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ABSTRACT
Nowadays, augmented reality (AR) applications are still dom-
inated by marker-based solutions to perform pose estimation.
The main reason for this is that existing marker-less trackers
are still not robust enough to serve the purpose of tracking
the head of the user at all times. In this paper, we propose
an improvement over existing camera trackers by using only
depth information acquired by hand-held depth cameras. The
main contribution of this paper is the way we combine a dense
tracking approach with a model-based one. More specifically,
besides pose estimation based on the alignment of consecu-
tive point clouds, a second thread is running for the align-
ment of the acquired point cloud with a 3D model. To make
the tracking both robust, accurate and fast, we propose a sur-
face reconstruction step combined with a multi-resolution re-
sampling of the 3D model. Our system was extensively tested
on an online available dataset and the accuracy proved to be
competitive with state-of-the-art visual SLAM methods.

Index Terms— AR, point cloud, registration, Kinect

1. INTRODUCTION AND RELATED WORK

More and more augmented reality (AR) applications are using
head-mounted devices to give users a fully immersive experi-
ence. Among the examples are the HoloLens introduced by
Microsoft in 2015 or the recently available Meta 21. These
devices are tracking the head of the user mainly using ac-
celerometers and gyroscopes. However, often times it is de-
sirable to track the pose of the head related to an existing
3D model of the environment, in order to be able to fully
interact with it. Today, many applications are still using ar-
tificial markers that are put onto the scene instead of using
natural landmark tracking or full-blown SLAM solutions -
SLAM being the abbreviation for Simultaneous Localization
And Mapping. The main reason is that the current SLAM
methods often lack robustness, as they are most of the time
only visual-based, such as ORB-SLAM [6], LSD-SLAM [2]
and the older PTAM [5]. They are hence subject to subtle
changes in lighting conditions or shadows and also heavily
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rely on the presence of textured objects in the scene. Also,
they are less suited to provide the pose related to an existing
3D model in the database, which is often desirable for AR ap-
plications. Therefore, it is a lot more interesting to use RGB-
D cameras to perform tracking as we can then also incorporate
depth information. With the advent of cheap RGB-D sensors
such as the Kinect, many researchers have been focusing on
this [3, 8, 1, 7, 4]. Early RGB-D sensors were using struc-
tured light and were thus only suited for indoor environments.
However, since the introduction of the Kinect 2, a consumer-
level device is available that is based on Time-of-Flight (ToF)
and that can even be used for limited outdoor environments.

The main drawback of the aforementioned solutions is
that they are all incremental or sequential and as a result they
are prone to drift (known as error propagation) leading to po-
tentially large errors after some period of time. Moreover,
in AR we often want to know the precise location and orien-
tation of the person related to an existing 3D model that is
present in a database. This is especially the case for indus-
trial applications, where tasks have to be performed based on
specific components of machinery. In this paper, we there-
fore propose a hybrid system in the sense that for the fight
against drift we adopt a model-based approach while the core
of the tracking is done based on the direct registration of two
consecutive point clouds. This way we keep the best of two
worlds by being both fast and robust and being able to cope
with drift. Regarding the model-based tracking, we introduce
a surface reconstruction step as well as a re-sampling step to
improve the robustness and accuracy. In addition, we apply
a multi-resolution registration scheme to speed-up the pose
estimation.

2. APPLICATION

The application for which this research was conducted is the
one of engineering coach in which a layman is guided towards
the completion of a particular task without having the knowl-
edge to do so. The precise instructions are provided to the
layman by means of visual cues. The task the layman has to
deal with in our application is replacing an oil filter of a cool-
ing machine. In Figure 1, an image is depicted of the working
environment.



Fig. 1: Image of the cooling container.

Fig. 2: Image depicting the sight of the layman (left) and
the (colored) point cloud from the Kinect associated with that
(right).

The main prerequisite to solve this use case is of course to
find out the current position of the layman and the direction he
is looking at. To this end, we used a Kinect 2 sensor that was
hand-held by the layman but mimicked his sight. We used
the depth data to track his position and orientation. In Figure
2, an image is depicted of the layman and the (colored) point
cloud from the Kinect. The final goal would of course be to
deploy the system on a head-mounted device that has a ToF
camera integrated.

