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Abstract The paper introduces a novel detection and
tracking system that provides both frame-view and world-
coordinate human location information, based on video from
multiple synchronized and calibrated cameras with overlap-
ping fields of view. The system is developed and evaluated for
the specific scenario of a seminar lecturer presenting in front
of an audience inside a “smart room”, its aim being to track
the lecturer’s head centroid in the three-dimensional (3D)
space and also yield two-dimensional (2D) face information
in the available camera views. The proposed approach is pri-
marily based on a statistical appearance model of human
faces by means of well-known AdaBoost-like face detec-
tors, extended to address the head pose variation observed
in the smart room scenario of interest. The appearance mod-
ule is complemented by two novel components and assisted
by a simple tracking drift detection mechanism. The first
component of interest is the initialization module, which
employs a spatio-temporal dynamic programming approach
with appropriate penalty functions to obtain optimal
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3D location hypotheses. The second is an adaptive subspace
learning based 2D tracking scheme with a novel forgetting
mechanism, introduced to reduce tracking drift and increase
robustness. System performance is benchmarked on an exten-
sive database of realistic human interaction in the lecture
smart room scenario, collected as part of the European inte-
grated project “CHIL”. The system consistently achieves
excellent tracking precision, with a 3D mean tracking error of
less than 16 cm, and is demonstrated to outperform four alter-
native tracking schemes. Furthermore, the proposed system
performs relatively well in detecting frontal and near-frontal
faces in the available frame views.

Keywords Person tracking · Face detection ·
Multi-camera tracking · Dynamic programming ·
Adaptive subspace tracking · Mean-shift tracking ·
AdaBoost · Lecture data · Smart rooms

1 Introduction

Visual detection and tracking of humans is an important prob-
lem with numerous applications that range from automated
surveillance to interfaces for human–computer interaction.
In general, robust human tracking in complex scenes is chal-
lenging. In some circumstances however, multiple time-syn-
chronous and calibrated camera sensors with overlapping
fields of view may be available, from which both frame-
view and world-coordinate human location information can
be derived. In such scenarios, efficiently combining frame-
level appearance-based human detection with temporal and
spatial constraints constitutes a viable approach. This can
simultaneously provide both desired types of location infor-
mation with improved accuracy, while avoiding reliance on
any form of background modeling or motion estimation.
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The paper introduces a novel human tracking vision system
employing these principles, developed and evaluated for the
specific scenario of tracking a seminar lecturer presenting
inside a “smart room” in front of an audience.

This scenario is of central focus in the European integrated
project Computers in the Human Interaction Loop (CHIL
[1]). In CHIL, smart rooms have been set up, equipped with
multiple audio and visual sensors that include a minimum of
four calibrated and time-synchronous cameras with highly
overlapping fields of view, located at the room corners (see
also Figs. 1 and 2). Numerous seminars have been recorded in
such rooms providing a large multi-sensory and multimodal
database of real human interaction [2]. The resulting CHIL
corpus, annotated with a wealth of multimodal information,
has been crucial to the development and evaluation of tech-
nologies for perception of humans in the lecture scenario
of interest [3,4]. Prominent among such technologies is the
task of locating the lecturer’s head position, both in the three-
dimensional (3D) space—in the form of head centroid world
coordinates, as well as in the available two-dimensional (2D)

frame views—as bounding boxes of visible faces [5]. Such
location information can be further utilized in support of
numerous audio-visual perception technologies: For exam-
ple, 2D face information is useful for person identification
[6], whereas 3D location coordinates can be employed in
acoustic beamforming for far-field automatic speech recogni-
tion [7], as well as to obtain close-up presenter views based on
steerable pan-tilt-zoom cameras or camera selection schemes
[8,9]. The views can further assist identification [10] and
audio-visual speech technologies [11], among others, with
obvious utility in lecture indexing and understanding of the
interaction.

It becomes clear that for the CHIL lecture scenario
described above a visual system that combines face detection,
tracking, and multi-camera processing is both feasible and
desirable. This paper introduces such a system, developed to
provide both 2D-face and 3D-head location information of a
single person (the lecturer) in CHIL seminars. Like most 3D
approaches, the proposed algorithm consists of a sequence
of 3D initialization and tracking phases, with a tracking drift

(a) (b)

Fig. 1 Overview of the CHIL lecturer video tracking task. Schematic
diagrams of the smart rooms located at two CHIL project partners:
a Universität Karlsruhe (UKA), Germany, and b Istituto Trentino di

Cultura (ITC), Italy. The CHIL lecture corpus, used in our experiments
for single-person (lecturer) tracking, has been collected at these two
sites (see also Fig. 2)

Fig. 2 Examples of
synchronous four camera views
of the a UKA and b ITC data,
part of the CHIL lecture corpus
[2]. In such recordings, a
standing subject presents a
lecture in front of a small
(mostly sitting) audience. Notice
the highly overlapping fields of
view of the four cameras, set up
to ensure that at least two
cameras capture the lecturer
head at any given instant
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detection mechanism controlling the switch between the two.
Similarly to other works, all its stages depend on 2D informa-
tion from separate views to obtain 3D location world coor-
dinates based on camera calibration [12].

However, the proposed system deviates from other
research efforts that focus on the 2D or 3D tracking prob-
lems alone, in that it jointly considers them within a single
framework, in order to improve both 2D-face and 3D-head
localization accuracy. This is accomplished by relying heav-
ily on the appearance model of the tracked object—here the
lecturer’s head, as viewed in 2D by the available cameras.
For this purpose, off-the-shelf statistical classifiers of human
faces are utilized, in particular AdaBoost-like face detec-
tors, appropriately extended to address the head pose varia-
tion observed in the smart room scenario. As a result, in the
developed system, 2D face detection plays a pivotal role in
3D head tracking, being employed in system initialization
and in detecting possible tracking drift. Similarly, 3D track-
ing determines the 2D frame regions where a face detector
may be subsequently applied. An additional differentiator of
the proposed system is that no form of motion estimation
or background modeling is needed. The algorithm therefore
remains robust to the unpredictability of motion, occlusion,
and background changes in the heavily cluttered CHIL smart
rooms. This is in contrast to all alternative tracking systems
in the literature (to our knowledge) that address the smart
room scenario of interest [13–20].

Two additional components in the proposed system
complement the appearance module, implementing
a number of novel ideas: One is the initialization module that
employs a spatio-temporal dynamic programming approach
to obtain optimal 3D location hypotheses. For this purpose,
while scoring candidate hypotheses, the adopted implemen-
tation penalizes not only large trajectory discontinuities over
time, but also accounts for hypothesis appearance similar-
ity between camera views. The second component of inter-
est is a 2D tracking module, used as part of the 3D tracking
phase. This component utilizes an adaptive subspace learning
based scheme [21]. A novel forgetting mechanism is intro-
duced into this technique to reduce tracking drift and increase
robustness to illumination and head pose variation. Further-
more, tracking is applied on only two of the four available
camera views, selected based on the initialization compo-
nent. This results in considerable speed-up.

