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Abstract. We present a novel fully-automatic approach for estimating
an articulated skeleton of a moving subject and its motion from body
marker trajectories that have been measured with an optical motion
capture system. Our method does not require a priori information about
the shape and proportions of the tracked subject, can be applied to ar-
bitrary motion sequences, and renders dedicated initialization poses un-
necessary. To serve this purpose, our algorithm first identifies individual
rigid bodies by means of a variant of spectral clustering. Thereafter, it
determines joint positions at each time step of motion through numeri-
cal optimization, reconstructs the skeleton topology, and finally enforces
fixed bone length constraints. Through experiments, we demonstrate the
robustness and efficiency of our algorithm and show that it outperforms
related methods from the literature in terms of accuracy and speed.

1 Introduction

Marker-based optical motion capture (MOCAP) systems reconstruct the motion
of moving subjects by measuring the 3D trajectories of optical beacons attached
to the body [1,2,3]. In order to biomechanically analyze the motion of a person
or in order to map real world performances onto virtual characters, the cap-
tured marker-trajectories have to be transformed into the motion parameters of
a kinematic skeleton model. Although commercial tools exist that assist the mo-
tion capture professionals in performing this transformation, the estimation of
kinematic skeletons and their motion parameters is still a labor-intensive, error
prone and often inflexible process. Many commercial systems require the tracked
subject to strike a dedicated initialization pose (T-pose) prior to actual motion
recording or need specific initialization movements. Moreover, due to measure-
ment noise in the marker-trajectories and non-rigid deformations of the body
surface commercial software often fails to enforce fixed bone length constraints.

Despite the relevance of the skeleton reconstruction and joint parameter com-
putation problem, astonishingly few papers have been published that aim at
solving it in an automatic, robust, flexible and more efficient way than standard
software packages. We present a new algorithm to estimate a skeleton model
and its motion parameters that does not require a specific initialization pose,
that relies on a minimum of a priori knowledge about the kinematic structure,
and that reconstructs a model with fixed bone lengths from arbitrary motion
sequences. Our main contributions are:
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– A new method to identify individual rigid bodies from 3D marker trajectories.
– A method to determine joint positions at each time step of video, and to

extract the topology of a skeleton with fixed bone lengths that optimally
captures the true body pose at each time step.

The remainder of this paper is structured as follows: Sect. 2 reviews the most
relevant related work. Sect. 3 details our clustering procedure that is used to
identify individual rigid bodies from the markers’ 3D motion. Sect. 4 details how
correct joint positions are found for each time step of video and how the skeleton
topology is automatically inferred. An optimal skeleton with fixed bone lengths
is computed thereafter by the method described in Sect. 5. We have tested our
method on a large number of publicly available motion capture sequences and
compared it to most related methods from the literature. Furthermore, we have
validated our method on synthetic sequences which provides us with accurate
ground truth information about the model’s kinematic structure, Sect. 6. The
paper concludes in Sect. 7.

2 Related Work

Nowadays, marker-based motion capture systems have developed into a standard
tool within the technical repertoire of professionals in computer animation and
biomechanical analysis. Unfortunately, generating a moving kinematic skeleton
model from raw marker trajectories with commercial tools is often still a semi-
automatic procedure [1,2,3]. Commercial software frequently requires the use of
body models with predefined topology making it hard to capture subjects which
are not stored in the model database. Furthermore, many tools fall short of
providing skeletons with constant bone lengths and the IK-based joint parameter
estimation often does not produce satisfactory results.

Most algorithms from the literature aim at solving one particular sub-problem
in the overall motion capture pipeline. Biomechanics researchers have developed
several methods to accurately locate the joint of a subject from the motion of
bones or markers [4,5,6]. Other approaches are able to solve the skeleton recon-
struction problem by taking into account a priori information [7,8]. O’Brien et
al. [9] present a technique for determining the joint parameters of an articulated
skeleton hierarchy from magnetic tracking data. In their work, both position
and orientation information of the markers are available, which simplifies the
skeleton reconstruction procedure. In contrast, we present an automatic method
for jointly estimating an articulated skeleton and its motion from marker tra-
jectories. Our method does not impose any constraints on the type of motion or
type of subject being captured.