As the tracking of the Kinect only gives us a relative mea-
sure on the pose of the user, we incorporate the use of a
ground truth 3D point cloud of the machine. Moreover, this
point cloud is linked with an existing CAD model that is se-
mantically annotated and contains information on all of the
components. Thus, once we figured out the current pose of
the layman, we also know the exact position of certain impor-
tant components in his field of view.

The ground truth point cloud model was created by means
of a static laser scan, more specifically using a Leica ScanSta-
tion2. In Figure 3, an image of the 3D model is depicted. The
colour in the image denotes the height.

2http://leica-geosystems.com/

Fig. 3: Image of the ground truth 3D model, obtained by ter-
restrial lidar scanning using a Leica system. The color de-
notes the height.

3. APPROACH

Our approach consists of four main steps. First, we convert
the point cloud to a surfel representation by computing sev-
eral local features, including the normal vector for each point
in the point cloud. The second step deals with the alignment
of consecutive point clouds, which gives us an initial guess
for the current pose. Third, we conduct a surface reconstruc-
tion on the 3D model built so far by means of moving least
squares. This step will allow us to access the 3D model us-
ing different resolutions. Finally, the fourth step deals with
the actual alignment of the point cloud with the 3D model to
obtain a final accurate estimate on the pose.

3.1. Surfel representation

The word surfel is a concatenation of ‘surface’ and ‘element’
and hence it can be seen as a building block (element) to rep-
resent a surface patch. In essence, it consists of the point pk
itself, together with its normal vector nk, its normal confi-
dence ck and the set of neighbours Nk that was used to com-
pute the surface normal. We denote the surfel of a point pk by
Sk = {pk,nk,Nk, ck}. Often times, an easy neighbourhood
function is chosen, such as the k nearest neighbours or all
the points lying within a certain radius. However, this overly
simple function causes the estimation of normal vectors to be
inaccurate as points can be separated by an object border and
can be lying on different surfaces. This can on its turn jeopar-
dize the correct alignment of two point clouds and hence the
estimation of the camera pose will also be inaccurate. In the
literature, a popular way of estimating normal vectors is by
using the principal component analysis of the neighbours of a
point. We extended this method by incorporating the princi-
pal component analysis in the determination of the optimal set
of neighbours. Thus, given a set of neighbours of a point pk
determined by a radius r, we first compute the eigenvectors
λ1, λ2 and λ3 corresponding to the eigenvectors v1, v2 and



v3. We then define the standard deviation along an eigen-
vector as σi =

√
λi for i ∈ 1, 2, 3. Now, we can consider

the three values ψ1 = σ1−σ2

σ1
, ψ2 = σ2−σ3

σ1
, ψ3 = σ3

σ1
that

represent respectively how linear, planar or scattered the un-
derlying surface is. We then define the dimensionality label
as l = argmax

i∈[1,3]

(ψi). Thus, points lying on the intersection of

two planes are assigned the label ‘0’, points lying on a planar
surfaces are assigned the label ‘1’ and finally points belong-
ing to volumes or scatter are assigned the label ‘3’. As the
three values ψ1, ψ2 and ψ3 represent a partition of unity Ψ,
we can compute its Shannon entropy, which is given by the
following formula:

E(Ψ) = −ψ1 ln(ψ1)− ψ2 ln(ψ2)− ψ3 ln(ψ3). (1)

This Shannon entropy gives a notion of how certain we
are that a point is really belonging to one of the three classes.
The ideal set of neighbors Nk is then given by the optimal
radius r∗ given by equation 2:

r∗ = argmin
r∈[rmin,rmax]

E(Ψr). (2)

The eigenvalues, eigenvectors and resulting ψ-values, in
combination with the Entropy and dimensionality label are
forming a feature vector that will be used in the local align-
ment step to give a weight to corresponding pairs.

