights, which leads to

JI

(
u,uI

)
=

∫
dx

∫
dξ fσI (x − ξ)

∥∥uI(ξ) − u(x)
∥∥2

. (8)

Regarding the landmark information, the deformation field uL is computed based
on the landmark correspondences using GEBS. To incorporate localization un-
certainties, we employ the approximation scheme in [16] (see Sect. 2.1 above).
The uncertainties are characterized by weight matrices, i.e. anisotropic land-
mark errors can be taken into account. The third term of (6) couples uL with u
analogously to (8) using Gaussian forces fσL .

Finally, the fourth term represents the regularization of the deformation field
u. In our case, JElastic represents the elastic energy according to the (force-free)
Navier equation. By minimizing JHybrid in (6), the resulting deformation field u
is, on the one hand, similar to the deformation field obtained from the landmark
correspondences, and, on the other hand, the intensities of the deformed source
image are similar to those of the target image. In addition, the regularization us-
ing GEBS constraints the deformation field to physically plausible deformations
in comparison to using other splines such as TPS.

2.3 Minimization of the Functional

An efficient way of minimizing JHybrid in (6) is to minimize it alternatingly
w.r.t. uI and u. Note that a minimization w.r.t. uL is not required since the
landmark correspondences remain unchanged in our approach. For the mini-
mization w.r.t. uI , the following functional is relevant

JData,I

(
g1, g2,uI

)
+ λIJI

(
u,uI

)
→ min. (9)
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To simplify this functional, we here omit the weighting based on Gaussian forces
fσI in JI . As a consequence, the resulting functional has the advantage that it
can be stated independently for each voxel, and that for each voxel only sums of
squared differences are used. For a certain voxel x the corresponding Lagrange
function of the simplified functional then reads

(
g1

(
x + uI(x)

)
− g2(x)

)2
+ λI

∥∥uI(x) − u(x)
∥∥2

, (10)

which can be efficiently minimized using the method of Levenberg-Marquardt.
The required first order partial derivatives of the source image g1 are computed
using Gaussian derivative filters. For the minimization w.r.t. u, the following
functional has to be considered

λIJI

(
u,uI

)
+ λLJL

(
u,uL

)
+ λE JElastic(u) → min. (11)

The corresponding PDE can be derived as (using εI = 2λI/λE and εL = 2λL/λE)

0 = μΔu + (λ + μ)∇ (divu) + εI

∫
fσI (x − ξ)

(
uI(ξ) − u(x)

)
dξ

+ εL

∫
fσL(x − ξ)

(
uL(ξ) − u(x)

)
dξ. (12)

Interestingly, (12) can be solved analytically by employing the convolution the-
orem. An explicit solution using matrix-vector and matrix-matrix convolutions
as well as the matrix-valued GEBS basis function Gσ is given by

u(x) = x + φI(x) ∗
(
uI(x) − x

)
+ φL(x) ∗

(
uL(x) − x

)
(13)

where “∗” denotes the convolution and

φI(x) = (GσI (x) + GσL(x)) ∗ ΩI(x) , Ω̂I(ω) = εI f̂σI (ω) θ̂(ω)−1 (14)

φL(x) = (GσI (x) + GσL(x)) ∗ ΩL(x) , Ω̂L(ω) = εL f̂σL(ω) θ̂(ω)−1 (15)
θ(x) = (fσI (x) + fσL(x)) I + (εI + εL) (GσI (x) + GσL(x)) (16)

where “ˆ” denotes the Fourier transform and θ̂(ω)−1 is the inverse matrix of
θ̂(ω). Note that the intensity similarity measure JData,I in (7) is only relevant
for the minimization w.r.t. uI in (9) but not for the minimization w.r.t. u in
(11). As a consequence, by replacing JData,I with a different intensity similarity
measure such as local correlation or mutual information we only need to change
(9) whereas the solution in (13) remains unchanged. Note also that a special
case of this hybrid approach is obtained by omitting the landmark information
JL from (6) and in subsequent equations, which results in a pure intensity-based
elastic registration scheme.

