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A novel parallel-rotation algorithm for atomistic Monte Carlo simulation
of dense polymer systems
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We develop and test a new elementary Monte Carlo move for use in the off-lattice simulation of
polymer systems. This novelParallel-Rotation algorithm~ParRot! permits moving very efficiently
torsion angles that are deeply inside long chains in melts. The parallel-rotation move is extremely
simple and is also demonstrated to be computationally efficient and appropriate for Monte Carlo
simulation. The ParRot move does not affect the orientation of those parts of the chain outside the
moving unit. The move consists of a concerted rotation around four adjacent skeletal bonds. No
assumption is made concerning the backbone geometry other than that bond lengths and bond angles
are held constant during the elementary move. Properly weighted sampling techniques are needed
for ensuring detailed balance because the new move involves a correlated change in four degrees of
freedom along the chain backbone. The ParRot move is supplemented with the classical Metropolis
Monte Carlo, the Continuum-Configurational-Bias, and Reptation techniques in an isothermal–
isobaric Monte Carlo simulation of melts of short and long chains. Comparisons are made with the
capabilities of other Monte Carlo techniques to move the torsion angles in the middle of the chains.
We demonstrate that ParRot constitutes a highly promising Monte Carlo move for the treatment of
long polymer chains in the off-lattice simulation of realistic models of dense polymer systems.
© 2001 American Institute of Physics.@DOI: 10.1063/1.1371496#
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I. INTRODUCTION

In dense polymer systems in continuous space, the
of efficient phase-space sampling by Monte Carlo~MC! is a
most difficult one, since it is very hard in simulations
change from one configuration to the successive one, e
cially at high densities. Significant progress has been m
in this field in the last few years by a combination of ge
metric methods such as Reptation,1–3 the Continuum-
Configurational-Bias method~CBMC!,4–6 or the Concerted-
Rotation method7,8 and its extensions.9

Here we introduce a novel off-lattice sampling techniq
that aims at enhancing the efficiency of existing MC me
ods. We focus our attention on three currently incompati
aspects essential for the new algorithm to be a prerequ
for a promising sampling technique: the computational e
ciency and robustness, the ability to treat long polym
chains, and the applicability to chemically realistic polym
structures with side-groups.

The new elementary move, a Parallel-Rotation algorit
~ParRot!, consists of a concerted rotation around four ad
cent skeletal bonds forming the moving unit in such a w
that the orientation of those parts of the chain outside
moving unit is not modified.

In this paper, the ParRot move is supplemented with
classical Metropolis Monte Carlo~MMC!, the Continuum-
Configurational-Bias, and Reptation techniques
9770021-9606/2001/114(22)/9772/8/$18.00
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isothermal–isobaric Monte Carlo simulations of melts
short and long chains.

II. THE PARALLEL ROTATION ALGORITHM

The high-dimensionality of the configurational space
sample constitutes a major difficulty in simulations of den
polymer phases. Fortunately, the structural complexity
polymeric systems, namely, the geometry and connectiv
provides a way to simplify the problem: by working in ge
eralized coordinates, the number of degrees of freedom
be considerably reduced.10 The molecular geometry can b
solely determined by the position and orientation of the ch
start and by the successive torsion angles along the b
bone. The bond length and the bond angles are assume
be fixed~truly rigid constraint bonds!. This assumption only
slightly affects the vibrational frequencies of the ‘‘soft
modes associated with torsion angles.11 Since the approach is
designed to be used in configuration-space Monte C
methods, only the potential energy part of the system Ham
tonian is addressed.

A. The geometric problem

The rearrangement of dihedral angles of a chain in
concerted fashion, subsequent to the turning of one sin
dihedral angle, has been first addressed by Go and Scher7

and further developed by Dodd, Boon, and Theodorou8 as
the Concerted-Rotation method~ConRot!.
2 © 2001 American Institute of Physics

license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



a
in
m
nt
e
in
d

pt
ie

e
fo
i-
rt
gl
ov
le
.

h
n.

c

in

n

e
ck-

r a

the
ints
nd

er

s a
ree

to
tor

e-
to a

at-
n

der-
be

the

o-

gl

ba
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The ParRot move consists of a concerted rotation of
arbitrary set of four adjacent torsion angles within a cha
These torsion angles form a moving unit that, in the sa
way as a hinge, determines the relative position and orie
tion of both the chain ends attached to it. The ParRot mov
a rearrangement of the dihedral angles within that mov
unit, whereas both chain ends attached to it are coerce
keep the same relative orientation~but not the same relative
position!. In other words, if one of the chain ends is ke
fixed in space, the other chain end is displaced but its or
tation remains unchanged.

