
Real-Time Simulation of Deformation and
Fracture of Stiff Materials

Matthias Müller Leonard McMillan Julie Dorsey Robert Jagnow
Laboratory for Computer Science, Massachusetts Institute of Technology

Abstract. Existing techniques for real-time simulation of object deformation
are well suited for animating soft materials like human tissue or two-dimensional
systems such as cloth. However, simulation of deformation in malleable mate-
rials and fracture in brittle materials has only been done offline because the un-
derlying equations of motion are numerically stiff, requiring many small steps in
explicit integration schemes. In contrast, the better-behaved implicit integration
techniques are more expensive per time step, particularly for volumetric meshes.
We present a stable hybrid method for simulating deformation and fracture of
materials in real-time. In our system, the effects of impact forces are computed
only at discrete collision events. At these impacts, we treat objects as if they are
anchored and compute their static equilibrium response using the Finite Element
technique. Static analysis is not time-step bound and its stability is independent
of the stiffness of the equations. The resulting deformations, or possible fractures,
are computed based on internal stress tensors. Between collisions, disconnected
objects are treated as rigid bodies. The simulator is demonstrated as part of a sys-
tem that provides the user with physically-based tools to interactively manipulate
3D models.

1 Introduction

Modeling and simulation of deformable objects has a long history in material sciences
and engineering. In computer graphics, deformable objects have been studied for nearly
two decades [6], but, with very different objectives. In graphics applications, the pri-
mary concern is usually the computational efficiency of generating plausible behaviors,
rather than the accurate prediction of exact results. As long as the simulation looks
realistic, simplifications are deemed acceptable.

Deformable models have been used across a wide range of computer graphics ap-
plications, including the animation of cloth, facial expressions, and general non-rigid
models. In these cases, the simulation is typically performed off-line because simula-
tion time is significantly slower than wall clock time.

Another application for deformable models is in real-time systems, such as surgi-
cal training and virtual sculpting, where users interactively modify deformable mod-
els. In real-time systems, the speed of the simulator and its stability are the two major
concerns. One approach toward achieving both performance and robustness is to use
simplified physical models, such as mass-spring models [6]. However, it is difficult to
express important material properties with these approaches, such as the stress-strain
relationship. Alternatively, the computational cost of continuum methods are consid-
erably more expensive but they allow for the modeling of volume conservation and
yield stress information that is useful for determining fracture positions and orienta-
tions. Continuum models have mainly been used in off-line simulators. Real-time
performance has only been achieved in the simulation of soft materials such as human



tissue or in the simulation of cloth represented by a 2D mesh.
In this paper, we describe techniques for simulating the deformation of malleable

materials, such as soft metals and plastics, and the fracture of brittle materials, such
as stone or glass. Our approach employs continuum methods and operates in real-
time. We have integrated these techniques into a physically-based animation system for
objects represented by volumetric tetrahedral meshes. Simulating the dynamics of such
materials is computationally expensive because explicit integration of the equation of
motion is stable only for small time steps. The range of possible time steps is bound
by the largest natural frequency of the system. In contrast, implicit integration is stable
independent of the size of the time step, but at every step, a linear system of equations
has to be solved, which makes it computationally much more expensive per time step.
Implicit integration as been used in real-time simulation, but only for 2D meshes, such
as cloth [1].

We solve these problems by exploiting the fact that the transient behavior of stiff
materials can be neglected in a real-time simulation without significant loss of realism.
The natural frequencies of stiff materials tend to be higher than the frame rate of the
simulator, and these vibration modes are quickly damped, at least visually, by the ob-
ject’s mass. This makes simulation of these high frequency vibrations dispensable. As
long as an object is anchored, we only compute its static equilibrium response to forces.
No time steps are involved in the process of finding the object’s final steady state. By
using this approach, we still have access to all the stress information needed to deform
the model and/or simulate its fracture. However, static analysis cannot be used to com-
pute the trajectories of disconnected pieces. Because we neglect internal vibrations, we
treat disconnected pieces as rigid bodies between impacts. Their trajectories are com-
puted using rigid body dynamics. When a collision occurs, we compute the effect of
the impact force using a static analysis. The body is fractured according to its inter-
nal stresses, and new bodies are generated if the fracture process causes fragments to
become disconnected.

