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Abstract—We propose a human activity classification algo-
rithm that has a distributed and lightweight implementation
appropriate for wireless camera networks. With input from
multiple cameras, our algorithm achieves invariance to the
orientation of the actor and to the camera viewpoint. We
conceptually describe how the algorithm can be implemented
on a distributed architecture, obviating the need for centralized
processing of the entire multi-camera data. The lightweight
implementation is made possible by the very affordable memory
and communication bandwidth requirements of the algorithm.
Notwithstanding its lightweight nature, the performance of the
algorithm is comparable to that of the earlier multi-camera
approaches that are based on computationally expensive 3D
human model construction, silhouette matching using reprojected
2D views, and so on. Our algorithm is based on multi-view spatio-
temporal histogram features obtained directly from acquired
images; no background subtraction is required. Results are
analyzed for two publicly available multi-camera multi-action
datasets. The system’s advantages relative to single camera
techniques are also discussed.

I. INTRODUCTION

Multiple view action recognition is a logical next step to
fixed-view action recognition because it addresses a more
realistic scenario: it does not assume that humans are perform-
ing the action in a specific direction relative to the camera,
e.g. frontal or profile views. In addition, capturing an action
from multiple views obtains additional features of the action,
thereby potentially increasing the discriminative power of the
recognition algorithm. In addition, it provides robustness to
partial occlusions and suppresses in-class variations due to
personal execution styles of different individuals.

Multi-camera algorithms generally involve some local pro-
cessing specific to each camera and then the individual results
from the cameras are aggregated to give the final classification
output. Practical implementation of such algorithms on a
distributed camera network places constraints on memory
requirements, communication bandwidth, speed etc. which
are elaborated in section I-B. In this paper, we present an
algorithm that can potentially be implemented on a distributed
wireless camera network and provides some level of invariance
to the actor orientation and the camera viewpoint.

A. Related Work
Several approaches have been proposed to accomplish ac-

tion recognition using multiple cameras. Weinland et al. [23]
propose location and rotation invariant Fourier descriptors in
cylindrical coordinates and compared 2 actions based on their
3D visual hull representation. Yan et al. [24] describe arbitrary

view action recognition using 4D Action Feature Model (4D-
AFM), which is essentially a temporal sequence of 3D visual
hulls on which the spatio-temporal action features are mapped.
Actions are recognized by obtaining the best match between
action features in the input action video and the features
mapped on the 4D-AFMs of different actions. Farhadi and
Tabrizi [5] describe an interesting approach to build invariant
features between 2 views, for action discrimination. They do
not need multiple views to extract their features. Along the
same veins, Souvenir and Babbs [19] describe a framework
for learning a viewpoint-invariant representation of primitive
actions that can be used for video obtained from a single
camera. The framework supports learning the variations in the
appearance of an action with viewpoint changes and this is
accomplished by the use of manifold learning technique to
learn a low dimensional representation of action primitives.
Syeda-Mahmood et al. [20] model the actions as generalized
cylinders called action cylinders. Viewpoint invariance and re-
liable recognition is achieved by using a set of 8 corresponding
points on the time-wise corresponding cross sections of the
cylinders to recover the viewpoint transformation between the
reference (model) and test action cylinders. Parameswaran and
Chellappa [17] model actions in terms of view-invariant canon-
ical body poses and trajectories in 2D invariance space, leading
to a simple and effective way to represent and recognize
human actions from a general viewpoint. Yilmaz and Shah [25]
extend the multi-view epipolar geometry to accommodate for
motion of the cameras and establish a correspondence between
dynamic scenes that are captured from different viewpoints
using the moving cameras.

Another set of approaches is based on describing the tem-
poral action sequences using graphical models. Weinland et
al. [22] describe a hidden Markov model where the actions
are modeled as sequences of key poses or exemplars that are
represented as 3D visual hulls. Recognition is performed by
projecting the visual hulls to 2D and comparing with images
of observed actions using silhouette matching. The approaches
in [13] and [14] are similar; they represent actions as a series
of multi-view 2D human poses on either a graph model called
ActionNet or a conditional random field. The best sequence of
actions is inferred using Viterbi search on the graphical model.

