
Interactive Modelling of Volumetric Musculoskeletal Anatomy

RINAT ABDRASHITOV, University of Toronto, Canada
SEUNGBAE BANG, University of Toronto, Canada
DAVID LEVIN, University of Toronto, Canada
KARAN SINGH, University of Toronto, Canada
ALEC JACOBSON, University of Toronto, Canada

bone library

skeleton builderload skin muscle builder exported geometry

draw muscle
curvedrag & drop

fiber field

Fig. 1. Given a skin surface mesh, a library of bone parts is used to quickly create a skeleton in our skeleton builder tool. The user then draws curves to generate
the muscle shapes which are visualized using a volume rendering. Once all muscles are created, we can export the geometry of the muscles, automatically
compute fiber fields and use the result in downstream applications. Centaur model is part of the TOSCA dataset [?]. Horse bone models were obtained from
https://3dassets.store/. Used under permission.

We present a new approach for modelling musculoskeletal anatomy. Unlike
previous methods, we do not model individual muscle shapes as geometric
primitives (polygonal meshes, NURBS etc.). Instead, we adopt a volumetric
segmentation approach where every point in our volume is assigned to a
muscle, fat, or bone tissue. We provide an interactive modelling tool where
the user controls the segmentation via muscle curves and we visualize the
muscle shapes using volumetric rendering. Muscle curves enable intuitive
yet powerful control over the muscle shapes. This representation allows
us to automatically handle intersections between different tissues (muscle-
muscle, muscle-bone, and muscle-skin) during the modelling and automates

Authors’ addresses: Rinat Abdrashitov, University of Toronto, Toronto, Canada, rinat@
dgp.toronto.edu; Seungbae Bang, University of Toronto, Toronto, Canada, seungbae@
cs.toronto.edu; David Levin, University of Toronto, Canada, diwlevin@cs.toronto.edu;
Karan Singh, University of Toronto, Toronto, Canada, karan@dgp.toronto.edu; Alec
Jacobson, University of Toronto, Toronto, Canada, jacobson@cs.toronto.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
0730-0301/2021/8-ART122 $15.00
https://doi.org/10.1145/3450626.3459769

computation of muscle fiber fields. We further introduce a novel algorithm
for converting the volumetric muscle representation into tetrahedral or
surface geometry for use in downstream tasks. Additionally, we introduce
an interactive skeleton authoring tool that allows the users to create skeletal
anatomy starting from only a skin mesh using a library of bone parts.

CCS Concepts: • Computing methodologies→ Mesh geometry mod-
els; Volumetric models; Graphics systems and interfaces.

Additional Key Words and Phrases: anatomy modelling, 3D interface, diffu-
sion curves

ACM Reference Format:
Rinat Abdrashitov, Seungbae Bang, David Levin, Karan Singh, and Alec Ja-
cobson. 2021. Interactive Modelling of Volumetric Musculoskeletal Anatomy.
ACM Trans. Graph. 40, 4, Article 122 (August 2021), 13 pages. https://doi.org/
10.1145/3450626.3459769

1 INTRODUCTION
Digital characters are a driving force in the entertainment industry
allowing artists to tell stories limited only by their imagination. A
lot of effort goes into reaching a point where digital characters are
indistinguishable from the real ones. Characters are often modeled
by only considering their skin [Jacobson et al. 2014], disregarding

ACM Trans. Graph., Vol. 40, No. 4, Article 122. Publication date: August 2021.

https://3dassets.store/
https://doi.org/10.1145/3450626.3459769
https://doi.org/10.1145/3450626.3459769
https://doi.org/10.1145/3450626.3459769

122:2 • Rinat Abdrashitov, Seungbae Bang, David Levin, Karan Singh, and Alec Jacobson

underlying volumetric muscle, fat, and bone structure. Animating
physically realistic effects like muscle bulging, skin sliding, wrinkles,
and volume preservation, without an explicit musculoskeletal struc-
ture is challenging and, and requires skilled and tedious manual
effort, to achieve high quality results. Therefore, a truly accurate
portrayal of digital characters requires the creation of biologically
representative musculoskeletal anatomy.

Different solutions that allow artists to automate tedious manual
tasks like the creation of the skin [Yoshiyasu et al. 2014], hair [Saito
et al. 2018], rigs [Xu et al. 2020] and others have been explored
over the years. However, user-friendly solutions to the problem of
creating a musculoskeletal structure that is suitable for character
modelling and animation are relatively unexplored. The current so-
lutions either require artists to model every muscle using sculpting
software, go through tedious parameter tweaking of geometric prim-
itives, or create a detailed template for retargeting to new geometries.
These methods make it hard to produce complex intersection-free
muscle shapes that conform to the skin surface. Additionally, defin-
ing muscle fiber directions requires users to manually specify at-
tachment points for every muscle. Making incremental changes
using these approaches is tedious and hinders the fast exploration
of character design.
We propose an interactive modelling tool, that adopts the out-

side–in [Pratscher et al. 2005] approach and enables the creation of
a musculoskeletal system starting from a skin mesh. The user starts
by arranging the skeleton from pre-existing templates of bones.
Then the user simply sketches curves inside a volume constrained
by the skin and our system automatically infers the muscle shapes.
Inspired by Orzan et al. [2008], we utilize a diffusion process to
segment the volume into muscle and fat tissues based on the user-
created curve network. The resulting muscles are intersection free
and conform to the skin geometry. We show how to utilize volume
rendering to visualize the muscle shapes and hence avoid the need
for explicit meshing every time the user edits a curve. We further
propose an algorithm for extracting the manifold muscle meshes
from our volumetric segmentation for the use in downstream tasks.
To the best of our knowledge, our system is the first user-friendly
interactive modelling tool, capable of creating intersection free
geometry for the musculoskeletal system.

2 BACKGROUND AND RELATED WORK
We provide a brief background on muscle anatomy followed by
review of related work categorized by muscle representations in
physically-based animation; skinning methods that geometrically
attempt to “emulate” the physics of muscle deformation; anatomic
templates to aid character modelling, setup and transfer; and inter-
active interfaces for volumetric and character modelling.

2.1 Musculoskeletal Anatomy:
Muscle is a soft tissue (of type skeletal, cardiac or smooth), whose
function is to produce force and motion. A large body of research
in Computer Graphics, biomechanics and robotics is focused on
studying the physiological properties and and function of skeletal
muscles [Ng-Thow-Hing and Fiume 1997; Scheepers et al. 1997].
For the rest of the paper, we will refer to "skeletal muscles" simply

tendon

muscle

fascicle
fibers

Parallel Fusifrom Triangular Unipennate Bipennate Multipennate

Fig. 2. Muscle structure. Image courtesy of [Lee et al. 2010]

as "muscles". Internally, the muscle is composed of numerous mus-
cle fiber bundles, called fascicles. Large muscles, such as the biceps
brachii or the sartorius have fascicles arranged parallel to one an-
other along the length of the muscle. Other muscles exhibit fascicles
with a pennation angle, between their tendinous attachments and
the longitudinal axis of the muscle (Fig 2 bottom). Skeletal muscle
is anchored by tendons to bone. Tendons transmit forces produced
by the attached muscle to the bone, enabling locomotion and main-
taining posture (Fig. 2 top). We refer the reader to the survey by Lee
et al. [2010] which provides a thorough overview of modelling and
simulation of skeletal muscles.

2.2 Surface-based muscle primitives:
Musculoskeletal primitives for geometric character skinning is at
least three decades old [Chadwick et al. 1989]. Early research has
explored the formulation of muscles as collections of ellipsoids
[Pratscher et al. 2005; Scheepers et al. 1997; Singh et al. 1995], gen-
eralized cylinders [Simmons et al. 2002; Wilhelms and Van Gelder
1997], polygon meshes [Albrecht et al. 2003], extruded parametric
curves [Tsang et al. 2005], NURBS [Autodesk 2021], and implicit
models [Roussellet et al. 2018]. These surface-based muscle primi-
tives typically serve as proxy geometry to bind and geometrically
deform a geometric skin. While these primitives can be imbued with
simplified muscle dynamics, they are ill-suited to general purpose
anatomic simulation [Ziva Dynamics 2021]. Our representation,
based on muscle curves and anisotropically induced muscle vol-
umes, provides the high-level geometric control of muscle shape
and skin deformation of these surface-based primitives, but can
also produce various muscle shapes (parallel, convergent, pennate)
and automate the computation of fiber fields. Being an inherently
volume-based representation, it is also well-suited to handle general
muscle-muscle, muscle-bone, muscle-skin intersections and muscle
fiber bundle computations.

2.3 Volume-based muscle primitives:
Physically-based simulation of the skin layered over volumetric
muscle primitives [Li et al. 2013] is a desirable solution to pro-
ducing the subtle details of skin motion [Weta Digital 2021; Ziva
Dynamics 2021]. The initial musuloskeletal setup of a character as

ACM Trans. Graph., Vol. 40, No. 4, Article 122. Publication date: August 2021.

Interactive Modelling of Volumetric Musculoskeletal Anatomy • 122:3

comprised of skin, fat, muscle and bone, in a simulation pipeline
is tedious and requires multiple iterations of laboriously rebuild-
ing hand-crafted bone and muscle geometry [Deepak Rajan 2021],
to elicit the desired simulation behavior from the musculoskeletal
anatomy. These sculpted geometries then need to be processed to
resolve intersections, and define fiber fields to support anisotropic
muscle contraction. While MRI/CT scan data can aid the recon-
struction of accurate live anatomy [Jacobs et al. 2016; Teran et al.
2005], such data must be artist-imagined for fictional characters.
Muscles have also been built by physically simulating inflatable
3D patches defined by a user on a character’s skin [Turchet et al.
2017], or as parametric solid volumes [Ng-Thow-Hing and Fiume
1997], but these muscles tend to leave undesirable gaps between
muscles, bones and other internal structures. Angles et al. [2019]
models a muscle as a bundle of position-based rods augmented with
isotropic scale to enable simulation of volumetric effects. However,
their rod-based representation requires users to either manually cre-
ate bundles or acquire pre-existing tetrahedral geometry of muscles
which is then automatically converted to their representation. Yu
et al. [2020] introduces an efficient algorithm for (self)-repulsion of
space curves that can be used to design biologically-inspired curve
networks such as muscle fibers. However, their optimization-based
approach is not suitable for interactive modelling of a large number
of muscles.

2.4 Anatomic Templates:
The first semi-automatic method for creating anatomical structures,
such as bones, muscles, viscera, and fat tissues was proposed by
Ali-Hamadi et al. [2013]. Their method can be seen as a partial
registration process, where skin surfaces are first registered based
on the data, and the interior tissues are estimated using interpola-
tion and anatomical rules. Saito et al. [2015] create a wide range of
human body shapes from a single input 3D anatomy template by
simulating biological processes responsible for human body growth.
Kadleček et al. [2016] use a set of 3D scans of an actor in various
poses to compute subject-specific and pose-dependent parameters
of an anatomical template model, to explain the captured 3D scans
as closely as possible. Our method is complementary to these ap-
proaches and can be used to produce the initial template.

2.5 Interactive volumetric and character modelling:
Takayama et al. [2010] proposed a novel diffusion surface (DS) rep-
resentation to model the smooth color variation seen in fruit and
vegetables. User input to their approach, and others [Owada et al.
2008; Pietroni et al. 2007] is based on cross-sections, which are ill-
suited to modelling complex muscle geometry and connectivity.
Solid texture synthesis [Pietroni et al. 2010] is focused on modelling
homogeneous material like wood or marble and Cutler et al. [2002]
uses scripting to define internal volumetric structure of mesh(es).
Yuan et al. [2012] do facilitate solid modelling of heterogeneous
objects with multiple internal regions using multiphase implicit
functions. However, these approaches are not artist-centric or re-
quire segmented and labeled 3D biomedical images as input. Wang
et al. [2011] represent complex internal 3D structure using multi-
scale vector volumes. The object is decomposed into components

skeleton builder UI muscle builder UI

Fig. 3. The skeleton and muscle builder UIs.

modelled as SDF trees. However, the user needs to actually create
the “building-blocks” of an object, such as SDF instances and region
definitions, and then assemble them together into linked SDF trees.

Several sketch-based interfaces for character modelling [De Paoli
and Singh 2015; Nealen et al. 2007; Schmid et al. 2011; Takayama
et al. 2013] use a 3D geometric skin as a canvas on and around
which to project 2D sketch strokes. Our work is similar in spirit
to [De Paoli and Singh 2015; Schmid et al. 2011] in that we are
focused on drawing curves, around the skin, and specifically within
a volumetric domain constrained by the surface of the skin.

The actual shape of the muscles is inferred from the scalar values
defined on the curves via a volumetric rendering approach. We do
not explicitly generate the geometry (triangle or tetrahedral meshes)
of the muscles until the user completes the modelling session. Unlike
previous methods, our approach allows the user to rapidly explore
and experiment with both the topological connectivity and shape
of musculoskeletal structures, with a guarantee of precisely con-
strained and intersection-free structures that conform outside-in to
the given skin surface.

3 OUR SYSTEM
The user starts by providing the skin mesh of a model. The bone
meshes can also either be provided by the user or built using our in-
terface (Fig.3 left).We generate the tetrahedral meshT ∈ R |T |×4,V ∈
R |V |×3 from combined skin and bone geometries to make sure our
tetrahedralization conforms to the bone geometry. We remove
all tetrahedra belonging to the bone geometry. This simultane-
ously induces desirable natural boundary conditions (see, e.g., [Stein
et al. 2018]) and increases computational performance. A tablet or
a mouse can be used to draw an open 2D stroke that starts and
ends over the bone surface. The muscle surface corresponding to
the drawn curve is presented to the user. The user can continue to
draw more strokes or edit the existing ones to create a full muscular
system (Fig.3 right). The results can then be exported as surface
or tetrahedral meshes and further edited in other software pack-
ages. In the following sections, we describe each part of our muscle
modelling system and discrete implementation in detail.

3.1 Skeleton Authoring
If pre-existing skeletal geometry is not available, we provide a tool
for creation of the skeletal system from the pre-existing library of
bones. We define a three categories for the types for bones: cylinder

ACM Trans. Graph., Vol. 40, No. 4, Article 122. Publication date: August 2021.

122:4 • Rinat Abdrashitov, Seungbae Bang, David Levin, Karan Singh, and Alec Jacobson

bone, curve bone, shape bone. The user can select a pre-defined
templates for each of the categories. Then each of template bones are
properly placed inside the body mesh with the algorithm described
below.

3.1.1 Cylinder bone. A cylinder bone is a type of bone that can
be represented as a line segment (e.g. arm or leg bone). When a
user clicks on a point on the surface of the skin mesh, we cast a ray
through the mesh and record the first two hits, which correspond
to the ray entering and exiting the mesh, respectively. We take the
midpoint of these two intersections as one endpoint of the cylinder
bone, and the other endpoint is determined interactively using the
same ray-casting procedure while the mouse button is held down. A
cylinder bone template is pre-rigged with two point handles and it
is deformed accordingly as its two point handles are attached with
the endpoints of the line the user draw.

3.1.2 Curve bone. Curve bone is a type of bone that can be rep-
resented as a curve. For example, a spine can be described as a
sequence of vertebrae bones placed along a curve. When the user
draws a curve, it is projected onto a user-defined plane of symmetry.
Then for easy editing of the curve, we fit a Catmull-Rom spline to a
given points on plane. Finally, a user selected template is distributed
along the spline.

3.1.3 Shape bone. A shape bone is a type that cannot be repre-
sented as a line segment nor a curve. Essentially, it describes all
the bones with complex shapes. We place the shape bone as local
fitting on the user-specified region. We determine the center of the
template with a mouse click, using the same raycasting procedure
used to compute the endpoints of a cylinder bone. Then from that
initial shape, the template is iteratively fitted to its local region of
the skin mesh.

3.1.4 Local fitting. We pre-rigged the template with a cage de-
former. Using data that already has skin and corresponding bone
mesh, we define a cage by cutting a local region of the skin mesh
with high decimation and with manual editing. We fit the cage
using both step of rigid ICP (Iterative Closest Point) and nonrigid
ICP, and the templates are deformed using this registered cage. We
first perform rigid ICP to find an optimal transformation of its clos-
est corresponding target points. After it has converged within the
threshold, we then perform nonrigid ICP by deforming the cage
with an additional squared Laplacian smoothness term to prevent
abrupt deformation. Corresponding target points are determined by
finding the closest points to cage vertices on the skin mesh. We dis-
card the correspondence point whose normal directions are almost
opposite to their closest projected points

3.2 Muscle Curve Authoring
The user draws a curve for each muscle. Skeletal muscles require
an origin and insertion points where the muscle tendons are be-
ing attached to the bone. In our interface we expect the user to
always begin and end the stroke over the bone surface and provide
the necessary visual feedback to achieve that. The first and last
points of the curve are automatically projected via ray-casting onto
the surface of the bone to find their corresponding 3d coordinates.

cylinder bone shape bonecurve bone shape templates with cage

Fig. 4. three types of bone in our skeleton authoring interface, and pre-
rigged on cage deformer of shape templates.

The depth value for all the points drawn in be-
tween is ambiguous, so we simply linearly in-
terpolate the depths of the first and last points.
Because we want the curves to be easily ed-
itable we fit a Catmull–Rom spline Si in a
least squares manner with 4 control points
P1i , ..., P

4
i by default: one for each end point

and two along the curve (see inset). We de-
note the resulting muscle curve network as
a set of splines {S1, S2, ..., Sm }. Each control
point Ppi is augmented with an additional at-
tribute representing a tissue value Dp

i . Users can adjust the tissue
value to shape the muscle: a larger value results in a "thicker" shape
around the control point.

3.3 Muscle and Fat Functions
Let Ω ∈ R3 denote the volumetric domain defined by the tetrahedral
mesh V, T. Our goal is to find a scalar muscle function fi : Ω → R
for each muscle i that describes the likelihood of any point p ∈ Ω
to belong to a muscle i . Similarly we define a fat function fs that
describes the likelihood of any point to belong to a fat layer. We
propose to define fi and fs as minimizers of the Dirichlet energy
subject to constraints:

argmin
fs ,fi ,i=1, ...,m

m∑
i=1

∫
Ω
∇f Ti Ai∇fi +

∫
Ω
| |∇fs | |

2dV (1)

subject to fi |δΩi=Di (2)
fi |δΩj=0 j ∈ {1, ...,m}, j , i (3)
fi |δΩ=0 (4)
fs |δΩ=dfat (5)
fs |δΩj=0 j ∈ {1, ...,m} (6)

where Ai is an optional user-defined diffusion tensor field which
biases the directions in which material flows at a point in space.
Intuitively, we "diffuse" eachmuscle curve such that the tissue values
at the curve points (δΩi) are set by the user (via interpolation of
tissue values Dp

m at the control points) and the tissue values at
all other muscle curves (δΩj) and skin (δΩ) are set to zero. We
additionally diffuse from the skin to represent the fat layer (fat
function fs , where "s" stands for skin) by setting its tissue value to
a user-defined dfat and constraining the values at all muscle curves

ACM Trans. Graph., Vol. 40, No. 4, Article 122. Publication date: August 2021.

Interactive Modelling of Volumetric Musculoskeletal Anatomy • 122:5

a b c d

1 2

Fig. 5. 2D example of two muscle curves in red and skin layer in aquamarine
(a). User defined tissue values at each curve (δΩ1, δΩ2) are diffused (b,c)
to compute corresponding muscle functions (f1, f2). Additionally fat tissue
values defined at skin vertices are diffused to compute the fat function fs
(d).

to be zero (Fig. 5). The fat function always diffuses isotropically
and hence is written as a separate term. The vertices that belong to
the bone surface do not “diffuse” bone tissue material but instead
participate in the optimization as natural (zero normal derivative)
boundary conditions.

3.4 Discretization
The muscle splines usually do not coincide with the vertices of the
tetrahedral mesh and to discretize the splines we need to identify
a set of tetrahedrons that contain each muscle curve Si . For each
tetrahedron t and eachmuscle curve i passing through it, we identify
a point cti ∈ R

3 on the curve that is contained inside the tetrahedron
(see inset).

tetrahedron

curve

In practice, we choose the point to
be the midpoint of the curve segment
bounded by the tetrahedron. We call
this point a collocation point. All collo-
cation points can be found efficiently by
finding the tetrahedron containing the
first curve point and then finding all the
other tetrahedrons by tracing the curve, given that the adjacency is
computed beforehand. This amounts to at most three ray triangles
intersections per tetrahedron and therefore very fast.
For each curve i , we stack all collocation points in a matrix Ci ∈

R |Ci |×3 and compute a tissue dti value for each collocation point
by interpolating values at control points Ppi . One of the primary
constraints to be satisfied (Eq. 2, 3) are the curve constraints, i.e.,the
tissue value at the vertices V must be determined to agree with the
values at the collocation points. We use barycentric coordinates
to interpolate the tissue values for each tetrahedron, such that the
value dti of the collocation point cti is expressed as:

dti =
4∑
j=1

bj ∗ dj (7)

where dj denotes the tissue value of a vertex j of a tetrahedron t
(for j = 1, 2, 3, 4) to which the collocation point cti belongs to, and
bj are the barycentric coordinates of cti with respect to the vertex
j. Stacking the barycentric equation (7) for a set of desired values
of the collocation points into a matrix constitutes a linear equality

constraint equation:

Bi fi =

B1
...

Bm

 fi =

d1
...

dm

 = di ∈ R |C | (8)

where for every curve i = {1, ...,m} we have Bi ∈ R |C |× |V | which
is a sparse matrix of stacked barycentric coordinates of collocation
points for all curves with non-zero entry Bi (k, j) being a barycentric
coordinate of the collocation point k with respect to vertex j, di ∈
R |C | is a vector of stacked tissue values of collocation points s.t.
di (j) is nonzero only if collocation point j belongs to curve i and
fi ∈ R |V | are values of muscle function fi at each vertex of the
tetrahedral mesh. The fat tissue constraint (Eq. 6) can be similarly
discretized as

Bs fs =

B1
...

Bm

 fs = 0 ∈ R |C | (9)

The Dirchlet Energy in Eq.1 is discretized as

min
m∑
i=1
(fTi L̃i fi + α | |Bi fi − di | |2) + fTs Lc fs + α | |Bs fs | |2

(10)
subject to fi |skin = 0 (11)

fs |skin = dfat (12)

L̃i = GT M̃AiG (13)

where G is the gradient matrix (see [Botsch et al. 2010] for deriva-
tion) and M̃ is a mass matrix representing an inner-product account-
ing for the volume associated with each tetrahedron, GT M̃AG is the
anisotropic cotangent Laplacian ([Andreux et al. 2014]), Lc is the
standard (isotropic) cotangent Laplacian, α parameter that defines
the tradeoff between smoothness of the resulting scalar field and
respecting the tissue values at the collocation points (set to 5 in
our experiments). Because the collocation points are not necessarily
located at mesh vertices and many may appear in the same element,
using soft constraints avoids overshooting. Vertex values fi of each
muscle function can be computed separately and hence computa-
tion of Eq.10 is easily parallelizable. Compared to regular-grid-based
methods, the boundary-conforming tetrahedral mesh makes it easy
to set precise boundary conditions.

3.5 Segmentation
Each point p ∈ Ω in our volume will either belong to a muscle, bone,
or fat. The fat is visually represented as an "empty" space between
muscles, skin, and bones. The points that belong to the bone tissue
are simply all the points that are contained inside tetrahedrons
comprising the bone geometry. So we only need to differentiate
between muscles and fat. We treat the muscle and fat functions as
probabilities and assign the point p to the tissue with the highest
probability (Fig. 6):

tissue(p) = argmax
i
({ f1(p), ... fm (p), fs (p)}) (14)

ACM Trans. Graph., Vol. 40, No. 4, Article 122. Publication date: August 2021.

122:6 • Rinat Abdrashitov, Seungbae Bang, David Levin, Karan Singh, and Alec Jacobson

argmax

Fig. 6. Each point in our domain has a vector of tissue values that represent
the likelihood of this point to belong to one of the tissues (left). We assign
the point to the tissue with the highest probability (right).

In the discrete case we find the tetrahedron t that contains the point
p and use barycentric interpolation to determine tissue values for
muscles and fat at p given tissue values (ft1 ..f

t
m, fts) at the vertices of

the tetrahedron t . We skip the normalization step of our probabilities
because the muscle visualization (Sec 3.6) and muscle extraction
(Sec 4) are invariant to normalization.

3.6 Visualization
In the end, we only want to visualize all points belonging to the mus-
cles, while points belonging to fat should be invisible. A common
solution to this problem in scientific visualization and computer
graphics is volume rendering. We take inspiration from the litera-
ture on volume rendering on unstructured grids ([Silva et al. 2005;
Weiler et al. 2003]) which deals with rendering isosurfaces of a scalar
function defined on vertices of the tetrahedral mesh. To achieve in-
teractive rates we perform ray casting on the graphics hardware via
a ray propagation approach and perform all computation inside a
fragment shader.

To render the model we split each tetrahedron into 4 triangles and
submit them for rendering on the GPU. For each vertex of the trian-
gle, we assign a vertex attribute with the value of the tetrahedron
index it belongs to and set it to not be interpolated when moving
from vertex to fragment shader. That way each fragment can be
traced back to the tetrahedron it belongs to. We store all the infor-
mation (vertex positions, normals, muscle and fat functions) about
each tetrahedron on the GPU and access it inside the shader.

n4

n1

n2

v1

v0

v3

v2

e

r

r

Inside the fragment shader, we start with
computing the entry point into the tetrahedron
that the current fragment belongs to by simply
converting the fragment from screen space into
camera space. We determine the correspond-
ing exit point by computing three intersection
points of the ray with the planes containing
faces of the entered tetrahedron and choosing
the intersection point that is closest to the eye
point but not on a face that is visible from the
eyepoint. With the eye point e , and the normal-
ized direction r of the viewing ray, the intersection points with the
faces of the tetrahedron are e + λir with 0 ≤ i < 4:

λi =
(v3−i − e) · ni

r · ni
(15)

anisotropy
along

anisotropy
along

bottom view

side view

rotate
frame

a

c

e

d

b

f

Fig. 7. The user has additional control over the muscle shape by changing
the rate of diffusion along the certain directions.

where i ∈ {0, 1, 2, 3} denote the face index, vi is the vertex opposite
to the i-th face, ni is the normal vector of the face i pointing outside
of the tetrahedron (see inset). A face is visible if the denominator in
the previous equation is negative; thus, this test comes almost for
free. If λi is set to an appropriately large number for all visible faces,
min{λi |0 ≤ i < 4} identifies the exit point. Once the minimum λi
and its face i are identified, the intersection point x may be computed
as x = e + λir .
The muscle surface is only potentially visible if the entry point

belongs to fat in which case we ray march through the single
tetrahedron from the entry point to the exit point until we de-
tect that the tissue changed from fat to muscle. At which point we
stop and compute the normal to shade the surface of the muscle.
If the whole tetrahedron belongs to fat we call the GLSL discard
command and the GPU will call the shader again until we find a
tetrahedron that contains the surface of a muscle (if one exists).
Figures 1, 7 show an example of a volume-rendered muscles.

3.7 Anisotropy
To provide an additional control over the muscle shape we allow
users to change the rate of diffusion along the certain directions. This
is achieved by introducing a tensor field that biases the directions in

ACM Trans. Graph., Vol. 40, No. 4, Article 122. Publication date: August 2021.

Interactive Modelling of Volumetric Musculoskeletal Anatomy • 122:7

which tissues diffuse at a point in space. Tensor field is represented
by a tensor matrix Ai ∈ R

|G |× |G | in Eq. 13.
We provide an easy way for the user to construct the tensor fields

for the individual muscles. The first point of each muscle curve is
assigned a 3D frame Q = [e1e2e3] ∈ R3×3 representing eigenvectors
of a tensor. The first vector in the frame e1 is always aligned with
the curve tangent while the other two eigenvectors lie in its null
space. The user has control over the rotation of e2, e3 along the
axis defined by e1 (Fig. 7ab). Additionally, the user can control the
magnitude of eigenvalues λ2, λ3 to bias diffusion rate along e2, e3
directions (Fig. 7cdef). We use the method of [Hanson and Ma 1995]
to compute the frame Qt

i at each collocation point cti , and assign
frames to each vertex of the tetrahedrons containing collocation
points (using the frame of the closest collocation point).
Each frame Q can be considered as a set of nine scalars and

the problem of propagating values from the fixed vertices of the
tetrahedrons containing collocation points to the remaining vertices
is thus same as computing nine scalar fields over the mesh. To find
the unknown values at the remaining vertices, we use the Laplacian
smoothing framework, i.e. for each scalar field, we create a harmonic
vertex-based scalar field on T given the boundary conditions (from
the values at the fixed vertices) [Palacios et al. 2016]. Once all 9
scalar fields have been obtained, we compute the per-vertex tensor
QT ΛQ where Λ contains eigenvalues λ1λ2λ3 along the diagonal and
assemble the tensor field matrix Ai for the muscle i .

4 MUSCLE EXTRACTION
Given the complete muscle curve network and the corresponding
muscle functions defined over the volumetric domain, we need
to extract the geometry of the muscles suitable for downstream
applications.

Isosurface extraction methods [Chentanez et al. 2009; Labelle and
Shewchuk 2007; Lorensen and Cline 1987] do not trivially solve our
problem, because we are not simply extracting an isosurface of a
scalar function. Instead, we want compute a pointwise maximum
of multiple scalar functions inside each tetrahedron and extract a
boundary separating each function while ensuring the final output is
amanifold tetrahedral mesh. In other words, inside each tetrahedron,
each tissue function can be thought of as a point-wise vote for
ownership. We want to split the tetrahedron along boundaries that
delineate changes in the maximum vote and assign each sub-tet to
the tissue with maximum value. We cast the problem of extracting
the muscle surface geometry as a solution to the computation of
the upper envelope of scalar functions representing each tissue over
each tetrahedron. First, lets look at a simple example of the upper
envelope problem in Fig. 9. Four line segments are defined over
the 1D domain [a,b] (Fig. 9, left). The upper envelope is the point-
wise maximum of all segments over the domain. The maximization
diagram is a subdivision of the domain [a,b] into cells, where each
cell’s identity is induced by the upper envelope. Alternatively, we
can think of the maximization diagram as a projection of the upper
envelope onto the domain (Fig. 9, right).
Let us now define the general upper envelope problem. Let S =
{s1, s2...., sn } be n d-simplices in (d + 1)-dimensional space. A d-
simplex has (d + 1) vertices, i.e. d = 1 is a line segment, d = 2 is a

triangle and d = 3 is a tetrahedron. We can thus view each si , as the
graph of a partially defined linear function xd+1 = fi (x1, x2, ..., xd),
whose domain of definition is a d-simplex, namely the orthogonal
projection of si , onto the hyperplane xd+1 = 0. The upper enve-
lope,M , of the given simplices is the pointwise maximum of these
functions [Edelsbrunner et al. 1989], that is,

M(x1, x2, ..., xd) = max
1≤i≤n

fi (x1, x2, ..., xd) (16)

The maximization diagram MS of S is the subdivision of Rd into
connected cells obtained by the projection of the upper envelope
of S in the xd direction. The example in Fig. 9 corresponds to d =
1 where each line segment is a 1D simplex in 2D space. Fig. 8a
shows an example of two 2-dimensional simplices in 3-dimensional
space whose maximization diagram is shown in (Fig. 8b). Solutions
for solving the general upper envelope problem for d = 1 and
d = 2 ([Agarwal et al. 1996; Meyerovitch 2006]) and computing
their corresponding maximization diagrams have been proposed.
Abdrashitov et al. [2019] computes d = 2 upper envelope of "part"
functions to extract the smoothed part boundaries.
We consider tissue functions T = { f1, ..., fm, fs } (combination

of muscle and fat functions) defined as scalar fields over the vertices
of our tetrahedral mesh and we notice that Equation 14 is the point-
wise maximum (Eq.16) of tissue functions. In our problem (d = 3)
we are interested in finding maximization diagrams of all tissue
functions over the volume constrained by the surface of the skin.
This problem can be solved by considering finding the maximization
diagrams of the tissue functions over each tetrahedron. In which
case in contrast to the general upper envelope problem where our
domain is a continuous hyperplane, we restrict our domain by a
3-simplex on that hyperplane. Fig. 8c shows an example of the maxi-
mization diagram of the functions defined by the scalar values at the
vertices of the tetrahedron and (Fig.8d) shows the tetrahedralization
of each cell. As a result, the tetrahedron is split into more sub-tets
where each sub-tet has only one function that is the maximum.
In other words, we can "assign" the sub-tet to one of the tissues.
Performing this operation for every single tetrahedron results in a
new tetrahedral mesh where each tetrahedron is assigned to one
tissue. We can extract individual tissue shapes by simply combining
all tetrahedrons that are assigned to that tissue. Fig. 8e shows an
example of taking a uniform 3x3 tetrahedral mesh with two scalar
functions defined over it and splitting it into two tetrahedral meshes
(Fig.8f). The split is the result of computing tetrahedralized max-
imization diagrams of every tetrahedron. However, the resulting
tetrahedral meshes representing each muscle are not guaranted to
be manifold unless we are consistent with how we tessellate adja-
cent tetrahedrons (Fig. 10). In reality, we would just be getting a
tetrahedral "soup" that is difficult to work with. Instead we want
our resulting mesh to be manifold and hence we can easily use it
for downstream applications. We propose an algorithm for comput-
ing manifold tetrahedralized maximization diagrams of functions
defined as scalar fields over the vertices of a tetrahedral mesh. We
first define auxiliary operations in Sections 4.1, 4.2 and then discuss
the main algorithm in Sections 4.3.

ACM Trans. Graph., Vol. 40, No. 4, Article 122. Publication date: August 2021.

122:8 • Rinat Abdrashitov, Seungbae Bang, David Levin, Karan Singh, and Alec Jacobson

a b c d e f

Fig. 8. Two triangles (a) and the corresponding maximization diagram (b). Example of the maximization diagram cells of 5 different functions over the
tetrahedron (c) and tetrahedralization of each cell (d). Tetrahedral mesh (e) with 2 different functions defined over its vertices and the resulting tetrahedralized
maximization diagram (one of the parts is slightly moved in the figure to show the internal tessellation)

a b a b

upper envelope

maximization diagram

projection
Fig. 9. Four line segments (red, green, purple, gray) are defined over a
single 1D element [a, b] (left). The upper envelope (light blue) and the
maximization diagram (right).

1

1 1

2

2

5

5

4

4 43

3 3

1

2

4

3

1

5

4

3

a

b

c

Fig. 10. Maximization diagram is defined over two adjacent tetrahedrons
1234 and 1345 (a). During the tessellation there is no guarantee that the
shared face 134 is split the same way (b). By making sure the order of edge
splits is consistent we can guarantee that the face is split the same way (c).

4.1 Prune tissues
We notice that if the tissue function fi ∈ T is strictly below any
other tissue function fj , then it will not be part of the maximization
diagram and hence can be ignored and help avoid unnecessary
computations. We define the sparse matrix W ∈ {0, 1}m+1×m+1
where Wi j = 1 if and only if there exist at least one tetrahedron in
T whose maximization diagram contains cells assigned to tissues i
and j.

4.2 Split tetrahedron
Given only two different tissue functions f1 and f2 over a tetrahedron
we need to find the tetrahedralized maximization diagram that re-
sults from computing the upper envelope of those two functions.

SplitEdgeSplitEdge1

2

43

sorted
unique
edges

1

1

1

1

1

1

3
3

2

2

4 4

Fig. 11. Split the edge over

This problem is similar to the Marching tetrahedra [Doi and Koide
1991] algorithm that finds an isosurface of a scalar field f1 − f2
passing through isovalue of 0. However, in our case we are not
interested in extracting the isosurface but rather splitting the tet
along the isosurface and tetrahedralizing the resulting polyhedrons.

Input: tetrahedron defined by 4 vertices V ∈ R4×3, per-vertex val-
ues f ∈ R4 of a scalar function f .
Output: tet mesh Tsplit ,Vsplit resulted from splitting the input tet
along the isosurface of f at isovalue of 0.

Algorithm:We find a set of sorted unique edgesE of the tetrahedron
that are intersected by the isosurface of f . The number of edges |E |
is either 3 or 4. We then define a split_edge operator that given a
tetrahedron t and an edge e first splits the edge at a vertex v and
then splits t into two tetrahedrons by connectingv with two vertices
of the edge opposite e (Fig. 11). Similarly to Marching tetrahdera
the location of v is determined by interpoloating vertices of e us-
ing weights defined by f . We simpy run split_edge recusively on
each e ∈ E to produce the resulting tetrahedral mesh Tsplit . The
order of edges in E determines the order in which we split the edges
and hence determines the final topology of the tessellation. By sim-
ply sorting the interested unique edges we solve the problem of
inconsistent tessellation (Fig.10b) between adjacent tetrahedrons
(Fig.10c). We additionally maintain a history of unique edge splits
before splitting an edge e at vertex v . If the edge e was split before
at vertex v̂ by a call to split_edge on one of the adjacent tetrahedron
we do not create a new vertex v but simply make it point to v̂ . To
improve the robustness of the algorithm, when v almost coincides
with one of the vertices in V (when one of the values in f is close to
zero within some thereshold) we simply remove that edge from E
so it will not be split.

ACM Trans. Graph., Vol. 40, No. 4, Article 122. Publication date: August 2021.

Interactive Modelling of Volumetric Musculoskeletal Anatomy • 122:9

4.3 Tetrahedralized Maximization Diagram
We iterate through every tissue function fi ∈ T and use W to find
a set of tissue funtions T̂ such that for any fj ∈ T̂ ,W(i, j) > 0. In
other words T̂ contains all tissue functions that appear in the maxi-
mization diagrams with fi in at least one tetrahedron. We compute
all pairs { fi , fj } of the tissue fi with tissues in the set T̂ . For every
pair we iterate through all tetrahedrons t ∈ T with corresponding
4 vertices Vt and call the SplitTet subroutine. Algorithm 1 summa-
rizes our divide and conquer approach to computing tetrahedralized
maximimzation diagram of tissue functions T̂ over the tetrahedral
mesh T,V.

Algorithm 1: Tetrahedralized Maximization Diagram
Input: Tet mesh T, V and per-vertex tissue values

X ∈ R |V |×(m+1)

Output: Tet mesh Tout , Vout and per-tet tissue labeling
Lout

W = PruneTissues(X); # Section 4.1 for each tissue fi do
T̂=FindIntersectingTissues(fi , W) for every pair
(fi , fj) ∈ T̂ do

for t ← 1 to |T| do
Vst ,Tst = SplitTet(Vt , X(t, i) − X(t, j));
//using barycentric interpolation to compute all
tissues values for all v ∈ Vst

Xst = InterpolateDiffusion(Vst , T, V, X);
//replace t with first tetrahedron in Tst , append
the rest

UpdateT(T, Tst);
V = [V;Vst];
X = [X;Xst];

end
end

end

4.4 Fiber direction
Fiber directions play an important role in simulation by defining
the directions the muscle contracts. Fibers tend to point in the same
directions as gradients of a hypothetical flow from one end of the
muscle to the other [Choi and Blemker 2013; Saito et al. 2015]. Given
muscles tetrahedral mesh Vm,Tm , we leverage our muscle curve to
guide the global flow of the fiber field. The flow should align with
the tangent space of the muscle curve. This can be formulated via
constraint that for each tetrahedron along the curve we would like
the projection of the gradient onto the normal space to be zero.

Let Tmc ∈ Tm be a subset of tetrahedrons that the muscle curve
intersects. Then the desired "flow" can be found by solving the
energy minimization problem:

min uT Lcu + α(NGu)T (NGu) (17)
subject to ustar t = 0 (18)

uend = 1 (19)
∂uskin
∂n̂

= 0 (20)

Fig. 12. Parallel, Fusiform, Triangular, Unipennate.

where G ∈ R3 |Tmc |× |Vm | is a gradient ma-
trix, N ∈ R2 |Tmc |×3 |Tmc | is sparse matrix
containing 2 vectors per gradient vector rep-
resenting the null space of the curves tangent
vector, ustar t and uend are a subset of ver-
tices within a threshold distance of the curve
endpoints. This term forces the gradient of
the scalar field in Tmc to align with the curve’s tangent vector. The
inset figure shows an example of a tetrahedron that intersects the
muscle curve where gradient g of the scalar field is aligned with
the tangent vector t via constraining g to be orthogonal to the null
space of t which is represented by n̂1 and n̂2. The fiber field can
then be computed as the normalized gradient of u, i.e., ∇u/| |∇u| |.

5 IMPLEMENTATION AND RESULTS
Skeletal and muscle curve authoring tools are implemented as sep-
arate standalone C++ applications using Eigen [Guennebaud et al.
2010], libigl [Jacobson et al. 2013], and, for the user interface, ImGui.
The output of the skeletal authoring tool are skin and bone triangu-
lar meshes. We exploit the fact that due to symmetry one only needs
to use half of the mesh for creating the muscles. Therefore, we cut
both skin and bone meshes along the half-plane. The mesh vertices
belonging to the cut boundary can be excluded from the constraints
in Eq. 11, 12 to help create muscles that are suppose to cross the cut
boundary. The half-skin and half-bone meshes are loaded by the
muscle-curve authoring tool and we use TetGen [Si 2015] to gener-
ate a tetrahedral mesh. The quadratic solver is implemented using
the modified version of libIGL’smin_quad_with_fixed function with
Eigen’s PardisoSupport module which provides significant speed
ups. The tool was tested on a computer with Intel Xeon CPU @
2.40GHZ, Nvidia GTX1080 and 64GB of RAM and can perform at
interactive rates for tetrahedral meshes with > 500k tetrahedrons.
The geometry stays intact between curve editing operations, and
we only update GPU buffers containing per-vertex diffusion values
which is fast.

Figure 16 showcases the results created by the authors using our
tool. We informally evaluated our tool with a professional anima-
tor who has experience with using Maya Muscles [Autodesk 2021]
for creating musculoskeletal systems. They mentioned that using
existing tools requires a significant amount of tedious work for
ensuring that muscle geometry respects the geometry of its sur-
roundings (bones, skin, other muscles), and the overall workflow
is "unintuitive" and "awkward". They liked the fact that our tool

ACM Trans. Graph., Vol. 40, No. 4, Article 122. Publication date: August 2021.

122:10 • Rinat Abdrashitov, Seungbae Bang, David Levin, Karan Singh, and Alec Jacobson

1

2

3

4

5 56
0

0

892

13965

123734

503577

6

40

#tetrahedrons

#tissues

Fig. 13. We consider the Lion model in Fig. 16 with 39 muscles and 642224
tetrahedrons. The plot shows the number of tetrahedrons and themaximum
number of tissue functions that can appear in their corresponding maximiza-
tion diagram. This shows that for the vast majority of tetrahedrons (78%)
computing their tetrahedralized maximization diagrams requires no split-
ting or only trivial non-recursive splitting of 2 tissues (19%). No tetrahedrons
require resolving intersection of 6 or more tissues.

allows one to simply draw the location of the muscle while handling
these issues automatically and provides enough intuitive controls
(changing tissue values, moving control points, enabling anisotropy)
to create complex muscle shape (Fig.12). One feature they wanted
to see added is volume preservation of the muscle: when a muscle is
being flattened in one direction, there is a corresponding stretching
in another direction so that the volume stays the same. They also
wanted an ability to specify multiple attachment points instead of
just two to enable finer control, especially for triangular types of
muscle shapes. We further informally evaluated our tool with an
orthopedic surgeon with extensive knowledge of human anatomy
but who does not have experience with 3D modelling applications.
They see the potential of using this tool to explain the surgery pro-
cess to their patients. By using a pre-existing anatomical muscle
model made with our tool, they would be able to edit the muscles to
explain their medical procedure. However, similar to the animator,
they mentioned that to create truly anatomically correct muscles,
they need to be able to specify multiple attachment points.

The muscle extraction algorithm in Section 4 uses the divide and
conquer approach by considering pairs of tissue functions. In Figure
13, using the example of the Lion model (Fig.16), we show that
in practice the vast majority of tetrahedrons only contain 1 tissue
function in their maximization diagram and therefore are not split.
While the vast majority of tetrahedrons that do need to be split only
contain 2 tissue functions, which means they are only split once.

Because our volumetric domain is represented as an unstructured
mesh, the resulting topology of the muscle meshes ends up contain-
ing skinny tetrahedrons as shown in Figure 14. However, because
we guarantee that the resulting meshes are manifold, it is straight-
forward to extract the boundary faces (faces that belong to only one
tetrahedron). The resulting muscle surface triangular meshes can
be easily remeshed and tetrahedralized again. In practice, we simply
run TetWild [Hu et al. 2018] with default parameters on the surface
mesh to improve the topology.

Fig. 14. Example of the final tessellation produced by the upper envelope
algorithm.

a b

Fig. 15. Simulating the motion of a leg using muscle geometry created
with our tool without contact handling. Motion is induced by contracting
the hamstring using the method of Modi et al. [2020] (a). Dynamic Finite
Element simulation of isometric contraction of the bicep using linear tetra-
hedral finite elements. Muscles are modeled as Neohookean elastic solids
using the fiber model of Teran et al. [2003]. Time integration is performed
via Implicit Euler time stepping using the Bartels library [Levin 2020]. We
refer the reader to the provided Additional Modelling and Simulation De-
mos (07:30m) video to see the animated examples. Bone geometry (left) is
provided by ©Ziva Dynamics. Used under permission.

During the modelling process the muscles seen by the user are di-
rectly volume rendered upper-envelopes: rendering does not require
performing any meshing operations during the modeling process.
Every time the user creates or edits muscle curves we recompute
values of the tissue functions (Eq. 10) for each vertex of the tetra-
hedral mesh and update those values in the corresponding GPU
buffer. These values are later accessed by the fragment shader to
perform the volumetric rendering using the ray-marching method
(supported by all modern GPUs). The muscle visualization using
fragment shaders is fast (>30fps) on our system. The bottleneck of
our system during modeling is computing the solution to (Eq. 10) for
which we currently use the Eigen library with Pardiso enabled. This
solve immediately benefits from any generic Poisson solving opti-
mizations which are orthogonal to our main contributions. We only
perform a meshing operation (Sec. 4) after the modelling session is

ACM Trans. Graph., Vol. 40, No. 4, Article 122. Publication date: August 2021.

Interactive Modelling of Volumetric Musculoskeletal Anatomy • 122:11

Fig. 16. Results. We refer the reader to the provided supplemental video to see the modelling process of the Ape model. We refer the reader to the provided
Additional Modelling and Simulation Demos video to see the modelling process of the Lion model. Lion (top) and Dinosaur Leg (bottom left) are provided by
©SideFx Software. Used under permission. Ape model (middle) is obtained from https://www.3dscanstore.com/ecorche-3d-models/gorilla-ecorche-3d-model.
Used under permission. Bone geometry of the arm (bottom right) is provided by ©Ziva Dynamics. Used under permission.

ACM Trans. Graph., Vol. 40, No. 4, Article 122. Publication date: August 2021.

122:12 • Rinat Abdrashitov, Seungbae Bang, David Levin, Karan Singh, and Alec Jacobson

complete, to export muscles as tetrahedral meshes for downstream
applications. Using muscle extraction every time we create/edit a
muscle would negatively impact performance, which is the motiva-
tion for our volumetric rendering approach.

6 LIMITATIONS AND FUTURE WORK
Although we demonstrated that our tool enables users to create
complex muscular-skeletal geometries, there are limitations, subject
to future work.
The quality of the muscle shapes depends on the quality of the

tetrahedrazation (V,T) of the input skin and bone meshes. On one
hand, coarse meshes prevent the creation of smooth and thin mus-
cles; on the other hand, very high quality meshes can affect the
performance of computing muscle functions and hinder the interac-
tive experience. This makes it hard to create muscles in the areas
where bones are too close to the skin, unless the area is densely
tessellated. We also notice that often a large portion of the model
ends up being unused (the intestines area), yet it’s still being used
for computation of muscle functions which wastes computation. In
practice, for all models, we were able to find a balance between the
quality of the tetrahedralization and performance. In the future, we
want to explore adaptive boundary conforming tessellation of the
volume with increased tessellation quality only around boundaries
of the muscles.
We use a simple heuristic (Sec. 3.2) for creating initial muscle

curves, which leads to multiple editing operations of control points
to get the muscle curve shape just right. This makes it challenging to
create muscle curves around complex bone geometry, since control
points must be edited from multiple viewpoints. In the future, we
would like to explore a more robust curve creation techniques that
simultaneously utilizes skin and bone geometry to create the best
guess for the initial shape of the muscle curve.

Currently, each muscle is represented by a single curve. Based on
the feedback we received from users, we plan to explore how we can
usemultiple curves to represent a single muscle. This would allow us
to create more anatomically correct and complexmuscle shapes with
multiple origin and insertion points. Additionally, there are many
muscles in which fiber direction does not match the flow between
origin and insertion and therefore we plan to explore ways to specify
the pennation angle (the angle between the longitudinal axis of the
entire muscle and its fibers) as it is an important parameter in muscle
contraction dynamics.
We have investigated the potential use of the resulting muscle

geometry for simulation (Fig. 15) but more work needs to be done
to test simulations with the complex and densely packed full-body
muscle systems. With the help of professional artists, we plan to
evaluate how animation-ready our resulting muscle geometry is
using industry-standard software like Houdini [SideFx 2021] and
Ziva Dynamics [2021].

Our system is designed with the idea of creating muscle geometry
from scratch but we have experimented with extracting curve net-
works from pre-existing artist-made muscle shapes (using methods
for computing curve skeletons of 3D shapes) and importing them
into our system, which can provide a good starting point.

We currently do not support locking of the muscle shape. How-
ever, we could extract the mesh of a muscle, and treat it similarly to
bones so that other muscles wrap around it. This requires to redo
the initial tessellation to make sure it conforms to imported muscle
geometries but TetGen only takes a few seconds. Similarly an artist
can import existing muscle meshes and continue to create muscles
around them.

ACKNOWLEDGMENTS
Our research is funded in part by NSERC Discovery (RGPIN-2017-
05524, RGPIN2017–05235, RGPAS–2017–507938), NSERC Acceler-
ator (RGPAS-2017- 507909), Connaught Fund (503114), CFI-JELF
Fund, Canada Research Chairs Program, New Frontiers of Research
Fund (NFRFE–201), the Ontario Early Research Award program, the
Fields Centre for Quantitative Analysis and Modelling and gifts by
Adobe Systems, Autodesk and MESH Inc.

We thank Sarah Kushner and Abhishek Madan for proofreading;
Vismay Modi for helping to generate the simulation results; Oded
Stein for helpingwith figures; anonymous reviewers for their helpful
comments and suggestions. Special thanks to SideFx software for
providing their models.

REFERENCES
Rinat Abdrashitov, Alec Jacobson, and Karan Singh. 2019. A system for efficient 3D

printed stop-motion face animation. ACM Transactions on Graphics (TOG) 39, 1
(2019), 1–11.

Pankaj K Agarwal, Otfried Schwarzkopf, and Micha Sharir. 1996. The overlay of lower
envelopes and its applications. Discrete & Computational Geometry 15, 1 (1996),
1–13.

Irene Albrecht, Jörg Haber, and Hans-Peter Seidel. 2003. Construction and Animation
of Anatomically Based Human Hand Models. In Proceedings of the 2003 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (SCA ’03). Eurographics
Association, Goslar, DEU, 98–109.

Dicko Ali-Hamadi, Tiantian Liu, Benjamin Gilles, Ladislav Kavan, Francois Faure,
Olivier Palombi, and Marie-Paule Cani. 2013. Anatomy transfer. ACM Transactions
on Graphics (TOG) 32, 6 (2013), 188.

Mathieu Andreux, Emanuele Rodola, Mathieu Aubry, and Daniel Cremers. 2014.
Anisotropic Laplace-Beltrami operators for shape analysis. In European Confer-
ence on Computer Vision. Springer, 299–312.

Baptiste Angles, Daniel Rebain, Miles Macklin, Brian Wyvill, Loic Barthe, JP Lewis,
Javier Von Der Pahlen, Shahram Izadi, Julien Valentin, Sofien Bouaziz, et al. 2019.
VIPER: Volume invariant position-based elastic rods. Proceedings of the ACM on
Computer Graphics and Interactive Techniques 2, 2 (2019), 1–26.

Autodesk 2021. Maya Muscle. http://download.autodesk.com/us/support/files/muscle.
pdf..

Mario Botsch, Leif Kobbelt, Mark Pauly, Pierre Alliez, and Bruno Lévy. 2010. Polygon
mesh processing. CRC press.

J. E. Chadwick, D. R. Haumann, and R. E. Parent. 1989. Layered Construction for
Deformable Animated Characters. In Proceedings of the 16th Annual Conference
on Computer Graphics and Interactive Techniques (SIGGRAPH ’89). Association for
Computing Machinery, New York, NY, USA, 243–252. https://doi.org/10.1145/74333.
74358

Nuttapong Chentanez, Ron Alterovitz, Daniel Ritchie, Lita Cho, Kris K Hauser, Ken
Goldberg, Jonathan R Shewchuk, and James F O’Brien. 2009. Interactive simulation
of surgical needle insertion and steering. In ACM SIGGRAPH 2009 papers. 1–10.

Hon Fai Choi and Silvia S Blemker. 2013. Skeletal muscle fascicle arrangements can
be reconstructed using a laplacian vector field simulation. PloS one 8, 10 (2013),
e77576.

Barbara Cutler, Julie Dorsey, Leonard McMillan, Matthias Müller, and Robert Jagnow.
2002. A procedural approach to authoring solid models. ACM Transactions on
Graphics (TOG) 21, 3 (2002), 302–311.

Chris De Paoli and Karan Singh. 2015. SecondSkin: sketch-based construction of layered
3D models. ACM Transactions on Graphics (TOG) 34, 4 (2015), 1–10.

Deepak Rajan 2021. Cassowary | Ziva Dynamics | Anatomy Modeling | Part 3. https:
//www.youtube.com/watch?v=AD6TAQHnZwk&ab_channel=DeepakRajan.

Akio Doi and Akio Koide. 1991. An efficient method of triangulating equi-valued
surfaces by using tetrahedral cells. IEICE TRANSACTIONS on Information and
Systems 74, 1 (1991), 214–224.

ACM Trans. Graph., Vol. 40, No. 4, Article 122. Publication date: August 2021.

http://download.autodesk.com/us/support/files/ muscle.pdf.
http://download.autodesk.com/us/support/files/ muscle.pdf.
https://doi.org/10.1145/74333.74358
https://doi.org/10.1145/74333.74358
https://www.youtube.com/watch?v=AD6TAQHnZwk&ab_channel=DeepakRajan
https://www.youtube.com/watch?v=AD6TAQHnZwk&ab_channel=DeepakRajan

Interactive Modelling of Volumetric Musculoskeletal Anatomy • 122:13

Herbert Edelsbrunner, Leonidas J Guibas, and Micha Sharir. 1989. The upper envelope
of piecewise linear functions: algorithms and applications. Discrete & Computational
Geometry 4, 4 (1989), 311–336.

Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.
Andrew J Hanson and Hui Ma. 1995. Parallel transport approach to curve framing.

Indiana University, Techreports-TR425 11 (1995), 3–7.
Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo.

2018. Tetrahedral meshing in the wild. ACM Trans. Graph. 37, 4 (2018), 60–1.
James Jacobs, Jernej Barbic, Essex Edwards, Crawford Doran, and Andy van Straten.

2016. How to build a human: practical physics-based character animation. In
Proceedings of the 2016 Symposium on Digital Production. 7–9.

Alec Jacobson, Zhigang Deng, Ladislav Kavan, and John P Lewis. 2014. Skinning: Real-
time shape deformation (full text not available). In ACM SIGGRAPH 2014 Courses.
1–1.

Alec Jacobson, Daniele Panozzo, et al. 2013. libigl: A simple C++ geometry processing
library. http://igl.ethz.ch/projects/libigl/.

Petr Kadleček, Alexandru-Eugen Ichim, Tiantian Liu, Jaroslav Křivánek, and Ladislav
Kavan. 2016. Reconstructing personalized anatomical models for physics-based
body animation. ACM Transactions on Graphics (TOG) 35, 6 (2016), 1–13.

Francois Labelle and Jonathan Richard Shewchuk. 2007. Isosurface Stuffing: Fast
Tetrahedral Meshes with Good Dihedral Angles. ACM Transactions on Graphics 26, 3
(July 2007), 57.1–57.10. http://graphics.cs.berkeley.edu/papers/Labelle-ISF-2007-07/
Special issue on Proceedings of SIGGRAPH 2007.

Dongwoon Lee, Michael Glueck, Azam Khan, Eugene Fiume, and Ken Jackson. 2010. A
survey of modeling and simulation of skeletal muscle. ACM Transactions on Graphics
28, 4 (2010), 1–13.

David I.W. Levin. 2020. Bartels: A lightweight collection of routines for physics simula-
tion. https://github.com/dilevin/Bartels.

Duo Li, Shinjiro Sueda, Debanga R Neog, and Dinesh K Pai. 2013. Thin skin elastody-
namics. ACM Transactions on Graphics (TOG) 32, 4 (2013), 1–10.

William E Lorensen and Harvey E Cline. 1987. Marching cubes: A high resolution
3D surface construction algorithm. ACM siggraph computer graphics 21, 4 (1987),
163–169.

Michal Meyerovitch. 2006. Robust, generic and efficient construction of envelopes
of surfaces in three-dimensional spaces. In European Symposium on Algorithms.
Springer, 792–803.

Vismay Modi, Lawson Fulton, A Jacobson, S Sueda, and David IW Levin. 2020. EMU:
Efficient Muscle Simulation in Deformation Space. In Computer Graphics Forum.
Wiley Online Library.

Andrew Nealen, Takeo Igarashi, Olga Sorkine, and Marc Alexa. 2007. FiberMesh:
designing freeform surfaces with 3D curves. In ACM SIGGRAPH 2007 papers. 41–es.

Victor Ng-Thow-Hing and Eugene Fiume. 1997. Interactive display and animation of B-
spline solids as muscle shape primitives. In Proceedings of the Eurographics Workshop
on Computer Animation and Simulation 1997, Budapest, Hungary, September 2-3, 1997
(Eurographics), Daniel Thalmann and Michiel van de Panne (Eds.). Springer, 81–97.
https://doi.org/10.1007/978-3-7091-6874-5_6

Alexandrina Orzan, Adrien Bousseau, Holger Winnemöller, Pascal Barla, Joëlle Thollot,
and David Salesin. 2008. Diffusion curves: a vector representation for smooth-shaded
images. ACM Transactions on Graphics (TOG) 27, 3 (2008), 1–8.

Shigeru Owada, Takahiro Harada, Philipp Holzer, and Takeo Igarashi. 2008. Volume
Painter: Geometry-Guided Volume Modeling by Sketching on the Cross-Section.. In
SBM. 9–16.

Jonathan Palacios, Chongyang Ma, Weikai Chen, Li-Yi Wei, and Eugene Zhang. 2016.
Tensor field design in volumes. In SIGGRAPH ASIA 2016 Technical Briefs. 1–4.

Nico Pietroni, Paolo Cignoni, Miguel A Otaduy, and Roberto Scopigno. 2010. A survey
on solid texture synthesis. IEEE Computer Graphics and Applications 30, 4 (2010),
74–89.

Nico Pietroni, Miguel A Otaduy, Bernd Bickel, Fabio Ganovelli, and Markus Gross. 2007.
Texturing internal surfaces from a few cross sections. In Computer Graphics Forum,
Vol. 26. Wiley Online Library, 637–644.

Michael Pratscher, Patrick Coleman, Joe Laszlo, and Karan Singh. 2005. Outside-
in anatomy based character rigging. In Proceedings of the 2005 ACM SIG-
GRAPH/Eurographics symposium on Computer animation. ACM, 329–338.

Valentin Roussellet, Nadine Abu Rumman, Florian Canezin, Nicolas Mellado, Ladislav
Kavan, and Loïc Barthe. 2018. Dynamic implicit muscles for character skinning.
Computers & Graphics 77 (2018), 227–239.

Shunsuke Saito, Liwen Hu, Chongyang Ma, Hikaru Ibayashi, Linjie Luo, and Hao Li.
2018. 3D hair synthesis using volumetric variational autoencoders. ACMTransactions
on Graphics (TOG) 37, 6 (2018), 1–12.

Shunsuke Saito, Zi-Ye Zhou, and Ladislav Kavan. 2015. Computational bodybuilding:
Anatomically-based modeling of human bodies. ACM Transactions on Graphics
(TOG) 34, 4 (2015), 1–12.

Ferdi Scheepers, Richard E. Parent, Wayne E. Carlson, and Stephen F. May. 1997.
Anatomy-Based Modeling of the Human Musculature. In Proceedings of the 24th
Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH
’97). ACM Press/Addison-Wesley Publishing Co., USA, 163–172. https://doi.org/10.

1145/258734.258827
Johannes Schmid, Martin Sebastian Senn, Markus Gross, and Robert W Sumner. 2011.

Overcoat: an implicit canvas for 3d painting. In ACM SIGGRAPH 2011 papers. 1–10.
Hang Si. 2015. TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM

Transactions on Mathematical Software (TOMS) 41, 2 (2015), 1–36.
SideFx 2021. Houdini. https://www.sidefx.com/.
Cláudio Teixeira Silva, Joao Luiz Dihl Comba, Steven Paul Callahan, and Fabio Fedrizzi

Bernardon. 2005. A survey of GPU-based volume rendering of unstructured grids.
Revista de informática teórica e aplicada. Porto Alegre, RS. Vol. 12, n. 2 (out. 2005), p.
9-29 (2005).

Maryann Simmons, Jane Wilhelms, and Allen Van Gelder. 2002. Model-Based
Reconstruction for Creature Animation. In Proceedings of the 2002 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (SCA ’02). Association
for Computing Machinery, New York, NY, USA, 139–146. https://doi.org/10.1145/
545261.545284

Karansher Singh, Jun Ohya, and Richard Parent. 1995. Human figure synthesis and ani-
mation for virtual space teleconferencing. In 1995 Virtual Reality Annual International
Symposium, VRAIS ’95, Research Triangle Park, North Carolina, USA, March 11-15,
1995. IEEE Computer Society, 118–126. https://doi.org/10.1109/VRAIS.1995.512487

Oded Stein, Eitan Grinspun,MaxWardetzky, and Alec Jacobson. 2018. Natural Boundary
Conditions for Smoothing in Geometry Processing. ACM Trans. Graph. 37, 2, Article
23 (May 2018), 13 pages. https://doi.org/10.1145/3186564

Kenshi Takayama, Daniele Panozzo, Alexander Sorkine-Hornung, and Olga Sorkine-
Hornung. 2013. Sketch-based generation and editing of quad meshes. ACM Trans-
actions on Graphics (TOG) 32, 4 (2013), 1–8.

Kenshi Takayama, Olga Sorkine, Andrew Nealen, and Takeo Igarashi. 2010. Volumetric
modeling with diffusion surfaces. In ACM SIGGRAPH Asia 2010 papers. 1–8.

J. Teran, S. Blemker, V. Ng Thow Hing, and R. Fedkiw. 2003. Finite Volume Meth-
ods for the Simulation of Skeletal Muscle. In Proceedings of the 2003 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (SCA ’03). Eurographics
Association, Goslar, DEU, 68–74.

Joseph Teran, Eftychios Sifakis, Silvia S Blemker, Victor Ng-Thow-Hing, Cynthia Lau,
and Ronald Fedkiw. 2005. Creating and simulating skeletal muscle from the visible
human data set. IEEE Transactions on Visualization and Computer Graphics 11, 3
(2005), 317–328.

Winnie Tsang, Karan Singh, and Eugene Fiume. 2005. Helping Hand: An Anatomically
Accurate Inverse Dynamics Solution for Unconstrained Hand Motion. In Proceedings
of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA
’05). Association for Computing Machinery, New York, NY, USA, 319–328. https:
//doi.org/10.1145/1073368.1073414

Fabio Turchet, Oleg Fryazinov, and Sara C Schvartzman. 2017. Physically-based Muscles
and Fibers Modeling from Superficial Patches. (2017).

Lvdi Wang, Yizhou Yu, Kun Zhou, and Baining Guo. 2011. Multiscale vector volumes.
ACM Transactions on Graphics (TOG) 30, 6 (2011), 1–8.

Manfred Weiler, Martin Kraus, Markus Merz, and Thomas Ertl. 2003. Hardware-based
ray casting for tetrahedral meshes. In IEEE Visualization, 2003. VIS 2003. IEEE, 333–
340.

Weta Digital 2021. Weta Digital. https://www.wetafx.co.nz/research-and-tech/
technology/tissue/.

JaneWilhelms and Allen VanGelder. 1997. Anatomically BasedModeling. In Proceedings
of the 24th Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH ’97). ACM Press/Addison-Wesley Publishing Co., USA, 173–180. https:
//doi.org/10.1145/258734.258833

Zhan Xu, Yang Zhou, Evangelos Kalogerakis, Chris Landreth, and Karan Singh. 2020.
RigNet: Neural Rigging for Articulated Characters. arXiv preprint arXiv:2005.00559
(2020).

Yusuke Yoshiyasu, Wan-Chun Ma, Eiichi Yoshida, and Fumio Kanehiro. 2014. As-
conformal-as-possible surface registration. In Computer Graphics Forum, Vol. 33.
Wiley Online Library, 257–267.

Christopher Yu, Henrik Schumacher, and Keenan Crane. 2020. Repulsive Curves. arXiv
preprint arXiv:2006.07859 (2020).

Zhan Yuan, Yizhou Yu, and Wenping Wang. 2012. Object-space multiphase implicit
functions. ACM Transactions on Graphics (TOG) 31, 4 (2012), 1–10.

Ziva Dynamics 2021. Ziva VFX. https://zivadynamics.com.

ACM Trans. Graph., Vol. 40, No. 4, Article 122. Publication date: August 2021.

http://graphics.cs.berkeley.edu/papers/Labelle-ISF-2007-07/
https://doi.org/10.1007/978-3-7091-6874-5_6
https://doi.org/10.1145/258734.258827
https://doi.org/10.1145/258734.258827
https://www.sidefx.com/
https://doi.org/10.1145/545261.545284
https://doi.org/10.1145/545261.545284
https://doi.org/10.1109/VRAIS.1995.512487
https://doi.org/10.1145/3186564
https://doi.org/10.1145/1073368.1073414
https://doi.org/10.1145/1073368.1073414
https://www.wetafx.co.nz/research-and-tech/technology/tissue/
https://www.wetafx.co.nz/research-and-tech/technology/tissue/
https://doi.org/10.1145/258734.258833
https://doi.org/10.1145/258734.258833
https://zivadynamics.com

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Musculoskeletal Anatomy:
	2.2 Surface-based muscle primitives:
	2.3 Volume-based muscle primitives:
	2.4 Anatomic Templates:
	2.5 Interactive volumetric and character modelling:

	3 Our system
	3.1 Skeleton Authoring
	3.2 Muscle Curve Authoring
	3.3 Muscle and Fat Functions
	3.4 Discretization
	3.5 Segmentation
	3.6 Visualization
	3.7 Anisotropy

	4 Muscle extraction
	4.1 Prune tissues
	4.2 Split tetrahedron
	4.3 Tetrahedralized Maximization Diagram
	4.4 Fiber direction

	5 Implementation and Results
	6 Limitations and Future Work
	Acknowledgments
	References

