
Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2007)
D. Metaxas and J. Popovic (Editors)

Face Poser: Interactive Modeling of 3D Facial Expressions
Using Model Priors

Manfred Lau1,3 Jinxiang Chai2 Ying-Qing Xu3 Heung-Yeung Shum3

1Carnegie Mellon University 2Texas A&M University 3Microsoft Research Asia

Abstract
In this paper, we present an intuitive interface for interactively posing 3D facial expressions. The user can cre-
ate and edit facial expressions by drawing freeform strokes, or by directly dragging facial points in 2D screen
space. Designing such an interface for face modeling and editing is challenging because many unnatural facial
expressions might be consistent with the ambiguous user input. The system automatically learns a model prior
from a prerecorded facial expression database and uses it to remove the ambiguity. We formulate the problem in
a maximum a posteriori (MAP) framework by combining the prior with user-defined constraints. Maximizing the
posterior allows us to generate an optimal and natural facial expression that satisfies the user-defined constraints.
Our system is interactive; it is also simple and easy to use. A first-time user can learn to use the system and start
creating a variety of natural face models within minutes. We evaluate the performance of our approach with cross
validation tests, and by comparing with alternative techniques.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling-Modeling packages; I.3.6 [Computer Graphics]: Methodology and Techniques-Interaction
techniques

1. Introduction

A long-standing challenge in computer graphics is to build
an interactive system that allows users to model realistic fa-
cial expressions quickly and easily. Applications of such a
system include synthesizing natural facial expressions for
characters in films, games, or other virtual environments, and
for facial avatars in instant communication programs. Such
a system is also useful as a rapid prototyping tool: the user
can efficiently create 3D face expressions for reviewing, dis-
cussions, or educational purposes.

In this paper, we present an intuitive and efficient interface
for modeling 3D facial expressions (Figure 1). Our system
starts with a 3D mesh model in a neutral expression. For
the sketch-based interface, the user first selects a reference
freeform stroke on the 2D screen space; the user then draws
a target freeform stroke to indicate a desired deformation for
the reference stroke. Both strokes can be drawn anywhere
on the 2D screen space from any camera view. The system
deforms the facial model based on these inputs. The user
can continue to refine the model until a desired expression is
achieved.

Building such an interface for 3D facial modeling is dif-
ficult because the information from the user is often am-

Figure 1: (left) The Face Poser system in use with a graph-
ics tablet. (right) A variety of face expressions created using
the system. The lower left corner shows the neutral expres-
sion for each subject.

biguous. In our system, the inputs are a small set of user-
defined freeform strokes or control points. This informa-
tion is quite low-dimensional as compared to a typical fa-
cial model, which is commonly represented by at least thou-
sands of DOFs [PW96]. The user’s inputs, therefore, can-
not be used to fully determine a natural facial configuration

Copyright c© 2007 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for com-
mercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
or to redistribute to lists, requires prior specific permission and/or a fee. Request per-
missions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail permis-
sions@acm.org.
SCA 2007, San Diego, California, August 04 - 05, 2007
c© 2007 ACM 978-1-59593-624-4/07/0008 $ 5.00

mailto:permissions@acm.org
mailto:permissions@acm.org

Lau et al. / Face Poser

because they will be consistent with many disparate solu-
tions. Some solutions might correspond to unnatural face
expressions and not be what the user intends to model. We
eliminate the ambiguity by imposing a prior embedded in a
large database of pre-recorded face expressions. The prior
describes the “likelihood” function over facial expressions
and measures how natural a face expression is.

We formulate the face expression modeling problem in
a probabilistic framework by combining user-defined con-
straints with a prior from the database. We model the prior as
a mixture of factor analyzers [GH97] and learn it automat-
ically from a pre-recorded facial expression database. Max-
imizing the posterior (likelihood of facial expressions give
user-specified constraints) generates a natural and most de-
sirable facial expression that achieves the goal specified by
the user.

We demonstrate the power and flexibility of this approach
by interactive modeling of 3D facial expressions with point
constraints and stroke constraints. The constraints are spec-
ified on the 2D screen space. We thereby avoid the need for
complex 3D interactions which are common in mesh editing
software, and can be cumbersome for a naive user. We have
found that a first-time user can learn to use the system in a
few minutes, and be able to create desired facial expressions
within tens of seconds. Figure 1 shows some examples of
facial expressions generated by our system.

We evaluate the quality of synthesized facial expressions
by comparison against ground truth data. We also compare
alternative data-driven techniques for generating facial ex-
pressions from user-defined constraints. We compare our
method against blendshape interpolation, optimization in the
PCA subspace, and optimization with blendshapes.

2. Background

In the next section, we discuss related work in sketch-based
interfaces for object modeling. Because we use prerecorded
facial data in our system, we then review research utilizing
examples for modeling.

2.1. Sketch-based interfaces

Our work is inspired by sketch-based systems that inter-
pret the user’s strokes for constructing and editing 3D mod-
els [ZHH96, IMT99]. Zeleznik and his colleagues [ZHH96]
introduced a sketch-based interface to create and edit rec-
tilinear objects. Igarashi and his colleagues [IMT99] devel-
oped the first sketch interface to interactively model and edit
free-form objects. Recently, a number of researchers have
explored sketch-based interfaces to edit mesh deformations
[NSACO05, KG05]. Nealen and his colleagues [NSACO05]
presented a sketch-based interface for laplacian mesh edit-
ing where a user draws reference and target curves on the
mesh to specify the mesh deformation. Kho and Garland
[KG05] demonstrated a similar interface for posing the bod-
ies and limbs of 3D characters. Furthermore, Yang and his

colleagues [YSvdP05] presented a 3D modeling system to
construct 3D models of particular object classes by match-
ing the points and curves of a set of given 2D templates to 2D
sketches. Our goal is to develop an interface for interactively
modeling and editing 3D facial expressions.