3 Experimental Results

3.1 MR Images – Ground Truth Deformation

To validate our approach, we considered a simple model of a radial tumor expan-
sion where an analytic solution of the Navier equation is known [26]. We assume
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(a) (b) (c)

Fig. 1. Registration of 2D MR brain images: Original 2D MR image (top, a), deformed
image (b), and ground truth deformation grid (c), as well as the (inverse) deformation
grids (bottom) using a pure landmark-based approach (a), a pure intensity-based ap-
proach (b), and using the hybrid approach (c).

three different types of tissues: An inner circle with radius Ri representing a tu-
mor, a circular disk between radii Ri and Ro representing normal (elastic) tissue
which corresponds to brain tissue, and the region outside of the outer circle with
radius Ro representing the rigid skull. We model a tumor expansion by increasing
the radius Ri of the inner circle by a value d. To solve the Navier equation, we
use cylindrical coordinates and the following boundary conditions: a vanishing
displacement at the outer circle (i.e. ur(Ro) = 0) as well as a displacement of
ur(Ri) ± d at the inner circle, which leads to

ur, expansion(r) = dRi R2
o

(
R2

o − R2
i

)−1 (
r−1 − r R−2

o

)
. (17)

We have applied this model to real 2D MR images of the human head to obtain
physically plausible deformations with ground truth information. For example,
Fig. 1 (top) shows the original 2D image (a) as well as the deformed image (b)
and the deformation grid (c) using Ri = 20mm, Ro = 55mm, and d = 10mm.
Based on this ground truth data, we have registered the deformed image (source)
with the original image (target) using four landmarks (see the white markings).
Fig. 1 (bottom) shows the (inverse) deformation grids using a pure landmark-
based approach (a), a pure intensity-based approach (b), and using the hybrid
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(a) (b) (c) (d)

Fig. 2. Registration of 2D MR brain images: Pre- (top, a) and postsurgical image
(bottom, a) as well as the (inverse) deformation grids (top) and registered source
images (bottom) using a pure landmark-based approach (b), a pure intensity-based
approach (c), and using the hybrid approach (d).

approach (c). It can be seen that the hybrid approach leads to a significantly
better result compared to the other two approaches.

To quantify the registration accuracy, we computed the mean geometric error
egeom between the ground truth deformation given by (17) and the computed
deformations based on the registration results within the outer circle Ro (relevant
area of deformation). In addition, we determined the mean intensity error eint

between the source and target images as well as between the deformed source and
target images. For the hybrid approach we obtain egeom = 1.17mm. In contrast,
using the pure intensity-based approach the error is worse (egeom = 2.03mm),
and using the pure landmark-based approach the error is even worse (egeom =
3.15mm). In addition, using the hybrid approach the mean intensity error eint

improved by 71.9% w.r.t. the unregistered case, whereas the pure intensity-based
and landmark-based approaches yield improvements of only 61.2% and 14.3%,
respectively.

3.2 MR Images – Tumor Resection

In this application the task is to register pre- and postsurgical MR images of the
human brain. Fig. 2 (a) shows 2D MR images of a patient before (source image,
top) and after (target image, bottom) the resection of a tumor. 17 landmarks
have been manually placed along the contours of the tumor and the resection
area (indicated by crosses). Also shown are the (inverse) deformation grids (top)
and registered source images (bottom) using a pure landmark-based approach
(b), a pure intensity-based approach (c), and using the hybrid approach (d). It
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turned out that using only landmarks (b) the vicinity of the tumor and resection
area are well registered whereas regions without landmarks are not deformed.
In contrast, using only intensity information (c) yields deformations in different
parts of the head, however, the tumor has not been well registered. Applying the
hybrid approach the registration result is significantly improved in comparison
to the previous two approaches since the tumor and resection area are well
registered and, in addition, other parts of the head (see Fig. 2d).