Imposing a constant orientation to chain ends involv
three geometric constraints, two for the direction and one
the orientation along this direction. To fulfill three cond
tions, the ParRot move must, at least, comprise the conce
move of three degrees of freedom. The fourth dihedral an
the driver torsion angle, serves to steer the concerted m

Consider the four contiguous bonds with torsion ang
$f0 ,f1 ,f2 ,f3% in Fig. 1 to form the ParRot moving unit
The rotation bondb3 with the torsion anglef3 defines the
direction of the chain end attached to the moving unit. T
vector b23b3 furthermore determines its orientatio
Throughout this paper, we use the unit vectorsu(ib3) and
u'(ib23b3) as direction and orientation vectors, respe
tively. The ParRot move keepsu andu' constant.

We useT(f) to define the transformation of a vector
the frame of reference of bondi 11 into the frame of the
preceding bondi ~see Fig. 2!, expressed as the combinatio
of two rotations,12

FIG. 1. The ParRot move is a concerted change in the torsion an
$f1 ,f2 ,f3% driven by a change inf0 . The vectorsu and u' remain un-
changed after the ParRot move.

FIG. 2. Generalized Coordinates encompass torsion angles along the
bone. The bond angle supplementsu i and the bond lengthsibii are assumed
to be fixed. In the local coordinate system located at each atomai 21 , the
bond vectorbi is aligned along the localx-axis (ex).
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T~f!5Rx~f!Rz~p1u!

5F 2cosu sinu 0

2cosf sinu 2cosf cosu 2sinf

2sinf sinu 2sinf sinu cosf
G . ~1!

Note that the bond angleu must not necessarily be th
same for all bond junctions along the skeletal chain ba
bone.

As previously suggested, the geometric constraint fo
parallel rotation~ParRot! move is that both vectorsu andu'

are kept constant. A system of two equations, dictated by
molecular geometry, to account for the geometric constra
can now be specified in the reference frame of the bo
vectorb0 as

u5T~f0
driver!T~f1

new!T~f2
new!ex

5T~f0!T~f1!T~f2!ex , ~2!

u'5T~f0
driver!T~f1

new!T~f2
new!T~f3

new!ey

5T~f0!T~f1!T~f2!T~f3!ey , ~3!

wheref0
driver denotes the new value imposed for the driv

torsion angle, and$f1
new,f2

new,f3
new% the new values of the

remaining angles of the moving unit to be determined. A
matter of fact, these six scalar equations enforce only th
implicit geometric constraints to be fulfilled. This is due
the fact thatT, as a rotation in space, conserves the vec
lengths, and, therefore, the vectorsu and u' automatically
have the same length as the vectorsex andey ~of unit length!.
In addition, because of the same reason, the vectorsu and
u' , which are, by definition, perpendicular, and cons
quently not independent, are necessarily mapped back on
pair of perpendicular vectors. The vectorsex andey are per-
pendicular, and, so, an additional constraint is implicitly s
isfied. To sum up, the vectoru accounts for the conservatio
of direction of the moving chain end, and the vectoru' for
its orientation alongu.

Since Eq.~2! and ~3! involve four degrees of freedom
and only three constraints, the system of equation is un
determined. One of the dihedral degrees of freedom can
freely chosen to determine the values of the others, i.e.,
ParRot move is uniquely driven by a change off0 into
f0

driver.
Solving Eq. ~2! directly provides the valuef2 of the

second torsion angle. To calculatef2 , first consider the vec-
tor

v~f0
driver,f0 ,f1 ,f2!ªT~f0

driver!21u~f0 ,f1 ,f2!, ~4!

which is entirely determined by the known valuesf0
driver,

f0 , f1 , andf2 . The componentvx solely depends on the
new valuef2

new, and consequently directly provides the s
lution

cosf2
new5

cosu1 cosu22vx~f0
driver,f0 ,f1 ,f2!

sinu2 sinu1
, ~5!