Chang and Jenkins [CJ06] presented a similar interface
to edit a facial model. Their interface is different in that it
works only for strokes drawn as lines on the screen. Our
stroke interface allows for drawing any line, curve, shape, or
region on the screen, and in any camera view. More impor-
tantly, our approach learns model priors from a prerecorded
database and uses them to remove the modeling ambiguity.

2.2. Example-based modeling

Our work builds upon previous example-based modeling
systems. Many example-based modeling systems are based
on estimating weights to linearly combine example models
[Par72, LCF00, SRC01] or eigen-models [BV99, BBPV03].
These weights can be computed from either user-specified
constraints or images.

Zhang and his colleagues [ZSCS04] developed an
example-based FaceIK system to edit a facial model by in-
teractively dragging points on the face. Their face model
is represented as a linear combination of pre-acquired 3D
face scans. Researchers [JTDP03, ZLGS03] have also pro-
posed to segment a model into multiple regions and repre-
sent each subregion as a convex linear combination of blend
shapes. Besides facial modeling, example-based approach
has also been applied to edit a skeleton structure. Sumner
and Popovic [SZGP05] and Der and his colleagues [DSP06]
learned a reduced deformable space from a small set of ex-
ample shapes, and used an inverse kinematics approach to
optimize the mesh in a reduced deformable space. Their sys-
tem allows the user to interactively deform a skeletal model
by posing just a few vertices.

An alternative way to estimate the weights of exam-
ples is to reconstruct them directly from images or video
[BV99, PSS99, BBPV03]. Blanz and his colleagues [BV99,
BBPV03] built a morphable model from 3D scans via Prin-
cipal Component Analysis (PCA) [Bis96] and applied the
morphable model to reconstruct a 3D model from a single
image. Pighin and his colleagues [PSS99] demonstrated that
they can estimate the weights of a small set of 3D morphed
face models directly from images or video. Chai and his col-
leagues presented a real-time vision-based performance ani-
mation system which transforms a small set of automatically
tracked facial features into facial animation by interpolating
closest examples in a database at runtime [CXH03].

The main difference between our work and previous
example-based modeling systems is that we learn a proba-
bilistic model to represent the prior from example data and
formulate the problem in a probabilistic framework by com-
bining user-defined constraints with the prior. The system
automatically learns a mixture of factor analyzers [GH97]

c© Association for Computing Machinery, Inc. 2007.

Lau et al. / Face Poser

Figure 2: System overview.

from a facial database. With a collection of locally linear
sub-models, our mixture of factor analyzers can model a
nonlinear structure which cannot be modeled by existing lin-
ear models such as blendshapes or eigen-shapes.

A number of researchers have also developed statisti-
cal models for human poses and used them to estimate
poses from kinematic constraints to solve the inverse kine-
matics problem. For example, Grochow and his colleagues
[GMHP04] applied a global nonlinear dimensionality reduc-
tion technique, a Gaussian Process Latent Variable Model
[Law04], to human motion data and then used the learned
statistical pose model to compute poses from a small set of
user-defined constraints. GPLVM works well for a small set
of example data. However, it might not be appropriate for our
application because the performance of the GPLVM deterio-
rates as the size and heterogeneity of the database increases.

Local statistical models are sufficient if the user provides
continuous control signals (the performance animation prob-
lem). Chai and his colleagues used a series of local statistical
pose models constructed at runtime to reconstruct full body
motion from continuous, low-dimensional control signals
obtained from video cameras [CH05]. Online local models
are more appropriate for creating animations (a sequence of
poses) from continuous temporal constraints. They are not
appropriate for our application because user-defined con-
straints are usually not continuous.

3. Overview

The main idea of our approach is that model priors learned
from pre-recorded facial expression data can be used to cre-
ate natural facial expressions that match constraints speci-
fied by the user. The combination of the model priors and
the user-defined constraints provide sufficient information to
produce 3D facial expression models with a natural appear-
ance. Figure 2 shows an overview of our system.

3.1. Data Preprocessing

We set up a Vicon motion capture system to record facial
movement by attaching 55 reflective markers onto the face
of the motion capture subject. We captured the subject per-
forming various sets of facial actions. The data contains ba-
sic facial expressions such as anger, fear, surprise, sadness,
joy, and disgust, and other common facial actions such as
speaking and singing. We scanned the 3D model of the sub-
ject and then converted the recorded marker motions into a
set of deforming mesh models [CXH03]. We translated and
rotated each frame of the data to a default position and orien-
tation because facial expression models should be irrelevant
of head poses. We collected data for two subjects.