B. Distributed Processing Considerations

The approaches summarized above focus on algorithmic
aspects of multi-view action recognition; only a few have
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Figure 1: Spatio-temporal interest points for multi view images
of hand waving and kicking actions. These are represented as
red markers overlapped on the images. Time dimension is not
shown in the figure. See Section II-B for details.

considered the practical aspects of implementing these algo-
rithms in a real setting, for instance with a distributed camera
network [26]. Commonly, it is assumed that all the image
data from the multiple cameras can be aggregated to create
the training models. During the training and testing phases
of the algorithm, entire images have to be transmitted from
the cameras to the central processing server, as opposed to
sending compact representative descriptors. This translates into
a significant communication bandwidth requirement even for
commonly used frame rates of 15-30 fps, image resolutions
like 320×240 pixels and 5-10 cameras. In addition, operations
such as 3D visual hull construction or estimation of rotation
and translation of a human model before projecting onto a 2D
view are computationally expensive. For the case of a wireless
camera network, each node has a limited storage capacity that
necessitates a compact representation of the features and the
resulting training models of the different action categories,
which will be used during the testing stage. Therefore, a
considerable overhauling of the above mentioned algorithms
would be necessary for a distributed, scalable, robust and
real-time implementation—all equally important factors in the
practical design of a distributed camera network.

Scalability from the standpoint of implementation on a
distributed camera network implies that the system continues
to be efficient and practical when there is an increase in
the amount of input data or the number of participating
cameras. Robustness means that the system does not break
down when one or more of the cameras malfunction. Both of
these factors suggest a modular design of the system where
each camera independently processes its local sensory data,
and only moderate amount of data from individual cameras is
aggregated for final estimation or prediction.

C. Overview of Our Approach

In view of these considerations, we propose a multi-view
algorithm suitable for a distributed camera network. In the later
sections of the paper, we briefly describe a conceptual mod-

ular architecture for the distributed implementation (Section
II-E) and outline the advantages of the proposed algorithm
by considering the memory and communication bandwidth
requirements (Section IV). The action representation is based
on histograms of spatio-temporal features extracted from
multiple view video sequences of an action. Spatio-temporal
features have been used in many recent algorithms for single-
view human action recognition [4], [8], [10], [16]. In these
algorithms, the spatio-temporal features are integrated with
discriminative learning approaches like SVM [18] or nearest
neighbor classification [4]. Generative approaches like pLSA
(probabilistic Latent Semantic Analysis) and LDA (Latent
Dirichlet Allocation) have also been used for action classi-
fication [15], [21], by modeling the action video sequences as
distributions over spatio-temporal features.

Our approach bears similarity to the work in [4], in the sense
that same spatio-temporal features are used. The distinguish-
ing contributions of the paper are three-fold: 1) we extend
the feature histogram representation to multiple cameras and
present a novel and simple algorithm for aggregating the
individual camera results, 2) we show that the proposed system
achieves some level of invariance to the actor orientation and
to previously unseen views and 3) we analyze the system’s
superior storage and communication bandwidth requirements,
thus demonstrating its suitability for a distributed camera
network implementation. To our knowledge, this is the first
work that demonstrates the feasibility of implementing action
classification algorithm in a manner that is suitable for wireless
cameras. So intentionally we have chosen the action features to
be locally computable and the aggregation algorithm is kept
simple. We wish to emphasize that the context of wireless
(or distributed, in general) camera platforms that have limited
resources is quite important to appreciate the contributions of
the paper. As we will see in the experimental section, despite
the ’simplicity’ of the algorithm, the results are comparable
to those obtained with heavy-duty 3D algorithms that must be
implemented on regular machines.

The rest of the paper is organized as follows: we describe the
multi-view histogram representation and recognition algorithm
in Section II and experimental results are presented in Section
III. The distributed aspects of the paper are discussed in
Sections II-E and IV. Finally, Section V summarizes the
conclusions and future research.