whereu1 andu2 are the bond angles between bondsb1 and
b2 , and bondsb2 and b3 , respectively. According to the
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value of the right-hand side in Eq.~5!, f2
new admits either

zero (r.h.s..1), one (r.h.s.51) or two values (r.h.s.,1).
Upon substituting the obtained values forf2

new into Eq.
~3!, one gets the linear equation,

Fcosf1
new

sinf1
newG5Fa 2b

b a G 1

12vx
2 Fvy

vz
G , ~6!

where the parameters aª(sinu1 cosu21cosf2
new

3cosu1 sinu2) and bª(sinu2 sinf2
new) depend uponf2

new.
The fact thata21b251 indicates that the matrix in Eq.~6! is
a rotation matrix, and hence conserves the vector leng
This is in complete agreement with the fact that the left-ha
side of Eq.~6! is a vector of unit length and thatvy

21vx
2

512vx
2 holds. Thus, we can conclude that, for each value

f2
new, an unique solutionf1

new exists.
While the dihedral anglesf0 , f1 , and f2 suffice to

determine the direction vectoru, the remaining degree o
freedomf3 only causes the vectoru' to be rotated aroundu.
Given the three first torsion angles,f3

new can readily be cal-
culated as the angle betweenu' and the corresponding vec
tor whenf3 has not yet been modified.

The ParRot move can be summarized as the follow
steps:~i! a driver torsion anglef0 is selected within the
chain; ~ii ! one of the two chain ends starting fromf0 is
selected and the orientation vectorsu andu' are calculated;
~iii ! a valuef0

new is assigned to the driver torsion angle;~iv!
sets of new valuesf1

new, f2
new, andf3

new for the three tor-
sion anglesf1 , f2 , f3 consecutive tof0 on the side of the
selected chain end are calculated so thatu and u' remain
unchanged. In this formulation,f0 is the driver torsion angle
of the ParRot move. Only the four dihedral angl
$f0 ,f1 ,f2 ,f3% are modified by the move.

B. The ParRot move

At first sight, it is not obvious whether the ParRot tec
nique can successfully handle long polymer chains in a de
phase. As one might expect, the critical factor for moves
chain segments to be at all feasible in a dense environme
the amplitude of displacement of atoms induced by
move. In the case of ParRot, because of the conservatio
its orientation, the displacement of a chain end is such
all involved atoms are displaced by the same vector. T
displacement amplitude determines if severe overlaps
tween atoms are likely to occur in a Monte Carlo simulatio

Figure 3 shows a typical ParRot trajectory for values
the driver anglef0 ranging from 0 to 2p. The bond angle
complements all assume the same valueu568° correspond-
ing to the ‘‘polybead’’ model used later for Monte Car
simulations. The bond length is 1.53 Å, and the van
Waals radiuss53.94 Å gives an estimate of the typical di
tance between closest atoms. It is fortunate that, despite l
changes in the dihedral angles involved in the ParRot mo
the displacements in space of the atoms from their orig
positions is almost always small compared tos. Half thef0

values ~in our example, from 0 to 0.3p and 1.3p to 2p!
induce at least one displacement smaller than 1 Å. This
ample strongly suggests that, even in simulations of de
phases, large concerted changes inf1 , f2 , andf3 associ-
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ated with large changes inf0 are possible without inducing
large atom displacements, and thus without creating se
overlaps. This must also hold for torsion angles dee
within long polymer chains.

C. A bias Monte Carlo

Turning to Monte Carlo simulations requires the ind
pensable detailed-balance condition to hold in order to
sure the distribution to be stationary along the Monte Ca
simulation.13 This, in turn, requires the exact number of s
lutions for a Monte Carlo move to be known. As discuss
by Doddet al.,8 and Leontidiset al.,9 the Concerted Rotation
algorithm, which also consists of a concerted move of di
dral angles driven by the changes in one driver angle, ne
sitates challenging numerical calculations to estimate
number of solutions. On the contrary, the existence of
analytical solution for the ParRot algorithm permits us
exactly calculate the number of solutions for any attempts
ParRot moves. The ParRot algorithm does not pose any
merical problems that could endanger its efficiency.