We denote a captured example in the database as x ∈ Rd ,
where x is the stacked 3D positions of all vertices in the face
model and d is three times the number of vertices in a facial
model. Let M be the total number of samples for each sub-
ject. We use Principal Component Analysis (PCA) [Bis96]
to preprocess the captured data; we then obtain a reduced
subspace representation for x:

x = B·p+x (1)

where the vector p ∈ Rr is a low-dimensional representation
of a facial model x ∈ Rd . The matrix B is constructed from
the eigenvectors corresponding to the largest eigenvalues of
the covariance matrix of the data, and x is the mean of all
the examples. Due to the large dimensions of x, we perform
PCA by an Incremental SVD method described by Brand
[Bra02].

3.2. Problem Statement

We formulate our facial modeling problem in a maximum
a posteriori (MAP) framework. From Bayes’ theorem, the
goal of MAP is to infer the most likely model p given the
user-defined constraints c:

argmaxp pr(p|c) = argmaxp pr(c|p)pr(p)
pr(c)

∝ argmaxp pr(c|p)pr(p)
(2)

where pr(c) is the normalizing constant that ensures that the
posterior distribution on the left-hand side is a valid proba-
bility density and integrates to one.

In our implementation, we minimize the negative log of
pr(p|c), yielding the following energy optimization problem
for model p̂:

p̂ = argminp − lnpr(c|p) − lnpr(p) (3)

where the first term measures how well a face model matches
the user-specified constraints and the second term measures
the a priori likelihood of the face model using the knowledge
embedded in the example data.

c© Association for Computing Machinery, Inc. 2007.

Lau et al. / Face Poser

3.3. System Components

The system contains three major components (see figure 2):

User Constraints. The system starts with a default facial
model. The user interactively edits the facial model using
two kinds of constraints: point constraints and stroke con-
straints. These constraints are specified on the 2D screen
space. The interface allows the user to iteratively apply these
constraints until a desired solution is obtained.

Model Priors. The system automatically learns a statistical
model from the captured data in the reduced PCA subspace.
This model is used to constrain the generated facial expres-
sion to lie in the space of natural facial expressions.

Runtime Optimization. The system uses nonlinear opti-
mization to automatically find a facial model that best sat-
isfies the user-specified constraints while matching the sta-
tistical properties of the captured data.

The model priors are learned off-line, while the other two
stages are performed online based on input from the user.
We describe these components in detail in the next three sec-
tions.

4. User Constraints

Our system starts with a default 3D facial model. In our im-
plementation, we start with the mean pose x. The user can
specify point constraints and stroke constraints to interac-
tively edit facial expressions. For point constraints, the user
can select any facial points and specify their desired posi-
tions on the screen space. For stroke constraints, the user
selects a reference freeform stroke and then draws a tar-
get freeform stroke to specify a desired deformation for the
reference stroke. This section focuses on deriving objective
functions and their derivatives for both constraints.

We first derive the relationship between a facial model in
the PCA subspace (p) and the projection of a chosen vertex
on the 2D screen space (yi). Let xi denote the 3D coordinate
of the ith vertex. Let yi denote the 2D projection of the ith

vertex on the screen space under the current camera view-
point. We have ui

vi
ωi

 =

 f 0 0 0
0 f 0 0
0 0 1 0

 ·

rT

1 t1
rT

2 t2
rT

3 t3
0 1

 ·
(

xi
1

)
(4)

where f is the focal length of the camera, rT
i is the ith row

vector of the camera rotation matrix, and ti is the correspond-
ing camera translation component.

Let sw and sh denote the current width and height of the
2D screen respectively. We further have

yi =
(

(ui
ωi

+1) · sw
2

(1− vi
ωi

) · sh
2

)
=

 (f rT
1 xi+ f t1

rT
3 xi+t3

+1) · sw
2

(1− f rT
2 xi+ f t2

rT
3 xi+t3

) · sh
2

 (5)

We can “select” the ith vertex of x with:

xi = Wi ·x (6)

where Wi is a 3×3N matrix, whose elements are zero except:

Wi(1 : 3,3∗ i−2 : 3∗ i) =

 1 0 0
0 1 0
0 0 1

 (7)

Combining equations 1, 5, and 6 together, the 2D projec-
tion yi of a 3D facial vertex can be represented as a nonlinear
function of weights p:

yi = gi(p)

=

 (f rT
1 Wi(Bp+x)+ f t1

rT
3 Wi(Bp+x)+t3

+1) · sw
2

(1− f rT
2 Wi(Bp+x)+ f t2

rT
3 Wi(Bp+x)+t3

) · sh
2

 (8)

The Jacobian matrix can be computed as follows:

Ji(p) = ∂yi
∂p

= ∂yi
∂xi

· ∂xi
∂p

(9)

The first Jacobian term can be computed as follows:

∂yi
∂xi

=

 sw
2 · f rT

1 ·(rT
3 xi+t3)−rT

3 ·(f rT
1 xi+ f t1)

(rT
3 xi+t3)2

− sh
2 ·

f rT
2 ·(rT

3 xi+t3)−rT
3 ·(f rT

2 xi+ f t2)
(rT

3 xi+t3)2

(10)

The second Jacobian term is
∂xi
∂p = Wi ·B (11)

4.1. Point Constraints

The first type of user-defined constraint allows the user
to change the position of individual vertices on the mesh.
This allows the user to have detailed control over the fi-
nal result. The user first selects a set of 3D source vertices
{xi|i = 1, ...,N} and then specifies a corresponding set of 2D
target pixels {zi|i = 1, ...,N} of where the vertices should
map to on the screen space. The user selects each 3D point
by selecting a 2D screen pixel. We perform ray tracing with
this pixel to choose the point on the mesh. Given these in-
puts, the problem is to find a face model so that each selected
3D vertex (xi) projects onto the corresponding 2D screen po-
sition (zi) in the current camera view. The optimization term
for point constraints can be described as follows:

Epoint = 1
N ·∑i ‖gi(p)− zi‖2 (12)

The Jacobian matrix is
∂Epoint

∂p = 1
N · ∂(∑i ‖gi(p)−zi‖2)

∂p
= 1

N · ∂∑i ‖yi−zi‖2

∂yi
· ∂yi

∂xi
· ∂xi

∂p
= 1

N ·∑i[2(yi− zi)T · ∂yi
∂xi

· ∂xi
∂p]

(13)

The final Jacobian matrix is computed by combining the
above equation with Equations 10 and 11.

c© Association for Computing Machinery, Inc. 2007.

Lau et al. / Face Poser

Figure 3: (a) The dark gray points are 3D points on the
mesh surface. They are selected by the source stroke for
Stroke Constraints. (b) Closeup view. We see the individual
dark gray points. They do not have to be the original vertices
that make up the mesh. The black ones are also selected, and
these are the original vertices in the mesh.

4.2. Stroke Constraints

This constraint allows the user to select a group of 3D points
and specify where these points should collectively project
to on the screen. This is designed to allow the user to make
large-scale changes to the mesh with minimal input. More
specifically, the user first draws a source stroke to select
a set of 3D points (xs’s) on the mesh (figure 3). Then the
user draws a target stroke to provide a region of pixels (z j’s)
where the 3D points should project to. These strokes can be
in the form of a line, curve, or any freeform region. Unlike
point constraints, the stroke constraints do not provide corre-
sponding information between the source and target strokes.

Given a source stroke in the 2D screen space, we need
to find the corresponding 3D points on the mesh efficiently.
We ray traced the pixels of the source stroke in a hierarchical
manner. We first consider the selected pixel region as blocks
of 15 by 15 pixels, and find the triangles that intersect with
each block. We then consider these blocks as 3 by 3 pix-
els, and find the triangles that intersect with each block. For
each 3 by 3 block, we only test the triangles that intersected
with the corresponding 15 by 15 block. Finally, we ray traced
each pixel by testing only the triangles in the corresponding
3 by 3 block. This process selects the xs’s on the mesh (fig-
ure 3). We store the barycentric coordinates of each xs. The
position of each xs depends on the positions of the three ver-
tices of the triangle (xu, xv, xw) that it belongs to. When the
face mesh deforms, the position of each xs is recomputed as:

xs = u ·xu + v ·xv +w ·xw (14)

where u, v, and w are the barycentric coordinates. For a given
xs, these barycentric coordinates are fixed, while the vertices
(xu, xv, xw) may deform.

This set of 3D points on the mesh, xs’s, are projected back
onto the 2D screen for comparison with the target stroke,
z j’s. Let the projected region of pixels be yi’s. Let R be

a constant region that contains both yi’s and z j’s. For effi-
ciency, we choose the region R to be a joint region of yi’s
and z j’s in our experiment. Let Iy be a binary image over the
region R whose pixel values are zeros except the projected
region of pixels, yi’s. Iy, therefore, depends on xs’s. We fur-
ther define Iz to be a binary image over the region R whose
pixel values are zero except the target stroke, z j’s. We mea-
sure the distance between the two strokes by computing the
intensity difference between them. The optimization term for
stroke constraints is

Estroke = ∑r∈R(Iy(yi)− Iz(r))2 (15)

We can compute its Jacobian matrix as follows:

∂Estroke
∂p = 2 ·∑r∈R[(Iy(yi)− Iz(r)) · (

∂Iy(yi)
∂yi

· ∂yi
∂xs

· ∂xs
∂p)]
(16)

The projected region of pixels, yi’s, are determined by for-
ward projection of the current 3D points, xs’s. There might
be multiple points projected to the same pixel. We choose to
render the pixel using the 3D point that is closest to the cam-
era. The partial derivative ∂Iy(yi)

∂yi
is the image gradient com-

puted by the Sobel operator [DH73]. We use Equation 10 to
compute the partial derivative ∂yi

∂xs
. Finally based on Equa-

tion 14, ∂xs
∂p can be computed as follows:

∂xs
∂p = u · ∂xu

∂p + v · ∂xv
∂p +w · ∂xw

∂p (17)

where the partial derivatives on the right side of this equation
can be substituted with Equation 11.

Our method of measuring the distance between the two
strokes by computing the intensity difference is efficient.
However, if the two strokes are far away from each other,
the objective function in Equation 15 does not require the
strokes to “move toward” each other. The energy value in
Equation 15 will reach a local minimum without “moving”
the strokes. There are many ways to solve this problem. We
can use a more sophisticated function to represent Iy and Iz.
For example, a signed distance function would allow the
strokes to “move toward” each other. But computing this
function at every iteration of the optimization would be time-
consuming. Instead we choose to add an additional term to
minimize the distance between the center of the pixels in the
source stroke and the center of the pixels in the target stroke:

Eextra = ‖∑yi
Ns

− z‖2 (18)

where Ns is the number of pixels in the source stroke, z is the
center of the pixels in the target stroke, and the summation
is for all source pixels yi. The Jacobian matrix is

∂Eextra
∂p = 2 · (∑yi

Ns
− z)T ·

∂(∑yi
Ns

)
∂p

= 2
Ns
· (∑yi

Ns
− z)T ·∑(∂yi

∂xs
· ∂xs

∂p)
(19)

The weight for this additional term in the optimization

c© Association for Computing Machinery, Inc. 2007.