1.1 Related Work

To improve the numerical stability of the simulation of stiff materials Terzopouloset
al.[11] proposed a hybrid model that breaks a deformable object into a rigid and a de-
formable component. The rigid reference body captures the rigid-body motion, while a
discretized displacement function gives the location of mesh nodes relative to their posi-
tion within the rigid body. This method is intended to improve the numerical condition
of the underlying equations of motion, however, it does not significantly decrease the
computational cost of the simulation. Our approach is similar, but it is hybrid in time.
We neglect the displacements from the rigid reference frame between collision events,
which makes the simulation both stable and fast. However, when objects collide, we
compute the displacements, stresses and fracture bases on a continuous model.

O’Brien et al. [7], described a technique for simulating brittle fracture of stiff ma-
terials. They discretized the continuum mechanics equations using the Finite Element
method based on constant strain tetrahedra. Their use of an explicit integration scheme
restricts the time step of the simulation to very small values that are not suitable for real-
time animation. Another problem is the crack-tip propagation or growth rate. Because
the cracks can only grow one tetrahedron per time step, many iterations are required to
break an object in two or more pieces. Our approach is similar in that we use the same
continuous model and the constant-strain tetrahedron approximation to compute dis-
placements and stress tensors. However, we solve for static equilibrium configurations



rather than integrating the general equation of motion, and we do this only at collision
events. We use the orientation of stress tensors to compute fracture planes and cracks,
thus making the rate and size of crack propagation independent of the tetrahedral mesh’s
granularity.

Real-time performance in simulating deformation based on continuous models has
been achieved for soft materials such as human tissue for use in virtual surgical training
systems. Zhuang [13] uses the Finite Element method to simulate global deformation
of human tissue in real-time. However, his explicit integration scheme is appropriate
only for soft materials and not suitable for cloth — which is stiff in certain directions
— or other stiff materials like plastic or stone.

Baraff et al.[1] describe a technique for simulating cloth using an implicit integra-
tion scheme. The implicit integration method can take large time steps without loss of
stability. However, for every time step, a system of linear equations has to be solved.
Cloth is represented as a 2D mesh of triangles. The method is not as well suited for 3D
meshes of tetrahedra. First, the number of vertices is substantially larger in a volumetric
model, and second, the linear system is not as "banded" as in the 2D case, which makes
implicit integration computationally expensive for 3D objects.

Recently, Smithet al.[9] have proposed a novel approach for simulating brittle frac-
ture of stiff materials in real-time. They represent objects as a set of point masses con-
nected by distance-preserving linear constraints. The forces exerted by these constraints
during impact are computed using Lagrange multipliers. In contrast to our approach,
these rigid constraints do not allow for computing object deformations caused by col-
lision forces, nor do they yield strain orientation information that we need for our fast
crack propagation procedure.

1.2 Overview

In the next section, we describe the continuous model that we use. We discretize it
using the Finite Element method based on constant strain tetrahedra. First we pro-
vide an overview of standard techniques to compute static elastic and plastic responses.
Then we introduce our new hybrid algorithm to simulate the dynamics of freely mov-
ing objects. Then we show how to accelerate the core procedures of the Finite Element
method. Last, we present a collection of our results.

2 Modeling Deformation

Our virtual animation system provides tools for manipulating objects. These objects are
represented by 3-dimensional tetrahedral meshes. A tool generates a local force field.
The shape of that force field depends on the type of tool as well as on the direction
and intensity of its application. The task of the physical simulator is to compute the
deformation of the object and the fracturing process based on the applied force field.