II. PROPOSED METHODOLOGY

A. Orientation Invariance Using Multiple Cameras
The proposed system achieves invariance to orientation or

the viewing direction of the actor. In other words, the actor is
not restricted to a fixed orientation while performing actions.
Rather she can have one of the multiple orientations and the
number of such orientations depend on the number of cameras
used in the setup. We use 6 cameras for training and testing
in our experiments. Their spatial configuration is as shown
in Figure 2. The dimensions of the room are 5.5m × 5.5m
and the cameras are wall mounted approximately uniformly
around the room at about the same height (∼ 2.4m). In such



Figure 2: Camera spatial configuration. Subjects may perform
actions approximately facing any camera, depicted by red
arrows.

a configuration, the actor may perform actions approximately
facing any of the 6 cameras and action classification can still
be performed. We also show in our experimental section that
even if the actor’s orientation is not along any of the 6 camera
views but in between them, high classification performance
can still be achieved. This robustness to novel camera views
(that are not part of the training stage) becomes possible due to
accumulation of classification evidence from multiple cameras.

The camera positions satisfy the assumption that we make
in order to accomplish orientation invariance. The assumption
is that since our algorithm uses spatio-temporal features ex-
tracted from the multi-camera image sequence, we can expect
the set of features taken in their entirety from the 6 cameras to
be substantially independent of the subject’s viewing direction
while performing any action. From the subject’s viewpoint,
she should see the same spatial configuration of cameras
irrespective of the direction she is facing. This is illustrated in
Figure 3 (a) and (b). When the subject is facing camera C1,
the cameras C6, C1, C2, C5, C4 and C3 capture the left-frontal,
frontal, right-frontal, left-rear, rear and right-rear features
respectively. When facing C3, cameras C2, C3, C4, C1, C6 and
C5 respectively capture the same set of features.

Under the above assumption, we implement the action
recognition algorithm as follows: During the training phase,
subjects perform a set of actions facing a particular camera,
say C1. Their multi-view spatio-temporal feature histograms
are stored as training data. During the testing phase, the
test subject is free to face any camera while performing
the actions. If, for instance, she faces C3, then the features
captured with C3 will be similar to features captured with
C1 from the training data. Similarly, test features from C2

would be similar to training features from C6 and so on.
Therefore, irrespective of the test subject’s orientation, a one-
to-one correspondence can be established between the cameras
during the testing phase and the cameras during the training
phase. With such a correspondence, we can readily determine
the training action sequence whose feature histograms match
best with the test sequence’s feature histograms. During the
testing stage, this correspondence is found automatically by
the multi-view algorithm which is presented in Sections II-C
and II-D.

Our current setup with the uniform positioning of the cam-
eras around the room and their approximately uniform heights
above the ground plane, ensures a circularly symmetric array
of cameras that satisfies the orientation invariance assumption

(a) Subject facing camera C1 (b) Subject facing camera C3

Figure 3: How orientation invariance is achieved using multi-
ple cameras? The cameras (together) capture the same set of
features, irrespective of person’s viewing direction.

stated above. Such a setup, admittedly, can give only some
degree of orientation and camera view invariance. In order
to perform activity classification for arbitrary orientation and
viewpoint, one may use more sophisticated algorithms, for ex-
ample, building a full 3-d human model that can be reprojected
to arbitrary camera views or by developing viewpoint-invariant
features along the lines of [5], [19]. However, in the current
work, our focus is on the distributed and lightweight aspects of
an action classification algorithm, that offer a very affordable
performance for factors like memory and communication
bandwidth requirements.