4 Conclusion

We have introduced a spline-based registration approach using both landmark
and intensity information. Our approach is based on analytic solutions of the
Navier equation which are represented by matrix-valued basis functions. In com-
parison to existing spline-based approaches, our scheme directly combines land-
mark and intensity information, incorporates a regularization based on Gaussian
elastic body splines, as well as takes into account landmark localization uncer-
tainties. We have demonstrated the applicability of the approach based on MR
brain images. It turned out that the hybrid approach is superior compared to a
pure landmark-based and a pure intensity-based scheme.
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Abstract. Similarity measure is one of the main factors that affect the
accuracy of intensity-based 2D/3D registration of X-ray fluoroscopy to
CT images. Information theory has been used to derive similarity mea-
sure for image registration leading to the introduction of mutual infor-
mation, an accurate similarity measure for multi-modal and mono-modal
image registration tasks. However, it is known that the standard mutual
information measure only takes intensity values into account without
considering spatial information and its robustness is questionable. Previ-
ous attempt to incorporate spatial information into mutual information
either requires computing the entropy of higher dimensional probability
distributions, or is not robust to outliers. In this paper, we show how
to incorporate spatial information into mutual information without suf-
fering from these problems. Using a variational approximation derived
from the Kullback-Leibler bound, spatial information can be effectively
incorporated into mutual information via energy minimization. The re-
sulting similarity measure has a least-squares form and can be effec-
tively minimized by a multi-resolution Levenberg-Marquardt optimizer.
Experimental results are presented on datasets of two applications: (a)
intra-operative patient pose estimation from a few (e.g. 2) calibrated flu-
oroscopic images, and (b) post-operative cup alignment estimation from
single X-ray radiograph with gonadal shielding.

Keywords: similarity measure, mutual information, 2D/3D registration,
X-ray, CT, Markov random field, Kullback-Leibler bound.

1 Introduction

2D/3D registration of a limited number of two-dimensional (2D) X-ray images
with a three-dimensional (3D) CT volume has shown great potential in var-
ious applications including intra-operative patient pose estimation and post-
operative prosthesis alignment evaluation. The reported techniques to achieve
this registration can be split into two main categories: feature-based methods
and intensity-based methods. Feature-based methods require a prerequisite seg-
mentation stage which is error-prone and hard to achieve automatically. The
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errors in segmentation can lead to errors in the final registration. In contrast,
intensity-based methods directly compare the X-ray image with the associated
digitally reconstructed radiograph (DRR), which is obtained by simulating X-ray
projection of the CT volume. No segmentation is required.

One of the main factors that affect the accuracy of intensity-based 2D-3D reg-
istration is the similarity measure, which is a criterion function that is used in
the registration procedure for measuring the quality of image match. An exten-
sive study of six similarity measures applied specifically to 2D-3D registration
has been performed by Penney et al. [1]. Using the fiducial markers to get the
”gold-standard” registration, the authors ranked these measures based on their
accuracy and robustness. They found that pattern intensity [2] was one of the
two measures that were able to register accurately and robustly, even when soft
tissues and interventional instruments were present in the X-ray images.

In this work, we use maximization of mutual information (MI), an accurate
similarity measure for multi-modal and mono-modal image registration tasks
[3,4,5]. However, it is known that the standard mutual information measure
only takes intensity values into account without considering spatial information
and its robustness is questionable [1,7].

Several attempts have been made to adapt the MI-based registration frame-
work to incorporate spatial information of individual images [7][8,9,10,11]. How-
ever, the resultant similarity measure either requires to compute the entropy
of higher dimensional probability distributions, which is not advisable because
of the increase of statistical uncertainties with higher dimensions due to the
scarcity of data, or is not robust to outliers.

In this paper, we show how to incorporate spatial information into mutual
information without suffering from these problems. Using a variational approx-
imation derived from the Kullback-Leibler bound [12], spatial information can
be effectively incorporated into mutual information via energy minimization.
The resultant energy function has a least-squares form and can be effectively
minimized by a multi-resolution Levenberg-Marquardt optimizer. We point out
that several previously introduced similarity measures can be derived from the
unified framework.

The paper is organized as follows. In Section 2, we present the derivation of a
variational approximation to the MI. In Section 3, we describe in details the real-
ization of the variational approximation via energy minimization. In Section 4, we
present the experimental results, followed by conclusions in Section 5.

2 Derivation of a Variational Approximation to the MI

In this work, we assume that the X-ray images are calibrated for their intrinsic
parameters and that the X-ray images are corrected for distortion. If multiple
X-ray images are used, they are all registered to a common reference frame.
Therefore, the goal of a 3D-2D registration is to compute the rigid transforma-
tion T that relates the coordinate frame of the CT volume with the reference
coordinate frame of the X-ray images. In the following, we focus on the derivation
based on the qth X-ray image (where q = 1, ..., Q) and its associated DRR.
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Let us denote the values of the X-ray image (V ) as v(x) and the corresponding
values of the DRR (U) created from the CT volume given the current transfor-
mation estimation as u(x; T ). In this work, we regard the image values v(x) and
u(x; T ) as random variables with associated probability density functions p(v(x))
and p(u(x; T )), respectively. The joint probability density function of these two
random variables is p(v(x), u(x; T )). The conditional probability density function
of v(x) given the values of u(x; T ) is expressed as p(v(x)|u(x; T )).