A variety of models have been used to simulate the behavior of deformable objects.
Mass-spring models are simple and fast to compute. However, models that treat objects
as a continuum yield a range of important additional information, not to mention results
that are more accurate. The deformations of objects in a continuous model are described
by a set of partial differential equations. For realistic objects, these equations cannot be
solved analytically. The Finite Element method is a standard technique to solve partial
differential equations [2]. Here, the object is subdivided into elements of finite size.
Over an element, the continuous deformation field is interpolated from deformation
values at the nodes. By connecting elements, the deformation field is interpolated over



the entire object in piecewise continuous fashion. Instead of solving for a continuous
vector field, deformations at discrete points or nodes in the objects have to be computed,
and the differential equations at these nodes are treated as set of simultaneous algebraic
equations.

2.1 Continuous Model

In one dimension, Hooke’s law of elasticity can be stated as follows:

σ =
∆Fn

∆A
= E

∆l
l

= Eε. (1)

The scalar stressσ measures the force∆Fn applied perpendicular to the surface
∆A. This force causes a deformation (strain)ε of the object measured by the change in
length perpendicular to∆A with respect to the original length of the object. The scalar
elasticity ModulusE relates the strainε to the stressσ.

In three dimensions, forces, orientations of surfaces, and node displacements can
be represented as 3-dimensional vectors, and the quantities that relate them, namelyσ
andε can be expressed as 3 by 3 matrices. The derivation of these tensors can be found
in continuum mechanics textbooks [3]. In this paper, we focus primarily on how these
quantities can be computed efficiently. The following equations are very similar to
those presented by O’Brienet al. [7], although we have chosen to use matrix notation
for reasons of compactness and ease of manipulation. Matrix notation also exposes
various symmetries that we will later take advantage of to speed up the computation of
forces.

Let u = [u1,u2,u3]T be the spatial coordinates of an undeformed object point. The
deformation of the object can be described by a functionp(u) = [p1, p2, p3]T , which
maps locations in the undeformed coordinate frame to locations in world coordinates.
This function must be differentiable within connected pieces of the object. In three
dimensions, there are several ways to measure deformation. One approach is to use
Green’s strain tensor, which is invariant with respect to rigid body transformations ap-
plied top, and vanishes when the material is not deformed. It is accurate for arbitrary
deformations. However, the fact that it is non-linear causes some difficulties that we
will treat later. Green’s 3 by 3 symmetric tensor reads:

ε = Ju(p)JT
u (p)− I , (2)

whereJu(p) is the Jacobian of the vector functionp with respect to the vectoru.
Hooke’s law relates stress,σ, to the strain,ε. For isotropic materials, this relation

can be expressed using only two constantsµ andλ, which are the Lamé constants of the
material:

σ = 2µε+λTrace(ε)I (3)

Both the strain and stress tensors are symmetric and functions of the material coor-
dinatesu. They are used to compute the elastic potential density,η, as

η =
1
2

Trace(σε). (4)

The total elastic potential is obtained by integratingη over the volume of the body.
According to the principles of energy conservation, the internal work (elastic potential)
has to be equal to the external work done by the external forces. Thus, given an external
force field, the deformation functionp can be computed as the solution to a partial
differential equation.



2.2 Finite Element Formulation

The Finite Element method approximates the deformation functionp as piecewise
smooth between discrete elements. The elements can be of arbitrary shape as long
as they share nodes and faces with adjacent elements and cover the region of inter-
est. We use tetrahedral meshes because they are simple, flexible and computationally
inexpensive. Within a tetrahedron, a linear approximation ofp is used. Such linear
deformations yields constant strain and stress tensors within each element. Therefore,
these quantities can be moved outside of any integration over an element’s volume. Like
O’Brien et al. [7], we assume constant strain tetrahedra and use barycentric coordinates
for interpolating within them. We will restate these formulas and later show how to
compute them efficiently as well as show how to compute the static equilibrium using
a non-linear strain tensor.