B. Feature Extraction and Representation

Our approach is based on representing the image sequences
as histograms over cuboid prototypes. Cuboid prototypes are
spatio-temporal patterns that characterize different types of
actions. These are obtained by extracting space-time interest
points from a image sequence, as described in [4]; we present
the method here briefly. The image sequence is convolved with
a separable spatio-temporal linear filter to give a response
function R = (I ? g ? hev)

2 + (I ? g ? hod)
2 and the local

maxima of R are the space-time interest points. Here I is
the image sequence, g (x, y;σ) is the 2D spatial smoothing
Gaussian kernel and hev, hod are 1D temporal Gabor filters
defined as: hev = −cos (2πtω) exp

(
− (t/τ)2

)
and hod =

−sin (2πtω) exp
(
− (t/τ)2

)
. Cuboids are the spatio-temporal

volumes extracted around the space-time interest points and
their sizes are determined by the spatial scale σ and temporal
scale τ . As noted by Dollar et al. [4], cuboids correspond to
regions in the image sequence where complex periodic or non-
periodic motion takes place which results in strong response
in the function R. For example, for a person performing hand
waving action, the cuboid density will be higher near hand
region while for kicking action, the density would be higher
near the leg region (See Figure 1).

To obtain a compact and robust feature representation, the
spatio-temporal gradients are calculated at all the pixels of
a cuboid and concatenated to form a feature vector. PCA is
applied to the feature vectors to retain the first few princi-
pal components. In our experiments, v 2875-length feature
vectors are reduced to 25 dimensions. The dimensionality
reduced feature vectors are aggregated from all the image
sequences of different subjects and different actions in the
training dataset and clustered using k-means clustering al-



gorithm. The resultant cluster centers are termed as cuboid
prototypes. Each feature vector from an image sequence can
be uniquely assigned to one of the clusters centered at the
cuboid prototypes and therefore the image sequence can be
viewed as a histogram over the cuboid prototypes.

C. Multiple View Action Descriptors
The approaches described in [4], [12], [15] have used

the cuboid features (Section II-B) for single camera action
recognition. We extend this representation for multi camera
scenario. In our setup, N (= 6) cameras capture the action se-
quence from multiple views. The cuboid features are extracted
on each view separately, thus creating N histograms which
characterize each action sequence. This is different from single
camera scenario where each action sequence is characterized
by one histogram.

In the single camera action classification framework, train-
ing data is collected from multiple subjects, each performing
different basic actions like walking, running, waving hands
and so on. This data is used to generate multiple instances
of histograms for each action category. If there are C action
categories and M training subjects, then the training set can
be represented as {Him} , i = 1, . . . , C, m = 1, . . . ,M .
Here, Him represents the histogram of ith action sequence
performed by mth subject. The classification can be performed
using k-NN (k-Nearest Neighbor) technique. Specifically, if
we use 1-NN, then a given test action sequence can be assigned
the action class of the closest training sequence where close-
ness is defined in terms of some distance measure between
their histograms. In our experiments, we use the χ2 distance
measure. So for a test sequence with histogram H , the pre-
dicted action label is given by î = argmin

i,m

{
dχ2 (H,Him)

}
.

In order to formulate the multi camera action classifica-
tion problem, assume that both the training and test action
sequences are captured with N cameras. Based on the view
invariant discussion in Section II-A, we can conclude that for
the same action category, the set of N histograms of a test
action sequence will be similar to the histograms of a training
action sequence, for some particular correspondence between
the cameras during the test stage and the training stage. This
correspondence can be determined by circularly shifting the
set of N test histograms and finding the circular shift that
results in minimum distance between the test histograms and
the N histograms of one of the training action sequences. The
action label of the training action sequence that minimizes the
distance between the two sets of N histograms, is assigned to
the test sequence.

More formally, let A1 =
{
H1

1 , H
2
1 , . . . ,H

N
1

}
and A2 ={

H1
2 , H

2
2 , . . . ,H

N
2

}
be the multi-view histogram representa-

tions of two examples of the same action, not necessarily
performed in the same orientation. Here N is the number of
camera views and superscripts indicate camera indices. Let the
set {πj(1), πj(2), . . . , πj(N)} represent a circularly shifted
version of the set {1, 2, . . . , N}, where the subscript j refers
to a particular circular shift. The subscript j is needed because
N circular shifts are possible, e.g., for N = 3, the circularly

Figure 4: An example of computing the distance between
multi-view histograms of two actions. It is assumed that the
number of camera views N = 4. Blue and red histograms
represent respectively actions A1 and A2. The distances are
computed for different circular shifts of the A2 histograms,
depicted in the 4 sub-figures. See Section II-C for details.