Most similar to our approach are the methods by Silaghi et al. [10] and Kirk et
al. [11]. Silaghi et al. describe a semi-automatic approach to locally find skeleton
structures. An optimal skeleton is then assembled by matching a template to
the different skeletons found over time. Although skeleton models can be recon-
structed reliably, their method requires a substantial amount of user interaction.
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Kirk et al. present an automatic approach for determining the kinematic struc-
ture of a subject when only a small number of markers have been attached to it.
Also with this method, articulation structures can be reconstructed. However,
the complexity of the involved optimization problem makes it hard to apply their
algorithm to long motion capture sequences with many body markers.

Our method builds on and improves ideas from the literature. It enables us to
automatically identify rigid bodies, to automatically compute joint positions and
skeleton topology, and to automatically enforce fixed bone length constraints. It
does not require any a priori information about the tracked subject, is computa-
tionally efficient, and the quality of the estimated skeletons matches the quality
of body models that have been generated with commercial tools.

3 Rigid Body Clustering

The input to our system is raw optical MOCAP data, i.e. 3D marker trajecto-
ries that can be acquired with all commercial optical MOCAP systems available
today. Although the positional marker tracking accuracy achievable today is
very high, some noise in the measurements is unavoidable. It is also a common
problem that, due to self-occlusions on the body, some of the markers are tem-
porarily invisible or even completely lost. In a pre-processing step, we eliminate
from the trajectory data all the markers that are not visible in all the frames.
In principle, these markers could still be used for improving the quality of the
skeleton reconstruction in a post-processing step (e.g. by the method proposed
in Kirk et al.[11]). However, our experiments have shown that a robust rigid
body identification is possible even if only a few complete marker trajectories
are at our disposition.

The first step in our processing pipeline is to cluster markers into groups, each
of them representing one rigid body part. To serve this purpose, we capitalize
on the fact that the distance between any two markers on the same body part
remains constant (within a measurement tolerance) over time, while it varies if
they lie on different parts. To robustly decide which markers lie on the same
body part, we employ a spectral clustering algorithm that examines the stan-
dard deviations of the mutual marker distances over time. We make use of a
fast variant of spectral clustering that has proven its robustness on many point
segmentation problems [12]. In our implementation we define the entries of the
affinity matrix A as follows:

Ai,j = exp(−ρi,j/(2 ∗ σ2)), (1)

where ρi,j is the standard deviation of the mutual distance between markers i
and j over all frames, and σ = 1/N2 ∗ Σf (distfi,j) is a scaling term controlling
the spectral clustering convergence. N is the number of frames and distfi,j is
the distance between markers i and j in frame f . Intuitively, the affinity ma-
trix encodes the likelihood of each pair of markers to belong to the same body
segment. Instead of grouping the markers directly based on the individual val-
ues Ai,j , spectral clustering uses the top eigenvectors of matrices derived from
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A to cluster the markers. This leads to a more robust and kinematically more
meaningful segmentation than, for instance, the application of simple K-means
clustering [13]. As an additional benefit, the optimal number of clusters N can
be automatically calculated based on the datasets eigen-gap. Fig. 2(left) shows
that our approach robustly identifies individual segments in the human body.

4 Estimation of Joint Positions and Skeleton Hierarchy

Given a list of body segments and their associated markers, we now estimate
the positions of interconnecting joints at each time step of a motion sequence,
and thereafter reconstruct the topology of the interconnecting bone skeleton.

The method to achieve the first goal makes use of a relatively straightforward
observation. If we assume that two rigid bodies are connected via a single three-
degree-of-freedom (DOF) ball joint then the distance between each marker on
either of the adjacent bodies and the common joint has to remain constant over
time. Taking measurement noise and subtle non-rigid body deformations into
account, a good estimate for the correct joint position sequence is the sequence
of points that minimizes the variance in joint-to-marker distance for all markers
of the adjacent parts at all frames.

Kirk et al. [11] put this criterion into practice by computing the joint posi-
tions between two interconnected segments at all time steps via solving a large
optimization problem. However, their approach is only feasible for sequences
where the number of frames N and the number of markers M are small, since
an energy minimization in N ∗M variables for each pair of segments is necessary.
In contrast, we have developed a faster scheme which efficiently finds optimal
skeletons even with sequences that are several thousand frames long and which
feature several hundred markers.

Fig. 1. Marker alignment: rigid body transformations are calculated (a) to align the
position of markers for both segments in time step T with the markers of body segment
A in the reference frame (b). After aligning the markers from all time steps the joint
position cR is found by minimizing (2).
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Our scheme works as follows: Let A and B be two body segments, and let
K be the set of the M body markers. Both body segments have associated sets
of markers MA = {a|a ∈ K} and MB = {b|b ∈ K}. At each time step f the
markers in MA and MB have respective 3D positions PMA(f) = {p(k, f)|k ∈
MA} and PMB (f) = {p(k, f)|k ∈ MB}. It is our goal to find the set C = {cf |f ∈
{1, . . . , N}}, i.e. the set containing the 3D position cf of the interconnecting joint
at each time step. To this end, we define a reference frame number R which can
be any of the frames but usually is the first frame of the sequence. First, for each
time step t ∈ {0, . . . , N} we compute two rigid body transforms XPMA

(t)→PMA
(R)

and XPMB
(t)→PMA

(R) that align the positions of the markers in both marker sets
with the positions of the markers MA at the reference time step [14], as shown
in Fig. 1.

The positions of all markers at all time steps are now aligned with the marker
positions at the reference time step. We are now able to solve for the joint location
at the reference frame cR by minimizing the following energy functional:

CF (cR) = 1/2∗
∑

a∈MA

(σa(cR)+α∗da(cR))+1/2∗
∑

b∈MB

(σb(cR)+α∗db(cR)) (2)

where

σa(cR) = 1/N ∗
N∑

i=2

(‖cR − XPMA
(i)→PMA

(R) ∗ p(a, i)‖ − da(cR))2 (3)

and

da(cR) = 1/N ∗
N∑

i=2

‖cR − XPMA
(i)→PMA

(R) ∗ p(a, i)‖ . (4)

The definitions of σb(cR) and db(cR) correspond to (3) and (4). In (2), α is
the coefficient that controls the influence of a distance penalty term. We employ
the distance penalty term to prevent the algorithm from erroneously positioning
the joint far away from either segment (e.g. infinitely away), where the variance
σa(cR) and σb(cR) are minimal. Through experimental evaluation we have found
that a value of α = 1/5 leads to the best results. After finding cR, the joint
position at all other frames can be computed by cf = X−1

PMA
(f)→PMA

(R) ∗ cR.
Since we do not use a priori information about the topology of the subject,

we perform the above procedure for each possible pair of body segments. For-
tunately, the final values of the error term (2) enable us to automatically infer
the skeleton topology and to discard invalid pairings of segments. To do so, we
employ a graph-based method similar to the one presented in [9]. A skeleton
graph is constructed in which each body part represents a node, and joints form
the edges between them. Each edge is assigned a weight that corresponds to the
value of (2) that we obtained for the pair of nodes (segments) that it connects.
The topology of the skeleton can be determined by constructing the minimal
spanning tree [15] of the skeleton graph.

Our method efficiently and robustly computes joint positions even for very
long sequences with complex motion, as seen in Figs. 2 and 3.
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5 Enforcing Constant Bone Lengths

Up to now, the lengths of the bones in the skeleton can vary from time step to
time step. However, eventually one wants to express the motion parameters based
on a single skeleton with constant dimensions. To serve this purpose, we have
developed a simple and efficient way to enforce fixed bone length constraints
in a separate processing step. We employ a least-squares fitting technique to
appropriately adjust the joint positions that we have found by means of the
approach described in Sect. 4.

Our algorithm follows the hierarchy of the estimated skeleton from the root
down to the leaves (i.e hand/feet) and solves a least-squares problem for each
pair of subsequent joints in the kinematic chain. By this means it is more efficient
than related methods [10] that enforce fixed bone length constraints by solving
a least-squares problem for the whole model at once.

Let us assume that cf
i is the position of a joint i at frame f , and cf

i−1 is
the 3D location of its parent joint at frame f . The optimal fixed length of the
bone connecting joints i − 1 and i, li−1,i, as well as the new joint positions of i,
ocf

i, for all f can be found by minimizing the following cost function:

V (oc1
i, . . . , ocN

i, li−1,i) =
N∑

f=0

‖cf
i − ocf

i‖2 + (‖ocf
i − cf

i−1‖ − li−1,i)2 (5)

In (5) the first term is used to keep the new optimal joint positions as close as
possible to the old positions, while the second term constrains the bone length
to be the same in all frames. The dimension of the parameter space in (5)
can be further reduced by expressing the new position of joint i in terms of
the normalized direction vector ei−1,i between i − 1 and i. Replacing ocf

i by
cf

i−1 + ei−1,i ∗ li−1,i in (5):

V (li−1,i) =
N∑

f=0

‖cf
i − (cf

i−1 + ei−1,i ∗ li−1,i)‖ (6)

Eq. (6) is independently solved for each pair of subsequent joints in the hierarchy.
The final result of our processing pipeline is a skeleton model of correct topology
that, at each time step of motion, stands in a correct pose.

6 Results

We have tested our algorithm on a large number of optical motion capture se-
quences from the CMU motion capture database [16]. They were recorded with
Vicon MX40 cameras. The motion sequences we used for testing comprise of
180-4000 frames and show, for example, simple gymnastic exercises, athletic
performances and dancing sequences. After pre-processing of the raw data, on
average around 110 non-interrupted marker trajectories were available for body
model estimation. Fig. 2(left) shows the automatic segmentation result for a
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Fig. 2. Gymnastics sequence: Segmentation into body parts - boxes drawn for illus-
tration purpose (left), two poses of the optimal skeleton shown together with the 3D
marker positions (middle), and the fixed bone length skeleton at a different time step
(right)

gymnastics sequence that was generated by our spectral clustering method de-
scribed in Sect. 3. Individual segments of the human body have been correctly
identified. Unfortunately, in the sequences that were at our disposition no sig-
nificant foot or hand motion relative to the legs and arms respectively can be
observed. In consequence, our algorithm cannot identify hand and feet as sepa-
rate body segments. However, this is by no means a limitation of our method,
but a general problem that is hard to solve for any learning-based approach.

Spectral clustering leads to much better segmentation results than, e.g., simple
k-means clustering, since the clustering is far less deteriorated by noise in the
data. While a purely distance based segmentation produces many kinematically
meaningless rigid bodies, our variance-based scheme in conjunction with spectral
clustering produces plausible body segmentations.

Fig. 2 shows different poses of the optimal kinematic skeleton reconstructed for
some frames of a gymnastics sequence. One can see that both the topology of the
bone skeleton and the positions of the joints have been faithfully estimated. The
body models exhibit a high level of detail that is comparable to the complexity
of skeletons usually used in animation and biomedical analysis. Fig. 3 shows
further reconstruction results that we obtained by applying our algorithm to a
dancing sequence.

Our method for estimating the joint locations and skeleton topology performs
better than the method proposed by Kirk et al. [11] which is the most closely

Fig. 3. Dancing sequence: The first three images show the markers and the estimated
skeleton in three different poses. The image on the right shows the skeleton with con-
stant bone length at another time step. Joint positions and skeleton topology have
been faithfully reconstructed.
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related approach from the literature (see also Sect. 4). As shown in Tab. 1, the
runtimes of our method on complete motion capture sequences are orders of
magnitude faster. We measured them on a Pentium IV with 3.0 GHz using the
L-BFGS-B method to solve the minimization problems [17]. The comparison
suggests that our approach is well-suited for processing long motion capture
sequences as they are commonly recorded for most computer game and movie
productions.

We have evaluated the accuracy of our system both visually and qualitatively.
Unfortunately, we do not have ground truth measurements of the skeleton struc-
tures at our disposition. We thus compared our estimation results against the
best possible reference data, which are the body models estimated with com-
mercial software and that are provided by CMU together with their data. Fig. 4
shows visual comparisons for two different time steps. Our algorithm has reliably
captured pose and dimension of the body. Please note that although our method
reconstructed the topology of the root/spine area in a different way, the overall
mobility is the same as in the reference model.

In order to get a qualitative error estimate, we have tested our method on
synthetic data. Both test sequences (a walking robot and a jumping snowman)
have been generated in 3D Studio Max by animating triangle meshes with hand-
crafted kinematic skeletons. In both test cases we use randomly selected vertices
of the triangle meshes as markers for the reconstruction. Fig. 5(a) shows the
robot in one pose and the respective skeleton reconstructed by our method.
Kinematic structure and pose have been correctly identified. Fig. 5(b) shows
that our approach correctly reconstructs model and pose in the case of the
jumping snowman, too. In either test cases, the joint positions estimated by our
method deviate on average by around 3% (relative to the model’s height) from
the true joint positions. This error is much lower than the position inaccuracy
that we obtain with the method by Kirk et al. [11] which is in the range of 7%.

Our approach is subject to a few limitations. If the accuracy of marker trajec-
tories is strongly deteriorated by noise or significant non-rigid body deformations
(e.g. of the skin) are observed, joint positions may be improperly estimated. How-
ever, this is a general problem that commercial systems often fail to handle as
well as the reference data provided by CMU suggest. Furthermore, it is impossi-
ble to distinguish two rigid body segments if at no time during a motion sequence
a relative motion between them is observed. This is not a limitation specific to
our approach but a general conceptual limitation of learning-based methods.

Table 1. Comparison of the runtime of our method to the runtime of the method
proposed by Kirk et al. [11] on 4 different MOCAP sequences

Sequence Number of Frames Kirk et al. [11] Our method (Sect. 4)

1 189 1649s 103s

2 307 2320s 175s

3 591 4515s 307s

4 1134 11247s 590s
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Fig. 4. Visual comparison of the skeletons that are provided with the MOCAP data
(two images on left) and our learned skeleton in the same poses (two images on right)

Fig. 5. Evaluation using synthetic data: (a) animated robot mesh (left) and recon-
structed kinematic skeleton (right). Ground truth joints are shown as white spheres.
(b) Animated snowman (left) and reconstructed skeleton with estimated joints (gray
spheres) and ground truth joints (white spheres). The method is able to estimate the
kinematic skeleton of general subjects accurately.

Despite these restrictions, our algorithm is an efficient and robust tool that
can greatly simplify the motion capture pipeline. As shown, our method can be
applied in the same way to motion data of arbitrary subjects including animals,
generating accurate skeleton reconstructions.

7 Conclusion

We have presented a fully-automatic system for learning an articulated skeleton
model with constant bone lengths and its poses from 3D marker trajectories.
Our approach does with no a priori information about the kinematics of the
captured individual and can be applied to arbitrary subjects including humans
and animals. Through experimental evaluation we have shown that it performs
better in terms of speed and accuracy than the most closely related methods
from the literature. The learned models are comparable to the ones obtained with
commercial software in terms of accuracy and detail. As future work, we plan
to integrate our method with an automatic non-intrusive surface reconstruction
approach in order to automatically learn complete virtual characters.
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