The mutual information of two random variables is derived from the entropy
values of the variables, both separately and jointly, as given by:

H(V ) = −
∫

p(v) log(p(v))dv; H(V, U) = −
∫∫

p(v, u) log(p(v, u))dvdu (1)

and the conditional entropy of two random variables is:

H(V |U) = −
∫∫

p(v, u) log(p(v|u))dvdu (2)

The entropy can be seen as a measure of uncertainty of a random variable.
The mutual information between two random variables is defined by:

Sq
MI(V, U, T ) = H(V ) + H(U) − H(V, U) = H(V ) − H(V |U) (3)

After some replacement, we can write Eq. 3 as:

Sq
MI(V, U, T ) =

∫∫
p(v(x), u(x; T )) log(p(v(x)|u(x; T )))dvdu + H(V ) (4)

The optimal estimation of the rigid transformation can then be obtained by:

T̂ = argmax
T

Q∑
q=1

Sq
MI(V, U, T ) (5)

Eq. 5 is the standard registration framework using maximization of mutual in-
formation. Histogram-based method [4] as well as Parzen window based method
[3] have been proposed to compute the mutual information. It is known that the
standard mutual information measure only takes intensity values into account
without considering spatial information and its robustness is questionable [1,7].
It can be shown using Kullback-Leibler bound [12] that:

Sq
MI(V, U, T ) �

∫∫
p(v(x), u(x; T )) log(q(v(x)|u(x; T ))dvdu + H(V ) (6)

where q(v(x)|u(x; T )) is an arbitrary variational distribution. We call the right
side of Eq. 6 the variational approximation to mutual information (VA-MI) and
denote it as Sq

V A−MI(V, U, T ). The approximation is exact if q(v(x)|u(x; T )) ≡
p(v(x)|u(x; T )).

As we are dealing with discrete images, the values v(x = (i, j)) and u((x =
(i, j)); T ) that we observe from the images can be regarded as random samples
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from p(v(x), u(x; T )). Note that H(V ) in Eq. 6 does not depend on T . Ignoring
this constant term, we can further approximate Sq

V A−MI(v(x), u(x; T )) by its
sample estimate:

Sq
V A−MI(V, U, T ) ≈ 1

I × J

I∑
i=1

J∑
j=1

log(q(v(i, j)|u((i, j); T ))) (7)

where I × J is the size of the X-ray image.
Using Eq. 7, we actually convert the maximization of mutual information to

an optimal labeling problem in which the labels are the conditional intensity
values. Such a problem can be effectively solved via energy minimization using
a maximum a posteriori – Markov random field (MAP-MRF) framework based
on the well-known Hammersley-Clifford theorem [13].

3 Realization of the Variational Approximation Via
Energy Minimization Using a MAP-MRF Framework

3.1 MAP-MRF Framework for Energy Minimization

To solve the energy minimization problem using a MAP-MRF framework, we
thus follow the four steps of the MAP-MRF estimate [13].

1. Construction of a prior probability distribution p(T ) for the registration
transformation T matching the reference X-ray images to the floating DRRs.
In this paper, we do not take advantage of this property. We treat all param-
eter configurations equally, due to the Euler angle based parameterization of
rotation in our approach. But it is possible to use this property to favor cer-
tain transformations when different parameterization forms for the rotation
component such as quaternions are used.

2. Formulation of an observation model q(D|T ) = q(v(i, j)|u((i, j); T )) that
describes the observed conditional intensity distribution of the difference
images D by comparing the reference X-ray images and the floating DRRs
given any particular realization of the prior distribution.

3. Combination of the prior and the observation model into the posterior dis-
tribution by Bayes theorem

p(T |D) ∝ q(D|T )) · p(D) (8)

4. Drawing inference based on the posterior distribution.

3.2 Observation Model

To estimate the observed conditional intensity distribution q(D|T ), knowing the
exact values of v(i, j) and u((i, j); T ) is not important. We are more interested
in knowing the conditional difference between v(i, j) and u((i, j); T ). However,
until now we still can not directly compare v(i, j) to u((i, j); T ) at each pixel site
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because there are inherent differences between the X-ray image and the associ-
ated DRR. In this paper, we propose to use a local normalization to circumvent
this problem. The rationale behind it is that in a local region the intensity dif-
ferences between different sites are mainly caused by the imaged object, if no
external object is present in the field-of-view.

Definition 1: Let L = {(i, j) : 1 � i � I, 1 � j � J} be an I × J integer
lattice; then D = {Di,j ; (i, j) ∈ L} denotes a family of random variables, i.e., a
random field, defined on L. A rth order neighborhood system for L is defined as
N = {N r

i,j; (i, j) ∈ L}, where N r
i,j is the set of sites around (i, j) and is defined

as follows:

N r
i,j = {(i′, j′)|(i′, j′) ∈ L, (i′, j′) �= (i, j), |(i′, j′) − (i, j)| � r} (9)

where r is a positive integer that determines the size of the neighborhood system.

Definition 2: A clique c is a subset of L, for which every pair of sites is a
neighbor. Single pixels are also considered cliques. The set of all cliques related
with the pixel site (i, j) is denoted by Ci,j .

Definition 3: A local region of size r for the pixel site (i, j) ∈ L is the set of
sites defined by:

Rr
i,j = {(i′, j′)|(i′, j′) ∈ L, |(i′, j′) − (i, j)| � r} (10)

The local normalization of both the X-ray image and the associated DRR is then
performed as follows:

v̄(i, j) = v(i,j)−mv(Rr
i,j)

σv(Rr
i,j)

; and ū((i, j); T ) = u((i,j);T )−mu(Rr
i,j)

σu(Rr
i,j)

(11)

where mv(Rr
i,j), σv(Rr

i,j) and mu(Rr
i,j), σu(Rr

i,j) are the mean value and the
standard deviation calculated from the intensity values of all sites in the local
region Rr

i,j of the X-ray image and of the associated DRR, respectively.
We can now model the difference image

s((i, j); T ) = v̄(i, j) − ū((i, j); T ) (12)

as a MRF with respect to the rth order neighborhood system N.
According to the relationship between the probability measure and the energy

function of a MRF at a single site [13], we have:

log q(v(i, j)|u(i, j); T ) ≈ log p(s((i, j); T ); and

log p(s((i, j); T ) = −E(s((i, j); T ) = −
∑

c∈Ci,j

Wc(s(i, j); T ) (13)

where Wc is called the clique potential. Generally, Wc is a function of the cliques
around the site under consideration.



552 G. Zheng

We can further expand the clique potentials in Eq. 13 according to the clique
size. In this work, we only consider the cliques of size up to two. Using such an ap-
proximation, we unify the mutual information maximization and the energy mini-
mization for deriving a similarity measure. We call any similarity measure derived
from the new framework the MRF model based variational approximation to mu-
tual information (MRF-VA-MI) and denote it as Sq

MRF−V A−MI(V, U, T ). It has
the form:

−Sq
V A−MI(V, U, T ) ≈ Sq

MRF−V A−MI(V, U, T ) = α ·
I,J∑
i,j

Wc(s((i, j); T ))

+(1 − α) ·
I,J∑
i,j

1
card(Nr

i,j)
·

∑
(i′,j′)∈Nr

i,j

Wc(s((i, j); T ), s((i′, j′); T ))

(14)

where Sq
V A−MI(V, U, T ) is negative because mutual information is maximized,

whereas energy must be minimized. The first term of the rightmost side is the
potential function for single-pixel cliques and the second term is the potential
function for all other pairwise cliques. card(N r

i,j) means to compute the number
of pixels in neighborhood N r

i,j . α ∈ [0.0, 1.0] is a control parameter.
The selection of the potential function in Eq. 14 is a critical issue in MRF

modeling [13]. By choosing different potential functions, we can derive different
similarity measures. Here we give two examples of deriving previously published
well-known similarity measures based on the present framework.

1. Sum-of-Squared-Difference (SSD): SSD can be derived from Eq. 14 by
specifying:

α = 1.0

Wc(s((i, j); T )) = [s((i, j); T )]2
(15)

2. Pattern Intensity: the pattern intensity proposed in [2] has the following
form:

Pr,σ =
∑
i,j

1
card(N r

i,j)

∑
(i′,j′)∈Nr

i,j

σ2

σ2 + [s((i′, j′); T ) − s((i, j); T )]2
(16)

where r and σ are two parameters to be experimentally determined. It can
be derived from the present framework by specifying α = 0.0 and by using
following pairwise clique potential function:

Wc(s((i, j); T ), s((i′, j′); T )) = − 1

1 + [s((i′,j′);T )−s((i,j);T )]2

σ2

(17)

In this work, we simply set α = 0.5 and use following potential functions to
derive a new similarity measure. We name the newly derived similarity mea-
sure as the pairwised MRF model based variational approximation to mutual
information (PW-MRF-VA-MI) and denote it as Sq

PW−MRF−V A−MI(V, U, T ):

Wc(s((i, j); T )) = [s((i, j); T )]2

Wc(s((i, j); T ), s((i′, j′); T )) = [s((i, j); T ) − s((i′, j′); T )]2
(18)
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3.3 Implementation Details

To accelerate the registration process, we exploit a spline-based multi-resolution
3D-2D registration scheme [14]. A cubic-spline data model is used to compute
the multi-resolution data pyramids for the CT volume, the X-ray images, the
DRRs, as well as for the gradient and the Hessian of the PW-MRF-VA-MI. The
registration is then performed from the coarsest resolution to the finest one. At
each resolution level, the size of the local region for the normalization is always
equal to that of the neighborhood system used in Eq. 14. And to improve the
capture range, we use two different sizes of neighborhood systems: r=15 and r=3.
The PW-MRF-VA-MI with the bigger neighborhood system is first minimized
via a Levenberg-Marquardt non-linear least-squares optimizer. The estimated T̂
is then treated as the starting value for optimizing the PW-MRF-VA-MI with
the smaller neighborhood system.

4 Experimental Results

We designed and conducted experiments on datasets from two different applica-
tions: (a) intra-operative patient pose estimation from a few (e.g. 2) calibrated
fluoroscopic images, and (b) post-operative cup alignment evaluation using single
X-ray radiograph with gonadal shielding.

4.1 Intra-operative Patient Pose Estimation from a Few Calibrated
Fluoroscopic Images

In this experiment, we conducted two studies on X-ray and CT datasets of a
plastic phantom and a cadaveric spine segment. The data sizes, the original data
resolution, the start and the end resolutions of the X-ray and the CT datasets are
summarized in Table 1. The ground truth transformations of both datasets were
obtained by performing paired-point matchings on implanted fiducial markers.
The phantom was custom-made to simulate a good condition. In contrast, the
quality of the X-ray images for the cadaveric spine was poor and there were
projections of interventional instruments present.

Using the datasets of both objects downsampled to the start resolution, we
first compared the behavior of the PW-MRF-VA-MI to those of a MI-based
measure using a histogram-based implementation [4] and of a similarity measure
introduced in [14], which is a global normalization based SSD. The results are
presented in Fig. 1. It was found that all similarity measures had similar be-
havior when tested on the phantom dataset but different behavior when tested
on the spine segment dataset. The PW-MRF-VA-MI shows a superior behavior
compared to others. More specifically, all curves of the PW-MRF-VA-MI have
clear minima and are smoother than those of others. It also shows that using
bigger neighborhood system, which is equivalent to incorporate wider range of
spatial information, leads to smoother energy function whereas using smaller
neighborhood system results in higher accuracy.
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Table 1. Data specifications

CT Data Specification

test object rows × columns × slices data res. (mm3) start res. (mm3) end res. (mm3)

phantom 512 × 512 × 93 0.36 × 0.36 × 2.5 2.88 × 2.88 × 2.5 2.88 × 2.88 × 2.5

spine 512 × 512 × 72 0.36 × 0.36 × 1.25 2.88 × 2.88 × 1.25 2.88 × 2.88 × 1.25

X-ray Data Specification

test object width × height × images data res. (mm2) start res. (mm2) end res. (mm2)

phantom 768 × 576 × 2 0.39 × 0.39 3.12 × 3.12 3.12 × 3.12

spine 768 × 576 × 2 0.39 × 0.39 3.12 × 3.12 3.12 × 3.12

Fig. 1. Probe through the minimum of similarity measures on the phantom data (the
first row) and on the spine data (the second row). The ordinate shows the value of
similarity measures normalized to the range [0.0, 1.0], which are given as functions of
each parameter in the range of [−15o,15o] or [-15mm, 15mm] away from its ground
truth (the first three columns represent the translational probe along X, Y and Z axis,
respectively; the last three columns represents the rotational probe along each axis).

The second study was performed only on the spine segment dataset to evaluate
the performance of the registration scheme using the PW-MRF-VA-MI. In this
study, we perturbed the ground truth by randomly varying each parameter in
the range of [−2o, 2o] or [-2mm, 2mm] to get 200 positions, and then another
200 positions in the rage of [−4o, 4o] or [-4mm, 4mm], and so on until the range
of [−12o, 12o] or [-12mm, 12mm]. We then performed the registration starting
from these perturbed positions and counted the success rate. Using a method
similar to that reported in [15], we regarded a registration as successful if the
mean target registration errors (mTRE) evaluated on the fiducial markers was
smaller than 1.5 mm. The capture range was then defined as the the average of
the initial mTRE when a 95% success rate is achieved. The study results are
presented in Table 2. When the absolute parameter range is (12o, 12mm), the
average CPU time tested on a 3.0 GHz Pentium machine was 26.7 seconds. It
was found that the capture range of the PW-MRF-VA-MI was much larger than
those reported in [10] and in [15], although the attained accuracy was lower than
that reported in [15]. This might be explained by the large inter-slice distance
(2.5 mm in this work vs. 0.31 mm in [15]) and the region outliers in the X-ray
images.
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Table 2. Study results using the datasets of cadaveric spine segment

absolute parameter range (o, mm) (2, 2) (4, 4) (6, 6) (8, 8) (10, 10) (12, 12)

average of the initial mTRE (mm) 2.3 4.6 6.9 9.2 11.5 13.5

success percentage 100 100 100 99 95 85

average of the final mTRE (mm) 0.8 0.8 0.8 0.8 0.8 0.8

4.2 Post-operative Cup Alignment Evaluation from Single X-Ray
Radiograph with Gonadal Shielding

2D anteroposterior (AP) pelvic radiographs are the standard imaging method
for the evaluation of cup orientation following total hip arthroplasty (THA).
While plain pelvic radiographs are easily obtained, their accurate interpretation
is complicated by the wide variability in individual pelvic position relative to the
X-ray plate. 2D-3D image registration methods [16,17] have been introduced to
estimate the rigid transformation between pre-operative CT volume of a patient
and post-operative radiograph(s) for an accurate estimation of the post-operative
cup alignment relative to an anatomical reference. However, those methods were
only evaluated on X-ray radiograph(s) without gonadal shielding, which may
pose a challenge for them.

In this experiment, we qualitatively evaluated the present approach to esti-
mate the rigid transformation between a pre-operative CT volume and a post-
operative X-ray radiograph on two patients. Fig. 2 shows one example. The input
X-ray radiograph is shown in Fig. 2(a). The initial rigid transformation between
the radiograph coordinate frame and the CT frame was obtained by an iterative
landmark-based registration. Fig. 2(b) shows the initial state of the intensity-
based 2D-3D registration. Both the x-ray radiograph and the CT volume data
are downsampled to 1/8th of the original sizes. The edges extracted from the
DRR are superimposed onto the X-ray radiograph. Fig. 2(c) shows the end of
the intensity-based 2D-3D registration. An accurate matching between the X-ray
radiograph and the DRR was observed.

(a) (b) (c)

Fig. 2. (a) X-ray radiograph with gonadal shielding; (b) the beginning of the intensity-
based 2D-3D registration. and (c) the end of the intensity-based 2D-3D registration.
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5 Conclusions

Based on the Kullback-Leibler bound, we present a framework unifying energy
minimization and mutual information maximization to derive a similarity mea-
sure for 2D/3D registration of X-ray to CT images. The similarity measure
derived from the present framework enables us to effectively incorporate spatial
information into mutual information. Results from the experiments performed
on the datasets of two different applications show that the newly derived sim-
ilarity measure has a larger capture range than those previously reported and
attains satisfactory accuracy even when a large area of the X-ray image(s) is
occluded by outliers.
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