Lau et al. / Face Poser

changes depending on the objective value (Equation 18).
As the distance between the centers of the two strokes de-
creases, this weight decreases. Intuitively, as the two strokes
get closer to each other, we decrease the effect of this addi-
tional term.

5. Model Priors

There might be many facial models that satisfy the user-
defined constraints. For example, when the user selects one
facial vertex to edit the whole model, there might be many
results that are consistent with this constraint. To remove
ambiguities, we can constrain the generated model to lie in
the space of real models by imposing a prior on the gener-
ated model.

We model the prior as a mixture of factor analyzers
[GH97] and learn it automatically from a pre-recorded facial
expression database. The MFA model learns a probability
density function (P.D.F) in the PCA subspace that provides
a model prior to measure the naturalness of facial expres-
sions. The MFA model has also been successfully applied to
model the prior for many high-dimensional nonlinear data
such as handwritten digits [HDR97] and images [BW00].

A single factor analyzer (FA) assumes that an observed
r-dimensional variable p is generated as a linear transforma-
tion of some lower q-dimensional latent variable τ∼N (0, I)
plus additive Gaussian noise ω∼N (0,Ψ). Ψ is a diagonal
matrix. The generative model can be described as:

p = Aτ+ω+µ (20)

Here, A ∈ Rr×q is a factor loading matrix. µ is a mean vec-
tor. The P.D.F. of the observed data in an FA model can be
obtained by:

pr(p;Θ) =N (µ,AAT +Ψ) (21)

A mixture of factor analyzers (MFA) is defined by a linear
combination of K factor analyzers and can be thought of as
a reduced dimension mixture of Gaussians. The MFA model
extracts q-dimensional locally linear manifolds underlying
the given high dimensional data. The P.D.F. of the observed
data by a mixture of K FAs is given by:

pr(p;Θ) = ∑
K
k=1 πkN (µk,AkAT

k +Ψk) (22)

where πk is a mixing proportion (πk > 0 and ∑
K
k=1 πk = 1).

The system automatically learns the model parameters of the
MFA model, Θ = {πk,µk,Ak,Ψk|k = 1, ...,K}, from exam-
ple data via expectation maximization techniques [GH97].

We minimize the negative log of pr(p), yielding the en-
ergy formulation:

Eprior(p) = − ln ∑
K
k=1 πiN (µk,AkAT

k +Ψk) (23)

A smaller Eprior value means that p is closer to the samples
in the motion data and therefore more natural. The inverse

First subject Second subject
M 7,790 10,036
d 51,333 49,503
r 20 15
K 30 20
q 10 6

Table 1: Details of the data we used. M is the number of
samples, d is the number of original dimensions (d equals
3 times the number of vertices), r is the number of reduced
dimensions in the PCA step, K is the number of factors, and
q is the number of dimensions for the latent variable τk in
each factor of the MFA model.

and determinant of the covariance matrices are precomputed
for each factor to achieve a faster runtime.

The Jacobian matrix can be computed as follows:

∂Eprior

∂p
=∑

k

πkN (µk,AkAT
k +Ψk)(p−µk)

T (AkAT
k +Ψk)

−1

∑
K
k=1 πkN (µk,AkAT

k +Ψk)
(24)

6. Runtime Optimization

During runtime, the system optimizes in the reduced PCA
subspace and find the 3D face model (p) that best satisfies
the user constraints (c).

The overall objective function is a weighted combination
of the user-defined constraint terms (equations 12, 15, 18)
and the model prior term (equation 23):

arg min
p∈Rr

Epoint +λ1Estroke +λ2Eextra +λ3Eprior (25)

In our experiments, λ1 is set to 1; we choose an adaptive
weight for λ2 as discussed in section 4.2; λ3 is selected dy-
namically by the user (in our experiments, we used a value
between 2 and 5). Similarly, the overall jacobian term is a
weighted combination of the individual jacobian terms.

Each factor in the MFA model has a mean face mesh. We
initialize the optimization with the “best” mean among all
factors, by explicitly computing the “best” p:

argminp∈{µ1,...,µK} Epoint +λ1Estroke +λ2Eextra +λ3Eprior
(26)

We use the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
optimization algorithm in the GSL library [GDT∗03]. The
solution converges rapidly due to a good starting point, a
low-dimensional optimization space, and the symbolic eval-
uation of the jacobian terms.

7. Results

Table 1 shows the details of the two data sets. For the first
subject, the 3D face model has 17,111 vertices and 34,168

c© Association for Computing Machinery, Inc. 2007.

Lau et al. / Face Poser

Figure 4: (a) Original mesh: The user draws point
and stroke constraints directly on the screen. The source
point/stroke is in blue and target point/stroke is in green. (b)
Result: The face model is deformed to satisfy the constraints.

Figure 5: The user iteratively adds as many constraints as
desired. Starting from a neutral pose (left), the user creates
a detailed eye geometry (right).

faces. For the second subject, the 3D model has 16,501 ver-
tices and 32,944 faces. The number of reduced dimensions
for the first subject and second subject are 20 and 15 respec-
tively by keeping 99 percent of the energy in the eigenvalues.

