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Abstract

We present a procedural approach to authoring layered, solid mod-
els. Using a simple scripting language, we define the internal struc-
ture of a volume from one or more input meshes. Modeling oper-
ators, which may include simulations or sculpting operations, are
applied within the context of the language to shape and modify the
model. Our framework treats simulation as a modeling operator
rather than simply as a tool for animation, thereby suggesting a
new paradigm for modeling as well as a new level of abstraction for
interacting with simulation environments.

Capturing real-world effects with standard modeling techniques
is extremely challenging. Our key contribution is a concise pro-
cedural approach for seamlessly building and modifying complex
solid geometry. We demonstrate our language using a flexible tetra-
hedral representation. We show examples of our system interfacing
with finite element and particle simulation tools to produce a variety
of complex models.
Additional Keywords: volumetric modeling, signed-distance
function, tetrahedral representation.

1 Introduction

Geometric models are a fundamental component in any graphics
system. While there has been tremendous progress in the area of
rendering over the past three decades, creating and acquiring high
fidelity geometric models remains a challenging and tedious pro-
cess.1 In addition to the generation problem, models are also hard
to modify and manipulate. Another difficulty is that models are
generally designed with high-end rendering in mind. However, as
animation and simulation techniques become increasingly sophisti-
cated and widely available, there is an increasing demand for mod-
els suitable for these purposes as well.

Today’s model generation tools are primitive in that they gen-
erally lack a formal specification framework. This stands in stark
contrast to commonly available rendering systems, such as Render-
Man, in which lighting, materials, objects and even shading, are
specified procedurally [Hanrahan and Lawson 1990; Upstill 1990].

In this paper, we introduce a procedural modeling paradigm for
authoring layered, solid models. We are especially interested in

1The widespread use of the same small set of models, such as the Stan-
ford bunny and the Utah teapot, attests to these difficulties.

generating models that are suitable for both rendering and physical
simulation. Just as computer graphics rendering systems provide a
framework for light transport simulation, we envision an analogous
framework for physical processes and other operators that modify
and sculpt geometry.

There are many reasons to consider a procedural approach to sur-
face creation and modification. A concise specification framework
permits different simulation approaches – e.g. ray tracing, radios-
ity, finite element and simplified spring-mass models – to be applied
and compared. In addition, complicated processes can be described
algorithmically and codified. A procedural definition can be used
as an intermediate format for capturing, editing, and replaying in-
teractive editing sessions. It also provides a high-level abstraction,
permitting a variety of different representations – e.g. meshes and
implicit functions – to coexist in the same environment, regardless
of the underlying simulation system. Procedural models are also
advantageous in that they can be incrementally edited and refined
based on artistic needs. Finally, powerful simulation tools, such as
finite element or particle systems, can be embedded as modeling
operators within such a procedural framework.

1.1 Related Work

Within traditional modeling systems, complex models are created
by applying a variety of modeling operations, such as CSG and
freeform deformations, to a vast array of geometric primitives.
While in the hands of a talented artist these tools are able to pro-
duce intricate geometric models, the model-creation process is ex-
tremely labor intensive. The range of tools available for specifying
and editing shapes is also very limited. Surface representations can
be locally deformed by simply modifying surface control points.
However, tools for shaping geometry are rarely physically based,
and the underlying geometry generally lacks information about the
internal physical properties of the model, which is necessary for
creating complex deformations. In addition, such deformations can
create self-intersections that are difficult to detect or prevent. Fur-
thermore, performing topological changes to the model, such as
drilling a hole through it, is challenging using just a surface de-
scription.

Another approach to creating models involves interactive sculpt-
ing, which is based on the notion of sculpting a solid material with
a tool. Such systems are typically based on 3D grids; however,
they can be costly to render, since they must be either ray traced or
converted into a surface mesh using marching cubes [Lorensen and
Cline 1987]. Additionally, deforming a grid-based representation is
difficult since it involves expensive shifting of data over cell bound-
aries. One of the main benefits of volumetric representations is that
they support robust sculpting operations and simulations [Wang and
Kaufman 1995; Adzhiev et al. 1999; O’Brien and Hodgins 1999;
Wyvill et al. 1999; Frisken et al. 2000].

Unlike surfaces, which are merely hollow shells, volumetric rep-
resentations can capture the internal material structure of the model.
However, volumetric models often lack fidelity because a high res-
olution volume is necessary to represent a complex model.