shifted versions will be {1, 2, 3} , {3, 1, 2} , {2, 3, 1}. Then the
distance between the two histogram representations can be
defined as

Dχ2 (A1, A2) = min
j

{
Dj
χ2 (A1, A2)

}
(1)

where Dj
χ2 (A1, A2) =

N∑
n=1

dχ2

(
Hn

1 , H
πj(n)
2

)
(2)

This procedure for finding the distance between two multi-
view histogram representations is depicted pictorially through
an example in Figure 4. The example assumes N = 4 cam-
eras. The sub-figures show the computation of Dj

χ2 (A1, A2)
for j = 0, 1, 2, 3. We can infer from the figure that
Dχ2 (A1, A2) = 0.005.

D. Multiple View Action Classification
Using the above distance formulation, we can state

the multi-view action classification problem as follows:
let a training action sequence be represented as Aim ={
H1
im
, H2

im
, . . . ,HN

im

}
for i = 1, . . . , C, m = 1, . . . ,M .

Here C is the number of action categories and M is the num-
ber of training subjects. The set of all training action sequences
will be {Aim}. Then, given a test action sequence A, the pre-
dicted class label is given by î = argmin

i,m

{
Dχ2 (Aim , A)

}
.

In the prediction rule above, we assumed that training and
test sequences are acquired using the same number of cameras.
The prediction rule can also be adapted easily to the scenario
where the test cameras are a subset of training cameras. Rather
than giving a general derivation, for notational simplicity,
we take an example scenario where only cameras C1, C2

and C5 (refer to Figure 2) are present during test sequence
capture. In this case, the test sequence will be represented as
A =

{
H1, H2,0,0, H5,0

}
. In this representation, we need to



Processing Module 6

Aggregation 

Module

Processing Module 5

Processing Module 2

Processing Module 1

Processing Module 3

Processing Module 4

Figure 5: Conceptual distributed processing architecture for
implementing the multi-view action classification algorithm.
See section II-E for details.

know the missing camera ids in order to maintain the proper
ordering of cameras. The 0 entries are symbolic histogram
representations for missing cameras. The distance formulation
of Eq. (1) can be used directly here, with the modification
that the distance between a 0 histogram and another “normal”
histogram is set to 0. A typical instance of this scenario is
when only 1 test camera is available. This case has been
evaluated in our experiments.

E. Suitability for Distributed Implementation
Our action classification algorithm is based on comparing

the set of N test histograms with different sets of N training
histograms. Each camera view has its associated training data
that comprises of single-view histograms of multiple subjects
performing different actions. For M subjects and C action
categories, the training data has M×C histograms per camera.
According to Eq. (2), the N cameras can compute the terms
dχ2

(
Hn

1 , H
πj(n)
2

)
in parallel for any circular shift j and for

a given training and test action sequence. Subsequently, these
terms can be aggregated to give Dj

χ2 (A1, A2). This feature
of the algorithm can be exploited to realize a distributed
implementation where each camera can process the test ac-
tion’s data independently and can transmit its final results
for aggregation with those from the other cameras. In order
to compute the minimum distance according to Eq. (1), all
N circular shifts have to be considered. This implies that
a camera must compute the distances between each of the
N test histograms and its own training histograms, thereby
generating M × C × N distance values. In order to emulate
the circular shifts of the test histograms between the cameras,
each camera could transmit its own test histogram to the rest
of the cameras. Please see Section IV-B for an analysis of the
bandwidth requirements for transmitting these data values.

Figure 5 shows the conceptual schematic of a distributed
processing architecture on which the action classification al-
gorithm can be implemented. The current generation wireless
cameras like WiCa [9] and Imote2 [3] are some examples of
the camera platforms on which the algorithm can potentially
be implemented. The cameras C1−C6 act as image acquisition
modules, each of which is associated with a processing module
that executes the steps of the algorithm that are relevant to
individual cameras. The processing modules can communicate
with each other to exchange the test action’s histograms and
can transmit the final distance values to the aggregation mod-
ule. It is emphasized that entire images need not be transmitted
from the processing modules to the aggregation module, as is

the case with other recognition algorithms that rely on fully
centralized processing of multi-view image sequences.