The Face Poser system can generate a variety of facial ex-
pressions. A first-time user learns to use the system within
minutes, and is able to create realistic expressions within
seconds. Our users have reported that the interface is intu-
itive and easy to use. The accompanying video shows live
screenshots of the results.

7.1. User-Defined Constraints

Point Constraints Figure 4 shows an example with point
constraints, where the user poses the shape of the mouth in
the smiling expression with two points. In general, this con-
straint is particularly useful for detailed control of individual
points. We can select a facial point and interactively drag it
into a desired position in 2D screen space (see video for ex-
ample). Even though the facial points are in 3D, this “drag-
ging” in 2D screen space is still natural and generates good
results. In figure 5, the user iteratively adds more constraints
to achieve the desired result of a more detailed eye geometry.
As the number of point constraints increase, the results are
more accurate (figure 6). However, if there are constraints
that do not match any natural facial expressions represented
by our statistical model, not all the constraints will be satis-
fied (figure 7).

Stroke Constraints This constraint can be used to effi-
ciently make large-scale changes to the face model. In figure
4, we draw strokes to “raise” the cheek regions to create a

Effect of increasing number of point constraints

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 1 2 3 4 5 6 7 8 9 10

number of points/pixels selected

3D
 e

rr
or

Figure 6: Cross validation (section 7.3) results averaged
over 5 trials.

Figure 7: If there are many constraints, some of them may
conflict or “fight” with each other, since the system also tries
to generate natural results. The inputs are shown on the left,
and the synthesized result is on the right.

smiling expression. The point constraints are used in this ex-
ample to fine-tune the corners of the mouth. Our users have
reported that the sketch interface allows us to draw certain
features of the face such as an eyebrow (figure 1 left) more
easily. Although some results might also be achieved with
point constraints, such a sketch interface is much more in-
tuitive. Some interesting results are shown in figure 8. We
can see the effect of having the additional distance term for
stroke constraints in figure 9. By adding this term to the op-
timization, the source stroke will “move towards” the target
stroke, even if they are originally far away from each other.

The computational time of the system depends on the
number of user-specified constraints. As the number of con-
straints increases, the computational time increases linearly.
This is expected as the computation time for the image in-
tensities increases proportionally with the number of pixels.
For example, the computational time for stroke constraints
with 900 pixels (about the size of a curve drawn on the eye-
brow) is about 0.4 seconds. The time for point constraints
also increases linearly with the number of points. It takes
about 0.18 seconds for 10 points. The computational time of
the system does not depend on the number of example data
in the database because the MFA model is learned off-line.

7.2. The Importance of Model Prior

The model prior term allows the generated faces to be nat-
ural. Changing the weight of the term in the optimization
provides a tradeoff between satisfying user constraints and
creating natural faces. We can change this weight dynami-

c© Association for Computing Machinery, Inc. 2007.

Lau et al. / Face Poser

Figure 8: We can create a raised eyebrow or a curled lip
with stroke constraints.

Figure 9: With and without the additional distance term for
stroke constraints. (a) With this term, the blue source stroke
will match the green target stroke even if the two strokes are
originally far away. (b) Without this term, the optimization
gets stuck in a local minima.

cally, thus providing an interesting spectrum of possibilities
(figure 10) for the user to choose from.

7.3. Comparison Tests

We use new face models as testing data for cross validation
tests. We start from a neutral pose and select the source con-
straints (any kind of constraints) as before. The correspond-
ing target constraints are automatically generated based on
the testing data. We then create the face models, and com-
pare them against the original test data. In the results below,
the 2D error is the value from equation 12. The 3D error is
the average of the sum of the Euclidean distances between
each vertex of the ground truth and synthesized 3D model.

Point Cons
interp opt

2D error 18.15 2.28
3D error 0.06704 0.03642

Table 2: Cross validation results. Optimization produces
more accurate results than interpolation. Each value is an
average over 10 trials. We have similar results for other con-
straints.

Table 2 shows a comparison of cross validation tests be-
tween the blend-shape interpolation and optimization meth-
ods. For interpolation, we compute a distance for each sam-
ple based on the objective functions in the optimization, and

Figure 10: As the weight increases, the expression becomes
more natural. However, the constraints become less satisfied,
and the 2D and 3D cross validation errors increase. The left-
most figure has a zero weight, and the rightmost figure has a
high weight.

Figure 11: Cross validation results. Optimization produces
visually better results than interpolation. (a) Ground truth.
(b) Interpolation, 2D error = 161.8, 3D error = 0.1921. (c)
Optimization, 2D error = 10.5, 3D error = 0.0998.

then use each distance to weigh (as in [AMS7a]) that sam-
ple accordingly. Figure 11 shows a visual comparison of the
results.

We compare the MFA model used in this work against
other methods (table 3). “Interp-all” takes all the sam-
ples, computes a weight on each sample based on equa-
tion 12, and blends the samples to find the solution [Par72,
LCF00, SRC01]. “Opt-blend” represents the solution as a
sum of weighted blendshapes and optimizes these weights
[ZSCS04]. PCA performs the optimization in the PCA
space [BV99, BBPV03]. LWR first finds k examples in
the database that best matches the user constraints; it then
performs a locally weighted regression [AMS7a, CXH03]
where each sample is weighted based on equation 12. All
optimization methods start with the same initial pose. Fig-
ure 12 shows a visual side-by-side comparison of one result.

Interp-all Opt-blend PCA LWR MFA
1 point 0.197 0.160 0.157 0.155 0.060
4 points 0.191 0.156 0.154 0.149 0.047
time (ms) 53753 26954 103 52133 183

Table 3: A comparison of our MFA method with other tech-
niques, for different numbers of point constraints. The values
are the 3D errors described above; each one is an average
over 3 trials.

In table 3, “Interp-all” and “Opt-blend” do not produce

c© Association for Computing Machinery, Inc. 2007.

Lau et al. / Face Poser

Figure 12: A visual comparison of cross validation results.
(a) Ground truth. (b) Optimization with PCA. (c) Optimiza-
tion with MFA.

Figure 13: Trajectory keyframing: We use seven 2D target
points (green) to generate the 3D model (blue points are cor-
responding 3D source points). Two examples with different
viewpoints are shown here. See the video for an animation.

good results because the solution depends on all the sam-
ples. PCA also produces a large error because the number
of constraints in our system is usually small and they are
not sufficient to fully determine the weights of p. For LWR,
the model provided by the closest samples might not be ef-
ficient because they do not provide any temporal coherence.
“Interp-all” and LWR are slow since these methods have to
iterate through every sample in the database. “Opt-blend”
is also slow because there are many parameters in the opti-
mization problem due to the large number of samples. PCA
and MFA optimizes in a low-dimensional space and is there-
fore most efficient. Their models of the dataset are learned
off-line. These results show that our technique produces a
smaller error and is more efficient than previous methods.

7.4. Application: Trajectory Keyframing

Our optimization framework can be applied for trajectory
keyframing. Given the trajectories of a few points, we can
re-create the 3D face models using point constraints. Some
examples are shown in figure 13. When we generate many
frames for an animation, we add a smoothness term to mini-
mize the change in velocity of the vertices between consec-
utive frames.

8. Discussion

We have presented an approach for generating facial mod-
els from two kinds of user constraints (point and stroke
constraints) while matching the statistical properties of a
database of example models. The system first automatically
learns a statistical model from example data and then en-
forces this as a prior to generate/edit the model. The model
prior, together with user-defined constraints, comprise a

problem of maximum a posteriori estimation. Solving the
MAP problem in a reduced subspace yields an optimal, nat-
ural face model that achieves the goals specified by the user.

The quality of the generated model depends on both
model priors and user-defined constraints. Without the use
of the model priors, the system would not generate natural
models unless the user accurately specifies a very detailed
set of constraints. One limitation of the approach, therefore,
is that an appropriate database must be available. If a model
database does not include highly detailed facial geometry
such as wrinkles, our system will not generate wrinkles on
the face model. We might re-use our database to pose fa-
cial expressions for different facial models by re-targeting
the original data with expression cloning methods [NN01].

The quality of the generated model also depends on
the naturalness of the constraints. Constraints are “natural”
when there exists at least one natural facial model consistent
with them. The user might not create natural facial expres-
sion if the constraints do not match any natural expression in
the database or if the constraints are not consistent with each
other.

The appearance of the final model is also influenced by the
weight of the model prior term, which provides a tradeoff
between the prior and the user-defined constraints. Instead
of choosing a fixed weight, we allow the user to choose this
weight dynamically; we can provide this capability because
of the speed of the system.

The system allows for a “click done” mode and a “drag-
ging” mode to create and edit a facial model. The user can
choose the desired constraints and then click a button to gen-
erate the solution with the current constraints. This allows
for placing multiple points and/or strokes in one optimiza-
tion step. This can lead to large scale changes, but all the
constraints may not be satisfied if they come in conflict with
allowing for natural poses. The “dragging” mode provides a
manipulation interface where the user can see the changes
continuously. It allows for more detailed changes over the
local region of the dragged point.

Our system allows the user to generate facial models from
various types of user-defined constraints. Any kinematic
constraints can be integrated into our statistical optimization
framework as long as the constraints can be expressed as a
function of 3D positions of vertices.

We tested our system with a keyboard/mouse interface
and an electronic pen/tablet interface. The system is sim-
ple and intuitive, and appeals to both beginning and profes-
sional users. Our system greatly reduces the time needed for
creating natural face models compared to existing 3D mesh
editing software. The system could work with other types
of input devices. For example, the user can specify desired
facial deformation by dragging multiple facial points on a
large touch screen or track a small set of facial points using
a vision based interface.

c© Association for Computing Machinery, Inc. 2007.

Lau et al. / Face Poser

A possible future extension is to model the face as sepa-
rate regions, generate each region separately, and blend the
regions back together. This might allow for fine-grained con-
trol over local geometry and improve the generalization abil-
ity of our model.

References

[AMS7a] ATKESON C. G., MOORE A. W., SCHAAL S.: Lo-
cally weighted learning. In Artificial Intelligence Review. 1997a.
11:11–73.

[BBPV03] BLANZ V., BASSO C., POGGIO T., VETTER T.: Re-
animating faces in images and video. In Computer Graphics Fo-
rum (2003). 22(3):641–650.

[Bis96] BISHOP C.: Neural Network for Pattern Recognition.
Cambridge University Press, 1996.

[Bra02] BRAND M.: Incremental singular value decomposition
of uncertain data with missing values. In Proceedings of ECCV
(2002). 707–720.