A proper choice of the acceptance criterion~for instance
Metropolis or Glauber dynamics! guarantees a stationary en
semble distribution, which can be, for instance, the Gib
ensemble distribution. In this case, the Monte Carlo acc
tance probability for going from staten to m,

P~n→m!5minH 1,
N~m→n!J~n!exp@2bV~n!#

N~n→m!J~m!exp@2bV~m!#J ~7!

suffices, wherebª(kbT)21, and V(n) is the potential en-
ergy of the state labeled withn. N(n→m) is the total number
of states attainable fromn in the move leading from staten
to m. J(n) is the Jacobian determinant factor, which has be
introduced in the acceptance probability in Eq.~7! to coun-
terbalance the geometric bias.

A Monte Carlo method that simultaneously encompas
several degrees of freedom in a concerted manner usu
generates biased distributions of states, if not corrected.

FIG. 3. The displacements of the moving chain end are shown for the
solutions of the ParRot problem for varyingf0P@0,2p) with initial values
of the torsion angles off050°, f1515°, f25115°, andf3524°. Com-
parison is made with the van der Waals radius,s53.94 Å. The correspond-
ing sets$f1 ,f2 ,f3% of solutions are also shown.
license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Monte Carlo acceptance scheme must be biased to pro
the correct uniform distribution corresponding toV(n), i.e.,
proportional to the Boltzmann weight ofV(n). Following
Doddet al.,8 we calculateJ(n) as Jacobian determinant of
transformation relating the coordinate frame of geome
constraints u and u' to the one of dihedral angle
$f0 ,f1 ,f2 ,f3%. We define

J~f0 ,u,u'!ªdetF ]u

]f1
•el

]u

]f2
•el

]u

]f3
•el

]u

]f1
•eg

]u

]f2
•eg

]u

]f3
•eg

]u'

]f1
•eh

]u'

]f2
•eh

]u'

]f3
•eh

G , ~8!

whereh, l, gP$x,y,z%, andlÞg.
A change in torsion anglef i is tantamount to a rotation

about the backbone bondbi , that only affects the bondsbj ,
where j . i . The infinitesimal rotation aboutbi may be writ-
ten as

]bj

]f i
5H 0 j < i ,

bi3bj j . i .
~9!

Substituting Eq.~2.3! in Eq. ~8! leads to the final expression

J~f0 ,u,u'!}uu•~u13u2!u, ~10!

where the vectorsuiªbi /ibi i of unit length are collinear to
b1 andb2 , the bonds with torsion anglesf1 andf2 , respec-
tively. To determine the acceptance probability of a Mon
Carlo move,J(n) must be calculated for the initial and th
destination state of the move.

To ascertain that the biased Monte Carlo accepta
probability satisfies the condition of microscopic reversib
ity, we carried out a simulation of freely-rotating phanto
chains of 108 Monte Carlo steps. In the absence of torsion

FIG. 4. Torsion angle distribution in a Monte Carlo simulation of C10 phan-
tom chains. The black curve has been obtained in simulation without J
bian bias correctionJ(n) in the acceptance probability, and the gray cur
corresponds to simulation with Jacobian bias correction.
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potential and nonbonded interactions, an uniform distribut
of dihedral angles must be expected. Figure 4 presen
comparison of the angle distribution obtained with bias
and unbiased acceptance probability. Obviously, the geom
ric bias cannot be neglect, and is fully removed when c
sidering the contributionJ(n) to the acceptance probabilit
criterion.

III. MONTE CARLO SIMULATIONS

The present work aims at comparing the ParRot met
to existing off-lattice Monte Carlo techniques. For that pu
pose, ParRot is supplemented with three Monte Carlo mo
~i! the Metropolis move~MMC! consists of a random dis
placement of the position and orientation of the chain sim
taneously to random changes in the torsion angles of
chain backbone;~ii ! the Continuum-Configurational-Bia
method~CBMC! ~Refs. 4 and 5! consists of a ‘‘cut’’ at a
random position of a chain end and its step-by-step regrow
~iii ! the Reptation move1 consists in the removal of the bon
at a randomly selected end of the chain, and its regrowt
the other end of the chain. For a comprehensive review
these moves, see Leontidiset al.9 No comparison was mad
with the Concerted-Rotation method,7–9 since this method
does not affect the chain ends and prohibits center-of-m
diffusion.