III. EXPERIMENTS

We conducted experiments on two publicly available multi-
view multi-action datasets: 1) recently acquired Purdue dataset
[1], and 2) the IXMAS dataset [2].

A. Purdue Dataset
We use 6 cameras (Dragonfly2, Point Grey Research Inc.)

to capture images at 30 fps with a resolution of 320 × 240
pixels. 12 subjects perform a set of 9 actions: walking, running,
bending, kicking, sitting down, standing up, hand waving,
hand clapping and boxing. Each action is synchronously
captured by the cameras for 6 seconds. Such single-person
action video sequences have been used as benchmarks in many
previous papers in action classification e.g. [6], [18], [22]. For
the purpose of experiments, the subjects perform the actions
in one of the 3 orientations O1, O2 or O3, that correspond to
facing cameras 1, 3 or 5 respectively. But as noted in Section
II-A, the action recognition algorithm is not limited to these
3 orientations. During the training phase, all the 12 subjects
perform the actions in orientation O1. In the testing stage, 6
of the 12 subjects repeat the actions in orientation O2 while
the other 6 in orientation O3.

A subject’s image in different camera views may have
different heights due to unequal distances of the subject
from the cameras. In order to have scale invariance, different
camera images need to be normalized so that a subject
has approximately the same height in all views (as shown
in Figure 6). This normalization can be accomplished by
using any tracking algorithm to determine the current position
of the subject on the ground plane and combining it with
camera-to-groundplane homography information to estimate
the subject’s heights in different viewpoints. Similar ideas have
been reported in [7], [11]. In our experiments, for simplicity,
we bypass the tracking step and ask the subjects to perform
the actions at a fixed prespecified position on the groundplane.
We scale the images from different camera views roughly in
proportion to the camera distances to the fixed position. Our
algorithm is not influenced by the different sized images in
different views.

For spatio-temporal feature extraction, we set spatial scale
σ = 2, the temporal scale τ = 2.5 and the size of cuboids as
13×13×17 pixels, which corresponds to ∼ 2875 pixels. The
number of cuboid prototypes is set to 50 and therefore, each
action histogram has 50 bins.

We employed the leave-one-out strategy to evaluate the
performance of the algorithm. During each run, 11 subjects’
O1 action sequences were used to construct the training data
and action classification was performed on the sequences of
the remaining subject, captured either in O2 or O3 orientation.
Final classification accuracy was obtained by averaging over
all the runs where each subject was chosen as the test subject
exactly once. 3 experimental scenarios were considered: (1)
Multi-view training / multi-view testing (MM)—all 6 camera
views were used during both the training and testing phases;



Figure 6: Few examples of multi-camera action sequences from Purdue dataset: bending, boxing, handclapping and running.
Images from each camera view are scaled differently, so that the subjects have roughly the same height in every view.

Figure 7: Confusion matrix for the multi-view training/multi-
view testing on Purdue dataset. Vertical and horizontal axes
represent the true and predicted action labels respectively.

(2) Multi-view training / single-view testing (MS)—all 6
camera views were used for training, but only one view
for testing; and (3) Single-view training / single-view testing
(SS)—one view used for training, one view for testing. In the
2nd and 3rd scenarios, single-view testing is performed using
either the frontal view sequences (camera C3 in orientation
O2, C5 in O3), left-frontal view (camera C2 in O2, C4 in O3)
or right-frontal view (camera C4 in O2, C6 in O3).