Finally, the extensive benchmarking of the proposed
approach constitutes an important aspect of the paper,
breaking away from the toy-problem or small-scale evalu-
ation paradigm that often accompanies other works in the
area. In particular, the developed system is benchmarked
on all three parts of the CHIL lecture corpus [2]. This is a
large database that exhibits significant data variability, with
no artificially imposed constraints in the human interaction
and behavior patterns, thus allowing meaningful technology

development, evaluation, and algorithmic comparisons [5].
Furthermore, the proposed system is compared to a num-
ber of 3D tracking methods, ranging from small algorith-
mic variations of it to significantly different approaches
[20,22].

The rest of the paper is organized as follows: Section 2
briefly discusses literature work relevant to this paper.
Section 3 provides an in-depth presentation of the proposed
system and its components. Section 4 describes alternative
systems considered in our experiments on CHIL lecture data,
which are subsequently presented in Sect. 5. Finally, a brief
summary and discussion in Sect. 6 conclude the paper.

2 Related Work

Much work has been devoted to the core problems of human
detection and tracking that constitute the focus of this paper.
For this purpose, human body models are often used, ranging
from simplistic blob appearance or cylindrical shape models
[23] to more complex articulated ones [24]. An alternative
approach to these problems is detecting and tracking human
faces.

For face detection, machine learning based techniques are
widely considered as the most effective, for example based on
neural networks [25], support vector machines [26], network
of linear units [27], or the AdaBoost approach [28]. Alterna-
tive methods using traditional image processing algorithms
based on color and edge information [29], or optimization
to match learned shape and/or appearance to data [30] have
also been shown to achieve good performance. Many such
techniques can be further extended to handle detecting faces
under varying head pose; for example [31], where pose-based
appearance frameworks are proposed, or the multi-pose face
detection work of Li et al. [32], where “FloatBoost”, an Ada-
Boost variant, is employed. The latter approach is used in our
proposed system.

Similarly, for tracking faces, various target representations
have been used in the literature, such as parameterized shapes
[33], color distributions [34], image templates [35] and the
eigenspace approach [36]. Tracking with fixed representa-
tions however is not reliable over long durations, and a suc-
cessful tracker needs to allow appropriate model adaptation.
Not surprisingly, a number of tracking methods have been
developed to allow such adaptation online, for example the
EM-algorithm based technique of [37], the feature selection
mechanism of [38], and the parametric statistical appearance
modeling technique in [39]. An interesting non-parametric
approach appears in Lim et al. [21], where the appearance
subspace is learned online by an efficient sequential algo-
rithm for principal component analysis (PCA), updated with
the incoming data vectors. An extension of this technique is
employed in our proposed system.
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In general however, real interaction scenarios, such as
in the CHIL domain, present significant challenges to most
face detection and tracking algorithms, for example partially
occluded and low-resolution faces, as well as lighting and
head-pose variations. These difficulties can often be success-
fully addressed, only if additional information is available in
the form of multi-camera input, in order to reduce spatial
uncertainty in the scene [40]. Naturally, some researchers
have begun to exploit multiple camera views where they are
available, and several tracking systems attempt to fuse infor-
mation from the available sensors to yield 3D tracking results
[10,41–43], using for example Kalman filters [44], particle
filters [45], or just scene and camera geometry [40].

The above ideas have found their way into a number of
papers for tracking the lecturer in the CHIL scenario. In
2D face tracking work reported in [13,14], statistical face
detection is assisted by either a motion model or a combi-
nation of foreground-background segmentation [46] and 2D
Kalman filtering. However, neither system utilizes 3D infor-
mation. A few other works aim to provide 3D head informa-
tion in the CHIL scenario of interest [15–20]. These differ
from our proposed system in various aspects, most impor-
tantly that they do not focus directly on the 2D face appear-
ance information (with the exception of [20]), but rather
model and track larger parts of the human body. For this pur-
pose, they all use background modeling [15–17] or motion
information [18–20]. The extracted camera view informa-
tion is then combined across views by employing either tri-
angulation-based, decision fusion mechanisms [17,19,20],
or likelihood fusion by means of particle filters [16,18].
An alternative technique appears in [47], where histogram
features are directly combined across camera views within
a 3D kernel based tracking framework—a process akin to
feature fusion. That system however lacks an initialization
component.

3 The proposed tracking system

We now proceed to describe the developed tracking system.
As already discussed in the Introduction, this constitutes a
joint face- and head-tracking approach, developed to yield
both the 3D head centroid location of the lecturer inside the
CHIL smart room, as well as the 2D bounding boxes of vis-
ible lecturer faces (ranging from frontal to profile) in the
available camera views. We first briefly present an overview
of the entire system, followed by a detailed discussion of its
main algorithmic components.

The following notation will be used in this section: H (t)

will denote a hypothesis at instant t concerning the 3D world
coordinates (xt , yt , zt ) of the lecturer’s head centroid.
Similarly, h(t)

c will represent a hypothesized “visible face”

(a) (b)

Fig. 3 Block diagram of the developed multi-camera 3D head tracking
system. a Overview; b Initialization

at instant t in camera view c ∈ C, where C is the set of avail-
able cameras (here, four). Face hypothesis h contains 2D
information about the face bounding box, (u, v,�u,�v),
namely 2D center coordinates, box height and width. The
collection of pixels within h will be denoted by h.

3.1 System overview

The overview diagram of the 3D head tracking system is
given in Fig. 3a. It basically consists of an initialization and a
tracking component, with tracking drift detection controlling
the switch between these two modes. For its initialization,
multi-pose face detectors are first applied to all four camera
views in the smart room (also referred to in this work as a
“quad-frame”—see Fig. 2). Details are provided in Sect. 3.5.
Subsequently, spatio-temporal information of the face detec-
tion results over ten consecutive quad-frames is integrated
within a dynamic programming framework, to provide robust
initialization. Details are described in Sect. 3.2 (see also
Fig. 3b). Following initialization, a 2D tracking component
kicks in, operating independently in two only camera views
selected based on the initialization step. Details of the track-
ing algorithm, which is based on online adaptive subspace
learning, are presented in Sect. 3.3. Finally, an important
aspect of the system is the re-initialization decision. This is
described in Sect. 3.4.

In addition to 3D head tracking, the developed system
performs 2D face localization, based on the 3D result. Such
result provides the approximate region within the 2D frame
views, where a visible face could be present, in the following
manner: As mentioned above, the 3D system uses 2D sub-
space tracking on two only camera views. For these views,
the expected face location is therefore immediately available.
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For the remaining two camera views, the system considers
the projection of the 3D head position estimate (using cam-
era calibration) to obtain an estimate of the head’s 2D loca-
tion in the image frames. Following this step, multi-pose face
detection (see Sect. 3.5) is applied around the estimated head
center in each camera view. If the face detector locates a face,
this is accepted. If there is no face detection result, then one
of the following two cases occurs: (a) If the camera view
in question is one of the two views that have been used in
tracking at that instant, the raw 2D tracking result (i.e., the
tracked face box) is returned as the face detection output.
(b) If however the camera is not a 2D tracking view, no face
output is produced.