Let m1,m2,m3,m4 be the coordinates of the four nodes of a tetrahedron in the un-
deformed material coordinate frame, and letx1,x2,x3,x4 be their deformed world co-
ordinates. First we need the linear continuous deformation functionp(u) for this tetra-
hedron, which mapsmi to its correspondingxi . Let b = [b1,b2,b3,b4]T be barycentric
coordinates defined in terms of the element’s nodal positions in the undeformed coor-
dinate frame. [

u
1

]
=

[
m1 m2 m3 m4
1 1 1 1

]
b. (5)

We use these barycentric coordinatesb to identify the interpolated point,u, with its
corresponding position in world coordinates,p:

[
p
1

]
=

[
x1 x2 x3 x4
1 1 1 1

]
b. (6)

These relations can be combined to define a direct mapping

p(u) =
[

x1 x2 x3 x4
1 1 1 1

]
β
[

u
1

]
, (7)

where

β =
[

m1 m2 m3 m4
1 1 1 1

]−1

. (8)

This defines our linear deformation functionp, allowing the computation of the
strain tensor,ε, the stress tensor,σ and the potential densityη defined in Eq. 2, Eq. 3
and Eq. 4. These terms turn out to be constant within each element.

The elastic force on theith node,f i , is defined as the partial derivative with respect
to xi of the elastic potential density,η, integrated over an element’s volume. Using
Eq. 4 and Eq. 7 we get

f i =
v
2

βGσGTβTxi , (9)

wherev is the element’s volume in the undeformed coordinate frame and where

G =




1 0 0
0 1 0
0 0 1
0 0 0


 . (10)



In Section 3 we discuss how to compute these force vectors efficiently by exploring
symmetry and other properties of the strain and stress tensors.

In order to compute the static equilibrium, we also need to compute the Jacobian of
the internal forces and stresses with respect to the nodal positionsxi . First, we rewrite
Eq. 9:

[f1, f2, f3, f4]
T = F ′e(x1, ..,x4). (11)

Only the deformed coordinates,xi , of F ′e vary since the undeformed coordinates
mi are constant during the animation. The indexe represents element numbere in the
mesh. For technical reasons, we expandF ′e to the unprimed functionFe which has the
positions of allN nodes in the mesh as input and produces force vectors for all nodes.
It ignores positions of nodes that do not belong to elemente and produces zero forces
for these nodes. Now, the global functionF can be computed as a sum of all theFe’s,
as forces coming from adjacent tetrahedra can be added at the nodes

[f1, .., fN]T = F(x1, ..,xN) =
E

∑
e=1

Fe(x1, ..,xN), (12)

or simply,f = F(x), wheref = [f1, .., fN]T andx = [x1, ..,xN]T .

2.3 Static Analysis

In a static analysis, we solve for the positions of all nodes (x) such that the internal
forcesF(x) are in balance with the externally applied forcesfext

F(xeq) = fext. (13)

To compute the coordinatesxeq, we have to solve a nonlinear system of3N equa-
tions. The non-linearity ofF is due to the fact that we are using a non-linear strain
tensor in Eq. 2. The most common method to solve systems of non-linear algebraic
equations is the Newton-Raphson iteration [8]. First we replaceF(x) by its first-order
Taylor series approximation atxk:

F(xk +∆x) = F(xk)+J(xk) ∆x+O(‖∆x‖2) (14)

whereJ∈R3N×3N is the Jacobian ofF andJi j = ∂Fi
∂x j

. We can now rewrite Eq. 13 as

F(xeq) = F(xk +∆x)≈ F(xk)+J(xk) ∆x = fext (15)

or
J(xk) ∆x = fext−F(xk). (16)

Given an estimate ofxk for xeq, we first evaluateJ at positionxk and solve this linear
system for∆x using the iterative Conjugate Gradients method [8]. Then,xk+1 = xk+∆x
is the next guess forxeq.