The confusion matrix for scenario 1 (MM) is shown in
Figure 7 and Table I summarizes the classification rates for
all the scenarios considered above. Several observations can
be made from the results. The confusion matrix shows high
classification rates for most actions, except boxing and hand-
clapping. These classification rates demonstrate the superior
discriminative ability of our proposed algorithm even amidst
the severe background clutter in action sequences (see Figure

Multi View
Testing

Single View Testing
Left Front Right

Multi View
Training 84.6 73.18 82.96 64.82

Single View
Training N/A 56.48 78.89 45.37

Table I: Action classification rates on Purdue dataset

1). Boxing and handclapping actions are classified with lower
accuracy, possibly because of the local spatial extent of the
actions, due to which most camera views could not capture suf-
ficient discriminative features. From Table I, we can observe
that the classification accuracy of the MM scenario is better
than the MS, which in turn is better than SS. This indicates
that multi-view approach improves the classification accuracy
and provides a greater degree of orientation invariance.

In the MS and SS scenarios, frontal view test sequences
result in better performance as compared to left-frontal or right
-frontal views, indicating that the classification performance
degrades significantly when there is even a slight misalignment
between the training and testing videos. This is an important
observation for comparing the proposed algorithm with single-
camera algorithms like the ones described by Dollar et al. [4]
and Niebles et al. [15]. They report classification accuracy of
78.2% and 83.3% respectively. Their results are reported for
training and testing both on frontal views. Even a small change
between the training and testing views would degrade the
performance significantly, as we observed in our experiments.
But our multi-camera setup would give high classification
accuracy because the system makes the decision not based
on just one camera’s captured features but on the full feature
set captured from all the cameras in the setup.

The result reported in Table I for MM scenario are for the
case when same set of cameras are used during the training



Figure 8: Action classification from previously unseen views.
Green cameras represent training set views, yellow cameras
represent testing set views.

# Previously Unseen Views Classification Accuracy
1 83.70%
2 82.78%
3 82.22%
4 83.52%
5 78.70%
6 76.30%

Table II: Classification performance as a function of number
of previously unseen views during testing stage

and testing stage. We performed another experiment to demon-
strate that the camera views need not be the same between the
two stages. Even if some previously unseen camera views are
used during the testing stage, the system continues to give
high classification performance. Figure 8 shows the spatial
configuration of cameras C ′1, . . . , C

′
6 (yellow-colored cameras)

that are used during the testing stage and are different from
training set of cameras (green-colored cameras). Results in
Table II show the classification performance when some of the
cameras Ci are replaced with new set of cameras C ′i during
the test stage. It is quite significant that even when all the
training set cameras are replaced with new camera views, the
system still gives a reasonably good accuracy of 76.3%.

B. IXMAS Dataset
This dataset comprises of 13 action categories, performed 3

times by each of the 12 subjects. The subjects perform the
actions in arbitrary positions and orientations. This dataset
has been used by several groups researching on view-invariant
action recognition [13], [22], [24]. In order to be consistent
with the experimental methodology of [22], we only use the
data of 10 subjects and 11 action categories. Further, we
exclude camera 5 from our analysis because it captures the
overhead view of the subjects and does not generate discrim-
inative features for the classification task. At the same time,
it violates the setup of the circular array of cameras located
at approximately the same height, which is an assumption
we make for orientation invariance. Multi-view classification
is carried out using varying number of cameras and results
are compared with those reported in [22] and [24]. Note that,
our approach is applied directly on the image sequence and
does not require additional information such as background
subtracted silhouettes or 3D visual hull volumes, which are
needed for the other two compared approaches. Table III
summarizes the average classification rates.

From the results, it is quite evident and quite significant
that our simple and lightweight algorithm performs equally

# Cameras in testing stage Our approach Weinland et al. Yan et al.
4 81.4% 81.3% 78%
3 79.1% 70.2% 60%
2 75.6% 81.3% 71%
1 69.1% - -

Table III: Action classification comparison for 3 algorithms on
IXMAS dataset.

well or better compared to the other two algorithms that are
based on full 3D human model reconstruction. Also if we
observe the classification accuracy of the proposed approach,
this dataset clearly brings out the fact that more cameras used
during the testing stage lead to superior performance in action
classification.