3.2 Spatio-temporal 3D initialization

Robust initialization is a crucial component in every track-
ing scheme. In the proposed system, initialization is driven
by the face detection module described in detail in Sect. 3.5.
In particular, trained AdaBoost-like multi-pose face detec-
tors are applied on all four camera views (over the entire
quad-frame) and over all time instants during the initiali-
zation phase. However, the resulting detected faces prove
insufficient to lead to robust 3D initialization by triangula-

tion alone [40]. This is due to high rates of false positives
and missed faces, as discussed in Sect. 3.5 and quantified in
the experiments (Sect. 5.4)—see also Fig. 4.

Given the challenging nature of face detection in the CHIL
scenario, the developed system seeks to utilize additional
information, in the form of temporal (video sequences) and
spatial (multiple camera views) context. The resulting algo-
rithm integrates both temporal and spatial information from
frame-level face detection results into a dynamic program-
ming (DP) framework, schematically depicted in Fig. 3b. In
summary, following face detection, 3D hypotheses of the
presenter’s head location are generated using the calibration
information, based on the spatial consistency of the detection
result from different camera views. Then, DP applied on the
results over ten consecutive quad-frames is used to search for
the optimal trajectory of the presenter’s head centroid in the
3D space, based on appropriately defined penalty functions.
If the optimal trajectory is accepted compared to a threshold,
the result is fed into the tracking component described in
Sect. 3.3; otherwise the process is iterated with a five frame
shift until an acceptable trajectory is determined. An example
of the proposed spatio-temporal initialization scheme applied
on CHIL lecture data is depicted in Fig. 4. Details of the
implementation follow.

Fig. 4 Spatio-temporal face detection depicted at two instants, for all
four camera views. Upper-row: Based on frame-level FloatBoost face
detection, with no spatial and temporal information utilized. Lower-row:

After the proposed dynamic programming. Notice that in the latter case,
single faces (frontal or profile) are only depicted for the two selected
camera views that correspond to the optimal hypothesis

123



168 SIViP (2007) 1:163–178

3.2.1 Generating 3D hypotheses

Assuming ni face detections per camera view, there could be
up to

1

2

∑

i, j :i �= j

ni × n j

candidate 3D head locations at each time instant, obtained
via pair-wise triangulation of detected face bounding box
centers, using for example the direct linear transformation
(DLT) method [40]. A few of these hypotheses can be read-
ily rejected, for example when large inter-ray distances of
the 2D-to-3D maps are observed, or based on collection-site
specific spatial constraints. The latter can be learned from
development data, and are imposed to distinguish the lecturer
from audience members (see also Fig. 1). These constraints
result in about half of the room floor surface being allow-
able for the presenter’s (x ,y) location, whereas a 400 mm
height range (1,500–1,900 mm) is imposed on the z-axis
location coordinate. As a result of this process, multiple 3D
hypotheses

H (t)
i = DLT (h(t)

ki
, h(t)

li
) (1)

are generated at every time instant t , where indexes ki , li
specify the face hypotheses in two camera views that yield
H (t)

i . Hence in this framework, each H (t)
i contains not only

the 3D location coordinates of the hypothesized head cen-
troid, but also indexing information about the two camera
views that generated it.

3.2.2 Trajectories of 3D hypotheses

Following generation of a pool of 3D head centroid hypothe-
ses at each time instant t , the next step is to perform dynamic
programming over the temporal window of interest, in order
to obtain the optimal temporal sequence (path or trajectory)
of 3D location hypotheses. For this purpose, two main 3D-
path cost components are employed. One is a traditional tran-
sition cost that penalizes path discontinuities over time. An
additional local cost complements it, based on a similarity
measure of the 3D hypothesis. This is introduced to reward
consistency among the face detection results that generated
the hypothesis via (1). As a result, a path

H =
{

H (t1)
i1

, H (t2)
i2

, . . . , H (tn)
in

}
(2)

based on n 3D hypotheses of head centroids at times t1 <

t2 < · · · < tn has a trajectory cost associated to it, given by

C (t)(H) = t1 CB + (t − tn) CE +
n−1∑

k=1

(tk+1 − tk) CI

+
n−1∑

k=1

CT (H (tk+1)

ik+1
| H (tk )

ik
) +

n∑

k=1

CL(H (tk)
ik

),

(3)

over time interval [ 0 , t ], where t ≥ tn . In (3), CT (•|•) and
CL(•) denote the transition and local similarity costs, respec-
tively. In addition to those, three constant costs are introduced
to account for missing 3D hypotheses, or to allow skipping
unreliable ones (by essentially duplicating a prior hypothesis)
in some of the instants over the temporal window of inter-
est. The three costs, CB , CI , CE are used for this purpose at
the beginning, intermediate, or ending part of the trajectory,
respectively. Additional details of the components in (3), as
well as the hypothesis search follow.

3.2.3 Local similarity cost

This is used to evaluate the hypothesis at the current
instant on the basis of the available camera views that gen-
erated it via (1), exploiting spatial information by means of
local appearance. The assumption is that if the candidate
hypothesis corresponds to an actual 3D object, then the cor-
responding face regions in the two camera views should have
similar color histograms. The cost computation is based on
the Bhattacharyya coefficient, and is defined as (see
also (1))

CL(H (t)
i ) = − α

m∑

b=1

√
pb(h

(t)
ki

) pb(h
(t)
li

) , (4)

where {pb(h) : b = 1, . . . , m} denotes the m-bin color his-
togram, based on the face candidate pixel values h, and α is
a scalar value used in order to balance the contributions of
(4) and (5) in (3).

In our implementation, p is taken to be the 30-bin histo-
gram of the H component of the color HSV space. Further-
more, and in order to improve robustness, the face candidate
regions in the computation of (4) are extended: Histograms
are computed over rectangles taken to be approximately dou-
ble (in height only) the detected face bounding boxes h(t)

ki

and h(t)
li

.

3.2.4 Transition cost

The transition cost exploits temporal information, and it is
used to penalize non-smooth trajectories, based on the 3D

123



SIViP (2007) 1:163–178 169

distance between temporally consecutive hypotheses. The
cost is specified using Gaussian diffusion, computed between
3D hypotheses H (t)

i and H (t−1)
j , as

CT

(
H (t)

i |H (t−1)
j

)
= 1

2
log |�| + 3

2
log 2π

+
(

H (t)
i − H (t−1)

j

)T

×�−1
(

H (t)
i − H (t−1)

j

)
. (5)

In our system, the covariance matrix � is set to diagonal
matrix (100,100,100), assuming that 3D hypothesis coordi-
nates are in mm.