2.4 Simulating Plastic Behavior

So far, our analysis has dealt with only perfectly elastic objects. Such objects remain
deformed as long as forces are applied. When the forces are removed, such objects
resume their original shape. There is another interesting class of materials that exhibit



Fig. 1. Tetrahedra within radiusr f rac from the tetrahedron under tensile stress are marked de-
pending on their position with respect to the fracture planeα

plastic deformations, such as malleable metals or clay. A perfectly plastic material
absorbs the elastic energy. That is, it keeps its deformed shape when the forces are
removed.

To simulate the plastic behavior of malleable materials, we use a technique similar
to Terzopoulos and Fleischer in [10]. Whenever the deformed coordinatesx deviate too
much from the original shape of the objectm, we copy the deformed world coordinates
to the undeformed coordinates, thereby absorbing the elastic potential energy. Figure
4 (see Appendix) shows a clay teddy bear. The deformations caused by impacts are
absorbed and accumulate over time.

2.5 Fracture Modeling

In order to simulate fracture at interactive rates we devised a simplified physically-
based method to separate tetrahedra. In the process of computing the forces for the
static analysis, the stress tensors for all tetrahedra in the mesh have to be evaluated. The
stress tensorσ is a symmetric 3 by 3 matrix and has thus3 real eigenvalues. These
eigenvalues correspond to the principal stresses, and their eigenvectors to the principal
stress directions [2]. A positive eigenvalue indicates tension while a negative value
represents compression.

The maximum tensile stress criterion assumes that fracture of a material occurs
when the maximum tensile stress exceeds a specific stress threshold, which is a material
parameter. For all tetrahedra, we evaluate the largest eigenvaluedmax of σ. If dmax is
greater than the fracture threshold of the material, we split the tetrahedral mesh along a
planeα perpendicular to the eigenvector ofdmax. Most isotropic materials break in this
way, since this is how the greatest deformation energy is released [5]. Depending on the
size ofdmax and the material type, we determine a radiusr f rac of impact. All tetrahedra
within distancer f rac from the greatest stress tetrahedron, where the crack originates in
our model, are marked with a plus or a minus depending on whether their center of
mass lie on the positive or negative side of the fracture planeα. Then, tetrahedra with
opposite signs are disconnected (see Figure 1). We also use the orientation and position
of α to split large tetrahedra before the mesh is separated.

O’Brien [7] models fracture by splitting single tetrahedra per time step. A dynamic
crack growth simulation over multiple time steps is more accurate than our technique.
However, realistic results can only be achieved with very small time steps because
cracks within brittle materials propagate at very high speeds (at approximately the speed
of sound within the material) [5]. The crack growth rate of our technique is independent
of both, the time step and the granularity of the tetrahedral mesh. Both properties are



crucial if the time step size of the simulator does not permit the computation of a more
accurate crack propagation. Moreover, the fact that cracks in homogeneous isotropic
materials tend to be locally planar [5] justifies our simplified approach.

2.6 Dynamics

Static analysis can only be performed for supported objects. We therefore anchor our
models to a ground plane before forces are applied — just as objects have to be fixed
to a workbench before they can be machined. For simulating free floating objects, an
anchoring method that captures their motion and dynamics is needed. The standard
technique for simulating the dynamics of deformable objects is to integrate Newton’s
equations of motion using numerical methods like Euler’s integration scheme. The
equations of motion used in conjunction with the Finite Element method have the fol-
lowing form:

Mẍ+Cẋ+F(x) = fext, (17)

where the coordinatesx are functions of time,̇x andẍ their time derivatives,M is the
mass matrix andC the damping matrix [4]. At equilibrium, whenx = xeq, ẍ = 0 and
ẋ = 0, Eq. 17 becomes Eq. 13. The dynamic equation defines a coupled system of3N
ordinary differential equations.