IV. ADVANTAGES FOR DISTRIBUTED IMPLEMENTATION

In this section, we highlight the advantages of our pro-
posed approach for implementation of the multi-view action
classification algorithm on a distributed camera network. We
present a comparative analysis with [22] and base the nu-
merical arguments on the IXMAS dataset. For any distributed
implementation on a camera network, it is necessary to pay
special attention to memory requirements of each camera and
the communication bandwidth requirements of the network.
These two issues are considered in the following discussion:

A. Memory Requirements
We consider the amount of memory required to store the

model constructed during the learning phase, as it would
be utilized repeatedly during the testing phase for classi-
fying the test action’s image frames. In [22], the model
is a set of 52 exemplars, each of which is a 3D visual
hull with 64 × 64 × 64 voxels. Since each voxel value is
stored using 1 bit, the total amount of required memory
is 52 × 643 ×

(
1
8 × 10−6Mbytes

)
w 1.72Mbytes. In our

approach, the model is simply the set of multi-view histograms
stored per camera, for all the training subjects and for all
the actions. Assuming that we have 10 training subjects,
11 actions and that each action histogram has 50 bins, the
amount of memory required for histogram storage per camera
is 10 × 11 × 50 ×

(
4× 10−6Mbytes

)
= 0.022Mbytes.

Additionally, for spatio-temporal feature extraction, we need
to store the codebook of 50 cluster prototypes each of length
25 and a PCA reprojection matrix of size 25 × 2875 where
each cuboid has 2875 pixels. This requires an additional
memory of (50× 25 + 25× 2875) ×

(
4× 10−6Mbytes

)
=

0.293Mbytes per camera. Therefore the total required mem-
ory will be 0.315Mbytes per camera.

B. Communication Bandwidth Requirements
We assume that for both the algorithms, multi-view obser-

vations are used during the recognition. During the recognition
phase of [22], the image frame rate is 23 fps. The image size
is 390×291 pixels but only the silhouette information is used
which is restricted to 64× 64 ROI. Each pixel in the ROI can
be represented using 1 bit, so the required bandwidth is 23×
64×64×

(
1
8 × 10−3Kbytes

)
= 11.77Kbytes/s/camera. For

4 cameras, the required bandwidth is ∼ 47Kbytes/s. In our



proposed approach, each camera must know the multi-view
histogram representation of the action sequence. This implies
that every camera needs to broadcast it’s test action histogram
representation to other cameras. An action histogram has 50
bins and therefore requires 50× 4 = 200 bytes. If we assume
that the duration of every action is 3 seconds and so the
histograms are generated and broadcasted every 3 seconds,
the required bandwidth will be 4 × 200 bytes × 1

3 seconds w
0.3Kbytes/s. Every camera generates M × C × N distance
values and sends them to the aggregation module. Here, M
is the number of training subjects, C is the number of action
categories and N is the number of cameras. Therefore, for
all the cameras combined, M × C × N2 distance values are
transmitted for aggregation every 3 seconds. Using M =
10, C = 11, N = 4 , the bandwidth required during data
aggregation is ∼ 2.4Kbytes/s. So the overall requirement
is ∼ 2.7Kbytes/s which is a significant bandwidth saving
primarily because the cameras need not send the entire frames
to any central computing server.

V. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we have described a distributed and
lightweight action classification algorithm based on a com-
pact multi-view feature representation . We have shown that
for the multi-camera action classification task, our algorithm
effectively and efficiently combines the information from
2D views and achieves results at par with other algorithms
based on full 3D human model construction. In addition,
our approach has the advantage of simple implementation.
It has substantially less storage and lower communication
bandwidth requirements compared to the 3D-based algorithms.
This makes the proposed approach suitable for distributed
camera networks where the cameras can individually process
their local sensory data and their evidence combined to obtain
the final classification result. In the future, we would like to
use other feature representations that relax the assumptions
we make in the current paper, regarding the cameras’ uniform
spatial positioning. It is desirable to have feature representa-
tions that are transferable between arbitrary camera views so
that full flexibility of arbitrary view action recognition systems
can be accomplished, while at the same time maintaining the
advantage of low resource usage and distributed implemen-
tation. For automatic scale invariance, the camera calibration
and the camera-groundplane homography information can be
used together with subject’s current position from a tracking
module, to normalize the image sizes.
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