3.2. Moving least squares

To de-noise the point cloud and to smooth surfaces, e.g. along
gaps, we apply the moving least squares algorithm. This
method estimates polynomials through the points and subse-
quently re-sample the point cloud based on them. For each
point pk we have its neighbours in Nk as well as its tangent
plane defined as Hk , [nk, dk] in which dk represents the
distance to the origin. For all points lying in Nk, we can
compute the distance to this tangent plane. Subsequently, we
fit a polynomial in the set of distances from these points to
the surface. To this end, we define a local approximation of
degree m by a polynomial p̃k ∈ Πm minimizing, among all
p ∈ Πm, the weighted least-squares error:

p̃k = argmin
p

∑
pi∈Nk

(p(xi)− fi)2θ(||pi − pk||), (3)

where I is the vector containing the indices of the points
in Nk, {xi}i∈I are the orthogonal projections of the points
{pi}i∈I onto the tangent plane and fi , 〈pi,n〉−d is the dis-
tance of pi to the tangent plane. Finally, θ(x) = e−( x

σr
)2 rep-

resents the weighting function that is based on the distances
to the tangent plane and the average separation σr of the 3D
points.

Once the parameters of the polynomials p̃k are known, we
project the points on the moving least squares (MLS) surface.
This procedure manipulates the points in such a way that they
represent the underlying surface in a better way. In addition,
we up-sample the point cloud using voxel grid dilation in or-
der to fill small gaps. This latter process first dilates a voxel
grid representation of the point cloud, built using a predefined
voxel size. After that, the newly created points are projected
to the MLS surface of the closest point in the point cloud.

3.3. Local ICP

Once the Kinect point cloud has been cleaned up and smoothed,
the next step consists in finding the transformation matrix that
aligns it with the previously acquired Kinect point cloud. To
this end, we adopt the well-known ICP algorithm, an iterative
method minimizing an error metric based on closest point cor-
respondences between two point clouds. The error metric we
solve in each iteration is the point-to-plane metric given in eq.
4.

E(S,T ; T) =

N∑
i=1

wi((Tpsi − ptc(i)) · n
t
c(i))

2. (4)

In this equation, S and T are respectively the source point
cloud and the target point cloud, in our case respectively the
current and previous point cloud acquired by the Kinect. Fur-
ther, N is the number of corresponding point pairs, c is the
vector containing the indices of the corresponding pairs and
nt represents the normal vector of the target point pt.

Usually, the closest point correspondences are determined
using the Euclidean norm in 3D space. However, as this ap-
proach is often leading to wrong point correspondences when
the point density in the point cloud is inhomogeneous, we pro-
pose to introduce a weight for every corresponding pair. This
weight is determined using the Mahalanobis distance in fea-
ture space (cfr. section 3.1) between the two correspondences.
The actual weight is computed using the Beaton-Tukey ro-
bust M-estimator and is updated in every iteration based on
the median weight value in order to filter out outlier corre-
spondences. Thus, the process is denoted as an iteratively
re-weighted least squares (IRLS) ICP solution.

3.4. Global ICP

The local ICP provides an initial estimate on the camera pose.
However, as this estimation is subject to drift, we perform an
additional ICP step using the existing ground truth 3D model.
However, as the 3D model contains too many points, it would
be too intractable to determine corresponding, closest point
pairs between the Kinect point cloud and the 3D model. To
this end, we convert the 3D ground truth model to an octree-
based data structure. This octree comprises a hierarchical
space partitioning by subdividing the 3D space recursively



Fig. 4: Several resolution levels of the cooling machine. From left to right, the voxel size is respectively 0.32, 0.16, 0.08, 0.04
and 0.02 meter corresponding with resolution level 11 to 15.

Fig. 5: The point cloud originated from the Kinect (white)
overlayed on the ground truth point cloud after its pose has
been estimated.

into 8 smaller sub cubes. At the leaf level, only one point
is kept. This point is computed as follows. First, we select the
closest points of the centroid of the (leaf) voxel, which can be
very easily determined based on the space partitioning of the
octree. Second, using this neighbour set we (re-)estimate the
underlying surface using the MLS algorithm described in sec-
tion 3.2. Finally, using the estimated polynomials, we project
the centroid point on this surface. This latter process allows
us to extract point clouds with a lower point density while
still maintaining points that are lying on the actual surface.
Doing so we can select multiple point clouds with different
resolutions and perform the ICP algorithm described in sec-
tion 3.3 on a coarse-to-fine manner, i.e. a multi-resolutional
approach, which is leading to a large speed-up. In addition,
the octree data structure allows us to find (approximate) near-
est neighbours in a very quick manner as we only have to
traverse the tree to the leaf voxel, hence corresponding to an
O(log n) time complexity. In our system, the voxel size at the
leaf level was set to 1 centimeter. This turned out to be suffi-
ciently detailed to be able to perform an accurate registration.
Figure 4 depicts five images showing how the ground truth
model looks at the several resolution levels. Figure 5 depicts
the point cloud originated from the Kinect aligned with the
ground truth point cloud, serving as the basis of our tracking
system.

sequence
name

length
(m)

duration
(s)

avg. ang.
velocity
(deg/s)

avg. transl.
velocity

(m/s)

frames

fr1 xyz 7.11 30.09 8.92 0.24 788

fr1 floor 12.57 49.87 15.07 0.26 1214

fr1 desk 9.26 23.40 23.33 0.41 575

fr2 xyz 7.029 121.48 1.716 0.058 3666

fr2 desk 18.880 69.15 6.338 0.193 2965

Table 1: Information about the five video sequences that were
used in this work to evaluate our system and to compare it
against existing SLAM methods. The sequences are part of
the RGB-D SLAM benchmark presented in [7].

4. EVALUATION

In order to evaluate our approach quantitatively, we used five
different video sequences that are part of the Freiburg RGBD-
SLAM dataset, presented in [7]. All of the sequences were
recorded with the Kinect and have both a color video stream
and a depth video stream. The sequences come with accu-
rate ground truth and as a result, many SLAM systems have
been evaluated on this dataset in the past. As the sequences
don’t come with a ground truth model of the scene, we can-
not perform a global alignment with a ground truth model.
However, we create a global 3D map on the fly by fusing the
points of consecutive Kinect frames together after their pose
has been determined. Doing so, we can also cope with drift,
even tough the effect is smaller then when a real ground truth
model is available.

We carefully selected the five sequences to cover some of
the main difficulties in existing SLAM systems, including a
high angular velocity or the absence of salient features. The
main specifications of the sequences are listed in Table 1. In
Figure 6, three images from these sequences are depicted.

As proposed by Sturm et. al. [7], we use the relative pose
error (RPE) as one of the evaluation metrics. In summary, the
RPE measures the local accuracy of the trajectory over a fixed
time interval (or number of poses ∆). At time i, the RPE is
defined as follows:

Ei := (Q−1
i Qi+∆)−1(Pi−1Pi+∆), (5)



Fig. 6: Three images depicting sequences fr1 desk, fr1 floor and fr2 desk from the RGBD-SLAM benchmark presented in [7].
The other two sequences that were used, fr1 xyz and fr2 xyz are the same scenes as fr1 desk and fr2 desk but with a different
camera trajectory.

sequence name transl. RMSE rot. RMSE

fr1 xyz 0.036 m 2.44◦

fr1 floor 0.092 m 3.85◦

fr1 desk 0.143 m 8.03◦

fr2 xyz 0.011 m 0.65◦

Table 2: The relative pose error (RPE) for the sequences of
the RGB-D Slam benchmark presented in [7]. The RPE is
deviating a lot for the different sequences, which is mainly
due to the variations in angular velocities, cfr. Table 1. Se-
quence fr2 xyz is giving the best results as its average angular
velocity is quite low.

where Pi and Qi are respectively the i-th pose of the es-
timated trajectory P1:n ∈ SE(3) and the ground truth trajec-
tory Q1:n in which n represents the number of camera poses
in the respective RGBD-sequence. We thus obtain a total
of m = n − ∆ individual relative pose errors along the se-
quence. Subsequently, the root mean squared error (RMSE)
of the translational component is computed over all pose in-
dices, given by:

RMSE(E1:n,∆) :=

(
1

m

m∑
i=1

||trans(Ei)||2
) 1

2

, (6)

where trans(Ei) refers to the translational components
of the relative pose error Ei.

The results of our method for this RPE metric are given
in Table 2. As can be noticed, the scores for the different se-
quences differ a lot from each other, which is mainly due to
their difference in (angular) velocity. Our method is prone to
quick camera motions because of the ‘closest point’ criterion
of the ICP registration process. This imposes a maximum (ro-
tational) speed given a certain frame rate in order for our so-
lution still to work properly. Sequences fr1 floor and fr1 desk
have a much higher average angular velocity compared to the

other sequences. Sequence fr2 xyz is giving the best results
for our system and with an average of 0.01m translational er-
ror and 0.65◦ degrees rotational error it is performing quite
accurate.

Alternatively, we also consider the absolute trajectory er-
ror (ATE) which is often used to compare the performance
of different SLAM methods. The ATE is computed by com-
paring the absolute distances between the estimated and the
ground truth trajectory. The ATE at time step i can be com-
puted as

Fi := Q−1
i SPi, (7)

where S is the rigid-body transformation corresponding to the
least-squares solution that maps the estimated trajectory P1:n

onto the ground truth trajectory Q1:n. Similar to the RPE, we
use the root mean squared error over all pose indices of the
translational components, given by:

RMSE(F1:n) :=

(
1

n

n∑
i=1

||trans(Fi)||2
) 1

2

. (8)

The ATE scores of our solution on the five proposed se-
quences are listed in Table 3. As can be seen, the results mea-
sured by the ATE metric are in line with the results measured
by the RPE metric. Sequences fr1 floor and fr1 desk again
have a much higher error because of their high angular ve-
locity. Inherently, pure feature-based methods, such as ORB-
SLAM can cope better with this. On the other hand, LSD-
SLAM, which is - like ours - a dense and direct approach,
is also suffering a lot from high (anglular) velocities of the
camera. We can still state that our solution performs better
than LSD-SLAM in case of abrupt camera movements. For
our solution to work properly, the angular velocity should re-
main rather low. Sequence fr2 xyz is giving the best results by
our system and with an ATE of 0.69 it is still outperforming
LSD-SLAM and RGBD-SLAM. The systems ORB-SLAM
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Fig. 7: Graph depicting the drift of sequence fr1 desk (with
high angular velocity) given by the RPE (RMSE) in function
of time. The large ATE of our solution is due to some outlier
pose estimates, e.g. the large outlier around 16s. The cause
of this is an abrupt movement of the camera at that time.

and PTAM are still producing better results. However, they
rely on visual features in the scene. The RGBD sequences
from [7] are particularly well suited as they are highly tex-
tured, but ORB-SLAM and PTAM are a lot more vulnerable
when the scene is lacking visual features, as can be seen for
the sequence fr1 floor leading to an ATE of almost 3.0 instead
of an ATE of less than 1.0 in the case of ORB-SLAM.

In order to further analyse the drift of our system, we ex-
amined the RPE at different times. For brevity, we only in-
clude the graphs for sequences fr1 desk (Figure 7) and fr2 xyz
(Figure 8) as these are the sequences for which our system is
respectively worst and best performing. Regarding sequence
fr1 desk, we can see that the large ATE is due to a some out-
lier pose estimates, e.g. the large one around 16 s. The cause
of this is an abrupt movement of the camera at that time. Fig-
ure 8 tells us that for the sequence fr2 xyz there is also a large
variation for the RPE scores, but there are no sever outlier
pose estimates.

5. CONCLUSION

In this paper we proposed a novel camera tracking system in-
corporating a global 3D map on which a surface reconstruc-
tion and re-sampling technique are applied. The experiments
demonstrate that our approach has an upper limit regarding
the (angular) velocity of the camera. In case this latter is be-
low the limit, we can conclude that our system can compete
with state-of-the art visual SLAM methods, while it is only
using depth information. This implies that our method can
be used in situations where visual methods will, e.g. in case
of limited lighting conditions or scenes with very few tex-
tured objects. Future work could include the combination of
our dense 3D tracking approach with a visual tracker such as
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Fig. 8: Graph depicting the drift of sequence fr2 xyz (with
low angular velocity) given by the RPE (RMSE) in function
of time. As in Figure 7, there is still a lot of variation along
the sequence but there are no severe outliers of multiple cen-
timeters.

ORB-SLAM to further improve robustness and accuracy.
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