[BV99] BLANZ V., VETTER T.: A morphable model for the syn-
thesis of 3d faces. In Proceedings of ACM SIGGRAPH (1999).
187–194.

[BW00] BISHOP C. M., WINN J. M.: Non-linear bayesian image
modelling. In Proceedings of ECCV. 2000. 3–17.

[CH05] CHAI J., HODGINS J.: Performance animation from low-
dimensional control signals. In ACM Transactions on Graphics
(2005). 24(3):686–696.

[CJ06] CHANG E., JENKINS O. C.: Sketching articulation
and pose for facial animation. In Proceedings of ACM
SIGGRAPH/Eurographics Symposium on Computer Animation
(2006). 271-280.

[CXH03] CHAI J., XIAO J., HODGINS J.: Vision-based
control of 3d facial animation. In Proceedings of ACM
SIGGRAPH/Eurographics Symposium on Computer Animation
(2003). 193–206.

[DH73] DUDA R., HART P.: Pattern Classification and Scene
Analysis. John Wiley and Sons, 1973.

[DSP06] DER K. G., SUMNE R. W., POPOVIĆ J.: Inverse kine-
matics for reduced deformable models. In ACM Transactions on
Graphics (2006). 25(3):1174–1179.

[GDT∗03] GALASSI M., DAVIES J., THEILER J., GOUGH B.,
JUNGMAN G., BOOTH M., ROSSI F.: GNU Scientific Library
Reference Manual - Revised Second Edition. Network Theory
Ltd., 2003. ISBN 0954161734.

[GH97] GHAHRAMANI Z., HINTON G. E.: The EM algorithm
for mixtures of factor analyzers, 1997.

[GMHP04] GROCHOW K., MARTIN S. L., HERTZMANN A.,
POPOVIĆ Z.: Style-based inverse kinematics. In ACM Trans-
actions on Graphics (2004). 23(3):522–531.

[HDR97] HINTON G. E., DAYAN P., REVOW M.: Modeling the
manifolds of images of handwritten digits. In IEEE Transactions
on Neural Networks. 1997. 8(1):65–74.

[IMT99] IGARASHI T., MATSUOKA S., TANAKA H.: Teddy: a
sketching interface for 3d freeform design. In Proceedings of
ACM SIGGRAPH (1999). 409–416.

[JTDP03] JOSHI P., TIEN W. C., DESBRUN M., PIGHIN F.:
Learning controls for blendshape based realistic facial anima-
tion. In Proceedings of ACM SIGGRAPH/Eurographics Sympo-
sium on Computer Aimation (2003). 187–192.

[KG05] KHO Y., GARLAND M.: Sketching mesh deformations.
In Proceedings of ACM Symposium on Interactive 3D Graphics
and Games (2005). 147–154.

[Law04] LAWRENCE N. D.: Gaussian process latent variable
models for visualization of high dimensional data. In Advances
in Neural Information Processing Systems 16 (2004). 329–336.

[LCF00] LEWIS J. P., CORDNER M., FONG N.: Pose space
deformation: A unified approach to shape interpolation and
skeleton-driven deformation. In Proceedings of ACM SIG-
GRAPH. 2000. 165–172.

[NN01] NOH J., NEUMANN U.: Expression cloning. In Proceed-
ings of ACM SIGGRAPH (2001). 277–288.

[NSACO05] NEALEN A., SORKINE O., ALEXA M., COHEN-
OR D.: A sketch-based interface for detail-preserving mesh edit-
ing. In ACM Transactions on Graphics (2005). 24(3):1142–
1147.

[Par72] PARKE F. I.: Computer generated animation of faces. In
Proc. ACM National Conference (1972). 1:451–457.

[PSS99] PIGHIN F., SZELISKI R., SALESIN D.: Resynthesizing
facial animation through 3d model-based tracking. In Interna-
tional Conference on Computer Vision. 1999. 143–150.

[PW96] PARKE F. I., WATERS K.: Computer facial animation.
A.K. Peter, Wellesley, 1996.

[SRC01] SLOAN P.-P., ROSE C., COHEN M. F.: Shape by ex-
ample. In ACM Symposium on Interactive 3D Graphics (2001).
135-143.

[SZGP05] SUMNER R. W., ZWICKER M., GOTSMAN C.,
POPOVIĆ J.: Mesh-based inverse kinematics. In ACM Trans-
actions on Graphics (2005). 24(3):488–495.

[YSvdP05] YANG C., SHARON D., VAN DE PANNE M.: Sketch-
based modeling of parameterized objects. In 2nd Eurographics
Workshop on Sketch-Based Interfaces and Modeling (2005).

[ZHH96] ZELEZNIK R. C., HERNDON K. P., HUGHES J. F.:
Sketch: an interface for sketching 3d scenes. In Proceedings of
ACM SIGGRAPH (1996). 163–170.

[ZLGS03] ZHANG Q., LIU Z., GUO B., SHUM H.: Geometry-
driven photorealistic facial expression synthesis. In Proceedings
of ACM SIGGRAPH/Eurographics Symposium on Computer An-
imation (2003). 177-186.

[ZSCS04] ZHANG L., SNAVELY N., CURLESS B., SEITZ S. M.:
Spacetime faces: high resolution capture for modeling and ani-
mation. In ACM Transactions on Graphics (2004). 23(3):548–
558.

c© Association for Computing Machinery, Inc. 2007.