Our results were obtained with polybead molecules
the united atom approximation. These are chains formed
beads connected by rigid bonds of length 1.53 Å. The bo
angle between successive bonds of a chain is fixed at 1
The torsional potential energy function used, originally intr
duced by Ryckaerts and Bellemans,14 is

U tors~f!5C(
n50

5

an cosn f ~11!

with constant coefficientsC59.27 kJ/mol, a051, a1

o-

FIG. 5. Acceptance rate of Monte Carlo simulations of 20 chains of
beads for varying maximal amplitude of the changes in the driver angl
the ParRot move. The rate of geometric failure corresponds to the c
where the geometric ParRot problem has no solution (r.h.s..1).
license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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51.31, a2521.414, a3520.3297, a452.828, a5

523.3943.15 By this, the skeletal torsion angles are bias
to favor trans andgauchestates.

Sites on different chains and those on the same ch
separated by more than three bonds interact through a
bonded Lennard-Jones interaction function,

ULJ54« i j H S s i j

r i j
D 12

2S s i j

r i j
D 6J . ~12!

The energy-depth parameter« i j 5«50.41 kJ/mol is the same
for end-beads and middle-beads, and the bead size is s
s53.94 Å. These values have been found to reproducepVT
data of short polyethylenes.5 Here, quantitative agreemen
betweenpVT data and simulation is not sought and we tre
therefore, the energy model in a simplified form, i.e., with
cutoff at 2.5s and no tail correction.

The simulations have been performed using a cubic
in an isothermal–isobaric simulation~NpT-simulation! at a
pressure of 1 bar, following the procedure of Boyd.16 Vol-
ume fluctuation moves were performed every 500 or 10
moves, depending on the overall length of the simulation.
acceptance ratio of 20%–30% for the volume fluctuat
move was obtained with a maximal amplitude change of
box side of 0.2 Å. The minimum image convention was us
in all the simulations.

Three different polybead melts were investigated: a s
tem of 20 chains of 24 beads each at 473 K (20 C24), a melt
of ten chains of 71 beads each (10 C71) at 513 K and a melt
of nine chains of 100 beads each (9 C100) at 513 K.

The new method of Mu¨ller et al.17 was used to generat
starting structures for the simulations. This method cons
of a heuristic search algorithm in the space of torsion ang
which is capable of including configurational information
the structure generation and automatically delivers cor
configurational statistics of the chains. The first 105 Monte
Carlo steps were ignored in assessing the simulation res

TABLE I. Average properties over simulations of combined Monte Ca
techniques in 20 C24, 10 C71, and 9 C100.

20 C24 10 C71 9 C100

T ~K! 473 513 513
^r& ~g cm23! 0.6260.01 0.6660.03 0.6760.01
^REED

2 &/^RG
2 & 8.0860.05 7.2260.26 6.4160.15
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The NpT Monte Carlo simulations reported comprise
•106 MC steps for 20 C24 and 10 C71, and 2•106 or 3
•106 MC steps for 9 C100. Thermodynamic quantities ar
summarized in Table I and II. Note that, due to the simplifi
energy model noted above, the agreement with experime
values cannot be perfect. The energies quoted in Table II
statistically identical and are reported only to show that
results of the simulations are not affected by substitution
ParRot for more traditional moves.

Table II shows the results of Monte Carlo runs f
10 C71. It is interesting to note that the fraction of accept
Monte Carlo moves is not strongly affected by the combin
tion of moves. However, the ParRot move seems to ben
from cooperative effects among the moves as the rela
large variation of its acceptance rate for different combin
tions of moves demonstrates.

The acceptance rate of the single moves is dependen
adjustable parameters such as, in the case of MMC, the
plitude of change in torsion angles, or, in the case of
CBMC method, the number of trial directions at each step
the regrowth. In the ParRot method, the only adjustable
rameter is the maximum displacementDf0 of the driver
angle f0 . While a smaller value ofDf0 leads to higher
acceptance rates of the ParRot moves, a larger value
duces larger steps through the configuration space. Trial
of 20 C24 demonstrate that the acceptance ratio can readily
controlled by adjustingDf0 ~see Fig. 5!. The acceptance rat
of ParRot typically ranges from 5% to 75% according to t
amplitude ofDf0 . ParRot also involves a more subtle effe
of geometric nature. Larger amplitudeDf0 increases the
number of geometric failures because it is more likely
encounter cases where the number of solutions of the Pa
equations falls to zero. However, Fig. 5 clearly demonstra
that the geometric failure level never exceed 6%. Furt
simulations involving ParRot moves were carried out w
Df0536° resulting in an acceptance ratio of about 20
The parameters for the other methods have been consist
kept constant in all simulations.