3D digitizing has emerged as a popular technique for acquiring
complex surface models, such as sculptures or mechanical parts,
which would be difficult or impossible to create with interactive
techniques. Such digitizers are useful for acquiring surface shape
and appearance properties, but they do not capture the internal
structure of the geometry, which is often necessary for animation
or simulation.

Procedural modeling techniques have proven to be valuable in
several specific domains of computer graphics [Ebert et al. 1998].
Examples include plant modeling [Prusinkiewicz et al. 1988], solid
texturing [Perlin 1985; Perlin and Hoffert 1989], displacement
maps [Cook 1984], cellular texturing [Legakis et al. 2001], and ur-
ban modeling [Parish and Müller 2001].

One of the difficulties of procedural modeling is that the vari-
ous techniques are domain specific, which limits their generality.
Additionally it can be difficult to control precisely the generation
process to create a specific model. In our approach, we use a sur-
face model, which may be acquired from a wide variety of sources,
as a starting point and use procedural techniques to generate a solid
model. This provides a framework for the creation of a rich class of
models, which are suitable for simulation.

1.2 Overview

Our procedural framework provides a controlled, systematic way
to specify the geometric and material properties of a solid model
and to vary these attributes as a function of time. We have devel-
oped a simple scripting language for authoring complex volumetric
models and we show examples of its use. In our language, models
are first initialized and then modified with a palette of physically-
based simulation operations, such as finite element methods and
particle systems. Model initialization is presented in Section 2 and
the definition and use of simulation tools is described in Section 3.
In Section 4 we present an implementation of the language using
layered tetrahedral models which we used to create the examples
discussed in Section 5.

2 Model Specification

In the following sections we describe our language for procedu-
rally authoring a volumetric model. Through a series of examples,
we show that this is a natural way to construct and edit models.
We have developed the following grammar for our language. The
types of operations that can be applied to the model are explained
in Section 3.

script : model operations
model : model = volume

volume : load volume
�
file = string ��

volume
�
distance field = distance field
layers = layers ��

precedence
�
volume 1 = volume
volume 2 = volume �

distance field : surface mesh
�
file = string ��

from volume surface
�
volume = volume ��

union
�
distance field 1 = distance field
distance field 2 = distance field �

Procedure calls consist of the function name and a list of name
= value pairs within curly braces. Values can be integers, float-
ing point numbers, strings, or a list of values within curly braces.
All procedures in the language are defined with default values for
each argument. As a convention in our examples, we use all capital
letters to indicate user-defined functions and materials

2.1 Layers of Material

Many real-world objects are composed of layers: architectural
framing, insulation and siding; the skeleton, muscles, and skin of
an animal; or even the peel of a fruit. Building a physically-realistic
model of any of these objects requires definition of the boundaries
between materials and the variations within each material. Such
a model could be created by an artist, but the process is time-
consuming. The data could be obtained through dissection or to-
mography approaches, but this is also time-consuming. Our mod-
eling language is based on the observation that often the internal
structure of an object can be inferred from a representation of its
primary interface.

We will use a simple chocolate candy model to illustrate the
power of our language. Our first example illustrates how we can
define multiple layers both interior and exterior from the original
surface. See Figure 1 a and b.

model = volume
�

distance_field = surface_mesh
�

file = candy.obj �
layers =

�
interior_layer

�
material = CHOCOLATE
thickness = fill �

exterior_layer
�

material = WHITE_CHOCOLATE
thickness = 0.10 �

exterior_layer
�

material = STRIPED_CHOCOLATE
thickness = 0.05 �����

Each layer has a material type and thickness. The type and thick-
ness can be uniform or vary procedurally, which we discuss later.
The keyword fill can be used with a well-defined closed mesh to
describe an interior layer that is thick enough to fill the remaining
interior space. The keyword nothing can be used to describe a
layer of air with no volumetric properties.

2.2 Signed Distance Field

Signed distance fields are a common volume type which are directly
supported in our procedural definitions. They are useful for con-
verting manifolds and meshes into volumes. They elegantly handle
changes in topology and do not allow self-intersection of the inter-
faces. A signed distance field is a continuous scalar function de-
fined over a volume. In most cases, we construct the distance field
from a surface mesh using a method described in Section 4.2. Al-
ternatively, we can create the field from an implicit surface or other
function. Layers are specified as ranges of distance values.

Often a distance field is simply a Euclidean measurement from
each point to the original surface. Layers defined within this type of
distance field will have uniform thickness within each layer. How-
ever, it is often natural to describe layers that are thicker or thin-
ner according to some pattern. To create interesting internal struc-
tures, which have varying layer thicknesses, we can define non-
Euclidean distance metrics using a modified interface velocity. In
Figure 1 c and d the distance field interface velocity is set by a ran-
dom turbulence function resulting in a bumpy appearance. Alterna-
tively, the user may “paint” a pattern of increased velocity on the
surface mesh, which will correspond to increased layer thickness
in the signed distance field. A diagonal swirl of increased velocity
was procedurally applied to the surface in Figure 1 e and f. The
velocity can also be computed using visibility, accessibility, etc.

Often the desired distance field is most easily described by com-
bining distance fields using simple operators such as scale, union
and intersect (minimum and maximum), and subtract [Ricci 1973;
Payne and Toga 1992; Frisken et al. 2000]. To demonstrate distance
field composition, we union the candy surface mesh with an almond
mesh to produce the model shown in Figure 1 g.



model = volume
�

distance_field = union
�

distance_field_1 = surface_mesh
�

file = almond.obj
scale = 1.25
rotate =

�
0 0 1 -0.5 ���

distance_field_2 = surface_mesh
�

file = candy.obj ���
layers =

�
interior_layer

�
material = CHOCOLATE
thickness = 0.2 �

interior_layer
�

material = PINK_FROSTING
thickness = fill �

exterior_layer
�

material = WHITE_CHOCOLATE
thickness = 0.1 �����

2.3 Volume Specification

A signed distance field, together with its layer list, is called a vol-
ume specification. Volume specifications can be combined by the
precedence construct to yield another volume specification. In the
example below, precedence is used to first create the volume for the
almond, and then define the candy shape only within the unused
volume (Figure 1 h). Subsequent shapes could be defined to fill the
remaining unoccupied volume.

model = precedence
�

volume_1 = volume
�

distance_field = surface_mesh
�

file = almond.obj
layers =

�
interior_layer

�
material = NUT
thickness = fill �����

volume_2 = volume
�

distance_field = surface_mesh
�

file = candy.obj �
layers =

�
interior_layer

�
material = CHOCOLATE
thickness = fill �

exterior_layer
�

material = WHITE_CHOCOLATE
thickness = 0.10 �

exterior_layer
�

material = STRIPED_CHOCOLATE
thickness = 0.05 �������

The use of the precedence operator is particularly interesting
when the surface meshes intersect. In Figure 1 i the almond shape
is larger and rotated so that it protrudes from the original candy
surface and beyond the additional layers of material. However, the
user may instead wish those layers to also be wrapped around the
protruding almond as shown in Figure 1 j. To do this, we use a vol-
ume specification to create a distance field. The outermost exterior
interface is extracted from the volume and used as the initializing
surface for a new distance field. Below is the script that created the
model.

model = volume
�

distance_field = from_volume_surface
�

volume = precedence
�

volume_1 = volume
�

distance_field = surface_mesh
�

file = almond.obj
scale = 1.25
rotate =

�
0 0 1 -0.5 ���

layers =
�

interior_layer
�

material = NUT
thickness = fill �����

volume_2 = volume
�

distance_field = surface_mesh
�

file = candy.obj �
layers =

�
interior_layer

�
material = CHOCOLATE
thickness = fill ����� ���

layers =
�

exterior_layer
�

material = WHITE_CHOCOLATE
thickness = 0.10 �

exterior_layer
�

material = STRIPED_CHOCOLATE
thickness = 0.05 �����

In Section 2.2 we discussed how a modified interface velocity of
the signed distance field can be used to vary layer thickness. Mod-
ified interface velocity is implemented per distance field, and all
layers within that field will have a thickness pattern based on that
velocity. Nesting volume specifications allows us to create a model
with layers having different thickness patterns. For example, we
could first grow a layer of bumpy frosting from a random velocity
field on our candy (as in Figure 1 c), followed by a layer of uniform
thickness of white chocolate. This type of specification is common
enough to warrant a syntactic sugar construct, which desugars ve-
locities specified per layer into nested volume specifications.

model = volume
�

distance_field = surface_mesh
�

file = candy.obj �
layers =

�
exterior_layer

�
material = PINK_FROSTING
thickness = 0.2
velocity = BUMPY �

exterior_layer
�

material = WHITE_CHOCOLATE
thickness = 0.1 �����

is equivalent to:

model = volume
�

distance_field = from_volume_surface
�

volume = volume
�

distance_field = surface_mesh
�

file = candy.obj
velocity = BUMPY �

layers =
�

exterior_layer
�

material = PINK_FROSTING
thickness = 0.2 ����� �

layers =
�

exterior_layer
�

material = WHITE_CHOCOLATE
thickness = 0.1 �����

2.4 Procedural Layer and Material Definitions

A layer need not be composed of a uniform material. A procedure
can be used to subdivide the layer into distinct materials. Below is
the specification used to create the striped layer of chocolate on the
candy. The function body is C code which is compiled and linked
into the system. (The brick paving used in Section 5 was generated
with a similar definition.)



a) b)

c) d)

e) f)

g) h)

i) j)

Figure 1: A sampling of the models that can be procedurally cre-
ated from a simple candy surface mesh. By modifying the interface
velocity of the distance field, we can create layers with non-uniform
thickness, shown in c, d, e, and f. Specifying the interaction of two
meshes allows many other possibilities, a few of which are shown
in g, h, i and j.

define material STRIPED_CHOCOLATE
�

input =
�
x y z �

function =
�

if (y < 0.6) return WHITE_CHOCOLATE;
if ((x > -1.35 && x < -1.05) ||

(x > -0.75 && x < -0.45) ||
(x > -0.15 && x < 0.15) ||
(x > 0.45 && x < 0.75) ||
(x > 1.05 && x < 1.35))

return CHOCOLATE;
return WHITE_CHOCOLATE; ���

Materials are defined by a list of rendering and simulation pa-
rameters. We have a small library of built-in materials and addi-
tional materials can be defined within the script file as shown below.
Default values will be used for any unspecified parameters.

define material CHOCOLATE
�

color = 0.31 0.17 0.15
density = 1100 /* kg/mˆ3 */
etc. �

The user can also procedurally define a continuous variation of
properties within a single material such as wood grain or concrete
particles. This information can be used by the simulation and dur-
ing rendering.

3 Operations

Many simulation techniques have been researched and developed
for sculpting and weathering [Dorsey et al. 1996; Dorsey et al.
1999; O’Brien and Hodgins 1999]. We have incorporated imple-
mentations of a few of these techniques into our system and provide
user control of these tools through our language. The user is able
to develop additional tools based on these packages or link to other
simulation libraries.

3.1 Useability through Abstraction

One of the main obstacles the user must overcome to use one of
these packages is determining proper values for the numerous pa-
rameters needed to make the system run. Different implementations
of the same simulation technique may require different sets of pa-
rameters. The first goal of our tool language is to provide abstrac-
tion and standardization so the user of the tool can apply operations
to the model without studying the details of the implementation. A
simple interface between each simulation package and our system
is established and a set of sample tools is created. Each tool defini-
tion begins with a list of parameters and their default values. Then
the tool calls one or more of the simulation packages through the
interface created in the system. Standard tool parameters include
position, orientation, size, and affected materials. Using the sample
tools as a guide, the user can create new tools.

We have linked our system to a flexible finite element method
(FEM) simulation. We apply a distribution of forces to our model
and the system computes the appropriate deformations and frac-
tures. We can also control which materials are affected by the sim-
ulation; no other materials will be modified. Below we define a
simple tool which applies a single hammer-like force to the model.

define tool HAMMER
�

position =
�
0 0 0 �

orientation =
�
1 0 0 �

magnitude = 1
size = 1
affects = everything
action = fem

�
affects = HAMMER.affects
force =

�
HAMMER.magnitude *
HAMMER.orientation �

applied_area = gaussian_sphere�
center = HAMMER.position
radius = HAMMER.size ��� �



3.2 Defining Simulation Behavior

The power of a language for tool definition extends beyond copy-
ing and modifying existing tools. The language allows us to spec-
ify new types of behavior for the simulation. Particle systems have
been used in many different applications to create a variety of ef-
fects that span the range of physical accuracy. The complexity and
accuracy of a particle system simulation depends on the definition
of particle motion, interaction and effects. Below we present the
definition of a tool used to wash dirt from a statue.

define tool WASH
�

num_particles = 10000
particle_life = 1
action = particles

�
affects = everything
num_particles = WASH.num_particles
particle_strength = 1
particle_life = WASH.particle_life
particle_initialize = vertical_fall
particle_motion = CLINGING
particle_action = REMOVE_DIRT ���

The particle motion and action functions defined below each take
two arguments: the particle to move, and the surface mesh with
which it interacts. Motion functions that compute interactions be-
tween particles would also need the list of all particles as an argu-
ment.

define particle_action REMOVE_DIRT
�

input =
�
p mesh �

action = parameter_modify
�

parameter = color
move_value_towards =

�
1 1 1 �

applied_area = gaussian_sphere
�

center = p.position
radius = 0.1 ��� �

define particle_motion CLINGING
�

input =
�
p mesh �

function =
�

n = mesh normal at p.position
if dot(n,gravity) > cos(p.falling_angle)
drip

else
move along mesh in the
direction of gravity ���

In the pseudocode for the motion function above, smaller values
for the falling angle result in rain that behaves with greater
surface tension.

3.3 Interactive Sculpting

Choosing the appropriate position, orientation and radius for the
various tools described above can be tedious for complex mod-
els. Our language can be used as an intermediate format for an
interactive sculpting program. A simplified version of the volumet-
ric model is sculpted interactively and the actions are saved. The
logged actions can be edited by hand or simply appended to a script
file that is run offline on the high resolution model.

4 Volumetric Representation

Our scripting language was designed to provide great freedom in
model specification, independent of the underlying implementation
of the volume data structures. In our implementation we use tetra-
hedral meshes to represent volumetric models. In this section we
discuss some specifics of our implementation.

4.1 Tetrahedral Mesh

Our internal volume representation consists of a set of tetrahedra,
where each tetrahedron stores pointers to its four vertices and the

four neighbors sharing its faces. Generally, neighbors are tetrahe-
dra, but those tetrahedra with a face on the visible interface have
a triangle neighbor that stores rendering information such as ver-
tex normals and texture coordinates. This list of visible interface
triangles forms a watertight mesh and is useful for interactive dis-
play and offline rendering. Each tetrahedron stores its material type
and any additional sub-tetrahedron material variations. We can also
efficiently extract the set of faces that define the interior interfaces
between different materials. These faces are necessary to accurately
render refraction and translucency for non-opaque materials.

We use a tetrahedral mesh because it offers many advantages in
this application over other volumetric techniques, such as voxels
or octree-based volumes [Wang and Kaufman 1995; Frisken et al.
2000]. With a tetrahedral mesh, we have a simple correlation be-
tween volume and surface, and the corresponding triangle mesh is
easy to render on graphics hardware. The visible and interior in-
terfaces can be represented to arbitrary resolution and model sharp
creases in the geometry accurately. The data structure is inherently
adaptive, allowing more tetrahedra in areas of high detail. Tetrahe-
dral meshes are a simple extension of triangle meshes, and their ge-
ometric properties, such as simplification and subdivision, are well
understood. Finally, many popular simulation techniques such as
the finite element method (FEM) are designed to work on tetrahe-
dral meshes. Axis-aligned volumetric techniques such as voxels or
octree-based distance fields are poorly suited to handle operations
that deform or fracture the model.

4.2 Constructing Tetrahedral Models

We synthesize tetrahedral models from triangle meshes by evalu-
ating the signed distance field (discussed in Section 2.2) on a uni-
form 3D grid. The system determines a default grid based on the
bounding box of the function or surface mesh, which can be over-
ridden by the user in the script file. We compute the distance value
at each grid point using the Fast Marching Level Set method de-
scribed by Sethian [Sethian 1999]. Level Sets are an elegant way
to avoid self-intersections when computing isosurfaces. Given sur-
face

�
, a signed-distance function ��� is defined as follows: for any

point � in R � , the magnitude of � ��� �	� is the distance from � to
the closest point on

�
, and the sign of ��� � �	� is negative if � lies

in the interior volume of
�

and positive if it lies outside. First, we
initialize a band of known vertices within 
�� units of the original
surface by iterating over the faces in the surface mesh and raster-
izing each face  into the volume grid. For all grid points � near
 , we update ��� � �	� iff � ��� � �	������� ��� � �	��� . To compute ��� � �	� , the
signed-distance from point � to  , we find point ��� on  closest
to � . Then, � � ��� �	������������� ��� and the sign of � �!� ��� is obtained
as the sign of � � � ���	�#"%$ , where $ is the surface normal at � � . To
make this scheme robust, if � � lies on a vertex or edge of  , the nor-
mal $ must be obtained by averaging the normals of adjacent faces.
After all faces have been rasterized, the function � � is defined in
the proximity of

�
.2 We propagate the distance of each known ver-

tex to its neighbors which are then marked trial. The trial vertices
are stored in a priority queue by magnitude, and starting with the
smallest distance, they are marked known and propagated to their
neighbors.

Once the field has been initialized, we use a standard method
for creating tetrahedral meshes — a structured method based on an
axis-aligned grid or octree [Yerry and Shephard 1984; Wyvill et al.
1986; Lorensen and Cline 1987; Bloomenthal 1994]. First each
cubic grid cell is divided into five tetrahedral cells, alternating the
orientation of the central tetrahedron so that diagonals match on

2Nooruddin and Turk [Nooruddin and Turk 2000] present an alternative
approach for obtaining the signed-distance field which does not require a
watertight mesh.
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Figure 2: Illustration of how a cube is decomposed into five tetra-
hedra. This decomposition must be alternated so that the diagonals
of neighboring cells align.

neighboring cubic cells (Figure 2). We chose not to use the six-
tetrahedron decomposition because it results in more tetrahedra and
requires interpolation along the long diagonal of the cube, which
can lead to additional artifacts on material interfaces.

Each tetrahedral cell is then divided into tetrahedra of the ap-
propriate materials using the set of cases enumerated by Nielson et
al. [1997]. If the distance values of all four vertices of a tetrahedral
cell are within the range for a single layer, one tetrahedron of that
material is created. If the vertices are within different layer ranges,
we split an edge of the tetrahedron at an interface crossing, which
splits all tetrahedral cells sharing that edge, and recurse. A sim-
ple ordering of edge splits based on vertex and interface identifiers
guarantees a proper tetrahedral mesh with no T-junctions. The algo-
rithm places no constraints on the thickness of layers or the number
of interface crossings allowed per tetrahedral cell.

Additional subdivision is performed as necessary to correctly as-
sign materials for layers with procedural definitions (Section 2.4).

4.3 Simplification of Models for Simulation

The tetrahedralization method described in Section 4.2 is simpler
and more robust than other methods; however, it produces a large
number of tetrahedra. Additionally, the axis-aligned technique pro-
duces poorly shaped tetrahedra [Shewchuk 1998] when an interface
passes very close to the grid points. Many simulation techniques re-
quire tetrahedra to be well-proportioned, which is often measured
by the minimum solid angle [Fleischmann et al. 1999]. We have
several methods to reduce the overall number of tetrahedra and im-
prove their shape.

To obtain a high resolution interface, we require a high resolu-
tion grid; however, if a material layer is thick relative to the grid,
this leads to extraneous tetrahedra within the layer. An adaptive
approach dramatically reduces the initial number of tetrahedra pro-
duced, as illustrated in Figure 3. Similarly to Frisken et al. [Frisken
et al. 2000], we compute the signed distance field on a uniform grid,
then collapse grid cells that are accurately represented by interpo-
lation or do not contain an interface crossing. We restrict the grid
cell collapses, such that cells sharing faces be no more than one
level different in the octree. This restriction bounds the minimum
solid angle of intermediate tetrahedral cells. Additionally, the user
can specify that certain interfaces must be represented at a higher
resolution and with more accuracy.

After the initial tetrahedralization, we use a combination of sim-
plification and mesh improvement techniques [Hoppe 1996; Staadt
and Gross 1998; Trotts et al. 1999; Cignoni et al. 2000]. We found
it difficult to define an appropriate edge collapse weighting func-
tion (used in the Progressive Mesh techniques) that simultaneously
solved our goals. Our solution is similar to the mesh improvement

Figure 3: The mesh on the left was created from a uniform distance
field and has 	 565,000 tetrahedra. The mesh on the right was cre-
ated from the same distance field after adaptive refinement resulting
in 	 388,000 tetrahedra. The meshes have similar interface quality.
Simplification can be used to further reduce the size of the model.

strategy described by Freitag et al. [Freitag and Ollivier-Gooch
1997] and has been efficient and effective in practice.

First, we compute a quality metric (ranging from 0 to 10) for
each tetrahedron



, which can vary depending on the exact require-

ments of the simulation we plan to run. The equations below reward
tetrahedra that are close to equilateral (minimum solid angle 	 0.54
steradians) and have volume close to the ideal volume (total model
volume / desired tetrahedral count).

Quality � 
 � � �� ��� A � 
 ������� ��� V � 
 �
A � 
 � � min

��� �� ������� min solid angle � 
 ���
V � 
 � � min � � ��� � ���� volume � 
 �

ideal volume !
We target the removal or improvement of low-quality tetrahedra

while maintaining visible and interior interfaces (using quadric er-
ror [Garland and Heckbert 1997] or volume preservation, etc.). Our
simplification strategy is outlined in the following psuedocode.

for " = � to
� �#

= $ all tetrahedra

 � Quality � 
 �&%'"�(

foreach



in
#

try these actions:) �+* � , �,*-� , and �,* � tetrahedral flips) half edge collapses) move each vertex to the average of its neighbors

We choose not to perform an action if the interface is unaccept-
ably degraded, or if the minimum quality of the affected tetrahedra
after the action is lower than the minimum quality before the action.
If a stopping criteria (such as a desired number of tetrahedra) has
not been met, we reduce the interface requirements and repeat.

5 Results

In this section we present three illustrative examples from our sys-
tem. We describe our artistic intentions for each model based on its
environment and history.
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Figure 4: The lost wax casting process is used to create a bronze
statue.

5.1 Lost Wax Casting

The lost wax casting process is a common technique for creating
bronze statues (see Figure 4). A roughly-shaped clay core is cov-
ered with malleable wax, in which the shape and details of the final
sculpture are formed. When the wax sculpture is finished, a thick
layer of clay is spread over the wax. The model is slowly heated to
allow the wax to drip from the clay mold and then the mold is fired
in a kiln. Molten bronze is poured into the hardened clay mold.
Finally, when cool, the brittle clay is chipped away to reveal the
bronze statue.

The original cat surface has sharp edges and areas of high curva-
ture, but the clay layers do not contain such detail. In the physical
process, the artist applies a thicker layer of clay to the areas that are
less accessible. To model this process, we use the convex hull of
the original surface as a second mesh.

model = precedence
�

volume_1 = volume
�

distance_field = surface_mesh
�

file = cat.obj �
layers =

�
interior_layer

�
material = BRONZE
thickness = 1 �

interior_layer
�

material = FIRED_CLAY
thickness = fill �����

volume_2 = volume
�

distance_field = surface_mesh
�

file = cat_hull.obj �
layers =

�
interior_layer

�
material = FIRED_CLAY
thickness = fill �

exterior_layer
�

material = FIRED_CLAY
thickness = 2.5 �������

We used the hammer tool to crack off the outer layer, by speci-
fying that only fired clay tetrahedra are affected. The tool is used
repeatedly on different portions of the model. We designed a polish
tool to clean and shine the statue. The tool calls two volumetric
packages. First, the tool performs a Constructive Solid Geometry
(CSG) subtraction operation to remove clay left on or around the
model. Subtraction is implemented in our system by subdivision

Figure 5: A sequence of images from our bronze statue simulation.
The outer layer of fired clay is cracked off using a hammer tool. A
polish tool is used to clean and shine the model.



Figure 6: The roots for our tree example are created from a 2D
image.

and tetrahedron removal. Then a parameter modify action locally
increases the shininess of the model. Parameter modify is imple-
mented by collecting all tetrahedra within the applied area, and then
modifying a value as indicated.

define tool POLISH
�

position =
�
0 0 0 �

size = 1
action = csg

�
affects = FIRED_CLAY
action = subtract
applied_area = sphere�

center = POLISH.position
radius = POLISH.size ���

action = parameter_modify
�

affects = BRONZE
applied_area = gaussian_sphere�

center = POLISH.position
radius = POLISH.size �

parameter = shininess
move_value_towards = 100 ���

We interactively sculpted a model of 	 100,000 tetrahedra, and
replayed the operations on a 	 300,000 tetrahedra model. A se-
quence from this simulation is shown in Figure 5.

5.2 Displaced Brick Paving

In our next example, we model a tree in an urban setting surrounded
by brick paving. As the tree grows, the roots push upward shifting
the brick. Here is the script we used to produce our initial model.

model = precedence
�

volume_1 = volume
�

distance_field = union
�

distance_field_1 = TRUNK
distance_field_2 = 2D_EXTRUDE

�
file = roots.ppm ���

layers =
�

interior_layer
�

material = TREE
thickness = fill �����

volume_2 = volume
�

distance_field = GROUND_PLANE
layers =

�
interior_layer

�
material = BRICK_PAVING
thickness = 0.075 �

interior_layer
�

material = DIRT
thickness = 1.00 �������

We created an abstract tree model using our language (see Fig-
ure 6). The tree trunk is represented with an implicit function for
a cylinder plus turbulence. The tree roots are procedurally created
from a simple 2D sketch. The simplified model has 	 200,000 tetra-
hedra.

To displace the brick paving around the tree, we created a tool
to translate upward the vertices of all tree tetrahedra. The FEM
system is used to solve for the static equilibrium positions of the
remaining vertices [Müller et al. 2001]. The results are shown in
Figure 7. The bricks maintain their rectilinear shape because the

Figure 7: We simulate tree growth by translating all tree vertices
upward and deforming the dirt and bricks around the roots.

brick material has a large value for the Young’s Modulus elasticity
parameter. The dirt between and beneath the bricks deforms easily
because it has a small value for this parameter. Appropriate values
for these materials can be obtained from standard references [An-
derson 1989].

5.3 Weathered Statue

In Figure 8, we show the layering of weathering effects on a gar-
goyle statue mounted on the exterior of a building. Gargoyles
are subjected to interesting flow patterns because they were orig-
inally used as decorative downspouts to direct rainwater away from
the building foundations. Long term exposure causes a variety
of effects on exterior architectural details including discoloration,
weakening, erosion, biological growth, and fracture due to the
freeze/thaw cycle. Our model was created from a scanned mesh
with one layer of stone.

We use several tools built on our particle system that use pro-
cedures for particle motion and action. First, we apply an even
layer of dirt to the model and then use the wash tool to remove
dirt according to rain flow. The FEM hammer tool is used to crack
off the ear and a corner of the wing. Next, an erosion tool moves
particles toward exposed areas of the mesh where a small sphere
of material is removed. Finally, we apply a biological growth tool
similar to the wash tool, but with minimal particle motion, resulting
in lichen-colored discoloration on the top-facing surfaces. Below is
the script used to create the model, which after simplification con-



tained 	 500,000 tetrahedra.

DIRT
�

color =
�
0.5 0.5 0.5 ���

WASH
�

num_particles = 200000
particle_life = 1.0 �

HAMMER
�

position =
�
-0.78 1.22 0.77 �

orientation =
�
-0.23 -0.47 0.85 � �

HAMMER
�

position =
�
-2.53 1.03 1.06 �

orientation =
�
0.56 -0.19 -0.80 � �

ERODE
�

num_particles = 2000
particle_life = 0.01 �

LICHEN
�

num_particles = 40000
particle_life = 0.1 �

6 Discussion and Future Work

We have presented a procedural framework for specifying volumet-
ric models and applying a series of simulation operations to them.
Our approach allows complex volumetric models to be constructed
from existing triangle meshes as well as implicit functions in three
dimensions, such as distance fields. These different modeling ap-
proaches are handled seamlessly within our high-level framework.
These models can then be easily modified using procedural simula-
tion tools.

Ours is one of the first modeling systems where simulation is
treated as a sculpting tool rather than merely for animation, and we
think this approach has tremendous potential. In general, it pro-
vides both a higher level of abstraction for, and a convenient inter-
face to, existing simulation environments. Our scripting language
is also valuable as an intermediate file representation for capturing
the history of interactive sculpting operations.

Our system has been used to successfully construct models for
a wide range of rendering, simulation, and animation applications.
We have built small-scale models, with a few hundred tetrahedra,
for use in real-time animation research, as well as large-scale mod-
els with millions of tetrahedra for off-line weathering and erosion
simulations. In fact, consistent models at either scale can be con-
structed from essentially the same script.

In the future, we plan to expand our language to incorporate new
modeling and simulation tools. We would like to alternate between
the various phases of modeling and simulation more seamlessly.
We would also like to add better procedural support for volume
generation, perhaps enabling the modeling of biological growth.

Overall, we believe that a procedural interface between model-
ing and simulation is an important missing tool in our community.
With our prototype framework, we have experienced a dramatic
increase in modeling productivity and flexibility, smoothed transi-
tions of models between simulation and rendering applications, and
provided access to complex simulation systems to novice users.
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