2.7 Hybrid Dynamics

It is possible to simulate a few hundred elements in real-time using implicit integration
of Eq. 17 and the fast Jacobian-computation discussed in Section 3. However, for sim-
ulating even larger models efficiently, we have devised a hybrid dynamics approach.
The key idea is to separate rigid body dynamics from internal effects such as vibration
and fracturing. We evaluate elastic forces only during collision events while treating
the body as rigid otherwise. This is a reasonable simplification for stiff materials. As
discussed previously, the natural frequencies of stiff materials tend to be much higher
than rendering frame rates, and these vibrations are quickly damped. Therefore, this
approximation has little impact on the visualization. Malleable materials that absorb
the deformation energy of collisions can also be modeled using this simplification if we
assume that all deformations occur at the instant of contact.

We treat free-floating objects as rigid bodies and compute their dynamic behavior
using rigid body dynamics based on explicit Euler integration [12]. Each rigid body
has four state variables, its positionxcm, its center of mass velocityvcm, its rotational
orientationA, and, its angular velocityω. In general, these states can be initialized
according to specific user inputs or according to simulation objectives. In the case
where a new rigid body can also be generated due to a fracture, the state of all elements
in the child components are initialized based on the previous state of the parent object.
Each child’s state variables are initialized as follows:

v0
cm = vp

cm+ωp× (xcm−xp
cm)

A0 = Identity
ω0 = ωp

(18)

where the superscriptp indicates a state value of the parent body.



Fig. 2. Only tetrahedra within radiusrcoll from collision pointP are deformed. All other tetrahe-
dra are fixed and support the object for a static analysis

2.8 Collision Response

Whenever a collision occurs, the effect of the impact forceF on the body is evalu-
ated. Here, our method deviates from a pure rigid body simulation. As a first step, we
compute the deformation caused by the collision force using Eq. 13. In rigid body dy-
namics, the change in impulse∆j is computed rather than a collision force. We evaluate
the force asF = ∆j/∆t, where∆t is a simulation parameter representing the duration of
the impact. For a static analysis, the body must be anchored. We fix the positions of all
tetrahedra that are further away from collision pointP than a distancercoll (see Figure
2). The radiusrcoll is a user-specified simulation parameter that is typically defined as
fraction of the size of the rigid body. Anchored tetrahedra model the effect of the body’s
inertia.

Once the deformed coordinates are determined, the stress tensors and fracture planes
can be computed as described in Section 2.5. After the fracture process, the old body
is deleted and one or more child bodies are generated, depending on whether the body
gets disconnected. These new bodies inherit dynamic properties from their parent body
via Eq. 18.

2.9 Collision Detection

Performing real-time collision detection between deformable rigid bodies proves chal-
lenging for a variety of reasons. Vertex positions within a single rigid body are con-
stantly changed as the body is deformed by collision forces. This dynamic characteristic
of the data limits possibilities for precomputing efficient data structures. It also creates
a potential for intra-object collisions. Furthermore, the rigid bodies in our system are
rarely convex, which limits the use of common closest-feature tracking algorithms. Fi-
nally, as new bodies are generated by the fracture algorithm, the faces of the new rigid
body are in close proximity to the faces of the parent body. Thus, even though the bod-
ies are not in contact with one another, boundary hierarchy algorithms will likely have
to traverse the data to each of its leaf nodes and check each pair of neighboring faces for
intersection. Bounding hierarchies are efficient when the rigid bodies are separated, but
cumbersome during the fracture process, when bodies tend to be closely aligned along
irregularly shaped interfaces.

To determine regions of possible collision, we divide our model space into a regular
three-dimensional grid, and then walk through all of the rigid bodies, marking each grid
cell with the rigid bodies that lie inside. For cells containing multiple rigid bodies, we
look for intersections between the vertices of one body and the tetrahedral subvolumes



of the other bodies. In practice, the cost of this method does not vary substantially as
the positions of the bodies are changed.

The algorithm has two primary shortcomings. First, by only checking for vertex-
tetrahedra intersections, it is possible to miss some collision events, such as edge-edge
collisions. Furthermore, it ignores intra-object collisions, which occasionally result
from substantial model deformation.