3.2.5 Hypothesis search

The searching scheme employs the standard dynamic pro-
gramming approach, based on cost equation (3) — but with
a few twists to better adapt to the task at hand. Available at
a given instant t are a pool of local hypotheses H (t)

i , i =
1, . . . , m, and the active trajectories up to t −1, which we
denote by H(t−1)

j , j = 1, . . . , n, extending the notation in

(2). The latter are accompanied by scores g(t−1)
j that spec-

ify the trajectory cost up to t − 1 , based on (3). Then, the
active hypotheses at t are obtained as H(t)

i = {H(t−1)

ĵ(i) , H (t)
i },

where

ĵ(i) = argmin
j=1,...,n

{ g(t−1)
j + CT (H (t)

i | H (t−1)
j ) + CL(H (t)

i ) } ,

with the new score g(t)
i being the optimal value of the above

minimized expression. In addition to the updated trajecto-
ries, active hypotheses H(t−1)

j may remain “alive” as H(t)
j =

{H(t−1)
j , H (t−1)

j } (slight notation abuse) with a constant
penalty CI added to their score (see (3)). To speed up com-
putations, pruning is performed among the resulting pool of
paths, by allowing at most six trajectories to be kept active
at any instant t . Furthermore, the scheme is terminated at the
10th quad video frame (tend = tinit + 10). The global optimal
trajectory is then obtained by choosing the active hypothesis
with the minimum score at t = tend.

In addition, a maximum acceptable score is defined, pro-
viding a mechanism to reject the final hypothesis (and hence
trigger a new search), if its total cost exceeds a fixed thresh-
old. This threshold, as well as parameters CI =CB =CE and
α in (3) and (4), are tweaked empirically, based on detection
and false alarm rates on CHIL development data. In the case
that the optimal trajectory is rejected, a five quad-frame shift
is applied, and the search gets re-initialized. The returned

optimal trajectory defines the two camera views on which
2D tracking is to commence, as discussed next.

3.3 Adaptive subspace 2D tracking

Following successful initialization, a 3D hypothesis is
obtained as the last element of the optimal (minimum score)
spatio-temporal path at time instant to

.= tend . This hypothe-
sis, denoted by

H (to) = DLT ( h(to)

c′ , h(to)

c′′ ),

contains the two face detection results and the indexing infor-
mation of the two camera views, c′, c′′ ∈ C , that generated it.
Such information allows the tracking phase of the algorithm
to commence. This stage consists of two separate 2D track-
ing processes, running independently and in parallel for each
of these two camera views. The 2D processes are based on an
adaptive PCA subspace approach that tracks the face bound-
ing box within the single-camera frame sequence. There-
fore, at each time instant t > to , the two trackers generate
face bounding boxes h(t)

c , c ∈ {c′, c′′} . The 3D head cen-
troid location can then be easily obtained via triangulation
as H (t)=DLT ( h(t)

c′ , h(t)
c′′ ) , assuming that no tracking drift is

detected.
The motivation behind this scheme is to reduce computa-

tions by tracking using the bare minimum of camera views
(two), sufficient for 3D triangulation, but also to do so in
the specific views where visible faces (frontal or profile) are
expected. Such views contain more discriminating informa-
tion, as opposed to views that capture the back of the lec-
turer’s head. In addition, they enable the verification of
whether the hypothesized tracked object is indeed a visible
face, by applying a face detector in its region. This is cru-
cial in detecting possible tracking problems (see Sect. 3.4).
Furthermore, the 2D tracking results may readily provide
desired 2D face information in the camera views in question,
as discussed in Sect. 3.1.

At the heart of the proposed scheme lies the 2D PCA
subspace tracking approach. As discussed in Sects. 1
and 2, adaptability of the subspace to the observed con-
ditions is crucial in improving tracking robustness in the
dynamic CHIL scenario, mainly due to variations in head-
pose and lighting. Such approaches have already been pro-
posed in the literature, for example in [21]. There, when a
new observation is obtained, the PCA subspace is updated
to take into consideration the variance contributed by the
new observation. However, the method does not provide an
updating algorithm for eliminating past observations dur-
ing tracking. This poses a problem when tracking objects
over long durations, since the noise introduced during
tracking eventually could bias the PCA subspace away from
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the characteristic appearance of the desired tracked object.
In [48], an L∞ norm subspace is fitted to the past frames
incrementally by Gramm-Schmitt orthogonalization. Though
the subspace with L∞ norm has the advantage of timely
incorporating observation novelties into the subspace rep-
resentation [48], it runs the risk of tracking drift due to its
lack of robustness to noise and outliers. PCA on the other
hand offers freedom to perform dimensionality reduction and
thus ignore tracking noise and assist outlier rejection based
on reconstruction error [36]. Therefore, the proposed system
adopts the incremental PCA subspace learning approach. In
particular, Hall’s mechanism [49] is employed to incremen-
tally update the PCA subspace given new observations. In
addition, our proposed system also allows subspace adjust-
ment, by eliminating distant past observations in the sub-
space. This introduces a forgetting mechanism that is absent
in Lim’s approach [21].

The proposed 2D adaptive subspace tracking scheme con-
sists of three steps, at each time instant (frame) t , as
discussed next. The presentation refers to faces, but of course
the scheme is more general.
(a) Localization: The first step is to estimate the new face
location at instant t , h(t), based on the prior face location,
h(t−1), and the available PCA subspace of face appearance at
t−1 (for simplicity, we drop the camera index in the notation).
Let us denote the current PCA subspace by (h̄(t−1), U (t−1),
�(t−1), N (t−1)), with its elements representing, respectively,
the mean vector of face appearances, the matrices of retained
eigenvectors and eigenvalues, and the current number of
observations modeled. The new face location at t is then
obtained as

h(t) = argmin
h ∈N (h(t−1))

‖ ( h − h̄(t−1))

− U (t−1)U (t−1) T( h − h̄(t−1)) ‖2 , (6)

where the minimization occurs over a set of candidate face
bounding boxes in the “neighborhood” N (h(t−1)) of the pre-
vious face. Note that in (6), the minimized functional corre-
sponds to the distance from the PCA space of the vectors
of candidate face pixels, h, within the corresponding face
bounding boxes h .
(b) New sample inclusion into subspace: Once the new face
“observation” h(t) becomes available, its pixel values vector
h(t) gets recruited into the PCA subspace. The subspace can
be adapted in an incremental fashion, as described in Alg. 1
of Fig. 5, thus avoiding recomputing the subspace from all
its samples.
(c) Old sample exclusion from subspace: Following
inclusion of the new observation, the PCA subspace receives
a second update by excluding a past distant observation vec-
tor h(t−m). This forgetting mechanism is performed as
described in Alg. 2 of Fig. 5, avoiding recalculation of the

Fig. 5 Brief overview of the incremental adaptive subspace update
used for 2D tracking, when including a novel observation (Alg. 1), or
excluding a distant past observation (Alg. 2) from the subspace

entire subspace. Notice that in contrast to step (b), the process
occurs only once the subspace reaches its “steady state” of
containing N (t) = m samples, or equivalently for
t ≥ to + m .