While the sampling ability of Monte Carlo techniques
most relevant, their computational efficiency also contribu
to their overall performance. The relative CPU efficien
compares the average number of moves performed in
CPU time required for a CBMC move and is summarized
Reptation and ParRot in Table III. A CBMC move undoub
edly requires more computational effort than the oth
n carried

TABLE II. Results obtained with different combinations of Monte Carlo techniques in isothermal–isobaric Monte Carlo simulations of 10 C71 at 513 K and
1 bar. The simulations comprise 53106 MC steps each. Thermodynamic properties and computational speed are compared. All simulations have bee
out on a Silicon Graphics workstation of type Octane~R10000!.

Combination of move~%! Accepted moves~%! Properties

MMC Reptation CBMC ParRot MMC Reptation CBMC ParRot MC steps s21 ^Etot& ~kJ/mol! ^Etors& ~kJ/mol!

10 30 30 30 4.3 14.3 6.1 18.0 20.7 17.36228.2 2648.6687.2
10 10 10 70 4.2 14.3 5.8 17.9 24.7 214.96243.0 2629.5685.4
10 10 70 10 3.6 13.8 6.0 22.1 15.8 40.76202.5 2675.5685.5
10 70 10 10 5.6 17.8 6.6 23.7 24.6 47.86254.6 2626.5681.5
10 40 40 10 3.1 13.4 6.0 17.6 18.8 272.06193.8 2638.1686.2
10 40 10 40 2.8 12.7 5.9 17.4 23.1 2105.06161.8 2657.4688.6
10 10 40 40 4.1 14.3 6.1 18.1 22.0 27.16256.8 2655.2691.0
license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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moves. It also appears that ParRot and Reptation use c
putational resources roughly equally.

IV. SAMPLING EFFICIENCY

To demonstrate the relative sampling ability in the spa
of dihedral angles, two simulations were performed on a s
tem of 10C71. In both simulations, the elementary MM
move ~10%! accompanies either Reptation moves~90%! or
ParRot moves~90%!. Beginning with the same initial struc
ture, the occurrence densities of dihedral angles were ca
lated for both runs, with 5•106 MC attempts each and a sam
pling frequency of 2000 MC attempts. Figure 6 shows th
distributions. Since the number of MC attempts employ
suffices for Reptation to attain proper sampling of all t
bonds in the chains during simulation~the middle bonds are
typically moved after 1•106!, the distribution obtained with
Reptation constitutes a benchmark for other moves. As
quired, the distribution obtained with ParRot converges
the same form and shows, in addition, a smoothness
indicates a robust aptitude to efficiently sample the spac
torsional degrees of freedom.

A first reason for the robust behavior of ParRot resid
in the fact that three to four dihedral angles are simu
neously involved in a move. A second reason might be
amplitude of changes of the dihedral angles of the mov
units, namely,Df0 , Df1 , Df2 , and Df3 . Figure 7 pre-
sents the distributions of theseDf for the accepted ParRo
moves in simulations of 20C24, 10C71, and 9C100 in runs

TABLE III. Average number of MC steps performed during the time ne
essary for a CBMC step. All simulations have been carried out on on Sil
Graphics workstations of type Octane~R10000!.

20 C24 10 C71 9 C100

CBMC ~MC step! 1.0 1.0 1.0
Rept ~MC step! 1.71 1.89 1.26
ParRot~MC step! 1.73 2.06 1.8

FIG. 6. Distributions of dihedral angles obtained in simulations of 2024

for mixtures of ParRot and MMC moves, and Reptation and MMC mov
respectively. The total number of MC steps is 5•106, and every two thou-
sandth configuration has contributed to the distribution statistics.
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carried out with 10% MMC, 10% Reptation, 10% CBMC
and 70% ParRot moves. We observe in Fig. 7 that m
changes in dihedral angleDf range from 0° to 45°. How-
ever, a small number of ParRot moves results in lar
changes in dihedral angles with amplitudes up to 15
Slightly different distributions are characteristic for system
with different chain lengths.