3 Implementation

For real-time simulation, fast computation of the core procedures of the Finite Element
method is crucial. We have achieved a ten-fold speedup by taking advantages of special
properties of the strain and stress tensors.

3.1 Forces

Most of the computing time is spent within the computation of the nodal forcesf i based
on their actual coordinatesxi in Eq. 9. A direct implementation requires4×4×3×3×
2 = 288multiplications. We reduce this number dramatically by first splitting the sum
into two parts, the evaluation of4×4 weights

W = βGσGTβT (19)

with G as defined in Eq. 10, and the computation of the force components:

f i =
vol
2

Wx i (20)

Fist we note that thef i are independent of the undeformed position and the orien-
tation of the tetrahedron, which means that we can make[m1, . . . ,m4] lower triangular
via a rotation (as determined by a QR decomposition). This causesβ00,β01 andβ10
to be zero. Then we precompute all productsβi j βkl . By taking advantage of the sym-
metry in Eq. 19 and the zero entries, only45 values need to be computed and stored.
This computation can be performed before simulating, or whenever a new tetrahedron
is generated.

Second, because the stress tensor is symmetric, we havewi j = w ji . The fact that
β00,β01 andβ10 are zero cancels out most of the addends in Eq. 19. By unrolling all the
loops, and making use of the above observations, we achieved a speedup of10.

3.2 The Jacobian

For static analysis as well as for implicit integration in a dynamic analysis, the Jacobian
J of F is needed. The3N by 3N matrix J can be computed by adding the local12 by
12 matricesJe of each element. Also, if during the simulation tetrahedra are deleted or
generated by the fracturing process, their matrices can be subtracted and added dynam-
ically to the global matrixJ. The components ofJe are

f ′i j =
∂ fi j
∂xrs

, (21)

wherefi j is the jth component of the force vector at theith node of tetrahedroneandxrs
is thesth component of the deformed coordinate of noder (i, r ∈ 1. . .4 and j,s∈ 1. . .3).



The derivatives of the weights with respect toxrs are

W′ = βGσ′GTβT , (22)

whereσ′ is the the derivative of the stress tensor with respect toxrs. For derivatives of
the forces we get

f ′i j =
vol
2

(W′xi +Wx′i) (23)

Since bothσ′ and W′ are symmetric, the acceleration methods discussed in the
previous section can also be applied to computation of the entries ofJ, and likewise
results in a ten fold speedup.

4 Results

The following examples demonstrate that with our hybrid simulation technique, mal-
leable and brittle objects can be animated in real-time without significant loss of real-
ism. All animations are computed with rates in the range of 5 to 10 frames per second
on an SGI Octane 2 (R12000, dual 400 MHz). The integration of the rigid body equa-
tions takes between 10 to 20 milliseconds per time step in all the examples. The time to
compute deformation and fracture depends on the number of tetrahedra in the object and
for our models (1000 - 4000 tetrahedra) varies between 10 and 80 milliseconds. The
real-time system can also dynamically texture exposed surfaces without substantially
impacting the frame rate. A video demonstration in AVI format can be downloaded
from our webpage at graphics.lcs.mit.edu/simulation.

4.1 Vase

The frames from the animation sequences shown in Figure 3 (see Appendix) demon-
strate brittle fracture of a china vase composed of 1440 tetrahedra striking the ground.
Because of the material properties of the object, the vase fractures with only minimal
deformation. Cracks grow instantaneously and separate the body into multiple new ob-
jects. The velocities and angular momenta of these objects are derived from the state
of the original object as described in Section 2.7. Pictures (a) and (b) of Figure 6 show
internal tensile stresses in shades of red.

4.2 Clay Teddy

Figure 4 shows a teddy bear modeled with 3747 tetrahedra. It is made of soft clay that
deforms at the instant of impact. The deformations are computed as the static response
to collision forces, which are absorbed by the material. After several hits (a), the bear’s
shape (c) deviates substantially from the undeformed model (b).

4.3 Cinder Blocks

Our third example demonstrates a real-time collision detection sequence in which one
cinder block is dropped onto another (see Figure 5. Each block is modeled with 824
tetrahedra. Our system renders solid textures to the exposed surfaces of the blocks,
dynamically generating new textures as additional faces are exposed by the fracture
process. Figure 6(c) shows the internal stresses at the moment of impact.



5 Conclusions

We have described a fast method for simulating the deformation and fracture of mal-
leable and brittle objects in real time. By employing a hybrid simulation strategy that
alternates between a rigid body dynamics simulation and a continuum model at the point
of impacts, we are able to compute robust solutions to otherwise stiff system equations.
Our continuum model finds the static equilibrium of the system after all the initial tran-
sient behavior has settled out. The added information provided by this solution allows
us to compute plausible deformations and fracturing of an interesting class of plastic
and brittle materials.

One limitation of our system is that it only considers deformation and fracture be-
haviors at the instant of contact. We have also found that the problem of real-time
collision detection for object in a near-contact state along a significant boundary, such
along a fracture line, is at least as time-consuming as the system simulations. Further-
more, appropriate collision responses are extremely important in judging the realism of
an animation.

We are excited by the performance of our current system and we are investigating
a range of applications that might benefit from simulation approach. We are planning
to use our system in a real-time sculpting environment, within which we are hoping to
incorporate more dynamic simulation capabilities.

References

1. D. Baraff and A. Witkin. Large steps in cloth simulation. InComputer Graphics Proceedings,
Annual Conference Series, pages 43–54. ACM SIGGRAPH, August 1998.

2. K. J. Bathe.Finite Element Procedures in Engineering Analysis. Prentice-Hall, New Jersey,
1982.

3. T. J. Chung.Applied Continuum Mechanics. Cambridge Univ. Press, NY, 1996.
4. R. D. Cook.Concepts and Applications of Finite Element Analysis. John Wiley & Sons, NY,

1981.
5. E. E. Gdoutos.Fracture Mechanics. Kluwer Academic Publishers, Netherlands, 1993.
6. S. F. Gibson and B. Mitrich.A survey of deformable models in computer graphics. Technical

Report TR-97-19, Mitsubishi Electric Research Laboratories, Cambridge, MA, 1997.
7. J. F. O’Brien and J. K. Hodgins. Graphical modeling and animation of brittle fracture. In

Computer Graphics Proceedings, Annual Conference Series, pages 287–296. ACM SIG-
GRAPH, August 1999.

8. C. Pozrikidis.Numerical Computation in Science and Engineering. Oxford Univ. Press, NY,
1998.

9. J. Smith, A. Witkin, and D. Baraff. Fast and controllable simulation of the shattering of
brittle objects.Computer Graphics Interface, pages 27–34, May 2000.

10. D. Terzopoulos and K. Fleischer. Modeling inelastic deformation: Viscoelasticity, plasticity,
fracture. InComputer Graphics Proceedings, Annual Conference Series, pages 269–278.
ACM SIGGRAPH, August 1988.

11. D. Terzopoulos and A. Witkin. Physically based models with rigid and deformable compo-
nents.IEEE Computer Graphics & Applications, pages 41–51, November 1988.

12. A. Witkin and D. Baraff. Physically based modeling: Principles and practice.SIGGRAPH
Course notes, August 1997.

13. Y. Zhuang.Real-time Simulation of Physically Realistic Global Deformation. Ph. D. thesis
of Univ. of California, CA, 2000.



Fig. 3. Drop of a vase demonstrates brittle fracture

(a) (b) (c)

Fig. 4. Clay teddy bear after dropping (a), front view before (b) and after deformation (c)

Fig. 5. Collision detection demonstrated with two cinder blocks

(a) (b) (c)

Fig. 6. Visualization of tensile stress within objects