In our particular implementation, the proposed system
employs the most recent m =50 frame observations to con-
struct the PCA subspace. Hence, following tracking initial-
ization, the forgetting mechanism does not commence until
after 50 frames are observed. For this initial duration, the
algorithm remains identical to [21]. The learned subspace
has a dimensionality of up to 15, down from a normalized
20 × 20-pixel data “template” (the un-normalized template
size depends on the detected face at the end of the initiali-
zation step). Finally, the optimization in (6) occurs over 169
candidate faces of constant size (equal to the detected face
size at initialization), with their centers located at equally
spaced points within a square four times in size of the initial-
ized face actual size. Tracking therefore occurs in constant
scale, with only the face location sought.
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3.4 Tracking drift detection in 3D

An important aspect of the system is the re-initialization deci-
sion, or equivalently, tracking drift detection on basis of the
2D independent tracking results in the two selected camera
views. This is based on a combination of local face detection
and calibration-based triangulation to test the consistency of
the two tracks at the given time. In more detail, if the inter-ray
distance of the two 2D-to-3D mapping rays is larger than a
predetermined threshold, this indicates that the two tracked
results are inconsistent, hence immediately prompting re-ini-
tialization. Furthermore, at each frame, the multi-pose face
detectors of Sect. 3.5 are also applied around the two tracking
results to determine whether there indeed exists a face object
in the local regions of interest (for example, in the proposed
system, this is set to a 80×80 pixel region, when running on
CHIL seminar data collected at UKA). If faces could not be
detected in the local region for several frames (30 in our case)
in any of the two camera views, a re-initialization decision
is prompted.

3.5 Multi-pose 2D face detection

Face detection is a critical component of the developed sys-
tem, being used at the initialization (Sect. 3.2) and drift detec-
tion stages (Sect. 3.4) of the 3D head tracking sub-system,
and in addition being the required step to produce 2D face
results, based on the 3D head location estimate, as discussed
in Sect. 3.1. Our system adopts a multi-pose face detector
approach, with classifiers trained using the FloatBoost tech-
nique [32], an AdaBoost variant [28].

3.5.1 AdaBoost and FloatBoost learning

AdaBoost provides a simple yet effective approach for stage-
wise learning of a nonlinear classification function [50].
While a good classifier is difficult to obtain at once, AdaBoost
learns a sequence of more easily attainable “weak” classifi-
ers, whose performances may be poor, but better than random
guessing. It then boosts (combines) them into a “strong” clas-
sifier of higher accuracy.

Viola and Jones [28] successfully applied AdaBoost clas-
sification to the face detection problem, following earlier
work [51]. There, AdaBoost is adapted to solve three issues:
(i) Learning effective features from a large feature set; (ii)
Constructing weak classifiers, each based on one of the
selected features; and (iii) Boosting the weak classifiers into a
stronger one. In the particular two-class face detection prob-
lem, tens of thousands of simple Haar wavelet-like features
are defined, and an appropriate scheme for their selection
is designed. The process is carried out sequentially, at each
step m selecting a weak classifier fm(h), simply designed
based on its corresponding feature, over the pool of available

features. The weak classifier is added into a linear combina-
tion of the already chosen weak classifiers in previous steps,
resulting to a stronger one, Fm(h) . The selection of fm(h)

is based on minimizing the classification error of Fm(h)

on an appropriately weighted epoch of the training data.
The scheme therefore represents a greedy sequential forward
search procedure.

An alternative training algorithm, applied to the face detec-
tion problem, appears in [32]. This employs the sequential
floating search method [52] that allows feature deletion and
controlled backtracking during the strong classifier learning
process. In particular, a “conditional exclusion” step is added
to AdaBoost training. In it, each of the weak classifiers fk(h) ,
0 ≤ k ≤ m , that constitute elements of Fm(h) is exam-
ined to check whether removing it may reduce classification
error of the remaining linear combination. If such situation
occurs, and assuming that weak classifier fn(h) is the one
that reduces the error the most when removed, fn(h) will
be deleted, and all classifiers fk(h), n < k ≤ m , will be
re-learned. The process results in more expensive training
compared to traditional AdaBoost, but yields more compact
sets of weak classifiers.

Both AdaBoost and FloatBoost learning approaches dis-
cussed can be used to combine the successively stronger clas-
sifiers into a cascade structure [28,32]. The goal is for the
resulting classification structure to quickly reject uninterest-
ing non-face candidates h, while focusing attention to can-
didates that appear to be face-like (or confused as such). A
simple such framework is proposed in [28].

3.5.2 Implementation details

In our implementation, we use the FloatBoost approach [32]
to train cascaded (layered) face classifiers using Haar wave-
let features [28]. In particular, since faces may be visible
in the available camera views with different head poses, we
train two detectors, based on clustering visible faces into two
groups: Frontal ones that also contain near-frontal faces, and
left-side profile ones pooled together with mirrored right-side
profile faces. The two face detectors are trained on develop-
ment set data, on images cropped based on the available CHIL
corpus annotations (see also Sect. 5.1). For negative exam-
ples (non-faces), training samples are cropped from an image
database that does not include faces, as well as non-face
regions of CHIL corpus frames. Separate face detectors have
been trained for each of the three parts of the CHIL database,
discussed in Sect. 5.1. For example, for the “CHIL04” set,
1,606 frontal and 1,542 profile images have been used. Fol-
lowing FloatBoost training, the resulting frontal face detector
consists of 15 layers and 576 Haar wavelet features, whereas
the profile view one consists of 30 layers and 4,330 features.
Notice that during the testing phase, an additional detector of
right-side profile view faces is used. This is readily obtained
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by mirroring the left-side profile view face detector [32]. An
example of detected faces on CHIL data is depicted in the
upper rows of Fig. 4.

4 Alternative 3D tracking systems

To evaluate the proposed system, we compare it with a num-
ber of alternative 3D tracking approaches in experiments
reported in Sect. 5. Two of the systems are only slight varia-
tions of the proposed theme; therefore, they are briefly
described together with our experiments (see Sect. 5.3). The
remaining two however depart significantly from it [20,53],
and are overviewed next.

4.1 Motion and mean-shift tracking based system

Similarly to the proposed system, this alternative approach
consists of three components, namely 3D initialization, 2D
tracking, and drift detection. The latter, as well as the face
detection part of the initialization component are identical
to the proposed system, as described in Sects. 3.4 and 3.5,
respectively. However, the system lacks the more sophisti-
cated spatio-temporal dynamic programming framework for
initialization, using instead a motion detection based
approach to identify candidate regions for initialization. In
addition, it replaces adaptive subspace tracking with the
mean-shift tracking algorithm. The two components that dif-
fer from the proposed system are briefly discussed below.
More information can be found in [20].

4.1.1 Initialization

First, independently for each camera view, motion history is
estimated to rapidly determine where movement has occurred.
The algorithm used is based on work by Davis and Bobick
[54]. Obtaining a foreground silhouette is achieved through
subtraction between two consecutive frames instead of back-
ground subtraction. As the person moves, the most recent
foreground silhouette is copied as the highest value in the
so-called “motion history image” (MHI). MHI pixel values
that fall below a threshold are set to zero. An example of the
algorithm applied to two camera views is depicted in Fig. 6a.

Subsequently, a multi-pose face detector, identical to the
one of the proposed system (Sect. 3.5), is applied to the fore-
ground region only (where motion occurred), instead of the
whole frame. The detection results for each camera view can
then be used to verify whether the detected faces belong to the
same person, based on calibration information [40], thus pro-
viding the 3D head position. The highest lying 3D position
within the general seminar presenter area is returned as the
initialization estimate for subsequent tracking.

Fig. 6 Examples of processing steps in an alternative 3D head track-
ing system, based on face detection, motion estimation, and mean shift
tracking [20]. a Motion history image for two camera views; motion
objects are segmented as foreground (white pixels). b Multi-pose face
detection result, after FloatBoost face detectors are applied locally
around the resulting foreground region. c Local face detection applied
within windows around the mean shift based tracking results in the two
camera views

The above algorithm could in principle be applied to all
four camera views. However, in order to reduce the pool of
3D initialization candidates, two only camera views are being
used in the implementation of [20]. These cameras have been
selected based on development data from each lecture as the
cameras with the highest percentage of (near-)frontal faces.
This is possible for “CHIL03” and “CHIL04” data, where
development and evaluation sets are available for each of the
lectures in the corpus (see Sect. 5.1), and assumes that the
lecturer’s general location behavior would not change over
the duration of the seminar.

4.1.2 Mean shift tracking

Following the initialization component and the successful
location of the presenter’s face, the algorithm switches into
its tracking mode. A color-based face model of the detected
face region is first created for tracking in each of the two
camera views. In particular, the one-dimensional histogram
of the H component in the HSV color space is used for this
purpose. The mean shift iteration algorithm is then employed
for tracking [34], based on the Bhattacharyya coefficient,
around a target position predicted by means of Kalman fil-
tering [44]. The algorithm is applied separately in the two
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camera view images to find the best target candidate. Sub-
sequently, triangulation provides the 3D position estimate,
with drift detection, as in Sect. 3.4, flagging possible incon-
sistencies that trigger re-initialization.

4.2 Background subtraction based system

This system constitutes a 3D tracker, developed on top of the
IBM “Smart Surveillance Engine” (SSE) 2D tracker [55].
The system employs SSE independently for each of the four
available camera views, and then integrates the information
in 3D [53].

The 2D component is based around a background-sub-
traction object detection system [22], which uses a multiple
Gaussian color model at each pixel. Objects are tracked in
the image plane from frame to frame using the “ColourField”
tracking method [55]. A preliminary extension of this sys-
tem to 3D tracking, called the “Face Cataloger” appears in
[10]. There, the 2D tracker was applied independently in
two views, and used a head detection algorithm to locate the
head center, regardless of pose. The estimated head points
from pairs of tracks in the 2D views were then triangulated
to determine correspondence and estimate 3D head centroid
positions.

Since then, improvements in the underlying 2D tracking
algorithm allowed a new 3D tracking algorithm to be devel-
oped for the CHIL task [53]. This approach dispensed with
the head detector, which had limitations when multiple tar-
gets were being tracked, and was found to be unnecessary in
lectures, where the head is almost always the highest point
of the presenter’s body. In this version of the tracker, the
underlying improved 2D tracking algorithms of the IBM SSE
system are again employed, unmodified from their usual out-
door surveillance configuration. The 2D tracker provides a
temporally-smoothed model of the objects observed in each
view, together with each object’s location, tracked through
occlusions. The 2D track information however is not used
in the 3D engine; instead, temporal consistency is applied
directly in 3D.

In more detail, at each frame, the 2D tracker is applied,
and the resulting 2D probabilistic models are used to deter-
mine the position of the head top. This is taken to be the point
whose y coordinate is the top of the object model bounding
box and whose x coordinate is that of the centroid of the
upper sixth of the model. The resulting 2D object points are
considered as hypotheses for the top of the speaker head,
and when coupled with the camera calibration information,
each gives a 3D ray, along which the speaker’s head might
lie. Validation for these hypotheses in other views is then
sought, by computing the shortest distance between each
pair of such rays from different cameras. All such pairings are
evaluated, sorted and compared to a distance threshold of 300
mm, with the closest match considered first. The procedure

Fig. 7 Detection results for the background subtraction based tracker
on four synchronous camera views [22,53]. Foreground blobs are shown
in solid green. Candidate head-top points are depicted as small orange
circles. 3D head location hypotheses are shown back-projected as larger
blue circles. The current Viterbi path is depicted as a green line

yields a set of 3D hypothesis points, which can then be asso-
ciated over time and concatenated into 3D tracks. For this
purpose, dynamic programming is employed to find the best
track hypothesis through the temporal sequence of 3D head-
top hypotheses. The approach uses a beam search with up
to N (typically 50) search hypotheses active, to search for
the shortest path passing through head location hypotheses.
Trajectory costs are given by (3), but with a few differ-
ences; namely, CT (H (t)

i | H (t−1)
j ) = ‖H (t)

i − H (t−1)
j ‖ and

CL(H (t)
i ) = 0 . At each time instant, all paths are updated,

where each path can be retained with no additional evidence
(with a penalty), or by adding one of the 3D location hypothe-
ses for that instant. At the end, the lowest cost path is retained
as the “best” path through the 3D location hypotheses. Part
of this process is depicted in Fig. 7.

To allow effective background subtraction, background
images are used when testing this algorithm on the CHIL
lecture corpus. These images are derived by splicing frames
from the development set together, so as to remove the lec-
turer. This process is performed automatically, based on
development CHIL data, and is possible for the “CHIL03”
and “CHIL04” sets, since they contain development and
evaluation data from the same lectures (see also Sect. 5.1).
Furthermore, and similarly to all trackers used in this work,
spatial constraints about the lecturer’s 3D location are uti-
lized to improve performance.

5 Experiments on the CHIL corpus

We now proceed to evaluate the performance of the proposed
tracking scheme on the CHIL lecture corpus and compare it to
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alternative approaches. Before reporting results, we briefly
describe the CHIL lecture corpus, its annotations, and the
adopted evaluation metrics.

5.1 The CHIL lecture corpus

Our experiments are conducted on the CHIL database. This
consists of three subsets, with a fourth set becoming available
in early 2007.
(i) CHIL03: This first dataset was collected in 2003 at the
smart room of Universität Karlsruhe, in Germany (UKA),
and contains seven lectures, each split into two development
and two evaluation segments of approximately five minutes
duration each. This set will be referred to as the “CHIL03”
dataset, and it has been used in internal CHIL consortium
evaluations during the summer of 2004.
(ii) CHIL04: The second phase of data collection took again
place at the UKA smart room in late 2004. This effort resulted
in five lectures, split in a similar fashion to the “CHIL03” set
into a total of ten development and ten evaluation segments,
each five minutes in duration. This will be referred to as the
“CHIL04” set and has been employed in internal CHIL con-
sortium evaluations in January 2005.
(iii) CHIL05: The most recent set is significantly more
diverse, containing 18 development and 24 evaluation seg-
ments of lectures collected at two smart rooms, one located at
UKA and the second at the Istituto Trentino di Cultura (ITC),
in Italy (see also Figs. 1, 2). The development and evaluation
sets correspond to disjoint lectures. This set will be referred
to as “CHIL05”, and it has been used in the first interna-
tional evaluation campaign on the “Classification of Events,
Activities and Relationships” (CLEAR) in March, 2006 [5].
It should also be mentioned that this collection effort includes
three additional recording sites, partners of the CHIL consor-
tium, including IBM Research. These data however belong
to the so-called “interactive-seminar” (or meeting) scenario,
where the focus is to determine the location of all meeting
participants, typically being less than six in total. This part
has been excluded from our experiments, since we concen-
trate on tracking the lecturer.

All video data in the three sets have been recorded using
four synchronous corner cameras at 15 Hz. The frame reso-
lution is 640 × 480 pixels for the UKA site and 800 × 600
pixels at ITC. In terms of data annotations, visible face loca-
tions have been manually labeled in all frame views for every
1.0s for the “CHIL05” data and 0.67s for the “CHIL03” and
“CHIL04” sets. Furthermore, the bounding boxes of such
faces have been labeled in the “CHIL04” and “CHIL05” sets,
with additional facial feature points (nose bridge and eyes)
annotated in the latter. In all cases, the corresponding 3D head
centroid location is also given, as derived by triangulating
the face labels across camera views. Therefore, evaluation of
tracking algorithms is possible at the instants with available

ground truths (at 0.67s or 1.0s intervals) using appropriate
metrics, as discussed next.

5.2 Evaluation metrics

A number of metrics are used in our experiments to bench-
mark performance of 3D-head and 2D-face tracking algo-
rithms. All are computed by comparing algorithmic out-
puts (estimated 3D head centroid locations or face bounding
boxes) to their corresponding annotated ground truths on the
evaluation data sets. In particular, the following are employed
for benchmarking 3D head tracking in Sect. 5.3:

(i) 3D error: This corresponds to the mean Euclidean 3D
distance in millimeters between the estimated and the
ground truth position of the head centroid in 3D coor-
dinates. An additional 3D metric has been deemed
of interest, namely the percentage of time instants,
where the 3D error is smaller than 300 mm. This is
denoted by “% 3D err < 300” in Table 1.

(ii) 2D error: This is the mean Euclidean 2D distance in
mm between the projection on the smart room floor
of the estimated 3D head center and that of the cor-
responding ground truth projection. Furthermore, “%
2D err<300” is the percentage of time instants, where
the 2D error is smaller than 300 mm.

The above metrics have been employed in the first two years
of CHIL internal evaluations (datasets “CHIL03” and
“CHIL04”). They have been subsequently modified as part
of the CLEAR 2006 evaluation campaign on the “CHIL05”
dataset, in order to allow multi-person tracking. Details can
be found in [56].

Concerning the 2D face detection task, a total of five met-
rics have been identified by the CHIL consortium for use

Table 1 Comparison of 3D head-tracking performance of various algo-
rithms on the CHIL evaluation sets of 2003 and 2004

DPAS DPAS-f BGS MMS DPAS-d

[“CHIL03”]

3D err (mm) 140.0 270.2 278.4 253.9 1649.4

2D err (mm) 123.6 217.3 204.7 228.3 1230.7

3D err < 300 92.9% 82.5% 81.2% 84.6% 13.2%

2D err < 300 93.3% 84.3% 84.1% 85.3% 14.6%

[“CHIL04”]

3D err (mm) 155.2 267.4 480.3 467.4 1852.4

2D err (mm) 141.8 208.9 436.9 441.1 1635.1

3D err < 300 95.4% 83.6% 47.7% 78.9% 10.9%

2D err < 300 95.6% 85.7% 57.1% 80.7% 12.6%

Clearly, the proposed system (DPAS) performs best
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in the CLEAR 2006 evaluations [5]. Results based on the
following three are reported in Sect. 5.4:

(i) Percentage of correctly detected faces (“Corr”),
namely the percentage of detected faces with hypoth-
esis–reference face bounding-box centroid distance
more than half the size of the reference face.

(ii) Percentage of wrong face detections (“Err”), account-
ing for false positives (including detections with
hypothesis–reference bounding-box centroid distance
larger than half the reference face size).

(iii) Percentage of missed face detections (“Miss”).

In these metrics, the reference face size is defined as the
average of height and width of the annotated bounding box.

5.3 3D head tracking results

In the 3D head tracking experiments, we concentrate on the
“CHIL03” and “CHIL04” subsets of the corpus. As discussed
above, these contain non-overlapping development and eval-
uation subsets that correspond to the same lectures. This fact
allows the training of relatively accurate face detectors, since
they cover the same lecturer population (akin to a “multi-
subject” training/testing scenario, as opposed to the more
challenging “speaker-independent” case).

On these sets, we compare a total of five tracking algo-
rithms:

(i) DPAS: This is the proposed face-detection based
scheme that uses dynamic programming and adap-
tive subspace tracking.

(ii) DPAS-f: This is a variation of the proposed scheme,
where no forgetting mechanism is introduced in the
adaptive subspace tracking stage, thus the influence
of past distant observations is retained until re-initial-
ization is triggered.

(iii) DPAS-d: This is a trivial variation of the proposed
scheme, where no drift detection is present. The algo-
rithm gets initialized at the beginning of the multi-
camera video sequence, and remains in the tracking
stage, with no re-initialization until the sequence ends.

(iv) MMS: This corresponds to the algorithm described in
Sect. 4.1. It constitutes a face-detection driven
approach with motion based foreground segmentation
and mean shift tracking.

(v) BGS: This is the system presented in Sect. 4.2 that
uses background subtraction and dynamic program-
ming.

All above systems are run to always return a 3D head
centroid location. In case the algorithm fails to do so (for

example, failing to initialize, as discussed in Sect. 3.2), the
returned location defaults to the middle of the presenter’s
area or the previous estimate in time, if available (DPAS and
MMS systems), or an interpolated location between existing
estimates immediately before and after the particular instant
(BGS system). Concerning face-detection based schemes,
development set data are used to train the frontal and profile
FloatBoost based face detectors, as discussed in Sect. 3.5.
Furthermore, other system parameters, such as spatial con-
straints (all methods), DP costs (see for example Sect. 3.2),
inter-ray distance thresholds (e.g., Sects. 3.2, 3.4), and track-
ing template sizes (Section 3.3, among others) are empirically
determined on development data.

Results based on the 3D/2D error metrics discussed in
Sect. 5.2 are depicted in Table 1. It is clear that the proposed
system (DPAS) significantly outperforms all others. Inters-
tingly, both systems described in Sect. 4 (MMS and BGS)
achieve similar performance, but exhibit approximately twice
(for the “CHIL03” set) or three times (for “CHIL04”) the
error of the proposed scheme. As expected, the variant of the
proposed system, where no drift detection is present (DPAS-
d), fails miserably. Finally, it is important to note that the
introduction of the forgetting mechanism in adaptive sub-
space tracking plays a significant role in improving perfor-
mance. This becomes clear from Table 1, since removing
this component (DPAS-f system) almost doubles the tracking
error (over DPAS). This is also illustrated in Fig. 8, where the
evolution of 3D tracking error over time (quad-frame num-
ber) is depicted for one lecture segment.

Based on its superior performance on “CHIL03” and
“CHIL04” data, the DPAS system was used for the CLEAR
2006 evaluation on the “CHIL05” set. A slight modifica-
tion to the system was introduced, namely to return no 3D

Fig. 8 Typical tracking behavior of the proposed system (DPAS: solid
line), compared with its variant (DPAS-f: dashed line) with no forget-
ting mechanism, evaluated over a CHIL lecture segment

123



176 SIViP (2007) 1:163–178

hypothesis when its initialization fails (see Sect. 3.2). This
was deemed necessary due to the modified performance met-
rics in CLEAR 2006 that penalize guessing [56]. The result-
ing performance of the DPAS system on the “CHIL05” set
was an average 2D error of 139.1 mm and 3D error of 145.5
mm. These numbers are very close to the ones achieved on
“CHIL03” and “CHIL04” (see Table 1), demonstrating that
the method generalizes well. A comparison of the DPAS with
its DPAS-f variant on the same set shows that the latter exhib-
its significantly more tracking drifts, on the average every
193.9 quad-frames (instants), as opposed to 241.6 of the pro-
posed DPAS tracker.

Additional comparisons of the proposed DPAS scheme
with six alternative systems can be found in [5, pp. 29], as
part of the CLEAR 2006 official evaluation. These systems
have been briefly overviewed in Sect. 2.

5.4 2D face localization results

In the final set of experiments, we report the performance of
the proposed 2D face localization subsystem, based on the
DPAS head tracking system, as discussed in Sect. 3.1. The
results are reported on the “CHIL05” set, used in the CLEAR
evaluation campaign (see also [5, pp. 34]).

A summary of system performance based on the metrics of
Sect. 5.2 is given in Table 2. The system achieved 54.5% cor-
rect detections, with 37.2% erroneous detections and 18.9%
misses. This performance can be considered relatively good,
if one takes into account the extremely challenging nature of
the task and the rather strict evaluation metrics. In particu-
lar, by comparing the UKA development and evaluation set
performance in Table 2, one can notice that the performance
drops significantly, due to the different lecturer population
sets (a purely “speaker independent” evaluation framework
is considered). Furthermore, errors and misses are relatively
balanced on the development set, but not so on the evaluation
data.

Table 2 Performance of 2D face tracking on the “CHIL05” develop-
ment (DEV) and evaluation (EVA) sets, depicted per collection site and
cumulatively

“CHIL05” Data Metrics (%)

Set Site #Sem Corr Err Miss

D ITC 1 – – −
E UKA 18 74.17 21.04 15.18

V all 19 – – −

E ITC 2 84.75 28.70 3.14

V UKA 24 52.64 37.68 19.89

A all 26 54.44 37.18 18.95

Number of seminar segments are also listed. All metrics are expressed
in %

A final remark concerns the adopted strategy described in
Sect. 3.1 for face detection. A number of approaches have
been considered for producing 2D face results from the 3D
head location estimate in an effort to reduce and balance
the false positive (“Err”) and negative (“Miss”) error rates.
Among them, an interesting modification of the proposed
method is to always return the 2D tracking result on the
two selected camera views where the subspace tracking takes
place (Sect. 3.3), and only apply multi-pose face detection to
the two non-tracked camera views around a region of inter-
est based on the 3D head estimate. This is in contrast to first
applying the multi-pose face detector on all four views, and
only resorting to the tracking result of the selected camera
views when the detector fails to return a face. The perfor-
mance of the former approach was measured on seven UKA
development set seminars at 77.26% Corr, 18.67% Err, and
9.37% Miss, compared to the superior 85.92% Corr, 9.95%
Err, and 9.43% Miss of the adopted approach.

5.5 System run-time performance

There has been no particular effort to optimize the proposed
system implementation. To reduce face detection overhead
and allow speedier development, the whole system has been
implemented in a cascade, where face detection is first applied
at all instants and all camera views (as in Sect. 3.5), before
feeding its output to the remaining system modules
(described in Sects. 3.2–3.4). In practice, this is of course
suboptimal, as the two 2D tracking processes (Sect. 3.3) can
perform most of the required work in real time –20 f/s (frames
per second) on a P4 2.8 GHz, 512 MByte desktop. In contrast,
face detection over the entire frame in four camera views is
significantly slower and runs only at about 2 f/s.

6 Summary and Discussion

In this paper, we have presented a vision system for joint
3D head and 2D face tracking for multi-camera smart room
settings, where calibrated cameras with wide, overlapping
fields of view synchronously record human interaction. In
particular, the system has been developed for single-person
tracking of the presenter in the CHIL lecture scenario. We
described details of the system components, with important
highlights being the use of AdaBoost-like multi-pose face
detectors, employment of a spatio-temporal dynamic pro-
gramming algorithm to initialize 3D location hypotheses, and
the use of an adaptive subspace learning based 2D tracking
scheme with a forgetting mechanism, as a means to reduce
tracking drift and increase robustness. The proposed system
deviates significantly from other literature work, by not rely-
ing on motion estimation, background subtraction, or human
body appearance modeling.
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We have extensively tested the system on three releases
of the CHIL lecture corpus. The proposed system exhibited
excellent results with 3D average tracking errors of 140,
155, and 146 mm on three test sets, and outperformed a
number of competitive techniques considered in this paper,
ranging from simple system variants to entirely different
approaches. These experiments, as well as results of the
CLEAR 2006 evaluation campaign, demonstrate that the pro-
posed approach is well suited to the problem.

Nevertheless, the system has potential limitations: For
example, it is clearly inappropriate for room/camera con-
figurations that consistently result in capturing faces in a
resolution too small to allow their detection. A second issue
concerns extending the framework to multi-person tracking.
Clearly, its 2D tracking and 3D drift detection modules are
readily applicable to the multi-person task. However, robust
redesign of the initialization module is more challenging.
For this purpose, a dynamic programming framework that
produces multiple tracks is envisaged, with the number of
retained tracks optimized by ad-hoc or information-theoretic
approaches.

In future work, we plan to continue research on the topic by
working on the multi-person tracking problem. An additional
area of interest concerns exploring appropriate multi-camera
fusion schemes to allow the system tracking component to
directly operate in the 3D space. A more efficient implemen-
tation in order to achieve faster run-time performance is also
among our goals.
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