Figure 8 provides a comparison between simulatio
where the maximum changes in the driver angle wereDf
536° andDf5180°, respectively. As one might expec
simulations of 10C71 and 9C100 demonstrate that, on the on
hand, an increase of the maximum amplitudeDf slightly
decreases the number of accepted moves, but that, on
other hand, the tails of the distributions are only margina
affected by the amplitudeDf.

The effect of Df on the ParRot move is clear whe
monitoring displacement amplitudes of the moved chain
oms. Figure 9 shows that typical atom displacements ra
from 0 to 1 Å. Remember that all atoms of the moving cha
part are equally displaced in a ParRot move. In rare ca
the atom displacement can even attain more than 3 Å.

n

,

FIG. 7. Distribution of changes in torsion anglesf1 , f2 , andf3 for ac-
cepted ParRot moves in simulations of 3•106 MC steps of 20 C24, 10 C71,
and 9 C100.

FIG. 8. Distribution of changes in torsion anglesf1 , f2 , andf3 for ac-
cepted ParRot moves in simulations of 3•106 MC steps of 10 C71 and 9
C100. The maximal amplitude of change in the driver torsion angles has b
taken to beDf0536° andDf05180°.
license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



s

%
n
te
ax

o
rin
e-
e
c

ab

le
p

d.

y
s
t

ou

te
or-
hin

n-

rRot
t as

the
or
for

s of
d
Rot
of

-
of

ion/
ns

te in

in

9778 J. Chem. Phys., Vol. 114, No. 22, 8 June 2001 Santos et al.
Figure 10 shows how the displacement of atoms varie
ParRot is used together with other techniques in 10C71. Even
though the combination 10% MMC, 30% Reptation, 30
CBMC, 30% ParRot comprises less ParRot attempts tha
simulation purely based on ParRot, the fraction of accep
ParRot moves is still larger than in the case where the m
mum driver amplitudeDf was increased to 180°.

Efficient sampling of the torsional degrees of freedom
chains requires all the dihedral angles to be relaxed du
simulation. It becomes a particularly difficult task for dih
dral angles deep within the chains. For instance, MMC p
forms poorly in that case because, due to leverage effe
only tiny changes in dihedral angles can lead to reason
acceptance rates.

In order to assess the capability to relax dihedral ang
within the chains, the number of accepted ParRot attem
for each bonds chosen as driver angle can be counte
simulation of long chains (9C100) depicted in Fig. 11 dem-
onstrates that the acceptance of ParRot moves is hardl
fected by the location of the moving unit. About half a
many ParRot moves are accepted for dihedral angles in
middle of the chain than for those at the extremities. To

FIG. 9. Distribution of displacements of the moving chain end for accep
ParRot moves in simulations of 3•106 MC steps of 20 C24, 10 C71, and 9
C100.

FIG. 10. Distribution of accepted ParRot moves for varyingDf0 of the
driver torsion angle in simulations of length 3•106 MC steps on 9 C100.
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knowledge, none of the presently existing off-lattice Mon
Carlo methods is capable to sample so efficiently all t
sional degrees of freedom regardless of their position wit
long chains.

A similar assessment has been made for 10 C71 ~see Fig.
12!. Here the distribution of CBMC moves has been i
cluded ~the depth of the cut has been tracked!. Due to the
shorter chains, the relative decrease of accepted Pa
moves between the middle and the end of the chains is no
pronounced as in 9 C100. The performance of the CBMC
method clearly worsens when handling bonds deeper in
chains and is only practical for the terminal dozen bonds
so; it decreases exponentially with the number of bonds
regrowth.

The mean-square displacement of the center-of-mas
the chains^r c.o.m.

2 & constitutes a criterion of long-time an
long-distance performance of simulation techniques. Par
alone provides little towards displacing the center-of-mass
the chains~Figs. 13 and 14!. Introducing Reptation dramati
cally improves performance and a balanced mixture
Reptation/ParRot satisfactorily competes with the Reptat
ParRot/CBMC combination. In both figures, combinatio

dFIG. 11. Distribution of accepted moves at each bond within the chain
simulations of length 3•106 MC steps of 9 C100.

FIG. 12. Distribution of accepted moves at each bond within the chain
simulations of length 3•106 MC steps of 10 C71.
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without ParRot were among the worst performing mixtu
of moves tested.

