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Abstract

Recent volumetric 3D reconstruction methods can pro-
duce very accurate results, with plausible geometry even
for unobserved surfaces. However, they face an undesir-
able trade-off when it comes to multi-view fusion. They
can fuse all available view information by global averag-
ing, thus losing fine detail, or they can heuristically cluster
views for local fusion, thus restricting their ability to con-
sider all views jointly. Our key insight is that greater detail
can be retained without restricting view diversity by learn-
ing a view-fusion function conditioned on camera pose and
image content. We propose to learn this multi-view fusion
using a transformer. To this end, we introduce VoRTX,1

an end-to-end volumetric 3D reconstruction network us-
ing transformers for wide-baseline, multi-view feature fu-
sion. Our model is occlusion-aware, leveraging the trans-
former architecture to predict an initial, projective scene
geometry estimate. This estimate is used to avoid backpro-
jecting image features through surfaces into occluded re-
gions. We train our model on ScanNet and show that it
produces better reconstructions than state-of-the-art meth-
ods. We also demonstrate generalization without any fine-
tuning, outperforming the same state-of-the-art methods on
two other datasets, TUM-RGBD and ICL-NUIM.

1. Introduction
3D reconstruction is a fundamental problem in computer

vision, supporting applications such as autonomous naviga-
tion and mixed reality. In many scenarios, dense and highly
detailed reconstruction is desirable. For example, it can fa-
cilitate the creation of virtual reality content by scanning
real-world scenes, or the simulation of physics-based effects
in augmented reality. Although active depth sensors have
been employed for this purpose [6, 29], they increase plat-
form cost relative to passive cameras. It is therefore desir-
able to perform reconstruction using only visible-light RGB

1https://noahstier.github.io/vortx

Figure 1. Our method fuses input view features using a trans-
former. We compare to Atlas [28], which fuses features by av-
eraging, and NeuralRecon [37], which fuses locally by averaging
and globally by RNN. Our method produces a high level of de-
tail, while also filling in holes due to occlusion and unobserved
regions.

cameras, which are ubiquitous and relatively inexpensive.
Dense 3D reconstruction from RGB imagery tradition-

ally consists of estimating depth for each image, and then
fusing the resulting depth maps in a reprojection step. This
approach, however, cannot fill holes arising from occlusions
and other unobserved regions.
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Recently, a number of works have addressed this by
posing RGB-only 3D reconstruction as the direct predic-
tion of a truncated signed-distance function (TSDF), using
deep learning to fill in unobserved regions via learned pri-
ors [28, 37]. These methods extract image features using a
convolutional neural network (CNN), accumulate them into
space by backprojecting onto a 3D grid, and then predict
the TSDF volume using a 3D CNN. When a particular grid
voxel is within the view frustum of multiple cameras, it is
common practice to fuse the backprojected image features
at that point via unweighted averaging. However, we ob-
serve two drawbacks of directly averaging view features.

First, when images are acquired from very different cam-
era poses, their content may not be directly comparable.
Although CNNs are capable of extracting high-level se-
mantic features that are therefore highly view-independent,
the CNN architectures commonly used in 3D reconstruc-
tion (e.g., U-Net [30] and FPN [21]) make explicit use of
the activations from early CNN layers. These are under-
stood to represent lower-level visual features, which exhibit
view-independence only within a particular range of view-
point difference. Averaging across disparate views does
not take that range into consideration, and therefore loses
view-dependent information. This is a known phenomenon
in multi-view stereo, where typical solutions include 1) se-
lecting views using constraints on camera pose to minimize
viewpoint differences [12, 32], or 2) constraining the image
features to be as view-independent as possible [40]. We hy-
pothesize that a better solution can be obtained by learning
a view fusion function, conditioned on pose and image con-
tent, that can jointly consider features from multiple views
within the appropriate range of viewpoints.

Second, averaging assigns an equal weight to all input
views at each voxel, including views for which a voxel is
occluded. This problem is exacerbated in wide-baseline re-
construction, where occlusions are particularly prevalent.
Occlusion modeling presents a chicken-and-egg problem:
the scene geometry is not known until after backprojection
and reconstruction; but until the scene geometry is known,
backprojection cannot account for occlusions, thus project-
ing image features through surfaces into regions where they
are irrelevant. We hypothesize that this irrelevant informa-
tion acts as noise that reduces reconstruction quality.

We propose an innovation that addresses both issues.
Our model, which we call VoRTX, is a deep learning-
based volumetric reconstruction network using transform-
ers [42] to model dependencies across diverse viewpoints.
The transformers use self-attention to perform soft group-
ing of views that are mutually relevant, and they can learn
to fuse within vs. across groups in different feature spaces.

Transformers also provide a natural mechanism for
occlusion-awareness, since the attention to each input view
varies as a function of 3D location. The view aggregation

can therefore be supervised to encourage reduced attention
to input images in regions where their view is occluded.
One possibility is to supervise the view aggregation using
ground-truth visibility. However, we argue in Sec. 3.3 that
projective occupancy is preferable for our problem setting,
because it is an easier target that more closely describes the
desired spatial distribution of image features during back-
projection. Our main contributions are as follows:

1. We introduce a new method of fusing multi-view im-
age features, using a transformer to perform data-
dependent fusion at each spatial location.

2. We propose the projective occupancy as an occlusion-
aware reconstruction target for deep volumetric MVS,
and we show that it yields improved results over unsu-
pervised or visibility-supervised reconstruction.

We show that VoRTX surpasses state-of-the-art recon-
struction results when compared with several baseline
methods, on multiple datasets.

2. Related work
Image feature fusion in MVS: Fusing measurements from
multiple views is a crucial step in MVS. Typically, im-
age patches are fused into a cost volume using a stereo-
matching cost function, which operates on raw image in-
tensity [12, 14, 32, 43] or CNN-extracted image features
[10, 49]. Some methods [15, 16] instead concatenate im-
age features in the channel dimension, and use a CNN to
reduce them into a cost volume. These techniques are ef-
fective when the input views are acquired closely enough in
pose space to maintain similar scene appearance, while still
providing enough parallax for stereopsis.

Atlas [28] proposes the use of a single feature volume,
bypassing depth prediction and posing 3D reconstruction as
the direct prediction of a TSDF volume. This is an effective
way to consider all input images jointly, and it also pro-
vides a framework for learning to reconstruct unobserved
scene regions via 3D priors. However, Atlas fuses input im-
age features by direct averaging, which does not effectively
model view-dependent image features or occlusion effects.

PIFu [31] also performs multi-view fusion by averag-
ing backprojected features, showing strong results for re-
construction of free-standing humans. However, to our
knowledge, it has not been demonstrated for full, real-world
scenes, which tend to introduce more complex occlusion re-
lationships as well as semantic and geometric variety.

NeuralRecon [37] averages features only among nearby
views, fusing across view clusters using a recurrent neural
network (RNN). NeuralRecon achieves real-time execution,
with the trade-off that incoming views must be considered
sequentially. Our model lifts the constraint of sequential
processing, fusing all available views jointly.



Point-MVSNet [4] replaces the feature volume entirely
with a feature-augmented point cloud, aggregating view
features with a point cloud CNN architecture based on
EdgeConv [44]. This is a promising approach, although
point cloud learning is not as mature as regular-grid CNNs.
Occlusion-aware MVS: Occlusion detection with ex-
plicit photometric and geometric constraints has tradition-
ally played an important role in MVS [19, 32, 34, 35, 36,
47, 54, 56]. In addition, a number of MVS methods based
on deep learning have proposed to learn visibility estima-
tion [3, 17, 18, 24].
Direct scene optimization: Yariv et al. [50] propose to
directly optimize the scene representation with respect to
the input images. This is effective when the target geom-
etry is fully observed. However, it has no offline training
phase in which 3D priors can be learned and then applied
to new reconstructions. This prevents any significant scene
completion, which is a key feature of our algorithm.
Projective TSDF: In RGBD reconstruction, the projec-
tive TSDF is used as a means of approximating the true,
or view-independent TSDF, by averaging together the pro-
jective TSDFs of many depth images [29]. It has been used
as a powerful representation in its own right, as way to en-
code individual depth images for processing by 3D CNNs
[13, 33]. It has also been used a reconstruction target for
3D reconstruction from single-view RGB images [20]. In
our formulation, a projective TSDF prediction acts an ini-
tial approximation of the surface geometry, which allows us
to model occlusion during backprojection.
Multi-view fusion with attention: For single-object re-
construction, attention has been used to fuse multiple im-
ages into a fixed-size global scene encoding [45, 46, 53].
MVS algorithms have leveraged channel-wise attention to
focus on relevant feature subspaces [26], 2D image-space
attention to aggregate visual context [48, 51], and 3D atten-
tion to promote coherence across cost volumes [23]. A re-
cent method for novel-view synthesis [41] has experimented
with two attention mechanisms for fusing backprojected im-
age features: AttSets [46] and Slot Attention [22]. In our
experiments, these variants do not perform as well as the
transformer-based attention (see Table 4 for results and sec-
tion 4.3 for discussion).
Transformers: Transformers are a family of neural net-
work architectures that have proven very effective for se-
quence modeling in natural language processing [8, 42], as
well as vision [9]. They are neither biased toward mod-
eling short-range dependencies, like CNNs, nor restricted
to sequential processing, like RNNs. Instead, they achieve
a global receptive field by composing self-attention lay-
ers. The appeal of transformers for multi-view fusion arises
from their ability to perform soft clustering of their inputs.
This makes transformers a good fit for wide-baseline view
fusion, which benefits from clustering views, and fusing

within vs. across clusters in different feature subspaces.
In work submitted concurrently with ours, Aljaž et al.

[2] propose 3D reconstruction with transformers for multi-
view fusion. Notably, their work further utilizes the atten-
tion weights for frame selection, to ensure that all relevant
view information is considered. Our work on modeling pro-
jective occupancy is fundamentally aimed at reducing the
irrelevant information, and we therefore hypothesize that
these approaches may provide complimentary benefits.

3. Method
Our goal is to predict a global TSDF volume Ŝ, using an

unordered sequence of input RGB images and their corre-
sponding 6-DOF camera poses. For training, we assume the
existence of ground-truth depth maps.

In broad strokes, our model extracts image features with
a 2D CNN, backprojects them into a voxel grid, and predicts
a TSDF with a 3D CNN. It thus bears structural similarity to
existing deep volumetric reconstruction methods [28, 37].
Sec. 3.1 introduces the architecture overview and notation.

The first key difference from existing work is in the im-
age feature backprojection and aggregation phase. We in-
troduce a transformer to process single-view image fea-
tures, selectively fusing them into a multi-view encoding
before aggregating per-voxel features. This significantly ex-
pands the model’s ability to reason jointly about the input
views, improving the localization of surfaces in its recon-
structions. Details are presented in Sec. 3.2.

Our second main contribution is to weight the final
feature aggregation with explicitly-supervised projective
occupancy predictions, enforcing that image features are
only accumulated into regions near their observed surfaces.
Sec. 3.3 expands on this component.

3.1. Overview

The overall structure of our algorithm is illustrated in
Fig. 2. A 2D CNN (a feature pyramid network [21] with
an MnasNet [38] backbone) begins by extracting image fea-
tures at coarse, medium, and fine resolutions:

{F (c)
I , F

(m)
I , F

(f)
I } = gθ(I), (1)

where gθ is the CNN parametrized by network weights θ.
At each resolution r ∈ {c,m, f}, the image features are

backprojected onto a sparse 3D grid. This produces a fea-
ture volume, F (r)

BP , in which each voxel contains a set of
backprojected features, one from each image. The per-voxel
features are then aggregated using our transformer and pro-
jective occupancy architecture to form a new volume, F (r)

MV ,
containing one multi-view feature in each voxel. A sparse
3D CNN [39] processes F (r)

MV , predicting occupancy Ô(r):

Ô(r) = h
(r)
θ (F

(r)
MV), r ∈ {c,m, f} (2)

where h(r)θ represents the 3D CNN at resolution r.



Figure 2. Model overview. A 2D CNN processes N input images to produce image features at coarse, medium, and fine resolutions:
F

(r)
I ∈ RN×H(r)×W (r)×C(r)

, r ∈ {c,m, f}. At each resolution, a sparse feature volume with V (r) voxels is computed by backprojection,

and the camera-to-voxel unit vector and depth are jointly encoded: F
(r)
BP ∈ RV (r)×N×C(r)

. A transformer fuses image features at each
voxel to produce the multi-view feature volume, F (r)

MV ∈ RV (r)×C(r)

. At the coarse and medium resolutions, a sparse 3D CNN predicts

occupancy Ô(r) ∈ RV (r)

which is used to sparsify the volume. At the fine resolution, the 3D CNN predicts the final TSDF Ŝ.

At each resolution, any voxels predicted to be unoccu-
pied are pruned from the next, higher-resolution hierarchy
level, in a coarse-to-fine manner. At the final, highest-
resolution level, the TSDF Ŝ is predicted instead of occu-
pancy, and the zero isosurface is extracted using march-
ing cubes [25]. We set the voxel size at each resolution
to 16cm3, 8cm3, and 4cm3, respectively.

In order to scale from local to full-scene reconstruction,
we tile the target space with a set of non-overlapping local
volumes. Then, for each tile we aim to select a diverse set
of N views from across the input sequence (see Sec. 3.4).
Starting with the coarsest resolution, we populate F (r)

BP and
F

(r)
MV tile by tile. Then, we run sparse 3D convolution glob-

ally, and proceed to backprojection at the next resolution.

3.2. Multi-view image feature fusion

Our key innovation is to use a transformer to augment
each backprojected single-view feature with information
from other relevant views. At each voxel, the transformer
takes an unordered sequence of single-view feature vectors
as input, and produces a corresponding sequence of multi-
view feature vectors as output:

F̃
(r)
MV = y

(r)
θ (F

(r)
BP ), (3)

where y(r)θ represents the transformer at resolution r.

We use the tilde to indicate that F̃ (r)
MV is the predecessor

to F (r)
MV: each voxel in F̃ (r)

MV contains a sequence of multi-
view features, and F (r)

MV is the result of the per-voxel feature
aggregation detailed in the following section.

The correspondence between the ith sequence element
of F (r)

BP and F̃
(r)
MV is encouraged by residual connections

across attention layers, and it is enforced by predicting the
projective occupancy for each input view using its corre-
sponding element of the output sequence.

Generally, the input to a transformer is an unordered se-
quence of feature vectors, where each feature vector is a
joint encoding of the original sequence element and its po-
sition in the sequence. In our model, we replace the typical
sequential positional encoding with a camera pose encod-
ing, Λ(d), where d is the camera-to-voxel view direction
unit vector and Λ is the positional encoding from Milden-
hall et al. [27]. To form the transformer input, we concate-
nate the image feature and the pose encoding, and reduce
the resulting dimensionality with a shared fully-connected
(FC) layer. We then concatenate the normalized camera-
to-voxel depth and reduce with a second FC layer before
applying the transformer.

Our transformer, shown in Fig. 3, is based on the en-
coder part of the original transformer network introduced by
Vaswani et al. [42]. It consists of a series of L layers, where
each layer contains a multi-head attention mechanism with



Figure 3. Our transformer architecture in detail. At each individual voxel, the transformer input features F (r)
BP from N images each have

channel dimension C. The transformer layer is repeated L times, selectively fusing the inputs to produce a set of multi-view features F̃ (r)
MV

with the same dimensions as the input. A fully-connected layer predicts projective occupancy probabilities Ô(r)
p , which are used as weights

in a final channel-wise average to produce F
(r)
MV .

H heads, followed by a small fully-connected network. We
also employ residual connections and layer normalization
within each layer. In our implementation we set L and H
both equal to 2.

The following section describes the aggregation of the
transformer output sequence into a single per-voxel feature
vector, which is subsequently passed on to the 3D CNN.

3.3. Projective occupancy

Our problem context violates key assumptions that MVS
methods traditionally make, and this inspires us to re-think
the notion of visibility.

Specifically, because we aim to learn view selection and
fusion, we do not impose any constraints on the relative
pose of the views to be fused, instead sampling broadly
from across the image sequence. This results in high per-
spective diversity, with triangulation angles often greater
than 90 degrees. This violates the typical assumptions of
fronto-parallel scene structure and small baseline distance.

We therefore reconsider the notion of visibility in our
context. Our goal is to place image features into 3D space
such that they enable a 3D CNN to estimate the imaged sur-
face location. If we spatially distribute those features along
a camera ray according to the estimated projective occu-
pancy, their spatial density will be centered at the estimated
target surface depth. This is intuitively favorable from the
perspective of the 3D CNN. In contrast, if the features are
spatially distributed according to visibility, then their spatial
density is spread across observed empty space, and it may
not reach the true surface location if the depth is underesti-

Figure 4. Comparison of projective distance functions, where t is
the TSDF truncation distance. Visibility is a function of the sign
of the TSDF, and it includes observed empty space. Projective
occupancy is a function of TSDF magnitude, and it describes the
surface location within a margin of error.

mated. See Fig. 4 for an illustration. We therefore consider
the projective occupancy to be a more effective prediction
target for our purposes.

Furthermore, we hypothesize that it is an easier target.
Fundamentally, projective occupancy requires predicting
the magnitude of the TSDF, whereas visibility requires pre-
dicting the sign of the TSDF. In theory, estimating the mag-
nitude of the TSDF at a point using two image projections
can be done with only a matching cost function. However,
estimating the sign of the TSDF requires understanding the
direction of mismatch, and comparing it to the relative cam-
era poses. We therefore consider the visibility to be a more
difficult target, and this may contribute to the performance
decrease observed in our ablation study (Table 4, row g).

To introduce our projective occupancy prediction frame-
work, we first define the projective SDF S,

S = d− dv, (4)

where dv is the camera-to-voxel depth, and d is the true
depth along the camera-voxel ray. We estimate d in practice
by projecting onto the ground truth depth map and sampling
the depth at the nearest-neighbor pixel.

The projective occupancy Op can then be obtained by
thresholding the absolute value of S on the truncation dis-
tance t:

Op =

{
1 |S| < t
0 |S| ≥ t . (5)

Our model estimates the projective occupancy likelihood
X ∈ RN as

X = z
(r)
θ (F̃

(r)
MV), (6)

where z(r)θ is a single, shared, FC layer at resolution r. In
order to supervise X , a sigmoid is applied to produce the
projective occupancy probabilities:

Ô(r)
p = σ(X) (7)

Then a loss is computed as binary cross-entropy between
Ô

(r)
p and the groundtruth projective occupancy.
In order to use X to inform feature aggregation, we con-

catenate a zero-likelihood toX and apply a softmax to com-
pute a weight vector W ∈ R1×N+1. We then concate-
nate a zero feature vector to F̃ (r)

MV , resulting in dimensions



(N + 1)× C, and reduce with a weighted sum:

F
(r)
MV = WF̃

(r)
MV (8)

The softmax weight normalization ensures that the distribu-
tion of F (r)

MV is invariant to the number of input views. The
zero-padding of both features and likelihoods causes F (r)

MV
to be near zero if all the predicted occupancy likelihoods
are low.

3.4. View selection

Our method does not depend on heuristics to select op-
timally positioned input views. Conversely, we aim to train
our model on an unconstrained set of views that is as diverse
as possible while remaining computationally tractable, such
that it can learn to fuse features across the appropriate range
of pose differences. We employ heuristics only to reduce
the overall number of views while maintaining diversity.

To this end, we first remove redundant views by applying
the keyframe selection strategy from Sun et al. [37]. Then,
for each local sub-volume, we select N views via uniform
random sampling from among the remaining views whose
camera frustums intersect the target volume. During train-
ing we set N = 20, and during testing we set N = 60. For
redundant frame removal, we set Rmax to 15 degrees, and
we set tmax to 0.1 m for training and 0.2 m for testing.

3.5. Training

Loss function: The projective occupancy loss λ(r)P at each
hierarchy level, and the occupancy loss at the coarser levels
λ
(r)
O , are computed using binary cross-entropy. The TSDF

loss at the finest level, λS , is computed by l1 distance to
the ground truth, after log-transforming the prediction and
ground truth following [7]. Then the total loss L is

L = λ
(c)
P + λ

(m)
P + λ

(f)
P + λ

(c)
O + λ

(m)
O + λS

Ground truth: We compute our fine-resolution reconstruc-
tion target using TSDF fusion at 4 cm resolution, discarding
all measurements greater than 3 m due to sensor noise at
longer ranges. We then threshold that TSDF on the trunca-
tion distance to obtain a fine-resolution occupancy volume,
which we downsample by morphological dilation to pro-
duce the medium and coarse reconstruction targets. As in
Murez et al. [28], we mark any column of the ground truth
TSDF volume as unoccupied if it is entirely unobserved.

During training we select sub-volumes by randomly se-
lecting TSDF subcrops with size 96 × 96 × 48 voxels, or
3.84 m× 3.84 m× 1.92 m. We augment with random hori-
zontal reflections and rotations about the gravitational axis.
Training phases: During our initial training phase, the pro-
jective occupancy predictions are supervised, but they are
not otherwise used: the transformer output sequence is ag-
gregated with an unweighted average. This aids stability.

Also during this phase, the 2D CNN weights, which are
pre-trained on ImageNet, are frozen. The learning rate is
10−3, the batch size is 4, and this phase lasts 300 epochs.

In the second phase, the projective occupancy predic-
tions are used for weighted-average aggregation of the
transformer outputs, as shown in Fig. 3. In addition, the
2D CNN weights are unfrozen, except for the batch norm
weights and statistics. The learning rate is lowered to 10−4,
the batch size is lowered to 2. This phase lasts 100 epochs.
Implementation details: We use the Adam optimizer with
β1 = 0.9, β2 = 0.999, ε = 10−8, and a linear learning rate
warm-up from 0 over 2, 000 steps. Training takes approxi-
mately 84 hours on a single Nvidia RTX 3090 graphics card.
We implement our model in PyTorch, using the PyTorch
Lightning framework [11]. We use torchsparse [39] for our
sparse 3D CNN, and Open3D [55] for visualization and ge-
ometry processing. During training, we randomly drop out
voxels to reduce memory cost, following [37].

4. Experiments
For all experiments, we train our method on the ScanNet

dataset [5]: 1,513 RGBD scans of 707 indoor spaces. We
use the official train/validation/test split.

For quantitative comparison, we compute a set of 3D
metrics as defined by Murez et al. [28]. To avoid penal-
izing the volumetric methods for filling in areas that are not
present in the ground truth, we trim the reconstructed mesh
to within the observed regions. To do this, we render the
ground-truth mesh to a set of depth maps D from the per-
spective of each camera pose. Then we render the predicted
mesh to a set of depth maps D̂. We mask out pixels in D̂
that do not have a valid depth in D, and re-fuse the masked
predicted depth into a trimmed mesh via TSDF fusion.

4.1. Volumetric baselines

Our primary comparison is with algorithms that, like
ours, can complete geometry in unobserved regions. These
are the deep volumetric methods, Atlas [28] and NeuralRe-

Acc ↓ Comp ↓ Prec ↑ Recall ↑ F-score ↑
SCANNET

Atlas 0.068 0.098 0.640 0.539 0.583
NeuralRecon 0.049 0.133 0.691 0.461 0.551

Ours 0.054 0.090 0.708 0.588 0.641
ICL-NUIM

Atlas 0.175 0.314 0.280 0.194 0.229
NeuralRecon 0.215 1.031 0.214 0.036 0.058

Ours 0.102 0.146 0.449 0.375 0.408
TUM-RGBD

Atlas 0.208 2.344 0.360 0.089 0.132
NeuralRecon 0.130 2.528 0.382 0.075 0.115

Ours 0.175 0.314 0.280 0.194 0.229

Table 1. Reconstruction metrics (as defined as in [28]), comparison
with volumetric methods.



Figure 5. Qualitative results on ScanNet. The inset boxes show enlarged regions where our model reconstructs a high degree of detail. With
the orange arrows, we highlight another strength of our model: it fills in unobserved regions plausibly, without leaving holes or artifacts.

con [37], and we use the provided pre-trained models. For
Atlas, we select every 5th frame as input, and for Neural-
Recon we use the frame selection proposed by its authors.
We evaluate on the ScanNet test set (100 scenes), the ICL-
NUIM dataset (8 scenes), and the TUM-RGBD dataset (13
scenes). For ScanNet, we evaluate against the provided
ground-truth meshes. For TUM-RGBD and ICL-NUIM, we
generate ground truth by TSDF fusion at 4 cm resolution.

Quantitative results are shown in Table 1. We consider
F-score to be the most important metric, as it captures the
trade-off between precision and recall. Our F-score indi-
cates a significant improvement over state-of-the-art meth-
ods. We also report the accuracy of our projective occu-
pancy predictions at each resolution in Table 2, and we com-
pare against the default prediction of true everywhere.

Qualitative results are shown in Fig. 5. We observe in-
creased accuracy relative to the baseline methods, particu-
larly in areas with many small objects and a high degree of
occlusion, such as cluttered countertops. In these regions,
our model produces a high level of detail while also filling
in holes arising from occlusion (Fig. 5, rows 1 and 2). We
note that in large unobserved regions (Fig. 5, row 3), our
model’s performance degrades gracefully: whereas Atlas
tends to incorrectly place walls at the boundary, and Neu-
ralRecon typically does not produce any geometry, VoRTX
extends observed surfaces for a plausible distance without
introducing large artifacts.

We also observe that in many cases, even when recon-
struction quality is visually similar, our model localizes sur-
faces more accurately, as shown in Fig. 6.

4.2. Depth-prediction baselines

For completeness, we compare with deep MVS networks
that estimate depth maps, reconstructing only observed sur-
faces: DeepVideoMVS (with fusion) [10], Fast-MVSNet

[52], GPMVS (batched) [14], and Point-MVSNet [4]. For
DeepVideoMVS, we use the ScanNet pre-trained weights.
For Fast-MVSNet, GPMVS, and Point-MVSNet, we fine-
tune on ScanNet, starting from the pre-trained models. For
Point-MVSNet and Fast-MVSNet, we modify the parame-
ters for the longer ranges in ScanNet relative to DTU [1]:
we use 96 depth hypotheses, every 5 cm starting at 50 cm.
We fuse predicted depths into point clouds following [12].
For all depth-prediction methods, we select views follow-
ing Duzceker et al. [10], using four source images for each
reference image. As shown in Table 3, VoRTX produces
higher F-scores, indicating that it does not compromise on
observed surfaces in order to complete unobserved regions.

4.3. Ablation experiments

In Table 4 we present ablation experiments to validate
our model. In each, the model architecture is modified and

Hierarchy Lvl. Proj. Occ. Prediction Prec ↑ Recall ↑ Acc ↑

4cm
Default (true everywhere) 0.237 1.000 0.237

Ours 0.702 0.347 0.813

8cm
Default (true everywhere) 0.301 1.000 0.301

Ours 0.750 0.627 0.829

16cm
Default (true everywhere) 0.067 1.000 0.067

Ours 0.739 0.661 0.961

Table 2. Projective occupancy results. The default behavior is to
assume projective occupancy is true for all voxels.

Acc ↓ Comp ↓ Prec ↑ Recall ↑ F-score ↑
DeepVideoMVS 0.079 0.133 0.521 0.454 0.474

Fast-MVSNet 0.042 0.225 0.746 0.383 0.495
GPMVS 0.066 0.117 0.591 0.513 0.539

Point-MVSNet 0.037 0.278 0.790 0.363 0.484
Ours 0.054 0.090 0.708 0.588 0.641

Table 3. ScanNet reconstruction metrics (as defined as in [28]),
comparison with depth-prediction methods.



Figure 6. Trimmed mesh predictions (see Sec. 4). Top: shaded
blue for predicted vertices p∗ within 5cm of a ground-truth vertex
p, red otherwise. Bottom: shaded by surface normal. Our results
show improved accuracy, even in cases with similar visual quality.

re-trained from scratch. Row a is VoRTX, unmodified.
Transformer: We first experiment with removing the
transformer entirely (row c). In this case, projective occu-
pancy predictions are made on the basis of the single-view
features, aggregating by weighted average. This causes a
significant drop in F-score. We also experiment with re-
moving both transformer and projective occupancy (d), ag-
gregating within voxels by unweighted average. This causes
a further F-score drop. We conclude that the transformer is
responsible for most of VoRTX’s performance gain.

In f we alter the hyperparameters of the transformer, us-
ing only a single layer and a single attention head, resulting
in a moderate F-score decrease. We thus hypothesize that
additional layers may lead to further performance gains.

In h and i, we replace the transformer with alternative at-
tention mechanisms, following GRF [41]. The projective
occupancy is predicted using single-view features. In h,
the AttSets [46] model shows a moderate F-score decrease.
This may be due to the fact that AttSets has only one at-
tention layer, or that it doesn’t model pairwise attention be-
tween views. In i, using Slot Attention [22], our model does
not converge well during training, and further investigation
may be required to fully characterize the technique.
Projective occupancy: We also experiment with remov-
ing the projective occupancy prediction while keeping the
transformer, aggregating the transformer outputs by direct
averaging (b). In g, we keep the same architecture, but we
supervise Ô(r)

p with the visibility instead of projective occu-

Transf. Proj.Occ. Pose Acc ↓ Comp ↓ Prec ↑ Rec ↑ F-score ↑
a X X X 0.054 0.090 0.708 0.588 0.641
b X X 0.058 0.090 0.681 0.579 0.624
c X X 0.067 0.110 0.626 0.510 0.560
d X 0.071 0.125 0.611 0.487 0.540
e X X 0.053 0.091 0.701 0.579 0.633
f L=1, H=1 X X 0.057 0.090 0.684 0.572 0.622
g X Vis. X 0.057 0.089 0.677 0.562 0.613
h AttSets X X 0.057 0.098 0.680 0.563 0.614
i Slot Attn. X X 0.075 0.210 0.546 0.346 0.420

Table 4. Ablation experiments on ScanNet.

pancy. In both cases we see a small performance decrease,
supporting our hypotheses that the model benefits from su-
pervising the aggregation weights, and that projective occu-
pancy is a more effective weighting function than visibility.
Pose: In e, the model does not encode pose information
into the image features during backprojection (it does still
encode camera-to-voxel depth). This results in only a very
slight performance decrease. We interpret this to suggest
that although the viewing direction is useful information,
most of its benefit can be obtained with attention-based
comparison of pose-agnostic image features.

4.4. Inference time

Our method achieves speeds compatible with interac-
tive applications on commodity hardware. We benchmark
VoRTX on the ScanNet test set, using an AMD Threadrip-
per 2950X and an NVIDIA RTX 3090. It averages 14.2
FPS, counting only selected keyframes.

5. Limitations
Because VoRTX uses a voxel representation, it is subject

to a trade-off between resolution and memory use. We use
4 cm voxels, which are acceptable for indoor scenes but
can cause aliasing for thin structures. In addition, reflective
surfaces are often missing from our reconstructions. We
believe this is partially due to the failure of the depth sensors
for those surfaces, leading to gaps in supervision.

6. Conclusion
We have presented a novel method for multi-view fu-

sion using transformers, applied toward deep volumetric
MVS. We show that this produces better reconstructions
than state-of-the-art methods on ScanNet, TUM-RGBD,
and ICL-NUIM. Our model is trained only on ScanNet,
generalizing well to the two other datasets without fine-
tuning. Our projective occupancy framework opens the
door to occlusion-awareness for deep volumetric MVS.

In the future, a focus on thin structures and reflective sur-
faces could yield improvements. Use of simulated training
data, or alternative depth sensors, may facilitate learning
and open possibilities for new data domains. Further
attention to scalability may be beneficial for transferring to
large-scale reconstructions. Finally, we anticipate that the
transformer-based view fusion may also be applicable to
tasks such as fusing multiple sensing modalities.
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