V. CONCLUSIONS

The novel off-lattice ParRot method has been dem
strated to be suitable for the isothermal–isobaric simula
of atomistically detailed dense polymer systems, especi
for long chains at high density. ParRot operates on the en
chain in contrast to most continuum MC methods that op
ate only on the chain ends or the chain interior. Solutio
finding is extremely simple because the geometric prob
stated in Parallel Rotation can be solved analytically. Con
quently the ParRot technique proved to be computation
very efficient.

Furthermore the ParRot technique can be used for p
mer chains of arbitrary chemical structure. Since ParRot c
siders four consecutive dihedral angles without attention
the molecular structure between these ‘‘joints,’’ it can

FIG. 13. Diffusion of the centers of mass of the chains in simulations o
C100 obtained with different combinations of Monte Carlo techniques. T
straight line is of unit slope and serves as guide.

FIG. 14. Diffusion of the centers of mass of the chains in simulations of
C71 obtained with different combinations of Monte Carlo techniques. T
straight line is of unit slope and serves as a guide.
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applied to structures with pendant groups, or even branch
structures and to systems with arbitrary bond lengths, ang
and monomer-unit sizes.

The ParRot algorithm permits changing torsion ang
and displacing large chain segments that are deeply in
long chains in dense polymeric system. ParRot enables
cient changes of dihedral angles in the moving unit of up
120° and enables the displacements of atoms in the mo
chain end of up to 1.5 Å. The number of accepted Par
moves is hardly affected by the depth of the variable unit
the chains. Even in systems with the longest chains inve
gated here (C100), the number of successful ParRot attemp
in the middle of the chains was about half of that at the ch
ends. ParRot thus provides a most appropriate technique
efficiently sampling all dihedral angles. The Monte Car
acceptance rate of the new elementary move is not very
sitive to the maximal amplitude of change of the driver to
sion angle and can be adjusted to a broad range of val
from 5% up to 75%.

Special considerations are required in designing the
ceptance criterion of the elementary MC move in order
satisfy the principle of detailed balance in MC method
Tests prove that this acceptance criterion is correct.

ParRot predominantly addresses the issue of moving
torsion angles in a chain, but is inefficient in displacing t
chains as a whole. Large rates for the diffusion of the cen
of mass of the chains can only be obtained when balan
combinations of various Monte Carlo techniques are use

ACKNOWLEDGMENT

We gratefully acknowledge the financial support pr
vided by the Swiss National Science Foundation~Schweiz-
erischer Nationalfonds zur Fo¨rderung der Wissenschaftliche
Forschung!.

1P. G. de Gennes, J. Chem. Phys.55, 572 ~1971!.
2M. Bishop, D. Ceperley, H. L. Frisch, and M. H. Kalos, J. Chem. Ph
72, 3228~1980!.

3M. Vacatello, G. Avitable, P. Corradini, and A. Tuzi, J. Chem. Phys.73,
548 ~1980!.

4J. Siepmann and D. Frenkel, Mol. Phys.75, 59 ~1992!.
5J. J. de Pablo, M. Laso, and U. W. Suter, J. Chem. Phys.96, 6157~1992!.
6A. Widmann and U. W. Suter, Comput. Phys. Commun.92, 229 ~1995!.
7N. Go and H. A. Scheraga, Macromolecules3, 178 ~1970!.
8L. R. Dodd, T. D. Boone, and D. N. Theodorou, Mol. Phys.78, 961
~1993!.

9E. Leontidis, J. J. de Pablo, M. Laso, and U. W. Suter, Adv. Polym. S
116, 285 ~1994!.

10P. J. Flory, Macromolecules7, 381 ~1974!.
11W. F. Van Gunsteren and M. Karplus, Macromolecules15, 1528~1982!.
12W. L. Mattice and U. W. Suter,Conformational Theory of Large Mol-

ecules~Wiley, New York, 1994!.
13K. Binder,Monte Carlo Simulations in Statistical Physics~Springer, Ber-

lin, 1992!.
14J. P. Ryckaert and A. Bellemans, Chem. Phys. Lett.30, 123 ~1975!.
15D. Rigby and R.-J. Row, J. Chem. Phys.87, 7285~1989!.
16R. H. Boyd, Macromolecules22, 2477~1989!.
17M. Müller, S. Santos, J. Nievergelt, and U. W. Suter, J. Chem. Phys.114,

9764 ~2001!, preceding paper.

9

0

license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp


