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Foreword

The European Conference on Computer Vision is one of the top conferences
for researchers in this field and is held biennially in alternation with the Inter-
national Conference on Computer Vision. It was first held in 1990 in Antibes
(France) with subsequent conferences in Santa Margherita Ligure (Italy) in 1992,
Stockholm (Sweden) in 1994, Cambridge (UK) in 1996, Freiburg (Germany) in
1998, Dublin (Ireland) in 2000, Copenhagen (Denmark) in 2002, Prague (Czech
Republic) in 2004, Graz (Austria) in 2006, Marseille (France) in 2008, and Her-
aklion (Greece) in 2010. To our great delight, the 12th conference was held in
Florence, Italy.

ECCV has an established tradition of very high scientific quality and an
overall duration of one week. ECCV 2012 began with a keynote lecture from the
honorary chair, Tomaso Poggio. The main conference followed over four days
with 40 orals, 368 posters, 22 demos, and 12 industrial exhibits. There were
also 9 tutorials and 21 workshops held before and after the main event. For this
event we introduced some novelties. These included innovations in the review
policy, the publication of a conference booklet with all paper abstracts and the
full video recording of oral presentations.

This conference is the result of a great deal of hard work by many people,
who have been working enthusiastically since our first meetings in 2008. We are
particularly grateful to the Program Chairs, who handled the review of about
1500 submissions and co-ordinated the efforts of over 50 area chairs and about
1000 reviewers (see details of the process in their preface to the proceedings). We
are also indebted to all the other chairs who, with the support of our research
teams (names listed below), diligently helped us manage all aspects of the main
conference, tutorials, workshops, exhibits, demos, proceedings, and web presence.
Finally we thank our generous sponsors and Consulta Umbria for handling the
registration of delegates and all financial aspects associated with the conference.

We hope you enjoyed ECCV 2012. Benvenuti a Firenze!

October 2012 Roberto Cipolla
Carlo Colombo

Alberto Del Bimbo



Preface

Welcome to the proceedings of the 2012 European Conference on Computer
Vision in Florence, Italy! We received 1437 complete submissions, the largest
number of submissions in the history of ECCV. Forty papers were selected for
oral presentation and 368 papers for poster presentation, resulting in acceptance
rates of 2.8% for oral, 25.6% for poster, and 28.4% in total.

The following is a brief description of the review process. After the submis-
sion deadline, each paper was assigned to one of 54 area chairs (28 from Europe,
21 from the USA and Canada, and 4 from Asia) with the help of the Toronto Pa-
per Matching System (TMS). TMS, developed by Laurent Charlin and Richard
Zemel, is beginning to be used by an increasing number of conferences, including
NIPS, ICML, and CVPR. To ensure the best possible assignment of papers to
area chairs, the program chairs manually selected several area chair candidates
for each paper based on the suggestions generated by TMS. After automatic load
balancing and conflict resolution, each AC was finally assigned approximately
30 papers closely matching their expertise.

Area chairs then made reviewer suggestions (an average of seven per paper),
which were load-balanced and conflict-resolved, giving 3 reviewers for each pa-
per and a maximum of 11 papers per reviewer. The ACs were assisted in this
process by TMS, which was also used for automatically selecting potential re-
viewers, matching each submitted paper based on the reviewers’ representative
publications. These suggestions came from a pool of potential reviewers com-
posed from names of people who have reviewed for recent vision conferences,
self-nominations (any member of the community could fill out a form on the
ECCV website asking to be a reviewer), and nominations by ACs. From an ini-
tial pool of 863 reviewers, 638 ended up reviewing at least one paper. This was
the first time that TMS had been used this extensively in the review process
for a vision conference (CVPR 2012 used a restricted version of the system for
assigning papers to area chairs), and in the end, we were very pleased with its
performance. An important improvement over previous conferences was that ini-
tial reviewer suggestions were generated entirely in parallel by the ACs, without
the “race” for good reviewers that the previous methods have implicitly encour-
aged. Area chairs were then given the opportunity to correct infelicities in the
load balancing before the final list was generated. We extend our heartfelt thanks
to the area chairs, who participated vigorously in this process, to maximize the
quality of the review assignments.

For the decision process, we introduced one major innovation. We replaced
the physical area chair meeting and the conventional AC buddy system with vir-
tual meetings of AC triplets (this system was first tried out for BMVC 2011 and
found to work very well). After the conclusion of the review, rebuttal, and discus-
sion periods, the AC triplets met on the phone or on Skype (and, in just one case,
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in person), jointly discussed all their papers, and made acceptance/rejection de-
cisions. Thus, the reviews and consolidation reports for each paper were carefully
examined by three ACs, ensuring a fair and thorough assessment. A program
chair assisted in each AC triplet meeting to maintain the consistency in the de-
cision process and to provide any necessary support. Furthermore, each triplet
recommended a small number of top-ranked papers (typically one to three) for
oral presentation, and the program chairs took these candidates and made the
final oral vs. poster decisions.

Double-blind reviewing policies were strictly maintained throughout the en-
tire process – neither the area chairs nor the reviewers knew the identity of the
authors, and the authors did not know the identity of the reviewers and ACs.
Based on feedback from authors, reviewers, and area chairs, we believe we suc-
cessfully maintained the integrity of the paper selection process, and we are very
excited about the quality of the resulting program.

We wish to thank everyone involved for their time and dedication to making
the ECCV 2012 program possible. The success of ECCV 2012 entirely relied on
the time and effort invested by the authors into producing high-quality research,
on the care taken by the reviewers in writing thorough and professional reviews,
and on the commitment by the area chairs to reconciling the reviews and writing
detailed and precise consolidation reports. We also wish to thank the general
chairs, Roberto Cipolla, Carlo Colombo, and Alberto Del Bimbo, and the other
organizing committee members for their top-notch handling of the event.

Finally, we would like to commemorate Mark Everingham, whose untimely
death has shocked and saddened the entire vision community. Mark was an area
chair for ECCV and also an organizer for one of the workshops; his hard work and
dedication were absolutely essential in enabling us to put together a high-quality
conference program. We salute his record of exemplary service and intellectual
contributions to the discipline of computer vision. Mark, you will be missed!

October 2012 Andrew Fitzgibbon
Svetlana Lazebnik

Pietro Perona
Yoichi Sato

Cordelia Schmid



Organization

General Chairs

Roberto Cipolla University of Cambridge, UK
Carlo Colombo University of Florence, Italy
Alberto Del Bimbo University of Florence, Italy

Program Coordinator

Pietro Perona California Institute of Technology, USA

Program Chairs

Andrew Fitzgibbon Microsoft Research, Cambridge, UK
Svetlana Lazebnik University of Illinois at Urbana-Champaign, USA
Yoichi Sato The University of Tokyo, Japan
Cordelia Schmid INRIA, Grenoble, France

Honorary Chair

Tomaso Poggio Massachusetts Institute of Technology, USA

Tutorial Chairs

Emanuele Trucco University of Dundee, UK
Alessandro Verri University of Genoa, Italy

Workshop Chairs

Andrea Fusiello University of Udine, Italy
Vittorio Murino Istituto Italiano di Tecnologia, Genoa, Italy

Demonstration Chair

Rita Cucchiara University of Modena and Reggio Emilia, Italy

Industrial Liaison Chair

Björn Stenger Toshiba Research Europe, Cambridge, UK

Web Chair

Marco Bertini University of Florence, Italy



X Organization

Publicity Chairs

Terrance E. Boult University of Colorado at Colorado Springs, USA
Tat Jen Cham Nanyang Technological University, Singapore
Marcello Pelillo University Ca’ Foscari of Venice, Italy

Publication Chair

Massimo Tistarelli University of Sassari, Italy

Video Processing Chairs

Sebastiano Battiato University of Catania, Italy
Giovanni M. Farinella University of Catania, Italy

Travel Grants Chair

Luigi Di Stefano University of Bologna, Italy

Travel Visa Chair

Stefano Berretti University of Florence, Italy

Local Committee Chair

Andrew Bagdanov MICC, Florence, Italy

Local Committee

Lamberto Ballan
Laura Benassi
Marco Fanfani
Andrea Ferracani
Claudio Guida
Lea Landucci

Giuseppe Lisanti
Iacopo Masi
Fabio Pazzaglia
Federico Pernici
Lorenzo Seidenari
Giuseppe Serra

Area Chairs
Simon Baker Microsoft Research, USA
Horst Bischof Graz University of Technology, Austria
Michael Black Max Planck Institute, Germany
Richard Bowden University of Surrey, UK
Michael S. Brown National University of Singapore, Singapore
Joachim Buhmann ETH Zurich, Switzerland
Alyosha Efros Carnegie Mellon University, USA
Mark Everingham University of Leeds, UK
Pedro Felzenszwalb Brown University, USA



Organization XI

Rob Fergus New York University, USA
Vittorio Ferrari ETH Zurich, Switzerland
David Fleet University of Toronto, Canada
David Forsyth University of Illinois at Urbana-Champaign, USA
Kristen Grauman University of Texas at Austin, USA
Martial Hebert Carnegie Mellon University, USA
Aaron Hertzmann University of Toronto, Canada
Derek Hoiem University of Illinois at Urbana-Champaign, USA
Katsushi Ikeuchi The University of Tokyo, Japan
Michal Irani The Weizmann Institute of Science, Israel
David Jacobs University of Maryland, USA
Sing Bing Kang Microsoft Research, USA
David Kriegman University of California, San Diego, USA
Kyros Kutulakos University of Toronto, Canada
Christof Lampert Institute of Science and Technology, Austria
Ivan Laptev INRIA, France
Victor Lempitsky Yandex, Russia
Steve Lin Microsoft Research, China
Jitendra Malik University of California, Berkeley, USA
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Patrick Pérez Thomson-Technicolor, France
Marc Pollefeys ETH Zurich, Switzerland
Jean Ponce Ecole Normale Supérieure, France
Long Quan Hong Kong Univ. of Science and Technology, China
Deva Ramanan University of California, Irvine, USA
Stefan Roth TU Darmstadt, Germany
Carsten Rother Microsoft Research, UK
Yoav Schechner Technion, Israel
Bernt Schiele Max Planck Institute, Germany
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Organization XV

Maja Pantic
Caroline Pantofaru
George Papandreou
Toufiq Parag
Vasu Parameswaran
Devi Parikh
Sylvain Paris
Minwoo Park
Dennis Park
Ioannis Patras
Ioannis Pavlidis
Nadia Payet
Kim Pedersen
Ofir Pele
Shmuel Peleg
Yigang Peng
Amitha Perera
Florent Perronnin
Adrian Peter
Maria Petrou
Patrick Peursum
Tomas Pfister
James Philbin
Justus Piater
Hamed Pirsiavash
Robert Pless
Thomas Pock
Gerard Pons-Moll
Ronald Poppe
Fatih Porikli
Mukta Prasad
Andrea Prati
Jerry Prince
Nicolas Pugeault
Novi Quadrianto
Vincent Rabaud
Rahul Raguram
Srikumar Ramalingam
Narayanan Ramanathan
Marc’Aurelio Ranzato
Konstantinos

Rapantzikos
Nikhil Rasiwasia
Mohammad Rastegari
James Rehg

Erik Reinhard
Xiaofeng Ren
Christoph Rhemann
Antonio Robles-Kelly
Emanuele Rodolà
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Abstract. The appearance of moving features in the field-of-view (FoV)
of the camera may substantially change due to different camera poses.
Typical solutions for tracking image points involve the assumption of
an image motion model and the estimation of the motion parameters
using image alignment techniques. While for conventional cameras this
suffices, the radial distortion that arises in cameras with wide FoV lenses
makes the standard motion models inaccurate. In this paper, we propose
a set of motion models that implicitly encompass the distortion effect
arising in this type of imaging devices. The proposed motion models are
included in a standard image alignment framework for performing fea-
ture tracking in cameras presenting significant distortion. Consolidation
experiments in repeatability and structure-from-motion scenarios show
that the proposed RD-KLT trackers significantly improve the tracking
performance in images presenting radial distortion, with minimal com-
putational overhead when compared with a state-of-the-art KLT tracker.

1 Introduction

Tracking image keypoints across frames is useful in computer and robotic vi-
sion applications such as optical flow [1, 2], object tracking [3], and 3D recon-
struction [4]. The interest in feature tracking dates back to [1, 2], where the
authors propose the well known KLT tracker for computing optical flow be-
tween spatially and temporally close frames. The original KLT method assumes
a translation model and iteratively estimates the displacement vector using im-
age alignment techniques. Several improvements [5–8] have been proposed to the
original method, specially aiming at reducing its computational complexity [5, 6]
and improving tracking in wide-baseline situations [7, 8].

Wide field-of-view (FoV) cameras became increasingly popular due to their
benefits in vision systems. Panoramic cameras proved to be highly advantageous
in egomotion estimation [9, 10], and in surveillance systems due the thorough
visual coverage of the environments [11]. However, the projection in cameras with
wide angle lens presents strong radial distortion (RD) caused by the bending of
the light rays when crossing the optics. The distortion increases with the distance
to the center of distortion, and it is typically described by nonlinear terms that
are function of the image radius.

A. Fitzgibbon et al. (Eds.): ECCV 2012, Part IV, LNCS 7575, pp. 1–14, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 M. Lourenço and J.P. Barreto

Image alignment techniques applied in a feature tracking context rely on the
assumption of a motion model that determines the degree of deformation tol-
erated by the tracker. Several motion models have been used in the literature,
ranging from a low complexity translation model [1, 2] to an affine motion model
[5, 6, 8]. As discussed in [12] the performance of local feature tracking can be
improved through the designed of specialized motion models. Unfortunately, the
standard motion models do not compensate the RD effect arising in cameras
equipped with unconventional optics.

Despite of these facts, the KLT tracker has been applied in the past to images
with significant RD [13, 14]. While some simply ignore the effect of RD during
registration [14], others correct the distortion in a pre-processing step before
applying the KLT [13]. Although the later approach is quite straightforward,
the distortion rectification requires the interpolation of the image signal, which
is computationally expensive and unreliable since the synthetically corrected
images contain artificially interpolated pixel intensities [15].

In this paper we focus on the problem of feature tracking in images presenting
significant radial distortion. Our contributions are the following:

(i) We propose an extension of the affine motion model for describing the
patches deformation that fuses feature motion with image distortion. It is
proved that the proposed RD compensated motion model verifies the require-
ments to be used inside the efficient inverse compositional KLT framework
[5, 6] whenever the calibration is known in advance. Unfortunately, the par-
ticular structure of this warp does not allow to calibrate the distortion during
tracking, as we will discuss later;

(ii) To cope with this problem, we also propose an approximation to the ideal
theoretical model that enables to robustly calibrate distortion during track-
ing. To the best of our knowledge this is the first work showing that is
possible to estimate RD using solely low-level feature motion;

(iii) Extensive repeatability [16] and structure-from-motion experiments [15] show
that the tracking performance can be significantly improved through a proper
RD compensation, with a computational overhead of 15% when compared
with a standard KLT algorithm.

The structure of this paper is as follows: Section 2 reviews the adopted cam-
era model and the literature related with the KLT. Section 3 derives the RD
compensated motion models and explains how to include them in the inverse
compositional KLT. In section 4, the proposed RD-KLT trackers are evaluated
in a representative set of repeatability [16] and structure-from-motion (SfM)
experiments [15]. Finally, section 5 presents the conclusions of our work.

Notation: Matrices are represented by symbols in sans serif font, e.g. M, and
image signals are denoted by symbols in typewriter font , e.g. I. Vectors and vec-
tor functions are typically represented by bold symbols, and scalars are indicated
by plain letters, e.g x = (x, y)

T
and f(x) = (fx(x), fy(x))

T
. 0 is specifically

used to represent a null vector.
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2 Background

In this section, we review the adopted camera model and the KLT framework
using direct and inverse image alignment. We also summarize standard image
motion models, and discuss the importance of the local template updates and
pyramidal image representation for achieving reliable tracking.

2.1 The Division Model for Radial Distortion

We assume that the image distortion can be described using the 1st order division
model with the amount of distortion being quantified by a single parameter ξ
(typically ξ < 0). Let x = (x, y)

T
and u = (u, v)

T
be corresponding points in

distorted and undistorted images expressed with respect to a reference frame
with origin in the center of the image [17]. f is a vector function that maps
points from the distorted image I to its undistorted counterpart Iu:

u = f(x) = (1 + ξxTx)−1x. (1)

The function is bijective and the inverse mapping from I to Iu is given by[18]:

x = f−1(u) = 2(1 +
√
1− 4ξuTu)−1u. (2)

Given that the radius of x is r =
√
xTx, the corresponding undistorted radius is

ru = (1 + ξr2)−1r. (3)

Henceforth, and in order to make the compression undergone by a particular
image more intuitive, the amount of distortion will be quantified by

%RD =
ruM − rM

ruM
× 100 = −ξrM × 100 (4)

with rM being the distance from the center to an image corner (maximum dis-
torted radius) [15].

2.2 Kanade-Lucas-Tomasi Algorithm

Feature tracking between temporally adjacent images is typically formulated as
a non-linear optimization problem whose cost function is the sum of the squared
error between a template T and incoming images I. The goal is to compute

ε =
∑

x∈N

[
I(w(x;p)) − T(x)

]2
, (5)

where p denotes the components of the image warping function w, and N de-
notes the integration region of a feature. Lucas and Kanade proposed to optimize
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Eq. 5 by assuming that a current p motion vector is known and iteratively solve
for δp increments on the warp parameters, with Eq. 5 begin approximated by

ε =
∑

x∈N

[
I(w(x;p+ δp))−T(x)

]2
≈

∑

x∈N

[
I(w(x;p))+∇I∂w

∂p
δp−T(x)

]2
. (6)

Differentiating ε with respect to δp, and after some algebraic manipulations, a
closed-form solution for δp can be obtained:

δp = H−1
∑

x∈N

[
∇I∂w(x;p)

∂p

]T(
T(x)− I(w(x;p))

)
, (7)

with H =
∑

x∈N
[
∇I∂w(x;p)

∂p

]T[
∇I∂w(x;p)

∂p

]
being a 1st order approximation of

the Hessian matrix, and the parameter vector being additively updated pi+1 ←
pi + δp at each iteration i. This method is also known as forward additive KLT
[5, 6] and it requires to re-compute H at each iteration due its dependence with
incoming image I.

For efficiently solving Eq. 6, Baker and Matthews [5, 6] proposed an inverse
compositional alignment method that starts by switching the roles of T and I

ε =
∑

x∈N

[
I(w(x;p))− T(w(x; δp))

]2
≈

∑

x∈N

[
I(w(x;p))− T(w(x;0))−∇T

∂w

∂p
δp

]2
.

(8)

The increments δp are then computed as:

δp = H−1
∑

x∈N

[
∇T∂w(x;0)

∂p

]T(
I(w(x;p)) − T(x)

)
, (9)

with H =
∑

x∈N
[
∇T∂w(x;0)

∂p

]T[
∇T∂w(x;0)

∂p

]
, and w(x;0) being the identity

warp. H is computed using the template gradients and, therefore, it is con-
stant during the registration procedure, leading to a significant computational
improvement when compared with the forward additive KLT. Finally, the warp
parameters are updated as follows:

w(x;pi+1) ← w(x;pi) ◦w−1(x; δp). (10)

Although the update rule of the inverse compositional alignment is computation-
ally more costly than a simple additive rule, Baker and Matthews [5, 6] show that
the overall computational complexity of the inverse formulation is significantly
lower than that of the forward additive KLT.

The motion model w used for feature tracking determines the degree of image
deformation tolerated during the registration process. The original contribution
of Lucas and Kanade [1, 2] assumes that the neighborhood N around a feature
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point x moves uniformly and, therefore, the authors model the image motion us-
ing a simple translation model. However, the deformation that it tolerates is not
sufficient when the tracked image region is large, or the video sequence under-
goes considerable changes in scale, rotation and viewpoint. In these situations,
the affine motion model [5, 6, 8] is typically adopted

w(x;p) = (I+ A)x + t, (11)

where the parameter vector is p = (a1, .., a4, tx, ty)
T
, I is a 2×2 identity matrix,

and A =

(
a1 a2
a3 a4

)
. In this paper, we propose an extension to the affine motion

model that accounts for the RD effect arising in cameras equipped with wide
FoV lenses.

For long-term feature tracking, the template update is a critical step to keep
plausible tracks. An inherent problem to the template update step is the lo-
calization drift introduced whenever the template is updated [19]. High-order
motion models tend to be more flexible in terms of the deformation tolerated
during the registration process, with the templates being updated less frequently
[19, 5, 6]. We carefully choose the frequency of the template update using the
squared error of Eq. 5, as detailed in [8].

Despite of the warp complexity, the registration process may fail to converge
when the initialization of the warp parameters p0 is not close enough to the
current motion parameters, i.e. p0 is not in the convergence region C where the
1st order approximation of Eq. 8 is valid [5, 6]. To attenuate this effect we adopt
a pyramidal tracking framework [7], where several image resolutions are built by
downsampling the image by factors of 2. A L-levels pyramidal tracking algorithm
proceeds from the coarse to the finest pyramid level, with the coarsest feature
position being given by xL = 2−Lx. The registration proceed at each pyramid
level, with the result begin propagated to next level as xL−1 = 2xL (for further
details see [7]). Since the integration region N is kept constant across scales,
the pyramidal framework greatly improves the probability of p0 belonging to C,
which by consequence increases the tracking success.

3 RD-KLT: Feature Tracking in Radial Distorted Images

In this section, we derive an extension to the affine motion model for cameras
equipped with wide FoV lenses. It is proved that the derived RD model met
the necessary requirements to be used in the inverse compositional KLT frame-
work whenever the distortion calibration is known. As it will be discussed, this
warping function does not allow to estimate the ξ during tracking due to its
particular structure. Therefore, we also propose an approximation to the ideal
theoretical model that enables to accurately estimate the distortion coefficient,
at a negligible lost of tracking performance.
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3.1 Mapping Composition for Deriving an RD Compensated
Motion Model

Let’s consider the standard situation where two undistorted images Iu and Iu
′

that are related by a generic motion function w such that Iu(u) = Iu
′
(w(u;p)).

We now consider that Iu and Iu
′
are the warping result of the original distorted

images I and I′. Using the distortion function of Eq. 1, we know that correspond-
ing undistorted and distorted coordinates are related by u = f(x), so we can
re-write the mapping relation as Iu(u) = Iu

′
(w(f(x);p)). Since Iu(u) = I(x),

with x = f−1(u), we can finally write directly the mapping relation between
two distorted image signals as I(x) = I′(f−1(w(f(x);p))). Therefore, the RD
compensated motion model that related the two distorted image signals can be
expressed using the following function composition:

x′ = vξ(x;p) =
(
f−1 ◦w ◦ f

)
(x;p). (12)

3.2 cRD-KLT - Calibrated RD-KLT

In case the ξ coefficient is known in advance, the parameter vector p of vξ

comprises the same parameters of the original motion of Eq. 11. The efficient
inverse compositional KLT algorithm requires that the proposed set of warps
form a group with respect to composition [5, 6]. The RD compensated motion
model verifies the necessary group requirements:

(i) Identity - vξ(x;0) = x
(ii) Invertibility - vξ(x;p)

−1 = (f−1 ◦ v ◦ f)−1 = f−1 ◦ v−1 ◦ f
(iii) Composition - vξ(x;p) ◦ vξ(x; δp) = f−1 ◦w(x;p) ◦w(x; δp) ◦ f
It can be observed that the function composition to obtain the RD compensated
model can be applied to any family of warps w that form group. By replacing
our motion model vξ in the inverse composition KLT, it is straightforward to
obtain the closed-form solution for δp, which is given by:

δp = H−1
d

∑

x∈N

[
∇T∂vξ(x;0)

∂p

]T(
I(vξ(x;p)) − T(x)

)
(13)

with Hd =
∑

x∈N
[
∇T∂vξ(x;0)

∂δp

]T[
∇T∂vξ(x;0)

∂p

]
, and the Jacobian

∂vξ(x;0)
∂p being

evaluated at p = 0. Finally, the motion parameters are updated at each iteration
as follows:

vξ(x;p
i+1)← vξ(x;p

i) ◦ v−1
ξ (x; δp) = f−1 ◦w(x;pi) ◦w−1(x; δp) ◦ f . (14)

3.3 Difficulties in Extending cRD-KLT to Handle Non-calibrated
Images

The cRD-KLT considers a warping function vξ that compensates the radial
distortion, applies the motion model, and then restores the non-linear image
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deformation (see Fig. 1(a)). As it will be shown in the evaluation section, this
approach is highly effective for performing image alignment of local patches in
cameras with lens distortion, improving substantially the tracking accuracy and
repeatability if compared with standard KLT. However, it has the drawback of
requiring prior knowledge of the distortion parameter ξ, which implies a partial
camera calibration. A strategy to overcome this limitation is to use the differ-
ential image alignment to estimate both the motion and the image distortion.
This passes by extending the vector p of model parameters in order to consider
ξ as a free variable in addition to the motion variables. In this case the warping
function becomes v(x; q) with the difference with respect to vξ(x,p) being only
the vector q = (p, ξ) of free parameters to be estimated.

Unfortunately, the model v(x; q) cannot be used for image registration using
inverse compositional alignment. The problem is that any vector of parameters
q of the form q = (0, ξ) is a null element that turns the warping function into
the identity mapping

v(x; (0, ξ)) = x, ∀ξ.
This means that the Jacobian of v(x; q) evaluated for any q such that p = 0
is singular and, consequently, Hd is non-invertible precluding the use of inverse
compositional alignment. An alternative would be to use the forward additive
framework, since the only requirement needed is the differentiability of the warp
with respect to the motion parameters [5, 6]. Unfortunately, the computational
complexity of this approach is significantly higher than that of the efficient in-
verse formulation. Instead of using the forward additive registration, the next
section proposes to approximate the warp v(x; q) by assuming that the distor-
tion is locally linear in a small neighborhood around the feature point.

3.4 uRD-KLT - Uncalibrated RD-KLT

This section shows that it is possible to avoid the singular Jacobian issue by re-
placing the v(x;q) by a suitable approximation of the desired composed warping.
As it will be experimentally shown, this approximation has minimum impact in
terms of error in image registration, enabling to use inverse compositional align-
ment to estimate both motion and distortion in an accurate and robust manner.

Let’s assume that in a small neighborhoodN around a feature c the distortion
effect can be approximated by

f(x) ≈ gc(x) = (1 + ξcTc)−1x. (15)

Remark that by replacing the radius of each point x by the radius of the cen-
tral point c of the window N the non-linear function f becomes a projective
transformation gc(x) as shown in Fig. 1(b). This is a perfectly plausible approx-
imation whenever the distance between the feature point c and the center of
the image is substantially larger than the size of the neighborhood N . In the
situations where this is not verified, the effect of distortion is negligible, and the
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O 

x

u
u'

x'=( f-1ο w ο  f )(x;p)  

f(x) f-1(u)

w(u;p)

ξ

(a) vξ

O 

x

u
u'

x'=( f-1ο w ο  gc )(x;p)  

gc(x) f-1(u)

w(u;p)

(b) vc

vξ

vc
(c) vξ − vc

Fig. 1. Schematic difference between the (a) accurate and the (b) approximate RD
compensated motion model. The black dashed lines in (b) represent the patches us-
ing the accurate RD model. (c) shows the difference between the accurate and the
approximate models for a corner patch of an image with high distortion.

approximation does not introduce significant error. Replacing f by gc in Eq. 12
yields the following approximation to the ideal theoretical model (see Fig.1(b)):

vc(x;q) =
(
f−1 ◦w ◦ gc

)
(x;q). (16)

In this case, the warp has single null element, and the Jacobian is not singular
when evaluated in q = 0, leading to an invertible Hd. Remark that replacing
f−1 by g−1

c would again lead to a motion model with singular Jacobian and
non-invertible Hd.

Estimation of the Warp Parameters: The next step concerns the estimation
of the increments δq of parameter vector q . Due to the global nature of the
RD, the distortion coefficient ξ must be simultaneously estimated for the N
features being tracked, while keeping each the vector p specific for each feature.
Recall that we want to compute the increment δq using the inverse compositional
algorithm, through the following closed-form solution:

δq = H−1
d

∑

N

[
∇T

∂vc(x;0)

∂p

]T(
I(vc(x;q))− T(x)

)
. (17)

For each image feature, this equation can be re-written as

Bn×nδqn×1 = en×1, (18)

where Bn×n = Hd =
(
Hn×n−1 hn×1

)
, and n is the number of parameters of q.

By performing a proper block-by-block stacking, the observation of all the N
tracked features lead to the following system:

⎛

⎜
⎜
⎜
⎝

H1
(n×n−1) 0 ... 0 h1

(n×1)

0 H2
(n×n−1) h2

(n×1)

...
. . .

...
0 . . . 0 HN

(n×n−1) h
N
(n×1)

⎞

⎟
⎟
⎟
⎠

︸ ︷︷ ︸
BnN×(n−1)N+1

⎛

⎜
⎜
⎜
⎜
⎜
⎝

δp1

δp2

...
δpN

δξ

⎞

⎟
⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸
δqt

(n−1)N+1×1

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

e1

e2

...

eN

⎞

⎟
⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸
et
nN×1

(19)
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These systems of linear equations are typically solved through the computation
of the pseudo-inverse δqt = B†et = (BTB)−1BTet. However, the explicit compu-
tation of the pseudo-inverse is computational expensive and subject to residual
errors [20]. We solve the system of linear equations using the gaussian elimi-
nation method [20]. Since we have an over-constrained problem, we compute
BTBδqt = BTet. Through Cholesky decomposition, we factorize BTB = LTL,
with L being an upper triangular matrix. The updates δqt are computed after
solving an upper and lower triangular system, which are fast to compute [20].

Update of the Warp Parameters: The final step of the algorithm concerns
the update the current parameters estimative. In theory [5, 6], the incremental
warp vc(x; δq) must be composed with the current warp estimative. We relax
this composition requirement and use an approximate relation to update the
warp parameters. We start from the relation given in [5, 6]

vc(x;q
i+1)← vc(x;q

i) ◦ v−1
c (x; δq) ≡ vc(vc(x;−δq);qi). (20)

Using this equation, we can formulate the parameters update as an additive
step through the computation of a Jacobian matrix Jq that maps the inverse
compositional increment δq to its additive first-order equivalent Jqδq [5, 6],
with the warp parameters being additively updated as qi+1 ← qi + Jqδq.

4 Experimental Validation

A tracking algorithm must be able to perform long-term feature tracking with
high pixel accuracy [16]. Typically, the tracking performance is benchmarked
through the evaluation of the tracking repeatability and the sub-pixel accuracy
achieved during the image registration process [16]. This section compares the
standard KLT algorithm against the proposed cRD-KLT and uRD-KLT trackers
in sequences with different amounts of RD. All the trackers are directly used in
the images with distortion, without ant type of rectification or pre-processing.We
perform experiences in sequences of planar scenes, where it is possible to obtain
ground truth to assess repeatability [16], and scenes with depth variation, where
we evaluate the accuracy of Structure-from-Motion [15] . In addition, we describe
an experience in self-calibration using the uRD-KLT tracker that can be helpful
in practical surveillance scenarios. The three methods under evaluation were
implemented using the affine motion model and a squared integration window
N of 11 × 11 inside a pyramidal image registration with 4 resolution levels.
Since our main goal is to perform feature (position) tracking rather than the
template itself, we monitor the health of the template through the evaluation
of the squared error of Eq. 5, with a new template being captured at the last
feature position whenever required.

4.1 Repeatability Analysis in Planar Scenes

This experiment evaluates the reliability of the feature tracking algorithms us-
ing images of planar scenes. This means that every 2 images are related by an
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homography that is used to verify the correctness and localization accuracy of
the tracked features. For the computation of the ground truth homographies, we
apply a robust estimation algorithm [21] that uses hundreds of correspondences
obtained with sRD-SIFT, which provide precisely located features in radial dis-
torted images [15]. The trackers are tested using four levels of distortion (0%,
10%, 25% and 45 %), with each level comprising 3 types of motion: slow trans-
lation, fast translation and generic camera motion.

We start by extracting 150 features using the Shi-Tomasi detection criteria
[2], and track them along the 600 frames of each sequence. The reliability of the
tracks are measured using the following metrics:

(i) Repeatability measures the ratio of correct points in the frame f using the

ground truth homography Hf
1 that provides the mapping from view 1 to f .

The repeatability is measured as:

R =
#(||xf − Hf

1x1|| < D)

#(Hf
1x1)

, (21)

where || · || denotes the euclidean distance and D = 2 pixels.

(ii) The Sub-pixel accuracy is measured for the points N that are reliably
tracked. At frame f , we evaluate the RMS of the euclidean distance be-
tween consecutive feature positions as:

Serr =

√∑
(||xf − Hf

1x1||)2
N

; (22)

(iii) The Photometric error Aerr is measured as the RMS of the squared error
of Eq. 5 of the N tracked features.

We also include the computational time (FPS - frame per second) of the different
methods for tracking the 150 features and the RD estimation for each level of
distortion obtained using the uRD-KLT. The image sequences presenting distor-
tion are calibrated using the Single Image Calibration (SIC) proposed in [22],
which provides the ground truth for the distortion estimation.

Table 1 shows the repeatability results obtained in the planar image sequences.
The conventional KLT tracker performs well in low distortion sequences, or when
the motion between frames is smooth. In such cases, the distortion changes
smoothly between two points locations, and the template update process enables
to keep plausible tracks. However, when more complex motions, such as fast
translation or affine camera motions are considered, the distortion changes more
abruptly between two feature locations, precluding an effective performance of
the registration process with direct consequences in the tracking results. As we
increase the distortion and the complexity of the motion, the KLT starts loosing
performance, which proves the importance of compensating distortion during
tracking.

The compensation of distortion during registration, either by knowing RD
calibration, or by performing it on-the-fly, brings improvements in all the eval-
uation parameters. The deformation tolerated by the RD compensated motion
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Table 1. Performance evaluation in the planar scenes. The results are organized by
type of motion (vertically) and corresponding amount of distortion (horizontally). The
results presented are the RMS of the evaluation metric computed over the 600 frames.
The distortion estimation and computational time are averaged over the 3 sequences
with the same RD. The computational times were measured in a Intel Core i7-2600
CPU @3.4GHz.

Slow Trans Fast Trans Affine Motion

%RD FPS R Serr Aerr R Serr Aerr R Serr Aerr

0
%

KLT — 6.11 0.98 0.21 0.014 0.95 0.27 0.021 0.90 0.35 0.032

uRD-KLT 0.6±1.4 5.32 0.98 0.23 0.018 0.95 0.31 0.028 0.90 0.39 0.035

1
0
%

KLT — 6.09 0.98 0.38 0.038 0.92 0.58 0.055 0.90 0.59 0.045

cRD-KLT 9.8 6.03 0.98 0.30 0.021 0.98 0.47 0.028 0.98 0.43 0.027

uRD-KLT 9.4±0.48 5.28 0.98 0.32 0.021 0.98 0.47 0.028 0.98 0.43 0.027

2
5
%

KLT — 6.07 0.98 0.42 0.049 0.88 0.56 0.047 0.69 0.85 0.051

cRD-KLT 24.7 6.02 0.99 0.33 0.026 0.98 0.43 0.026 0.90 0.55 0.027

uRD-KLT 24.5±1.3 5.24 0.99 0.33 0.026 0.98 0.45 0.027 0.90 0.58 0.034

4
5
%

KLT — 5.95 0.87 0.81 0.051 0.76 1.15 0.065 0.64 1.27 0.076

cRD-KLT 44.3 5.95 0.95 0.56 0.029 0.91 0.70 0.038 0.84 0.65 0.047

uRD-KLT 44.2 ± 2.9 5.19 0.95 0.58 0.031 0.89 0.75 0.041 0.84 0.66 0.049

models allow to compensate the pernicious effects of distortion, which in practice
is translated in accurate estimations of the feature motion parameters. This is
visible in the lower appearance error and spatial accuracy achieved by the RD-
KLT trackers. Since the registration is more accurate, the appearance error is
lower, and the template update is less frequent, minimizing the inherent error in
localization introduced by this process. It can also be observed that uRD-KLT
performs slightly worse than the cRD-KLT algorithm in the sequences with high
distortion and more complex motion. The differences in sub-pixel precision and
photometric error are due to the use of the approximated RD motion model,
which becomes slightly more imprecise as we increase distortion. Nevertheless,
the difference is almost marginal without practical influence in the repeatability.

The 3 methods were implemented in Matlab/MEX files. The C-MEX files in-
clude operations that are transversal to the 3 methods, namely the interpolation
routines, image gradient computation and image pyramid building. The com-
putational time of the cRD-KLT (≈ 1.11 milliseconds (ms)/feature) is slightly
higher than the conventional KLT (≈ 1.10 ms/feature). The small differences
are explained by the different motion models used, which in our case is a non-
linear mapping function that requires a little more computation. The uRD-KLT
(≈ 1.27 ms/feature) presents a computational overhead of≈ 15%, which is a con-
sequence of performing the RD estimation globally using Eq. 19. Nevertheless, it
has the obvious advantage of not requiring distortion calibration for performing
efficient feature tracking.
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Fig. 2. SfM experiments with a 25% distortion sequence and with a endoscopic se-
quence with 35% of RD. It can be observed that the RD-KLT tracker permit to long-
term feature tracking (b) at a high precision accucary (c). (d) compares the distortion
estimation form uRD-KLT with the explicit calibration results [22].

4.2 Structure-from-Motion (SfM)

Tracking features have been successfully applied to camera motion estimation
and 3D scene reconstruction [21], with accurate point correspondence across
frames being of key importance [21]. In this paper, the motion estimation is
carried by a sequential SfM pipeline that uses as input the tracked points ob-
tained by the 3 competing tracking methods. The objective is to recover the
motion of two sparse sequences of 45 frames (sampled uniformly from sequences
of 900 frames). The first sequence is obtained using a mini-lens that presents RD
≈ 25%, and the second sequence is captured using a boroscope with RD ≈ 35%,
commonly used in medical endoscopy and industrial inspection.

The SfM pipeline iteratively adds new consecutive frames with a 5-point
RANSAC initialization (using 2 views) [23], a scale factor adjustment (using
3 views) [21], and a final refinement with a sliding window bundle adjustment.
Figure 2 shows that the motion estimation results. It can be observed that the
RD-KLT trackers provide a lower re-projection error meaning that the extra
parameter in the RD motion models permits a better convergence of the regis-
tration process in images presenting significant amounts of distortion. Finally,
it can be seen in Fig. 2(d) that the distortion is robustly estimated, with the
results being close to the ones obtained with the explicit calibration from [22].

4.3 RD Calibration for Surveillance Applications

Surveillance systems largely benefit with the usage of wide-angle lens that, due
their wide FoV, enable a complete visual coverage of the environments [11]. In
this final experiment, we show that using the uRD-KLT can be advantageous
for estimating the distortion of a steady camera using the moving objects of
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RD = 25.9% RD = 24.4%

Frame 91- No motion detectedFrame 32 Frame 166

Fig. 3. Tracking experiment in a surveillance scenario from CAVIAR project. Distor-
tion estimation is performed when significant motion is detected in the environment.
Image inside the same bounding box concern the same instant of time. In each bound-
ing box, the tracking results are shown on the left image, and the distortion estimation
on the right image.

the scene. We test the algorithm using a sequence of the CAVIAR project1, for
which the RD calibration is unknown. We detect corner points at each frame
sequence and initialize the uRD-KLT. If the points do not move in the next two
frames, we re-initialize the tracker. The tracking results can be observed in Fig.
3. In each pair of bounded images, the original image (left image) shows the
tracking results and the correspondent rectified image is shown on the right. In
the middle block of images, the RD distortion estimated is negligible since no
motion is detected and, therefore, the registration framework does not have any
clues about how the local patches are deformed under the action of distortion.

5 Conclusions

This article presented for the first time an extension to the conventional KLT
algorithm for point feature tracking in images with radial distortion. This was
achieved by modifying the warping functions in order to account for both the
motion and the non-linear image deformation arising in cameras with wide-
angle lenses. Comparative experiments show that our RD-KLT tracker performs
almost as well as the standard KLT tracker in sequences of correct perspective
images, and achieves substantially better results in sequences with any amount of
non-linear distortion. This is accomplished with minimum computational over-
head. Such improvements in tracking are of strong importance for applications
and domains that employ cameras equipped with mini-lens, fish-eye lenses, or
boroscopes (e.g. robotics, medical applications, etc). In addition, we show for the
first time that it is possible to accurately calibrate the image distortion while
tracking low-level point features.
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Abstract. This paper describes an innovative approach to estimate mo-
tion from image observations of divergence-free flows. Unlike most state-
of-the-art methods, which only minimize the divergence of the motion
field, our approach utilizes the vorticity-velocity formalism in order to
construct a motion field in the subspace of divergence free functions.
A 4DVAR-like image assimilation method is used to generate an esti-
mate of the vorticity field given image observations. Given that vorticity
estimate, the motion is obtained solving the Poisson equation. Results
are illustrated on synthetic image observations and compared to those
obtained with state-of-the-art methods, in order to quantify the improve-
ments brought by the presented approach. The method is then applied to
ocean satellite data to demonstrate its performance on the real images.

1 Introduction

A fluid is called incompressible if its velocity field has zero divergence. A fluid
is said incompressible if its motion is characterised by a null divergence. For
instance, atmosphere and ocean are such incompressible fluids that are daily
observed by a large number of satellites providing 2D observations of these sys-
tems. The 2D incompressible hypothesis still remains a good approximation for
ocean satellite sequences if no or small vertical motion occurs (no upwelling and
downwelling). This is the geostrophic assumption. Introducing the divergence-
free heuristics for motion estimation methods is then a promising issue for such
data sequences.

If the divergence-free assumption is assumed to be valid on an image sequence,
it should be implemented through the whole computational process. However, in
most of image processing methods, the velocity field w is estimated by solving a
brightness transport equation with additional regularisation terms. In order to
satisfy the divergence-free hypothesis, these terms constrain the divergence to be
as small as possible, but its value is not zero. In the data assimilation framework,
motion is estimated as a compromise between heuristics on the dynamics of
w and the image observations [1]. If the motion field is divergence-free, it is
then only characterised by its vorticity ξ, according to the Helmholtz orthogonal
decomposition [2]. In this paper, we then propose to replace the heuristics on the
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dynamics of w by their equivalent on the vorticity ξ. As temporal integration
of vorticity requires an additional knowledge of the velocity field, an algebraic
method is described, based the projection of vorticity on a reduced basis, that
converts vorticity to velocity. The divergence-free motion estimation problem is
then formalised as a cost function to be minimised. Its gradient is computed
from an adjoint variable [3]. The output is the vorticity field computed over
the whole assimilation window, corresponding to the input image sequence. The
motion field is obtained from that vorticity field solving the Poisson equation.

During the last two decades, many authors investigated the issue of fluid flow
motion estimation, see for instance [4] for a survey. On one hand, transport
brightness equations, based on fluid flow laws, have been proposed as alterna-
tives to the famous brightness constancy assumption [5]. For instance, a 2D
brightness transport equation may be derived from the 3D continuity equation
in radiography fluid flow imagery [6,7]. The 2D continuity equation has also
been proposed due to its robustness to rotational motion [8,9]. For Sea Surface
Temperature (SST) oceanographic images, a 2D brightness transport equation
is derived from a 3D model of ocean surface temperature [10]. On another hand,
regularisation techniques, dedicated to fluid motion estimation, have been in-
tensively studied. On 2D image sequences, a notable result is due to Suter [11],
which proposed to restrain the divergence and the curl of w or their variations
to be as small as possible. Each term having its own weight value, the user
decides to constrain the divergence or/and the vorticity to be either low value
or spatially regular. Suter’s solution is computed with a variational technique
and a B-spline decomposition. Additionally, Isambert et al. [12] proposed a B-
spline multi-scale approach and a partition of unity to define control points,
used to derive the solution. A multi-resolution div-curl regularisation combin-
ing Markov Random Field and Gauss-Seidel relaxation is described in [13]. The
div-curl regularisation has also been used for 3D images of fluid flow [14,15], on
which the incompressible assumption is verified. In [14], 3D velocity is computed
from 3D Cine CT images using a L2 regularisation under divergence-free con-
straint. In [15], motion is computed with a 3D div-curl regularisation function
and stochastic models. To constrain motion having exact null divergence, alter-
natives to div-curl regularisation are proposed in the literature. Ruhnau et al.,
in [16], solves the optical flow equation under the constraints of Stokes equation
and null divergence. Amimi, in [6], characterises the divergence-free motion as
deriving from a stream function that verifies the optical flow equation.

More recently, variational data assimilation methods were applied to estimate
motion using a dynamic equation on the velocity field. Ruhnau et al., in [17],
define a filtering method, based on an evolution equation of vorticity. The vor-
ticity being initialised with a null value at T = 0, the method minimises, at each
observation date, an energy function under the constraint of null divergence.
This function includes three terms: optical flow equation, spatial regularity of
vorticity, and coherency with the evolution equation of vorticity. The authors
explain that estimations are reliable after around ten observations, which makes
the method not usable for shorter sequences. In [18], velocities and temperature
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are computed from Shallow-Water and transport equations and temperature
values are compared to SST image acquisitions. The velocity field is regularised
with a second order div-curl norm. In [19], vorticity and divergence are both
components of the state vector. The vorticity dynamics is described by a 2D
approximation of the Navier-Stokes equations, that requires the simultaneous
knowledge of velocity and vorticity. The divergence is supposed to be function
of a Gaussian random variable and the authors use the heat equation to describe
its dynamics. The computation of motion from vorticity and divergence is then
performed in the Fourier domain using the Biot-Savart law. The comparison
of the state vector with the image observations is achieved by the optical flow
equation. In Papadakis et al. [20], a pure divergence-free model is defined for
periodic motion field: motion is characterised by its vorticity value, which is the
only component of the state vector, and the 2D Navier-Stokes equations provide
the dynamic model. An error term on the dynamics is considered as a control of
the optimisation problem. Images are assimilated using the optical flow equation
as observation equation. The underlying assumption is that motion is constant
between two consecutive acquisitions, which is however not coherent with the
dynamic model.

This paper describes a divergence-free motion estimation approach, based on
the Euler equations, and relying on an algebraic method to derive the motion
vector from its vorticity value. The state vector X includes the vorticity value ξ

and a pseudo-image Is: X =
(
ξ Is

)T
. Is is supposed to have the same temporal

evolution as the studied image sequence. In the paper, the heuristics of trans-
port of grey level values by the motion field is applied. During the assimilation
process, values of Is are compared to image observations in order to constrain
the motion estimation process. The paper will discuss the impact of including
the pseudo-image Is in the state vector on the quality of results. The assump-
tion of Lagrangian constancy for w is used, from which an evolution equation of
vorticity ξ is derived.

Section 2 describes the divergence-free image model used for motion estima-
tion on an image sequence. As the evolution equations involve the velocity w,
the algebraic method that computes w from its vorticity ξ is described. Section 3
explains how the solution is obtained by minimising a cost function with a strong
4D-Var (for a perfect model with no error on the dynamics) data assimilation
method. Section 4 details the numerical aspects required for an effective imple-
mentation by interested Readers. Section 5 quantifies results on synthetic data
and discusses the estimation obtained on oceanographic satellite data. Compar-
isons with state-of-the-art methods are provided, that justify the interest of our
approach.

2 Problem Statement

This section describes the divergence-free model, that represents motion on an
image sequence.

Let us denote Ω × [0, tN ] the bounded space-time domain on which images,
vorticity and motion fields are defined.
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2.1 Divergence-Free Model

Vorticity characterises a rotational motion while divergence characterises sinks

and sources in a flow. 2D motion w =
(
u v

)T
is described by its vorticity,

ξ =
∂v

∂x
− ∂u

∂y
, under the hypothesis of null divergence [2]. ξ is chosen as the first

component of the state vector X of the model. Deriving the evolution law for
ξ requires heuristics on the velocity w. The Lagrangian constancy hypothesis,
dw

dt
= 0, is considered in the paper. It can be expanded as:

∂w

∂t
+ (w.∇)w = 0:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= 0 (1)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= 0 (2)

Let us compute the y-derivative of Eq. (1), subtract it from the x-derivative of

Eq. (2), and replace the quantity
∂v

∂x
− ∂u

∂y
by ξ, we obtain:

∂ξ

∂t
+ u

∂ξ

∂x
+ v

∂ξ

∂y
+ ξ

(
∂u

∂x
+

∂v

∂y

)
= 0 (3)

that is rewritten in a conservative form as:

∂ξ

∂t
+∇.(ξw) = 0 (4)

The pseudo-image Is is transported by motion with the same heuristics as the
image sequence: this is the well known optical flow constraint equation [5], ex-
pressed as:

∂Is
∂t

+∇Is.w = 0 (5)

and rewritten as:
∂Is
∂t

+∇.(Isw) = 0 (6)

under the divergence-free hypothesis.

The model is then defined by the state vector X =
(
ξ Is

)T
and its evolution

system:

∂ξ

∂t
+∇.(ξw) = 0 (7)

∂Is
∂t

+∇.(Isw) = 0 (8)

2.2 Algebraic Computation of w

When the state vector is integrated in time with Eqs. (7,8), from an initial
condition defined at date 0, the knowledge of ξ, Is and w is required at each
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time step. The velocity field w should then be computed from the scalar field
ξ at each time step. A stream function ϕ is first defined as the solution of the
Poisson equation:

−Δϕ = ξ (9)

Then, w is derived from ϕ by:

w =
(

∂ϕ
∂y −∂ϕ

∂x

)T

(10)

In the literature (see for instance in [20]) Eq. (9) is usually solved in the Fourier
domain with pseudo-spectral methods assuming periodic boundary conditions.
However, this periodicity property is inadequate in our context, as there is no
reason having a motion field with periodicity of the image domain’s size. An
algebraic solution of the Poisson equation is proposed in the following, in order
to allow vorticity having Dirichlet boundary conditions with null value [21].
An eigenfunction, φ, of the linear operator −Δ has to verify −Δφ = λφ, where
λ is the corresponding eigenvalue. Explicit solutions of this eigenvalue problem
are the family of bi-periodic functions φn,m(x, y) = sin(πnx) sin(πmy) with the
associated eigenvalues λn,m = π2n2+π2m2. These functions form an orthogonal
basis of a subspace of L2(Ω), space of square-integrable functions defined on Ω.
They have null values on the domain boundary. Let (an,m) be the coefficients of

ξ in the basis (φn,m): ξ(x, y) =
∑

n,m

an,mφn,m(x, y). It comes:

ϕ(x, y) =
∑

n,m

an,m
λn,m

φn,m(x, y) (11)

and eq. (9) is verified:

−Δϕ(x, y) = −
∑

n,m

an,m
λn,m

Δφn,m(x, y) =
∑

n,m

an,m
λn,m

λn,mφn,m(x, y) = ξ (12)

At each date, having knowledge of ξ and (φn,m), the values of (an,m) are first
computed. Then ϕ is derived by Eq. (11), using the (λn,m) values.

3 4D-Var Data Assimilation

In order to determine X, the 4D-Var framework considers a system of three
equations to be solved.
The first equation describes the evolution in time of the state vector X. This is
given by Eqs. (7,8). For sake of simplicity, the system is summarised by intro-
ducing the evolution model M for the state vector X:

∂X

∂t
+M(X) = 0 (13)
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Let us consider having some knowledge on the state vector value at initial date 0,
which is described by a background value Xb(x, y). As this initial condition is
uncertain, the second equation of the system involves an error term εB:

X(x, y, 0) = Xb(x, y) + εB(x, y) (14)

The error εB(x, y) is supposed to be Gaussian with zero-mean and covariance
function B(x, y). If estimating motion from an image sequence, the only know-
ledge that is available is the background of the component Is, that is chosen as
the first image of the sequence: I(x, y, t1). The background equation, Eq. (14),
reduces to:

Is(x, y, 0) = I(x, y, t1) + εBI (x, y) (15)

with BI the part of B related to Is.
The last equation, named observation equation, links the state vector to the

studied image sequence I(x, y, t) : the pseudo-image Is has to be almost identical
to the image observation I(x, y, t). It is expressed as:

Is(x, y, t) = I(x, y, t) + εR(x, y, t) (16)

Image acquisitions are noisy and their underlying dynamics could be different
from the one described by Eq. (8). The observation error, εR, is used to model
these uncertainties. It is supposed Gaussian and characterised by its variance
R(x, y, t).

In order to discuss how Eqs. (13,15,16) are solved by the data assimilation
method, the state vector and its evolution equation are first approximated in
time with an Euler scheme. The space variables x and y are further omitted for
sake of simplicity. Let dt be the time step, the state vector at discrete index k,
0 ≤ k ≤ Nt, is denoted X(k) = X(k × dt). The discrete evolution equation is:

X(k + 1) = X(k)− dtM(X(k)) = Zk(X(k)) (17)

with Zk(X(k)) =

(
ξ(k)− dt∇.(ξ(k)w(ξ(k)))
q(k) − dt∇.(q(k)w(ξ(k)))

)
.

Nobs image observations I(ti) are available from the image sequence, at in-
dexes t1 < · · · < ti < · · · < tNobs

. Looking for X = (X(0), · · · ,X(Nt)) sol-
ving Eqs.(17,15,16) is expressed as a constrained optimisation problem: the cost
function

J(X) =
1

2

∫

Ω

B−1
I (Is(0)− I(t1))

2dxdy

+
1

2

Nobs∑

i=1

∫

Ω

R−1(ti)(Is(ti)− I(ti))
2dxdy

(18)

has to be minimised over Eq. (17). The first term of J comes from Eq. (15) and
the second one from Eq. (16), which is valid at observation indexes ti.
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From Eq. (17), we derive:

X(k) = Zk−1 · · ·Z0[X(0)] (19)

expressing that the state vector at index k only depends on X(0). The con-
strained optimisation problem (18) is then rewritten as an unconstrained one:
minimisation of the cost function:

J(X(0)) =
1

2

∫

Ω

B−1
I (HX(0)− I(t1))

2
dxdy

+
1

2

Nobs∑

i=1

∫

Ω

R−1(ti) (HZti−1 · · ·Z0[X(0)]− I(ti))
2
dxdy

(20)

where H stands for the projection of the state vector X on its component Is.
Using calculus of variation, the gradient of J is obtained from its directional
derivative:

〈∇JX(0), η
〉
=

∫

Ω

(Hη)TB−1
I (HX(0)− I(t1))dxdy

+

Nobs∑

i=1

∫

Ω

(
H

∂Zt1−1

∂X
· · · ∂Z0

∂X
η

)T

×

R−1(ti) (HZti−1 · · ·Z0[X(0)]− I(ti)) dxdy

(21)

Introducing the adjoint operator, defined by 〈Af, g〉 = 〈f,A∗g〉, we factorise η
in the previous equation and obtain:

∇JX(0) = HTB−1
I (HX(0)− I(t1))

+

Nobs∑

i=1

(
∂Z0

∂X

)∗
· · ·

(
∂Zti−1

∂X

)∗
HTR−1(ti)(HZti−1 · · ·Z0[X(0)]− I(ti))

(22)

Let us introduce the auxiliary variable λ defined by:

λ(k) =

(
∂Zk

∂X

)∗
λ(k + 1) +HTR−1(k) (HX(k)− I(k)) , (23)

λ(Nt) = 0, and HTR−1(k)(HX(k) − I(k)) being only taken into account at
observation indexes ti. It can be easily proved that the gradient reduces to:

∇JX(0) = HTB−1
I (HX(0)− I(t1)) + λ(0) (24)

The cost function J is minimised using an iterative steepest descent method.
At each iteration, the forward time integration of X provides the value of J ,
then a backward integration of λ computes λ(0) and provides ∇J . An efficient
solver [22] is used to perform the steepest descent given J and ∇J . Full details
are given in [3] about the derivation of ∇J .
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4 Numerical Implementation

The numerical scheme applied for the forward time integration of X is des-
cribed in the following. As the evolution equations of vorticity and pseudo-image,
Eqs. (7) and (8), are similar, the description is only given for the first one.
A source splitting is first applied. Given a time interval [t1, t2], we integrate
successively the two equations:

∂ξ∗

∂t
+

∂(uξ∗)
∂x

= 0 t ∈ [t1, t2] (25)

∂ξ∗∗

∂t
+

∂(vξ∗∗)
∂y

= 0 t ∈ [t1, t2] (26)

with ξ∗(x, y, t1) = ξ(x, y, t1) and ξ∗∗(x, y, t1) = ξ(x, y, t1). ξ(x, y, t2) is then
approximated as ξ(x, y, t2) = ξ∗∗(x, y, t2) + (ξ∗(x, y, t2)− ξ(x, y, t1)).

Let f be a function defined on the space-time domainΩ×[0, tN ]. Let dx and dy
be the spatial discretisation steps, supposed equal without any loss of generality:
dx = dy. The discrete representation of f is fk

i,j = f(i× dx, j × dx, k × dt) with
1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny and 0 ≤ k ≤ Nt. With these notations, Eqs. (25,26) are
approximated as in [23]:

ξ∗i,j = ξki,j −
dt

dx
((Fu)ki+1,j − (Fu)ki,j) (27)

ξ∗∗i,j = ξki,j −
dt

dx
((F v)ki,j+1 − (F v)ki,j) (28)

with Fu = uξ and F v = vξ. A non-central scheme of order 3 (see [24]) is used
to approximate fluxes (Fu) and (F v) from the discrete representations of ξ and
w. (Fu)ki+1,j is equal to:

uk
i+1,j [ξ

k
i,j + d0(ν

k
i+1,j)(ξ

k
i+1,j − ξki,j)+

d1(ν
k
i+1,j)(ξ

k
i,j − ξki−1,j)]

if uk
i+1,j ≥ 0 (29)

uk
i+1,j [ξ

k
i+1,j + d0(ν

k
i+1,j)(ξ

k
i,j − ξki+1,j)+

d1(ν
k
i+1,j)(ξ

k
i+1,j − ξki+2,j)]

if uk
i+1,j < 0 (30)

with d0(ν) = 1
6 (2 − ν)(1 − ν), d1(ν) = 1

6 (1 − ν)2 and νki+1,j = dt
dx |uk

i+1,j |. The
same formulation is applied for (Fu)ki,j , (F

v)ki,j+1 and (F v)ki,j .
Eqs. (27,28), and those obtained from the approximation of Eq. (8), provide

the discrete operator Zk. The adjoint operator
(
∂Zk

∂X

)∗
is automatically generated

from the discrete operator Zk by an efficient automatic differentiation software
(see [25]).

5 Results

5.1 Synthetic Experiment

The divergence-free model is run from the initial conditions displayed in Figure 1.
This provides a sequence of five synthetic observations (the first one is the initial
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Fig. 1. Pseudo-image, vorticity and motion field at t = 0. Positive vorticity values are
coloured in red and negative one in blue.

Fig. 2. Four observations of the twin experiment

condition and the four others are displayed on Figure 2) and the ground-truth
of vorticity, motion and pseudo-image over the whole temporal window.

An assimilation experiment, named twin experiment, is performed with these
five observations in order to retrieve the vorticity and motion fields. For that
experiment, the background of vorticity is set to zero and the one of pseudo-
image is the first observation. The result of the assimilation process is the state

vector X(k) =
(
ξ(k) Is(k)

)T
and its associated motion vector w(k) over the

same temporal interval than the image sequence. Statistics on the misfit between
motion results and ground truth demonstrate the validity of the method: the
average of the angular error and relative norm error are respectively 0.18◦ and
0.65%.

In order to compare our approach with state-of-the-art methods, a gaussian
noise is added to the original observations, whose standard deviation is around
one third of the image range. This provides the new observations displayed on
Figure 3. In Table 1, the error between the motion result, obtained by data assim-
ilation with these noisy images, and the ground truth is given for our approach
and six state-of-the-art methods. In all cases, the optimal parameter values have
been used. The first five one are image processing methods that rely on a L2

regularisation of motion [5,26] or on a second-order regularisation of the diver-
gence [12,13,11]. We also compare with [20] that applies data assimilation for a
divergence-free model, whose state vector reduces to vorticity, with the optical
flow equation as observation equation. Results demonstrate the improvement
obtained with our formalism.

As the method presented in Papadakis et al. [20] is the most similar to our
approach, it is important to explain why we obtain better results. As said before,
we assume that Nobs image observations I(ti) are available at temporal indexes
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Fig. 3. Noisy observations of the twin experiment

Table 1. Error analysis: misfit between motion results and ground truth

Angular error (in deg.) Relative norm error Endpoint error
Method Mean Std. Dev. Mean (in %) Mean

Horn et al [5] 30.38 29.29 73 0.81
Sun et al [26] 11.31 12.54 60 0.6

Papadakis et al [20] 17.01 28.36 56 0.55
Corpetti et al [13] 7.19 10.78 26 0.26
Isambert et al [12] 6.71 14.35 42 0.37

Suter [11] 6.88 14.28 45 0.45
Our approach 3.32 10.5 5 0.04

t1 < · · · < ti < · · · < tNobs
. At each observation date, our observation equation

is Is(ti) = I(ti) + εR(ti) while [20] uses:

∂I

∂t
(ti) +∇I(ti).w(ti) = εR(ti) (31)

The temporal gradient in Eq. (31) being computed from the image sequence, it
involves at least two frames, for instance ti and ti+1. Then, Eq. (31) implicitly
assumes that motion is constant from ti to ti+1, which is not coherent with the
evolution equation (Navier-Stokes equations) of vorticity and motion used in the
dynamic model. Inconsistency of equations in the data assimilation system has
a negative impact on results.

5.2 Application to Oceanographic SST Satellite Images

The approach has also been applied on satellite data. Observations are images
acquired by NOAA/AVHRR sensors over Black Sea1, and measure the Sea Sur-
face Temperature (SST) with a spatial resolution of about 1 km at nadir. In the
upper layer of the Black Sea, horizontal motion is around 30 cm/s for mesoscale
eddies, while vertical motion is around 10−4 cm/s and can be neglected. The 2D
divergence-free assumption, or geostrophic equilibrium, is then roughly verified
and the method is applicable. For the assimilation experiment, the background

1 Data have been provided by E. Plotnikov and G. Korotaev from the Marine Hy-
drophysical Institute of Sevastopol, Ukraine.
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Fig. 4. Exp. 1. Observations and motion result at t = 1, 3, 5.

Table 2. Correlation between pseudo-images and observations

Date 1 2 3 4 5

Experiment 1 0.96 0.94 0.93 0.94 0.94
Experiment 2 0.99 0.93 0.94 0.97 –

Fig. 5. Exp. 2. Observation and motion results at t = 1, 3.

of vorticity is set to zero and the one of pseudo-image is the first acquisition of
the sequence.

Two experiments are described: the first one with five observations (part is
displayed on Figure 4) and the second one with four observations (see Figure 5).
The result of motion estimation is displayed on the same figures. Visualization
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is made with the coloured representation tool of the Middlebury database2,
superposed with the vector representation. As explained in Section 3, the method
computes the initial condition for velocity and pseudo-image that achieves the
best compromise between dynamics and observations. Therefore, at acquisition
dates, pseudo-images are not exactly equal to the satellite acquisitions. Their
correlation measures if the structures (edges) are correctly assessed, and motion
accurately estimated. Results are given in Table 2: correlation values are close
to 1, proving that the motion retrieved by our method is coherent with the
dynamics underlying the evolution displayed by the observations.

6 Conclusion

The paper describes an image assimilation approach to estimate divergence-free
motion on satellite acquisitions. An image model is designed: its state vector in-
cludes the vorticity and a pseudo-image, whose importance has been discussed in
the results section. Motion is computed from vorticity by an algebraic method.
The divergence value is then exactly null during the whole process. This allows to
avoid Tikhonov regularity constraints on the divergence and the difficulty to cor-
rectly assess the constraint weights. The image assimilation technique performs
a compromise between the image model and the acquired image observations in
order to derive motion from an image sequence.

The method has been quantified on synthetic experiments, applied on satellite
acquisitions and positively compared to well-known state-of-the-art methods.

Three main perspectives are envisaged. First, the cost of the algebraic compu-
tation of w from the vorticity will be decreased by limiting the set of projection
fields to be taken into account for retrieving w from ξ. Second, model reduc-
tion, with a Galerkin projection on a subspace including only these projection
fields, will be applied. This reduction will allow to perform data assimilation
at lower cost, on long temporal assimilation windows. Last, other optimisation
techniques, such as the minimax method are considered in order to also derive
the estimation of uncertainty on the motion result.
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Abstract. In this paper, a robust visual tracking method is proposed to track
an object in dynamic conditions that include motion blur, illumination changes,
pose variations, and occlusions. To cope with these challenges, multiple trackers
with different feature descriptors are utilized, and each of which shows different
level of robustness to certain changes in an object’s appearance. To fuse these
independent trackers, we propose two configurations, tracker selection and inter-
action. The tracker interaction is achieved based on a transition probability matrix
(TPM) in a probabilistic manner. The tracker selection extracts one tracking result
from among multiple tracker outputs by choosing the tracker that has the highest
tracker probability. According to various changes in an object’s appearance, the
TPM and tracker probability are updated in a recursive Bayesian form by evalu-
ating each tracker’s reliability, which is measured by a robust tracker likelihood
function (TLF). When the tracking in each frame is completed, the estimated ob-
ject’s state is obtained and fed into the reference update via the proposed learning
strategy, which retains the robustness and adaptability of the TLF and multiple
trackers. The experimental results demonstrate that our proposed method is ro-
bust in various benchmark scenarios.

Keywords: Visual tracking, multiple features, transition probability matrix, ro-
bust likelihood function, tracker interaction, appearance learning.

1 Introduction

Visual tracking is an important research topic in the field of computer vision because of
its wide application in surveillance, robotics, human-computer interface, vehicle track-
ing, medical imaging, and so on. Due to the characteristics of the various vision appli-
cations, visual tracking is required to deal with practical challenges originating from
dynamic circumstances such as object and/or background illumination changes, object
pose variation, occlusions, and motion blur [22] as shown in Fig. 1. Therefore, many
researchers have discussed how to improve the performance of visual trackers by using
multiple features in an efficient manner [4–15]. Despite decades of research, how to use
multiple features to achieve a robust visual tracking is still an open problem.

In this paper, we propose a new visual tracking framework that fuses multiple track-
ers and features intelligently. We assume that each feature shows strong discriminating
power under the conditions to which it is best suited. For instance, the histogram of
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#120 #297

(a) Pose and illumination changes (�120,297)

#771 #873

(b) Occlusion and motion blur (�771,873)

Fig. 1. Example of our tracking results in tiger1 and liquor seqs

oriented gradients (HOG) is robust to pose variation when the object’s shape is con-
sistent [21]; the Haar-like feature is robust to occlusion since it is part-based [20]; and
the intensity is a good enough feature descriptor when there is small amount of pose
variation and noise, because it contains redundant visual information [3].

In our method, each tracker is implemented with a different feature based on a parti-
cle filter. Our objective is then to integrate these multiple trackers and features to achieve
robust visual tracking in dynamic environment changes. To achieve the efficient fusion,
we propose two configurations, 1) Tracker Selection and 2) Tracker Interaction, in a
Bayesian framework. The tracker selection chooses one of the tracking results from
the multiple trackers according to tracker probability. The tracker that has the highest
tracker probability is selected. The tracker interaction provides communication between
the trackers based on a transition probability matrix (TPM) [2] with a conventional re-
sampling technique [25]. The purpose of the tracker interaction is to prevent unreliable
trackers from drifting. Since each tracker is implemented based on the particle filter, the
interaction between the trackers is represented by three actions: keeping its own sam-
ples, taking samples from other trackers, and giving samples to other trackers. Here, the
role of the TPM is to determine the aforementioned actions of each tracker.

The changes in an object’s appearance affect the reliability of trackers. Hence, we
need to reflect the variations in the reliability of trackers in the tracker fusion by up-
dating the TPM and tracker probability. The update is executed in a recursive Bayesian
form based on a tracker likelihood function (TLF) that measures the current fidelity
of a tracking output from each tracker. We consider two terms, flexibility and stabil-
ity when designing the TLF. This concept is successfully used in [4]. To embody this
concept, we propose using two types of appearance models. The first focuses on flexi-
bility and is computed based on recent object appearances that reflect an instantaneous
object appearance. The second appearance model is obtained by using a reconstructed
appearance based on an appearance dictionary, i.e., a set of representative appearance
templates [16]. Due to the reconstructed appearance, we can measure robustly each
tracker’s reliability, although occlusion or outliers exist in the object’s appearance.
Hence, the latter appearance model is more stable and conservative than the former.
These reference properties are maintained via the proposed learning strategy.

The contributions of this paper are summarized as follows. First, we propose a new
tracking framework to integrate multiple trackers and features that consist of tracker
selection and interaction. Second, a robust TLF is proposed to measure tracker reliabil-
ity robustly even though occlusions or outliers occur in the object’s appearance. Third,
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a simple but effective learning strategy is proposed to maintain the references used in
each tracker and the TLF.

The remainder of the paper is organized as follows. We explain the differences
between our method and related studies in Section 2. The overall framework and its
components are specifically explained in Section 3. Experimental results are shown in
Section 4 with the performance evaluation of the proposed tracking method and com-
parison with the state-of-the-art trackers.

2 Related Work

During the last decade, many elaborate tracking frameworks have been proposed to
achieve robust visual tracking by using multiple features [4–15]. Among these, some of
studies that are closely most related to our approach are briefly explained in this section.
The methods that integrate trackers or features have been proposed using Condensation
[1] or other Bayesian filters; they can be categorized into three kinds: a single tracker
with multiple observations [6–8, 14], and multiple trackers in parallel [9, 10, 15] or in
cascade[11, 12].

In [6–8, 14], the multiple feature observations are fused into a product form within
a single tracker framework, and the reliability of each feature is not measured. How-
ever, measuring the reliability of each feature is important since some features are very
weak to specific changes in an object’s appearance, such as motion blur, illumination
change, etc. In our method, the current fidelity of each tracker with a different feature
is reflected in a fusion process to achieve robustness. Du et al. [11] proposed using
Linked Hidden Markov Models which enable the conjunction of particle filters with
a belief propagation. Thus, trackers can interact with other trackers, and each tracker
is connected with certain trackers in a fixed order to achieve robust performance. The
approach in [12] sequentially estimates the rectangular template, color space, color dis-
tribution, and the contour of the object. Finally, all of the samples are unified to compute
the final estimated state at each frame. The tracker order is critical to the performance
of both methods: if the order is changed, then the performance will be degraded. How-
ever, in our method, each tracker operates in parallel and independently. Hence, other
features or trackers can be added easily if the trackers are formulated within Condensa-
tion or Bayesian filters; moreover, they are fully connected and interact with each other
via the TPM, and therefore, the order is not an issue. In [9, 10], the authors proposed
combining two trackers based on tracker interaction, and fusing the tracking outputs.
In contrast, our method provides a more general multiple tracker integration because
it can fuse more than three trackers without modification. Kwon et al. [15] proposed
using different trackers whose observations are hue, saturation, intensity, and edge, re-
spectively. All trackers operate in parallel and interact with each other. However, it may
seem ad-hoc because the interaction is conducted if the uniformly generated value is
smaller than the selected threshold. In contrast, we try to avoid the heuristic interaction.
In our method, the interaction is conducted based on the TPM which represents how
trackers interact with other trackers; the TPM is recursively updated to cope with the
current fidelity of each tracker, which may change at each frame.
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3 Proposed Visual Tracking Framework

The purpose of visual tracking is to estimate an object motion state xk in image se-
quences. To formulate this problem, we adopt Bayesian filtering in which the posterior
probability p(xk|Zk) is recursively updated as follows:

p(xk|Z1:k) ∝ p(Zk|xk)

∫
p(xk|xk−1)p(xk−1|Z1:k−1)dxk−1, (1)

where the state xk is represented as xk = [pX,k, pY,k, θk, sk, αk, φk]
T where each pa-

rameter denotes (X,Y ) position, rotation angle, scale, aspect ratio, and skew direction,
respectively.Zk denotes an observation. p(xk|xk−1) represents the object motion model
that transits the previous state xk−1 to the new state xk. p(Zk|xk) is the observation
likelihood that measure similarity between the state and the observation.

In our method, we utilize multiple observation models based on multiple features.
Each observation(feature) model is assigned to one single tracker. If we use M features,
M trackers are used totally. To efficiently unify M trackers into one framework, we
consider two configurations, i.e., 1) Tracker Selection and 2) Tracker Interaction based
on the interacting multiple model (IMM) filter [17] and (1) is reformulated as

p(xk|Z1:k) �
M∑
i=1

T
(i)
k p(xk|Z1:k,mk = i)︸ ︷︷ ︸

i-th tracker posterior probability

∝
M∑
i=1

T
(i)
k p(Zk|xk,mk = i)︸ ︷︷ ︸

observation likelihood model

×
∫

p(xk|xk−1,mk = i)︸ ︷︷ ︸
motion model

M∑
j=1

ω
(j,i)
k−1|k−1p(xk−1|Z1:k−1,mk−1 = j)

︸ ︷︷ ︸
interacted prior

dxk−1,
(2)

where mk ∈ {1, ...,M} is a tracker index and each tracker is formulated with the
interacted prior, the motion model, and the observation likelihood. These trackers are
integrated on interaction coefficients ω

(j,i)
k−1|k−1 � P{mk = i|mk−1 = j, Z1:k−1}

expressed in a form of matrix called a transition probability matrix (TPM) Ωk−1 =

[ω
(j,i)
k−1 ], i, j = 1, ...,M . All tracker posterior probabilities are unified with tracker prob-

abilities T (i)
k � P{mk = i|Z1:k} (P{} denotes the discrete probability). Then, from

(2), we can obtain the tracking result x̂k as

x̂k = x̂
(m̂k)
k , m̂k = argmax

i
T

(i)
k ,

x̂
(i)
k = argmax

xk

p(xk|Z1:k,mk = i), i = 1, ...,M,
(3)

where M tracking outputs x̂(i)
k are obtained by the maximum a posteriori estimate from

the posterior probability of each tracker p(xk|Z1:k,mk = i).
To estimate the current object state xk based on (2), we also need to estimate the

TPM Ωk and the selected tracker index mk as shown in Fig. 2. For the practical imple-
mentation, we approximate multiple trackers based on the particle filter and estimate
the object state x̂

(i)
k in 3.1. Since the object appearance and background continuously

changes, the tracker probability and interaction coefficients are adaptively updated by
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(a) Graphical model (b) Tracking procedure

Fig. 2. Left: (a) Graphical model of our method: Hidden(state xk, tracker index mk, TPM Ωk);
Observation (image frame, Zk). Right: (b) Overall procedure of the proposed tracking algorithm

evaluating each tracker reliability measured by the robust TLF in 3.2 and 3.3. After that,
we integrate multiple trackers based on both updated tracker probabilities and the TPM.
We obtain one tracking result according to the tracker probabilities as in (3). The tracker
interaction is conducted based on the updated TPM and the selected tracking result via
the proposed tracker interaction in 3.4. The tracking result is fed into the reference up-
date to reflect changes of the object appearance via the proposed learning strategy in
3.5. The overall procedure of the proposed method is shown in Fig. 2.

3.1 Single Tracker

Each tracker is formulated based on the interacted prior, motion model, and observation
likelihood model as expressed in (2).

Interacted Prior: The interacted prior in (2) is computed based on the TPM via the
proposed interaction method in 3.4.

Motion Model: To achieve a robust state motion transition p(xk|xk−1,mk = i), we
simply adopt two motion models (zero- and first-order motion model) in terms of (X,Y)
translation. The zero-order motion is identical to the random walk motion. The first-
order motion utilizes the prior information of (X,Y) translation that is simply obtained
by computing the difference between estimated X and Y positions at k − 1 and k − 2.
More efficient usage of multiple motion models for visual tracking is referred to [23].

Observation Likelihood Model: A different feature is used to represent the object
appearance in each tracker. The object appearance is extracted from the image as

Z
(i)
k = V ec(F (i)(I(xk))) + v

(i)
k , i = 1, ...,M (4)

where V ec() is vectorization; I(xk) denotes an image template based on xk; F (i)() is
the i-th feature extraction; v(i)k is unknown noise. To deal with this high dimensional-
ity of appearance, we use the incremental PCA subspace learning method [3]. In the
incremental PCA based observation likelihood model, we compute the mean and prin-
cipal eigenvectors and incrementally update them to cope with the object appearance
changes as proposed in 3.5. Based on the template mean Ō(i) and L principal eigen-
vectors g

(i)
l , l = 1, ..., L, the observation likelihood based on i-th tracker is given as

p(Zk|xk,mk = i) = exp(−ρT ‖Z(i)
k −∑

l clg
(i)
l ‖2),

cl = (g
(i)
l )T(Z

(i)
k − Ō(i)), l = 1, ..., L,

(5)
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where ρT is the control parameter and cl is the coefficient from the projection of the
template mean to each principal eigenvector.

Particle Approximation: The i-th tracker posterior probability p(xk|Z1:k,mk = i) is

approximated as a set of N samples as {x(i)
q,k, w

(i)
q,k}Nq=1 where x

(i)
q,k and w

(i)
q,k are the

state sample and sample weight, respectively. Then, each tracker estimates the object
state x̂(i)

k in (3). As a result, we obtain M candidate states (i.e., x̂(i)
k , i = 1, ...,M ) from

M trackers.
In the next subsection, the tracker reliabilities are measured based on the M candi-

date states by using the robust TLF.

3.2 Robust Tracker Likelihood Function (TLF) on Flexibility and Stability

We can compute the normalized j-th feature appearance z
(i,j)
k with respect to i-th

tracker output as

z
(i,j)
k =

V ec(F (j)(I(x̂
(i)
k

)))

‖V ec(F (j)(I(x̂
(i)
k )))‖ , i, j = 1, ...,M (6)

where z
(i,j)
k ∈ Rd(j)

and d(j) is the dimension of j-th feature. In this section, we mea-
sure these appearances based on the i-th tracker output to analyze the tracker reliability
and adaptively reflect the measured reliability in the tracker probability and TPM up-
date in 3.3. This measure is called the tracker likelihood function (TLF) in (8) in which
we consider two appearance models to manage the abrupt appearance changes of the
object as well as the occlusion or outliers.

First, we assume that the recent object appearance is similar to the current object
appearance. We call this reference template an “instantaneous reference” made of the
recent object appearance and denote it as f (j)

I,k where j is the feature index. In this paper,
we obtain this reference by simply averaging the object appearances in recent frames.

Secondly, to achieve stability in occlusions or other temporal outliers, we consider
the reconstructed appearance that is a linear combination of the appearances called a
“reconstructing reference” f (j)

R,k with coefficients α(i,j)
k where i is the tracker index. To

compute these coefficients, we adopt L1 minimization because it is robust to a wide
range of image corruption, especially to occlusions [16, 19].

min‖D(j)
k c

(i,j)
k − z

(i,j)
k ‖22 + λ‖c(i,j)k ‖1 (7)

where D
(j)
k = [f

(j)
R,k, I

(j)] consists of a j-th feature dictionary and non-object (trivial)

appearance template sets, i.e, I(j) ∈ Rd(j)×d(j)

[16]. The corresponding

coefficients are represented as c(i,ζ)k = [α
(i,j)T

k , β
(i,j)T

k ]T where β
(i,j)
k ∈ Rd(j)

are non-

object coefficients. Here, f (j)
R,k = [f

(j)
1,k , ..., f

(j)
r,k ] ∈ Rd(j)×r denotes the dictionary of

j-th feature containing a set of r normalized representative appearance templates and
α
(i,j)
k = [α

(i,j)
1,k , ..., α

(i,j)
r,k ]T ∈ Rr denotes the object appearance coefficients. Then, we

can obtain the j-th feature reconstructed appearance for the i-th tracker tracking result
as f (j)

R,kα
(i,j)
k .
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Based on the two appearance models, we calculate the TLF as follows:

p(Zk|mk = i, Ωk−1, Z1:k−1) � pTLF (Zk|x̂(i)
k ) ≈ pI(Zk|x̂(i)

k )pR(Zk|x̂(i)
k )

=
∏M

j=1 p(Zk|x̂(i)
k , f

(j)
I,k)p(Zk|x̂(i)

k , f
(j)
R,k) ∝ exp(−ρ(E

(i)
I,k + E

(i)
R,k)),

(8)

where ρ is the control parameter and

E
(i)
I,k =

∑M
j=1 (f

(j)
I,k − z

(i,j)
k )

T
(f

(j)
I,k − z

(i,j)
k ) (9)

E
(i)
R,k =

∑M
j=1 (f

(j)
R,kα

(i,j)
k − z

(i,j)
k )

T
(f

(j)
R,kα

(i,j)
k − z

(i,j)
k ) (10)

3.3 The Update of Tracker Probability and TPM

According to the tracker reliability affected by the dynamic environments in visual
scene, the tracker probabilities and their interaction should changes. Thus, we update
tracker probability and the TPM based on current tracker reliabilities (represented by
the TLF pTLF (Zk|x̂(i)

k ) in (8)) as follows.

Tracker Probability Update: The tracker probability update is defined by considering
tracker reliabilities and the interactions between trackers as

T
(i)
k = C−1pTLF (Zk|x̂(i)

k )
∑M

j=1 ω
(j,i)
k−1T

(j)
k−1, (11)

where C is the normalization term. Hence, the sum of all tracker probabilities is 1.

TPM Update: According to [2], the TPM is assumed to be an unknown random ma-
trix with some prior distribution. Hence, in a Bayesian framework, the TPM posterior
probability p(Ω|Z1:k) can be represented as a recursive form

p(Ω|Z1:k) =
p(Zk|Ω,Z1:k−1)

p(Zk|Z1:k−1)
p(Ω|Z1:k−1) (12)

For the practical implementation, the TPM posterior is approximated based on a first-
order, second-order, or numerical integration (NI) approach. Among them, the NI is
more robust and accurate than other approaches [2]. In the NI, the TPM posterior is
expressed as the set of NΦ fixed grid samples, Φq , i.e., {Φq, κq,k}NΦ

q=1 where κq,k is the
sample weight and updated as (The derivation of (13) is given in detail in the supplement
material)

κq,k =
T T
k−1ΦqΛk

T T
k−1Ωk−1Λk

κq,k−1,

Ωk =
(∑NΦ

g=1 κg,k

)−1 ∑NΦ

q=1 κq,kΦq,

(13)

where Ωk is the estimated current TPM, Λk = [pTLF (Zk|x̂(1)
k ), ..., pTLF (Zk|x̂(M)

k )]T

is the set of the TLFs, and Tk−1 = [T
(1)
k−1, ..., T

(M)
k−1 ]

T is the set of the tracker probabili-

ties. Each value of the TPM samples φ(j,i)
q ∈ Φq is chosen within [0, 1] while satisfying∑M

j=1 φ
(j,i)
q = 1. In the experiments, the 216 TPM samples are used and fixed for

all benchmark sequences, and they are given in the supplementary material due to the
limitation of the paper length.
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Algorithm 1. Tracker Interaction

1: given {x(i)
q,k, w

(i)
q,k}Nq=1, i = 1, ...,M � Sample representation of i-the tracker

2: given ω
(j,i)
k ∈ Ωk, j, i = 1, ...,M � Updated TPM

3: for i = 1 : M do
4: for q = 1 : N do
5: w

∗(i)
q,k = w

(i)
q,kKernel(Hx

(i)
q,k −Hxk, R)

6: end for
7: w

∗(i)
q,k := w

∗(i)
q,k /

∑N
g=1 w

∗(i)
g,k , q = 1, ..., N

8: end for
9: for i = 1 : M do

10: x̃
(i)
k = φ

11: for j = 1 : M do
12: X = Resampling({x(j)

q,k, w
∗(j)
q,k }Nq=1, N × ω

(j,i)
k )

13: x̃
(i)
k := x̃

(i)
k ∪X

14: end for
15: end for
16: Output {x(i)

q,k,
1
N
}Nq=1 := {x̃(i)

q,k,
1
N
}Nq=1, i = 1, ...,M � Interacted prior of i-th tracker

17: H =

[
1 0 0 0 0 0
0 1 0 0 0 0

]

, Range: R =
√

(2× qx)2 + (2× qy)2

3.4 Multiple Tracker Integration via Tracker Selection and Interaction

The multiple trackers are integrated via the tracker selection and interaction based on
the updated tracker probability and TPM in Section 3.3.

Tracker Selection. The tracker selection picks one tracker whose tracker probability
is the highest among updated tracker probabilities in (3). The output of the selected
tracker x̂k is the estimated object motion state at the current frame.

Tracker Interaction. The trackers interact with each other based on the TPM via
the proposed tracker interaction in Algorithm 1. First, before the interaction based on
the TPM, we remove the samples far from the selected tracking result x̂k in terms of
the position by using the uniform kernel with respect to the range R defined in Al-
gorithm 1 where qx and qy are standard deviations that are set according to the object
translation motion along x- and y- coordinates. In this paper, R is at most 12. H is the
position conversion matrix that extracts position parameters by [pX,k, pY,k]

T = Hx̂k.
Then, each tracker interacts based on the TPM and the conventional resampling tech-
nique [25]. Here, N is the number of samples used in each tracker. The TPM provides
the information that how many samples are transferred or kept. For instance, N ×ω

(i,i)
k

represents that N × ω
(i,i)
k samples are kept in the i-th tracker sample set after interac-

tion. N ×ω
(j,i)
k represents that N ×ω

(j,i)
k samples from the j-th tracker are transferred

to the i-th tracker. If the i-tracker is robust for some frames, then ω
(i,i)
k becomes greater

than ω
(j,i)
k , j �= i after the TPM update. Hence, most of the i-th tracker samples are kept

and the i-th tracker obtain a few samples from other trackers. Finally, We select samples
according to the interaction coefficients ω(j,i)

k−1 of the TPM via resampling technique that
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is conventionally used in the particle filtering so that reliable samples with high weights
in each tracker will survive.

3.5 Reference Learning

In this paper, we also propose a simple but effective reference learning strategy. The
three kinds of reference (i.e., tracker reference, instantaneous reference, and recon-
structing reference) are incrementally updated based on the estimated M features that
is obtained by f̂

(j)
k = z

(m̂,j)
k , j = 1, ...,M in (6) where m̂ is the index of the selected

tracker in (3).

Tracker References: We update each tracker reference by using the incremental PCA
[3]. Here, the reference of the selected tracker is not updated whereas the references of
all other trackers are updated. This concept provides two benefits — sufficient learning
and the alleviation of accumulation error in the reference. As mentioned in [4], the ac-
cumulation error is inevitable when the reference is updated. However, if the reference
represents the object appearance properly, the reference does not need to be updated. In
our tracking scheme, we assume that the reference of the selected tracker represents the
current appearance of the object well; thus, we only update the references of other (not
selected) trackers.

Instantaneous References: Each instantaneous reference is obtained by taking mean
value of the recently estimated appearance. Hence, it is simply computed by f

(j)
I,k+1 =

MEAN(f̂
(j)
k−δ, ..., f̂

(j)
k ) where δ is a constant value1.

Reconstructing References: Inspired from [18], the reconstructing references f (j)
R,k are

updated by measuring noises of the estimated features. In [18], they decide whether
the reference is updated or not by exploring the non-zero elements in the non-object
reference coefficients, if there is occlusion, the reference vector contains many non-
zero elements. In this paper, the noises are measured based on the non-object reference
coefficient vector β(m̂,j)

k ∈ Rd(j)

in (7) where m̂ is the index of the selected tracker. We

count non-zero elements in β
(m̂,j)
k , and then compute a noise ratio R

(j)
noise by R

(j)
noise =

B(j)/d(j) where B(j) is the number of non-zero elements. When the noise ratio R
(m)
noise

is smaller than the certain threshold1 γ, one representative appearance template (i.e.,
f
(j)
i,k ∈ f

(j)
R,k) that has the lowest coefficient is replaced by f̂

(j)
k .

4 Experimental Results

Using the benchmark sequences234, we evaluate our tracking method, which is simply
called “Adaptive Tracker Selection (ATS)”. We employ three trackers with different
features to implement the ATS: Tracker 1, 2, and 3 are associated with HOG, intensity,
and Haar-like feature, respectively. As mentioned in the introduction, we select these

1 We used the parameter δ = 10 and the threshold γ = 0.3 in the experiments.
2 http://vision.ucsd.edu/˜bbabenko/project_miltrack.shtml
3 http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/
4 http://www.gpu4vision.org

http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml
http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/
http://www.gpu4vision.org
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features because they are enough to deal with occlusion, motion blur, pose variation,
and illumination changes. Each tracker is implemented based on a particle filter using
300 samples. To approximate the TPM, we use 216 TPM samples, which are given in
the supplementary material. The initial tracker probability T

(m)
0 is set to 1/3. The re-

constructing reference of each feature contains 25 appearance templates. The parameter
ρ in (8) is set to 2.

In 4.1, we discuss the computational time of our method. In 4.2, we analyze the
ATS, focusing on the TPM, and show how the TPM manages multiple trackers of dif-
ferent features. Then, in 4.3, we present our comparative studies of a single tracker
with multiple observations (S-MO) and a single tracker with a HOG, Intensity, and
Haar-like observation, respectively (S-HOG, S-I, and S-Haar). It should be noted that
they are implemented based on the IVT [3] framework with two motion models used
in the ATS. Moreover, we compare our ATS to state-of-the-art trackers, i.e., MIL[27],
TLD[28], L1Track[16], VTD[15], and PROST[4]. For the quantitative comparison, two
performance indices are selected: mean distance errors and the percentage of correctly
tracked frames according to a PASCAL score[4, 24]. The PASCAL score is obtained by
evaluating to what extent the tracking template overlaps the ground truth template as a
ratio [4]. Then, if the PASCAL score is greater than 0.5 in a certain frame, that frame is
counted as a correctly tracked frame.

4.1 Computational Time

We implement our method using MATLAB 2010a. The most computation time is spent
on feature extraction, especially for HOG and Haar features, and non-optimized code
is used. The computation time of the S-MO method that uses the same features (HOG,
Haar, Intensity) is comparable with that of the proposed ATS. When we use 900 sam-
ples, the S-MO takes about 2.76 sec/frame. The ATS takes about 3.26 sec/frame. Hence,
it seems that our tracker integration scheme does not require a large amount of compu-
tational time.

4.2 Analysis on TPM

We explore how the TPM manages multiple trackers of different features for a certain
change in object appearance. In Fig. 3, the changes in the values of diagonal coefficients
(ω(i,i)

k ) of the TPM are shown according to changes in object appearance over time. If

ω
(i,i)
k decrease, then ω

(j,i)
k , n �= m increases because

∑M
j=1 ω

(j,i)
k = 1; hence, the i-th

tracker becomes more dependent on other trackers. If the i-th tracker is not robust, then
the ω(i,i)

k value decreases. The maximum and minimum values of a diagonal coefficient

are 0.7 and 0.2, respectively. Note that ω(1,1)
k , ω(2,2)

k , and ω
(3,3)
k denotes HOG tracker,

Intensity tracker, and Haar tracker, respectively. In CAVIAR seq., there are few changes
in appearance in many frames; hence, the Intensity tracker tracks the object most accu-
rately. However, between � 190 and � 220, an occlusion occurs; thus, ω(1,1)

k and ω
(2,2)
k

decrease whereas ω(3,3)
k increases. In woman seq. [26], an occlusion occurs repeatedly.

When the occlusion first occurs, the ω
(1,1)
k and ω

(2,2)
k decrease and ω

(3,3)
k increases be-

cause the Haar feature is more robust than other features in occlusion. If there is only



38 J.H. Yoon, D.Y. Kim, and K.-J. Yoon

#140 #210

(a) CAVIAR seq. (�140,�210)

#105 #155

(b) woman seq. (�105,�155)

#45 #320

(c) lemming seq. (�45,�320)

Fig. 3. 1) Changes of diagonal coefficients in the TPM: ω(1,1)
k (HOG:Blue), ω(2,2)

k (Intensity:Red),

ω
(3,3)
k (Haar:Green), 2) Numbers inside the box denote percentage of tracker selections

a small pose variation with no occlusion, the ω
(1,1)
k and ω

(2,2)
k start to increase. In lem-

ming seq., there are frequent motion blurs and occlusions for short durations. In motion
blurs, the HOG tracker is more robust than other features because the outer shape of the
lemming is consistent. When the occlusion occurs around �300, ω(3,3)

k increases.

4.3 Quantitative and Qualitative Evaluations

According to the overall results, the trackers that use on a single feature (i.e., MILTrack,
TLD, L1Track) yield limited performances in various appearance changes as shown in
Table 1 and Fig. 4. The trackers that use multiple featuers (i.e., VTD, PROST, S-MO,
ATS) generate better results.

Occlusion: The target in the CAVIAR and woman seqs. undergoes heavy occlusions. As
shown in Table 1, the S-Haar tracks the object perfectly because the Haar-like feature
is robust when only occlusion exists. However, the S-HOG and S-I fail to track it since
both these features are weak to occlusions. In Fig. 4, the VTD also fails to track in

Table 1. “A”(“B”): “A”- the mean distance error in pixel; “B”- the percentage of correctly tracked
frames based on Pascal score [24]. Red is the best result and blue is the second-best result.

Sequence MIL TLD L1Track VTD PROST S-I S-HOG S-Haar S-MO ATS
tiger1 15 (62) 12 (45) 44 (17) 44(21) - 51 (37) 19 (66) 9 (80) 31 (39) 5 (94)
david 16 (62) 8 (96) 26 (58) 26 (68) - 6 (90) 4 (91) 69 (36) 4 (100) 3 (100)
girl 27 (68) 26 (46) 13 (99) 15(98) - 49 (50) 17 (87) 27 (74) 28 (76) 11 (100)
coke11 18 (32) 10 (48) 54 (5) 76(5) - 63 (14) 9 (68) 12 (46) 10 (68) 7 (85)
CAVIAR - 40 (19) 4 (100) 29 (41) - 12 (65) 19 (41) 3 (100) 3 (100) 2 (100)
woman - - 252 (13) 108 (15) - 92 (16) 124 (15) 4 (100) 4 (100) 2 (100)
board 115 (51) 142 (11) 255 (3) 83 (34) 39 (75) 146 (19) 16 (93) 35 (71) 84 (32) 16 (92)
box 196 (3) 17 (90) 150 (15) 66 (36) 13 (91) 104 (37) 10 (95) 69 (26) 86 (28) 9 (91)
lemming 15 (83) 146 (4) 212 (13) 83 (52) 25 (71) 20 (40) 68 (75) 174 (18) 111 (48) 11 (86)
liquor 165 (20) 20 (77) 181 (19) 103 (28) 21 (85) 521(22) 101 (29) 712 (22) 63 (23) 4 (98)
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occlusions because it allows all the recent appearances including the occluded parts. In
contrast, the ATS considers stability; hence, it can deal with the occlusion problem by
measuring tracker reliability.

Pose Variation: In girl seq., the object repeatedly undergoes pose variation, but its outer
shape is consistent. Thus, the S-HOG faithfully tracks the object as shown in Table1.
The ATS successfully uses the HOG feature and shows a much better performance than
the S-MO because the ATS measures the tracker reliability and updates the TPM. Based
on the TPM, the more robust tracker can support other trackers.

Illumination Change: In david seq., the object appearance has illumination changes
with little pose variation. The S-HOG robustly tracks the object because the outer shape
of the object is consistent even when the illumination changes. The S-I also adapts well
to the illumination changes because it is implemented based on the IVT [3]. Hence, the
S-MO and ATS also perfectly track the object because these two features are robust.

Complex Changes: In practice, most image sequences contain various changes in ap-
pearance. Hence, the appropriate use of multiple features is very important. The tiger1

#70 #300 #320

(a) tiger1(�70, �300,�320)

#98 #154 #287

(b) david(�98, �154,�287)

#88 #194 #308

(c) girl(�88, �194,�308)

#42 #60 #190

(d) coke11(�42, �60,�190)

#201 #230 #300

(e) CAVIAR(�201, �230, �300)

#47 #70 #333

(f) woman(�47, �70, �333)
#65 #471 #584

(g) board(�65, �471, �584)

#321 #482 #584

(h) box(�321, �482, �584)
#231 #548 #1006

(i) lemming(�231, �548, �1006)

#508 #1095 #1288

(j) liquor(�508, �1095, �1288)

MILTrack TLD L1Track VTD PROST S-MO ATS

Fig. 4. Tracking results of different algorithms: ATS (the proposed method)
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and coke11 seqs. contain occlusions, illumination changes, and pose variations. The
ATS measures the tracker reliability and updates the TPM as to which trackers can in-
teract. Using this mechanism, the ATS shows better results than the S-MO, especially in
these complicated situations. In the board, box, and lemming seqs., the object’s appear-
ance undergoes drastic motion blur and pose variation, but their shape is consistent.
Hence, the S-HOG shows the best results in the board and box seqs. In terms of the
PASCAL score, S-HOG faithfully tracks the object in the lemming seq. Overall, the
ATS demonstrates the best performance because it utilizes not only the HOG feature
but also other features in the appropriate situations. The liquor seq. contains the most
severe motion blur and occlusions; hence, most of trackers fail to track the object. In
contrast, PROST reliably tracks the object because it is designed to include flexibility,
moderate adaption, and stability in the object appearance model to deal with various
changes in appearance. Thus, the PROST tracker resembles the ATS, which also con-
siders the flexibility and stability but in a different manner. In particular, in ATS the
reliability and flexibility information are used more efficiently because it employs mul-
tiple features with multiple tracker based on the interactions. This leads to better results.

5 Conclusions

In this paper, we propose a robust visual tracking method that integrates multiple track-
ers based on multiple features via tracker interaction and selection. The tracker inter-
action is conducted based on the TPM and prevents individual tracker divergence. The
TPM update and tracker selection are computed by investigating each tracker’s relia-
bility based on the TLF. To cover various kinds of changes in object appearance, the
TLF is formulated based on instantaneous references for flexibility and reconstructing
references for stability. Thus, the proposed tracking method can select the best among
multiple trackers even if the object’s appearance changes drastically. In addition, the
proposed learning strategy enhances the performance of individual trackers and sustains
the flexibility and stability of the two reference models in the TLF. The experimental
results demonstrate that, in challenging sequences, the proposed tracking method tracks
the object more robustly than other trackers.
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Abstract. All lenses have optical aberrations which reduce image sharpness.
These aberrations can be reduced by deconvolving an image using the lens point
spread function (PSF). However, fully measuring a PSF is laborious and pro-
hibitive. Alternatively, one can simulate the PSF if the lens model is known.
However, due to manufacturing tolerances lenses differ subtly from their mod-
els, so often a simulated PSF is a poor match to measured data. We present an
algorithm that uses a PSF measurement at a single depth to calibrate the nomi-
nal lens model to the measured PSF. The calibrated model can then be used to
compute the PSF for any desired setting of lens parameters for any scene depth,
without additional measurements or calibration. The calibrated model gives de-
convolution results comparable to measurement but is much more compact and
require hundreds of times fewer calibration images.

1 Introduction

Lens aberrations limit the quality of images formed by lenses. These aberrations are
inherent in the physics of optical image formation and vary as a function of lens settings.
Image deconvolution can be used to reduce many aberrations if the lens point spread
function (PSF) is known. Recovering both the PSF and deblurred image from a single
image input (blind-deconvolution) is ill-posed and as a result can be unreliable.

An alternative is to measure the PSF of a lens. Indirect method such as that of Joshi
et al. [11] over-smooth the PSF unacceptably as a result of regularization needed in their
method. Direct methods include using a laser, beam spreader, and precision collimator
system to create a single illumination point for measuring the PSF one point at a time.
These methods require precise hardware and are very slow. The more commonly used,
faster method is to capture an image of a grid of back illuminated pinholes, such as
shown in Fig. 5. Each photograph captures many samples of the PSF across the entire
field of view. The complete PSF can be measured by systematically varying the lens
parameters to cover all possible permutations.

Unfortunately, making a pinhole target small enough so that they image less than a
pixel is very difficult, especially for close focusing distance.1. Not being able to measure
near the lens2, where the PSF varies most rapidly, is a significant limitation to direct
measurement of PSFs.

1 e.g. for a 2 micron pixel sensor to measure closer than 10 times the focal length of a lens,
ones needs pinholes less than 20 microns in diameter. This is difficult both due to due to
manufacturing limits and that diffraction through the pinhole becomes a factor.

2 Typically on the order of a few feet for common focal length and sensor sizes.

A. Fitzgibbon et al. (Eds.): ECCV 2012, Part IV, LNCS 7575, pp. 42–56, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Image Enhancement Using Calibrated Lens Simulations 43

(a) (b) (c) (d)

8 pixels 8 pixels 50 pixels 8 pixels

279mm 279mm 122mm 368mm

Fig. 1. Measured PSFs show that real lenses violate many common assumptions about the invari-
ance of the PSF. The PSF is measured at (a) corner of a focused plane at 279mm, (b) center of the
same focused plane, (c) corner of a de-focused plane (focusing at 279mm but imaged at 122mm),
and (d) corner of a focused plane at 368mm.

An equally serious problem is the sheer number of photographs necessary to ade-
quately sample the PSF. Simulations with the commercial Zemax lens design software
has shown that lens PSF varies substantially as a function of lens parameters, including
aperture, focal length, focusing distance, and illuminant spectrum. The latter two pa-
rameters have generally been ignored in previous work in this area but they affect the
PSF as strongly as the first two. As a result, literally hundreds of images are needed to
properly measure the multidimensional parameter space of a lens.3

In addition, because the focusing distance and illuminant spectrum dimensions are
difficult to sample along their full range, extrapolation beyond the captured data values
will almost certainly be necessary. While interpolation is potentially possible, extrapo-
lation is unlikely to work well, given the complex changes in the shape and amplitude
of the PSF as a function of these two parameters.

An alternative is to simulate the lens PSF for any desired setting of lens parameters by
using optics simulation on an accurate CAD model of the lens. The CAD model is called
the lens prescription. The primary difficulty with using the lens prescription directly is
that manufacturing tolerances [17] cause any particular physical lens to differ from the
nominal CAD lens design, which causes dramatic PSF variations between nominally
identical lenses, as shown in Fig. 4. As a consequence simply using the nominal lens
prescription to generate PSF’s for deconvolution doesn’t give very good results.

Our approach is to use the lens prescription as a starting point for calibration process
that adjusts the lens prescription to fit a single measurement of the PSF. The lens pre-
scription fitting is done only once per lens. Once we have the lens prescription we can
compute the PSF at any point on the image plane, for any combination of lens parame-
ters: aperture, focal length, focusing distance, and illuminant. The technique overview
is illustrated in Fig. 2.

This method has many advantages over direct PSF measurement because it requires
far fewer calibration pictures (one versus hundreds), the fitted lens prescription is more
compact than a full set of measured PSF images (a few hundred bytes versus hundreds
of KBytes), and the PSF can be computed for arbitrary lens parameters, while mea-

3 An accurate PSF measurement would require at least an additional 5 samples in the focus-
ing distance dimension (aperture, focal length, focusing distance). At least another 3 samples
would be necessary along the spectral dimension. A very conservative estimate of the total
number of pictures required to accurately measure a lens PSF is 3 ∗ 53 = 375. In practice far
more would be necessary for fast lenses that focus at close distances.
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Fig. 2. Algorithm and system overview. Our lens prescription calibration process is illustrated
in the blue outline. The process takes measured PSFs at a single depth as input. The process
only need to be done once. We compute PSFs using calibrated lens prescription and EXIF info
from the new input photo (focusing distance, aperture size, and white balance as approximate
illuminant spectrum) for image enhancement.

sured PSF’s only cover the range of lens parameters that were sampled and cannot be
effectively extrapolated beyond this range.

For consumer level cameras lens manufacturers can use our method to calibrate each
lens before it leaves the factory. For computer vision research applications lens pre-
scriptions are frequently available for machine vision style lenses4 so researchers can
use the method to calibrate their systems.

The key contribution of this paper is the use of optics simulation combined with
the fitting algorithm, which makes it possible to use a single calibration photograph to
generate synthetic PSF’s for any combination of lens settings.

2 Related Work

Much of the recent work in image deblurring has been in measuring and removing blur
due to camera motion [7,21] or scene motion [15,16], while less attention has been paid
towards correcting for blur due to lens aberrations, which is the situation we consider
in this work.

Aberrations can be removed by deconvolving with the lens PSF [20]. Because of
the high dimensionality of the PSF function and the difficulty of PSF measurement,
corrections are usually performed by fitting the PSFs to a parametric model [13,4,2].

The closest related works are those of single image calibration and measurement
methods [11,3,12]. These works show how to estimate optical blur functions or chro-
matic abberation either blindly or through a calibration process.

Simple spatially invariant parametric models are not accurate measures of image
blur [11,13]. Perhaps the most closely related works are those that have used or created
lens models for image correction [6,10,9,5,14,13]. Several commercial products, such
as PTLens, DXO, and Adobe Photoshop, perform image corrections using non-physical
low order parametric models tuned to various lens profiles. Due to their non-physical
nature, these methods can only produce limited improvements [13].

4 Edmund Optics makes lens prescriptions available for research purposes. All our lenses were
purchased there.
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Kee et al. [13] address this issue by presenting a spatially-varying parametric model
fitted from estimated PSFs. Instead of estimating PSF from edge response in their work,
we directly measure PSFs to avoid over-blurred PSFs [11]. We fits a lens CAD model so
that we can predict PSFs at arbitrary aperture, focal length, focusing distance, illuminant
spectrum. The latter two are ignored in Kee et al.’s work. Our method only requires a
single photograph, which makes the calibration process far less laborious.

3 PSF Simulation

Several previous works have made simplifying assumptions about the lens point spread
function [4,2,19]. These simplifications include: 1) a simple canonical PSF shape, such
as a 2D Gaussian, or pillbox, 2) a constant PSF across the image plane, 3) that the PSF is
invariant as a function of distance to the focused object plane, and 4) that the defocused
PSF is a scaled version of the focused PSF.

Real lenses violate all these assumptions. In Fig. 1, we show the measured PSF of a
lens at two image positions, two focus/defocus distances, and two focal plane depths.
Even on the optical axis, there are significant differences between the PSF; off-axis the
differences are dramatic. Perhaps most surprisingly, the PSF is strongly dependent on
the distance the lens is focused.

In the general case, the PSF of a fixed focal length lens is a 6 dimensional function
of the light wavelength, (λ), image plane coordinates, (x, y), lens aperture, a, lens to
object distance, dobj , and back focal distance, dbf . One can measure PSFs for a partic-
ular lens by taking measurements of the lens response over these 6 dimensions, using
specialized equipment [22], but such methods are only accurate in limited working vol-
umes and require a vast amount of data to be collected.

Modern lenses are designed using lens CAD models and are precisely specified by a
set of parametric values called the lens prescription. Our method takes a single photo-
graph to calibrate the lens prescription. The fitted lens model is used to generate PSFs
at any desired lens parameter values. Given this specification, obtaining accurate PSFs
becomes a software process instead of a complicated measurement process.

3.1 Lens Prescriptions

The lens prescription describes the optical properties of the lens: the size, curvature,
index of refraction, and type of coating of each element. To account for chromatic
aberration, a dispersion function models the variation of the index of refraction, n, with
light wavelength, λ. The most commonly used functions are polynomials in either the
Schott n2 = a0 + a1λ

2 + a2λ
−22 + a3λ

−4 + a4λ
−6 + a5λ

−8 (1)

or the Sellmeier 1 form

n2 − 1 =
K1λ

2

λ2 − L1
+

K2λ
2

λ2 − L2
+

K3λ
2

λ2 − L3
. (2)

We model the effect of the following parameters: 1) geometric properties of each optical
surface: diameter, radius of curvature, offset along optical axis, and offset perpendicular
to optical axis, 2) coefficients of the dispersion function of each material, 3) index of
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6mm #58202 

18mm #54857 12mm #54854 

Fig. 3. The 3 lenses we tested. All three lenses are stock Edmund Optics lenses – the part numbers
are shown.

refraction and thickness of each antireflection coating material, and 4) lens back focal
distance.

Our simulator currently models lens elements with spherical surfaces5 and a single
layer antireflection coating. We simulated three lenses from the Edmund Optics cata-
log6: a high resolution 6mm microvideo lens, a medium resolution 12mm microvideo
lens, and a high resolution 18mm double Gauss lens. The optical layouts of all three
shown in Fig. 3.

3.2 PSFs Computation with a Lens Prescription

Existing commercial software products, such as ZEMAX, can be used to simulate
lenses, but as these products are costly and not instrumented to be used easily for an op-
timization or calibration procedure. Thus we have implement at standard lens simulator
algorithm that uses the same principles as Zemax [8].

Given the focal length, aperture, focusing distance, and white balance that is stored
in the EXIF header of the image file, we can simulate the image plane PSF of each of
the virtual object points. We note that we do not need the full scene depth only the focal
depth, since we only seek to remove aberrations and focal plane artifacts as opposed to
defocus debluring – there are no limitations on the scene depth range. These PSF’s are
fed into the deconvolution algorithm to correct lens aberrations. In the interest of space,
and as the contribution of our work is the calibration process and not the simulation, we
describe the simulation details in our supplementary materials.

Because the PSF is dependent on wavelength we simulate the PSF at 18 wavelengths
for each color channel and sum these incoherently to give the final PSF for each color
channel. Our measurements are done with sequential RGB illumination from a three
color LED lamp, so that artifacts due to demosaicing would not be confounded with
the results of the image corrections; however, our methods can be easily be used with
Bayer demosaicked images.

We assume most sensor has a microlens array as an anti-aliasing filter to create a
100% fill-factor. We thus model our sensor response linear to light intensity. We do

5 Aspherical surfaces are used in very high quality (and cost) glass lenses and in low cost plastic
injection molded lenses. The majority of lenses between these extremes use only spherical
surfaces.

6 Chosen because they are typical machine vision lenses, and because Edmund Optics provides
lens prescriptions for research purposes.
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Measured PSFs

Simulated PSFs using lens prescription from the spec

Fig. 4. Mismatch between a measured PSF and one simulated using the nominal, manufacturer
provided lens prescription. Left to right in the two figures corresponds to the PSF being sampled
from corner to center.

not directly consider other effects. More in-depth study is a good suggestion for future
work.

3.3 Mismatch with Measured PSFs

We measured actual lens PSFs and compared them with the simulated PSFs, as shown
in Fig. 4. The measurement setup and method are described in Sec. 5. Note that the
simulated PSFs are very different from measured PSFs. The mismatch is caused by
variations within manufacturing tolerances and fabrication errors during lens produc-
tion. Variation between nominally identical lenses can be quite large and also different
from the lens specification [17].

4 Lens Prescription Calibration

We notate our simulation by using the function S(l, x), which takes a lens prescription
l and light source positions x as input, and outputs the corresponding point spread
functions P . Let l∗ and ls denote the actual and nominal lens specification, respectively.
The object of the lens fitting step is to find δl∗ ≡ l∗ − ls.

Our optimization method minimizes the L2 norm between the measured and the
simulated PSFs by adjusting the lens prescription. Denoting the measured PSFs as P ∗,
the objective function is

δl∗ = argmin
δl

‖S (ls + δl, x)− P ∗‖2. (3)

Given that δl is very small and S is smooth around ls, the first order approximation on
S (ls + δl, x) is

S (ls + δl, x) ≈ S (ls) +
∂S

∂l
δl, (4)

where S (ls) is the PSF simulated using the nominal lens prescription, and ∂S
∂l is the

Jacobian at ls, which is denoted by J. In practice, since there is no simple analytical
form of S(ls), we perturb lens prescription and compute the PSF difference over the
lens prescription variation to form the Jacobian matrix. Denoting δP = P ∗ − S (ls) as
the difference between simulated and measured PSFs and combining Eq. 3 and Eq. 4
gives
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Fig. 5. Experimental Setup. Left: 3-color LED to illuminate resolution charts. Middle: Image
collection setup. Right: A precisely constructed pinhole grid pattern. Note: when collecting data,
the only light present is due to the LED illuminant.

δl∗ = argmin
δl

‖Jδl − δP‖2 = J†δP. (5)

The calibration process first calculates the Jacobian, and then applies the Jacobian
pseudo-inverse to the difference between measured and simulated PSFs. In practice,
S is not linear to l, so we multiply δl by a damping factor kd < 1 [18], and iterate sev-
eral times until convergence, which typically takes 3 to 5 iterations. The optimization
scheme is shown in Fig. 2.

We fit the following parameters in the lens prescription: 1) Radius of curvature, XY
offset (perpendicular to the optical axis), and Z offset (parallel to optical axis) of each
optical element, 2) Coefficients of the dispersion function formula, and 3) Camera back
focal length.

Because we assume spherical lenses, surface tilting can be modeled by a combination
of X, Y, and Z offsets. The dispersion function affects chromatic abberation as different
wavelengths have different refraction indices. Chromatic abberation is most affected by
the first derivative of the dispersion function dn

dλ , so as a simplification we only optimize
this first derivative for each glass.

5 Lens Measurements

The PSF measurement setup is shown in Fig. 5. This consists of an Edmund Optics 5MP
monochrome camera. To obtain color images we use a three-color LED illuminant, also
shown in Fig. 5.

We found our camera to be relatively noisy due to its small (2.2 μm) pixel size.
To correct fixed pattern noise, we captured a textureless white card at two exposure
levels and fit a per-pixel offset and gain. Each pixel is corrected to have the same offset
and gain. We averaged several images in sequence to reduce the remaining temporally
varying noise components.

We tested three different multi-element lenses, shown in Fig. 3, that cover a range
of properties that are typically seen in consumer camera lenses. All are off-the-shelf
parts purchased from Edmund Optics. We used these lenses because Edmund Optics
will provide prescriptions for their lenses, while manufacturers such as Canon will not.

For each image, we measure the object distance and estimate the back focal distance.
With these parameters we simulate the point-spread function.

To calibrate and measure our simulated point spread functions we use several pre-
cisely constructed calibration targets. To measure effective image resolution, we use a



Image Enhancement Using Calibrated Lens Simulations 49

standard I3A/ISO Resolution Test Chart from BHPhoto. To measure impulse responses,
we laser-cut 0.1mm diameter pinholes into an aluminized Mylar sheet, which was then
mounted on a flat acrylic backing coated with a diffusing material. We backlit this target
with our LED light source illustrated in Fig. 5.

5.1 Calibration

We calibrated the 3 lenses shown in Fig. 3. The number of variables in 3 lenses are
33, 36, 43 for lenses (a), (b), (c) in Fig. 3, respectively. Non-linear optimization of this
number of variables is challenging. The damping factor, kd, is set to 0.7, and we iterated
5 times.

The calibration process takes 84, 53, and 67 measured PSF samples as input for lens
(a), (b), (c), respectively. The numbers depend on the field of view of the lenses. These
PSFs are measured at a single focusing distance and captured with a single image.
The un-calibrated PSFs has more significant differences at corners, so we sample more
densely at the corners than at the center. While we use a single photograph and focal
plane for calibration, the extension to multiple planes is straightforward. The object
distances are 279mm, 711mm, 863mm for lenses (a), (b), (c), respectively, to make
sure the light sources can cover the whole field of view.

The manufacturing tolerance of each parameter is on the order of 1% [17], so we
set the offsets to be 0.5% for radius, 10−5m for XYZ offsets, 1% of dispersion at the
red frequency7 for the dispersion function offset, and 10−5m for back focal length. The
numerical derivatives are approximated with a two sided finite difference.

Both PSF computation and Jacobian calculation can be performed in parallel. Run-
ning the calibration on a 4-core machine takes about 6 hours for each lens. Because
the simulation and calibration are easily parallelized larger clusters will dramatically
reduce this time.

6 Results

In this section, we discuss several experiments used to show that our calibration process
is accurate and stable. In lieu of comparing to less accurate parametric models, we
have choosen to compare directly to groundtruth measurements, as we felt this was the
most rigorous way to show the accuracy of our simulated kernels after calibration. We
performed three cross validation experiments to show there is no over-fitting, that we
are calibrating accurately, and that the calibration is stable across changes in the lens
focus and illuminant spectrum. As appropriate, figures show the corresponding blur
kernel sampled from the PSF as an inset image. Please see our supplemental materials
for additional results.

Fig. 6 shows the results of image enhancement by deconvolving with simulated
PSFs. As was done in the work of Joshi et al. [11], we use Lucy-Richardson decon-
volution as this method is less forgiving of errors in blur kernels and thus best conveys
the accuracy of the kernel. The results show that compared with the PSF simulated from

7 In physics, dispersion is defined as dn(λ)
dλ

.
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Original            |       Unfitted       |          Fitted        | Measured 

# 54854 12mm micro video lens  

# 58202 12mm micro video lens  

# 54857 double Gauss lens  

D = 279mm 

D = 863mm 

D = 711mm 

Fig. 6. Cross validation across the image plane. Original images taken at D (first col.), images
deconvolved with PSFs simulated using nominal (un-calibrated) and calibrated lens prescription
(second and third col.), and with measured PSFs (fourth col.). The 1-D horizontal slice of in-
sets shows the calibrated version sharpens the image and reduces the chromatic aberration in all
lenses.
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Lens1: #58202 368FD mm 279SD mm

Measrued at DS

Original image
taken at DS

Lens3: #54854 711FD mm 842SD mm

Fitted at DF Fitted at DS

863FD mm 1282SD mmLens2: #54857

Deblurred  by kernels from

Fig. 7. We calibrated at two different depths DF and DS , respectively, then took an image at
depth DS , and deconvolved it using PSFs synthesize at DS . Original images (first col.), images
deconvolved using the PSFs from each calibration (second and third col.), and images decon-
volved by PSF measured at DS , i.e., the “groundtruth” (fourth col.). The image enhancement is
equally good regardless of which depth is used for fitting.
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Original          Measured        Fitted          Measured 
taken at DFat DS

at DF at DS

Fig. 8. For an image at DS = 368mm (first col.), we deconvolve with a PSF measured at DF =
279mm (second col.), a PSF computed by calibration at DF (third col.), and a PSF measured
at DS , i.e. “groundtruth” (fourth col.). Measurements do not generalize across different depths,
while our method does.

(a) (b) (c) (d)

Fig. 9. Validation under different lighting conditions. Original image taken under incande-
cent/fluorescent mixed spectrum (a), deblurred by PSF fitted under white light (RGB LED)(b), de-
blurred results using PSF computed by approximate tungsten/fluorescent spectrum (c) and white
light spectrum (d), instead of measured spectrum in (b). Our method gives good results even if
the eaxt spectrum is not known.

Original PS PTLens Ours Measured Jia 

Fig. 10. Comparison with Photoshop smart sharpening (lens blur mode), PTLens chromatic aber-
ration removal, Jia et al.’s robust motion deblurring.

Fig. 11. Geometric distortion can be easily corrected for using our method
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Fig. 12. Image enhancement results of a newspaper and a National Geographic magazine cover.
We take a image (first col.), and fit lens prescriptions at two different depths, respectively, and
use them to enhance the image (second and third col.). The insets show reduced abberations and
chromatic aberrations.
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the lens specification, the PSF from the calibrated lens prescription is closer to the re-
sults using the measured PSF. Compared with original images, while the PSF from the
un-calibrated lens introduced artifacts when used for deconvolution, our method simul-
taneously sharpen the image and reduces chromatic aberration with few artifacts just as
when using the measured PSF.

In Fig. 7, we show the results after calibrating a lens to get two prescriptions Pa

and Pb respectively for two corresponding measured depths DF and DS . We then took
an image at depth DS , and deconvolved it with the PSF synthesized at DS using the
prescriptions from both calibration runs, i.e. fitting at the the same depth DS and a
different depth DF . In all cases and all lenses, regardless of what depth is used for
fitting, the deconvolution results significantly reduce chromatic aberrations and sharpen
the image. In these experiments, we use a range of depth differences between DF and
DS – 33% for the #58202, 50% for the #54857, and 8% for the #54854. To the best of
our knowledge, no existing parametric model can predict the PSF at different depths,
while our method can.

In Fig. 8, we show the result of taking an image at DS and deconvolving it with
the PSF measured at DF . The result includes noticeable artifacts. The purpose of this
experiment is to illustrate that the assumption that PSF shape is invariant to focused
plane distance is over simplified. One cannot simply measure the PSF at one depth and
use it to enhance images from other depths. This shows the importance of our work:
one can calibrate the lens prescription at one depth and later simply compute PSFs at
different depths to enhance images.

In Fig 12, we show results using more natural images. We also include results for
these images of the same cross validation process discussed above. In all cases, our
method reduces or removes chromatic aberration and sharpens the images. We compare
our method with existing methods in Fig. 10. In Fig.11, we show that our method can
easily correct for geometric distortion using the correspondences from ray tracing.

In Fig. 9, we show how our our method can be used to correct images taken un-
der a different illuminant spectrum than was used for calibration. The lens prescription
calibrated using measurement under white light spectrum works well on images taken
under incandecent fluorescent mixed spectrum. In Fig. 9 we show our method does not
even require accurate spectrum information, but we can instead simulate a PSF using
standard illuminant spectrum [1] given the white-balance mode of a camera (florescent,
tungsten, etc.). The approximate fluorescent mixed spectrum [1] and white light spec-
trum (Figs. 9 (c)(d). ) generate comparable results to using actual measure spectrum
information ( Fig. 9 (b). )

7 Conclusions

Our method improves image quality by deblurring images using point-spread functions
computed with wave optics and a calibrated lens model. These point-spread functions
model all optical aberrations. Previous work has addressed these optical artifacts as
separate problems, while our approach unifies all of these corrections into one process.

Our method requires roughly two orders of magnitude fewer calibration images than
strictly measurement based methods. Our fitted lens model generalizes to conditions
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far outside of those captured during calibration. After calibration the PSF can easily
be simulated at any desired focus distance, lens aperture, or image plane position. We
have demonstrated that the match between our fitted model and a measured PSF is very
good, even when the lens calibration and PSF simulation are done at different depths.

Unlike previous methods, ours generalizes to illumination spectra different from that
used to capture the calibration image. Ideally the precise illumination spectrum would
be known but one can still improve images significantly if the lighting spectrum is
unknown.
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Abstract. We present SIRFS (shape, illumination, and reflectance
from shading), the first unified model for recovering shape, chromatic
illumination, and reflectance from a single image. Our model is an ex-
tension of our previous work [1], which addressed the achromatic ver-
sion of this problem. Dealing with color requires a modified problem
formulation, novel priors on reflectance and illumination, and a new op-
timization scheme for dealing with the resulting inference problem. Our
approach outperforms all previously published algorithms for intrinsic
image decomposition and shape-from-shading on the MIT intrinsic im-
ages dataset [1, 2] and on our own “naturally” illuminated version of
that dataset.

1 Introduction

In 1866, Helmholtz noted that “In visual observation we constantly aim to
reach a judgment on the object colors and to eliminate differences of illumi-
nation” ([3], volume 2, p.287). This problem of color constancy — decomposing
an image into illuminant color and surface color — has seen a great deal of work
in the modern era, starting with Land and McCann’s Retinex algorithm [4, 5].
Retinex ignores shape and attempts to recover illumination and reflectance in
isolation, assumptions shared by nearly all subsequent work in color constancy
[6–11]. In this paper we present the first algorithm for recovering shape in con-
junction with surface color and color illumination given only a single image of
an object, which we call “shape, illumination, and reflectance from shading”
(SIRFS).

There are many early works regarding color constancy, such as gamut map-
ping techniques [6], finite dimensional models of reflectance and illumination [7],
and physically based techniques for exploiting specularities [8]. More recent work
uses contemporary probabilistic tools, such as modeling the correlation between
colors in a scene [9], or performing inference over priors on reflectance and il-
lumination [10]. All of this work shares the assumptions of Retinex that shape
(and to a lesser extent, shading) can be ignored or abstracted away.

Color constancy can be viewed as a subset of the intrinsic images problem:
decomposing a single image into its constituent “images”: shape, reflectance, il-
lumination, etc [13]. Over time, the computer vision community has reduced this
task to just the decomposition of an image into shading and reflectance. Though
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(a) Input
Image

(b) Ground
Truth

(c) Our
Model

(d) Gehler
et al. [12]

(a) Input
Image

(b) Ground
Truth

(c) Our
Model

(d) Gehler
et al. [12]

Fig. 1. Two objects from our datasets. Given just the masked input image (a), our
model produces (c): a depth-map, reflectance image, shading image, and illumination
model that together exactly explain the input image (illumination is rendered on a
sphere, and shape is shown as a pseudocolor visualization where red is near and blue is
far). Our output looks very similar to (b), the ground-truth explanation of the image —
in some cases, nearly indistinguishable. The top-performing intrinsic image algorithm
(d) performs much worse on our datasets, and only estimates shading and reflectance
(we assume ground-truth illumination is known for (d), and run a shape-from-shading
algorithm on shading to produce a shape estimate). Many more similar results can be
seen in the supplementary material.

this simplified “intrinsic images” problem has seen a great deal of progress in
recent years [2, 12, 14, 15] all of these techniques have critical difficulties with
non-white illumination — that is, they do not address color constancy. Addition-
ally, none of these techniques recover shape or illumination, and instead consider
shading in isolation.

Another special case of intrinsic images is shape-from-shading (SFS) [16], in
which reflectance and illumination are assumed to be known and shape is recov-
ered. This problem has been studied extensively [17, 18], and very recent work
has shown that accurate shape can be recovered under natural, chromatic illumi-
nation [19], but the assumptions of known illumination and uniform reflectance
severely limit SFS’s usefulness in practice.

Perceptual studies show that humans use spatial cues when estimating light-
ness and color [20, 21]. This suggests that the human visual system does not
independently solve the problems of color constancy and shape estimation, in
contrast to the current state of computer vision.

Clearly, these three problems of color constancy, intrinsic images, and shape
from shading would benefit greatly from a unified approach, as each subproblem’s
strength is another’s weakness. We present the first such unified approach, by
building heavily on the “shape, albedo, and illumination from shading” (SAIFS)
model of our previous work [1], which addresses this problem for grayscale images
and white illumination. We extend this technique to color by: trivially modify-
ing the rendering machinery to use color illumination, introducing novel priors
for reflectance and illumination, and introducing a novel multiscale inference
scheme for solving the resulting problem. We evaluate on the MIT intrinsic im-
ages dataset [1, 2], and on our own variant of the MIT dataset in which we have
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re-rendered the objects under natural, chromatic illuminations produced from
real-world environment maps. This additional dataset allows us to evaluate on
images produced under natural illumination, rather than the “laboratory”-style
controlled illumination of the MIT dataset.

We will show that our unified model outperforms all current techniques for the
task of recovering shape, reflectance, and, optionally, illumination. By exploiting
color in natural reflectance images, we do better than the grayscale technique of
[1] at disambiguating between shading and reflectance. By explicitly modeling
shape and illumination we are able to outperform “intrinsic image” algorithms,
which only consider shading and reflectance and perform poorly as a result.
By modeling chromatic illumination we are able to exploit chromatic shading
information, and thereby produce improved shape estimates, as demonstrated
in [19]. For these reasons, when faced with images produced under natural, non-
white illumination the performance of our algorithm actually improves, while
intrinsic algorithms perform much worse. See Figure 1 for examples of the output
of our algorithm and of the best-performing intrinsic image algorithm.

In Section 2, we present a modification of the problem formulation of [1]. In
Sections 3, 4, and 5 we motivate and introduce three novel priors on reflectance
images: one based on local smoothness, one based on global sparsity or entropy,
and one based on the absolute color of each pixel. In Section 6 we introduce a
prior on illumination, and in Section 7 we present a novel multiscale optimization
technique that is critical to inference. In Section 8 we show results for the MIT
dataset and our own version of the MIT dataset with natural illumination, and
in Section 9 we conclude.

2 Problem Formulation

Our problem formulation is an extension of the “SAIFS” problem formulation
of [1], which is itself an extension of the “SAFS” formulation of [22]. We optimize
over a depth map, reflectance image, and model of illumination such that cost
functions on those three quantities are minimized, and such that the input image
is exactly recreated by the output shape, albedo, and illumination.

More formally, let R be a log-reflectance map, Z be a depth-map, and L be
a model of illumination, and S(Z,L) be a “rendering engine” which produces a
log-shading image given depth-map Z and illumination L. Assuming Lambertian
reflectance, the log-intensity image I is equal to R+ S(Z,L). I is observed, and
S(·) is defined, but Z, R, and L are unknown. We search for the most likely (or
equivalently, least costly) explanation for image I, which corresponds to solving
the following optimization problem:

minimize
Z,R,L

g(R) + f(Z) + h(L)

subject to I = R+ S(Z,L) (1)

where g(R) is the cost of reflectance R (roughly, the negative log-likelihood of
R), f(Z) is the cost of shape Z, and h(L) is the cost of illumination L. To
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optimize Equation 1, we eliminate the constraint by rewriting R = I − S(Z,L),
and minimize the resulting unconstrained optimization problem using multiscale
L-BFGS (see Section 7) to produce depth map Ẑ and illumination L̂, with which
we calculate reflectance image R̂ = I − S(Ẑ, L̂). When illumination is known, L
is fixed. This problem formulation differs from that of [1] in that we have a single
model of illumination which we optimize over and place priors on, rather than a
distribution over “memorized” illuminations. This is crucial, as the huge variety
of natural chromatic illuminations makes the previous formulation intractable.

To extend the grayscale model of [1] to color, we must redefine the prior on
reflectance g(R) to take advantage of the additional information present in color
reflectance images, and to address the additional complications that arise when
illumination is allowed to be non-white. Because illumination is a free parameter
in our problem formulation, we must define a prior on illumination h(L). We use
the same S(Z,L) and a modified version of f(Z) as [1] (see the supplementary
material).

Our prior on reflectance will be a linear combination of three terms:

g(R) = λsgs(R) + λege(R) + λaga(R) (2)

where the λ weights are learned using cross-validation on the training set. gs(R)
and ge(R) are our priors on local smoothness and global entropy of reflectance,
and can be thought of as multivariate generalizations of the grayscale model of
[1]. ga(R) is a new “absolute” prior on each pixel in R that prefers some colors
over others, thereby addressing color constancy.

3 Local Reflectance Smoothness

The reflectance images of natural objects tend to be piecewise smooth — or
equivalently, variation in reflectance images tends to be small and sparse. This
insight is fundamental to most intrinsic image algorithms [2, 4, 5, 14, 23], and
is used in our previous works [1, 22]. In terms of color, variation in reflectance
tends to manifest itself in both the luminance and chrominance of an image
(white transitioning to blue, for example) while shading, assuming the illumina-
tion is white, affects only the luminance of an image (light blue transitioning to
dark blue, for example). Past work has exploited this insight by building spe-
cialized models that condition on the chrominance variation of the input image
[2, 5, 12, 14, 15]. Effectively, these algorithms use image chrominance as a sub-
stitute for reflectance chrominance, which means that they fail when faced with
non-white illumination, as we will demonstrate. We instead simply place a mul-
tivariate prior over differences in reflectance, which avoids this non-white il-
lumination problem while capturing the color-dependent nature of reflectance
variation.

Our prior on reflectance smoothness is a multivariate Gaussian scale mixture
(GSM) placed on the differences between each reflectance pixel and its neighbors.
We will maximize the likelihood of R under this model, which corresponds to
minimizing the following cost function:
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(a) Our GSM

smoothness prior

(b) R - a proposed

reflectance image

(c) gs(R) - cost under

our model

(d) ∇gs(R) - influence

under our model

Fig. 2. Our smoothness prior is a multivariate Gaussian scale mixture on the differ-
ences between nearby reflectance pixels (Figure 2(a)). This distribution prefers nearby
reflectance pixels to be similar, but its heavy tails allow for rare non-smooth disconti-
nuities. We see this by analyzing some image R as seen by our model. Strong, colorful
edges, such as those caused by reflectance variation, are very costly (have a low likeli-
hood) while small edges, such as those caused by shading, are more likely. But in terms
of influence — the gradient of cost with respect to each reflectance pixel — we see an
inversion: because sharp edges lie in the tails of the GSM, they have little influence,
while shading variation has great influence. This means that during inference our model
attempts to explain shading in the image by varying shape, while ignoring sharp edges
in reflectance. Additionally, because this model captures the correlation between color
channels, chromatic variation has less influence than achromatic variation (because it
lies further out in the tails), making it more likely to be ignored during inference.

gs(R) =
∑

i

∑

j∈N(i)

log

(
K∑

k=1

αkN (Ri −Rj ;0,σk Σ)

)
(3)

Where N(i) is the 5×5 neighborhood around pixel i, Ri−Rj is a 3-vector of the
log-RGB differences from pixel i to pixel j, K = 40 (the GSM has 40 discrete
Gaussians), α are mixing coefficients, σ are the scalings of the Gaussians in
the mixture, and Σ is the covariance matrix of the entire GSM (shared among
all Gaussians of the mixture). The mean is 0, as the most likely reflectance
image should be flat. The GSM is learned on the reflectance images in our
training set. The differences between this model and that of [1] are: 1) we have
a multivariate rather than univariate GSM, to address color, 2) we’re placing
priors on the differences between all pairs of reflectance pixels within a window,
rather than placing a prior on the magnitude of the gradient of reflectance at each
pixel, as this produces better results, and 3) we have one single-scale prior, as
multiscale priors no longer improve results when using our improved optimization
technique. A visualization and explanation of the effect of this smoothness prior
can be found in Figure 2.

4 Global Reflectance Entropy

The reflectance image of a single object tends to be “clumped” in RGB space,
or equivalently it can be approximated by a set of “sparse” exemplars. This mo-
tivates the second term of our model of reflectance: a measure of global entropy
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which we minimize. We will build upon our previous model [1], but different
forms of this idea have been used in intrinsic images techniques [23, 12], photo-
metric stereo [24], shadow removal [25], and color representation [26]. As in [1],
we build upon the entropy measure of Principe and Xu [27], which is a model
of quadratic entropy (or Rényi entropy) for a set of points assuming a Parzen
window. This can be thought of as a “soft” and differentiable generalization of
Shannon entropy, computed on a set of points rather than a histogram.

A naive extension of the one-dimensional entropy model of [1] to three dimen-
sions is not sufficient: The RGB channels of natural reflectance images are highly
correlated, causing a naive isotropic entropy measure to work poorly. To address
this, we pre-compute a whitening transformation from training reflectance im-
ages and compute an isotropic entropy measure in this whitened space during
inference, effectively giving us an anisotropic entropy measure. Formally, our cost
function is non-normalized Rényi entropy in the space of whitened reflectance:

ge(R) = − log

⎛

⎝
∑

i

∑

j

exp

(
−‖WRi −WRj‖22

4σ2
e

)⎞

⎠ (4)

Where W is the whitening transformation learned from training reflectance im-
ages, as follows: Let X be a 3× n matrix of the pixels in the reflectance images
in our training set. We compute the covariance matrix Σ = XXT (ignoring cen-
tering), take its eigenvalue decomposition Σ = ΦΛΦT, and from that construct
the whitening transformation W = ΦΛ1/2ΦT. σe is the bandwidth of the Parzen
window, which determines the scale of the clusters produced by minimizing this
entropy measure, and is tuned through cross-validation. See Figure 3 for a mo-
tivation of this model.

These Rényi measures of entropy are quadratically expensive to compute
naively, so others have used the Fast Gauss Transform [25] and histogram-based
techniques [1] to approximate it in linear time. The histogram-based technique
appears to be more efficient than the FGT-based methods, and provides a way
to compute the analytical gradient of entropy, which is crucial for optimiza-
tion. We therefore use a 3D generalization of the algorithm of [1] to compute

(a) Correct Everything

ge(R) = 0.913

(b) Wrong Shape

ge(R) = 1.325

(c) Wrong Light

ge(R) = 2.366

Fig. 3. Reflectance images and their corresponding log-RGB scatterplots. Mistakes in
estimating shape or illumination produce shading-like or illumination-like artifacts in
the inferred reflectance, causing the the RGB distribution of the inferred reflectance to
be “smeared”, and causing entropy (and therefore cost) to increase.
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our entropy measure. The resulting technique looks very similar to the bilateral
grid [28] used in high-dimensional Gaussian filtering, and can be seen in the
supplementary material.

5 Absolute Color

The previously described priors were imposed on relative properties of reflectance:
the differences between adjacent or non-adjacent pixels. Though this was suffi-
cient for past work, now that we are attempting to recover surface color and non-
white illumination we must impose an additional prior on absolute reflectance:
the raw log-RGB value of each pixel in the reflectance image. Without such a
prior (and the prior on illumination presented in Section 6) our model would
be equally pleased to explain a white pixel in the image as white reflectance
under white illumination as it would blue reflectance under yellow illumination,
for example.

This sort of prior is fundamental to color-constancy, as most basic color
constancy algorithms can be viewed as minimizing a similar sort of cost: the
gray-world assumption penalizes reflectance for being non-gray, the white-world
assumption penalizes reflectance for being non-white, and gamut-based models
penalize reflectance for lying outside of a gamut of previously-seen reflectances.
We experimented with variations or combinations of these types of models, but
found that a simple density model on whitened log-RGB values worked best.

Our model is a 3D thin-plate spline (TSP) fitted to the distribution of whitened
log-RGB reflectance pixels in our training set. Formally, to train our model we
minimize the following:

minimize
F

⎛

⎝
∑

i,j,k

Fi,j,k · Ni,j,k

⎞

⎠+ log

⎛

⎝
∑

i,j,k

exp (−Fi,j,k)

⎞

⎠+ λ
√
J(F) + ε2

J(F) = F2
xx + F2

yy + F2
zz + 2F2

xy + 2F2
yz + 2F2

xz (5)

Where F is a 3D TSP describing cost (or non-normalized negative log-likelihood),
N is a 3D histogram of the whitened log-RGB reflectance in our training data,
and J(·) is the TSP bending energy cost (made more robust by taking its square
root, with ε2 added to make it differentiable everywhere). Minimizing the sum
of the first two terms is equivalent to maximizing the likelihood of the training
data, and minimizing the third term causes the TSP to be piece-wise smooth.
The smoothness multiplier λ is tuned through cross-validation.

During inference, we maximize the likelihood of the reflectance image R by
minimizing its cost under our learned model:

ga(R) =
∑

i

F(WRi) (6)

where F(WRi) is the value of F at the coordinates specified by the 3-vector
WRi, the whitened reflectance at pixel i (W is the same as in Section 4). To
make this function differentiable, we compute F(·) using trilinear interpolation.
A visualization of our model and of the colors it prefers can be seen in Figure 4.
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(a) Training reflectances (b) Our PDF of reflectance (c) Reflectances sorted by cost

Fig. 4. A visualization of our “absolute” prior on reflectance. On the left we have the
log-RGB reflectance pixels in our training set, and a visualization of the 3D thin-plate
spline PDF that we fit to that data. Our model prefers reflectances that are close to
white or gray, and that lie within gamut of previously seen colors. Though our prior is
learned in whitened log-RGB space, here it is shown in unwhitened coordinates, hence
its anisotropy. On the right we have randomly generated reflectances, sorted by their
cost (negative log-likelihood) under our model. Our model prefers less saturated, more
subdued colors, and abhors brightly lit neon-like colors. The low-cost reflectances look
like a tasteful selection of paint colors, while high-cost reflectances don’t even look like
paint at all, but instead appear almost glowing and luminescent.

6 Priors over Illumination

In our previous work, inference with unknown illumination involved maximizing
an expected complete log-likelihood with respect to a memorized set of ∼100 il-
luminations taken from the training set. That framework was an effective way of
both optimizing with respect to illumination (as the posterior distribution over
illuminations was re-evaluated at each step in optimization, effectively “moving”
the light around) and of regularizing illumination in a non-parametric way (as
only previously seen illuminations were considered). However, that framework re-
quires an extremely expensive marginalization over a set of illuminations, which
causes inference to be extremely slow — hours per image. That framework also
scales linearly with the complexity of the illumination, so modeling the vari-
ety of natural, colorful illuminations makes inference impossibly slow. For these
reasons, in this paper we adopt a simplified model (Equation 1) in which we ex-
plicitly optimize over a single model of illumination in conjunction with shape.
This allows us to model and recover a very wide variety of natural illuminations
(see Figure 5), while making inference effectively as fast as if illumination were
known — around 5 minutes per image. Unfortunately, this model also requires
us to explicitly define h(L), our prior on illumination.

We use a spherical-harmonic (SH) model of illumination, so L is a 27 di-
mensional vector (9 dimensions per RGB channel). In contrast to traditional SH
illumination, we parametrize log-shading rather than shading. This choice makes
optimization easier as we don’t have to deal with “clamping” illumination at 0,
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(a) “Lab” Data (b) “Lab” Samples (c) “Natural” Data (d) “Natural” Samples

Fig. 5. We use two datasets: the “laboratory”-style illuminations of the MIT intrinsic
images dataset [2, 1] which are harsh, mostly-white, and well-approximated by point
sources, and a new dataset of “natural” illuminations, which are softer and much
more colorful. We model illumination using just a multivariate Gaussian on spherical
harmonic illumination. Shown here are some example illuminations from our datasets
and samples from our models, all rendered on Lambertian spheres. The samples looks
superficially similar to the data, suggesting that our model is reasonable.

and it allows for easier regularization as the space of log-shading SH illuminations
is surprisingly well-modeled by a simple multivariate Gaussian. Training our
model is extremely simple: we fit a multivariate Gaussian to the SH illuminations
in our training set. During inference, the cost we impose is the negative log-
likelihood under that model:

h(L) = λL(L− μL)
TΣ−1

L (L− μL) (7)

where μL and ΣL are the parameters of the Gaussian we learned, and λL is the
multiplier on this prior (learned through cross-validation). Separate Gaussians
and multipliers are learned from the illuminations in our two different datasets
(see Section 8). See Figure 5 for a visualization of our training data and of
samples from our learned models.

The Gaussians we learn for illumination mostly describe a low-rank subspace
of SH coefficients. For this reason, it is important that we optimize in the space
of whitened illumination. Whitened illumination is used as the internal represen-
tation of illumination during optimization, but is transformed to un-whitened
space when calculating the loss function.

7 Multiscale Optimization

Here we present a novel multi-scale optimization method that is simpler, faster,
and finds better local optima than the previous coarse-to-fine techniques we
have presented [1, 22]. Our technique seems similar to multigrid methods [29],
though it is extremely general and simple to implement. We will describe our
technique in terms of optimizing f(X), where f is some loss function and X is
some n-dimensional signal.

Let us define L(X,h), which constructs a Laplacian pyramid from a signal,
L−1(Y, h), which reconstructs a signal from a Laplacian pyramid, and G(X,h),



66 J.T. Barron and J. Malik

which constructs a Gaussian pyramid from a signal. Let h be the filter used
in constructing and reconstructing these pyramids. Instead of minimizing f(X)
directly, we reparameterize X as Y = L(X,h), and minimize f ′(Y ):

[�,∇Y �] = f ′(Y ) : (8)

X ← L−1(Y, h) // reconstruct the signal from the pyramid

[�,∇X�]← f(X) // compute the loss and gradient with respect to the signal

∇Y �← G(∇X�, h) // backpropagate the gradient onto the pyramid

We then solve for X̂ = L−1(argminY f ′(Y ), h) using L-BFGS. Other gradient-
based techniques could be used, but L-BFGS worked best in our experience.

The choice of h, the filter used for our Laplacian and Gaussian pyramids,
is crucial. We found that 5-tap binomial filters work well, and that the choice
of the magnitude of the filter dramatically affects multiscale optimization. If
‖h‖1 is small, then the coefficients of the upper levels of the Laplacian pyramid
are so small that they are effectively ignored, and optimization fails. If ‖h‖1 is
large, then the coarse scales of the pyramid are optimized and the fine scales
are ignored. The filter that we found worked best is: h = 1

4
√
2
[1, 4, 6, 4, 1], which

has twice the magnitude of the filter that would normally be used for Lapla-
cian pyramids. This increased magnitude biases optimization towards adjusting
coarse scales before fine scales, without preventing optimization from eventually
optimizing fine scales.

Note that this technique is substantially different from standard coarse-to-fine
optimization, in that all scales are optimized simultaneously. As a result, we find
much lower minima than standard coarse-to-fine techniques, which tend to keep
coarse scales fixed when optimizing over fine scales. Our improved optimization
also lets us use simple single-scale priors instead of multiscale priors, as was
necessary in our previous work [1].

This optimization technique is used to solve Equations 1 and 5. When opti-
mizing Equation 1 we initialize Z to 0 and L to μL, and optimize with respect
to a vector that is a concatenation of L(Z, h) and a whitened version of L. For
both problems, naive single-scale optimization fails badly.

8 Results

We evaluate our algorithm using the MIT intrinsic images dataset [1, 2]. The
MIT dataset has very “laboratory”-like illumination — lights are white, and
are placed at only a few locations relative to the object. Natural illuminations
display much more color and variety (see Figures 5 and 6).

We therefore present an additional pseudo-synthetic dataset, in which we
have rendered the objects in the MIT dataset using natural, colorful illumina-
tions taken from the real world. We took all of the environment maps from the
sIBL Archive1, expanded that set of environment maps by shifting and mirroring

1 http://www.hdrlabs.com/sibl/archive.html

http://www.hdrlabs.com/sibl/archive.html
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them, and varying their contrast and saturation (saturation was only decreased,
never increased), and produced spherical harmonic illuminations from the result-
ing environment maps. After removing similar illuminations, the illuminations
were split into training and test sets. Each object in the MIT dataset was ran-
domly assigned an illumination (such that training illuminations were assigned
to training objects, etc), and each object was re-rendered under its new illumi-
nation, using that object’s ground-truth shape and reflectance.

Our experiments can be seen in Table 1, in Figure 1, and in the supplemen-
tary material. We present four sets of experiments, with either the “laboratory”
illumination of the basic MIT dataset or our “natural” illumination dataset, and
with the illumination either known or unknown. We use the same training and
test split as in [1], with our hyperparameters tuned to the training set, and with
the same parameters used in all experiments and all figures.

For the known-lighting case our baselines are a “flat” baseline of Z = 0, four
intrinsic image algorithms (these produce shading and reflectance images, and
we then run the SFS algorithm of [1] using the recovered shading and known il-
lumination to recover shape), the achromatic technique of our previous work [1],
and the shape-from-contour algorithm of [1]. For unknown illumination, the only
existing baseline is our previous work [1]. We present two simplifications of our
model in which we apply the smoothness and entropy albedo priors of [1] to
the RGB or YUV channels of color reflectance (while still using our absolute
color and illumination priors), to demonstrate the importance of our multivari-
ate models. We also present an ablation study in which priors on reflectance

Table 1. A comparison of our model against others, on the “laboratory” MIT intrinsic
images dataset [1, 2] and our own “natural” illumination variant, with the illumination
either known or unknown. Shown are the geometric means of five error metrics (exclud-
ing L -MSE when illumination is known) across the test set, and an “average” error
(the geometric mean of the other mean errors). N-MSE, L -MSE, s-MSE, and r-MSE
measure shape, illumination, shading, and reflectance errors, respectively, and rs-MSE
is the error metric of [2], (where it is called “LMSE”) which measures shading and
reflectance errors. These metrics are explained in detail in the supplementary material.

Laboratory Illumination Dataset Natural Illumination Dataset

Known Illumination
Algorithm N-MSE s-MSE r-MSE rs-MSE L -MSE Avg.

Flat Baseline 0.6141 0.0572 0.0452 0.0354 - 0.0866
Retinex [2, 5] + SFS [1] 0.8412 0.0204 0.0186 0.0163 - 0.0477
Tappen et al. 2005 [14] + SFS [1] 0.7052 0.0361 0.0379 0.0347 - 0.0760
Shen et al. 2011 [15] + SFS [1] 0.9232 0.0528 0.0458 0.0398 - 0.0971
Gehler et al. 2011 [12] + SFS [1] 0.6342 0.0106 0.0101 0.0131 - 0.0307
Barron & Malik 2012A [1] 0.2032 0.0142 0.0160 0.0181 - 0.0302
Shape from Contour [1] 0.2464 0.0296 0.0412 0.0309 - 0.0552

Our Model (Complete) 0.2151 0.0066 0.0115 0.0133 - 0.0215

Unknown Illumination
Barron & Malik 2012A [1] 0.1975 0.0194 0.0224 0.0190 0.0247 0.0332

Our Model (RGB) 0.2818 0.0090 0.0118 0.0149 0.0098 0.0213
Our Model (YUV) 0.2906 0.0110 0.0171 0.0182 0.0126 0.0263
Our Model (No Light Priors) 0.5215 0.0301 0.0273 0.0285 0.2059 0.0758
Our Model (No Absolute Prior) 0.3261 0.0124 0.0195 0.0189 0.0166 0.0301
Our Model (No Smoothness Prior) 0.2727 0.0105 0.0179 0.0223 0.0125 0.0270
Our Model (No Entropy Model) 0.2865 0.0109 0.0161 0.0152 0.0141 0.0255
Our Model (White Light) 0.2221 0.0082 0.0112 0.0136 0.0085 0.0188
Our Model (Complete) 0.2793 0.0075 0.0118 0.0144 0.0100 0.0205

Known Illumination
Algorithm N-MSE s-MSE r-MSE rs-MSE L -MSE Avg.

Flat Baseline 0.6141 0.0246 0.0243 0.0125 - 0.0463
Retinex [2, 5] + SFS [1] 0.4258 0.0174 0.0174 0.0083 - 0.0322
Tappen et al. 2005 [14] + SFS [1] 0.6707 0.0255 0.0280 0.0268 - 0.0599
Gehler et al. 2011 [12] + SFS [1] 0.5549 0.0162 0.0150 0.0105 - 0.0346
Gehler et al. 2011 [12] + [11] + SFS [1] 0.6282 0.0163 0.0164 0.0106 - 0.0365
Barron & Malik 2012A [1] 0.2044 0.0092 0.0094 0.0081 - 0.0195
Shape from Contour [1] 0.2502 0.0126 0.0163 0.0106 - 0.0271

Our Model (Complete) 0.0867 0.0022 0.0017 0.0026 - 0.0054

Unknown Illumination
Barron & Malik 2012A [1] 0.2172 0.0193 0.0188 0.0094 0.0206 0.0273

Our Model (RGB) 0.2373 0.0086 0.0072 0.0065 0.0104 0.0159
Our Model (YUV) 0.3064 0.0095 0.0088 0.0072 0.0110 0.0183
Our Model (No Light Priors) 0.3722 0.0141 0.0149 0.0118 0.1491 0.0424
Our Model (No Absolute Prior) 0.1914 0.0124 0.0106 0.0036 0.0136 0.0165
Our Model (No Smoothness Prior) 0.2700 0.0084 0.0071 0.0065 0.0090 0.0157
Our Model (No Entropy Prior) 0.2911 0.0080 0.0067 0.0054 0.0109 0.0155
Our Model (White Light) 0.6268 0.0211 0.0207 0.0089 0.0647 0.0437
Our Model (Complete) 0.2348 0.0060 0.0049 0.0042 0.0084 0.0119
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or illumination are removed, and in which illumination is forced to be white
(achromatic) during inference.

For our “natural” illumination dataset, we use the same baselines (except
for [15], as their code was not available). We also evaluate against the intrinsic
image algorithm of Gehler et al. [12] after having run a contemporary white-
balancing algorithm [11] on the input image, which shows that a “color con-
stancy” algorithm does not fully address natural illumination for this task.

For the “laboratory” case, our algorithm is the best-performing algorithm
whether or not illumination is known. Surprisingly, performance is slightly bet-
ter when illumination is unknown, possibly because optimization is able to find
more accurate shapes and reflectances when illumination is allowed to vary. The
shading and reflectances produced by Gehler et al. [12] seem equivalent to ours
with regards to rs-MSE, s-MSE, and r-MSE (the metrics that consider shading
and reflectance). However, when SFS is performed on their shading, the resulting
shapes are much worse than ours in terms of N -MSE (the metric that consider
shape). This appears to happen because, though this algorithm produces very
accurate-looking shading images, that shading is often inconsistent with the
known illumination or inconsistent with itself, causing SFS to produce a con-
torted shape. We see that treating color intelligently works better than a naive
RGB or YUV model, and much better using only grayscale images (Barron and
Malik 2012A [1]). The ablation study shows that all priors contribute positively:
removing any reflectance prior hurts performance by 30-50%, and removing the
illumination prior completely cripples the algorithm. Constraining the illumina-
tion to be white helps performance on this dataset, but would presumably make
our model generalize worse on real-world images.

For the “natural” illumination case, we outperform all other algorithms by a
very large margin — our error is less than 40% of the best-performing intrin-
sic image algorithm (20% if illumination is known). This shows the necessity
of explicitly modeling chromatic illumination. While our complete model out-
performs all other models, the “white light” case often underperforms many
other models, even the achromatic model of [1]. This shows that attempting
to use color information in the presence of non-white illumination without tak-
ing into consideration the color of illumination can actually hurt performance.
For example, in the “laboratory” MIT dataset, our model performs equivalently
to Gehler et al. in some error metrics, but in the “natural” illumination case,
Gehler et al. and the other intrinsic image algorithms all perform significantly
worse than our model. Because these intrinsic image algorithms rely heavily on
color cues and assume illumination to be white, they suffer greatly when faced
with colorful “natural” illuminations. In contrast, our model actually performs
as well or better in the “natural” illumination case, as it can exploit color illumi-
nation to better disambiguate between shading and illumination (Figure 2), and
produce higher-quality shape reconstructions (Figure 6). See the supplementary
material for many examples of the output of our model and others, for all four
experiments.
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(a) Achromatic

illumination

(b) Achromatic

isophotes

(c) Chromatic

illumination

(d) Chromatic

isophotes

Fig. 6. Chromatic illumination dramatically helps shape estimation. Achromatic
isophotes (K-means clusters of log-RGB values) are very elongated, while chromatic
isophotes are usually more tightly localized. Therefore, under achromatic lighting a
very wide range of surface orientations appear similar, but under chromatic lighting
only similar orientations appear similar.

9 Conclusion

We have extended our previous work [1] to present the first unified model for
recovering shape, reflectance, and chromatic illumination from a single image,
unifying the previously disjoint problems of color constancy, intrinsic images,
and shape-from-shading. We have done this by introducing novel priors on local
smoothness, global entropy, and absolute color, a novel prior on illumination,
and an efficient multiscale optimization framework for jointly optimizing over
shape and illumination.

By solving this one unified problem, our model outperforms all previously pub-
lished algorithms for intrinsic images and shape-from-shading, on both the MIT
dataset and our own “naturally” illuminated variant of that dataset. When faced
with images produced under natural, chromatic illumination, the performance of
our algorithm improves dramatically because it can exploit color information to
better disambiguate between shading and reflectance variation, and to improve
shape estimation. In contrast, other intrinsic image algorithms (which incorrectly
assume illumination to be achromatic) perform very poorly in the presence of
natural illumination. This suggests that the “intrinsic image” problem formu-
lation may be fundamentally limited, and that we should refocus our attention
towards developing models that jointly reason about shape and illumination in
addition to shading and reflectance.

Acknowledgements. J.B. was supported by NSF GRFP and ONR MURI
N00014-10-10933.
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Abstract. We present a fast image comparison algorithm for handling variations
in illumination and moderate amounts of deformation using an efficient geodesic
framework. As the geodesic is the shortest path between two images on a mani-
fold, it is a natural choice to use the length of the geodesic to determine the image
similarity. Distances on the manifold are defined by a metric that is insensitive to
changes in scene lighting. This metric is described in the wavelet domain where
it is able to handle moderate amounts of deformation, and can be calculated ex-
tremely fast (less than 3ms per image comparison). We demonstrate the similarity
between our method and the illumination insensitivity achieved by the Gradient
Direction. Strong results are presented on the AR Face Database.

1 Introduction

The presence of lighting changes and deformations complicates the task of general im-
age comparison. We present a fast algorithm that can handle illumination variation and
moderate amounts of deformation in an efficient wavelet-based geodesic framework.
Expressing the image matching cost in the wavelet domain allows us to derive an algo-
rithm where the complete cost calculation requires only O(n) table lookups, for n the
number of pixels in one image.

Considering images as points on a high dimensional image manifold, defining a met-
ric to give local structure to the manifold allows paths to be calculated between images
along the manifold; see Fig. 1. Computer Vision literature frequently uses geodesics
in a Manifold Learning framework, where many given images are assumed to lie on a
manifold and paths are defined by edges through sets of known images. In this work, we
are given only two images, and we consider the geometry of the manifold, as induced
by the chosen metric, to calculate the length of the path between them. It is natural to
use the length of the geodesic, or locally shortest path, to define the similarity between
two images, and geodesics provide significant information about the ways in which im-
ages differ. Points along a geodesic curve are images that have morphed part way from
the first image to the second, and changes such as lighting and deformations can be in-
troduced gradually through time. Being able to construct and manipulate geodesics has
many applications, including accurate image interpolation [17], the ability to extract
nonlinear statistics from a set of images on a manifold [18], and image registration [1].
In this work we aim to measure geodesic lengths on an image manifold, and provide a
framework that can then be extended for further applications.
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Fig. 1. A high-dimensional manifold, where each point on the manifold is an M×N -dimensional
image, and geodesics connecting more similar images are shorter (images from [8])

Due to their high dimensionality, calculating geodesic distances can be a very ex-
pensive task directly, but we show that by working in the wavelet domain with a well-
chosen metric, we can solve this problem very efficiently. To define an appropriate
manifold of images, we will use a metric that is insensitive to changes in lighting and
moderate amounts of deformation. The metric depends on image gradients, as gradients
are less sensitive to changes in lighting than are direct pixel intensities. We will achieve
results similar to those from the illumination-insensitive Gradient Direction, but here
we also have a meaningful geodesic in addition to a simple difference value. We will
show that our lighting cost is insensitive to moderate amounts of deformation when
accumulated over several scales.

A geodesic-based image comparison framework has been considered in the past in
works including [1]. Wavelets have been used to obtain insensitivity to group actions
in works such as [2], and an efficient approximation of the somewhat deformation-
insensitive Earth Mover’s Distance has been calculated in the wavelet domain in [15].
The insensitivity of the gradient to lighting change has been shown numerous times such
as in [10], where normalized gradients are used as features so that the SIFT descriptors
are invariant to affine changes in illumination. We modify the gradient-based lighting-
insensitive metric presented in [7]. Handling illumination changes and deformations
together in an Optical Flow framework has been studied in works such as [13], but
our proposed algorithm can be computed several orders of magnitude faster than these
previous methods, while still providing accurate matching costs.

The primary contributions of this work are threefold: 1) a method using geodesics
to calculate an illumination-insensitive image comparison cost similar to the Gradient
Direction, but useful for applications where manipulating geodesics is required; 2) the
insight that local dependencies can be removed by using an appropriate wavelet do-
main to express an image matching cost function based on gradient terms, allowing the
cost computation to be separated into independent problems at every point location in
wavelet space; and 3) a very fast calculation of this image comparison cost.

2 Geodesics for Object Identification

Identifying objects in pairs of images is made challenging by changes in pose, lighting,
deformations, and occlusions. If these changes could be introduced gradually over the
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course of several images, they would be much easier to handle. If we consider the
manifold of images of a single class of object, where every point on the manifold is
some instance of that object, then paths through the manifold connecting two images
would consist of a continuum of images morphing from the first image to the second,
like a video playing over time. The similarity of two instances of an object could then be
defined by the length of the geodesic connecting them on the manifold, where shorter
paths imply more similar objects; see Fig. 1.

Given a manifold of M×N -dimensional images, we define a metric on this manifold
so that it has a quantifiable structure, making it a Riemannian manifold [4]. The metric
defines how costly it is to take an infinitesimal step in any given direction from any
given point, and can be thought of as an M×N -dimensional topographical map, where
walking up a hill in one direction costs more than walking downwards in a different
direction. On the Euclidean plane, the metric is d(p1, p2) = ‖p2 − p1‖2, but a metric
can be defined in many ways as long as it is a locally linear metric. The metric chosen
to define the manifold can be constructed to heavily penalize certain types of image
variations, while allowing other variations to have low costs. For example, we would
like an image metric that allows scene lighting to change at little cost, while object
instance changes should come with a very high cost.

The length L of a path I(t) from t = 0 to t = 1 on a manifold is defined, for any
given metric ‖ · ‖, to be

L(I(0), I(1)) =

∫ 1

0

∥∥∥∥dIdt
∥∥∥∥ dt. (1)

In order to calculate the geodesic path connecting I(0) and I(1), we must find the min-
imum cost path I(t) along the manifold. This becomes an optimization problem, where
we want to solve Igeod(t) = argminI(t) L(I(0), I(1)). Geometrically, a geodesic is a
curve whose tangent vectors dI

dt have constant length [4]. It can be shown that the length
of the geodesic Igeod(t) is also equal to

Lgeod(I(0), I(1)) = min
I(t)

√
2E(I(t)), (2)

a function of the energy E of the curve [19], where energy is defined as

E(I(t)) =
1

2

∫ 1

0

∥∥∥∥dIdt
∥∥∥∥
2

dt, (3)

which is familiar from classical mechanics where kinetic energy is 1
2mv2. The relation

(2) can be understood intuitively because the tangent vectors all have constant length c,
and so if

∫ 1

0 ‖c‖dt is minimal, then 1
2

∫ 1

0 ‖c‖2dt must also be minimal, as squaring is a
monotonic function. Therefore,

Igeod(t) = argmin
I(t)

∫ 1

0

∥∥∥∥dIdt
∥∥∥∥ dt = argmin

I(t)

1

2

∫ 1

0

∥∥∥∥dIdt
∥∥∥∥
2

dt. (4)

We will choose an appropriate energy function and use the relation from (2) to help us
calculate geodesic distances on the image manifold.
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The metric defining the manifold on which the geodesics live can be adjusted for var-
ious applications, making this an elegant framework to handle an often messy problem,
allowing images to update gradually and continuously through time. In the next sec-
tions we will discuss the metric and optimization schemes chosen to efficiently solve
this problem.

3 A Lighting-Insensitive Metric

A pixel-based metric proposed in [7] was designed to be insensitive to changes in scene
illumination, which the authors combined with a regularization term to handle deforma-
tions in an Optical Flow-like framework, calling the combined method the Deformation
and Lighting Insensitive (DLI) metric. The lighting-insensitive (LI) term relating two
images I1 and I2 was presented as

ELI(I1, I2) =
1

2

∑
x,y

‖∇δI(x, y)‖2
‖∇I(x, y)‖2 + ε2

, (5)

where ∇δI and ∇I are defined in terms of I1 and a second image Î2 that is I2 warped
to match I1 as closely as possible under certain constraints, so δI = Î2 − I1 and
∇I = ∇I1. The small constant ε is of the order of the noise in the image, and ensures
that the denominator is never zero.

Using image gradients instead of intensities directly is known to be less sensitive to
changes in lighting, for example from [10]. The Gradient Direction is a cost function
commonly used when insensitivity to illumination change is desired. The direction of

the image gradient θ = tan−1
(

Iy
Ix

)
is calculated at each pixel, then used in a sum-of-

squared-differences image comparison, defining a cost between a given pair of images.
This measure is invariant to adding a constant value to the image, or multiplying the
image by a scalar, desirable properties for being insensitive to changes in scene il-
lumination. However, it can be argued that a small change in illumination should be
penalized less harshly than a large change in illumination.

The metric ELI has similar properties to the Gradient Direction, but is able to respond
to different gradient relations appropriately, scaling the gradient of the image change
δI by the norm of the image gradient. Changing from a small to a medium gradient
norm will be penalized more severely than changing from a medium to a large gradient
norm. Comparing two smooth image regions should have a low cost, while comparing
a smooth region to a jagged region should have a high cost. The image gradient is small
at pixels that correspond to smooth regions of an object, and although a change in scene
lighting will result in different pixel intensities, the relative intensities of the pixels
will remain similar, and the gradient will remain small, so both the numerator and the
denominator will be small, resulting in a low matching cost, and the desired property
holds. In an image region where there is a geometric boundary, such as at the edge of
a building, a change in scene lighting could affect the distinct surfaces in very different
ways, but as the gradient is likely to be large across this boundary, matching a larger
∇δI is permissible at a lower cost as it will be weighted by the image gradient in the
denominator. In an image region where there is an albedo change but little geometric
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(a) Image sequence.

(b) Image matching costs.

Fig. 2. (a) Image sequence, where each image is compared to image 1, the leftmost image. (b)
Gradient Direction and ELI mfld costs for each image pair in the image sequence.

change, for example a colored stripe on a white wall, the gradient across this boundary
may be large, but as the scene lighting changes, ∇δI will scale with ∇I , so as long
as the pixels being compared correspond to the same points in the scene, the matching
cost will remain low.

To understand the difference in behavior between the Gradient Direction and our
new cost ELI mfld, we provide a simple toy example Fig. 2, which could represent a
series of images captured as a lighting source moves from one side of a building to
another across a corner. Costs are calculated from the leftmost image in Fig. 2(a) to
all images in the sequence, and these costs are presented in Fig. 2(b). As the change
in intensity gets larger, the cost of ELI mfld steadily increases, and when the order of
the intensity magnitudes reverses (from image 3 to image 5), this causes a jump in the
costs. With Gradient Direction (mod π), the cases where two image regions have the
same intensity (images 4 and 7) cause the comparison cost value to blow up, while
otherwise the direction of the gradients and hence the costs are not discriminative.

We will use this metric to define a manifold that is insensitive to changes in illumi-
nation. Along any curve I(t) (a continuum of images) on the manifold, for small step
δt > 0, δI(t) = I(t+ δt) − I(t). The relation between two images from (5) defines a
Riemannian structure on images using the infinitesimal norm

‖δI‖2LI =
1

2

∑
x,y

‖∇δI(x, y)‖2
‖∇I(x, y)‖2 + ε2

. (6)

Using this term in the energy function from (3), the energy of a curve I(t) on this
manifold is

ELI mfld(I(t)) = lim
δt→0+

1

2

∫ 1−δt

0

‖δI‖2LI

(δt)2
dt. (7)

We search for geodesics on this manifold in order to determine the distance
Lgeod(I(0), I(1)) between any given pair of input images I(0) and I(1). To calculate
the geodesic from (4) we must therefore solve

Igeod(t) = argmin
I(t)

lim
δt→0+

1

2

∫ 1−δt

0

∑
x,y

‖∇δI(x, y, t)‖2
‖∇I(x, y, t)‖2 + ε2

1

(δt)2
dt. (8)

3.1 Behavior of the Metric

In this section we will discuss the behavior of the geodesics defined by this lighting-
insensitive metric at a single point location (x, y). When the image gradient is near
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zero, the metric is dominated by the 1
ε2 term, and the cost scales nearly linearly with the

change in the gradient.
In regions where the image gradients are large, the behavior is more exponential.

This can be seen analytically without loss of generality if we consider the case where
the gradient is zero in the y dimension in both images, so that there is no change in
gradient direction and ∇I = Ix. For clarity let ε2 = 0, and take I ′ = limδt→0+

δI
δt .

This reduces (8) to

argmin
I(t)

1

2

∫ 1

0

(
I ′x
Ix

)2

dt, (9)

which can be solved using the Euler-Lagrange equation [3], a technique that converts a
functional to be minimized into a differential equation describing the minimizing func-
tion. Specifically, given a functionalJ of the formJ(f) = minf(t)

∫ 1

0
F (t, f(t), f ′(t))dt,

the function f(t) that minimizes J(f) is described by the equation ∂F
∂f − d

dt
∂F
∂f ′ = 0.

Applying the Euler-Lagrange equation to (9), the resulting differential equation can be
simplified to

(I ′x)
2 − IxI

′′
x = 0. (10)

It can be shown that Ix(t) = cert satisfies this equation for c, r ∈ R, and any set of
boundary conditions I(0) and I(1) will determine the specific values of these variables.
We therefore see that when the value of ε is small with respect to the magnitudes of
∇δI and ∇I , the gradient of I behaves like an exponential, meaning that I changes
exponentially with time. So the cost function we seek to minimize is near linear when
the image gradients are near zero, and near exponential when the image gradients are
larger, which penalizes scene lighting variation as desired.

3.2 Disadvantages of Direct Optimization

The most straightforward way to minimize (8) is to use a gradient descent optimization
scheme. However, for input images of size M×N , the geodesic path I(t) has dimension
M×N×T , for T the number of time steps used to discretize the geodesic. Calculations
with ∇ELI mfld are cumbersome and easily get trapped in local minima. We avoid these
computations by moving the problem into the wavelet domain, where we will show that
it can be expressed as M ×N distinct 1D problems that are straightforward to solve.

4 Optimization in the Wavelet Domain

We show that moving the normELI mfld into the wavelet domain results in a function that
can be minimized over each independent variable separately, thereby vastly simplifying
the minimization calculations and resulting in a very fast computation. We will also find
that this representation provides insensitivity to moderate amounts of deformation.

4.1 Background on Wavelets

For our purposes, wavelets are a set of orthonormal functions that allow local analysis of
a function according to scale; for details see [11]. At every scale the wavelet transform
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(a) (b) (c)

Fig. 3. (a) 2D Haar wavelet decomposition to three scales, (b) 1D Haar wavelet, (c) 1D biorthog-
onal spline wavelet

has three outputs, defined in the horizontal H , vertical V and diagonal D directions,
and a downsampled version of the input that is then processed at the next scale; see
Fig. 3(a). Wavelet functions used to filter an image can be constructed in a wide variety
of forms, but for our purposes we consider only functions that have the same general
form as a derivative filter. The 1D Haar wavelet at one scale (see Fig. 3(b)) is exactly
a simple finite difference filter, and so filtering with a Haar wavelet is equivalent to
downsampling by two and filtering with a finite difference filter in each dimension, i.e.
extracting the gradient at every other pixel. The critical observation here is that each
term of this wavelet transform is independent. Wavelet basis functions can be chosen
to be orthogonal, and in this case changing the value of the wavelet coefficient at one
location at one scale affects no other coefficients at any scale, for its support of two ad-
jacent points at the next coarsest scale is downsampled by two, so these points influence
no other coefficient. This allows us to define gradients in terms of independent wavelet
coefficients. If we filter with a smoother wavelet of a similar gradient-like shape, such
as the biorthogonal spline wavelet (see Fig. 3(c)), this can be considered to be filtering
with a smoothed gradient filter, with desirable continuity properties. In this work we
will use the family of biorthogonal spline wavelets (with orders nr = 1, nd = 3).

4.2 The Lighting Metric in the Wavelet Domain

We rewrite the function ELI mfld (7) in terms of wavelet coefficients. If these coefficients
are defined so that H(m,n) is the horizontal component and V (m,n) is the vertical
component of a 2D gradient-like wavelet calculated via a discrete wavelet transform,
then H ≈ Ix and V ≈ Iy , where each has been downsampled by a factor of two. Using
the L2 norm, ELI can be rewritten approximately as

Ewav(I) =
1

2

∑
m,n

δH2 + δV 2

H2 + V 2 + ε2
, (11)

where H and V depend on point locations (m,n), but we leave this out of the notation
for clarity, as (m,n) are fixed inside the sum. The converted cost function does not
make use of the diagonal component of the 2D wavelet decomposition, as all terms are
expressible using only H and V .

In the wavelet domain, each wavelet basis location is now independent of its neigh-
bors, as the local descriptions of the gradients are handled during the wavelet filtering, a
result of the orthogonality of the wavelets as described in the previous section. A primary
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Fig. 4. Algorithm schematic: The discrete wavelet transform (dwt) is applied to the input images
to generate the horizontal and vertical components H and V of the wavelet decomposition at
one scale. At each point pair location in H(0), V (0), the geodesic curve is calculated to the
corresponding point location in H(1), V (1). These curves are then integrated, and the resulting
values from each point pair are summed for the total image matching cost.

contribution of this work is the insight that using the wavelet domain to express an image
matching cost function based on gradients allows the similarity computation to be sepa-
rated into independent problems at every point location in wavelet space. We recall that
the terms comprising the cost function in the wavelet domain are sampled from the origi-
nal terms at every other pixel. Again taking H ′ = limδt→0+

δH
δt and V ′ = limδt→0+

δV
δt

so that the 1
(δt)2 term cancels, the minimization problem (8) can be rewritten as

Igeod(t) =
1

2

∑
m,n

argmin
H(t),V (t)

∫ 1

0

H ′2 + V ′2

H2 + V 2 + ε2
dt. (12)

where H and V are curves through time, and each individual point on the curves is in
R

M×N . The M × N × T dimensional problem of (8) has now been separated into
M × N independent continuous 1D problems to be summed, one for each location
(m,n) in the wavelet domain. The geodesic path at each point location is defined by
two 1D curves, H(t) and V (t), which are coupled, meaning that their geodesic paths
are co-dependent and are optimized together; see Fig. 4. We can calculate the geodesic
path for each point location separately, and then the full geodesic path of the image as a
whole is simply the combination of all these distinct paths. The starting and ending values
H(0), H(1), V (0), V (1) are the coefficients from the wavelet decompositions of the
given images I(0) and I(1), and so this reduces to a series of boundary value problems.

The minimization problem in (12) is a functional of a form that can be easily converted
to a set of differential equations using the Euler-Lagrange equation [3], as described in
Sec. 3, which can then be solved numerically. We chose to first convert the relation into
polar coordinates, as this proved to be more stable to solve numerically. Defining r =√
H2 + V 2 and θ = tan−1 V

H , the inner functional to be minimized becomes

argmin
r(t),θ(t)

∫ 1

0

r′2 + r2θ′2

r2 + ε2
dt. (13)

Following the vector form of the Euler-Lagrange equation, the differential equations
that describe the curves r(t) and θ(t) that together minimize the term inside the sum
for a single point location (m,n) are
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r′′ = rθ′2 + (rr′2 − r3θ′2)(r2 + ε2)−1,

θ′′ = 2r−1r′θ′(r2(r2 + ε2)− 1). (14)

This pair of second order equations can be solved as a system of four first order equa-
tions using any numerical integration scheme, and we chose to use the Boundary Value
Problem solver from MATLAB. The output is a pair of numerical 1D curves r(t) and
θ(t), starting at r(0), θ(0) and ending at r(1), θ(1), that can be converted back to 1D
curves H(t), V (t), and that minimizes the cost from (12). This process is repeated for
each wavelet domain point (m,n) separately. We now have M × N pairs of geodesic
curves. A visual schematic of the algorithm can be seen in Fig. 4.

Once all the optimal curves have been found, it remains to integrate along each of
them to calculate the cost contribution from each location, and sum these point costs
for the overall value of the energy of the image matching. These integrations can be
computed numerically, discretizing the curve into T segments and summing the value
of the cost function at each of these segments. Once the total energy is calculated, we
recall the relation from (2) and return the square root of twice the energy value as the
true geodesic length.

4.3 Limiting Behavior

When ε is reduced to 0, equation (13) decouples into two separate problems:

argmin
r(t)

∫ 1

0

r′2

r2
dt and argmin

θ(t)

∫ 1

0

θ′2dt. (15)

These equations are optimized by exponential curves in r(t) and linear curves in θ(t),
and when the boundary values are included, the optimal curves are

r(t) = r0e
ln

r1
r0

t = r0

(
r1
r0

)t

and θ(t) = (θ1 − θ0)t+ θ0. (16)

These functions can be integrated analytically, resulting in a total energy of

E =

(
ln

r1
r0

)2

+ (θ1 − θ0)
2
, (17)

a value determined entirely by the boundary points, invariant to the path connecting
them. This is observed to be exactly the cost of the Gradient Direction plus a constant
term depending on the ratio of the lengths of the H and V terms in the two images. So
we expect the cost reported here to be very similar to the Gradient Direction, but more
highly penalizing cases where the difference in gradient norms between the two images
is large, while the Gradient Direction is invariant to uniform scalar changes in intensity
magnitude. It is reasonable and often desirable to have cases where a uniform intensity
change is small be penalized less than cases where the magnitude is large. When the
magnitude of r is the same at corresponding pixels in both images, the cost is exactly
that of the Gradient Direction. In this limiting case when ε = 0 the geodesic path is not
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meaningful, but for all positive ε a geodesic path does exist. When the gradient norms
are small, we prefer the linear penalty incurred by the ε term, as discussed in Sec. 3.1,
so that small amounts of noise in smooth regions do not bias the measure.

In practice when ε is positive, these properties are consistent, but the geodesic cost
is influenced by its entire path on the manifold. The cost to rotate by an angle θ when
r1 = r2 is essentially constant, regardless of the magnitude of r1. The cost to go from
(r1, θ1) to (r2, θ2) is close to the cost of rotating a constant r by θ2 − θ1 plus the cost
of scaling from r1 to r2 without any rotation.

4.4 Deformation Insensitivity

The algorithm presented above provides a way to compare images that is insensitive to
changes in scene illumination. We now claim that this algorithm can also handle mod-
erate amounts of deformation. Expanding our function to include several scales s of
wavelet coefficients, where larger scales correspond to coarser levels of the decompo-
sition, the function to be minimized is now

Igeod(t) =
1

2

∑
m,n

∑
s

argmin
H(t),V (t)

λs

∫ 1

0

H ′2 + V ′2

H2 + V 2 + ε2
dt. (18)

We choose the weighting coefficient to be λs = 2s, which we justify from its similarity
to the Wavelet Earth Mover’s Distance weighting as discussed below, and because it
was observed empirically to provide the most accurate results. Using several scales
increases accuracy because we can now consider both global image properties from the
coarse scales, and edge details from the finer scales. In our experiments we use the first
three scales of the wavelet transform. The resulting algorithm now involves a separate
geodesic curve construction and integration for each scale and location.

Further, we argue that simply using wavelets adds moderate deformation insensitiv-
ity. Deformations within the support of each wavelet basis function are handled together
during the wavelet transform, so deformations localized to these region have little over-
all impact on the wavelet coefficients. A similar observation was made previously when
the Earth Mover’s Distance was explored in the wavelet domain. The Earth Mover’s
Distance (EMD) algorithm [14] provides a way to compare two distributions by mea-
suring the distance and quantity of “mass” that must be moved in order to convert one
distribution into the other, where “mass” is thought of as whatever is populating the bins
of a histogram. This similarity measure captures certain types of deformation, where no
particular geometric structure is preserved or favored, but local changes in mass cost
significantly less than global structure modifications.

The Wavelet EMD [15] approximates the Earth Mover’s Distance in the wavelet
domain, converting an algorithm of complexity O(n3 logn) into an O(n) algorithm
without any significant performance difference, where n is the number of points in an
image, and its cost depends on wavelet coefficients at all scales. At each individual
scale, it limits the distance individual mass units can move to the span of the wavelet
at that scale. The weighting on the magnitude of each scales’ wavelet coefficients in
the distance calculation is 22s = 4s, similar to the weighting we incorporated into
our multiscaled cost function (18), where our base is 2 instead of 4. When the image
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gradients are small, our proposed cost function is essentially linear, as discussed in Sec.
3.1, meaning that it behaves similarly to the Wavelet EMD, and we understand how our
new metric is able to handle moderate amounts of deformation, as this is the purpose
of the Earth Mover’s Distance. When the image gradients are larger, the new metric
becomes more exponential, which allows the image comparison to be penalized less
heavily when large lighting changes are present.

5 The Faster Algorithm

We will now discuss how to optimize our calculations to create a very computationally
efficient algorithm. For any given pair of starting input values H(0), V (0) and ending
input values H(1), V (1), the geodesic curve connecting them is always the same, so
the cost of this input is always the same. This means that the geodesic curves can be
calculated and integrated offline, and at run time the only computation that has to be per-
formed is to look up the value of the integral for the given (H(0), V (0), H(1), V (1)).
To further reduce the amount of space and time required, at every point we convert the
input (H(0), V (0), H(1), V (1)) into polar coordinates, (r1, r2, θ1, θ2), and then rotate
so that θ2 = 0, as these rotated values preserve the relation between the points and
will result in the same output cost. This allows us to generate a lookup table of integral
values that depends on only three values (r1, r2, Δθ) instead of four.

We discretize the space of r values into 40 bins of exponentially increasing size in
the range [0, 1.5], as this is the range of wavelet coefficient values observed in practice
for images with pixel values in [0, 1], with coarser scales generally consisting of smaller
values. We used ε = 0.01 in our experiments. The space of Δθ values we discretize into
80 bins of uniform size in the range [0, 2π). The resulting costs are symmetric about
Δθ = π, so we really only have to store the first half of these values, and the lookup
table to be stored is of dimension 40× 40× 40. The online calculation at each location
(m,n) in wavelet space consists of converting (H(0), V (0), H(1), V (1)) into polar
coordinates (r1, r2, Δθ), looking up the corresponding integral value in the table, and
adding this value to the overall cost being calculated.

This calculation is limited principally by the speed at which a given machine can per-
form a lookup in a 40×40×40 array, which is in general a very fast operation. The cost
of this calculation is on the order of milliseconds, fast enough to use in practice when
many image comparisons must be computed very quickly. On a 3.16 GHz machine run-
ning MATLAB in serial, this takes on average 1.3× 10−3 seconds for a pair of images
with 5000 pixels each. We emphasize that the lookup table is application-independent;
once it has been generated, which takes 1.5 hours, the same table can be used for any
pair of images from any domain.

6 Experiments

One class of object that is regularly presented with large amounts of lighting variation
and moderate amounts of deformation is the human face. Although nothing in our al-
gorithm is specific to faces, the limited amount of deformation present with expression
change, along with potentially high variations due to lighting change, make them a rel-
evant application of our work. We use a common face dataset studied for this problem,
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(a) neutral (b) expressions (c) lightings

Fig. 5. The variations of one person from the AR Face Database [12]

the subset of the AR Face Database [12] that contains variation in expression and light-
ing. We reduce the size of the standard cropped AR images by a factor of two in each
dimension, as face recognition algorithms routinely perform the best on images of this
scale, and so the images we compare are 83×59 pixels in dimension, and are smoothed
slightly before processing. We use a neutral face from each of the 100 people in the
dataset as gallery images, and the three variations in expression and the three variations
in lighting for each person comprise the test set; see Fig. 5. The identity of each test
image is determined by the gallery image returning the lowest cost pairing.

The algorithm presented here is a fast method for comparing images in the presence
of lighting change and moderate deformations, and so we compare to other lighting
and deformation insensitive algorithms that do not require training data. It was shown
in [5] that the Gradient Direction method, described in Sec. 3, consistently performs
better than the other standard pixel-based lighting-insensitive methods (Self-Quotient,
luminance map estimation, Eigenphases, Whitening), so we compare to Gradient Di-
rection. We also compare to the results of the Deformation and Lighting Insensitive
metric (EDLI) [7], and we expect our calculations to be much faster. Other works that
present a cost function to handle both lighting change and deformations include that
of [20], which calculates image point correspondences using edge maps and Gabor jet
information, and [16] which uses mutual information to combine binary edge features
with grayscale information. We also compare to simple image differencing and to nor-
malized cross-correlation [9], where the template is a full image, as these methods are
frequently used to compare images when many comparisons must be completed very
fast. As our method is based on an L2 metric, we use the L2 norm on each of these mea-
sures for valid comparison. Results on the AR Face Database are presented in Table 1
for both algorithm speed and accuracy.

We see that our method achieves more accurate results than the Gradient Direction
method on the lighting variation images, and significantly more accurate results on the
expression variation images, as expected. This confirms the insensitivity of the method
to lighting change, with the added benefit that we are able to construct geodesic infor-
mation which allows for meaningful extensions such as mapping and interpolating large
image variations. The accuracy of the method is also above that of the EDLI work where
the lighting metric was first presented, which also handled deformations explicitly, and
our calculations here are 103 times faster than that work, making our method useful in
template matching applications where the original method was prohibitively slow.

The previous best results on this dataset, as far as the authors are aware, were pro-
duced by Pixel-Level Decisions in [6], where simple thresholding was applied to pixel
differences of a chosen image property. Standard deviation calculated within a window
around each pixel was the property that provided the best results. The differences be-
tween these standard deviations at every pixel location in each image were computed,
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Table 1. Identification results on the AR Face Database. The Time column reports the MATLAB
calculation time of a single image pair comparison in seconds, except in two cases where time
was not reported and we were unable to reproduce the authors’ results.

Method Time (sec) Expression Lighting Overall

Image Differencing 3.1× 10−5 83.0% 9.0% 46.0%
Normalized Cross-Correlation [9] 7.2× 10−3 84.0% 59.3% 71.7%
Significant Jet Point [20] – 80.8% 91.7% 86.3%
Binary Edge Feature
and MI [16] – 78.5% 97.0% 87.8%
Gradient Direction [5] 3.8× 10−4 85.0% 95.3% 90.2%
EDLI [7] 1.0× 100 89.6% 98.9% 94.3%
Proposed Method 1.3× 10−3 93.7% 96.7% 95.2%
Pixel Level Decisions [6] 5.6× 10−4 98.0% 94.0% 96.0%
Proposed Method thresholded 1.3× 10−3 97.3% 97.0% 97.2%

and the total number of pixel differences less than a pre-determined threshold were
counted for the final similarity value. We present these results here to demonstrate that
the surprisingly strong results achieved from this extremely simple algorithm can be ap-
plied to other pixel-based methods, and we use a similar thresholding step on our results
as well. [6] also suggests compensating for local error by repeating the procedure with
the images shifted a few pixels in every direction, but we do not compare these results
as they are not relevant to the ideas in this paper. However, this repeated shifting could
be applied to improve the results of any of the these methods. As the threshold value
for our point costs in wavelet space, we use the cost value that counts the lowest 20% of
the point costs across all images, as this was the value used by [6]. The exact threshold
value is not sensitive, and we observed that all values thresholding 9% to 47% of the
costs resulted in overall accuracies within 1% of each other, and the ideal threshhold on
this dataset, if hand-picked, results in an overall accuracy of 98.0%. We see in Table 1
that this simple thresholding extension removes 58.6% of the errors in our method.

The proposed algorithm performs well with variations in lighting, and also handles
moderate amounts of deformation. Many methods perform very poorly on the scream
category of this database, but the multiscaled method presented here achieved 83.0%
accuracy in this case, and 93.0% with thresholding, higher than either Gradient Direc-
tion (57.0%) or the EDLI metric (79.6%), which was designed to handle deformations.

Not only does the proposed algorithm produce accurate identification results, but the
computation time required is extremely small. We emphasize that no training data or
learning stage is required for the method proposed in this paper.

7 Conclusion

We have presented a fast algorithm for handling illumination changes and
moderate deformations applicable to any class of images. Geodesic distances were cal-
culated between pairs of images, as defined on an image manifold given structure by
an illumination-insensitive metric that was based on the change in image gradients. The
metric was calculated in the wavelet domain, where each point location contributed
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independently to the overall image comparison cost, allowing geodesic costs to be
computed extremely efficiently using a pre-calculated lookup table. Using wavelets at
multiple scales allowed for insensitivity to moderate deformations in a manner similar
to the Wavelet Earth Mover’s Distance. Strong results were presented on the AR Face
Database, where our algorithm is seen to be both extremely fast and accurate. Using
geodesics to calculate image comparisons instead of simple pixel differences allows
our method to be incorporated into a wide array of applications where having infor-
mation along a morphing path is relevant. Because this algorithm is so fast, it could
also be applied successfully in situations where Normalized Cross-Correlation is often
used, where many image comparisons must be computed in a very short amount of time.
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Grant N00014-08-10638, and by National Science Foundation Grant No. 0915977.

References
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Abstract. We present how to perform exact large-scale multi-class
Gaussian process classification with parameterized histogram intersec-
tion kernels. In contrast to previous approaches, we use a full Bayesian
model without any sparse approximation techniques, which allows for
learning in sub-quadratic and classification in constant time. To handle
the additional model flexibility induced by parameterized kernels, our ap-
proach is able to optimize the parameters with large-scale training data.
A key ingredient of this optimization is a new efficient upper bound of the
negative Gaussian process log-likelihood. Experiments with image cate-
gorization tasks exhibit high performance gains with flexible kernels as
well as learning within a few minutes and classification in microseconds
for databases, where exact Gaussian process inference was not possible
before.

Keywords: Large-scale Gaussian Processes, Histogram Intersection
Kernels, Hyperparameter Optimization, Bayesian Modeling.

1 Introduction

Non-linear learning with histogram kernels is currently one of the main tech-
niques for solving complex visual recognition tasks [1–3]. This is mainly because
histogram kernels, such as the histogram intersection kernel (HIK), exploit the
property that histograms are normalized and lie in a very specific subspace [4],
which allows providing a more suitable measure of similarity compared to stan-
dard kernels. For learning, SVM classifiers are the most prominent technique.
However, it has been shown that full Bayesian techniques, e.g., Gaussian process
(GP) methods, do offer two important advantages: (1) they allow hyperparam-
eter optimization by maximizing the marginal likelihood of the model, and (2)
the uncertainty of the estimate can be predicted. Their main disadvantage is
the cubic runtime of the learning step, which prevents them from being used in
large-scale scenarios. Nevertheless, due to the large number of available image
data, current tasks and research is shifting more and more towards large-scale
learning scenarios, where the final goal is to efficiently handle several thousands
to millions of training examples [5].

We present how to perform multi-class GP classification and hyperparameter
optimization with large-scale datasets without any sparse approximation. The
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memory and runtime requirements of our methods are sub-quadratic allowing
for scalability. The approach is based on fast multiplications of the histogram
intersection kernel matrix with an arbitrary vector. This allows for solving the
GP inference equations by utilizing iterative solvers. Furthermore, we demon-
strate that hyperparameter optimization with the complete GP model can also
be performed in an efficient manner by exploiting an upper bound of the deter-
minant of the kernel matrix. The upper bound depends on terms, which can be
efficiently calculated. The main contributions of this paper are as follows:

1. We show how to perform training and classification in a Bayesian manner
with Gaussian processes and histogram intersection kernels in sub-quadratic
and constant time, respectively.

2. Hyperparameter optimization for large-scale datasets with efficient GP mar-
ginal likelihood optimization is presented, which allows for linear kernel com-
bination and feature relevance determination.

3. We demonstrate the advantages of parameterized histogram intersection ker-
nels.

Additionally, Gaussian process classification with label regression [6] is extended
towards handling imbalanced learning data. The remainder of our paper is orga-
nized as follows. In Sect. 2, we give a short overview of related work on efficient
GP classification and exploiting the efficiency of the histogram intersection ker-
nel. Gaussian processes for classification and the key concepts of the efficiency
of the histogram intersection kernel are reviewed in Sect. 3 and 4. In Sect. 5,
we demonstrate how GP classifiers can be trained, optimized, and evaluated in
a fast manner by making use of the HIK properties. Experimental results for
medium as well as large-scale classification tasks are shown in Sect. 6 highlight-
ing the suitability of our efficient computations for various scenarios. A summary
of our findings and a discussion of future research directions conclude the paper.

2 Related Work

Fast Learning and Classification with HIK. To overcome the drawback
of time-consuming classification with kernel methods, Vedaldi and Zisserman [7]
presented how to approximate the values of the histogram intersection kernel
with explicit feature transformations. In contrast, Maji et al. [8] exploited the
properties of HIK directly for calculating SVM decision scores in O(D log(m))
time compared to O(Dm) for standard SVM inference with m being the number
of support vectors and D being the number of feature dimensions. Going one
step further, Wu [9] presented fast SVM training by using the HIK properties to
reformulate the SVM dual problem. The current paper, which was inspired by
both works, shows that the special properties of the HIK can also be exploited
for GP classification and even for hyperparameter optimization.

Generalized HIK and Hyperparameter Optimization. Barla et al. [10]
applied the HIK for image classification and proved it to be a Mercer kernel
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for images having the same size. Since that time, a lot of improvements on this
kernel have been proposed, e.g., HIK with polynomial transformations [1] or the
weighted multi-level extension known as pyramid match kernel (PMK) [2]. We
show how to further generalize the HIK with arbitrary feature transformations
and weights for each dimension. Therefore, our work is similar to [4], where a
cross-validation procedure is proposed to estimate multiple weights of histogram
kernels. In contrast, our hyperparameter optimization is based on a Bayesian
model and can be utilized for large-scale scenarios, which is especially necessary
when trying to estimate a large number of hyperparameters.

Fast GP Classification and Regression. GP classifiers require a compu-
tation time and memory cubically and quadratically in the number of training
examples. Therefore, their direct application to large-scale problems is limited.
A growing number of publications deal with tackling this problem by introducing
sparse approximations assuming conditional independence between sets of cer-
tain variables. These variables could be specified examples of the training set or
can be learned during training [11]. Although these techniques lead to impressive
results, the necessary independence assumptions neglect information provided in
training and test data. The only work we are aware of tackling full large-scale
GP inference is the greedy block technique of Bo and Sminchisescu [12], which
does not require storing the full kernel matrix in memory. However, kernel values
have to be calculated explicitly, which is not necessary in our case. In experi-
ments, we show that their method can be improved by orders of magnitude in
computation time by exploiting HIK properties.

3 GP Regression and Hyperparameter Optimization

Let X be the space of all possible input data, e.g., D-dimensional feature vectors.
Given n training examples x(i) ∈ X ⊂ X as well as corresponding binary labels
yi ∈ {−1, 1}, we would like to predict the label y∗ of an unseen example x∗ ∈ X .
We now assume that f is a sample of a GP prior, i.e., f ∼ GP(0,K) with
covariance function K, and that labels yi are conditionally independent given
f(x(i)). Furthermore, a simple additive Gaussian noise model with variance σ2

is used:
p(yi | fi) = N (yi | fi, σ2) . (1)

We follow [6] and solve a given binary classification problem as a regression prob-
lem, which regards yi as real-valued function values instead of discrete labels.
This is advantageous, because in this case the GP model assumptions lead to
analytical solutions of the involved marginalizations and allow for directly pre-
dicting the expectation μ∗ of the posterior of the label y∗ given a new example
x∗ [13]:

μ∗ = kT
∗ (K+ σ2 · I)−1y = kT

∗ α . (2)

The vector k∗ contains the kernel values (k∗)i = K(x(i),x∗) corresponding to a
test example x∗, K is the kernel matrix of the training data, and y is the vector
containing all training labels.
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Fig. 1. Piecewise linearity of the regression function when using Gaussian process re-
gression applied to the histogram intersection kernel: 2-dimensional input vectors x are
used but due to the normalization ‖x‖1 = 1, we only display the predictive mean (red
graph) and confidence areas (shaded area) derived from the predictive variance with
respect to the first dimension of the input vectors. Training points are shown as blue
dots and the noise variance is set to 0.1.

Hyperparameter Optimization. In this paper, we use kernel functions that
depend on hyperparameters η, which have an important impact on the resulting
classification model. In contrast to SVM techniques, the GP framework allows
for finding their optimal values by likelihood maximization instead of expensive
cross-validation. For GP regression, the negative log-likelihood is given by [13]

− log p(y | X,η) =
1

2
yT

(
K̃η

)−1

y +
1

2
log det

(
K̃η

)
+

n

2
log 2π (3)

with K̃η being the parameterized kernel matrix having the noise variance σ2

added to the main diagonal.

Multi-class Classification. Multi-class classification can be done by utilizing
the one-vs-all technique [6], which also offers to perform model selection by
joint optimization of hyperparameters with all involved binary problems [6].
The objective function is simply the sum of all binary negative log-likelihoods.

Imbalanced Datasets. If the number of positive and negative samples dur-
ing training differs, the resulting decision function becomes biased towards the
class more prominent in the training data. Especially for large-scale datasets
with some hundred positive examples but several thousand negatives, this bias
becomes crucial for the overall accuracy. To overcome this behavior, we propose
using different noise levels for positive and negative examples, i.e., the diago-

nal matrix N is added to the kernel matrix with Nii = 2σ2 · ( |{j | yi=yj}|
n

)
. By

rewriting GP regression into a regularized least-squares problem [13, p. 144],
this balancing strategy leads to an equal sum of positive and negative weights.
Due to the lack of space, we refer to the supplementary material1 for detailed
derivations.

1 Supplementary material: http://www.inf-cv.uni-jena.de/gp_hik.html

http://www.inf-cv.uni-jena.de/gp_hik.html
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4 Efficient Kernel Calculations with Histogram Kernels

Kernel methods are one of the fundamental tools used to handle the complexity
of visual recognition. It has been shown that the histogram intersection kernel

Khik(x,x′) =
D∑

d=1

min(xd, x
′
d) , (4)

which is often used to compare histogram feature vectors x,x′ ∈ R
D, allows for

efficient classification and learning with support vector machines (SVM) [8, 9]. In
our approach, we use the HIK directly in the previously presented GP framework
as a covariance function. Figure 1 shows two examples of GP regression and
classification with this model. The interesting observation is that the regression
function estimated by the predictive mean given in Eq. (2) is piecewise linear.
We exploit this property for speeding up GP regression and hyperparameter
optimization in Sect. 5.

In the following, we briefly review the techniques of [8, 9] for speeding up
the computation of kernel terms and extend them towards using parameterized
generalizations of the HIK.

Fast Kernel Calculation. As we have seen in Eq. (2), similar to SVM and
many other kernel methods, the predictive mean is a weighted sum of kernel
values. The HIK allows for decomposing it in two parts [8]:

kT
∗ α =

n∑
i=1

αi

D∑
d=1

min(x
(i)
d , x∗

d) =

D∑
d=1

( ∑

{i:x(i)
d <x∗

d}
αix

(i)
d + x∗

d

∑

{j:x(j)
d ≥x∗

d}
αj

)
. (5)

We can now significantly reduce the computational costs using the following
trick. Let us assume that permutations πd are given which rearrange the training
examples such that they are sorted in an ascending order in each dimension d.
Then, we can rewrite Eq. (5) as

kT
∗ α =

D∑
d=1

( r∑
i=1

απ−1
d (i)x

(π−1
d (i))

k

︸ ︷︷ ︸
·
= A(d,r)

+ x∗
d

n∑
i=r+1

απ−1
d (i)

︸ ︷︷ ︸
·
= B(d,r)

)
, (6)

with r being the number of examples that are smaller than x∗
d in dimension d.

Thus, Eq. (6) proves the piecewise linearity of the predictive mean of Gaussian
process regression with HIK. If we precompute the two terms of the linear func-
tion during learning, evaluating the scores for test examples can be done with a
few evaluations of A and B for each dimension. Given the vector α, the resulting
computation time for building A and B is dominated by sorting in O(Dn logn)
operations. In terms of memory usage, we only have to store O(Dn) elements
in contrast to the kernel matrix of size O(n2). For calculating the score of a new
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example, we need O(D logn) operations to find the correct position r in each
dimension and compute the linear function in Eq. (6) by evaluating A and B.
Similar considerations hold for multiplications of an arbitrary vector v ∈ R

n

with the kernel matrix K, which can be done in O(D · n). Furthermore, we can
exploit sparsity of feature vectors with a careful implementation.

Quantization of the Feature Space. If we assume that feature values in
dimension d are bounded by x∗

d ∈ [ld, ud], the evaluation can be further speeded
up by quantizing the feature space [8]. Using a quantization for each dimension
with q bins, only q different outputs are possible for Eq. (6). With already
computed matrices A and B, we can proceed with building a final lookup table
T of dimension D×q. Due to the already given permutations πd, we can perform
this within O (Dmax (q, n)) operations. As a result, the time spent for evaluating
the score of a new test example decreases to O(D). Consequently, for a given
number of dimensions the score of a new test example can be computed in
constant time independent of n.

Very General Histogram Intersection Kernels. Boughorbel et al. [1] show
that the HIK equipped with any positive valued function g :

Kghik(x,x′) =
D∑

d=1

min (g (xd) , g (x
′
d)) , (7)

still remains a positive-definite kernel. If g is an automorphism, the relative order
of the training elements stays valid after evaluating g. Therefore, the proposed
techniques can also be applied to these generalized variants of the HIK and we
can even use the same quantization by storing the original feature values. Two
common examples of such functions are the powered absolute value g|.|,η(x) =
|x|η and the exponential ge,η(x) =

exp(η|x|)−1
exp(η)−1 . In the remaining sections, we refer

to them as generalized HIK (G-HIK) and exponential HIK (EXP-HIK). The
kernel function given in Eq. (7) can be generalized even further by considering
functions g(d) for each dimension. For example, g(d)(xd) = ηd · xd with ηd ≥ 0
allows for individually weighting input dimensions:

Kweights(x,x′) =
D∑

d=1

ηd ·min (xd, x
′
d) . (8)

In subsequent sections, we present how to optimize the parameters η even for
large-scale training data. Together with the kernel function in Eq. (8), this allows
for linear kernel combination [6] and automatic relevance determination [13].

5 Efficient GP Multi-class Classification

In this section, we demonstrate that GP regression and hyperparameter opti-
mization can be performed efficiently when using histogram intersection kernels.
An overview is shown in Fig. 2, whereas Table 1 summarizes the asymptotic
computation times necessary for each step.
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Fig. 2. Main outline of GP classification and hyperparameter optimization using fast
multiplications with the kernel matrix

Table 1. Overview of asymptotic runtimes for training, testing, and optimization of
hyperparameters for baseline GP compared to our approach. D denotes the number of
dimensions, n the number of training examples, M the number of classes, and T1 and
T2 the number of iterations used for the linear solver and the optimizer, respectively

Asymptotic runtime
Evaluation step GP baseline GP+HIK+Quantization

Training (Sect. 5.1) O(n3 + n2D) O(nD(T1M + log n))
Hyperparameter opt. (Sect. 5.2) O((n3 + n2D)T2) O(nMDT1T2)
Testing (Sect. 5.1) O(nMD) O(MD)

5.1 Learning and Classification

Inference with a GP model requires two steps: (1) solving the linear equation
system K̃η · α = y and (2) calculating the scalar product kT

∗ α. For large-scale
datasets, storing the full kernel matrix is impossible and applying a Cholesky
decomposition with a runtime of O(n3) far from being practical. As we have
seen in Sect. 4, multiplications with the kernel matrix can be done in linear time
with histogram intersection kernels. Therefore, we use an iterative linear solver
to tackle step 1. Wu [9] used a coordinate descent method to solve the quadratic
program related to SVM learning. In contrast, our experiments show that a
linear conjugate gradients (CG) method converges faster. The total asymptotic
runtime for learning is O(nD(T1M+logn)) including sorting. The total number
of iterations T1 of the CG method depends on the condition number of the kernel
matrix and we also see that the runtime performance of our method is linear in
the number of classes M . We stop the CG method when the maximum norm of
the residual drops below 10−2.

After estimation of the coefficients α, we use the quantization algorithm of
[8] reviewed in Sect. 4 allowing for computing kT

∗ α in constant time (step 2). In
our experiments, we choose an equidistant quantization with q = 100.

5.2 Large-Scale Hyperparameter Optimization

To optimize kernel hyperparameters with a large-scale dataset, we have to mini-
mize the negative GP log-likelihood as given in Eq. (3). Due to the computational
demand of evaluating Eq. (3) for large-scale datasets, we bound the negative log-
likelihood with an efficiently computable function from above. Finding suitable
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hyperparameters is then done by minimizing this upper bound instead of the
real negative log-likelihood. Optimization is carried out with a method that
does not require any gradient information, because calculating the gradient of
the log-likelihood or the gradient of our upper bound is a costly operation.
Evaluating the log-likelihood requires the calculation of two different terms, the
logarithm of the kernel matrix determinant and the data term involving the
labels y. The latter one is easy to compute, because it simply involves solving
the same linear system as required for learning. However, the determinant of the
kernel matrix is difficult to handle and we require some upper bound on it.

Efficient Upper Bound of the Log-Determinant. Computing the determi-
nant of a matrix is a costly algebraic operation, even with fast matrix multipli-
cations [14]. Due to this reason, we use the upper bound provided by Bai and
Golub [15], which turns out to be efficiently computable for histogram intersec-
tion kernel matrices. If the eigenvalues λi of D can be bounded by 0 < λi ≤ β,
an upper bound of the log-determinant is given by:

log det(D) ≤ [
log β log t

] [ β t

β2 t
2

]−1 [
μ1

μ2

]
·
= ub(β, μ1, μ2) (9)

where μ1 = tr (D), μ2 = ‖D‖2F , and t = βμ1−μ2

βn−μ1
[15]. It is interesting to note

that this bound is tight for regularized rank-1 matrices D = uuT + τI [15].
For very complex classification tasks, we often observe a similar structure of the
kernel matrix, which suggests that the bound is suitable in those scenarios.
To calculate the bound for the regularized kernel matrix K̃η, we need the largest
eigenvalue λ1, the trace, and the squared Frobenius norm. We first compute the
largest eigenvalue λ1 with the Arnoldi iteration, which only requires matrix
vector products. In our experiments, the algorithm needed approximately 10
steps to converge for various settings. Furthermore, it is easy to verify that the
trace of the histogram intersection kernel matrix is the sum of all features values.
The squared Frobenius norm is not directly available, but we can approximate
it by μ̃2 =

∑M
i=1 λ

2
i ≈ ∑n

i=1 λ
2
i = μ2 with M being the number of classes of the

classification task and λi being the eigenvalues of the kernel matrix in decreasing
order, i.e., λ1 ≥ . . . ≥ λn. The motivation for this approximation is as follows:
if we have M classes with very compact clusters and large distances between
each other, the kernel matrix should obey a simple block structure of rank M
leading to M non-zero eigenvalues. Due to the fact that our approximation of μ2

is also a lower bound of ‖D‖2F , the necessary computations in Eq. (9) are still
well-defined and it can be proved that we still have a proper upper bound of the
log-determinant (see supplementary material for a detailed proof):

Theorem 1 (Upper bound with μ̃2). For a given positive definite matrix
D ∈ R

n×n with trace μ1 and squared Frobenius norm μ2 the following holds:

log det(D) ≤ ub(β, μ1, μ2) ≤ ub(β, μ1, μ̃2) if μ̃2 ≤ μ2 . (10)

To summarize, we need to perform the following steps to efficiently bound the
negative GP log-likelihood in each iteration of the hyperparameter optimization
method:
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1. Compute the data term by utilizing the CG method.
2. Compute the trace μ1 as the sum of all feature values.
3. Calculate the first M eigenvalues with the Arnoldi iteration.
4. Approximate the Frobenius norm with the sum of squared eigenvalues.
5. Compute the bound given in Eq. (9) with the approximated Frobenius norm.

In our experiments, the resulting upper bound of the negative GP log-likelihood
was successfully used for hyperparameter optimization, which we show in the
next section.

6 Experiments

We conducted experiments with several image categorization datasets. The re-
sults can be summarized as follows:

1. Using our approach, training, classification, and optimization of hyperparam-
eters is significantly faster and has only linear memory requirement compared
to baseline GP, allowing for learning on large-scale datasets.

2. Conjugate gradients with fast HIK matrix multiplications outperforms the
methods of [9] and [12] in terms of convergence speed.

3. The log-determinant approximation given in Eq. (9) allows for hyperparam-
eter optimization leading to significant performance gains.

4. Generalized histogram intersection kernels improve the classification perfor-
mance significantly compared to standard HIK.

5. Determining feature relevance can be done efficiently with GP likelihood
optimization and a weighted HIK.

6.1 Experimental Setup

The histogram intersection kernel is well suited for comparing histograms [4].
Therefore, all of our image categorization experiments use bag of visual words
(BoV) features computed using the toolkit provided with the ILSVRC’10 data-
base [5]. Although all types of histogram features can be utilized, we choose
this basic representation without any incorporation of spatial information to
focus the experiments on the machine learning part. We use the visual codebook
provided with 1,000 elements. Note that the dimension of the feature vectors
is an important factor for the computation time of GP large-scale inference,
and the speed-up of our techniques is higher for low-dimensional features (see
Table 1). As an optimization method we use the Nelder-Mead technique [16].

For multi-class classification, we use the average recognition rate (ARR) as
a performance measure. Binary classification tasks are evaluated using the area
under the ROC curve (AUC). To provide a fair comparison, computation times
for all methods were measured on a single-core Intel 2.6GHz machine with a
careful C++ implementation allowing for flexible data sizes.
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Fig. 3. Experiments with the normalized 15Scenes database: (left) comparison between
upper bounded negative GP log-likelihood and real negative log-likelihood, (right)
results of GP with adaptive kernels

6.2 Experiments with the Normalized 15Scenes Database

We use the 15Scenes database [17] for preliminary results on a medium-scale
database. We follow the suggestion of [18] and scale all images to a size of
256 × 256 pixels to get results, which are not biased on different characteristic
image sizes for specific categories. Training is done with 100 examples for each
category resulting in 1,500 examples in total.

Verifying the Bound of the Negative Log-Likelihood. A first experi-
ment evaluates the upper bound of the negative GP log-likelihood presented in
Sect. 5.2. The left plot in Fig. 3 shows the correct negative log-likelihood, our
upper bound with respect to the hyperparameter η of a generalized HIK, and the
average recognition rate when using the hyperparameter value for classification
of the test set. It can be seen that our bound is sufficient for hyperparameter
optimization in this setup, because the minima and the corresponding average
recognition rates displayed only differ slightly. For higher values of η, our bound
converges to the exact value because the influence of the log-determinant term
compared to the data term of the log-likelihood decreases. Consequently, possible
approximation errors become less important and the data term can be computed
without any approximation even for large-scale datasets.

Different Generalized HIK. The table on the right hand side of Fig. 3 gives
an overview of the recognition performance we achieved on this dataset with
standard HIK, G-HIK, and EXP-HIK. The hyperparameters of G-HIK and EXP-
HIK have been optimized with our GP likelihood optimization technique. The
latter approach resulted in the best performance and is even comparable to
the result of the spatial pyramid matching kernel (SPMK) given by [18]. This
highlights the power of generalized HIK and our hyperparameter optimization,
because we do not incorporate any position information in our features as done
in the SPMK framework.

Using the standard biased 15Scenes database with the splits and features
provided by [9], we achieve an average performance of 80.0% and 79.9% with
and without optimization, respectively. In contrast, the SVM solver of [9], which
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Table 2. Evaluation on 200 binary classification tasks derived from the ImageNet
database. Computation times are given as median values of measurements for each
task (learning) and each test example (classification).

10,090 examples (� = 10) 50,050 examples (� = 50)
learning classif. learning classif.

Method AUC time time AUC time time
GP with HIK (Cholesky) 0.836 > 3.5h 1.1s - - -
GP with HIK 0.836 64s 44μs 0.856 321s 44μs
GP with optimized G-HIK 0.865 435s 44μs 0.883 2815s 44μs
GP with optimized EXP-HIK 0.889 579s 44μs 0.893 2578s 44μs

also exploits HIK properties, achieved a recognition rate of 81.3%. Nonethe-
less, it should be noted that our approach focuses on Bayesian inference and
Bayesian hyperparameter optimization, which offers a probabilistic formulation
with a wide range of further applications and extensions, e.g., active and transfer
learning [6, 19] as well as incorporating other noise models [13].

6.3 Large-Scale Experiments with the ImageNet Database

We also test our approach on the part of the ImageNet dataset that was used
for the ILSVRC’10 competition. This dataset contains in total 150,000 images
from 1,000 different categories. We apply our method to binary classification
tasks of this dataset, because learning with all categories turns out to be still
impractical even with our fast kernel calculations. Binary tasks are derived in a
one-vs-all manner, i.e., we use all images of a single class as positive examples
and 	 examples from each of the other 999 categories as negative examples. In
this manner, we derive 200 tasks from the first 200 categories and use the average
AUC value achieved on the ILSVRC’10 validation dataset with 50,000 examples
as the resulting performance value.

The results are shown in Table 2 for 	 = 10 and 	 = 50 with 10,090 and
50,050 examples in total. First it should be noted that standard GP regression
for 	 = 50 is not directly applicable because of limiting memory capacity (	 = 50
results in a 9GB kernel matrix). In contrast, it can be seen that we are able
to learn GP classifiers within a few minutes. Furthermore, our GP likelihood
optimization method is able to handle large datasets and provides significant
performance gains with hyperparameter optimization (paired t-test, p < 10−7).

6.4 Evaluation of Linear Solvers with Fast HIK Multiplications

In the following, we compare the performance of conjugate gradients with fast
HIK matrix multiplications as presented in Sect. 4 and two other coordinate
descent approaches [9, 12]: (1) the coordinate descent method of [9] applied to
GP and (2) the greedy block coordinate descent (GBCD) approach of [12]. The
first one was originally presented for fast SVM learning with HIK and directly
operates on the lookup table T (Sect. 4). GBCD calculates parts of the kernel
matrix on the fly to solve sub-problems. For our experiments, the size of the
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gate gradients method, (2) the coordinate descent method of [9], and (3) greedy block
coordinate descent [12]. Note that our approach and [9] exploit fast HIK matrix mul-
tiplications, while [12] can be applied for every kernel function

sub-problems is set to 10 and the number of components κ for greedy selection
is 20. We also tested other values, but did not achieve a significant speed-up.
We use a binary classification task from the ILSVRC’10 database with 	 = 1
(see previous paragraph) and solved the linear system K̃η ·α = y with all three
methods. Figure 4 shows the residual of the linear system with respect to the
computation time needed. Termination is done when the maximum norm of the
residual drops below 10−6.

As can be seen in Fig. 4 there are orders of magnitude between all three
methods. Conjugate gradients reaches a solution in 3.7 seconds, which is supe-
rior to the coordinate descent method of [9] applied to GP, which converges after
32s. GBCD is slow (convergence after 16 minutes) due to the long time needed
for explicit calculation of kernel values for 1,000-dimensional features. In the
experiments of [12], only low-dimensional features (D ≤ 37) were utilized. How-
ever, GBCD can be applied for large-scale GP regression with arbitrary kernel
functions. It should also be noted that solving the linear system of GP regression
needs more time than solving the optimization problem related to SVM. This is
due to the additional sparsity constraints of SVM. However, the GP framework
offers a proper Bayesian model with the previously mentioned advantages.

6.5 Feature Relevance Estimation

We have already seen that Gaussian Processes allow for hyperparameter opti-
mization in a Bayesian manner. In this experiment, we show the suitability of
GP equipped with optimized weighted HIK for efficient feature relevance deter-
mination leading to superior results to those of SVM-based estimations.

Since there is no exact gradient information during the optimization avail-
able, the Nelder-Mead method converges poorly for huge numbers of parameters
to be optimized. Consequently, computing feature relevance for features with
thousands of dimensions, as in our previous experiments, is almost impossible
right now. Nevertheless, as a proof of concept we follow the same synthetic exper-
imental setup as in [4]: for different numbers of training examples, we randomly
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sample eight-dimensional feature vectors with relevant information only avail-
able in the first two dimensions. The performance is estimated with 500 tests.
For the specific random distributions, we refer the reader to [4] and references
therein. The results of our experiments can be seen in Fig. 5.

The information included in each dimension is well reflected by the estimated
relative weights ηi, which can be seen in the plot on the left hand side. Further-
more, the plot on the right hand side shows the recognition accuracy for standard
and weighted HIK with respect to the training size. The improvement is highly
significant with p < 10−7 using the paired t-test. In comparison with [4], our
approach additionally leads to more consistent weights and higher accuracies.

7 Conclusions and Future Work

This paper presented how Gaussian Processes equipped with the histogram inter-
section kernel can be speeded up significantly. The involved strategies allow for
training and classification in sub-quadratic and constant time with few mem-
ory requirements. This significantly overcomes the main drawbacks of GP for
large-scale scenarios (cubic and quadratic runtime for training and classifica-
tion, quadratic demand of memory). We further developed an efficient method
for optimizing hyperparameters in a Bayesian manner by exploiting the benefits
of HIK and GP as well as by providing an efficient bound of the GP marginal log-
likelihood. We demonstrated the suitability of our approach on several datasets.
It turned out that we are able to find suitable parameters for different param-
eterized histogram intersection kernels even for large-scale datasets resulting
in a significant improvement of the recognition performance. Furthermore, we
successfully applied our framework to feature relevance determination showing
superior results compared to state-of-the-art [4]. Our approach allows for large-
scale classification with GP, which was proved in our ImageNet experiments.

Future work will focus on calculating approximate gradient information of
the likelihood to allow optimization with respect to a large number of parame-
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ters. Furthermore, multi-class classification could be speeded up by using label
trees [20] or similar techniques. Finally, we want to extend our approach to fast
computation of the predictive variance for estimating classification uncertainties.
This would allow for active learning applications.

Acknowledgments. We thank Esther and Matthias Wacker for their optimiza-
tion toolbox as well as the reviewers for very useful suggestions.
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Abstract. Background subtraction is an important first step for video
analysis, where it is used to discover the objects of interest for fur-
ther processing. Such an algorithm often consists of a background model
and a regularisation scheme. The background model determines a per-
pixel measure of if a pixel belongs to the background or the foreground,
whilst the regularisation brings in information from adjacent pixels. A
new method is presented that uses a Dirichlet process Gaussian mixture
model to estimate a per-pixel background distribution, which is followed
by probabilistic regularisation. Key advantages include inferring the per-
pixel mode count, such that it accurately models dynamic backgrounds,
and that it updates its model continuously in a principled way.

1 Introduction

Background subtraction can be defined as separating a video stream into the
regions unique to a particular moment in time (the foreground), and the regions
that are always present (the background). It is primarily used as an interest
detector for higher level problems, such as automated surveillance, intelligent
environments and motion analysis. The etymology of background subtraction de-
rives from the oldest method, where a single static image of just the background
is subtracted from the current frame, to generate a difference image. If the abso-
lute difference exceeds a threshold the pixel in question is declared to belong to
the foreground. Such an approach fails because the background is rarely static.
Background variability has many underlying causes [1,2]:

Dynamic background, where objects such as trees blow in the wind, escalators
move and traffic lights change colour.
Noise, as caused by the image capturing process. It can vary over the image
due to photon noise and varying brightness.
Camouflage, where a foreground object looks very much like the background,
e.g. a sniper in a ghillie suit.
Moved object, where the background changes, e.g. a car could be parked in
the scene, and after sufficient time considered part of the background, only to
later become foreground again when driven off.
Bootstrapping. As it is often not possible to get a frame with no foreground
an algorithm should be capable of being initialised with foreground objects in
the scene. It has to learn the correct background model over time.

A. Fitzgibbon et al. (Eds.): ECCV 2012, Part IV, LNCS 7575, pp. 99–113, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Illumination changes, both gradual, e.g. from the sun moving during the day,
and rapid, such as from a light switch being toggled.
Shadows are cast by the foreground objects, but later processing is typically
not interested in them.

The background subtraction field is gargantuan, and has many review papers
[3,4,5,2]. Stauffer & Grimson [6] is one of the best known approaches - it uses a
Gaussian mixture model (GMM) for a per-pixel density estimate (DE) followed
by connected components for regularisation. This model improves on using a
background plate because it can handle a dynamic background and noise, by
using multimodal probability distributions. As it is continuously updated it can
bootstrap. Its mixture model includes both foreground and background compo-
nents - it classifies values based on their mixture component, which is assigned
to the foreground or the background based on the assumption that the ma-
jority of the larger components belong to the background, with the remainder
foreground. This assumption fails if objects hang around for very long, as they
quickly dominate the distribution. The model is updated linearly using a fixed
learning rate parameter - it is not very good with the moved object problem.
Connected components converts the intermediate foreground mask into regions
via pixel adjacency, and culls all regions below a certain size, to remove spurious
detections. This approach to noise handling combined with its somewhat prim-
itive density estimation method undermines camouflage handling, as it often
thinks it is noise, and also prevents it from tracking small objects. No capac-
ity exists for it to handle illumination changes or shadows. The above can be
divided into 4 parts - the model, updating the model, how pixels are classified,
and regularisation; alternate approaches for each will now be considered in turn.

The Model:Alternative DE methods exist, including different GMM implemen-
tations [7] and kernel density estimate (KDE) methods, either using Gaussian
kernels [8,9] or step kernels [10,7]. Histograms have also been used [11], and
alternatives to DE include models that predict the next value [1], use neural
networks [12], or hidden Markov models [13]. An improved background model
should result in better performance regarding dynamic background, noise and
camouflage. This is due to better handling of underfitting and/or overfitting,
which improves generalisation to the data stream. Whilst better than Stauffer
& Grimson [6] the above methods still suffer from over/under-fitting. KDE and
histogram methods are particularly vulnerable, as they implicitly assume a con-
stant density by using fixed size kernels/bins. GMM methods should do better,
but the heuristics required for online learning, particularly regarding the cre-
ation of new components, can result in local minima in the optimisation, which
is just as problematic.

Our Approach: We present an approach that uses a Dirichlet process Gaus-
sian mixture model (DP-GMM) [14] for per-pixel density estimation. This is a
non-parametric Bayesian method [15] that automatically estimates the number
of mixture components required to model the pixels background colour distri-
bution. Consequentially it correctly handles multi-modal dynamic backgrounds
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with regular colour/luminance changes, such as trees waving in the wind. As
a fully Bayesian model over-fitting is avoided, improving robustness to noise
and classifying pixels precisly, which helps to distinguish noise from camouflage.
He et al. [16] recently also used DP-GMMs for background subtraction, in a
block-based method. They failed to leverage the potential advantages however
(Discussed below), and used computationally unmanageable methods - despite
their efforts poor results were obtained.

Model Update: Most methods use a constant learning rate to update the
model, but some use adaptive heuristics [7,17], whilst others are history based
[1,16], and build a model from the last n frames directly. Adapting the learning
rate affects the moved object issue - if it is too fast then stationary objects
become part of the background too quickly, if it is too slow it takes too long
to recover from changes to the background. Adaptation aims to adjust the rate
depending on what is happening. Continuously learning the model is required
to handle the bootstrapping issue.

Our Approach: Using a DP-GMM allows us to introduce a novel model update
concept that lets old information degrade in a principled way. One side effect
of this and the use of Gibbs sampling is that no history has to be kept [1,16],
avoiding the need to store and process hundreds of frames. It works by capping
the confidence of the model, i.e. limiting how certain it can be about the shape
of the background distribution. This allows a stationary object to remain part
of the foreground for a very long time, as it takes a lot of information for the
new component to obtain the confidence of pre-existing components, but when
an object moves on and the background changes to a component it has seen
before, even if a while ago, it can use that component immediately. Updating
the components for gradual background changes continues to happen quickly,
making sure the model is never left behind. Confidence capping works because
non-parameteric Bayesian models, such as DP-GMMs, have a rigorous concept
of a new mixture component forming - parametric models [6,7] have to use
heuristics to simulate this, whilst KDE based approaches are not compatible
[8,9,10,7] as they lack a measure of confidence.

Pixel Classification: The use of a single density estimate that includes both
foreground (fg) and background (bg), as done by Stauffer & Grimson [6] is some-
what unusual - most methods stick to separate models and apply Bayes rule [11],
with the foreground model set to be the uniform distribution as it is unknown.
Our approach: We follow this convention, which results in a probability of
being bg or fg, rather than a hard classification, which is passed through to
the regularisation step. Instead of using Bayes rule some works use a threshold
[8]. Attempts at learning a foreground model also exist [9], and some models
generate a binary classification directly [12].

Regularisation: Some approaches have no regularisation step [18], others have
information sharing between adjacent pixels [12] but no explicit regularisation.
Techniques such as eroding then dilating are common [2], andmore advanced tech-
niques have, for instance, tried to match pixels against neighbouring pixels, to
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compensate for background motion [8]. When dealing with a probabilistic fg/bg
assignment probabilistic methods should be used, such as the use of Markov ran-
dom fields (MRF) by Migdal & Grimson [19] and Sheikh & Shah [9].

Our Approach: We use the same method - the pixels all have a random variable
which can take on one of two labels, fg or bg. The data term is provided by the
model whilst pairwise potentials indicate that adjacent pixels should share the
same label. Differences exist - previous works use Gibbs sampling [19] and graph
cuts [9], whilst we choose belief propagation [20], as run time can be capped;
also we use an edge preserving cost between pixels, rather than a constant cost,
which proves to be beneficial with high levels of noise. Cohen [21] has also used
a Markov random field, but to generate a background image by selecting pixels
from a sequence of frames, rather than for regularisation.

2 Methodology

2.1 Per-Pixel Background Model

Each pixel has a density estimate constructed for it, to model P (x|bg) where x
is the value of the pixel. The Dirichlet process Gaussian mixture model (DP-
GMM) [14] is used. It can be viewed as the Dirichlet distribution extended to
an infinite number of components, which allows it to learn the true number of
mixtures from the data. For each pixel a stream of values arrives, one with each
frame - the model has to be continuously updated with incremental learning.

Figure 1a represents the DP-GMM graphically using the stick breaking con-
struction; it can be split into 3 columns - on the left the priors, in the middle
the entities representing the Dirichlet process (DP) and on the right the data
for which a density estimate is being constructed. This last column contains
the feature vectors (pixel colours) to which the model is being fitted, xn, which
come from all previous frames, n ∈ N . It is a generative model - each sample
comes from a specific mixture component, indexed by Zn ∈ K, which consists of
its probability of being selected, Vk and the Gaussian distribution from which
the value was drawn, ηk. The conjugate prior, consisting of μ, a Gaussian over
its mean, and Λ, a Wishart distribution over its inverse covariance matrix, is
applied to all ηk. So far this is just a mixture model; the interesting part is that
K, the set of mixture components, is infinite. Conceptually the stick breaking
construction is very simple - we have a stick of length 1, representing the entire
probability mass, which we keep breaking into two parts. Each time it is bro-
ken one of the parts becomes the probability mass for a mixture component - a
value of Vk, whilst the other is kept for the next break. This continues forever.
α is the concentration parameter, which controls how the stick is broken - a low
value puts most of the probability mass in a few mixture components, whilst a
high value spreads it out over many. Orthogonal to the stick length each stick
is associated with a draw, ηk, from the DP’s base measure, which is the already
mentioned conjugate prior over the Gaussian.
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n∈Nk∈K

α Vk Zn

xnηk
μ

Λ

(a) Stick breaking

n∈N

α H ηn

xn
μ

Λ

(b) Chinese restaurant

Fig. 1. Two versions of the DP-GMM graphical model

Whilst the stick breaking construction offers a clean explanation of the model
the Chinese restaurant process (CRP) is used for the implementation1. This is
the model with the middle column of Figure 1a integrated out, to give Figure 1b.
It is named by analogy. Specifically, each sample is represented by a customer,
which turns up and sits at a table in a Chinese restaurant. Tables represent
the mixture components, and a customer chooses either to sit at a table where
customers are already sitting, with probability proportional to the number of
customers at that table, or to sit at a new table, with probability proportional
to α. At each table (component) only one dish is consumed, which is chosen from
the menu (base measure) by the first customer to sit at that table. Integrating
out the draw from the DP leads to better convergence, but more importantly
replaces the infinite set of sticks with a computationally tractable finite set of
tables.

Each pixel has its own density estimate, updated with each new frame. Up-
dating proceeds by first calculating the probability of the current pixel value, x,
given the current background model, then updating the model with x, weighted
by the calculated probability - these steps will now be detailed.

Mixture Components: The per-pixel model is a set of weighted mixture com-
ponents, such that the weights sum to 1, of Gaussian distributions. It is inte-
grated out however, using the Chinese restaurant process for the mixture weights
and the conjugate prior for the Gaussians. Whilst the literature [23] already de-
tails this second part it is included for completeness. x ∈ [0, 1]3 represents the
pixels colour, and independence is assumed between the components for reasons
of speed. This simplifies the Wishart prior to a gamma prior for each channel i,
such that

σ−2
i ∼ Γ

(
ni,0

2
,
σ2
i,0

2

)
, μi|σ2

i ∼ N
(
μi,0,

σ2
i

ki,0

)
, xi ∼ N (μi, σ

2
i ), (1)

where N (μ, σ2) represents the normal distribution and Γ (α, β) the gamma dis-
tribution. The parameters ni,0 and σi,0, i ∈ {0, 1, 2}, are the Λ prior from the
graphical model, whilst μi,0 and ki,0 are the μ prior.

1 Variational methods [22] offer one approach to using the stick breaking construction
directly. This is impractical however as historic pixel values would need to be kept.
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Evidence, x, is provided incrementally, one sample at a time, which will be
weighted, w. The model is then updated from havingm samples tom+1 samples
using

ni,m+1 = ni,m + w, ki,m+1 = ki,m + w,

μi,m+1 =
ki,mμi,m + wxi

ki,m + w
, σ2

i,m+1 = σ2
i,m +

ki,mw

ki,m + w
(xi − μi,m)2. (2)

Note that ni,m and ki,m have the same update, so one value can be stored to cover
both, for all i. Given the above parameters, updated with the available evidence,
a Gaussian may be drawn, to sample the probability of a colour being drawn
from this mixture component. Instead of drawing it the Gaussian is integrated
out, to give

xi ∼ T
(
ni,m, μi,m,

ki,m + 1

ki,mni,m
σ2
i,m

)
, (3)

where T (v, μ, σ2) denotes the three parameter student-t.

Background Probability: To calculate the probability of a pixel, x ∈ [0, 1]3,
belonging to the background (bg) model the Chinese restaurant process is used.
The probability of x given component (table) t ∈ T is

P (x|t, bg) = st∑
i∈T si

P (x|nt, kt, μt, σ
2
t ), (4)

P (x|nt, kt, μt, σ
2
t ) =

∏
i∈{0,1,2}

T
(
xi|nt,i, μt,i,

kt,i + 1

kt,int,i
σ2
t,i

)
, (5)

where st is the number of samples assigned to component t, and nt, μt, kt and σt

are the parameters of the prior updated with the samples currently assigned to
the component. By assuming the existence of a dummy component, t = new ∈ T ,
that represents creating a new component (sitting at a new table) with snew = α
this is the Chinese restaurant process. The student-t parameters for this dummy
component are the prior without update. Finally, the mixture components can
be summed out

P (x|bg) =
∑
t∈T

P (x|t, bg). (6)

The goal is to calculate P (bg|x), not P (x|bg), hence Bayes rule is applied,

P (bg|x) = P (x|bg)P (zbg)

P (x|bg) + P (x|fg) , (7)

noting that pixels can only belong to the background or the foreground (fg),
hence the denominator. P (x|bg) is given above, leaving P (bg) and P (x|fg). P (bg)
is an implicit threshold on what is considered background and what is considered
foreground, and is hence considered to be a parameter2. P (x|fg) is unknown and
hard to estimate, so the uniform distribution is used, which is a value of 1, as
the volume of the colour space is 1 (See subsection 2.3).

2 Though it is simply set to 0.5 for the majority of the experiments.
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Model Update: To update the model at each pixel the current value is as-
signed to a mixture component, which is then updated - st is increased and the
posterior for the Gaussian updated with the new evidence. Assignment is done
probabilistically, using the term for each component from Equation 4, including
the option of a new mixture component. This is equivalent to Gibbs sampling
the density estimate, except we only sample each value once on arrival. Updates
are weighted by their probability of belonging to the background (Equation 7).
Sampling each value just once is not an issue, as the continuous stream of data
means the model soon converges.

A learning rate, as found in methods such as Stauffer & Grimson [6], is not
used; instead, unique to a DP-GMM, the confidence of the model is capped.
This can be interpreted as an adaptive update [7,17], but it is both principled
and very effective. In effect we are building a density estimate with the ability to
selectively forget, allowing newer data to take over when the background changes.
It works by capping how high st can go, noting that st is tied to nt and kt, so
they also need to be adjusted. When this cap is exceeded a multiplier is applied
to all st, scaling the highest st down to the cap. Note that σ2

t is dependent on kt,
as it includes kt as a multiplier - to avoid an update σ2

t /kt is stored instead. The
effectiveness is such that it can learn the initial model with less than a second
of data yet objects can remain still for many minutes before being merged into
the background, without this impeding the ability of the model to update as
the background changes. Finally, given an infinite number of frames the number
of mixture components goes to infinity, so the number is capped. When a new
component is created the existing component with the lowest st is replaced.

2.2 Probabilistic Regularisation

The per-pixel background model ignores information from a pixels neighbour-
hood, leaving it susceptible to noise and camouflage. To resolve this a Markov
random field is constructed, with a node for each pixel, connected using a 4-way
neighbourhood. It is a binary labelling problem, where each pixel either belongs
to the foreground or the background. The task is to select the most probable
solution, where the probability can be broken up into two terms. Firstly, each
pixel has a probability of belonging to the background or foreground, directly
obtained from the model as P (bg|x) and 1 − P (bg|x), respectively. Secondly,
there is a similarity term, which indicates that adjacent pixels are likely to have
the same assignment,

P (la = lb) =
h

h+m ∗ d(a, b) , (8)

where lx is the label of pixel x, h is the half life, i.e. the distance at which the
probability becomes 0.5 and d(a, b) is the Euclidean distance between the two
pixels. m is typically 1, but is decreased if a pixel is sufficiently far from its
neighbours that none provides a P (l(a) = l(b)) value above a threshold. This
encourages a pixel to have a similar label to its neighbours, which filters out



106 T.S.F. Haines and T. Xiang

noise. Various methods can be considered for solving this model. Graph cuts
[24] would give the MAP solution, however we use belief propagation instead
[20], as it runs in constant time given an iteration cap, which is important for a
real time implementation; it is also more amenable to a GPU implementation.

2.3 Further Details

The core details have now been given, but other pertinent details remain.

The Prior: The background model includes a prior on the Gaussian associated
with each mixture component. Instead of treating this as a parameter to be set
it is calculated from the data. Specifically, the mean and standard deviation
(SD) of the prior are matched with the mean and SD of the pixels in the current
frame,

ni,0 = ki,0 = 1, μi,0 =
1

|F |
∑
x∈F

xi, σ2
i,0 =

1

|F |
∑
x∈F

(xi − μi,0)
2, (9)

where F is the set of pixels in the current frame. To change the prior between
frames the posterior parameters must not be stored directly. Instead offsets from
the prior are stored, which are then adjusted after each update such that the
model is equivalent. The purpose then is to update the distribution that mixture
components return to as they lose influence, to keep that in line with the current
lighting level.

Lighting Change: The above helps by updating the prior, but it does nothing
to update the evidence. To update the evidence a multiplicative model is used,
whereby the lighting change between frames is estimated as a multiplier, then
the entire model is updated by multiplying the means, μi,m, of the components
accordingly. Light level change is estimated as in Loy et al. [25]. This takes every
pixel in the frame and divides its value by the same pixel in the previous frame,
as an estimate of the lighting change. The mode of these estimates is then found
using mean shift [26], which is robust to the many outliers.

Colour Model: A simple method for filtering out shadows is to separate the
luminance and chromaticity, and then ignore the luminance, as demonstrated by
Elgammal et al. [8]. This tends to ignore too much information; instead the novel
step is taken of reducing the importance of luminance. In doing so luminance
is moved to a separate channel; due to the DE assuming independence between
components this is advantageous, as luminance variation tends to be higher than
chromatic variation. To do this a parametrised colour model is designed. First
the r, g, b colour space is rotated so luminance is on its own axis

⎛
⎝ l
m
n

⎞
⎠ =

⎛
⎝

√
3

√
3

√
3

0
√
2 −

√
2

−2
√
6
√
6

√
6

⎞
⎠
⎛
⎝r
g
b

⎞
⎠ , (10)

then chromaticity is extracted
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(a) Input video frame. (b) P (bg|model) - out-
put of the DP-GMM
for each pixel.

(c) Foreground mask
generated by the pre-
sented approach.

(d) Ground truth fore-
ground mask.

Fig. 2. Frame 545 from the bootstrap sequence

Table 1. Brief summaries of all the algorithms compared against

Barnich [10] KDE with a spherical kernel. Uses a stochastic history.
Collins [27] Hybrid frame differencing / background model.
Culibrk [28] Neural network variant of Gaussian KDE.

Kim [18] ’Codebook’ based; almost KDE with a cuboid kernel.
Li 1 [11] Histogram based, includes co-occurrence statistics. Lots of heuristics.
Li 2 [29] Refinement of the above.

Maddalena [12] Uses a self organising map, passes information between pixels.
Stauffer [6] Classic GMM approach. Assigns mixture components to bg/fg.
Toyama [1] History based, with region growing. Has explicit light switch detection.
Wren [30] Incremental spatio-colourmetric clustering (tracking) with change detection.

Zivkovic [7] Refinement of Stauffer [6]. Has an adaptive learning rate.

l′ = 0.7176 l,

(
m′

n′

)
=

0.7176

max(l, f)

(
m
n

)
, (11)

where 0.7176 is the constant required to maintain a unit colour space volume3.
To obtain chromaticity the division should be by l rather than max(l, f), but
this results in a divide by zero. Assuming the existence of noise when measuring
r, g, b the division by l means the variance of m′ and n′ is proportional to 1

l2 . To
limit variance as well as extract chromaticity, we have two competing goals - the
use of max(l, f) introduces f , a threshold on luminance below which capping
variance takes priority. Given this colour space it is then parametrised by r,
which scales the luminance to reduce its importance against chromaticity

[l,m, n]r = [r
2
3 l′, r−

1
3m′, r−

1
3n′]. (12)

The volume of the colour space has again been held at 1. Robustness to shad-
ows is obtained by setting r to a low value, as this reduces the importance of
brightness changes.

3 Experiments

Three sets of results are demonstrated - the synthetic test of Brutzer et al. [2]
and two real world tests - wallflower from Toyama et al. [1] and star from Li et
al. [29].

3 The post processor assumes a uniform distribution over colour, and hence needs to
know the volume. Note that this constant does not account for f , but then it makes
very little difference to the volume.
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Table 2. Synthetic experimental results - f-measures for each of the 9 challenges. The
results for other algorithms were obtained from the website associated with Brutzer et
al. [2], though algorithms that never got a top score in the original chart have been
omitted. The numbers in brackets indicate which is the best, second best etc. The mean
column gives the average for all tests - the presented approach is 27% higher than its
nearest competitor.

method basic dynamic bootstrap darkening light noisy camouflage no h.264, mean
background switch night camouflage 40kbps

Stauffer [6] .800 (3) .704 (5) .642 (5) .404 (7) .217 (6) .194 (6) .802 (4) .826 (4) .761 (6) .594 (7)
Li 1 [11] .766 (5) .641 (6) .678 (4) .704 (3) .316 (3) .047 (7) .768 (6) .803 (6) .773 (4) .611 (5)

Zivkovic [7] .768 (4) .704 (5) .632 (6) .620 (6) .300 (4) .321 (3) .820 (3) .829 (3) .748 (7) .638 (3)
Maddalena [12] .766 (5) .715 (3) .495 (7) .663 (5) .213 (7) .263 (5) .793 (5) .811 (5) .772 (5) .610 (6)

Barnich [10] .761 (6) .711 (4) .685 (3) .678 (4) .268 (5) .271 (4) .741 (7) .799 (7) .774 (3) .632 (4)

DP, no post .836 (2) .827 (2) .717 (2) .736 (2) .499 (2) .346 (2) .848 (2) .851 (2) .781 (2) .715 (2)
DP .853 (1) .853 (1) .796 (1) .861 (1) .603 (1) .788 (1) .864 (1) .867 (1) .827 (1) .812 (1)

DP, con com .855 .872 .722 .818 .500 .393 .847 .851 .838 .744
DP, rgb .850 .859 .783 .807 .445 .334 .852 .857 .848 .737

(a) Input (b) Ground truth (c) DP (d) DP, rgb (e) DP, con com (f) DP, no post

Fig. 3. Frame 990 from the noisy night sequence

Brutzer et al. [2] introduced a synthetic evaluation procedure for background
subtraction algorithms, consisting of a 3D rendering of a junction, traversed by
both cars and people - see Figure 2. Despite being synthetic it simulates, fairly
accurately, 9 real world problems, and has the advantage of ground truth for all
frames. The f-measure is reported for the various approaches in Table 2, and is
defined as the harmonic mean of the recall and precision. Table 1 summarises
all the algorithms compared against during all the experiments. For this test we
used one set of parameters for all problems, rather than tuning per problem4.
As can be seen, the presented approach takes the top position for all scenarios,
being on average 27% better than its nearest competitor, and in doing so demon-
strates that it is not sensitive to the parameters chosen. The algorithm without
regularisation is also included in the chart5 - in all cases a lack of regularisation
does not undermine its significant lead over the competition, demonstrating that
the DP-GMM is doing most of the work, but that regularisation always improves
the score, on average by 13%. It can be noted that the largest performance gaps
between regularisation being off and being on appears for the nosiest inputs,
e.g. noisy night, light switch, darkening and h264. These are the kinds of prob-
lems encountered in surveillance applications. As a further point of comparison
DP, con com is included, where the post-processing has been swapped for the
connected components method of Stauffer & Grimson [6]. Interestingly for the
simpler problems it does very well, sometimes better than the presented method,

4 The original paper tuned one parameter per problem - we are at a disadvantage.
5 The other algorithms on the chart have had their post-processing removed, so it can
be argued that this is the fairer comparison to make, though Brutzer et al. [2] define
post-processing such that our regularisation method is allowed.
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(a)
moved object

(b)
time of day

(c)
light switch

(d)
waving trees

(e)
camouflage

(f)
bootstrap

(g)
fg aperture

Fig. 4. Results for the wallflower dataset - on the top row is the image, on the second
row the ground truth and on the third row the output of the presented algorithm.
Toyama et al. [1] provide the outputs for other algorithms.

Table 3. Results for the wallflower dataset [1], given as the number of pixels that
have been assigned the wrong class. Again, weaker algorithms have been culled from
the original, though the positions continue to account for the missing methods. On
average the presented approach makes 33% less mistakes than its nearest competitor.

method moved time of light waving camouflage bootstrap foreground mean
object day switch trees aperture

Frame difference 0 (1) 1358 (12) 2565 (3) 6789 (16) 10070 (12) 2175 (4) 4354 (9) 3902 (8)

Mean + threshold 0 (1) 2593 (15) 16232 (11) 3285 (13) 1832 (3) 3236 (9) 2818 (5) 4285 (9)

Mixture of Gaussians 0 (1) 1028 (10) 15802 (8) 1664 (8) 3496 (6) 2091 (3) 2972 (6) 3865 (7)

Block correlation 1200 (11) 1165 (11) 3802 (4) 3771 (15) 6670 (11) 2673 (8) 2402 (4) 3098 (5)

Eigen-background 1065 (10) 895 (7) 1324 (2) 3084 (12) 1898 (4) 6433 (11) 2978 (7) 2525 (3)

Toyama [1] 0 (1) 986 (8) 1322 (1) 2876 (11) 2935 (5) 2390 (6) 969 (1) 1640 (2)

Maddalena [12] 453 (2) 293 (3)

Wren [30] 654 (6) 298 (4)

Collins [27] 653 (5) 430 (6)

Kim [18] 492 (3) 353 (5)

DP 0 (1) 596 (4) 15071 (6) 265 (2) 1735 (2) 1497 (2) 1673 (3) 2977 (4)

DP, tuned 0 (1) 330 (1) 3945 (5) 184 (1) 384 (1) 1236 (1) 1569 (2) 1093 (1)

but when it comes to the trickier scenarios the presented is clearly better. To
justify the use of the parametrised colour model DP, rgb shows the full model
run using rgb instead of ours. The consequences are similar to those for con-
nected components. Figure 3 shows all the variants for a frame from noisy night.
It can be observed that the main advantage of the presented post processor is
its ability to go from a weak detection that falls below the implicit threshold to
a complete object, using both the colour and model uncertainty of the moving
object.

The frame shown in Figure 2 has been chosen to demonstrate two weaknesses
with the algorithm. Specifically, its robustness to shadows is not very effective
- whilst this can be improved by reducing the importance of luminance in the
colour space this has the effect of reducing its overall ability to distinguish be-
tween colours, and damages performance elsewhere. The second issue can be
seen in the small blobs at the top of the image - they are actually the reflections
of objects in the scene. Using a DP-GMM allows it to learn a very precise model,
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(a) cam (b) ft (c) ws (d) mr (e) lb (f) sc (g) ap (h) br (i) ss

Fig. 5. Results for the star dataset - with the same frames as Culibrk et al. [28] and
Maddalena & Petrosino [12], for a qualitative comparison. Layout is identical to Figure
4. The videos are named using abbreviations of their locations.

Table 4. Results for the star dataset [29,12]; refer to Figure 5 for exemplar frames,
noting that lb has abrupt lighting changes. The average improvement of DP, tuned
over its nearest competitor is 4%.

method cam ft ws mr lb sc ap br ss mean

Li 2 [29] .1596 (5) .0999 (6) .0667 (6) .1841 (6) .1554 (6) .5209 (6) .1135 (6) .3079 (6) .1294 (6) .1930 (6)
Stauffer [6] .0757 (6) .6854 (3) .7948 (4) .7580 (4) .6519 (2) .5363 (5) .3335 (5) .3838 (5) .1388 (5) .4842 (5)
Culibrk [28] .5256 (4) .4636 (5) .7540 (5) .7368 (5) .6276 (4) .5696 (4) .3923 (4) .4779 (4) .4928 (4) .5600 (4)

Maddalena [12] .6960 (3) .6554 (4) .8247 (3) .8178 (3) .6489 (3) .6677 (2) .5943 (1) .6019 (3) .5770 (1) .6760 (2)

DP .7567 (2) .7049 (2) .9090 (2) .8203 (2) .5794 (5) .6522 (3) .5484 (3) .6024 (2) .5055 (3) .6754 (3)
DP, tuned .7624 (1) .7265 (1) .9134 (1) .8371 (1) .6665 (1) .6721 (1) .5663 (2) .6273 (1) .5269 (2) .6998 (1)

so much so that it can detect the slight deviation caused by a reflection, when
it would be preferable to ignore it. Further processing could avoid this.

Despite its low resolution (160× 120) the wallflower [1] data set is one of the
few real world options for background subtraction testing. It tests one frame only
for each problem, by counting the number of mistakes made6; testing on a single
frame is hardly ideal. There are seven tests, given in Figure 4 for a qualitative
evaluation. Quantitative results are given in Table 3. Previously published results
have been tuned for each problem, so we do the same in the DP, tuned row, but
results using a single set of parameters are again shown, in the DP row, to
demonstrate its high degree of robustness to parameter selection. For 5 of the 7
tests the method takes 1st, albeit shared for the moved object problem.

On foreground aperture it takes 2nd, beaten by the Toyama [1] algorithm. This
shot consists of a sleeping person waking up, at which point they are expected to
transition from background to foreground. They are wearing black and do not en-
tirely move from their resting spot, so the algorithm continues to think they are
background in that area. The regularisation helps to shrink this spot, but the area
remains. It fails with the light switch test, which is interesting as no issue occurs
with the synthetic equivalent. For the presented approach lighting correction con-
sists of estimating a single multiplicative constant - this works outdoors where it
is a reasonable model of the sun, but indoors where light bounces around and has

6 For the purpose of comparison the error metrics used by previous papers [1] have
been used.



Background Subtraction with Dirichlet Processes 111

a highly non-linear effect on the scene it fails. It is therefore not surprising that
the synthetic approach, which simulates a sun, works, whilst the indoor approach,
which includes light coming through a door and the glow from a computer moni-
tor, fails. Examining the output in Figure 4 it can be noted that it has not failed

entirely - the test frame is only the 13th frame after the light has been switched
on, and the algorithm is still updating its model after the change.

Finally, the star evaluation [29] is presented, which is very similar to the
wallflower set - a video sequence is shared. The sequences are generally much
harder though, due to text overlays, systemic noise and some camera shake, and
fewer algorithms have been run on this set. It has a better testing procedure, as it
provides multiple test frames per problem, with performance measured using the
average similarity score for all test frames, where similarity = tp/(tp + fn + fp).

The presented approach7 takes 1st 7 times out of 9, beaten twice by Maddalena
et al. [12]. Its two weak results can probably be attributed to camera shake,
as the presented has no robustness to shaking, whilst Maddalena et al. [12]
does, due to model sharing between adjacent pixels. The light switch test in this
data set does not trip it up this time - the library where it occurs has a high
ceiling and diffuse lighting, making multiplicative lighting much more reasonable.
Complex dynamic backgrounds clearly demonstrate the strength of a DP-GMM,
as evidenced by its 3 largest improvements (cam, ft and ws).

Using a DP-GMM is computationally demanding - the implementation ob-
tains 25 frames per second with 160 × 120, and is O(n) where n = wh is the
number of pixels8. This is not a major concern, as real time performance on high
resolution input could be obtained using a massively parallel GPU implementa-
tion. Indeed, an incomplete effort at this has already increased the speed by a
factor of 5, making 320× 240 real time.

4 Conclusions

This work represents the cutting edge background subtraction method9. It takes
the basic concept of the seminal work of Stauffer & Grimson [6] and applies
up to date methods in a mathematically rigorous way. The key advantage is
in using DP-GMMs, which handle new mixture components forming as more
information becomes available, and build highly discriminative models. Using a
confidence cap handles the dynamics of a scene much better than a heuristic ap-
proach to model updates. Despite its thorough theoretical basis implementation
remains relatively simple10. Certain improvements can be considered. Combin-
ing information between pixels only as a regularisation step does not fully ex-
ploit the information available, and so a rigorous method of spatial information

7 As for wallflower we tune per-problem, as the competition has done the same; results
for a single set of parameters are again presented.

8 Run on a single core of an Intel i7 2.67Ghz.
9 Code is available from http://www.thaines.com

10 186 lines of C for the DP model and 239 lines for the post-processing.

http://www.thaines.com
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transmission would be desirable. This would be particularly helpful when han-
dling mild camera shake. Sudden complex lighting changes are not handled,
which means it fails to handle some indoor lighting changes.
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Abstract. Mobile product image search aims at identifying a product,
or retrieving similar products from a database based on a photo captured
from a mobile phone camera. Application of traditional image retrieval
methods (e.g. bag-of-words) to mobile visual search has been shown to
be effective in identifying duplicate/near-duplicate photos, near-planar
and textured objects such as landmarks, books/cd covers. However, re-
trieving more general product categories is still a challenging research
problem due to variations in viewpoint, illumination, scale, the existence
of blur and background clutter in the query image, etc. In this paper, we
propose a new approach that can simultaneously extract the product in-
stance from the query, identify the instance, and retrieve visually similar
product images. Based on the observation that good query segmenta-
tion helps improve retrieval accuracy and good search results provide
good priors for segmentation, we formulate our approach in an iterative
scheme to improve both query segmentation and retrieval accuracy. To
this end, a weighted object mask voting algorithm is proposed based on
a spatially-constrained model, which allows robust localization and seg-
mentation of the query object, and achieves significantly better retrieval
accuracy than previous methods. We show the effectiveness of our ap-
proach by applying it to a large, real-world product image dataset and
a new object category dataset.

1 Introduction

Mobile product image search has recently become an interesting research topic
due to the unprecedented development of smart phones and applications along
with the increasing popularity of online shopping. In an ideal scenario, a user
can simply take a picture of a product using a mobile phone to promptly identify
the product and/or retrieve visually similar products from the database.

Traditional image retrieval methods typically adopt the bag-of-words model
initially introduced in [1]. In this model, local features such as SIFT [2] are
extracted from the query image and assigned to their closest visual words in
a visual vocabulary. The query image is accordingly represented by a global
histogram of visual words, and matched with database images by tf-idf weighting
using inverted files[3,4].

A. Fitzgibbon et al. (Eds.): ECCV 2012, Part IV, LNCS 7575, pp. 114–127, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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(a) Examples of database images, with aligned products and clean background.

(b) Examples of query images taken by mobile phones, with different backgrounds,
viewpoint and illumination.

Fig. 1. Examples of database images and query images in mobile product image search

The bag-of-words model works well for retrieving duplicate/near-duplicate
images and near-planar/highly-textured objects. However, its performance is
generally poor when directly applied to mobile product image search. The mobile
product image search problem has the following distinct characteristics compared
to general image search:

1. The products in the database images are mostly well aligned and captured in
studio environments with controlled lighting. The background is often clean,
and the texture details are clear. See Fig. 1(a) for an example.

2. Mobile query images are usually taken under very different lighting condi-
tions with cluttered background. There may exist large viewpoint variations
between the query and database images. Moreover, motion blur and out-of-
focus blur are very common in images captured by mobile phones. Fig. 1(b)
shows some examples of mobile query images.

3. Product instances are often non-planar (e.g. shoes) and/or less textured (e.g.
clothes), hence the standard RANSAC-based verification can easily fail.

4. Some product instances (e.g. shoes) are visually very similar to each other,
and only a small portion of visual features can discriminate them, so we need
a fine-grained discrimination strategy for correct identification.

As a result, when we use the bag-of-words model to perform mobile product
image search, the results may be largely affected by the features extracted from
the background of the query images. Even when we specify the location of the
product in the query image, the features around the occluding boundaries of
the product may still be largely different from those extracted from clean back-
ground. One can segment the query object by manual labeling. However, simple
labeling (e.g., specifying the object by a bounding rectangle, as in [5]) does not
necessarily guarantee accurate segmentation results, while extensive and careful
labeling largely increases the burden for the users.
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To this end, in this paper, a new approach is proposed to simultaneously re-
trieve visually similar product images, and localize/identify the product instance
in the query image. In our approach, each retrieved database image predicts a
location and an outline shape (or mask) for the query object. The center location
and the support region of the query object can then be inferred by a weighted
object mask voting and aggregation scheme while removing the outliers. Based
on that, the query object is automatically segmented and filled with clean back-
ground, which is used to refine the search results in the next round. Since better
search results yield better query object extraction, and vice versa, the above two
procedures are performed in an iterative and interleaved way, hence forming a
closed-loop adaptation between query object extraction and object retrieval.

We collected two datasets for experimental validation: a large, real-world
product image database for identical object retrieval, and a new object cate-
gory dataset sampled from Caltech256 [6] for object category retrieval1. Exper-
imental results on these two datasets show that our automatic query extraction
yields even better results than manual segmentation with a bounding rectangle
as initialization in retrieval accuracy, while our iterative approach significantly
outperforms previous methods.

2 Related Work

Previous image retrieval research mostly focuses on duplicate image, or near-
planar and textured object retrieval with applications to web image search and
personal photo management. The standard bag-of-words model [1] is heavily
explored for these tasks, and many of its variations are introduced to further
improve the performance. They either encode spatial information[4,7,8,9,10], use
better feature quantization[11,12,13,14], or better vocabularies [15] to refine the
search results. Query expansion [16,17] is a common post-processing technique
to increase the recall while improving the retrieval precision.

While general image search has been well-studied, research efforts devoted to
mobile product image search are still limited. Some search engines for product
images have recently been developed [18,19,20]. However, in these works, the
query images are very similar to the database images (i.e., captured in the same
settings). Google Goggles2 and Amazon Flow3 are well-known commercial mobile
product image search engines, but are working robustly only for a few near-
planar, textured object categories such as logos/trademarks, books/CD covers,
landmarks, artworks, text, etc. In [21], a new database for mobile visual search is
proposed, in which the objects are still limited to planar categories such as books
and CD covers. Retrieving more general object categories (either severely non-
planar, non-rigid, or less-textured objects) from mobile phones is still an open
research question, and a search engine specifically designed for mobile product
image search for more challenging object categories is highly demanded.

1 We will make both of our datasets publicly available
2 www.google.com/mobile/goggles/
3 http://flow.a9.com

www.google.com/mobile/goggles/
http://flow.a9.com
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On the other hand, object segmentation [22] is integrated with other vision
problems such as object detection, categorization and recognition. Reference
images are used in [23,24] to perform co-segmentation. In [25,26], poselet and
image contours are aggregated to segment the object. [27,28] propose simulta-
neous object detection and segmentation, while [29,30] introduce algorithms for
concurrent object recognition and segmentation. However, they all assume the
example images are of known category labels, and/or are not addressed in the
context of image retrieval where the database consists of thousands to millions
of unlabeled images. In the context of image retrieval, some approaches have
been proposed to localize the object in the database images, either by sub-image
search [31,7] or by generalized Hough voting [10]. However, to the best of our
knowledge, there is no previous work to simultaneously localize, identify and au-
tomatically segment the object from the query image during large-scale search.
In [17], the failure cases in query expansion are automatically recovered by re-
moving background confusers from the top retrieval results, but the method
assumes the confuser textures coexist in many database images, which is not
valid in our case; also, no clear object boundary can be easily obtained using
their method, which is critical for mobile product image search.

3 Formulation

In this section, we present our simultaneous query object extraction and retrieval
algorithm. The query object location and its support map is estimated by ag-
gregating votes from the top-retrieved database images. The estimated object
support map is then used to generate a trimap for GrabCut [22], by which the
query object is segmented.

3.1 Query Object Localization from Database Images

In [10], a spatially-constrained similarity measure is proposed to simultaneously
retrieve and localize the objects in the database images, in which the object in
the query image is manually specified by a bounding rectangle. In this paper, we
propose that when the object location, scale and/or pose in the query image is
unknown, the similarity measure can be further extended to localize the query
object with the help of the top-retrieved database images. Robust query object
localization serves as a good prior for segmentation, and good object segmenta-
tion allows more accurate retrieval by using the spatially constrained model and
reducing the influence of background clutter.

Our retrieval framework falls under the category of approaches using local
feature, visual vocabulary and inverted file. We denote the query image by Q and
a database image by D, respectively. Let {f1, f2, · · · , fm} be the local features
extracted from Q, and {g1, g2, · · · , gn} be the local features extracted from D.
In order to encode relative feature locations in the image similarity, we use the
spatially-constrained similarity measure defined in [10]:
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S(Q,D|T) =

N∑

k=1

∑

(fi,gj)
fi∈Q,gj∈D

w(fi)=w(gj)=k
||T(L(fi))−L(gj)||<ε

idf2(k)

tfQ(k) · tfD(k)
(1)

where k denotes the k-th visual word in the vocabulary. w(fi) = w(gj) = k
means that fi and gj are both assigned to visual word k. idf(k) is the inverse
document frequency of k, tfQ(k) and tfD(k) are the term frequencies (i.e., num-
ber of occurrence) of k in Q and D respectively. L(f) = (xf , yf ) is the 2D
image location of f . The spatial constraint ||T(L(fi)) − L(gj)|| < ε means that
the locations of two matched features should be sufficiently close under a cer-
tain transformation4. Therefore, all the matched feature pairs that violate that
transformation would be filtered out.

The approximate optimal transformationT∗ (maximizing the score in Eqn. 1)
betweenQ andD is obtained by generalized Hough voting[10], while the database
images are simultaneously ranked by the maximum scores in Eqn. 1.

Similar to [10], we use the generalized Hough voting algorithm to localize the
object in the query. The spatial constraint ||T(L(fi))−L(gj)|| < ε is equivalent
to ||(L(fi)) − T−1(L(gj))|| < ε. To localize the object in the query image, we

need to first find the optimal T∗−1
. We decompose T−1 to rotation angle, scale

factor and translation. For simplicity of illustration, we ignore the rotation angle
in the following description. The scale factor is uniformly quantized to 4 bins
in the range of 1/2 and 2, and a voting map indicating the probability of the
object support pixels is generated for each of the quantized scale factors.

Our object extraction process is illustrated in Fig. 2. Suppose that w(fi) =
w(gi) in Fig. 2(a) and (b). We assume that the product objects in the database
images are mostly around the image center. Therefore, the image center is also
considered as the object center c in D. Since w(fi) = w(gi), given a certain
scale factor s, if (fi, gi) obeys the transformation T−1, the object center in Q

would be L(fi) + s · −−−−→L(gi)c, where
−−−−→
L(gi)c denotes the vector from L(gi) to c in

D. Therefore, we cast a vote for each matched feature pair on the corresponding

center location in Q, with voting score idf2(k)
tfQ(k)·tfD(k) . If all the (fi, gi) pairs obey

the same transformation, the voted object center would be very consistent, see
(fi, gi)(i = 1, 2, 3) for examples. On the contrary, if a feature pair is not spatially
consistent with others, it will vote for a different location ((f4, g4) and (f5, g5)).
After voting from all matched feature pairs, we choose the location with the
maximum score as the best estimated object center in Q. It is straightforward to
verify that the maximum score at the estimated location is exactly the similarity
measure defined in Eqn. 1 given the pre-quantized scale factor s. To choose the

4 We only consider scale change and translation for simplicity of illustration, but
rotation can be easily handled by max pooling on retrieval scores of multiple rotated
versions of the query as in [10].
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Illustration of query object localization and extraction. (a) query image Q, (b)
database image D, (c) voted mask of D on the object support map of Q, (d) query
object support map by aggregating the voted masks of the top retrieved database
images, (e) generated trimap based on the support map, (f) segmentation result using
GrabCut with the trimap in (e).

best scale factor, we only need to select the scale corresponding to the voting
map which generates the largest maximum score.

Based on the above process, each D has a prediction of the object location
in the query image, which can be characterized by a vector [xc, yc, s]

T , where,
(xc, yc) is the location of the object center in the query, and s is the relative
scale factor between the query object compared with the object in D.

3.2 Query Object Extraction and Retrieval

In product image search, the database images mostly have clean background.
The background color can be easily identified by finding the peak of the color
histogram built upon the entire image, and the mask of the object can be ac-
cordingly obtained by comparing with the background color. Once we have the
mask of the object in D as well as the estimated object location [xc, yc, s]

T , a
transformed object mask can be voted at the estimated query location (xc, yc)
with scale factor s, see Fig. 2(c) for example.

However, not all the top retrieved images can correctly localize the query
object, especially when irrelevant objects are retrieved. Therefore, the outliers
need to be excluded. Although sophisticated outlier removal methods such as
spatial verification using RANSAC can be adopted here, the computational cost
of these methods is typically high, and RANSAC does not handle non-planar,
non-rigid, and less textured objects very well. Therefore, we only use their loca-
tion predictions [xc, yc, s]

T to effectively remove the outliers.
Consider that top N retrieved images are used to localize the query object, we

get N location predictions [xi
c, y

i
c, s

i]T (i = 1 · · ·N). Let [x̄c, ȳc, s̄]
T be the median

values of all the predictions. For each [xi
c, y

i
c, s

i]T , if the squared distance
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(a) (b) (c) (d) (e) (f) (g)

Fig. 3. Our query object localization method is robust to retrieved irrelevant objects.
(a) Query images, (b)-(f) top 5 retrieved images, (g) voted object support maps.

D = (xi
c − x̄c)

2 + (yic − ȳc)
2 + λ(si − s̄)2 > τ (2)

the corresponding database images will be removed from localization. In Eqn. 2
τ is a predefined threshold, and λ is a weight parameter.

We iterate this outlier removal and vote aggregation process multiple times
to refine the object location, in which the median values [x̄c, ȳc, s̄]

T are updated
after removing some outliers in each iteration. Once the outliers are removed,
each inlier database image accumulates a mask at the estimated location with a
weight. The weight can be determined as square root of the inverse of the rank,
to assign more confidence on votes from higher ranked images. This process
generates a soft map indicating the query object support region (Fig. 2(d)).

This algorithm is very simple, but can very effectively localize the object in
the query image. See Fig. 3 for an example, even when irrelevant objects are
retrieved, the location map can still accurately localize the object.

Once the object support map is generated, we use it to generate a trimap for
GrabCut [22]. We first normalize the support map to a gray-scale image and
perform dilation on the map. The pixels below a threshold (< 50) are set as
background. Erosion is also performed, and the pixels above a high threshold
(> 200) are set as foreground. All the other regions are labeled as uncertain. See
Fig.2(e) for an example, the black regions represent the background, and the
white and gray regions indicate the foreground and uncertain areas, respectively.
In more challenging retrieval tasks (e.g., retrieving objects of the same semantic
category but with large appearance changes, see Fig. 3), since shape information
is not obvious in the estimated support map, to avoid false foreground labeling,
only background and uncertain regions are labeled. Such a trimap is used as an
input for GrabCut, and the final segmentation result is obtained as shown in
Fig.2(f). Experimental results show that the overall segmentation results using
our trimap are better than GrabCut with manual initialization.

We then extract the query object, fill the query image with a clean background
and re-extract features from the new query image, in order to obtain better
feature consistency across object boundaries, which are then used to perform
search using Eqn. 1 in the next round. By reducing the background influence, the
retrieval performance is dramatically improved. Therefore we can further use the
refined search results to update the query object localization and segmentation.



Mobile Product Image Search by Automatic Query Object Extraction 121

(a) Examples of database images.

(a) Examples of query images.

Fig. 4. Example images in the sports product image dataset

By performing query object extraction and object search in an iterative way, the
results of localization, segmentation and retrieval are simultaneously boosted.
We stop the iteration when the difference between the segmentation masks of
two consecutive iterations is smaller than a certain threshold. We found that
in many cases, the differences of the segmented masks at the first two iteration
steps are already small enough to stop the search. And most of the segmented
results remain stable beyond the third iteration.

4 Experiments

We evaluated our method on two product image datasets, and compared it with
the baseline bag-of-words retrieval method, the state-of-the-art spatial model as
well as the query extraction method by GrabCut with manual initialization in
terms of both segmentation and retrieval accuracy.

4.1 Datasets

We collected two datasets for product image search. The first one is a real-world
sports product image (SPI) dataset, with 10 categories (hats, shirts, trousers,
shoes, socks, gloves, balls, bags, neckerchief and bands) and 43953 catalog im-
ages. The objects in the database images are all well aligned, with clean back-
ground. See Fig. 4 for some examples. We also collected 67 query images captured
with a mobile phone in local stores under various backgrounds, illumination and
viewpoints. The objects in the query images are all shoes, and each has one exact
same instance in the database, while there are totally 5925 catalog images in the
shoe category. The task hence is to retrieve the same product from the database
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(a) Examples of database images.

(a) Examples of query images.

Fig. 5. Example images in the object category search dataset

images. Cumulative Match Characteristic Curve (CMC) is used for performance
evaluation, since it is equivalent to a 1:1 identification problem.

The second dataset is an object category search (OCS) dataset. Given a single
query object, objects with the same semantic category need to be retrieved from
the database. We collected 868 product images from Caltech 256 [6], in which
the objects are positioned at the image center, with clean background. We also
collected 60 query images for 6 categories from internet (each category has 10
queries). The query images contain background clutter, and the objects have
large appearance differences, which makes it a very challenging task for object
retrieval. See Fig. 5 for some examples. The number of relevant database images
for the 6 categories ranges from 18 to 53. Average precision at rank k , i.e., the
percentage of relevant images in the top-k retrieved images, is used to evaluate
the performance on this dataset.

4.2 Results on the Sports Product Image Dataset

We use combined sparse and dense SIFT descriptors [2] as features5 and hi-
erarchical k-means clustering [3] to build the vocabulary. SIFT descriptors are
computed with the “gravity” constraint [32]. The vocabulary on this dataset has
10580 visual words, which is used throughout all the experimental evaluations.
Top 10 retrieved database images are used for query object localization.

We compared our method with the baseline bag-of-words method, and the
spatially-constrained model with original query images [10]. We also manually
segment the query object using GrabCut with a bounding rectangle as initial-
ization, and then use the extracted object to perform search. Fig. 6(a) shows

5 Sparse SIFT features are computed from DoG interest regions, and dense SIFT
features are computed from a densely sampled regions in multiple scales across the
image frame. Dense features are very useful for handling non-textured products.
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Fig. 6. Performance evaluation on the two mobile product image dataset. ”Original
Images” refers to the method in [10] using the original query image as a whole. (a)CMC
curve on the sports product image dataset. Our method obtained significantly better
performance than other methods. (b)Average precision at rank k on the object category
search dataset. Our method consistently yields better precision.

the CMC for all the methods, in which the x-axis indicates the number of re-
trieved images k, and the y-axis indicates the probabilities that the correct cat-
alog object appears in the top k retrieved images. It shows that the standard
bag-of-words model cannot retrieve the correct object well for mobile product
images. The spatially-constrained model removes some falsely matched features
by more precise spatial matching, therefore largely improves the performance.
However, it is still severely affected by the features extracted from the back-
ground and the object/background boundaries. Our method, by automatically
extracting the query object, further improves the performance, and even outper-
forms the retrieve approach with manually initialized query object segmentation.
In our method, 40% of the query images rank the correct catalog object at top
1, while the percentages for manual extraction and using original images are
32.8% and 25.3% respectively. When we consider the top 6 retrieved images,
73% of the query images have their correct catalog object ranked in top 6 with
our method. The CMC curve only shows the results for top 15, as images with
low ranks are far less important in most applications. There are still 20% of
queries that cannot retrieve their relevant images in the top 15. This is because
the viewpoint, lighting condition and image resolution are too different between
the query and the database images. Further study can be conducted for these
cases, e.g. investigating viewpoint or illumination robust features for product
images.

Fig. 7 shows some examples of our query object extraction. We can see our
object support maps accurately indicate the object regions, even when there are
irrelevant objects in the top retrieved list (see the second row for an example). As
a result, we can accurately extract the query object, and in many cases achieve
more accurate performance than manually initialized segmentation.
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(a) (b) (c) (d)

Fig. 7. Examples of query object extraction on the sports product image dataset. (a)
original query images, (b) object support maps, indicating the object regions, (c) auto-
matic object cut using the support maps in (b), (d) GrabCut with manual initialization.
Since the trimaps provided by our method are more accurate, the segmentation results
are even better than manual extraction.

4.3 Results on the Object Category Search Dataset

The implementation on this dataset is the same as the first dataset. Fig. 6(b)
shows the average precision at rank k, i.e., the average percentage of relevant
objects appearing in the top-k retrieved images, for all the four methods.

In this dataset, the appearance variation is very large within one category. As
a result, the spatially-constrained model, which is mainly targeted for instance
retrieval instead of object category retrieval, is not sufficient. We can see that
the performance of this spatial model is slightly worse than the bag-of-words
model. The average precision at rank k for these two methods remains 20% to
30%, which indicates that the retrieval task for this dataset is quite difficult.

By using our simultaneous segmentation and retrieval method, the average
precision is dramatically improved, as shown in Fig. 6(b). Similar to the sports
product image search dataset, our method still produces better retrieval perfor-
mance than manual query object extraction, which demonstrates the effective-
ness of our method on this challenging task.

Some examples of query object extraction are provided in Fig. 8. We can
see that, when the object appearance does not change significantly within the
semantic category, our object support map can accurately estimate the query
object regions (the top two rows). Meanwhile, when the object appearance vari-
ation is large and the initial search results are noisy, our filtering process using
Eqn. 2 can remove some irrelevant objects that incorrectly localize the query
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(a) (b) (c) (d)

Fig. 8. Examples of query object extraction on the object category search dataset. (a)
original images, (b) object support maps, indicating the object regions, (c) automatic
cut using the support maps in (b), (d) GrabCut with manual initialization. Even when
the appearance variation is very large where many irrelevant objects are retrieved, our
method can still successfully localize and extract the query object.

object, and the query object location can still be accurately estimated (the bot-
tom two rows). As a result, we can still get comparable segmentation results as
the manually initialized extraction method.

4.4 Complexity

Compared with the bag-of-words model, the additional storage in the indexing
file is the location for each feature, which can be encoded by a 1-byte integer as
in [10]. Therefore the additional storage for a database with 45k images is less
than 2 MB. The additional memory cost in the retrieval process is the voting
maps for each database image when optimizing T−1, which has the size of 16×16
with floating values. When we use 4 scale bins, i.e., generating 4 voting maps for
each database image, the additional memory cost for the 45k-image dataset is
much less than the size of the inverted file. Since we need to perform one or two
iterations of search, the retrieval time would be multiple times of the initial search
time, but the absolute retrieval time is still very short. The most time-consuming
step of our method is the GrabCut segmentation. Excluding Grabcut, with 3.4G
CPU, the search procedure for one iteration step takes 0.380s on average on the
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sports product image database with 45k images, and the whole process for each
query can be performed within 3 seconds without code optimization.

5 Conclusions

We proposed a simple yet effective method to automatically extract the query
object for mobile product image search. The top-retrieved images are used to
localize the object in the query image with a spatially-constrained model. By ex-
tracting the query object, the influence of background clutter on visual features
and retrieval accuracy is removed, and the retrieval performance is significantly
improved. Experiments show that our method achieves more than 200% improve-
ment over the baseline bag-of-words model, and even outperforms the method
with manually initialized query object extraction.

Besides background clutter and small intra-class difference, there are still
other issues in mobile product image search, such as the existence of image
blur, and large viewpoint variation, image resolution and lighting condition. To
improve the performance and make the product image search system practical,
more research will be conducted to address these issues in our future work.
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15. Mikuĺık, A., Perdoch, M., Chum, O., Matas, J.: Learning a Fine Vocabulary.
In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part III. LNCS,
vol. 6313, pp. 1–14. Springer, Heidelberg (2010)

16. Chum, O., Philbin, J., Sivic, J., Isard, M., Zisserman, A.: Total recall: Automatic
query expansion with a generative feature model for object retrieval. In: ICCV
(2007)
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Abstract. We develop new algorithms to analyze and exploit the joint
subspace structure of a set of related images to facilitate the process
of concurrent segmentation of a large set of images. Most existing ap-
proaches for this problem are either limited to extracting a single similar
object across the given image set or do not scale well to a large number
of images containing multiple objects varying at different scales. One of
the goals of this paper is to show that various desirable properties of
such an algorithm (ability to handle multiple images with multiple ob-
jects showing arbitary scale variations) can be cast elegantly using simple
constructs from linear algebra: this significantly extends the operating
range of such methods. While intuitive, this formulation leads to a hard
optimization problem where one must perform the image segmentation
task together with appropriate constraints which enforce desired alge-
braic regularity (e.g., common subspace structure). We propose efficient
iterative algorithms (with small computational requirements) whose key
steps reduce to objective functions solvable by max-flow and/or nearly
closed form identities. We study the qualitative, theoretical, and empiri-
cal properties of the method, and present results on benchmark datasets.

1 Introduction

Image segmentation is among the most widely studied problems in the computer
vision community. The classical setting, which is how this problem is generally
formalized in the literature, is unsupervised: one assumes that the underlying
model requires no user involvement. While a completely automated solution
still remains the de-facto objective, given the difficulty (and ill-posedness) of the
task, in recent years we have seen a small but noticeable shift towards interactive
image segmentation methods [1]. The goal here is to segment a given image with
only nominal user interaction. Clearly, obtaining the best segmentation for one
image is important – but we must note that the proliferation of massive image
sharing platforms have created a significant shift in how image data typically
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Fig. 1. A set of images with two actors showing quasi-independent scale variations

presents itself. Images today are rarely generated as independent samples, but
rather manifest as ‘collections’. Since shared content is pervasive in such sets,
modern algorithms must clearly go beyond the analysis of one image at a time.
This strategy already works well in image categorization and object recognition
problems [2], where leveraging large training corpora of images for the learning
task is common. On the image segmentation front, the multiple image focused
developments are relatively more recent and fall under the umbrella term of
Cosegmentation [3]. The premise of Cosegmentation is that when many images
containing the same foreground object are available, such shared content may
be able to much reduce the need for user guidance [4].

Cosegmentation refers to segmenting a “similar” object from a set of images
jointly, with an additional global constraint which forces the foreground appear-
ance models to be similar. Both the unsupervised and the supervised versions of
the problem have been actively studied in the last few years [4,5,6,7,8,9,10,11].
On the unsupervised side [3,8], cosegmentation approaches generally operate
under the assumption that the background regions in the images are disparate:
this is essential to rule out the case where the entire image is segmented as the
foreground (the appearance models match trivially and the global constraint
is less meaningful). Supervised (or weakly supervised) cosegmentation meth-
ods [4,10,11,12], on the other hand, address this issue via some interactive user
scribble. In conjunction with the choice of appropriate pixel-wise features and/or
wrapper inference methods, these models account quite well for changes in illu-
mination, shape and scale variations, and reliably segment an object of interest
from multiple images jointly. However, note that this body of work primarily
addresses the setting where the set of images contains a single object of interest.
Heuristic modifications aside, the core mathematical justification behind most
existing models [11,7,4,13] does not carry through to multiple objects unless we
make the impractical assumption that the scale of all objects varies identically
across the image set. We show an illustrative example and discuss these details
shortly.

Consider the set of images in Fig. 1 which we wish to segment jointly. These
images consist of two actors (a dog and a deer), where each exhibits substantial
scale changes depending on how close it is to the camera. In some images, one
of the actors is temporarily occluded or not in the field of view (i.e., scale is
zero). This example is not atypical – a surprisingly large number of image sets
(including many instances in the popular iCoseg dataset [4]) consist of more
than a single object of interest which co-occur across the image set. Viewing
this as a multi-class Cosegmentation entails running the model for each class,
one by one, which is often cumbersome if user interaction is needed. This is
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also an impediment in adapting Cosegmentation in analyzing video data. The
algorithms described in this paper are motivated by some of these issues.

The main contribution of this paper is to make Cosegmentation approaches
applicable to a significantly more general setting. Rather than ask that the fore-
grounds ‘share’ a parametric (or non-parametric) model [4], impose rank de-
ficiency of the matrix of object appearances [13], or compare images pairwise
[3,7] (a) we propose new formulations to identify the subspace(s) spanned by a
small set of basis appearance models that can best reconstruct the entire set of
composite foregrounds (pertaining to multiple objects) in the images. For such a
strategy to work, three key components, namely, i) sparse basis subset selection,
ii) subspace reconstruction, and iii) image segmentation must happen in tandem.
This leads to an interesting (albeit difficult) optimization model. (b) We show
how effective solutions can be derived for both the supervised and unsupervised
versions based on subspace clustering, sparse representation methods and the
theory of maximizing submodular functions. This provides an elegant framework
which permits general non-parametric appearance model compositions, that is,
the foreground may include tens of objects, at arbitrary scales.

2 Related Work

Initial methods for cosegmentation performed figure-ground labeling of a given
pair of images, and enforced a matching (mutual consistency) requirement on the
appearance models of the foreground. Various objectives and solution strategies
have since been proposed (see [8] for a technical summary), and shown to work
well when the number of images is limited to two. This special case is restrictive,
and more recent works have extended the ideas to multiple image segmentation.
The first step was taken by [4] which suggested constructing a shared mixture
model to encode the appearance of a similar foreground object in all images. As
noted by [8], this algorithm also shares the background model across the given
set of images – a potential problem when the images do not have a substan-
tial shared baseline. Vicente [8] proposed a solution to this problem for the two
image setting. Contemporary to these results, [9] identified a nice relationship
of Cosegmentation with maximum margin clustering, but the method is com-
putationally quite expensive (especially for a large number of images). Chu [5]
showed a small set of results using a method which looks for common patterns in
a pre-processing step. Recently, [13] and [11] presented multi-image formulations
of the problem. While [13] performs a sequence of iterations involving a segmen-
tation step followed by a rank decomposition of the appearance model matrix,
[11] scores similarities between a large set of proposal segmentations. But neither
framework is directly generalizable to the multi-object instances in the iCoseg
dataset or the type of examples shown in Fig. 1. Finally, a few recent papers
have incorporated co-saliency [14], used cosegmentation for image classification
[15], and extended the algorithms for the cosegmentation of shapes (see [16] for
an example of this line of work). Table 1 summarizes the state of the art for the
problem to place the contribution of this paper in context.
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Table 1. State of the art for Cosegmentation; note that [5] is not included above be-
cause that method runs an offline common pattern discovery, and then adjusts a unary
term in the segmentation. [9] is potentially applicable to multi-class segmentation, but
is computationally expensive, cf. [9], section 3.2. and so only one object case was tack-
led. Hochbaum [10] does not seem straightforward to adapt for multiple objects. We
very recently learnt of works [17,18] which detects multiple objects. These works are
not discussed and evaluated here.

Article ≥ 2 objects Images Objective function Solution Method
Rother [3] No 2 Graph-cuts plus �1 norm Trust-region method
Mu [6] No 2 Quadratic energy plus genera-

tive model
Markov Chain Monte Carlo

Mukherjee [7] No 2 Graph-cuts plus �2 norm Linear Program
Vicente [8] No 2 Graph-cuts plus generative

model
EM like procedure

Hochbaum [10] Noseebelow 2 Joint segmentation with similar-
ity reward

Pseudoflow

Batra [4] No Multiple Graph-cuts plus GMM Iterative Graph-cuts
Vicente [11] No Multiple Similarity of proposal segmenta-

tion pairs
Graph-cuts, A∗ inference,
Random forests

Joulin [9] Noseebelow Multiple Discriminative clustering Convex relaxation of SDP
Mukherjee [13] No Multiple Graph-cuts with a rank one con-

straint
Iterative network flow and
SVD

Chang [14] No Multiple Graph cuts with saliency prior Graph cuts
This work Yes Multiple — —

3 Subspaces of Multiple Object Foreground

Most existing cosegmentation literature performs joint segmentation of all im-
ages and simultaneously regularizes the objective based on coherence among
the segmented foreground appearance models of the respective images. Assume
that Eseg(·) denotes an appropriate segmentation energy (summed over all im-
ages), and C(·) is the cosegmentation regularizer which expresses a measure of
coherence among the foreground appearance models of the images provided. For
example, [3] and [4] use a MRF energy for Eseg(·) and a mixture model based
penalty for C(·), but various other options have also been proposed. Since the
common building block of our algorithms is the subspace structure of similar
foreground regions across images, it seems natural to approach this problem by
identifying special forms of C(·) that offer this behavior.

Our first task is to decide on an appropriate representation (i.e., description)
for the objects or foregrounds within the images. For both the object-level ap-
pearance model as well as the descriptor of the entire foreground, we make use
of a visual dictionary over textons (very similar to the object recognition litera-
ture [19]). Filter bank responses, when clustered, provides a “texton histogram”
where cluster centers with their corresponding covariances define a visual word
(or a histogram bin). Distinct objects correspond to distinct distributions over
k texton bins [12]. Based on this construct, assume that the histograms of each
unique object which may appear in the images are provided as {m1, · · · ,md}
for d objects, where for an object l, ml ∈ R

k. With this definition, it follows
directly that the foreground in each to be segmented image (say, f [i] in image
i) must be a vector in R

k, and can be expressed as f [i] = α1m1 + . . . + αdmd
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(note that we are operating on the same set of dictionary of visual words or
texton bins). Clearly, αl = 0 implies that the l-th object is missing in the i-th
image and αl > 0 gives a scaled version of the object-wise texton histogram.
This discussion does not yield an implementable algorithm yet (because neither
the object-wise texton histogram nor the foreground regions are known).

The Subspace Structure of Foregrounds. Denote the set of foreground
appearance vectors for s images as {F (:, 1), · · · , F (:, s)} = {f [1], · · · , f [s]}. Let
us consider a simple example (two objects, three images) to see the subspace
structure by focusing on the three respective foregrounds, f [1], f [2], and f [3],
assuming that the object models in these foregrounds are indexed by m1 and
m2. We have f [1] = θ1m1+θ2m2, f

[2] = θ3m1+θ4m2, and f
[3] = θ5m1+θ6m2 for

some set of constants {θ1, · · · , θ6}. Observe that the three foregrounds share the
same basis inm1 andm2, and so we may write f [3] as a linear combination of f [1]

and f [2]. Also, f [1] is expressable by combining f [2] and f [3], and similarly f [2]

in terms of f [1] and f [3] (a change of basis argument). Denote the coefficients
of these linear combinations by a matrix, C whose (j, i)-th entry denotes the
contribution of foreground f [j] in expressing f [i]. So, the requirement that every
foreground appearance model should be expressable as a linear combination of a
set of basis texton histograms can be achieved by asking that each f [i] (individual
columns of F ) must be reconstructable as a linear combination of all other f [j]

where j �= i (f [i] does not contribute in its own reconstruction). This can be
written as F = FC with the condition that the diagonal entries of C must
be identically zero, i.e., diag(C) = 0 (where F ∈ R

k×s and C ∈ R
s×s). If the

columns of F lie in the same subspace, this constraint is satisfied. However, the
linear form also permits the identification of multiple subspaces into which the
columns of F can be ‘clustered’. The latter interpretation is strongly related
to recent developments in subspace clustering [20,21]. Finally, to permit small
variations in the appearance models and make the model robust, we have F =
F̂ + ζ where F is composed of a main component F̂ plus a noise matrix ζ.

As a final ingredient, we also need to algebraically express the foreground
vectors F (:, i) as a function of the segmentation. For each image, we have the
texton histogram of the entire image where rows (and columns) correspond to
histogram bins (and image pixels) respectively. We denote this as a binary ma-
trix Z [i], where Z [i](b, p) = 1 implies pixel p is assigned to visual word b (like
the similarity indicator used in [10]). Let the unknown segmentation indicator
variable for image i be x[i]. Then, each entry of Z [i]x[i] is the dot product of a
row a in Z [i] with x[i], and provides the number of pixels from bin a assigned
to foreground. So, Z [i]x[i] = F (:, i) = f [i]. With these components, multi-object
multi-image scale free cosegmentation takes the simple form as in (1):

min
x,C,ζ

∑

i

Eseg(x
[i]) + ‖ζ‖2 (1)

subject to diag(C) = 0, rank(C) ≤ κ (a small constant).

F = F̂ + ζ, F̂ = F̂C, Z[i]x[i] = F (:, i),
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where the rank constraint offers a regularization on C, with similar motivation
as in the subspace clustering literature [20]. The non-convex rank constraint
is replaced by its convex relaxation: the nuclear norm. We will ensure fidelity
between F and F̂ + ζ as well as between F̂ and F̂C as soft constraints by
penalizing their respective differences in the objective. The constraint F̂ = F̂C
is a seemingly difficult quadratic form of two matrix variables. But even when
included in the objective, it has a suprisingly simple solution because of the
structure of C, as described shortly.

For concreteness of the presentation below, we now decide on the form of
Eseg(x

[i]) in (1). In this paper, we use the Markov Random Field segmentation,
popular for a variety of computer vision applications, see [22]. Other linear forms
are possible as long as the the optimal real-valued solution can be found in
polynomial time in Step 2 below. The main descent steps of the optimization
are:

1) Choose a matrix F̂ based on some initialization (e.g., the matrix of all
ones).

2) With F̂ given, optimize minx

∑
iEseg(x

[i]) + ‖F − F̂‖2 s.t x ∈ [0, 1], to

recover x. We do not solve for C since F̂ is given. Using x, calculate each
column of F as Z [i]x[i].

3) Then, optimize (2) to recover F̂ and C,

min
F̂ ,C

γ1‖F − F̂‖2 + γ2‖F̂ − F̂C‖2 + ‖C‖∗ s.t. diag(C) = 0 (2)

keeping F fixed. ‖C‖∗ is nuclear norm. The user specified constants γ1,
γ2 penalize the soft constraints.

4) Repeat Steps 2–3 until convergence (or negligible change in solution).

Properties. It turns out that the core of the procedure (Step 2 and Step 3) can
be performed very efficiently. Let us first analyze Step 2. When Eseg is MRF,
Step 2 with x ∈ [0, 1] is a Quadratic Pseudoboolean function (for which fast
implementations are already available). Interestingly, Step 3 also turns out to be
very easily solvable as shown by [21] (cf. Lemma 2). In fact, in Step 3, the solution
of F̂ and C such that it satisfies the constraints above can be obtained from a
singular value decomposition of F . Since both steps are optimally solvable, we
obtain the following simple result:

Lemma 1. The objective value of the relaxed version of (1) is non-increasing
with each iteration.

Beyond Lemma 1, convergence to a stationary point requires making use of
the persistence property from [23,24] to show that the set of solutions is finite.
Then, the stationary point statement follows by arguments similar to results for
convergence of k-means, as shown in [13].
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4 Supervised Cosegmentation with Dictionaries
of Appearance Models

The preceding model, while interesting, needs discriminative backgrounds across
the given image set. This criteria is not satisfied in many datasets depicting
multiple objects, where some images may be temporally related and therefore
share a common background. This issue does not have an easy solution in the
unsupervised setup, but can be addressed effectively by endowing the model with
some form of weak supervision to make the problem well posed.

Consider a situation where the user interacts with the model on a few images
in the set (the level of supervision is comparable to a GrabCut type scribble
interaction [4]), which is then used to derive an approximate texton-based ap-
pearance model of the objects of interest. We call this setup cosegmentation with
a precise dictionary. Note that ‘precise’ refers not to the quality of the appearance
model, rather the fact that the dictionary consists only of appearance models of
objects likely to appear in the set. We also study a more general version of the
problem: it assumes the availability of a larger overcomplete dictionary made up
of a diverse (and redundant) collection of appearance models. We give a brief
overview of the precise dictionary version next, and then discuss its extensions.

Given a small collection of approximate appearances of objects as vectors
(distributions over texture visual words), M = {m1, · · · ,md}, we want to seg-
ment the foreground from unseen images (where objects may appear at arbitrary
scales). This problem can be written out as follows (γ is a constant):

min
x[i],λ

Eseg(x
[i]) + γ‖F (:, i)−

∑

mj∈M

λjmj‖
2

s.t. F (:, i) = Z[i]x[i], x[i] ∈ [0, 1].

(3)

The objective penalizes the difference of the unknown foreground F (:, i) (for a
fixed i) from a linear combination of the given basis vectors (object appearances).
Since M is known, this problem can be solved very efficiently for the MRF
objective as well as other segmentation functions considered in [25]. For instance,
if we use MRFs for segmentation, we can obtain provably partially optimal
solutions. To do this, we first substitute the basis set M with an orthogonal
basis M′ (using Gram-Schmidt). Then, the penalty term γ‖F −∑

mj∈M λjmj‖2
is interpretable as the distance of the vector F (:, i) to the subspace spanned by
the vectors in M or the orthogonal set M′. The advantage of using M′ is that
such a distance can be computed in closed form by projecting F (:, i) on to this
subspace expressing it as a linear combination of its projection to the orthogonal

basis vectors. That is, projM′(F (:, i)) =
∑

mj∈M′ λjmj where λj =
F (:,i)·mj

mj ·mj
. For

any image i in a given set, the objective function, therefore, takes the form,

min
x[i]

Eseg(x
[i]) + γ1‖F (:, i)− projM′(F (:, i))‖2, (4)

which can be written as a Pseudoboolean function [23] in x, and permits net-
work flow-based solutions. Next, we build upon the ideas above, where the final
optimization core will solve a problem similar in form to (4) as a module.
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4.1 Cosegmentation with Overcomplete Dictionary

Knowledge of precisely which basis vectors will be used in representing the un-
known foreground regions, while useful as a first step, restricts applicability of
Cosegmentation in several circumstances. For example, consider a temporal im-
age sequence consisting of two main actors (objects), as shown in Fig. 1. In some
of the frames, one of the actors may be outside the field of view; therefore, it is
not a good idea to use all available basis vectors to segment every image in the
given set. Rather, we would like the algorithm to identify the smallest subset
of bases that can be linearly combined to define the foreground of the images
(restricting the model complexity). Further, such dictionaries are not difficult
to construct using datasets such as MSRC Object Categories, Pascal VOC, and
iCoseg using just weak supervision. Once a large universe of approximate object
appearance models is available, the goal is to cosegment a given set of images,
where the foreground is composed of a small subset of appearance models A
from our dictionary, D. This problem shares similarities to the dictionary se-
lection problem in [26,27,28], but with salient differences. In [26], the goal is to
identify a sparsifying sub-dictionary by selecting dictionary columns from multi-
ple candidate bases, and then representing the signal as a sparse reconstruction
of the chosen bases.

min
x[i],λ

∑

i

Eseg(x
[i]) + γ1

∑

i

‖F (:, i)−
∑

mj∈A,A⊆D,|A|≤β

λjmj‖
2

(5)

s.t. ∀i F (:, i) = Z[i]x[i], x[i] ∈ [0, 1]. (6)

But here, the to-be-reconstructed vector F is not fixed, rather needs to be solved
in conjuction with other terms. Further, finding the sparse representation stan-
dalone is insufficient; instead, it needs to interact with Eseg(x

[i])1.

Combinatorial Properties. If we use MRF for Eseg(·), in the current setup
it is a submodular function [29]. So, we focus on the second part of the objec-

tive and define the following function: L(F (:, i), A) = ‖F (:, i)−∑
mj∈A λjmj‖2.

Note that, given F , the subset of D which best approximates it, can be writ-
ten as Â = argminA∈D,|A|≤β

∑
i L(F (:, i), A). Let φ be the null set. We define

an additional function G(F (:, i), D) = L(F (:, i), φ)−minA∈D,|A|≤β L(F (:, i), A)
which reduces variance between the linear combination of the chosen bases and
the signal to be approximated. This function, when maximized also provides an
equivalent sparse representation of the signal. It turns out that such a function is
approximately sub-modular (see [26]) and its ‘deviation’ from submodularity is
a function of the maximum incoherency μ = max

∀u,v,u�=v
〈mu,mv〉. With these tools

in hand, we can directly make the following observation.

1 The choice of extracting A ⊂ D instead of regularizing the �1-norm of λ was driven by
empirical feedback. Using a Lasso penalty (relaxation of �0 norm) involves solving
a linear program which may become a bottleneck in vision applications. Second,
while penalizing large values in λ (a consequence of �1) has the undesirable effect of
making the model less immune to scale changes, giving unsatisfactory performance.
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Observation 1. The model in (5) can be expressed in the form: minE − G,
where E (same as Eseg) is submodular, G is approximately submodular (−G
is approximately super-modular), and so E − G is a sum of submodular and
(approximately) supermodular terms.

Next, we show how the sub-supermodular function approximation method
proposed by [30] can be extended to our problem. To do this, we substitute
the supermodular term with its (approximately) modular approximation. This
function is defined, wrt to a fixed subset A, as Ψ(F (:, i), A) = L(F (:, i), φ)−L(F (:
, i), A), and can be shown to be approximately modular (see [26]). In our model,
the important advantage is that the term E−Ψ can replace the objective E−G,
which is now approximately submodular (a sum of submodular and approxi-
mately modular terms). In addition, it is similar in form to (3), since when the
set A is fixed, the problem reduces to a precise dictionary setup. Therefore, ef-
ficient methods from §4 are directly applicable. Based on these properties, we
adopt the following iterative procedure:

1) Solve the function E and get an initial estimate for F[t] (t refers to the
iteration number).

2) Solve A[t] = argmaxA⊆DG(F[t], D). This can be done using the procedure
described in [26]. Note that since G(F[t], D) = ψ(F[t], A[t]), we have E −
G(F[t], D) = E − ψ(F[t], A[t]).

3) Solve the optimization problem minxE−ψ(:, A[t]) keeping A[t] fixed, using
a procedure similar to §4. Denote the optimal solution by x[t+1] and the
matrix of new foreground vectors as F[t+1].

4) Repeat Steps 2–3 until convergence (or negligible change in solution).

We can now prove the following result:

Proposition 1. The objective function value is monotonically non-increasing
with the iterations.

Proof (sketch). Note that after Step 3, we get

F[t] −G(F[t], D) = E[t] − ψ(F[t], A[t]) ≥ E[t+1] − ψ(F[t+1], A[t]).

This is because as we are solving the optimization problem in Step 3 to optimal-
ity. Further,

E[t+1] − ψ(F[t+1], A[t]) ≥ E[t+1] −G(F[t+1], D).

This is true because in Step 2, A[t+1] = argmaxA⊆D G(F[t+1], D); therefore,
G(F[t+1], D) ≥ ψ(F[t+1], A[t]); otherwise replacing A[t+1] by A[t] improves the
solution of G(F[t+1], D) trivially and the solution converges. Therefore, we di-
rectly have E[t]−G(F[t], D) ≥ E[t+1]−ψ(F[t+1], A[t]) ≥ E[t+1]−G(F[t+1], D), and
so the iterations either decrease the objective value at each step or the iterations
converge.
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Generating Class Specific Labels: The reader will notice that while our algo-
rithms identifies multiple objects at arbitary scale variations in a set of images,
the output is in the form of a joint foreground indicator vector, rather than class
specific indicator vectors. But class specific indicators can be obtained from such
an output, if desired. The main task is to divide the joint foreground indicator vec-
tor F (:, i) of image i, into the constituent class specific indicator vectors. To do
this, we project the foreground indicator vector F (:, i) on to the basis vectors, to
obtain foreground appearance model for each object individually (say Fd(:, i) for
object class d). We can then decompose the indicator vector x[i], into an indicator

vector for each object class x
[i]
d , satisfying the property that they agree with the

object-wise models above, i.e., Z [i]x
[i]
d � Fd(:, i). This is essentially a least squares

problem of the form Ax � b. It turns out the the LHS coefficient matrix (A) of
this form has a totally unimodular property, therefore if we round the RHS (b) to
integral values, such a least squares problem will have an exact solution.

5 Evaluations

Our experiments were designed to assess the model’s performance on several
benchmark datasets, using existing methods as a baseline. Broadly, the setup
consists of: evaluation of (a) the unsupervised algorithms in §3, and (b) the su-
pervised algorithms with exact and overcomplete dictionaries in §4 – §4.1. We
demonstrate some examples for the unsupervised model, but mainly focus our
attention to the more broadly applicable methods from Section 4.1, which were
evaluated on the entire iCoseg dataset [4] and a subset of MSRC object cate-
gories. In addition, we also include comparison of our supervised method with
fully supervised SVM. We used texture-based appearance models as described in
Section 3 using agglomerative information bottleneck from [19]. The unary terms
for the MRF objective were created using the GMMs from the Grabcut imple-
mentation in OpenCV using the training data (when available) or by specifying
a box centered on the image covering 60% area (in the unsupervised setting).

Fig. 2. Results of the algorithm in Section
3 (Row 2) relative to segmentation obtained
from [9] (Row 3).

All segmentations were done at the
pixel level (no superpixels were used).

Subspace Cosegmentation of
Multiple Objects. We performed
a preliminary evaluation of this model
using a small number of examples
collected from the internet.

Since the algorithm assumes that
only the foreground regions are sim-
ilar (and the background is disparate),
we extracted images from several
video sequences which were tempo-
rally separated. Representative ex-
amples (from Toy Story) are shown in Fig. 2 where there is significant pose/shape
variation in the objects; further two of the images consist of only one character.
The model performs favorably relative to [9] (also an unsupervised approach).
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Fig. 3. Some results of the model in §4.1 on multi-object Liverpool (cols 1-4) and
Soccer sets (cols 5-8)

Cosegmentation with Appearance Dictionaries. These experiments are a
rigorous assessment of the model because the dataset includes deformable ob-
jects, and significant variations in pose, viewpoint, as well as scale. Interestingly,
not all images contain all objects which allow properly evaluating all properties
of our algorithm in §4.1.
ICoseg. The iCoseg dataset contains 38 image categories with up to 40 im-
ages in each class. For each class, we created a small training set consisting of
up to 2 training examples (from the ground truth) to generate the dictionary
(this can also be derived from scribble guidance [1]). We illustrate comparisons
of our approach with three other methods from [11], [8], and [9]. Among these
the cosegmentation method of [11] uses training data but by a very different
procedure. Since the performance of any cosegmentation method varies among
different classes, similar to other papers [4] we report the results for each class.
Also, consistent with common practice [11,4,13], we report accuracy as the per-
centage of pixels in the image (both foreground and background) which were
correctly classified. (note that results in [11] included a subset of all images in
each class). Since the model decomposes into independent runs in §4.1, it is not
limited by how many images can be segmented at once. In Table 2, we summa-
rize our accuracy summaries after segmenting all ∼ 640 images from all classes
in iCoseg. Overall, compared to the accuracy numbers reported for each class
in [11] (and also [8], [9]), our model performs well and yields better accuracy in
all but two classes. Some visual results are presented in Figure 3 to illustrate its
qualitative performance on images with multiple objects (including scenes where
an object is missing). Note that for the Liverpool and the Women Soccer images
shown, the ground truth provided in iCoseg only asks for detecting one object.
To detect all objects, we created a dictionary with only one training example
for each team (by running a Grabcut with a few scribbles, and retaining results
from the first iteration). Even though the training examples were not perfect,
the results in Fig. 3 indicate the algorithm can identify multiple objects with

Table 2. Segmentation accuracy summaries for image classes from iCoseg dataset

class Ours [11] [8] [9] class Ours [11] [8] [9]
Balloon 95.17% 90.10% 89.30% 85.20% Kite Panda 93.37% 90.20% 70.70% 73.20%
Baseball 95.66% 90.90% 69.90% 73.0% Panda 92.83% 92.70% 80.00% 84.00%

Brown bear 88.52% 95.30% 87.3% 74.0% Skating 96.64% 77.50% 69.9% 82.1%
Elephants 87.65% 43.10% 62.3% 70.1% Statue 96.64% 93.80% 89.3% 90.6%
Ferrari 89.95% 89.90% 77.7% 85.0% Stonehenge1 92.67% 63.30% 61.1% 56.6%

Gymnastics 92.18% 91.70% 83.4% 90.9% Stonehenge2 84.87% 88.80% 66.9% 86.0%
Kite 94.63% 90.3% 87.0% 87.0% Taj Mahal 94.07% 91.1% 79.6% 73.7%
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relative ease, and is mostly immune to situations where one or more objects are
not visible in a scene.

Approach Sheep Car Cow FlowersPlane Dog Bird
Ours 89.0% 80.1% 87.8% 86.5% 87.1% 93.5% 94.8%
[11] 93.0% 79.6% 94.2% − 83.0% 93.1% 95.3%

Fig. 4. Segmentation accuracy on MSRC

MSRC Object Cat-
egories.The MSRC
dataset contains sev-
eral categories of ob-
jects, but in each object class, the constituent images are much more diverse
compared to ICoseg. For example, the Flowers class includes flowers of different
colors and shapes: in such cases, for cosegmentation to yield very high accuracy,
far richer visual features may be needed. To make our models applicable, we
created a dictionary having one representative image of each unique type which
provided 4 − 5 training examples per class – all other images in the class were
then presented to the model for segmentation. The accuracy is summarized for
the subset of classes tested are shown in Fig. 4 using the recent work of [11]
(which also used training) as a baseline. Overall, this suggests that the perfor-
mance of our algorithm is similar to [11]. Finally, we observe that both methods
are limited only by the underlying visual features that enable (a) comparing pro-
posal segmentations in [11] and (b) comparing appearance descriptors in ours.
Examples from MSRC and iCoseg is shown in Fig. 5.

Results on Comparison with Fully Supervised SVM. Since the algorithms
described in Sections 4 and 5 are essentially supervised, we compare our method
with a fully supervised algorithm such as SVM. SVMs were run on images from
the ICoseg dataset, since the background and foregrounds are both fixed for such
images. For each image group, we select five images as the training set (note
that for experiments using our method, we used no more than two training
image). For each training image, we compute a texton feature descriptor (17
features) for each pixel and train a classifier based on that (we use the built-
in svmtrain function in Matlab with SMO as the solver). After that, we use
the learned classifier and test it on the remaining image set. Figure 6 shows
some representative images. In general, the results of SVM are about 10− 15%
worse than our method and also worse than any other baseline used in the main
paper. This is somewhat expected as our algorithm imposes an appearance model

Fig. 5. Results of the algorithm in §4.1 on the ICoseg (cols 1-5) and MSRC (cols 6-8)
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Fig. 6. Results of the comparison of our algorithm with fully supervised SVM on three
datasets from Icoseg: Rows 1 shows the original images, Rows 2 shows the results of
our approach and Rows 3 shows the results using SVM

constraint on the entire set of pixels labeled as foreground by asking that they
span a subspace given by a subset of known appearances. But similar patches
routinely co-occur in the foreground and background, which throws off the results
of SVM substantially in the absence of any terms that make the solution behave
like a valid segmentation (e.g., homogeneity).

Other Comments. Our results above show that the model yields results that
are superior or competitive with the state of the art on two benchmark datasets.
The run-time increases near linearly with each image; the main cost is minimizing
a QPB function which takes 5 − 20s per image per iteration (convergence in 5
iterations). No superpixels were used, the segmentation was performed at the
pixel level. Other than these experiments, we evaluated how often the “correct”
basis vectors A ⊂ D are chosen by the algorithm during segmentation. To do
this, we manually found correspondences between each image in the test and
training class for MSRC data. The number of histogram bin centers in [19]
was fixed to 500. Feedback for MSRC experiments suggested that for the 125
images in Fig. 4, the model identified the correct basis subset over 90% of the
time.

6 Discussion

We propose new algorithms for simultaneous segmentation of multiple objects
from image collections, by analyzing and exploiting their shared subspace struc-
ture. Our models, for both unsupervised and supervised setting, extend the cur-
rent state of the art for such approaches, which until now, has been limited to
identifying a single common object. We believe this makes idea of cosegmenta-
tion applicable to a much wider class of problems, therefore significantly extends
the operating range of such methods. Experiments on benchmark datasets show
that algorithm performs well on a variety of image sets.
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Abstract. Artistic image understanding is an interdisciplinary research
field of increasing importance for the computer vision and the art his-
tory communities. For computer vision scientists, this problem offers
challenges where new techniques can be developed; and for the art his-
tory community new automatic art analysis tools can be developed. On
the positive side, artistic images are generally constrained by compo-
sitional rules and artistic themes. However, the low-level texture and
color features exploited for photographic image analysis are not as ef-
fective because of inconsistent color and texture patterns describing the
visual classes in artistic images. In this work, we present a new database
of monochromatic artistic images containing 988 images with a global
semantic annotation, a local compositional annotation, and a pose an-
notation of human subjects and animal types. In total, 75 visual classes
are annotated, from which 27 are related to the theme of the art im-
age, and 48 are visual classes that can be localized in the image with
bounding boxes. Out of these 48 classes, 40 have pose annotation, with
37 denoting human subjects and 3 representing animal types. We also
provide a complete evaluation of several algorithms recently proposed for
image annotation and retrieval. We then present an algorithm achieving
remarkable performance over the most successful algorithm hitherto pro-
posed for this problem. Our main goal with this paper is to make this
database, the evaluation process, and the benchmark results available
for the computer vision community.

1 Introduction

Artistic image understanding is a field of research that stimulates the devel-
opment of interdisciplinary work. In this paper, we consider artistic image to
be an artistic expression represented on a flat surface (e.g., canvas or sheet of
paper) in the form of a painting, printing, or drawing. Even though we have ob-
served a increasing interest in this area, there is still a lack of common evaluation
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Fig. 1. Examples of a scene depicting the same artistic theme “The Annunciation”.
Figure (a) shows a real photo of the scene, while in figure (b) a painting is displayed,
and (c) shows an art print.

Global Local Pose

Holy Family, Christ child (blue), Christ child (blue),
Christ child, Mary, Mary (red), Mary (red),

St. Joseph St. Joseph (green) St. Joseph (green)

Fig. 2. Examples of the global, local and pose annotations made by the art historians.
More training samples are provided in the supplementary material.

databases and procedures, similar to the ones found in photographic image re-
trieval and annotation, such as: Pascal VOC, Imagenet, TinyImages, Lotus Hill,
SUN database to cite a few. Different from photographic images, art images
can be better constrained based on compositional rules and themes. However,
the texture and color patterns of visual classes (e.g., sky, sea, sand) are not
consistently expressed in the artistic images, which makes the exploitation of
low-level image features more challenging. In fact, current art image processing
has shown that texture and color patterns in artistic images are more effectively
used to classify painting styles [1] or artists [2] than to identify visual classes.
For instance, Fig. 1 shows examples of a photo, a painting, and a print of a scene
depicting the artistic theme ”The Annunciation”. Notice how the low-level fea-
tures in the photographic image are more likely to successfully represent visual
classes in the photo than in the artistic images.

We define artistic image understanding as a process that receives an artistic
image and outputs a set of global, local and pose annotations. The global anno-
tations consist of a set of artistic keywords describing the contents of the image.
Local annotations comprise a set of bounding boxes that localize certain visual
classes, and pose annotations consist of a set of body parts that indicate the
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Fig. 3. Influence of Japanese art prints (a) on impressionist paintings (b), and of
monochromatic art prints (c) on tile panel paintings (d)

pose of humans and animals in the image (see Fig. 2). Another process involved
in the artistic image understanding is the retrieval of images given a query con-
taining an artistic keyword. Systems developed for such end are of paramount
importance to art historians for the task of analyzing artistic production, or can
be part of an augmented reality method that provides information of an object
of art given a digital picture of it.

A visual art form that is particularly important for the analysis of art images
is printmaking. Printmaking is the process of creating prints from the impres-
sion that the print creator has of a painting (i.e., the print produced is similar to
the original painting, but not identical). Cheap paper production and advance-
ments in graphical arts resulted in an intensive use of printmaking methods over
the last five centuries, which generated prints that have reached a significantly
large number of artists. The main consequence of this wide availability of prints
is their influence over several generations of artists, who have used them as a
source of inspiration for their own production. For instance, Fig. 3 displays the
influence of Japanese art prints on impressionist artists of the XIX century [3],
and the influence of monochromatic art prints on artistic tile painters in Portu-
gal. Therefore, a system that can automatically annotate and retrieve art prints
has the potential to become a key tool for the understanding of the visual arts
produced in the last five centuries.

In this paper, we present a new annotated database composed of artistic im-
ages that will be available for the computer vision community in order to start
a comprehensive and principled investigation on artistic image understanding.
Given the expert knowledge required for annotating this kind of images, it is not
possible to use crowdsourcing tools (e.g., Amazon mechanical turk). Hence, art
historians annotated 988 monochromatic artistic images, representing prints of
religious themes made between the XV and XVII centuries in Europe. In this
multi-label multi-class problem, 75 visual classes are annotated, from which 27
are related to the theme of the art image, and 48 are visual classes that can be
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Fig. 4. Number of training images per class

localized in the image with bounding boxes. Out of these 48 classes, 40 visual
classes have pose annotation, where 37 denote human subjects and 3 represent
animal types. Figure 2 shows an example of the global, local and pose annota-
tions produced by an art historian. We suggest error measures for the problems
of global image annotation, image retrieval, local visual object detection, and
pose estimation. Moreover, we test several methodologies and report their er-
ror measures that will be used as benchmarks for the problem. Specifically, we
consider the following methodologies: random, bag of features [4], label propa-
gation [5], inverted label propagation [6], matrix completion [7], and structural
learning [8]. In particular, we introduce an improved inverted label propagation
method that produces the best results, both in the automatic (global, local and
pose) annotation and retrieval problems. This database will be freely available
on the web [9], together with a table containing up-to-date results, a list of
suggested error measures (with the respective code), and links to the evaluated
techniques.

Literature Review. The current focus of art image analysis is on the forgery
detection problem [10,2] and on the classification of painting styles [1]. The
methodologies being developed can be regarded as adaptations of systems that
work for photographic images, where the main changes are centered on the type
of feature used and on spatial dependencies of local image descriptors. A partic-
ularly similar database to the one presented in this paper is the ancient Chinese
painting data-set used for the multi-class classification of painting styles [11],
which consists of monochromatic art images. Another important reference for
our paper is the work by Yelizaveta et al. [12], which handles the multi-class
classification of brush strokes, but they do not consider the multi-label prob-
lem being handled in our paper. Recently, Carneiro [6] shows a methodology for
art image retrieval and global annotation, but he did not propose a database of
artistic images, nor did he investigate local and pose annotation problems.

2 Database Collection and Evaluation Protocols

The artistic image database comprises 988 images with global, local and pose
annotations (Fig. 2). All images have been collected from the Artstor digital
image library [13], and annotated by art historians. The first stage consists of
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a global annotation containing one multi-class problem (theme with 27 classes)
and 48 binary problems (Fig. 4 shows the class names and the respective number
of training images). All these 48 binary problems comprise visual classes that can
be localized in the image with bounding boxes forming the local annotation, as
depicted in the central frame of Fig. 2. Finally, out of these 48 visual classes, 37
are annotated with the pose of the human subject and 3 are annotated with ani-
mal pose. The pose annotation is composed of torso and head (both represented
by a bounding box), as shown in the right frame of Fig. 2.

Notation. The training set is represented by D = {(x,y,L,P)i}|D|
i=1, where

xi is a feature vector representing an image Ii, yi is the global annotation
of that image representing the M multi-class and binary problems, so yi =
[yi(1), ...,yi(M)] ∈ {0, 1}Y , where each problem is denoted by yi(k) ∈
{0, 1}|yi(k)| with |yi(k)| denoting the dimensionality of yi(k) (i.e., |yi(k)| = 1 for
binary problems and |yi(k)| > 1 with ‖yl‖1 = 1 for multi-class problems). This
means that binary problems involve an annotation that indicates the presence or
absence of a visual class, while multi-class annotation regards problems that one
and only one of the possible classes is present. The set Li represents the local
annotation of image Ii denoted by a set of bounding boxes, each related to one

of the binary classes of yi. Specifically, we have Li = {li,j}|Li|
j=1 with li,j = [y,b],

where y ∈ {1, ..., Y } represents the visual class of the bounding box, b = [z, w, h]
with z ∈ �2 being the top-left corner and w and h, the width and height of the

box, respectively. Finally, the set Pi = {pi,j}|Pi|
j=1 denotes the pose annotation

of image Ii, where pi,j = [y,bhead,btorso], where bhead denotes the bounding
box of the head, and btorso is the bounding box of the torso annotation. An

annotated test set is represented by T = {(x̃, ỹ, ˜L, ˜P)i}|T |
i=1, but the annotations

in the test set are used only for the purpose of methodology evaluation.

The label cardinality of the database, computed as LC = 1
|D|+|T |

∑|D|+|T |
i=1

‖yi‖1, is 4.22, while the label density LD = 1
(|D|+|T |)Y

∑|D|+|T |
i=1 ‖yi‖1, is 0.05,

where Y = 75 and |D|+ |T | = 988.

2.1 Annotation and Retrieval Problems

For computing the error measures, 10 different training and test sets are avail-
able, with training sets comprising |D| = 889 images (90% of the annotated
images) and test sets with |T | = 99 images (10% of the annotated images). The
results are reported based on the performance computed over the test set T af-
ter training the methodology with the training set D. Below, we define the error
measures for the global annotation, retrieval, local and pose annotation.

Global Annotation. The global annotation process of a test image x̃ is
achieved by finding y∗ that solves the following optimization problem:

maximize p(y|x̃)
subject to y = [y(1), ...,y(M)] ∈ {0, 1}Y ,

‖y(k)‖1 = 1 for {k ∈ {1, ...,M}||y(k)| > 1},
(1)
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where p(y|x̃) is a probability function that computes the confidence of annotating
the test image x̃ with vector y. We assess the label-based global annotation of
each visual class y using the following precision, recall and F1 measures:

pga(y) =
∑|T |

i=1(πy�y∗
i )

�ỹi
∑|T |

i=1 π�
y y∗

i

, rga(y) =
∑|T |

i=1(πy�y∗
i )

�ỹi
∑|T |

i=1 π�
y ỹi

, fga(y) = 2pga(y)rga(y)
pga(y)+rga(y) ,

(2)
where πy ∈ {0, 1}Y is one at the yth position and zero elsewhere, and � de-
notes the element-wise multiplication operator. The values of pga(y), rga(y) and
fga(y) are averaged over the visual classes. Notice in (2) that we only assess the
result class by class independently. We also need to measure the performance
considering all the annotated classes jointly. The following example-based global
annotation measures (precision, recall and F1) are used in order to assess the
performance in multi-label problems [14]:

pge = 1
|T |

∑|T |
i=1

(y∗
i )

�ỹi

‖y∗
i ‖1

, rge = 1
|T |

∑|T |
i=1

(y∗
i )

�ỹi

‖ỹi‖1
, fge = 1

|T |
∑|T |

i=1
2(y∗

i )
�ỹi

‖y∗
i ‖1+‖ỹi‖1

.

(3)

Image Retrieval. The retrieval problem is defined as the most relevant test
image returned from T given a query represented by a vector q, as in:

x̃∗ = argmax
x̃∈T

p(x̃|q), (4)

where p(x̃|q) computes the probability of returning the image x̃ ∈ T given the
query vector q ∈ {0, 1}Y . Although q can represent any combinations of classes,
in this paper, we restrict q to have only one class (i.e., ‖q‖1 = 1). The label-based
retrieval is evaluated from the following precision and recall measures computed
using the first Q ≤ |T | images retrieved (sorted by p(x̃|q) in (4) in descending
order):

pr(q, Q) =

∑Q
i=1 δ(ỹ

�q− 1�q)

Q
, and rr(q, Q) =

∑Q
i=1 δ(ỹ

�q− 1�q)
∑|T |

i=1 δ(ỹ
�q− 1�q)

, (5)

where δ(.) is the Kronecker delta function. These precision and recall measures
are used to compute the mean average precision (MAP), which is defined as the
average precision over all queries, at the ranks that the recall changes.

Local Annotation. The local annotation aims at finding the bounding boxes
of the visual classes present in the image. The following optimization problem
finds the local annotation L∗ given the test image and its global annotation:

maximize p(L|y, x̃), (6)

where each k that |y(k)| = 1 and y(k) = 1 has a respective bounding box
l∗j ∈ L∗. The label-based local annotation of each visual class y is assessed with
the following precision, recall and F1 measures [15]:

pla(y) =
∑|T |

i=1 a(l∗i (y)
⋂

l̃i(y))
∑|T |

i=1 a(̃li(y))
, rla(y) =

∑|T |
i=1 a(l∗i (y)

⋂
l̃i(y))

∑|T |
i=1 a(̃li(y))

, f la(y) = 2pla(y)rla(y)
pla(y)+rla(y) ,

(7)
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where the function a(l) returns the area (in pixels) of the bounding box defined
by l (see above in Sec. 2), and operator

⋂

returns the intersection between

the bounding boxes from estimation l∗i (y) and from ground truth ˜li(y) in the
test image (note that both boxes are related to class y). The values of pla(y),
rla(y) and fla(y) are then averaged over the visual classes. Notice that in (7) we
only assess the result class by class independently. We also need to measure the
performance considering all the annotated classes jointly. The following example-
based local annotation measures (precision, recall and F1) are used in order to
assess the performance in multi-label problems:

ple = 1
|T |

∑|T |
i=1

∑Y
y=1

a(l∗i (y)
⋂

l̃i(y))

a(l∗i (y))
, rle = 1

|T |
∑|T |

i=1

∑Y
y=1

a(l∗i (y)
⋂

l̃i(y))

a(̃li(y))
,

f le = 1
|T |

∑|T |
i=1

∑Y
y=1

2(a(l∗i (y)
⋂

l̃i(y)))

a(l∗i (y))+a(̃li(y))
.

(8)

Pose Annotation. Finally, for the pose annotation, we assume the knowledge
of global and local annotations in order to arrive at the pose annotation P∗, as
follows:

maximize p(P|L,y, x̃), (9)

where each k that |y(k)| = 1 and y(k) = 1 has a respective bounding box lj ∈ L,
and the head and torso bounding boxes are within the local annotation bounding
box. The label-based pose annotation of the head visual class is assessed with the
following precision, recall and F1 measures [15]:

ppa(y, head) =
∑|T |

i=1 a(p∗
i (y,head)

⋂
p̃i(y,head))

∑|T |
i=1 a(p∗

i (y,head))
,

rpa(y, head) =
∑|T |

i=1 a(l∗i (y,head)
⋂

l̃i(y,head))
∑|T |

i=1 a(p̃i(y,head))
,

fpa(y, head) = 2ppa(y,head)rpa(y)
ppa(y,head)+rpa(y,head) ,

(10)

and similarly for torso, where the function a(p(y, head)) returns the area (in
pixels) of the bounding box defined by p (see above in Sec. 2), and operator

⋂

returns the intersection between the bounding boxes from estimation p∗
i (y, head)

and from ground truth p̃i(y, head) in test image i (note that both boxes are
related to class y). The values of ppa(y), rpa(y) and fpa(y) are then averaged
over the visual classes. Notice in (10) that we only assess the result class by
class independently. We also need to measure the performance considering all the
annotated classes jointly. The following example-based pose annotation measures
(precision, recall and F1) are used in order to assess the performance in multi-
label problems:

ppe = 1
|T |

∑|T |
i=1

∑Y
y=1

∑

m∈{head,torso}
a(p∗

i (y,m)
⋂

p̃i(y,m))

a(p∗
i (y,m)) ,

rpe = 1
|T |

∑|T |
i=1

∑Y
y=1

∑

m∈{head,torso}
a(p∗

i (y,m)
⋂

p̃i(y,m))

a(p̃i(y,m)) ,

fpe = 1
|T |

∑|T |
i=1

∑Y
y=1

∑

m∈{head,torso}
2(a(l∗i (y,m)

⋂
l̃i(y)))

a(p∗
i (y,m))+a(p̃i(y,m)) .

(11)
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3 Image Annotation and Retrieval Procedures

In this section, we describe the image representation and the different method-
ologies used to solve for the annotation and retrieval problems.

3.1 Image Representation

The images are represented with the spatial pyramid [16] (with three levels),
which is an extension of the bag of visual words [4], where each visual word
is formed with a collection of local descriptors. The local descriptors are ex-
tracted with the scale invariant feature transform (SIFT) [17] using a uniform
grid over the image and scale space in order to have 10000 descriptors per im-
age. The vocabulary is built by gathering the descriptors from all images and
running a hierarchical clustering algorithm with three levels, where each node
in the hierarchy has 10 descendants [18]. This results in a directed tree with
1+10+100+1000 = 1111 vertexes, and the image feature is formed by using each
descriptor of the image to traverse the tree and record the path (note that each
descriptor generates a path with 4 vertexes). The histogram of visited vertexes
is weighted by the node entropy (i.e., vertexes that are visited more often re-
ceive smaller weights). The spatial pyramid representation is achieved by tiling
the image in three levels, as follows: the first level comprises the whole image,
the second level divides the image into 2 × 2 regions, and the third level
breaks the image into 3 × 1 regions. This tiling has shown the best results in
the latest Pascal VOC image classification competitions [19]. This means that
there are 8 histograms describing an image, represented by x ∈ �X , where
X = 8× 1111.

3.2 Methodologies

We explored different annotation methodologies that have recently shown
state-of-the-art results in several photographic image annotation processes.
Specifically, we evaluate the performance of inductive and transductive method-
ologies, and use a random annotation approach for comparison. For the inductive
learning, we study the performance of bag of feature and structural learning ap-
proaches. The transductive methodology is tested with different types of label
propagation methods.

Random. The random global annotation takes into consideration the priors of
the visual classes as follows:

Multiclass: {k : |y(k)| > 1} Binary: {k : |y(k)| = 1}

y∗(k) =

⎧
⎪⎪⎨

⎪⎪⎩

π1, r < p(y(k) = π1)
...

π|y(k)|,
∑|y(k)|−1

j=1 p(y(k) = πj) ≤ r < 1

, y∗(k) =
{
1, r < p(y(k) = 1)
0, otherwise

,

(12)
where r ∼ U(0, 1) (with U(0, 1) denoting the uniform distribution between 0

and 1), p(y(k) = πj) =
1

|D|
∑|D|

i=1 y(k)
�
i πj (with πj = 1 for binary problems and
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πj ∈ {0, 1}|y(k)| with zeros everywhere except at the jth position). The retrieval
is done by first computing the global annotations for the test images in the set
T , and then the images are ranked based on the Hamming distance between
query and test image annotations, as in:

Δ(q,y) = ‖q− y∗‖1. (13)

The local and pose annotations are achieved for each visual class by first selecting
the training image with the smallest value for

i∗ = arg min
j∈{1,...,|D|}

Δ(y∗,yj), (14)

and assign L∗ = Li∗ and P∗ = Pi∗ . The acronym for this approach is RND.

Bag of Features. The bag of features model is based on Y support vector ma-
chine (SVM) classifiers using the one-versus-all training method. Specifically, we
train the Y classifiers (each classifier for each label) p(y(k) = πj |x̃, θSVM (k, j)),
for k ∈ {1, ...,M}, j ∈ {1, ..., |y(k)|}, πj ∈ {0, 1}|y(k)| (with the jth element equal
to one and rest are zero), and the annotation and retrieval use the same meth-
ods in (1) and (4), respectively, replacing p(y|x̃) by p(y(k) = πj |x̃, θSVM (j)).
The penalty factor of the SVM for the slack variables is determined via cross-
validation, where the training set D is divided into a training and validation sets
of 90% and 10% of D, respectively. This model roughly represents the state-of-
the-art approach for image annotation and retrieval problems [20]. The extension
to the retrieval problem is based on (13), and the local and pose annotations
follow the method in (14). The acronym for this approach is BoF.

Label Propagation. The label propagation encodes the similarity between
pairs of images using the graph Laplacian, and estimate the annotations of test
image using transductive inference. This method has been intensively investi-
gated, and we only present the main developments, which are the following.
Find the annotation matrix F∗ using the following optimization problem [5]:

minimize 0.5 tr(F�(D−W)F)
subject to fi = yi, for i = 1, ..., |D| , (15)

where W,F,D ∈ �(|D|+|T |)×(|D|+|T |) with Wij = exp{−0.5‖xi−xj‖22/σ2} such
that the index for the training set is from 1 to |D| and for the test set from
|D| + 1 to |D| + |T |, D is a diagonal matrix with its (i, i)-element equal to the
sum of the ith row of W, and tr(.) computes the trace of a matrix. This problem
has the closed form solution F∗ = β(I − α(D −W))−1Y, where I denotes the
identity matrix,and α and β are regularization parameters such that α+ β = 1.
In the experiments,this approach is named LP. The problem in (15) has been
extended in order to include label correlation [21,22], as follows

minimize 0.5tr(F�(D−W)F)+(1−μ)tr((F−Y)Λ(F−Y))+μtr(FCF�), (16)



152 G. Carneiro et al.

where Λ is a matrix containing ones in the diagonal from indices 1 to |D|, and zero
otherwise, and C ∈ [−1, 1]Y×Y containing the correlation between classes.The
problem in (16) has closed form solution F∗ = (D − W)−1Y(I − μC), where
μ is a regularization parameter. We represent this approach by LP-CC in the
experiments. After finding F∗, we need to define the values for y∗

i for each
test image. We tried some alternatives present in the literature, but obtained
the best performance with class mass normalization [23], which adjusts the class
distributions to match the priors. The extension to the retrieval problem is based
on (13), and the local and pose annotations follow the approach described in (14).

Inverted Label Propagation. By inverting the problem described in (15),
it is possible to produce the global, local, and pose annotations simultaneously.
Specifically, instead of inferring the labels of the test images (using matrix F in
Eq. 15), the inverted label propagation returns a vector representing the proba-
bility of landing in one of the training images after starting the random walk pro-
cess from a test image. Furthermore, the similarity between annotations (which
in LP requires a reformulation of the problem) is incorporated in the adjacency
matrix. Then, the annotation can be finalized using the training images annota-
tions weighted by the probability of random walk process. Recently, Carneiro [6]
has formulated the global annotation problem with the combinatorial harmonic
(CH) approach [24], which computes the probability that a random walk starting
at the test image x̃ first reaches each of the database samples (x,y,L,P)i ∈ D.
Assuming that the test image is represented by x̃, the adjacency matrix in this
inverted problem is defined by taking into consideration both the image and
label similarities, as in:

U(j, i) = Iy(yi,yj)× Ix(xi,xj)× Ix(xj , x̃), (17)

where Iy(yi,yj) =
∑M

k=1 λk × y(k)�i y(k)j (λk is the weight associated with the

label k), and Ix(xi,xj) =
∑X

d=1 min(xi(d),xj(d)) (i.e., this is the
histogram intersection kernel over the spatial pyramid representation described
in Sec. 3.1). Note that the matrix U in (17) is row normalized. The compu-

tation of the CH solution extends the adjacency matrix in (17), as in: ˜U =
[

U ũ
ũT 0

]

, where ũ is the un-normalized initial distribution vector defined as

u = [Ix(x1, x̃), ..., Ix(x|D|, x̃)]
�. Our goal is to find the distribution g∗ ∈ �|D|

(‖g∗‖1 = 1), representing the probability of first reaching each of the training
images in a random walk procedure, where the labeling matrix G = I (i.e., an
|D| × |D| identity matrix) denotes a problem with |D| classes, with each train-
ing image representing a separate class. The estimation of g∗ is based on the
minimization of the following energy function:

E([G,g]) =
1

2

∥

∥

∥

∥

∥

[G,g]˜L

[

GT

gT

]∥

∥

∥

∥

∥

2

2

, (18)
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where ˜L is the Laplacian matrix computed from the the adjacency matrix ˜U.
This Laplacian matrix can be divided into blocks of the same sizes as in ˜U, that

is ˜L =

[

L1 B
BT L2

]

. Solving the following optimization problem produces g∗ [24]:

minimize E([G,g])
subject to G = I,

(19)

which has the closed form solution [24]: g∗ = (−L−1
2 BT I)�. Note that g∗ ∈

[0, 1]|D| and ‖g∗‖1 = 1. In order to annotate the test image, one can use class
mass normalization [6], but we propose an alternative way, which is to simply
take the annotation of the training sample yi∗ ,Li∗ ,Pi∗ with i∗ = argmaxg∗.
This allows to produce global, local and pose annotations, and the extension
to the retrieval problem is based on (13). In the experiments, this approach is
named ILP-O. Note that the original ILP [6] (with class mass normalization)
is denoted by ILP.

Matrix Completion. The matrix completion formulation consists of forming

a joint matrix with annotation and features Z =
[

Zy Zy∗
Zx Zx̃

]

, where the goal is to

find the values for Zy∗ = [y∗
1 ...y

∗
|T |] giving [7]:

minimize rank(Z)
subject to Zy = [y1...y|D|], Zx = [x1...x|D|], Zx̃ = [x̃1...x̃|T |].

(20)

In (20), the non-convex minimization objective function rank is replaced by

the convex nuclear norm ‖Z‖∗ =
∑min{|D|,Y+X}

k=1 σk(Z), where the σk(Z) are
the singular values of Z. Moreover, the equality constraints for Zx and Zx̃ are
replaced by squared losses, and the one for Zy is relaxed to a logistic loss. After
finding Zy∗ , we need to define the values for y∗

i for each test image, and we
obtained the best results with class mass normalization [23]. This approach is
extended for the retrieval problem using (13), and the local and pose annotations
follow the approach described above in (14). This approach is represented by the
acronym MC in the experiments.

Structural Learning. The structural learning formulation follows the struc-
tured SVM implementation [8], which is based on the margin maximization
quadratic problem, defined by:

min
w,ξ

‖w‖2 + C

|D|
∑

i=1

ξi

s.t. w�Ψ(yi,xi)−w�Ψ(y,xi) + ξi ≥ Δ(yi,y), i = 1...|D|, ∀y ∈ {0, 1}Y ,
ξi ≥ 0, i = 1...|D|

(21)

where Δ(yi,y) = ‖yi − y‖1 (13), Ψ(y,x) = x ⊗ y ∈ �X×Y (i.e., this is a
tensor product combining the vectors x and y by replication the values of x in
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every dimension y ∈ {1, ..., Y } where y�πy = 1), C is penalty for non-separable
points, and ξd denotes the slack variables to deal with non-separable problems.
The retrieval problem is based on (13), and the local and pose annotations follow
(14). We represent this approach with the acronym SL in the experiments.

4 Experiments

In the experiments, we first compare the results of the global annotation and
retrieval using all methods listed in Sec. 3.2 with the 10-fold cross validation
experimental setup described in Sec. 2. For the BoF, we used the code im-
plemented by Vedaldi and Fulkerson [25]. We implemented the code for LP
following the algorithm by Zhou et al. [5]. For LP-CC we used the method by
Wand et al. [21]. For ILP we follow the methodology by Carneiro [6], which
was extended in this paper to produce the ILP-O. The MC was implemented
based on the code MC-1 by Goldberg et al. [7], and for the SL, we used the
code SVM struct available from the page svmligh.joachims.org/svm−struct.html.
All regularization parameters in the algorithms above are learned via cross
validation.

5 Discussion and Conclusions

According to the experiments, our extension of the inverted label propagation
produces the best results. However, we note that the small training sets do not
allow the inductive methodologies to build robust models for the majority of
visual classes, and we believe that this is the main reason why BoF and SL do
not produce the best results. We believe, that the superior performance of the
inverted linear propagation is explained by the similar images from the same
theme, containing the similar composition, visual classes and setting. Such sim-
ilarities in art images arise from the artists’ influence network. Therefore, given
that the random walk process is highly likely to select the most similar images,
the global annotation is often correct for the query image. The results for the lo-
cal and pose annotation present an interesting challenge for the community. For

Table 1. Retrieval and global annotation performances in terms of the average ± stan-
dard deviation of measures (2)-(5) computed in a 10-fold cross validation experiment
(the best performance for each measure is highlighted).

Retrieval Label-based global annotation Example-based global annotation

Models Label Average Average Average Average Average Average
MAP Precision Recall F1 Precision Recall F1

RND 0.08 ± .06 0.06 ± .01 0.07 ± .01 0.06 ± .01 0.26 ± .02 0.21 ± .01 0.22 ± .01
BoF 0.12 ± .05 0.14 ± .11 0.10 ± .06 0.11 ± .08 0.35 ± .03 0.26 ± .08 0.30 ± .05
LP 0.11 ± .01 0.12 ± .02 0.12 ± .02 0.12 ± .02 0.32 ± .03 0.28 ± .02 0.26 ± .02
LP-CC 0.11 ± .01 0.13 ± .02 0.14 ± .02 0.13 ± .02 0.27 ± .03 0.26 ± .03 0.25 ± .03
ILP 0.14 ± .02 0.19 ± .03 0.35± .03 0.25 ± .04 0.24 ± .02 0.48± .05 0.30 ± .02
ILP-O 0.18± .04 0.26± .05 0.26 ± .05 0.26± .05 0.39± .03 0.39 ± .04 0.38± .03
MC 0.17 ± .01 0.24 ± .03 0.11 ± .02 0.15 ± .02 0.37 ± .02 0.28 ± .02 0.32 ± .02
SL 0.14 ± .01 0.18 ± .04 0.14 ± .03 0.16 ± .03 0.34 ± .04 0.31 ± .04 0.32 ± .04
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Table 2. Local Annotation performance in terms of the average ± standard devia-
tion of measures (7)-(8) computed in a 10-fold cross validation experiment (the best
performance for each measure is highlighted).

Label-based local annotation Example-based local annotation
Models Average Average Average Average Average Average

Precision Recall F1 Precision Recall F1
RND 0.04 ± .01 0.04 ± .01 0.04 ± .01 0.13 ± .03 0.18 ± .04 0.15 ± .02
BoF 0.25± .08 0.05 ± .03 0.07 ± .03 0.28± .05 0.17 ± .06 0.20 ± .04
LP 0.12 ± .05 0.06 ± .02 0.08 ± .02 0.21 ± .02 0.19 ± .04 0.20 ± .02
LP-CC 0.08 ± .02 0.06 ± .01 0.07 ± .01 0.12 ± .02 0.17 ± .04 0.14 ± .02
ILP 0.06 ± .03 0.10 ± .03 0.07 ± .03 0.13 ± .02 0.19 ± .03 0.16 ± .02
ILP-O 0.15 ± .05 0.16± .05 0.15± .05 0.21 ± .03 0.24± .03 0.23± .03
MC 0.07 ± .01 0.03 ± .01 0.04 ± .01 0.12 ± .03 0.14 ± .06 0.13 ± .03
SL 0.09 ± .00 0.06 ± .01 0.07 ± .01 0.18 ± .03 0.20 ± .04 0.19 ± .01

Table 3. Pose Annotation performance in terms of the average ± standard deviation
of measures (10 )-(11) computed in a 10-fold cross validation experiment (the best
performance for each measure is highlighted).

Label-based Pose annotation Example-based Pose annotation
Models Average Average Average Average Average Average

Precision Recall F1 Precision Recall F1
RND 0.00 ± .01 0.00 ± .01 0.00 ± .01 0.00 ± .02 0.00 ± .01 0.00 ± .01
BoF 0.01 ± .01 0.01 ± .01 0.01 ± .01 0.01 ± .01 0.01 ± .01 0.01 ± .01
LP 0.00 ± .00 0.00 ± .00 0.00 ± .00 0.00 ± .00 0.00 ± .00 0.00 ± .00
LP-CC 0.00 ± .00 0.00 ± .00 0.00 ± .00 0.00 ± .00 0.00 ± .00 0.00 ± .00
ILP 0.01 ± .01 0.01 ± .01 0.01 ± .01 0.01 ± .01 0.01 ± .01 0.01 ± .01
ILP-O 0.05± .04 0.08± .06 0.06± .05 0.06± .02 0.07± .02 0.06± .02
MC 0.00 ± .00 0.00 ± .00 0.00 ± .00 0.00 ± .00 0.00 ± .00 0.00 ± .00
SL 0.00 ± .00 0.00 ± .00 0.00 ± .00 0.00 ± .00 0.00 ± .00 0.00 ± .00

instance, exploring context cues may improve these results. Another point that
can be explored is the use of people and face detectors in art images (we applied
several state-of-the-art people and face detectors, but only obtained uninspiring
results). In order to stimulate even more the research in this sub-field, we plan
to add the delineation of arms and legs for the pose annotation. One final point,
which is not evaluated in this work, concerns the image representation. Recently,
wavelets produced excellent results on the forgery detection problem [2], but a
more systematic comparison to other features is still necessary.

In conclusion, we believe that this database has the potential to spur a new
sub-field of art image analysis within the computer vision community. The error
measures and results provided can be used by the community to assess the
progress made in this area. We believe that proper art image understanding has
the potential to influence a more complete general image understanding.

The Table 1 shows the results (2)-(5) described for the global annotations
process. The local annotation results explained in (7)-(8) are shown in Tab. 2,
and the experimental results for the pose annotation are displayed in Tab. 3
using the measures (10)-(11). Figures 5 and 6 shows examples of retrieval and
annotation results produced by the proposed ILP-O.
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yes yes yes yes yes

no yes no yes yes

Fig. 5. Retrieval results of the ILP-O. Each row shows the top five matches to the
following queries (from top to bottom): ‘Holy Family’, and ‘Christ child’. Below each
image, it is indicated whether the image is annotated with the class.

Global annotation:Visitation, Mary, St. Elizabeth,

Zacharias

Global annotation: Holy Family, St. Joseph,

St. John Baptist, Christ Child, Mary, St. Elizabeth

Fig. 6. Annotation result of ILP-O. Note that the global annotation shown produced
a perfect match with respect to the art historian’s annotation.
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Abstract. We present a novel approach to modeling human pose, to-
gether with interacting objects, based on compositional models of
local visual interactions and their relations. Skeleton models, while flexi-
ble enough to capture large articulations, fail to accurately model
self-occlusions and interactions. Poselets and Visual Phrases address this
limitation, but do so at the expense of requiring a large set of templates.
We combine all three approaches with a compositional model that is flex-
ible enough to model detailed articulations but still captures occlusions
and object interactions. Unlike much previous work on action classifi-
cation, we do not assume test images are labeled with a person, and
instead present results for “action detection” in an unlabeled image. No-
tably, for each detection, our model reports back a detailed description
including an action label, articulated human pose, object poses, and oc-
clusion flags. We demonstrate that modeling occlusion is crucial for rec-
ognizing human-object interactions. We present results on the PASCAL
Action Classification challenge that shows our unified model advances
the state-of-the-art for detection, action classification, and articulated
pose estimation.

Action recognition is often cast as a k-way classification task; a person is either
riding a bike, running, or talking on the phone, etc. For example, the PASCAL
Action classification challenge requires one to label a human bounding-box (pro-
vided at test-time) with an action class. Such a formulation is limiting for two
reasons. First, it assumes manual annotation of test data. In “real-world” un-
constrained images, detection is crucial: how many people are riding a bike in
this image, and where are they? Second, one may be interested in richer descrip-
tions beyond a k-way class label. For instance, is this person riding a bike or
about to mount it? Is he gripping the handlebar with one or both hands? Part
of what makes this problem hard is that (1) humans can articulate and interact
with objects in a variety of ways and (2) the resulting occlusions from those
articulations and interactions are hard to model.

In this work, we present a novel approach to modeling human pose, together
with interacting objects. Our model detects possibly multiple person-object in-
stances in a single image and generates detailed spatial reports for each such
instance. See Fig. 1 for an example of the output our model generates on a test
image, without the benefit of any test annotation. Our approach unifies several
recent lines of thought with classic models of human pose.

A. Fitzgibbon et al. (Eds.): ECCV 2012, Part IV, LNCS 7575, pp. 158–172, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Fig. 1. Our model detects multiple people-objects, action class labels, human and
object pose, and occlusion flag. The above result was obtained without any manual
annotation of human bounding boxes at test-time. White edges connect human body
parts. Light-blue edges connect object parts to each other and to the human. We define
a single compositional model for each action class (in this case, RidingHorse) that is
able to capture large changes in articulation, viewpoint and occlusions. We denote
occluded parts by an open circle. For example, our model correctly predicts that a
different leg of each rider is occluded behind his horse.

Articulated Skeletons have dominated contemporary approaches for human
pose estimation, popularized through 2D pictorial structure models that allow for
efficient inference given tree-structured spatial relations [1]. We specifically follow
the flexible mixtures of parts (FMP) framework of [2], which augments a stan-
dard pictorial structure with local part mixtures. While such methods are flexible
enough to capture large variations in appearance due to pose, they still fail to ac-
curately capture self-occlusions of limbs and occlusions due to interacting objects.

Visual Phrases implicitly model occlusions and interactions through the use
of a “composite” template that spans both a person and an interacting object
[3]. Traditional approaches use separate templates for a person and object; in
such cases, it may be difficult to model geometric and appearance constraints
that arise from their interaction. Consider a person riding a horse; the person’s
legs tend to be occluded, while visible body parts tend to take on a riding
pose. A single, global composite captures such constraints, but one may need a
large number of composites to capture all possible person-horse interactions (a
standing vs. galloping horse, an upright vs. crouched rider, etc.).

Poselets encode visual composites of parts rather than visual composites of
objects [4]. A torso-arm composite implicitly captures interactions and occlusions
that are difficult to model with separate templates for the arm and torso. By
composing together different poselets, one can generate a large number of global
composites. While such models are successful at detection, it is not clear if they
can be used for detailed spatial reasoning, such as pose estimation. One reason
is that a large number of poselets may be needed to capture all body poses.
Another is that such methods lack a relational model that forces an anatomically-
consistent arrangement of poselets to fire in a given detection.
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Our Approach combines the strengths of all three approaches. We break up
global person+object composites into local patches or “phraselets,” which can
in turn be composed together to yield an exponentially-large set of composites.
Notably, we enforce anatomically-consistent relations between phraselets to gen-
erate valid composites. We do so by defining phraselets as part mixtures in a
FMP model, where local part mixture labels are obtained by “Poselet-like” clus-
tering of global configurations of pose and nearby objects. To capture occlusions,
we define separate phraselet mixtures for visible and occluded parts.

For example, we may learn different phraselets corresponding to hands grip-
ping a handlebar, hands occluding torsos, and hands pointing away from the
body. Our model includes relational constraints between phraselets; the pres-
ence of a handlebar phraselet induces a particular human body pose, as well
as the presence of leg phraselets corresponding to legs occluded by bike-frames.
Classic part models assume local appearance is independent of geometry; a hand
looks the same regardless of the geometry of the remaining body. This makes oc-
clusions and interactions difficult to model. Phraselets differ in that they encode
dependencies between geometry and appearance through relational constraints.

Our Model Reports action class labels, articulated pose, object part loca-
tions, and part-occlusion flags. Notably, our models do not require a bounding-
box annotation around a person at test-time. We show that our single model
outperforms state-of-the-art methods for diverse tasks including visual compos-
ite detection (c.f. Visual Phrases), articulated pose estimation (c.f. FMP), and
action classification (c.f. Poselets).

1 Related Work

Part models have a rich history in the context of pose-estimation. We refer the
reader to a recent book chapter for a contemporary review [5]. Pictorial struc-
tures [1] are the dominant approach. Similar to [6], we learn part models in a
discriminative framework. However, we follow a supervised learning framework
for learning parts and relations, as in [2, 7]. Recent works have explored inte-
grating relational part models with coarse-scale parts (rather than traditional
limb models) [8]. This can also be integrated into a hierarchical, coarse-to-fine
representation [9, 10]. Our model differs in that we consider only “fine” local
representations, but focus on representing multi-modal appearances with mix-
ture models. We show that one can represent an large set of coarse template
by mixing and matching smaller patches. Our model jointly addresses detection,
action classification, and pose estimation, similar to part-models that jointly
reason about actions and pose [8], and detection and pose [9, 11].

Poselets were introduced and developed through [4, 12, 13]. We generate
phraselets by clustering configurations of pose and nearby objects, unlike Pose-
lets which clusters only pose. We consider action recognition as in [13], but also
report human pose and object locations in a unified framework. Our phraselets
differ in that they provide explicit reports of local occlusions. Perhaps most im-
portantly, our model reports back an explicit articulated pose, while Poselets
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Fig. 2. We show bike handles from PASCAL 2011 RidingBike action clustered using
global configurations of pose and objects. Bike handles belonging to the same cluster
are all assigned the same mixture label ti as described in Sec. 2. Our clusters naturally
encode changes in viewpoint, as well as different semantic object types; for example,
the bottom-center and bottom-right clusters encode similar viewpoints, but different
bicycle types (road bikes versus motorbikes). This is because each type induces different
human poses, captured by our clustering algorithm.

does not. Poselets are detected independently of each other, making it difficult
to extract a globally-consistent pose. Our relational model makes use of dynamic
programming to force phraselets to fire in a globally-consistent manner.

Many approaches jointly recognize human pose and interacting objects.
[14–16] describe contextual models for doing so, but assume that local part ap-
pearances are independent of the interaction. Such approaches typically assume
a single instance of a person-object in the image. Our work differs in that we
reason about multiple person-objects and detailed part occlusions of both the
object and person. The latter allows us to better reason about occlusions arising
from interactions. Visual phrases [3] takes a “brute-force” approach to model-
ing occlusions and pose interactions by defining a global template encompassing
both the person and object. This approach may require a separate template for
each combination of constituent objects and articulated pose. We instead use
local mixtures and co-occurrence relations to reason about such interactions.

2 Phraselet Clustering

We describe our approach for learning phraselets, or mixtures of local patches,
specific to a given activity such as bike riding. We assume we are given images
from an activity with keypoint labels spanning both the human body and any
interacting objects. Typical keypoint labels may include head, lt shoulder, rt
elbow, lt ankle, etc for the central figure and front wheel, rear wheel, bike handle
for the bike. More details on the parts we collect keypoint locations for are given
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(a) Visible elbow phraselets (b) Occluded elbow phraselets

Fig. 3.We show left-elbow phraselets learned from the Running action class in PASCAL
VOC 2011. Our occluded clusters capture changes in the appearance of elbows resulting
arising from viewpoint and occlusion.

in Sec. 5. We assume these keypoint labels are with a visibility flag denoting if
a particular keypoint is occluded or not.

Let i ∈ {1, 2, . . .K} be the one of the K parts of the person and/or the object
specific to an activity. Let us write pin = (x, y) and oin ∈ {0, 1} for the pixel
position and visibility flag of the ith part in training image n, respectively. We
write tin ∈ {1, 2, . . .M} for a mixture or phraselet label. For the remainder of
this section, we describe a method for obtaining mixture labels. Our intuition
is that global changes in the geometric configuration of the human body and
nearby object will produce local changes in appearance of a part i, and hence
should be captured by ti. For example, the local appearance of the hand will be
affected by the orientation and type of bicycle (e.g., different bicycles can have
different types of handlebars). We construct a feature vector associated with
each part in each image, and cluster these vectors to derive mixture labels. To
make the clustering scale invariant, we estimate a scale for each part in each
image sin = scalei ∗ headlengthn, where scalei is the canonical scale of a part
measured in human head-lengths, and head-lengthn is the length of the head in
image n. For example, we use scalei = 1 for body parts and scalei = 2 for bicycle
wheels. We now write the feature vector for part i in image n as:

xin =
[
Dist Visible

]T
(1)

where Dist = {wijdij : j = 1..K}, Visible = {wijo
j
n : j = 1..K} (2)

and wij = e−Ti||dij||2 , dij =
(pjn − pin)

sin

Dist is a 2K-vector of (weighted) pixel displacements of each of the K parts from
part i, normalized for scale. V isible is a K-vector of (weighted) binary occlusion
flags. All terms are Gaussian-weighted by wij such that parts closer to part i
have a larger influence in the global descriptor xin. We found it useful to vary the
variance of the gaussian (given by Ti) across each part, but use a fixed set across
all activities For a given part i, we run K-means on all such features extracted
from a training set of images.

Occlusion: Many parts are not visible in certain images. Such part instances
may pollute a cluster if both visible and occluded parts are clustered together.
Because we believe that occlusions will generate large changes in appearance,
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we simply separate xin vectors into two sets, where part i is occluded or not,
and separately run K means for each set. We generate K = 6 visible clusters
and K = 4 occluded clusters for each part. This ensures that clusters/mixtures
1-6 are visible, while mixtures 7-10 are occluded. We show examples of visible
clusters in Fig. 2. In Fig. 3, we compare visible and occluded clusters for the left
elbow across images of people Running. We pad the image so that our model
can find parts truncated by the image border; we treat truncation and occlusion
identically, so that truncated patches along the border are added to the pool of
occluded patches to be clustered.

Relationship to Past Work: Our clustering algorithm is closely aligned to
the Poselet clustering algorithm of [12], but with several key differences. Firstly,
we consider the global configuration of the person and interacting object, rather
than just the person. Secondly, we explicitly construct clusters corresponding
to occluded parts. This allows us to generate such occlusion labels for detected
parts at test time simply by reading off the estimated mixture label. Thirdly, and
perhaps most importantly, our clusters consist of small patches that are forced to
fire in globally-consistent arrangements, following a relational model described
in the next section. This allows us to extract globally-consistent estimates of
articulated poses. Our relational model also allows us to compose together a
small number of phraselets with small spatial support into a large number of
composites with large spatial support - we use roughly 100 template patches per
activity, while Poselets requires roughly 1000 templates. One concern may be
that phraselets are less discriminative than Poselets due to their small spatial
support. However, a collection of phraselets can learn to behave like a single,
larger Poselet by enforcing rigid relational constraints, as we show next.

3 Relational Model

We now build an activity-specific model for scoring a collection of part mixtures,
or phraselets. We would like to enforce consistent relations between phraselets,
including spatial constraints on the geometric arrangement of parts, as well as ap-
pearance constraints on which mixtures can co-occur. Crucially, these constraints
depend on each other; mixture appearance affects the spatial geometry and vice
versa (e.g., a handlebar should be explained by an occluded phraselet only if the
hand and handlebar lie spatially near each other). To encode such constraints, we
follow the framework of [2], which describes a deformable part model that reasons
about relations between local mixtures of parts. In this section, we review [2] and
show how it can be used to build a relational model for phraselets.

Let I be an image, pi = (x, y) is the pixel location for part i and ti is the mix-
ture component of part i, derived from the previously described clustering algo-
rithm. SupposeE is the edge structure defining relational constraints between the
K parts. The score associated with a configuration of phraselets is written as

S(I, p, t) = b(t) +

K∑

i=1

αi
ti · φ(I, pi) +

∑

i,j∈E

βij
ti,tj · ψ(pi − pj) (3)
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(a) Running (b) RidingBike (c) Walking (d) Phoning

(e) RidingHorse (f) UsingComp. (g) TakingPhoto (h) Jumping

Fig. 4. Visualizations of our learned models and tree-structured relations. Our activity-
specific tree connects part templates spanning both, the human and the object. Red
edges connect parts of the human to each other. Green edges connect parts of an
object to each other and to the human. Note that we are showing one (out of an
exponential number of) combinations of local templates for each activity. For example,
the selected phraselet mixtures in (e) correspond to a left-facing horse, but the same
model generates other views by swapping out different mixtures at different spatial
locations (as shown in Fig. 1).

Appearance Relations: We write b(t) =
∑

ij∈E w
ij
titj for a “prior” over mix-

ture combinations, which factors into a sum of pairwise compatibility terms.
This term might encode, for example, that curved handlebars tend to co-occur
with road bicycles, while flat handlers tend to co-occur with motorbikes. Given
that φ(I, pi) is a feature vector (e.g., HOG [17]) extracted from pixel location
pi, the first sum from (3) computes the score of placing template αi

ti , tuned for
mixture ti for part i, at location pi.

Spatial Relations: We write ψ(pi − pj) =
[
dx dy dx2 dy2

]T
for a quadratic

deformation vector computed from the relative offset of locations pi and pj . We
can interpret βij

ti,tj as a quadratic spring model that switches between a collection

of springs tailored for a particular pair of mixtures (ti, tj). Because the spring
depends on the mixture components, spatial constraints are dependent on local
appearance. For example, this dependency encodes the constraint that people
may be posed differently for different types of bikes. Mixture-specific springs also
encode self-occlusion constraints arising from viewpoint changes. For instance,
our model can capture the fact that the right hip of a person is more likely to be
occluded when it lies near a visible left hip, because such an spatial arrangement
and mixture assignment is consistent with a right-facing person.

4 Inference and Learning

Inference corresponds to maximizing (3) with respect to p and t. When the
relational graph is a tree, one can do this efficiently with dynamic programming,
as described in [1, 2]. We omit the equations for a lack of space, but emphasize
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that our inference procedure returns back both part locations and part mixture
labels. While the inferred mixture labels in [2] are ignored, we use them to infer
occlusion flags for each part.

Structure Learning: Given a collection of K parts per activity, we would
like to learn an activity-specific tree-based edge structure E connecting these
K parts. The Chow-Liu algorithm is a well-known approach for learning tree
models by maximizing mutual information [1, 18] of a given set of variables. In
our case, we find the maximum-weight spanning tree in a fully connected graph
whose edges are labeled with the mutual information between zi = (pi, ti) and
zj = (pj , tj). Hence both spatial consistency and appearance consistency are used
when learning the relational structure.

Once we learn an activity-specific tree, we learn the templates and rela-
tions for that tree using a structured prediction objective function. Let zn =
{(p1n, t1n)...(pkn, tkn)} be a particular assignment of locations and types for all k
parts in image n. Note that the scoring function in (3) is linear in the parameters
θ = ({w}, {α}, {β}), and therefore can be expressed as S(In, zn) = θ · Φ(In, zn).
We learn a model of the form:

argmin
θ,ξi≥0

1

2
θT · θ + C

∑

n

ξn (4)

s.t. ∀n ∈ positive images θ · Φ(In, zn) ≥ 1− ξn

∀n ∈ negative images, ∀z θ · Φ(In, z) ≤ −1 + ξn

The above constraint states that positive examples should score better than 1
(the margin), while negative examples, for all configurations of part positions and
mixtures, should score less than -1. We collect negative examples from images
consisting of people performing activities other than the one of interest. This
form of learning problem is known as a structural SVM, and there exist many
well-tuned solvers such as the cutting plane solver of SVMStruct in [19] and the
stochastic gradient descent solver in [6]. We use the dual coordinate-descent QP
solver of [2]. We show example models and their learned tree structure in Fig. 4
for 8 actions chosen from the PASCAL 2011 Action Classification competition.

5 Experiments

We consider 8 out of the 10 actions outlined in the PASCAL 2011 action classi-
fication competition. The actions considered correspond to the 8 models shown
in Fig. 4. We train activity specific models as described in Sec. 4 for each of the 8
actions using PASCAL 2011-train data. In addition to the standard human joints,
we model bike parts (handle, front wheel, rear wheel), horse parts (nose, top-head,
butt) and computer screen (whole object) for their respective action classes. We
model the full human body formost actions, butmodel only the upper body for ac-
tions with heavy occlusions and truncation (Phoning, UsingComputer, and
TakingPhoto). We evaluate multiple aspects of our model, including detection,
action classification, pose estimation, and occlusion prediction. To evaluate the
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Fig. 5. We show detection results obtained without any manual annotation of test
images. We follow the notational conventions of Fig. 1, including open circles to denote
occluded parts. Each row shows the N best detections for a single action model (denoted
by the row’s label). Our compositional models are able to capture large changes in
viewpoint and articulation that are present even within a single action class.
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Fig. 6. We show 2 of the top false positives for a few actions. We plot ground-truth (red
boxes) and predictions (blue boxes) belonging to only the action class denoted in each
row. Many mistakes are due to imprecise bounding-box localization (RidingHorse) or
confusion of action classes with similar poses (Walking). The latter is denoted by the
lack of a red box. Some mistakes are due to inconsistencies and ambiguities in the
ground-truth annotation. Consider the right image in the RidingBike/TakingPhoto
rows; both images are annotated with a single action even though the person appears
to be engaged in two actions (TakingPhoto and RidingBike/RidingHorse). This causes
our predictions to be marked as false positives.

latter two, we introduce novel evaluation schemes for evaluating poses under oc-
clusion. Because the web-based PASCAL evaluation server is no longer evaluating
entries on the 2011-test, we evaluate results on 2011-val. To do so, we have manu-
ally annotated both the train and val set with part locations and occlusion flags.

5.1 Action Detection

For this task, our goal is to detect person-object composites in a test image. We
use our models to produce composite candidates by running them as scanning-
window detectors (without any manual annotation at test time), and applying
NMS to generate a sparse set of non-overlapping detections. We visualize high
scoring correct detections in Fig. 5 and false positives in Fig. 6. Ground truth
person-object composites are obtained by considering a tight box around parts
spanning the person and the object. To compare against groundtruth, we regress
a rectangle using the part locations of the person and the object for each person-
object detection.

We quantitatively evaluate our models using PASCAL’s standard criteria of
average precision (AP). We compare our models against a visual phrase (VP)
baseline [3], trained for each action class. For those action classes without ob-
jects, this is equivalent to a standard DPM [6]. In both cases, we use defaults
of 4 global mixtures and 6 parts per mixture. From Fig. 7, we see that our model
outperforms these state-of-the-art baselines by a significant margin for most
classes. The improvement is more modest for some classes (Running,RidingBike),
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Fig. 7. Detection results on 2011 PASCAL-val set. Our model significantly outperforms
a state-of-the-art visual phrase (VP) baseline [3].

perhaps because they exhibit less pose variation and so are well modeled by the
global mixtures of the DPM.

5.2 Action Classification

We compare our model against 2 other baselines apart from (VP/DPM): (1)
FMP, the flexible articulated model of [2] applied to the joint person-object
composite. (2) FMP+occ, which is obtained as follows: The FMP model es-
timates local mixtures by clustering the relative position of a part i wrt its
parent j. FMP+occ also does this, but partitions the set of training data into
visible/occluded instances of part i, and separately clusters each. This allows
the FMP model to report visibility states using estimated part mixtures, anal-
ogous to our own model. To allow comparison to past work, we evaluate results
following the protocol of PASCAL, assuming human bounding-boxes are given
at test-time. We score each bounding box with the highest-scoring overlapping
pose of each action model. For the (VP) baseline, we also give it access to a
bounding box around the person-object composite. We present results on the
2011-val in Table 1. Our model outperforms state-of-the-art baselines, includ-
ing DPM/VP on 7/8 actions. We also report numbers on 2010 test data using
PASCAL’s evaluation server, shown in Table 2 and compare to reported perfor-
mance of [13]. Our numbers are comparable, even though [13] is trained using
a large external dataset and includes additional post-processing steps (such as
contextual re-scoring). Other state-of-the-art methods for action classification
exist, but some may make intimate use of the annotated human bounding box
on the test-image (say, to define a coordinate system to extract spatial features).
We advocate action detection as a more realistic evaluation.
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5.3 Person-Object Pose Estimation

Qualitative results of our pose-estimation are shown in Fig 5. In general, ourmodel
rather accurately estimates parts of both the person and the object. Notably, our
model also returns occlusion labels for each part (given by its estimated mixture
label). We quantitatively evaluate both aspects of pose estimation below.

Occlusion-Aware Pose Evaluation: Standard benchmarks for pose estima-
tion require an algorithm to report back the location of all parts, including those
that may be occluded. See for example, the now-standard criteria of probability
of a correct pose (PCP) [20]. We argue that a proper benchmark should only
score visible parts. This is particularly relevant for human-object interactions be-
cause occlusions are rather common. We introduce a novel scheme for evaluating
models and ground-truth poses that return a variable number of parts. Let ng be
the number of visible parts in the ground truth pose, and nh be the number of
visible parts in the hypothesized pose. Let k be the number of correctly match-
ing parts across the two that are in correspondence and sufficiently overlap. We
evaluate this pose using the fraction of correct parts k

.5(ng+nh)
. One can show

this is equivalent to the F1 score, or harmonic mean of precision (the fraction
of predicted parts that correctly match) and recall (the fraction of ground-truth
parts that are correctly matched).

Results under our F1 score are shown in Table 3. This evaluation penalizes al-
gorithms for predicting an occluded part as visible; hence, it somewhat combines
pose estimation with aspect estimation. Under this setting, our model outper-
forms all variants. The base FMP algorithm, like most algorithms for articulated
pose estimation, reports a fixed set of parts. One may argue that it is artificially
penalized under our F1 score. However, FMP+occ is capable of predicting a vis-

Table 1. Class-specific AP results. In general our model strongly outperforms our base-
lines except for UsingComp. We suspect that this category exhibits less pose variation,
and so is well-modelled by a global template.

Action classification on PASCAL 2011-val set
Run. R. Bike R. horse Phoning TakingPhoto UsingComp. Walk. Jump.

Us 69 81.7 90.3 32.9 24.3 45 40.3 49.6

FMP + occ 64.3 69.4 87.6 27.6 17.3 32.5 30.0 42.6

FMP 62.5 66.9 84.7 21.3 11.7 30.5 29.02 44.2

DPM/VP 63.2 66.4 79.7 21.2 12.1 43.5 32.1 28.8

Table 2. AP across various models on the PASCAL 2010 set. Our model is comparable
to Poselets, even though the later is trained with a large external dataset and uses
various post-processing steps for contextual res-coring.

Action classification on PASCAL 2010-test set
Run. R. Bike R. horse Phoning TakingPhoto UsingComp. Walk.

Us 82.8 82.2 87.0 47.8 33.7 54.5 66.9

Poselets 85.6 83.7 89.4 49.6 31.0 59.1 67.9
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Table 3. Pose estimation across various models on 8 actions from PASCAL 2011,
scored using F1 score. The numbers reported are average F1 scored over all test in-
stances belonging to the action of interest. Algorithms are penalized for predicting the
location of an occluded part in a test image. Our model outperforms state-of-the-art
FMP model[2] by a significant margin, even when its augmented to encode occlusions.

Occlusion-aware F1 score
Run. R. Bike R. horse Phoning TakingPhoto UsingComp. Walk. Jump.

Us: 66.8 49.2 65.3 41.4 30.8 41.2 44.8 40.3

FMP+occ: 64.7 45 61.9 31.5 22.1 40.2 32.9 38.1

FMP 59.2 42.4 51.2 24.4 21.2 28.4 24.3 29.1

Table 4. Pose estimation across various models on 8 actions from PASCAL 2011,
scored using PCP. Algorithms are required to predict the location of all parts (including
occluded ones) in a test image. See text for details.

PCP score
Run. R. Bike R. horse Phoning TakingPhoto UsingComp. Walk. Jump.

Us: 68.7 50.7 64.7 39.9 28.9 43.1 45.4 40.7

FMP+occ: 67.7 45.1 59.8 29.7 20.7 39.7 33.1 38.9

FMP 63.4 45.6 56.6 27.4 23.8 35.8 32.6 37.2

ibility label per part, by construction, just as our model. We see that this model
performs significantly better than FMP, but is still considerably lower than our
final model.

We also score PCP in Table 4, which requires an algorithm to report locations
of all parts, regardless of their visibility. Our algorithm still outperforms the 2
baselines. This suggests our model accurately predicts the locations of even oc-
cluded parts. Interestingly, we still see a substantial improvement in performance
from FMP to FMP+occ for most actions. In retrospect, this may seem obvious.
Parts undergoing occlusions look different than when they are visible, and so
one should train separate visual mixtures for such cases. One might suspect that
these visual mixtures should have zero-weight, to ensure that no image evidence
is scored during an occlusion. We take the view that the learning algorithm
should determine this using training data. It may be that occluded parts still
generate a characteristic gradient pattern (e.g., T-junctions), which can be cap-
tured by a template. Note that FMP+occ approach, in some sense, is a partial
“phraselet” clustering since global knowledge of occluders is used to influence
local appearance modeling.

Benchmark Pose Estimation:One could argue our phraselet model is directly
applicable to pose estimation, without regard to interacting objects or actions.
To evaluate this, we trained and evaluated our model on the PARSE benchmark
[21]. We achieve a PCP score of 77.4%, outperforming the previous state-of-the-
art FMP model at 74.9% (reported in [2]).
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6 Conclusion

We have presented a novel approach to modeling human pose, together with
interacting objects, based on compositional models of local visual interactions
and their relations. Our modeling framework captures the complex geometry,
appearance, and occlusions that arise in person-object interactions. We effec-
tively use such models to detect person-object composites, estimate action class
labels, articulated pose, object pose, and occlusion labels within a single, unified
framework. We demonstrate compelling performance on diverse tasks includ-
ing detection, classification, and pose estimation, as evidenced by comparing to
state-of-the-art models especially tuned for those tasks.
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Action Recognition with Exemplar

Based 2.5D Graph Matching

Bangpeng Yao and Li Fei-Fei

Department of Computer Science, Stanford University
{bangpeng,feifeili}@cs.stanford.edu

Abstract. This paper deals with recognizing human actions in still im-
ages. We make two key contributions. (1) We propose a novel, 2.5D rep-
resentation of action images that considers both view-independent pose
information and rich appearance information. A 2.5D graph of an action
image consists of a set of nodes that are key-points of the human body,
as well as a set of edges that are spatial relationships between the nodes.
Each key-point is represented by view-independent 3D positions and local
2D appearance features. The similarity between two action images can
then be measured by matching their corresponding 2.5D graphs. (2) We
use an exemplar based action classification approach, where a set of rep-
resentative images are selected for each action class. The selected images
cover large within-action variations and carry discriminative information
compared with the other classes. This exemplar based representation of
action classes further makes our approach robust to pose variations and
occlusions. We test our method on two publicly available datasets and
show that it achieves very promising performance.

1 Introduction

Humans can effortlessly recognize many human actions from still images, such
as “playing violin” and “riding a bike”. In recent years, much effort has been
made in computer vision [1–8] with the goal of making this process automatic.
Automatic recognition of human actions in still images has many potential ap-
plications, such as image search and personal album management.

Considering the close relationship between actions and human poses, in this
paper, we aim to develop a robust action recognition approach by modeling
human poses. The idea of using human poses for action recognition has been
studied in some previous work which either detect local pose features [4, 6] or
model the spatial configuration between human body parts and objects [2, 3, 7,
8]. However, while such approaches sound promising, the winning method [9] in
the recent PASCAL challenge [10] simply treats action recognition as an image
classification problem, without explicitly modeling human poses.

The challenges in modeling human poses for action recognition are illustrated
in Fig.2. On the one hand, because of the variations of camera angles, the same
human pose can correspond to very different body parts configurations on the 2D
image plane, which poses challenges in reliable measurement of action similari-
ties. On the other hand, human poses in the same action can change drastically,

A. Fitzgibbon et al. (Eds.): ECCV 2012, Part IV, LNCS 7575, pp. 173–186, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Representative (dominating) exemplars of “using a computer”

Rotation
Rich 2D appea-
rance features

2.5D Graph 
representation

Exemplar-based 
Classification

View indepen-
dent 3D pose

Fig. 1. An overview of our action recognition algorithm. We represent an action image
as a 2.5D graph consisting of view-independent 3D pose and 2D appearance features.
In recognition, the 2.5D graph is matched with a set of exemplar graphs for each action
class, allowing more robust handling of within-action variations.

while very similar human poses might correspond to many different human ac-
tions, and therefore it is difficult to build a single pose model to distinguish one
action from all the others.

In this paper, we propose a novel action recognition approach (Fig.1) to ad-
dress the above two challenges. Specifically, we make two key contributions:

– 2.5D graph for action image representation. We propose a 2.5D graph
representation for action images. The nodes of the graph are key-points of
the human body represented by view-independent 3D positions and rich 2D
appearance features. The edges are relative distances between the key-points.
Estimating the similarity between two action images then becomes matching
their corresponding graphs.

– Exemplar-based action classification. Considering that a single pose
model is not enough to distinguish one action from all the others, we propose
an exemplar based approach for action classification. For each action class,
we select a minimum set of “dominating images” that are able to cover all
within-class pose variations and capture all between-class distinctions.

The rest of this paper is organized as follows. Related work is discussed in Sec.2.
The 2.5D graph representation of action images and exemplar-based action
recognition algorithm are elaborated in Sec.3 and Sec.4, respectively. Experi-
ments are represented in Sec.5. We conclude our paper in Sec.6.
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(a) (b)

Fig. 2. (a) The same action might contain very large pose variations. (b) Due to
different camera angles, even the same human pose looks differently in 2D images.

2 Related Work

Human poses have been used for action recognition in existing literatures. Both
global silhouette [2] and local pose units [4, 6] have been adopted for distin-
guishing different human actions. In [3, 7], action recognition is treated as a
human-object interaction problem, where spatial relationships between different
body parts and objects are modeled. The interactions are also represented as a
set of bases of action attribute-object-pose in [5]. While most of such approaches
rely on annotations of human poses, a weakly-supervised method was proposed
to model human-object interactions in [8]. All those methods, however, model
human poses in 2D only, and therefore are difficult to deal with the within-class
pose variations caused by camera angle changes, as shown in Fig.2(b).

There has been some work for view-independent action recognition, mostly
dealing with videos. [11] renders Mocap data from multiple viewpoints, which
is time and storage consuming. [12] projects 2D features to a 3D visual hull.
Manifold based warping methods are adopted in [13]. View-invariant feature
descriptors have also been proposed [14, 15]. Most of such methods rely on
temporal information, and therefore are not suitable to our problem.

In this work, we aim at view-independent action recognition from single im-
ages. We extract key-points of the human body [16] and then convert the 2D
key-points to 3D positions without any supervision [17, 18]. The 3D positions of
key-points allow us to rotate human skeletons from different views to the same
view-point (Fig.1), hence making view-independent matching possible. Inspired
by [19], where it shows that the combined pose and appearance features help
improve action recognition performance, our 2.5D action graph is constructed
by combining the view-independent 3D human skeletons and 2D appearance
features [20, 21]. 2.5D graph representations have been used in computer vision
systems before [22–24]. While most of these papers focus on modeling scene lay-
ers or rigid objects such as human faces, our method is designed for recognizing
articulated objects such as human bodies.

While the majority of work in computer vision are model based, exemplar
based methods have also been applied in object recognition [25–27] and video
classification [28]. Different from most previous work where all training samples
are treated as candidate exemplars, our method aims at selecting a compact
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original image 2.5D graph
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100
200

300
4

(b)

Fig. 3. (a) Illustration of an image and its corresponding 2.5D action graph. The his-
tograms represent appearance features extracted from the corresponding image regions.
(b) The human body skeleton from the other views.

set of images for each action class that are able to cover the within-class pose
variation and capture all between-class distinctions. We show that the problem is
essentially a minimum dominating set problem [29], and can be solved by using
an improved reverse heuristic algorithm [30].

3 A 2.5D Graph of Human Poses and Appearances

3.1 The 2.5D Graph Representation

The term, 2.5D graph, is borrowed from stereoscopic vision [31]. It refers to the
outcome of reconstructing 3D information from 2D but the appearance cues are
still 2D. A graphical illustration of our 2.5D representation of action images
are shown in Fig.3. It combines view-independent 3D configuration of human
skeletons and 2D appearance features.

A 2.5D graph GI representing an action image I consists of V nodes con-
nected by E edges. The nodes correspond to a set of key points of the human
body, as shown in Fig.3. A node v is represented by the 3D position of this node
lIv and 2D appearance features fIv extracted in a local image region surrounding
this point. An edge e is a three-dimensional vector ΔlIe = lIv − lIv′ , where node v
and node v′ are connected by e. Note that our model allows the human body to
rotate in 3D (as shown in Fig.3(b)), which will result in different 3D positions
of key-points and hence edge vectors. Also, because some key points might be
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outside of the boundary of the image, we introduce an auxiliary variable hI
v for

each v, and a hI
e for each e. hI

v = 1 if key-point v is within the boundary of
image I, otherwise hI

v = 0. Similarly, hI
e = 1 if and only if both two points

connected by e are within the image boundary.

Implementation Details. We consider 15 key-points of human bodies: top
head, left-middle-right shoulders and hips, left-right elbows, wrists, knees, and
ankles. Given an image, the 3D position of these points are obtained by first
using pictorial structure [16] to estimate their positions in 2D, and then using the
method in [17] with additional constraints [32] to recover the depth information.
The key-point locations are then normalized such that the center of the torso is
at (0, 0, 0), and the height of the torso (distance between middle shoulder and
middle hip) is 100 pixels. Although human pose estimation itself is challenging
and the 3D points we obtain are not perfect, our approach can still achieve very
good action recognition performance, even comparing with the setting that uses
ground-truth key-point locations. We will show this in Sec.5.

The detailed process of using pictorial structure to estimate 2D key-points
locations is as follows. Following the standard settings in [10], we assume that
there is a bounding box surrounding each person whose action is to be recognized.
As in [33], the image is normalized by extending the bounding box to contain
1.5× the original size of the bounding box, and cropping and resizing it such that
the large image dimension is 300 pixels. To deal with the situation that the legs
are outside of the image boundary, we train a full human detector and an upper
body detector excluding the key-points below hips. Given a normalized image, if
the calibrated response score obtained from the full body detector is larger than
0.8 times of the score obtained from the upper body detector, we regard that the
full human body is visible, otherwise upper body only. Because of the provided
bounding boxes of the humans, the detection results are very reliable in almost
all the images. Based on whether full body or only upper body is visible, we use
the appropriate pictorial structure [16] model to estimate the location of the key
points, considering or ignoring the key-points below hips. In our experiments
(Sec.5), we re-train a pictorial structure model on each dataset, where the body
part detectors are obtained using the deformable part models [34].

The appearance feature fIv is a two-level spatial pyramid [21] of SIFT [20]
features with locality-constrained linear coding [35] in a 60 × 60 image region
centered at point v of image I. We consider two image sizes, one is the normalized
image of which the larger dimension is 300 pixels, the other is the image where
the length of the torso is 100 pixels. We use a 512 codebook size for SIFT features,
and therefore the dimensionality for fIv is 2560. If the point i is outside of the
image boundary, then all values of fIv are set to 0.

3.2 Measuring Similarity of 2.5D Graphs

To use the 2.5D graph constructed in Sec.3.1 for action recognition (details in
Sec.4), we need to match a graph GI to a “template graph” GM and compute
their similarity. As described in Sec.3.1, the graph GI is denoted by {fIv , hI

v , v =
1, · · · , V ;ΔlIe , h

I
e , e = 1, · · · , E}. The template graph GM is denoted as {fMv , hM

v ,
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(a) walking (b) riding a bike

(c) playing guitar (d) playing trumpet

Fig. 4. The 3D representation of human body key-points allows us to rotate one image
to the same view-point of the other image, and thus achieve view-independent similarity
matching. In each subfigure, from left to right: human in profile view, its pose in frontal
view, and the other human with the same action in the frontal view.

wM
v , v = 1, · · · , V ;ΔlMe , hM

e ,wM
e , e = 1, · · · , E}, where wM

v and wM
e are the

feature weights for the corresponding node and edge. How to obtain the weights
will be described in Sec.4.

When matching the similarity between GI and GM, we deal with the 2D ap-
pearance features (nodes) and 3D pose features (edges) separately. The similarity
between the appearance features if node v is simply the weighted histogram in-
tersection between fIv and fMv , denoted aswM

v ·I (fIv , fMv
)
. For the pose features,

as shown in Fig.4, the 3D representation allows us to rotate the 3D key-point
locations {lIv}Vv=1 to the same view-point of {lMv }Vv=1, and then match the view-
independent similarity score.

Let LI and LM be V × 3 matrices of the 3D positions of the key-points in I
and M. We want to find a 3× 3 rotation matrix R∗ that rotates LI to the same
view of LM, i.e.

R∗ = argmin
R

‖LM −RLI‖2 (1)

We use a least-square method [36] to find R∗. Let UDVT a singular decom-

position of LMT
LI , and define S = I if det(LMT

LI) ≥ 0, otherwise S =
diag(1, · · · , 1,−1). Then we have R∗ = USVT . Fig.4 gives some example re-
sults of rotating an image to similar view-points of the other images.
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Combining the similarity values obtained from appearance and pose features,
the similarity between GI and GM is

S (GI ,GM)
= exp

{
∑

v

hI
vh

M
v ·wM

v · I (fIv , fMv
)

(2)

+
∑

e

hI
e h

M
e ·wM

e · (R∗ΔlIe −ΔlMe
)
}

S(·, ·) is not symmetric, i.e. in most situations S (GI ,GM) �= S (GM,GI).

4 Exemplar-Based Action Recognition

4.1 Dominating Sets of Action Classes

We adopt an exemplar-based approach for action recognition. Exemplar-based
approaches allow using multiple exemplars to represent an action class, enabling
more flexibility in overcoming the challenge of large within-action pose variations
(Fig.2(b)). Rather than matching a testing image with all the training images
as in most previous exemplar-based systems, for each action class, we select
a small set of representative training images that are able to cover all pose
variations of this action while maximizing the distinction between this action and
all the others. Selecting such images is equivalent to theminimum dominating set
problem [29, 30] in graph theory, and therefore we call those images dominating
images, denoted as Dom(k) for class k.

To formally define the dominating images of human actions, we first define
the coverage set of an image I, Cov(I). The images in Cov(I) belong to the
same class as I, and each image has a larger similarity value with I than all the
images of different classes. Mathematically speaking, assume we have a set of
training images {I1, · · · , IN}, where each Ii is associated with an action class
label yi ∈ {1, · · · ,K}. The coverage set of I is defined as

Cov (I) =
{
Ii | S (GIi ,GI) > T + η, T = max

∀j,yj �=y
S (GIj ,GI)

}
, (3)

where T is the maximum similarity between I and images of the other classes.
η > 0 controls the margin of the similarity difference. As shown in Fig.5, Cov (I)
defines a set of images where the 3D pose configurations and visual appearances
are similar to I. For an action class k, the dominating image set Dom(k) are a
minimum set of images such that the joint of their coverage sets contain all the
images of class k, i.e.

∀ Ii where yi = k, ∃ Ij ∈ Dom(k) such that S (GIi ,GIj
)
> Tj + η (4)

If there exist another ˜Dom(k) satisfies the above condition, |Dom(k)| ≤ |˜Dom(k)|,
where |Dom(k)| is the number of images in Dom(k).
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Fig. 5. Illustration of the dominating images of “using a computer”. The images sur-
rounded by red, blue, and green rectangles are dominating images. Dotted ellipses
representing the corresponding coverage sets. The images surrounded by gray are im-
ages of the other actions, which are used to define the boundary of the coverage sets.

4.2 Obtaining Minimum Dominating Sets for Each Action

Our method of obtaining the minimum dominating sets consists of two steps.
Firstly, we learn image-specific feature weights WI =

{
wI

v , v = 1, · · · , V ;wI
e ,

e = 1, · · · , E} for each image I to maximize |Cov (I) |. Then we use an improved
reverse heuristic method [30] to find the images that belong to Dom(k) for each
class k. We elaborate on the two steps separately.

For each image I, WI maximizes the distinction between I and images of
the other action classes. Finding a globally optimal WI , however, is not a con-
vex problem, because which images belong to Cov (I) is uncertain. We therefore
resort to a suboptimal solution which aims at separating within-class similari-
ties from between-class similarities. We compute the histogram intersections of
appearance features and distances of the key-point 3D positions between I and
each image Ii. This results to a feature vector

[
hIi
v hI

v · I (fIi
v , fIv

)
, v = 1, · · · , N ;hIi

e hI
e ·R∗ΔlIi

e −ΔlIe , e = 1, · · · , E]
. (5)

If Ii and I belong to the same class, this vector is regarded as a positive sample,
otherwise negative. We then train a binary SVM classifier to discriminate positive
samples from negative samples. The obtained SVM feature weights are WI .

Based on WI learned for each image that belong to class k, i.e. y = k, we can
compute their coverage sets (Eq.3) and then find Dom(k). But finding the min-
imum dominating set is also a NP-hard problem. We use the improved reverse
heuristic (IRH) method [30], which selects the samples in Dom(k) iteratively for
each k. The heuristic rule is, on the one hand, the images have large coverage
sets are more likely to be selected; on the other hand, the images that are covered
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– For each class k ∈ {1, · · · ,K}, denote all the images of this class as Im(k).
– Initialize Dom(k) = ∅.

1. Compute Cov(I) and Reach(I) for each I ∈ Im(k);
2. Find I∗ ∈ Im(k) that maximizes Cov(I) − λ ·Reach(I);
3. Add I∗ to Dom(k), and remove all I ∈ Cover(I∗) from Im(k);
4. If Im(k) �= ∅, return to step 1.

Fig. 6. The improved reverse heuristic method for selecting dominating images for each
action class

by many other ones are less likely to be selected. In order to incorporate the
latter heuristic rule, we define the reachability of an image I,

Reach (I) = {Ii | S
(GI ,GIi

)
> Ti + η, yi = y

}
(6)

Based on the coverage set and reachability set of each image, the IRH method
are shown in Fig.6.

4.3 Action Recognition Using the Dominating Sets

To recognize the human action in a test image I ′, we construct a 2.5D graph for
this image and match it with the dominating images in all the action classes. The
action class that correspond to the largest normalized similarity is the recognition
result, i.e.

k′ = argmax
k

S(I ′, k), where S(I ′, k) = arg max
Ii∈Dom(k)

S(I ′, Ii)
Ti

(7)

5 Experiments

We carry out experiments on two publicly available datasets: the people play-
ing musical instrument (PPMI) dataset [37] and the PASCAL VOC 2011 action
classification dataset [10]. In all the experiments described below, all training
processes are conducted on only training images, including human pose esti-
mation, etc. Please refer to Sec.3 and Sec.4 for implementation details of our
approach. On both datasets, we use mean Average Precision (mAP) for perfor-
mance evaluation.

5.1 Results on the PPMI Dataset

The PPMI dataset [37] is a collection of images of people interacting with twelve
different musical instruments: bassoon, cello, clarinet, erhu, flute, French horn,
guitar, harp, recorder, saxophone, trumpet, and violin. It is a 24-class classi-
fication problem. For each instrument, there are images of people playing the
instrument, as well as images of people holding the instrument but not playing.
We use the normalized images on this dataset. For each class, there are 100
images for training and 100 images for testing.
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Fig. 7. Comparison of different methods on the PPMI dataset. The performances are
evaluated by mean Average Precision. Magenta colors indicate existing methods. Green,
blue, and cyan colors indicate our method or control experiments.

We compare our approach with a number of control settings and some state-
of-the-art classification systems described below.

– Bag-of-Words (BOW) baseline: Extract SIFT features [20] and use bag-of-
words for classification. The codebook size for SIFT features is 1024.

– Locality-constrained linear (LLC) coding + spatial pyramid: Image
features are multi-scale, multi-resolution color-SIFT [38] features with
locality-constrained linear coding [35]. The features are max-pooled on a
three-level image pyramid [21] with linear SVM for classification. This is the
best result reported in the website of the dataset.

– Control - 3D pose only: 2D image appearances are not used for image repre-
sentation. Everything else is the same as our method. This is equivalent to
setting I

(
fIv , f

M
v

)
to 0 in Eq.2.

– Control - 2D pose only: Using only the original 2D locations for recognition,
without rotating 3D key-point positions when matching two images.

– Control - 2D appearance only: The location of 3D key-points are not used
for image representation. Everything else is the same as our method. This is
equivalent to setting

(
R∗ΔlIe −ΔlMe

)
to 0 in Eq.2.

– Control - 2.5D graph + SVM: Using the 2.5D graph for image representation,
and train a multiclass classifier based on 2D appearances and 3D poses.

– Control - using ground-truth key-points: Instead of using pictorial structure
to estimate the 2D key-point locations. We use ground-truth positions of
key-points.

– Control - using all training images as exemplars: Instead of selecting dom-
inating images for each action, we match a testing image to all training
images for classification.

The mAP of different methods are shown in Fig.7. Our method outperforms the
existing methods by achieving a 43.9% mAP, even comparing with LLC, which
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Fig. 8. Examples of dominating images selected from the PPMI training set

is the current best result on this dataset. Because the images of people playing
some musical instruments are very similar (e.g. playing saxophone and play-
ing bassoon, as shown in Fig.8.), using human pose only cannot achieve very
good performance on this dataset. But 3D poses achieve much better results
than 2D poses. Using the local appearance features extracted based on the key-
point positions, our appearance feature performs comparable with LLC. The full
2.5D graph representation, which combines the 3D position information and 2D
appearance information, outperforms both methods that use any one of them.
This shows that our method effectively captures the complementary information
between poses and appearances. Our full model also performs better than train-
ing a multiclass SVM classifier on the 2.5D graph features, demonstrating the
effectiveness of the exemplar-based classification.

In Fig.7, our method is only 0.7% worse than the approach that uses ground-
truth key-point locations to construct the 2.5D graphs. This shows that although
our 2.5D graphs are constructed based on imperfect key-point locations (using
the criteria in [39], our key-point detection accuracy is 65.7%), it can still achieve
satisfactory recognition performance. Finally, our method performs comparable
with the approach that uses all training images as exemplars. But our classifi-
cation is much faster because we only need to match each testing image with
3.6 images (the average number of selected dominating images) per class, as
compared with matching 100 images in the “all-exemplars” setting.

Fig.8 shows the dominating images selected from some action classes. On the
classes of people playing the instrument, human poses are very similar in each
class. Therefore the dominating images mainly capture with-class appearance
variations. On the classes of people holding the instruments but not playing, the
variations in both human pose and image appearance are captured.
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5.2 Results on the PASCAL Dataset

The PASCAL 2011 action dataset contains around 8,000 images of ten ac-
tions: “jumping”, “phoning”, “playing instrument”, “reading”, “riding bike”,
“riding horse”, “running”, “taking photo”, “using computer”, and “walking”.
The dataset also contains images that do not belong to any of the ten actions.
All images are downloaded from flickr, and represent very large variations in
both human pose and appearance.

We compare our approach with a number of methods that achieve good per-
formance on the challenge [10]. The results are shown in Table 1. We observe
that our method performs the best on three out of the ten classes, especially
on the classes of “jumping” and “playing instrument” which contain large hu-
man pose variations, and obtains the highest mean average precision over all the
classes. On the classes of “riding a horse” and “riding a bike”, our method does
not perform as good as ATTR PART, which explicitly detects objects such as
horses and bikes in the images and relies on independent dataset to train the
object detectors. Table 1 also shows that using pose features only, our method
achieves better performance thatn POSELETS, demonstrating the effectiveness
of our view-independent 3D pose representation.

Table 1. Results on the PASCAL 2011 action dataset. The numbers are percentage
of mean average precision. The best results are marked by bold fonts.

Action
HOBJ CON- RF POSE ATTR Our Method
DSAL TEXT SVM LETS PART Pose App. Full

jumping 71.6 65.9 66.0 59.5 66.7 64.6 68.9 72.4

phoning 50.7 41.5 41.0 31.3 41.1 41.2 44.5 48.3

playing instrument 77.5 57.4 60.0 45.6 60.8 68.3 72.9 77.7

reading 37.8 34.7 41.5 27.8 42.2 36.0 39.2 43.2

riding bike 86.5 88.8 90.0 84.4 90.5 81.4 86.6 89.0

riding horse 89.5 90.2 92.1 88.3 92.2 80.4 87.1 90.0

running 83.8 87.9 86.6 77.6 86.2 79.4 83.0 86.8

taking photo 25.1 25.7 28.8 31.0 28.8 21.6 25.1 27.9

using computer 58.9 54.5 62.0 47.4 63.5 51.5 56.9 60.5

walking 59.2 59.5 65.9 57.6 64.2 52.8 59.7 62.1

mean 64.1 60.6 63.4 55.1 63.6 57.7 62.4 65.8

6 Conclusion

In this paper, we propose a 2.5D graph for action image representation. The 2.5D
graph integrates 3D view-independent pose features and 2D appearance features.
An exemplar-based approach is used for action recognition, where a small set of
images that are able to cover the large with-action pose variations are used as
the exemplars for each class. One direction of future research is to study how the
alignment of 3D positions can provide better usage of 2D appearance features.
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Abstract. This paper addresses a new problem, that of multiscale activity
recognition. Our goal is to detect and localize a wide range of activities, includ-
ing individual actions and group activities, which may simultaneously co-occur in
high-resolution video. The video resolution allows for digital zoom-in (or zoom-
out) for examining fine details (or coarser scales), as needed for recognition. The
key challenge is how to avoid running a multitude of detectors at all spatiotem-
poral scales, and yet arrive at a holistically consistent video interpretation. To
this end, we use a three-layered AND-OR graph to jointly model group activities,
individual actions, and participating objects. The AND-OR graph allows a princi-
pled formulation of efficient, cost-sensitive inference via an explore-exploit strat-
egy. Our inference optimally schedules the following computational processes: 1)
direct application of activity detectors – called α process; 2) bottom-up inference
based on detecting activity parts – called β process; and 3) top-down inference
based on detecting activity context – called γ process. The scheduling iteratively
maximizes the log-posteriors of the resulting parse graphs. For evaluation, we
have compiled and benchmarked a new dataset of high-resolution videos of group
and individual activities co-occurring in a courtyard of the UCLA campus.

1 Introduction

This paper addresses a new problem. Our goal is to detect and localize all instances of
a queried human activity present in high-resolution video. The novelty of this problem
is two-fold: (i) the queries can be about a wide range of activities, including actions of
individuals, their interactions with objects and other people, or collective activities of
a group of people; and (ii) all these various types of activities may simultaneously co-
occur in a relatively large scene captured by high-resolution video. The video resolution
allows for digital zoom-in (or zoom-out) for examining fine details (or coarser scales),
as needed for recognition. We call this problem multiscale activity recognition.

With the recent rapid increase in the spatial resolution of digital cameras, and grow-
ing capabilities of capturing long video footage, the problem of multiscale activity
recognition becomes increasingly important for many applications, including video
surveillance and monitoring. While recent work typically focuses on short videos of
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a particular activity type, there is an increasing demand for developing principled ap-
proaches to interpreting long videos of spatially large, complex scenes with many peo-
ple engaged in various, co-occurring, individual and group activities. The key challenge
of this new problem is complexity of inference. It is infeasible to apply sliding windows
for detecting all activity instances at all spatiotemporal scales of the video volume.

To address the above challenge, we account for the compositional nature of human
activities, and model them explicitly with the AND-OR graph [1–3]. The AND-OR
graph is suitable for our purposes, because it is capable of compactly representing
many activities, each recursively defined in terms of spatial layouts of human-human or
human-object interactions. Modeling the temporal structure of activities is left for the
future work. The recursion ends with primitive body parts and objects. Also, its hier-
archical structure allows for a principled formulation of cost-sensitive inference. Our
formulation rests on two computational mechanisms. First, following the work of [4],
we express inference in terms of the α, β, and γ processes. The three processes are
specific to each node in the AND-OR graph, where

1. α(node): detecting the activity directly from video features extracted from the video
part associated with the node;

2. β(node): bottom-up binding of parts of the activity represented by the node;
3. γ(node): prediction of the activity represented by the node from the context pro-

vided by a parent node.

Second, we specify an explore-exploit (E2) strategy for cost-sensitive inference. The
E2 strategy optimally schedules the sequential computation of α, β, and γ, such that the
log-posteriors of the resulting parse graphs are maximized. In this way, the E2 strategy
digitally zooms-in or zooms-out at every iteration, conditioned on previous moves, and
thus resolves ambiguities in all hypothesized parse graphs.

To initiate research on this important problem, we have collected and annotated a
new dataset of high-resolution videos of various, co-occurring activities taking place
in a courtyard of the UCLA campus [5]. Fig. 1 shows an example, cropped out frame
from our UCLA Courtyard dataset. As can be seen, the cropped-out part shows a vast
space wherein students are standing in a line to buy food, walking together in a cam-
pus tour led by a guide, or sitting and reading on the staircase. In other parts of the
same video (not shown), people may be riding bicycles or scooters, buying soda from a
vending machine, or jogging together. The video has a high resolution to allow activity
recognition at different spatial and temporal scales. For example, it may be necessary to
exploit the high resolution for digital zoom-in, and thus disambiguate particular objects
defining the queried activity (e.g., buying a soda or a snack from the vending machine).

Prior Work – Multiscale activity recognition has received scant attention in the lit-
erature. Recent work typically studies prominently featured, single-actor, punctual or
repetitive actions [6]. Activities with richer spatiotemporal structure have been ad-
dressed using graphical models, including Deformable Action Templates [7], Sum Prod-
uct Networks [8], and AND-OR graphs [2, 3]. However, this work considers only one
specific scale of human activities. Our work is related to recent methods for recognizing
group and individual activities using context [9–11], and identifying objects in videos
based on activity recognition [12]. There are two major differences. First, that work
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Fig. 1. An example from our UCLA Courtyard dataset, showing multiple co-occurring group ac-
tivities, primitive actions, and objects. Overlaid over the original frame, the purple marks the
group walking together, the magenta marks the group standing in a line for food, the beige marks
the group going to class, and the light blue marks the UCLA Courtyard tour. Within the dashed
boxes, we show that each of these group activities consists of individual actions of group partici-
pants, where some of them interact with objects, e.g., carry backpacks.

considers only two semantic levels – namely, either context and activities, or activities
and objects. We jointly consider three semantic levels: objects, individual actions, and
group activities. Second, prior work typically focuses on simple videos showing a sin-
gle activity (or object) in the entire video. Our high-resolution videos, instead, show
a spatially large scene with multiple co-occurring activities of many people interact-
ing with many objects over a relatively long time interval. We advance recent work on
localizing single-actor, punctual, and repetitive activities [13] by parsing significantly
more challenging videos with co-occurring activities at different scales.

Our work builds upon an empirical study of the α, β, and γ process for face detection
in still images, presented in [4]. That work considered only one object class (i.e., faces),
whereas we seek to recognize a multitude of activity and object classes. Our extensions
include: (i) a new formulation of the expected gains of α, β, and γ, and specifying the
E2 strategy for cost-sensitive inference of the AND-OR graph.

In the sequel, Sec. 2 defines the AND-OR graph. Sec. 3 presents our inference. Sec. 4
specifies low-level detectors used in inference, and the computation of α, β, and γ.
Sec. 5 formulates the E2 strategy. Sec. 6 specifies our learning. Sec. 7 presents our
experimental evaluation.
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Fig. 2. The AND-OR graph of group activities A, primitive actions R, and objects O. t is the ter-
minal node representing a detector of the corresponding activity or object. Detector responses t(·)
constitute the α process. The top-down γ process is aimed at predicting and localizing the cor-
responding primitive action (or object), based on context provided by the detected group activity
(or primitive action). The bottom-up β process is aimed at inferring the corresponding primitive
action (or group activity), based on detections of participating objects (or primitive actions).

2 AND-OR Graph

This section presents the AND-OR graph following the notation and formalism pre-
sented in [4]. The AND-OR graph, illustrated in Fig. 2, organizes domain knowledge
in a hierarchical manner at three levels. Group activities, a ∈ A, (e.g., Standing-in-
a-line) are defined as a spatial relationship of a set of primitive actions (e.g., a group
of people Standing, in a certain Pose, Orientation, and at certain Displacement). They
are represented by nodes at the highest level of the graph. Primitive actions, r ∈ R,
(e.g., Riding-a-bike) are defined as punctual or repetitive motions of a single person,
who may interact with an object (e.g., Bike or Phone). They are represented as chil-
dren nodes of the group-activity nodes. Objects, o ∈ O, include body parts and tools
or instruments that people interact with while conducting a primitive action. Object
nodes are placed at the lowest level of the AND-OR graph, and represent children of
the primitive-action nodes. Modeling efficiency is achieved by sharing children nodes
among multiple parents, where AND nodes encode particular configurations of parts,
and OR nodes account for alternative configurations.
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More formally, the AND-OR graph is G = (VNT ,VT , E ,P), where VNT is a union
set of non-terminal AND and OR nodes. An AND node is denoted as ∧, and an OR
node is denoted as ∨. Let l = 1, ..., L denote a level in G, where l− 1 is the level closer
to the root than level l. Then, a parent of ∧l is denoted as ∧l−. Similarly, ith child of
∧l is denoted as ∧l+i . We also use X∧l to denote a descriptor vector of the video part
associated with node ∧l, including the information about location, scale and orientation
relative to the video part associated with the parent node ∧l−1. VT = {t∧i : ∀∧i ∈
VNT } is a set of terminal nodes connected to the corresponding non-terminal nodes,
where each t∧i represents a detector applied to the video part associated with ∧i. E is
a set of edges of G. A parse graph, pg, is a valid instance of the grammar G. P is the
probability over the space of all parse graphs. The edge set of a parse graph is a union of
switching edges Eswitch(pg), decomposition edges Edec(pg), and relation edges Erel(pg),
E(pg) = Eswitch(pg) ∪ Edec(pg) ∪ Erel(pg), as explained below.

The prior probability of a parse graph is defined as p(pg) = 1
Z exp(−E(pg)), where

the partition function is Z =
∑

pg exp(−E(pg)), and the total energy is

E(pg) = −∑
l

[∑
(∨l,∧l)∈Eswitch(pg) log p(∧l|∨l) +

∑
(∧l,∧l−)∈Edec(pg) log p(X∧l |X∧l−)

+
∑

(∧l+
i

,∧l+
j

)∈Erel(pg) log p(X∧l+
i
, X∧l+

j
)
]
.

(1)

In (1), the first term denotes the probability that OR node ∨l selects AND node ∧l,
the second term defines parent-child statistical dependencies, and the third term defines
pairwise dependencies between pairs of children of ∧l.

Given an input video frame, I , with domain defined on lattice Λ, the likelihood of a
parse graph is defined as p(I|pg) =

∏
t∈VT (pg) p(IΛt |t), whereΛt ∈ Λ is video domain

occupied by the terminal node t.

3 Inference

Given a video, we conduct inference frame by frame. Temporal characteristics of ac-
tivities are implicitly accounted for via descriptor vectors, which collect visual cues
from space-time windows centered around spatial domains, Λt ∈ Λ, occupied by ev-
ery terminal node t. Similar to the derivation in [4], the video frame, IΛ, contains an
unknown number, K , of instances of the queried activities at different spatial scales.
Each inferred instance is represented by a parse graph in the world representation,
W = (K, {pgk : k = 1, 2, . . . ,K}). Under the Bayesian framework, we infer W
by maximizing its posterior probability,W ∗ = argmaxW∈Ω p(W )p(IΛ|W ), where Ω
is the space of solutions.

The prior ofW is defined asp(W ) = p(K)
∏K

k=1 p(pgk), wherep(K) ∝ exp(−λ0K)
is the prior of the number of parse graphs, and p(pgk) is defined by (1). To compute the
likelihood p(IΛ|W ), we define foreground latticeΛfg = ∪kΛpgk , and background lattice
Λbg = Λ \ Λfg, and use a generic background pdf, q(I), as

p(IΛ|W ) = p(IΛfg |W )q(IΛbg )
q(IΛfg)

q(IΛfg)
= q(IΛ)

K∏

k=1

p(IΛpgk
|pgk)

q(IΛpgk
)

(2)
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where p(IΛpgk
|pgk) means that domain Λpgk is explained away by the parse graph pgk,

and q(IΛpgk
) explains domain Λpgk as background.

In inference, we sequentially infer the parse graphs, one at a time, and augment W .
The inference of a parse graph is formulated as

pg∗ = arg max
pg∈Ω(pg)

[
log p(pg) + log

p(IΛpg |pg)

q(IΛpg)

]
, (3)

where p(pg) is defined by (1). The likelihood ratio in (3) can be factorized over terminal
nodes, t ∈ VT (pg), representing detector responses over the corresponding video parts.

Specifically, we can write log
p(IΛpg |pg)
q(IΛpg )

=
∑

t∈VT (pg) log
p(p(IΛt |t)
q(IΛt )

=
∑

t∈VT (pg) ψ(t),

where ψ(t) denotes the confidence of detector t applied at video part IΛt . From (1) and
(3), we have:

pg∗ = arg max
pg∈Ω(pg)

∑

l

{
log p(∧l|∨l)
︸ ︷︷ ︸

AND-OR graph structure

+ψ(t∧l)
︸ ︷︷ ︸

αl

+
[
ψ(t∧l−)
︸ ︷︷ ︸

αl−

+ log p(X∧l |X∧l−)
︸ ︷︷ ︸

γl−
︸ ︷︷ ︸

zoom-out

]

+ p(N l)

N l
∑

i=1

[
log p(X∧l+

i
|X∧l)

︸ ︷︷ ︸
γl+
i

+ψ(t∧l+
i
)

︸ ︷︷ ︸
αl+

i

+
∑

i�=j

log p(X∧l+
i
, X∧l+

j
)

︸ ︷︷ ︸
βl+
ij

]

︸ ︷︷ ︸
zoom-in

}

(4)
Equation (4) specifies the αl, βl, and γl processes at level l of the AND-OR graph.
Confidences of the activity detectors constitute αl process. The top-down γl process
is aimed at predicting and localizing the corresponding primitive action (or object),
based on the context of the group activity (or primitive action). For example, to zoom-
out for examining the context of a primitive action, it is necessary to detect the ac-
tion’s contextual group activity,αl−, and to estimate the likelihood of the corresponding
parent-child configuration γl−. The bottom-up βl process is aimed at inferring the cor-
responding group activity (or primitive action), based on its children primitive actions
(or objects), and their configuration. For example, to zoom-in for examining individual
actions within a group activity, it is first necessary to detect the primitive actions αl+

i ,
i = 1, ..., N l, then, estimate the likelihood of the corresponding parent-child configura-
tion γl+i , and finally estimate the likelihood of their configuration βl+

ij , i, j = 1, ..., N l.

4 Computing α, β, γ

For each level l of the AND-OR graph, we define a set of αl detectors aimed at detecting
corresponding activities. As the α’s are independent across the three levels of our AND-
OR graph, we specify three different types of detectors. All detectors have access to the
Deformable-Parts-Model (DPM) person detector [14], and a multiclass SVM classifier
aimed at detecting a person’s facing direction. The person detector is initially applied
to each frame using the scanning procedure recommended in [14]. A person’s facing
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direction is classified by an 8-class classifier, learned by LibSVM on HOGs (the 5-fold
cross-validation precision of orientation is 69%).

For detecting objects, we train the DPM on bounding boxes of object instances anno-
tated in training videos, and apply this detector in a vicinity of every people detection.
For each object detection, we use the above SVM to identity the object’s orientation.

For detecting primitive actions, we apply the motion-appearance based detector of
[15] in a vicinity of every people detection. From a given window enclosing a person
detection, we first extract motion-based STIP features [16], and describe them with
HOG descriptors. Then, we extract KLT tracks of Harris corners, and quantize the mo-
tion vectors along the track to obtain a descriptor called the Sequence Code Map. The
descriptors of STIPs and KLT tracks are probabilistically fused into a relative location
probability table (RLPT), which captures the spatial and temporal relationships between
the features. Such a hybrid descriptor is then classified by a multiclass SVM to detect
the primitive actions of interest.

For detecting group activities, we compute the STV (Space-Time Volume) descrip-
tors of [17] in a vicinity of every people detection, called an anchor. STV counts people,
and their poses, locations, and velocities, in different space-time bins surrounding the
anchor. Each STV is oriented along the anchor’s facing direction. STVs calculated per
frame are concatenated to capture the temporal evolution of the activities. Since the
sequence of STVs captures a spatial variation over time, the relative motion and dis-
placement of each person in a group is also encoded. Tracking STVs across consecutive
frames is performed in 2.5D scene coordinates. This makes detecting group activities
robust to perspective and view-point changes. The tracks of STVs are then classified by
a multiclass SVM to detect the group activities of interest.

The β process binds pairs of children nodes (∧l+i ,∧l+j ) of parent∧l. This is evaluated
using the Gaussian distribution p(X∧l+

i
, X∧l+

j
) = N(X∧l+

i
−X∧l+

j
;μβl , Σβl).

The γ process predicts ith child ∧l+i conditioned on the context of parent ∧l. This is
evaluated using the Gaussian distribution p(X∧l+

i
|X∧l) = N(X∧l+

i
−X∧l ;μγl , Σγl).

5 The E2 Strategy for Cost-sensitive Inference

TheE2 strategy optimally schedules a sequential computation of α, β, and γ processes,
such that the posterior distributions of K parse graphs in W are iteratively maximized.
We make the assumption that every process carries the same computational cost.

More formally, given a query, q, theE2 strategy sequentially selects an optimal move
at a given state, which results in another state. The set of states, Sq , that can be visited
are defined by all AND nodes which form the transitive closure of node∧q representing
q in the AND-OR graph. Thus, a state s ∈ Sq represents an AND node in the transitive
closure of ∧q . A move, m ∈ Ms, at state s, is defined by the edges in the AND-OR
graph that directly link ∧s to its parents and children nodes in Sq . For example, a move
to ith child node of∧s means running the detector defined by the terminal node t∧i , i.e.,
zooming-in and computing the α process of the child. Similarly, a move to lth parent
node of ∧s means zooming-out and running the detector t∧l

.
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We make the assumption that we have access to a simulator, which deterministically
identifies next state s′ (i.e., next AND node) after taking movem at state s. This simula-
tor computes the log-posterior ofK parse graphs in W , given by (4), from all α, β, and
γ processes available until a given iteration. Since the simulator will always account for
available detector responses in (4), the E2 strategy should not repeat the moves which
have already been taken. Since the moves are Markovian, we keep a record of detectors
that have already been used Mused.

A relatively small number of moves |Ms| at each state s ∈ Sq allows for a robust
estimation of expected utilities of taking the moves, denoted as Qq = [Q(s,m; q)].
Qq is then used for guiding the scheduling of optimal moves in inference. One of the
strengths of Q-learning is that it is able to compute Qq without requiring a model of
the environment. We specify a reward Rt(s,m; q) for taking move m ∈ Ms in state
s ∈ Sq , which results in the next state s′ ∈ Sq, and evaluate this reward for a given
set of training parse graphs, {pgt : t = 1, ..., T }. The reward is defined using the

sigmoid function: Rt(s,m; q) =
(
1+ exp−

(
log p(pgt|Mused)−log p(pgt|M′

used)
) )−1

, where

log p(pgt|Mused) denotes the log-posterior distribution of tth training parse graph, given
all detector responses in Mused. Then, the Q-learning is run T times over all parse graphs
{pgt}, and Qq is updated as, for t = 1, ..., T :

Q(s,m; q)← Q(s,m; q)+ηs

(
Rt(s,m; q) + ρmax

m′
Q(s′,m′; q)−Q(s,m; q)

)
, (5)

where ηs is the learning rate, and ρ is the discounting factor. We estimate ηs as the
inverse of the number of times state s has been visited, and set ρ = 1.

The E2 strategy is summarized in Alg. 1. The initial state s(0) ∈ Sq is assumed
to be the query node in the AND-OR graph. The first move m(0) ∈ Ms is defined as
running the detector of the query. For selecting optimal moves in the following itera-
tions, τ = 1, 2, ...,B, theE2 strategy flips a biased coin, and, if the outcome is “heads”,
takes the best expected move m(τ+1) = argmaxm Q(s(τ),m; q), otherwise takes any
allowed move in state s(τ). In both cases, the move is selected from the allowed set of
previously unselected moves Ms(τ) \Mused. We specify the probability of “heads” to be
ε = 0.75, and thus enable a mechanism for avoiding local optima. For the selected move
m(τ+1), our simulator evaluates the log-posterior of the parse graphs, {pg∗(τ+1)

k : k =
1, ...,K}, over all availableα, β, and γ processes, given by (4). If theseK log-posteriors
are above a certain threshold, δ, estimated in training, the algorithm can terminate be-
fore the allowed number of iterations B. We do not study here the right values of δ
and B.

In our empirical evaluations, we have observed that the E2 strategy produces a rea-
sonable scheduling of α, β and γ. Fig. 3a, shows our evaluation of the E2 strategy
for the query Walking, under different time budgets, on the UCLA Courtyard dataset.
Fig. 3b shows our sensitivity to ε values averaged over 10 different types of queries
about group activities, primitive actions, and objects, for the allowed budget of 100
iteration steps, on the UCLA Courtyard dataset.
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Algorithm 1. E2 Strategy
Input: Query q; budget B; Bernoulli “success” probability ε;
expected utilities Qq = [Q(s,m; q)]; threshold δ

Output: All instances of q, inferred by the parse graphs, {pg∗(B)
k : k = 1, ..., K}

1 Initialize: τ = 0; state s(0); move m(0); Mused = ∅;

2 Compute {pg∗(0)
k : k = 1, ..., K} given by (4) ;

3 while (τ < B) or (∀k, log p(pg∗(τ)
k |Mused) ≤ δ) do

4 Toss a biased coin with p(“heads”) = ε;
5 if (“heads”) then
6 Select the best expected move m(τ+1) = argmaxm∈M

s(τ)\Mused Q(s(τ),m; q);

7 else
8 Select randomly a move m(τ+1) ∈ Ms(τ) \Mused;
9 end

10 Mused = Mused ∪ {m(τ+1)};

11 Evaluate {pg∗(τ+1)
k : k = 1, ..., K} for Mused, given by (4);

12 τ = τ + 1;
13 end

6 Learning the Model Parameters

This section explains how to learn parameters of the pdf’s appearing in (4).
We learn the distribution of the AND-OR graph structure, p(∧l|∨l), as the frequency

of occurrence of pairs (∧l,∨l) in training parse graphs. The prior over the number
of children nodes p(N l) is assumed exponential. Its ML parameter is learned on the
numbers of corresponding children nodes of ∧l in training parse graphs.

Learning α: For learning αl, at a particular level l of the AND-OR graph, we use
annotated sets of positive and negative training examples, {T+

αl , T
−
αl}. T+

αl consists of
labeled bounding boxes around corresponding group activities (l = 1), or primitive
actions (l = 2), or objects (l = 3). Parameters of a classifier used for αl detector (e.g.,
DPM of [14]) is learned on {T+

αl , T
−
αl} in a standard way for that classifier (e.g., using

the cutting-plane algorithm for learning the structural latent SVM).

Learning γ: For learning γl of a primitive action (or object), we use training set Tγl . Tγl

consists of pairs of descriptor vectors, {(X∧l , X∧l−
i
)}, extracted from bounding boxes

annotated around instances of the primitive action (or object), and its contextual group
activity (or primitive action) occurring in training videos. The descriptors capture the
relative location, orientation, and scale of the corresponding pairs of training instances.
Tγl is used for the ML learning of the mean and covariance, (μγl , Σγl), of the Gaussian
distribution p(X∧l |X∧l−).

Learning β: For learning βl, we use two training sets: T ′
βl , and T ′′

βl+ . For a group
activity (or primitive action), T ′

βl consists of pairs of descriptor vectors, {(X∧l , X∧l+
i
) :

i = 1, ..., N l}, extracted from bounding boxes annotated around instances of the group
activity (or primitive action), and its constituent primitive actions (or objects) occurring
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(a) (b)

Fig. 3. Evaluation on the UCLA Courtyard dataset: (a) Precision and recall under different time
budgets for the query Walking, averaged over all parse graphs. Our precision and recall increase
as the number of detectors used reaches the maximum number 33. (b) Average log-posterior of
ground-truth parse graphs of 10 different queries about group activities, primitive actions, and
objects, for the budget of 100 iterations. The best results are achieved for ε ∈ [0.6 − 0.8].

in training videos. For a particular group activity (or primitive action), T ′′
βl+ consists

of all pairs of descriptor vectors, {(X∧l+
i
, X∧l+

j
) : i, j = 1, ..., N l}, extracted from

bounding boxes annotated around pairs of children of primitive actions (or objects)
comprising the group activity (or primitive action). The descriptors capture the relative
location, orientation, and scale of the corresponding pairs of training instances. T ′

βl ,
and T ′′

βl+ are used for the ML learning of the means and covariances, (μ′
βl , Σ

′
βl) and

(μ′′
βl , Σ

′′
βl), of the Gaussian distributions p(X∧l+

i
|X∧l) and p(X∧l+

i
, X∧l+

j
).

7 Results

Existing benchmark datasets are not suitable for our evaluation. Major issues include:
(1) unnatural, acted activities in constrained scenes; (2) limited spatial and temporal
coverage; (3) limited resolution; (4) poor diversity of activity classes (particularly for
multi-object events); (5) lack of concurrent events; and (6) lack of detailed annotations.
For example, the VIRAT Ground dataset shows only single-actor activities (e.g., en-
tering a building, parking a vehicle). The resolution of these videos (1280 × 720 or
1920× 1080) is not sufficient to allow for digital zoom-in. Other surveillance datasets
such as, VIRAT Aerial and CLIF, are not appropriate for our problem, since they are
recorded from a high altitude where people are not visible. Other datasets (e.g, KTH,
Weizmann, Youtube, Trecvid, PETS04, Olympic, CAVIAR, IXMAS, Hollywood, UCF,
UT-Interaction or UIUC) are also not adequate, since they are primarily aimed at eval-
uating video classification. To address the needs of our evaluation, we have collected
and annotated a new dataset, as explained below.

UCLA Courtyard Dataset [5]: The videos show two distinct scenes from a bird-eye
viewpoint of a courtyard at the UCLA campus. The videos are suitable for our
evaluation, since they show human activities at different semantic levels, and have a
sufficiently high resolution to allow inference of fine details. The dataset consists of a
106-minute, 30 fps, 2560 × 1920-resolution video footage. We provide annotations in
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terms of bounding boxes around group activities, primitive actions, and objects in each
frame. A bounding box is annotated with the orientation and pose, where we use 4 orien-
tation classes for groups, 8 orientations for people, and 7 poses for people. Each frame is
also annotated with the ground plane, so as to allow finding a depth of each individual or
group. The following group activities are annotated: 1. Walking-together, 2. Standing-
in-line, 3. Discussing-in-group, 4. Sitting-together, 5. Waiting-in-group, and 6. Guided-
tour. The following primitive actions are annotated: 1. Riding-skateboard, 2. Riding-bike,
3. Riding-scooter, 4. Driving-car, 5. Walking, 6. Talking, 7. Waiting, 8. Reading, 9. Eat-
ing, and 10. Sitting. Finally, the following objects are annotated: 1. Food, 2. Book, 3.
Car, 4. Scooter, 5. Bike, 6. Food Bus, 7. Vending Machine, 8. Food Menu, 9. Bench, 10.
Stairs, 11. Table, 12. Chair, 13. Bottle, 14. Phone, 15. Handbag, 16. Skateboard, and 17.
Backpack. For each group activity or primitive action, the dataset contains 20 instances,
and for each object the dataset contains 50 instances. We split the dataset 50-50% for
training and testing.

We also use the Collective Activity Dataset [17] that consists of 75 short videos of
crossing, waiting, queuing, walking, talking, running, and dancing. This dataset tests
our performance on a collective behavior of individuals under realistic conditions, in-
cluding background clutter, and transient occlusions. For training and testing, we use
the standard split of 2/3 and 1/3 of the videos from each class. The dataset provides
labels of every 10th frame, in terms of bounding boxes around people performing the
activity, their pose, and activity class.

The Collective Activity Dataset mostly shows a single group activity per video. We
increase its complexity by synthesizing a composite dataset. The composite videos rep-
resent a concatenation of multiple original videos randomly placed on a 2 × 2 grid,
as shown in Fig. 4. The composite videos show four co-occurring group activities. We
formed 20 such composite sequences of multiple co-occurring group activities, and
used 50% for training and 50% for testing.

We evaluate our performance for varying time budgets: B = {1, 15,∞}. B = 1
means that we are allowed to run only the detector directly appropriate for the query
(e.g., the detector of Riding-bike). This is our baseline. B = ∞ means that we run the
E2 strategy as long as all detectors and their integration via the α, β, and γ processes
are not executed. Finally, 1 < B <∞means that theE2 strategy is run for B iterations.

We evaluate: i) Classification accuracy and ii) Recall and precision of activity detec-
tion. For detection evaluation, we compute a ratio, ρ, of the intersection and union of
detected and ground-truth time intervals of activity occurrences. True positive (TP) is
declared if the activity is correctly recognized, and ρ > 0.5, otherwise we declare false
positive (FP). Note that this also evaluates localization of the start and end frames of
activity occurrences.

Table 1 shows our precision, false positive rates, and running times, under varying
time budgets, on the UCLA Courtyard dataset. As the budget increases, we observe
better performance. The E2 strategy gives slightly worse results in a significantly less
amount of time, than the full inference with unlimited budget. Thus, the E2 strategy
improves the accuracy-complexity trade-off.

Table 2 compares our classification accuracy and running times with those of the
state of the art [9, 11, 17] on the Collective Activity Dataset. For this comparison, we
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Table 1. Average precision, and false positive rates on the UCLA Courtyard Dataset for primitive
actions and group activities. The larger the time budget, the better precision.

Query about group activities
E2 strategy Standing-in-line Guided-tour Discussing Sitting Walking Waiting Time

B = 1, Precision 62.2% 63.7% 68.1% 65.3% 69.4% 61.2% 5s
B = 1, FP 7.2% 2.3% 9.8% 12.6% 8.1% 10.4% 5s

B = 15, Precision 65.4% 66.1% 69.0% 68.7% 70.3% 66.5% 75s
B = 15 FP 10.1% 4.7% 11.1% 11.1% 8.7% 10.9% 75s

B =, Precision 68.0% 70.2% 75.1% 71.4% 78.6% 72.6% 230s
B = ∞, FP 13.6% 10.3% 17.1% 13.7% 10.1% 12.2% 230s

Query about primitive actions
E2 strategy Walk Wait Talk Drive Car Ride S-board Ride Scooter Ride Bike Read Eat Sit Time

B = 1, Precision 63.3% 61.2% 58.4% 65.8% 63.5% 60.1% 56.8% 55.3% 60.9% 54.3% 10s
B = 1, FP 12.1% 16.2% 11.4% 3.4% 10.2% 11.6% 6.2% 8.2% 2.2% 5.3% 10s

B = 15, Precision 67.6% 63.4% 62.3% 67.2% 67.1% 65.9% 59.3% 61.2% 66.3% 59.2% 150s
B = 15, FP 14.2% 17.1% 15.1% 7.1% 13.8% 13.2% 9.3% 10.3% 4.3% 7.1% 150s

B = ∞, Precision 69.1% 67.7% 69.6% 70.2% 71.3% 68.4% 61.4% 67.3% 71.3% 64.2% 330s
B = ∞, FP 18.7% 20.2% 17.9% 9.7% 17.1% 16.3% 12.3% 12.1% 7.7% 9.0% 330s

Table 2. Average classification ac-
curacy, and running times on the
Collective Activity Dataset [17].
We use B = ∞.

Class Our [11] [18] [9] [17]
Walk 74.7% 38.8% 72.2% 68% 57.9%
Cross 77.2% 76.4% 69.9% 65% 55.4%
Queue 95.4% 78.7% 96.8% 96% 63.3%
Wait 78.3% 76.7% 74.1% 68% 64.6%
Talk 98.4% 85.7% 99.8% 99% 83.6%
Run 89.4% N/A 87.6% N/A N/A

Dance 72.3% N/A 70.2% N/A N/A

Avg 83.6% 70.9% 81.5% 79.1% 65.9%

Time 165s N/A 55s N/A N/A

Table 3. Average precision, and
false positive rates on the Compos-
ite Collective Activity dataset. We
use B = ∞.

Class Our Our [18] [18]
FP-Rate FP-Rate

Walk 65.3% 8.2% 58.1% 12.2%
Cross 69.6% 8.7% 61.5% 15.5%
Queue 76.2% 5.2% 65.5% 8.7%
Wait 68.3% 7.7% 59.2% 8.2%
Talk 82.1% 6.2% 67.5% 7.1%
Run 80.4% 8.8% 72.1% 10.2%

Dance 63.1% 10.2% 55.3% 12.9%

Avg 72.1% 6.7% 62.7% 10.6%

Fig. 4. Our results on detecting group activities of the
Composite Collective Activity dataset, for B = ∞. The
figure shows a single frame (not 4 frames) from the
Composite dataset. A total of 7 co-occurring activity in-
stances are detected. The detections are color coded. Top
left: we detect the co-occurring Walking and Waiting.
Top right: we detect the co-occurring Queuing, Talking,
and Waiting. Bottom row: we detect Crossing (left), and
Talking (right).

allow infinite budget in inference, and do not account for objects, since this information
is not available to the competing approaches. As can be seen, we our performance is
superior in reasonable running times. Figures 4 and 5 illustrate our qualitative results.
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Fig. 5. Our results on an example video from the UCLA Courtyard dataset, under unlimited time
budget. Detections are color coded, where the codes are given below each frame. Top left: results
of the α’s of group activities using the input poses and person detections. Top right: results of
the α’s of 10 objects. Bottom left: results of the α’s of primitive actions. Bottom right: results for
group activities and primitive actions of all parse graphs. (Best viewed zoomed-in, in color.)

8 Conclusion

We have formulated and addressed a new problem, that of multiscale activity recog-
nition, where the main challenge is to make inference cost-sensitive and scalable. Our
approach models group activities, individual actions, and participating objects with the
AND-OR graph, and exploits its hierarchical structure to formulate a new inference
algorithm. The inference is iterative, where the direct application of activity detectors,
bottom-up and top-down computational processes are optimally scheduled using an
explore-exploit (E2) strategy. For evaluation, we have compiled a new dataset of 106-
minute, 30 fps, 2560× 1920-resolution video footage. The dataset alleviates the short-
comings of existing benchmarks, since its videos show unstaged human activities of
different semantic scales co-occurring in a vast scene, and have a sufficiently high res-
olution to allow for digital zoom-in (or zoom-out) for examining fine details (or coarser
scales), as needed for recognition. The E2 strategy improves the accuracy-complexity
trade-off of full inference of the AND-OR graph. We have also reported competitive
results on the benchmark Collective activities dataset.
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Abstract. We address the task of inferring the future actions of peo-
ple from noisy visual input. We denote this task activity forecasting. To
achieve accurate activity forecasting, our approach models the effect of
the physical environment on the choice of human actions. This is ac-
complished by the use of state-of-the-art semantic scene understanding
combined with ideas from optimal control theory. Our unified model
also integrates several other key elements of activity analysis, namely,
destination forecasting, sequence smoothing and transfer learning. As
proof-of-concept, we focus on the domain of trajectory-based activity
analysis from visual input. Experimental results demonstrate that our
model accurately predicts distributions over future actions of individu-
als. We show how the same techniques can improve the results of tracking
algorithms by leveraging information about likely goals and trajectories.

Keywords: activity forecasting, inverse optimal control.

1 Introduction

We propose to expand the current scope of vision-based activity analysis by
exploring models of human activity that reason about the future. Although rea-
soning about future actions often requires a large amount of contextual prior
knowledge, let us consider the information that can be gleaned from physical
scene features and prior knowledge of goals. For example, in observing pedestri-
ans navigating through an urban environment, we can predict with high confi-
dence that a person will prefer to walk on sidewalks more than streets, and will

Fig. 1. Given a single pedestrian detection, our proposed approach forecasts plausible
paths and destinations from noisy vision-input
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most certainly avoid walking into obstacles like cars and walls. Understanding
the concept of human preference with respect to physical scene features enables
us to perform higher levels of reasoning about future human actions. Likewise,
our knowledge of a goal also gives us information about what a person might
do. For example, if an individual desires to approach his car parked across the
street, we know that he will prefer to walk straight to the car as long as the
street is walkable and safe. To integrate these two aspects of prior knowledge
into modeling human activity, we leverage recent progress in two key areas of
research: (1) semantic scene labeling and (2) inverse optimal control.

Semantic scene labeling. Recent semantic scene labeling approaches now provide
a robust and reliable way of recognizing physical scene features such as pavement,
grass, tree, building and car [1], [2]. We will show how the robust detection of
such features plays a critical role in advancing the representational power of
human activity models.

Inverse optimal control. Work in optimal control theory has shown that human
behavior can be modeled successfully as a sequential decision-making process
[3]. The problem of recovering a set of agent preferences (the reward or cost
function) consistent with demonstrated activities, can be solved via Inverse Op-
timal Control (IOC) – also called Inverse Reinforcement Learning (IRL) [4] or
inverse planning [5]. What is especially intriguing about the IOC framework is
that it incorporates concepts, such as immediate rewards (what do I gain by
taking this action?), expected future rewards (what will be the consequence of
my actions in the future?) and goals (what do I intend to accomplish?), which
have close analogies to the formation of human activity. We will show how the
IOC framework expands the horizon of vision-based human activity analysis by
integrating the impact of the environment and goals on future actions.

In this work, we extend the work of Ziebart et al. [6] by incorporating vision-
based physical scene features and noisy tracker observations, to forecast activities
and destinations. This work is different from traditional IOC problems because
we do not assume that the state of the actor is fully observable (e.g., video games
[7] and locations in road networks [6]). Our work is also different from Partially
Observable Markov Decision Process (POMDP) models because we assume that
the observer has noisy observations of an actor, where the actor is fully aware
of his own state. In a POMDP, the actor is uncertain about his own state and
the observer is not modeled. To the best of our knowledge, this is the first work
to incorporate the uncertainty of vision-based observations within a robust IOC
framework in the context of activity forecasting. To this end, we propose a Hidden
variable Markov Decision Process (hMDP) model which incorporates uncertainty
(e.g., probabilistic physical scene features) and noisy observations (e.g., imperfect
tracker) into the activity model. We summarize our contributions as follows:
(1) we introduce the concept of inverse optimal control to the field of vision-
based activity analysis, (2) we propose the hMDP model and a hidden variable
inverse optimal control (HIOC) inference procedure to deal with uncertainty in
observations and (3) we demonstrate the performance of forecasting, smoothing,
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Homotopy classes Our approach

Fig. 2. Qualitative comparison to homotopy classes. Trajectories generated by distinct
homotopy classes and trajectories generated by physical attributes of the scene. Phys-
ical attributes are able to encode agent preferences like using the sidewalk.

destination forecasting and knowledge transfer operations in a single framework
on real image data.

As a proof-of-concept, we focus on trajectory-based human activity analysis
[8]. We take a departure from traditional motion-based approaches [9], [10] and
explore the interplay between features of the environment and pedestrian tra-
jectories. Previous work [11], [12], has shown that modeling the impact of the
social environment, like actions of nearby pedestrians, can improve priors over
pedestrian trajectories. Our work is complementary in that, our learned model
explains the effect of the static environment, instead of the dynamic environment
like moving people, on future actions. Other work uses trajectories to infer the
functional features of the environment such as road, sidewalk and entrance [13].
Our work addresses the inverse task of inferring trajectories from physical scene
features. Work exploring the impact of destinations, such as entrances and ex-
its, of the environment on trajectories has shown that knowledge of goals yields
better recognition of human activity [14], [15]. Gong et al. [16] used potential
goals and motion planning from homotopy classes to provide a prior for tracking
under occlusion. Our work expands the expressiveness of homotopy classes in
two significant ways, by generating a distribution over all trajectories including
homotopy classes, and incorporating observations about physical scene features
to make better inference about paths. Figure 2 depicts the qualitative difference
between shortest distance paths of ‘hard’ homotopy classes and ‘soft’ probability
distributions generated by our proposed approach. Notice how the distribution
over potential trajectories captures subtle agent preferences such as walking on
the sidewalk versus the parking lot, and keeping a safe distance from cars.

There is also an area of emerging research termed early recognition, where
the task is to classify an incoming temporal sequence as early as possible while
maintaining a level of detection accuracy [17], [18], [19]. Our task of activity fore-
casting differs in that we are recovering a distribution over a sequence of future
actions as opposed to classifying a partial observation sequence as a discrete
activity category. In fact, our approach can forecast possible trajectories before
any pedestrian observations are available.
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Fig. 3. Underlying graphical model and state representation for IOC. (a) Proposed
hMDP: agent knows own state s, action a and reward (or cost) r but only noisy
measurements of the state u are observed, (b) MDP: agent state and actions are fully
observed and (c) ground plane is discretized into cells which represent states.

2 Preliminaries

Markov Decision Processes and Optimal Control. The Markov decision process
(MDP) [20] is used to express the dynamics of a decision-making process (Figure
3b). The MDP is defined by an initial state distribution p(s0), a transition model
p(s′|s, a) (shorthand ps

′
s,a) and a cost function r(s). Given these parameters, we

can solve the optimal control problem by learning the optimal policy π(a|s),
which encodes the distribution of action a to take when in state s. To be concrete,
Figure 3c depicts the state and action space defined in this work. The state s
represents a physical location in world coordinates s = [x, y] and the action a is
the velocity a = [vx, vy] of the actor. The policy π(a|s) maps states to actions,
describing which direction to move (action) when an actor is located at some
position (state). The policy can be deterministic or stochastic.

Inverse Optimal Control. In the inverse optimal control problem, the cost func-
tion is not given and must be discovered from demonstrated examples. Various
approaches using structured maximum margin prediction [21], feature matching
[4] and maximum entropy IRL [3] have been proposed for recovering the cost
function. We build on the maximum entropy IOC approach in [6] and extend the
model to deal with noisy observations. We make an important assumption about
the form of the cost function r(s), which enables us to translate from observed
physical scene features to a single cost value. The cost function:

r(s; θ) = θ�f(s), (1)

is assumed to be a weighted combination of feature responses
f(s) = [f1(s) · · · fK(s)]�, where each fk(s) is the response of a physical scene
feature, such as the soft output of a grass classifier, and θ is a vector of weights.
By learning the parameters of the cost function, we are learning how much a
physical scene feature affects a person’s actions. For example, a feature such as
car and building, will have large weights because they are high cost and should be
avoided. This explicit modeling of the effect of physical scene features on actions
via the cost function sets this approach apart from traditional motion-based
models of pedestrian dynamics.



Activity Forecasting 205

3 Hidden Variable Inverse Optimal Control (HIOC)

In a vision-based system, we do not have access to the true state, such as the
location of the actor, or the true action, such as the velocity of the actor. Instead,
we only have access to the output of a noisy tracking algorithm. Therefore, we
deal with observation uncertainty via a hidden state variable (Figure 3a). Using
this hidden model, HIOC determines the reliability of observed states, in our
case tracker detections, by adjusting its associated cost weight. For example, if
the tracker output has low precision, the corresponding weight parameter will
be decreased during training to minimize the reliance on the tracker output.

In the maximum entropy framework, the distribution over a state sequence s
is defined as:

p(s; θ) =

∏
t e

r(st)

Z(θ)
=

e
∑

t θ
�f (st)

Z(θ)
, (2)

where θ are the parameters of the cost function, f (st) is the vector of feature
responses at state st and Z(θ) is the normalization function. In other words,
the probability of generating a trajectory s is defined to be proportional to the
exponentiated sum of features encountered over the trajectory.

In our hMDP model (Figure 3a), we add state observations u to represent
the uncertainty of being in a state. This implies a joint distribution over states
and observations as:

p(s,u; θ) =

∏
t p(ut|st)eθ

�f (st)

Z(θ)
=

e
∑

t

{
θ�f (st)+θo log p(ut|st)

}

Z(θ)
, (3)

where the observation model p(ut|st) is a Gaussian distribution. Notice that by
pushing the observation model into the exponent as log p(ut|st) it can also be
interpreted as an auxiliary ‘observation feature’ with an implicit weight of one,
θo = 1. However, we increase the expressiveness of the model by allowing the
weight parameter θo of observations to be adjusted at training.

3.1 Training and Inference

In the training step, we recover the optimal cost function parameters θ and
consequentially an optimal policy π(a|s), by maximizing the entropy of the con-
ditional distribution or equivalently the likelihood maximization of the observa-
tions under the maximum entropy distribution,

p(s|u; θ) = e

{∑
t θ

�f ′
(st)

}

Z(θ)
, (4)

where the feature vector f ′(st) now includes the tracker observation features.
To maximize the entropy of (4), we use exponentiated gradient descent to

iteratively minimize the gradient of the log-likelihood L � log p(s|u; θ). The
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Algorithm 1. Backwards pass
V (s)← −∞
for n = N, . . . , 2, 1 do

V (n)(sgoal)← 0

Q(n)(s, a) = r(s; θ) + E
Ps′
s,a

[V (n)(s′)]

V (n−1)(s) = softmaxa Q(n)(s, a)
end for
πθ(a|s) = eQ(s,a)−V (s)

Algorithm 2. Forward pass
D(sinitial)← 1
for n = 1, 2, . . . , N do

D(n)(sgoal)← 0

D(n+1)(s) =
∑

s′,a P s
s′,aπθ(a|s′)D(n)(s′)

end for
D(s) =

∑
n D(n)(s)

f̂θ =
∑

s f(s)D(s)

gradient can be shown to be the difference between the empirical mean fea-
ture count f̄ = 1

M

∑M
m f (sm), the average features accumulated over M demon-

strated trajectories, and the expected mean feature count f̂θ, the average features
accumulated by trajectories generated by the parameters, ∇Lθ = f̄ − f̂θ. We up-
date θ according to the exponentiated gradient, θ ← θeλ∇Lθ , where λ is the
step size and the gradient is computed using a two-step algorithm described
next. At test time, the learned weights are held constant and the same two-step
algorithm is used to compute the forecasted distribution over future actions, the
smoothing distribution or the destination posterior.

Backward pass. In the first step (Algorithm 1), we use the current weight pa-
rameters θ and compute the expected cost of a path ending in sg and starting in
si �= sg. Essentially, we are computing the expected cost to the goal from every
possible starting location. The algorithm revolves around the repeated compu-
tation of the state log partition function V (s) and the state-action log partition
function Q(s, a) defined in Algorithm 1. Intuitively, V (s) is a soft estimate of the
expected cost of reaching the goal from state s and Q(s, a) is the soft expected
cost of reaching the goal after taking action a from the current state s. Upon
convergence, the maximum entropy policy is πθ(a|s) = eQ(s,a)−V (s).

Forward pass. In the second step (Algorithm 2), we propagate an initial distri-
bution p(s0) according to the learned policy πθ(a|s). Let D(n)(s) be defined as
the expected state visitation count which is a quantity that expresses the prob-
ability of being in a certain state s at time step n. Initially, when n is small,
D(n)(s) is a distribution that sums to one. However, as the probability mass is
absorbed by the goal state, the sum of the state visitation counts quickly con-
verges to zero. By computing the total number of times each state was visited
D(s) =

∑
n D

(n)(s), we are computing the unnormalized marginal state visita-
tion distribution. We can compute the expected mean feature count as a weighted
sum of feature counts f̂θ =

∑
s f(s)D(s).

3.2 Destination Forecasting from Noisy Observations

In novel scenes, the destination of an actor is unknown and must be inferred.
For each activity, a prior on potential destinations p(sg), may be generated
(e.g., points along the perimeter of a car for the activity ‘approach car’) and, in
principle, a brute force application of Bayes’ rule enables computing the posterior
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birds-eye view building car curb

grass pavement person sidewalk

Fig. 4. Classifier feature response maps. Top left is the original image

over both destinations and intermediate states. A naive application, however, is
quite expensive as we may wish to consider a large number of possible goals –
potentially every state.

Fortunately, the structure of the proposed maximum entropy model enables
efficient inference. Following Ziebart et al. [6], we approximate the posterior over
goals using a ratio of partition functions, one with and one without observations:

p(sg|s0, u1:t) ∝ p(u1:t|s0, sg) · p(sg) (5)

∝ eVu1:t (sg)−V (sg) · p(sg), (6)

where Vu1:t(sg) is the state log partition of sg given the initial state is s0 and the
observations u1:t and V (sg) is the state log partition of sg without any observa-
tions. The ratio of log partition functions measure the ‘progress’ made toward
a goal by adding observations. In deterministic MDPs, where the action deci-
sions may be randomized but the state transitions follow deterministically from
a state-action pair, we can invert the role of goal and start locations for an agent.
Doing so enables computing the partition functions required in time independent
of the number of goals. Using this inversion property, the state partition values
for each goal can be computed efficiently by inverting the destination and start
states and running Algorithm 1.

4 Experiments

We evaluate the four tasks of activity analysis, namely, (1) forecasting, (2)
smoothing, (3) destination prediction and (4) knowledge transfer, using our pro-
posed unified framework. For our evaluation we use videos from the VIRAT
ground dataset [22]. Our dataset consists 92 videos from two scenes, shown in
Figure 1. Scene A consists of 56 videos and scene B consists of 36 videos. Each
scene dataset consists of three activities categories: approach car, depart car and
walk through. In all experiments, 80% of the data was used for training and the
remaining 20% used for testing using 3-fold cross validation.

The physical attributes were extracted using the scene segmentation labeling
algorithm proposed by Munoz et al. [1]. In total 9 semantics labels were used,
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including grass, pavement, sidewalk, curb, person, building, fence, gravel, and
car. For each semantic label, four features were generated, including the raw
probability and three types of ‘distance-to-object’ features. The distance feature
is computed by thresholding the probability maps and computing the exponen-
tiated distance function (with different variance). A visualization of the proba-
bility maps used as features is shown in Figure 4. For the smoothing task, the
pedestrian tracker output is blurred with three different Gaussian filters which
contribute three additional features. By adding a constant feature to model travel
time, the total number of features used is 40.

Our state space is the 3D floor plane and as such, 2D image features, obser-
vations and potential goals are projected to the floor plane (camera parameters
are assumed to be known) for all computations. For the activities depart car
and walk through potential goals are set densely around the outer perimeter of
the floor plane projection. For the activity approach car, connected components
analysis is used to extract polygonal shape contours of detected cars, whose
vertices are used to define a set of potential goals.

4.1 Metrics and Baselines

In each of the experiments, we have one demonstrated path, a sequence of states
st and actions at, generated by a pedestrian for a specific configuration of a
scene. We compare the demonstrated path with the probabilistic distribution
over paths generated by our algorithm using two different metrics: first is proba-
bilistic and evaluates the likelihood of the demonstrated path under the predicted
distribution, the second performs a more deterministic evaluation by estimating
the physical distances between a demonstrated path and paths sampled from
our distribution. We use the negative log-loss (NLL) of a trajectories, as in [6]
as our probabilistic comparison metric. The negative log-loss:

NLL(s) = Eπ(a|s)

[

− log
∏

t

π(at|st)
]

, (7)

is the expectation of the log-likelihood of a trajectory s under a policy π(a|s). In
our example, this metric measures the probability of drawing the demonstrated
trajectory from the learned distribution over all possible trajectories. We also
compute the modified Hausdorff distance (MHD) as a physical measure of the
distance between two trajectories. The MHD allows for local time warping by
finding the best local point correspondence over a small temporal window (±15
steps in our experiments). When the temporal window is zero, the MHD is ex-
actly the Euclidean distance. We compute the mean MHD, by taking the average
MHD between the demonstrated trajectory and 5000 trajectories randomly sam-
pled from our distribution. The units of the MHD are in pixels in the 3D floor
plane, not the 2D image plane. We always divide our metrics by the trajectory
length so that we can compare metrics across different models and trajectories
of different lengths.
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We compare against a maximum entropy Markov model (MEMM) that esti-
mates the policy based on environmental attribute features and tracker obser-
vation features. The policy is computed by:

π(a|s) ∝ exp{w�a F (s)}. (8)

where the weight vector wa is estimated using linear regression and F (s) is a
vector of features for all neighboring states of s. This model only takes into the
account the features of the potential next states when choosing an action and
has no concept of the future beyond a one-step prediction model.

We also compare against a location-based Markov motion model, which learns
a policy from observed statistics of states and actions in the training set:

π(a|s) ∝ c(a, s) + α, (9)

where c(a, s) is the number of times the action a was observed in state s and α
is a pseudo-count used to smooth the distribution via Laplace smoothing.

4.2 Forecasting Evaluation

Evaluating the true accuracy of a forecasting distribution over all future trajec-
tories is difficult because we do not have access to such ‘ground truth’ from the
future. As a proxy, we measure how well a learned policy is able to describe a
single annotated test trajectory. We begin experiments in a constrained setting,
were we fix the start and goal states to evaluate forecasting performance in iso-
lation. Unconstrained experiments are performed in section 4.4. We compare our
proposed model against the MEMM and the Markov motion model. Figure 5a
and Table 1a show how our proposed model outperforms the baseline models.
Note that tracker observations are not used in this experiment since we are only
evaluating the performance of forecasting and not smoothing.

Qualitative results of activity forecasting are depicted in Figure 6. Our pro-
posed model is able to leverage the physical scene features and generate a dis-
tribution that preserves actor preferences learned during training. Since many
pedestrians used the sidewalk in the training examples, our model has learned
that sidewalk areas have greater rewards or lower cost than paved parking lot
areas. Notice that although it would be faster and shorter to walk diagonally
across the parking lot, in terms of actor preferences it is more optimal to use the
sidewalk. Without the use of informative physical scene features, we would need
to learn motion dynamics with a Markov motion model from a large amount
of demonstrated trajectories. Unfortunately, the Markov motion model degener-
ates to a random walk when there are not enough training trajectories for this
particular configuration of the scene.

4.3 Smoothing Evaluation

In our smoothing evaluation, we measure how the computed smoothing distribu-
tion accounts for noisy observations and generates an improved distribution over
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Fig. 5. Mean NLL of forecasting and smoothing performance

Proposed Travel time MDP Motion model

Fig. 6.Comparing forecasting distributions. The travel time only MDP ignores physical
attributes of the scene. The Markov motion model degenerates to a random walk when
train data is limited.

trajectories. We run our experiments with a state-of-the-art super-pixel tracker
(SPT) [23] and an in-house template-based tracker to show how the smoothing
distribution improves the quality of estimated pedestrian trajectories. Again,
we fix the start and goal states to isolate the performance of smoothing. Our
in-house tracker is conservative and only keeps strong detections of pedestrians,
which results in many missing detections. Many gaps in detection causes the
MHD between the observed trajectory and true trajectory to be large without
smoothing. In contrast, the trajectories of the SPT have no missing observations
due to temporal filtering but have a tendency to drift away from the pedestrian.
As such, the SPT has much better performance compared to our in-house tracker
before smoothing. Figure 7 shows a significant improvement for both trackers
after smoothing. Despite that fact that our in-house tracker is not as robust as

Table 1. Average NLL per activity category and dataset (A and B) for (a) forecasting
and (b) smoothing performance

(a) Forecasting Proposed MEMM MarkovMot
approach (A) 1.657 1.962 2.157
depart (A) 1.618 1.940 2.103
walk (A) 1.544 2.027 2.174
approach (B) 1.519 1.780 2.180
depart (B) 1.519 1.903 2.115
walk (B) 1.707 1.997 2.182

(b) Smoothing Proposed MEMM
approach (A) 1.602 1.942
depart (A) 1.594 1.923
walk (A) 1.483 2.022
approach (B) 1.465 1.792
depart (B) 1.513 1.882
walk (B) 1.695 2.001
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Fig. 7. Improvement in tracking accuracy with the smoothing distribution
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Fig. 8. Destination forecasting and path smoothing. Our proposed approach infers a
pedestrians likely destinations as more noisy observations become available. Concur-
rently, the smoothing distribution (likely paths up to the current time step t) and the
forecasting distribution (likely paths from t until the future) are modified as observa-
tions are updated.

SPT, the MHD after smoothing is actually better than the SPT post-smoothing.
This is due to the fact that our tracker only generates confident, albeit sparse,
detections. The distributions generated by our approach also outperforms the
MEMM, as shown in Table 1b.

4.4 Destination Forecasting Evaluation

In the most general case, the final destination of a pedestrian is not know in
advance so we must reason about probable destinations as tracker observations
become available. In this experiment we hold the start state and allow the des-
tination state to be inferred by Equation (6). Figure 8 shows a visualization of
destination forecasting, and consequentially, the successive updates of the fore-
casting and smoothing distributions. As noisy pedestrian tracker observations
are acquired, the posterior distribution over destinations, the forecasting and
smoothing distributions are updated. Quantitative results shown in Figure 9
show that the MHD quickly approaches a minimum for most activity categories,
after about 30% of the noisy tracker trajectory has been observed. This indicates
that we can forecast a person’s likely path to a final destination after observing
only a third of the trajectory.
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Fig. 9. Destination forecasting performance. Modified Hausdorff distance is the aver-
age distance between the ground truth trajectory and sampled trajectories from the
inferred distribution. (a) per activity category performance over datasets, (b) average
performance over the entire dataset.

Table 2. MHD for knowledge transfer performance. (a) forecasting and (b) smoothing.
Proposed approach can be applied to novel scenes with comparable performance.

(a) Forecasting TEST
TRAIN Scene A Scene B
Scene A 9.8520 7.4925
Scene B 10.4358 8.9774

|Δ| 0.584 1.485

(b) Smoothing TEST
TRAIN Scene A Scene B
Scene A 3.2582 6.4705
Scene B 4.9194 7.2837

|Δ| 1.661 0.813

Fig. 10. Knowledge transfer examples of forecasting in novel scenes

4.5 Knowledge Transfer

Since our proposed method encapsulates activities in terms of physical scene
features and not physical location, we are also able to generalize to novel scenes.
This is a major advantage of our approach over other methods that use scene-
specific motion dynamics. In this experiment we use two locations: scene A and
scene B, and show that learned parameters can be transferred in both directions
with similar performance. Table 2 shows that the transferred parameters perform
on par with scene specific parameters. With respect to forecasting performance,
the average MHD between a point of the ground truth and a point of a trajectory



Activity Forecasting 213

sampled from the forecasting distribution, is degraded by 0.584 pixels. It is
interesting to note that in the case of training on scene A and transferring
to scene B, the transferred model actually performs slightly better. We believe
that this is caused by the fact that we have more training trajectories from scene
A. In Figure 10 we also show several qualitative results of trajectory forecasting
and destination forecasting on novel scenes. Even without observing a single
trajectory from the scene, our approach is able to generate plausible forecasting
distributions for activities such as walking through the scene or departing from
a car.

5 Conclusion

We have demonstrated that tools from inverse optimal control can be used for
computer vision tasks in activity understanding and forecasting. Specifically, we
have modeled the interaction between moving agents and semantic perception of
the environment. We have also made proper modifications to accommodate the
uncertainty inherent to tracking and detection algorithms. Further, the result-
ing formulation, based on a hidden variable MDP, provides a unified framework
to support a range of operations in activity analysis: smoothing, path and des-
tination forecasting, and transfer, which we validated both qualitatively and
quantitatively. Our initial work focused on paths in order to generate an ini-
tial validation of the approach for computer vision. Moving forward, however,
our proposed framework is general enough to handle non-motion representations
such as sequences of discrete action-states. Similarly, we limited our evaluation to
physical attributes of the environments, but an exciting possibility would be to
extend the approach to activity features, similar to those used in crowd analysis,
or other semantic attributes of the environment.

Acknowledgement. This research was supported in part by NSF QoLT ERC
EEEC-0540865, U.S Army Research Laboratory under the Collaborative Tech-
nology Alliance Program, Cooperative Agreement W911NF-10-2-0016 and Co-
operative Agreement W911NF-10-2-0061.We especially thank Daniel Munoz for
sharing and preparing the semantic scene labeling code.

References

1. Munoz, D., Bagnell, J.A., Hebert, M.: Stacked Hierarchical Labeling. In: Daniilidis,
K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp.
57–70. Springer, Heidelberg (2010)

2. Munoz, D., Bagnell, J.A., Hebert, M.: Co-inference for Multi-modal Scene Analysis.
In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV
2012, Part VI. LNCS, vol. 7577, pp. 668–681. Springer, Heidelberg (2012)

3. Ziebart, B., Ratliff, N., Gallagher, G., Mertz, C., Peterson, K., Bagnell, J., Hebert,
M., Dey, A., Srinivasa, S.: Planning-based prediction for pedestrians. In: IROS
(2009)



214 K.M. Kitani et al.

4. Abbeel, P., Ng, A.: Apprenticeship learning via inverse reinforcement learning. In:
ICML (2004)

5. Baker, C., Saxe, R., Tenenbaum, J.: Action understanding as inverse planning.
Cognition 113(3), 329–349 (2009)

6. Ziebart, B., Maas, A., Bagnell, J., Dey, A.: Maximum entropy inverse reinforcement
learning. In: AAAI (2008)

7. Levine, S., Popovic, Z., Koltun, V.: Nonlinear inverse reinforcement learning with
Gaussian processes. In: NIPS (2011)

8. Morris, B., Trivedi, M.: A survey of vision-based trajectory learning and analysis
for surveillance. Transactions on Circuits and Systems for Video Technology 18(8),
1114–1127 (2008)

9. Ali, S., Shah, M.: Floor Fields for Tracking in High Density Crowd Scenes. In:
Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303,
pp. 1–14. Springer, Heidelberg (2008)

10. Zen, G., Ricci, E.: Earth mover’s prototypes: A convex learning approach for dis-
covering activity patterns in dynamic scenes. In: CVPR (2011)

11. Mehran, R., Oyama, A., Shah, M.: Abnormal crowd behavior detection using social
force model. In: CVPR (2009)

12. Pellegrini, S., Ess, A., Schindler, K., Van Gool, L.J.: You’ll never walk alone: Mod-
eling social behavior for multi-target tracking. In: ICCV (2009)

13. Turek, M.W., Hoogs, A., Collins, R.: Unsupervised Learning of Functional Cate-
gories in Video Scenes. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV
2010, Part II. LNCS, vol. 6312, pp. 664–677. Springer, Heidelberg (2010)

14. Huang, C., Wu, B., Nevatia, R.: Robust Object Tracking by Hierarchical Associa-
tion of Detection Responses. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV
2008, Part II. LNCS, vol. 5303, pp. 788–801. Springer, Heidelberg (2008)

15. Kaucic, R., Amitha Perera, A., Brooksby, G., Kaufhold, J., Hoogs, A.: A unified
framework for tracking through occlusions and across sensor gaps. In: CVPR (2005)

16. Gong, H., Sim, J., Likhachev, M., Shi, J.: Multi-hypothesis motion planning for
visual object tracking. In: ICCV (2011)

17. Xing, Z., Pei, J., Dong, G., Yu, P.: Mining sequence classifiers for early prediction.
In: SIAM International Conference on Data Mining (2008)

18. Ryoo, M.: Human activity prediction: Early recognition of ongoing activities from
streaming videos. In: ICCV (2011)

19. Hoai, M., De la Torre, F.: Max-margin early event detectors. In: CVPR (2012)
20. Bellman, R.: A Markovian decision process. Journal of Mathematics and Mechan-

ics 6(5), 679–684 (1957)
21. Ratliff, N., Bagnell, J., Zinkevich, M.: Maximum margin planning. In: ICML (2006)
22. Oh, S., Hoogs, A., Perera, A., Cuntoor, N., Chen, C., Lee, J., Mukherjee, S.,

Aggarwal, J., Lee, H., Davis, L., et al.: A large-scale benchmark dataset for event
recognition in surveillance video. In: CVPR (2011)

23. Wang, S., Lu, H., Yang, F., Yang, M.H.: Superpixel tracking. In: ICCV (2011)



A Unified Framework for Multi-target Tracking
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Abstract. We present a coherent, discriminative framework for simul-
taneously tracking multiple people and estimating their collective ac-
tivities. Instead of treating the two problems separately, our model is
grounded in the intuition that a strong correlation exists between a per-
son’s motion, their activity, and the motion and activities of other nearby
people. Instead of directly linking the solutions to these two problems,
we introduce a hierarchy of activity types that creates a natural pro-
gression that leads from a specific person’s motion to the activity of the
group as a whole. Our model is capable of jointly tracking multiple peo-
ple, recognizing individual activities (atomic activities), the interactions
between pairs of people (interaction activities), and finally the behavior
of groups of people (collective activities). We also propose an algorithm
for solving this otherwise intractable joint inference problem by combin-
ing belief propagation with a version of the branch and bound algorithm
equipped with integer programming. Experimental results on challenging
video datasets demonstrate our theoretical claims and indicate that our
model achieves the best collective activity classification results to date.

Keywords: Collective Activity Recognition, Tracking, Tracklet
Association.

1 Introduction

There are many degrees of granularity with which we can understand the behav-
ior of people in video. We can detect and track the trajectory of a person, we can
observe a person’s pose and discover what atomic activity (e.g., walking) they
are performing, we can determine an interaction activity (e.g., approaching) be-
tween two people, and we can identify the collective activity (e.g., gathering) of a
group of people. These different levels of activity are clearly not independent: if
everybody in a scene is walking, and all possible pairs of people are approaching
each other, it is very likely that they are engaged in a gathering activity. Like-
wise, a person who is gathering with other people is probably walking toward
a central point of convergence, and this knowledge places useful constraints on
our estimation of their spatio-temporal trajectory.

Regardless of the level of detail required for a particular application, a pow-
erful activity recognition system will exploit the dependencies between different
levels of activity. Such a system should reliably and accurately: (i) identify stable
and coherent trajectories of individuals; (ii) estimate attributes, such as poses,
and infer atomic activities; (iii) discover the interactions between individuals;
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Fig. 1. In this work we aim at jointly and robustly tracking multiple targets and
recognizing the activities that such targets are performing. (a): The collective activity
“gathering” is characterized as a collection of interactions (such as “approaching”)
between individuals. Each interaction is described by pairs of atomic activities (e.g.
“facing-right” and “facing-left”). Each atomic activity is associated with a spatial-
temporal trajectory (tracklet τ ). We advocate that high level activity understanding
helps obtain more stable target trajectories. Likewise, robust trajectories enable more
accurate activity understanding. (b): The hierarchical relationship between atomic
activities (A), interactions (I), and collective activity (C) in one time stamp is shown
as a factor graph. Squares and circles represent the potential functions and variables,
respectively. Observations are the tracklets associated with each individual along with
their appearance properties Oi as well as crowd context descriptor Oc [1, 2] (Sec.3.1).
(c): A collective activity at each time stamp is represented as a collection of interactions
within a temporal window. Interaction is correlated with a pair of atomic activities
within specified temporal window (Sec.3.2). Non-shaded nodes are associated with
variables that need to be estimated and shaded nodes are associated with observations.

(iv) recognize any collective activities present in the scene. Even if the goal is
only to track individuals, this tracking can benefit from the scene’s context. Even
if the goal is only to characterize the behavior of a group of people, attention to
pairwise interactions can help.

Much of the existing literature on activity recognition and tracking [3–11]
avoids the complexity of this context-rich approach by seeking to solve the prob-
lems in isolation. We instead argue that tracking, track association, and the
recognition of atomic activities, interactions, and group activities must be per-
formed completely and coherently. In this paper we introduce a model that is
both principled and solvable and that is the first to successfully bridge the gap
between tracking and group activity recognition (Fig.1).

2 Related Work

Target tracking is one of the oldest problems in computer vision, but it is far from
solved. Its difficulty is evidenced by the amount of active research that continues
to the present. In difficult scenes, tracks are not complete, but are fragmented
into tracklets. It is the task of the tracker to associate tracklets in order to
assemble complete tracks. Tracks are often fragmented due to occlusions. Recent
algorithms address this through the use of detection responses [12, 13], and
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pairwise interaction models [3–8]. The interaction models, however, are limited
to a few hand-designed interactions, such as attraction and repulsion. Methods
such as [14] leverage the consistency of the flow of crowds with models from
physics, but do not attempt to associate tracklets or understand the actions of
individuals. [15, 16] formulate the problem of multi-target tracking into a min-
cost flow network based on linear/dynamic programming. Although both model
interactions between people, they still rely on heuristics to guide the association
process via higher level semantics.

A number of methods have recently been proposed for action recognition by
extracting sparse features [17], correlated features [18], discovering hidden topic
models [19], or feature mining [20]. These works consider only a single person,
and do not benefit from the contextual information available from recognizing
interactions and activities. [21] models the pairwise interactions between peo-
ple, but the model is limited to local motion features. Several works address the
recognition of planned group activities in football videos by modelling the tra-
jectories of people with Bayesian networks [9], temporal manifold structures [10],
and non-stationary kernel hidden Markov models [22]. All these approaches, how-
ever, assume that the trajectories are available (known). In collective activity
recognition, [23] recognizes group activities by considering local causality infor-
mation from each track, each pair of tracks, and groups of tracks. [1] classifies
collective activities by extracting descriptors from people and the surrounding
area, and [2] extends it by learning the structure of the descriptor from data.
[24] models a group activity as a stochastic collection of individual activities.
None of these works exploit the contextual information provided by collective
activities to help identify targets or classify atomic activities. [11] uses a hierar-
chical model to jointly classify the collective activities of all people in a scene,
but they are restricted to modelling contextual information in a single frame,
without seeking to solve the track identification problem. Finally, [25] recognizes
the overall behavior of large crowds using a social force model, but does not seek
to specify the behaviour of each individual.

Our Contributions. are four-fold: we propose (i) a model that merges for
the first time the problems of collective activity recognition and multiple target
tracking into a single coherent framework; (ii) a novel path selection algorithm
that leverages target interactions for guiding the process of associating targets;
(iii) a new hierarchical graphical model that encodes the correlation between ac-
tivities at different levels of granularity; (iv) quantitative evaluation on a number
of challenging datasets, showing superiority to the state-of-the-art.

3 Modelling Collective Activity

Our model accomplishes collective activity classification by simultaneously es-
timating the activity of a group of people (collective activity C), the pairwise
relationships between individuals (interactions activities I), and the specific ac-
tivities of each individual (atomic activities A) given a set of observations O (see
Fig.1). A collective activity describes the overall behavior of a group of more



218 W. Choi and S. Savarese

I  : Standing-side-by-side23

I  : Facing-each-other34
I  : Greeting12

I12

I 23

I 34

A1

A2

A3 A4

C: Talking

p: Facing-Left
a: Standing-still1 2

p: Facing-Left
a: Standing-still

A A
3

p: Facing-Right
a: Standing-stillA 4

p: Facing-Left
a: Standing-stillA

I: standing-in-a-row I: standing-in-a-row
High Ψ(I,A,T) Low Ψ(I,A,T) C

IijIik Ijk

Ai

Oi

Aj

Oj OC

(b)(a)

Fig. 2. (a): Each interaction is represented by a number of atomic activities that are
characterized by an action and pose label. For example, with interaction I = standing-
in-a-row, it is likely to observe two people with both p = facing-left and a = standing-
still, whereas it is less likely that one person has p= facing-left and the other p = facing-
right. (b): Collective activity C is represented as a collection of interactions I . For
example, with C = talking collective activity, it is likely to observe the interaction I34
= facing-each-other, and I23 = standing-side-by-side. The consistency of C, I12, I23, I34
generates a high value for Ψ(C, I).

than two people, such as gathering, talking, and queuing. Interaction activities
model pairwise relationships between two people which can include approach-
ing, facing-each-other and walking-in-opposite-directions. The atomic activity
collects semantic attributes of a tracklet, such as poses (facing-front, facing-left)
or actions (walking, standing). Feature observations O = (O1, O2, ...ON ) operate
at a low level, using tracklet-based features to inform the estimation of atomic
activities. Collective activity estimation is helped by observations OC , which
use features such as spatio-temporal local descriptors [1, 2] to encode the flow
of people around individuals. At this time, we assume that we are given a set of
tracklets τ1, ..., τN that denote all targets’ spatial location in 2D or 3D. These
tracklets can be estimated using methods such as [6]. Tracklet associations are
denoted by T = (T1, T2, ..., TM ) and indicate the association of tracklets. We
address the estimation of T in Sec.4.

The information extracted from tracklet-based observations O enables the
recognition of atomic activities A, which assist the recognition of interaction
activities I, which are used in the estimation of collective activities C. Con-
currently, observations Oc provide evidence for recognizing C, which are used
as contextual clues for identifying I, which provide context for estimating A.
The bi-directional propagation of information makes it possible to classify C, A,
and I robustly, which in turn provides strong constraints for improving track-
let association T . Given a video input, the hierarchical structure of our model
is constructed dynamically. An atomic activity Ai is assigned to each tracklet
τi (and observation Oi), an interaction variable Iij is assigned to every pair of
atomic activities that exist at the same time, and all interaction variables within
a temporal window are associated with a collective activity C.

3.1 The Model

The graphical model of our framework is shown in Fig.1. Let O = (O1, O2, ...ON )
be the N observations (visual features within each tracklet) extracted from video
V , where observation Oi captures appearance features si(t), such as histograms
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of oriented gradients (HoG [26]), and spatio-temporal features ui(t), such as a
bag of video words (BoV [17]). t corresponds to a specific time stamp within
the set of frames TV = (t1, t2, ..., tZ) of video V , where Z is the total number of
frames in V . Each observation Oi can be seen as a realization of the underlying
atomic activity Ai of an individual. Let A = (A1, A2, ..., AN ). Ai includes pose
labels pi(t) ∈ P , and action class labels ai(t) ∈ A at time t ∈ TV . P and A
denote the set of all possible pose (e.g, facing-front) and action (e.g, walking)
labels, respectively. I = (I12, I13, ..., IN−1N ) denotes the interactions between all
possible (coexisting) pairs of Ai and Aj , where each Iij = (Iij(t1), ...Iij(tZ)) and
Iij(t) ∈ I is the set of interaction labels such as approaching, facing-each-other
and standing-in-a-row. Similarly, C = (C(t1), ..., C(tZ)) and C(ti) ∈ C indicates
the collective activity labels of the video V , where C is the set of collective activity
labels, such as gathering, queueing, and talking. In this work, we assume there
exists only one collective activity at a certain time frame. Extensions to modelling
multiple collective activities will be addressed in the future. T describes the
target (tracklet) associations in the scene as explained in Sec.3.

We formulate the classification problem in an energy maximization frame-
work [27], with overall energy function Ψ(C, I, A,O, T ). The energy function is
modelled as the linear product of model weights w and the feature vector ψ :

Ψ(C, I, A,O, T ) = wTψ(C, I, A,O, T ) (1)

ψ(C, I, A,O, T ) is a vector composed of ψ1(·), ψ2(·), ..., ψm(·) where each feature
element encodes local relationships between variables and w, which is learned
discriminatively, is the set of model parameters. High energy potentials are as-
sociated with configurations of A and I that tend to co-occur in training videos
with the same collective activity C. For instance, the talking collective activity
tends to be characterized by interaction activities such as greeting, facing-each-
other and standing-side-by-side, as shown in Fig.2.

3.2 Model Characteristics

The central idea of our model is that the atomic activities of individuals are
highly correlated with the overall collective activity, through the interactions
between people. This hierarchy is illustrated in Fig.1. Assuming the conditional
independence implied in our undirected graphical model, the overall energy
function can be decomposed as a summation of seven local potentials: Ψ(C, I),
Ψ(C,O), Ψ(I, A, T ), Ψ(A,O), Ψ(C), Ψ(I), and Ψ(A). The overall energy func-
tion can easily be represented as in Eq.1 by rearranging the potentials and
concatenating the feature elements to construct the feature vector ψ. Each local
potential corresponds to a node (in the case of unitary terms), an edge (in the
case of pairwise terms), or a high order potential seen on the graph in Fig.1.(c):
1) Ψ(C, I) encodes the correlation between collective activities and interactions
(Fig.2.(b)). 2) Ψ(I, A, T ) models the correlation between interactions and atomic
activities (Fig.2.(a)). 3) Ψ(C), Ψ(I) and Ψ(A) encode the temporal smoothness
prior in each of the variables. 4) Ψ(C,O) and Ψ(A,O) model the compatibility of
the observations with the collective activity and atomic activities, respectively.
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Collective - Interaction Ψ(C, I): The function is formulated as a linear multi-

class model [28]:

Ψ(C, I) =
∑

t∈TV

∑

a∈C
wa

ci · h(I, t;�tC)I(a, C(t)) (2)

where wi is the vector of model weights for each class of collective activity,
h(I, t;�tC) is an I dimensional histogram function of interaction labels around
time t (within a temporal window ±�tC), and I(·, ·) is an indicator function,
that returns 1 if the two inputs are the same and 0 otherwise.
Collective Activity Transition Ψ(C): This potential models the temporal
smoothness of collective activities across adjacent frames. That is,

Ψ(C) =
∑

t∈TV

∑

a∈C

∑

b∈C
wab

c I(a,C(t)) I(b, C(t+ 1)) (3)

Interaction Transition Ψ(I) =
∑

i,j Ψ(Iij): This potential models the tempo-

ral smoothness of interactions across adjacent frames. That is,

Ψ(Iij) =
∑

t∈TV

∑

a∈I

∑

b∈I
wab

i I(a, Iij(t)) I(b, Iij(t+ 1)) (4)

Interaction - Atomic Ψ(I,A, T ) =
∑

i,j Ψ(Ai, Aj , Iij , T ): This encodes the cor-

relation between the interaction Iij and the relative motion between two atomic
motions Ai and Aj given all target associations T (more precisely the trajecto-
ries of Tk and Tl to which τi and τj belong, respectively). The relative motion is
encoded by the feature vector ψ and the potential Ψ(Ai, Aj , Iij , T ) is modelled
as:

Ψ(Ai, Aj , Iij , T ) =
∑

t∈TV

∑

a∈I
wa

ai · ψ(Ai, Aj , T, t;�tI) I(a, Iij) (5)

where ψ(Ai, Aj , T, t;�tI) is a vector representing the relative motion between
two targets within a temporal window (t−�tI , t+�tI) and wa

ai is the model
parameter for each class of interaction. The feature vector is designed to encode
the relationships between the locations, poses, and actions of two people. See
[29] for details. Note that since this potential incorporates information about the
location of each target, it is closely related to the problem of target association.
The same potential is used in both the activity classification and the multi-target
tracking components of our framework.

Atomic Prior Ψ(A): Assuming independence between pose and action, the

function is modelled as a linear sum of pose transition Ψp(A) and action tran-
sition Ψa(A). This potential function is composed of two functions that encode
the smoothness of pose and action. Each of them is parameterized as the co-
occurrence frequency of the pair of variables similar to Ψ(Iij).

Observations Ψ(A,O) =
∑

i Ψ(Ai, Oi) and Ψ(C,O): these model the compati-

bility of atomic (A) and collective (C) activity with observations (O). Details of
the features are explained in Sec.7.
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Fig. 3. The tracklet association problem is formulated as a min-cost flow network [15,
16]. The network graph is composed of two components: tracklets τ and path proposals
p. In addition to these two, we incorporate interaction potential to add robustness in
tracklet association. In this example, the interaction “standing-in-a-row” helps reinforce
the association between tracklets τ1 and τ3 and penalizes the association between τ1
and τ4.

4 Multiple Target Tracking

Our multi-target tracking formulation follows the philosophy of [30], where tracks
are obtained by associating corresponding tracklets. Unlike other methods, we
leverage the contextual information provided by interaction activities to make
target association more robust. Here, we assume that a set of initial tracklets,
atomic activities, and interaction activities are given. We will discuss the joint
estimation of these labels in Sec.5.

As shown in Fig.3, tracklet association can be formulated as a min-cost net-
work problem [15], where the edge between a pair of nodes represents a tracklet,
and the black directed edges represent possible links to match two tracklets. We
refer the reader to [15, 16] for the details of network-flow formulations.

Given a set of tracklets τ1, τ2, ..., τN where τi = {xτi(ti0), ..., xτi(tie)} and x(t)
is a position at t, the tracklet association problem can be stated as that of finding
an unknown numberM of associations T1, T2, ..., TM , where each Ti contains one
or more indices of tracklets. For example, one association may consist of tracklets
1 and 3: T1 = {1, 3}. To accomplish this, we find a set of possible paths between
two non-overlapping tracklets τi and τj . These correspond to match hypotheses

pkij = {xpk
ij
(tie + 1), ..., xpk

ij
(tj0 − 1)} where the timestamps are in the temporal

gap between τi and τj . The association Ti can be redefined by augmenting the
associated pair of tracklets τi and τj with the match hypothesis pij . For example,
T1 = {1, 3, 1-2-3} indicates that tracklet 1 and 3 form one track and the second
match hypothesis (the solid edge between τ1 and τ3 in Fig. 3) connects them.
Given human detections, we can generate match hypotheses using the K-shortest
path algorithm [31] (see [29] for details).

Each match hypothesis has an associated cost value ckij that represents the
validity of the match. This cost is derived from detection responses, motion cues,
and color similarity. By limiting the number of hypotheses to a relatively small
value of K, we prune out a majority of the exponentially many hypotheses that
could be generated by raw detections. If we define the cost of entering and exiting
a tracklet as cen and cex respectively, the tracklet association problem can be
written as :
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f̂ = argmin
f

cT f = argmin
f

∑

i

cenfen,i +
∑

i

cexfi,ex +
∑

i,j

∑

k

ckijf
k
ij

s.t. fen,i, fi,ex, f
k
ij ∈ {0, 1}, fen,i +

∑

j

∑

k

fk
ji = fi,ex +

∑

j

∑

k

fk
ij = 1

where f represent the flow variables, the first set of constraints is a set of bi-
nary constraints and the second one captures the inflow-outflow constraints (we
assume all the tracklets are true). Later in this paper, we will refer to S as the
feasible set for f that satisfies the above constraints. Once the flow variable f
is specified, it is trivial to obtain the tracklet association T through a mapping
function T (f). The above problem can be efficiently solved by binary integer
programming, since it involves only a few variables, with complexity O(KN)
where N (the number of tracklets) is typically a few hundred, and there are 2N
equality constraints. Note that the number of nodes in [15, 16] is usually in the
order of tens or hundreds of thousands.

One of the novelties of our framework lies in the contextual information that
comes from the interaction activity nodes. For the moment, assume that the
interactions It12 between A1 and A2 are known. Then, selecting a match hypoth-
esis fk

ij should be related with the likelihood of observing the interaction It12.
For instance, the red and blue targets in Fig.3 are engaged in the standing-in-
a-row interaction activity. If we select the match hypothesis that links red with
pink and blue with sky-blue (shown with solid edges), then the interaction will
be compatible with the links, since the distance between red and blue is simi-
lar to that between pink/sky-blue. However, if we select the match hypothesis
that links red with green, this will be less compatible with the standing-in-a-row
interaction activity, because the green/pink distance is less than the red/blue
distance, and people do not tend to move toward each other when they are in
a queue. The potential Ψ(I, A, T ) (Sec.3.2) is used to enforce this consistency
between interactions and tracklet associations.

5 Unifying Activity Classification and Tracklet
Association

The previous two sections present collective activity classification and multi-
target tracking as independent problems. In this section, we show how they can
be modelled in a unified framework. Let ŷ denote the desired solution of our
unified problem. The optimization can be written as:

ŷ = argmax
f,C,I,A

Ψ(C, I, A,O, T (f))︸ ︷︷ ︸
Sec.3

− cT f︸︷︷︸
Sec.4

, s.t. f ∈ S (6)

where f is the binary flow variables, S is the feasible set of f , and C, I, A are
activity variables. As noted in the previous section, the interaction potential
Ψ(A, I, T ) involves the variables related to both activity classification (A, I)
and tracklet association (T ). Thus, changing the configuration of interaction and
atomic variables affects not only the energy of the classification problem, but also
the energy of the association problem. In other words, our model is capable of



A Unified Framework for Tracking and Collective Activity Recognition 223

propagating the information obtained from collective activity classification to
target association and from target association to collective activity classification
through Ψ(A, I, T ).

5.1 Inference

Since the interaction labels I and the atomic activity labels A guide the flow of
information between target association and activity classification, we leverage
the structure of our model to efficiently solve this complicated joint inference
problem. The optimization problem Eq.6 is divided into two sub problems and
solved iteratively:

{Ĉ, Î, Â} = argmax
C,I,A

Ψ(C, I,A,O, T (f̂)) AND f̂ = argmin
f

c
T
f − Ψ(Î, Â, T (f)), s.t. f ∈ S (7)

Given f̂ (and thus T̂ ) the hierarchical classification problem is solved by applying
iterative Belief Propagation. Fixing the activity labels A and I, we solve the
target association problem by applying the Branch-and-Bound algorithm with
a tight linear lower bound (see below for more details).

Iterative Belief Propagation. Due to the high order potentials in our model

(such as the Collective-Interaction potential), the exact inference of the all vari-
ables is intractable. Thus, we propose an approximate inference algorithm that
takes advantage of the structure of our model. Since each type of variable forms
a simple chain in the temporal direction (see Fig.1), it is possible to obtain the
optimal solution given all the other variables by using belief propagation [32].
The iterative belief propagation algorithm is grounded in this intuition, and is
shown in detail in Alg.1.

Target Association Algorithm. We solve the association problem by us-

ing the Branch-and-Bound method. Unlike the original min-cost flow network
problem, the interaction terms introduce a quadratic relationship between flow
variables. Note that we need to choose at most two flow variables to specify one
interaction feature. For instance, if there exist two different tails of tracklets at
the same time stamp, we need to specify two of the flows out of seven flows
to compute the interaction potential as shown in Fig.3. This leads to a non-
convex binary quadratic programming problem which is hard to solve exactly
(the Hessian H is not a positive semi-definite matrix).

Algorithm 1. Iterative Belief Propagation

Require: Given association T̂ and observation O.
Initialize C0, I0, A0

while Convergence, k++ do
Ck ⇐ argmaxC Ψ(C, Ik−1, Ak−1, O, T̂ )
for all ∀i ∈ A do

Ak
i ⇐ argmaxA Ψ(Ck, Ik−1, A,Ak−1

\i , O, T̂ )

end for
for all ∀i ∈ I do

Ik
i ⇐ argmaxI Ψ(Ck, I, Ik−1

\i , Ak, O, T̂ )

end for
end while
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argmin
f

1

2
fTHf + cT f, s.t. f ∈ S (8)

To tackle this issue, we use a Branch-and-Bound (BB) algorithm with a novel
tight lower bound function given by hT f ≤ 1

2f
THf, ∀f ∈ S. See [29] for details

about variable selection, lower and upper bounds, and definitions of the BB
algorithm.

6 Model Learning

Given the training videos, the model is learned in a two-stage process: i) learning
the observation potentials Ψ(A,O) and Ψ(C,O). This is done by learning each
observation potential Ψ(·) independently using multiclass SVM [28]. ii) learning
the model weights w for the full model in a max-margin framework as follows.
Given a set of N training videos (xn, yn), n = 1, ..., N , where xn is the observa-
tions from each video and yn is a set of labels, we train the global weight w in a
max-margin framework. Specifically, we employ the cutting plane training algo-
rithm described in [33] to solve this optimization problem. We incorporate the
inference algorithm described in Sec.5.1 to obtain the most violated constraint
in each iteration [33]. To improve computational efficiency, we train the model
weights related to activity potentials first, and train the model weights related
to tracklet association using the learnt activity models.

7 Experimental Validation

Implementation Details. Our algorithm assumes that the inputs O are avail-
able. These inputs are composed of collective activity features, tracklets, appear-
ance feature, and spatio-temporal features as discussed in Sec.3.1. Given a video,
we obtain tracklets using a proper tracking method (see text below for details).
Once tracklets O are obtained, we compute two visual features (the histogram
of oriented gradients (HoG) decriptors [26] and the bag of video words (BoV)
histogram [17]) in order to classify poses and actions, respectively. The HoG is
extracted from an image region within the bounding box of the tracklets and
the BoV is constructed by computing the histogram of video-words within the
spatio-temporal volume of each tracklet. To obtain the video-words, we apply
PCA (with 200 dimensions) and the k-means algorithm (100 codewords) on the
cuboids obtained by [17]. Finally, the collective activity features are computed
using the STL descriptor [1] on tracklets and pose classification estimates. We
adopt the parameters suggested by [1] for STL construction (8 meters for max-
imum radius and 60 frames for the temporal support). Since we are interested
in labelling one collective activity per one time slice (i.e. a set of adjacent time
frames), we take the average of all collected STL in the same time slice to gener-
ate an observation for C. In addition, we append the mean of the HoG descriptors
obtained from all people in the scene to encode the shape of people in a certain
activity. Instead of directly using raw features from HoG, BoV, and STL, we
train multiclass SVM classifiers [33] for each of the observations to keep the size
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Table 1. Comparison of collective and interaction activity classification for different
versions of our model using the dataset [1] (left column) and the newly proposed dataset
(right column). The models we compare here are: i) Graph without OC . We remove
observations (STL [1]) for the collective activity. ii) Graph with no edges between C
and I . We cut the connections between variables C and I and produce separate chain
structures for each set of variables. iii) Graph with no temporal edges. We cut all the
temporal edges between variables in the graphical structure and leave only hierarchical
relationships. iv) Graph with no temporal chain between C variables. v) Our full model
shown in Fig.1.(d) and vi) baseline method. The baseline method is obtained by taking
the max response from the collective activity observation (OC).

Dataset [1] New Dataset

Method Ovral (C) Mean (C) Ovral (I) Mean (I) Ovral (C) Mean (C) Ovral (I) Mean (I)

without OC 38.7 37.1 40.5 37.3 59.2 57.4 49.4 41.1
no edges between C and I 67.7 68.2 42.8 37.7 67.8 54.6 42.4 32.8

no temporal chain 66.9 66.3 42.6 33.7 71.1 68.9 41.9 46.1
no temporal chain between C 74.1 75.0 54.2 48.6 77.0 76.1 55.9 48.6

full model (�tC = 20, �tI = 25) 79.0 79.6 56.2 50.8 83.0 79.2 53.3 43.7

baseline 72.5 73.3 - - 77.4 74.3 - -

Table 2. Comparison of classification results using different lengths of temporal sup-
port �tC and �tI for collective and interaction activities, respectively. Notice that in
general larger support provides more stable results.

Dataset [1] New Dataset

Method Ovral (C) Mean (C) Ovral (I) Mean (I) Ovral (C) Mean (C) Ovral (I) Mean (I)

�tC = 30,�tI = 25 79.1 79.9 56.1 50.8 80.8 77.0 54.3 46.3

�tC = 20,�tI = 25 79.0 79.6 56.2 50.8 83.0 79.2 53.3 43.7
�tC = 10,�tI = 25 77.4 78.2 56.1 50.7 81.5 77.6 52.9 41.8

�tC = 30,�tI = 15 76.1 76.7 52.8 40.7 80.7 71.8 48.6 34.8
�tC = 30, �tI = 5 79.4 80.2 45.5 36.6 77.0 67.3 37.7 25.7

of parameters within a reasonable bound. In the end, each of the observation
features is represented as a |P|, |A|, and |C| dimensional features, where each
dimension of the features is the classification score given by the SVM classifier.
In the experiments, we use the SVM response for C as a baseline method (Tab.1
and Fig.4).

Given tracklets and associated pose/action features O, a temporal sequence
of atomic activity variables Ai is assigned to each tracklet τi. For each pair of
coexisting Ai and Aj , Iij describes the interaction between the two. Since I is
defined over a certain temporal support (�tI), we sub-sample every 10th frames
to assign an interaction variable. Finally, one C variable is assigned in every
20 frames with a temporal support �tC . We present experimental results using
different choices of �tI and �tC , (Tab.2). Given tracklets and observations (O
and OC), the classification and target association take about a minute per video
in our experiments.

Datasets and Experimental Setup. We present experimental results on the
public dataset [1] and a newly proposed dataset. The first dataset is composed
of 44 video clips with annotations for 5 collective activities (crossing, waiting,
queuing, walking, and talking) and 8 poses (right, right-front, ..., right-back). In
addition to these labels, we annotate the target correspondence, action labels
and interaction labels for all sequences. We define the 8 types of interactions
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(a) baseline (b) ours (c) baseline (d) ours

Fig. 4. (a) and (b) shows the confusion table for collective activity using baseline
method (SVM response for C) and proposed method on dataset [1], respectively. (c)
and (d) compare the two methods on newly proposed dataset. In both cases, our full
model improves the accuracy significantly over the baseline method. The numbers on
top of each table show mean-per-class and overall accuracies.

as approaching (AP), leaving (LV), passing-by (PB), facing-each-other (FE),
walking-side-by-side (WS), standing-in-a-row (SR), standing-side-by-side (SS)
and no-interaction (NA). The categories of atomic actions are defined as: stand-
ing and walking. Due to a lack of standard experimental protocol on this dataset,
we adopt two experimental scenarios. First, we divide the whole set into 4 subsets
without overlap of videos and perform 4-fold training and testing. Second, we
divide the set into separate training and testing sets as suggested by [11]. Since
the first setup provides more data to be analysed, we run the main analysis with
the setup and use the second for comparison against [11]. In the experiments,
we use the tracklets provided on the website of the authors of [6, 1].

The second dataset is composed of 32 video clips with 6 collective activi-
ties: gathering, talking, dismissal, walking together, chasing, queueing. For this
dataset, we define 9 interaction labels: approaching (AP), walking-in-opposite-
direction (WO), facing-each-other (FE), standing-in-a-row (SR), walking-side-
by-side (WS), walking-one-after-the-other (WR), running-side-by-side (RS), runn
ing-one-after-the-other (RR), and no-interaction (NA). The atomic actions are
labelled as walking, standing still, and running. We define 8 poses similarly to
the first dataset. We divide the whole set into 3 subsets and run 3-fold training
and testing. For this dataset, we obtain the tracklets using [16] and create back
projected 3D trajectories using the simplified camera model [34].

Results and Analysis. We analyze the behavior of the proposed model by dis-
abling the connectivity between various variables of the graphical structure (see
Tab.1 and Fig.4 for details). We study the classification accuracy of collective
activities C and interaction activities I. As seen in the Tab.1, the best classifi-
cation results are obtained by our full model. Since the dataset is unbalanced,
we present both overall accuracy and mean-per-class accuracy, denoted as Ovral
and Mean in Tab.1 and Tab.2.

Next, we analyse the model by varying the parameter values that define the
temporal supports of collective and interaction activities (�tC and �tI). We
run different experiments by fixing one of the temporal supports to a reference
value and change the other. As any of the temporal supports becomes larger, the
collective and interaction activity variables are connected with a larger number
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Fig. 5. Anecdotal results on different types of collective activities. In each image, we
show the collective activity estimated by our method. Interactions between people are
denoted by the dotted line that connects each pair of people. To make the visualization
more clear, we only show interactions that are not labelled as NA (no interaction).
Anecdotal results on the dataset [1] and the newly proposed dataset are shown on the
top and bottom rows, respectively. Our method automatically discovers the interactions
occurring within each collective activity; Eg. walking-side-by-side (denoted as WS)
occurs with crossing or walking, whereas standing-side-by-side (SS) occurs with waiting.
See text for the definition of other acronyms.

of interactions and atomic activity variables, respectively, which provides richer
coupling between variables across labels of the hierarchy and, in turn, enables
more robust classification results (Tab.2). Notice that, however, by increasing
connectivity, the graphical structure becomes more complex and thus inference
becomes less manageable.

Since previous works adopt different ways of calculating the accuracy of the
collective activity classification, a direct comparison of the results may not be
appropriate. [1] and [2] adopt leave-one-video-out training/testing and evaluate
per-person collective activity classification. [11] train their model on three fourths
of the dataset, test on the remaining fourth and evaluate per-scene collective ac-
tivity classification. To compare against [1, 2], we assign the per-scene collective
activity labels that we obtain with four-fold experiments to each individual. We
obtain an accuracy of 74.4% which is superior than 65.9% and 70.9% reported
in [1] and [2], respectively. In addition, we run the experiments on the same
training/testing split of the dataset suggested by [11] and achieve competitive
accuracy (80.4% overall and 75.7% mean-per-class compared to 79.1% overall
and 77.5% mean-per-class, respectively, reported in [11]). Anecdotal results are
shown in Fig.5.

Tab.3 summarizes the tracklet association accuracy of our method. In this ex-
periment, we test three different algorithms for tracklet matching : pure match,
linear model, and full quadratic model. Match represents the max-flow method
without interaction potential (only appearance, motion and detection scores
are used). Linear model represents our model where the quadratic relationship
is ignored and only the linear part of the interaction potentials is considered
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(a) (b)

Fig. 6. The discovered interaction standing-side-by-side (denoted as SS) helps to keep
the identity of tracked individuals after an occlusion. Notice the complexity of the
association problem in this example. Due to the proximity of the targets and similarity
in color, the Match method (b) fails to keep the identity of targets. However, our
method (a) finds the correct match despite the challenges. The input tracklets are
shown as a solid box and associated paths are shown in dotted box.

Table 3. Quantitative tracking results and comparison with baseline methods (see text
for definitions). Each cell of the table shows the number of match errors and Match
Error Correction Rate (MECR) # error in tracklet − # error in result

# error in tracklet
of each method,

respectively. Since we focus on correctly associating each tracklet with another, we
evaluate the method by counting the number of errors made during association (rather
than detection-based accuracy measurements such as recall, FPPI, etc) and MECR.
An association error is defined for each possible match of a tracklet (thus at most
two per tracklets, previous and next match). This measure can effectively capture the
amount of fragmentization and identity switches in association. In the case of a false
alarm tracklet, any association with this track is considered to be an error.

Match (baseline) Linear (partial model) Quadratic (full model) Linear GT Quad. GT Tracklet

Dataset [1] 1109/28.73% 974/37.40% 894/42.54% 870/44.09% 736/52.70% 1556/0%
New Dataset 110/81.79% 107/82.28% 104/82.78% 97/83.94% 95/84.27% 604/0%

(e.g. those interactions that are involved in selecting only one path). The
Quadratic model represents our full Branch-and-Bound method for target as-
sociation. The estimated activity labels are assigned to each variable for the two
methods. We also show the accuracy of association when ground truth (GT)
activity labels are provided, in the fourth and fifth columns of the table. The
last column shows the number of association errors in the initial input track-
lets. In these experiments, we adopt the same four fold training/testing and three
fold training/testing for the dataset [1] and newly proposed dataset, respectively.
Note that, in the dataset [1], there exist 1821 tracklets with 1556 match errors in
total. In the new dataset, which includes much less crowded sequences than [1],
there exist 474 tracklets with 604 errors in total. As the Tab.3 shows, we achieve
significant improvement over baseline method (Match) using the dataset [1] as
it is more challenging and involves a large number of people (more information
from interactions). On the other hand, we observe a smaller improvement in
matching targets in the second dataset, since it involves few people (typically
2 ∼ 3) and is less challenging (note that the baseline (Match) already achieves
81% correct match). Experimental results obtained with ground truth activity
labels (Linear GT and Quad. GT ) suggest that better activity recognition would
yield more accurate tracklet association. Anecdotal results are shown in Fig.6.
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8 Conclusion

In this paper, we present a new framework to coherently identify target associa-
tions and classify collective activities. We demonstrate that collective activities
provide critical contextual cues for making target association more robust and
stable; in turn, the estimated trajectories as well as atomic activity labels allow
the construction of more accurate interaction and collective activity models.

Acknowledgement. We acknowledge the support of the ONR grant N00014111
0389 and Toyota. We appreciate Yu Xiang for his valuable discussions.
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Abstract. This paper considers and solves the problem of estimating camera
pose given a pair of point-tangent correspondences between the 3D scene and the
projected image. The problem arises when considering curve geometry as the ba-
sis of forming correspondences, computation of structure and calibration, which
in its simplest form is a point augmented with the curve tangent. We show that
while the standard resectioning problem is solved with a minimum of three points
given the intrinsic parameters, when points are augmented with tangent informa-
tion only two points are required, leading to substantial computational savings,
e.g., when used as a minimal engine within RANSAC. In addition, computational
algorithms are developed to find a practical and efficient solution shown to effec-
tively recover camera pose using both synthetic and realistic datasets. The reso-
lution of this problem is intended as a basic building block of future curve-based
structure from motion systems, allowing new views to be incrementally registered
to a core set of views for which relative pose has already been computed.

Keywords: Pose Estimation, Camera Resectioning, Differential Geometry.

1 Introduction

A key problem in the reconstruction of structure from multiple views is the determina-
tion of relative pose among cameras as well as the intrinsic parameters for each camera.
The classical method is to rely on a set of corresponding points across views to deter-
mine each camera’s intrinsic parameter matrix Kim as well as the relative pose between
pairs of cameras [11]. The set of corresponding points can be determined using a cali-
bration jig, but, more generally, using isolated keypoints such as Harris corners [10] or
SIFT/HOG [17] features which remain somewhat stable over view and other variations.
As long as there is a sufficient number of keypoints between two views, a random se-
lection of a few feature correspondences using RANSAC [7,11] can be verified by mea-
suring the number of inlier features. This class of isolated feature point-based methods
are currently in popular and successful use through packages such as the Bundler and
used in applications such as Phototourism [1].
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Fig. 1. (a) Views with wide baseline separation may not have enough interest points in common,
but they often do share common curve structure. (b) There may not always be sufficient interest
points matching across views of homogeneous objects, such as for the sculpture, but there is
sufficient curve structure. (c) Each moving object requires its own set of features, which may not
be sufficient without a richly textured surface. (d) Non-rigid structures face the same issue.

Two major drawbacks limit the applicability of interest points. First, it is well-known
that in practice the correlation of interest points works for views with a limited baseline,
according to some estimates no greater than 30◦ [18], Figure 1(a). In contrast, certain
image curve fragments, e.g., those corresponding to sharp ridges, reflectance curves,
etc, persist stably over a much larger range of views. Second, the success of interest
point-based methods is based on the presence of an abundance of features so that a suf-
ficient number of them survive the various variations between views. While this is true
in many scenes, as evidenced by the popularity of this approach, in a non-trivial number
of scenes this is not the case, such as (i) Homogeneous regions, e.g., from man-made
objects, corridors, etc., Figure 1(b); (ii) Multiple moving objects require their own set of
features which may not be sufficiently abundant without sufficient texture, Figure 1(c);
(iii) Non-rigid objects require a rich set of features per roughly non-deforming patch,
Figure 1(d). In all these cases, however, there is often sufficient image curve structure,
motivating augmenting the use of interest points by developing a parallel technology for
the use of image curve structure.
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(a)

Fig. 2. Real challenges in using curve fragments in multiview geometry: (a) instabilities with
slight changes in viewpoint, shown for two views in (b) and zoomed in (c-h), such as a curve in
one view broken into two in another, a curve linked onto background, a curve detected in one view
but absent in another, a curve fragmented into several pieces at junctions in one view but fully
linked in another, different parts of a curve occluded in different views, and a curve undergoing
deformation from one view to the other. (i) Point correspondence ambiguity along the curve.

The use of image curves in determining camera pose has generally been based on
epipolar tangencies, but these techniques assume that curves are closed or can be de-
scribed as conics or other algebraic curves [14, 15, 19, 21]. The use of image curve
fragments as the basic structure for auto-calibration under general conditions is faced
with two significant challenges. First, current edge linking procedures do not generally
produce curve segments which persist stably across images. Rather, an image curve
fragment in one view may be present in broken form and/or or grouped with other curve
fragments. Thus, while the underlying curve geometry correlates well across views, the
individual curve fragments do not, Figure 2(a-h). Second, even when the image curve
fragments correspond exactly, there is an intra-curve correspondence ambiguity, Fig-
ure 2(i). This ambiguity prevents the use of corresponding curve points to solve for the
unknown pose and intrinsic parameters. Both these challenges motivate the use of small
curve fragments.

The paradigm explored in this paper is that small curve fragments, or equivalently
points augmented with differential-geometric attributes1, can be used as the basic image
structure to correlate across views. The intent is to use curve geometry as a complemen-
tary approach to the use of interest points in cases where these fail or are not available.
The value of curve geometry is in correlating structure across three frames or more

1 Previous work in exploring local geometric groupings [22] has shown that tangent and curva-
ture as well as the sign of curvature derivative can be reliably estimated.
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Fig. 3. The problem of determining camera pose R, T given space curves in a world coordinate
system and their projections in an image coordinate system (left), and an approach to that consist-
ing of (right) determining camera pose R, T given 3D point-tangents (i.e., local curve models)
in a world coordinate system and their projections in an image coordinate system.

since the correspondence geometry in two views is unconstrained. The differential ge-
ometry at two corresponding points in two views reconstruct the differential geometry
of the space curve they arise from [4] and this constrains the differential geometry of
corresponding curves in a third view.

The fundamental questions underlying the use of points augmented with differential-
geometric attributes are: how many such points are needed, what order of differential
geometry is required, etc. This paper explores the use of first-order differential geome-
try, namely points with tangent attributes, for determining the pose of a single camera
with respect to the coordinates of observed 3D point-tangents. It poses and solves the
following:

Problem: For a camera with known intrinsic parameters, how many corresponding
pairs of point-tangents in space specified in world coordinates, and point-tangents in
2D specified in image coordinates, are required to establish the pose of the camera with
respect to the world coordinates, Figure 3.

The solution to the above problem is useful under several scenarios. First, when many
views of the scene are available and there is a reconstruction available from two views,
e.g., as in [5]. In this case a pair of point-tangents in the reconstruction can be matched
under a RANSAC strategy to a pair of point-tangents in the image to determine pose. The
advantage as compared to using three points from unorganized point reconstruction and
resectioning is that (i) there are fewer edges than surface points and (ii) the method uses
two rather than three points in RANSAC, requiring about half the number of runs for the
same level of robustness, e.g., 32 runs instead of 70 to achieve 99.99% probability of
not hitting an outlier in at least one run, assuming 50% outliers (in practical systems
it is often necessary to do as many runs as possible, to maximize robustness). Second,
the 3D model of the object may be available from CAD or other sources, e.g., civilian
or military vehicles. In this case a strategy similar to the first scenario can be used.
Third, in stereo video sequences obtained from precisely calibrated binocular cameras,
the reconstruction from one frame of the video can be used to determine the camera
pose in subsequent frames.
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2 Related Work

Previous work has generally relied on matching epipolar tangencies on closed curves.
Two corresponding points γ1 in image 1 and γ2 in image 2 are related by γ2�Eγ1 = 0,
where E is the essential matrix [16]. This can be extended to the differential geometry
of two curves, γ1(s) in the first view and a curve γ2(s) in a second view, i.e.,

γ1�(s)Eγ2(s) = 0. (2.1)

The tangents t1(s) and t2(s) are related by differentiation

g1(s)t1
�
(s)Eγ2(s) + γ1�(s)Eg2(s)t2(s) = 0, (2.2)

where g1(s) and g2(s) are the respective speeds of parametrization of the curves γ1(s)
and γ2(s). It is clear that when one of the tangents t1(s) is along the epipolar plane,
i.e., t1

�
(s)Eγ2(s) = 0 at a point s, then γ1�(s)Et2(s) = 0. Thus, epipolar tangency

in image 1 implies tangency in image 2 at the corresponding point, Figure 4.

Fig. 4. Correspondence of epipolar tangencies in curve-based camera calibration. An epipolar line
on the left must correspond to the epipolar line on the right having tangency on the corresponding
curve, marked with the same color. This works for both static curves and occluding contours.

The epipolar tangency constraint was first proposed in [19] who use linked edges and
a coarse initial estimate E to find a sparse set of epipolar tangencies, including those
at corners, in each view. They are matched from one view to another manually. This is
then used to refine the estimate E, see Figure 5, by minimizing γ1�(s)Eγ2(s) over all
matches in an iterative two-step scheme: the corresponding points are kept fixed and E
is optimized in the first step and then E is kept fixed and the points are updated in a

Fig. 5. The differential update of epipolar tangencies through curvature information
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second step using a closed form solution based on an approximation of the curve as the
osculating circle. This assumes that closed curves are available.

Kahl and Heyden [14] consider the special case when four corresponding conics are
available in two views with unknown intrinsic parameters. In this approach, each pair of
corresponding conics provides a pair of tangencies and therefore two constraints. Four
pairs of conics are needed. If the intrinsic parameters are available, then the absolute
conic is known giving two constraints on the epipolar geometry, so that only 3 conic
correspondences are required. This approach is only applied to synthetic data which
shows the scheme to be extremely sensitive even when a large number of conics (50) is
used. Kaminski and Shashua [15] extended this work to general algebraic curves viewed
in multiple uncalibrated views. Specifically, they extend Kruppa’s equations to describe
the epipolar constraint of two projections of a general algebraic curve. The drawback
of this approach is that algebraic curves are restrictive.

Sinha et. al. [21] consider a special configuration where multiple static cameras view
a moving object. Since the epipolar geometry between any pair of cameras is fixed,
each hypothesized pair of epipoles representing a point in 4D is then probed for a pair
of epipolar tangencies across video frames. Specifically, two pairs of tangencies in one
frame in time and a single pair of tangencies in another frame provide a constraint in
that they must all intersect in the same point. This allows for an estimation of epipolar
geometry for each pair of cameras, which are put together for refinement using bundle
adjustment, providing intrinsic parameters and relative pose. This approach, however,
is restrictive in assuming well-segmentable silhouettes.

We should briefly mention the classic results that three 2D-3D point correspondences
are required to determine camera pose [7], in a procedure known as camera resectioning
in the photogrammetry literature (and by Hartley and Zisserman [11]), also known as
camera calibration when this is used with the purpose of obtaining the intrinsic param-
eter matrix Kim, where the camera pose relative to the calibration jig is not of interest.
This is also related to the perspective n-point problem (PnP) originally introduced in [7]
which can be stated as the recovery of the camera pose from n corresponding 3D-2D
point pairs [12] or alternatively of depths [9].

Notation: Consider a sequence of n 3D points (Γw
1 ,Γ

w
2 , . . . ,Γ

w
n ), described

in the world coordinate system and their corresponding projected image points
(γ1,γ2, . . . ,γn) described as points in the 3D camera coordinate system. Let the rota-
tion R and translation T relate the camera and world coordinate systems through

Γ = RΓw + T , (2.3)

where Γ and Γw are the coordinates of a point in the camera and world coordinate
systems, respectively. Let (ρ1, ρ2, . . . , ρn) be the depth defined by

Γ i = ρiγi, i = 1, . . . , n. (2.4)

In general we assume that each point γi is a sample from an image curve γi(si) which
is the projection of a space curve Γ i(Si), where si and Si are arclengths along the
image and space curves, resp.
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The direct solution to P3P, also known as the triangle pose problem, given in 1841 [8],
equates the sides of the triangle formed by the three points with those of the vectors in
the camera domain, i.e.,

⎧
⎪⎨

⎪⎩

‖ρ1γ1 − ρ2γ2‖2 = ‖Γw
1 − Γw

2 ‖2

‖ρ2γ2 − ρ3γ3‖2 = ‖Γw
2 − Γw

3 ‖2

‖ρ3γ3 − ρ1γ1‖2 = ‖Γw
3 − Γw

1 ‖2
(2.5)

This gives a system of three quadratics (conics) in unknowns ρ1, ρ2, and ρ3. Following
traditional methods going back to the German mathematician Grunert in 1841 [8] and
later Finsterwalder in 1937 [6], by factoring out one depth, say ρ1, this can be reduced
to a system of two quadratics in two unknowns – depth ratios ρ2

ρ1
and ρ3

ρ1
. Grunert fur-

ther reduced this to a single quartic equation and Finsterwalder proposed an analytic
solution.

Table 1. The number of 3D–2D point correspondences needed to solve for camera pose and
intrinsic parameters

Case Unknowns Min. # of Point Corresp. Min. # of Pt-Tgt Corresp.

Calibrated (Kim known) Camera pose R,T 3 2 (this paper)

Focal length unknown Pose R, T and f 4 3 (conjecture)

Uncalibrated (Kim unknown) Camera model Kim, R, T 6 4 (conjecture)

In general, the camera resectioning problem can be solved using three 3D ↔ 2D
point correspondences when the intrinsic parameters are known, and six points when
the intrinsic parameters are not known. It can be solved using four point correspon-
dences when only the focal length is unknown, but all the other intrinsic parameters are
known [3], Table 1. We now show that when intrinsic parameters are known, only a
pair of point-tangent correspondences are required to estimate camera pose. We
conjecture that future work will show that 3 and 4 points, respectively, are required for
the other two cases, Table 1. This would represent a significant reduction for a RANSAC-
based computation.

3 Determining Camera Pose from a Pair of 3D–2D Point-Tangent
Correspondences

Theorem 1. Given a pair of 3D point-tangents {(Γw
1 ,T

w
1 ), (Γ

w
2 ,T

w
2 )} described in a

world coordinate system and their corresponding perspective projections, the 2D point-
tangents (γ1, t1), (γ2, t2), the pose of the camera R, T relative to the world coordi-
nate system defined by Γ = RΓw+T can be solved up to a finite number of solutions2,
by solving the system

{
γ�
1 γ1 ρ

2
1 − 2γ�

1 γ2 ρ1ρ2 + γ�
2 γ2 ρ

2
2 = ‖Γw

1 − Γw
2 ‖2,

Q(ρ1, ρ2) = 0,
(3.1)

2 assuming that the intrinsic parameters Kim are known
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where RΓw
1 + T = Γ 1 = ρ1γ1 and RΓw

2 + T = Γ 2 = ρ2γ2, and Q(ρ1, ρ2) is an
eight degree polynomial. This then solves for R and T as

⎧
⎪⎪⎨

⎪⎪⎩

R =
[
(Γw

1 − Γw
2 ) T

w
1 Tw

2

]−1 ·
[

ρ1γ1 − ρ2γ2 ρ1
g1
G1

t1 +
ρ′
1

G1
γ1 ρ2

g2
G2

t2 +
ρ′
2

G2
γ2

]

T = ρ1γ1 −RΓw
1 ,

where expressions for four auxiliary variables g1
G1

and g2
G2

, the ratio of speeds in the
image and along the tangents, and ρ1 and ρ2 are available.

Proof. We take the 2D-3D point-tangents as samples along 2D-3D curves, respec-
tively, where the speed of parametrization along the image curves are g1 and g2 and
along the space curves G1 and G2. The proof proceeds by (i) writing the projec-
tion equations for each point and its derivatives in the simplest form involving R,
T , depths ρ1 and ρ2, depth derivatives ρ′1 and ρ′2, and speed of parametrizations G1

and G2, respectively; (ii) eliminating the translation T by subtracting point equations;
(iii) eliminating R using dot products among equations. This gives six equations in

six unknowns: (ρ1, ρ2, ρ1
g1
G1

, ρ2
g2
G2

,
ρ′
1

G1
,
ρ′
2

G2
); (iv) eliminating the unknowns ρ′1 and ρ′2

gives four quadratic equations in four unknowns: (ρ1, ρ2, ρ1
g1
G1

, ρ2
g2
G2

). Three of these
quadratics can be written in the form:

⎧
⎪⎨

⎪⎩

Ax2
1 +Bx1 + C = 0

Ex2
2 + Fx2 +G = 0

H + Jx1 +Kx2 + Lx1x2 = 0,

(3.2)

(3.3)

(3.4)

where x1 = ρ1
g1
G1

and x2 = ρ2
g2
G2

and where A through L are only functions of the
two unknowns ρ1 and ρ2. Now, Eq. 3.4 represents a rectangular hyperbola, Fig. 6, while
Eqs. 3.2 and 3.3 vertical and horizontal lines in the (x1, x2) space. Fig. 6 illustrates that
only one solution is possible which is then analytically written in terms of variables
A–L (not shown here). This allows expressing ρ1

g1
G1

and ρ2
g2
G2

in terms of ρ1 and ρ2 –
a degree 16 polynomial – but this is in fact divisible by ρ41ρ

4
2, leaving a polynomial Q

of degree 8. Furthermore, we find that Q(−ρ1,−ρ2) = Q(ρ1, ρ2), using the symmetry
of the original equations. This, together with the unused equation (the remaining one of
four) gives the system 3.1. The detailed proof is given in the supplementary material.

Proposition 1. The algebraic solutions to the system (3.1) of Theorem 1 are also re-
quired to satisfy the following inequalities arising from imaging and other requirements
enforced by

ρ1 > 0, ρ2 > 0 (3.5)
g1
G1

> 0,
g2
G2

> 0 (3.6)

det[ρ1γ1 − ρ2γ2 ρ1
g1
G1

t1 +
ρ′1
G1

γ1 ρ2
g2
G2

t2 +
ρ′2
G2

γ2]

det
[
Γw

1 − Γw
2 Tw

1 Tw
2

] > 0. (3.7)
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Fig. 6. Diagram of the mutual intersection of Equations 3.2–3.4 in the x1–x2 plane

Proof. There are multiple solutions for ρ1 and ρ2 in Eq. 3.1. Observe that if ρ1, ρ2, R, T
are a solution, then so are −ρ1, −ρ2, −R, and −T . Only one of these two solutions are
valid, as the camera geometry enforces positive depth, ρ1 > 0 and ρ2 > 0; solutions are
sought only in the top right quadrant of the ρ1–ρ2 space. In fact, the imaging geometry
further restricts the points to lie in front of the camera.

Second, observe that the matrix R can only be a rotation matrix if it has determinant
+1 and is a reflection if it has determinant −1. Using (3.2), det(R) can be written as

detR =
det

[
ρ1γ1 − ρ2γ2 ρ1

g1
G1

t1 +
ρ′1
G1

γ1 ρ2
g2
G2

t2 +
ρ′2
G2

γ2

]

det
[
Γw

1 − Γw
2 Tw

1 Tw
2

] .

Finally, the space curve tangent T and the image curve tangent t must point in the same
direction: T · t > 0, or, as in the supplementary material, g1

G1
> 0 and g2

G2
> 0.

4 A Practical Approach to Computing a Solution

Equations 3.1 can be viewed as the intersection of two curves in the ρ1−ρ2 space. Since
one of the curves to be intersected is shown to be an ellipse, it is possible to parametrize
it by a bracketed parameter and then look for intersections with the second curve which
is of degree 8. This gives a higher-order polynomial in a single unknown which can be
solved more readily than simultaneously solving the two equations of degree 2 and 8.

Proposition 2. Solutions ρ1 and ρ2 to the quadratic equation in (3.1) can be
parametrized as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ1(t) =
2αt cos θ + β(1− t2) sin θ

1 + t2

ρ2(t) =
−2αt sin θ + β(1 − t2) cos θ

1 + t2
,

−1 ≤ t ≤ 1

where

tan(2θ) =
2(1 + γ�

1 γ2)

γ�
1 γ1 − γ�

2 γ2

, 0 ≤ 2θ ≤ π,
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and

α =

√
2‖Γw

1 − Γw
2 ‖

√
(γ�

1
γ1 + γ�

2
γ2) + (γ�

1
γ1 − γ�

2
γ2) cos(2θ) + 2γ�

1
γ2 sin(2θ)

, α > 0,

β =

√
2‖Γw

1 − Γw
2 ‖

√
(γ�

1
γ1 + γ�

2
γ2) − (γ�

1
γ1 − γ�

2
γ2) cos(2θ) − 2γ�

1
γ2 sin(2θ)

, β > 0.

Proof. An ellipse centered at the origin with semi-axes of lengths α > 0 and β > 0 and
parallel to the coordinates x and y can be parametrized as

x =
2t

1 + t2
α, y =

(1− t2)

1 + t2
β, t ∈ (−∞,∞), (4.1)

with ellipse vertices identified at t = −1, 0, 1 and ∞, as shown in Figure 7. For a gen-
eral ellipse centered at the origin, the coordinates must be multiplied with the rotation
matrix for angle θ, obtaining

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ1 =
2αt cos θ + β(1− t2) sin θ

1 + t2

ρ2 =
−2αt sin θ + β(1− t2) cos θ

1 + t2
.

−1 ≤ t ≤ 1

Figure 7 illustrates this parametrization. Notice that the range of values of t we need
to consider certainly lies in [−1, 1] and in fact in a smaller interval where ρ1 > 0 and
ρ2 > 0. Note that t and − 1

t correspond to opposite points on the ellipse.
The parameters α, β, and θ for the ellipse in (3.1) can then be found by substitution

of ρ1 and ρ2, details of which are found in the supplementary material.

Both equations in (3.1) are symmetric with respect to the origin in the (ρ1, ρ2)-plane
and the curves will intersect in at most 2 × 8 = 16 real points, at most 8 of which will
be in the positive quadrant, as we in fact require ρ1 > 0 and ρ2 > 0.

The parametrization of the ellipse given in Proposition 2 allows us to reduce the two
Equations 3.1 to a single polynomial equation in t. Substituting for ρ1, ρ2 in terms of t

Fig. 7. Diagram illustrating a parametrization of the ellipse by a parameter t
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into Q = 0 gives an equation in t for which, in fact, all the denominators are (1+ t2)12,
so that these can be cleared leaving a polynomial in Q̃(t) of degree 16. The symmetry
with respect to the origin in the (ρ1, ρ2)-plane becomes, in terms of t, a symmetry with
respect to the substitution t → −1/t, which gives diametrically opposite points of the
ellipse. This implies that Q̃ has the special form

Q̃(t) = q0 + q1t+ q2t
2 + · · ·+ q16t

16, (4.2)

where qi = −q16−i for i odd. At most 8 solutions will lie in the range −1 < t ≤ 1, and
indeed we are only interested in solutions which make ρ1 > 0 and ρ2 > 0.

5 Experiments

We use two sets of experiments to probe camera pose recovery using 2D-3D point-
tangent correspondences. First, we use a set of synthetically generated 3D curves con-
sisting of a variety of curves (helices, parabolas, ellipses, straight lines, and saddle
curves), as shown in Figure 8. Second, we use realistic data.

Fig. 8. Sample views of the synthetic dataset. Real datasets have also been used in our experi-
ments, reported in further detail in the supplemental material.

The synthetic 3D curves of Figure 8 are densely sampled and projected to a single
500 × 400 view, and their location and tangent orientation are perturbed to simulate
measurement noise in the range of 0 − 2 pixels in location and 0 − 10◦ in orientation.
Our expectation in practice using the publically available edge detector [22] is that the
edges can be found with subpixel accuracy and edge orientations are accurate to less
than 5◦.

In order to simulate the intended application, pairs of 2D-3D point-tangent corre-
spondences are selected in a RANSAC procedure from among 1000 veridical ones, to
which 50% random spurious correspondences were added. The practical method dis-
cussed in Section 4 is used to determine the pose of the camera (R, T ) inside the
RANSAC loop. Each step takes 90ms in Matlab on a standard 2GHz dual-core laptop.
What is most significant, however, is that only 17 runs are sufficient to get 99% proba-
bility of hitting an outlier-free correspondence pair, or 32 runs for 99.99% probability.
In practice more runs can easily be used depending on computational requirements. To
assess the output of the algorithm, we could have measured the error of the estimated
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pose compared to the ground truth pose. However, what is more meaningful is the im-
pact of the measured pose on the measured reprojection error, as commonly used in the
field to validate the output of RANSAC-based estimation. Since this is a controlled exper-
iment, we measure final reprojection error not just to the inlier set, but to the entire pool
of 1000 true correspondences. In practice, a bundle-adjustment would be run to refine
the pose estimate using all inliers, but we chose to report the raw errors without nonlin-
ear least-squares refinement. The distribution of reprojection error is plotted for various
levels of measurement noise, Figure 9. These plots show that the relative camera pose
can be effectively determined for a viable range of measurement errors, specially since
these results are typically optimized in practice through bundle adjustment. Additional
information can be found in the supplemental material.
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Fig. 9. Distributions of reprojection error for synthetic data without bundle adjustment, for in-
creasing levels of positional and tangential perturbation in the measurements. Additional results
are reported in the supplemental material.

Second, we use data from a real sequence, the “Capitol sequence”, which is a set
of 256 frames covering a 90◦ helicopter fly-by from the Rhode Island State Capitol,
Figure 2, using a High-Definition camera (1280× 720). Intrinsic parameters were ini-
tialized using the Matlab Calibration toolbox from J. Bouguet (future extension of this
work would allow for an estimation of intrinsic parameters as well). The camera param-
eters were obtained by running Bundler [1] essentially out-of-the-box, with calibration
accuracy of 1.3px. In this setup, a pair of fully calibrated views are used to reconstruct
a 3D cloud of 30 edges from manual correspondences. Pairs of matches from 3D edges
to observed edges in novel views are used with RANSAC to compute the camera pose
with respect to the frame of the 3D points, and measure reprojection error. One can then
either use multiple pairs or use bundle adjustment to improve the reprojection error re-
sulting from our initial computation of relative pose. Figure 10 shows the reprojection
error distribution of our method for a single point-tangent pair after RANSAC, before
and after running bundle-adjustment, versus the dataset camera from bundler (which is
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Fig. 10. The reprojection error distribution for real data (Capitol sequence) using only two point-
tangents, before and after bundle adjustment. Additional results are reported in the supple-
mental material.

bundle-adjusted), for the Capitol sequence. The proposed approach achieved an average
error of 1.1px and 0.76px before and after a metric bundle adjustment, respectively, as
compared to 1.3px from Bundler. Additional information and results can be found in
the supplemental material.

6 Future Directions

The paper can be extended to consider the case when intrinsic parameters are unknown.
Table 1 conjectures that four pairs of corresponding 3D-2D point-tangents are suffi-
cient to solve this problem. Also, we have been working on the problem of determining
trinocular relative pose from corresponding point-tangents across 3 views. We conjec-
ture that three triplets of correspondences among the views are sufficient to establish
relative pose. This would allow for a complete curve-based structure from motion sys-
tem starting from a set of images without any initial calibration.
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Beyond Feature Points: Structured Prediction

for Monocular Non-rigid 3D Reconstruction
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Abstract. Existing approaches to non-rigid 3D reconstruction either
are specifically designed for feature point correspondences, or require
a good shape initialization to exploit more complex image likelihoods.
In this paper, we formulate reconstruction as inference in a graphical
model, where the variables encode the rotations and translations of the
facets of a surface mesh. This lets us exploit complex likelihoods even in
the absence of a good initialization. In contrast to existing approaches
that set the weights of the likelihood terms manually, our formulation
allows us to learn them from as few as a single training example. To
improve efficiency, we combine our structured prediction formalism with
a gradient-based scheme. Our experiments show that our approach yields
tremendous improvement over state-of-the-art gradient-based methods.

1 Introduction

Monocular non-rigid surface reconstruction has received increasing attention in
recent years. Existing approaches to tackling this problem can be classified into
(i) non-rigid structure-from-motion techniques [4,27,8] that exploit the availabil-
ity of multiple images of different deformations to reconstruct both 3D points
and camera motion, and (ii) template-based methods [23,18,5] that rely on a
reference image with known 3D shape to perform reconstruction from a single
additional image of the deformed surface. In most cases, the aforementioned
methods are specifically designed to handle feature point correspondences, and
as a consequence, cannot make use of richer image information, such as full sur-
face texture, or surface boundaries. More importantly, these methods become
unsuitable when too few feature points can be reliably detected and matched.

Several attempts have been proposed to leverage more complex image likeli-
hoods [20,21]. However, the resulting methods rely on gradient-based optimiza-
tion schemes that can easily get trapped in the many local maxima of these
complex, non-smooth likelihoods. As a consequence, these methods have only
been used either for frame-to-frame tracking, where the previous frame provides
a good initialization [20], or when large amounts of training data are available
to learn a discriminative predictor that produces a good initialization [21].

In contrast, in this paper we propose to employ a global optimization frame-
work to exploit complex image likelihoods for monocular non-rigid reconstruc-
tion. As our optimization is more global than gradient-based methods, it is also
more robust to local maxima, thus yielding accurate reconstructions even in the
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Gradient-based method Our approach

Fig. 1. Reconstructing a piece of cardboard from a single input image. (Left)
Reconstruction obtained with a gradient-based method. (Right) Our reconstruction.

absence of a good initialization, as illustrated in Fig. 1. More specifically, we
represent a surface as a triangulated mesh and formulate the 3D reconstruc-
tion problem as inference in a conditional Markov random field (CRF), where
the variables to recover are the rotations and translations of the individual mesh
facets. To handle such continuous variables, we adopt particle convex belief prop-
agation [16] as our inference algorithm: We iteratively draw random samples
around the current solution for each variable, compute the MAP estimate of
the discrete CRF defined by these samples using convex belief propagation [12],
and update the current solution with this MAP estimate. This strategy lets us
effectively explore the 3D shape space even when no good initialization is pro-
vided. Furthermore, given very few training pairs of images and 3D shapes, we
employ a structured prediction learning algorithm [11] to find the weights of the
individual terms in the likelihood, thus avoiding having to set them manually as
is traditionally done in 3D reconstruction algorithms (e.g., [20,18,21,5]).

To reduce the computational burden of performing global optimization on
large graphs (i.e., fine meshes), we introduce a coarse-to-fine scheme that com-
bines the advantages of global optimization and gradient-based approaches. Our
strategy consists in first performing structured prediction with a coarse mesh,
and then using the coarse solution as initialization to a gradient-based method.
Since our coarse structured prediction yields a good initial shape estimate, this
strategy has proven very effective in practice. We demonstrate the benefits of
our approach in a variety of scenarios ranging from well-textured surfaces to
very poorly-textured ones. Comparison against gradient-based techniques clearly
shows that our approach is much better adapted to 3D reconstruction from a
single image than state-of-the-art methods.

2 Related Work

Monocular non-rigid 3D shape recovery is a very challenging problem with many
ambiguities due to noisy measurements, as well as to the wide range of deforma-
tions that objects may undergo. Throughout the years, approaches to tackling
this problem have evolved, starting from the early methods that attempted to
model the physical behavior of deformable surfaces [13,17,14,15], to the more
recent ones that tried to learn this behavior from data [6,3].

In recent years, two main trends have emerged for non-rigid 3D shape
recovery: Non-rigid structure-from-motion (NRSfM) and template-based
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reconstruction. NRSfM techniques [4,27,25,1,8] work under the assumption that
multiple images of the surface undergoing different deformations are available.
These methods try to recover the 3D locations of feature points, as well as the
cameramotion. As in our approach, [24] also reconstructs individual triangles, but
in the NRSfM setting. [19] utilizes discrete optimization for NRSfM. However,
their discrete problem is not directly for reconstruction purposes, but only to as-
sign feature points to local patches. As opposed to NRSfM, template-based ap-
proaches [23,18,5] work with a single input image, but assume that the camera
is calibrated and that a reference image with known surface shape is available. A
successful shape prior in these methods is to encourage the surface to deform iso-
metrically. Our work falls into the template-based category and exploits a similar
isometry prior. However, whereas all the above-mentionedmethods rely on feature
points, our approach lets us exploit much richer image information.

Techniques that employ different sources of information, such as shading [26]
or contours [10], have been developed. However, contour-based approaches are
only applicable to a specific class of surfaces, and shape-from-shading methods
make strong assumptions on the lighting conditions. More directly related to
our approach are the methods of [20,21], where general image losses were also
employed. However, due to the non-convexity of such losses and the use of a
gradient-based method, [20] was only applied in a frame-to-frame tracking sce-
nario. Furthermore, both techniques heavily rely on the availability of relatively
large amounts of training data to learn either a deformation model [20], or a dis-
criminative predictor to initialize a gradient-based method [21]. While we also
exploit training data to learn the weights of the different terms in our likelihood,
we require much fewer training examples. Furthermore, we utilize a global op-
timization method, which lets us reconstruct surfaces from individual images.

3 Structured Prediction for Non-rigid Surfaces

In this section, we introduce our surface parametrization and then present our
structured prediction approach to non-rigid 3D reconstruction. Finally, we de-
scribe the gradient-based method used to refine the structured prediction results.

3.1 Surface Parametrization

We represent non-rigid surfaces as triangulated meshes, and, following a popular
and effective trend [23,18,5], encourage the surface to deform isometrically by
preserving the distances between neighboring mesh vertices. Furthermore, as our
method falls into the template-based category, we assume that we are given a
reference image in which the 3D shape of the surface is known.

Since the mesh already forms a graph, it might seem natural to use the 3D
vertex positions as variables. However, some image likelihoods, such as template
matching, are defined over a facet. Therefore, employing a parametrization in
terms of 3D vertices will require 3-way potentials, i.e., terms that involve three
variables. As the complexity of message passing inference in graphical models is
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(a) (b) (c) (d)

Fig. 2. Structured prediction with a mesh. (a) Triangulated mesh. (b)
Parametrization in terms of facet rotations and translations. (c) Graphical model. Note
that, to avoid clutter, only two longer range (dashed) edges are shown. (d) Illustration
of the facet coherence potential (top) and the smoothness potential (bottom).

a function of the order of the potentials, as well as of the cardinality of the label
set for each random variable, employing 3-way potentials is computationally pro-
hibitive, thus making this parametrization unappealing. Instead, as illustrated in
Fig. 2(a,b), we parametrize the surface in terms of the rotations and translations
of the mesh facets, which, as shown below, only requires pairwise potentials.

More specifically, the 3D location of the kth vertex of facet i is given by

yk
i = Ri(ỹ

k
i − c̃i) + ti � Riȳ

k
i + ti , (1)

whereRi and ti are the rotation matrix and translation of the facet, respectively,
ỹk
i is the location of the kthvertex of facet i in the reference mesh, and c̃i is the

centroid of facet i in the reference mesh. We represent the rotation Ri in terms
of a 3D vector of Euler angles θi. Note that other parameterizations, such as
quaternions are also possible. The location of a 3D mesh vertex can then be
obtained by averaging the above locations over all the facets that contain this
vertex. Of course, this requires preventing the rotations and translations of these
facets from disagreeing over the location of the shared vertex. As will be shown
in the next section, this can be expressed as a pairwise potential.

3.2 Non-rigid 3D Reconstruction as Inference in a Graphical Model

Given our parametrization in terms of facet rotations and translations, we now
describe our approach to non-rigid 3D reconstruction. We formulate monocular
shape recovery as an inference problem in a CRF, where the random variables are
continuous. The joint distribution over the random variables can be factorized
into a product of non-negative potentials

p(z) = p(R, t) = Z−1
∏

i
ψi(zi)

∏
α
ψα(zα) , (2)

where z = (R, t) is the set of all random variables, with R and t containing
the rotations and translations for all facets, and Z is the partition function. The
potentials ψi(zi) and ψα(zα) encode functions over single variables and groups of
variables, respectively. Inference is performed by computing the MAP estimate

z∗ = argmaxz
∏

i
ψi(zi)

∏
α
ψα(zα) . (3)
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To solve our inference problem over continuous variables, we rely on particle
convex belief propagation (PCBP) [16]. PCBP is an iterative algorithm that
works as follows: Particles are sampled around the current solution for each
random variable. These samples act as labels in a discrete CRF which is solved
to convergence using convex belief propagation [12]. The current solution is then
updated with the MAP estimate returned by convex BP. This process is repeated
for a fixed number of iterations. In practice, we use the distributed message
passing algorithm of [22] to solve the discrete CRF at each iteration.

Algorithm 1 depicts PCBP for our formulation of non-rigid 3D reconstruc-
tion. In the algorithm, we denote by R̂i and t̂i the discretized variables, which
are grouped in the set ẑ. At each iteration, to increase the accuracy of the re-
construction, we decrease the values of the standard deviations σr and σt of the
Gaussian distributions from which the discretized random variables are drawn.

Algorithm 1. PCBP for non-rigid 3D reconstruction

Set N , ηr and ηt
Initialize Ri and ti from the template mesh ∀i, as well as σr and σt

for s = 1 to #iters do
Draw N random samples of Euler angles θj

i ∝ N (0, σr), ∀i
Compute the candidate discretized rotations R̂j

i = Rj
i (θ

j
i )Ri, ∀i, j

Draw N random samples of candidate discretized translations t̂ji ∝ N (ti, σt), ∀i
Solve the discrete CRF: (R̂∗, t̂∗) = argmaxẑ

∏
i ψi(ẑi)

∏
α ψα(ẑα)

Update Ri ← R̂∗
i and ti ← t̂∗i , ∀i

Update σr ← ηrσr and σt ← ηtσt

end for

An artifact of using discretized variables with non-smooth potentials is that a
solution around a local maximum might have a higher value than one around the
global maximum. The iterative scheme will then re-sample around this relatively
bad solution and, with decreasing σr and σt, potentially be driven away from
the global maximum. To circumvent this issue, we introduce a scheme that keeps
track of multiple solutions at each iteration of PCBP. Given all the discrete
candidates for all the variables, we find an approximate MAP solution using
convex BP. We then remove the labels corresponding to this solution and find
an approximate solution to the MAP problem defined by the remaining labels.
This can be done in an iterative manner, thus yieldingM solutions around which
we can then sample N/M values for the next iteration of PCBP. Note that even
if we could solve the NP-hard discrete inference problem exactly, these solutions
would not necessarily truly be the M best ones, since combinations of their
labels are not considered as potential solutions (e.g., the second solution cannot
contain labels used in the first solution). However, this allows for more variety in
the candidate solutions, and the labels can potentially be combined at the next
PCBP iteration. Note that other algorithms, such as [9,2], could also be used to
generate candidate solutions. In the last iteration of PCBP, we only compute a
single MAP estimate, which we take as our final reconstruction.
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In the remainder of this section, we describe the different potentials that we
used in our experiments. In particular, we define three types of image potentials
to handle feature point correspondences, template matching and surface bound-
ary likelihoods. These likelihoods are the ones typically used in gradient-based
methods [20,21]. Additionally we employ two types of shape potentials encoding
coherence of the facets and surface smoothness. Taken together, these potentials
yield a graph such as the one depicted by Fig. 2(c). For clarity, we describe the
potentials in the log domain, i.e., wTφ = log(ψ). We define a weight for each
type of potential, and as described later, learn the weights using [11].

Feature Point Correspondences: Although our main focus is to go beyond
feature point correspondences, we show that our formulation also remains pair-
wise in this case. We make use of the template mesh to establish correspondences
between a 3D point expressed in barycentric coordinates with respect to the facet
it lies on and a 2D point in the input image. In the camera referential, the fact
that a 3D point j on facet i reprojects at image location (uj , vj) can be written
as

A

3∑

k=1

bkjy
k
i = A

3∑

k=1

bkj
(
Riȳ

k
i + ti

)
= dj

(
uj vj 1

)T
, (4)

where bkj is the barycentric coordinate of point j with respect to the kthvertex yk
i

of facet i to which the point belongs, A is the matrix of known internal camera
parameters, and dj is an unknown scalar encoding depth.

We define pairwise potentials φrαi
(Ri, ti) by summing the negative reprojec-

tion errors of each detected feature point belonging to one particular facet. To
this end, let us define the projection of point j on facet i as

ûj(Ri, ti) =
A1

∑3
k=1 b

k
j

(
Riȳ

k
i + ti

)

A3

∑3
k=1 b

k
j

(
Riȳk

i + ti
) , v̂j(Ri, ti) =

A2

∑3
k=1 b

k
j

(
Riȳ

k
i + ti

)

A3

∑3
k=1 b

k
j

(
Riȳk

i + ti
) , (5)

where Ak is the kth row of A. The potential for facet i can then be written as

φrαi
(Ri, ti) = −

∑

j∈F(i)

∥∥(ûj(Ri, ti)− uj , v̂j(Ri, ti)− vj
)∥∥2

2
, (6)

where F(i) is the set of feature points belonging to facet i. This potential is
pairwise, as it is a function of the rotation and translation of a single facet.

Template Matching: For template matching, each facet in the reference mesh
is treated as a template. We compute the normalized cross-correlation between
the texture under the facet in the reference image and the texture under the
deformed facet in the input image. This can be done by sampling the barycen-
tric coordinates of the facet and retrieving the intensity values at the 2D image
locations corresponding to the projected sampled 3D facet points. In our for-
malism, the intensity values for facet i can be stored in a vector qi, such that
each element j is given by qj

i = I
(
ûj(Ri, ti), v̂

j(Ri, ti)
)
, where I(u, v) is the

intensity value at image location (u, v), and (ûj , v̂j) are the projections of the
points at the sampled barycentric coordinates.
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Let q̂i and q̃i be the mean subtracted vectors of intensity values in the input
image and in the reference image, respectively. A template matching potential
for facet i can then be written as

φtαi
(Ri, ti) =

(
q̂T
i q̃i

)(∑
j

(
q̂j
i

)2 ∑
j

(
q̃j
i

)2
)−1/2

. (7)

As for correspondences, this potential only depends on the rotation and trans-
lation of a single facet, and is therefore pairwise. Note that this potential truly
depends on the locations of 3 vertices. Therefore, had we used vertex locations
to parametrize our problem instead of facet rotations and translations, we would
not be able to decompose this term in a sum of unary and pairwise potentials.

Surface Boundary: To account for object boundaries, we make use of the dis-
tance transformD of the edge image obtained from the input image with Canny’s
algorithm. D encodes the distance of each pixel to the closest edge, which has
the advantage of being smoother than the edge image itself. We sample the
barycentric coordinates of the boundary mesh edges, and project the resulting
3D points in D. Given the barycentric coordinates bkj of points sampled on an
edge belonging to facet i, we can then write the edge potential

φeαi
(Ri, ti)=−D(

ûj(Ri, ti), v̂
j(Ri,Ti)

)
, (8)

where (ûj , v̂j) are the projected sampled barycentric coordinates, which now
only depend on the 2 vertices that define the mesh edge (i.e k ranges up to 2 in
Eq. 5). Once again, this potential depends on a single facet, and is thus pairwise.

Facets Coherence: As mentioned in Section 3.1, optimizing the rotations and
translations of the mesh facets independently may lead to disagreements over the
location of the vertices shared by neighboring facets. As a consequence, 3D ver-
tices belonging to multiple facets, computed by averaging the locations predicted
by the facets, will be distant from the individual predictions. To prevent this,
we include a potential that encourages facets sharing an edge to agree on the
predictions of the two vertices defining the edge. Since this involves two facets,
it may seem that the resulting potential will be of order 4 (i.e., 2 rotations and
2 translations). However, as shown below, our formulation has the advantage of
decomposing the potential into a sum of unary and pairwise terms.

Let i1 and i2 be the indices of two facets sharing a mesh edge, as illustrated
in Fig. 2(d). Let us denote by y1

i1 and y1
i2 the first pair of corresponding vertices

in the two facets. The squared distance between these corresponding points can
be written as

(d1i1,i2)
2 =

∥∥y1
i1 − y1

i2

∥∥2
2
=

∥∥Ri1 ȳ
1
i1 + ti1 −Ri2 ȳ

1
i2 − ti2

∥∥2
2
. (9)

By expanding the previous squared distance, we obtain

(d1i1,i2)
2 = ȳ1T

i1 RT
i1Ri1 ȳ

1
i1 + tTi1ti1 + ȳ1T

i2 RT
i2Ri2 ȳ

1
i2 + tTi2ti2 + 2ȳ1T

i1 RT
i1t

1
i1 (10)

+ 2ȳ1T

i1 RT
i1Ri2 ȳ

1
i2 + 2ȳ1T

i1 RT
i1ti2 + 2tTi1Ri2 ȳ

1
i2 + 2tTi1ti2 + 2ȳ1T

i2 RT
i2ti2 .
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Note that the first and third terms are constant due to the properties of rotation
matrices. More importantly, note that all the terms are only functions of at
most two variables. Therefore, the resulting potential obtained by summing the
squared distances of both pairs of corresponding vertices, written as

φcαi1,i2
(Ri1 , ti1 ,Ri2 , ti2) = −(d1i1,i2)

2 − (d2i1,i2)
2 , (11)

is a sum of unary and pairwise terms.

Surface Smoothness: In addition to enforcing coherence of the facets, one
might also want to encode some knowledge about the possible surface defor-
mations. A classical example of this was introduced in the Active Contour
Model [13], where the contour is encouraged to remain smooth by penalizing
a quadratic function that approximates the sum of the square of the curvature
along the contour. Following a similar idea, and assuming that the mesh forms
a regular grid, we enforce smoothness by encouraging two aligned edges (i.e.,
horizontal or vertical edges in the grid) to remain straight.

Let i1 and i2 be the indices of two facets, each of which contains one of two
aligned edges, as illustrated in Fig. 2(d). Furthermore, without loss of generality,
let us assume that y2

i1 and y1
i2 correspond to the vertex shared by both facets.

An energy encoding the squared curvature of these two edges can be written as

c2i1,i2 =
∥∥−Ri1 ȳ

1
i1 − ti1 +Ri1 ȳ

2
i1 + ti1 +Ri2 ȳ

1
i2 + ti2 −Ri2 ȳ

2
i2 − ti2

∥∥2
2

=
∥∥−Ri1 ȳ

1
i1 +Ri1 ȳ

2
i1 +Ri2 ȳ

1
i2 −Ri2 ȳ

2
i2

∥∥2
2
, (12)

where we computed the location of the vertex shared by the two edges as the
average over both facet predictions. Note that the translation variables have
cancelled each other out. As a consequence, it is obvious that this decomposes
into a sum of terms that involve at most two variables. Therefore, we can write
the smoothness potential

φsαi1 ,i2
(Ri1 ,Ri2) = −c2i1,i2 , (13)

which is purely pairwise, since the unary terms involving the rotations become

constant (i.e., as before, ȳ1T

i1
RT

i1
Ri1 ȳ

1
i1

= cst).
Other shape regularizers have been used for 3D reconstruction and could pos-

sibly be incorporated into our formalism. However, as shown in our experiments,
these general potentials are sufficient to perform accurate 3D reconstruction.

3.3 Learning the Potential Weights

Given a few training examples where both image and ground-truth 3D shape are
available, structured prediction methods can also be used to learn the weights
of the different potentials of interest. This is in contrast with most existing
approaches to non-rigid 3D reconstruction where the weights are typically set
manually. We rely on the family of structured prediction problems introduced
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in [11] to learn our weights. In particular, we make use of their CRF formulation
with �2 regularization (i.e., following the notation of [11], ε = 1 and p = 2). Since
this formulation is designed for discrete variables, we draw N sample rotations
and translations for each facet, and keep them fixed for the entire procedure.

In addition to the potentials defined above, learning the weights requires a loss
function encoding the error of a configuration with respect to the ground-truth
reconstruction. Here, we use a squared point-to-point distance. More specifically,
for each facet i, the loss can be written as

Δ(Ri, ti) =

3∑

k=1

∥∥Riȳ
k
i + ti − y̆k

i

∥∥2
2
, (14)

where y̆k
i is the ground-truth location of the vertex corresponding to the kth

vertex of facet i. It can easily be checked that this loss also consists of a sum of
unary and pairwise terms. See [11] for more details on the learning method.

As shown in our experimental evaluation, only very few training examples are
required to learn the potential weights. This is in contrast with reconstruction
techniques that exploit learned deformation models, such as [20], which typically
require many more training examples. This makes our approach more practical
to deploy in general scenarios.

3.4 Shape Refinement with Gradient-Based Optimization

Performing PCBP on large graphs (i.e., fine meshes) can quickly become com-
putationally prohibitive. To overcome this issue, we follow a simple coarse-to-
fine strategy: We first compute an initial solution on a coarse mesh using the
structured prediction approach described above, and then refine this solution
using a gradient-based method. Since structured prediction provides us with a
good initial shape estimate, a gradient-based method becomes very well suited.
More specifically, we follow the gradient-based approach of [23] for inextensible
surfaces, which directly optimizes the 3D locations of the mesh vertices. This
approach was extended in [21] to handle more general image likelihoods than
the reprojection error of feature points for which it was originally designed.

Let y be the 3Nv-dimensional vector of mesh vertices, initialized with our sub-
divided coarse structured prediction. We refine the 3D surface shape by solving
the optimization problem

min
y

−
∑

i

wiφ
′
i(y) −

∑

α

wαφ
′
α(y) (15)

s. t. ‖yj − yk‖22 = l2j,k ∀(j, k) ∈ E ,

where lj,k is the known reference distance between vertices yj and yk, and E
is the set of mesh edges. φ′i and φ′α are the same potentials as for structured
prediction, but expressed in terms of the mesh vertices.

Following [23,21], we obtain the solution to this optimization problem by
iteratively linearizing the constraints and performing a few (i.e., 100 in practice)
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gradient descent steps in the null space of the linearized constraints. This scheme
is carried out until convergence, or until a maximum number of iterations has
been reached. More details on the overall procedure can be found in [23,21].

4 Experimental Evaluation

We demonstrate the effectiveness of our method in various scenarios including
feature point correspondences, as well as more complex image likelihoods with
well- and poorly-textured surfaces. For all our experiments, we ran 20 iterations
of PCBP, and initialized σr = π/8 and σt = 10, with ηr = ηt = 0.75. We
used N = 100 states, except for the real images where N = 200. For the first
iteration, we used the reference shape as initialization, thus yielding identity
rotation matrices and translations corresponding to the centroids of the facets.
At each iteration, we kept either M = 1 or M = 3 solutions around which to
re-sample. Corresponding results are denoted by Ours 1 Best and Ours 3 Best.

We compare our results against two baselines. The first one, later denoted
by Shen09, corresponds to [23] initialized with the reference shape, with the
extension of [21] to allow for more general image likelihoods than feature point
reprojection error. The second baseline, later denoted by Salz10, follows the
method of [21] and uses a Gaussian process (GP) predictor to initialize the shape
before gradient-based optimization. To learn the GP predictor, we used the same
training shapes as to learn the potential weights, and employ either noisy 2D
point locations, or PHOG descriptors as input. To confirm that a simple coarse-
to-fine optimization scheme is not enough to solve the problem, we also compare
our results with a coarse-to-fine version of [23], denoted by Shen09 CTF. For all
the baselines, we used the same image likelihoods as for our method, together
with the weights learned with our CRF formulation.

In the remainder of this section, we present our results on synthetic data,
motion capture data, and real images. 3D reconstruction errors are computed
as the mean vertex-to-vertex distance between the ground-truth meshes and the
reconstructions, averaged over 100 test images and for 5 train/test partitions.

Synthetic Data: As a first example, we consider the case of a 100 × 100mm
mesh made of two facets, whose common edge act as a hinge, as depicted by
Fig. 3(a). Deformations of this mesh were generated by randomly setting the
angle between the two facets, as well as the global motion of the mesh. In this
scenario, neither smoothness potential nor coarse-to-fine scheme were used.

To evaluate the performance of our approach on the popular problem of 3D
reconstruction from feature point correspondences, we projected the deformed
meshes in a 512× 512 image using a known camera, added zero mean Gaussian
noise with standard deviations {0, 2, 6, 10} pixels to the 2D projections of the
vertices, and used these noisy 2D locations as image measurements. We learned
our potential weights and the GP predictor of Salz10 with {1, 5, 10} training
examples. Fig. 3(b,c) depict the 3D reconstruction errors as a function of the
2D measurement noise and of the number of training examples. Our approach
outperforms the baselines, especially when keeping multiple solutions throughout
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Fig. 3. Reconstructing a 2×2 mesh from correspondences. (a) Sample deformed
mesh. 3D error as a function of (b) the 2D input noise, and (c) the number of training
examples. Note that with few training examples, Salz10 performs poorly. In contrast,
our approach performs well independently of the number of training examples.

the PCBP iterations. Note that with few training examples, Salz10 performs
quite poorly. In contrast, our approach is very robust to the number of training
examples; Even a single one is enough for us to learn the potential weights.

While feature point correspondences are an interesting source of information,
our goal here is to address the problem of using more complex image likelihoods.
To this end, we applied two different textures to the deformed meshes to create
synthetic images such as those depicted in Fig. 4(a,d). We then added uniform
random noise to the image intensities with maximum values of {0, 100, 200}.
For all approaches, we used template matching and boundary likelihoods to
reconstruct the surfaces. Fig. 4(b,c,e,f) depict the 3D errors as a function of the
noise variance and of the number of training examples. In the well-textured case,
our method yields a huge improvement over the baselines, thus fully showing
the benefits of global optimization over local one. While improvement for the
poorly-textured images is slightly smaller, it remains quite large. The lack of
texture yields more ambiguities, which explains why keeping multiple solutions
throughout PCBP yields significantly better results.

Motion Capture Data: The second set of experiments was performed using
data obtained with a motion capture system [7]. The data consists of 3D recon-
structions of reflective markers placed in a 9 × 9 regular grid of 160 × 160mm
on a piece of cardboard deformed in front of 6 infrared cameras. Therefore, as
opposed to the previous experiments, the deformations come from a real surface.
Since no images are provided with the 3D data, we synthesized well- and poorly-
textured images as before. In this experiment, we made use of our coarse-to-fine
scheme, and performed our initial structured prediction with a 3 × 3 mesh. We
used 5 training examples to learn the potential weights. We performed recon-
struction with and without the smoothness prior to evaluate the performance of
our algorithm when relying only on image information, in addition to the facet
coherence term which is equivalent to the distance constraints of the baselines.
Furthermore, since for the same deformation, a fine mesh is actually smoother
than a coarse one, we also computed results by increasing the smoothness weight
manually for refinement. Note that this was also performed for the baselines.
Fig. 5(a,b) depict the 3D errors with no smoothness for the well-textured sur-
face with a coarse mesh and after refinement, respectively. Our approach yields
much more accurate reconstructions than the baselines. In Fig. 5(c-e), we show
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Fig. 4. Reconstructing a 2× 2 mesh from well- and poorly-textured images.
(a) Sample well-textured input image. 3D error as a function of (b) the 2D input noise,
and (c) the number of training examples. (d-f) Similar figures for the poorly-textured
case. Note that our results are much more accurate than the baselines.
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Fig. 5. Reconstructing a piece of cardboard from well-textured images. 3D
error when (a) using a coarse (3 × 3) mesh and no smoothness, and (b) refining the
results of (a) with a gradient-based method. (c-d) Similar results as (a-b) but with
smoothness. (e) 3D errors when manually increasing the influence of the smoothness
term for refinement. Shen09 and Salz10 were directly obtained using a fine mesh. Note
that our coarse results give a much better initialization for the refinement step.
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Fig. 6. Reconstructing a piece of cardboard from poorly-textured images.
Similar plots as in Fig. 5. Note that here, the smoothness term has more influence on our
results. Interestingly, increasing smoothness does not help the baselines significantly.

the 3D errors when using the smoothness term. Note that with this nice texture,
smoothing has very little effect on the results. Fig. 6 depicts similar results for
a poorly-textured surface; Without smoothness, our coarse results are roughly
on par with Shen09. Interestingly, however, we outperform the baselines after
refinement. This shows that our coarse results still provide a better initialization
than the coarse version of Shen09. Note that with this poorly-textured surface,
smoothness improves reconstruction, which seems natural since image informa-
tion is much weaker. This, however, is not noticeably the case for the baselines.

Real Images: Finally, to show that our approach can also be applied to real
images, we used two sequences of different deforming materials [7]. While these
are video sequences, all the images were treated independently and initialized



Structured Prediction for Monocular Non-rigid 3D Reconstruction 257

Fig. 7. Reconstructing surfaces from real images. From top to bottom: Our
reconstructions reprojected on the original images, side view of our reconstructions,
reconstructions obtained with Shen09 CTF reprojected on the original images, side
view of those reconstructions. For a well-textured surface, the baseline manages to
reconstruct fairly large deformations, but is less consistent than our approach, as il-
lustrated for two very similar frames. For a poorly-textured surface, the baseline only
manages to reconstruct small deformations, whereas our approach can deal with much
larger ones. The rightmost column shows a failure of our method due to an ambiguity
in the facet reconstruction and to the use of a coarse mesh.

from the template mesh to illustrate the fact that our approach can perform
reconstruction from a single input image. Since no training data is available
for these surfaces, we used a single training example consisting of the template
mesh with reference image to learn the potential weights. In Fig. 7, we visually
compare our reconstructions to those of Shen09. We do not show the results
of Salz10, since with the template mesh as single training example, it would
always predict the reference shape, and thus perform the same as Shen09. For the
well-textured surface, Shen09 manages to reconstruct fairly large deformations.
However, as illustrated by the two leftmost columns of the figure for two very
similar frames, it is less consistent than our approach. For the poorly-textured
surface, the baseline is completely unable to cope with large deformations. Our
approach, however, still manages to reconstruct the surface. In the rightmost
column of the figure, we show a failure case of our approach, where the facet
orientation is ambiguous. Furthermore, the topology of the coarse mesh makes it
harder to bend the surface along this diagonal. Note, however, that as opposed
to the baseline, we still recover some degree of surface deformation.

5 Conclusion

We have introduced an approach to non-rigid 3D reconstruction of a poten-
tially poorly-textured surface from a single image when no good initialization is
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available. To this end, we have formulated reconstruction as a structured predic-
tion problem, and have shown that the popular image likelihoods decompose into
unary and pairwise potentials, thus making inference algorithms practical for our
purpose. We have demonstrated the benefits of our approach over state-of-the-
art gradient-based methods in various scenarios, and have shown tremendous
improvement over existing baselines. The current main limitation of our tech-
nique comes from the computational burden of performing structured prediction
with large graphs. However, as research in that field advances, our approach will
be applicable to denser and denser meshes. Studying these advances, as well as
other image information such as shading, will be the focus of our future work.

References

1. Akhter, I., Sheikh, Y., Khan, S., Kanade, T.: Nonrigid Structure from Motion in
Trajectory Space. In: NIPS (2008)

2. Batra, D., Yadollahpour, P., Guzman-Rivera, A., Shakhnarovich, G.: Diverse
M-Best Solutions in Markov Random Fields. In: Fitzgibbon, A., Lazebnik, S.,
Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part V. LNCS, vol. 7576,
pp. 1–16. Springer, Heidelberg (2012)

3. Blanz, V., Vetter, T.: A Morphable Model for the Synthesis of 3D Faces. In: SIG-
GRAPH (1999)

4. Bregler, C., Hertzmann, A., Biermann, H.: Recovering Non-Rigid 3D Shape from
Image Streams. In: CVPR (2000)

5. Brunet, F., Hartley, R., Bartoli, A., Navab, N., Malgouyres, R.: Monocular
Template-Based Reconstruction of Smooth and Inextensible Surfaces. In: Kim-
mel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part III. LNCS, vol. 6494,
pp. 52–66. Springer, Heidelberg (2011)

6. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active Appearance Models. In:
Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 484–498.
Springer, Heidelberg (1998)

7. http://cvlab.epfl.ch/data/dsr/

8. Fayad, J., Agapito, L., Del Bue, A.: Piecewise Quadratic Reconstruction of Non-
Rigid Surfaces from Monocular Sequences. In: Daniilidis, K., Maragos, P., Paragios,
N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 297–310. Springer, Heidelberg
(2010)

9. Fromer, M., Globerson, A.: An LP view of the M best problem. In: NIPS (2009)
10. Gumerov, N., Zandifar, A., Duraiswami, R., Davis, L.S.: Structure of Applicable

Surfaces from Single Views. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS,
vol. 3023, pp. 482–496. Springer, Heidelberg (2004)

11. Hazan, T., Urtasun, R.: A primal-dual message-passing algorithm for approximated
large scale structured prediction. In: NIPS (2010)

12. Hazan, T., Shashua, A.: Norm-Product Belief Propagation: Primal-Dual Message-
Passing for LP-Relaxation and Approximate Inference. In: IT (2011)

13. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active Contour Models. IJCV
(1988)

14. Mcinerney, T., Terzopoulos, D.: A Finite Element Model for 3D Shape Reconstruc-
tion and Nonrigid Motion Tracking. In: ICCV (1993)

15. Metaxas, D., Terzopoulos, D.: Constrained Deformable Superquadrics and
Nonrigid Motion Tracking. PAMI (1993)

http://cvlab.epfl.ch/data/dsr/


Structured Prediction for Monocular Non-rigid 3D Reconstruction 259

16. Peng, J., Hazan, T., McAllester, D., Urtasun, R.: Convex Max-Product Algorithms
for Continuous MRFs with Applications to Protein Folding. In: ICML (2011)

17. Pentland, A., Sclaroff, S.: Closed-Form Solutions for Physically Based Shape Mod-
eling and Recognition. PAMI (1991)

18. Perriollat, M., Hartley, R., Bartoli, A.: Monocular Template-Based Reconstruction
of Inextensible Surfaces. IJCV (2010)

19. Russell, C., Fayad, J., Agapito, L.: Energy Based Multiple Model Fitting for Non-
Rigid Structure from Motion. In: CVPR (2011)

20. Salzmann, M., Urtasun, R., Fua, P.: Local Deformation Models for Monocular 3D
Shape Recovery. In: CVPR (2008)

21. Salzmann, M., Urtasun, R.: Combining Discriminative and Generative Methods
for 3D Deformable Surface and Articulated Pose Reconstruction. In: CVPR (2010)

22. Schwing, A., Hazan, T., Pollefeys, M., Urtasun, R.: Distributed Message Passing
for Large Scale Graphical Models. In: CVPR (2011)

23. Shen, S., Shi, W., Liu, Y.: Monocular 3D Tracking of Inextensible Deformable
Surfaces Under L2-Norm. In: ACCV (2009)

24. Taylor, J., Jepson, A.D., Kutulakos, K.N.: Non-Rigid Structure from Locally-Rigid
Motion. In: CVPR (2010)

25. Torresani, L., Hertzmann, A., Bregler, C.: Nonrigid Structure-From-Motion: Esti-
mating Shape and Motion with Hierarchical Priors. PAMI (2008)

26. Varol, A., Shaji, A., Salzmann, M., Fua, P.: Monocular 3D Reconstruction of Lo-
cally Textured Surfaces. PAMI (2011)

27. Xiao, J., Kanade, T.: Uncalibrated Perspective Reconstruction of Deformable
Structures. In: ICCV (2005)



Learning Spatially-Smooth Mappings

in Non-Rigid Structure From Motion

Onur C. Hamsici1, Paulo F.U. Gotardo2, and Aleix M. Martinez2

1 Qualcomm Research, San Diego, CA, USA
2 The Ohio State University, Columbus, OH, USA

ohamsici@qualcomm.com,{gotardop,aleix}@ece.osu.edu

Abstract. Non-rigid structure from motion (NRSFM) is a classical un-
derconstrained problem in computer vision. A common approach to make
NRSFM more tractable is to constrain 3D shape deformation to be
smooth over time. This constraint has been used to compress the defor-
mation model and reduce the number of unknowns that are estimated.
However, temporal smoothness cannot be enforced when the data lacks
temporal ordering and its benefits are less evident when objects undergo
abrupt deformations. This paper proposes a new NRSFM method that
addresses these problems by considering deformations as spatial varia-
tions in shape space and then enforcing spatial, rather than temporal,
smoothness. This is done by modeling each 3D shape coefficient as a
function of its input 2D shape. This mapping is learned in the feature
space of a rotation invariant kernel, where spatial smoothness is intrinsi-
cally defined by the mapping function. As a result, our model represents
shape variations compactly using custom-built coefficient bases learned
from the input data, rather than a pre-specified set such as the Discrete
Cosine Transform. The resulting kernel-based mapping is a by-product
of the NRSFM solution and leads to another fundamental advantage of
our approach: for a newly observed 2D shape, its 3D shape is recovered
by simply evaluating the learned function.

1 Introduction

Structure from motion (SFM) techniques have seen vast improvements over the
past three decades by relying on the assumption of object rigidity [1]. However,
computer vision applications often involve the observation of deformable objects
such as the human face and body. When the assumption of object rigidity is
relaxed, and in the absence of any prior knowledge on 3D shape deformation,
computing non-rigid structure from motion (NRSFM) becomes a challenging,
underconstrained problem. Given a set of corresponding 2D points, established
over multiple images of a deformable object, the goal of NRSFM is to recover the
object’s 3D shape and 3D pose (relative camera position) in each image [2–15].

To make this largely underconstrained problemmore tractable, recent research
work has attempted to define new, general constraints for 3D shape deformation.
A common approach to NRSFM is the matrix factorization method of [2], which

A. Fitzgibbon et al. (Eds.): ECCV 2012, Part IV, LNCS 7575, pp. 260–273, 2012.
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Fig. 1. Before solving NRSFM, a basis B is computed as to compactly represent a
nonlinear mapping from the input data to the coefficients C = BX of the linear shape
model: (left) B is obtained by modeling each coefficient vector as a function f(·) of its
input 2D shape; an RIK feature space is used to learn f(·) and B based on similarities
in these input shapes; (right) with f(·) being a by-product of the NRSFM solution, the
3D reconstruction of a newly observed 2D shape is done by simply evaluating f(·).

constrains all 3D shapes to lie within a low-dimensional linear shape space. In
addition, many NRSFM techniques also enforce smoothness constraints on cam-
era motion and object deformation, which are assumed to change only gradually
over subsequent images [3, 6, 11–13,15].

The recent Shape Trajectory Approach (STA) of [13], a generalization of [12],
demonstrates how gradual 3D shape deformation can be seen as the smooth
time-trajectory of a single point (object) within a low-dimensional shape space.
As a result, a few low-frequency components of the Discrete Cosine Transform
(DCT) can be used as basis vectors to define a compact representation of 3D
shape deformation. Because the DCT basis is known a priori, the number of
unknowns that need to be estimated is greatly reduced. STA has been shown
to outperform a number of state-of-the-art NRSFM algorithms when applied to
the 3D reconstruction of challenging datasets. However, it was also shown in [13]
that sudden (high-frequency) deformations require the use of a large DCT basis,
leading to less compact models. In addition, if the input 2D points come from
a collection of images for which no temporal relation is known, the smoothness
assumption does not hold and there is no gain in using the DCT basis.

This paper presents a novel NRSFM approach that addresses these problems
by considering deformations as spatial variations in shape space and then enforc-
ing spatial, rather than temporal, smoothness. Instead of using the DCT basis,
we represent the coefficients of the linear shape model compactly using custom-
built bases learned from the input data. These bases are obtained by expressing
each 3D shape coefficient as a function of its input 2D shape, Fig. 1(left). This
smooth function is learned in the feature space of a rotation invariant kernel
(RIK) [16], in terms of the input data; more specifically, we learn a compact
subspace using kernel principal component analysis (KPCA) [17]. The learned
mapping becomes a by-product of our NRSFM solution and leads to another
fundamental advantage of our approach: for a newly observed 2D shape, its 3D
reconstruction is obtained via the simple evaluation of this function, Fig. 1(right).
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Finally, we also propose a novel model fitting algorithm, based on iteratively-
reweighted least squares (IRLS) [18], to extract local (sparse) modes of deforma-
tion – which are key features in applications that analyze 3D object deformation.

Our NRSFM model is derived in Section 3. Section 4 presents our IRLS-based
algorithm, with experimental results in Section 5.

2 Related Work and Basic Formulation

We first summarize the notation used in the following: matrices and column
vectors are denoted using upper-case and lower-case bold letters, respectively;
In is the n×n identity matrix; A⊗B is the Kronecker product of two matrices;
A† denotes the Moore-Penrose pseudo-inverse ofA; ‖A‖F is the Frobenius norm;
z∗ is the Hermitian of complex vector z; and δi,j is the Kronecker delta.

For a NRSFM problem with T images (cameras), the n input 2D point tracks

are given in an input matrix W ∈ R
2T×n; [xt,j , yt,j]

T is the 2D projection of
the jth 3D point observed on the tth image, t = 1, 2, . . . , T , j = 1, 2, . . . , n. For
clarity of presentation, assume for now that: (i) W is complete, meaning that
no 2D points became occluded during tracking; and (ii) its mean column vector
t ∈ R

2T has been subtracted from all columns, making them zero-mean. With
orthographic projection and a world coordinate system centered on the observed
3D object, t gives the observed 2D camera translations in each image.

The matrix factorization approach of [2] models W = MS as a product of
two matrix factors of low-rank 3K, M ∈ R

2T×3K and S ∈ R
3K×n,

⎡
⎢⎢⎢⎢⎢⎣

x1,1 x1,2 . . . x1,n

y1,1 y1,2 . . . y1,n
...

...
. . .

...
xT,1 xT,2 . . . xT,n

yT,1 yT,2 . . . yT,n

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
W

=

⎡
⎢⎢⎢⎣

R̂1

R̂2

. . .

R̂T

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
D

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

c1,1 . . . c1,K
c2,1 . . . c2,K
...

. . .
...

cT,1 . . . cT,K

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
C

⊗I3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎣
Ŝ1

...

ŜK

⎤
⎥⎦

︸ ︷︷ ︸
S

(1)

FactorM = D (C⊗ I3) comprises a block-diagonal rotation matrix D ∈ R
2T×3T

and a shape coefficient matrix C ∈ R
T×K . Let cTt be the tth row of C. The

unknown 3D shape of the tth image is modeled as the matrix function

S(cTt ) = (cTt ⊗ I3)S =

K∑
k=1

ct,kŜk, (2)

that is, a linear combination of K basis shapes Ŝk ∈ R
3×n as described by the

shape coordinates ct,k. The camera orientation (object pose) at image t is given

by R̂t ∈ R
2×3, a 3D rotation followed by an orthographic projection to 2D.

The factors M and S are computed from the singular value decomposition
(SVD) W = (UΣ

1
2 )(Σ

1
2VT ) = MS, with all but the largest 3K singular values

in Σ set to zero. This non-unique solution is defined only up to a rank-3K
ambiguity matrix Q ∈ R

3K×3K . To recover D and C, an Euclidean upgrade
step [11] finds a corrective Q for the solution W = (MQ)(Q−1S) = MS.
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To further constrain the reconstruction process above, many authors assume
that the observed 3D shape deformation is only gradual over time t = 1, . . . , T
[3, 6, 12, 13]. Here, we summarize STA [13], which is closely related to our new
method. STA considers cTt = c(t) as a single K-dimensional point describing a
smooth time-trajectory within an unknown linear shape space. This means that
each shape coordinate ct,k varies smoothly with t. The shape trajectory is then
modeled compactly using a small number d of low-frequency DCT coefficients,

C = Ωd

[
x1, . . . , xK

]
= ΩdX, xk ∈ R

d. (3)

With d � T , X ∈ R
d×K represents C ∈ R

T×K compactly in the domain of
the truncated DCT basis matrix Ωd ∈ R

T×d. The f th column of Ωd is the f th-
frequency cosine wave [12, 13]. Because the DCT matrix is known a priori, the
number of unknowns in C is significantly reduced with STA.

The optimization stage of STA considers that S = M†W is a function of M
and W. The goal is then to minimize the 2D reprojection error,

e(M) = ‖W −W∗‖2F , W∗ = MS = MM†W. (4)

With M = D(ΩdX ⊗ I3), a coarse initial deformation model (X = IK) [12]
is first used to compute D. Then higher-frequency DCT coefficients in X are
estimated using a Gauss-Newton algorithm to minimize (4) in terms of X only.

3 NRSFM with RIKs

In this section, we propose a new kernel-based solution to NRSFM. Our goal is
to derive a function that estimates the coefficient matrix C and is not restricted
to cases of smooth deformations over time. As a result, we will also learn a
custom-built basis B from the input data, providing a compact representation
C = BX. To this end, we first need to establish a relationship between C and
the observed data in W. More especially, we learn a function f(·) that estimates
vector cTt – representing an unknown 3D shape as a point within the shape space
– given the corresponding input 2D shape wt ∈ R

2×n observed on the tth image,

cTt = f(wt), wt =

[
xt,1 xt,2 . . . xt,n

yt,1 yt,2 . . . yt,n

]
. (5)

This mapping becomes a by-product of the NRSFM solution and leads to a fun-
damental advantage of our approach. Given a new image with a previously un-
seen 2D shape, the estimation of the corresponding 3D shape is readily achieved.

3.1 Defining a Mapping Using the Kernel Trick

Following the well-known kernel trick [17], we first consider a nonlinear mapping
of each 2D shape wt onto vector φ(wt), located within a high dimensional space
where a final linear mapping can be learned. According to the Representer The-
orem, the function f(·) that we seek can be expressed as a linear combination of
a few representative φ(wt). Thus, we can model the kth coefficient of cTt as
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ct,k = fk(w
t) =

d∑
i=1

φ(wt)Tφ(wi
b)xik (6)

where xik are the coefficients of a linear combination of a few 2D basis shapes,wi
b.

The number of basis elements d must be sufficient as to represent the relations
between C and W, as discussed below.

In general, explicitly evaluating the mapping φ(·) can be computationally ex-
pensive or even impossible when the image is a function in an infinite dimensional
space. Thus, we perform this mapping only implicitly by embedding it in the
computation of a generalized inner product given by a kernel function κ(·, ·),

ct,k = fk(w
t) =

d∑
i=1

κ(wt,wi
b)xik. (7)

The kernel function above must provide a similarity measure for two 2D shapes
observed from different points of view (i.e., poses); its proper definition is dis-
cussed in Section 3.3. Considering all K coefficients of cTt , ∀t, from (7) we obtain

C = Φ(W)TΦ(Wb)X = KWWb
X

def
= BX, (8)

where X ∈ R
d×K is a coefficient matrix; B

def
= KWWb

∈ R
T×d is a custom-built

basis matrix that has the inner product values for all pairings of a 2D shape in
W and a 2D basis shape in Wb.

Unfortunately, selecting the best set of basis shapes with d out of the T ob-
served 2D shapes is an NP-complete problem. We therefore define a simple,
alternative solution based on kernel principal component analysis (KPCA) [17].
We first pre-compute a complete kernel matrix KWW ∈ R

T×T and its eigenvec-
tor matrix V associated with the d largest eigenvalues in the diagonal matrix Λ,
i.e., KWWV = VΛ. In the range space of mapping φ(·), we have d eigenfunc-

tions given by Φ(W)VΛ−1/2. By projecting each observation φ(wt) onto this
eigenfunction subspace, we can then define our new basis matrix B of C as,

C = Φ(W)TΦ(W)VΛ−1/2X = KWWVΛ−1/2

︸ ︷︷ ︸
B

X. (9)

The number of eigenfunctions d must be large enough as to provide a subspace
that captures a sufficient amount of the variation in the kernel matrix.

Finally, we obtain our new NRSFM model with M = D(BX⊗ I3). A solution
is achieved by estimating the rotation matrix D and the d×K coefficient matrix
X as to minimize the reprojection error in (4). This optimization procedure is
detailed in Section 4. Once the optimal M and S = M†W have been found, we
can use (2) to recover the 3D shape for the tth image as

S(cTt ) = S(f(wt)) =
(
f(wt)⊗ I3

)
M†W, with (10)

cTt = f(wt) = κ(wt,W)VΛ−1/2X, and (11)

κ(wt,W) =
[
κ(wt,w1) κ(wt,w2) . . . κ(wt,wT )

]
. (12)

This new approach is referred to as NRSFM with RIKs.
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3.2 Recovering the 3D Shape from a Newly Seen 2D Shape

An important advantage of NRSFM with RIKs is the ability to easily recon-
struct the 3D shape from a newly observed image that was not considered in
the optimization above; let wτ (τ > T ) denote this newly observed 2D shape.
Notice from (10) that the 3D shape S(f(wτ )) associated with wτ can be easily
estimated given W, M, f(·) from the optimization above.

Once the 3D shape has been recovered, the associated rotation (pose) matrix

R̂τ can also be readily estimated by solving two simple systems of linear equa-
tions, wτ = R̂τ S(f(wτ )), then using the SVD of R̂τ to enforce orthogonality.

3.3 Rotation Invariant Kernels

The kernel function must provide a similarity measure for two 3D shapes based
on their 2D projections, wt and wt′ , taken from different points of view. One
possible choice of the kernel function κ(·, ·) is the RIK of [16]. This RIK calcu-
lates the rotation invariant similarity between two scale-normalized 2D shapes
represented in the complex domain, vectors zt and zt′ with z∗t zt = z∗t′zt′ = 1,

κ(zt, zt′) = exp

(−1 + |z∗t zt′ |
σ2

)
, zt =

(wt)T

‖wt‖F

[
1√−1

]
∈ C

n. (13)

The scale (smoothness) of this RIK is defined by parameter σ. The 2D rotation

invariance property ensures that k(zt, zt′) = k(eθ
√−1zt, zt′) for any rotation

angle θ in the complex plane. This is a property of the inner product in the
complex domain. Although the kernel above is not invariant to the 3D orientation
of the observed shapes, we can still use it to learn the mapping in (11) because
the input 2D shapes are highly correlated with the underlying 3D shapes – we
can even use appearance features that are correlated with 3D shape [19].

Here we also propose a new kernel dubbed the affine structure from motion
(aSFM) kernel. The aSFM RIK is defined in terms of the reprojection error r2t,t′

of an affine, rigid SFM solution obtained from the two observations wt and wt′ ,

κ(wt,wt′) = exp

(
−r2t,t′

σ2

)
+ αδt,t′ , rt,t′ =

∥∥∥∥
[
wt

wt′

]
−
[
At

At′

]
Sa

∥∥∥∥
F

(14)

where σ is the kernel scale and parameter α regulates how similar the 3D shapes
are in general, while also ensuring that the kernel matrix is positive semi-definite.
The affine cameras At and At′ ∈ R

2×3 and the affine 3D shape Sa ∈ R
3×n are

obtained from a rank-3 approximation to wt and wt′ using SVD. If these 2D
shapes are projections of two dissimilar 3D shapes, then the rigid SFM solution
will provide a large reprojection error and the aSFM kernel value will be small.

3.4 Model Analysis

Parameter Setting: With the rank parameter K assumed to be known, the
number of unknowns in X ∈ R

d×K depends on the number of columns d of
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B ∈ R
T×d. A rank-3K solution M requires d ≥ K. If d = K, then X must be

full-rank (i.e., X−1 exists) and the non-unique solution M = D(BX ⊗ I3) has
an equivalent form M = M(X−1⊗ I3) = D(BIK ⊗ I3), with a constant X = IK .
By assuming d > K, we allow the rank-3K solution to consider other important
variations in the kernel matrix, leading to better results.

The discussion above suggests a deterministic initialization X0 = [ IK 0 ]T

in which the coefficients associated with less important principal components
are initially zero. Not surprisingly, the same initialization is used in STA, with
high-frequency DCT coefficients set to zero. Note that the DCT and PCA bases
are known to be closely related for certain types of random processes.

To select d, a common approach in PCA is to choose a d-dimensional subspace
that captures about 99% of the total variance in the dataset, discarding small
variations assumed as noise. In NRSFM with RIKs, we note that d is closely
related to the RIK scale parameter σ: the larger σ is, the more smoothness is
applied to the shape similarity values and the more compact is the KPCA space.
Therefore, we consider d as a user-supplied parameter that defines the desired
compactness of the model; then σ is easily chosen, automatically, as to yield a
d-dimensional KPCA space with about 99% of the data variance. In the aSFM
RIK, α is also set automatically as to yield a positive semi-definite kernel matrix.

Comparison to Related Work: There are two main differences between our
model above and that of the kernel NRSFM approach in [15]. First, NRSFM
with RIK models 3D shapes within a linear space; the approach in [15] defines a
non-linear model. Second, in NRSFM with RIK the inputs to the kernel-based
mapping are observed 2D shapes; in [15], the inputs are the coefficients of the
non-linear model. Nevertheless, the two approaches are complementary: future
work can use RIKs to define a mapping from observed 2D shapes onto the
coefficients of the non-linear model of [15].

4 Model Fitting

Having obtained the basis matrix B through an RIK and KPCA, as described
above, the next step is to estimate D and X in M = D(BX⊗ I3) as to minimize
the reprojection error in (4). Two alternative algorithms are presented in this
section. Here, we will assume that the rotation matrix D has been estimated by
an initialization algorithm (e.g., using rigid SFM if some points are known to
remain in a rigid configuration, or using the procedure of STA). Thus, we focus
on the iterative process for fitting our new model C = BX. If necessary, we can
later refine D and X in an alternated manner, by fixing one of these matrices.

Algorithm 1 (NRSFM with RIK): We first consider an optimization pro-
cedure in which the computation of X is carried out using the iterative Gauss-
Newton method proposed in [14], with the DCT basis replaced by our new basis
B. This procedure is summarized in Algorithm 1.

Algorithm 2 (Iteratively-Reweighted NRSFM with RIK): With a linear
shape model, the 3D shape of a non-rigid object can be seen as comprising two
main components: a rigid (average) 3D shape and K − 1 modes of deformation.
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For typical objects, these modes should reflect localized (sparse) deformations
involving a small subset of points (sub-shapes). Also, different parts of an ob-
ject often present different amounts of deformation. For instance, consider facial
shapes that present larger deformation for the mouth in comparison to the nose;
other shapes may even present points that remain in a rigid configuration.

NRSFM algorithms in general estimate shape deformation using a globally
uniform least squares criterion; the objective function is automatically tuned to
points with large deformation and is not sensitive to local deformations. Further-
more, the global solution does not allow for the modeling of local deformations
with different complexities (ranks). This usually results in an inaccurate extrac-
tion of the rigid component and associated modes of deformation.

To address these problems, we propose a new method based on iteratively-
reweighted least squares (IRLS) [18]. The algorithm iteratively minimizes the
residual error resulting from Algorithm 1 above. The initial step extracts the
rigid shape component of the observed object; the following steps are targeted
at modeling localized modes of deformation. While IRLS has been used to imple-
ment robustness against outliers (whose errors are allowed to remain large), our
goal here is to focus on columns that have a similar error pattern, corresponding
to a mode of deformation that was not yet reconstructed properly.

More specifically, let W ≈ M1S1 be the output of Algorithm 1 with K = 1.
The single 3D basis shape recovered in iteration 1 describes the rigid component
of the object shape. Next, we calculate the error matrix E1 = W −M1S1 whose
columns capture modes of shape deformation. To extract local (sub-shape) de-
formation, we focus on a subset of the columns of E1 corresponding to 2D points
with similar motion. This is done by specifying a weight matrix that emphasizes
columns (points) with a similar pattern of error (deformation). Let ei,j be the
jth column of Ei (in the ith iteration). We then define a Gaussian weighting
mask with nonzero diagonal elements,

Gi(j, j) = exp

(
−‖ei,j − ei,jmax‖22

σ2
e

)
, jmax = argmax

j
‖ei,j‖2 (15)

where σ2
e is the average distance between ei,jmax and its 0.1n (10%) nearest

neighbors. This mask Gi assigns weight 1 to the column with largest error,
ei,jmax , and slightly smaller weights to other similar columns. It is used to project

Ei onto a subspace of large error, Ẽ1 = E1G1.
The following iterations uses Algorithm 1 to factorize Ẽi ≈ Mi+1Si+1, always

using K = 1. The error matrix Ei is updated and the iterations continue un-
til the error ‖Ei‖F is sufficiently small. Note that rotation matrix D remains
constant during this iterative process and, therefore, the recovered deformation
components are aligned in 3D space. The Iteratively-Reweighted NRSFM with
RIK algorithm is summarized in Algorithm 2.

To recover the 3D shape for a new image whose 2D shape wτ has now being
detected, we now follow the iterative procedure in Algorithm 3. Each iteration
estimates the coefficient cτ,i = fi(w

τ ) associated with the ith 3D basis shape Si.
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Algorithm 1. NRSFM with RIK
1: Input: 2D shapes in W, basis size d, rank parameter K.
2: Compute the RIK matrix KWW with σ2 and α as described in the text.
3: Find d-dimensional KPCA subspace with 99% of data variance.
4: Define basis matrix B as in Eq.(9).
5: Estimate rotation matrix D.
6: Estimate d× K matrix X s.t. M = D(BX ⊗ I3) minimizes Eq.(4).
7: Refine D and X in alternation as to minimize Eq.(4).
8: Output: D, B, X, and f(·) as in Eq.(11).

Algorithm 2. Iteratively-Reweighted NRSFM with RIK
1: Input: 2D shapes in W, basis size d, rank parameter K = 1, level of accuracy ε.
2: Initialize i = 0, E0 = W, and G0 = In.
3: repeat

4: Calculate projected error matrix ˜Ei = EiGi.

5: Compute the factorization ˜Ei ≈ Mi+1Si+1 using Algorithm 1.
6: Update the error matrix Ei+1 = Ei − Mi+1Si+1.
7: Calculate the weighting mask Gi+1 as in Eq.(15).
8: i = i+ 1.
9: until ‖Ei‖F < ε
10: Compute the final, recovered 3D shapes as S3D =

∑

i (BiXi ⊗ I3)Si.

11: Output: S3D, D, Bi, Xi, Si, and fi(·).

Algorithm 3. Iterative 3D Reconstruction for a newly seen 2D shape
1: Input: newly observed 2D shape wτ .
2: for i = {1, . . . , N} do
3: Restore Si, and fi(·), as previously computed with Algorithm 2.

4: Evaluate cτ,i = fi(w
τ ) = κi(w

τGi, ˜Ei)ViΛ
−1/2
i Xi.

5: Update the current 3D shape estimate, S(cTτ ) =
∑

l≤i cτ,lSl

6: Update the 3D pose matrix Rτ s.t. wτ ≈ RτS(cTτ ).

7: Compute the 2D error wτ = wτ − RτS(cTτ ).
8: end for
9: Output: shape coefficients cTτ , 3D pose Rτ , and 3D shape S(cTτ ).

5 Experimental Results

We evaluate the proposed methods in three different applications. First, we com-
pare the solutions of NRSFM with RIK against those of STA with its fixed DCT
basis (see [14] for a comparison of STA against other NRSFM methods). Second,
we provide experiments that show the generalization performance of our NRSFM
solutions to newly seen 2D shapes. Finally, we illustrate and analyze the local
modes of deformation extracted with Algorithm 2. Additional results are also
available with the supplementary material at http://cbcsl.ece.ohio-state.edu.

We consider a variety of motion capture 3D datasets, with the number of
frames and 3D points indicated as (T, n) after the dataset name: face1 (74,37) [9];
stretch (370,41), pick-up (357,41), yoga (307,41), dance (264,75) [12]; and walking
(260,55) [3]. The input W is obtained via 2D orthographic projection.

NRSFM with RIK versus STA: Temporal smoothness, enforced by STA,
does not hold when the observed shape undergoes abrupt deformation, or when
the data lacks temporal ordering. NRSFM with RIK does not suffer such limita-
tions because it enforces spatial smoothness of f(·) in the RIK space. From (7),
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Table 1. Average 3D error (standard deviation) of NRSFM solutions on temporally
ordered and randomly permuted (π) datasets. Parameters (d,K or N) are also shown.

Algorithm face1 stretch pick-up yoga dance walking

STA 0.056 (0.037) 0.068 (0.043) 0.228 (0.176) 0.147 (0.119) 0.172 (0.171) 0.105 (0.141)

A1 0.067 (0.041) 0.087 (0.062) 0.229 (0.175) 0.150 (0.120) 0.174 (0.164) 0.133 (0.203)

A1aSFM 0.069 (0.049) 0.086 (0.053) 0.231 (0.173) 0.152 (0.120) 0.173 (0.163) 0.104 (0.120)

A2 0.063 (0.050) 0.118 (0.103) 0.231 (0.164) 0.163 (0.129) 0.212 (0.223) 0.180 (0.230)

A2aSFM 0.084 (0.059) 0.120 (0.089) 0.223 (0.158) 0.168 (0.125) 0.215 (0.237) 0.177 (0.248)

STAπ 0.130 (0.098) 0.384 (0.346) 0.424 (0.281) 0.366 (0.303) 0.396 (0.312) 0.323 (0.445)

A1π 0.067 (0.041) 0.087 (0.062) 0.229 (0.175) 0.150 (0.120) 0.174 (0.164) 0.133 (0.203)

A1πaSFM 0.069 (0.049) 0.086 (0.053) 0.231 (0.173) 0.152 (0.120) 0.173 (0.163) 0.104 (0.120)

A2π 0.063 (0.050) 0.118 (0.103) 0.231 (0.164) 0.163 (0.129) 0.212 (0.223) 0.180 (0.230)

A2πaSFM 0.084 (0.059) 0.120 (0.089) 0.223 (0.158) 0.168 (0.125) 0.215 (0.237) 0.177 (0.248)

STA (d,K) 0.3T , 5 0.1T , 8 0.1T , 3 0.1T , 7 0.1T , 7 0.3T , 5

A1 (d,K) 0.3T , 5 0.2T , 8 0.2T , 3 0.2T , 7 0.2T , 7 0.2T , 5

A1aSFM 0.3T , 5 0.2T , 8 0.2T , 3 0.2T , 7 0.1T , 7 0.1T , 5

A2 (d,N) 0.4T , 26 0.3T , 26 0.3T , 26 0.3T , 26 0.2T , 26 0.1T , 26

A2aSFM 0.3T , 26 0.1T , 26 0.1T , 26 0.1T , 26 0.1T , 26 0.2T , 26

Table 2. Average 3D error (standard deviation) of new shapes using cross-validation

Algorithm face1 stretch pickup yoga dance walking

A1 0.098 (0.101) 0.090 (0.059) 0.233 (0.174) 0.160 (0.125) 0.179 (0.180) 0.108 (0.123)

A2 0.125 (0.080) 0.126 (0.110) 0.245 (0.166) 0.167 (0.128) 0.216 (0.232) 0.278 (0.299)
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Fig. 2. Reconstruction errors of A2 versus the number of iterations: 2D RIK (left) and
aSFM RIK (right). Final reconstructions are obtained with approximately 15 iterations.

note that the same function f(·) can be learned regardless of the temporal order
of the input 2D shapes. The following experiment illustrates this property.

STA, Algorithm 1 (A1), and Algorithm 2 (A2) are first used to reconstruct 3D
shapes from temporally ordered 2D shapes wt in W. Then, 3D reconstructions
are computed from an unordered matrix Wπ, obtained with a random permu-
tation π(t) of the input 2D shapes. To focus on the evaluation of the different
3D shape models, all algorithms are run with the same rotation matrix, D or
Dπ, obtained from the original W as in [11].

Table 1 shows the 3D reconstruction error for each algorithm – i.e., aver-
age Euclidean distance to the 3D points of the ground truth shapes, normal-
ized by average shape size [13]. Note that the performance of the RIK-based
methods is unaffected by permutations in the input data, while the performance
of STA decreases significantly. When temporal smoothness holds, the three
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algorithms show similar performance, with compact solutions (small d). The
similar performance presented by the aSFM and the 2D RIK shows that the
2D RIK adequately captures shape variations in the input data. Overall, the
aSFM RIK often leads to more compact solutions while the 2D RIK is faster to
evaluate. Table 1 shows the best results of STA and A1 with K = 1, 2, . . . , 26.
While the results of NRSFM methods in general degenerate as K increases (i.e.,
as the low-rank constraint is gradually relaxed), the reconstructions obtained
with the IRLS-based A2 are less sensitive to the choice of this parameter. Fig. 2
shows that the solutions of A2 on each dataset stabilized after approximately 15
iterations. A2 also computes sparse modes of deformation with more meaningful
information to computer vision applications, as discussed later in this section.

Reconstruction of newly observed 2D shapes: Another key advantage of
NRSFM with RIKs is the capability of recovering 3D shapes of newly observed
2D shapes using the learned function f(·). Considering this scenario, we illustrate
the performance of A1 and A2 using 30-fold cross-validation: the 2D shapes in
W are randomly permuted and divided into 30 validation sets. In each fold, one
validation set SW with nearly 3% of the 2D shapes is left out of the input data
W and f(·) is learned from the remaining 2D shapes, with (d,K or N) set as
in Table 1. Then the 3D reconstruction of each 2D shape wτ ∈ SW is obtained
using (10) or Algorithm 3. This process is repeated for each validation set. The
average 3D error of all these reconstructions is shown in Table 2, for each dataset.
These errors are similar to those obtained on the complete datasets (Table 1),
indicating that the learned functions correctly reconstructed the new 2D shapes.

We also performed a similar experiment using 2D face shapes of a single per-
son, taken from the real video sequence ASL (114,77) of [14]. First, A1aSFM
(K = 4, d = 0.3T ) was used to recover the 3D shapes of all 114 input 2D faces,
Fig. 3(left). Then a second 3D reconstruction was computed for each 2D shape,
this time using 30-fold cross-validation as above. Comparing these two sets of
3D shapes, we observed a very small average 3D difference of 0.025 (0.034),

Fig. 3. Using the mapping f(·) learned from a real dataset: (left) sample 2D face shapes
(green dots) of a same person and NRSFM solution of A1aSFM, in two views; (right)
result of evaluating the learned f(·) on newly seen 2D face shapes from different people.
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Fig. 4. The 3D shape bases obtained in the first 6 iterations of Algorithm 2 on face1 and
stretch. The 3D basis shapes S2, ...,S6 correspond to sub-shape deformations around
the rigid shape component S1 of the first iteration. These deformations are shown as
S1±2σiSi, with σi the standard deviations of the corresponding coefficients. Note that
the original motion capture markers on stretch were not located along straight lines.

relative to the average face size. As an additional experiment, we also evaluated
the learned f(·) on input 2D shapes from a separate dataset with faces of the
same person and also faces of other people. This is an example application in
transfer of facial expression across subjects, which is very useful in computer
graphics and animation. Note that, in cases of occlusion, the kernel is evaluated
only on the subset of points that are observed on both 2D shapes being com-
pared. Fig. 3(right) shows that the recovered 3D shapes do capture the learned
deformations even when expressed by other people. As expected, the recov-
ered 3D shapes can only express the identity and modes of deformation learned
during the NRSFM (training) stage, using the data illustrated in Fig. 3(left).
Nevertheless, this is not a limitation of our approach because, with the re-
moval of the temporal smoothness assumption, the NRSFM stage can consider
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multiple datasets depicting different identities and shape variations (deforma-
tions). Naturally, if the newly observed 2D shapes differ considerably from the
training shapes, 3D reconstruction may be inaccurate due to the limitations of
the shape model when used for extrapolation. Future work will develop this capa-
bility further, considering new constraints such as ensuring cτ = f(wτ ) remains
in the vicinity of the training samples within the learned shape space.

Recovered Modes of Local 3D Deformation: A limitation of most kernel
methods is the use of a unique parameter σ, defining the smoothness of the es-
timated function globally. The Gaussian weighting masks Gi of A2 can be seen
as altering (customizing) σ for each column on the input error matrix Ei. This
is important in NRSFM because the observed objects often present localized de-
formations with different spatial smoothness (e.g., mouth shapes of a talking face
present larger variations than nose shapes). A2 canmodel these local deformations
by extracting a set of functions that correspond to sub-shape variations. The prop-
erty described above is illustrated by the extractedmodes of deformation shown in
Fig. 4. For face1, the local deformation S2 represents mouth opening and closing
(correlated with chin movement), S3 eye-nose distance, S4 right side jaw, S5 left
side jaw, and S6 chin movements. For stretch, the deformations are: S2 left arm,
S3 right arm, S4 head and waist, S5 right hand, and S6 left hand movements. In
comparison to the standard model in NRSFM, the basis shapes above describe
more meaningful, local deformations that can be combined in different ways as
to better extrapolate new 3D shapes. Future work on A2 will explore this fact to
further improve the generalization of the learned function f(·) to shapes largely
different than those seen in the NRSFM stage.

6 Conclusion

We propose a new kernel-based solution to NRSFM that is not restricted to cases
of smooth deformations over time. The main idea is to use a spatial, rather
than temporal, smoothness constraint. Using a RIK and KPCA, we derive a
smooth function that outputs 3D shape coefficients directly from an input 2D
shape. As a result, we learn a custom-built basis to model the shape coefficient
compactly while solving NRSFM. The learned mapping becomes a by-product
of our NRSFM solution and leads to another fundamental advantage of our
approach: for a newly observed 2D shape, its 3D reconstruction is obtained via
the simple evaluation of this function. Finally, we also propose a novel model
fitting algorithm based on IRLS that computes localized modes of deformation
carrying meaningful information to computer vision applications.

NRSFM with RIK is a generic new approach that can make use of customized
RIKs to build mappings that even exploit correlations between object appear-
ance and 3D shape. Our approach can potentially combine the functionalities
of NRSFM and 3D active appearance models with RIKs [19]: while NRSFM is
seen as the training stage, “testing” corresponds to the evaluation of the learned
mapping with a previously unseen 2D shape. These new capabilities allow for
learning deformable models in a studio, reliably (e.g., with known camera posi-
tions in D), to reconstruct the 3D shapes of objects observed elsewhere.
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Abstract. This paper concerns the robust estimation of non-rigid defor-
mations from feature correspondences. We advance the surprising view
that for many realistic physical deformations, the error of the mismatches
(outliers) usually dwarfs the effects of the curvature of the manifold on
which the correct matches (inliers) lie, to the extent that one can tightly
enclose the manifold within the error bounds of a low-dimensional hy-
perplane for accurate outlier rejection. This justifies a simple RANSAC-
driven deformable registration technique that is at least as accurate as
other methods based on the optimisation of fully deformable models. We
support our ideas with comprehensive experiments on synthetic and real
data typical of the deformations examined in the literature.

1 Introduction

The goal of non-rigid registration is to align pixels in two or more images cor-
responding to an object which can move and deform smoothly, e.g., a beating
heart, a waving t-shirt. The task is usually accomplished by estimating the trans-
formation (e.g., a Radial Basic Function - RBF - warp) which maps pixels from
one image to another. Representative applications include shape matching, seg-
mentation in medical images, and retexturing of deformable surfaces.

A popular class of methods relies on detecting and matching salient features
(keypoints) between the images, which are then used to learn the mapping pa-
rameters [1–4]. A critical issue in such feature-based methods is the identification
and rejection of mismatches which unavoidably arise due to imperfect keypoint
detection and matching. If no mismatches exist, estimating the transformation
is trivial, e.g., by solving a linear system for a Thin Plate Spline (TPS) warp [5].

Common sense suggests that standard outlier rejection tools like RANSAC [6]
are inapplicable, the fundamental obstacle being that the underlying transfor-
mation is of unknown and varying complexity [7, 8], i.e., the size of the minimal
subset cannot be determined. It is also widely assumed that many realistic defor-
mations (e.g., bending paper, rippling cloth) are too non-linear to be amenable
to simple geometric modelling. Fig. 2(a) depicts such impressions of the data.

This paper advances the surprising view that, in practice, the scale of error of
the mismatches are orders of magnitude larger than the effects of the curvature

A. Fitzgibbon et al. (Eds.): ECCV 2012, Part IV, LNCS 7575, pp. 274–287, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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(a) SIFT correspondences between a template and an input image.
True matches are in green while incorrect matches are in red.

(b) Correspondences from (a) plotted us-
ing first-3 principal components.

(c) Another view of (b) with the fitted
hyperplane shown in its “side view”.

(d) TPS estimated using matches lying
within the hyperplane bounds in (c).

(e) TPS estimated using the true corre-
spondences identified manually.

Fig. 1. Feature-based robust deformable registration using RANSAC

of the manifold containing the correct matches. Fig. 1 illustrates what we mean
with images showing a sheet of paper bending — this kind of data is typically
used in the literature, e.g., see [1, 8, 9]. SIFT [10] is first invoked to yield a set of
correspondences X = {xi}Ni=1, where each xi = [xi yi x

′
i y

′
i]
T ∈ R

4. Projecting
the data onto the first-3 principal components reveals that the correct matches
(inliers) are actually distributed compactly on a 2D affine hyperplane, relative
to the gross error of the mismatches; see Figs 1(b) and 1(c). This means that
we can robustly fit a hyperplane onto the data to dichotomise the inliers and
outliers; Fig 1(d) shows the TPS warp estimated using the matches returned by
RANSAC, which models the underlying warp very well. As we show later, this
is characteristic of many of the physical deformations tested in the literature.

Our observation motivates the point that, for many types of deformations,
a linear hyperplane is adequate to model the “correspondence manifold” for
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(a) (b)

Fig. 2. (a) The characteristic and level of difficulty of the correspondence manifold
targeted in [11]. This figure(a) is taken from [11]. (b) Data remaining after RANSAC,
shown in the “local” scale of the manifold.

outlier removal. Any outliers remaining (i.e., false positives) are relatively be-
nign rather than outright mismatches, and can usually be smoothened out by
the regulariser of the warp estimator; see Fig. 2(b). Observe that the TPS in
Fig. 1(d) is very similar to the “ground truth” TPS in Fig. 1(e) estimated using
only the true inliers. It is worth noting that without further pixel-based refine-
ment [9], warps estimated from keypoint matches alone cannot extrapolate well
to correspondence-poor or occluded regions; see bottom right of Fig. 1(e).

In a sense our observation is not surprising, since PROSAC [12] - a variant
of RANSAC - has been used as preprocessing to remove egregious mismatches
or to provide affine initialisations for warp estimation [3, 4] (although it was
not used in [1, 2], there are few obstacles to initialise with PROSAC/RANSAC
there). However, it has always been assumed that due to the complexity of the
inlier distribution, significant outliers will remain and it is vital to further opti-
mise the warp robustly, e.g., by an annealing procedure which jointly identifies
outliers and learns deformation parameters [3, 4]. Our aim is to show that such
procedures overestimate the difficulty of the data, and basic RANSAC followed
directly by (non-robust) warp estimation is sufficient.

Close to our work are recently proposed outlier rejection schemes for de-
formable registration [13, 11, 9]. In [11], SVM regression is used in conjunction
with resampling to learn the correspondence manifold in the presence of out-
liers. In Section 3 of [9], local smoothness constraints are imposed (via Delaunay
triangulation) to enable an iterative deformable outlier rejection scheme. These
methods assume that substantial non-linearity of the data precludes the usage
of RANSAC, which disagrees with our observation typified by Fig. 1(b). Using
synthetic and real datasets, we convincingly show that basic RANSAC is at least
as accurate as these approaches.

The rest of the paper is organised as follows: Sec. 1.1 surveys related work
to put this paper in the context. Sec. 2 explains how RANSAC can be applied
for outlier rejection, as well as presents detailed experiments on synthetic and
real data. Sec. 3 investigates and compares the performance of our approach
on retexturing of deformable surfaces, using publicly available sequences. We
conclude and summarise our work in Sec. 4.
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1.1 Related Work

Two major paradigms of image-based deformable registration can be distin-
guished: feature-based methods which rely on keypoint detection and match-
ing [1–4], and pixel-based methods which operate on pixels directly [14, 15].
Feature-based methods are faster but less accurate, and cannot extrapolate well
to correspondence-poor areas. However they are crucial for bootstrapping pixel-
based methods which are more accurate but slower [9]. Since feature-based meth-
ods can only be relied upon to produce “rough” registration, it is desirable to
keep this stage of the pipeline as simple and fast as possible. We argue that, on
many datasets, bootstrapping based on RANSAC is sufficient.

More recently, methods capable of outlier rejection in feature-based deformable
registration have been proposed ([13, 11], Section 3 of [9]). Li et al. [13, 11] pro-
posed that outlier rejection amounts to robustly learning the “correspondence
manifold” which, as depicted in Fig. 2(a), is assumed to be highly non-linear and
mixed among uniformly distributed outliers. We show that such an assumption
is overly pessimistic, since on many datasets the scale of the matching errors is
extreme relative to the non-linearity of the manifold.

A parallel area is non-rigid structure from motion (NRSfM), where the aim is
to recover the structure of objects that have deformed between views. A number
of works assume the deformation to be piecewise rigid [16, 17], which is equivalent
to recognising that the distribution of non-rigid data has low degrees of variation.
Our work is different in that, towards the goal of outlier rejection for deformable
registration, we propose that a single and global affine model (instead of a set of
rigid or affine models) is sufficient for most correspondence data.

Note that our work is different to non-rigid point cloud or shape alignment,
e.g., [18, 19], where the inputs are two sets of unmatched discrete points or
landmarks, usually without accompanying image textures. This requires the joint
estimation of the transformation and correspondence, whereas our work focusses
on rejecting wrongly matched keypoints before non-rigid registration.

2 Outlier Rejection for Deformable Registration

In this section we describe how RANSAC can be applied to outlier rejection in
deformable registration, and present experimental results to examine its efficacy.

2.1 The Correspondence Manifold

RBF warps have been applied extensively to model the deformation of various
kinds of objects [5]. For deformations of 2D image features, it is common to use
two separate RBF warps that share the same centres {ck}Kk=1

[
x
y

]
�→

[
x′

y′

]
where

x′ = [x y 1]Ta1 +wT
1 l(x, y)

y′ = [x y 1]Ta2 +wT
2 l(x, y)

, (1)

l(x, y) is a non-linear lifting function encapsulating the centres
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l(x, y) = [φ(‖[x y]T − c1‖2) . . . φ(‖[x y]T − cK‖2)]T , (2)

and φ(·) is the RBF, e.g., Gaussian or TPS. Given a set of matching features
X = {(xi, yi), (x

′
i, y

′
i)}Ni=1, the centres are taken as {(xi, yi)}Ni=1. Learning an

RBF involves estimating the affine parameters a1, a2 and the coefficients w1,w2

with regularisation to control the warp’s bending energy. For TPS warps this
can be achieved by solving a linear system [5].

By regarding each correspondence as a point xi = [xi yi x
′
i y

′
i]
T in the joint

image space R
4, it can be shown that X = {xi}Ni=1 are samples from a smooth

manifold [13]. It is clear that the manifold is two dimensional due to the two
degrees of freedom of (xi, yi). Assuming that the underlying warp is an RBF
warp, we can express each point on the manifold as

xi =

⎡
⎢⎢⎣

1 0
0 1
a11 a21
a12 a22

⎤
⎥⎥⎦
[
xi

yi

]
+

⎡
⎢⎢⎣

0
0
a13
a23

⎤
⎥⎥⎦

︸ ︷︷ ︸
2D affine subspace

+

⎡
⎢⎢⎣

0
0

wT
1 l(xi, yi)

wT
2 l(xi, yi)

⎤
⎥⎥⎦

︸ ︷︷ ︸
Non-linear deviation

, (3)

where apq is the q-th component of the p-th affine parameter vector. In other
words, the correspondence manifold “undulates” around a 2D affine subspace,
and the deviation of each xi from the subspace is due to the data-dependent
non-linear terms wT

p l(xi, yi); see Fig. 2(b).
Given a set of matched keypoints X containing outliers, our premise is that

the effects of the matching errors far outweigh the deviation of the true inliers
from the affine component of the correspondence manifold. To illustrate this
point, Fig. 3 plots the distribution of the orthogonal distances of the data in
Fig. 1(a) to the RANSAC-fitted 2D affine hyperplane in Fig. 1(b). It is apparent
that a clear separation exists between the inlier and outlier distribution.
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Fig. 3. Distribution of distances to RANSAC-fitted 2D affine hyperplane

2.2 Outlier Rejection and Warp Estimation Using RANSAC

Our observations suggest that RANSAC is sufficient for outlier rejection in de-
formable registration. The goal is to robustly fit a 2D affine subspace onto X .
A minimal solution can be estimated from three data randomly sampled from
X (recall that each datum xi = [xi yi x′

i y′i]
T ∈ X is a particular correspon-

dence). Let S = [xs1 xs2 xs3 ] ∈ R
4×3 be a random minimal subset with the data
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concatenated horizontally. First, the mean of the sample µS is subtracted from
each column to yield Ŝ, whose first-two left singular vectors AŜ ∈ R

4×2 are then
obtained. The pair (µS ,AŜ) is sufficient to characterise the affine subspace. The
residual (orthogonal distance) of datum xi to the fitted subspace is

d(xi|µS,AŜ) =
∥∥xi −AŜA

T
Ŝ
(xi − µS)− µS

∥∥
2
. (4)

RANSAC iteratively generates a set of M 2D affine subspace hypotheses, each
fitted on a randomly sampled minimal subset. The consensus of a hypothesis
is the number of data with residual less than θ from the associated 2D affine
subspace, and the hypothesis with the maximum consensus is returned. The
inliers of the best hypothesis are then used to estimate the RBF warp.

A crucial parameter is the threshold θ. Firstly, to allow the usage of a constant
θ for all datasets, we normalise the data such that the centroid of {(xi, yi)}Ni=1 lies
at the origin, and the mean distance of all points to the original is

√
2. The same

normalisation is applied on the points {(x′
i, y

′
i)}Ni=1. The threshold parameter is

then manually tuned and used for input images.Note that an equivalent threshold
on the error is required in the other methods [1–4, 13, 11, 9] (e.g., r in [1, 2], σ
in [3, 4], ξ in [11], and dTH in [9]).

A second important parameter is the number of hypotheses M . To ensure
with probability p that at least one all-inlier minimal subset is retrieved,

M =
log(1 − p)

log(1− (1 − ε)3)
, (5)

where ε is the ratio of outliers among X . For example, for p = 0.99 and ε = 0.5,
M is approximately 35. In practice the number of iterations used is several times
larger than the predicted M . In our experiments we consistently set M = 100 for
all datasets; as we show later this is still faster than other methods. Moreover,
M can be further reduced by using guided sampling methods [12, 20] or the
threshold θ can also be estimated automatically [21, 22], though we do not
explore these options in our work.

2.3 Experiments on Synthetic Data

We first test the performance of RANSAC on synthetic data. A rectangular
mesh is created with control points (RBF centres) distributed on a grid. Using
the control points, a TPS warp is randomly generated following the method
proposed in [23]. Inliers are produced by randomly sampling 100 positions on
the template mesh and mapped using the synthesised TPS warp. The mapped
points are then perturbed with Gaussian noise of std. dev. 5 pixels. We then
randomly sample positions on the left and right “image” to form outliers. Fig. 4
shows data generated in this manner, with ε = 0.33 (33% outliers). Parameter ν
in the random warp generator controls the bending energy of the warp (see [23]
for details). The effects of different values of ν are shown also in Fig. 4. Observe
that for ν = 200 and 500 the mesh is deformed seriously with self-occlusions.
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(a) ν = 50 (b) ν = 100 (c) ν = 200 (d) ν = 500

Fig. 4. Top row: Template meshes. Bottom: Meshes warped using randomly generated
TPS warps, with bending energy increasing from left to right. Green and red points
indicate respectively inliers and outliers (correspondence lines not drawn for clarity).

We benchmark RANSAC against state-of-the-art outlier rejection methods for
deformable registration: Iterative local smoothness test [9] (Section 3 of that arti-
cle) and SVM regression with resampling [11]. We also compare against the class
of annealed M-estimation methods [1–4]; since these methods are comparable in
accuracy, it is sufficient to compare against [3] which offers the most efficient
algorithm. Note that [1–4] can jointly optimise the warp identify outliers; here
we concentrate on the aspect of outlier rejection/identification.

The ROC curve of each method is obtained by varying the threshold pa-
rameter and recording the resultant true positive rate (number of true inliers
recovered over all true inliers) and false positive rate (number of true outliers
misidentified as inliers over all true outliers). We set ν = 50, 100, 200 and 500,
and for each ν, the outlier rate ε is set as 0.33 and 0.5. For each combination of ν
and ε, 100 random (and distinct) TPS warps are generated, and the ROC curves
for each method are averaged over the 100 warps. Fig. 5 presents the results.

An apparent and expected trend is that as ν and ε increase, the accuracy of
all methods decrease, with the method of [11] deteriorating the fastest, followed
by [9]. The other two methods provide very comparable accuracies1. The strength
of our method, however, lies in its simplicity and efficiency. Table 1 presents the
average running time of all methods for ε = 0.33 and 0.5, where RANSAC
is clearly the fastest2. The major factors affecting the speed of RANSAC are
the outlier rate ε and the size of the minimal subset — since only three data
are required for a minimal solution, RANSAC can tolerate large ε’s without
significant sampling effort. On the other hand, the algorithms of [3, 11, 9] are
more complicated and the run times scale with the data size.

1 We were unable to secure the authors’ own implementation of the competing algo-
rithms. However the generally good performance of the competing methods implies
that our implementation is correct. See code in supplementary material.

2 Following a reviewer’s comment, we have optimised our implementation of [3]. All
methods were implemented and run in MATLAB, which makes the results in Table 1
an accurate picture for relative comparisons of run time.
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(a) ν = 50, ε = 0.33 (b) ν = 100, ε =
0.33

(c) ν = 200, ε = 0.33 (d) ν = 500, ε =
0.33

(e) ν = 50, ε = 0.5 (f) ν = 100, ε = 0.5 (g) ν = 200, ε = 0.5 (h) ν = 500, ε = 0.5

Fig. 5. ROC curves for outlier rejection on synthetic data

Table 1. Average run time (in seconds) for outlier rejection on synthetic data

ε = 0.33 (total 150 matches) ε = 0.5 (total 200 matches)

RANSAC 0.04 0.04

Local smoothness [9] 0.26 0.29

SVM regression [11] 0.06 0.09

Annealed M-estimation [3] 1.41 2.92

Fig. 6. Results on Frame 140 (145 matches, 41.38% outliers), Frame 160 (152 matches,
31.58% outliers) and Frame 178 (196 matches, 19.90% outliers) from the bedsheet
sequence. Col 1: SIFT matches. Col 2: Data after PCA. Col 3: ROC curves.
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Table 2. Average run time (in seconds) for outlier rejection on real data

Sequence name bedsheet tshirt cushion

Frame number 140 160 178 407 720 784 160 175 190

RANSAC 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04

Local smoothness [9] 0.26 0.29 0.28 0.21 0.17 0.19 0.28 0.26 0.22

SVM regression [11] 0.06 0.06 0.08 0.06 0.04 0.05 0.12 0.10 0.06

Annealed M-estimation [3] 1.34 1.52 3.36 1.66 1.40 1.33 3.04 2.30 1.70

Fig. 7. Results on Frame 407 (154 matches, 19.48% outliers), Frame 720 (127 matches,
18.90% outliers) and Frame 784 (136 matches, 19.85% outliers) from the tshirt se-
quence. Col 1: SIFT matches. Col 2: Data after PCA. Col 3: ROC curves.

2.4 Experiments on Real Data

We now test our method on real images. We used publicly available3 image
sequences previously used for NRSfM (e.g., see [24]). In this experiment we
chose 3 representative frames from the 3 hardest sequences (bedsheet, tshirt
and cushion) as input images for outlier rejection. A subimage encapsulating a
large portion of the surface was cropped from the first image of each sequence
to form the template image. SIFT was invoked to produce keypoint matches,
which we then manually categorised as true inliers and outliers. For RANSAC,
100 repetitions were performed on each input image and the average results
(ROC curves) are reported. Figs. 6, 7 and 8 illustrate the results.

3 Obtained from http://cvlab.epfl.ch/data/dsr/

http://cvlab.epfl.ch/data/dsr/


In Defence of RANSAC for Outlier Rejection in Deformable Registration 283

Fig. 8. Results on Frame 160 (234 matches, 10.68% outliers), Frame 175 (205 matches,
13.17% outliers) and Frame 190 (163 matches, 20.25% outliers) from the cushion se-
quence. Col 1: SIFT matches. Col 2: Data after PCA. Col 3: ROC curves.

Table 3. Number of vertices in warped mesh within 3 pixels away from corresponding
vertices in the ground truth mesh

Sequence name bedsheet tshirt cushion

Frame number 140 160 178 407 720 784 160 175 190

RANSAC 603 728 810 667 660 653 667 666 649

Local smoothness [9] 400 518 675 475 339 217 667 552 645

SVM regression [11] 17 146 702 294 138 220 659 564 473

Annealed M-estimation [3] 648 810 810 667 667 663 667 666 667

The low-dimensional visualisations of all data show that again, relative to
the outliers, the inliers are distributed compactly within a 2D affine hyperplane.
Based on the ROC curves, a similar conclusion can be made on the accuracy
of outlier rejection, i.e., annealed M-estimation [3] and RANSAC are the most
accurate, followed by iterative local smoothness test [9] and SVM regression with
resampling [11]. The run times of all methods are depicted in Table 2. Again,
RANSAC is the fastest method, with constant run times across all images.

The data in which the gap in accuracy between annealed M-estimation [3] and
RANSAC is the largest is Frame 190 of cushion (Fig. 8). In the next section we
investigate the practical difference due to this disparity in accuracy. Due to page
limits, we provide outlier rejection and warp estimation results on all frames of
the sequences (and on other sequences) as supplementary material.
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3 Retexturing Deformable Surfaces

Figs. 9, 10 and 11 provide qualitative comparisons of two best performing outlier
rejection methods in Sec. 2.4. The warps for the meshes (for images used in
Sec. 2.4) are obtained by first using RANSAC and annealed M-estimation [3]
to reject outliers, and then using the remaining matches to estimate a TPS
warp. The ground truth warp is obtained by estimating a TPS warp using only
true inliers. The threshold value for RANSAC and annealed M-estimation is
optimised using the ROC curves in Sec. 2.4. Note that annealed M-estimation
can jointly identify outliers and estimate warps, however to yield comparable
parameters (a different kind of warp and bending energy are used in [3]) we
simply estimate a TPS warp using the inliers returned.

(a) Frame 140, grnd truth (b) Frame 140, RANSAC (c) Frame 140, method [3]

(d) Frame 160, grnd truth (e) Frame 160, RANSAC (f) Frame 160, method [3]

(g) Frame 178, grnd truth (h) Frame 178, RANSAC (i) Frame 178, method [3]

Fig. 9. Retexturing bedsheet images (best viewed on screen)

Both methods yield very close results to the ground truth, including Frame 190
of cushion in which the disparity in outlier rejection accuracy between RANSAC
and annealed M-estimation is the largest (see Row 3 of Fig. 8). As mentioned in
Sec. 1, false positives produced by RANSAC are normally benign outliers which
can be smoothened out by the warp’s regulariser.
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(a) Frame 407, grnd truth (b) Frame 407, RANSAC (c) Frame 407, method [3]

(d) Frame 720, grnd truth (e) Frame 720, RANSAC (f) Frame 720, method [3]

(g) Frame 784, grnd truth (h) Frame 784, RANSAC (i) Frame 784, method [3]

Fig. 10. Retexturing tshirt images (best viewed on screen)

For quantitative benchmarking, we compute the goodness of each estimated
warp as the number of vertices in the warped mesh which are within 3 pixels
away from the corresponding vertices in the ground truth mesh. The results
in Table 3 show that on several images annealed M-estimation is better than
RANSAC in this measure — however, [3] imposes local smoothness constraints
which help to “pin down” the position of each vertex relative to the others and
this is beneficial for the goodness measure. This additional information is not
provided to RANSAC. In any case, as shown in Figs. 9, 10 and 11, the practical
differences between the two methods are minuscule.

A general problem for feature-based methods however is the lack of corre-
spondences in certain areas of the surface. To deal with this issue, we track
and propagate features in an image sequence. First, the template is divided into
rectangular regions (e.g., 5 × 5 grid). If the number of matches in a region be-
tween the current frame and the template falls below a threshold, Mean Shift is
initiated to track (pre-matched) features from the previous frame. All matches
are then vetted by RANSAC before TPS warp estimation. Note that feature
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(a) Frame 160, grnd truth (b) Frame 160, RANSAC (c) Frame 160, method [3]

(d) Frame 175, grnd truth (e) Frame 175, RANSAC (f) Frame 175, method [3]

(g) Frame 190, grnd truth (h) Frame 190, RANSAC (i) Frame 190, method [3]

Fig. 11. Retexturing cushion images (best viewed on screen)

tracking and propagation benefit all feature-based methods [1–4, 13, 11, 9] —
See supplementary material for the results.

4 Concluding Remarks

We have provided in this paper (and supplementary material) extensive results
supporting RANSAC as a viable and simple alternative for outlier rejection
compared to more sophisticated approaches. Our premise and observation is
that, relative to the extreme scale of gross mismatches, the distribution of inliers
usually resembles a low-dimensional affine subspace. While we focus here on
RANSAC, there are many approaches to robust fitting of linear manifolds. Some
may have advantages over RANSAC and, in that regard, an important message
of this paper is that the outlier detection issue with non-linear warping, can
likely be done with a relatively cheap schemes.
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Abstract. We introduce a framework to estimate and refine 3D scene
flow which connects 3D structures of a scene across different frames. In
contrast to previous approaches which compute 3D scene flow that con-
nects depth maps from a stereo image sequence or from a depth camera,
our approach takes advantage of full 3D reconstruction which computes
the 3D scene flow that connects 3D point clouds from multi-view stereo
system. Our approach uses a standard multi-view stereo and optical flow
algorithm to compute the initial 3D scene flow. A unique two-stage re-
finement process regularizes the scene flow direction and magnitude se-
quentially. The scene flow direction is refined by utilizing 3D neighbor
smoothness defined by tensor voting. The magnitude of the scene flow
is refined by connecting the implicit surfaces across the consecutive 3D
point clouds. Our estimated scene flow is temporally consistent. Our ap-
proach is efficient, model free, and it is effective in error corrections and
outlier rejections. We tested our approach on both synthetic and real-
world datasets. Our experimental results show that our approach out-
performs previous algorithms quantitatively on synthetic dataset, and it
improves the reconstructed 3D model from the refined 3D point cloud in
real-world dataset.

Keywords: Scene Flow, Tensor Voting, Multi-view.

1 Introduction

3D scene flow [1] is a dense 3D motion vector field which describes the non-
rigid motion of objects in 3D world. Over the last decade, various approaches
[1–11] have been proposed for 3D scene flow estimation. Among the proposed
approaches, most of them [2, 3, 5, 6, 8–11] were developed based on stereoscopic
inputs such that the estimated 3D scene flow is defined up to the depth map am-
biguities [11] where scene flow in occluded areas was undetermined. Also, since
depth map provides incomplete information about the 3D world, the estimated
scene flow can be easily biased. In this work, we introduce a 3D scene flow algo-
rithm which utilizes the 3D point cloud from multi-view stereo. Our estimated
scene flow, thus, describes the full 3D motion vector field of objects’ motions in
3D world.

Our approach is built on top of recent advances in 3D multi-view reconstruc-
tion and in 2D optical flow estimation. In 3D multi-view reconstruction, recent
works such as [12] can reconstruct accurate 3D model with metric error less than

A. Fitzgibbon et al. (Eds.): ECCV 2012, Part IV, LNCS 7575, pp. 288–302, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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1mm in the standard middlebury multi-view stereo dataset [13]. Their techniques
are well suited for illumination changes, occlusion and low-textured regions. In
optical flow estimation, recent algorithms such as [14] have demonstrated less
than 1 pixel average end-point error and less than 5 degree average angular
error in the standard middlebury optical flow dataset [15]. However, when com-
bining them together for the scene flow estimation through back projecting the
estimated optical flow onto the estimated 3D model [1], the accuracy of the
estimated 3D scene flow is far from satisfactory. This is because such a naive
approach can easily amplify errors from both the estimated 3D model and the
estimated optical flow. In addition, since optical flow is estimated individually
in 2D image domain, errors caused by aperture problem, occlusion/disocclusion
from certain view point can be easily propagated to the estimated 3D scene flow.
There are various approaches [16–18, 4] which jointly estimate the 3D model to-
gether with scene flow through mesh deformation and/or 3D points tracking.
However, such approaches usually involve complicated data structures to handle
deformed meshes or they require rich textures on the reconstructed surface for
accurate and dense 3D points tracking. In contrast, our approach computes the
scene flow across 3D point clouds which is model free, simple in data represen-
tation, and it is computationally efficient.

Our approach starts with an initial scene flow computed by back projecting
2D optical flow from different view points onto the 3D point cloud [1]. Inspired by
the work from Wu et al. [19] which uses the closed form tensor voting (CFTV) to
reject outliers and to estimate surface normals without explicit computation of
surface mesh, we modify the CFTV to handle scene flow data. Since CFTV only
provides us the scene flow direction, but not the magnitude of the scene flow, we
utilize implicit surface representation to estimate the scene flow magnitude by
connecting the scene flow of the 3D point cloud at time t with the implicit surface
of the 3D point cloud at time t+1. One major advantage of our approach is that
it can effectively reduce computation and number of parameters by converting
the direction and magnitude estimation of the scene flow into a two-stage process
that is optimized sequentially. By adopting the CFTV framework in scene flow
direction estimation, our scene flow refinement algorithm is structure-aware and
we gain the advantage on outlier rejections and error corrections of the 3D point
cloud. Our experimental results show that our approach is effective in improving
the accuracy of the estimated scene flow from its initialization. Also, our scene
flow refinement algorithm is ready to be adopted to other scene flow estimation
algorithms as post-processing to further enhance their performances.

2 Related Work

Since the concept of scene flow estimation introduced by Vedula et al. [1], various
scene flow estimation algorithms have been introduced. In [1], Vedula et al. first
introduced a scene flow estimation algorithm which projects optical flow onto a
known 3D model with photometric consistent constraint from each of the input
images to regularize the estimated scene flow. There are other studies on scene
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flow estimation in multi-view camera setup as well, such as [7, 20]. Zhang et
al. [7] combine 2D motion from optical flow and stereo view constraint in scene
flow estimation. Pons et al. [20] estimate scene flow after scene reconstruction
by matching images at time t and images at time t+ 1 to refine scene flow over
multiple cameras. Wedel et al. [6] take stereo image sequences as input. They
use stereo matching algorithm to estimate depth map and computes the scene
flow across the estimated depth map.

Other approaches use joint estimation framework [3, 5, 9]. These approaches
estimate depth map and scene flow simultaneously under different camera con-
figurations. For instance, Huguet et al. [3] couples optical flow estimations for
each camera with dense stereo matching. Rabe et al. [5] present a real time
implementation of a variational optical flow algorithm with Kalman filter for
temporal smoothness. Basha et al. [2] estimates 3D structure and scene flow
simultaneously in a unified variational framework. Their approach is based on
3D parameterizations of depth map and 3D scene flow. Vogel et al. [8] improves
the work from Basha et al. [2] by introducing a rigid motion prior into optimiza-
tion function for scene flow estimation. Wedel et al. [11] compute 3D scene flow
from hand held video cameras through stereoscopic analysis of video depth to
estimate 3D motions of camera and scene flow. Recently, Hadfield et al.[10] intro-
duce scene flow particle filter which operate directly on the depth map captured
by Xbox Kinect.

Besides optimization based methods, there are methods which rely on de-
formation and 3D points tracking. In [17], Devernay et al. tracks the poses of
surfels [21] in video sequence to estimate scene flow. They represent the surfel
as a small planar square region. Through analyzing the deformation of surfel in
each video frame, they can estimate the translation and rotation parameters of
surfel across different frames and hence obtain the scene flow in terms of surfel
deformation parameters. Furukawa et al. [18] start with a 3D mesh representa-
tion, and track the projected motion trajectory of vertex coordinates of the 3D
mesh in a scene through tracking the optical flow of feature points. Since 3D
topology is known, the scene flow is obtained through computing the deformed
mesh which agrees with the projected optical flow.

There are several approaches in scene flow estimation employing various 3D
representations that should also be mentioned. Carceroni and Kutulakos [22]
represent scene flow as dynamic surfel which encodes the instantaneous local
shape, reflectance, and motion of a small region in the scene under known il-
lumination conditions. Wand et al. [23] operate on point cloud inputs, but also
infer the topology of the point cloud. Courchay et al. [24] use animated mesh
to simultaneously estimate 3D shape and 3D motion of a dynamic scene from
multiple-viewpoint calibrated videos.

Comparing our approach with previous works, our approach also uses regular-
ization to estimate and to refine the scene flow. A major difference between our
approach and the previous approaches is that we process our algorithm on the
3D point cloud while many of the previous algorithms are processed on the depth
map in 2D image plane. Comparing 3D point clouds with depth maps, 3D point
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(a) (b) (c) (d) (e)

Fig. 1. Initial inputs of our approach. Our data is captured by 20 synchronized cameras
which were arranged uniformly around the target objects in an outdoor environment.
(a) The 3D point cloud reconstructed by using PMVS [12]. (b) to (e) The estimated
optical flow from different cameras by using method in [14]. Note the errors of the 3D
point cloud and optical flow around the head area caused by color ambiguity.

clouds are unstructured, and its sampling can be highly non-uniform. These fac-
tors cause additional challenges in computing scene flow for 3D point clouds.
In addition, neighborhood regularization in 3D point clouds without mesh re-
construction is not as trivial as the neighborhood regularization for scene flow
working on depth map where the spatial neighborhood is well defined and well
sampled in 2D image domain. For this reason, we adopt the CFTV [19] which
defines neighborhood in 3D not only based on the Euclidean distance, but also
based on the relative location and normal orientations of 3D points. We choose
to work on an unstructured 3D point cloud since this is a model free repre-
sentation, and it provides the maximum freedom of deformation for scene flow
estimation comparing to previous works using surfel/mesh representation. Also,
data structure for an unstructured 3D point cloud is simple, and hence it is
computationally efficient.

3 Our Approach

3.1 Data Acquisition

Our system for data acquisition consists of 20 cameras uniformly distributed
around the target objects. These cameras are calibrated and synchronized with
image resolution 1600×1200. Instead of putting our system in a well controlled in-
door environment, we capture our data in outdoor environment with uncontrolled
lighting and complex background to demonstrate amore general application of our
approach. Figure 1 shows the setting and initial inputs of our approach.

3.2 Initial Scene Flow Estimation

Our approach starts with an initial estimation of the scene flow from multi-view
stereo and optical flow triangulation. For our convenience, we use the source
code from the patch based multi-view stereo (PMVS)[12] to obtain our initial



292 J. Park et al.

3D point cloud for each frame individually. We also use the source code provided
by Sun et al. [14] to compute the optical flow for every image sequence from each
camera individually.

We denote by x = {u, v} the image plane coordinates, X = {x, y, z} the 3D
world coordinates, f = {fu, fv} the optical flow in image plane, F = {Fx, Fy, Fz}
the scene flow in 3D world, and P the 3 × 4 camera projection matrix. We use
subscript index i ∈ [1,M ] to represent the i-th point in the 3D point cloud,
subscript index j ∈ [1, N ] to represent the j-th camera in the system setting,
and superscript index t ∈ [1, T ] to represent time (the t-th frame) in input image
sequences where M is total number of points in the 3D point cloud, N = 20 is
the total number of cameras, and T is the total number of frames respectively.
Hence, xt

ij = PjX
t
i, and f tij = PjF

t
i.

In order to obtain the initial scene flow from the 3D point cloud and the 2D
optical flow, we utilize the approach from Ruttle et al. [16] which minimizes the
least square reprojection errors of the scene flow projected onto the image plane
from each camera. This is achieved by solving Ai(Xi +Fi) = 0 for each point in
the 3D point cloud individually where Ai is equal to:

Ai =

⎡
⎢⎢⎢⎢⎢⎣

(ui1 + fu,i1)P3,1 −P1,1

(vi1 + fv,i1)P3,1 −P2,1

...
(uiN + fu,iN )P3,N −P1,N

(viN + fv,iN )P3,N −P2,N

⎤
⎥⎥⎥⎥⎥⎦
, (1)

where {uij , vij} is the image coordinate of the i-th point projected on the j-th
camera, and {fu,ij , fv,ij} is the 2D optical flow of the i-th point on the image
plane of the j-th camera. P1,j , P2,j , and P3,j are the first, the second and the
third rows of the j-th camera projection matrix Pj respectively.

3.3 Closed Form Tensor Voting

Since our approach for scene flow refinement is built on top of the closed form
tensor voting (CFTV) framework[25, 19], we briefly review it here. CFTV im-
proves the reconstruction accuracy of Furukawa et al.[12] by refining noisy sur-
face normal vectors. The tensor voting field considers normal orientation and
minimum curvature connections between local neighborhood in 3D to define the
neighborhood connectivity prior.

For each point Xi in the 3D point cloud, a vote is received from each of its
neighborhood points Xĩ as tensor Tĩi:

Tĩi = cĩiRĩiKĩR
′
ĩi

(2)

where Rĩi = I − 2rĩir
T
ĩi
, R′

ĩi
= (I − 1

2rĩir
T
ĩi
)Rĩi, I is 3 × 3 identity matrix, rĩi

is a unit vector whose direction is the same as Xĩ −Xi, Kĩ = nĩn
T
ĩ
is a kernel

function which encodes the most likely normal direction, ni, of Xi casted by Xĩ

defined by the osculating arc connecting Xi and Xĩ, and cĩi = exp(− ‖Xi−Xĩ‖2

σd
)
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Fig. 2. An example to illustrate the effects of each component (titled with its variable
names) in the decay function η in Equation (4). Our decay function combines the
surface saliency, Euclidean distance, and normal orientation to evaluate the influence
of neighborhood to Xi. A larger weight is given to a point with larger surface saliency,
with closer distance, and with better agreement on normal orientations.

is a decay function controlled by a parameter σd which penalizes neighborhood
points that are further away from Xi.

After collecting votes from neighborhood, the refined normal direction is ob-
tained by using eigen-decomposition to get the eigenvector with the largest eigen-
value. Note that CFTV does not need to reconstruct mesh model in order to
estimate and refine normal direction, and this is a major benefit which fits to
our problem for scene flow refinement with an unstructured 3D point cloud. In
addition, through analyzing the eigenvalue of tensor sum,

∑
ĩTĩi, CFTV rejects

outliers which received very limited amount of votes from its neighborhood. It
can also be used to correct 3D point location by searching a position along the
normal direction of a 3D point which receives the maximum amount of vote
from its neighborhood. In our implementation, we adopt CFTV as a second step
to improve the accuracy of the 3D point cloud from PMVS before scene flow
estimation and refinement.

3.4 Scene Flow Refinement

Scene Flow Direction Refinement. We extend the CFTV framework to han-
dle our scene flow data. The basic idea is to define a “voting field” of scene flow
which collects the most likely scene flow direction from neighborhood such that
structures of 3D points are considered without explicit mesh reconstruction in
order to avoid complicated data structure and to make the scene flow refinement
process efficient. Also, by incorporating the scene flow and the normal direction
propagation together in CFTV, we can further enhance the outlier rejection and
error correction ability of CFTV.

We define our scene flow tensor as follow:

Sĩi = η(Xi,Xĩ,ni,nĩ)
−→
F ĩ

−→
F

T

ĩ , (3)

where
−→
F ĩ is the normalized scene flow direction of Xĩ and η(Xi,Xĩ,ni,nĩ) is a

structure aware decay function defined as:

η(Xi,Xĩ,ni,nĩ) = cĩi
[
Λi(1− (rT

ĩi
ni)

2) + Λĩ(1− (rT
ĩi
nĩ)

2)
]
, (4)

where Λĩ = λ1,̃i −λ2,̃i and Λi = λ1,i −λ2,i are the surface saliency of Xĩ and Xi

respectively, λ1,i and λ2,i are the first and second largest eigenvalues of structure
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tensor sum
∑

j Tij in Equation (2), and 1 − (rT
ĩi
ni)

2 and 1− (rT
ĩi
nĩ)

2 measures
how likely Xi and Xĩ are connected to each other given the configurations of
normal directions ni and nĩ respectively [25]. Hence, if two points Xi and Xĩ are
physically close to each other but the normal configurations of the two points do
not match with each other, η(Xi,Xĩ,ni,nĩ) returns a small weight in propaga-
tion since Xi and Xĩ are unlikely to connect with each other on the same surface.
On the other hand, we give a large weight to Xi and Xĩ if they are physically
closed and the normal configurations agree with each other. Figure 2 illustrates
the effects of η(Xi,Xĩ,ni,nĩ) and each individual component of η(Xi,Xĩ,ni,nĩ)
where Xi receives a larger weight from a point that lies on the same surface with
the same normal direction and smaller weight from a point that lie on another
surface with different normal directions.

After we collect the second order moment of the scene flow from neighbor-
hood, we can obtain the scene flow direction through eigen-decomposition to
find the direction of eigenvector with the largest eigenvalue. The sign ambiguity
is resolved by choosing the sign that provides smaller angular difference between
the refined scene flow direction and the initial scene flow direction. The scene
flow CFTV can estimate the scene flow direction, but it does not provide the
magnitude of scene flow since magnitude of scene flow is not encoded in the
second order moment. Although we can also propagate the scene flow magni-
tude individually similar to the scene flow direction propagation, the estimated
scene flow magnitude might not be physically correct. For instance, it does not
guarantee that the estimated scene flow will touch the surface of the 3D model
in the next frame.

Scene Flow Magnitude Refinement. With the estimated scene flow direc-
tion,

−→
F , we estimate the scene flow magnitude, m, by exploiting the physical

property of the scene flow which connects the surface of the 3D model of the
two consecutive frames. The energy function we want to minimize is defined as
follow:

E(mi)=
1

X2
σ,i

‖ Xμ,i − (Xi +mi
−→
F i) ‖2 +κ

∑

ĩ

η(Xi,Xĩ,ni,nĩ)‖ mi −mĩ ‖2 (5)

where Xμ,i is the predicted 3D point location of Xi at time t+ 1 evaluated by

the surface saliency of the 3D point cloud at time t+ 1 along the direction
−→
F i

connecting Xi, X
2
σ,i is the variance of surface saliency, κ = 0.5 is the parameter

balancing the data term in the first half of Equation (5) and the smoothness
term in the second half of Equation (5).

Xμ,i and X2
σ,i can be estimated by sampling several (7 in our implementation)

discrete locations along
−→
F i to collect votes and to evaluate the variation of sur-

face saliency. A Gaussian distribution is fitted to the evaluated surface saliency
and hence Xμ,i and X2

σ,i correspond to the mean and variance of the fitted Gaus-

sian distribution. Note that the estimation of Xμ,i and X2
σ,i can be computed

individually for each Xi without explicit surface reconstruction. Equation (5)
is then optimized after initial estimation of the scene flow magnitude of all Xi.
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Fig. 3. We estimate the magnitude of the scene flow by utilizing the physical property
of the scene flow that connects the 3D structures of the consecutive frames. Since our
approach is mesh free, we compute a “virtual surface” by evaluating the variation of the
surface saliency by collecting tensor votes along the scene flow direction. The optimal
scene flow magnitude is the one which touches the virtual surface at t+1 with structure
aware neighbor smoothness regularization defined by Equation (5).

Note that we use the same weighting function η(Xi,Xĩ,ni,nĩ) in Equation (3)
to define the neighborhood smoothness term which embeds the normal configu-
ration of Xi and Xĩ and the neighborhood smoothness prior defined by CFTV
into account. Figure 3 illustrates this process of finding the scene flow magnitude
that connects the virtual surface of two point clouds at time t and t + 1. We
can also further reject outliers by evaluating the scene flow saliency collected by
Equation (3).

3.5 Temporally Consistent 3D Scene Flow

The above process refines the scene flow of 3D point cloud for each frame in-
dividually. In order to fully utilize the correlation between consecutive frames,
and to improve the temporal coherency of the estimated scene flow in a long
range, we redefine the set of nearest neighbor along the temporal domain for
frame t − 1 and t + 1. For temporal neighborhood, we can again propagate
the scene flow direction, but now we need to modify the voting field such that
the voting direction is along the tangential direction of osculating arc defined
by the scene flow direction of 3D points at time t − 1 and t + 1. Our modified
scene flow tensor for temporal neighborhood is defined as follow:

Sĩit+1 = cĩit+1Rĩit+1Kĩt+1R′
ĩit+1 , (6)

where ĩt+1 is the index of 3D point neighbor at time t+ 1, Rĩi = 2rĩir
T
ĩi
, R′

ĩi
=

(12rĩir
T
ĩi
)Rĩi, and Kĩ = FĩF

T
ĩ
is the kernel function that encodes the most likely

scene flow direction, Ft
i, of X

t
i casted by Xt+1

ĩ
. The scene flow tensor for Sĩit−1

is defined similarly. The decay function cĩit+1 is same as in Equation (2).
After including temporal neighborhood and the scene flow direction prop-

agation from temporal neighborhood, our estimated scene flow is temporally
consistent. At the same time, the scene flow structures/discontinuities can be
well preserved in the structure aware scene flow propagation by Equation (3)
and Equation (5). In our implementation, we alternate the refinement processes
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Fig. 4. Sphere dataset. The 3D points on the sphere are translated with (a) initial
noisy scene flow, (b) our refined scene flow and (c) the ground truth scene flow.

Table 1. Mean square error of Figure 4. Our approach achieves the lowest MSE after
magnitude regularization.

MSE

Noisy 3D scene scene flow 0.239
Ours without magnitude regularization 0.130
Ours with magnitude regularization 0.077

described in Section 3.4 and Section 3.5 iteratively. In real world dataset, we ob-
serve two iterations are sufficient to converge. From our experiments, we found
that including temporal neighborhood from time t+ 1 and t− 1 is sufficient to
guarantee temporal coherence without over smoothing the scene flow structures.

4 Experimental Results

Our first experiments consists of a synthetic dataset, sphere, as shown in Figure 4.
The radius of the sphere is 1, and the ground truth scene flow is [1, 0, 0]T uniformly
moving in x-direction. To simulate a noisy scene flow from optical flow projection,
we add uniform noise with range [-0.25,0.25] in random directions, but the ground
truth locations of 3D points are unaltered. We apply our approach to refine the
noisy scene flow. As shown in Figure 4(a) and (b), our approach can successfully
refine the noisy scene flow. After shifting the 3D points according to our refined
scene flow, the shape of sphere is still preserved. Table 1 shows quantitative evalu-
ation on the mean square error of scene flow comparing to ground truth. It shows
that both the direction refinements by scene flow CFTV, and the magnitude re-
finement by scene flow magnitude regularization are effective.

We compare our results with the results of Huguet et al. [3] and Basha et
al. [2] using ball dataset in [2] as shown in Figure 5, which is publicly available
with ground truth. This dataset consists of 10 rendered images which represent
5 different view points at time t and t+1. The textured sphere and background
plane are rotated differently, and the mask for the occluded region and the
discontinuity region are provided. In this example, we have also provided an
additional baseline comparison to illustrate the relative performance between
ours and [18]. Approach in [18] is a mesh deformation approach which refines
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Table 2. Quantitative evaluation on the synthetic ball dataset. Our results are com-
pared with results from Huguet et al. [3] and Basha et al. [2]. Ours(Baseline) shows
initially estimated scene flow results without any refinement. From left to right are
the evaluation metrics for the NRMS errors of the estimated 3D point location
(NRMSX(%)), the NRMS errors of the estimated scene flow (NRMSF(%)), and the
AEE of the estimated scene flow (AAEF(deg)). For each row of each compared meth-
ods, the first row and the second row shows the results where the errors in the disconti-
nuities mask (w/o Discontinuities) and occlusion mask (w/o Occlusions) were excluded,
the last row shows the results where all pixels are included (All pixels) for evaluation.
Best quantitative results were underlined.

Method Measurement NRMSX(%) NRMSF(%) AAEF(deg)

w/o Discontinuities 9.82 15.96 7.17
Huguet et al. [3] w/o Occlusions 1.19 11.04 6.66

All pixels 10.43 19.09 9.20

w/o Discontinuities 0.65 2.94 1.32
Basha et al. [2] w/o Occlusions 1.99 5.63 2.09

All pixels 4.39 9.71 3.39

w/o Discontinuities 0.25 6.43 4.74
Ours (Baseline) w/o Occlusions 0.26 6.99 4.98

All pixels 1.12 7.89 5.28

w/o Discontinuities 0.23 4.88 2.73
Ours (After Refinement) w/o Occlusions 0.24 5.07 2.72

All pixels 0.57 5.42 2.83

(a) (b) (c) (d)

Fig. 5. Synthetic ball dataset from [2]. (a) The synthetic rendered images for inputs.
(b) Discontinuity map and occlusion map. (c) Our estimated 3D structure. (d) Our
estimated scene flow (color coded for scene flow direction).

the initial mesh from [12] and scene flow through matching the correspondents
between time t and t+1. In our baseline comparison, we also start with initial 3D
point location from [12]. We skip the CFTV refinement of location so that our
3D point location is more closed to the input of [12]. In scene flow refinement,
instead of using implicit surface, we found the correspondent at t + 1 that is
closest to the estimated scene flow end-point to get the refined scene flow. We
also skip the temporal consistent scene flow refinement described in Section 3.5.
We use the evaluation metrics in [2] to measure the quality of our results in term
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(a) (b) (c)

(d) (e)

(f) (g)

Fig. 6. Scene flow refinement results on outdoor dataset. (a) The reconstructed 3D
structure at t. For better visualization and evaluation, we zoom-in the scene flow for
different body parts: (b) arm part viewed from above, (c) elbow part, (d) back part, (e)
head part, (f) ankle part and (g) vertical cross section of human’s torso are presented.
The scene flow before and after the refinement are shown for comparison.

of the normalized root mean square (NRMS) error for the estimated 3D point
locations and for the estimated scene flow, and the absolute angular error (AAE)
for the estimated scene flow. Table 2 shows the quantitative comparisons.

Our baseline results in Table 2 is worse than the result of [2]. Comparing the
results of ours after refinement with those of our baseline, it is shown that our
approach works reasonably and keeps 3D point positions accurately. In addition,
the positions of 3D points are further improved by the outlier rejection step
of our approach. While the results from [2] show a better performance when
the pixels of discontinuity regions are excluded, our approach shows a better
performance when all pixels are evaluated due to the usage of CFTV that can
handle outliers and discontinuities implicitly in the framework. The result of [2]
can be biased due to smoothness assumption on the occlusion region. Also, note
that our approach is designed for scene flow refinement for general 3D point
clouds, not limited to stereoscopic inputs while both Huguet et al. [3] and Basha
et al. [2] are designed to handle stereoscopic data.
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Fig. 7. Our approach improves the 3D reconstruction accuracy. First row: reference
input image. Second row: reconstructed 3D model using the 3D point cloud from
PMVS [12]. Third row: reconstructed 3D model using our refined 3D point locations
of the 3D point cloud.

We evaluate our approach qualitatively on real-world outdoor dataset shown
in Figure 1. This dataset consists of around 350,000 points on average per frame.
We run our algorithm on a machine with Intel(R) Core (TM) i7 3Ghz PC with
8Ghz RAM memory. The PMVS [12] takes around 2.5 minutes to reconstruct the
3D point cloud per frame, and the optical flow implementation from [14] takes
around 15 seconds to compute the optical flow per each image per frame. Our
C++ implementation with approximate nearest neighbor data structure [26] (it
takes around 5 minutes for initialization and building the ANN data structure)
takes around 3 minutes for the direction refinement and around 5 seconds for the
magnitude refinement for all points per frame. We use 10 neighbor points in im-
plementation. For each frame of filtered 210,000 points, our un–optimized C++
implementation takes about 250 seconds from Section (3.5) to Section (3.3).
Therefore, overall time for temporal consistency takes around 500 seconds.

For better visualization of our results, we show the zoomed-in regions on sev-
eral parts of the human body in Figure 1. We show the scene flow before and
after refinement for comparisons. Our approach is successful in improving the
accuracy of scene flow via scene flow direction refinement and scene flow mag-
nitude refinement. Due to the usage of CFTV, our approach can reject outliers
and correct locations of 3D points. To visualize the effect of outliers rejection,
we show the reconstructed 3D model using Poission surface reconstruction [27]
in Figure 7. We have also translated the 3D points at time t to time t + 1 ac-
cording to the estimated scene flow in Figure 8. As we can observe in Figure 8,
the translated 3D points at t (orange points) match with the 3D points at t+ 1
(cyan points).
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(a) (b)

(c) (d)

Fig. 8. We translate the point cloud at t (orange points) to match with the point
cloud at t+1 (cyan points) according to the estimated scene flow. We show the zoom-
in regions for: (a) man’s back (b) arm part (c) ankle part. (d) Vertical cross section
of human’s torso. As we can see from the figure, the orange points align well with the
cyan points which shows that our estimated scene flow is accurate.

5 Conclusion

In this paper, we have presented a framework to refine the scene flow estimated
by multi-view stereo and optical flow back projection from images to 3D points.
Our approach extends the CFTV framework to handle scene flow data in addition
to the normal estimation problem tackled by the original CFTV framework. To
estimate the scene flow magnitude, we exploit the physical property of the scene
flow to connect the implicit surface of 3D point clouds in the consecutive frames.
We have also introduced the scene flow temporal neighborhood and described
how to propagate the scene flow direction from temporal neighborhood. Our
approach is model free, and it is robust to handle outliers and noisy scene flow. As
part of our future work, we shall study how to include other motion priors, such
as rigid motion prior [8], to further enhance the performance of our framework.
We will also study how to use the estimated scene flow data for different video
editing, segmentation, view synthesis and recognition tasks.
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Abstract. In an underwater imaging system, a refractive interface is
introduced when a camera looks into the water-based environment, re-
sulting in distorted images due to refraction. Simply ignoring the re-
fraction effect or using the lens radial distortion model causes erroneous
3D reconstruction. This paper deals with a general underwater imaging
setup using two cameras, of which each camera is placed in a separate
waterproof housing with a flat window. The impact of refraction is explic-
itly modeled in the refractive camera model. Based on two new concepts,
namely the Ellipse of Refrax (EoR) and Refractive Depth (RD) of a scene
point, we show that provably optimal underwater structure and motion
under L∞-norm can be estimated given known rotation. The constraint
of known rotation is further relaxed by incorporating two-view geometry
estimation into a new hybrid optimization framework. The experimental
results using both synthetic and real images demonstrate that the pro-
posed method can significantly improve the accuracy of camera motion
and 3D structure estimation for underwater applications.

1 Introduction

Structure and motion from images is an active research topic in computer vision
[1]. While remarkable success has been achieved in the last decade for land-
based systems, accurate 3D reconstruction from images captured by underwater
cameras, however, has not attracted much attentions in the computer vision
community only until recently [2][3]. The key challenge is that the refraction
of light occurs when a light ray passing through different media, rendering the
perspective camera model invalid.

In early works, the effects of refraction in underwater 3D reconstruction are
simply ignored [4] or modeled by approximate methods, such as focal length
adjustment [5], lens radial distortion [6] and a combination of the two [7]. Un-
fortunately, these methods are insufficient since the effect of refraction is known
to be highly non-linear and depends on the 3D location of a scene. As shown by

A. Fitzgibbon et al. (Eds.): ECCV 2012, Part IV, LNCS 7575, pp. 303–316, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Treibitz et al. [8], assuming a single viewpoint (SVP) model can be erroneous
for camera calibration in underwater applications.

A more desirable method to compensate for refraction is to use a physically
correct refractive camera model. Chari and Sturm [2] analyze using theoretical
analysis the underlying multi-view relationships between two cameras when the
scene has a single refractive planar surface separating two different media. The
authors demonstrate the existence of geometric entities such as the refractive
fundamental matrix and the refractive homography matrix. Nevertheless, no
practical application of these theoretical results is given in [2]. Chang and Chen
[3] study a similar configuration involving multiple views of a scene through
a single interface. Refractive distortion is explicitly modeled as a function of
depth. In [3], an additional piece of hardware called inertial measurement unit
(IMU) is required to provide the roll and pitch angles of the camera. Also,
the normal of the refractive interface is assumed to be known. Based on this
additional information, the authors derive a linear solution to the relative pose
problem and a closed-form solution to the absolute pose problem. More recently,
Agrawal et al. [9] show that the underlying refractive geometry corresponds to
an axial camera and develop a general theory of calibrating such systems using
a planar checkerboard.

Sedlazeck and Koch [10] study the calibration of housing parameters for un-
derwater stereo camera rigs. Rather than minimizing the reprojection error in
the image space, the error on the outer interface plane is minimized by deriv-
ing the virtual perspective projection [11] for each 3D point. One issue of this
method is, as reported in [10], that the optimization process is time consuming
(in the order of 3 hours). Compared with [10], our proposed algorithm allows
more general configuration of cameras and can minimize the reprojection error
in image space efficiently. Another limitation for most existing underwater pho-
tography works is that a calibration target with known dimensions is required
to perform system calibration [12][11][8].

In this paper, we focus on structure and motion estimation for a general under-
water imaging setup consisting of two cameras, of which each camera is placed in
a separate waterproof housing with a flat window, without using any calibration
object. The main contributions of this paper are: 1) Two new concepts, namely
the Ellipse of Refrax (EoR) and the Refractive Depth (RD) of a scene point
for the refractive camera model are presented. These two concepts facilitate the
derivation of an algorithm which yields globally optimal estimation of relative
camera translation, interface distances and 3D structure under L∞-norm, given
known camera rotation and the interface normal; 2) A new hybrid optimization
framework is proposed to perform two-view underwater structure and motion.
Within this framework, the constraint of known rotation is further relaxed and
the reprojection errors in image space are minimized.

2 Refractive Camera Model

This section gives a brief review of the refractive camera model and presents two
new concepts to facilitate the recovery of underwater structure and motion.
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2.1 Notations and Background

The refractive camera model which consists of a conventional perspective camera
model and a refractive interface is shown in Fig. 1(a). This subsection introduces
notations used in the refractive camera model, backward projection and forward
projection.
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Fig. 1. Illustration of the refractive camera model and two new related concepts. (a)
A perspective camera centered at C in the air observes a 3D point U in water. The
light ray is refracted at the refractive interface Π . The Ellipse of Refrax (EoR) of U
also lies on Π . (b) The Refractive Depth (RD) of 3D point. See text for details.

Back Projection calculates the refracted light ray which originates from the
camera center and goes through the corresponding 3D scene point for a given
image point. Let the camera projection matrix be of the form P = K[R|t],
where K is the calibration matrix of the camera, R the rotation matrix and t
the translation vector. As shown in Fig. 1(a), the corresponding light ray La

in the air is determined by the camera center C and its direction is given by
ra = R−1K−1u, where u stands for the homogeneous coordinates of the image
point. Given La, the point Uπ (which is called refrax according to [13]) where
the refraction occurs can be determined by computing the intersection of La and
the refractive interface Π . In order to calculate the direction of the refracted ray
Lb, Snell’s law is applied, namely na sin θa = nb sin θb, where na and nb are the
refractive indices of air and water, respectively. The direction of Lb can thus be
written as [14]:

rb =
na

nb

ra
‖ra‖2

−
(
na

nb
cos θa −

√
1− sin2 θb

)
n, (1)

where sin θb can be rewritten as a function of cos θa = n · ra
‖ra‖2

and n is the

normal of Π .

Forward Projection calculates the projection of a 3D scene point onto the im-
age plane. The forward projection of a 3D point under the refractive
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camera model corresponds to solving a 4th degree polynomial. Details on forward
projection can be found in [3] and [9].

2.2 Ellipse of Refrax (EoR) and Refractive Depth (RD) of a Scene
Point

Let u and u be the ground truth and the measured homogenous image coordi-
nates (with the 3rd element equals to 1) of a scene point U, respectively. For a
perspective camera with camera projection matrix P, the reprojection error is:

d(P,U,u) = ‖u− u‖2 =

∥∥∥[P]1Ũ− [u]1[P]3Ũ, [P]2Ũ− [u]2[P]3Ũ
∥∥∥
2

[P]3Ũ
(2)

where Ũ = [U�1]� and [P]k represents the k-th row vector of matrix P. Also,
without loss of generality, we assume that [P]3Ũ > 0. For the refractive camera
model, it is incorrect to use Eq. (2) to calculate the reprojection error. However,
since the light ray between the camera center C and refrax Uπ is a straight line
(see Fig. 1(a)), we can get a similar equation on Uπ by replacing U with Uπ in
Eq. (2). In addition, the refrax Uπ should lie on the refractive interface, which
gives another linear constraint. Given a 3D scene point U with image point u,
we define its Ellipse of Refrax (EoR) as:

R(P,n,u) = {Uπ |d(P,Uπ ,u) ≤ γ,n ·Uπ +D = 0, } (3)

where γ is a threshold ( γ = 3 pixels in this paper) specifying the largest repro-
jection error on image plane. For a camera with projection matrix P = K[R|t],
assume that K and R are known, the first constraint of R can be rewritten as:

‖f1(x′), f2(x′)‖2 ≤ γf3(x
′), (4)

where f1, f2 and f3 are affine functions with unknown vector x′ = (t�,U�
π )

�

and coefficients determined by K, R and u. For a fixed γ, Eq. (4) is known to be
a Second Order Cone (SOC), which is convex [15][16]. Note that R corresponds
to the intersection of a SOC and a plane, which is an ellipse (see Fig. 1(a)). Also,
it is easy to see that, by assuming that the normal of the refractive interface n
is known, the second constraint of R is linear in x′′ = (U�

π , D)�. Based on the
above discussion, we conclude that EoR defines a convex set for known K, R, n
and image measurement u.

Since EoR directly imposes constraint on the refrax Uπ rather than on scene
point, solely using EoR does not make sense for reconstructing a 3D point.
Suppose a scene consisting of N 3D points Uj(j = 1, · · · , N) is observed by
two cameras with camera center Ci(i = 1, 2), the refrax of the j-th 3D point

on the i-th interface is denoted by U
i(j)
π (see Fig. 1(b)). According to backward

projection, each image measurement (or each refrax) imposes a linear constraint

on its corresponding 3D scene point. For instance, the constraint for U
i(j)
π is

given by:

Uj = Ui(j)
π + wi(j)r

i(j)
b , (5)
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where r
i(j)
b denotes the direction of the refracted ray that corresponds to refrax

U
i(j)
π . As the direction of the refracted ray is uniquely determined by K, R,

n and image measurement u (see subsection 2.1), Eq. (5) generates three new

independent linear constraints on Uj ,U
i(j)
π and the coefficient wi(j), which we

call the Refractive Depth (RD) of 3D point Uj with respect to the i-th camera.

3 Underwater Structure and Motion with Known
Rotation

In this subsection, we show that the constraints from EoR and RD presented in
the aforementioned section can be imposed in a new formulation of the under-
water with known rotation problem. In the context of this problem, the term
rotation refers to the rotation of the perspective camera and the normal of the
refractive interface.

3.1 Underwater Known Rotation Problem with Provably Optimal
Solution

The underwater with known rotation problem (UKRP1) is formulated as the
following min-max problem:

UKRP1 minmaxij d(Pi,U
i(j)
π ,ui(j))

subject to ni ·Ui(j)
π +Di = 0,

Uj = U
i(j)
π + wi(j)r

i(j)
b ,

∀i = 1, 2,
∀j = 1, · · · , N.

(6)

with unknown vector

X =
(
U�

1 , · · · ,U�
N ,U1(1)

π

�
, · · · ,U2(N)

π

�
, w1(1), · · · , w2(N), t�1 , t

�
2 , D1, D2

)�
.

(7)
The UKRP1minimizes the L∞-norm of the vector of reprojection errors on image
plane. More conveniently, UKRP1 can be rewritten in its equivalent form:

UKRP2 min γ

subject to d(Pi,U
i(j)
π ,ui(j)) ≤ γ,

ni ·Ui(j)
π +Di = 0,

Uj = U
i(j)
π + wi(j)r

i(j)
b ,

∀i = 1, 2,
∀j = 1, · · · , N.

(8)

The first two constraints in UKRP2 correspond to the EoR and the third con-
straint corresponds to the RD defined in subsection 2.2. As the constraints in
UKRP2 are convex for a fixed γ, the solution to UKRP2 can be found by solving a
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sequence of feasibility problems within a bisection procedure [16]. In particular,
the underwater feasibility problem (UFSBP) is given by:

UFSBP Given γ
does there exist X

subject to d(Pi,U
i(j)
π ,ui(j)) ≤ γ,

ni ·Ui(j)
π +Di = 0,

Uj = U
i(j)
π + wi(j)r

i(j)
b ,

∀i = 1, 2,
∀j = 1, · · · , N.

(9)

Since a feasibility problem does not have an objective function, we only need to
examine whether all the constraints are satisfied for a given γ. Because all the
constraints of UFSBP are convex, the feasibility problem UFSBP is also convex
and can be solved efficiently using convex optimization [15].

3.2 Robust Formulation of the Underwater Known Rotation
Problem

While the algorithm proposed in subsection 3.1 can estimate camera translation,
interface distances and scene structure optimally, minimization under the L∞-
norm is known to be particularly sensitive to outliers [16]. In this paper, outliers
are handled by introducing auxiliary variables as in [17]. Instead of solving a
sequence of convex problems, satisfactory estimation of structure and motion can
also be obtained by solving the following single convex optimization problem:

UKRP3 min
∑N

j=1 sj

subject to d(Pi,U
i(j)
π ,ui(j))[Pi]3U

i(j)
π ≤ γ[Pi]3U

i(j)
π + sj ,

ni ·Ui(j)
π +Di = 0,

Uj = U
i(j)
π + wi(j)r

i(j)
b ,

∀i = 1, 2,
∀j = 1, · · · , N.

(10)

with unknown vector

X̃ =
(
X�, s1, · · · , sN

)�
. (11)

Again, for a fixed γ, the UKRP3 is convex and can be solved efficiently. The case
sj > 0 in the solution to UKRP3 indicates that the reprojection error of the j-th
3D point is larger than γ in at least one image, and thus can be identified as
outlier.

4 Underwater Structure and Motion with Rotation
Estimation

For two general underwater cameras, a minimal set of 11 parameters is required
to model the two view geometry (intrinsic parameters are assumed to be known).
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Since we assume that the image plane of each camera is nearly parallel to its
refractive interface, the required number of parameters is reduced to 7, of which
5 are for the relative pose of the two cameras and 2 for the distances between
the cameras and their refractive interfaces. From subsection 3.1, we know that
the relative translation and the distance between each camera and its refractive
interface can be optimally estimated. In this section, the algorithm proposed in
subsection 3.1 is incorporated into Differential Evolution (DE), which is one of
the most powerful population-based stochastic function minimizer [18], resulting
in a new hybrid framework. Consequently, the underwater structure and motion
problem is reduced to a small scale optimization problem over the rotation space,
which can be concisely parameterized by only 4 parameters using quaternion.

4.1 Two-View Geometry Estimation Using Hybrid Optimization

Similar to many other evolutionary algorithms, DE maintains a population of
Np individuals. Np new trial vectors are generated from the perturbation (scaled
difference between two randomly selected population vectors) of points in the
current generation. The trial vector competes against the population vector of
the same index, and the vector with a better fitness value will be marked as
a member of the next generation. In our problem, each individual Θ is a 4-
dimensional real-valued trial vector, which corresponds to a possible solution.
Each individual in the initial population is randomly selected under uniform
distribution in the rotation space. Without loss of generality, the coordinate
system of the first camera is chosen to coincide with the world coordinate system.
Given a trial vector Θ, the rotation matrices of the two cameras are given by
R1 = I3×3 (3× 3 identity matrix) and R2 = Rm(Θ), where Rm(.) transforms a
quaternion into its equivalent rotation matrix. The normals of the two interfaces
are given by n1 = (0, 0, 1)� and n2 = R−1

m (Θ)(0, 0, 1)�.
Our proposed hybrid optimization consists of three stages. In the first stage,

we search for the best camera rotation using DE [18]. In this stage, a subset
of outlier free image correspondences are used and the individual evaluation
for a given trial vector Θ is performed as follows: first, retrieve the system
parameters (camera rotation and interface normal) specified by the given trial
vector; then, estimate the provably optimal structure and motion by solving
UKRP2 (see subsection 3.1) and finally calculate the RMS reprojection error of
reconstructed 3D scene as the fitness of Θ. In the second stage, we use all image
correspondences (may contain outliers) and the best rotation estimated in the
first stage to remove outliers and obtain robust estimates by solving the UKRP3
(see subsection 3.2). In the final stage, both system parameters and 3D structure
are further refined by bundle adjustment as shown in the next subsection.

4.2 Sparse and Dense Underwater 3D Reconstruction

Given the rotation parameters and a set of outlier affected image correspon-
dences, the sparse 3D structure and updated motion can be obtained by solving
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the robust underwater known rotation problem UKRP3. We minimize the fol-
lowing objective function:

J =

2∑
i=1

N∑
j=1

[d′(Pi,ni, Di,Uj ,u
i(j))]2, (12)

where d′(Pi,ni, Di,Uj ,u
i(j)) is the reprojection error of the j-th 3D point Uj

in the i-th image. The projection of a 3D point can be analytically computed
using forward projection [3][9]. The objective function defined in Eq. (12) is
a typical non-linear function and its scale can be large for 3D reconstruction
problem. In this paper, we adopt a general purpose sparse Levenberg-Marquart
(splm) algorithm [19] to improve the efficiency of optimization. For the dense 3D
reconstruction, a modified version of the patch-based multi-view stereo (PMVS)
algorithm [20][3] is used and it generates a (quasi) dense set of oriented patches
covering the surface of scene, which can be converted into a mesh in a post
processing stage.

5 Experiments

In order to evaluate the performance of our proposed method, we implemented
the algorithms in C++ and carried out extensive experiments using both syn-
thetic data and real images. The academic version of MOSEK [21] was used to
solve the convex optimization problems. The refractive index of water is set to
1.33. In order to establish feature correspondences between two images, SIFT
image features were detected and matched using the methods proposed in [22].
For the first stage of our proposed hybrid optimization, a subset of outlier free
image correspondences are selected manually. The error metrics for quantitative
evaluation are defined as follows: 1) the error in the relative camera rotation
ΔR is measured as the angle (in degrees) in the axis-angle representation of the
rotation RestR

�
gt, where Rgt and Rest are the ground truth and the estimated

relative camera rotation, respectively; 2) the error in the relative camera trans-
lation Δt is measured as the angle (in degrees) between the estimated relative
camera translation Test and the ground truth relative camera translation Tgt;
and 3) the error in the relative interface distance ΔD is measured as

ΔD =
1

2

(∣∣∣∣dest1dgt1
· ‖Tgt‖
‖Test‖ − 1

∣∣∣∣+
∣∣∣∣dest2dgt2

· ‖Tgt‖
‖Test‖ − 1

∣∣∣∣
)
, (13)

where dest1, dest2 are the estimated distances between each camera and its re-
fractive interface, and dgt1, dgt2 are the corresponding ground truth distances.
Since the magnitude of Test cannot be recovered in metric 3D reconstruction, a

scale factor
‖Tgt‖
‖Test‖ is used to normalize ΔD.

5.1 Synthetic Data

Our first set of experiments uses synthetic data, where a 3D scene consists of
randomly generated 3D points within a unit cube. The two cameras were placed
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two units away from the center of the cube, looking toward the center of the cube.
Both the relative camera rotation and translation were randomly perturbed to
generate various setups. The distance between each camera and its interface was
randomly chosen from 0.2 units to 1 unit.

First, we evaluate the performance of the globally optimal structure and mo-
tion estimation algorithm described in subsection 3.1 using noise free data sets.
Examined quantities are ΔT and ΔD as defined earlier. Three data sets with
a different number of 3D scene points are generated, each of which consists of
500 randomly generated instances. The statistical results using noise free data
are shown in Fig. 2(a), which demonstrate that our proposed algorithm can es-
timate the camera and interface parameters accurately in the absence of noise,
and that using more image correspondences improves the accuracy. Note that
the accuracy of estimation can be further improved by specifying a smaller er-
ror tolerance in the bisection procedure. Next, we study the performance of the
globally optimal algorithm under different amounts of noise. In addition to uni-
formly distributed noise under which it yields provably optimal estimation, the
influence of Gaussian noise is also investigated. For each level of noise, 30 in-
stances are analyzed statistically. Shown in Fig. 2(b) and Fig. 2(c) are the results
of camera pose and interface parameter estimation under Uniform and Gaussian
noise, respectively. Attributed to efficient convex programming solver provided
in MOSEK, the running time is stable and increases approximately linearly with
respect to the scale of problem. Specifically, it takes approximately 0.1 seconds
for the synthetic scene consisting of 16 scene points and 0.5 seconds for 64 3D
scene points.
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Fig. 2. Accuracy of parameter estimation (solution to UKRP2) (a) using noise free data
sets, (b) under Uniform noise and (c) under Gaussian noise with a different number of
3D scene points
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Fig. 3. Accuracy of parameter estimation using hybrid optimization for data sets (a)
under Uniform noise and (b) under Gaussian noise

Then, we evaluate the performance of two-view geometry estimation using
our proposed hybrid optimization described in subsection 4.1. Statistics over
20 randomly generated instances with a specified number of 3D points under
each level of noise are shown in Fig. 3(a) (under Uniform noise) and Fig. 3(b)
(under Gaussian noise). The results show that our proposed two-view geometry
estimation method can obtain accurate estimation of camera pose and interface
parameters. It is noteworthy that even though the solution to UKRP2 (see Fig.
2(b) and Fig. 2(c)) is provably optimal under Uniform noise, the proposed hybrid
method can significantly improve the accuracy of camera and interface parameter
estimation. The improvements indicate that hybrid optimization is more suitable
for the refractive camera model which possesses highly intrinsic non-linearity. In
addition, this set of experiments once again confirms that using more image
correspondences can improve the accuracy of geometry estimation.

5.2 Synthetically Rendered Images

While subsection 5.1 presents the performance of proposed algorithms statis-
tically, this subsection presents the comparison of results using synthetically
rendered images. Since rendered images can be very realistic, they provide an

Table 1. Comparison of the accuracy of camera localization

Method ΔR ΔT

NDist 3.157 6.123
FAdj 3.044 3.438
RDist 2.236 6.179
FAdj+RDist 2.869 4.985
NEW 0.017 0.051
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alternative way to evaluate practical performance of our proposed algorithms.
In this experiment, we use POVRay, an publicly available ray tracer, to generate
synthetically rendered images. In particular, we create a square water-filled pool
of size 1.15×1×0.55 (L×W×H unit). The Stanford bunny model standing on an
isosceles right angled prism is placed at the bottom of the pool. Each camera
is placed in a glass housing deployed underwater to one side of the pool. The
thickness of the glass is set to 0.01 units, the distance between each camera and
its refractive interface is set to 0.1 units. The focal length of the camera is 800
pixels and the resolution of the image is 1024×768. Such settings result in a 65◦

horizontal field of view (FOV) of camera. The setup and two rendered images
are shown in Fig. 4(a).

(a)

11

0.55
1.15 Camera 2

Camera 1

(b)

(c)

Fig. 4. Experiments with synthetically generated images. Figures in (a) are the sim-
ulated setup and two rendered images. Figures in (b) are the results of 3D recon-
struction using FAdj+RDist. Figures in (c) are the results of 3D reconstruction using
our proposed method. Interested regions are highlighted. Apparent distortion in 3D
reconstruction includes: The wall and floor of the pool become non-perpendicular in
the first column of (b), the two equal sides of the reconstructed isosceles right angled
prism become non-perpendicular in the second column of (b), and the reconstructed
scene far from the cameras is noisy in the third column of (b).

The performance of our proposed method (denoted as NEW) are compared
with four cases: 1) simply ignore distortion (denoted as NDist); 2) use focal
length adjustment (denoted as FAdj); 3) use lens radial distortion (denoted as
RDist) and 4) simultaneously adjust focal length and lens radial distortion pa-
rameters (denoted as FAdj+RDist). All of the four compared cases are performed
with bundler [23]. A comparison of the accuracy of camera localization is shown
in Table 1. The results confirm that the conventional image-space distortion
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models are incapable in compensating for the refraction effect. On the contrary,
our proposed method can handle refractive distortion properly.

The presence of the refractive interface not only affect camera localization,
but also results in distorted and incomplete 3D reconstruction. In particular, we
found that apart from distortion in the reconstructed dense 3D scene, it fails to
reconstruct consistent patches for the part of the scene far from the cameras,
since the distortion induced by refraction increases as scene depth increases. For
qualitative evaluation, the results of dense 3D reconstruction using FAdj+RDist
and our proposed method are shown in Fig. 4(b) and Fig. 4(c), respectively.

5.3 Real Images

The practical performance of our proposed method has also been tested on real
images. Two Point Grey Research Flea2 cameras were placed behind two planar
faces of a large, water-filled tank. The optical axis of each camera was approxi-
mately parallel to the normal of its refractive interface and the intrinsic camera
parameters were assumed to be known. In this imaging setup, the thickness
of glass is about 6 mm, the distance between each camera and its refractive

(a)

Camera 1 Camera 2

(b)

(c)

Fig. 5. Experiments with real images. Figures in (a) are the setup constructed in our lab
and the two captured images. Figures in (b) are the results of 3D reconstruction using
FAdj+RDist. Figures in (c) are the results of 3D reconstruction using our proposed
method. Interested regions are highlighted. Apparent distortion in 3D reconstruction
includes: The two sides of the box become non-perpendicular in the first column of
(b), the reconstructed scene far from the cameras is noisy in the second and the third
columns of (b).
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interface is about 15 mm. The scene placed about 400 mm away from each cam-
era contains three close together containers leaned on a bracket. The resolution
of the captured images is 1032×776 pixels, the focal length of the camera is
roughly 1800 pixels, and the horizontal field of view of the camera is about 32◦.
The experimental setup and captured images are shown in Fig. 5(a).

The results of dense 3D reconstruction using FAdj+RDist and our proposed
methods are presented in Fig. 5(b) and Fig. 5(c) for qualitative evaluation.
Compared with the results on synthetically rendered images (see Fig. 4), the
3D reconstruction on real images is less accurate due to a large amount noise
in image measurements. Nevertheless, more complete and accurate surface has
been obtained using our proposed method than that using FAdj+RDist, which
demonstrates the superiority of our method.

6 Conclusions and Discussions

This paper proposes a method to perform structure and motion from two images
captured by a general underwater imaging setup consisting of two cameras, of
which each camera is placed in a separate waterproof housing with a flat window.
A new formulation of the underwater known rotation problem for the refractive
camera model is proposed based on two new concepts, namely Ellipse of Refrax
(EoR) and Refractive Depth (RD). The proposed formulation allows one to ob-
tain provably optimal underwater structure and motion under L∞-norm given
known rotation. The constraint of known rotation is further relaxed in a new hy-
brid optimization framework. Promising results on synthetic data, synthetically
rendered images and real images demonstrate that the proposed method can sig-
nificantly improve the accuracy of camera motion and 3D structure estimation
for underwater applications.

Two simplification of the underwater imaging setup were made in this paper.
First, the thickness of refractive was ignored. In fact, as pointed out by Treibitz
et al. [8], the thickness of the glass interface results in negligible shift in the
image because the thickness of interface is normally small and the refractive
indices of glass and water are close. Second, the image plane of each camera
was assumed to be nearly parallel to its refractive interface, as in most real
underwater imaging system. Thus, both assumptions are reasonable for practical
underwater applications. As for future work, it would be interesting to investigate
scenarios where the refractive indices of media are unknown.
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Reading Ancient Coins: Automatically

Identifying Denarii Using Obverse Legend
Seeded Retrieval
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Abstract. The aim of this paper is to automatically identify a Roman
Imperial denarius from a single query photograph of its obverse and
reverse. Such functionality has the potential to contribute greatly to
various national schemes which encourage laymen to report their finds
to local museums. Our work introduces a series of novelties: (i) this is
the first paper which describes a method for extracting the legend of
an ancient coin from a photograph; (ii) we are also the first to suggest
the idea and propose a method for identifying a coin using a series of
carefully engineered retrievals, each harnessed for further information
using visual or meta-data processing; (iii) we show how in addition to a
unique standard reference number for a query coin, the proposed system
can be used to extract salient coin information (issuing authority, obverse
and reverse descriptions, mint date) and retrieve images of other coins
of the same type.
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1 Introduction

The aim of this paper is to automatically identify a Roman Imperial denarius
from a single query photograph of its obverse (“front”) and reverse (”back”).
Specifically, we wish to infer the issuer of the coin (usually the emperor depicted
on the obverse), textual descriptions of its obverse and reverse, its reference
identifier in the standard reference work “Roman Imperial Coinage” (RIC) [1]
and the year it was minted.

Motivation. Our primary motivation comes from the immense value that this
functionality would bring to such projects as the “Portable antiquities scheme”
[2]. This scheme, pioneered in England and Wales, encourages the general pub-
lic (primarily metal detectorists) to report their archeological findings to local
museums for the sake of obtaining a record of the relevant and potentially valu-
able details of the find, without confiscating the find. It has been an immense
success. In fact, the scheme has been so popular that the major limitation at
present is the ability to process the large volume of finds, most of which are
coins, and which are individually identified by an expert. Identification by the
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Fig. 1. (i) After the original image of a coin’s obverse is mapped from Cartesian
to quasi-polar coordinates, the corresponding legend is extracted using a HoG-like
descriptor and an exhaustive database of possible legends; (ii) the extracted legend
is used in a WildWinds search to select potential candidate coin types, whose unique
reference IDs are used to retrieve matching images using the AncientCoins search; (iii)
the correct coin type is determined by SIFT matching the query coin’s reverse with
the reverses of the retrieved exemplars for each candidate type; (iv) finally, salient coin
information is extracted by integrating meta-data of all AncientCoins search results
for the correct coin type.

finder is unsatisfactory: most of them are laymen, without the necessary exper-
tize or access to specialist literature, and the risk of erroneous data entry would
be unacceptably high. Our goal is to develop an automated online system which
could process submitted images of coins. Such system would greatly reduce the
burden on the experts, while at the same time making the “Portable antiqui-
ties scheme” even more widely accessible. Indeed, even a simple Google search
readily reveals a plethora of requests to help identify a Roman coin.

Previous Work and Its Limitations. Computer vision work on the analysis
of ancient coins is still scarce, with most of the previous work focusing on modern
coins instead [3–6]. It is only in recent years that ancient coins in particular have
started attracting attention of the community, through collaborations with mu-
seums and organizers of programmes such as the “Portable antiquities scheme”
described previously. All of the published computer vision work focused on the
analysis of ancient coins – by Zaharieva et al. [7], Kampel and Zaharieva [8] and
Arandjelović [9] – aim to match coins using a variation of SIFT-like local fea-
tures, the results universally demonstrating the challenge involved in this task.
Another similarity, and we argue limitation, of these methods is that they treat
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the entire area of a coin in exactly the same manner, as an appearance pattern.
However, in doing so they fail to optimally exploit what is a characteristically
very rich source of information on Roman Imperial coins: the legend (i.e. textual
inscription) around the coin edge. The method described in the present paper
makes the extraction of the legend its first step, which is followed by a sequence
of retrievals, each of which is used to gather further visual or meta-data, until a
unique coin type is identified.

Overview of the Proposed Method. Our system starts by extracting the
obverse legend of a coin from its image. We select the legend from a database
of 1478 legends1 using a HoG-like descriptor to describe the appearance of an
individual letter and a spatial model which constrains the relative locations
of neighbouring letters. The extracted legend is used as the initial seed for a
sequence of retrievals. The results of each retrieval, some visual some textual
(meta-data), are used to further constrain the range of possible coin identities.
First, we use the obverse legend to perform a WildWinds [10] search which
explicitly retrieves all references in RIC with the same legend. Next, a new
retrieval for each candidate reference is performed using the AncientCoins search
[11], which indexes a greater number of entries and coin exemplar images. The
correct type is chosen by visually matching the query coin against the retrieved
reverse motifs. Finally, the meta-data of the matching type is processed and
salient coin information extracted.

2 Method Details

We start with the problem of extracting the legend from an image of the obverse
of a coin. As illustrated in Fig. 2 (a), the legend on Roman Imperial coins runs cir-
cularly around the edge of the coin. In this example it reads ANTONINVSAVGPI-
VSPPTRPCOSIII and it comprises a series of words or abbreviations. There are
several features of obverse legends which are important to observe. Firstly, the
legend is extraordinarily rich in information. ANTONINVS designates the issuer
(here Antoninus Pius), usually depicted on the central part of the obverse; AVG
(Augustus), PIVS, PP (father of the country), TR P (tribune of the people) and
COS III (consul for the third time) all designate different titles of the issuer which
can be used to constrain the coin’s mint date. For example, in this case COS III can
be used to constrain the mint date to 143-144 AD. Lastly, note the “-” symbol in
the string used to describe the legend. It denotes a so-called “legend break” which
is a point at which there is a gap in the physical inscription, usually due to a fea-
ture of the coin’s design. Two inscriptions are usually considered as corresponding
to the same legend even if their legend breaks are differently positioned.

2.1 Geometric Normalization

The obverse legend on a coin runs circularly near the coin’s edge. This means
that the orientation of letters varies across the entire range from 0◦ to 360◦

1 The database is available for download from http://mi.eng.cam.ac.uk/~oa214/

http://mi.eng.cam.ac.uk/~oa214/
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which is not ideal from the point of view of matching efficiency. Instead, we
estimate the location xc = (xc, yc) of the coin’s centre and its radius r using
the Hough transform as described in [9], and then transform the image from
Cartesian to quasi-polar coordinates, as illustrated in Fig. 2. A point at the
location x = (x, y) in the original image J is thus mapped to the point x′ = (x′, y′)
in the geometrically normalized image I:

y′ = s ·
√

(y − yc)2 + (x− xc)2 (1)

x′ =

{
s · 2r arccos((yc − y)/|x− xc|) x < xc

s · 2r (2π − arccos((yc − y)/|x− xc|) x ≥ xc

(2)

The scaling factor s is used to ensure the uniform scale of 942×150 pixels. Lastly,
note that the x coordinate in the processed image starts at the line extending
from the coin’s centre downwards, just as the legend does.

(a) Query obverse (b) Normalized query obverse

Fig. 2. (a) Original image of a query coin’s obverse and (b) the corresponding geo-
metrically normalized image we use to extract the legend

2.2 Legend Extraction

We treat the problem of extracting the obverse legend of a coin as one of optimal
hypothesis choice, each hypothesis corresponding to a particular legend of nl

legends in our database. Thus we wish to find the index i∗ of the hypothesis
such that:

i∗ = arg max
1≤i≤nl

p(l
(i)
1 , . . . , l(i)ni

|I) (3)

where ni is the number of letters in the i-th legend and l
(i)
1 . . . l

(i)
ni are the corre-

sponding letters in order.
It is certainly not the case that different legends are equally common. Some

legends are shared amongst more coin types; certain coin types are also rarer
than others. Indeed, RIC provides a rarity guide (C = common, S = scarce, R
= rare, R2 = very rare, and R3 = extremely rare), estimated from a range of
museum collections. However, we argue that this would not form a good basis
for a prior in the present work: museums have biases in their interests and the
relative frequencies of different types of coins likely to be submitted by lay users
is difficult to predict. Thus we adopt an uninformative prior which makes our
choice a maximum likelihood test:
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i∗ = argmax
i

p(l
(i)
1 , . . . , l(i)ni

|I) = argmax
i

p(I |l(i)1 , . . . , l(i)ni
) (4)

where also:

p(I |l(i)1 , . . . , l(i)ni
) = max

x1,...,xni
y1,...,yni

p(I |l(i)1 , . . . , l(i)ni
, x1, . . . , xni , y1, . . . , yni) (5)

The estimation of the likelihood p(I |l(i)1 , . . . , l
(i)
ni ) is computationally complex in

no small part because of the potential presence of legend breaks which can have
a range of widths and which can in principle occur between any two consecu-
tive letters. To make the problem tractable, we propose a two stage approach:
(i) first, we estimate the optimal placement of the legend letters using only the
evidence from the corresponding image patches and a spatial constraint on con-
secutive letters, and then (ii) evaluate the likelihood for the entire image strip of
the legend, taking into account how well the appearance of legend breaks is ex-
plained too. Thus, to find the optimal placement of letters (x1, y2), . . . , (xni , yni)

we maximize the following likelihood:

P̂ (x1, . . . , xni , y1, . . . , yni) = p(Ix1,y1 |l(i)1 )

ni−1∏

j=1

p(Ixj+1,yj+1 |l(i)j+1) p(xj+1, yj+1|xj , yj)

(6)

where Ixj ,yj is a letter-sized image patch centred at (xj , yj). Our spatial prior on
the locations of consecutive letters is given by:

p(xj+1, yj+1|xj , yj) ∝
{
1 tx1 < xj+1 − xj < tx2 and |yj+1 − yj | < ty

0 otherwise
(7)

The primary function of the the thresholds tx1 and ty is to eliminate implausible
relative letter placements. In contrast, the threshold tx2 is chiefly used for com-
putational reasons, i.e. to restrict the image search area. We set tx1 to 80% of the
letter width, ty to 20% of the letter height and tx2 to six times the letter width.
Our appearance model used to estimate individual letter likelihoods p(Ixj,yj |l(i)j )

is explained next.

Letter Appearance Model. The appearance of a particular letter in a legend
can exhibit great variability. Firstly, legend letters are small features which were
manually engraved without the use of any magnifying instruments. This means
that both their shape and orientation can change significantly from instance to
instance. Letter appearance is also affected by illumination, wear, strike in the
minting process etc. We experimented with a number of possible representations
including raw and filtered appearance, and wavelet based features, with limited
success. An approach based on HoG features [12] was found to be the most
successful one and it is what we adopt henceforth.
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(a) Patch sub-regions (b) Legend matching

Fig. 3. (a) Letter sized patch is divided into nine overlapping sub-regions each cov-
ering a quarter of the area of the entire patch. Shown is a sub-region (red) and two
horizontally and vertically adjacent sub-regions. (b) Initially, the optimal placement
of the letters for a particular hypothesized legend is determined using image evidence
corresponding to letter regions only (shown in red). The likelihood of the hypothesis is
subsequently estimated using evidence both from letter image regions as well as legend
breaks found between letters (shown in blue). Thus a legend hypothesis which explains
letter regions well but produces gaps which do not look like actual breaks, does not
result in a high likelihood value.

We represent each patch as a feature vector obtained by concatenating nine
weighted histograms corresponding to different sub-regions of the patch. Each
histogram comprises nine bins (gradient directions) over 180◦, gradients at 180◦

from one another contributing to the same bin. We make each patch sub-region
half as wide as the entire patch, with two vertically or horizontally adjacent
sub-regions sharing a 50% overlap, as shown in Fig. 3 (a). That gives three
possible vertical and horizontal displacement and hence 3 × 3 = 9 sub-regions
and a 9× 9 = 81 dimensions for the concatenated descriptor.

In comparison to the original descriptor proposed by Dalal and Triggs, our
descriptor contains several modifications which make it more suitable for the
problem at hand. Firstly, we do not weight gradient contributions in proportion
to their magnitude. We found that due to small irregularities on the coin’s surface
and the small physical size of the surface represented by a patch, gradients of
small magnitude can build up and obscure the main features in the patch that
we seek to describe. Instead, we use weights obtained by transforming gradient
magnitudes using a sigmoid function of the following form:

ĝ =
1

1 + exp{−0.5(g − 0.5gmax)} (8)

where gmax is the maximal gradient magnitude of the entire patch (not a spe-
cific sub-region), g the original gradient magnitude and ĝ the transformed value
used to weight bin contributions. Another difference introduced here is that un-
like Dalal and Triggs, we do not normalize histograms of different sub-regions.
Rather, sub-region histograms are concatenated in their raw form. We found
that this produced superior results on our problem.

Using a manually annotated corpus of 30 images of coins with the associ-
ated legends, we learn the range of variation of each letter’s descriptor as a
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multivariate Gaussian distribution. The distribution is over an 81D space in
which we take the first 5 eigenvector directions as the basis of the principal
subspace. The corresponding largest eigenvalues (variances) are left unchanged.
Since the remaining eigenvalues are assumed to come from random noise sam-
pling they are averaged, thus ensuring that the Kullback-Leibler divergence be-
tween the true distribution and its estimate is minimized [13]. The likelihood
p(Ixj,yj |l(i)j ) is then evaluated by first computing the HoG-like descriptor of the
image patch Ixj ,yj and then the corresponding value of the Gaussian represent-

ing letter l
(i)
j . For each locus (xj , yj) we compute the likelihood at three scales

(letter heights of 18, 22 and 26 pixels) and assign the largest of these to (xj , yj).

Inferring Optimal Letter Placement. Using the introduced appearance and
spatial models, the maximum likelihood solution to Equation 6 can be computed
exactly and efficiently using dynamic programming. If L(i)

k+1(x, y) the maximum
likelihood of the i partial legend up to its (k + 1)-st letter:

k = 0 : L
(i)
k+1(x, y) = p(Ix1,y1 |l(i)1 ) (9)

k > 0 : L
(i)
k+1(x, y) = max

x1,...,xk
y1,...,yk

p(Ix1,y1 |l(i)1 ) p(Ix,y|l(i)k+1) p(x, y|xk, yk)× (10)

×
k−1∏

j=1

p(Ixj+1,yj+1 |l(i)j+1) p(xj+1, yj+1|xj , yj) (11)

then the following recurrence holds:

k = 0 : L
(i)
1 (x, y) = p(Ix,y|l(i)1 ) (12)

k > 0 : L
(i)
k+1(x, y) = p(Ix,y|l(i)k+1)× (13)

× max
Δx,Δy

L
(i)
k (x−Δx, y −Δy)p(x, y|x−Δx, y −Δy) (14)

In other words, the maximal likelihood of a partial legend which places its last
letter at a particular location in the image can be computed by scanning the
area of possible loci for the preceding letter, and updating the corresponding
maximal likelihood value.

Estimating Legend Likelihood. The proposed dynamic programming based
approach to estimating the likelihood in Equation 6 accounts only for evidence
of image patches which correspond to the loci of the legend letters, as illustrated
by red rectangles in Fig. 3 (b). There are two key reasons why this likelihood is
not a good approximation to the likelihood in Equation 5 and thus not a good
criterion for selecting the best fitting legend:

– generally it tends to penalize legends with a greater number of letters, and
– it fails to account for the appearance of spaces between letters, which should

look as legend breaks.

Consequently, out approach continues as follows. After the optimal letter place-
ments of a legend are estimated using Equation 6, we fill any significant gaps
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between consecutive letters (greater than 80% of the letter width) with letter
sized patches, as illustrated with blue rectangles in Fig. 3 (b). These should con-
tain the appearance of legend breaks. Unlike in the case of letters, we do not
learn the appearance model for the legend break because we know that in the
idealized coin specimen they should be blank. In other words, considering that
we do not perform the block normalization of Dalal and Triggs, all of the entries
in the corresponding HoG-like feature should be close to zero. This observation
allows us to compute the likelihood of a hypothesized legend break patch Ix,y at
(x, y) using a zero mean isotropic Gaussian whose covariance we estimate as the
mean noise covariance across the distributions representing individual letters.
The likelihood of a particular legend thus becomes:

P (x1, . . . , xni , y1, . . . , yni) = P̂ (x1, . . . , xni , y1, . . . , yni)

n̂i∏

j=1

pb(Ix̂j,ŷj ) (15)

where n̂i is the number of breaks in the i-th legend (note that ni + n̂i = const.),
pb the likelihood of a break corresponding to a letter sized patch, and Ix̂j ,ŷj a
letter sized patch at a hypothesized legend break location (x̂j , ŷj) .

2.3 Making a Shortlist of RIC Identifiers

The free WildWinds coin search engine allows the user to retrieve RIC identi-
fiers of coin types that match a particular legend fragment, disregarding the
positions of legend breaks. This means that a search using the legend AN-
TONINVSAVGPIVSPPTRPCOSIII (see Fig. 2) correctly finds the types RIC 70,
RIC 612, RIC 660 and RIC 716, all which have the correct query legend at the
obverse. However, it also finds the type RIC 415 with the legend ANTONIN-
VSAVGPIVSPPTRPCOSIIII (note the extra “I”, signifying the fourth consulship
year). To overcome this limitation of the search engine, we perform retrieval
using multiple queries. First, we use the extracted legend as the query and ob-
tain the set of possible matches, S0. In addition we also search using each of
the di∗ entries in our legends database which contain the extracted legend as a
sub-string, obtaining further sets of matches, S1, . . .Sdi∗ say. These results allow
us to infer the correct shortlist of identifiers as the set difference S∗ = S0 \∪di∗

j=1Sj .

2.4 Visual Sifting by Matching Reverse Motifs

As we explained earlier, the obverse legend of a Roman coin is typically very rich
in information content. However, it is also seldom sufficient to uniquely identify
a coin. Indeed, a particular legend is usually found on many different types; the
legend ANTONINVSAVGPIVSPPTRPCOSIIII, for example, occurs on over twenty.

A coin type is characterized by particular obverse and reverse legends and
central motifs. Two coins which match in these features are considered to be of
the same type. The obverse motif on Roman denarii and aureii is universally a
portrait of the coin’s issuer, shown in profile, and it provides little additional
information over the corresponding legend regarding the coin’s type2. Thus, we

2 A more detailed treatment of this issue is out of scope of the present paper.
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Fig. 4. A random sample of six reverses retrieved in an AncientCoins search using
the automatically generated query Antoninus Pius ("RIC 441" "R.I.C. 441"). The
reverse motif of the query coin is matched against the set of retrieved reverses. The
overall matching score of the query coin with the type is estimated as the highest of
the corresponding individual matching scores.

focus on the content shown on the reverse to disambiguate the matching of our
query coin against the shortlist S∗ of its possible types. Specifically, we match
reverse motifs, disregarding the reverse legend. Unlike in the case of obverse
legends, the list of possible reverse legends is far greater and to the best of the
knowledge of these authors, no such list has been compiled, which prohibits us
from applying the approach described in Sec. 2.2.

To obtain exemplars of reverses of a particular coin type we employ the free
AncientCoins search engine [11], which retrieves coins from a wide range of
coin dealers’ web sites and past auctions by matching a textual query with the
text associated with each coin. Using this search engine with a simple query
comprising the name of the coin’s issuer (determined from the obverse legend,
as explained in Sec. 2.2) and a particular RIC reference from the shortlist S∗ we
retrieve exemplar images of coins of the corresponding type. An example of six
retrieved reverses is illustrated in Fig. 4. Note the variability in both the style
and positioning of the legend, as well as the central motif (an altar in this case).

Registration.Our approach to matching the reverse of our query coin with each
of the retrieved reverses comprises two stages. First, we register the motifs of
the two reverses which are being compared. This is necessary because the precise
positioning of the motif can very significantly across different dies of the same
type, as can be readily observed in Fig. 4. We use Euclidean registration and
estimate its two parameters by matching SIFT descriptors. Following Lowe’s
recommendation [14], we accept a SIFT keypoint match in the query reverse
with its closest (in terms of feature similarity) keypoint in a retrieved reverse,
if the distance of the second closest keypoint is at least 1.5 greater. We apply
this keypoint matching in a RANSAC framework so as to eliminate the effects
of spurious matches and pool the estimates of correctly matched keypoints to
achieve more robust registration.

Appearance Matching. After the two reverses are registered and their reverse
motifs aligned, they are compared in appearance. Here too we employ SIFT fea-
tures. We try to match each detected feature in the query coin’s reverse with a
feature detected in the reverse of the coin it is compared with, subject to appear-
ance and spatial criteria. First, we require that the similarity of two features (as
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a normalized dot product of the corresponding feature vectors) exceeds a thresh-
old. Also, we require that the two features are within a specific distance from
each other (in our implementation the maximal distance is set to 20 pixels), and
in agreement in scale (within 20%) and direction (within 30◦). The similarity of
two reverses is then measured by the number of matched feature pairs.

After each of the reverses retrieved using a search for a particular RIC type is
compared against the query reverse, we compute the overall matching confidence
for the type as the maximum of all the computed similarities. Finally, the correct
RIC type match is chosen as the one with the highest matching confidence.

2.5 Extraction of Salient Coin Information from Textual Meta-data

The first aim of the present paper was to uniquely identify the query coin’s
reference in RIC. To a proficient numismatist, this reference contains sufficient
information which can be used to look up further relevant details, such as the
coin’s mint date. However, there are several reasons why it is advantageous to do
this automatically, which we set out to do here. First, it saves time needed to look
up a reference and then manually enter relevant detail. It also gives immediate
and more readily understandable feedback which can be used to check for the
correctness of the result. Lastly, it provides the lay user, who may be submitting
his/her find online, a more satisfying and meaningful description of the find.

We specifically seek to extract textual descriptions of the obverse and reverse
motifs, as well as the mint date of the coin. For this we use textual meta-data
associated with the coins already retrieved using the AncientCoins search with
the correct RIC reference. Any retrieved text which is not in English, we translate
into English using Google’s automatic translator and replace various delimiters
by “white space”. Examples include hyphens, which are used to denote legend
breaks, and square brackets which signify that the enclosed part of the legend is
missing, for example because it has been damaged or because it is off the flan of
the coin.

Obverse and reverse descriptions are localized in text using explicit rules which
reflect a number of standard conventions used in describing ancient coins. For
example, the obverse description may be located as the sentence which contains
the obverse legend extracted in Sec. 2.2, or the sentence which follows the word
“obverse”, its abbreviation “obv” or indeed “av”, the abbreviation for obverse
used in German and French (for “avers”) and which is not automatically trans-
lated by Google. A description of the obverse and reverse thus may be extracted
from every retrieved coin record. However, some of these may be incorrect as
the search string comprising the RIC type of the query coin may in some in-
stances occur even in records of coins of a different type. For example this may
be because a coin is in some sense compared with the query coin type (rarer,
similar, and so on). Thus, we wish to choose the best of extracted descriptions.
We achieve this by creating a histogram of words across the corpus of all ex-
tracted descriptions after eliminating undiscriminative words (e.g. “in”, “left”,
“emperor”, “head”, “bust”), and then selecting the best fitting legend as the one
with the words of the highest average frequency in the corpus.
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The manner in which we obtain the mint date (or more generally, mint period)
of the coin involves a different strategy. There are two key problems that we had
to address here. The first is that some records contain incorrect mint dates. The
second is that some coin records do not contain the most precise (narrowest)
mint period found in specialist literature, but a broader one. For example, some
entries will simply have the entire period of the issuer’s reign as the mint period
(e.g. 138-161 AD). We solve both of the aforementioned problems as follows.
Initializing the algorithm with the issuer’s rule period, each time a candidate
period is extracted from a coin record we fragment the range of possible periods,
so that each fragment begins and ends at the beginning or the end of an extracted
period. Then, we choose the fragment with the most votes (most overlapping
periods extracted from coin records), as the correct one.

3 Results

The coin identification system described in this paper was evaluated on 25 coins.
These coins were identified by an expert. Relevant ground truth information –
the coin’s issuer, its obverse and reverse legends, the descriptions of its obverse
and reverse motifs and the minting date – was obtained from RIC.

3.1 Legend Extraction

We first examined the performance of our method for extracting the obverse leg-
end, described in Sec. 2.2. For all but one coin, the correct legend was inferred.
The one incorrect result was caused by a particularly challenging relative place-
ments of two letters. Specifically, the letter I representing the Roman numeral
one, was engraved unusually close to the preceding letter. Consequently, the
appearance of the preceding letter contributed to the feature vector extracted
from a letter sized patch centred at I, producing a low likelihood score at that
location for all letters. Since there is a valid legend identical to the correct one
in all respects except that it does not contain the problematic I (i.e. the same
form of the legend for the previous consulship year), this legend was selected as
the highest likelihood one.

3.2 RIC Types Shortlisting

Providing that the correct obverse legend was extracted in the previous stage of
the algorithm and that the correct RIC type is not so rare as to be absent from
the WildWinds database, our method of creating a shortlist of possible types is
guaranteed to include the correct type. Thus, as expected, for the 24 test coins
for which the obverse legend was correctly extracted, the ground truth RIC type
was amongst the shortlisted ones. Equally, the correct type of the coin for which
the legend was not correctly extracted, was not amongst the shortlisted types.
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3.3 Visual Sifting by Matching Reverse Motifs

Of the 24 coins for which the obverse legend extraction and shortlisting pro-
duced correct results, 22 were matched with the correct RIC type based on the
appearance of the reverse motif. A few representative examples are shown in
Fig. 6. An example of an incorrect match is shown in Fig. 5. It can be read-
ily seen that the matched motifs, although not the same, bear a high degree
of resemblance – both feature a standing figure, holding a small object (patera
and wand respectively) in the extended right arm and a long stick-like object
in the left (spear and sceptre), with a further object at feet (altar and globe).
It is equally interesting to notice that the two types are readily differentiated
from one another by their reverse legends. While the query reverse legend reads
RESTITVTOR VRBIS, that of the incorrectly matched type is PROVID AVGG.

(a) RIC 166 (b) RIC 167

Fig. 5. An example of an incorrect type match. Shown is (a) the correct type RIC 166
and (b) the incorrect type RIC 167 that the query coin was matched to instead

Considering that the correct RIC type was not in the shortlist of possible
types for the one coin whose obverse legend was not correctly extracted, the end
type it was matched to could not be correct. However, the coin was matched
to the correct reverse motif, which means that in every respect except for the
one missing letter of the obverse legend, our method was successful. Indeed, the
obverse and reverse motifs were commonly repeated across different consulship
years, which means that in most cases in which the obverse legend extraction
fails due to unintelligibility of Roman numerals, a nearly identical if not entirely
correct type will be found. This is highly comforting as it is reasonable to expect
that most errors in our legend extraction algorithm will be caused precisely in
the matching of numerals because the contextual constraints are much looser in
comparison with, say, the name of the emperor in the legend.

3.4 Meta-data Parsing

Examples of automatically extracted textual descriptions of the key coin facts
can be see in the central column of Fig. 6. In all cases, the extracted information
correctly matched the identified coin type. The only problem we observed with
this stage of our system pertains to limitations of Google’s automatic transla-
tor when dealing with words which are rarely used in everyday speech but are
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Query Description Example specimen

Issuer: Antoninus Pius
Obverse: DIVVS ANTONINVS Bare head of

Antoninus Pius to right.
Reverse: CONSECRATIO Altar with two

closed doors.
Minted: 161 AD
Reference: RIC 441

Issuer: Septimius Severus
Obverse: SEVERVS PIVS AVG, bust right

belorbeerte.
Reverse: PM TRP XVII COS III PP, Jupiter

stands left between two children.
Minted 209 AD
Reference: RIC 226

Issuer: Faustina I
Obverse: DIVA FAVSTINA, bust draped

right.
Reverse: AETERNITAS, draped and veiled

female figure standing right, head
left, raising right hand and holding
scepter in left.

Minted 141 AD
Reference: RIC 344

Fig. 6. Examples of typical end results of our system. The left-hand column shows
query coins, the central column its RIC type and automatically extracted obverse and
reverse descriptions, and the right-hand column a further example of the same type
obtained using the free AncientCoins search engine.

frequent in numismatics. For example, note the German word “belorbeerte” (lau-
reate) which was not translated in the description of the obverse of the second
coin in Fig. 6. That happens if the coin entries of a specific type are predomi-
nantly in a foreign language – an untranslated word may feature in the majority
of extracted descriptions and thus be included in the description which best
matches the entirety of the retrieved meta-data.

4 Conclusions and Future Work

This paper introduced thefirst automatic systemwhich can identify aRomandenar-
ius from a single photograph. The system comprises a cascade of steps, each aimed
at extracting additional information which allows the range of possible coin types
to be reduced further. The extraction of the obverse legend, a problem also ad-
dressed here for the first time, is crucial as the legend is used to initiate a series of
public search engine retrievals, each of which is used to harness new information.
The first search is used to create a shortlist of possible types based on the obverse
legend alone. The second search is used to obtain images of exemplar coins for each
type. The reverse motifs of these coins are matched with the reverse of the query
coin, the best matching type eventually being selected as the correct match. The
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associated textual meta-data is further used to extract salient coin information:
descriptions of its obverse and reverse motifs, and mint date period.

Our experiments demonstrated highly encouraging results and highlighted the
most promising directions for further improvement. We first aim to investigate
different letter appearance representations, which would allow to extract not
only the obverse legend but also the highly discriminative reverse legend too.
This would also allow us to extend our statistical model used to match obverse
legends to handle more robustly partially damaged legends, which the method
proposed in this paper does not do. Lastly, the occasional failure of our approach
in matching reverse motifs and its sensitivity to the precise coin specimens re-
trieved, add to the corpus of evidence of previous research that the development
of features more specific to the particular problem at hand, rather than generic
SIFT features, is another promising research avenue.
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Abstract. Sparse representation based classification (SRC) methods
have recently drawn much attention in face recognition, due to their good
performance and robustness against misalignment, illumination varia-
tion, and occlusion. They assume the errors caused by image variations
can be modeled as pixel-wisely sparse. However, in many practical sce-
narios these errors are not truly pixel-wisely sparse but rather sparsely
distributed with structures, i.e., they constitute contiguous regions dis-
tributed at different face positions. In this paper, we introduce a class of
structured sparsity-inducing norms into the SRC framework, to model
various corruptions in face images caused by misalignment, shadow (due
to illumination change), and occlusion. For practical face recognition, we
develop an automatic face alignment method based on minimizing the
structured sparsity norm. Experiments on benchmark face datasets show
improved performance over SRC and other alternative methods.

1 Introduction

Face recognition is a long-standing problem in computer vision. It has broad
applications ranging from less-demanding ones such as family photo album or-
ganization (e.g., Apple iPhoto), to the most challenging applications of mass
surveillance and terrorist watchlist that require high recognition performance
but good training images are difficult to be obtained. In this work, we con-
sider an application scenario that falls between these two extremes, where high
recognition performance is desired but a rich set of training face images can be
pre-captured in controlled conditions. Notable applications of this kind are ac-
cess control for secure facilities, computer systems, automobiles, etc. Among face
recognition methods targeting for this scenario, the classical subspace methods
such as Eigenfaces [1], Fisherfaces [2] and nearest subspace (NS) [7] have been
extensively studied. They generally work well in laboratory conditions. Under
practical working or testing conditions their performance is very sensitive to
illumination change, occlusion, or misalignment (due to scale or pose changes).

Recently, sparse representation based classification (SRC) methods have been
proposed [3,13,11] and shown their promise in handling these variabilities in
face recognition. In particular, Wright et al. [3] proposed to use an extended
�1-norm minimization for robust face recognition. Assuming access to a face

A. Fitzgibbon et al. (Eds.): ECCV 2012, Part IV, LNCS 7575, pp. 331–344, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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database with each subject having multiple registered training images taken
under varying illuminations, [3] casts face recognition as the problem of finding
a sparse representation of a test image in terms of the training ones, plus a
sparse error image compensating for possible occlusion or corruption. Denote
the set of training images as {Ak}Kk=1 for K subjects. Ak ∈ R

m×nk contains
images of subject k, with each image being concatenated as a column vector
of Ak. We can put images of all subjects together to form a large matrix A =
[A1,A2, . . . ,AK ] ∈ R

m×n. The sparse representation x and sparse error e are
recovered in [3] by solving the extended �1-norm minimization problem

(�1 �1) : min
x,e

‖x‖1 + ‖e‖1 s.t. y = Ax+ e, (1)

where y ∈ R
m is the given test face image. A key component in their method

leading to the above robustness is to enforce sparsity by �1-norm on the residual
or error image e. By leveraging the same sparsity assumption using �1-norm
minimization, an automatic face alignment algorithm was developed in [13].
Suppose y′ is an observed test face that is not in register with the training
images {Ak}Kk=1. To recover a well aligned image y = y′ ◦ τ so that it can be
readily used for robust face recognition, where τ represents some transformation
acting on the image domain (e.g., 2D similarity transformation), [13] proposed
to solve the following optimization problem to seek the correct transformation
τ and sparse error e

min
e,τk,xk

‖e‖1 s.t. y′ ◦ τk = Akxk + e, (2)

where y′ is sequentially aligned to each subject Ak instead of the whole training
set A, mainly due to the difficulty of optimization associated with the later
case, as discussed in [13]. [13] demonstrates the state-of-the-art face recognition
performance in a practical access control setting. The success of SRC methods
has also inspired many following works [14,15].

In the context of statistical signal processing, it is well known that when
using �1-norm to promote the sparsity in the errors e, it assumes that each pixel
is independently corrupted. However, for many practical face variations such as
occlusion, disguise, or shadow caused by illumination change, errors due to these
variations are typically spatially contiguous. It becomes inappropriate to model
these variations using �1-norm minimization, as did in [3,13,14].

The theory of compressed sensing suggests that given contiguous structures,
it is possible to recover sparse signals with fewer measurements [12]. This means
that from a fixed number of measurements (pixels), we should expect to cor-
rect a larger fraction of errors and subsequently obtain improved recognition
performance if the structural prior knowledge of the corruption can be properly
harnessed. In particular, [11] has used a Markov Random Fields (MRF) model to
estimate a contiguous error support from the obtained e, and has demonstrated
significantly improved performance over [3] for contiguous occlusion. However,
the performance of the MRF model [11] drops drastically when test images are
subject to slight misalignment. To handle misalignment [13] still resorts to pro-
moting the sparsity on e with �1-norm.
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In this paper we introduce a new class of norms that can promote error sparsity
patterns with the properties of contiguity and spatial locality. Our motivation
follows the recent development of new sparsity-inducing norms that are capable
of encoding prior knowledge about the expected structured sparsity patterns.
While �1-norm can only promote independent sparsity [16], one can partition
variables into disjoint groups and promote group sparsity using the so called
group Lasso regularization [17]. To induce more sophisticated structured spar-
sity patterns, it becomes essential to use structured sparsity-inducing norms
built on overlapping groups of variables [20,19]. In this paper, we consider to
use a hierarchical tree-structured sparsity-inducing norm [20,22] on the error
e of a test face, as shown in Figure 1, where overlapping groups of pixels are
from local patches of varying size and each group corresponds to a node of the
tree. As shown in our experiments in Section 4, without knowing explicitly the
number, locations, sizes, and shapes of contiguous errors caused by various face
variations, our method performs better than [3] in terms of handling spatially
contiguous errors. When test images are not well aligned with training images,
unlike the MRF based method, we can effectively bring the images in alignment
via minimizing the structured sparsity norm, by simply replacing the �1-norm in
equation (2). In fact, experiments show that our method performs better than
using the �1-norm for alignment and recognition [13], especially in cases when
only partial face is visible due to occlusion or disguise.

To solve the corresponding optimization problems, we develop efficient algo-
rithms based on the Augmented Lagrange Multiplier (ALM) method [23], in
which a proximal problem associated with structured sparsity norm regulariza-
tion can be efficiently solved using techniques given in [21,22]. The better er-
ror correction capability of structured sparsity translates readily into improved
face recognition performance. Experiments on benchmark face databases show
that our methods achieve the state-of-the-art recognition results, and outper-
form other SRC-based methods in simultaneously handling illumination change,
occlusion, and misalignment in the test face image.

2 Modeling Using Structured Sparsity-Inducing Norms

In this section, we discuss how we could systematically develop sparsity-inducing
norms that can incorporate prior structures on the support of the errors such as
spatial continuity. We hope that such structures can better model corruptions in
practical face images due to shadows, occlusion or disguise, and misalignment.

In this broader context, the work of [3] essentially considers a special case to
the following problem

min
x,e

‖x‖1 + ψ(e) s.t. y = Ax+ e (3)

with the regularizer ψ(·) on e chosen to be ‖e‖1. The geometry of how �1-
norm penalizing sparse errors is illustrated in Figure 2-(a), i.e., the unit ball
of �1-norm. Clearly, the �1-norm regularization treats each entry (pixel) in e
independently. It does not take into account any specific structures or possible
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(a) G0
1 (b) {G1

j}4j=1 (c) {G2
j}16j=1 (d) {G3

j}64j=1

Fig. 1. Illustration of a four-level hierarchical tree group structure defined on the error
image. Each circle represents a pixel, and connected circles represent a node/group in
the tree. The 8 × 8 image in (a) is divided into 4 sub-images in (b) according to
spatial locality, and each sub-image can be viewed as a child node of (a). The similar
relation goes from (b) to (c), and from (c) to (d). Each group of connected black circles
represents a node forced to zero, and white circles show the induced sparsity pattern
by the tree-structured norm (4).

relations among subsets of the entries. While in face recognition scenarios, shad-
ows caused by illumination change, occlusion, misalignment, or even pose and
expression changes normally have the structural properties of spatial contiguity
and locality. Indeed, as reported in [3], SRC based on �1-norm performs better
in case of random pixel corruption than contiguous occlusion. Unfortunately the
later case is actually closer to practical situations in face recognition.

To encode prior knowledge, researchers have proposed to partition variables
into disjoint groups, and use the so called group Lasso penalty [17] to promote
sparsity on the group level. Given e ∈ R

m, the variables with indices {1, . . . ,m}
can be partitioned into a disjoint set of groups, denoted as G, with each group
G ∈ G containing a subset of these indices. A group Lasso norm used in [17]
is defined as ψ(e) =

∑
G∈G ‖eG‖2. As expected, a regularized solution by this

norm has the property that variables in the same group are prone to be zero or
nonzero simultaneously. Figure 2-(d) shows a geometric interpretation. Applied
to the face error image e, it corresponds to divide e into non-overlapping local
patches. However, the error patterns in e corresponding to various face variations
could have arbitrary shapes, with unknown sizes and number. It is impossible to
pre-design disjoint group structures in order to promote error patterns precisely
matching corruptions in actual face images.

To induce more diverse and sophisticated sparse error patterns, we consider
structured sparsity-inducing norms that involve overlapping groups of variables,
motivated by recent advances in structured sparsity [20,19]. Although it still
assumes pre-defined group structures, the overlapping patterns of groups and the
norms associated with the groups of variables allow to encode much richer classes
of structured sparsity. Figure 2-(d) and -(e) give a geometric comparison between
overlapping and non-overlapping group norms for a 3-dimensional vector. In
this work, we consider a tree-structured sparsity-inducing norm. It involves a
hierarchical partition of the m variables in e into groups, as shown in Figure 1.
The tree is defined in a way that leaf nodes are singleton groups corresponding
to individual pixels, and internal nodes/groups correspond to local patches of
varying size. Thus each parent node contains a hierarchy of child nodes that
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(a) (b) (c) (d) (e)

Fig. 2. Unit balls of different norms. (a), (b), and (c) are respectively for �1-norm,
�2-norm, and �∞-norm in 2-dimensional space. (d) is for a non-overlapping group Lasso
norm in 3-dimensional space: ψ(e) = ‖e{1,2}‖2 + |e3|. (e) is for a structured sparsity
norm with overlapping groups in 3-dimensional space: ψ(e) = ‖e{1,2,3}‖2 + ‖e{1,2}‖2 +
|e1| + |e2| + |e3|. Singular points appearing on these balls characterize the sparsity-
inducing behavior of the underlying norms.

are spatially adjacent to each other and constitute a local part in the face error
image e. As illustrated in Figure 1, when a parent node goes to zero all its
descendents in the tree must go to zero. Consequently, the nonzero or support
patterns are formed by removing those nodes forced to zero. This is exactly the
desired effect of structured error patterns of spatial locality and contiguity.

To put formally, denote G as a set of groups from the power set of the index
set {1, . . . ,m}, with each group G ∈ G containing a subset of these indices. The
tree-structured groups used in this paper are defined as follows: A set of groups
G is said to be tree-structured in {1, . . . ,m} if G = {. . . , Gi1, Gi2, . . . , Gibi , . . . }
where i = 0, 1, 2, . . . , d, d is the depth of the tree, b0 = 1 and G0

1 = {1, 2, . . . ,m},
bd = m and correspondingly {Gdj}mj=1 are singleton groups. Let Gij be the parent

node of a node Gi+1
j′ in the tree, we have Gi+1

j′ ⊆ Gij . For any 1 ≤ j, k ≤ bi,

j �= k, we also have Gij ∩Gik = ∅.
Similar group structures are also considered in [20,22]. With the above nota-

tion, a general tree-structured sparsity-inducing norm can be written as

ψ(e) =

d∑

i=0

bi∑

j=1

wij‖eGi
j
‖p, (4)

where eGi
j
is a vector with entries equal to those of e for the indices in Gij and

0 otherwise. wij are positive weights for groups Gij . It is commonly chosen as

wij = 1. ‖ · ‖p denotes �p-norm with p ≥ 1, and popular choices of p are {2,∞}.
Note that support patterns in the error image e corresponding to practical face
variations are usually spatially localized and continuous, such as occlusion or
shadow caused by illumination change. Pixels inside each of such error regions
may have similarly large magnitude. When applying the sparsity-inducing norm
‖ · ‖p to eGi

j
, i.e., a group of pixels in a local patch, we expect similar errors in

magnitude can be induced. For the �∞-norm, it is the maximum value of pixels in
a group that decides if the group is set to nonzero or not, and it does encourage
the rest of the pixels to take arbitrary (hence close to the maximum) values.
Thus, in this paper we choose p = ∞ in the tree-structured norm (4). Figure
2-(b) and -(c) compares the unit balls of �∞ and �2 norms. The effectiveness of
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this choice is also corroborated with empirical evidences. The so defined norm
(4) promotes sparse error patterns more consistent to practical face variations
than standard �1-norm. Figure 3 shows such an advantage by comparing with
[3] on recovering a clean face from occlusion.

3 Robust Face Recognition via Structured Sparsity

In this section, we use the so defined structured sparsity-inducing norm to replace
the �1-norm for modeling the error e in robust face recognition. Thus, the (�1 �1)
objective function in the optimization program (1) is modified to the following

(�1 �struct) : min
x,e

‖x‖1 + λ

d∑

i=0

bi∑

j=1

wij‖eGi
j
‖∞ s.t. y = Ax+ e, (5)

where the sparse vector x induced by �1-norm is naturally discriminative and
encodes the identity of the test sample y. λ is a parameter controlling the trade-
off between sparsity of x and structured sparsity of e.

A drawback of formulation (5) is that y could be linearly represented by
training samples of multiple subjects. As a consequence, the induced error e
contains both within-class variation and between-class difference. On the other
hand, identification of within-class variation is essential for face recognition since
misclassification is mainly due to these variations. We thus propose another
subject-wise face recognition method that involves solving

(�struct) : min
ek,xk

d∑

i=0

bi∑

j=1

wij‖ek,Gi
j
‖∞ s.t. y = Akxk + ek, (6)

w.r.t. each subject k of all the K subjects. If y belongs to subject k, solving (6)
makes it possible to identify face regions of y that correspond to within-class
variations. By discarding those regions a clean face image well-approximated by
Ak can be recovered. The formulation (6) is thus a good approach to measure
the capabilities of different methods for identifying within-class variations of test
images. In this paper, we compare (6) with �1-norm variant of (6), which was
considered in [11], in these settings. When optimizing (6) w.r.t. each subject,
ideally the optimal e∗k with the true subject would be smallest if based on some
properly defined measure. (6) thus suggests new classification criteria which will
be introduced shortly.

Both (5) and (6) are convex programs. To solve them we have developed algo-
rithms based on Augmented Lagrange Multiplier (ALM) methods [23]. ALM has
demonstrated its good balance between efficiency and accuracy in related sparse
representation based face recognition methods [4,13]. The notable difference here
is that in our ALM framework, a subproblem concerns with a proximal problem
associated with structured sparsity-inducing norm regularization. A few recently
proposed techniques can be exploited to efficiently solve the proximal problems
of such kind [21,22,20]. For the case of �∞-norm applied to overlapping groups
considered in this paper, solutions can be found by solving a quadratic min-cost
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flow problem [21]. Please refer to the supplemental material1 for details of our
developed algorithms for solving (5) and (6).

3.1 Alternative Classification Criteria

Given a test image y, solving (5) enables us to obtain the optimal sparse vectors
x∗ and e∗. When y is a face image from one of the K classes in the training set,
we use the method in [3] for face classification. Denote δk(x) as a function to
select coefficients from x corresponding to training samples of subject k, y can
be classified as the class that minimizes the residuals

identity(y) = argmin
k
rk(y), rk(y) = ‖y −Akδk(x

∗)‖2. (7)

Solving (6) w.r.t. each subject gives the optimal vectors {e∗k}Kk=1 and {x∗k}Kk=1.
Since {x∗k}Kk=1 are computed locally w.r.t. each subject, it is no longer available
to use the criteria as above. Instead, it is natural to compare e∗k, k = 1, . . . ,K,
to classify y if y is from one of the K training subjects. In this paper, we choose
to classify y to the class that minimizes the structured group sparsity norms

identity(y) = argmin
k
ψ(e∗k), ψ(e

∗
k) =

d∑

i=0

bi∑

j=1

wij‖e∗k,Gi
j
‖∞. (8)

This criteria outperforms the conventional �1-norm alternative, as reported in
our experiments in Section 4.

The so obtained {e∗k}Kk=1 provide information for identifying the regions of
y that correspond to either within-class variation or between-class difference2.
Intuitively, the size of support regions for within-class variation should be smaller
than that for between-class difference. This suggects a new classification criteria
based on support regions of e∗k for k = 1, . . . ,K. To identify the support regions,
[11] adopted a non-convex formulation based on a Markov random field model.
Instead, we here consider a simple thresholding scheme in order to show the
superiority of structured sparsity for identification of different face variations. In
particular, we can normalize the range of entry values of each e∗k to [0, 1]. Denote
0 < τ < 1 as a threshold parameter, and sk ∈ {0, 1}m as a support vector for
each e∗k. sk can be computed by setting sk[i] = 0 when e∗k[i] ≤ τ and sk[i] = 1
otherwise. With the above notations the new classification criteria based on the
sizes of support regions of {e∗k}Kk=1 is defined as

identity(y) = argmin
k

‖ê∗k‖1
|{i|sk[i] = 0}|

1

|{i|sk[i] = 0}| , (9)

where ê∗k is a subvector of e
∗
k with entries of indices corresponding to {i|sk[i] = 1}

removed. Thus the first part in (9) computes the averaged error value for each
entry of ê∗k, and the introduction of the second part in (9) make this criteria
favor e∗k with smaller support regions.

1 http://web.adsc.com.sg/perception/publications.html
2 Usually entries of e∗

k will be very small in magnitude rather than exactly zero. And
support regions of e∗

k cannot be directly obtained.

http://web.adsc.com.sg/perception/publications.html
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3.2 Robust Face Alignment via Structured Sparsity

So far we have assumed that the test image y is well aligned with the training
images A = [A1,A2, . . . ,AK ]. Precise alignment is crucial for success of sparse
representation based face recognition methods – in fact, good alignment is im-
portant for any recognition tasks. However, practically observed test image y′

could be subject to some pose change or misalignment, so that the above as-
sumed linear model y′ = Akxk + ek no longer holds for any k. In the context of
practical face recognition, y′ can be related to y by y = y′ ◦ τ , where τ stands
for some transformation in the image domain (e.g., 2D similarity transforma-
tion for correcting misalignment, or 2D projective transformation for handling
some pose change). The objective thus becomes to find the correct τ so that
after transformation the obtained y from y′ can be represented linearly by the
training images.

As suggested in [13], the assumption of sparsity itself provides a strong cue
for finding the deformation τ . As an extension to the problem (6), based on
our structured sparisty, we formulate the alignment problem as the following
optimization objective

τ∗k = arg min
τk,ek,xk

d∑

i=0

bi∑

j=1

wij‖ek,Gi
j
‖∞ s.t. y′ ◦ τk = Akxk + ek, (10)

for k = 1, . . . ,K. The problem (10) is a difficult, nonconvex optimization prob-
lem over the deformation τk, error ek and coefficient vector xk. Fortunately, in
practice a good initialization of τk can be obtained from the output of an auto-
matic face detector [8]. To solve (10), we follow the strategy of [13] by repeatedly
linearizing about the current estimate of τk, and seeking a deformation step Δτk
via the following minimization problem

Δτ∗k = arg min
Δτk,ek,xk

d∑

i=0

bi∑

j=1

wij‖ek,Gi
j
‖∞ s.t. y′◦τk+JΔτk = Akxk+ek, (11)

where J = ∂
∂τk

y′ ◦ τk is the Jacobian of y′ ◦ τk w.r.t. the transformation pa-

rameters τk. The notable difference of model (11) from that considered in [13] is
the sparsity-inducing norm enforced on error ek: here we use structured group
sparsity norm while �1-norm was used in [13]. We empirically observe that when
y′ contains large variations such as occlusion or disguise, our model is much
better than that in [13] for face alignment and recognition, as reported in our
experiments in Section 4. For solving (11), we have again developed an algorithm
based on ALM. Please refer to the supplemental material for details of our algo-
rithm. Similar to [13], it is important to normalize the warped image y′ ◦ τk in
optimization of (11), by replacing the linearization of y′ ◦ τk with a linearization

of the normalized version y′◦τk
‖y′◦τk‖2 .

After solving (10) w.r.t. all K subjects, the optimal {τ∗k}Kk=1 and {e∗k}Kk=1 can
be obtained. The per-subject alignment residuals {e∗k}Kk=1 can be naturally used
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Algorithm 1. Robust face alignment and classification via structured sparsity

input : A test image y′ ∈ R
m, initial transformations {τ0

k}Kk=1, a matrix of well-aligned

and normalized training samples of K subjects A = [A1,A2, . . . ,AK ] ∈ R
m×n, a

set of pre-defined tree-structured groups G = {Gi
j} with i = 0, 1, . . . , d and

j = 1, . . . , bi, the weight wi
j ≥ 0 for each Gi

j , and a regularization parameter λ > 0.

1 for each subject k do
2 let τk = τ0

k ,
3 while not converged do
4 compute an optimal step Δτ∗

k by solving (11): Δτ∗
k =

argminΔτk,ek,xk

∑d
i=0

∑bi
j=1 w

i
j‖ek,Gi

j
‖∞ s.t. y′ ◦ τk + JΔτk = Akxk + ek,

5 update τk ← τk +Δτ∗
k .

6 end

7 end
8 keep the indices of top S candidates c1, . . . , cS among {1, . . . ,K} with the smallest

structured group sparsity norm ψ(ek) =
∑d

i=0

∑bi
j=1 w

i
j‖ek,Gi

j
‖∞.

9 set Ã← [Ac1 ◦ τ∗−1
c1

, . . . ,AcS
◦ τ∗−1

cS
].

10 compute an optimal x̃∗ via solving

x̃∗ = argminx̃,e ‖x̃‖1 + λ
∑d

i=0

∑bi
j=1 w

i
j‖eGi

j
‖∞ s.t. y′ = Ãx̃+ e.

11 compute the residuals rk(y
′) = ‖y′ − Ãkδk(x̃

∗)‖2 for k = c1, . . . , cS.

output : identity(y′) = argmink rk(y
′).

for robust face recognition. For example, we can use (8) to classify the test image
y′ to one of the K subjects. To further improve the recognition performance,
a global sparse representation problem (5) can be solved by aligning training
samples of each Ak to y′ using the computed τ∗k . We thus get a discriminative
representation x∗ in terms of the entire training set, and (7) can be used as
the criteria for face classification. The complete procedure of our robust face
classification with automatic alignment is summarized as Algorithm 1, where
the parameter S is used to reduce the number of subjects used in the global
sparse representation problem (5), leaving a much smaller problem to solve.

4 Experiments

In this section, we conduct experiments to test the effectiveness of enforcing
structured sparsity on the error e for robust and practical face recognition. We
use three publicly available databases including the Extended Yale B [5,7], AR
[10] and Multi-Pie [9] databases. We compare our method with those closely
related sparse representation based face recognition methods [3,11,13], and also
with other baseline classifiers such as Nearest Neighbor (NN), Nearest Subspace
(NS), and Support Vector Machine (SVM). We will first present how different
methods perform when both training and test images are well aligned, and then
present experiments of practical face recognition by automatic face alignment.

4.1 Robust Face Recognition with Well Aligned Face Images

Recognition with Synthetic Block Occlusion. We use Extended Yale B
database to test the robustness of our method against illumination change and
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Fig. 3. Recognition on the Extended Yale B database (better view the electronic ver-
sion). (a) shows example results for test images under extreme illumination condition
or with large fraction of occlusion: (a)-i test images; (a)-ii estimated error images; (a)-iii
recovered images; (a)-iv training images with frontal illumination. Top row in (a) is the
result by our method �1 �struct on a test image under extreme illumination condition.
Middle and bottom rows in (a) compare our method with the method �1 �1 [3] on a test
image with 60% occlusion. (b) plots recognition results of our method �struct and its
�1 variant under classification criteria (8) and (9), and compares with NN, NS, SVM,
and the method �1 +MRF [11].

contiguous occlusion. There are 1238 frontal face images of 38 subjects captured
under varying laboratory lighting conditions in Subsets 1, 2, and 3 of the Ex-
tended Yale B database. Subsets 1, 2, and 3 contain face images under mild,
moderate, and extreme illumination conditions respectively. We choose four illu-
minations from Subset 1, two from Subset 2, and two from Subset 3 for testing,
and the rest of the images are used for training. The total number of training
and test images are respectively 935 and 303. All images are manually aligned
and cropped to the size of 96× 84. In our experiments we simulate various levels
of contiguous block occlusion from 10% to 80%, by replacing a randomly located
block of each test image with an unrelated image, where locations of the occlu-
sion are unknown to the computer. We test both of our recognition methods,
namely �1 �struct for equation (5) and �struct for equation (6). For �1 �struct, we
set λ = 1, which is chosen to seek a balanced sparsity between x and e. We
compare our methods with NN, NS, SVM, and especially with related sparse
representation based methods, dubbed �1 �1 for [3] and �1 +MRF for [11].

Figure 3-(a) shows example results using our method �1 �struct. For the case
of no occlusion shown in the first row of Figure 3-(a), the obtained error image
by our method compensates well for the shadow around nose, which is due to
a violation of the assumed linear subspace model. Correspondingly a clean face
without dark shadow is recovered. The second and third rows of Figure 3-(a)
show results of our method and the method �1 �1 for an example test image
with 60% occlusion. This is a difficult recognition task even for humans. Careful
comparison between the second and third rows of Figure 3-(a) shows that our
method performs better in terms of recovering the clean face with no occlusion.
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Table 1. Recognition results of our method �1 �struct and the method �1 �1 [3] on the
Extended Yale B database with varying levels of synthetic block occlusion

Percent occluded 10% 20% 30% 40% 50% 60% 70% 80%

�1 �1 [3] 100% 100% 100% 99.7% 98.0% 68.4% 44.1% 22.4%

�1 �struct 100% 100% 100% 100% 99.3% 73.7% 47.0% 24.1%

We quantitatively compare the recognition performance of different methods
in Table 1 and Figure 3-(b). We can see from Table 1 that up to 50% occlusion,
our method �1 �struct performs almost perfectly, and it consistently outperforms
the method �1 �1 up to 80% occlusion. For our method �struct (problem (6)), we
report results in Figure 3-(b) by comparing with a variant of (6), dubbed “�1”

3,
under classification criteria (8) and (9), where τ is set as 0.1 for criteria (9).
Under criteria (8), enforcing structured sparsity by �struct gives better results
than the �1 variant does. Under criteria (9), we also compare with NN, NS,
SVM, and the method �1 + MRF [11]. �1 + MRF uses the �1 variant of (6)
as initialization, and a complicated non-convex optimization method based on
MRF to specifically address occlusion. Results by our method based on simple
thresholding (cf. Section 3.1) are comparable with those from �1 +MRF up to
70% occlusion, and also consistently better than those from NN, NS, SVM, and
the thresholding based �1 variant. It should be noted that �1 +MRF can only
address the case that test images are well aligned, while our method is able to
automatically align test images, as will be reported shortly. For the well aligned
case, our method is also possible to be integrated with MRF to specifically
address occlusion, as did by �1 +MRF [11]. Nevertheless, results in Table 1 and
Figure 3 clearly demonstrate that structured sparsity-inducing norm is a better
choice for robust face recognition.

Recognition with Disguise. We test our method’s ability to cope with real
disguises using a subset of the AR database. The training set consists of 799
unoccluded face images of 100 subjects with different facial expressions4. We
consider two separate test sets, each of which contains 200 face images. In the
first test set are images of subjects wearing sunglasses, which occlude about 30%
of each image. In the second test set are images of subjects wearing a scarf, which
occludes roughly half of each image. All training and test images are resized to
83 × 60. Table 2-Left compares our method �1 �struct with NN, NS, SVM, and
�1 �1 [3], where we again set λ = 1 for �1 �struct. Table 2-Right compares our
method �struct with its �1 variant under the classification criteria (9) (τ is set
as 0.1 for both �struct and its �1 variant), and also with the method �1 +MRF
[11]. Table 2 shows that �1 +MRF achieves the best performance for the case of

3 The �1 variant of (6) solves the problem: minek,xk ‖ek‖1 s.t.y = Akxk + ek, w.r.t.
each subject k of all the K subjects.

4 We use image IDs {1−4} and {14−17} for each subject in the AR database, except
one corrupted image.
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Table 2. Recognition results of different methods on the AR database with disguises

NN NS SVM �1 �1 �1 �struct

sunglasses 60.5% 59.0% 66.5% 91.0% 92.5%

scarf 14.0% 15.0% 16.5% 64.0% 69.0%

�1((9)) �struct((9)) �1+MRF

99.0% 99.5% 99.5%

84.0% 87.5% 97.5%

occlusion by scarf. Since the scarf used in AR database [10] occludes half (the
lower part) of each test image, and it happens to be with dark color and resembles
some bearded men in the database, when pursuing sparse representation, there
could be a degenerate solution that considers the scarf as the correct signal and
the remainder of the face as error. In this case, the non-convex MRF approach
in [11] is helpful in iteratively guiding the identification of error support into
the scarf region, and hence getting improved performance. However, Table 2
also shows that our method �1 �struct outperforms �1 �1, and our method �struct
outperforms its �1 variant, for both cases of sunglasses and scarf. It demonstrates
that promoting structured sparsity on the error image is generally better than
promoting standard sparsity using �1-norm in coping with real disguises.

4.2 Robust Face Recognition with Automatic Alignment

In this subsection, we test the effectiveness of our Algorithm 1 for automatic and
robust face alignment and recognition, using the CMU Multi-Pie database. The
CMU Multi-Pie database contains face images of 337 subjects captured in four
sessions with simultaneous variations in illumination, pose, and expression. Of
these 337 subjects, we use all the 249 subjects present in Session 1 as training
subjects. For each of the 249 subjects we choose frontal images of 7 illuminations5

with neutral facial expression as training images. As suggested in [13], these 7
extreme illuminations of frontal view are chosen in order to linearly represent
other frontal illuminations well. We manually click outer eye corners in all the
training images and crop them to the size of 80× 60. The distance between the
two outer eye corners is normalized to be 50 pixels. We start with experiments
on region of attraction to verify the effectiveness of our alignment algorithm,
and then present face recognition experiments with automatic alignment.

Experiments on Region of Attraction. In the CMU Multi-Pie database, we
use frontal images of illumination 10 with neutral expression from Session 2 as
our test images. We manually align these images in the same way as for training
images, to provide ground truth for our region of attraction experiments. We
introduce artificial deformation of translation, rotation, or scaling to these test
images. To measure success of alignment, we use the structured sparsity norm on
error e, i.e., ψ(e) defined in (4), as the alignment error. More specifically, let r0
be the alignment error obtained by aligning a test image without any artificial
perturbation, and r be the error for the case with perturbation. We consider
the alignment as successful if |r − r0| < 0.01r0. Region of attraction results for

5 They are illuminations {0, 1, 7, 13, 14, 16, 18} of the total 20 illuminations.
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Fig. 4. Experiments on Region of Attraction. The amount of translation is defined as
a fraction of the distance between the outer eye corners. From left to right: translation
in x direction, translation in y direction, in-plane rotation, and scale change.

Table 3. Accuracy of recognition with automatic alignment on the Multi-Pie database.
Left table shows recognition results for test images from Session 1 under varying levels
of synthetic block occlusion. Right table shows recognition results for test images from
Sessions 2 - 4.

occlusion % 10% 20% 30% 40% 50%

[13],S = 1 99.2% 94.4% 76.7% 44.2% 18.5%

Alg.1,S = 1 100% 95.6% 81.1% 48.6% 20.9%

[13] 99.2% 95.2% 79.1% 48.2% 21.1%

Alg.1 100% 96.8% 85.5% 52.6% 24.5%

Session 2 Session 3 Session 4

90.7% 89.6% 87.5%

92.1% 90.6% 88.4%

93.9% 93.8% 92.3%

95.7% 94.9% 93.7%

different kinds of deformation are plotted in Figure 4. Figure 4 shows that our
algorithm works well when translation is below 20% of the eye corner distance
(or 10 pixels) in both x- and y-directions, when in-plane rotation is below 30
degrees, or when change in scale is below 10%. As discussed in [13], outputs from
Viola and Jones’ face detector [8] fall safely inside this region of attraction.

Experiments on Face Alignment and Recognition. We first test the ro-
bustness of our method against misalignment, illumination change, and contigu-
ous occlusion. We use frontal images of illumination 10 from Session 1 (the same
session used for training) of the Multi-Pie database as our test images. This
choice is deliberate in order to remove other types of occlusion such as hair-style
change across sessions. We simulate various levels of contiguous block occlusion
from 10% to 50%, by replacing a randomly located block of each test image with
an unrelated image. We compare our method with the closely related method
[13], which is based on �1-norm minimization for alignment and recognition.
For both methods, outputs from Viola and Jones’ face detector [8] are used as
initialization of the alignment process. Table 3-Left shows that our method per-
forms reasonably well up to 30% of occlusion, and consistently outperforms [13]
for both cases of S = 1 and S = 10 in Algorithm 1. These results show that
enforcing structured sparsity on the error e is a better choice in simultaneously
handling misalignment, illumination change, and contiguous occlusion.

We also test our method on frontal images of all the 20 illuminations from
Sessions 2− 4 of the Multi-Pie database. Table 3-Right reports our results, and
compares with those from [13]. Again, our method achieves better results.
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Abstract. Due to the strong impact of machine learning methods on
visual recognition, performance on many perception task is driven by the
availability of sufficient training data. A promising direction which has
gained new relevance in recent years is the generation of virtual training
examples by means of computer graphics methods in order to provide
richer training sets for recognition and detection on real data. Success
stories of this paradigm have been mostly reported for the synthesis of
shape features and 3D depth maps. Therefore we investigate in this paper
if and how appearance descriptors can be transferred from the virtual
world to real examples. We study two popular appearance descriptors
on the task of material categorization as it is a pure appearance-driven
task. Beyond this initial study, we also investigate different approach
of combining and adapting virtual and real data in order to bridge the
gap between rendered and real-data. Our study is carried out using a
new database of virtual materials VIPS that complements the existing
KTH-TIPS material database.

1 Introduction

The recognition of materials is a key visual competence which humans perform
with ease. It enables us to make predictions about the world and chose our
actions with care. Will I slip when I walk on this slope? Will I get stuck in this
ground? How do I acquire a stable grasp of an object? Can I lift the object? Will
I break or scratch the object? All these questions relate to materials around us as
well as their associated properties. Naturally, we want to equip robotic systems
with the same capabilities so that they can act appropriately and successfully
generalize to new scenarios.

Recognition of materials by the appearance has received significant attention
in the vision community. Most importantly, generalization across instances has
been studied which is a key factor in the scenarios described above. However,
this setting requires several example instances at training time recorded under
different conditions in order to present the intra-class variation to the learning
algorithm. Current studies are limited to a maximum of about 10 material classes
which seems largely insufficient to address real-world scenarios. One of the main
problems we see in the rather tedious acquisition of such datasets for learning.

This problem is common to many areas of visual recognition and has stimu-
lated research in how to tap into more resourceful ways to acquire training data.

A. Fitzgibbon et al. (Eds.): ECCV 2012, Part IV, LNCS 7575, pp. 345–358, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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While grabbing large databases from the internet has been a promising direc-
tion pursued in recent years, it often comes with a bias and is less appropriate
for domains for which there is an underlying parametric structure that should
be learnt. Therefore we have seen increased interest in approaches that render
training data from 3D models. Probably one of the biggest success stories in this
field is the body pose estimation model from the Kinect that strongly leveraged
rendered depth maps for generating millions of training examples [1].

However we realize that most successful applications of this data acquisi-
tion paradigm rely on 2D and/or 3D shape information and applications to
appearance-based descriptions has been limited. One possible explanation is that
despite rendering engines have become more and more powerful and appealing
to the human eye, the generated statistics are still different to real-world images.
The focus on features and application domains that rely on shape information
mask the problem that there is an underlying unsolved problem.

Therefore we study in this paper the problem of appearance transfer from
rendered materials to real ones. In contrast to object or scene recognition we
have to entirely rely on appearance descriptors. We investigate different method
of combining real and virtual examples and formulating the mismatch of the two
data sources as an alignment or domain adaptation problem. Our approach pro-
poses a roadmap to scalable acquisition of rich models of material appearances,
as a large library of material shaders are available from companies that supply
the computer graphics domain or even for free from hobbyist and enthusiast.

Contributions: We present the first study on leveraging rendered materials for
the recognition of real materials. We show recognition from virtual data only
as well as improved performance by combining virtual and real data. We ana-
lyze how well different appearance descriptors can cope with this domain shift.
Beyond this, we also investigate the applicability of recent metric learning and
domain adaptation method to this problem which is the first principled approach
to deal with the discrepancies between rendered and real data examples. Our
study is based on a new database of virtual materials called MPI-VIPS which
complements the existing material database KTH-TIPS. The new database is
available at http://www.d2.mpi-inf.mpg.de/mpi-vips.

2 Related Work

There is a long tradition of analyzing the visual appearance of texture and de-
riving good representations for this task [2,3]. While earlier studies often looked
at single material instances as facilitated by the Curet database [4] the focus
shifted more towards recognizing whole material classes [5,6], e.g. based on the
KTH-TIPS database. In order to even further increase intra class variance, a
web-based material recognition challenges has recently proposed [7,8]. While
previous investigation have looked at a pure appearance based recognition chal-
lenge, this new database images whole objects and therefore investigates the
question how material recognition can be performed in context.

http://www.d2.mpi-inf.mpg.de/mpi-vips
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Recently, the generation of virtual training data has gained a lot of attention.
We distinguish two main threads: recombination and rendering. Recombination
methods leverage real examples and recombine aspects of them by certain model
assumption in order to form new ones. Examples include invariant support vec-
tor machines [9] that expand the support vector set by applying transformations
to them which are know to maintain class membership, generative pedestrian
models that can re-mix shape, appearance and backgrounds [10,11].Also syn-
thesizing new views from real material samples has been investigated to expand
the training set [12]. On the other hand, rendering method generate genuinely
new examples from a model-based description. Probably the most prominent
approach is the recently presented approach to robust pose estimation from 3D
data that strongly leveraged rendered depth maps to attain the desired perfor-
mance [1]. A similar approach has been taken for object recognition in range
data by leveraging 3D model from google warehouse [13,14]. Other applications
include 3D car models for learning edge-based shape representations of cars [15]
and scene matching from 3D city models [16] .

As alluded to before, leveraging virtual training data tends to introduce some
discrepancy between the statistics of the real and the synthesized data. Distri-
bution mismatch between training and test time is a problem that relates to the
concept of domain shift. One of the first investigation in object recognition has
only been conducted quite recently [17,18]. They employ metric learning [19] in
order to adapt data from the web to be more suitable for in situ recognition task.
Another example is the adaptation of rendered data to real examples [13] where
the domain adaptation approaches were used to adapt synthesized depth maps
from 3D google warehouse data for recognition in LIDAR scans. In contrast, this
paper conducts the first study on purely appearance-based descriptors for the
task of material recognition utilizing virtual examples.

3 Method

First, we describe our main recognition architecture and review the employed
feature descriptors. Then we explain the acquisition of virtual material exam-
ples and present the new database (MPI-VIPS) on which our study is based on.
Lastly, we describe the approaches we investigate in order to mitigate the discrep-
ancies between virtual data and real data. We propose an alignment procedures
tailored to the material recognition task. In addition we recap the “Frustratingly
Easy Domain Adaptation” approach [20] as well as a metric learning approach
[19] which we consider as generic machine learning approaches to this problem.

3.1 Material Recognition

Our main material recognition pipeline is based on a kernel classifier combined
with appearance features LBP and SIFT. Our choice of classifier and feature is
motivated by [5,6,8]. We continue with a brief review of the employed features
descriptors as well as the recognition architecture and choice of kernel.
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Multi-scale LBP. The LBP descriptor [21] has shown to be a powerful description
of image texture. They key idea is to compute for each pixel a set of differences
to pixels in a local neighborhood. Depending on the sign of those differences, the
pixel is assigned a distinct pattern id. The final descriptor is a histogram of the
occurrences of such pattern id on an image patch of interest.

The most prominent limitation of the LBP operator has been its small spatial
support area. Features calculated in a small local neighborhood cannot cap-
ture large-scale structures that may be the dominant features of some textures.
Several extensions have been introduced to overcome its limitations. We use
rotationally invariant, uniform LBP descriptor at 4 scales. Studies on the KTH-
TIPS2 database [5,6] have shown strong performance for this descriptor on the
task of material classification.

Color. Color is an important attribute of surfaces and can be a cue for mate-
rial recognition. Although color alone sometimes may be misleading, significant
boost have been reported (e.g. [8]) when combined with other descriptors. In
our experiment, we follow their scheme and extract color features from 5x5 pixel
patches.

Dense SIFT. SIFT features have been widely used in scene and object recogni-
tion to characterize the spatial and orientational distribution of local gradients
and it also has been shown to work well for material recognition task [8,22]. In
our experiment, we again follow the setup of [8] and use dense SIFT.

Classification. We use a Support-Vector-Machine (SVM) classifier. As previous
studies [6] and our own investigations have shown the described histogram-based
descriptors tend to show superior performance when used in combination with
an exponential-χ2 kernel [23]:

K(x, y) = exp{−αχ2(x, y)}
χ2(x, y) =

∑

i

|xi − yi|2
|xi + yi|

Histograms were normalized to unit length and the kernel parameter α was found
by cross-validation on the training set.

3.2 Rendering

Bidirectional Reflection Functions (BRDF) give a full account on how light in-
teracts with a surface. Therefore they are a rich source to truthfully recreate the
appearance of material that carries discriminative information for classification
[24,25]. This would make them the ideal source for synthesizing a virtual data set.

However their acquisition is tedious and time consuming – even more than
the generation of image datasets that we aim to circumvent. But the widespread
use of computer graphics rendering engines among professionals and hobbyists
has lead to large libraries of material shaders that seek to capture the appear-
ance of materials in sufficient quality to yield photorealistic synthesis as well as
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provide a computational efficient form to ensure fast rendering. 1000s of such
material shaders are available form commercial (e.g. DOSCH design) and free
e.g. http://www.vray-materials.de) online sources. Being able to tab into
those vast resources would boost scalability of material recognition by up to two
orders of magnitude.

Consequently, we propose to use approximative models as they are widely
used in the material shaders in most of the available rendering packages. In
particular we consider such material shaders that provide us with the following
3 informations:

Phong-type Shading Model. We recollect that the basic Phong shading equations
is a combination of a ambient, a diffuse and a specular term. Therefore the light
intensity Lr(v̂r;λ) observed in view direction v̂r at wavelength λ is given by:

Lr(v̂r;λ) = ka(λ)La(λ) +

kd(λ)
∑

i

Li(λ) < v̂i, n̂ >+ +

ks(λ)
∑

i

Li(λ)(< v̂r, ŝi >)ke

where ka, kd, ks are the reflection distribution of the ambient, diffuse and spec-
ular part respectively (color of the object), La is the wavelength distribution of
the ambient illumination and Li is the wavelength distribution of the i-th light
source. The diffuse part is further governed by the angle between the surface
normal n̂ and the lighting direction v̂i of light source i and the specular part by
the angle between viewing direction and the specular reflection direction si. A
parameter ke controls the peakedness of the specular reflection.

Bump Map. As 3D texture induced by the local micro structure of the material is
one very important effect which complicates robust classification [2], we require
our material shaders to provide a bump map. The method stores local variations
in geometry as a height map which is in turn used to compute a local normal.
This normal map is then used to modulates the original surface normal in order
to recreate shading effects of local 3D structure of the material.

Texture Map. All our materials also come with a texture map that basically
encode the local and diffuse color of the material kd and also any other residual
effects. It is worth noting that for many material shaders available commercially
or online a visual appealing appearance is the prime modeling target and not
necessarily physical realism.

3.3 MPI-VIPS Database of Rendered Materials

We use the shader model described above to generate a new database of rendered
materials which we call MPI-VIPS (Virtual texture under varying Illumination,
Pose and Scales). One of our motivation is the availability of material shaders

http://www.vray-materials.de
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from commercial suppliers to the computer graphics community as well as in-
ternet resources. We therefore collect a set of shaders that match the material
classes from the KTH-TIPS2 database in order to facilitate a systematic study.
To obtain the virtual data, we use Autodesk 3ds Max to do the rendering and
follow the scene setting in the KTH-TIPS2 database. In details, we vary the
distance from the rendered patch to camera to simulate the changes in scales
and apply directional light and ambient light to simulate the lighting condition
in the original database. Note all operations to change the scene settings can be
done precisely and easily with MAXScript in contrast to manually collection of
real world data. Fig 3 shows the rendered patches for the 11 material classes.
Next to them we also display the texture and bump maps included in the shader
information. While some of them show strong visual similarity to the true ma-
terials (e.g. bread (2nd row), cork (4th row), there are also significant variations
in style, color and detail. Several of the cloth samples show different color and
design patterns on them which make them very distinct from the examples in
the KTH-TIPS database. The same holds true for the level of realism. While
the above mentioned materials look quite realistic, examples with more com-
plex light interactions (e.g. aluminum foil (1st row), lettuce leaf (7th row)) look
artificial. We consider these properties to be an inherent characteristic of this
setting and consider this mix between good and bad matches as quite typical
and therefore well suited for our study.

3.4 Manifold Alignment

One concern when using rendered data is a mismatch in appearance when com-
pared to real examples. From a statistics point of view, we have one manifold
which is formed by the real examples and one which is formed by the rendered
ones. We would like to bring them to a coarse alignment by appropriate choice of
such rendering parameters. As we know the normal of the patch we are rendering
and we also use a rotation invariant descriptor, view point and rotation are less
concerning. However, we don’t get any notion of absolute scale from the shader
models. Therefore propose an alignment strategy that matches the scale of our
rendered examples to the real ones.

In details, there are 9 scales equally spaced logarithmically over two octaves,
3 different poses and 4 illumination conditions for each instance in the origi-
nal KTH-TIPS dataset. We choose a set of samples for each category with the
same pose, illumination conditions and placed at the 9 logarithmically equally
spaced scales{y1, ..., y9}, generate a series of N scales equally spaced logarith-
mically {x1, x2, ..., xN} as a pool of samples, and treat each consecutive 9 scales
starting from xi as one candidate alignment{xi, xi + 1, ..., xi + 8}. We com-
pute descriptor d on both samples and the candidates as {d(y1), ..., d(y9)} and
{d(xi), ...d(xi + 8)}, then measure the accumulated difference between the two
sets as

∑n
j=1 Δ(d(xi − 1+ j), d(yj)), where Δ denotes for the difference between

the descriptors computed from the two sets, can be either L1 and L2 distance.
We then choose i = argmin

i

∑n
j=1 Δ(d(xi − 1 + j), d(yj)).
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Fig. 1. (Left) Illustration of our aligment approach. Nodes denote descriptors in differ-
ent scales, and lines with different colors denote different alignment of scales between
the baseline real samples and the candidate alignments. (Right) Coarse alignment with
scales. x-axis denotes different candidate scales and y-axis denotes accumulated differ-
ences between candidates and baseline samples.

Figure 3.4 shows the resulting scores for different choices of alignment scales.
We see that most of the materials have a distinct minimum which – on visual
inspection – also corresponded to the correct scale. Two materials could not be
aligned with this procedure due to lack of a minimum. For those we had to pick
the scale manually. As we will show in our results, such an alignment step is
crucial for successfully utilizing rendered data.

3.5 Learning Approaches

While the previous section proposed a method of providing a first coarse align-
ment of the appearance manifolds, there are more subtle changes that differen-
tiate rendered and real examples. The challenge we face here is that we don’t
have a good handle how to parameterize those changes or even pin point the
exact discrepancies. Therefore we investigate metric learning and domain adap-
tation approaches that follow an exemplar-based paradigm. As we do have cor-
responding material patches in rough alignment, we can use them in such a
machine learning approach to learn a transformed space that is more robust to
the changes introduced by the two domains.

Metric Learning: Information theoretic metric learning (ITML.) ITML [19] op-
timizes the Mahalanobis distance between each point pair xi, xj ∈ Rd

da(xi, xj) = (xi − xj)
TA(xi − xj)

It reduces to simple euclidean distance when A = I. To learn the metric matrix
A, the algorithm apply iterative procedures to minimizes the logdet divergence
between the current metric A and the initial matrix A0 with respect to pairwise
similarity constraints:
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minimize
A

Dld(A,A0)

subject to dA(xi, xj) ≤ bu, (i, j) ∈ S

dA(xi, xj) ≥ bl, (i, j) ∈ D

where bu and bl are upper and lower bound of similarity and dissimilarity con-
straints. S and D are sets of similarity and dissimilarity constraints based on
the labeled data, namely pairs in the same categories are set with similarity
constraints, otherwise with dissimilarity constraints. The optimization is done
by repeated Bregman projections of a single constraint per iteration. It is also
convenient to extend the framework to a kernelized version that can also learn
non-linear deformations of the original space. In our experiment, we use the
kernel matrix instead of raw data and subsample 1/4 of the full constraints to
reduce computational cost.

Frustratingly Easy Domain Adaptation. Daume III [20] has introduced the “frus-
tratingly easy domain adaptation” by feature augmentation. In our experiment,
since we use exp−χ2 kernel for classification, we use a kernelized version of it.
For which, we define mapping

Φs = < Φ(x), Φ(x), 0 > (1)

Φt = < Φ(x), 0, Φ(x) > (2)

where 0 =< 0, ..., 0 > is the zero vector, Φ(x) denotes the feature mapping in
the original space. This leads to the new kernel function:

K ′(x, x′) =
{
2K(x, x′) if x,x′ are in the same domain
K(x, x′) if x,x′ are in different domains

4 Experiments

In the experimental section we investigate how rendered materials can be utilized
to recognize real ones. Our investigation also evaluates methods that support the
transfer of appearance-based descriptors from the virtual to the real domain. We
report average accuracies over 4 trials by randomly splitting training and testing
data, while we always insure that we use different material instances in training
and test.

4.1 Datasets

We use two publicly available datasets in our experiments: the Flickr Material
Database and KTH-TIPS2 database. In addition we use our new database of
virtual materials MPI-VIPS (Virtual texture under varying Illumination, Pose
and Scale) which is intended to complement the KTH-TIPS (Texture under
varying Illumination, Pose and Scale) [5] database. Therefore it provides a test
bed for studying the transfer of appearance from rendered to real materials.
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Table 1. Results. The classification rate with different sets of features for the Flickr
database.

Method Feature Classification Rate (%)

aLDA Best Feature Comb. 44.6
SIFT 35.2

Ours MLBP + Color 48.1
MLBP 37.4

The Flickr Material Database. The database is collected using Flickr photos
[7]. This includes 1000 images in 10 common material categories, ranging from
fabric, paper, and plastic, to wood, stone, and metal. State-of-the-art results
were obtained by exploring a large set of heterogeneous features and a Latent
Dirichlet Allocation (LDA) model [8]. We use this database in order to establish
reference for our recognition architecture to other recent approaches on material
recognition. Table 1 shows our results on the Flickr dataset and their combi-
nations. In our experiments on Flickr, we use kernelized SVM instead of aLDA
model but use the same experimental setting in order to stay comparable, and
we do four trials and report the average accuracies. The mlbp descriptor does
slightly better than any of the single features tested there (35%). By combing
color and mlbp, our test accuracy is 48.1% – higher than the reported one in
[8] (45%) and on par with most recent findings in [26] (48.2%). The competitive
performance shows the validity of our recognition approach for this task.

We chose to not further study material recognition on this dataset as it con-
volutes the problem with object level biases. While we agree that this might be
intended in many applications, we want to restrict our study on pure appearance
aspects in the material recognition setting. Therefore the remaining part focuses
on the KTH TIPS database and its rendered counterpart MPI-VIPS.

KTH-TIPS2 Database. The KTH-TIPS2 database [5] was designed to study
material recognition with a special focus on generalization to novel instances of
material. It includes 4608 images from 11 material categories, and each category
has 4 different instances. All the instances are imaged from varying viewing
angles (frontal, rotated 22.5◦ left and 22.5◦), lighting conditions (from the front,
from the side at 45◦, from the top at 45◦, and ambient light) and scales (9
scales equally spaced logarithmically over two octaves), which gives a total of
3× 4× 9 = 108 images per instance. We show examples of all the materials with
all their instances in Fig 3. Note the challenge posed by the intra-class variation
of the materials.

The first block in Table 2 shows results of our recognition pipeline in the
standard setting. Each line represents a different of the 4 available material
instances into training and test. Our performance is on par with results shown
previously in this setup [5]. Best performance of 73.1% is obtained for 3 training
instances and Color+MLBP feature.
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Table 2. Results on KTH TIPS and the new VIPS database

train on real – test on real

Setting Dense SIFT MLBP Color+MLBP

1 real train + 3 real test 45.5(±3.6) 59.1(±3.7) 61.4(±2.8)

2 real train + 2 real test 52.3(±2.3) 65.8(±1.4) 70.4(±0.7)

3 real train + 1 real test 56.4(±2.6) 70.7(±3.2) 73.1(±4.6)

train on unaligned virtual – test on real

Setting Dense SIFT MLBP Color+MLBP

1 virtuall train + 3 real test 26.7(±1.2) 31.9(±1.6) 31.3(±2.5)

train on aligned virtual – test on real

Setting Dense SIFT MLBP Color+MLBP

1 virtual train + 3 real test 33.1(±1.2) 43.7(±2.1) 40.3(±2.7)

train on mix of unaligned virtual and real – test on real (kernel-SVM)

Setting Dense SIFT MLBP Color+MLBP

1 virtual train + 1 real train + 3 real test 42.4(±1.8) 59.3(±4.0) 59.9(±1.8)

1 virtual train + 2 real train + 2 real test 53.6(±1.3) 67.1(±2.5) 66.8(±3.4)

1 virtual train + 3 real train + 1 real test 52.4(±1.1) 70.0(±1.4) 73.2(±4.7)

train on mix of aligned virtual and real – test on real (kernel-SVM)

Setting Dense SIFT MLBP Color+MLBP

1 virtual train + 1 real train + 3 real test 45.1(±2.3) 62.2(±2.7) 63.8(±1.4)

1 virtual train + 2 real train + 2 real test 51.8(±2.5) 69.2(±1.2) 68.2(±1.8)

1 virtual train + 3 real train + 1 real test 54.4(±2.9) 72.5(±4.1) 80.2(±4.5)

train on mix of aligned virtual and real – test on real (metric learning)

Setting DenseSift MLBP Color+MLBP

1 virtual train + 1 real train + 3 real test 43.2(±2.3) 62.4(±4.0) 64.1(±2.0)

1 virtual train + 2 real train + 2 real test 46.7(±2.5) 65.7(±1.3) 68.7(±2.6)

1 virtual train + 3 real train + 1 real test 50.9(±2.9) 71.8(±1.5) 74.7(±2.4)

train on mix of aligned virtual and real – test on real (FE domain adaption)

Setting Dense SIFT MLBP Color+MLBP

1 virtual train + 1 real train + 3 real test 47.8(±2.5) 59.3(±3.7) 59.8(±1.3)

1 virtual train + 2 real train + 2 real test 52.8(±2.4) 66.1(±1.9) 65.3(±1.0)

1 virtual train + 3 real train + 1 real test 55.2(±2.4) 70.9(±3.2) 72.8(±2.5)

4.2 Can We Recognize Real Materials from Rendered Examples?

The second and third block in Table 2 present our results training only on
rendered examples from the VIPS database and evaluating on the real examples
of the KTH TIPS database. The difference between the two is that the third
block is using the described manifold alignment procedure. We can see that the
alignment procedure increases the performance up to 11%. Overall, we observe
that the MLBP features seems to cope better with this domain shift than the
dense SIFT feature, leading to a performance of 43.7%. We hypothesize that the
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Table 3. Example images of the new material database (VIPS) of rendered examples
from material shaders on the left and corresponding examples from the KTH TIPS
database on the right. Please note that these are only the canonical view points and
both databases incorporate variations in scale, viewpoint and lighting.

New VIPS database of virtual materials KTH-TIPS material database

texture bump map rendered sample real samples

MPI-
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binary feature are more reliable to extract than the gradient values in the SIFT
that might be easily effected by unrealistic reproduction of the materials. Adding
color information degrades performance in this setting which calls for another
alignment procedure to minimize those discrepancies between the domains which
we leave for future work.

According the results, the conclusion must be that it is possible to recognize
real materials from rendered ones. However, we realize that there is still a signif-
icant performance gap between the information we get from a real instance and
a virtual one. The alignment step has proven critical to improve performance.

4.3 Mixing Real and Rendered Examples

In the rest of the experimental section we ask the questions if there are ways to
combine real and rendered data in order to boost the performance. The 4th and
5th block of Table 2 show the results for a mixed training set of real and rendered
examples – again with and without the alignment procedure. While the results
without alignment either stay the same compared to training without rendered
data or even decrease, we observe up to 7% improvement after alignment. The
best performance of 80.2% is obtained for training on 1 rendered example and
3 real ones using the Color+MLBP.

4.4 Metric Learning

We also apply metric learning in an attempt to further bridge the gap between
the virtual and real materials. Therefore we build on top aligned data. Similarity
constraints are generated between the virtual and real materials of the same class
and also dissimilarity constraints between different materials. The results are
presented in the 6th block of Table 2. Again, the dense SIFT descriptor performs
consistently worse and the metric learning doesn’t provide improvements. On
the other descriptors, we do see a small improvement when only one or two real
materials are observed at training time.

4.5 Domain Adaptation

Lastly, we apply the “frustratingly easy” domain adaptation technique to this
problem. The last block in Table 2 shows the results. The previous result is kind
of reversed. While this method shows marginally increased performance for the
dense SIFT descriptor when only one or two examples are available, no effect
can be observed for the other two features.

5 Conclusions

We have presented a new database MPI-VIPS of rendered materials that allows
to study the challenges when learning the appearance of real materials from
or supported by rendered materials. We have shown the feasibility and present
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results indicating that LBP based features are more suited to this task as SIFT
based representations. We further evaluate different approaches to deal with the
appearance mismatch ranging from mixed training sets, data alignment, metric
learning and domain adaptation. Our results suggest that an alignment of the
two data sources is crucial and in combination with a kernel classifier trained on
mixed real and rendered data we obtain a significant performance improvement
of 7%.
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Abstract. A new architecture, denoted spatial pyramid matching on the
semantic manifold (SPMSM), is proposed for scene recognition. SPMSM
is based on a recent image representation on a semantic probability sim-
plex, which is now augmented with a rough encoding of spatial infor-
mation. A connection between the semantic simplex and a Riemmanian
manifold is established, so as to equip the architecture with a similar-
ity measure that respects the manifold structure of the semantic space.
It is then argued that the closed-form geodesic distance between two
manifold points is a natural measure of similarity between images. This
leads to a conditionally positive definite kernel that can be used with
any SVM classifier. An approximation of the geodesic distance reveals
connections to the well-known Bhattacharyya kernel, and is explored to
derive an explicit feature embedding for this kernel, by simple square-
rooting. This enables a low-complexity SVM implementation, using a
linear SVM on the embedded features. Several experiments are reported,
comparing SPMSM to state-of-the-art recognition methods. SPMSM is
shown to achieve the best recognition rates in the literature for two large
datasets (MIT Indoor and SUN) and rates equivalent or superior to the
state-of-the-art on a number of smaller datasets. In all cases, the result-
ing SVM also has much smaller dimensionality and requires much fewer
support vectors than previous classifiers. This guarantees much smaller
complexity and suggests improved generalization beyond the datasets
considered.

1 Introduction

The ability of humans to assign semantic labels (i.e., scene categories) to images,
even at modest levels of attention [1], has motivated significant recent interest in
image classification in computer vision (e.g., [2–7]). A popular image representa-
tion for this problem is the bag-of-visual-features (BoF), an orderless collection
of features extracted from the image at the nodes of an evenly-spaced grid [3].
This is used to learn a mid-level theme representation, which provides an image
description at a higher level of abstraction. In many works [4, 8, 9], the mid-level
representation consists of a codebook of visual words, learned in a fully unsu-
pervised manner. The quantization of the BoF with this codebook produces a
bag-of-visual-words (BoW) histogram, which is fed to a discriminant classifier,
typically a variant of the support vector machine (SVM), for image classifica-
tion. It has been shown that augmenting the BoW representation with a rough
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encoding of spatial information [4] and a non-linear kernel [10] can substantially
boost recognition performance.

An alternative to the unsupervised theme space is to rely on predefined se-
mantic themes. A set of themes is defined, a classifier trained for the detection
of each theme, and each image fed to all theme classifiers. The image is finally
represented by the vector of resulting classification labels. These could be binary,
denoting presence/absence of the theme in the image, or graded, denoting the
posterior probability of the theme given the image [11]. Since the graded repre-
sentation contains all information necessary to derive the binary labels, it is the
only one considered in this work. When compared to BoW, these approaches
have several advantages. First, they produce a semantic theme space, i.e., a
theme space whose coordinate axes correspond to semantic concepts. This space
is usually denoted the semantic space (cf. [12]). It has been argued that relying
on representations close to human scene understanding is as important as pure
recognition accuracy [13]. Second, since the dimensionality of the semantic space
is linear in the number of themes, this representation is much more compact than
the high dimensional histograms required by BoW. Finally, while it has been ar-
gued that BoW lacks discriminative power [14], theme models are by definition
discriminant. Hence, besides being more compact, semantic themes usually en-
able a more discriminative encoding of image content. When compared to BoW,
the main limitation of the semantic theme representation is that theme models
can lack generalization ability. This follows from the limited number of training
images available per theme, much smaller than total training set size. The prob-
lem has been addressed in the literature, where different strategies have been
suggested to tackle the discrimination vs. generalization trade-off, by adapting a
general background model to the characteristics of each theme [15, 7]. A second
limitation is that the theme-based representation has not been explored as ex-
tensively as the BoW. Although it could potentially benefit from the extensions
developed for the latter, such as spatial information encoding and non-linear ker-
nels, these have so far not been explored extensively. In some cases, e.g., kernel
design, they are not straightforward, due to the fact that the semantic space is
a probability simplex .

Besides classification accuracy, the computational complexity of image rep-
resentations has been deemed increasingly important for image classification
in the recent past. This is partly due to the emergence of large-scale bench-
mark datasets, such as MIT Indoor [5] or SUN [16]. In BoW methods, where
recognition performance tends to increase with codebook size [17, 18], codebook
generation quickly becomes a computational bottleneck. This is compounded by
the need to train a kernelized classifier from a vast number of high dimensional
BoW histograms. Finally, by multiplying the dimensionality of the BoW feature
space by the number of spatial pyramid cells, the addition of the spatial pyramid
structure of [4] can render the classification problem computationally intractable.
Although the semantic space representation is much more compact than BoW,
its combination with spatial encoding mechanisms and large theme vocabularies
can also lead to large-scale learning problems. While in the BoW literature some
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authors have proposed explicit data embedding strategies [19, 20], which enable
the replacement of non-linear by linear SVMs, greatly reducing computation,
such embeddings are not yet available for theme-based representations.

Contribution. In this work, we address several of the current limitations of the
semantic theme representation by proposing extensions of spatial information
encoding, kernel design, and data embeddings compatible with image representa-
tion on a probability simplex . This is done through the following contributions.
In Section 3.1, we introduce the probability simplex as a statistical manifold and
leverage principles of information geometry to derive a novel non-linear kernel on
that manifold. We then adapt the spatial pyramid structure of [4] to the seman-
tic space. Following [4], we refer to this architecture, i.e., the combination of the
new kernel and the underlying semantic theme representation, as spatial pyramid
matching on the semantic manifold (SPMSM). In Section 3.2, we further show
that the Bhattacharyya kernel is an approximation to the geodesic distance on
this manifold. This leads to an explicit feature embedding, which enables the
use of linear SVMs on large-scale problems. Extensive experiments, reported in
Section 4, demonstrate that image classification based on the proposed SPMSM
has state-of-the-art performance on a number of datasets.

2 Mid-Level Theme Representation

We start by briefly reviewing the representation of [11]. This is based on a
predefined collection T of M themes (e.g., sky, grass, street). Learning is weakly
supervised from a training set of images Ij , each augmented by a binary caption
vector cj . Weak supervision implies that a non-zero entry at the i-th position
of cj indicates that theme i is present in image j, but a zero entry does not
necessarily imply that it is absent. Images are labeled with one or more themes,
which could be drawn from the set of scene category labels T or from another
label set (e.g., scene attributes). When theme labels are the image labels, cj

contains a single non-zero entry.
As in BoW, an image Ij is represented as a collection of visual features, in some

feature space X , i.e., Ij = {xj
i}Ni=1. These features are extracted fromN localized

image patches P j
i ,x

j
i = f(P j

i ). The generative model that maps an image to the
semantic space is shown in the inference part of Fig. 1: visual features are drawn
independently from themes, and themes are drawn from a multinomial random
variable of parameter vector sj ∈ [0, 1]M . The theme occurrences of image Ij
are summarized in the theme occurrence vector (oj1, . . . , o

j
M )

′
. The mutinomial

parameters in sj are inferred from {xj
i}Ni=1 as follows (the image index j is

omitted for brevity). First, the theme of largest posterior probability is found
per xi, i.e., t

∗
i = qb(xi) with

qb(xi) = argmax
t∈T

PT |X(t|xi) = argmax
t∈T

PX|T (xi|t)
∑

w PX|T (xi|w)
. (1)
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Inference

Learning

= arg max
t∈{ , , }

PT |X(t|x)

s t

t

City, Mountain & Beach model 

Localized 
Features

(e.g., SIFT)

Multinomial

Sem
antic Sim

plex

Semantic Multinomial

Generative model

MAP estimate 
+ Dirichlet prior

see Eq. (2)

Fig. 1. Mapping of database images, represented by collections of visual features, to
points on the semantic simplex (here P

2)

This assumes equal prior probability for all themes, but could be easily extended
for a non-uniform prior. The mapping qb : X → T quantizes features into themes
in a Bayesian, minimum probability-of-error, fashion. The occurrences ot = |{i :
t∗i = t}| of each theme t are then tallied to obtain the empirical theme occurrence
vector. Finally, the MAP estimate of s, for a Dirichlet prior of parameter α, is

ŝ =

(
o1 + α− 1

∑
w(ow + α− 1)

, . . . ,
oM + α− 1

∑
w(ow + α− 1)

)′
(2)

where α acts as a regularization parameter. In the terminology of [11], ŝ is
denoted the semantic multinomial (SMN) of image I. This establishes the desired
mapping Π : XN → P

M−1, I �→ s from an image represented in feature space
to an image represented as a point on the semantic (probability) simplex P

M−1.
Learning the mapping Π requires estimates of the theme-conditional distribu-

tions PX|T (x|t) from the available weakly-labeled image data. Since the theme
label of each visual feature is not known, this is done with resort to multiple
instance learning, based on the image formation model shown in the learning
part of Fig. 1: visual features extracted from all images labeled with theme t are
pooled into dataset Dt = {xj

i |c
j
t = 1}, which is then used to estimate PX|T (x|t).

The intuition is that visual features representative of the semantic theme are
more likely to occur in the training set and dominate the probability estimates.
In multiple instance learning terminology, Dt is the bag of positive examples for
theme t. Fig. 1 illustrates learning and inference on a three-category toy prob-
lem. Note that PM−1 serves as a new feature space for training a discriminant
classifier.
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3 Spatial Pyramid Matching on the Semantic Manifold

In this section we 1) introduce a statistical (semantic) manifold for image rep-
resentation, 2) derive a suitable image matching kernel from the principles of
information geometry and 3) augment the theme representation of the previous
section with a commonly used encoding of spatial information.

3.1 The Semantic Manifold

To design a kernel for the SMN representation, one pragmatic strategy would be
to choose a kernel which computes l2 distances in feature space [18, 9], e.g., the
classic RBF kernel. This, however, implicitly assumes a flat Euclidean geometry
and ignores the actual geometry of the SMN data on the semantic simplex. One
alternative that achieves better classification performance for BoW is the spa-
tial pyramid match kernel (SPMK) of [10, 4], which replaces the l2 norm by the
histogram intersection (HI) metric. This, and the introduction of computation-
ally efficient approximations [19], have made SPMK the prevalent kernel for the
BoW representation.

To design a kernel suited for the SMN representation, we study the semantic
simplex P

M−1 in more detail. Since SMNs are parameter vectors of multinomial
distributions, we equate similarity between two SMNs as the distance among
the two associated multinomial distributions. From information geometry, it is
known that PM−1 is a Riemannian manifold1 if endowed with the Fisher infor-
mation metric I (cf. [21, 22]). Hence, the distance among two SMNs s and s∗ can
be computed as the geodesic distance dI(s, s

∗) on this multinomial manifold.
Although geodesics are in general hard to compute, it is possible to exploit the
isomorphism F : PM−1 → S

M−1
+ , s �→ 2

√
s between the manifolds (PM−1, I)

and (SM−1
+ , δ), where SM−1

+ is the positive portion of a sphere of radius two and

δ denotes the Euclidean metric inherited from embedding S
M−1
+ in R

M . The
isometry enables the computation of dI as the arc on the great-circle connecting
F (s) and F (s∗) on the sphere, i.e.,

dI(s, s
∗) = dδ(F (s), F (s∗)) = 2 arccos(〈

√
s,
√
s∗〉) . (3)

Since P
M−1 is denoted the semantic simplex, we refer to (PM−1, I) as the asso-

ciated semantic manifold. It is worth mentioning that the Hellinger distance
dH(s, s∗) = 2 sin(dI(s, s

∗)/4) and the Kullback-Leibler (KL) divergence are
identical to dI up to second order as s → s∗ [23]. The KL divergence was
previously used as a similarity measure between SMNs, in a retrieval context
[12], but without exploring the connections to information geometry.

These connections are particularly important for kernel design, where the
metric determines the properties of the kernel. For example, the KL divergence
is not symmetric and does not guarantee a positive definite kernel [24]. On

1 A technical issue is to ensure, by (2), that SMN components are positive to guarantee
that PM−1 is actually a manifold [21].
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the other hand, it is known that 1) the negative of the geodesic distance −dI
satisfies all properties of a conditionally positive definite (cpd) kernel [22], and
2) cpd kernels can be used in any SVM classifier [25]. Consequently, we define
the semantic kernel on the semantic manifold as

k(s, s∗) := −dI(s, s
∗) s, s∗ ∈ P

M−1. (4)

As a matter of fact, the information-diffusion kernel of [26], specialized to the
multinomial family, is an exponential (squared) variant, i.e., exp(−d2I), of (4).
Given a smooth-parametrization of (4), we could also leverage the work of
[27], where the authors propose an adaption to SVM learning that optimizes
smoothly-parametrized kernels on the simplex. While the semantic kernel might
potentially benefit from those advances, we have not explored that direction in
this work.

Spatial Pyramid Encoding. It is now well established that augmenting the
BoW representations with a rough encoding of spatial information, by means
of a spatial pyramid [4, 28, 9], leads to significant gains in image classification.
The extension of this idea to the SMN representation is quite straightforward. It
suffices to compute a SMN for each of the spatial pyramid cells. Note that this
introduces a localized semantic representation, which captures many attributes
of human scene understanding. More precisely, the global SMN at pyramid level
0 captures the semantic gist of the image, e.g., “mostly about grass, sky, and
mountains”, while SMNs at higher levels localize this description to each spatial
pyramid cell, e.g., “mostly grass in bottom cells, mostly sky in upper cells, mostly
mountains in between”. In this way, spatial cells at finer grid resolutions are more
informative of local semantics and exhibit less ambiguity (cf. [13]). The structure
of the SMN representation and the procedure used to estimate SMNs also enable
the computation of the pyramid cell SMNs in a very efficient manner. In fact, it
suffices to compute the SMNs of the pyramid cells at the finest grid resolution.
The SMN of index n at the overlying pyramid level l can then be directly inferred
from its four child-cell SMNs {sl+1,4n+i}3i=0, at level l + 1, by computing the
convex combination sl,n = 1/4 · (sl+1,4n + · · · + sl+1,4n+3). In other words, the
SMN of one spatial pyramid cell at level l lies in the convex hull spanned by its
four child-cell SMNs at the next finer level. In total, there are 1/3 · (4L−1) SMNs
per image, for a spatial pyramid with L levels.

In order to incorporate spatial constraints in the classification, it is possible
to combine the semantic kernel with the spatial pyramid structure, in a way
similar to [4]. This consists of 1) assigning more weight to matches at finer
pyramid resolutions and 2) normalizing the geodesic distances at one pyramid
level by the number of grid cells at that level. Given two images Ia and Ib,
represented by their concatenated SMNs α and β, the semantic spatial pyramid
match kernel (SSPMK) is defined as

k(α,β) = −
L−1∑

l=0

wl

4l∑

n=0

dI(ϕl,n(α), ϕl,n(β)) (5)
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with wl := w̃lw̄l, where w̃l = 1/4l denotes the normalization weight at level l and
w̄l = 2−(L+l) denotes the corresponding matching weight. Note that we used
ϕl,n(α) = sl,n to denote the extraction of sl,n from a concatenated SMN vector
α. Since (5) is a weighted sum of semantic kernels, and the closure property for
weighted sums of positive definite kernels extends to the family of cpd kernels
[25], the SSPMK is a cpd kernel.

3.2 Data Embedding

Given the SMN representation, it remains to train an SVM classifier. For
small-scale datasets, it is feasible to learn a non-linear SVM, albeit the training
complexity is somewhere between quadratic and cubic [20]. In general, however,
non-linear SVMs do not scale well with training set size. On large-scale problems,
linear SVMs are overwhelmingly preferred due to their efficient (i.e., linear-time)
training algorithms. The question is how to rely on a linear SVM, but still some-
how exploit the power of the SSPMK. Ideally, it would be possible to derive an
explicit SMN embedding that preserves the advantages of the geodesic distance.
The training of a non-linear SVM for SMN classification could then be reduced
to training a linear SVM on the embedded features. Unfortunately, exact embed-
dings are rarely available. Although approximations are possible, these usually
entail a loss in recognition performance.

While a popular embedding exists for the HI kernel [19], it exploits the ad-
ditivity property of the kernel. Since the semantic kernel of (4) is not additive,
neither the embedding of [19], nor the embedding learning method of [20] are
feasible. One alternative, that we explore, is to replace the arccos term by a
first-order Taylor series around 0, i.e., arccos(x) ≈ π/2 − x + O(x)2. This leads
to the approximation of (4) by

k(s, s∗) ≈ −π + 〈
√
s,
√
s∗〉 s, s∗ ∈ P

M−1 . (6)

Notably, the dot-product on the right-hand side is the additive Bhattacharyya
kernel of [20]. Although, a linear approximation can be coarse, the ability to
immediately read the explicit data embedding φ(x) =

√
x is appealing, since it

entails almost no computational cost. Finally, taking the spatial pyramid struc-
ture into account, the extended embedding for the n-th SMN at pyramid level l
can be written as

φ(sn,l) =
√
wlsn,l . (7)

While the Bhattacharyya kernel has previously been used in image classification
(cf. [29]), its practical success now has another principled justification due to the
close relationship with the geodesic distance.

4 Experiments

In this section, we report on a number of experiments designed to evaluate the
classification accuracy of the proposed SPMSM architecture, i.e., the combina-
tion of the SMN representation of (2) and the SSMPK of (5).
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4.1 Datasets and Implementation

Three popular, yet rather small, benchmark datasets and two recent mid- to
large-scale datasets were used in our recognition experiments. The smaller ones
are the LabelMe [2], UIUC Sports [30] and 15 Scenes (N15) [3, 4] datasets.
For mid- to large-scale experiments, we used the MIT Indoor [5] scenes and
the SUN [16] dataset. We use the prevalent training/testing configurations in
the literature. Recognition rates on LabelMe, Sports and N15 were averaged
over three test runs with random training/testing splits. In the case of MIT
Indoor and SUN, the training/testing configurations are provided by the original
authors. All images were converted to grayscale and resized to have maximum
dimension of 256 pixels (while maintaining the aspect ratio).

The appearance representation was based on SIFT2 descriptors [31], com-
puted on an evenly-spaced 4×4 pixel grid. 128-component Gaussian mixtures of
diagonal covariance were used to model theme distributions, and mixture param-
eters estimated with the EM algorithm (initialized by K-Means++). We chose
a directed mixture parameter estimation approach in contrast to the hierarchi-
cal estimation procedure employed in [12, 11]. All experiments involving spatial
pyramids relied on three pyramid levels. Further refinements did not produce im-
provements, confirming the findings of [4]. For the tests on LabelMe, Sports, N15
and MIT Indoor, we used the LIBSVM [32] implementation of a C-SVM and a
1-vs-1 multi-class classification strategy. On feature embedding experiments, we
relied on LIBLINEAR [33] to train a linear SVM and switched from 1-vs-1 to
1-vs-all multi-class classification, for performance reasons. The SVM cost factor
C was determined by three-fold cross-validation on the training data, evaluated
at 20 linearly spaced positions of logC ∈ [−2, 4].

4.2 Evaluation

Semantic Kernel. The first set of experiments was designed to evaluate the
semantic kernel of (4). In all cases, the image representation was the SMN of (2).
We started with a comparison to two popular kernels in the literature: HI (kHI ),
and χ2 (kχ2 ). The kernel definitions are given in Table 1 for two input vectors
x,y ∈ [0, 1]M . It is worth noting that SVM training with one of these kernels
only requires tuning of the cost factor C, whereas RBF variants require tuning of
the kernel width as well. The table presents the recognition accuracies obtained
on Sports, LabelMe and N15. The semantic kernel achieves the highest average
rate on all datasets. This illustrates the benefits of adopting a kernel which is
tailored to the manifold structure of the semantic space.

Spatial Pyramid Encoding. We next considered the full SPMSM architec-
ture, by augmenting the semantic kernel with SPM. This was compared to the
standard implementation of SPM with the kernels of the previous experiment.
Results are listed in Table 1. Two conclusions are possible from the table. First,

2 LEAR impl.: http://lear.inrialpes.fr/people/dorko/downloads.html

http://lear.inrialpes.fr/people/dorko/downloads.html
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Table 1. Comparison of the semantic kernel to the HI (kHI) and the χ2 kernel (kχ2)
without and with SPM

Kernel Type
without SPM with SPM

Sports LabelMe N15 Sports Labelme N15

Proposed, see (4), (5) 79.1 84.7 79.1 83.0 87.5 82.3
kχ2 ,

∑
i

xiyi
(xi+yi)

78.6 84.6 78.9 81.6 86.2 81.0

kHI,
∑

i min(xi, yi) 77.8 84.1 78.6 81.8 87.0 82.0

the addition of the spatial pyramid structure does not change the relative per-
formances of the kernels: the gap in recognition performance between SPM with
kHI and SPMSM is similar to that between the HI (kHI ) and the semantic ker-
nel when omitting SPM. Second, the results are consistent with previous reports
on the benefits of spatial information encoding [4]. Comparing the results with
and without SPM shows that, for the SSPMK, this gain is around three to four
percentage points. In addition, we remark that training with a RBF kernel, op-
timizing the cost factor and kernel width on a 2-D grid, exhibits performance
similar to the worst result per kernel on each database of Table 1 (with and
without SPM). This underpins the assertion (cf. [34, 27]) that kernels which are
effective in Euclidean space (like RBF) are not necessarily effective in another
space, such as the semantic manifold.

Data Embedding. Finally, we evaluated the semantic kernel approximation
of Section 3.2 and the square-root embedding of (6). This was compared to the
popular HI kernel embedding of [19] and to a linear SVM without any embed-
ding, i.e., applied directly to the SMNs. The comparison to [19] was performed
against the sparse φ2 embedding3 (denoted as φs

2 in the original work) with ten
discrete levels. Table 2 lists the recognition rates on all datasets, without spatial
pyramid matching. A few conclusions are possible from the table. First, the ad-
vantages of using the kernel+embedding combination are not very significant for
small datasets. In fact, [19] underperformed the linear SVM without embedding
on semantic space, on all three small datasets. While the square-root embedding
outperformed the latter, the gains were relatively small. Second, a different pic-
ture emerges for the large datasets, where both embeddings outperformed the
SVM without embedding. Again, the square-root embedding achieved the best
performance, now with non-trivial gains over the two other approaches. Third,
the square-root embedding outperformed the embedding of [19], preserving the
advantages of the semantic kernel on all datasets. Finally, although there is a
drop in recognition rate when compared to Table 1, this drop is small (about one
to two percentage points). We believe that the computational savings associated
with a linear SVM far outweigh this slight loss in recognition performance.

Comparing to Bag-of-Words. This set of experiments was designed to com-
pare SPMSM to the combination of BoW and SPM, which can be considered a

3 Available from http://www.cs.berkeley.edu/~smaji/projects/add-models/

http://www.cs.berkeley.edu/~smaji/projects/add-models/
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Table 2. Comparison (without SPM) of the proposed feature embedding to that of
[19] and no embedding

Dataset
Embedding Variant

Maji & Berg [19] Proposed Without

Sports 76.9 77.8 77.1
LabelMe 83.0 84.3 84.0
N15 76.8 77.3 77.0
MIT Indoor 32.2 33.7 31.9
SUN 23.1 24.3 22.0

de-facto standard for image classification. However, the comparison turned out
not to be straightforward. For example, it is well known that the performance
of BoW methods increases with codebook size. This is, in significant part, due
to the associated increase in the dimensionality of the SVM that ultimately
classifies the images. In general, the performance of an SVM improves with the
dimensionality of its input, as long as the latter remains in a reasonable range.
The problem is that SPMSM and BoW+SPM can have very different SVM
dimensionalities.

Without the spatial pyramid structure, this dimensionality equals the number
of themes, for SMN, and the number of codewords, for BoW. With the spatial
pyramid, these numbers are multiplied by the number of spatial pyramid cells,
which is 21 for three pyramid levels. Since there are as many themes as scene
category labels, SPMSM has a fixed SVM dimensionality. On the other hand, it is
always possible to increase the codebook size of BoW. While this suggests using
SPMSM as a reference, its dimensionality is usually too low for BoW+SPM,
which performs quite poorly for codebook cardinalities equivalent to the number
of scene categories. An alternative would be to increase the dimensionality of
SPMSM, e.g., by replacing the hard assignment of (1) with a histogram of the
posterior probabilities PT |X(t|xi) for each theme t.

We have not considered such possibilities, simply measuring the recognition
rate of BoW+SPM for various values of the codebook size. The recognition rates
are shown in Table 3. Rates higher than those achieved by SPMSM are marked in
bold, whereas rates at equivalent dimensionality are underlined. It is clear that
BoW+SPM requires a much higher dimensionality than SPMSM, for equiva-
lent performance. For the datasets considered, the ratio of dimensionalities is
≈ 30. While this may not be a problem for the small corpora that are commonly
used in the literature, e.g., the eight category LabelMe or Sports datatsets, it
can be much more problematic for richer corpora, such as MIT Indoor or SUN.
Even on the modestly sized N15 dataset, SPM+BoW requires a codebook of
size 512 to guarantee a minor gain over SPMSM. This corresponds to a SVM of
512×21 = 10, 752 dimensional input, as opposed to the 15×21 = 315 dimensions
of SPMSM. From the trend in Table 3, the aforementioned threshold would likely
occur at 43, 008 dimensions for MIT Indoor. Since this exceeds the capacity of
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Table 3. Recognition rate of BoW+SPM, for varying codebook sizes. Results higher
than those achieved by SPMSM (shown at the bottom) are marked bold; results at equal
SVM dimensionality are underlined. Numbers in parentheses denote the percentage of
the training examples selected as support vectors.

Codebook
Dataset

LabelMe Sports N15 MIT Indoor

8 74.0 (74) 64.8 (87) 63.0 (89) 19.1 (98)
16 78.8 (75) 69.3 (88) 69.7 (89) 25.3 (98)
32 82.9 (75) 77.7 (88) 73.6 (89) 32.6 (98)
64 85.9 (75) 80.4 (89) 77.9 (89) 36.2 (99)
128 87.4 (77) 81.4 (90) 80.8 (90) 38.8 (99)
256 88.0 (79) 83.6 (91) 81.7 (91) 41.0 (99)
512 88.6 (82) 84.7 (92) 83.1 (93) 43.6 (99)

SPMSM 87.5(57) 83.0 (67) 82.3 (74) 44.0(95)

the SVM package that we have used in these experiments we could not even
confirm if BoW+SPM can actually outperform SPMSM (dimensionality 1, 407)
on this dataset.

Another factor that confounds the comparison of the two approaches is the
type of support vectors that they produce. In fact, the percentage of examples
that an SVM chooses as support vectors is a well known measure of the diffi-
culty of the classification, and the degree to which the classifier is “overfitting
to the dataset”, i.e., modeling the intricacies of the particular dataset where
performance is evaluated, rather than learning a truly generic decision rule.
The numbers in parenthesis in Table 3 show the support vector percentages of
BoW+SPM, for various codebook sizes, and SPMSM. Note that the percentages
are indeed higher for the datasets of lower recognition rate. It is also clear that,
on the harder datasets, the BoW+SPM SVM considers virtually every training
example a support vector. The fact that the SPMSM SVM achieves near equiv-
alent recognition rates with much smaller support vector percentages indicates
that the classification is much easier on the semantic manifold. Hence, SPMSM
is likely to generalize much better if applied to data collected from other sources.

In summary, on the large datasets considered, SPMSM has state-of-the-art per-
formance. On the remaining, its performance is superior to that of BoW+SPM,
by a large margin, for SVMs of equivalent dimensionality. On all datasets, it took
BoW+SPM a 30-fold increase in dimensionality to achieve results similar to those
of SPMSM, if at all. The percentages of examples selected as support vectors also
suggest that classification is much simpler on the semantic manifold, and that
SPMSM is likely to generalize better to unseen datasets. Computationally, since
SVM complexity is linear on the product of the number of support vectors and
dimensionality, the SPMSM SVM is significantly less challenging to implement.

Comparing to the State-of-the-Art. Finally, we compare SPMSM to the
state-of-the-art in the literature. An overview of the recognition rates of various
methods is given in Table 4. Note that a direct comparison of the different
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Table 4. Comparison to the state-of-the-art

Dataset State-of-the-Art Rate [%]

Sports
Li & Fei-Fei [30] 73.4
Proposed 83.0
Wu & Rehg [28] 84.3

LabelMe
Wang et al. [35] 76.0
Dixit et al. [7] 86.9
Proposed 87.5

N15
Lazebnik et al. [4] 81.2
Proposed 82.3
Dixit et al. [7] 85.4

MIT Indoor
Quattoni & Torralba [5] 25.0
Pandey & Lazebnik [36] 43.1
Proposed 44.0

SUN
Xiao et al. [16] 27.2
Proposed 28.9

dentaloffice 42.9 57.1 (14.2)
stairscase 30.0 35.0 (5)
children room 5.6 44.4 (38.8)
hospital room 35.0 35.0 (0)
closet 38.9 77.8 (38.9)
bar 22.2 38.9 (16.7)
warehouse 9.5 33.3 (23.8)
grocerystore 38.1 42.9 (4.8)
buffet 55.0 65.0 (10)
classroom 50.0 50.0 (0)
inside subway 23.8 71.4 (47.6)
corridor 38.1 57.1 (19)
jewelleryshop 0.0 27.3 (27.3)
prisoncell 10.0 45.0 (35)
operating room 10.5 31.6 (21.1)
pool inside 25.0 50.0 (25)
hairsalon 9.5 33.3 (23.8)
locker room 38.1 38.1 (0)
elevator 61.9 66.7 (4.8)
concert hall 45.0 55.0 (10)
restaurant kitchen 4.3 30.4 (26.1)
gameroom 25.0 30.0 (5)

livingroom 15.0 10.0 (-5)
bowling 45.0 75.0 (30)
tv studio 27.8 50.0 (22.2)
library 40.0 50.0 (10)
bakery 15.8 31.6 (15.8)
studiomusic 36.8 36.8 (0)
florist 36.8 73.7 (36.9)
gym 27.8 22.2 (-5.6)
cloister 45.0 80.0 (35)
greenhouse 50.0 70.0 (20)
waitingroom 19.0 19.0 (0)
bedroom 14.3 47.6 (33.3)
laboratorywet 0.0 40.9 (40.9)
winecellar 23.8 28.6 (4.8)
casino 21.1 57.9 (36.8)
office 0.0 38.1 (38.1)
fastfood restaurant 23.5 64.7 (41.2)
airport inside 10.0 10.0 (0)
laundromat 31.8 40.9 (9.1)
artstudio 10.0 25.0 (15)
subway 9.5 42.9 (33.4)
garage 27.8 55.6 (27.8)

bookstore 20.0 55.0 (35)
inside bus 39.1 60.9 (21.8)
auditorium 55.6 55.6 (0)
kindergarden 5.0 55.0 (50)
lobby 10.0 25.0 (15)
deli 21.1 15.8 (-5.3)
computerroom 44.4 50.0 (5.6)
videostore 27.3 36.4 (9.1)
movietheater 15.0 45.0 (30)
trainstation 35.0 75.0 (40)
museum 4.3 21.7 (17.4)
clothingstore 22.2 44.4 (22.2)
mall 0.0 20.0 (20)
kitchen 23.8 47.6 (23.8)
dining room 16.7 27.8 (11.1)
bathroom 33.3 33.3 (0)
church inside 63.2 68.4 (5.2)
meeting room 9.1 31.8 (22.7)
restaurant 5.0 30.0 (25)
nursery 35.0 47.4 (12.4)
toystore 13.6 40.9 (27.3)
shoeshop 5.3 21.1 (15.8)
pantry 25.0 65.0 (40)

Fig. 2.Detailed comparison of the recognition performance of SPMSM and the baseline
of [5] on MIT Indoor. The difference is given in parentheses. Scenes where SPMSM
performs worse are marked red (best viewed in color).

methods is not totally fair, since they differ along many dimensions, not just the
kernel. In fact, many of the BoW enhancements at the core of these methods could
be applied to the SPMSM. Nevertheless, the results of SPMSM classification are
excellent: to the best of our knowledge, the proposed classifier has the highest pub-
lished rates on the large- and mid-scale datasets (SUN andMIT Indoor), and one
of the small-scale ones (LabelMe). On MIT Indoor, it substantially outperforms
the baseline of [5], and does slightly better than the previous best approach of [36].
A detailed comparison to [5] is shown in Fig. 2. The improvements are distributed
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across all indoor scene categories: there are only 11 classes where SPMSM per-
forms at a similar or worse level. With respect to the remaining datasets, Sports
and N15, SPMSM outperforms the baseline and achieves results competitive with
the best in both cases. Note, for example, that the best method on N15 [7] specif-
ically addresses the generalization ability of theme models, through model adap-
tation techniques. Since these techniques could equally be used to improve the
theme models of SPMSM, the two methods are complementary, not competitors.
We plan to include model adaptation in SPMSM in future work.
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Unsupervised Temporal Commonality Discovery
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Abstract. Unsupervised discovery of commonalities in images has re-
cently attracted much interest due to the need to find correspondences in
large amounts of visual data. A natural extension, and a relatively unex-
plored problem, is how to discover common semantic temporal patterns
in videos. That is, given two or more videos, find the subsequences that
contain similar visual content in an unsupervised manner. We call this
problem Temporal Commonality Discovery (TCD). The naive exhaustive
search approach to solve the TCD problem has a computational complex-
ity quadratic with the length of each sequence, making it impractical for
regular-length sequences. This paper proposes an efficient branch and
bound (B&B) algorithm to tackle the TCD problem. We derive tight
bounds for classical distances between temporal bag of words of two seg-
ments, including �1, intersection and χ2. Using these bounds the B&B
algorithm can efficiently find the global optimal solution. Our algorithm
is general, and it can be applied to any feature that has been quantified
into histograms. Experiments on finding common facial actions in video
and human actions in motion capture data demonstrate the benefits of
our approach. To the best of our knowledge, this is the first work that
addresses unsupervised discovery of common events in videos.

Keywords: Temporal bag of words, branch and bound, temporal com-
monality discovery.

1 Introduction

Unsupervised discovery of visual patterns in images has been a long standing
computer vision problem driven by applications to cosegmentation [8,15,20],
learning grammars of images [34], detecting irregularity [6] and automatic tag-
ging [23]. Although recently there has been several work on unsupervised dis-
covery of visual patterns in images, a relatively unexplored problem in computer
vision is to discover common temporal patterns among video sequences. For in-
stance, given two or more videos, finding the segments that contain common
human actions. Fig. 1 illustrates the main problem addressed in this paper.
Given two videos from “As Good As It Gets” and “Indiana Jones And The
Last Crusade”, this paper proposes an unsupervised method to find multiple
subsequences that share similar semantic contents (e.g., Kissing or Handshake).
Through the paper, we will refer to this problem as Temporally Commonality
Discovery (TCD).

A. Fitzgibbon et al. (Eds.): ECCV 2012, Part IV, LNCS 7575, pp. 373–387, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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]

]

]

Temporal Search Space

]

Kiss

Handshake

Temporal
Commonalities

Video A

Video B

Fig. 1. Temporal Commonal-
ity Discovery (TCD). Given
two videos from the movies
“As Good As It Gets”(top) and
“Indiana Jones And The Last
Crusade”(left), how to discover
in an unsupervised manner
the common actions between
them? In this case our algorithm
found segments of Kissing and
Handshaking as common actions
between both videos. Note that
the common segments can have
different lengths.

Recall that TCD is a fully unsupervised problem, so no prior knowledge is
provided—we do not know what the commonalities are, how many there are and
where they start and end. A naive method to find desired pair(s) of common
subsequences would be the sliding window approach, i.e., exhaustively search all
possible pairs of subsequences and select the pair(s) with the highest score(s).
However, the complexity of this approach scales quadratically with the length
of both sequences, O(m2n2), for two sequences of length m and n. For instance,
in the case of two sequences with 200 and 300 frames, there are more than
three billion possible matchings that need to be computed at different lengths
and locations. Therefore, the naive approach is computationally prohibitive for
reasonable length sequences.

Inspired by [13,32] that used the branch and bound (B&B) algorithm to effi-
ciently search for optimal image patches or video volumes, we propose to adopt
B&B for searching simultaneously over all possible segments in each video se-
quence (see Fig. 1). Two are the main contributions of this study: (1) Introduce
the new problem of unsupervised TCD. While there exist studies that address
commonality discovery in images [8,15,20,30], to the best of our knowledge there
is little work that tackles unsupervised search of commonalities in video se-
quences. Also, note that there are several studies that address the problem of
event detection or sequence labeling of human actions in video (e.g., [12,27,32]).
However, unlike TCD, those studies require learning a set of classifiers from
training data. (2) Formulate the TCD as an integer optimization problem and
propose an efficient B&B algorithm that finds the globally optimal solution. We
derive new tight bounds for �1, intersection and χ2 distances between histograms,
allowing the B&B scheme to discard large portion of the search space. Experi-
mental validation on standard datasets for finding similar facial expressions in
video and human actions in motion capture data illustrates the benefits of our
approach.
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2 Related Work

Our work is inspired by recent success on using B&B with Support Vector Ma-
chines (SVM) for efficient template matching. Lampert et al. [13] proposed Ef-
ficient Subwindow Search (ESS) to find the optimal subimage that maximizes
the prediction score of a pre-trained SVM classifier. Hoai et al. [12] combined
a multiclass SVM with Dynamic programming for efficient temporal classifica-
tion and segmentation. Yuan et al. [32] generalized Lampert’s 4-D search to
the 6-D Spatio-Temporal Branch-and-Bound (STBB) by incorporating time, to
search for spatio-temporal volumes. However, unlike TCD, these approaches are
supervised and require a training stage.

Recently, there have been interests in temporal clustering algorithms for un-
supervised discovery of human actions. Wang et al. [30] exploited deformable
template matching of shape and context in static images to discover action
classes. Si et al. [25] learned an event grammar by clustering event co-occurrence
into a dictionary of atomic actions. Zhou et al. [33] combined spectral cluster-
ing and dynamic time warping to cluster time series, and applied it to learn
taxonomies of facial expressions. Turaga et al. [28] used extensions of switch-
ing linear dynamical systems for clustering human actions in video sequences.
However, if we cluster two sequences that only have one segment in common,
previous methods for clustering time series will likely need many clusters to find
the common segments. In our case, TCD discovers only similar segments and
avoids the need for clustering all the video that is computationally expensive
and prone to local minima. Another unsupervised technique related to TCD
is motif detection [18,19]. Time series motif algorithms find repeated patterns
within a single sequence. Minnen et al. [18] discovered motifs as high-density re-
gions in the space of all subsequences. Mueen and Keogh [19] further improved
the motif discovery problem using an online technique, maintaining the exact
motifs in real-time performance. Nevertheless, these work detects motifs within
only one sequence, but TCD considers two (or more) sequences. Moreover, it is
unclear how these technique can be robust to noise.

The longest common subsequence (LCS) [10,17,21] is also related to TCD.
The LCS problem consists on finding the longest subsequence that is common
within a set of sequences (often just two) [21,31]. Closer to our work is the algo-
rithm for longest consecutive common subsequence (LCCS) [31] that finds the
longest contiguous part of original sequences (e.g., videos). However, different
from TCD, these approaches have a major limitation in that they find only iden-
tical subsequences, and hence are not robust to noise that is typical in realistic
videos.

3 Unsupervised TCD

3.1 Problem Formulation

In the following, we will assume that at least one commonality exists among a
pair of time series (e.g., two video sequences), represented as matrices
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A = [a1, . . . , am] and B = [b1, . . . ,bn] (see notation1). We formulate the TCD
problem as the integer programming over two integer intervals [b1, e1] ⊆ [1,m]
and [b2, e2] ⊆ [1, n]:

min
b1,e1,b2,e2

d
(
ϕA[b1,e1], ϕB[b2,e2]

)
, (1)

s.t. ei − bi ≥ �, ∀i ∈ {1, 2},
where A[b1, e1] = [ab1 , . . . , ae1 ] denotes the subsequence of A that begins from
frame b1 and ends in frame e1 (similar for B[b2, e2]). ϕx is a feature mapping
for a sequence x (see Sec. 3.3 for details), d(y, z) is a distance measurement
between two feature vectors y and z, and � controls the minimal length for each
subsequence to avoid the trivial solution of both lengths being zero.

Given a sequence pair A and B, the goal of TCD is to find the two most
common intervals [b1, e1] and [b2, e2], such that problem (1) is minimized. Note
that, as illustrated in Fig. 1, the discovered sequences A[b1, e1] and B[b2, e2]
can have different lengths, thus we don’t assume a fixed length for discovered
sequences. A naive approach for solving (1) is to search over all possible loca-
tions for (b1, e1, b2, e2). However, it leads to an algorithm with computational
complexity O(m2n2), which is prohibitive for regular videos with hundreds or
thousands of frames. To cope with this problem, this paper proposes a B&B
algorithm to efficiently find the global optimal solution to (1).

3.2 Optimization by Branch and Bound (B&B)

With a proper bounding function, the B&B framework is significantly more effi-
cient than exhaustive approaches. In this section, we leverage B&B to efficiently
find the global solution for problem (1).

Problem Interpretation: To have a better understanding of the search space,
we first re-formulate the problem (1) as the problem of searching over two se-
quence’s timelines (as illustrated in Fig. 1). A rectangle r in the search space
indicates one candidate solution (b1, e1, b2, e2) for (1). This candidate solution
would match a segment in videoA beginning at b1 and ending at e1 with another
segment in video B beginning at b2 and ending at e2. To allow a more efficient
representation for searching, we parameterize each step as searching over sets of
candidate solutions. That is, we search over intervals instead of individual value
for each parameter. Each parameter interval corresponds to a rectangle set in the
search space, i.e., R = [B1, E1, B2, E2], where Bi = [bloi , b

hi
i ] and Ei = [eloi , e

hi
i ]

(i=1 and 2) indicate tuples of parameters ranging from frame lo to frame hi.

The B&B Algorithm: Algorithm 1 summarizes the proposed TCD proce-
dure. We use a priority queue Q to maintain the search process. Each state
in Q contains a rectangle set R, its upper bound u(R) and lower bound l(R).

1 Bold capital letters denote a matrix X, bold lower-case letters a column vector x.
xi represents the ith column of the matrix X. All non-bold letters represent scalars.
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Fig. 2. An example of TCD for two synthetic 1-D time series (best viewed in color).
Note that in this case when � = 20, a naive sliding window approach needs more than
5 million evaluations while the proposed B&B method takes only 1181 to converge.
(a) Search ranges at iterations (it) #1, #300 and #1181 over sequences A and B.
Commonalities A[b1, e1] and B[b2, e2] are discovered at convergence (#1811). (b) Con-
vergence curve of the lower bound. (c) Histograms of the discovered commonalities.

Each iteration starts by selecting the rectangle set R from the top state, which
is defined as the state containing the maximal lower bound (recall that lower
bounds can be negative; see Sec. 3.3 for details of the bounds). Then in the
branch step, each rectangle set is split by its largest interval into two disjoint
subsets. For example, suppose E2 is the largest interval, then R → R′ ∪ R′′

where E′
2 := [elo2 , � elo2 +ehi

2

2 	] and E′′
2 := [� elo2 +ehi

2

2 	+ 1, ehi2 ]. In the bound step, we
calculate the bounds for the lowest dissimilarity for each rectangle set, and then
update new rectangle sets and bounds into Q. The algorithm terminates when
R contains a unique entry. Fig. 2 shows an example of TCD for discovering
commonality between two 1-D sequences. Despite that in the worst case the
complexity of B&B can be still O(m2n2), we will experimentally show that in
general B&B is much more efficient than the naive search.

Note that the optimal discovered sequences can be of length greater than
�. To show an example, consider two 1-D sequences A = [1, 2, 2, 1] and B =
[1, 1, 3]. Suppose we use �1 distance, set the minimal length � = 3, and represent
their 3-bin histograms as ϕA[1,4] = [2, 2, 0], ϕA[1,3] = [1, 2, 0] and ϕB = [2, 0, 1].
Hereby we can conclude by showing the distances: d�1(ϕA[1,4], ϕB) = 3 < 4 =
d�1(ϕA[1,3], ϕB).

Differences from ESS [13] and STBB [32]: Although the proposed B&B
algorithm is in spirit similar to ESS and STBB, it has three essential differences
from these methods: (1) Different search space. ESS and STBB search over spa-
tial coordinates of an image or spatio-temporal volumes in a video, while TCD
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Algorithm 1. Temporal Commonality Discovery

input : Feature lists for a sequence pair A,B; minimal length �
output: Optimal rectangle r∗ in the temporal search space

1 Initialize Q ←empty priority queue;
2 Initialize R ← [1, m]× [1, m]× [1, n]× [1, n];
3 while Size of R is not 1 do
4 Split one interval into two disjoint sets R→ R′ ∪R′′ (branch step);
5 Compute bounds in Sec. 3.3 for two new intervals R′ and R′′ (bound step);
6 Push both R′ and R′′ into Q, ordered by bounds;
7 Pop the top state R from Q;
8 end
9 Assign the optimal rectangle r∗ ←R;

searches over beginning and ending positions of the segments in two sequences.
(2) ESS and STBB are supervised techniques and seek for highly confident re-
gions according to a pre-trained SVM classifier; TCD is unsupervised. (3) We
introduce new bounding functions for the B&B framework that guarantee effi-
ciency and optimality for the TCD problem. Moreover, ESS and STBB consider
only upper bounds, while TCD incorporates both upper and lower bounds and
hence is able to prune the priority queue for accelerating the search.

3.3 Construction of a Bounding Function

Representation of Signals: Throughout the paper we will use the Bag of
Temporal Words (BoTW) model [26,32] to represent video segments. Observe,
that any features that can be discretized into histograms can fit into our frame-
work. In BoTW the codebook is built using a clustering method (e.g., k-means)
to group similar feature vectors. Each frame is then quantized according to the
k-entry dictionary. The histogram for a given sequence is then built by accumu-
lating individual frame histograms. We represent the feature mapping ϕA[b1,e1]

in (1) as the histogram of temporal words for the subsequence in the interval
[b1, e1]. Another notable benefit of the histogram representation is that it allows
for fast recursive computation using the concept of integral image [29]. That is,
for frame t, we accumulate the sum of ϕA[1,t] of the histograms up to t. Using
this structure, we can efficiently compute the histogram for any subsequence
A[t1, t2] as ϕA[t1,t2] = ϕA[1,t2] − ϕA[1,t1−1].

Properties of Bounding Functions: Recall that R is a rectangle set and
r≡(b1, e1, b2, e2) a rectangle in the temporal search space representing two sub-
sequences A[b1, e1] and B[b2, e2]. We denote d(r) = d(ϕA, ϕB) as the distance
between their histograms ϕA and ϕB. The smaller the value of d(ϕA, ϕB), the
more likely the sequences share commonalities. To harness the B&B framework,
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we need to find an upper bound u(R) and a lower bound l(R) that satisfy the
three properties:

(a) u(R) ≥ maxr∈R d(r),
(b) l(R) ≤ minr∈R d(r),
(c) u(R) = d(r) = l(R), if r is the only element in R.

Properties (a) and (b) ensure that u(R) and l(R) appropriately bound all can-
didate solutions in R from above and from below, whereas (c) guarantees the
algorithm to converge to the optimal solution. As shown in problem (1) our goal
is to minimize a distance function. Hence u(R) in this case is not relevant for
the minimization. However, we can use u(R) to prune the priority queue for
speeding our search, i.e., eliminate any state S that satisfies l(S) > u(R) [3].

Bounding Individual Histogram Bins: Suppose A+ and A− are the longest
possible and shortest possible subsequence of A for a given rectangle set R.
We denote their K-bin unnormalized histograms as ϕA+ = {h+

1 , . . . , h
+
K} and

ϕA− = {h−
1 , . . . , h

−
K}. Let r ∈ R be a rectangle in the search space represent-

ing two subsequences A[b1, e1] and B[b2, e2] with histograms {h1, . . . , hK} and
{k1, . . . , kK}. Considering both histograms of A+,A− and B+,B−, we can rep-
resent the range for the bth histogram bins as

0 ≤ h−
b ≤ hb ≤ h+

b , 0 ≤ k−b ≤ kb ≤ k+b . (2)

For normalized histograms, we use the fact that |A−|< |A[b1, e1]|< |A+| and
|B−|< |B[b2, e2]|< |B+|, where |X| = ∑K

b=1 ϕXb is summation over histogram
bins of a sequence X. Then we can rewrite (2) for the ranges of normalized bins

ĥb=hb/|A[b1, e1]| and k̂b=kb/|B[b2, e2]|:

0 ≤ h−
b

|A+| ≤ ĥb ≤ h+
b

|A−| , 0 ≤ k−b
|B+| ≤ k̂b ≤ k+b

|B−| . (3)

Bounding Distance between Histograms: With the per-bin bounds, we
show in the following exemplar constructions of bounds between histograms,
i.e., �1, intersection, and χ2 distance, which have been widely applied to many
tasks such as objection recognition [9,13] and action recognition [7,11,14,16,22].

1) Bounding �1 Distance: Applying the operators min/max on (2), we get

min(h−
b , k

−
b ) ≤ min(hb, kb) ≤ min(h+

b , k
+
b ), (4)

max(h−
b , k

−
b ) ≤ max(hb, kb) ≤ max(h+

b , k
+
b ).

Reordering both the above inequalities, we obtain the upper bound ub and lower
bound lb for the bth histogram bin:

lb = max(h−
b , k

−
b )−min(h+

b , k
+
b ) (5)

≤ max(hb, kb)−min(hb, kb) = |hb − kb|
≤ max(h+

b , k
+
b )−min(h−

b , k
−
b ) = ub.
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Summing all the histogram bins, we obtain the bounds of the �1 distance for two
unnormalized histograms ϕA, ϕB:

l�1(R) =

K∑

b=1

lb ≤
K∑

b=1

|hb − kb|
︸ ︷︷ ︸
d�1

(ϕA,ϕB)

≤
K∑

b=1

ub = u�1(R). (6)

Similarly, we can obtain the bounds for normalized histograms ϕ̂A, ϕ̂B by the
same operations as (4) and (5):

l̂�1(R) =

K∑

b=1

l̂b ≤ d�1(ϕ̂A, ϕ̂B) ≤
K∑

b=1

ûb = û�1(R), (7)

where

l̂b = max(
h−
b

|A+| ,
k−b
|B+| )−min(

h+
b

|A−| ,
k+b
|B−| ), (8)

and ûb = max(
h+
b

|A−| ,
k+b
|B−| )−min(

h−
b

|A+| ,
k−b
|B+| ). (9)

2) Bounding Intersection Distance: Given two normalized histograms ϕ̂A=

{ĥ1, . . . , ĥK} and ϕ̂B={k̂1, . . . , k̂K}, we define their intersection distance by the
Hilbert space representation [24]:

d∩(ϕ̂A, ϕ̂B) = −
K∑

b=1

min(ĥb, k̂b). (10)

By (3) and (4), we can find its lower bound and upper bound:

l∩(R) = −
K∑

b=1

min(
h+
b

|A−| ,
k+b
|B−| ) and u∩(R) = −

K∑

b=1

min(
h−
b

|A+| ,
k−b
|B+| ). (11)

3) Bounding χ2 Distance: The χ2 distance has been proven to be a good
metric to measure distance between two histograms for TCD due to its simplicity
and efficiency. The χ2 distance is defined as

dχ2(ϕ̂A, ϕ̂B) =

K∑

b=1

(ĥb − k̂b)
2

ĥb + k̂b
. (12)

Incorporating the bounds l̂b and ûb for normalized histograms in (8) and the
inequalities in (3), we obtain the lower bound and upper bound for dχ2 by
summing throughout all histogram bins:

lχ2(R) =
K∑

b=1

(max(0, l̂b))
2

h+
b /|A−|+ k+

b /|B−| and uχ2(R) =
K∑

b=1

û2
b

h−
b /|A+|+ k−

b /|B+| . (13)
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The derived lower and upper bounds clearly satisfy the bounding properties
(a) and (b). To show how property (c) holds, one can consider the case that R
contains only one rectangle r. Take the d�1 for example, when r∈R is the unique
rectangle, we have h+

b = hb = h−
b and k+b = kb = k−b , and thus Eq. (5) becomes

ub = |hb − kb| = lb. Hereby we obtain l�1(R) = d�1(ϕA, ϕB) = u�1(R). One can
show property (c) holds for other distances in a similar manner.

4 Extensions to Multiple TCD and Video Indexing

In the following we show how a simple modification of our proposed algorithm
can be applied to multiple TCD and video indexing.

Discover Multiple Commonalities: For realistic sequences that often contain
more than one commonality, we can discover multiple commonalties by applying
Algorithm 1 repeatedly. Every time Algorithm 1 returns an optimal rectangle in
the temporal search space that represents the best match. Once a commonality
is found, we remove the corresponding rectangle from the search space and then
begin over the search process to find the next best. The process continues until
a desired number of rectangles have been retrieved or the returned matching
distance d(·, ·) is greater than some threshold, which depends on the desire of
applications.

Note that our implementation is different from the conventional multiple-
object detection tasks [13]. In object detection, the whole spatial region is re-
moved to search for the next object. In our case, we can not remove all the
time-segments for both time sequences because we might miss some commonal-
ity at the same location. Instead, we position those rectangles to the bottom of
the priority queue by imposing a large penalty to their scores. Using this strat-
egy, we are able to handle many-to-many mapping, i.e., A[b1, e1] can match
multiple subsequences in B and vice versa.

Video Indexing: A simple modification of the proposed B&B algorithm could
be useful for efficient searching for a video with similar content. That is, given
a query video, how to efficiently search for common subsequences in a longer
video. Let Q be the query sequence we want to find in the target video T. We
can modify (1) by fixing one of the pairwise sequences:

min
bt,et

d
(
ϕT[bt,et], ϕQ

)
s.t. et − bt ≥ �. (14)

The problem now becomes simpler but it still is an integer programming. Never-
theless, Algorithm 1 can be applied again to find the optimal match efficiently.
Searching for multiple segments can also be done as discussed above. Note that
we do not claim that this indexing algorithm is state-of-the-art. We just want
to illustrate the versatility of our approach.
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Fig. 3. Efficiency comparison between TCD and the naive sliding window (SW) ap-
proach. (a) Parameters for each SWi: size-ratio (SR), stepsize (SS), and aspect ratios

(AR) as 2p. (b) Histograms ratio of the number of evaluation log nTCD

nSWi
. (c) Histograms

of difference between resulting distances d(rSW)− d(rTCD).

5 Experimental Results

We evaluated our approach on two experiments. First, we discovered com-
mon facial events in the RU-FACS database [5]. Second, we found multiple
common human actions in CMU-Mocap dataset [1]. The code is available at
http://www.humansensing.cs.cmu.edu/software/tcd.html.

5.1 Common Facial Events Discovery

This experiment evaluates the capability of our algorithm to find similar facial
events in the RU-FACS database [5]. The RU-FACS database consists of digitized
video and manual coding of 34 young adults. They were recorded during an
interview of approximately 2 minutes duration in which they lied or told the
truth in response to an interviewer’s questions. Pose orientation was mostly
frontal with moderate out-of-plane head motions. We selected the Action Unit
(AU) 12 (i.e., smile) from 15 subjects that had most occurrence of this facial
AU. We collected 100 segments containing one AU-12 and other AUs, resulting
in 4, 950 video sequence pairs with different subjects.

We represented features as the distances between the height of lips and teeth,
angles for mouth corners and SIFT descriptors in the points tracked by Active
Appearance Models (AAM) [33] (see Fig. 4(a) for an illustration). We built a
1,000-entry codebook on a random subset of 50,000 feature vectors (see Sec. 3.3).

Efficiency Comparison with the Naive Sliding Window: This experiment
evaluates the increase in speed in comparison with the naive sliding window (SW)

http://www.humansensing.cs.cmu.edu/software/tcd.html
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Fig. 4. (a) Facial features extracted from the tracked points as in [33]. (b) An exam-
ple of common discovered facial events (indicated by dashed-line rectangles). (c)(d)
Accuracy evaluation on precision-recall and average precision (AP).

approach. In the standard SW approach there are three parameter settings to im-
prove efficiency [29]. We denote the parameters as SWi (i=1, 2, 3); see Fig. 3(a)
for detailed settings. The size-ratio (SR) refers to the window scaling factors,
the stepsize (SS) is the window offset, and the ratio of the window width to
its height is the aspect ratio (AR). We refer to [29] for more details about the
parameters. Recall the lengths of two sequences are m,n and the minimal length
for each sequence is �. We fixed the maximal and the minimal rectangle sizes for
SW to be (m× n) and (�

√
AR × �√

AR
), respectively.

To be independent of a particular implementation, we measured the discovery
speed as the number of evaluations that TCD and SW need to compute the
bounding functions. The number of evaluations are referred as nTCD and nSWi

(i=1, 2, 3). Fig. 3(b) shows the histograms of the log ratio for nTCD/nSWi . Light
green bars show that TCD requires less evaluations than SW, while dark blue
bars indicate the opposite. Red vertical line indicates the average ratio. The
smaller the ratio value, the less times TCD has to evaluate the distance bounds.
Although SW was parameterized by standard settings [13,29] to search only a
subset of the search space, TCD searches the entire space yet still performs on
average 6.18 times less evaluations than SW.

In order to evaluate the discovery quality, we also compared the difference
between the distances measured by TCD and SW, i.e., d(rSW)− d(rTCD). The
larger the difference the worse results SW got. Fig. 3(c) shows the histograms of
these differences. One can observe that the differences are always greater than
or equal to zero. This is because our method always finds the global optimum.
Recall that SW, depending on the parameter settings, only does a partial search,
hence it is not surprising that it often performs worse than our method.
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Accuracy Evaluation: Because the problem of TCD is relatively new in com-
puter vision, to the best of our knowledge there are no baselines we could compare
to. Hence, for a baseline comparison, we selected the state-of-the-art method in
longest common consecutive subsequence matching (LCCS) [31]. Observe that
when the feature representation for each frame was quantized into a temporal
word, the unsupervised TCD problem can be naturally interpreted as an LCCS.
For fair comparisons with the LCCS that uses a 0-1 distance, in this experiment
we used �1 distance. The minimal subsequence length � was fixed to the same
value for both LCCS and TCD. To evaluate the performance, we measured the
overlap score between the ground truth and the discovered segments, as usu-

ally used in object detection tasks [9]: overlap(r, g) = area(r∩g)
area(r∪g) , where r is the

rectangle in the search space representing a discovered commonality, and g is
the ground true rectangle indicating the correct match. The higher the overlap
score, the better the algorithm discovered the commonality. We consider that
a rectangle is correct if the overlap score is greater than a threshold ε (here
ε = 0.5). Fig. 4(b) shows an example of a correct discovery. We evaluated the
event-level accuracy as precision and recall.

Fig. 4(c) plots the precision-recall curves for the first output result of TCD
and LCCS. We computed the average precision (AP) [9] and found TCD outper-
forms LCCS by 15%. Compared to LCCS that finds identical subsequences, TCD
considers a histogram appearing in two sequence, it is more robust to deal with
uncertainty in noisy signals such as videos. Fig. 4(d) shows the average precision
of our approach under different parameters. We varied the minimal sequence
length � in {20, 25, . . . , 40}, and examined the AP of the tth result individually.
As can be observed from the averaged AP (black dashed line), our method is
more robust across different settings of � and t. As a result, TCD performed on
average 16% better than LCCS in discovering the common AU-12.

5.2 Multiple Common Motions Discovery in Motion Capture Data

In the second experiment we used the CMU-Mocap dataset [1] to demonstrate
the ability to discover multiple common actions (as discussed in Sec. 4). We
selected Subject 86 that contains 15 long sequences. Each sequence contains
thousands of frames and up to 10 actions (out of a total of 25 human actions)
such as walking, jumping, punching, etc. See Fig. 5(a) for an example. Each
sequence ranges from 100 to 300 frames each action. Then we randomly selected
45 pairs of sequences (each having up to 10 actions) and discovered common
actions among each pair. We downsampled each sequence by a factor of 4 to
make it 30 fps, resulting in a set of sequences with 1,200∼2,600 frames. Note
that this experiment is much more challenging than the previous one due to
longer sequences and more complicated actions. In this case, we excluded SW
for comparison because it needs 1012 evaluations which is impractical.

Each human motion was represented as the root position, orientation, and 29
relative joint angles. In order to provide a continuous representation, the 3-D
Euler angles were transformed to 3-D quaternions. Following [4], we represented
10 joints as a 30-dimensional feature vector of 3-D quaternions for each frame.
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Fig. 5. (a) An example of the top six discovered common motions. The numbers in-
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precision on �1 distance. (d) Precision-recall on χ2 distance.

We determined a correct discovery if its overlap score is greater than a thresh-
old ε. Fig. 5(a) illustrates the first six common motions discovered by TCD. A
failure discovery is shown in the shaded number 6. Fig. 5(b) shows the precision-
recall curve for different values of ε. Using the naive �1 distance, the curve
decreases about 10% AP when the overlap score ε raises from 0.4 to 0.7, which
implies that we can obtain higher quality results without losing too much preci-
sion. For comparison with the baseline LCCS approach, Fig. 5(c) shows their APs
over various � on the nth discovered result. LCCS performed poorly to obtain
long common subsequences since in this experiment human motions have more
variability than just one facial event (e.g., AU-12). On the other hand, TCD
utilized histogram representation, and thus allowed more tolerance in analogy
with BoW in the context of object recognition. One can observe that AP drops
with increasing � since the common actions in this database can have very short
distance, e.g., jump and squad. Moreover, to demonstrate the generalization
performance of our method, we also evaluated the χ2 distance and plotted the
precision-recall curve in Fig. 5(d). The bounds for χ2 distance were discussed in
Sec. 3.3. Although the Mocap dataset is very challenging in terms of various mo-
tions and diverse sequence lengths, our approach with χ2 performed 30% better
than �1 and LCCS. It shows χ2 is a more powerful measurement for histograms
than �1. Overall, using the χ2 measurement and ε = 0.5, our algorithm achieved
81% precision.

6 Discussion and Future Work

This paper introduced the new problem of TCD, to find temporal commonal-
ities between sequences in an unsupervised manner. We have shown that the
proposed B&B algorithm can efficiently find a global optimal solution for TCD.
We presented results in discovering common facial events and human actions.
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It is important to observe that our method can be applied to any features that
can be quantified into histograms. Although this work has shown better perfor-
mance than baseline methods, more research can be done to speed up the search
process, e.g., [2]. Currently, we are also looking to derive tight bounds for other
metrics between temporal segments such as dynamic time warping.
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Finding People Using Scale, Rotation

and Articulation Invariant Matching

Hao Jiang

Computer Science Department, Boston College, Chestnut Hill, MA 02467, USA

Abstract. A scale, rotation and articulation invariant method is pro-
posed to match human subjects in images. Different from the widely
used pictorial structure scheme, the proposed method directly matches
body parts to image regions which are obtained from object independent
proposals and successively merged superpixels. Body part region match-
ing is formulated as a graph matching problem. We globally assign a
body part candidate to each node on the model graph so that the over-
all configuration satisfies the spatial layout of a human body plan, part
regions have small overlap, and the part coverage follows proper area
ratios. The proposed graph model is non-tree and contains high order
hyper-edges. We propose an efficient method that finds global optimal
solution to the matching problem with a sequence of branch and bound
procedures. The experiments show that the proposed method is able to
handle arbitrary scale, rotation, articulation and match human subjects
in cluttered images.

Keywords: Human pose, scale and rotation invariant matching, global
optimization.

1 Introduction

Finding human subjects in cluttered images is a challenging task and it has many
important potential applications. In this paper, we match a human subject in
images and label the body part regions such as torso, arms and legs. The target
object may have different scales and rotations. Most current pictorial structure
approaches quantize the scale and rotation and optimize on the discrete cases.
As the scaling range increases, searching through a huge number of discrete cases
soon becomes impractical. The question is whether it is possible to efficiently
match a human target without enumerating the quantized scales and rotations.
In this paper, we address this problem and propose an efficient global optimiza-
tion method that is able to match human subjects in images with unknown scale
and rotation.

In contrast to the cardboard model that uses rectangle or polygon body parts,
we match region candidates in images so that the combination of these regions
forms a valid human body layout. The region candidates are from object inde-
pendent proposals [19] and successively merged superpixels [18]. The proposed
method assembles candidate regions and labels them as arm, leg and torso. Dif-
ferent from pictorial structure methods [9, 2], the proposed method does not

A. Fitzgibbon et al. (Eds.): ECCV 2012, Part IV, LNCS 7575, pp. 388–401, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Fig. 1. We label human part regions in images by matching a graph model to the
target human subject. The arm regions are red, legs are green and torsos are blue. The
proposed matching method is scale, rotation and articulation invariant.

detect bar structures or obtain them from region candidates; instead it directly
optimizes the region assembly. By directly working on part region candidates,
our method is efficient and when properly constructed it is invariant to scale,
rotation and object articulation. Fig. 1 illustrates matching human part regions
using the proposed method.

Finding human poses in images has been intensively studied. If object fore-
ground segmentation is available, poses can be estimated using regression and
machine learning approaches [5]. In [22], object foreground proposals and latent
structured models are used to find human poses. Other top-down methods detect
poses by matching exemplars in databases [6–8]. These top-down pose estimation
methods work best when poses are in a small domain. If poses are unconstrained,
the performance of these methods degrades. Methods that reply on object fore-
ground segmentation are also limited by the quality of figure-ground separation,
which itself is a hard problem especially for segmenting human subjects.

Bottom-up pose estimationmethods detect body parts and then assemble them
into a human-shaped object. Pictorial structure model is widely used, in which
arms, legs, torso and head are represented as rectangle or polygon patches. The
coupling body parts form a graph model. Different methods have been proposed
to optimize the body part assembly. Tree structure models [1–3, 17] allow efficient
inference using dynamic programming. Non-tree models that include more con-
straints among body parts have also been intensively studied [10, 11, 4].

Part based methods also benefit from image segmentation. Object foreground
segmentation helps part detection and pose verification [9]. In [4], part assembly
is optimized as a max-cover to the object foreground. Even rough foreground
estimation is found useful to improve pose estimation [17]. In [13, 12], part
candidates (the parallel bars) are extracted from superpixel boundaries and then
grouped into a stick figure. Superpixels have also been used in [14] to improve the
pictorial structure methods. Joint foreground segmentation and pose estimation
for pedestrians have been studied in [16, 20]. In [21], object segmentation and
graph matching are optimized together to achieve reliable unconstrained pose
estimation.
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The key obstacle for the pictorial structure methods is that it is hard to make
the model adapt to the unknown scale of target objects. The body part assembly
has to be optimized for each quantized scale and sometimes each rotation. This
would be a slow process if we have to enumerate many discrete cases. Fitting
rectangle structures to superpixel boundaries is able to make pose estimation
scale invariant [13]; however, this procedure may lose detection of body parts.
Apart from rectangle body parts, rectangle image patches (poselets) have also
been used to match human subjects [23]. Poselet is not scale and rotation in-
variant. In this paper, we propose a method that directly matches regions. The
body part regions are assembled so that the overall configuration fits a human
body model. Such a scheme is scale, rotation and articulation invariant when
properly constructed.

Grouping regions into a human shape is not a new concept. The jigsaw puz-
zle problem has been studied in [15], where the over-segmented superpixels are
grouped together to fit a human model. Since superpixels are not able to group
regions with different colors or textures, body parts with non-uniform appearance
are often split into multiple superpixels. A parse tree method is proposed to merge
superpixels in [15]. The parse tree may become huge and hard to process. As a
compromise, a sequential procedure is applied: legs are first detected and then
the torso is predicted from the leg detection using polygon matching. In [24], ac-
curate body part region labeling has been achieved for pedestrians. This method
replies on the shape priors of pedestrians and pedestrian detectors; it is thus hard
to extend to matching people with arbitrary poses. Grouping a set of regions into
a human shape and labeling the part regions is still an open problem.

The contribution of this paper is that we propose a global optimization
method to match human body part regions. Our method groups superpixels
[18] and region proposals [19] so that their spatial correlations and region ratios
fit a human model. Our method is able to handle arbitrary human poses. It is
scale and rotation invariant and can be globally optimized using a fast branch
and bound approach.

2 Method

We treat human part matching as an assignment problem. We assign a candidate
region to each body part so that the configuration follows the model constraints.
Here the body part candidates are segments from successive superpixel merging
and object independent region proposals.

The body part model is shown in Fig. 2. The corresponding graph model has
five nodes that represent torso, arms and legs. The hyper-edges linking the nodes
indicate the torso-arms, torso-legs and arms-legs constraints. These constraints
enforce the spatial layout, overlapping area, symmetry, size ratio, and overall
region coverage. Given a set of candidate regions, we optimize the body part
assignment on the graph model: each graph node selects a candidate region so
that the following energy function is minimized.
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Fig. 2. Left: The 5-part body model. Right: The interaction of body parts in a graph.
The graph includes five nodes and three hyper-edges among them.

min
L,s

{U(L) + αD(L) + βP(L) + ηR(L) + γS(L) + μW(L, s)} (1)

s.t. L is a valid part assignment, and s is the scale estimation.

where U(.) is the unary assignment cost, which is small if part candidate regions
have similar shape to the corresponding part templates. D(.),P(.),R(.) and S(.)
are tri-part terms, which are small if the labeling of arms-torso combination
and the legs-torso combination satisfies specific constraints. D(.) quantifies the
distance between specific body parts. P(.) penalizes selecting region candidates
that are overlapping. R(.) enforces the relative sizes among body parts. S(L)
encourages selecting regions with symmetrical appearance for arms or legs. W(.)
is used to control the interaction among arms and legs, and encourages the
overall coverage of arms and legs to fit a target size, i.e., the arms and legs do
not overlap much and the overall area approaches a predicted value. During the
body part region labeling, we estimate the scale s simultaneously. The coefficients
of α, β, η, γ and μ control the weight among different terms. In this paper, we
set η = 0.1, α = γ = 0.01 and β = μ = 0.001. The energy function is invariant
to the scale, rotation and object articulation. Due to the loopy structure and
high order terms, finding optimal body part region assignment is a challenging
problem. In the following, we propose an efficient global optimal solution to this
problem.

2.1 Finding Body Part Candidates

Before optimizing the body part configuration, we first find candidate regions
for each body part. Different from the approach in [15], we do not merge small
regions during the optimization, instead we select parts from a large set of can-
didate regions to form a human body assembly. The proposed method assumes
that “correct” body part segments are in the candidate set. It is not necessary
that separate arms or legs are detected; we allow merging of arms or legs into a
single region. At first sight, this setting seems limited. However, we can almost
always obtain roughly correct body part segments from object independent re-
gion proposals and progressively merged superpixels. Object independent region
proposals [19] provide thousands of region candidates in an image by segmen-
tation with randomly selected seed points and region pruning by object priors.
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(a) Distance (b) Overlap (c) Area Ratio (d) Symmetry (e) Coverage

Fig. 3. The constraints on body parts and their notations

This method works well to identify part regions on a human subject even when
they are composed of sub-regions with different appearance. To further improve
the chance of obtaining parts such as arms or legs, we also include candidate re-
gions generated by progressively merging over-segmented superpixels. The merg-
ing process starts from fine superpixels [18] and then successively merges two
neighboring superpixels with the most similar color histogram and the weak-
est boundary. With the object independent region proposals and successively
merged superpixels, there is a high chance that the true body part segments
are included in the candidate sets. Note that we do not require accurate part
candidates; our method is robust when handling region merging and inaccurate
candidates.

Given the region candidates, we solve a combinatorial search problem to as-
semble regions so that the overall configuration resembles a human subject.
Naive exhaustive search is not feasible. We propose an efficient global optimiza-
tion method.

2.2 The Formulation

We formulate the optimization in this section. The basic idea is to construct the
optimization so that it can be linearized for fast solution.

We introduce some notations. We define an arm assignment tensor X and
a leg assignment tensor Y . The arm tensor X = [xi,j,k] whose element xi,j,k

indicates the assignment of region candidate i to arm one, region candidate j
to arm two and candidate k to torso. And, similarly we define the leg tensor
Y = [yi,j,k] to indicate the assignment of parts i, j, and k to leg one, leg two
and torso respectively. The elements of X and Y are indicator variables whose
values are either 0 or 1. In X or Y there is a single 1 element and every other
element is 0. We also define a torso assignment vector Z = [zi], where zi = 1 if
torso selects candidate i, and otherwise zi = 0.

The Unary Term: Each region candidate has a cost when assigned to a body
part. We measure the shape similarity of each candidate region to the template.
We use the inner distance [25] histogram to quantify the shape of a segment. The
shape descriptor is the histogram of the distance between each pair of points in
a region. It can be efficiently computed using dynamic programming in O(n3)
time, where n is the number of points in the region. The histogram has 20 bins
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in the range from 0 to the longest pairwise distance. We further normalize the
histogram by the number of point pairs. The normalized inner distance histogram
is scale and rotation invariant and roughly articulation invariant.

For each part p, e.g., arm, leg or torso, we have a set of exemplars {e1, e2, ...ekp}
in which ei is the inner distance histogram of the ith template shape. The
cost of the assignment of a candidate whose shape descriptor is h is defined
as mini ||h− ei|| where ||.|| is the Euclidean distance. We build assignment cost
tensor U = [ui,j,k] and V = [vi,j,k], where ui,j,k = a(i)+ a(j) and a(.) is the arm
assignment cost for a candidate, vi,j,k = l(i)+ l(j) and l(.) is the leg assignment
cost. The torso assignment cost vector is denoted as T = [ti], where ti is the as-
signment cost of torso candidate i. In this paper, we keep the top 100 candidates
for arm, leg and torso based on their local matching costs. The overall unary
part assignment cost is

U = U �X + V � Y + Z � T, (2)

where � is the operator to sum the product of corresponding tensor elements.

Distance Term: A valid body configuration requires that the chosen arm can-
didates and leg candidates should be adjacent to the selected torso candidate.
Arms or legs also tend to be close to each other. The distance term is

D = Da �X +Dl � Y, (3)

where Da and Dl are distance tensors for arms and legs. Da = [di,j,k] where
di,j,k = di,j + di,k + dj,k, and we define di,j as the distance between the closest
points on the boundaries of arm candidate regions i and j, di,k and dj,k are
distances from arm candidates i and j to torso candidate k. TensorDl is similarly
defined for legs. The shortest distances between region contours can be efficiently
computed using the distance transform. The notations for the distance term are
illustrated in Fig. 3(a).

Overlap Term: Simply minimizing the boundary distances among part regions
does not guarantee a correct body part layout, since overlapping regions also
have small boundary distances. We minimize the overlap between arms, legs,
and torso:

P = Pa �X + Pl � Y, (4)

in which Pa = [pi,j,k] is an arm overlap tensor whose element pi,j,k = pi,j+pi,k+
pj,k; pi,j is the overlapping area between arm candidate regions i and j, pi,k and
pj,k are the overlapping areas of arm candidate regions i and j with torso region
k. The leg overlap tensor Pl is similarly defined to penalize the overlap between
legs, and between legs and torsos. The notations are illustrated in Fig. 3(b).

Size Ratio Term: A valid matching also should maintain correct size ratio
between parts. The size ratio is also important for distinguishing arms and legs.
We enforce that the arm-torso ratio, leg-torso ratio, arm-arm ratio and leg-leg
ratio conform to the priors. The ratio term is

R = |Rat �X − rat|+ |Rlt � Y − rlt|+ |Raa �X − raa|+ |Rll � Y − rll|, (5)
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where rat, raa, rlt and rll are the arm-torso, arm-arm, leg-torso and leg-leg region

ratio priors, and raa = rll = 1. Rat = [r
(at)
i,j,k] is the arm-torso ratio tensor and

r
(at)
i,j,k = (bi + bj)/bk where bi and bj are the areas of arm candidates i and j,

and bk is the area of torso candidate k. The arm-arm ratio tensor Raa = [r
(aa)
i,j,k],

where r
(aa)
i,j,k = bi/bj. The leg-torso ratio tensor Rlt and leg-leg ratio tensor Rll are

similarly defined. The notations are illustrated in Fig. 3(c). We use the L1 norm
here so that we can linearize the ratio term by introducing auxiliary variables.

Symmetry Term: The arms and legs are symmetrical parts that usually have
similar appearance. We minimize their histogram difference:

S = Sa �X + Sl � Y, (6)

where Sa and Sl are the symmetry tensors for arms and legs. We have Sa =
[si,j,k], si,j,k = ||Hi−Hj ||, where Hi and Hj are the normalized color histograms
of arm candidate regions i and j. Sl is similarly defined for the legs. When
minimizing the symmetry term, we prefer to select arms and legs with similar
appearance as shown in Fig. 3(d).

The Overall Coverage of Arms and Legs: The above terms do not explicitly
constrain the layout of arms and legs. Without further constraints, the legs and
arms may choose closely overlapping region candidates. Here we control their
overall region coverage so that they should occupy a preferred region size. To
this end, we find a set of “finer” segments so that all the region candidates
can be represented as the union of these small units. In this paper, we use
over-segmented superpixels as the unit regions. Let wn be a variable to indicate
whether unit region n is part of the object region and let W = [wn], n = 1..N ,
where N is the number of unit regions. Let a be the total area of the template
arm and leg regions and A be the vector of the areas of the unit regions, we
minimize

W = |sW �A− a| (7)

Subject to:

wn ≤ 1, wn ≤ Fn �X +Gn � Y, n = 1..N

wn ≥ xi,j,k, ∀f (n)
i,j,k = 1, n = 1..N

wn ≥ yi,j,k, ∀g(n)i,j,k = 1, n = 1..N

where Fn and Gn are 0-1 arm and leg mask tensors for unit region n. We define

Fn = [f
(n)
i,j,k] where f

(n)
i,j,k = 1 if arm candidate region i or region j covers unit

region n; Gn is defined similarly. In such a setting, if an arm or a leg region
covers unit region n, wn = 1 and otherwise wn = 0. Therefore, W � A equals
the total area of the region covered by the arms and legs. The coverage is scaled
by s for scale invariance. Notations are illustrated in Fig. 3(e).
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2.3 Linearization and Branch and Bound

Combining all the terms, we have a complete minimization problem. However,
this optimization is still hard to solve due to huge number of variables and con-
straints. We decompose the optimization into slave linear programs correspond-
ing to each torso candidate. Each of the sub-problems becomes much simpler
and can be quickly solved. For a 3D tensor M whose last dimension is k, we de-
note M (k) as the kth slice of tensor M . For instance, X(k) and Y (k) indicate the
arm and leg assignment given the torso selection k. We use such a notation for
all the matrices including U, V,D, P, S,R, F and G. We also estimate the scale
s by computing the ratio between the model torso area and the area of current
torso candidate k; the scale estimation is denoted as ŝk. The linear optimization
corresponding to torso region k is written as follows:

min{(U (k) + αD(k)
a + βP (k)

a + γS(k)
a )�X(k) + (V (k) + αD

(k)
l + (8)

βP
(k)
l + γS

(k)
l )� Y (k) + tk + η(qaa + qll + qat + qlt) + μ(w+ + w−)}

Subject to:

|X(k)| = 1, |Y (k)| = 1

− qaa ≤ R(k)
aa �X(k) − 1 ≤ qaa, −qll ≤ R

(k)
ll � Y (k) − 1 ≤ qll

− qat ≤ R
(k)
at �X(k) − rat ≤ qat, −qlt ≤ R

(k)
lt � Y (k) − rlt ≤ qlt

ŝkW �A− a = w+ − w−

wn ≤ 1, wn ≤ F (k)
n �X(k) +G(k)

n � Y (k), n = 1..N

wn ≥ xi,j,k, ∀f (n)
i,j,k = 1, n = 1..N

wn ≥ yi,j,k, ∀g(n)i,j,k = 1, n = 1..N

All the variables are non-negative, X and Y are binary.

Here |X(k)| and |Y (k)| denote the summation of all the elements in a matrix. tk
is the unary cost of torso candidate k. The nonnegative auxiliary variables qaa,

qll, qat, qlt equal the absolute value terms |R(k)
aa �X(k) − 1|, |R(k)

ll � Y (k) − 1|,
|R(k)

at �X(k) − rat|, |R(k)
lt � Y (k) − rlt| and w+ +w− equals |ŝkW �A− a|, when

the objective function is minimized. There are K slave mixed integer linear
programs, each of which has K2 arm and leg pairwise variables and N unit
superpixel variables. In this paper K = 100 and and N is around 1000. We
notice that when the torso selection is fixed, the only coupling between the arms
and legs is the region overlapping constraints, which implies that each slave
program can be solved quite efficiently.

We use branch and bound method to obtain the integer solution to each mixed
integer slave program. Each slave program has the format min cu : Du = d,
where u includes the binary X and Y variables, and continuous w, q variables.
We compute the lower bound by solving the relaxed linear program in which
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the binary constraints on X and Y variables are discarded. Any feasible integer
solution provides an upper bound, which can be initialized using the local best
part matching.

New search tree branches are generated on the node with the smallest lower
bound. We introduce integer cuts on the most fractional variable (the variable
closest to 0.5). For the node with the lowest lower bound, a new cut ui = 0 or
ui = 1 where ui is either an X variable or a Y variable is included in the linear
program. We do not have to solve each linear program from scratch, since there
is only one more new constraint included in each branch and cut iteration. By
introducing slack variables, ui = 0 or equivalent ui ≤ 0 becomes ui + vi,0 = 0,
and ui = 1 or equivalent ui ≥ 1 becomes ui − vi,1 = 1 where vi,0 ≥ 0, vi,1 ≥ 0.
ui is a basic variable and its right hand side is a fractional number in the final
simplex tabular. For the ui = 0 branch, we subtract the original ui row from
ui + vi,0 = 0, and for the ui = 1 branch, we subtract ui − vi,1 = 1 from the ui

row. In either case, we turn vi,0 or vi,1 into a basic variable that is not feasible
because it has negative value on the right hand side. The dual-simplex method is
then applied in pivoting and usually it takes very few steps to regain the optimal
solution. We discard the branch whose linear program solution is infeasible or is
greater than the current upper bound. Most of the branches are pruned quickly.

We keep track of the upper bound Bu and lower bound Bl of the solution. Bl

is the lowest lower bound of all the active search tree nodes. Branch and bound
can be terminated prematurely when the tolerance gap δ = 2(Bu−Bl)

(Bu+Bl)
is reached,

and the objective is upper bounded by (δ+2)/(2−δ) times the global minimum.
In this paper, we terminate the iteration when δ ≤ 10−3. After solving each slave
program, the optimal solution of the original problem is the minimum of all the
slave programs.

3 Experiment

An Example: Fig. 4 shows the example of matching a human subject using the
proposed method. In this example, we generate about 1000 candidate regions.
The local matching costs for the torso, leg and arm are shown in Fig. 4(b), (c)
and (d), where brighter color indicates that a region is more likely to be a specific
body part. The unary part cost is computed by matching the normalized inner
distance histograms of the region candidates to those of the template shapes.
Local matching is noisy and as shown in Fig. 4(e) a simple greedy method
that selects the best match for each part does not give satisfactory result. The
proposed method constructs a mixed integer program corresponding to each
torso candidate. Here we keep the top 100 candidates for the torso, arm and
leg. Our optimization yields much better result. The top 5 matching results are
shown in Fig. 4 (f)-(j). The optimal matching accurately localizes the body parts
in this example. The proposed method is also efficient; the optimization takes
less than 10 seconds on a 2.8GHZ machine.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 4. A matching example using the proposed method. (a) Input image. (b), (c) and
(d) show the local matching costs of the candidate regions to the torso, leg and arm
templates (the brighter a segment, the more likely it is a corresponding body part).
(f)-(j) show the top 5 matching results using the proposed method. (red, green and
blue indicate arm, leg and torso regions respectively).

Fig. 5. Object foreground is not always in the region candidates. The odd number
images show the closest region candidates to the object foreground. The proposed
method uses smaller part candidates and is able to match the target reliably, as shown
in the even number images.

Proposal Regions and Object Foreground Segmentation: The region can-
didates from the object independent proposals and successively merged
superpixels are not always able to give the overall human subject foreground.
The sample test images in Fig. 5 are from the 305-image human pose dataset [2].
To make the matching problem more general, we resize the height of each image
to 480 pixels so that the human subjects have different scales, and we rotate each
image by 90 degrees. The best overall body segmentation from region candidates
can be quite far from the ground truth as shown in the odd number images in
Fig. 5. The proposed method is able to localize the target by using smaller part
regions which are much easier to detect as shown in the even number images in
Fig. 5.

Comparison with Competing Methods on Pose Dataset: We further
compare the proposed method with competing methods. We first compare the
proposed method with a greedy method that assigns the lowest cost candidate to
the corresponding body part. The comparison is on the 305-image human pose
dataset [2]. The images are scaled so that the height is 480 pixels. The scale
factor is not determined due to a variety of image sizes in the dataset. Without
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Fig. 6. Sample matching results of the proposed method (row 1), greedy method (row
2), Hough Transform based deformable matching (row 3), a recent people detector [2]
(row 4) and 10-part pictorial structure method with strong part detector [3] (row 5)

loosing generality, we rotate all the images by 90 degrees and we assume that
all the testing methods do not know the rotation angle. Due to the noisy local
matching costs and lack of constraints among body parts, the simple greedy
approach gives poor results. Fig. 6 row 1 shows sample results of the proposed
method, and Fig. 6 row 2 shows the matching results of the greedy method. The
proposed method yields much better results. The quantitative comparison on all
the images in the dataset is shown in Fig. 7. We define the matching score for
a part as |T ∩ G|/|T ∪ G|, where T is the target part region, G is the ground
truth region of the corresponding part, and |.| computes the area of a region. In
this paper, the ground truth regions are obtained from the ground truth joint
labeling and by fitting a bar with suitable width to each body part segment. We
compute the matching scores for the torso, arms and legs. The matching score
is in [0, 1] and the higher the matching score the better the matching; a perfect
matching has the score of 1. The proposed method has much higher matching
scores than the greedy method.

We compare the proposed method with a Hough Transform based method. In
this method, we use a star structure model constrained by the global scale and
rotation. The whole model is thus non-tree. The energy function is the linear
combination of the unary matching cost, the pairwise matching cost, and the
global scale and rotation consistency cost. The pairwise cost enforces the vector
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Fig. 7. Comparison with competing methods on the 305-image pose dataset [2]. Row 1
shows matching score distributions for torso, leg and arm. Row 2 gives average matching
scores of different methods. Higher scores indicate better results.

from the center of one part to the center of its neighbor part to conform to the
model under some unknown rotation and scaling, and it also enforces that the
area ratio of the part pairs follows the model. By quantizing scales and rotations,
the optimization of the deformable matching turns into a sequence of dynamic
programming on each scale and rotation. This matching method is essentially the
extended Hough Transform in which the torso position is voted from all the part
candidates. The final result is the matching with the lowest energy. We choose
a stretch-out pose as the model spatial layout. As shown in Fig. 6 the dynamic
programming (DP) approach gives results worse than the proposed method. The
average matching scores and the matching score distributions shown in Fig. 7
confirm the advantage of the proposed method. The DP matching method is not
able to handle large object articulations and therefore yields poor results for this
dataset.

We compare the proposed method with a recent human detector [2] and a
pictorial structure method using strong part detectors [3]. The method in [2] is
not rotation invariant. We thus rotate each input image from 0 to 360 degrees
with 24 steps, and we select the result with the best matching score. Fig. 6 row
4 shows sample matching results of the people detector. The proposed method
greatly improves the result. Generating the foreground part segmentation by
connecting joint detections of the pictorial structure method [2] and thicken-
ing the lines, we can use the region ratio metric to quantitatively measure the
matching performance. The ratio of line thickening uses the same scheme as the
one in ground truth region generation, i.e., a perfect matching would give a score
of 1 for each part. Fig. 7 compares the matching scores between the proposed
method and [2]. The proposed method has much better performance. Another
pictorial structure method [3] that uses strong local part detectors is further
compared with the proposed method. This method operates on discrete scales
from 1 to 5 with 10 steps and 24 rotation angles. The pictorial structure method
takes about 20 minutes to process each image, while the proposed method takes
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Fig. 8. Sample results of the proposed methods on the human pose dataset [2]. Arm
regions are red, legs are green and torsos are blue. The test images are scaled from 1
to 5 and rotated by 90 degrees. The results are rotated back to the normal position
and rescaled.

about 10 seconds in the optimization (the candidate region generation takes
about 60 seconds per image). The comparison is shown in Fig. 6 and Fig. 7. The
proposed method has much higher detection scores for the torso and legs than
[3] and the arm detection score is comparable with [3]. More sample results of
the proposed methods are shown in Fig. 8.

4 Conclusion

We propose an efficient method to localize human subject in images by matching
body part region proposals. The proposed linearization scheme and branch and
bound approach are able to give global optimal result efficiently. The proposed
method is scale, rotation and articulation invariant. It has a clear advantage
over competing methods when the target human subject has unknown scale and
rotation. The proposed method will be useful for many different applications
including human detection, tracking and action recognition.
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Abstract. In this work we introduce novel image metrics that can be
used with distance-based classifiers or directly to decide whether two in-
put images belong to the same class. While most prior image distances
rely purely on comparisons of low-level features extracted from the in-
puts, our metrics use a large database of labeled photos as auxiliary
data to draw semantic relationships between the two images, beyond
those computable from simple visual features. In a preprocessing stage
our approach derives a semantic image graph from the labeled dataset,
where the nodes are the labeled images and the edges connect pictures
with related labels. The graph can be viewed as modeling a semantic
image manifold, and it enables the use of graph distances to approxi-
mate semantic distances. Thus, we reformulate the task of measuring
the semantic distance between two unlabeled pictures as the problem of
embedding the two input images in the semantic graph. We propose and
evaluate several embedding schemes and graph distance metrics. Our re-
sults on Caltech101, Caltech256 and ImageNet show that our distances
consistently match or outperform the state-of-the-art in this field.

1 Introduction

Psychological studies have shown that humans can easily determine whether two
visual examples belong to the same basic category, even when that class is new
and has never been seen before [1]. This suggests that to address this problem
our brain employs a general semantic distance metric valid across all classes.
In this work we are interested in investigating computational models that can
tackle the same problem: our objective is to design distance functions providing
a measure of whether two input photos belong to the same basic class, regardless
of what that class may be. Image metrics implementing such semantic notions
of similarity promise to enable a wide array of computer vision applications, and
have been used in the past in image retrieval [2,3], object classification [4], as
well as semantic segmentation and annotation of photos [5].

Most prior image metrics rely solely on comparisons of low-level features
extracted from the two input images [2,4,6]. While directly comparing visual
features may be sufficient to assess simple notions of similarity, such as near-
duplicate or object-instance similarity, we argue for the need of auxiliary labeled
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data to provide accurate estimates of semantic relatedness and membership to
the same object class. In a sense, our proposed use of this background knowl-
edge is akin to the way children exploit past observations of many examples of
different classes in order to learn to recognize instances of a new category [7].

At a high-level, our approach operates as follows. During an offline prepro-
cessing stage, our method uses the auxiliary dataset of images with class labels
to compute an image graph. The nodes of the graph are the labeled pictures and
the edges link images that are semantically similar, as determined by the class
labels. The shortest path distance between two nodes of the graph can then be
viewed as a measure of their semantic relatedness. The shortest path distances
are approximations of the geodesic distances of the unknown semantic manifold
of images. This idea has been previously used for many tasks including dimen-
sionality reduction [8], and semi-supervised learning [9]. While the graph per
se provides estimates of semantic distance only for the labeled image nodes, we
propose to extend its use also for unlabeled pictures, by embedding these photos
in the graph. For each unlabeled input photo, this requires first determining its
position in the graph, using only visual features. Once the input is embedded in
the graph, we can compute its semantic distance to all the other pictures in the
graph. Similarly, given two unlabeled images, we can embed them both in the
graph in order to measure their semantic distance.

In this paper we propose several schemes to embed unlabeled pictures in the
semantic graph. Our methods perform the embedding by using a visual distance
(i.e., a metric based on low-level image features) to compare the input photo to
the images in the graph. While this may appear to defeat the purpose of side-
stepping visual distances to measure semantic relationships between images, we
argue that our embedding task is far easier than the problem of directly com-
puting semantic distances from low-level descriptors, for the following reasons:

1. Embedding the input images requires only selecting the most semantically-
related photos. As shown by studies in human perception [10] and in com-
puter vision [11], the most semantically similar pictures to a given input
photo tend to be those most visually similar to it. Thus, these images are
easy to identify even with distances based on low-level image descriptors.

2. We can simplify the task by using a large-scale database of labeled photos.
It has been shown [12] that making the database larger will increase the
probability that the top images retrieved according to a visual metric will
also be semantically close to the input image, even when using simple low-
level features to calculate visual distances. We exploit this property by using
a database of 10M images (the ImageNet dataset [13]) to build our graph.

3. It is possible to exploit the structure of the graph to improve the embedding
results: while the visual distances are brittle and may produce a set of can-
didate nodes including some outliers (i.e., images not semantically related
to the input photo), this candidate set can then be refined (or denoised)
to identify related nodes that lie close to each other in the graph. In other
words, it is possible to enforce coherence of labels among the selected nodes
to make the embedding more accurate and robust.
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2 Related Work

Most object categorization systems require some form of similarity function to
compare examples, such as the distance metric used by the nearest neighbor
(NN) classifier or the kernels in SVMs. Most recent approaches to defining image
metrics are based on learning methods which train the distance function using
a set of labeled examples, typically consisting of images annotated with class
labels. This problem is often referred to as metric learning. Within the wide
range of proposed approaches in this area we can identify two main categories:
techniques to learn “global” metrics versus methods computing “local” distances.

Algorithms in the former category operate by learning a single parametric
transformation mapping the inputs to a new target space, such that a predefined
metric (most typically the Euclidean distance) in this space satisfies certain
desired properties [14,15]. Similarly to these approaches, our method uses labeled
examples to map images to a new target space – in our case, the semantic graph.
However, rather than computing a parametric transformation and employing
a predefined distance in the target space, our method uses the examples non-
parametrically both to compute the mapping and also to define a distance metric
expressed in terms of the entire labeled set.

The second strand of related work involves methods to compute “local” dis-
tances, i.e., metrics that vary across the space of examples (see [6] for a com-
prehensive survey). A simple form of local distance is one that changes for each
individual training example [2,4]. Alternatively, a local distance can be learned
for each category to recognize [16] or by grouping together classes that can share
effectively the same metric [17]. Our approach can be viewed also as implement-
ing a local metric, since the semantic graph can be complex and anisotropic: our
distance will vary depending on the embedding point of the test example. In a
sense, our metric is closely related to algorithms that learn a different metric
for each test example by using as training points its closest neighbors [18,19].
However, unlike these prior systems, we exploit label information associated to
the training examples, so as to suppress the effect of outliers present in the vi-
sual neighbors and to obtain a distance that is optimized for class recognition.
Furthermore, while prior local metrics have been trained for a predefined set of
classes (with the only exception of [17] which demonstrates good generalization
to novel classes), our aim is to define a general distance that can be used to
compare images of arbitrary classes, even categories not present in the labeled
graph. Indeed, nearly all our experiments are carried out with this setup.

Our approach is inspired by the recent work of Deselaers and Ferrari [11],
who have also proposed to compute image distances through comparisons to an
auxiliary labeled dataset. They named their metric the “ImageNet distance”, as
it relies on the ImageNet database to infer the semantic relation between the
input photos. For each input image, their method computes the distribution of
class labels associated to its ImageNet neighbors; the distance between two input
images is then calculated by comparing their class-label histograms. A related
idea is presented in [3] where the distance between two images is computed by
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comparing their membership probabilities to a set of 103 Flickr groups, estimated
using a set of SVM classifiers.

As in [11], we also exploit ImageNet as the auxiliary source of labeled images.
However, we argue that our graph-based representation of this data provides sev-
eral advantages over the system of [11]. First, it enables semantic filtering: while
the ImageNet distance uses the labels of visual neighbors to measure similarity
between two images, our embedding methods exploit the graph structure to find
target nodes that are not only visually similar to the input but also semantically
coherent. In our experiments we demonstrate that this refinement improves the
results. Furthermore, the graph allows us to measure indirect semantic relations:
while the ImageNet distance measures the number of exactly matching class la-
bels between the two neighbor sets, the graph allows us to take into account
indirect semantic relations between the neighbors, even when their class labels
do not match exactly.

3 Approach Overview

Our approach consists of an offline preprocessing stage, during which the seman-
tic graph is built from a dataset of labeled images, and a test stage in which the
graph is used to measure the distance between any two new unlabeled images.

Let us denote with D = {(x1, y1), . . . , (xN , yN )} the labeled dataset of N
images that we use to build the semantic graph, where xi is the descriptor of
the i-th image in the database and yi is a label indicating the category of the
object present in the i-th image. While our approach can be used with any
arbitrary image descriptor, our experiments use two different feature vectors:
the first is the GIST descriptor [20], which is a low-level image representation
capturing the spatial layout in the picture; the second is the “classeme” feature
vector [21], which is a higher-level descriptor containing the output of 2659
predefined classifiers evaluated on the image. We chose these two descriptors
for several reasons: they are compact in size and thus well suited to large-scale
databases; both descriptors have been shown to capture categorical information;
finally, they allow us to understand the pros and cons of using a low-level as
opposed to a high-level representation with our approach.

The final goal of our system is to compute the distance between any two
unlabeled images x,x′. While sections 4,5 describe formally the method, here
we explain the intuition behind the two stages of our approach, schematically
illustrated in figure 1.

Offline Stage: Construction of the Semantic Graph. The aim of this stage
is to reorganize the auxiliary dataset D in the form of a graph. The nodes in the
graph represent the labeled images and the edges link pictures that are detected
to be highly similar, both visually as well semantically. The semantic relation
between the labeled images is determined by comparing their annotations, while
their visual similarity is computed using image-content features. The edges in
the graph are supplemented with weights, corresponding to the visual distance
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Step 2: refine visual neighbors by 
           enforcing semantic coherence

Embedding an unlabeled test image:

Step 1: find visual neighborsLink labeled images that are 
both visually and semantically similar

Offline Preprocessing:
Semantic Graph Construction

Fig. 1. Conceptual illustration of our embedding method. During an offline stage a
semantic image graph is constructed using a labeled database: links are created between
images that satisfy the joint conditions of being visually close and having related class
labels. At test time, the unlabeled photo is embedded in the graph via a two-step
process: first, visual neighbors are found; then, the position of the test images in the
graph is computed by finding visual neighbors that are semantically coherent.

between the two nodes connected by the edge. The high-level idea is that for
images that are closely related, the visual distance provides a reliable estimate
of their similarity. For two images that are not directly linked via an edge, their
similarity can be measured through their shortest connecting path within the
graph. Thus, the graph embodies a form of semantic manifold where geodesics
provide measures of semantic relatedness between images.

Test Time: Embedding Unlabeled Images in the Graph. The semantic
distance between two unlabeled images is computed by embedding indepen-
dently both images in the graph so as to measure their distance in the semantic
manifold. As illustrated in figure 1, this is done via the following two steps:

– Step 1: find visual neighbors in the graph. For each of the two input examples,
the m closest database images are found according to the visual distance.

– Step 2: embed the points by enforcing semantic coherence. While the initial
selection of the m candidate nodes ensures that these images are visually
similar to the input, in this step we impose semantic coherence among these
nodes to compute the final positions of the inputs in the graph.

After embedding, the distance between the inputs is calculated by comparing
their positions inside the semantic graph.

4 Semantic Graph Construction

As previously discussed, we construct our semantic graph from the large-scale
ImageNet dataset [13], which consists of roughly 10M images encompassing over
15000 categories. The ImageNet categories are structured according to the se-
mantic hierarchy of WordNet [22]: each class is described by a set of synonyms,
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called a synset, and the children of a synset represent more specialized synsets of
that visual category (e.g., the children of synset “plant” are “tree”, “flower” and
“vegetable”). For each synset, on average, the dataset includes 632 manually-
validated images illustrating that visual concept.

We exploit the hierarchy of ImageNet to build the semantic graph, as discussed
below. In order to maintain the computational and storage costs manageable in
spite of the large database size, we propose to construct a sparse graph, where
each image is connected only to a small number of other photos.

For each database image xi, we define Si to be the set of synsets comprising the
synset of xi and the children of the synsets of xi. We refer to Si as the “extended
synset” of xi. Then, the graph is constructed by creating an undirected edge
between each image xi and its k-closest neighbors within its extended synset
Si, computed using the L2 distance between image descriptors. To each edge
connecting node i to node j, we associate weight wij ≡ ||xi−xj ||. Note that this
strategy achieves two fundamental goals: on one hand, by linking each image only
to nodes within its extended synset we establish semantically-consistent edges;
on the other hand, by letting edges to be created across the original WordNet
synsets, we avoid ending up with a myriad of disconnected graph components.

One issue, however, is that the root node in the ImageNet hierarchy has no
associated images. This would cause the subtrees of the top-layer synsets to
be disconnected components in the graph. To avoid this problem, we establish
edges between the image pairs with the 1000 smallest visual distances among
all pictures in the top synsets. After this operation, 99.36% of all images belong
to the largest connected component of the graph. Thus, we simply discard the
images outside the largest component, since this is a tiny subset of the database.

5 Embedding Unlabeled Images in the Graph

We now present different strategies to embed an unlabeled image x in the graph.
The initial step for all methods involves selecting a set of candidate neighbors in
the graph using the visual distance: we indicate with R ⊂ {1, . . . , N} the indices
of the m-nearest neighbors of x in the graph, computed according to the L2
distance between image descriptors. In practice, the set R will include images
semantically related to x but also some outliers. The methods described below
enforce semantic coherence to improve the embedding.

Semantic Energy Optimization (SEO). This embedding method operates
by connecting the input to a subset of n nodes T , which we name the target
nodes. The subset T is chosen from the set of visual neighbors R by imposing
semantic coherence via an energy optimization approach. While the parameter n
could be set a-priori to be equal to k, in practice we found beneficial to tune n via
cross validation. We represent the subset T ⊂ R by introducing binary variables
zi ∈ {0, 1} for the nodes i ∈ R: we use zi = 1 to indicate that i ∈ T (i.e., the node
is selected as a target node), while zi = 0 denotes that i �∈ T . We indicate with
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z the |R|-dimensional binary-valued vector obtained by concatenating these bi-
nary variables, i.e., z = (zi | i ∈ R). An intuitive idea is to determine the subset
T by minimizing the following energy function:

E(z) =
∑

i∈R
θizi + λ

∑

i,j∈R
θijzizj (1)

subject to constraint
∑

i∈R zi = n, where

θi = ||x− xi|| (2)

θij =

{
dSPD(xi,xj) if dSPD(xi,xj) < τ

τ otherwise
(3)

with dSPD(xi,xj) denoting the shortest path distance in the semantic graph
between xi and xj . Intuitively, the unary terms of eq. 1 encode our preference for
choosing nodes that are visually similar to x, while the pairwise terms encourage
selection of neighbors that are close to each other in the semantic graph. The
threshold τ is used to avoid penalizing excessively selection of nodes that are
far apart in the graph: this makes the model more robust to outliers. It can
be shown that the constrained discrete optimization defined by eq. 1 is NP-
hard in general [23]. Nevertheless, we have tried to minimize this energy by
reformulating the optimization as a mixed integer program (MIP) expressed in
term of auxiliary variables tij ∈ [0, 1] bounding the pairwise interactions zizj via
constraints tij ≤ zi, tij ≤ zj, tij ≥ zi + zj − 1 for all i, j ∈ R. We obtained good
optimization results by minimizing the resulting MIP with the state-of-the-art
Gurobi solver [24], which in practice globally optimizes 26% of our problems.

However, even when the optimal T could be found, the resulting embedding
did not perform well in our tests. Through experimental investigation, we dis-
covered that the energy model of eq. 1 is simply too strict as it wants all target
neighbors to be close to each other. In practice, for many images this is an un-
reasonable assumption. Consider for example the photo of a group of children
playing soccer in the street: the picture should be linked to nodes of synset “soc-
cer, association football” but possibly also to nodes of synset “city, metropolis,
urban center”. Based on this observation we designed a “softer” version of our
semantic energy that forces each selected node to be close to at least l other
target nodes, where l < n. In other words, we encourage each selected neighbor
to be near a few other target nodes, but not necessarily to all nodes in T . This
soft constraint is implemented by optimizing the following energy:

E(z, t) =
∑

i∈R
θizi + λ

∑

i,j∈R
θijtij (4)

subject to
∑

i∈R zi = n, and to constraints:

zi ∈ {0, 1}, tij ∈ {0, 1}, tij ≤ zi, tij ≤ zj ∀i, j ∈ R (5)
∑

j∈R
tij ≥ lzi ∀i ∈ R (6)
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where θi, θij are defined as above. These constraints ensure that for each target
node i, only the l smallest pairwise terms θij between i and other selected nodes
are included in the objective. We found that this optimization is also much easier
to solve: the Gurobi solver was able to globally optimize all of our test cases. We
refer to minimization of eq. 4 as Semantic Energy Optimization (SEO).

Random Walk (RW). The high-level idea of this embedding method is to find
the nodes that are most likely to be reached by a Markov random walk [25] inside
the graph starting from the initial candidate nodes R. We use random walks to
denoise the initial set R by finding nodes that are “close” to the majority of
these initial vertices, while suppressing the effect of the outliers in R. In order to
perform the random walk, for each graph edge linking i to j we define the one-
step transition probability from i to j in terms of the weights wij (we remind
the reader that the weights wij are the visual distances computed during the
graph construction). Specifically, for each edge (i, j) we define the probability of
transitioning from node i at time t to node j at time t+ 1 to be

Pt+1|t(j|i) =
1/wij∑
k 1/wik

(7)

so that the probabilities out of node i sum up to 1 (this probability is set to 0
for nodes not directly connected by an edge). Note that for nodes linked by an
edge Pt+1|t(j|i) is inversely proportional to the visual distance between xi and
xj . This implies that at each time the walk is likely to progress into a node that
is highly similar to the current one. The random walk is initiated from a starting
distribution q ∈ R

N computed from the candidate nodes R as follows:

qi =

{
1/||x−xi||∑

k∈R 1/||x−xk|| if i ∈ R
0 otherwise

(8)

If we store the one-step probabilities into a matrix A whose (i, j)-th entry is set
equal to Pt+1|t(j|i), then we can calculate the distribution r of nodes reached
from q after t steps of random walk as rT = qTAt. This can be more efficiently
calculated by means of t matrix-vector products, i.e., r = (((qTA)A) . . . A). The
resulting vector r can be shown [26] to measure the “volume” of paths leading
to the individual nodes in the graph from the initial configuration q. Intuitively,
the random walk will tend to suppress paths originating from outlier nodes in R,
while paths starting from nearby nodes in R will tend to reinforce each other.

In principle, we could select as target nodes T the vertices that correspond to
the n largest entries in r, i.e., the ones that are more likely to be reached from
the initial configuration. However, we found this strategy to produce relatively
poor results. Instead we have had more success by directly using the random
walk probabilities ri to calculate semantic distances as follows. Let r and r′

be the node distributions obtained via t steps of random walk for two input
images x and x′. Note that r can be viewed as a new semantic representation
for image x, encoding the relation of the image to the entire graph. Based on
this intuition, we define the random walk distance to be dRW (x,x′) = dχ

2

(r, r′),
which measures the χ2 distance between the two images in this semantic space.
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6 Discussion of Computational Costs

In this section we discuss the computational costs of our approach and possible
strategies to reduce them. We factor out from this discussion the creation of the
graph, since this is done only once during an offline stage and it can be reused
for all inputs, regardless of their class. The graph is represented as a sparse
matrix which occupies little space in memory. At test time the most expensive
operation is computing the visual distances from the input to all nodes. Without
any optimization, this operation takes about 2 minutes per input. However, this
runtime can be greatly reduced by adopting efficient NN search methods: for
example, the system in [27] runs in a couple of seconds on a database of 10M
images by using product quantization on classeme vectors to speed up the search
with little loss in accuracy. The RW embedding takes on average 99 seconds per
input when using t = 25 steps, but also this operation could be made much
faster by reformulating the walk in terms of powers of eigenvectors of the matrix
A, as discussed in [25]. The SEO optimization on average runs in 48 seconds per
example on a standard budget PC using m = 400, n = 100, l = 4.

7 Experiments

We now describe experimental evaluations of our distance metrics on the follow-
ing datasets: Caltech101, Caltech256 [28] and the ILSVRC2010 database [29].
Unless otherwise noted, all results are based on a graph constructed from the
10M ImageNet dataset using connectivity k = 10 (see [30] for our study of the
sensitivity to the size of the auxiliary dataset N and the graph connectivity k).

7.1 Evaluation of Metrics for “Same or Different Class” Recognition

We begin by presenting results on the Caltech101 dataset. While this image
database is known to be simple for the recognition standards of modern cate-
gorization systems, it was the dataset used in [11] to compare different image
metrics. We follow the experimental setup used in [11]: we use the same set of
1020 photos (10 samples for each of the 102 classes); the set is split in two sub-
sets of 51 classes; each subset is used in turn as training and testing set, so as
to tune the parameters with two-fold cross validation. The final result is pre-
sented as the average cross-validation error. In each cross validation set, there
are 129,795 distinct image pairs: in 2295 of these pairs the two images contain
an object of the same class, while in the remaining pairs the two images belong
to different category. In this experiment the value of distance is directly used to
make a classification decision on whether the two samples contain the same ob-
ject. As in [11], the result is presented in terms of Area Under the Curve (AUC)
computed from the ROC curve.

We consider in our evaluation our two proposed embedding methods – SEO
and RW. In addition, we include the simple embedding obtained by connecting
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Fig. 2. Performance of distance metrics on Caltech101 using (a) GIST and (b) classeme
features. Our metrics based on embedding in the graph are: NNE, SEO, RW. The
ImageNet metrics proposed in [11] are CH and JC. The visual distances are L2 (the
Euclidean metric) and LMNN (learned using the method of [16]).

each test image to its n closest visual neighbors in the graph, and denote this em-
bedding method as Nearest-Neighbor Embedding (NNE). For NNE and SEO,
the final semantic distance is computed as the shortest path distance between
the two embedded nodes. As discussed in section 5, for the RW embedding we
compute the semantic metric as the χ2 distance between the random walk prob-
ability vectors. In addition to these metrics, we include the two distances pro-
posed in [11]: CH is the ”ImageNet” category histogram metric, while JC is the
distance inspired by the Jiang-Conrath semantic similarity [31]. All parameters
were optimized individually for each method by considering the following values:
m ∈ {100, 200, 400, 800}, n ∈ {5, 10, 100, 200}, l ∈ {1, 2, 4, 6}. We also present re-
sults for two baseline metrics that do not use the auxiliary ImageNet database:
L2 denotes the L2 distance between the feature vectors of the two input images;
LMNN indicates the distance learned using the large-margin nearest-neighbor
approach described in [16]. Even for LMNN, we trained and tested the metric
by using two-fold cross validation (i.e, the training and test sets involve two sets
of disjoint classes), with 10 samples per class. To train this metric we used the
software provided by the authors and as recommended in the manual we pre-
processed the feature vectors via PCA, tuning the PCA target dimensionality
for the best possible accuracy.

The performances of the different metrics are shown in figure 2. We can see
that SEO, RW and CH perform considerably better than the visual distances
(L2 and LMNN), with RW and CH nearly tied as the best metrics. The use of
the auxiliary labeled data enables these distances to infer additional semantic
connections yielding large improvements over LMNN, which has been previ-
ously shown to be one of the best metric learning methods (see, e.g., evaluations
in [16,6,11]). It is also interesting to notice that both SEO and RW perform much
better than the näıve NNE strategy which directly links the test images to their
visual neighbors: this suggests that the semantic coherence enforced by SEO and
RW produces a beneficial refinement of the initial set of visual neighbors.
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Fig. 3. Caltech256 multiclass recognition using a NN classifier based on different image
metrics using (a) GIST and (b) classeme descriptors. Our RW metric gives consistently
the best results: it even outperforms the LMNN metric, which in this experiment has
been advantageously trained on the test categories.

7.2 Using Semantic Distances for Multiclass Object Categorization

In this section we demonstrate the use of semantic distances to perform multi-
class object recognition using two different classification models – the NN clas-
sifier and a SVM trained with kernels defined by our metrics.

Nearest-Neighbor Classification with Semantic Metrics. We begin by
presenting an evaluation on the Caltech256 dataset. The test set was obtained
by sampling 10 images from each of the 256 classes. The training set size is
varied from a minimum of 1 to a maximum of 20 examples per class. We use the
NN classifier to perform multiclass recognition as follows: for each test image, we
compute its distance to the training examples of all 256 classes and then pick the
class most voted among theK nearest neighbors, whereK is an integer optimized
individually for each distance metric. Note that the embedding of the training
images in the graph is done without exploiting the textual tags of the Caltech256
classes. We report the NN classification accuracy obtained with the RW, SEO,
CH, L2 and LMNN metrics (we omit NNE and JC as they produce much poorer
results). Here the LMNN metric was learned from a separate training set of
10 images for each of the 256 classes: thus the LMNN method here is given
the significant advantage of training on the test classes. Figure 3 shows the
recognition accuracy as a function of the number of training examples for (a)
GIST and (b) classeme features. We see that on this task RW outperforms all
distances, including CH as well as the LMNN metric trained in highly favorable
conditions. The SEO metric performs better than the L2 distance but not as
well as the RW and CH metrics.

We now describe NN multiclass recognition on a subset of the ILSVRC2010
dataset. This is a difficult test: the ILSVRC2010 images are more challenging
than those in the Caltech sets as they often contain multiple objects, and exhibit
a much wider within-class variance. However, the downside of this test is that the
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ILSVRC2010 classes are present as synsets in the ImageNet dataset (although
the two sets of images are, of course, disjoint). This means that the test categories
are also included in the manifold. For this experiment, we sample 5 images from
500 randomly selected categories. We then partition the dataset into 5 subsets,
each containing one example of each class. We use this partition to evaluate
the 5-fold cross validation error of the NN classifier using different metrics. The
recognition accuracies using classeme features are 6.04%,5.08%,2.92% for RW,
CH, and L2, respectively. Note that while the absolute accuracy rates are low due
to the small number of training examples per class (only 4 for each validation run)
and the large number of classes, the RW metric provides a relative improvement
of 18% over the accuracy obtained using the state-of-the-art CH distance.

Nonlinear SVM Classification with Semantic Kernels. We conclude by
presenting experiments demonstrating that our metrics can be used to construct
powerful kernels for nonlinear Support Vector Machines (SVM). We compare
kernels built from our distances to popular hand-defined kernels for categoriza-
tion and show that in all cases our RW metric provides superior results.

Most kernels for SVMs are defined so that the kernel distance is close to 1
when the input vectors are similar and near to 0 when the inputs are highly
different. In order to achieve this desired behavior with our metrics, we apply
the “exp” function to the negative values of the distances, i.e., we define the
kernel as k(x,x′) = exp(−d(x,x′)/γ), where d is the semantic distance and γ
is a hyperparameter. We denote with expRW, expSEO, and expCH the kernels
built by using as distance d the metrics RW, SEO and CH, respectively. Note
that expRW and expCH are obtained by applying the exponential function to
negative χ2-distances, which always yields a Mercer kernel [32]. Instead, expSEO
may produce a kernel matrix that is not Mercer. When this happens, we follow
the common practice of thresholding the negative eigenvalues of the distance
matrix to zero in order to yield a proper kernel matrix [33]. Finally, we include
as baselines the exponential kernel (expL2) and the Gaussian kernel (Gaussian),
both built by applying the exponential function to distances between visual
descriptors: kexpL2(x,x′) = exp(−||x−x′||/γ) and kGaussian(x,x′) = exp(−||x−
x′||2/γ). These two kernels are commonly used for image classification.

We evaluate this set of kernels on the Caltech256 dataset, using 15 training
examples per class. With the Gram matrix of each kernel, we train a nonlinear
one-vs-the-rest SVM by optimizing the dual objective. The SVM regularization
parameter C and the kernel hyperparameter γ are selected individually for each
method via 5-fold cross validation. We evaluate the resulting SVMs on a test
set of 10 images per class as in the previous subsection. We include in this
comparison also the dot-product kernel klinear(x,x′) = xTx′, which produces a
linear SVM. The results are shown in fig. 4 for both (a) GIST and (b) classeme
features. From this plot we see that the kernels defined by our RW distance
yield much higher accuracy than the traditional hand-defined nonlinear kernels
considered here. As in all our previous experiments, even in this evaluation our
RW metric matches or outperforms the CH distance proposed in [11].
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Fig. 4. Caltech256 performance of nonlinear SVMs trained with different kernels using
(a) GIST and (b) classeme features: expRW and expSEO denote kernels constructed
from our RW and SEO distances; expCH is the kernel induced by the CH distance
of Deselaers and Ferrari [11]; exp-L2 and Gaussian are the exponential and Gaussian
kernels computed from the L2 visual distances; linear indicates the linear SVM learned
using the dot-product kernel. The training set consists of 15 examples per class.

8 Conclusions

We have presented new image metrics for categorization. Our distances are com-
puted by embedding the photos in a semantic image manifold. This allows our
methods to infer semantic relations that cannot be captured by directly com-
paring the two input images. We have shown that this yields results matching
or outperforming the state-of-the-art on three different datasets. Our current
embedding methods require calculating distances to all nodes in the graph. To
reduce this cost in the future we are interested in learning parametric embedding
models. Our graphs and image embedding software may be obtained from [30].
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Abstract. Motivated by vision tasks such as robust face and object
recognition, we consider the following general problem: given a collec-
tion of low-dimensional linear subspaces in a high-dimensional ambient
(image) space, and a query point (image), efficiently determine the near-
est subspace to the query in �1 distance. We show in theory this problem
can be solved with a simple two-stage algorithm: (1) random Cauchy pro-
jection of query and subspaces into low-dimensional spaces followed by
efficient distance evaluation (�1 regression); (2) getting back to the high-
dimensional space with very few candidates and performing exhaustive
search. We present preliminary experiments on robust face recognition
to corroborate our theory.

Keywords: �1 point-to-subspace distance, nearest subspace search, Cauchy
projection, face recognition, subspace modeling.

1 Introduction

Although visual data reside in very high-dimensional spaces, they often exhibit
much lower-dimensional intrinsic structure. Modeling and exploiting this low-
dimensional structure is a central goal in computer vision, with impact on ap-
plications from low-level tasks such as signal acquistion and denoising to higher-
level tasks such as object detection and recognition.

In face and object recognition alone, many popular, effective techniques can be
viewed as searching for the low-dimensional model which best matches the query
(test) image. To each object O of interest, we may associate a low-dimensional
subset M ⊂ RD, which approximates the set of images of O that can be gen-
erated under different physical conditions – say, varying pose or illumination.
Given n objects Oi, the recognition problem becomes one of finding the nearest
low-dimensional structure: mini d(q,Mi), where q ∈ RD is the test image, and
d(·, ·) is some metric.

This paradigm is broad enough to encompass very classical work in face recog-
nition [1] and object instance recognition [2], as well as more recent developments
[3,4,5]. In situations in which sufficient training data is available to accurately fit
the Mi, it can achieve high recognition rates [6]. In applying it to a particular
scenario, however, at least three critical questions must be answered:

A. Fitzgibbon et al. (Eds.): ECCV 2012, Part IV, LNCS 7575, pp. 416–429, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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First, what is the most appropriate class of low-dimensional models Mi? The
proper class of models may depend on the properties of the object O, as well as
the types of nusiance variations that may be encountered. For example, varia-
tions in illumination may be well-captured using low-dimensional linear models
[7,8], whereas variations in pose or alignment are highly nonlinear [9].

Second, how should we measure the distance between q and Mi? Typically,
one adopts a metric d(·, ·) on RD, and then sets d(q,Mi) = minv∈Mi d(q,v).
Here, again, the appropriate choice metric d depends on our prior knowledge.
For example, if the observation q is known to be perturbed by i.i.d. Gaussian
noise, minimizing the �2 norm d(q,v) = ‖q− v‖2 yields a maximum likelihood
estimator. However, in practice other norms may be more appropriate: for ex-
ample, in situations where the data may have errors due to occlusions, shadows,
specularities, the �1 norm is a more robust alternative [5].

Finally, given an appropriate model and error distance, how can we efficiently
determine the nearest model to a given input query? That is to say, we would
like to solve

min
i

min
v∈Mi

d(q,v) (1)

using computational resources that depend as gracefully as possible on the am-
bient dimension D (typically number of pixels in the image) and the number of
models n. In practical applications, both of these quantities could be very large.

This paper. In this paper, we consider the case when the low-dimensional models
Mi are linear subspaces. As mentioned above, subspace models are well-justified
for modeling illumination variations [7,8] (say, in near-frontal face recognition),
and also form a basic building block for modeling and computing with more
general, nonlinear sets [10,11].

Our methodology pertains to distances d(q,v) induced by the �p norm ‖q−
v‖p, with p ∈ (0, 2]. We focus here on the �1 norm, ‖q − v‖1 =

∑
i |qi − vi|.

The �1 norm is a natural and well-justified choice when the test image contains
pixels that do not fit the model – say, due to moderate occlusion, cast shadows,
or specularities [5]. For p ∈ (0, 2], the �p norm with p = 1 strikes a unique
compromise between computational tractability (convexity) and robustness to
gross errors.

With this choice of models and distance, at recognition time we are left with
the following computational task:

Problem 1. Given n linear subspaces S1, . . . ,Sn of RD of dimension r and a
query point q ∈ RD, determine the nearest Si to q in �1 norm.

This problem has a straightforward solution: solve a sequence of n �1 regression
problems:

min
v∈Si

‖q− v‖1, (2)

and choose the i with the smallest optimal objective value. The total cost is
O(n ·T�1(D, r)), where T�1(D, r) is the time required to solve the linear program
(2). For example, for interior point methods [12], we have T�1(D, r) = O(D3.5).
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There exist more scalable first-order methods [13,14,15,16], which improve on
the dependence on D at the expense of higher iteration complexity. The best
known complexity guarantees for each of these methods are again superlinear in
D, although linear runtimes may be achievable when the residual q− v� is very
sparse [17] or the problem is otherwise well-structured [18]. Even in the best case,
however, the aforementioned algorithms have complexity Ω(nD).1 When both
terms are large, this dependence is prohibitive: Although Problem 1 is simple to
state and easy to solve in polynomial time, achieving real-time performance or
scaling massive databases of objects appears to require a more careful study.

In this paper, we present a very simple, practical approach to Problem 1,
with much improved computational complexity, and reasonably strong theoreti-
cal guarantees. Rather than working directly in the high-dimensional space RD,
we randomly embed the query q and subspaces Si into Rd, with d � D. The
random embedding is given by a d×D matrix P whose entries are iid standard
Cauchy random variables. That is to say, instead of solving (2), we solve

min
v∈Si

‖Pq−Pv‖1. (3)

We prove that if the embedded dimension d is sufficiently large – say d =
poly(r logn), then with constant probability the model Si obtained from (3)
is the same as the one obtained from the original optimization (2).

The required dimension d does not depend in any way on the ambient dimen-
sion D, and is often significantly smaller: e.g., d = 25 vs. D = 32, 000 for one
typical example of face recognition. The resulting (small) �1 regression problems
can be solved very efficiently using customized interior point solvers (e.g., [19]).
These methods are numerically reliable, and can yield a speedup of several orders
of magnitude over the naive approach (2).

The price paid for this improved computational profile is a small increase in
the probability of failure of the recognition algorithm, due to the use of a ran-
domized embedding. Our theory quantifies how large d needs to be to render
this probability of error under control. Repeated trials with independent projec-
tions P can then be used to make the probability of failure as small as desired.
Because �1 regression is so much cheaper in the low-dimensional space Rd, these
repeated trials are affordable.

The end result is a simple, practical algorithm that guarantees to maintain
the good properties of �1 regression, with substantially improved computational
complexity. We demonstrate this on model problems in subspace-based face and
digit recognition (in supplementary material). In addition to improved com-
plexity in theory, we observe remarkable improvements on real data examples,
suggesting that point-to-subspace query in �1 could become a practical strategy
(or basic building block) for face and object recognition tasks involving large
databases, or small databases and hard time constraints.

1 On a more technical level, when the Si are fit to sample data, the aforementioned
first-order methods may require tuning for optimal performance.
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Relationship to existing work. Problem 1 is an example of a subspace search
problem. For 0-dimensional affine subspaces in �2 (i.e., points), this problem
coincides with the nearest neighbor problem. Its approximate version can be
solved in time sublinear in n, the number of points, using randomized techniques
such as locality sensitive hashing [20]. When the dimension r is larger than
zero, the problem becomes significantly more challenging. For the case of r = 1,
sublinear time algorithms exist, although they are more complicated [21].

Recently two groups have proposed approaches to tackling larger r. Basri
et. al. [22] lift subspaces into a higher dimensional vector space (identifying
the subspace with its D × D orthoprojector) and then apply point-based near
neighbor search. Jain et. al. give several random hash functions for the case
when the Si are hyperplanes [23]. Both of these approaches pertain to �2 only.
Both perform well on numerical examples, but have limitations in theory, as
neither is known to yield an algorithm with provably sublinear complexity for
all inputs. Results in theoretical computer science suggest that these limitations
may be intrinsic to the problem: a sublinear time algorithm for approximate
nearest hyperplane search would refute the strong version of the “exponential
time hypothesis”, which conjectures that general boolean satisfiability problems
cannot be solved in time O(2cn) for any c < 1 [24].

The above algorithms exploit special properties of the �2 version of Problem
1, and do not apply to its �1 variant. However, the �1 variant retains the afore-
mentioned difficulties, suggesting that an algorithm for �1 near subspace search
with sublinear dependence on n is unlikely as well.2 This motivates us to focus
on ameliorating the dependence onD. Our approach is very simple and very nat-
ural: Cauchy projections are chosen because the Cauchy is the unique 1-stable
distribution, a property which has been widely exploited in previous algorithmic
work [20,26,27].

However, on a technical level, it is not obvious that Cauchy embedding should
succeed for this problem. The Cauchy is a heavy tailed distribution, and because
of this it does not yield embeddings that very tightly preserve distances between
points, as in the Johnson-Lindenstrauss lemma. In fact, for �1, there exist lower
bounds showing that certain point sets in �1 cannot be embedded in signifi-
cantly lower-dimensional spaces without incurring non-negligble distortion [28].
For a single subspace, embedding results exist – most notably due to Soehler
and Woodruff [27], but the distortion incurred is so large as to render them
inapplicable to Problem 1. Nevertheless, several elegant technical ideas in the
proof of [27] turn out to be useful for analyzing Problem 1 as well.

The problem studied here is also related to recent work on sparse modeling
and sparse error correction. Indeed, one of the strongest technical motivations
for using the �1 norm is its provable good performance in sparse error correction
[29,30]. These results give conditions under which it is possible to recover a vector
x from grossly corrupted observations q = v + e, with v ∈ S and the sparse
error e unknown. These results are quite strong: they imply exact recovery, even

2 Although it could be possible if we are willing to accept time and space complexity
exponential in r or D, ala [25].
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if the error e has nonnegligible fractions of nonzero entries, of arbitrary size. For
example, [29] proves that under technical conditions, �1 minimization

min ‖e‖1 s.t. q− e ∈ S (4)

exactly recovers e. [30] presents similar theory for the case when S is union of
subspaces solved by a variant of optimization in (4).

On the other hand, exact recovery may be stronger than what is needed for
recognition. For recognition, as formulated in this work, we only need to know
which subspace minimizes the distance d(q,Si) – we do not need to precisely
estimate the difference vector itself. The distinction is important: while [5] shows
that significant dimensionality reduction is possible if there are no gross errors
e, when errors are present, the cardinality of the error vector gives a hard lower
bound on the number of observations required for correct recovery. In contrast,
for the simpler problem of finding the nearest model, it is possible to give an
algorithm that uses very small d, and is agnostic to the properties of q and
S1 . . .Sn.

2 Our Algorithm and Main Results

The core of our algorithm is summarized as follows.

Input: n subspaces S1, · · · ,Sn of dimension r and query q
Output: Identity of the closest subspace S� to q

Preprocessing: Generate P ∈ Rd×D with iid Cauchy RV’s (d� D) and Com-
pute the projections PS1, · · · , PSn

Test: Compute the projection Pq, and compute its �1 distance to each of PSi

Our main theoretical result states that if d is chosen appropriately, with at
least constant probability, the subspace Si� selected will be the original closest
subspace S�:

Theorem 1. Suppose we are given n linear subspaces {S1, · · · ,Sn} of dimen-
sion r in RD and any query point q, and that the �1 distances of q to each
of {S1, · · · ,Sn} are ξ1′ ≤ · · · ≤ ξn′ when arranged in ascending order, with

ξ2′/ξ1′ ≥ η > 1. For any fixed α < 1 − 1/η, there exists d ∼ O
[
(r logn)1/α

]

(assuming n > r), if P ∈ Rd×D is iid Cauchy, we have

argmin
i∈[n]

d�1 (Pq,PSi) = argmin
i∈[n]

d�1 (q,Si) (5)

with (nonzero) constant probability.

The condition in Theorem 1 depends on several factors. Perhaps the most inter-
esting is the relative gap η between the closest subspace distance and the second
closest subspace distance. Notice that η ∈ [1,∞), and that the exponent 1/α
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becomes large as η approaches one. This suggests that our dimensionality reduc-
tion will be most effective when the relative gap is nonnegligible. For example,
when η = 1/2 the required dimension is proportional to r2.

Notice also that d depends on the number of models n only through its log-
arithm. This rather weak dependence is a strong point, and, interestingly, mir-
rors the Johnson-Lindenstrauss lemma for dimensionality reduction in �2, even
though JL-syle embeddings are impossible for �1.

Before stating our overall algorithm, we suggest two additional practical im-
plications of Theorem 1. First, Theorem 1 only guarantees success with constant
probability. This probability is easily amplified by taking T independent trials.
Because the probability of failure drops exponentially in T , it usually suffices to
keep T rather small. Each of these T trials generates one or more candidate sub-
spaces Si. We can then perform �1 regression in RD to determine which of these
candidates is actually nearest to the query. Note that it may also be possible to
perform this second step in Rd′

, where d < d′ � D; we save this for future work.
Second, the importance of the gap η suggests another means of controlling the

resources demanded by the algorithm. Namely, if we have reason to believe that
η will be especially small, we may instead set d according to the gap between ξ1′

and ξk′ , for some k′ > 2. With this choice, Theorem 1 implies that with constant
probability the desired subspace is amongst the k′−1 nearest to the query. Again,
all of these k′−1 subspaces need to be retained for further examination. However,
if k′ � n, this is still a significant saving over the naive approach.

3 A Sketch of the Analysis

In this section, we sketch the analysis leading to Theorem 1. The basic rationale
for using Cauchy projection is that the Cauchy distribution is the unique stable
distribution for the �1 norm: if v ∈ RD is any fixed vector, and P ∈ Rd×D is a
matrix with iid Cauchy entries, then the vector Pv ≡d ‖v‖1×z, where z is again
an iid Cauchy vector, and ≡d denotes equality in distribution. So, ‖Pv‖1 ≡d

‖v‖1‖z‖1 = ‖v‖1
∑

i |zi|. The random variables |zi| are iid half-Cauchy, with
probability density function

fHC(x) =
2

π

1

1 + x2
if x ≥ 0, (6)

and fHC(x) = 0 for x < 0.
In point-to-subspace query, we need to understand how P acts on many vec-

tors v simultaneously – including the query q and all of the subspaces S1 . . .Sn.
Here, we encounter a challenge: although the Cauchy is the unambiguously cor-
rect distribution for estimating �1 norms, it is rather ill-behaved: its mean and
variance do not exist, and the sample averages 1

n

∑
i |zi| do not obey the classical

Central Limit Theorem.
Figure 1 shows how this behavior affects the point-to-subspace distance

d�1 (q,S). The figure shows a histogram of the random variable ψ = d�1 (Pq,PS),
over randomly generated Cauchy matrices P, for two different configurations of
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query q and subspace S. Two properties are especially noteworthy. First, the
upper tail of the distribution can be quite heavy: with non-negligible probability,
ψ may significantly exceed its median. On the other hand, the lower tail is much
better behaved: with very high probability, ψ is not significantly smaller than
its median. This inhomogeneous behavior (in particular, the heavy upper tail)

Fig. 1. Statistics of �1

distance ratios (after vs.
before) by random projec-
tions over 10000 trials. The
subspaces are randomly-
oriented (1st column) and
axis-aligned (2nd column),
respectively. Here r = 10,
D = 10000, d = 35, and
d�1 (q,S) = 1.

precludes very tight distance-preserving embeddings using the Cauchy. However,
our goal is not to find an embedding of the data, per se, but rather to find the
nearest subspace, S�, to the query. In fact, for nearest subspace search, this in-
homogeneous behavior is much less of an obstacle. To guarantee to find S�, we
need to ensure that
- (i) P does not increase the distance from q to S� too much, and,
- (ii) P does not shrink the distance from q to any of the other subspaces

Si too much.

The first property, (i), holds with constant probability: although the tail of ψ is
heavy, with probability at least 1/2, ψ ≤ median(ψ). For the second event, (ii),
P needs to be well-behaved on n− 1 subspaces simultaneously. Notice, however,
that for the bad subspaces Si, the lower tail in Figure 1 is most important. If
projection happens to significantly increase the distance between q and Si, this
will not cause an error (and may even help!). Since the lower tail is sharp, we
can guarantee that if d is chosen correctly, Pq will not be significantly closer to
any of the PSi.

Below we describe some of the technical manipulations needed to carry this
argument through rigorously, and state key lemmas for each part. Sec. 3.1 elabo-
rates on property (i), while Sec. 3.2 describes the arguments needed to establish
property (ii). Theorem 1 follows directly from the results in Secs. 3.1 and 3.2.
This argument, as well as proofs of several routine or technical lemmas are de-
ferred to the supplementary material.

3.1 Bounded Expansion for the Good Subspace

Let v� ∈ S� be a closest point to q in �1 norm, before projection:

v� ∈ arg min
v∈S�

‖q− v‖1.
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Such a point v� may not be unique, but always exists. After projection, Pv�

might no longer be the closest point to Pq. However, the distance ‖Pq−Pv�‖1
does upper bound the distance from Pq to PS�:

d�1 (Pq,PS�) = min
h∈PS�

‖Pq− h‖1 ≤ ‖Pq−Pv�‖1 = ‖P(q− v�)‖1.

Hence, it is enough to show that P preserves the norm of the particular vector
w = q− v�. We use the following lemma for this purpose:

Lemma 1. There exists numerical constant c ∈ (0, 1) with the following prop-
erty. If w ∈ RD be any fixed vector, and suppose that P ∈ Rd×D is a matrix
with iid standard Cauchy entries. Then for any ρ > 1,

P

[

‖Pw‖1 > ρ
2

π
d log d ‖w‖1

]

< c+
1− c

ρ
< 1. (7)

3.2 Bounded Contraction for the Bad Subspaces

For the “bad” subspaces S2 . . .Sn, our task is more complicated, since we have
to show that under projection P, no point in Si comes close to q. In fact, we
will show something slightly stronger: for appropriate γ, with high probability
the following holds for any i:

∀ w ∈ Si ⊕ span(q), ‖Pw‖1 ≥ γ‖w‖1. (8)

Above, ⊕ denotes the direct sum of subspaces, so S̃i = Si⊕ span(q) is the linear
span of Si and the query together. Since for any v ∈ Si, q − v ∈ S̃i, whenever
(8) holds, we have

d�1 (Pq,PSi) = min
v∈Si

‖Pq−Pv‖1 ≥ min
v∈Si

‖P(q− v)‖1
≥ min

v∈Si

γ‖q− v‖1 = γ d�1 (q,Si) , (9)

and the distance to any “bad” subspace Si contracts by at most a factor of γ.
To show (8), we use a discretization argument. Let Γ denote the intersection

of the unit �1 “sphere” with the expanded subspace S̃i:

Γ = {w | ‖w‖1 = 1} ∩ S̃i.

Recall that for any set Γ , an ε-net is a subset Ni such that for every w ∈ Γ ,
‖w − w′‖1 ≤ ε for some w′ ∈ N . Standard arguments (see [31]) show that for
any ε > 0, there exists an ε net Ni for Γ of size at most (3/ε)d+1.

Consider the following two events:
- (ii.a) minw′∈N ‖Pw′‖1 ≥ β, and
- (ii.b) For all w ∈ S̃i, ‖Pw‖1 ≤ L‖w‖1.
When both hold, we have for any w ∈ Γ (with associated closest point w′ ∈ Ni)

‖Pw‖1 ≥ ‖Pw′ +P(w −w′)‖1 ≥ ‖Pw′‖1 − ‖P(w−w′)‖1 ≥ β − Lε.(10)

Moreover, since for any w ∈ S̃i, w/‖w‖1 ∈ Γ , we have that

∀ w ∈ S̃i, ‖Pw‖1 ≥ (β − Lε)‖w‖1,
and we may set γ = β−Lε. So, it is left to establish items (ii.a) and (ii.b) above.
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Establishing (ii.a). We use the following tail bound:

Lemma 2 (Concentration in Lower Tail). Let P ∈ Rd×D be an iid Cauchy
matrix. Then for any fixed vector w ∈ RD and α, δ ∈ (0, 1),

P

[

‖Pw‖1 < (1− α) (1− δ)
2

π
d log d ‖w‖1

]

< d1−α exp

(

− δ2

2π
dα

)

. (11)

This estimate gives the optimal power, dα, in the exponent. The proof is straight-
forward, and is deferred to the supplementary material.

This bound is sharp enough to allow us to simultaneously lower bound ‖Pw′‖1
over all w′ ∈ Ni. Set

βα,δ = (1 − α)(1 − δ) 2πd log d,

and let Enet,i denote the event that there exists w′ ∈ Ni with ‖Pw′‖1 <
βα,δ‖w′‖1.

P [Enet,i] < |Ni| d1−α exp
(
− δ2

2πd
α
)
. (12)

Establishing (ii.b). In bounding the Lipschitz constant L in (ii.b), we have to
cope with the heavy tails of the Cauchy, and simple arguments like the above
argument for β are insufficient. Rather, we borrow an elegant argument of Sohler
and Woodruff [27]. The rough idea is to work with a certain special basis for
S̃i, which can be considered an �1 analogue of an orthonormal basis. Just as
an orthonormal basis preserves the �2 norm, an �1 well-conditioned basis ap-
proximately preserves the �1 norm, up to distortion (r+1). The argument then
controls the action ofP on the elements of this basis. Due to space limitations, we
defer further discussion of this idea to the supplementary material, and instead
simply state the resulting bound:

Lemma 3. Let P ∈ Rd×D be an iid Cauchy matrix, and S a fixed subspace of
dimension r + 1. Set L = supw∈S\{0} ‖Pw‖1/‖w‖1. Then for any B > 0, we
have

P [L > t (r + 1)] ≤ 2d(r + 1)

πB
+

2d(r + 1)

πt
log

√
1 +B2. (13)

The proof of Theorem 1 follows from Lemmas 1-3 above, by choosing appropriate
values of the parameters B, t, δ and ε. We give the detailed calculation in the
supplementary material.

4 Experiments

We present two experiments3 to corroborate our theoretical result and demon-
strate its particular relevance to subspace/manifold-based instance recognition.

3 The second one on digit recognition is presented in the supplementary material.
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4.1 Note on Implementation

Projection Matrices and Subspaces. Our main theorem is for any fixed set of
subspaces and any fixed query point. Of course, if we fix P and consider many
different q, the success or failure will be dependent random variables. This sug-
gests sampling a new matrix P for each test image, which would then require
that we re-project each of the subspaces Si. In practice, it is more efficient to
maintain a pool of k Cauchy projection matrices4 Pj and store PjSi for each
i and j. During testing, we randomly sample a combination of Nrep (for rep-
etition) matrices and corresponding projected subspaces and also apply these
projections to the query. This sampling strategy from a finite pool does not
generate independent projections for different query points, but it allows eco-
nomic implementation and empirically still yields impressive performance. We
fix k = 20 and normally set Nrep = 3 throughout.

Solvers for �1 Regression. We perform high-dimensional NS search in �1 (HDS)
as baseline. Due to the large scale, we employ an Augmented Lagrange Method
(ALM) numerical solver for the regression. All the other instances of �1 regression
are in low dimensions and can be handled by interior point method (IPM) solvers.
We will report typical running times, with the caveat that direct comparison may
not be fair: the ALM solver is built for moderate accuracy with high scalability
and subject to careful tuning of optimization parameters, while IPM solvers are
meant for high accuracy. Despite this, our algorithm is often significantly faster.

4.2 Robust Face Recognition on Extended Yale B

Face images of one person taken with fixed pose and varying illumination are
known to lie very close to a nine-dimensional linear subspace [8]. Because phys-
ical phenomena such as occlusions and specularities on faces may violate the
linear model, we formulate the recognition problem as one of finding the closest
subspace to q in �1 norm [5]5.

The Extended Yale B face dataset [7] (EYB, cropped version) contains cropped,
well-aligned frontal face images (168×192) of 38 subjects under 64 illuminations
(2, 432 images in total, the 18 corrupted during acquisition not used here). For
each subject, we took half of the images for training (1205 in total) and the oth-
ers for testing (1209 in total). To better illustrate the behavior of our algorithm,
we strategically divided the test set into two subsets: moderately illuminated
(909, Subset M) and extremely illuminated (300, Subset E). The division is

4 The standard Cauchy projection matrix P generated as A./B, where both A and
B are iid standard normal and “./” denotes elementwise matrix division.

5 In other words, we formulate the problem as �1 nearest subspace (�1 NS) search. This
is different from the idea of sparse representation in SRC [5] for face recognition. Since
our focus here is not to propose a new or optimal face recognition algorithm (although
�1 NS method happens to be new for the task), we prefer to save detailed discussions
in this line for future work. Nevertheless, our preliminary results indeed suggest �1

NS is as competitive as SRC for typical robust face recognition benchmarks.



426 J. Sun, Y. Zhang, and J. Wright

based on the light source direction (wrt. the camera axis): images taken with
either azimuth angle greater than 90◦ or elevation angle greater than 60◦ would
be classified as extremely illuminated.

Recognition with Original Images. Fig. 2 presents the evolution of recognition
rate on Subset M as the projection dimension (d) grows with only one rep-
etition of the projection (Nrep = 1). Our experiment shows the HDS achieves

Fig. 2. Recognition rate versus projec-
tion dimension (d) with one repetition
on Subset M face images of EYB. The
recognition rate stays stable above 95%
with d ≥ 25. The high-dimensional NS
in �1 achieves perfect (100%) recognition.
Note the ambient dimension in this case
is D = 168× 192 = 32256.

perfect recognition (100%) on this subset, implying recognition in this subset
corresponds perfectly to NS search in �1. So Fig. 2 actually represents the evolu-
tion of “average” success probability for one repetition over the subset. Suppose
the distance gap is significant such that 1/α → 1, our theorem suggests that
one needs to set roughly d = r logn = 9 ∗ log 38 ≈ 33 to achieve a constant
probability of success. Our result is consistent with this theoretical prediction
and the probability is already stable above 0.9 for d ≥ 25. With 3 repetitions
and d = 25, the overall recognition rate is 99.56% (4 errors out of 909), nearly
perfect. Fig. 3 presents the failing cases. They either contain significant artifacts

Fig. 3. Failing cases of our
method on Subset M of EYB

or approach the extremely illuminated cases, the failing mechanism and remedy
of which are explained below.

For extremely illuminated face images, the �1 distance gap between the first
and second nearest subspaces is much less significant (one example shown in
Fig. 4). Our theory suggests d should be increased to compensate for the weak
gap (because the exponent 1/α becomes significant). Our experimental results
confirm this prediction. Specifically, the HDS achieves 94.7% accuracy while our
method achieves only 79.3% when d = 25 and Nback = 5 (Nback is the number of
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Fig. 4. Samples of moderately/extremely
illuminated face images and their �1 dis-
tances to other subject subspaces. The
subjects have been ordered in ascending
order of �1 distance from the sample and
the distances are normalized such that the
first distance is 1. Note that for the mod-
erately illuminated sample, a distance gap
of about 4.8 is observed while this is only
about 1.8 for the extremely illuminated
sample.

back-research in high dimensions). The recognition rate is boosted significantly
when we increase d, or increase Nback (this is another way of amplifying the
success probability), as evident from Table 1.

Table 1. Recognition Rate on Subset E of EYB with varying d and Nback

HDS d = 25 d = 50 d = 70

r = 15, Nback = 5 94.7% 79.3% 87.7% 92.3%

r = 15, Nback = 10 94.7% 87.3% 92.0% 94.0%

Recognition on Artificially Corrupted Images. In order to illustrate the robust-
ness of �1 NS approach for recognition and particularly the capability of our
method to preserve such property of �1, we corrupted each original test image
with (1) randomly-distributed sparse corruptions, and (2) structured occlusions.
For the first setting, we replaced, respectively, 5%, 10%, 15%, and 20% of ran-
domly chosen pixels with iid uniform noise in [0, 255]6. For the second, the lena
image of fixed size (i.e. depending on the desired percentage of occlusion) was
randomly placed on each test image. Fig. 5 shows some typical samples of both
cases, and also the effect of corruptions on distance gaps - corruptions signifi-
cantly weaken the gaps. Therefore we set d to 50 and 70 in this experiment for
comparison. Table 2 summarizes the recognition performances for each setting.
Our method exhibits comparable level of performance with the HDS for corrup-
tions less than 10% and observable performance lag beyond. This is a reasonable
price to pay as we insist on working in low dimensions for efficiency.

Running Time. In our Matlab implementation, the typical time required for
solving one instance of HDS is 8.3s (with ALM solver), and that for our method
is only about 1.2s (�1-magic interior point solver) which is mostly consumed by
the back search in high dimensions. There is no observable difference in timing
with or without the corruptions.
6 In other words, any valid pixel value for 8-bit gray-scaled image. Note also that our
training is still half of all the samples as in last part, in contrast to the setting in [5],
where only those moderately illuminated are considered.
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Fig. 5. Left: Sample of original images
and the corrupted versions. In both cor-
rupted images 20% of the pixels are
contaminated. Right: Comparison of the
ordered original �1 distances to other
subspaces and that of after introducing
the artificial corruptions. This distance
gap is significantly suppressed due to the
corruptions.

Table 2. Recognition Rate under Corruptions for all Test Samples on EYB. (r = 15)

Occlusion Occluded Pixels HDS d = 50 d = 70

Random 5% 98.8% 96.2% 97.2%
10% 98.6% 93.7% 95.2%
15% 99.2% 89.2% 91.9%
20% 99.2% 85.4% 87.8%

Structured 5% 98.7% 95.7% 96.7%
10% 97.8% 91.3% 94.7%
15% 95.9% 87.3% 91.6%
20% 93.5% 82.7% 84.6%
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Abstract. In this paper we address the challenging problem of complex
event recognition by using low-level events. In this problem, each com-
plex event is captured by a long video in which several low-level events
happen. The dataset contains several videos and due to the large num-
ber of videos and complexity of the events, the available annotation for
the low-level events is very noisy which makes the detection task even
more challenging. To tackle these problems we model the joint relation-
ship between the low-level events in a graph where we consider a node
for each low-level event and whenever there is a correlation between two
low-level events the graph has an edge between the corresponding nodes.
In addition, for decreasing the effect of weak and/or irrelevant low-level
event detectors we consider the presence/absence of low-level events as
hidden variables and learn a discriminative model by using latent SVM
formulation. Using our learned model for the complex event recognition,
we can also apply it for improving the detection of the low-level events in
video clips which enables us to discover a conceptual description of the
video. Thus our model can do complex event recognition and explain a
video in terms of low-level events in a single framework. We have eval-
uated our proposed method over the most challenging multimedia event
detection dataset. The experimental results reveals that the proposed
method performs well compared to the baseline method. Further, our re-
sults of conceptual description of video shows that our model is learned
quite well to handle the noisy annotation and surpass the low-level event
detectors which are directly trained on the raw features.

1 Introduction

The majority of current human action recognition work deals with the classifi-
cation of short video clips (e.g. 3-10 sec) which contain some simple and well-
defined actions such as running, biking, diving, etc, and the main challenges are
how to deal with low resolution, arbitrary camera motion, occlusion and clutter
in the scene. However, real lifetime videos are of longer length which contain
complex events happening at specific place and time such as birthday party and
wedding ceremony; such videos may depict complex scenes and involve a number
of human actions in which people interact with each other and/or with objects.
For example a video of birthday party event can be described by the objects
(cake, candle), scene (indoor, outdoor), actions (person singing, laughing) and

A. Fitzgibbon et al. (Eds.): ECCV 2012, Part IV, LNCS 7575, pp. 430–444, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Recognizing Complex Events using Large Margin Low-Level Event Model 431

Fig. 1. Examples from complex video event categories: (from left to right, column wise)
boarding trick, feeding animal, landing fish, wedding, woodworking project, birthday
party, changing tire, flash mob, vehicle unstuck, grooming animal, making sandwich,
parade, parkour, repairing appliance, sewing project.

surrounding voices (music, cheering) that happen in it. Therefore, it is apparent
that classifying a complex realistic event is a much more challenging task than
just recognizing a set of motion discriminative actions (low level events) in stan-
dard datasets (such as KTH [1], UCF-Sports [2], UCF50 [3], and HMDB [4]).
Some example video frames from complex event categories considered in this
paper are shown in Fig. 1.

Recently, the bag-of-words (BoW) approach has achieved impressive results
in many recognition problems including action recognition [5, 6]. However, this
approach has innate limitations in representation and semantic description of
the underlying data as it jumps directly from low level features to the very high
level class labels. Therefore, the methods which are based on BoW approach
cannot easily provide any semantic intermediate description of the data.

For recognizing complex events, we argue that it is crucial to learn the low-
level events along with their relationships to the event categories. For example,
for Birthday party event, low-level events may include: person cheering, person
singing, person blowing candles, person taking pictures, etc. For each low-level
event we use a collection of various features to learn its model. We then use the
learned low-level event detectors to train a discriminative model for recognizing
complex events. To this end, we model the joint relations between the low-level
events by a latent graphical model. In our model, we have a node for each low-
level event and the edges between the nodes represent the correlations between
the low-level events. Since, the number of all possible co-occurrence of these low-
level events is very large, we take the advantage of the fact that a large portion
of possible co-occurrences is rather unlikely to happen and exploit only those
which have high rate of coincidence. We consider the presence or absence of
low-level events as latent variables and learn their correlations in a latent SVM
framework, which simultaneously alleviate the problem of noisy low-level event
detectors and improves the accuracy of high-level event recognition.

The overview of the proposed method is summarized in Fig. 2. At the first
stage the raw features extracted from the training videos along with the informa-
tion obtained by low-level event annotation are used to train the low-level event
detectors. The graph of low-level event co-occurrence is also constructed using
annotations. In addition, high level event detectors are trained using raw features
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Fig. 2. Given the training videos and low-level event annotation, we train low-level
event detectors and high-level event detector using raw feature. Then we employ co-
occurrence of low-level events along with the individual low-level event detector outputs
in latent SVM framework to detect the high-level event label. We also use the latent
parameter vector for describing an unseen test video in terms of low-level events. For
example, the given video of birthday party is described by the sequence of low-level
events: person kissing, person hugging and blowing candles.

directly. The final model is generated using the low-level events, co-occurrence
graph and high-level event detectors. Our training data includes long sequences
of each of 15 complex events which are divided into short clips of typically 10
seconds. Each short clip potentially contains one of 62 low-level events. Each clip
is assigned to one of the 62 low-level event labels by human annotators, which
are only used for training the detectors. At the testing time, we need to predict
the category of a given complex event video. Thus, we use a latent SVM model
in which the low-level event are treated as latent variables. Also, in our latent
SVM framework, we learn the co-occurrence pattern of the low-level events for
further improvement of the recognition performance. As an example, a given
test video could be a short movie of a wedding ceremony that contains low-level
events such as kissing, hugging, dancing, taking picture, at different temporal
locations in a video. Using trained low-level event detectors, we can compute
the confidence scores for the presence of the low-level events in all the 10 second
clips of the test video. With our trained latent SVM model and the obtained
confidence scores, we can accurately describe each video.

The key contributions of our work are as follows: First, our proposed model
shows that learning low-level events can improve the recognition rate of complex
events. Here, we model low-level events in a latent graphical model where for
discovering the joint relations between low-level event a latent SVM is trained.
Second, our model provides a flexible framework for using the combination of
various types of low-level features for modeling contextual information, local
appearance, motion patterns and audio properties. Third, using trained latent
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SVM model, we can provide a semantic description of a given video which can
be used in problems like video retrieval, where the aim is to detect the presence
or absence of a semantic concept in video.

2 Related Work

The explosive growth of digital videos on the Internet has made an urgent ne-
cessity for having efficient methods for video analysis. Amongst all, high level
video event classification and recognition is one of the most critical problems
that should be solved to this end. While the action recognition problem, which
can be considered as low-level event recognition, is widely explored, the problem
of event recognition is not much explored [7–9]. The challenging nature of event
recognition problem lies in the fact that simple actions are the building blocks of
events while the action recognition problem is itself one of the most challenging
recognition problems to date. Thus, we argue that it is very logical to treat the
action recognition as an intermediate step in recognizing complex events.

On the other hand, the use of different attributes for the recognition task
has recently been explored in different computer vision applications such as
object classification [10–13], image ranking and retrieval [14] and human action
recognition [15]. Some of the attributes that has been used in these methods
have semantic meaning while some of them are data driven attributes[15]. The
data driven attributes are extracted from training data based on raw features.
These attributes can only increase the performance of the recognition but do
not provide any conceptual description about the content of the video.

Our notion of low-level events is similar to the attributes in the sense that
both are used as a source of intermediate information for recognition of a more
complex task. However, in the literature, an attribute refers to an atomic part
of a more general category while each of our low-level events is itself a general
category. Thus, the general notion of attribute stands at a smaller granularity
than our low-level events. For example in the object recognition a set of pos-
sible attributes for recognizing objects can be (furry, leg, metallic surfaces, 3D
boxy) [10] and in action recognition can be (up-down motion, torso motion,
twist) [15]. Whereas, some of our low-level events are (Person dancing, peo-
ple marching, animal eating). The other main difference of our approach with
the attribute based methods is that, in the attribute based methods, the pres-
ence/absence of the attributes is used to improve the recognition task, but there
is no concrete representation for each of the attributes and thus the attribute
detection is not that informative. Whereas, each of our low-level events refer to
a certain clip and our method learns the low-level event for both event recog-
nition and temporal video description. Recently, [16–18] modeled the temporal
structure of the video. However, they anchor a predefined number of low-level
events/actions in temporal domain and attempt to find the best discriminative
temporal model for each high-level event/action. In our work we do not impose
any constraint on the temporal location of each low-level event but instead we
learn the co-occurrence pattern of the low-level events for further improvement
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of the recognition performance. Thus, we are not limited by any kind of prior
information about the temporal locations of low-level events and learn the co-
occurrence via a latent SVM framework.

3 Complex Event Recognition Using Low-Level Events

For classifying videos we start by considering each video as a collection of low-
level events. Each low-level event can either refer to a simple action that is
performed by one or more actors such as person walking, a complex action that
takes place while interacting with other objects (person petting) or a particular
behavior that is performed by a group of people (people dancing). Thus, for
solving the video classification we propose to learn low-level events along with
their correlations by analyzing the video sequence temporally and using a set of
diverse features: ISA (independent subspace analysis) [5], STIP (spatio-temporal
interest point descriptor) [19], Dollar [20], GIST [21], SIFT [22] and MFCC
(Mel-frequency cepstral coefficients) [23] for describing each low-level event. The
correlations between low-level events are then learned in latent SVM framework.

For learning the low-level events we have manually annotated the training
videos, as is typically done in human action recognition work. Of course, we
assume these labels are considered not to be available at the test time. For each
of these low-level events a classifier is trained based on the low-level features.

Using the low-level event detectors, we then compute a feature vector for each
event video and use it for training high level event detectors. To this end, we
need to compute the confidence scores of different low-level event detectors for
the clips of each video. The low-level events are of different temporal length, since
the videos contain real world events. Thus, we compute the confidence score of
the low level detectors on overlapping clips of the video in a hierarchical fashion.
At the first level of the hierarchy the confidence scores are computed using fixed
length overlapping clips, then at each higher level the confidence score for two
adjacent clips of the lower level is computed. After computing all the confidence
feature vectors, the final high-level feature vector for the video is computed by
max pooling over all confidence vectors.

3.1 Large Margin Learning Based on Underlying Latent Structure

In this section, we address the problem of learning a model for labeled and
structured data. For the high level event recognition problem considered in this
paper, we explore the underlying structure based on a joint relation graph which
is constructed using the co-occurrence of the low-level events.

Each training sample is represented by (x, z, y) in which x is a video and y ∈ Y
denotes its class label. And the low-level event representation of a video is defined
by a C-dimensional binary vector z = (z1, ..., zC) where each dimension shows
the presence/absence of a specific low-level event in a video. For instance, if the
ith video belongs to the Birthday party event and the cth dimension corresponds
to the Person lighting candle low-level event, zc would probably be equal to 1.
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We consider a training set that consists of n input/output pairs (x1, y1), ...,
(xn, yn) ∈ X × Y. Given the training data, we are interested in learning a dis-
criminative function Fθ : X × Y → R over the feature vector of a video and its
event class label. Here F is parameterized by θ. During testing, we can predict
the class label of a high-level event video using Eq. (1);

y∗ = argmax
y∈Y

Fθ(x, y). (1)

Since we consider latent low-level event representation for each video, the dis-
criminative function F scores based on the latent variable which is computed
by Fθ(x, y) = maxz Θ�Φ(x, z, y). Here Θ�Φ(x, z, y) depends on global event
potential, unary low-level event potential and joint low-level event potential:

Θ�Φ(x, z, y) = θ�y φ(x) +
∑

j∈V
(θ�zjϕ(x) + β(y,j)) +

∑

(j,k)∈E
θ�(j,k)ψ(zj, zk), (2)

in whichΘ = (θy, θzj , θ(j,k)) is the parameter (weight) vector of F . The potentials
are defined in the following.

Global Event Potential: The global potential θ�y φ(x) represents a linear dis-
criminative model for event detection without considering low-level events, where
each video x is represented by a feature vector φ(x). In order to speed up the
training process we pre-train a classifiers for each event and incorporate θy to
regularize the confidence score of the event classifiers. Thus, without loss of gen-
erality φ(x) refers to the confidence score of the corresponding event classifier for
the input video x. However, as we use different feature types (i.e. image, video
and audio), we need to pre-train a classifier for each feature type so the score
of each event classifier is weighted by θy that is a k dimensional vector for k
different feature types.

Unary Low-Level Event Potential: The low-level event potential (θ�zjϕ(x) +
β(y,j)) determines the occurrence of each low-level event in a video.We can use the
raw feature vector and then train a large parameter vector for recognizing each
low-level event, but similar to the global potential, we use a pre-trained binary
classifier for each low-level event. Therefore, the unary potential for each low-level
event is the confidence score produced by each low-level event detector and β(y,j),
which represents the occurrence of each low-level event in each event class.

Joint Low-Level Event Potential: There is a meaningful relationship in the
co-occurrence of more than one low-level event in a video. For example, there
are a certain number of low-level event e.g. person kissing, taking picture, person
dancing which frequently occur in a particular event such as wedding ceremony,
while it is very unlikely that some other low-level events like person hammering
may occur in the same event. The joint potential θ�(j,k)ψ(zj , zk) incorporates the
co-occurrence of low-level events in training the classifier. Since we only consider
presence and absence of low-level events as the latent variable, we have four
possible joint potentials {(0, 0), (0, 1), (1, 0), (1, 1)} between any two low-level
events.
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Fig. 3. The low-level events joint relation model computed by running maximum span-
ning tree on the complete co-occurrence graph. The weight of edges express the nor-
malized co-occurrence between the vertices. The darker edges show stronger correlation
between the low-level events.

In practice, some low-level event pairs may have rather weak correlations,
including both in their presence or absence. For example, the low-level event
pairs (person dancing and person using tire tube), or (person jumping, person
drinking) indeed do not have too much correlations, that is to say, the pres-
ence/absence of one low-level event will not contribute to that of another (i.e.,
their occurrence are independent of each other). Based on this observation, we
remove the weaker relations and only consider the strongly correlated pairs. The
selection of low-level events can be manually determined by experts or automat-
ically selected by some data-driven approaches. In this paper, we measure the
correlations of low-level event pair using the normalized co-occurrence defined

by
N (zj,zk)

N (zj)N (zk)
in which N (.) and N (., .) respectively count the number of oc-

currences and co-occurrences in the entire training set using annotations. Once
we compute the concept pair co-occurrence, we construct the correlation graph
in which the low-level events represent vertices and the weight of edges are the
normalized co-occurrences. We cannot find the optimum low-level event repre-
sentation over complete correlation graph without enumerating the entire set of
combinations which is exponential in cardinality of each node (i.e. |{0, 1}| = 2
and for 62 low-level events is 262). To eliminate this problem, we compute the
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maximum spanning tree to find a co-occurrence tree so that only the most cor-
related pairs are adjacent. In this case, the inference problem becomes tractable
and can be solved by dynamic programming. Fig. 3 shows the maximum span-
ning tree obtained for 62 low-level events. As shown in this figure, the connection
between low-level event pairs are meaningful. For instance, person surfing, person
jumping and person sliding are connected which are usually co-occur in boarding
trick event. Another example is person throwing and animal eating which are
usually co-occur in feeding animal event videos.

3.2 Large Margin Learning

We train a binary classifier for each complex event class. Each classifier scores
an example x using Eq. 1, so we must learn the parameter vector Θ from the set
of positive and negative samples. The parameter vector Θ for each event class
is trained iteratively by minimizing the objective function

f(Θ) =
λ

2
‖Θ‖2 +

n∑

i=1

Ri(Θ), (3)

where λ makes trade-off between generalization and the data fitting. The risk
function Ri is computed based on the optimum latent variable z∗ and the pre-
dicted class label y∗ for each training sample. We define inference function
G(x, z, y, Θ) = Θ�Φ(x, z, y) which finds the optimum latent variables z∗ based
on the model parameter Θ using

z∗y = argmax
z∈Z

G(x, z, y, Θ) ∀y ∈ {−1, 1}. (4)

Then we use optimum latent variable z∗y and find the predicted label for the ith
video y∗ by

y∗ = argmax
y∈{−1,1}

(G(xi, z∗y , y, Θ) +Δ(y, yi)), (5)

where yi is the ground truth label and Δ(y, yi) is the loss function. A variety
of loss functions have been used in the literature, here we use 0/1 loss function
which is Δ(y, yi) = 1 if y �= yi, and Δ(y, yi) = 0 otherwise. Once the y∗ is
computed for the ith sample, the risk is computed by

Ri = G(xi, z∗y∗ , y∗, Θ) +Δ(y∗, yi)− G(xi, z∗yi
, yi, Θ). (6)

Apparently, the risk function is non-zero if y∗ �= yi. We minimize the objective
function f(Θ) using non-convex regularized bundle method [24]. This method
relies on the cutting plane technique, where a cutting plane in defined using the
sub-gradient of objective function f(Θ) by

δΘf = λΘ +

n∑

i=1

(
Φ(xi, z

∗
y∗ , y∗)− Φ(xi, z

∗
yi
, yi)

)
. (7)
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Table 1. The Average Precision of low-level event detection using different features

Low-level event ISA STIP Dollar SIFT GIST MFCC Low-level event ISA STIP Dollar SIFT GIST MFCC

Person surfing 61.6 37.9 2.3 40.7 25.8 2.4 Person laughing 2.8 3.0 1.2 11.8 1.1 1.8
People marching 48.4 55.4 23.7 53.4 25.5 25.3 Lighting candle 11.1 0.4 0.3 0.3 0.3 0.2
Person carving 49.6 43.2 8.8 45.6 18.7 53.3 Person squatting 2.5 1.5 1.4 7.3 2.0 10.8
Person sewing 49.9 19.4 24.7 19.6 12.2 23.8 Person hugging 5.2 8.9 3.6 10.8 1.4 1.8
Vehicle moving 42.3 47.6 14.3 29.0 26.9 15.3 Wheel rotating 2.4 10.4 1.4 10.7 1.0 1.0
Animal eating 24.4 23.8 11.2 44.7 7.0 16.7 Using tire tube 10.4 5.3 4.0 7.5 4.0 4.9
People dancing 31.2 42.7 13.2 34.3 7.9 3.7 Person drilling 6.3 5.7 1.6 7.8 10.3 1.1
Person singing 30.8 34.8 7.8 34.7 6.0 40.2 Person falling 6.8 9.8 3.0 6.6 3.2 4.3
Person washing 38.8 21.7 5.0 40.0 10.9 8.2 Person running 9.4 7.5 1.5 3.2 1.3 3.3
Person pointing 22.5 7.9 7.4 7.7 1.5 30.0 Person waving 5.8 3.2 2.3 8.7 1.6 2.5
Person kissing 29.0 12.7 6.3 8.2 1.9 10.3 Taking pictures 4.1 8.1 6.3 5.0 2.2 3.0
Person sliding 26.7 14.9 4.6 18.9 16.0 3.0 Blowing candles 4.7 7.0 2.0 7.6 1.6 1.9

Open door 26.6 18.8 10.3 18.8 3.1 8.2 Person clapping 4.9 3.5 2.7 7.2 2.2 3.9
Turning wrench 23.1 17.9 4.7 26.1 5.3 13.5 Person casting 6.3 2.8 1.0 3.8 0.7 0.9
Person reeling 25.1 10.6 2.2 14.7 12.3 2.2 Person petting 6.0 1.4 0.7 1.8 0.7 3.8
Person planing 16.8 14.7 9.2 22.8 15.8 8.2 Person wiping 5.7 0.6 0.4 1.8 0.3 0.8
Person jumping 17.7 20.5 12.3 21.6 11.1 21.1 Person bending 5.4 2.8 1.8 5.4 1.9 2.2
Person flipping 18.1 21.4 7.1 21.1 14.7 8.1 Person rolling 0.7 2.0 0.7 4.6 0.3 2.6
Person walking 13.5 19.2 10.5 21.1 9.9 6.0 Person climbing 3.6 4.0 1.8 1.8 0.8 2.0
Person cutting 9.1 3.4 2.9 20.6 2.1 3.1 Shake 3.7 0.3 0.5 0.6 0.3 0.4
Person dancing 8.9 18.0 3.4 19.6 4.5 3.4 Playing instrument 0.5 2.8 0.4 1.4 0.3 0.5
Spreading cream 19.0 16.1 3.7 8.5 2.5 5.4 Stir 2.0 2.7 0.4 0.4 0.3 1.3
Person eating 5.7 4.8 3.5 16.6 2.2 3.7 Person jacking car 1.6 2.7 1.1 1.5 0.6 0.7

Open box 1.0 6.6 0.3 16.1 0.3 0.7 Person cheering 0.8 1.6 0.6 1.5 0.7 2.6
Person throwing 15.5 5.5 1.7 9.5 0.9 2.4 Person cutting cake 2.2 0.8 1.1 0.9 0.4 0.6

Person hammering 4.0 12.2 8.6 15.2 6.4 4.8 Person pushing 1.4 1.0 0.8 2.1 0.8 0.7
Person using knife 11.8 14.7 11.4 7.6 2.1 5.1 Person polishing 1.9 1.3 1.0 1.2 0.6 1.7

Person sawing 7.1 2.9 4.0 5.7 6.0 14.5 Animal approaching 1.1 1.3 0.7 1.8 0.9 0.9
Fitting bolts 13.8 13.2 2.7 14.3 5.1 14.1 Person cleaning 1.5 0.8 0.9 1.5 0.4 0.7
Cutting fabric 13.8 1.2 3.2 11.4 0.7 10.6 Person drinking 1.3 0.7 0.9 0.5 0.4 0.5
Person writing 11.9 9.0 4.1 12.4 6.5 6.6 Person pouring 0.6 0.5 0.6 0.8 0.5 0.8

Table 2. The mean average precision value using different features

Feature ISA STIP Dollar SIFT GIST MFCC

mean AP 13.56 11.24 4.54 13.04 5.08 7.07

The bundle method iteratively builds an increasingly accurate piecewise
quadratic lower bound of the objective function by selecting the most violated
sample and building the bundle using the sub-gradient at that point. Such a cut-
ting plane is a linear lower bound of the risk function R(Θ) and is a quadratic
lower bound of the objective function f(Θ).

4 Experiments

To evaluate the performance of the proposed method, we present results for
event recognition on the TRECVID11-MED event kit [25] which is the most
challenging multimedia event dataset. This dataset contains 2,061 multimedia
videos (i.e., video clips including both video and audio) collected from Internet.
The videos are divided into 15 different events: Boarding trick, Feeding animal,
Landing fish, Wedding, Wood working project, Birthday party, Changing tire,
Flash mob, Vehicle unstuck, Grooming animal, Making sandwich, Parade, Park-
our, Repairing appliance, and Sewing project. As the dataset contains plenty of
videos, we randomly split the videos of each class in the dataset into 70% videos
for training and 30% for testing and report the recognition rate using the preci-
sion criteria. For quantitative comparison we use Average Precision (AP) which
is used in PASCAL VOC challenge [26]. The AP summarizes the characteristic
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of precision/recall curve, and is defined as the mean precision at a set of equally
spaced recall levels [0, 0.1, ..., 1]. For a given class, the precision/recall curve is
computed using the output confidence scores.

4.1 Feature Representation

We use six different feature types: ISA, Dollar and STIP as motion features;
SIFT and GIST for local and global image appearance features, respectively. We
also use MFCC along with its first and second derivatives as audio features. For
ISA feature we use pre-trained convolutional ISA network which is provided in
released package1. The Dollar descriptors are extracted around spatio-temporal
interest points where a predefined space-time filter has significant response. For
STIP feature we use 3D Harris corner detector and combination of HoG-HoF
is used as a descriptor. For extracting SIFT and GIST features, we uniformly
sample every K frame of each video and extract 128-D SIFT and 960-D GIST
descriptors from each of those key frames. We also use a standard set of short-
term MFCC features from down-sampled audio signal to 16kHz. We extract
MFCC features from each frame of 25 ms with 10 ms overlap, and retain 21
coefficients as audio features.

4.2 Low-Level Event Detection

Table 1 shows the performance of our low-level event detectors using different
types of features. This figure shows that for some of the low-level events the
performance is very low which is due to lack of sufficient training samples and
diverse patterns of low-level events appearing in the training video clips.

In addition, the average performance using each feature is summarized in
Table 2. Although this table shows that ISA and SIFT had the highest average
performance, Table 1 shows that each of the above features has the highest
performance for some of the low-level events, when used separately. For example,
the MFCC features obtains the highest average precision compared to other
features in singing and Person carving low-level events, where the audio contains
discriminative information. Whereas in motion dominant low-level events like
People marching and People dancing the STIP features have higher accuracy.
Thus, the need for using different feature types in a unified framework is obvious.

4.3 Complex Event Recognition

Fig. 4 demonstrates the unary part of the trained parameter vector θzj . This
figure shows the importance of individual low-level event detectors and that
the relevant low-level event have higher weights. For example, in the making
sandwich event, person eating, person using knife and spreading cream have the
highest weights. Fig. 5 demonstrates the learned underlying structure for the
Birthday party event. The edges are bolder whenever the corresponding learned

1 http://ai.stanford.edu/~wzou/

http://ai.stanford.edu/~wzou/
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pairwise correlation is of more importance. As expected, the latent learning
procedure was successfully able to assign larger weights for (open box, person
singing) and (blowing candle, person eating) edges, which quite frequently hap-
pen in a birthday party. While, the rarely co-occurring low-level event pairs like
person walking and person bending are assigned low weights. On the other hand,
a low pairwise weight is assigned to the low-level event person cutting cake which
usually takes place in a birthday party. This is due to the noisy patterns of the
cutting cake in the training videos and low performance of the person cutting
cake detector. This reveals that the latent model could compensate the effect of
noisy low-level event detectors by assigning a small value to the corresponding
pairwise weights.

The classification results of our proposed method compared to the state of
the art methods are summarized in Table 3. The best performance of the bag
of words is obtained by using ISA features which is 55.87%. By fusing output
of low-level event detectors with high-level event detectors for all feature types
the performance is increased up to 62.63%. While co-occurrence of low-level
events help remove the effect of noisy low-level event detectors and resulted in
64.25% average precision. Our proposed latent model using both low-level event
and high-level event detectors has gained the highest performance i.e. 66.10%.
Table 3 shows the comparison of classifier performance for each individual event.
As can be observed, the precision of the latent event detector is higher than the
other methods in most of the events. This is mostly visible in the Flash mob,
Birthday party and Parade events which is due to their well performing low-level
event detectors such as People dancing, Person singing and People marching.

Table 3. The average precision of our approach compared with the baseline methods.
The first 6 columns show the results obtained using bag of words approach employing
individual features. The next column shows the results obtained by training a linear
SVM on the confidences of low-level and high-level event detectors, mean AP is better
than the ones obtained by using any individual features. Following that under Joint
LL event column we show the results obtained by joint relationship of LL using latent
SVM, the performance is further improved here. Finally, in the last column we show
results obtained using both high-level and low-level event detectors joint model trained
using latent SVM, which provides the best results

Linear SVM Joint Joint
High-level event ISA STIP Dollar SIFT GIST MFCC ensemble (LL event) (HL+LL)

Flash mob 62.7 60.7 80.8 78.3 72.9 78.5 85.9 88.8 91.9
Repairing appliance 77.6 63.2 63.8 57.9 49.0 70.2 80.8 73.5 78.2

Birthday party 63.2 28.2 47.6 35.3 20.2 59.0 70.9 76.0 78.2
Boarding trick 49.4 58.1 52.4 54.3 54.8 65.3 75.6 68.8 75.7
Landing fish 29.1 46.2 69.8 39.8 36.0 64.6 74.1 71.6 72.2

Parade 42.3 36.7 46.3 45.2 36.0 42.2 65.7 71.0 72.4
Vehicle unstuck 35.3 39.5 48.2 48.2 39.5 44.1 66.1 67.8 69.1

Parkour 27.1 34.1 67.8 35.4 43.8 62.0 53.4 65.3 66.4
Wedding 53.4 52.1 66.3 63.2 62.2 66.5 66.5 64.4 67.5

Woodworking project 45.8 24.1 47.3 31.9 30.8 55.9 57.6 64.8 65.3
Feeding animal 34.3 28.6 39.1 27.5 30.1 51.4 58.2 57.8 56.5
Sewing project 37.8 20.6 35.1 32.7 23.0 55.3 56.9 56.4 57.5

Grooming animal 24.9 27.7 36.2 28.8 28.3 49.7 45.7 48.0 51.0
Changing tire 20.3 7.6 29.5 19.1 17.4 45.0 46.5 48.1 47.7

Making sandwich 25.4 21.9 32.5 19.0 19.6 28.5 35.6 41.5 41.9

mean AP 55.87 37.57 41.12 50.85 36.63 41.90 62.63 64.25 66.10
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Fig. 4. The visualization of unary model parameters in terms of low-level events for the
trained latent model of all events. The higher value shows more influence of low-level
events in complex event recognition.
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Fig. 5. The low-level event joint model trained by proposed latent method for Birthday
party. The darker edge shows more discriminative joint for classifying this specific event.

4.4 Describing Video in Terms of Low-Level Events

We want to label each clip (10 sec) of a given video with one of our low-level
events. One simple approach for doing this is to directly use the output of low-
level event detectors. However, as shown in Fig. 6 the low-level event detectors
are too noisy due to errors in the human annotations. However, as shown in
Fig. 4 our unary term parameter vector θz that are trained in the latent training
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Fig. 6. Temporal description of our method compared with the confidence score of
low-level event detectors (LL confidence score) for two sample event videos. We sort
the confidence score of all low-level events for each 10-second clip and show top five
low-level events for each clip. The irrelevant low-level events with high confidence score
are shown in bold.

procedure, can filter out irrelevant low-level events by assigning smaller weights
to them. Therefore, for labeling each clip of a given video, we compute its confi-
dence scores for all the low-level events. Having the vector of confidence scores,
we simply compute θ�z ϕ(x) and report the first five low-level events with highest
θ�z ϕ(x) value. The results obtained by this approach are shown in Fig. 6 for two
sample videos. The caption of the videos contains the results obtained by the
direct use of low-level event confidence scores and our approach.

5 Conclusion

In this paper we presented an event detection method based on latent low-level
event model. Our proposed model learns a set of low-level event detectors and
gets help from the low-level event co-occurrence in a latent SVM training proce-
dure. Our model has the ability to filter out the noisy output of low-level event
detectors and thus gains a good generalization for detecting low-level events.
Additionally, our proposed method has the flexibility to get the benefits of using
a set of different features in a unified framework. We evaluated the performance
of our proposed method on the very challenging dataset and obtained impressive
results on both event recognition and low-level event description.
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6. Wang, H., Kläser, A., Schmid, C., Cheng-Lin, L.: Action recognition by dense
trajectories. In: CVPR (2011)

7. Jiang, Y.G., Yang, J., Ngo, C.W., Hauptmann, A.G.: Representations of keypoint-
based semantic concept detection: A comprehensive study. IEEE Trans. Multime-
dia 12(1), 42–53 (2010)

8. Merler, M., Huang, B., Xie, L., Hua, G., Natsev, A.: Semantic model vectors for
complex video event recognition. IEEE Trans. Multimedia 14(1), 88–101 (2012)

9. Natarajan, P., et al.: Bbn viser trecvid 2011 multimedia event detection system.
In: NIST TRECVID Workshop (2011)

10. Farhadi, A., Endres, I., Hoiem, D., Forsyth, D.: Describing objects by their at-
tributes. In: CVPR (2009)

11. Ferrari, V., Zisserman, A.: Learning visual attributes. In: NIPS (2007)
12. Wang, Y., Mori, G.: A Discriminative Latent Model of Object Classes and At-

tributes. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V.
LNCS, vol. 6315, pp. 155–168. Springer, Heidelberg (2010)

13. Lampert, C., Nickisch, H., Harmeling, S.: Learning to detect unseen object classes
by between-class attribute transfer. In: CVPR (2009)

14. Siddiquie, B., Feris, R., Davis, L.: Image ranking and retrieval based on multi-
attribute queries. In: CVPR (2011)

15. Liu, J., Kuipers, B., Savarese, S.: Recognizing human actions by attributes. In:
CVPR (2011)

16. Gaidon, A., Harchaoui, Z., Schmid, C.: Actom sequence models for efficient action
detection. In: CVPR (2011)

17. Niebles, J.C., Chen, C.-W., Fei-Fei, L.: Modeling Temporal Structure of Decompos-
able Motion Segments for Activity Classification. In: Daniilidis, K., Maragos, P.,
Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 392–405. Springer,
Heidelberg (2010)

18. Tang, K., Fei-Fei, L., Koller, D.: Learning latent temporal structure for complex
event detection. In: CVPR (2012)

19. Laptev, I.: On space time interest points. IJCV 64 (2005)

http://vision.eecs.ucf.edu/data/UCF50.rar


444 H. Izadinia and M. Shah

20. Dollar, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior recognition via sparse
spatio-temporal features. In: IEEE International Workshop on VS-PETS (2005)

21. Oliva, A., Torralba, A.: Modeling the shape of the scene: A holistic representation
of the spatial envelope. IJCV 42, 145–175 (2001)

22. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60(2)
(2004)

23. Rabiner, L., Juang, B.H.: Fundamentals of Speech Recognition. Prentice Hall
(1993)

24. Do, T.M.T., Artières, T.: Large margin training for hidden markov models with
partially observed states. In: ICML (2009)

25. Trecvid multimedia event detection track (2011),
http://www.nist.gov/itl/iad/mig/med11.cfm

26. Everingham, M., Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal
visual object classes (voc) challenge. IJCV 88, 303–338 (2010)

http://www.nist.gov/itl/iad/mig/med11.cfm


Multi-component Models for Object Detection
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Abstract. In this paper, we propose a multi-component approach for
object detection. Rather than attempting to represent an object category
with a monolithic model, or pre-defining a reduced set of aspects, we form
visual clusters from the data that are tight in appearance and configura-
tion spaces. We train individual classifiers for each component, and then
learn a second classifier that operates at the category level by aggregat-
ing responses from multiple components. In order to reduce computation
cost during detection, we adopt the idea of object window selection, and
our segmentation-based selection mechanism produces fewer than 500
windows per image while preserving high object recall. When compared
to the leading methods in the challenging VOC PASCAL 2010 dataset,
our multi-component approach obtains highly competitive results. Fur-
thermore, unlike monolithic detection methods, our approach allows the
transfer of finer-grained semantic information from the components, such
as keypoint location and segmentation masks.

1 Introduction

Consider the object in the center of Figure 1. Although its appearance is very
different from any of the surrounding instances, they all belong to the same
semantic category “aeroplane”. The main causes of intra-class variations in
recognition are pose and viewpoint changes, as well as the presence of visu-
ally heterogeneous subcategories. For instance, aeroplanes look quite different
from side to 45-degree views, and their appearance also changes significantly
among the three main subcategories: wide-body passenger jets, fighter jets and
propeller aeroplanes. We refer to such visual clusters as components.

In this paper, we propose an approach that models each component inde-
pendently, which we show is easier and more accurate than attempting to char-
acterize all components in a monolithic model. Another significant advantage
of our approach over monolithic models is that it enables tasks that are finer-
grained than bounding box prediction. Objects in the same component are tight
in configuration space, and thus inference on the object keypoint locations and

A. Fitzgibbon et al. (Eds.): ECCV 2012, Part IV, LNCS 7575, pp. 445–458, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Fig. 1. One key challenge of object categorization is intra-class variations induced by
pose changes, subcategories, etc. Since objects belonging to the same category form
clusters in the appearance and configuration spaces, it is natural to construct individual
models for each cluster and combine them later at the category level. We refer to such
a cluster as component.

segmentation masks becomes feasible. The keypoints and mask of an object can
be predicted from those of its most likely component.

While monolithic models are still common in the literature [7,21], there have
been several influential approaches modeling multiple components of objects
[10,12,5,17]. Nevertheless, each of these methods has it own limitations. Felzen-
szwalb et al.[10] learn global and part components jointly, but the number of
components is pre-defined and not inferred from data. Gu and Ren[12] focus
on modeling only viewpoint variations of objects and ignore other sources of
intra-class variations such as subcategories. Bourdev et al.[5] use keypoints to
align objects but their poselet models typically characterize parts rather than
global objects. Malisiewicz et al.[17] is most similar to our work. However, that
approach uses only one positive instance for training, which significantly reduces
the generalization capacity of each component model and therefore compromises
categorization performance. Last but not least, all these methods use expensive
multi-scale window scanning for object detection, which sets a limit on the num-
ber of components as well as on the ability to apply more sophisticated features
and more powerful classifiers for better accuracy.

To reduce the computation cost during detection, we adopt the popular idea
of object candidate selection [11,1,8,14,21], but implement our own bounding
box generation scheme based on bottom-up segmentation. Our scheme produces
fewer than 500 bounding boxes per image on the VOC2010 dataset, drastically
reducing the search space when compared to exhaustive multiscale window scan-
ning, while maintaining high recall of objects over all 20 categories. Furthermore,
since this scheme does not rely on category-specific knowledge, the number of
candidate windows is independent of the number of categories and thereby scal-
able to large data.

Overall, this paper presents three distinct contributions that, when combined,
provide competitive performance on the PASCAL detection challenge while



Multi-component Models for Object Detection 447

Fig. 2. Comparison of our approach with related previous methods (Latent SVM by
[10], Exemplar SVM by [17], and Selective Search by [21]) in 2D space where the two
axes represent the number of components and the number of window candidates per
image. Our approach is distinct from others by combining multi-component models
and selective window candidates.

Fig. 3. An overview of our detection pipeline. In the training phase (top row), we pick
a seed object from training data, and align the rest of the objects with the seed based
on keypoint and mask annotations. The top aligned objects are then used as positive
set for learning a single-component classifier. Given N seeds, we have N such classifiers.
A second-layer classifier takes the outputs of these component classifiers as input, and
produces a final category-level classification score. In the test phase (bottom row), we
generate a small number of bounding boxes using bottom-up segmentation cues to
avoid exhaustive window scanning. Each candidate box is then scored by our learned
two-layer classifiers. Finally, a non-maximum suppression is applied to generate final
detection results.

enabling finer-grained tasks than bounding box prediction: (1) global and generic
multi-component models characterizing intra-class variation; (2) a category level
classifier aggregating responses from multiple components; (3) a simple yet ef-
fective algorithm allowing prediction of object keypoint locations and masks.
Figure 2 depicts various detection methods in a 2D plot that characterizes the
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number of components of an object model and the number of scanned windows
per image, respectively. This work is, to the best of our knowledge, the first one
addressing the combination of multi-component models and selective window
candidates.

Figure 3 gives an overview of our detection framework. In the training phase,
a two-layer model is learned to capture and aggregate the components of an
object category from data. Each first-layer model is a binary classifier trained
with a seed and a list of aligned objects. In the detection phase, a small number
of candidate bounding boxes are generated for each image using our selection
scheme. After scoring these boxes with our two-layer model, a non-maximum
suppression is applied to produce final detection results.

The rest of the paper is organized as follows. In Section 2, we describe our
bounding box generation scheme. Sections 3 and 4 show how to find and train a
component model. Section 5 describes the mechanism of combining component
model outputs into a final category-level classifier. We discuss the experiments
in Section 6 and conclude in Section 7.

2 Bounding Box Generation

Exhaustive window scanning is computationally expensive when the number of
components scales up to hundreds. Therefore, a bounding box selection scheme
is necessary to prune out windows in an early stage that do not contain any
object. In this paper, we start by applying the segmentation algorithm of [3]
which produces a pool of overlaid segments over scales for an input image. Since
the algorithm uses gPb contour signals as input which recovers almost full recall
of object boundaries at a low threshold, the output segments encode the sizes
and shapes of objects in the input image quite precisely.

Next, each segment in the pool proposes a bounding box which is the smallest
rectangle containing it. This proposal gives us the same number of bounding box
candidates as the number of segments in the pool. Some candidates are identical,
even though their original segments are different. After duplicate removal, we end
up with on average fewer than 500 candidate boxes per image on the PASCAL
VOC 2010 training set. Figure 4 shows for each category the recall of objects
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Fig. 4. Percentage of actual objects found by our bounding box generation on all 20
PASCAL VOC categories. We obtain a recall of 80% or higher among 16/20 categories.
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whose ground truth bounding boxes overlap more than 50% with at least one of
our proposed boxes. In 16/20 categories, we have a recall rate of 80% or higher.

Our object candidate selection scheme proposes bounding boxes efficiently
and category-independently, thus avoiding unnecessary redundancies both in
the image space and across categories. It provides a huge saving of computation
during detection.

3 Finding Components

Clustering of all training data of an object category seems to be a natural strat-
egy for finding the components of that category, since objects belonging to the
same component, by definition, have smaller appearance and configuration dis-
tances to each other. However, in practice, this strategy does not work well. One
main reason is that the components that are less common are very difficult to
discover because they are easily absorbed by the components of common poses
or dominant subcategories. Furthermore, objects within a cluster are, in many
cases, not tight enough to build a robust component model because no global
alignment is enforced among them during clustering.

Therefore, we apply a different two-step strategy to construct each of our
components:

• A “seed” object is picked from the training data which characterizes a com-
ponent.

• The rest of the training objects of the category are aligned to the seed
through a global transformation using the keypoint and mask annotations.
The top aligned objects constitute the positive set of the component.

We use the annotation data from [6] for keypoints and masks of training objects.
These annotations are crowdsourced from Amazon Mechanic Turk. For each
category, 10 to 20 semantically meaningful keypoints (e.g. head, tail, wing tips,
wing bases, and stabilizer tip for aeroplane) are marked on the objects. Invisible
keypoints are not labeled and thus excluded in the global transform step. In
addition, object masks are also labeled using a polygon approximation.

With these additional annotations in hand, we recover a similarity transfor-
mation between two objects and use it to align one object to the other. Precisely,
let I and J be two objects that need to be aligned, and pI , pJ , MI , MJ be their
keypoints and masks, respectively. The transformation matrix T has a close-form
solution when the objective is to minimize the Procrustes distance between two
sets of keypoints pI and pJ . The quality of the alignment can be measured by
the following distance function:

dquality = (1 − λ) · dprocrustes + λ · (1− doverlap)

where dprocrustes =
∑

i∈I(T(p
i
J )− piI)

2 is the Procrustes distance, and

doverlap =
Area(MI ∩ T(MJ ))

Area(MI ∪ T(MJ ))
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Fig. 5. Visualization of some of our components for aeroplane (top) and horse (bottom)
categories. Each row corresponds to a component. The left-most images are seeds; the
middle six images are top aligned objects for each seed; and the right-most images
are averaged mask of top 32 aligned objects. Note that, due to our global alignment
strategy, objects within each component are tight in configuration space.

is the intersection-over-union score between the seed mask and the transformed
object mask. The parameter λ controls the relative weight between the two
terms. In our experiments, we observe that even λ = 1(only the mask scores
count) gives reasonable alignment results. Finally, we sort all aligned objects
for a given seed based on the quality distances defined above, and pick top
32 as positive instances of the component model. In the PASCAL VOC 2010
data, 32 is an empirical choice that is small enough to exclude degraded object
alignment for most components of categories, and big enough to make the model
generalizable.

With one component model set up, we can easily extend this two-step scheme
and construct a set of component models by picking multiple distinct seeds from
the training data. Again, our strategy prevents less-common components from
being absorbed by common ones. Objects within each component are tight in
configuration space after global alignment which enables us to train strong classi-
fiers. Figure 5 shows our alignment results on the aeroplane and horse categories
with three components each. Each component model is a binary classifier and
we will describe the training framework in the next section.

4 Training Components

Each of our component models is a binary classifier characterizing a partic-
ular category component. Given the set of aligned objects obtained from the
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previous section, we conduct the following two-step strategy to complete com-
ponent training process:

• We construct a negative set from all bounding box candidates extracted from
negative training images for each component.

• We learn an Intersection Kernel Support Vector Machine (IKSVM[16,22])
based on the positive and negative sets for each component, and the model
is bootstrapped once by data-mining hard negatives. The SVM scores are
then converted to probabilities through a sigmoid function whose parameters
are also learned from data.

We use four types of features to describe our bounding boxes, three of them
using a spatial pyramid pooling, and the last one using object-centric pooling.
Each component model learns all the feature types separately. Our second layer
classifier, which we will describe in the next section, aggregates the outputs of
all components of all feature types.

4.1 Spatial Pyramid of Vector Quantized SIFT

We implement a spatial pyramid of vector quantized SIFT[13] in the standard
way: interest points are extracted from an image in a grid basis. A set of three-
scale opponent-SIFT[20] descriptors are computed and concatenated to form a
vector at each interest point. These vectors are then quantized to codewords
based on a class-specific codebook. The size of our codebook is 400. Next, we di-
vide each bounding box into 2×2 cells and count the frequencies of the codewords
within each cell where interest points lie. The final descriptor of the bounding
box is the concatenated histograms of codewords within each cell.

4.2 Spatial Pyramid of Poselet Activations

The implementation of this feature is similar to that of the vector quantized
SIFT, except that we replace the SIFT-based codewords by poselet activations.
Poselets[4] have been shown powerful in describing shapes for characteristic parts
of objects. Compared to SIFT features, poselet activations are more sparse, in-
formative, and discriminative. Each poselet fires only twice per image on average
on the VOC dataset, and provides both strength and rectangular support of the
activation. Each poselet model is trained with a highly discriminative classifier.
We use pre-trained models of [5]. A typical number of poselets per category is
100 to 200. We apply a “soft count” strategy to aggregate poselet activations
within an image cell. Denote H(C,w) as the bin value for poselet index i in the
histogram of image cell C.

H(C, i) =
∑

a∈A

S(a)× Area(B(a) ∩B(C))

Area(B(a))
× 1(I(a) = i)

where I(a), S(a) and B(a) are the index, strength, and support of the activation
a, and B(C) is the support of C. Note that we soft count the strength of an
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activation by the fraction of overlap between the support of the activation and
the image cell. It proves essential to smooth out the spatial quantization noise
caused by the activation location with respect to image cells.

4.3 Spatial Pyramid of Local Coordinate Coding with HOG

The work in [15] demonstrates a state-of-the-art image classification system using
spatial pyramid of local coordinate coding (LCC) on local descriptors. Here we
implement a similar feature representation. We sample HOG descriptors[7] on
a dense grid with step size of four pixels. Then each HOG descriptor is coded
using local coordinate coding [23] with codebook size of 8192. Finally, the coding
results are max-pooled with a spatial pyramid representation of 1× 1 and 3× 3
cells.

4.4 Object-Centric Spatial Pooling

The work in [19] demonstrates that object-centric spatial pooling (OCP) is
more effective than traditional spatial pyramid matching(SPM) based pooling
for bounding box classification. Given a bounding box, OCP pools separately the
foreground and background regions to form a bounding box representation. In
contrast to traditional SPM that only performs pooling on foreground, OCP in-
cludes pooling on background and is able to provide more accurate localization.
This is because the learned object detector with OCP will prevent the leakage
of parts of a object into background.

For each candidate bounding box, we generate its feature representation using
object-centric pooling. The way to generate the feature is the same as in Section
4.3 except that the SPM pooling was replaced by OCP.

5 Second-Layer Classifier and Non-Maximum
Suppression

We leverage our learned component classifiers for the task of categorical predic-
tion through learning a second-layer classifier, taking all component outputs of
a bounding box into an input vector, and outputting a single probability score
for that box during detection. Same as the design of component classifiers, our
second-layer is a binary Intersectional Kernel SVM for each category, enabling
the importance of components to be reflected by its learned weights. In order to
avoid overfitting, we use a validation set, separated from the training set that we
use for learning component classifiers, for cross-validating the parameter choices
of our second-layer classifier.

We notice that the choices of positive and negative bounding boxes have a
large impact on the detection performance during second-layer training. Table 1
shows various design choices on the aeroplane category and compares their detec-
tion performance. On the positive data side, enriching the positive set through
adding near-duplicates of positive boxes improves the overall performance. Since



Multi-component Models for Object Detection 453

Table 1. Design choices of second-layer classifier on the aeroplane category of VOC
2010 val dataset using the spatial pyramid of poselet activation features. We notice
that including only hard boxes for negative data and having up to 4 near-duplicates
as positive data both improve the detection performance (mean Average Precision).

Negative Set Positive Set

All Boxes Hard Boxes No Duplicate up to 2 Dup up to 4 Dup

.302 .420 .382 .407 .420

Table 2. Detection results on VOC 2010 val: In order to better understand the
power of each individual feature and their combinations, we run control experiments
on the validation set of VOC 2010 and compare performance using different types of
features. Note that features contribute differently to different categories, and feature
combination is essential for improved performance. S,P,L,O stands for VQ’ed SIFT,
VQ’ed poselet, LCC HOG, and Object-centric features, respectively.

aer bik bir boa bot bus car cat cha cow din dog hor mot per pot she sof tra tvm
S .373 .348 .092 .061 .171 .411 .297 .251 .043 .133 .093 .152 .314 .322 .177 .061 .217 .169 .178 .300
P .420 .361 .167 .108 .171 .585 .321 .266 .117 .218 .193 .272 .325 .433 .255 .150 .308 .260 .350 .422
L .352 .443 .139 .094 .194 .537 .375 .356 .137 .292 .191 .273 .378 .490 .194 .170 .317 .230 .361 .372
O .529 .294 .108 .103 .081 .469 .248 .451 .036 .102 .186 .284 .201 .386 .220 .048 .193 .198 .320 .374
SP .454 .415 .174 .112 .216 .548 .356 .335 .111 .217 .179 .252 .392 .430 .289 .138 .337 .277 .348 .428
SPL .457 .469 .215 .113 .242 .602 .421 .397 .153 .352 .242 .350 .466 .532 .289 .183 .414 .310 .412 .478
SPLO .568 .434 .248 .164 .234 .635 .384 .568 .134 .298 .302 .430 .425 .514 .332 .163 .411 .381 .472 .482

some positive objects may correspond to a large number of bounding boxes, we
apply a multiple-instance-learning[2] framework to automatically pick best set
of near-duplicate boxes for those objects. On the negative data side, we choose
to only include boxes where at least one component classifier fires (we call them
“hard boxes”) in the negative set. This choice enables component selection, as
bad components usually fire everywhere and can be easily identified by this
reduced set.

After all proposed bounding boxes are scored by our two layer classifiers, we
apply non-maximum suppression on these boxes to generate detection results.
The bounding boxes are sorted by their detection scores, and we greedily select
the highest scoring ones while removing those that are sufficiently covered by a
previously selected bounding box. We use 30% as the coverage threshold based
on cross-validation results.

6 Experiments

6.1 Object Detection on PASCAL VOC

We use the standard PASCAL VOC [9] platform to benchmark our detection
framework. Each of our component models is trained on VOC 2010 train data,
and evaluated on 2010 val. We use all but no more than 500 objects from training
data as seed objects. In addition, each seed and its aligned objects are mirrored
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Table 3. Detection Results on VOC 2010 test: This table compares our full system
with other leading approaches on VOC 2010 test data. For each category, the winner
is shown in bold font and the runner-up in italics. The performance of our approach
is highly competitive.

aer bik bir boa bot bus car cat cha cow din dog hor mot per pot she sof tra tvm
[5] .332 .519 .085 .082 .348 .390 .488 .222 - .206 - .185 .482 .441 .485 .091 .280 .130 .225 .330
[10] .524 .543 .130 .156 .351 .542 .491 .318 .155 .262 .135 .215 .454 .516 .475 .091 .351 .194 .466 .380
[21] .582 .419 .192 .140 .143 .448 .367 .488 .129 .281 .287.394 .441 .525 .258 .141.388.342 .431 .426

NLPR .533 .553.192.210 .300 .544 .467 .412 .200.315 .207 .303 .486 .553 .465 .102 .344 .265 .503 .403
[24] .542 .485 .157 .192 .292 .555 .435 .417 .169 .285 .267 .309 .483 .550 .417 .097 .358 .308 .472 .408

NUS .491 .524 .178 .120 .306 .535 .328 .373 .177 .306 .277 .295 .519.563 .442 .096 .148 .279 .495 .384
Ours .537 .429 .181 .165 .235 .481 .421 .454 .067 .234 .277 .352 .407 .490 .320 .116 .346 .287 .433 .392

Table 4. Detection Results on VOC 2007 test: This table compares the results on
VOC 2007 test set between our multi-component(MC) model and the monolithic(MN)
model using the same feature set and training data. Note the improvement of multi-
component model over monolithic model on almost every category. In addition, our
model also outperforms [17] that trains each component model using only one positive
instance.

aer bik bir boa bot bus car cat cha cow din dog hor mot per pot she sof tra tvm avg
MN .248 .268 .059 .109 .092 .381 .375 .228 .097 .163 .236 .147 .252 .260 .177 .104 .197 .211 .210 .358 .209
MC .334 .370 .150.150.226.431.493.328 .115 .358 .178 .163 .436 .382 .298.116.333.235 .302 .396.290
[17] .208 .480 .077 .143 .131 .397 .411 .052 .116 .186 .111 .031 .447.394 .169 .112 .226 .170 .369 .300 .227

to produce a left-right symmetric model. These design choices end up with 400
to 1000 components, depending on the category.

Table 2 illustrates the power of individual features and their combinations.
The mean average precisions(mAP) of all categories on VOC 2010 val are shown.
Note that features play different roles in different object categories. Furthermore,
feature combination significantly improves performance on all categories.

Table 3 compares the results of our full system with leading approaches on the
VOC 2010 test set. Our results are highly competitive to the leading performance
on this benchmark.

6.2 Multi-Component vs. Monolithic vs. Per Exemplar Models

In addition to knowing where our approach stands in the detection field, we
are also interested in knowing how much we benefit from our multi-component
scheme. Table 4 illustrates control experiments that compare our multi-
component model with a monolithic model using the same set of features (SIFT
and poselet activations) as well as training data (the positive set of the mono-
lithic model is the set of all positive data used in the component models). We
conclude from the table that our multi-component model handles intra-class
variations better than the monolithic model and therefore yields much improved
results for all PASCAL categories.

On the other hand, our results are significantly better than [17] which uses a
single object per component as positive set. This illustrates the generalization
power of our component models through global object alignment.
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Fig. 6. Visualization of our detection results on PASCAL VOC dataset. Red bounding
boxes indicate detection. Figures on the left show correct detection, while figures on
the right show some failure cases. Many are due to heavy occlusion/trancation, poor
localization, and confusion between similar categories.

6.3 Keypoints and Mask Transfer via Component Models

Like [11,17], our multi-component models provide more information than just
bounding boxes in the object detection framework. The output scores of the first-
layer component classifiers imply the most similar component in appearance and
configuration to a detected object. We refer to the one assigning the highest score
to a detection as the “matching” component of that detection. See Figure 7 for
some examples. Since training objects are tight within a component, a projection
of the keypoints and mask of the seed object onto the test image based on the
transformation between the seed and the detection windows provides reasonable
estimates of the keypoint locations and the mask of the detected object. This is
a straight-forward yet useful application which is difficult to obtain from most
previous related work.
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(a) aeroplane (b) bicycle (c) bottle

(d) bus (e) cat (f) chair

(g) diningtable (h) dog (i) horse

(j) person (k) sofa (l) train

Fig. 7. Our multi-component models enable fine-grained visual recognition applications
such as keypoint prediction and segmentation, as shown in the figures above. Each
detected object in the test image (shown in the top-right of each category) is associated
with a “matching” component that assigns the highest detection score to the object.
The two figures on the left of each category depict the seed object (with its keypoints
marked in blue) and the average mask of the “matching” component. Inference on
keypoint locations and mask of the test object is obtained through a transformation
between the bounding box of the seed and that of the test object, as well as bottom-up
segmentation cues. The two figures on the right of each category show our results,
where estimated keypoint locations are marked in pink, and segmentation mask in red.
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In fact, further improvement on object mask prediction can be achieved
through two modifications on the projection pipeline. First, the average mask of
all aligned objects of the component is a more robust measurement of component
mask than that of the seed. Second, the bottom-up image segmentation cues can
be used to refine our results. Suppose that the final object mask is a selected
union of the image segments, our objective is to maximize the amount of overlap
of the final object mask to the transformed mask of the matching component.
We use a greedy selection solution to approximate the result. Starting with the
single best segment among the pool that overlaps with the transformed mask,
we pick a segment from the pool at each iteration and merge it with the current
mask so that it maximizes the intersection-over-union score. The iteration con-
tinues until the score starts to decrease. In practice, this approximation works
very well, and Figure 7 highlights our mask prediction results.

7 Conclusion

This paper presents a novel multi-component model that, combined with object
window selection, achieves highly competitive results for object detection. Each
component characterizes a pose or subcategory of an object category, and objects
within each component are tight in appearance and configuration. Therefore,
component models are both easy to learn and highly discriminative. A second
layer classifier is learned to aggregate the outputs of component models into final
scores. We also illustrate applications of our multi-component models beyond
detection, e.g., object keypoint and mask prediction.

Acknowledgments. We thank ONR MURI N00014-10-10933 for their support
to this work. This research was conducted as part of Chunhui Gu”s Phd thesis
at UC Berkeley.
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Abstract. Object detection has over the past few years converged on
using linear SVMs over HOG features. Training linear SVMs however is
quite expensive, and can become intractable as the number of categories
increase. In this work we revisit a much older technique, viz. Linear Dis-
criminant Analysis, and show that LDA models can be trained almost
trivially, and with little or no loss in performance. The covariance matri-
ces we estimate capture properties of natural images. Whitening HOG
features with these covariances thus removes naturally occuring correla-
tions between the HOG features. We show that these whitened features
(which we call WHO) are considerably better than the original HOG fea-
tures for computing similarities, and prove their usefulness in clustering.
Finally, we use our findings to produce an object detection system that
is competitive on PASCAL VOC 2007 while being considerably easier to
train and test.

1 Introduction

Over the last decade, object detection approaches have converged on a single
dominant paradigm: that of using HOG features and linear SVMs. HOG fea-
tures were first introduced by Dalal and Triggs [1] for the task of pedestrian
detection. More contemporary approaches build on top of these HOG features
by allowing for parts and small deformations [2], training separate HOG detec-
tors for separate poses and parts [3] or even training separate HOG detectors
for each training exemplar [4].

Figure 1(a) shows an example image patch of a bicycle, and a visualization of
the corresponding HOG feature vector. Note that while the HOG feature vector
does capture the gradients of the bicycle, it is dominated by the strong contours
of the fence in the background. Figure 1(b) shows an SVM trained using just
this image patch as a positive, and large numbers of background patches as
negative [4]. As is clear from the figure, the SVM learns that the gradients of
the fence are unimportant, while the gradients of the bicycle are important.
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(a) Image (left) and HOG (right) (b) SVM

(c) PCA (d) LDA

Fig. 1. Object detection systems typically use HOG features, as in (a). HOG features
however are often swamped out by background gradients. A linear SVM learns to stress
the object contours and suppress background gradients, as in (b), but requires extensive
training. An LDA model, shown in (d), has a similar effect but with negligible training.
PCA on the other hand completely kills discriminative gradients, (c). The PCA, LDA
and SVM visualizations show the positive and negative components separately, with
the positive components on the left and negative on the right.

However, training linear SVMs is expensive. Training involves expensive boot-
strapping rounds where the detector is run in a scanning window over multiple
negative images to collect “hard negative” examples. While this is feasible for
training detectors for a few tens of categories, it will be challenging when the
number of object categories is of the order of tens of thousands, which is the
scale in which humans operate.

However, linear SVMs aren’t the only linear classifiers around. Indeed, Fisher
proposed his linear discriminant as far back as 1936 [5]. Fisher discriminant
analysis tries to find the direction that maximizes the ratio of the between-class
variance to the within-class variance. Linear discriminant analysis (LDA) is a
generative model for classification that is equivalent to Fisher’s discriminant
analysis if the class covariances are assumed to be equal. Textbook accounts of
LDA can be found, for example, in [6,7]. Given a training dataset of positive and
negative features (x, y) with y ∈ {0, 1}, LDA models the data x as generated
from class-conditional Gaussians:

P (x, y) = P (x|y)P (y) where P (y = 1) = π and P (x|y) = N(x;μy, Σ)

where means μy are class-dependent but the covariance matrix Σ is
class-independent. A novel feature x is classified as a positive if P (y = 1|x) >
P (y = 0|x), which is equivalent to a linear classifier with weights given by
w = Σ−1(μ1 − μ0). Figure 1(d) shows the LDA model trained with the bicy-
cle image patch as positive and generic image patches as background. Clearly,
like the SVM, the LDA model suppresses the contours of the background, while
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enhancing the gradients of the bicycle. LDA has been used before in computer
vision, one of the earliest and most popular appications being face recognition [8].

Training an LDA model requires figuring out the means μy and Σ. However,
unlike an SVM which has to be trained from scratch for every object category, we
show that μ0 (corresponding to the background class) and Σ can be estimated
just once, and reused for all object categories, making training almost trivial.
Intuitively, LDA computes the average positive feature μ1, centers it with μ0,
and “whitens” it with Σ−1 to remove correlations. The matrix Σ acts as a
model of HOG patches of natural images. For instance, as we show in section 2,
this matrix captures the fact that adjacent HOG cells are highly correlated
owing to curvilinear continuity. Thus, not all of the strong vertical gradients in
the HOG cells of Figure 1(a) are important: many of them merely reflect the
continuity of contours. Removing these correlations therefore leaves behind just
the discriminative gradients.

The LDA model is just the difference of means in a space that has been
whitened using the covariance matrix Σ. This suggests that this whitened space
might be significant outside of just training HOG classifiers. In fact, we find that
dot products in this whitened space are more indicative of visual similarity than
dot products in HOG space. Consequently, clustering whitened HOG feature
vectors (which we call WHO for Whitened Histogram of Orientations) gives
more coherent and often semantically meaningful clusters.

Principal components analysis (PCA) is a related method that has been ex-
plored for tasks such as face recognition [9] and tools for dimensionality reduction
in object recognition [10]. In particular, Ke and Sukthankar [11] and Schwartz
et al [12] examine (linear) low-dimensional projections of oriented gradient fea-
tures. In PCA, the data is projected onto the directions of the most variation,
and the directions of least variation are ignored. However, for our purposes, the
directions that are ignored are often those that are the most discriminative. Fig-
ure 1(c) shows the result of projecting the data down to the top 30 principal
components. Clearly, this is even worse than the original HOG space: contours
of the bicycle are more or less completely discarded. Our observations mirror
those of Belhumeur et al [8] who showed that in the context of face recognition,
the directions retained by PCA often correspond to variations in illumination
and viewing direction, rather than variations that would be discriminative of the
identity of the face. [8] conclude that Fisher’s discriminant analysis outperforms
PCA on face recognition tasks. In section 4 we show concretely that the low
dimensional subspace chosen by PCA is significantly worse than whitened HOG
as far as computing similarity is concerned.

Our aim in this paper is therefore to explore the advantages provided by
whitened HOG features for clustering and classification. In section 2 we go into
the details of our LDA models, describing how we obtain our covariance matrix,
and the properties of the matrix. Section 3 describes our first set of experi-
ments on the INRIA pedestrian detection task, showing that LDA models can
be competitive with linear SVMs. Section 4 outlines how WHO features can be
used for clustering exemplars. We then use these clusters to train detectors, and
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evaluate the performance of the LDA model vis-a-vis SVMs and other choices
in section 5. In section 6 we tie it all together to produce a final object detec-
tion system that performs competitively on the PASCAL VOC 2007 dataset,
while being orders-of-magnitude faster to train (due to our LDA classifiers) and
orders-of-magnitude faster to test (due to our clustered representations).

2 Linear Discriminant Analysis

In this section, we describe our model of image gradients based on LDA. For
our HOG implementation, we use the augmented HOG features of [2]. Briefly,
given an image window of fixed size, the window is divided into a grid of 8 × 8
cells. From each cell we extract a feature vector xij of gradient orientations
of dimensionality d = 31. We write x = [xij ] for the final window descriptor
obtained by concatenating features across all locations within the window. If
there are N cells in the window, the feature vector has dimensionality Nd.

The LDA model is a linear classifier over x with weights given by w =
Σ−1(μ1 − μ0). Here Σ is an Nd × Nd matrix, and a naive approach would
require us to estimate this matrix again for every value of N and also for every
object category. In what follows we describe a simple procedure that allows us
to learn a Σ and a μ0 (corresponding to the background) once, and then reuse
it for every window size N and for every object category. Given a new object
category, we need only a set of positive features which are averaged, centered,
and whitened to compute the final linear classifier.

2.1 Estimating μ0 and Σ

Object-Independent Backgrounds: Consider the task of learning K 1-vs-all
LDA models from a multi-class training set spanning K objects and background
windows. One can show that the maximum likelihood estimate of Σ is the sample
covariance estimated across the entire training set, ignoring class labels. If we
assume that the number of instances of any one object is small compared to the
total number of windows, we can similarly define a generic μ0 that is independent
of object type. This means that we can learn a generic μ0 and Σ from unlabeled
windows, and this need not be done anew for every object category.

Marginalization: We are now left with the task of estimating a μ0 and Σ for
every value of the window size N . However, note that the statistics of smaller-size
windows can be obtained by marginalizing out statistics of larger-size windows.
Gaussian distributions can be marginalized by simply dropping the marginalized
variables from μ0 and Σ. This means that we can learn a single μ0 and Σ for
the largest possible window of N0 cells, and generate means and covariances for
smaller window sizes “on-the-fly” by selecting subpartitions of μ0 and Σ. This
reduces the number of parameters to be estimated to an N0d dimensional μ0

and an N0d×N0d matrix Σ.

Scale and Translation Invariance: Image statistics are largely scale and
translation invariant [13]. We achieve such invariance by including training
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windows extracted from different scales and translations. We can further ex-
ploit translation invariance, or stationarity in statistical terms, to reduce the
number of model parameters. To encode a stationary μ0, we compute the mean
HOG feature μ = E[xij ], averaged over all features x and cell locations (i, j). μ0

is just μ replicated over all N0 cells.
Write Σ as a block matrix with blocks Σ(ij),(lk) = E[xijx

T
lk]. We then in-

corporate assumptions of translation invariance by modeling Σ with a spatial
autocorrelation function [14]:

Σ(ij),(lk) = Γ(i−l),(j−k) = E[xuvx
T
(u+i−l),(v+j−k)] (1)

where the expectation is over cell locations (u, v) and gradient features x. In
other words, we assume that Σ(ij),(kl) depends only on the relative offsets (i−k)
and (j − l). Thus instead of estimating an N0d × N0d matrix Σ, we only have
to estimate the d × d matrices Γs,t for every offset (s, t). For a spatial window
with N0 cells, there exist only N0 distinct relative offsets. Thus we only need to
estimate O(N0d

2) parameters.
We now estimate μ and the matrices Γs,t from all subwindows extracted from

a large set of unlabeled, 10,000 natural images (the PASCAL VOC 2010 dataset).
This computation can be done once and for all, and the resulting μ and Γ stored.
Then, given a new object category, μ0 can be reconstructed by replicating μ over
all the cells in the window and Σ can be reconstructed from Γ using (1).

Regularization: Even given this large training set and our O(N) parametriza-
tion, we found Σ to be low-rank and non-invertible. This implies that it would
be even more difficult to learn a separate covariance matrix for each positive
class because we have much fewer positive examples, further motivating a single-
covariance assumption. In general, it is difficult to learn high-dimensional covari-
ance matrices [14]. For typical-size N values, Σ can grow to a 10, 000× 10, 000
matrix. One solution is to enforce conditional independence assumptions with a
Gaussian Markov random field; we discuss this further below. In practice, we reg-
ularized the sample covariance by adding a small value (λ = .01) to its diagonal,
corresponding to an isotropic prior on Σ.

2.2 Properties of the Covariance Matrix

WHO: We define a whitened histograms of orientations (WHO) descriptor as
x̂ = Σ−1/2(x − μ0). The transformed feature vector x̂ then has an isotropic
covariance matrix. An alternative interpretation of the linear discriminant is that
w computes the difference between the average positive and negative features
in WHO space. Such descriptors maybe useful for clustering because euclidean
distances are more meaningful in this space. We explore this further in section 4.
We use a cholesky decomposition RRT = Σ and Gaussian elimination (Matlab’s
blackslash) to efficiently compute this whitening transformation.

Analysis:We examine the structure of Σ in Fig.2. Intuitively, Σ encodes generic
spatial statistics about oriented gradients. For example, due to curvilinear con-
tinuity, we expect a strong horizontal gradient response to be correlated with a
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strong response at a horizontally-adjacent location. Multiplying gradient features
by Σ−1 subtracts off such correlated measurements. Because Σ−1 is sparse, fea-
tures need only be de-correlated with adjacent or nearby spatial locations. This
in turn suggests that image gradients can be fit will with a 3rd or 4th-order
spatial Markov model, which may make for easier estimation and faster com-
putations. A spatial Markov assumption makes intuitive sense; given we see a
strong horizontal gradient at a particular location, we expect to see a strong
gradient to its right regardless of the statistics to its left. We experimented with
such sparse models [15], but found an unrestricted Σ to work well and simpler
to implement.

Implications: Our statistical model, though quite simple, has several implica-
tions for scanning-window templates. (1) One should learn templates of larger
spatial extent than the object. For example, a 2nd-order spatial Markov model
implies that one should score gradient features two cells away from the object
border in order to de-correlate features. Intuitively, this makes sense; a pedes-
trian template wants to find vertical edges at the side of the face, but if it also
finds vertical edges above the face, then this evidence maybe better explained by
the vertical contour of a tree or doorway. Dalal and Triggs actually made the em-
pirical observation that larger templates perform better, but attributed this to
local context [1]; our analysis suggests that decorrelation may be a better expla-
nation. (2) Current strategies for modeling occlusion/truncation by “zero”ing
regions of a template may not suffice [16,17]. Rather, our model allows us to
properly marginalize out such regions from μ and Σ. The resulting template
w will not be equivalent to a zero-ed out version of the original template, be-
cause the de-correlation operation must change for gradient features near the
occluded/truncated regions.
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Fig. 2.We visualize correlations between 9 orientation features in horizontally-adjacent
HOG cells as concatenated set of 9 × 9 matrices. Light pixels are positive while dark
pixels are negative. We plot the covariance and precision matrix on the left, and the
positive and negative values of the precision matrix on the right. Multiplying a HOG
vector with Σ−1 decorrelates it, subtracting off gradient measurements from adjacent
orientations and locations. The sparsity pattern of Σ−1 suggests that one needs to
decorrelate features only a few cells away, indicating that gradients maybe well-modeled
by a low-order spatial Markov model.
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(a) AP (b) Centered (c) LDA

Fig. 3. The performance (AP) of the LDA model and the centered model (LDA with-
out whitening) vis-a-vis a standard linear SVM on HOG features. We also show the
detectors for the centered model and the LDA model.

3 Pedestrian Detection

HOG feature vectors were first described in detail in [1], where they were shown
to significantly outperform other competing features in the task of pedestrian de-
tection. This is a relatively easy detection task, since pedestrians don’t vary sig-
nificantly in pose. Our local implementation of the Dalal-Triggs detector achieves
an average precision (AP) of 79.66% on the INRIA dataset, outperforming the
original AP of 76.2% reported in Dalal’s thesis [18]. We think this difference is
due to our SVM solver, which implements multiple passes of data-mining for
hard negatives. We choose this task as our first test bed for WHO features.

We use our LDA model to train a detector and evaluate its performance.
Figure 3 shows our performance compared to that of a standard linear SVM on
HOG features. We achieve an AP of 75.10%. This is slightly lower than the SVM
performance, but nearly equivalent to the original performance of [18]. However,
note that compared to the SVM model, the LDA model is estimated only from a
few positive image patches and neither requires access to large pools of negative
images nor involves any costly bootstrapping steps. Given this overwhelmingly
reduced computation, this performance is impressive.

Constructing our LDA model from HOG feature vectors involves two steps,
i.e, subtracting μ0 (centering) and multiplying by Σ−1 (whitening). To tease
out the contribution of whitening, we also evaluate the performance when the
whitening step is removed. In other words, we consider the detector formed by
simply taking the mean of the centered positive feature vectors. We call this
the “centered model”, and its performance is indicated by the black curve in
Figure 3. It achieves an AP of less than 10%, indicating that whitening is crucial
to performance. We also show the detectors in Figure 3, and it can be clearly
seen that the LDA model does a better job of identifying the discriminative
contours (the characteristic shape of the head and shoulders) compared to simple
centering.
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4 Clustering in WHO Space

Owing to large intra-class variations in pose and appearance, a single linear
classifier over HOG feature vectors can hardly be expected to do well for generic
object detection. Hence many state of the art methods train multiple “mixture
components”, multiple “parts” or both [3,2]. These mixture components and
parts are either determined based on extra annotations [3], or inferred as latent
variables during training [2]. [4] consider an extreme approach and consider
each positive example as its own mixture component, training a separate HOG
detector for each example.

In this section we consider a cheaper and simpler strategy of producing compo-
nents by simply clustering the feature vectors. As a test bed we use the PASCAL
VOC 2007 object detection dataset (train+val) [19]. We first cluster the exem-
plars of a category using kmeans on aspect ratio. Then for each cluster, we resize
the exemplars in that cluster to a common aspect ratio, compute feature vectors
on the resulting image patches and finally subdivide the clusters using recursive
normalized cuts [20]. The affinity we use for N-cuts is the exponential of the
cosine of the angle between the two feature vectors.

We can either cluster using HOG feature vectors or using WHO feature vec-
tors (x̂ = Σ−1/2(x−μ0), see section 2). Alternatively, we can use PCA to project
HOG features down to a low dimensional space (we use 30 dimensions), and clus-
ter in that space. Figure 4 shows an example cluster obtained in each case for the
’bus’ category. The cluster based on WHO features is in fact semantically mean-
ingful, capturing buses in a particular pose. HOG based clustering produces less
coherent results, and the cluster becomes significantly worse when performed
in the dimensionality-reduced space. This is because as Figure 1 shows, HOG
overstresses background, whereas whitening removes the correlations common in
natural images, leaving behind only discriminative gradients. PCA goes the op-
posite way and in fact removes discriminative directions, making matters worse.
Figure 5 shows some more examples of HOG-based clusters and WHO-based
clusters. Clearly, the WHO-based clusters are significantly more coherent.

5 Training Each Cluster

We now turn to the task of training detectors for each cluster. Following our
experiments in section 3, we have several choices:

1. Train a linear SVM for each cluster, using the images of the cluster as pos-
itives, and image patches from other categories/background as negatives
(SVM on cluster).

2. Train an LDA model on the cluster, i.e, use w = Σ−1(xmean − μ0) (LDA on
cluster).

3. Take the mean of the centered HOG features of the patches in the cluster,
i.e use w = xmean − μ0 (“centered model” on cluster).

[4] treat each exemplar separately, and get their boost from training to discrim-
inate each exemplar from the background. On the other hand we believe that
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(a) HOG (b) PCA (c) WHO

Fig. 4. Clusters obtained using N-cuts using HOG feature vectors, HOG vectors pro-
jected to a PCA basis and WHO feature vectors. Observe that while all clusters make
mistakes, the HOG-based cluster is much less coherent than the WHO-based cluster.
The PCA cluster is even less coherent than the HOG-based cluster.

we can get bigger potential gains by averaging over multiple positive examples.
In order to evaluate this, we also consider the following choices:

4. Train an LDA model on just the medoid, i.e w = Σ−1(xmedoid − μ0) (LDA
on the medoid).

5. Take the medoid of the cluster and train a linear SVM, using the medoid as
positive and image patches from other categories/background as negative.

We take the clusters obtained as described in the previous section for three cat-
egories : horse, motorbike and bus. For each cluster we train detectors according
to the five schemes above. We then run each detector on the test set of PASCAL
VOC 2007, and compute its AP. The ground truth for each cluster consists of
all objects of that category.

Table 1 shows a summary comparison of the five schemes, and Figure 6 com-
pares the performance of the LDA model with the other four schemes in more
detail. First note that both single-example schemes perform worse than the LDA
model. Indeed, for all but 6 of the 77 clusters tested, the LDA model achieves a
higher AP than a single SVM trained using the medoid. This clearly shows that
simple averaging over similar positive examples helps more than explicitly train-
ing to discriminate single exemplars from the background. This also provides an
indirect validation of our clustering step, since it indicates that each cluster is
coherent enough to be better than any single individual example. In our experi-
mental results, we further quantitatively evaluate our clusters by demonstrating
that they perform similarly to “brute-force” methods that train a separate exem-
plar template for every member of every cluster [4]. Our clustered representation
performs similarly while being faster to evaluate.

Secondly, observe that on average the performance of the LDA model is very
similar to the performance of a linear SVM, and is also highly correlated with
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(a) horse

(b) aeroplane

Fig. 5. Examples of clusters obtained for aeroplane and horse using HOG feature vec-
tors (left) and WHO feature vectors (right). Note how the clusters based on WHO are
significantly more coherent than the clusters based on HOG.

it. This reiterates our observations on the pedestrian detection task in section 3.
This also indicates that our LDA model can be used in place of SVMs for HOG
based detectors with little or no loss in performance, at a fraction of the com-
putational cost and with very little training data.

Finally, the performance of the centered model without whitening is much
lower than the LDA model, and is in fact significantly worse than even the single-
example models. This again shows that decorrelation, and not just centering, is
crucial for performance.

6 Combining across Clusters

In this section we attempt to tie the previous two sections together to produce
a full object detection system. We compare here to the approach of [4], who
show competitive performance on PASCAL VOC 2007 by simply training one
linear SVM per exemplar. This performance is impressive given that they use
only HOG features and do not have any parts [2,3].
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Table 1. Mean and median AP (in %) of the different models

LDA on cluster SVM on cluster LDA on medoid SVM on medoid Centered

Mean AP 7.59 ± 4.86 6.75± 4.80 4.84 ± 4.13 4.05 ± 4.12 0.74 ± 2.02

Median AP 9.25 ± 3.86 9.16± 4.04 4.65 ± 3.71 2± 3.6 0.06 ± 0.7
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Fig. 6. Performance (AP) of the LDA model compared to (from left to right) an SVM
trained on the cluster, the centered model trained on the cluster, an SVM trained on
the medoid and an LDA model trained on the medoid. The blue line is the y = x line.
The LDA performs significantly better than both the single-example approaches and
is comparable to an SVM trained on the cluster.

We agree with them on the fact that using multiple components instead of
single monolithic detectors is necessary for handling the large intra-class varia-
tion. However, training a separate SVM for each positive example entails a huge
computational complexity. Because the negative class for each model is essen-
tially the background, one would ideally learn background statistics just once,
and simply plug it in for each model.

LDA allows us to do precisely that. Background statistics in the form of Σ
and μ are computed just once, and training only involves computing the mean
of the positive examples. This reduces the computational complexity drastically:
using LDA we can train all exemplar models of a particular category on a single
machine in a few minutes. Table 2 shows how exemplar-LDA models compare
to exemplar-SVMs [4]. As can be seen, there is little or no drop in performance.

Replacing SVMs by LDA significantly reduces the complexity at train time.
However at test time, the computational complexity is still high because one
has to run a very large number of detectors over the image. We can reduce this
computational complexity considerably by first clustering the positive examples
as described in Section 4. We then train one detector for each cluster, resulting
in far fewer detectors. For instance, the ’horse’ category has 403 exemplars but
only 29 clusters.

To build a full object detection system, we need to combine these cluster
detector outputs in a sensible way. Following [4], we train a set of rescoring
functions that rescore the detections of each detector. Note that only detections
that score above a threshold are rescored, while the rest are discarded.

We train a separate rescoring function for each cluster. For each detection,
we construct two kinds of features. The first set of features considers the dot
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Table 2. Our performance on VOC 2007, reported as AP in %. We compare with
ESVM+Calibr and ESVM+Co-occ [4]. “ELDA+Calibr” constructs exemplar models
using LDA, followed by a simple calibration step [4]. The last three columns show the
performance using our clusters instead of individual exemplars. “Ours-only 1” is our
performance using only the “sibling” features, while “Ours- only 2” is our performance
using only the context features. Clearly both sets of features give us a boost. Our full
model performs similarly to [4], but is much faster to train and test.

ESVM ESVM ELDA Ours-only 1 Ours-only 2 Ours-full
+Calibr +Co-occ +Calibr

aeroplane 20.4 20.8 18.4 17.4 22.1 23.3
bicycle 40.7 48.0 39.9 35.5 37.4 41.0
bird 9.3 7.7 9.6 9.7 9.8 9.9
boat 10.0 14.3 10.0 10.9 11.1 11.0
bottle 10.3 13.1 11.3 15.4 14.0 17.0
bus 31.0 39.7 39.6 17.2 18.0 37.8
car 40.1 41.1 42.1 40.3 36.8 38.4
cat 9.6 5.2 10.7 10.6 6.5 11.5
chair 10.4 11.6 6.1 10.3 11.2 11.8
cow 14.7 18.6 12.1 14.3 13.5 14.5

diningtable 2.3 11.1 3 4.1 12.1 12.2
dog 9.7 3.1 10.6 1.8 10.5 10.2
horse 38.4 44.7 38.1 39.7 43.1 44.8

motorbike 32.0 39.4 30.7 26.0 25.8 27.9
person 19.2 16.9 18.2 23.1 21.3 22.4

pottedplant 9.6 11.2 1.4 4.9 5.1 3.1
sheep 16.7 22.6 12.2 14.1 13.8 16.3
sofa 11.0 17.0 11.1 8.7 12.2 8.9
train 29.1 36.9 27.6 22.1 30.6 30.3

tvmonitor 31.5 30.0 30.2 15.2 12.8 28.8

Mean 19.8 22.6 19.1 17.0 18.3 21.0

product of the WHO feature vector of the detection window with the WHO
feature vector of every exemplar in the cluster. This gives us as many features
as there are examples in the cluster. These features encode the similarity of the
detection window with the purported “siblings” of the detection window, namely
the exemplars in the cluster.

The second set of features is similar to context features as described in [4,3].
We consider every other cluster and record its highest scoring detection that
overlaps by more than 50% with this detection window. These features record
the similarity of the detection window to other clusters and allow us to boost
scores of similar clusters and suppress scores of dissimilar clusters.

These features together with the original score given by the detector form
the feature vector for the detection window. We then train a linear SVM to
predict which detection windows are indeed true positives, and fit a logistic to
the SVM scores. At test time the detections of each cluster detector are rescored
using these second-level classifiers, and then standard non-max suppression is
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Fig. 7. Detection and appearance transfer. The top row shows detections while in the
bottom row the detected objects have been replaced by the most similar exemplars.

performed to produce the final, sparse set of detections. Note that this second
level rescoring is relatively cheap since only detection windows that score above
a threshold are rescored. Indeed, our cluster detectors can be thought of as the
first step of a cascade, and significantly more sophisticated methods can be used
to rescore these detection windows.

As shown in Table 2, our performance is very close to the performance of
the Exemplar SVMs. This is in spite of the fact that our first-stage detectors
require no training at all, and our second stage rescoring functions have an order
of magnitude fewer parameters than ESVM+Co-occ [4] (for instance, for the
horse category, in the second stage we have fewer than 2000 parameters, while
ESVM+Co-occ has more than 100000). Although our performance is lower than
part-based models [2], one could combine such approaches and possibly train
parts with LDA.

Finally, each detection of ours is associated with a cluster of training exem-
plars. We can go further and associate each detection to the closest exemplar
in the cluster, where distance is defined as cosine distance in WHO space. This
allows us to match each detection to an exemplar, as in [4]. Figure 7 shows ex-
amples of detections and the training exemplars they are associated with. As
can be seen, the detections are matched to very similar and semantically related
exemplars.

7 Conclusion

Correlations are naturally present in features used in object detection, and we
have shown that significant advantages can be derived by accounting for these
correlations. In particular, LDA models trained using these correlations can be
used as a highly efficient alternative to SVMs, without sacrificing performance.
Decorrelated features can also be used for clustering examples, and we have
shown that the combination of these two ideas allows us to build a competitive
object detection system that is significantly faster not just at train time but
also at run time. Our work can be built upon to produce state-of-the-art object
detection systems, mirroring the developments in SVM-based approaches [2,3].
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Our statistical models also suggest that natural image statistics, largely ignored
in the field of object detection, are worth (re)visiting. For example, gradient
statistics may be better modeled with heavy-tailed distributions instead of our
Gaussian models [13]. However, the ideas expressed here are quite general, and
as we have shown, can also be applied to tasks other than object detection, such
as clustering.
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Abstract. We introduce a new framework for image classification that
extends beyond the window sampling of fixed spatial pyramids to include
a comprehensive set of windows densely sampled over location, size and
aspect ratio. To effectively deal with this large set of windows, we derive a
concise high-level image feature using a two-level extraction method. At
the first level, window-based features are computed from local descriptors
(e.g., SIFT, spatial HOG, LBP) in a process similar to standard feature
extractors. Then at the second level, the new image feature is determined
from the window-based features in a manner analogous to the first level.
This higher level of abstraction offers both efficient handling of dense
samples and reduced sensitivity to misalignment. More importantly, our
simple yet effective framework can readily accommodate a large number
of existing pooling/coding methods, allowing them to extract features
beyond the spatial pyramid representation.

To effectively fuse the second level feature with a standard first level
image feature for classification, we additionally propose a new learning
algorithm, called Generalized Adaptive �p-norm Multiple Kernel Learn-
ing (GA-MKL), to learn an adapted robust classifier based on multiple
base kernels constructed from image features and multiple sets of pre-
learned classifiers of all the classes. Extensive evaluation on the object
recognition (Caltech256) and scene recognition (15Scenes) benchmark
datasets demonstrates that the proposed method outperforms state-of-
the-art image classification algorithms under a broad range of settings.

Keywords: Image Classification, Spatial Pyramid, Sliding Window, Mul-
tiple Kernel Learning, Adapted Classifier.

1 Introduction

A well-established approach to image classification was introduced in [1], where
an image is subdivided into increasingly finer regions according to a spatial pyra-
mid representation (SPR), and then a Bag-of-Features (BoF) [2, 3] is computed
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within each of the subregions. In the past few years, many sophisticated feature
extraction techniques have been extended from this framework [4–10].

While the spatial pyramid representation has become widely used in image
classification, the grid cells within a pyramid correspond to a rather limited set
of spatial regions where features are defined: the cells have a fixed aspect ratio;
their areas vary only by multiples of four; and their locations must align with
a grid. Many of the possible spatial regions are excluded, though some of them
may provide important discriminative information.

Motivated by the success of sliding windows in object detection [11], we seek
in this paper a general framework for image classification that accounts for a
comprehensive set of windows densely sampled with respect to location, size,
and aspect ratio, while allowing existing methods for encoding and pooling to
be incorporated. However, two important issues arise from a direct approach.
One is that the feature vector would become extremely large, since it is formed
as a concatenation of features from each of the windows. Such large feature
vectors would make image classification computationally very inefficient. The
other issue that seriously impairs this approach is that different images are often
not aligned with each other in image classification scenarios. Feature vectors
with a strong spatial structure can therefore be detrimental when corresponding
features do not coincide in image position.1

To avoid these issues, we propose a simple but effective image feature derived
from densely sampled windows that is relatively compact and less sensitive to
misalignment. This feature represents an image-level abstraction of the window-
based features used in [1]. It is obtained via a two-level feature extraction method
in which the first level computes window-based features from local descriptors
(e.g., SIFT, spatial HOG, LBP), and the second level repeats the encoding and
pooling procedure on the window-based features to acquire the new image fea-
ture. Feature pooling over the image yields a feature vector with the same number
of elements as the codebook. Moreover, as in window-based features [1], exact
positional information within the image is left out of the image feature in the
same manner. This image feature implicitly captures useful spatial information,
and will be shown to enhance classification performance when added to SPR.
Furthermore, various pooling/coding techniques [6–10, 12] which extract features
only from fixed spatial pyramids can be easily extended to go beyond the spatial
pyramid representation within our proposed feature extraction framework.

For SVM classification, we propose a new learning method called Generalized
Adaptive �p-norm Multiple Kernel Learning (GA-MKL), which is motivated by
the recent success of MKL methods for various vision applications, such as object
categorization [13, 14] and action recognition [15]. GA-MKL allows for different
features such as our new second level feature and the standard first level feature
to be effectively combined for classification. Moreover, GA-MKL takes advantage
of pre-learned classifiers of other classes, based on the intuition that some classes

1 We note that certain image categories tend to share a common spatial arrangement,
such as people located in the middle of images, which works to the benefit of features
based on SPR.
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The 1st level feature extraction

The proposed 2nd level feature extraction

Fig. 1. Overview of the proposed two-level feature extraction framework

may share common information that can benefit each other. For example, classes
like “Swan”, “Duck” and “Goose” may share the same background of “Water”
and similar components like beaks. Therefore it may be beneficial to train an
adapted classifier for “Swan” that leverages on pre-learned classifiers for “Duck”
and “Goose”. GA-MKL takes advantage of this by learning an adapted classifier
using multiple sets of base kernels and multiple sets of pre-learned SVM classifiers
from other classes.

This work provides the first practical unsupervised feature extraction frame-
work for going beyond spatial pyramids with densely sampled windows in image
classification, in a general manner that easily accommodates existing encoding
and pooling schemes. Through extensive experiments conducted on two widely-
used benchmarks – Caltech256 [16] and 15Scenes [1, 17, 18] – we demonstrate the
effectiveness of our feature extraction framework based on the second level fea-
ture and leveraging pre-learned classifiers from other classes through GA-MKL.
These results show that our work consistently outperforms the state-of-the-art
over a broad range of test cases.

2 Related Work

Different variants of the spatial pyramid representation have been employed for
image classification. Though the original work of [1] found no performance im-
provement with pyramids expanded beyond the conventional three levels, others
have reported better classification when a fourth level is included [14, 19]. In
[20], adding overlapping spatial areas to the non-overlapped grid for the sec-
ond and third levels was shown to capture more spatial information. The novel
spatial pyramid layout used by the winner of VOC 2007 [21] has been adopted
by many recent state-of-the-art methods [22–24]. In [25], fan-shaped areas are
used in place of rectangular spatial areas in SPR. In contrast to these aforemen-
tioned methods, our work effectively and efficiently processes a complete set of
rectangular windows, instead of a handcrafted subset.

In feature extraction, spatial information has been accounted for on two lev-
els: in the local descriptor (such as the SIFT feature) and in the code of the local
descriptor (as done in SPR). Kulkarni et al. [26] used affine SIFT to handle pose
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and viewpoint variance. Boureau et al. [4] proposed a mid-level feature based
on sparse coding on local groups of SIFT features, instead of individual ones.
They also presented a pooling scheme that can effectively handle large code-
books [12]. Feng et al. [10] proposed geometric �p pooling that places different
importance on different geometric positions. Yang et al. [5] took advantage of
spatial pyramid co-occurrence for overhead aerial imagery. For object recogni-
tion, Bosch et al. [27] utilized a region of interest detection procedure before
applying BoW feature extraction. Our method differs from these techniques by
introducing a higher level of feature that accounts for densely sampled windows
of any location, size and aspect ratio.

The work in [28, 29] proposed to extract new types of higher level feature
representations to exploit spatial or spatial-temporal co-occurrences beyond lo-
cal descriptors. In both works, for final classification, their proposed features are
pooled to obtain a global histogram for the whole image (i.e., a 1x1 spatial pyra-
mid). In contrast, our method goes beyond spatial pyramids such that the final
feature is extracted from windows densely sampled over location, size and aspect
ratio. Jia et al. [30] also presented a method to go beyond spatial pyramids, by
learning optimal pooling parameters for an over-complete set of receptive field
candidates.

Another stream of research takes advantage of attribute or object level clas-
sifiers to extract high level features directly [31, 32] or use them indirectly for
visual word disambiguation [33]. All these methods involve supervised learning
of attribute classifiers using an extra training set collected from Google search
or other sources. By contrast, our feature extraction framework does not use any
extra training set, and the entire feature extraction process is unsupervised.

Several feature extraction techniques have been presented for purposes other
than image classification. Duchenne et al. [34] proposed a graph-matching
method that matches corresponding object points in different images for object
classification. Boiman et al. [35] applied the nearest-neighbor classifier directly
on different categories of SIFT features. Gehler et al. [36] combined different
kinds of features and showed high performance with multiple kernel combina-
tions. Bo et al. [37] framed image recognition as an image matching problem and
solved it by kernel matching.

Recent work [15, 38] demonstrated that it is generally beneficial to utilize
the pre-learned classifiers from other classes for event/action recognition. In
contrast to the �1-norm constraint used in existing methods like [15, 38], in
GA-MKL, we utilize the more general �p-norm constraint (e.g., p = 2 in this
work) which can preserve complementary and orthogonal information [39]. This
is particularly important when base kernels contain complementary information
as in our two level feature extraction framework. Furthermore, GA-MKL also
learns the weights for multiple sets of pre-learned classifiers. Using the pre-
learned classifiers for other classes also distinguishes GA-MKL from the existing
�p-MKL technique.
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3 Two-Level Feature Extraction

3.1 First Level Image Feature

For the first level, we employ BoF image feature extraction, which consists of four
key components – local feature extraction, dictionary learning, feature encoding
and feature pooling – which are illustrated in the upper part of Fig. 1. This is
performed using the SPR framework of [1]. First, local descriptors such as SIFT
are extracted from image patches. A visual word dictionary is then generated
from these local features via clustering. This visual dictionary thereafter is used
to encode each local feature into a coded vector by soft assignment [9]. Next,
max pooling [6] is performed on the coded vectors in each window of the spatial
pyramid. We note that other advanced encoding [6–9] or pooling [10, 12] methods
can be readily used in our framework to improve classification performance. In
this work, we take soft assignment [9] and max pooling [6] as an example to
illustrate our framework because of their efficiency and reasonable effectiveness.

A spatial pyramid subdivides the input image into a sequence of grids with
incrementally finer non-overlapping regions of the same size. As illustrated at
the left of Fig. 2, the grid at level l has 2l cells along each dimension, for a total
of D = 2l × 2l cells. The vectors generated for each window by max pooling are
all concatenated to form the first level image feature. This feature extraction
procedure is the same as that used in [9].

3.2 Second Level Image Feature

Dense Sampling of Spatial Areas. The conventional spatial pyramid repre-
sentation can greatly boost the performance of image classification, and with our
second level image feature we aim to go beyond SPR by transplanting the idea
of sliding windows [11] into image classification. Towards this end, we sample
the spatial areas densely with respect to location, aspect ratio and size. This
is achieved as follows. Suppose each spatial area is denoted by Area(x, y, w, h),
where (x, y) denotes the image position of the upper-left corner of the window,
and (w, h) denotes the window width and height. All 4-tuples of Area(x, y, w, h)
are enumerated to obtain a comprehensive set of spatial areas.

The dense sampling procedure is illustrated in the right part of Fig. 2. For
each window size (ŵ, ĥ), each image position (x̂, ŷ) is scanned as shown by the
red arrows. The window is iteratively shifted from left to right (X-direction),
and from top to bottom (Y-direction). Sampling of different window widths and
heights is illustrated along the black horizontal and vertical axes, respectively.
The size and aspect ratio of windows are shown at the top-left of each image.

By dense sampling, windows that tightly bound an object or other potentially
meaningful image patch are captured. This is shown by yellow rectangles in Fig. 2
for the bear’s head and leg, and also a log on the ground.

In practice, we do not exhaustively sample the spatial areas pixel by pixel.
Our implementation uses a step size of 30 pixels for x, y, w, h.
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Fig. 2. Illustration of dense spatial sampling. The left side shows spatial pyramid
sampling in [1]. The right side shows dense sampling as done in our proposed framework.

Second Level Coding and Pooling. We now have a set of spatial areas
from dense sampling. Feature pooling is then performed on each spatial area
to produce a feature vector which we refer to as a window-based feature. From
the window-based features (one per spatial area), we compute an image feature
vector that is the final output of feature extraction.

To go from window-based features to the final image feature, we propose to
do a second level of feature extraction. This second level differs from the first
level in that clustering is carried out on the window-based features instead of
local SIFT descriptors. The secondary codebook learned in this clustering step
is used to encode the window-based features. Finally, pooling of the encoded
window-based features is done over the entire image to determine the image
feature vector, which contains the same number of elements as the secondary
codebook. As mentioned previously, we use soft assignment [9] and max pooling
[6] in this work, but any encoding and pooling methods may be used instead.

Similar to the way the first level image feature relates each pyramid window
to SIFT codewords, the second level feature relates the entire image to window-
based codewords. The window-based codewords essentially represent a set of
“window clusters” that each have similar first level feature content. These “win-
dow clusters” can be considered as a form of higher level SIFT-based feature
defined over larger areas. We will later show in the experiments that this higher
level abstraction of standard window descriptors provides a useful complement
to first level image features.

3.3 Extension to Multiple Local Descriptors

The two-level feature extraction framework offers the generality to incorpo-
rate any kind of local descriptor, such as SIFT [40], Spatial HOG [41, 42] and
LBP [43]. Two-level feature extraction for spatial HOG follows the exact same
procedure as for SIFT. For LBP, histograms are extracted at the first level fea-
ture extraction, then LBP histograms are further processed by the proposed
second level feature extraction.
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4 Generalized Adaptive �p-norm Multiple Kernel
Learning

In the following, we define the �p-norm of the M dimensional vector d as ||d||p =

(
∑M

m=1 d
p
m)1/p, and specially denote the �2-norm of d simply as ||d|| for brevity.

We also use the superscript ′ to signify the transpose of a vector, and denote the
element-wise product between two vectors α and y as α�y = [α1y1, · · · , αlyl]

′.
Moreover, 1 ∈ R

l denotes an l dimensional vector with all elements of 1, and the
inequality d = [d1, . . . , dM ]′ � 0 indicates that dm � 0 for m = 1, . . . ,M .

Multiple Kernel Learning (MKL) has been widely utilized to fuse different
types of visual features. The traditional �1-norm MKL selects a very sparse
set of base kernels, which may discard some useful information. The recent �p-
norm Multiple Kernel Learning (�p-MKL) [39] utilizes the more general �p-norm
constraint (e.g., p = 2 in this work) for the kernel coefficients, which can preserve
complementary and orthogonal information [39] in contrast to �1-norm MKL.

In our work, we wish to additionally take advantage of existing SVM classifiers
trained from different types of visual features for different classes. Our intuition is
that different classes may share some common information that benefits others.
We thus propose a new learning method called Generalized Adaptive �p-norm
Multiple Kernel Learning (GA-MKL) to learn a robust adapted classifier that
not only fuses different types of visual features (e.g. first and second level image
features) but also incorporates pre-learned classifiers trained on different types
of features for all of the classes.

We consider one-versus-rest classification in this work. For any given class,
let us denote the training set as {(xi, yi)|li=1} where xi is the ith training image
with yi ∈ {+1,−1} being the corresponding label. Suppose that we have a total
number of H classes and S sets of pre-learned classifiers {f1

s (x), · · · , fH
s (x)}|Ss=1,

each set of which can be learned from some kind of image representation (In this
work, different representations are coming from different types of visual features).
Motivated by [38], we assume that the decision function for the new classifier is a
linear combination of all the pre-learned classifiers with a perturbation function
modeled by using the original visual feature, and define the decision function as

f(x) =
S∑

s=1

β′
sfs(x) +Δf(x), (1)

where fs(x) = [f1
s (x), · · · , fH

s (x)]′ is the sth decision value vector for the input
image x from the pre-learned classifiers, βs = [β1

s , · · · , βH
s ]′ is the corresponding

weight vector to be optimized, and Δf(x) can be any perturbation function from
the original visual feature space. If we utilize the decision function of Multiple
Kernel Learning as the perturbation function, and assume that a total number
of M base kernels are used, then Δf(x) =

∑M
m=1 dmw′

mϕm(x) + b, where ϕm(·)
is the mapping of the mth base kernel, d = [d1, . . . , dM ]′ is the vector of base
kernel coefficients, and d,wm|Mm=1, b are the variables of the MKL.

The new adapted classifier f(x) can be learned by minimizing the following
objective function:
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min
dm,μs

min
vm,b,ξi,βs

1

2

S∑

s=1

‖βs‖2
μs

+
λ

2

S∑

s=1

μ2
s +

1

2

M∑

m=1

‖vm‖2
dm

+ C

l∑

i=1

ξi

︸ ︷︷ ︸
J(Δf)

(2)

s.t. yi

(
S∑

s=1

β′
sfs(xi) +

M∑

m=1

v′
mϕm(xi) + b

)

� 1− ξi, ξi � 0, i = 1, · · · , l,

d � 0, ||d||2p � 1,μ � 0,

where C > 0 is the MKL regularization parameter, vm = dmwm, J(Δf) is the
MKL structural risk functional, and p � 1 is the norm parameter for the base
kernel coefficients introduced in �p-MKL [39]. Besides the structural risk term
J(Δf) for standard MKL, the coefficients βs|Ss=1 for the pre-learned classifiers
are also penalized as ‖βs‖2|Ss=1. Considering that the pre-learned classifiers from
different visual features have different classification capacity, we further intro-
duce an intermediate vector μ = [μ1, · · · , μS ]

′ to control the contributions of the
penalty terms from different pre-learned classifier sets. The regularization term
λ
2

∑S
s=1 μ

2
s with regularization parameter λ > 0 is included to avoid a trivial

solution for μ. In this way, we not only fuse different types of visual features but
also utilize the pre-learned classifiers of all the classes.

Since the optimization problem in (2) is convex w.r.t. vm, b, ξi,βs,d,μ, the
global optimum can be obtained by using the block-wise coordinate descent
algorithm [39]. We thus alternatively optimize these variables with the following
two steps.

Optimize vm, b, ξi,βs with Fixed d,μ: With fixed d,μ, the problem in (2)
is a convex problem w.r.t. vm, b, ξi and βs. By introducing the non-negative
Lagrangian multipliers αi|li=1, the dual can be derived as follows:

max
α

α′1− 1

2
(α� y)′

(
M∑

m=1

dmKm +

S∑

s=1

μsFs

)

(α� y) (3)

s.t. α′y = 0, 0 � α � C,

where α = [α1, . . . , αl]
′, y = [y1, . . . , yl]

′, Km(xi,xj) = ϕm(xi)
′ϕm(xj) and

Fs(xi,xj) = fs(xi)
′fs(xj). It can be seen that (3) is in a standard form of the

SVM dual problem with the kernel K =
∑M

m=1 dmKm +
∑S

s=1 μsFs. Therefore,
it can be solved via existing SVM solvers such as libsvm [44].

With the optimum α obtained from problem (3), we can recover the primal
variables vm,βs accordingly:

vm = dm

l∑

i=1

αiyiϕm(xi), m = 1, . . . ,M, (4)

βs = μs

l∑

i=1

αiyifs(xi), s = 1, . . . , S. (5)
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Algorithm 1. Block-wise coordinate descent algorithm for GA-MKL.

1: Initialize d1 and μ1; set t = 1.
2: repeat
3: Obtain αt by solving (3) using the SVM solver with dt and μt.
4: Calculate ‖vt

m‖2 by using (4) and solve for dt+1 by using (7).
5: Calculate ‖βt

s‖2 by using (5) and solve for μt+1 by using (8).
6: t = t + 1.
7: until The convergence criterion is reached.

Optimize d,μ with Fixed vm, b, ξi,βs: With fixed vm, b, ξi,βs, the problem
in (2) reduces to the following constrained convex minimization problem:

min
dm,μs

1

2

S∑

s=1

‖βs‖2
μs

+
λ

2

S∑

s=1

μ2
s +

1

2

M∑

m=1

‖vm‖2
dm

(6)

s.t. d � 0, ||d||2p � 1,μ � 0.

Similar to the derivations in [39], we obtain the closed-form solutions as follows:

dm =
||vm|| 2

p+1

(
∑M

r=1 ||vr ||
2p

p+1 )1/p
, m = 1, . . . ,M, (7)

μs =
3

√
||βs||2
2λ

, s = 1, . . . , S, (8)

where ‖vm‖2 and ‖βs‖2 can be calculated by using (4) and (5), respectively.
The entire optimization procedure is summarized in Algorithm 1. After ob-

taining the optimal d, μ and α using Algorithm 1, the final classifier for the test
images can be expressed as

f(x) =

l∑

i=1

αiyi

(
S∑

s=1

μsfs(x)
′fs(xi)

)

+

l∑

i=1

αiyi

(
M∑

m=1

dmKm(x,xi)

)

+ b.

5 Experiments

In this section, we evaluate the proposed two-level feature extraction framework
and GA-MKL on two broadly recognized image databases for object and scene
classification: Caltech256 [16] and 15Scenes [1, 17, 18].

5.1 Experimental Setup

Local Descriptor Extraction: Three types of local descriptors – dense SIFT
[40], spatial HOG [42] and LBP [43] – are used in our experiments. SIFT is
extracted from densely located patches centered at every 4 pixels in the image,
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with a patch size of 16×16 pixels. For spatial HOG, the HOG descriptors are
extracted from densely located patches centered at every 8 pixels in the image,
with a patch size of 8×8 pixels. Then the spatial HOG descriptor is formed by
stacking together 2×2 neighboring local HOG descriptors. For LBP, the uniform
LBP as described in [43] is adopted.

Dictionary Learning: K-means clustering is employed for both levels of feature
extraction. The dictionary size for all second level feature extractions is set to
4,096. The dictionary size for the first level SIFT feature extraction is set to
4,096 as well. All other dictionary sizes are set to 1,024.

Encoding: Localized soft assignment [9] is used for both levels of encoding.

Pooling: The first level feature extraction of LBP is pooled by average pooling.
In all other cases, the codes are pooled via max pooling. A three level spatial
pyramid of 1×1, 2×2 and 4×4 is used.

Feature Normalization and Designation: The first level image features of
the LBP local descriptor are normalized with the �1-norm equal to 1. The other
types of image features are each normalized with the �2-norm equal to 1.

The first level image feature is referred to as a Spatial Pyramid Representation
(SPR) feature. The first level feature together with the second level feature is
referred to as the Beyond Spatial Pyramid Representation (BSPR) feature.

Kernel Learning: �p-MKL and GA-MKL are implemented using the libsvm
software package [44]. Linear kernels with C set to 10 are used throughout the
experiments. In �p-MKL and GA-MKL, we fix p to 2. In GA-MKL, we empirically
set λ to 10 for both datasets. For the pre-learned classifiers in GA-MKL, there
are six sets in total, with each set learned by using each type of BSPR feature.
From the six sets of pre-learned classifiers and the six linear kernels generated
by the six kinds of BSPR features, the GA-MKL classifier is learned.

All experiments on each dataset are repeated five times with different ran-
domly selected training images and the same experimental settings. The results
are reported in terms of the mean and standard deviation from all five runs.

5.2 Results on the Caltech256 Dataset

Caltech256 [16] provides challenging data for object recognition. It consists of
30,608 images with 256 object categories and 80 to 827 images per category. In
our series of experiments on Caltech256, we take 30, 45 and 60 images from each
category for training and use the rest as test samples.

Performance comparisons with the baseline method are listed in the upper
part of Table 1. From it, one can see that the classification accuracy with BSPR
features consistently yields better results than the one with SPR features in all
three of the training scenarios. With �p-norm MKL, the improvements of the
BSPR feature over the SPR feature are 2.03%, 2.38% and 2.73% respectively.
This demonstrates that the proposed second level features provide additional in-
formation which is complementary to the SPR with the first level features. Also,
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Table 1. Classification accuracy (%) on the Caltech256 dataset. SPR feature (�p-MKL)
is the baseline method implemented in this paper. BSPR feature (�p-MKL) and BSPR
feature (GA-MKL) correspond to our proposed BSPR feature learned with �p-MKL
and our proposed GA-MKL. Note: - indicates unavailability of results.

Method 30 training 45 training 60 training

SPR feature (�p-MKL) 43.75 ± 0.20 47.23 ± 0.23 48.92 ± 0.31

BSPR feature (�p-MKL) 45.78 ± 0.18 49.61 ± 0.16 51.65 ± 0.35
BSPR feature (GA-MKL) 46.82 ± 0.23 50.69 ± 0.15 52.91 ± 0.59

Sparse coding [6] 34.02 ± 0.35 37.46 ± 0.55 40.14 ± 0.91
Improved Fisher Kernel [24] 40.80 ± 0.10 45.00 ± 0.20 47.90 ± 0.40
Efficient Match Kernel [37] 30.50 ± 0.40 34.40 ± 0.40 37.60 ± 0.50
Affine sparse codes [26] 45.83 49.30 51.36
Locality-constrained linear coding [7] 41.19 45.31 47.68
Geometric �p-norm Feature Pooling [10] 43.17 47.32 -
Nearest-neighbor [35] 42.70 - -
Random Forest [27] 44.00 - -
Graph-matching kernel [34] 38.10 ± 0.60 - -
Multi-way local pooling [12] 41.70 ± 0.80 - -

it is shown in the table that the results using the BSPR feature and our proposed
GA-MKL are better than those using BSPR and �p-MKL by 1.04%, 1.08% and
1.26%, which indicates that it is beneficial to learn an adapted classifier that
leverages on pre-learned classifiers from other classes. This is consisted with the
previous work [15, 38, 45]. In total, the proposed BSPR feature and GA-MKL
improves upon the baseline method by 3.07%, 3.46% and 3.99% respectively.

After learning the adapted classifiers, we observe that similar concepts have
higher weights than dissimilar ones. Taking for instance the concepts of “Swan”
and “Gorilla”, the two largest β values are as follows: Swan(βduck = 0.092,
βgoose = 0.078), Gorilla(βchimp = 0.195, βraccoon = 0.106). These learned values
also reflect the benefit of leveraging pre-learned classifiers of other classes.

Comparisons with State-of-the-Art: In the lower part of Table 1, compar-
isons with state-of-the-art methods are provided. The listed methods include the
most recently reported techniques as well as the highest achieving methods from
the past. Our method is seen to outperform all the existing methods with various
numbers of training samples. To be exact, Our method exceeds the existing best
results [26] (underlined in Table 1) by 0.99%, 1.39% and 1.55% for 30, 45 and
60 training samples, respectively.

5.3 Results on the 15Scenes Dataset

The 15Scenes dataset is composed of 15 classes of scenes and contains 4,485 im-
ages in total, reported in [1, 17, 18]. Following the common evaluation protocol
on this dataset, we randomly select 100 images from each class as training sam-
ples and use the rest as test samples. Table 2 presents performance comparisons.
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Fig. 3. Comparison with state-of-the-art results on 15Scenes

Table 2. Classification accuracy (%) on 15Scenes with 100 training images

Method Classification Accuracy

SPR feature (�p-MKL) 86.60 ± 0.66

BSPR feature (�p-MKL) 88.32 ± 0.72
BSPR feature (GA-MKL) 88.87 ± 0.56

Using �p-MKL, classification accuracy with the BSPR features exceeds that
of the baseline method with SPR features, which again demonstrates the ef-
fectiveness of our proposed two level feature extraction framework. The result
using the BSPR feature and GA-MKL is also better than that from the BSPR
feature and �p-MKL, which validates the effectiveness of GA-MKL in leveraging
pre-learned classifiers from other classes. In total, our proposed BSPR feature
with our GA-MKL brings an overall improvement in classification accuracy of
2.27% over the baseline.

Performance of Individual Features: For individual BSPR features, the
results are 83.2%, 84.6% and 70.4% (resp. 75.8%, 69.8%, 69.5%) using SIFT,
SHOG and LBP features at the first (resp. second) level. Note that the result
after combining all three first level features (86.6%) is better than the results
from each individual feature at the first level, which shows the effectiveness of
�p-MKL. Though the individual results at the second level are not as good as
those corresponding to the first level, they are complementary to the first level
features, and the combination of two levels of features using �p-MKL leads to a
better result (i.e., 88.32% vs. 86.6% in Table 2).

Comparisons with State-of-the-Art: In Fig. 3, comparisons with state-of-
the-art methods are provided. The listed methods include the latest techniques
and top performers. Our method still achieves the best results on this dataset.

5.4 Computation Time

The proposed two-level feature extraction framework involves a second round
of encoding and pooling that adds to the computation time. Processing speed
additionally depends on the codebook sizes in the first level and second level
feature extraction, the number of local descriptors in the first level, and the
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number of windows in the second level. For the methods and settings used in
this work, with the SIFT descriptor as an example, the CPU times for the first
level (5,184 SIFT descriptors with the feature dimension of 128) and second
level (3,025 windows with the window-based feature dimension of 4,096) feature
extraction are about 10s and 15s on a 300×300 image for Caltech256, with an
IBM workstation (3.33GHz CPU with 18GB RAM) and Matlab implementation.

6 Conclusion

We presented two technical contributions for image classification. The first is a
novel feature extraction framework that generalizes window-based features to the
image level in a manner that efficiently accounts for densely sampled windows
and allows for existing encoding and pooling techniques to be used. Secondly, we
proposed Generalized Adaptive �p-norm Multiple Kernel Learning (GA-MKL)
to incorporate the two different levels of features and to leverage multiple sets
of pre-learned classifiers from other classes. Our extensive experimental results
on benchmark datasets show that our work outperforms the state-of-the-art.
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Abstract. Positive definite kernels, such as Gaussian Radial Basis
Functions (GRBF), have been widely used in computer vision for design-
ing feature extraction and classification algorithms. In many cases non-
positive definite (npd) kernels and non metric similarity/dissimilarity
measures naturally arise (e.g., Hausdorff distance, Kullback Leibler Di-
vergences and Compact Support (CS) Kernels). Hence, there is a prac-
tical and theoretical need to properly handle npd kernels within feature
extraction and classification frameworks. Recently, classifiers such as
Support Vector Machines (SVMs) with npd kernels, Indefinite Kernel
Fisher Discriminant Analysis (IKFDA) and Indefinite Kernel Quadratic
Analysis (IKQA) were proposed. In this paper we propose feature ex-
traction methods using indefinite kernels. In particular, first we propose
an Indefinite Kernel Principal Component Analysis (IKPCA). Then, we
properly define optimization problems that find discriminant projections
with indefinite kernels and propose a Complete Indefinite Kernel Fisher
Discriminant Analysis (CIKFDA) that solves the proposed problems.
We show the power of the proposed frameworks in a fully automatic face
recognition scenario.

Keywords: subspace learning, indefinite kernels, face recognition.

1 Introduction

In many computer vision applications we encounter the following problem. Given
a high dimensional visual representation of objects we wish to find a condensed
representation that captures their underlying, possibly non-linear, structure. The
aforementioned problem is usually tackled by the application of linear and non-
linear dimensionality reduction techniques, also referred to as subspace learning
techniques. Research on subspace learning mainly revolves around two main
interrelated directions, that is (a) subspace learning using kernels [1–4, 7–9] and
(b) manifold learning [10, 11].
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Linear dimensionality reduction is usually performed by finding a set of pro-
jections bases while low-dimensional feature extraction is performed by apply-
ing these learned bases onto a vector representation of the data. Kernel-based
subspace learning methods mainly extend their linear counterparts using (con-
ditionally) positive definite (pd) functions as kernels [1–4, 7–9]. A pd kernel
is interpreted as an inner product in a Hilbert space [12]. Kernel-based sub-
space learning algorithms perform an implicit mapping of the input data into
a high-dimensional Hilbert space (also referred to as feature space) and use
the reproducing properties of pd kernels to express the projections as a linear
combination of the data in the feature space. Dimensionality reduction is then
performed by projecting the data in the feature space using the learned bases.
All computations are efficiently performed via the inner product of the feature
space (the so-called kernel trick).

Notable kernel-based methods include the Kernel Principal Component Anal-
ysis (KPCA) [1] and Kernel Fisher Discriminant Analysis (KDA) [2, 7–9]. KDA
finds a set of projection bases by maximizing the trace of between-class scatter
matrix while minimizing the trace within-class scatter matrix of low-dimensional
space. The solution of the KDA optimization problem has resulted in a wealth
of research works dealing with the problem of how the range and the useful null
space of the within-class scatter matrix can be used for discovering projection
bases. The most popular methods discard discriminative information, either in
one space or the other [3, 7–9]. A complete framework which extracts features
from both spaces was proposed in [2].

The above noted kernel subspace-learning techniques are applicable only in the
case of pd kernels. This imposes limitations to their applicability, since many non-
pd (npd) kernels arise as similarity measures. For example, in [13–15] the authors
tried to incorporate invariance or robustness into the measure. Another family
of useful npd kernels are the compact support (cs) kernels [16]. Popular non-
Euclidean (nonmetric) similarities/dissimilarities, such as Hausdorff distances
[17] and Kullback-Leibler divergence between probability distributions, can be
used to define npd kernels [18, 19]. Hence, there is both practical and theoretical
need to properly handle all these measures and npd kernels in order to extract
discriminant features using an KDA framework with npd kernels. One way to
deal with this is to approximate the npd kernel with a positive definite (pd) one
and use this kernel instead [6].

The need to properly handle npd kernels, instead of approximating them with
pd ones, has initiated a number of studies on the proper design of classification
algorithms [20]. In particular in [21] a geometrical interpretation of learning a
large margin classifier with indefinite kernels has been discussed. In [21] clas-
sification frameworks based on two-class Kernel Fisher Discriminant Analysis
(KFDA) and in [18] Kernel Quadratic Discriminant (KQD) analysis with in-
definite kernels were proposed. In this paper we study feature extraction with
npd (or simple indefinite) kernels. We first formulate Indefinite Kernel Principal
Component Analysis (IKPCA) in Krein spaces. A Krein space is a vector space K
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equipped with an indefinite inner product1. The npd kernel is interpreted as the
indefinite inner product of the Krein space. Furthermore, we define optimization
problems for extracting discriminant projections in Krein spaces. In particular,
we formulate a Complete Indefinite Kernel Discriminant Analysis (CIKDA) in
Krein spaces.

We would like to highlight that in [5, 18, 21] only classifiers based on quadratic
discriminant functions and two class classifier based on IKFDA in Krein spaces
were proposed. Our paper takes a different direction. That is, we propose sub-
space learning algorithms in Krein Spaces for feature extraction and object rep-
resentation. To the best of our knowledge this is the first time that discriminant
feature extraction is performed in Krein spaces. Summarizing the contributions
of this paper are: (a) an Indefinite Kernel Principal Component Analysis in
Krein Spaces2 (b) a Complete Indefinite Kernel Fisher Discriminant Analysis
(ICKFDA) in Krein spaces. We furthermore propose npd kernels that contrary
to [18] achieve state-of-the-art performance in fully automatic face recognition.

2 Krein Spaces

Krein spaces are important as they provide feature-space representations of dis-
similarities and provide us with insights on the geometry of classifiers defined
with non-positive kernels [18, 21].

An abstract space K is a Krein space over reals � if there exists an (indefinite)
inner product 〈., .〉K : K ×K → � with the following properties [22]:

〈x,y〉K = 〈y,x〉K
〈c1x+ c2z,y〉K = c1〈x,y〉K + c2〈z,y〉K (1)

for all x,y, z ∈ K and c1, c2 ∈ �. K is composed of two vector spaces, such that
K = K+ ⊕K−. K+ and K− describe two Hilbert spaces over �. We denote their
corresponding positive definite inner products as 〈., .〉K+ and 〈., .〉K− , respec-
tively. The decomposition of K into two such subspaces defines two orthogonal
projections: P+ onto K+ and P− onto K−, known as fundamental projections
of K. Using these projections, x ∈ K can be represented as x = P+x + P−x.
The identity matrix in K is given by IK = P+ +P−.

Let us denote by x+ ∈ K+ and x− ∈ K−, the projections onto the subspaces
P+x and P−x, respectively. Then, 〈x+,y−〉K = 0 for all x,y ∈ K. Moreover,
〈x+,y+〉K > 0 and 〈x−,y−〉K < 0 for any non-zero vectors x and y in K.
Therefore, K+ is a positive subspace, while K− is a negative subspace. The
inner product of K is defined as the difference of 〈., .〉K+ and 〈., .〉K− , i.e. for all
x,y ∈ K:

〈x,y〉K = 〈x+,y+〉K+ − 〈x−,y−〉K− (2)

1 For more information regarding Krein spaces the interested reader can refer to [22].
2 Although, methods similar to the proposed IKPCA were implied in previous works
[18, 19] and in Chapter 6 of the PhD thesis [35] a complete formulation of IKPCA
in Krein spaces has not been proposed before.



Subspace Learning in Krein Spaces 491

A Krein space K has an associated Hilbert space |K| which can be found via the
linear operator J = P+−P−, called the fundamental symmetry. This symmetry
satisfies J = J−1 = JT and describes the basic properties of a Krein space. Its
connection to the original Krein space can be written in terms of a “conjugate”
by using (2) and J, as

x∗y � 〈x,y〉K = xTJy = 〈Jx,y〉|K|. (3)

That is, K can be turned into its associated Hilbert space |K| by using the positive
definite inner product of the associated Hilbert space,〈., .〉|K|, as 〈x,y〉|K| =
〈x,Jy〉K.

In the following we are particularly interested in finite dimensional Krein
spaces where K+ is isomorphic to �p and K− is isomorphic to �q. Such a Krein
space describes a pseudo-Euclidean space and is characterized by its so-called
signature, (p, q) ∈ N

2, which indicates the dimensionality, p and q, of the positive
and negative subspaces, respectively [18]. The fundamental symmetry is

J =

[
Ip 0
0 −Iq

]
(4)

where Iz is the identity matrix in �z×z and 0 implies zero padding.
A non-positive definite (npd) kernel k defines an implicit mapping ψ : �d → K

into a (in)finite dimensional Krein space. Analogously to Hilbert space,
our kernel is equivalent to the dot-product in feature space, i.e. k(xi,xj) =
〈ψ(xi), ψ(xj)〉K. The squared distance in feature space is given by

l2(xi,xj) = (ψ(xi)− ψ(xj))
∗(ψ(xi)− ψ(xj))

= k(xi,xi)− 2k(xi,xj) + k(xj ,xj). (5)

Also a non-negative dissimilarity measure l2(xi,xj) that satisfies the following
properties (1) l2(xi,xi) = 0, (2) l2(xi,xj) > 0, ∀ xi 	= xj and (3) l2(xi,xj) =
l2(xj ,xi) and does not satisfy the triangular inequality can define an npf kernel.

3 KPCA in Krein Spaces

Let X = [x1 · · · xN ] ∈ �d×N be a set of given samples and Xψ =
[ψ(x1) · · · ψ(xN )] be their implicit mapping. Motivated by KPCA and pseudo-
Euclidean embedding [18, 23], we formulate KPCA with Krein spaces.

Let us define the mean mK, and the centralized matrix X̃ψ as

mK = 1
NXψ1N X̃ψ = XψL (6)

where L � IN − 1
N 1N1TN and 1N is an N -dimensional vector containing only

ones [18]. We then define the total scatter matrix in K as

SK
t � 1

N

∑N
i=1(ψ(xi)−mK)(ψ(xi)−mK)∗ = 1

N X̃ψX̃
∗
ψ = 1

N X̃ψX̃
T
ψJ = S|K|J

(7)
where S|K| is the total scatter matrix in the associated Hilbert space |K|.
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In a similar way to that of KPCA in Hilbert space, we generalize KPCA
in Krein space as follows. We wish to compute a set of projections Uo =
[u1 · · · ,uN ] with ui ∈ K such that3

Uo = argmaxU tr
(
U∗SK

t U
)
s.t.U∗U = J. (8)

We write the set of projections as a linear combination of samples as U = X̃ψQ,
and (8) becomes:

Qo = argmaxQ tr
(
QT X̃T

ψJX̃ψX̃
T
ψJX̃ψQ

)
= argmaxQ tr

(
QT K̃K̃Q

) s.t. QT X̃T
ψJX̃ψQ = QTKQ = J

(9)
where K̃ = X̃∗

ψX̃ψ is the centralized kernel matrix. The eigendecomposition of

K̃ then yields the solution of the above

K̃ = VΛVT = V|Λ| 12J|Λ| 12VT (10)

where Λ is a diagonal matrix whose main diagonal consists of p positive and q
negative eigenvalues (p+q ≤ N) in the following order: first, positive eigenvalues
with decreasing values, then negative ones with decreasing absolute values and
finally zero values. Matrix |Λ| is the diagonal matrix containing the absolute
values of the eigenvalues. The fundamental symmetry, matrix J, is defined as
in (4), and (p, q) is the pseudo-Euclidian space’s signature. Consequently, we

obtain the optimal solution of (9) from Qo = Vp+q|Λp+q|− 1
2 and the optimal

projection matrix from Uo = X̃ψVp+q|Λp+q|− 1
2 , where Λp+q contains the non-

zero eigenvalues and Vp+q denotes the corresponding eigenvectors.
Let y ∈ C

d be a new sample, and ý = ψ(y) ∈ K denotes its mapping. Then,
the part of ý which belongs to the positive subspace �p is given by:

ý+ = |Λp|− 1
2VT

pM
TX∗

ψψ(y)

= |Λp|− 1
2VT

pM
T

⎡
⎣ 〈ψ(x1), ψ(y)〉K

· · ·
〈ψ(xN ), ψ(y)〉K

⎤
⎦ = |Λp|− 1

2VT
pM

T

⎡
⎣ k(x1,y)

· · ·
k(xN ,y)

⎤
⎦ (11)

where Λp contains only the positive eigenvalues, and Vp denotes the correspond-
ing eigenvectors. Similarly, we can compute the features ý− ∈ �q using

ý− = |Λq|− 1
2VT

q M
TX∗

ψψ(y) (12)

where Λq and Vq corresponds to the negative eigenvalues. Furthermore, we can
verify that the inner product of x́, ý ∈ K is equal to the kernel value as follows

〈x́, ý〉K = x́∗ý = x́TJý = ψ(x)∗X̃ψV|Λ|− 1
2J|Λ|− 1

2VT X̃∗
ψψ(y)

= ψ(x)T JU∗UJψ(y) = ψ(x)TJψ(y) = 〈ψ(x), ψ(y)〉K = k(x,y).
(13)

3 Although pseudo-euclidean embedding has been proposed [19] the actual formulation
of KPCA in Krein Spaces has not been previously proposed.
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In order to establish a dimensionality reduction strategy, we can start by ex-
panding the objective function of the optimization problem (8) as

tr (U∗SKU) = tr
(
QT K̃K̃Q

)
= tr

(
|Λ|− 1

2VTVΛVTVΛVTV|Λ|− 1
2

)
= tr (|Λ|) = ∑N

i=1 |λi|.
(14)

As it can be observed, the actual functional to be minimized is based on the ab-
solute eigenvalues, |λi|. Hence, the dimensionality reduction may be performed
by removing the eigenvectors that correspond to the smallest in terms of mag-
nitude eigenvalues. The signature of the reduced Krein space is then given by
(p1, q1) with p1 ≤ p and q1 ≤ q.

4 Discriminant Learning in Krein Spaces

Kernel Discriminant Analysis (KDA) in Hilbert spaces with positive definite (pd)
kernels aims at finding discriminant projection bases by exploiting class-label
information in the feature space. In the following we will formulate discriminant
subspace learning algorithms by defining optimization problems based on the
traces of the projected within and between class scatter matrices. We assume
that our training set consists of C classes C1, · · · , CC . Nc denotes the cardinality
of set Cc. We define the between-class, within-class and total scatter matrices
SK
b , S

K
w and SK

t in K as

SK
b �

C∑
c=1

Nc(m
K
c −mK)(mK

c −mK)∗ (15)

SK
w �

K∑
c=1

∑
xi∈Cc

(ψ(xi)−mK
c )(ψ(xi)−mK

c )
∗ (16)

where mK
c = 1

Nc

∑
xi∈Cc

ψ(xi) is the mean vector of each class.
In Hilbert spaces with pd kernels the main optimization problem for finding

the discriminant projection is

– the one that maximizes the trace of the projected between class scatter
matrix subject to having a projected orthogonal within-class scatter matrix
[2, 9, 24]

– maximizes the trace of the projected between class scatter matrix subject to
the useful null-space of within-class scatter matrix [2, 3, 25].

Using the theory developed in the previous Section, we formulate the optimiza-
tion problems that find the discriminant projections with npf kernels in Krein
spaces. That is, we aim at finding a set of projections U1 = [u1

1| · · · |u1
p] with

every column uj1 ∈ K
U1 = maxU tr

[
U∗SK

b U
]
s.t U∗SK

wU = I, (17)

and U2 = [u2
1| · · · |u2

p] with every column u1
j ∈ K
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U2 = maxU tr
[
U∗SK

b U
]
s.t U∗SK

wU = 0. (18)

The equivalent optimization problem (17) in Hilbert spaces was solved in
[2, 9, 24], while approaches to solve optimization problem (18) were proposed in
[2, 3, 25]. The Complete Kernel Fisher Discriminant (CKF) framework [2] solves
the equivalent optimization problems (17) and (18) simultaneously by projecting
the within-class scatter matrix onto the non-null space of total scatter matrix.
The CKFD framework is not applicable in our case, since the developed theoret-
ical framework in [2] can be only applied for the case of pd kernels. To alleviate
this problem, in the following section, we propose the Complete Fisher Dis-
criminant with Indefinite Kernels (CFDIK) in Krein spaces. To the best of our
knowledge this is the first time discriminant subspace algorithms are proposed
in Krein spaces with npd kernels.

5 Solving the Optimization Problems

In the following we will show how optimization problems (17) and (18) can be
solved. Let us first define the block Mc � 1

Nc
1Nc1

T
Nc

and the block diagonal
matrix M as:

M � diag[M1,M2, . . . ,MC ]. (19)

The useful properties of M are: (1) M is idempotent, i.e. Mn = M with n 	= 0,
(2) I−M is idempotent, (3) M has C eigenvectors corresponding to C non-zero
eigenvalues, (4) I−M has N −C eigenvectors corresponding to N −C non-zero
eigenvalues (5) for a full ranked symmetric matrix A ∈ �N×N matrices AMA
and A(I − M)A4 have C and N − C N eigenvectors corresponding to C and
N − C non-zero (positive) eigenvalues, respectively.

Using M and the fact that SK
w = SK

t − SK
b , S

K
w we write

SK
b = X̃ψMX̃∗

ψ, S
K
w = X̃ψ(I−M)X̃∗

ψ (20)

5.1 Solving the Optimization Problem (17)

In this section, we present how to diagonalize the within-class scatter matrix SK
w

in the Krein feature space. Before proceeding we need the following Theorem I.

Theorem I: Define matrices A and B such that A = ΦΦ∗ and B = Φ∗Φ.
Let UB be the eigenvectors corresponding to the non-zero eigenvalues ΛB of B.
Then, UA = ΦUB|ΛB |−1 diagonalizes ΦΦ∗,
The proof is omitted due to lack of space.

Using the fact that I−M is idempotent, SH
w can be written as

SK
w = X̃ψ(I−M)(X̃ψ)

∗ =
(
X̃ψ(I−M)

)(
X̃ψ(I−M)

)∗
. (21)

4 ∀ symmetric real matrices A matrices AMA = (MA)TMA and A(I − M)A =
((I−M)A)T (I−M)A are positive semi definite by construction.
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By Theorem I, in order to diagonalize SK
w we need to apply eigen-analysis to Kw

Kw =
(
X̃ψ(I−M)

)∗ (
X̃ψ(I−M)

)
= (I−M)K̃(I−M). (22)

Since, K̃ is npd so is Kw hence it admits an eigendecomposition as

Kw = Qw|Λw| 12J|Λw| 12QT
n . (23)

Now we seek an optimal solution that can be written as a linear combination of
matrix X̃ψ(I−M)Qw|Λw|−1 which diagonalizes SK

w , i.e.

U = X̃ψ(I−M)Qw|Λw|−1A. (24)

where A ∈ �(N−C)×C . Using U the objective matrix U∗SK
b U is reformulated as

U∗SK
b U = AT |Λw|−1QT

w(I−M)X̃∗
ψX̃ψMX̃∗

ψX̃ψ(I−M)Qw|Λw|−1A

= AT |Λw|−1QT
w(I−M)K̃MK̃(I−M)Qw|Λw|−1A

= AT
(
MK̃(I−M)Qw|Λw|−1

)T (
MK̃(I−M)Qw|Λw|−1

)
A

(25)

Kb = |Λw|−1QT
w(I − M)K̃MK̃(I − M)Qw|Λw|−1 is positive semi-definite by

definition. Then, optimization problem (17) is reformulated as

Ao = maxA tr
[
ATKbA

]
s.t ATA = I, (26)

which is solved by the choosing Ao to contain as columns the C− 1 eigenvectors
of Kb that correspond to non-zero eigenvalues.

5.2 Solving Optimization Problem (18)

We cannot solve the optimization problem (18) by writing the solution Ul as a
linear combination of X̃ψ(I − M)Ql where Ql is the complementary subspace

of Qw (i.e., the eigenvectors of (I−M)K̃(I−M) that correspond to null eigen-
values). Such a solution should be written as Ul = X̃ψ(I − M)QlA. We have

U∗
lUl = ATQl

T (I−M)(X̃ψ)
∗X̃ψ(I−M)QlA = 0, (27)

which further gives Ul = 0.
To findUl, we writeUl = X̃ψΞlA, Ξl ∈ �N×C , A ∈ �C×(C−1). Additionally,

Ul satisfies

Ul
∗SK

wUl = ATΞTl K̃(I−M)K̃ΞlA = 0. (28)

From the properties of matrices I − M, K̃, (K̃T = K̃) has N − C non-zero
eigenvalues. The constraint (28) can be satisfied by choosing Ξl from performing
eigenanalysis of K̃(I −M)K̃ and keeping the C eigenvectors which correspond
to the zero eigenvalues.
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Using Ul, U
∗
l S

K
b Ul is reformulated as

U∗
l S

K
b Ul = ATΞTl X̃

∗
ψX̃ψMX̃∗

ψX̃ψΞlA = ATΞTl K̃MK̃ΞlA

= AT
(
MK̃Ξl

)T (
MK̃Ξl

)
A

(29)

Kb,2 = ΞTl K̃MK̃Ξl is positive semi-definite by construction. Using the above
equation optimization problem (18) is reformulated as

Ao = maxA tr
[
ATKb,2A

]
, s.t ATA = I, (30)

which is solved by the eigenanalysis of Kb and keeping the C − 1 eigenvectors
that correspond to the C − 1 non-zero eigenvalues. Finally we prove that the
projections Uw and Ul derived from the optimization problems (17) and (18)
are orthogonal (U∗

lUw = 0) (the proof is omitted due to lack of space).

6 Comparison with the Methods in [18],[21],[26],[27]

The literature regarding learning with indefinite kernels mainly revolves around
the design of classifiers [18, 21, 27]. In particular in [21] an geometrical inter-
pretation of learning a large margin classifier with indefinite kernels has been
given. The most closely related works are the classification frameworks proposed
in [18] and [21] for two class problems.

In this problem we have two classes C1 and C2. We define matrices SK
b and SK

w

as in (15) and in (16), respectively, for the two class problem. Then, the methods
in [18, 21] find a vector w ∈ K and a scalar b such that

wo = argmax
w

w∗SK
b w

w∗SK
ww

. (31)

In order to solve the above optimization problem w was written as a linear com-
bination of the training samples as w =

∑n
i=1 aiψ(xi) = Xψa then optimization

problem (31) can be written as

ao = argmax
a

aTKMKa

aTK(I−M)Ka
, (32)

since matrices N = KMK and C = K(I −M)K are positive semi-definite by
construction, the solution is given by keeping the eigenvector that corresponds
to the largest eigenvalues of C−1N. The matrix C is not invertible since it con-
tains only one eigenvector that corresponds to non-zero eigenvalues. In [18, 21] a
standard heuristic approach was applied, i.e. a was found by performing eigen-
analysis to (C+βI)−1N where β is a small positive constant arbitrarily chosen.
Unfortunately, this is not the solution to the optimization problem (31). Since,
for two-class data both optimization problems (31) and (17) we can readily find
the optimal w that optimizes both (31) by applying the methodology proposed
in Section 5.
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7 Experimental Results

We tested the proposed IKPCA and CKFDA approaches in the face recognition
problem. The first indefinite kernel we used is the CS kernel used in [16] (also
widely referred to as a mollifier)

k(x,y) = exp
(

1
||x−y||2−γ

)
H(α− ||x− y||2) (33)

where H(r) is the usual heaviside function. The CS kernels are of great im-
portance in robust statistics since they are less influenced by outliers. In our
experiments we used as distance ||x − y||2 the weighted distance ||x − y||2W =
(x − y)TW(x − y) proposed in [28] where W is sum of the power spectrum of
the filters used and x and y are the vectorized Fourier responses of the images.
As filters we used a Gabor filter bank of 8 orientations and 5 scales.

The second class of indefinite kernels we used are defined as the minimum of
the correlation surface of image registration algorithms [29]

k(Ii, Ij) = min(min cor(Ii, Ij),min cor(Ij , Ii)) (34)

where cor(Ii, Ij) is the correlation surface between two images Ii and Ij of the
matching algorithm [29]. We chose this particular kernel in order to illustrate
the applicability of the proposed feature extraction methods in fully automatic
face recognition schemes.

All the reported results were acquired using C−1 features produced from the
optimization problem (17) and C − 1 features from the optimization problem
(18). For the IKPCA algorithm the reported results were acquired using N − 1
features produced by the algorithm presented in Section 3. The classifier used was
a simple nearest neighbor classifier using as distance the normalized correlation
or the projected features.

7.1 Face Recognition Experiments in Yale B Database

The extended Yale B database [30] contains 16128 images of 38 subjects under
9 poses and 64 illumination conditions. We used a subset that consists of 64
near frontal images for each subject. For training, we randomly selected a subset
with 5, 10 and 20 images per subject. The training set was also further split into
training and validation to find the optimal parameters of the kernels used (i.e.,
γ and α). For testing, we used the remaining images. Finally, we performed 20
different random realizations of the training/test sets.

For comparison reasons we used the the pd Gaussian RBF (GRBF) kernel
using the same distances ||x − y||2W as k(x,y) = exp

(− 1
σ2 ||x− y||2W

)
. Using

the GRBF kernel the IKPCA and the proposed CIKDFA framework collapse to
the KPCA and CKFDA [2] frameworks, respectively. Table I summarizes the
obtained results. As we can see the proposed IKPCA and CIKFDA with the
proposed npd kernel outperforms all other algorithms.
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Table 1. Average recognition rates and standard deviations on the Extended YALE
B database

5—10—20 Proposed Kernel (33) GRBF

IKPCA 80.5(1.12) 93.5(0.89) 96.6(0.25) 78.8(1.02) 90.8(0.83) 93.4(0.75)

CIKFDA (17) 77.2(1.12) 93.1(0.82) 97.8 (0.25) 76.8(1.67) 90.4(1.01) 95.9(0.88)

CIKFDA (18) 74.6(1.8) 92.7(0.76) 97.1 (0.3) 75.4(1.63) 89.1(1.21) 95.0(0.73)

Face Recognition Experiments in a Subset of FERET. In order to sim-
ulate results acquired using a fully automatic system, we used directly the faces
returned from a face detector (both training and testing)5. The kernel in (34)
was used for matching the faces provided by the face detector. To the best of our
knowledge there are very few works reporting results in such a difficult setting
with the most recent one the work published in [31].

In this experiment, we attempted to combine the experimental setting sug-
gested in [2, 4] with facial images obtained directly from the face detector. We
did so in order to show the power of the proposed CIKFDA when more than
one images are available for training. In particular, we randomly selected 600
facial images corresponding to 200 subjects, such that each subject has three
images (taken form FA, FB, DupI and DupII). We randomly chose two out of
three images for training and then used the third image for testing.

Table 2 summarizes the recognition rates. We also report recently proposed
state-of-the-art methods for face recognition [33] in manually aligned facial im-
ages (aligned according to the eye coordinates), for comparison reasons. We also
compared our method with LBPs using both manually aligned images and detec-
tor extracted images. We achieved a recognition rate of 95% which demonstrates
that the proposed scheme can be efficiently combined with fully automatic meth-
ods for face detection and matching. We also significantly outperform (by 7%)
state-of-the-art methods that used manually aligned data.

Table 2. Recognition rates in the subset of FERET. SRC represents the results ac-
quired using the method in [33] with manual alignment. LBP-d represents the results
of Local Binary Patterns using detector extracted images and LBP-m represents the
results with images after manual alignment.

Methods SRC [33] LBP-d LBP-m IKPCA CIKFDA (17) CIKFDA (17)

RR 87 35 89 90 95 93.5

7.2 Face Recognition with the XM2VTS Database

We carried out face verification experiments on the test set of Configuration I
of the XM2VTS database. The training set contained 200 subjects with three
images per subject which enabled us to apply our kernel combined with the

5 In particular we used the publicly available face detector implemented in OpenCV
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proposed discriminant analysis. The evaluation set contained three images per
client for genuine claims and 25 evaluation impostors with eight images per
impostor. The testing set contained two images per client and 70 impostors with
eight images per impostor. For additional details on the XM2VTS database and
the protocol used, the interested reader may refer to [34].

A face detector was also used to provide the faces. The applied kernel com-
bined with the proposed kernel discriminant analysis on the samples of the face
detector achieved a TER (Total Error Rate)6 equal to 1.92%. Table 3 summarizes
the best results of each competition in fully automatic facial image registration
scenarios, as well as, the performance of of some recent algorithms tested under
automatic alignment by using the eye coordinates. Our method, which is ap-
plied directly on the results of the detector, achieved a TER which is the best
reported for the XM2VTS database according to the best of our knowledge. The
results reported with the SRC method in [33] were achieved using manually
aligned data.

Table 3. Best Results in XM2VTS database under automatic image alignment

Methods Best of [36] Best of [37] Best of [38] [39] SRC [33] Proposed Approach

TER% 13.10 3.86 2.14 2.3 4 1.92

8 Conclusions

In this paper we presented a theoretical framework for discriminant feature ex-
traction in Krein spaces. In particular we proposed a Complete Indefinite Kernel
Fisher Discriminant Analysis (CIKFDA) which discovers discriminant projec-
tions both in the range and null spaces of the within-class-scatter matrix in the
Krein space. We demonstrated the superiority of the proposed approach in fully
automatic face recognition scenarios where state-of-the-art results were achieved
using the output images acquired from a face detector.
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Abstract. This paper advocates a novel material-aware feature descrip-
tor for volumetric image registration. We rigorously formulate a novel
probability density function (PDF) based distance metric to devise a
compact local feature descriptor supporting invariance of full 3D orienta-
tion and isometric deformation. The central idea is to employ anisotropic
heat diffusion to characterize the detected local volumetric features. It
is achieved by the elegant unification of diffusion tensor (DT) space con-
struction based on local Hessian eigen-system, multi-scale feature extrac-
tion based on DT-weighted dyadic wavelet transform, and local distance
definition based on PDF formulated in DT space. The diffusion, intrin-
sic structure-aware nature makes our volumetric feature descriptor more
robust to noise. With volumetric images registration as verifiable appli-
cation, various experiments on different volumetric images demonstrate
the superiority of our descriptor.

1 Introduction and Motivation

With the rapid advancement of various volumetric imaging modalities, we have
been witnessing the urgent need for automatic feature detection and the discrim-
inative feature description of complex volumetric dataset in image registration,
object recognition, video event detection, image retrieval, etc. To achieve this,
some recent works have tried to extend 2D SIFT-like methods to 3D versions,
for example, Scovanner et al. [1] created a 3D SIFT descriptor for video action
recognition, Flitton et al. [2] extended the SIFT approach to 3D rigid recogni-
tion, and other applications include rigid registration of medical images [3, 4]
and panoramic medical image stitching [5, 6].

Despite the limited success, certain difficulties still prevail and need to be
resolved. The challenges are prompted by the facts that volumetric images typ-
ically have much more spatial flexibility, and are frequently accompanied by
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Fig. 1. The algorithmic pipeline of our method

non-rigid deformation with higher degrees of freedom. As for non-rigid regis-
tration, although some intensity/information entropy based methods can easily
achieved this goal by integrating global energy optimization and deformable
templates, however, a typical global approach tends not to consider local de-
formable feature-driven information and non-affine distortion. It remains hard
for localized, feature-centric registration methods, since this requires the feature
descriptor to be intrinsic, concise, informative, and discriminative. Simple statis-
tics on local properties in intensity and gradient domain won’t work, we should
resort to the intrinsically physical laws underlying the embedded manifold space.
Specially, the main challenges are documented as follows.

First, due to the complex topological degrees of freedom inside the volume
dataset, multi-scale feature extraction based on Difference-of-Gaussian (DoG)
convolution analysis frequently obtain a large number of less salient or false
alarm candidates. Especially, ambiguities are unavoidable for the ones with low
contrast or being poorly localized nearby an edge. More material-aware convolu-
tion kernels, which can respect the local geometry structure and its orientations,
still need to be further explored for multi-scale feature extraction.

Second, most of the 3D descriptors simply imitated from 2D SIFT can only
partially satisfy the rotational invariance. Although Allaire et al. [3] achieves the
full rigid orientation invariance by taking 3-angle orientation (azimuth, elevation,
and tilt) into account, the descriptor dimensionality is up to 16, 384. From the
application’s viewpoint, this is less efficient and far from practical.

Third, analogous to the analysis for shape descriptor in [7], and besides the
rigid transformation, the feature descriptor should take deformation into account
as much as possible. However, this typically requires certain kind of mapping
by parameterizing local volumetric structure with intrinsic metric over certain
canonical domain, which may cause even more severe deformation effects. Thus,
intrinsic metrics supporting deformation-invariant volumetric feature description
are yet to be systematically explored.

To tackle the aforementioned challenges, we systematically articulate a novel
material-aware feature descriptor for volumetric images. Towards the ambi-
tious goal of isometric invariance, our observation is that, the diffusion pro-
cess is intrinsically relevant to the diffusion distance metric design and the
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probability of random walk, which are informative for the description of lo-
cal intrinsic structure. Meanwhile, naively using the popular isotropic diffusion
process (e.g., Gaussian kernel) will naturally give rise to the smooth transition
between nearby regions without respecting evident clues on edges and ridges.
One feasible strategy to combat this problem is to replace Gaussian kernel with
the structure-aware anisotropic DT-weighted kernel during convolution. Thus,
we formulate a novel descriptor by combining random walk with probability den-
sity functions in DT space. Fig. 1 illustrates the pipeline of our approach, and
highlights its application in automatic registration of volumetric features (un-
dergoing quasi-isometric deformation). The salient contributions of this paper
include:

– We formulate a local diffusion tensor based on Hessian eigen-system, which
can fully grasp the second order differential properties, encode the directional
curvatures of local structure, intrinsically reveal the material continuity, and
control the diffusion in anisotropic way.

– We devise a data-specific kernel by integrating diffusion tensor with bilateral
filter, which can be employed to conduct dyadic-wavelet based direction-
aware decomposition for structure-respected multi-scale feature extraction.

– We design a random walk based feature descriptor, which depicts the local
material property by measuring the difference among probability density
functions defined in DT space. Inherited from heat diffusion, it is robust to
noise, supports isometric deformation invariance, and can better reveal the
underlying material distribution statistics.

2 Related Work

2.1 Feature Descriptor Design

Existing descriptors can be roughly divided in two classes according to their level
of invariance. Rigid transformation has been accommodated rather easily in dif-
ferent descriptors, such as phase-based descriptor, spin images, gradient location
and orientation histogram [3], automated learning based descriptor [8], and com-
bined method of logarithmic sampling with Fourier analysis [9]. As for non-rigid
deformation, to our best knowledge, only in the field of surface shape analy-
sis, some deformation-invariant descriptors have been proposed in [10–12]. Of
which, most advanced approaches are the ones based upon Laplacian spectrum
analysis [13], however, the required global eigen-decomposition of such methods
cannot be afforded by volumetric images. Thus, analogous intrinsic feature de-
scriptors of volumetric images still need to be systematically explored in a local
and efficient way.

2.2 Image Structure Analysis

Tensor space method has great superiority in structure-respected image analy-
sis. The structure tensor, as a measurement for edges and their orientations, has
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been widely used in texture analysis. For Example, Malcolm et al. [14] general-
ized the tensor method to segment images by taking the Riemannian geometry
of the tensor space into account. However, the structure tensor used in [14] only
reflects the orientation information at a single scale and fails to discriminate
textures which are varying across different scales. Most recently, the multi-scale
structure tensor proposed in [15] has demonstrated successful applications in
image fusion. Besides, Brox et al. [16] argued that if the local orientation is
not homogeneous, the local neighborhood induced by the Gaussian filter will
integrate ambiguous structure information. Thus, Bazán and Blomgren [17] pro-
posed to perform image smoothing and edge detection by combining anisotropic
diffusion and bilateral filtering. As an extension to this, Bazán et al. [18] also
successfully used this technique to enhance the structure of electron tomography.
Therefore, it is necessary to introduce certain tensor distance metric to govern
multi-scale feature extraction.

2.3 Intrinsic Distance Metrics

Geodesic distance can measure the shortest path between two points over the
curved surface, which has been widely used in graphics tasks. However, as noted
in [19], the geodesic is not shape-aware, and sensitive to topological noise. An-
other popular metric is the diffusion distance, which has been widely employed in
texture synthesis, gradient approximation, and shape matching [20]. In essence,
the diffusion distance relates to diffusion time and a number of random walks in
Brownian motion. The integration of diffusion distance along time [21], named
commute-time distance, is also adopted on graphs. It measures the average time
of the heat diffusion between two points, and relates to the Green’s function of
the Laplacian. As an improvement, Lipman et al. [19] proposed the bi-harmonic
distance derived from the Green’s function of the bi-harmonic operator. The
bi-harmonic distance is locally isotropic, globally shape-aware, and isometry-
invariant. However, it fails to handle local/partial shape analysis, because the
Green’s function is globally defined. For other distance metrics, please refer to
the comprehensive survey [22]. Inspired by these, it is a robust way to devise
intrinsic volumetric feature descriptor by measuring local material distribution
with the help of diffusion-like distance metric.

3 Diffusion Tensor Space Construction

As already demonstrated in many previous works, the proper definition of
tensor space over a scalar image will be a key to local material structure anal-
ysis and subsequent image processing. The rich differential geometry theory of-
fers an elegant method to achieve this by treating an image as a differentiable
manifold [23].

As the simplest tensor, structure tensor (Fig.2A) is derived from first-order
differential analysis, which can locally characterize the predominant directions
of material changes and how those directions are related to each other. However,
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Fig. 2. Illustration of structure tensor, diffusion tensor and its physical meaning

first-order derivatives cannot fully grasp the local geometric differential property.
Thus, we employ Hessian eigen-system to define the local diffusion tensor, which
facilitates to the description of the second-order structure and intuitively depicts
how the surface normal changes.

Hessian matrix H is a symmetric matrix consisting of second-order partial
derivatives, and has real-valued eigenvalues (λ1, λ2, λ3) and corresponding eigen-
vectors. The directions corresponding to the maximal eigenvalue of H should
represent the most direct change from one material to adjacent neighboring ma-
terial, while the direction corresponding to the minimal eigenvalue shows the
material interface and how such material flows along the interface. To suppress
the diffusion when cutting across sharp material boundaries, we formulate an
anisotropic diffusion tensor by a spectral representation as:

D(p) = ˜λ1e1e
T
1 + ˜λ2e2e

T
2 + ˜λ3e3e

T
3 , (1)

˜λi = exp
(

− λi

σd

)

, i = 1, 2, 3, (2)

with diffusion parameter σd that controls the diffusion velocities. As shown in
Fig.2C, in fact we construct an ellipsoid that encodes the direction and velocity
of diffusion. According to the theory of Rayleigh quotient, the diffusion velocity
from voxel p along e can be viewed as the length of the vector projection onto
the ellipsoid, which is expressed as

vel(p, e) =
eTD(p)e

eTe
. (3)

Therefore, for a voxel inside a blob, all of its diffusion directions are principal
diffusion directions. For a voxel on a boundary surface, all the directions aligning
with its tangent plane are principal diffusion directions. For a voxel on a sharp
edge, the direction along the edge is principal diffusion direction. For an isolated
noise voxel, it will have no principal diffusion directions, as the velocities along
all the directions are extremely small.
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4 Multi-scale Feature Extraction

With the constructed anisotropic diffusion tensor field governing the diffusion
direction and velocity, we extract multi-scale point features founded upon dyadic
wavelet transform based decomposition, which comprises two steps: anisotropic
wavelet kernel construction, multi-scale analysis and feature extraction.

4.1 Anisotropic Wavelet Kernel Construction

The visual perception research has indicated that the cells having directional
selectivity are found in the retinas and visual cortices of the entire major verte-
brate classes, thus naively using the anisotropic kernel will naturally give rise to
directional information loss without having evident clues on material structure.

In order to respect the direction information embedded in the local structure
during multi-scale analysis, our anisotropic wavelet kernel (AWK) is derived
from the diffusion tensor and bilateral filter. AWK determines the convolution
weights by considering both the directional continuity of material structures and
the photometric similarity, which prefers nearby values to distant values in both
spatial and material metric domain (DT space). Given two neighboring voxels
located at p and q, we first define their diffusion tensor space distance as

dD(p, q) = exp(−(p− q)T (wpq(D(p) +D(q))−1(p− q)), (4)

wpq is introduced to amend the gradient, which changes in response to the inten-
sity change of neighboring voxels. In fact, D(p) +D(q) describes the diffusivity
and controls the diffusion directions and velocities, and wpq respects the intensity
variance between neighboring voxels. Therefore, we can define the AWK as

Ψ(p) =
1

Wp

∑

q∈N(p)

Gσs(p− q)Gσk
(dD(p, q))I(q). (5)

whereWp is a normalization factor,Gσ(x) = exp(−x2/σ2) is the Gaussian kernel
function, and σk is a control parameter being set to the inverse of the maximal
eigenvalues of diffusion matrices D(p) and D(q).

4.2 AWK Based Multi-scale Feature Extraction

With the built-in capability to faithfully respect material structure, and also
inspired by the wavelet decomposition nature of DOG operation in the SIFT
framework, we can use the proposed AWK to decompose a volumetric image
into an approximation sub-band and a detail sub-band. However, only one-level
decomposition is not enough to extract the feature information since images may
be noisy and objects inherently comprise different details changing as a function
of the observation scale. Thus, we adopt the dyadic wavelet transform to define
the multi-scale form of AWK as

In+1(p, σs) =
1

Wp

∑

q∈N(q)

ωn(p− q, σs)Gσk
(dnD(p, q))In(q), (6)
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Fig. 3. Illustration of features respectively extracted by DOG and AWK operators

ωn(x, σs) =

{

Gσs(|| x
2n ||) if x

2n ∈ Z3 and || x
2n || < m

0 otherwise
(7)

n represents the n-th level of the decomposition, Wp has the same meaning as
Eq. (5), m is a threshold to control the size of neighboring region.

In implementation, it is iterated over the approximate sub-bands according
to Eq. (6) and only the one-ring neighbors of each voxel are considered in each
iteration. After k + 1 iterations, the approximate sub-band corresponding to
a certain scale can be obtained, and k detail sub-bands are respectively the
difference between the neighboring approximate sub-bands as

I(p, kσ) = Ik+1(p, σ)− Ik(p, σ). (8)

Since point features are usually defined as local extrema of some quantities
related to geometry, texture, or other information, and our multi-scale sub-band
decomposition is exactly an anisotropic approximation to the Laplacian, the
multi-scale point features can be obtained by extracting local minima/maxima
from the detail sub-bands across scales, where a voxel will be accepted as feature
if and only if all of its 80 neighbors approve that it is the brightest/darkest one
respectively. Fig. 3 shows the comparison of DOG based features and AWK based
features. In Fig. 3 and the other experiment figures, larger point corresponds to
larger scale feature. AWK operator proves to be more informative, since the
resulted features intrinsically respect sharp structures and suppress the unstable
features which are poorly localized near the low contrast regions.

5 Invariant Feature Descriptor Based on PDF Distances

5.1 DT-Space PDF Distance Metrics

Inside the diffusion tensor space, the behavior of anisotropic heat diffusion can be
determined by its graph Laplacian. Consider volumetric image I as an undirected
graph G = (V,E), the anisotropic diffusion operator T can be defined as

T(vi, vj) = S(vi)− L(vi, vj), (9)
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Fig. 4. Illustration of unnormalized PDFs for two feature points inside head volume

where L denotes the graph Laplacian operator over G, L(vi, vj) equals to
dD(vi, vj) (Eq. (4)), and S(vi) =

∑

vj∈Ni
L(vi, vj). Since L is self-adjoint, the

operator T is self-adjoint with all non-negative entries.
From the perspective of probability in Brownian motion, T is a random walk

matrix with non-zero entries along the main diagonal, which allows one-step
walk from a point to itself. Each entry T(vi, vj) stands for the probability of
the Brownian motion moving from vi to vj in one step. Thus, the power Tn

encodes the probability of a Brownian motion from one point to another in n
steps, which naturally gives rise to the random walk based probability density
functions (PDF) after approximation and normalization. We formulate the PDF
Pvi(vj) of voxel vi as

Pvi(vj) =
Tn(vi, vj)

‖Tn(vi, vk)‖2 , (10)

where the denominator serves for the normalization purpose, thus ||Pvi(vj)||2 =
1 and Pvi(vj) > 0. The number of random walks n is a positive integer. For
fast computation, we select n from the dyadic powers 2j. It allows to compute
the matrix power Tn through matrix multiplication in numerics. Since we are
particularly interested in measuring the local geometry structure of volumetric
image, the number of random walks n is empirically set to 24. Fig. 4 illustrates
the unnormalized PDFs for two feature points (the central red point). It states
that PDF can efficiently reflect the material continuity, for example, the vox-
els belonging to the same kind of material as that of feature point have high
probability, which appear red.

Consider a family of PDFs {Pv}v∈V in I, if ∀vx, vy ∈ V , vx �= vy, and there
∃vz ∈ V , satisfies Pvx(vz) �= Pvy (vz), then {Pv}v∈V is called generic, which
means that no two PDFs are completely the same in a generic family of PDFs.
We use the 2-norm distance between two PDFs in {Pv}v∈V as PDF metrics
(PDFM):

dP (vx, vy) = ‖Pvx(vz)−Pvy (vz)‖2. (11)

Eq. (11) can also use Lp (p > 0) norm. Since P is a vector, the range of dP (vx, vy)
is [0, 21/p]. Thus it is [0,

√
2] here.

In essence, PDFM describes the intrinsic material relationship, which has
many attractive properties. First, inheriting from the anisotropic Laplacian
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operator, it is isometry-invariant. Second, it is locally supported, since the power
series Tn span a scaling space in the diffusion wavelets, and the PDF Pvi(vj)
is purely determined by a local sub-volume with vi as a center, whose range
is bounded by steps n. Third, according to the probability theory of Brownian
motion and Markov chain, it is insensitive to noise, because small local changes
do not have much influence to the entire set of all connected paths, hence the
distribution of probabilities.

5.2 Feature Descriptor Design

PDFM is a metric naturally based on heat diffusion, and it is defined in DT space,
so if the underlying material undergoes isometric deformation, the PDFM dis-
tribution in the vicinity of feature points is expected to have little or no change.
We define our feature descriptor as a 2D shape context histograms comprising
PDFM and the normalized image density (or gradient norm) of the volumetric
image with the closest scale to that of each feature point.

We select a sub-volume centered around each feature point and compute the
PDFM for all voxels in this sub-volume, and the radius is set to be the length of
8 voxels in our experiments. According to the value range of PDFM, we create
15 bins from 0 to

√
2 with step internal 0.1. For each bin, we take statistics of

the normalized intensity (or gradient norm) of the voxels whose PDFM distance
to the feature point is in current bin. Then, we create 17 intensity bins from
0 to 255 with step internal 15 or 10 gradient norm bins from 0 to 1 with step
internal 0.1.

Compared with [3], which can only support rigid transformation/rotation in-
variance and whose descriptor dimensionality is up to 16, 384, our feature de-
scriptor is much more effective and compact (we at most need a 255-dimensional
feature descriptor for each feature point).

6 Applications and Experimental Results

Our prototype system is implemented using C++, and some Matlab functions
are invoked to perform sparse matrix multiplication. We conduct experiments
on a laptop with Intel Core (TM) i7 CPU (1.6GHz, 4 cores) and 4G RAM. Ta-
ble 1 documents the time performance (in seconds) and some other experimental
statistics, including Hessian matrix computation, DT construction (DTC), sub-
band decomposition (SD), feature extraction (FE), number of feature points,
descriptor construction (DC) and registration.

First, in order to verify the full orientation invariance with ground truth, we
create various rotated volumetric images from the original one. In the interest
of visual clearness, only half of the registration lines are shown in Fig. 5 (The
exact number of the matching pairs is documented at the bottom of each sub-
figure). During feature registration, the matching is determined by Distance
Ratio, which is computed by comparing the distance of the closest candidate to
that of second-closest candidate, we set the Distance Ratio to be 0.8. A match
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Table 1. Time performance (in seconds) of our experiments

Dataset Volume Size Hessian DTC SD FE Feature # DC Registration

Fig.1 1282 × 128 40.9 95.3 12.7 224.6 357 220.7 14.6
Fig.5 2562 × 73 152.4 121.8 27.8 515.4 459 296.4 51.2
Fig.6 2562 × 62 150.1 105.8 24.9 567.7 559 469.3 83.2
Fig.7 2562 × 64 96.7 111.7 19.2 373.5 126 106.3 4.2
Fig.8 1282 × 115 38.9 65.5 12.1 279.4 570 480.9 88.7

Fig. 5. Rigid registration with full 3D orientation of head volumetric images

Fig. 6. Multi-modality registration of Monkey head volumetric images

is deemed true when the counterpart lies within 2 voxel diagonal length of the
ground truth position, the results in Fig. 5 quantitatively prove that our method
can well (average 98% accuracy) support full orientation invariance.

Second, to test the capacity of our method in multi-modality volumetric im-
age registration, we use datasets downloaded from the Laboratory of Neuro
Imaging of UCLA, which have already been registered, thus offering the ground
truth. Here, we compute our feature descriptor with gradient norm bin, because
the gradient norm is more informative than intensity among different modality
images. Fig. 6 (A-C) respectively illustrates the volumetric gradient norm of
original datasets. Since the CT dataset includes less structure information than
the MRI and PET datasets, the corresponding number of the matched pairs in
Fig. 6 (D-E) is a bit less than that of Fig. 6 (F). In this group of experiments,
we can achieve the average registration accuracy of more than 95 percents for
multi-modality images.
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Fig. 7. Feature-based nonrigid registration of thorax MRI volumes

Fig. 8. Feature-based nonrigid registration of abdomen CT volumes

Fig. 9. Noise-perturbed datasets of head MRI volume and the registration results

Third, as for volumetric images with quasi-isometric deformation (far be-
yond isometric deformation), we use two experiments to qualitatively verify the
isometric deformation invariance of our feature descriptor. Fig. 7 shows the non-
rigid registration results of human MRI thorax volumes which are obtained from
the same person before and after breathing. Although the shape of the heart and
blood vessel deforms drastically, with the Distance Ratio reducing from 1.0 to
0.8, the mismatched pairs gradually disappear, and almost all the feature points
in Fig. 7 (C) can be accepted as true. Fig. 8 shows the non-rigid registration
results of two abdomen CT volumes respectively scanned in supine and prone
orientations. All the matched lines in Fig. 8 (B-C) are roughly forming a cross
shape, which well aligns with the orientation change (from supine to prone).
When the Distance Ratio is set to be 0.6, most of the features located at muscle,
stomach and spine can be retrieved as correct ones. It proves the superiority of
our descriptor in feature-based registration with isometric deformation.

Fourth, to further examine the robustness, we respectively add 5%, 10% and
15% (of average intensity) random noise to the original volumetric images at
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Fig. 10. More registration results for noise-perturbed datasets

Fig. 11. The performance analysis

randomly-sampled locations. The top row of Fig. 9 shows the noise effects over-
laid onto the original MRI head volume. We use the original dataset as source
image and the noise-perturbed dataset as target image for feature registration.
The match ratio is defined as the percentage of the matched pairs to the total
detected feature points. As we have the ground truth, we accept the matched
pair as correct ones if the distance between source point and target point is less
than two voxels. For each registration result in Fig. 9, we document the correct
registration ratio and the corresponding Distance Ratio. More results are also
shown in Fig. 10 and our supplementary video, where red lines denote correct
registration, blue lines denote incorrect registration, and feature points in yellow
are the ones that cannot be matched.

Finally, we use correct registration ratios, feature matching ratios, and num-
ber of correctly-matched feature pairs to conduct quantitative evaluation. The
left, middle, and right subgraph of Fig. 11 respectively reveals the relationship
between the above indicators and the parameter Distance Ratio. For example,
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the head dataset can achieve better registration performance when the Distance
Ratio is around 0.5, since it will have both higher correct registration ratios and
enough correctly-matched feature pairs even though the match ratios are not
very high. As for other datasets, focusing on each type of curves, we can observe
similar trends despite different noise perturbation levels and data types.

7 Conclusion

We have detailed a comprehensive feature extraction and description method
for volumetric images with intrinsic properties of being material-aware. The
technical originality is centered in the integration of diffusion tensor weighted
dyadic wavelet transform for multi-scale analysis and the PDF distance based
metric design in diffusion tensor space. At the application level, our method
supports feature-based volumetric registration with full orientation invariance
and isometric deformation invariance. Extensive experiments and comprehensive
evaluation have demonstrated the effectiveness and robustness of our method.

For our ongoing efforts, we will continue to conduct comprehensive evalua-
tion, and to broaden the application scope. Applications of immediate interest
include local parametric representation, solid recognition, similar shapes cluster-
ing, material distance embedded meshless physical simulation, and etc.
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Mrázek, P., Kornprobst, P.: Adaptive structure tensors and their applications. In:
Weickert, J., Hagen, H. (eds.) Visualization and Processing of Tensor Fields, vol. 1,
pp. 17–47. Springer, Berlin (2006)

17. Bazán, C., Blomgren, P.: Image smoothing and edge detection by nonlinear diffu-
sion and bilateral filter. Technical Report CSRCR2007-21, San Diego State Uni-
versity (2007)

18. Bazán, C., Miller, M., Blomgren, P.: Structure enhancement diffusion and contour
extraction for electron tomography of mitochondria. J. Struct. Biol. 166(2), 144–
155 (2009)

19. Lipman, Y., Rustamov, R.M., Funkhouser, T.A.: Biharmonic distance. ACM
Trans. Graph. 29(3), 27.1–27.11 (2010)

20. Bronstein, A.M., Bronstein, M.M., Kimmel, R., Mahmoudi, M., Sapiro, G.: A
gromov-hausdorff framework with diffusion geometry for topological-robust non-
rigid shape matching. Int. J. Comput. Vision 89(2-3), 266–286 (2010)

21. Yen, L., Fouss, F., Decaestecker, C., Francq, P., Saerens, M.: Graph Nodes
Clustering Based on the Commute-Time Kernel. In: Zhou, Z.-H., Li, H., Yang,
Q. (eds.) PAKDD 2007. LNCS (LNAI), vol. 4426, pp. 1037–1045. Springer,
Heidelberg (2007)

22. Cha, S.H.: Comprehensive survey on distance/similarity measures between proba-
bility density functions. International Journal of Mathematical Models and Meth-
ods in Applied Sciences 1(4), 300–307 (2007)

23. Zhang, J., Zheng, J., Cai, J.: A diffusion approach to seeded image segmentation.
In: Proceedings of CVPR, pp. 2125–2132 (2010)



Efficient Closed-Form Solution

to Generalized Boundary Detection

Marius Leordeanu1, Rahul Sukthankar3,4, and Cristian Sminchisescu2,1

1 Institute of Mathematics of the Romanian Academy
2 Faculty of Mathematics and Natural Science, University of Bonn

3 Google Research
4 Carnegie Mellon University

Abstract. Boundary detection is essential for a variety of computer vi-
sion tasks such as segmentation and recognition. We propose a unified
formulation for boundary detection, with closed-form solution, which is
applicable to the localization of different types of boundaries, such as in-
tensity edges and occlusion boundaries from video and RGB-D cameras.
Our algorithm simultaneously combines low- and mid-level image repre-
sentations, in a single eigenvalue problem, and we solve over an infinite
set of putative boundary orientations. Moreover, our method achieves
state of the art results at a significantly lower computational cost than
current methods. We also propose a novel method for soft-segmentation
that can be used in conjunction with our boundary detection algorithm
and improve its accuracy at a negligible extra computational cost.

1 Introduction

Boundary detection is a fundamental task in computer vision, with broad ap-
plicability in areas such as feature extraction, object recognition and image seg-
mentation. The majority of papers on edge detection have focused on using only
low-level cues, such as pixel intensity or color [1–5]. Recent work has started ex-
ploring the problem of boundary detection based on higher-level representations
of the image, such as motion, surface and depth cues [6–8], segmentation [9], as
well as category specific information [10, 11].

In this paper we propose a general formulation for boundary detection that
can be applied, in principle, to the identification of any type of boundaries, such
as general edges from low-level static cues (Figure 6), and occlusion boundaries
from motion and depth cues (Figures 1, 7, 8). We generalize the classical view of
boundaries from sudden signal changes on the original low-level image input [1–
4, 12–14], to a locally linear (planar or step-wise) model on multiple layers of
the input, over a relatively large image region. The layers can be interpretations
of the image at different levels of visual processing, which could be low-level
(e.g., color or grey level intensity), mid-level (e.g., segmentation, optical flow),
or high-level (e.g., object category segmentation).

Despite the abundance of research on boundary detection, there is no general
formulation of this problem. In this paper, we make the popular but implicit

A. Fitzgibbon et al. (Eds.): ECCV 2012, Part IV, LNCS 7575, pp. 516–529, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Efficient Closed-Form Solution to Generalized Boundary Detection 517

Fig. 1. Our method (Gb) combines, in a unified formulation, different types of infor-
mation (first three columns) to find boundaries (right column). Top row: Gb uses color,
soft-segmentation and optical flow. Bottom row: Gb uses color, depth and optical flow.

intuition of boundaries explicit: boundary pixels mark the transition from one
relatively constant property region to another, in appropriate interpretations of
the image. We can summarize our assumptions as follows:

1. A boundary separates different image regions, which in the absence of noise
are almost constant, at some level of image interpretation or processing. For
example, at the lowest level, a region could have constant intensity. At a
higher-level, it could be a region delimiting an object category, in which case
the output of a category-specific classifier would be constant.

2. For a given image, boundaries in one layer often coincide, in terms of position
and orientation, with boundaries in other layers. For example, discontinu-
ities in intensity are typically correlated with discontinuities in optical flow,
texture or other cues. Moreover, the boundaries that align across multiple
layers typically correspond to the semantic boundaries that interest humans.

Based on these observations, we develop a unified model that can simultaneously
consider both lower-level and higher-level information.

Classical vector-valued techniques on multi-images [12,13,15] can be simulta-
neously applied to several image channels, but differ from the proposed approach
in a fundamental way: they are specifically designed for low-level input, by using
first or second-order derivatives of the image channels, with edge models lim-
ited to very small neighborhoods, as needed for approximating the derivatives.
Derivatives are very often noisy and usually do not have sufficient spatial sup-
port to indicate true object boundaries with high confidence. Moreover, even
though edges from one layer coincide with those from a different layer, their
location may not match perfectly — an assumption implicitly made by the use
of derivatives. We argue that in order to confidently classify boundary pixels
and combine multiple layers of information, one must go beyond a few pixels, to
much larger neighborhoods, in line with more recent methods [5, 9, 16, 17].

The main advantage of our approach over current methods is the efficient
estimation of boundary strength and orientation in a single closed-form compu-
tation. The idea behind Pb and its variants [9, 16] is to classify each possible



518 M. Leordeanu, R. Sukthankar, and C. Sminchisescu

Fig. 2. Left: 1D view of our model. Right: 2D view of our boundary model with different
values of ε relative to the window size W : 2.a) ε > W ; 2.b) ε = W/2 ; 2.c) ε = W/1000.
For small ε the model is a step, along the normal passing through the window center.

boundary pixel based on the histogram difference in color and texture infor-
mation between the two half disks on each side of a putative orientation, for a
fixed number of candidate angles. The separate computation for each orientation
considerably increases the computational cost and limits orientation estimates
to a particular angular quantization, thus affecting the estimated probability of
boundary.

We summarize our contributions as follows: 1) we present a novel boundary
model with an efficient closed-form solution for generalized boundary detection;
2) we recover exact boundary normals through direct estimation rather than
evaluating coarsely sampled orientation candidates as in [16]; 3) we optimize
simultaneously over both low and mid-levels of image processing, and can easily
incorporate outputs from new image interpretation methods. This is in contrast
to current approaches [6, 7, 9] that process low and mid-level layers separately
and combine them in different ways to detect different types of boundaries. 4)
we only learn a small set of parameters, enabling efficient training with limited
data. Our approach essentially bridges the gap between model fitting methods
such as [18, 19], and recent learning-based boundary detectors.

2 Generalized Boundary Model

Given a Nx × Ny image I, let its k-th layer Lk be some real-valued array, of
the same size, whose boundaries are relevant to our task. For example, Lk could
contain, at each pixel, values from a color channel, filter responses, optical flow,
or the output of a patch-based binary classifier trained to detect a specific color
distribution, texture or a certain object category.1 Thus, Lk could consist of
relatively constant regions separated by boundaries.

We expect that boundaries in different layers may not precisely align. Given a
set of layers, each corresponding to a particular interpretation of the image, we
wish to identify the most consistent boundaries across these layers. The output of
our method for each point p on theNx×Ny image grid is a real-valued probability

1 The output of a discrete-valued multi-class classifier can be encoded as multiple
input layers, where each layer represents a given label.



Efficient Closed-Form Solution to Generalized Boundary Detection 519

that p lies on a boundary, given the information in all image interpretations Lk

centered at p.
We model a boundary point in layer Lk as a transition, either sudden or

gradual, in the corresponding values of Lk along the normal to the boundary.
If several K such layers are available, let L be a three-dimensional array of size
Nx×Ny×K, such that L(x, y, k) = Lk(x, y), for each k. Thus, L contains all the
information available for the current boundary detection problem, given multi-
ple interpretations of the image. Figure 1 illustrates how we perform boundary
detection by combining different layers, such as color, depth, soft-segmentation
and optical flow.

Let p0 be the center of a window W (p0) of size
√
NW ×

√
NW , where NW

is the number of pixels in the window. For each image location p0 we want to
evaluate the probability of boundary using the information in L, restricted to
that particular window. For any p within the window, we model the boundary
with the following locally linear approximation:

Lk(p) ≈ Ck(p0) + bk(p0)(p̂ε − p0)
�n(p0). (1)

Here bk is nonnegative and corresponds to the boundary “height” for layer k
at location p0; p̂ε is the closest point to p (projection of p) on the disk of
radius ε centered at p0; n(p0) is the normal to the boundary and Ck(p0) is a
constant over the window W (p0). Note that if we set Ck(p0) = Lk(p0) and use a
sufficiently large ε such that p̂ε = p, our model reduces to the first-order Taylor
expansion of Lk(p) around the current p0.

As shown in Figure 2, ε controls the steepness of the boundary, going from
completely planar when ε is large to a sharp step-wise discontinuity through the
window center p0, as ε approaches zero. When ε is very small we have a step
along the normal through the window center, and a sigmoid that flattens as we
move farther away from the center, along the boundary normal. As ε increases,
the model flattens to become a perfect plane for any ε greater than the window
radius. In 2D, our model is not an ideal ramp (see Figure 2), which enables it
to handle corners as well as edges. The idea of ramp edges has been explored in
the literature before, albeit very differently [20].

When the window is far from any boundary, the value of bk will be near zero,
since the only variation in the layer values is due to noise. If we are close to a
boundary, then bk becomes large. The term (p̂ε − p0)

�n(p0) approximates the
sign indicating the side of the boundary: it does not matter on which side we
are, as long as a sign change occurs when the boundary is crossed. When a true
boundary is present within several layers at the same position (bk(p0) is non-
zero and possibly different, for several k) the normal to the boundary should be
consistent. Thus, we model the boundary normal n as common across all layers.

We can now write the above equation in matrix form for all layers, with the
same window size and location as follows: let X be a NW ×K matrix with a row
i for each location pi of the window and a column for each layer k, such that
Xi;k = Lk(pi). Similarly, we define NW × 2 position matrix P: on its i-th row
we store the x and y components of p̂ε − p0 for the i-th point of the window.
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Let n = [nx, ny] denote the boundary normal and b = [b1, b2, . . . , bK ] the step

sizes for layers 1, 2, . . . ,K. Also, let us define the rank-1 2×K matrix J = n�b.
We also define matrix C of the same size as X, with each column k constant
and equal to Ck(p0). We rewrite Equation 1 (dropping the dependency on p0

for notational simplicity), with unknowns J and C:

X ≈ C+PJ. (2)

Since C is a matrix with constant columns, and each column of P sums to 0, we
have P�C = 0. Thus, by multiplying both sides of the equation above by P�,
we eliminate the unknown C. Moreover, it can be easily shown that P�P = αI,
i.e., the identity matrix scaled by a factor α, which can be computed since P is
known. We finally obtain a simple expression for the unknown J (since both P
and X are known):

J ≈ 1

α
P�X. (3)

Since J = n�b it follows that JJ� = ‖b‖2n�
n is symmetric and has rank 1.

Then n can be estimated as the principal eigenvector of M = JJ� and ‖b‖ as
the square root of its largest eigenvalue. ‖b‖ is the norm of the boundary step
vector b = [b1, b2, ..., bK ] and captures the overall strength of boundaries from
all layers simultaneously. If layers are properly scaled, then ‖b‖ could be used
as a measure of boundary strength. Once we identify ‖b‖, we pass it through a
one-dimensional logistic model to obtain the probability of boundary, similarly
to recent methods [9,16]. The parameters of the logistic model are learned using
standard procedures, explained in Section 3.2. The normal to the boundary n
is then used for non-maxima suppression. Note that ‖b‖ is different from the
gradient of multi-images [12, 13] that is computed from local derivatives, which
could be noisy and lack sufficient spatial support. We compute the boundary
strength by fitting a model, which, by controlling the window size and ε, can
vary from a small to a large patch and from planar to step-wise.

Additionally, we propose to weigh the importance of each pixel in a window
by an isotropic 2D Gaussian located at the window center p0. This puts more
weight on model fitting errors from data points that are closer to the window
center. The idea is implemented by multiplying each row of both X and P with
the Gaussian weight corresponding to that particular location. We mention that
the introduction of Gaussian weighting does not change the model (Equation 2),
but only the contributions of data points to the model fitting process: Ck(p0),
with its rows also multiplied by the corresponding Gaussian weights, still cancels
out and the final Equation 3 remains valid. As seen in the middle plot of Figure
3, the performance is significantly influenced by the choice of Gaussian standard
deviation σG, which confirms our assumption that points closer to the boundary
should constrain the model parameters more.

In our experiments we used a window radius equal to 2% of the image diag-
onal, ε = 1 pixel, and Gaussian σG equal to half of the window radius. These
parameters produced the best F-measure on the BSDS300 training set [16] and
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Fig. 3. Evaluation on BSDS300 test set by varying the window size (in pixels), σG

of the Gaussian weighting (relative to window radius) and ε. One parameter is varied,
while the others are set to their optimum (learned from training images). Left: windows
with large spatial support give a significantly better accuracy. Middle: points closer to
the boundary should contribute more to the model, as evidenced by the best σG ≈
half of the window radius. Right: small ε leads to better performance, confirming the
usefulness of our step-wise model.

were also near-optimal on the test set, as shown in Figure 3. We draw the fol-
lowing conclusions about our model: 1) a large window size leads to significantly
better performance as more evidence can be used in reasoning about boundaries.
Note that when the window size is small our model becomes similar to meth-
ods based on local approximation of derivatives [4, 12, 13, 15]. 2) the usage of a
small ε produces boundaries with significantly better localization and strength.
It strongly suggests that boundary transitions in natural images tend to be sud-
den, not gradual. 3) the Gaussian weighting is justified: the model is better fitted
if more weight is placed on points closer to the boundary.

3 Algorithm

Before applying the main algorithm we scale each layer in L according to its
importance, which may be problem dependent. We learn the scaling of layers
from training data using a direct search method [21] to optimize the F-measure
(Section 3.2). Algorithm 1 (termed Gb) summarizes the proposed approach.

The pseudo-code presented in Algorithm 1 gives a description of Gb that di-
rectly relates to our boundary model. Upon closer inspection we observe that el-
ements of M can also be computed exactly by convolving each layer Lk twice,
using two different kernels: Hx(x− x0, y − y0) ∝ g(x− x0, y − y0)

2(xε − x0) and
Hy(x− x0, y− y0) ∝ g(x− x0, y− y0)

2(yε − y0), and then combining the results.
Here g(x− x0, y − y0) is the Gaussian weight applied at location (x− x0, y − y0)
and (xε, yε) = pε. This observation leads to a straightforward implementation.2

Note the analytic difference between our filters and Derivative of Gaussian filters
(i.e., Gx(x − x0, y − y0) ∝ g(x − x0, y − y0)(x − x0)), which could be used for
computing the gradient of multi-images [13]. While Gaussian derivatives have the
computational advantage of being separable, when used for computing the gradi-
ent of multi-images they produce boundaries of inferior quality (see Table 2).

2 Code available online at: http://www.imar.ro/clvp/code/Gb

http://www.imar.ro/clvp/code/Gb
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Fig. 4. Left: Edge detection run times on a 3.2 GHz desktop for our MATLAB im-
plementation of Gb vs. the publicly available code of Pb [16]. Right: ratio of run time
of Pb to run time of Gb. Each algorithm runs over a single scale and uses the same
window size, which is a constant fraction of the image size. Here, Gb is 40× faster.

Algorithm 1. Gb: Generalized Boundary Detection

Initialize L, scaled appropriately.
Initialize w0 and w1.
Pre-compute matrix P
for all pixels p do

M← (P�Xp)(P
�Xp)

�

(v, λ)← principal eigenpair of M
bp ← 1

1+exp(w0+w1

√
λ)

θp ← atan2(vy , vx)
end for
return b, θ

3.1 Computational Complexity

The overall complexity of Gb is straightforward to derive. For each pixel p,
the most expensive step is computing the matrix M, which has O((NW + 2)K)
complexity, where NW denotes the number of pixels in the window and K the
number of layers. M is a 2 × 2 matrix, so computing its eigenpair (v, λ) is a
closed-form operation, with small fixed cost. Thus, for a fixed NW and a total
of N pixels per image the overall complexity is O(KNWN). If NW is a fraction
f of N , then complexity becomes O(fKN2).

The running time of Gb compares favorably to that of Pb [9, 16]. Pb in its
exact form has complexity O(fKNoN

2), where No is a discrete number of can-
didate orientations. Both Gb and Pb are quadratic in the number of image
pixels. However, Pb has a significantly larger fixed cost per pixel as it requires
the computation of histograms for each individual image channel and orienta-
tion. In Figure 4, we show the run times for Gb and Pb (publicly available
code) on a 3.2GHz desktop in MATLAB, on the same images, using the same
window size and a single scale. While Gb produces boundaries of similar quality
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(see Table 2), it is consistently faster than Pb (about 40×), independent of the
image size (Figure 4, right plot). For example, on 0.15 MP images the times are:
19.4 sec for Pb vs. 0.48 sec for Gb; to process 2.5 MP images, Pb takes 38 min
while Gb only 57 sec.

A fast parallel implementation of gPb [9] is proposed in [22]. The authors im-
plement the method directly on the high-performance Nvidia GTX 280 graphics
card with a high degree of parallelism (30 multiprocessors). Local Pb is com-
puted at three different scales. The authors offer two implementations for local
cues: one for the exact computation and the other for a faster approximate com-
putation that uses integral images and is linear in the number of image pixels.
The approximation has O(fKNoNbN) time complexity, where Nb is the num-
ber of histogram bins for the different image channels and No is the number
of candidate orientations. Note that NoNb is large in practice and affects the
overall running time considerably. It requires computing (and possibly storing)
a large number of integral images, one for each combination of (histogram bin,
image channel, orientation). The actual number is not explicitly stated in [22],
but we estimate that it is in the order of one thousand per input image (4
channels × 8 orientations × 32 histogram bins = 1024). The approximation
also requires special processing for the rotated integral images of texton labels,
to minimize interpolation artifacts. The authors propose a solution based on
Bresenham lines, which further affects the discretization of the rotation angle.
In Table 1 we present run time comparisons with Pb’s local cues computation
from [22]. Our exact implementation of Gb (using 3 color layers) in MATLAB
is 8 times faster than the exact parallel computation of Pb over 3 scales on
GTX 280.

Table 1. Run times: Gb implementation in MATLAB on a 3.2 Ghz desktop vs. Catan-
zaro et al.’s parallel computation of local cues on Nvidia GTX 280 [22]

Algorithm Gb (exact) [22] (exact) [22] (approx.)

Run time (sec.) 0.473 4.0 0.569

3.2 Learning

Our model uses a small number of parameters. Only two parameters (w0, w1) are
needed for the logisic function that models the probability of boundary (Algo-
rithm 1). For layer scaling the maximum number of parameters needed is equal
to the number of layers. We reduce this number by tying the scaling for layers
of the same type: 1) for color (in CIELAB space) we fix the scale of L to 1
and learn a single scaling for both channels a and b; 2) for soft-segmentation
(Section 4) we learn a single scaling for all 8 segmentation layers; 3) for optical
flow (Section 5.2) we learn one parameter for the 2 flow channels, another for
the 2 channels of the unit normalized flow, and a third for the flow magnitude;
4) for RGB-D images (Section 5.3) we need one additional scaling for depth.
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Fig. 5. Soft-segmentation results from our method. The first 3 dimensions of the
soft-segmentations are shown on the RGB channels. Computation time for soft-
segmentation is less than 2 seconds per 0.15 MP image in MATLAB.

Learning the weights of layers is based on the observation that the matrix M
can be written as a linear combination of matrices Mi computed for each scaling
si separately:

M =
∑

i

s2iMi, (4)

where Mi ← (P�Xi)(P
�Xi)

� and Xi is the submatrix of X, with the same
number of rows as X and with columns corresponding only to those layers that
are scaled by si. It follows that the largest eigenvalue of M, λ = 1

2 (tr(M) +√
tr(M)2 − det(M)/4), can be computed from si’s and the elements of Mi’s.

Thus, the F-measure, which depends on (w0, w1) and λ, can also be computed
over the training data as a function of the parameters (w0, w1) and si, which
have to be learned. To optimize the F-measure, we use the direct search method
of Lagarias et al. [21], since it does not require an analytic form of the cost and
can be easily applied in MATLAB by using the fminsearch function. In our
experiments, the positive and negative training edges were sampled at equally
spaced locations on the output of Gb using only color, with all channels equally
scaled (after non-maxima suppression applied directly on the raw

√
λ). Positive

samples are the ones sufficiently close (less than 3 pixels) to the human-labeled
ground truth boundaries.

4 An Efficient Soft-Segmentation Method

In this section we present a novel method to rapidly generate soft image seg-
mentations. Its continuous output is similar to the eigenvectors computed by
Ncuts [23], but its computational cost is significantly lower: under 2 sec (3.2 GHz
CPU) vs. over 150 sec required for Ncuts (2.66 GHz CPU [22]) per 0.15MP im-
age in MATLAB. We briefly describe it here because it serves as a fast mid-level
representation of the image that significantly improves the boundary detection
accuracy over raw color alone. While we describe this method in the context
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of color, we emphasize that it is general enough to integrate a variety of other
image features, such as texture.

The method is motivated by the observation that regions of semantic interest
(such as objects) can often be modeled with a certain, potentially complex,
color distribution: each possible color has a certain probability of occurrence,
given the region. Specifically, we assume that the colors of any image patch are
generated from a distribution that is a linear combination of a finite number of
color probability distributions belonging to the regions of interest in the image.

Let c be an indicator vector associated with some patch from the image, such
that ci = 1 if color i is present in the patch and 0 otherwise. If we assume
that the image is formed by a composition of regions with colors generated
from a few color distributions, then we can consider c to be a multi-dimensional
random variable drawn from a mixture of distributions hi: c ∼

∑
i πihi. The

linear subspace of these distributions can be automatically learned by PCA
applied to a the set of indicator vectors c, sampled uniformly from the image.
Once the subspace is discovered, for any patch P sampled from the image and
its associated indicator vector c, its generating distribution (considered to be
the distribution of the foreground) can be obtained by PCA reconstruction:
hF(c) ≈ h0+

∑
i(c−h0)

�vi. The distribution of the background is also obtained
from the PCA model using the same coefficients, but with opposite sign: thus
we obtain a background distribution that is as far as possible (in the subspace)
from the foreground: hB(c) ≈ h0 −

∑
i(c− h0)

�vi.
Having computed the figure/ground distributions, we classify whether each

location in the image belongs to the same region as the current patch P . If
we perform the same classification procedure for ns (≈ 150) patches uniformly
sampled on the image grid, we obtain ns figure/ground segmentations for the
same image. At a final step, we again perform PCA on vectors collected from all
pixels in the image; each vector is of dimension ns and corresponds to a certain
image pixel, such that its i-th element is equal to the value at that pixel in the i-th
figure/ground segmentation. Finally we use, for each image pixel, the coefficients
of the first 8 principal dimensions to obtain a set of 8 soft-segmentations which
represent a compressed version of the entire set of ns segmentations. These soft-
segmentations are used as input layers to our boundary detection method, and
are similar in spirit to the normalized cuts eigenvectors computed for gPb [9].
In Figure 5 we show examples of the first three such soft-segmentations on the
RGB color channels.

5 Experiments

To evaluate the generality of our proposed method, we conduct experiments on
detecting boundaries in image, video and RGB-D data. First, we show results
on static images using only color. Second, we perform experiments on occlusion
boundary detection in short video clips. Multiple frames, closely spaced in time,
provide significantly more information about dynamic scenes and make occlu-
sion boundary detection possible, as shown in recent work [6–8, 24]. Third, we
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Fig. 6. Top row: input images from BSDS300 dataset. Middle row: output of Gb using
only color layers. Bottom row: output of Gb using both color and our soft-segmentation.

experiment with RGB-D video frames and show that depth can be effectively
combined with color and optical flow to detect moving occlusion boundaries.

5.1 Boundaries in Static Color Images

We evaluate Gb on the well-known BSDS300 dataset [16] (Figure 6). We com-
pare the accuracy and computational time of Gb with Pb [16], Gaussian deriva-
tives (GD) for the gradient of multi-images [15], and Canny [4] edge detectors
(Table 2). Canny uses brightness information, Gb and GD use brightness and
color, whereas Pb uses brightness, color and texture information. Gb and GD
use the same window size and Gaussian scale. For Gb we present two results,
one using color (C), and the other using both color and soft-segmentation based
on color (C+S). The total time reported for Gb (C+S) includes all processing:
computing soft-segmentations and boundary detection. Even though Pb does
not use segmentation we believe that our comparison is fair, since the total time
for Gb (C+S) is more than 6 times faster than Pb in MATLAB. Also, Pb has
the advantage of using learned textons, whereas Gb (C+S) uses only color. To
test our model’s robustness to overfitting we performed 30 different learning
experiments for Gb (C+S) using 30 images randomly sampled from BSDS300
training set and obtained the same F-measure on the 100 images test set (mea-
sured σ < 0.1%). The method of [17] obtains a higher F-measure of 0.68 on
this dataset by combining the output of Pb at three scales, but the same multi-
scale method could use Gb instead. The state of the art global Pb [9,22] achieves
an F-measure of 0.70 by using Ncuts soft-segmentations. Our formulation is gen-
eral and could easily incorporate better soft-segmentations as extra layers for
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Fig. 7. Example boundary detection results on the CMU Motion Dataset

Table 2. Comparison of accuracy (F-measure) and total running time on BSDS. For
Gb (C+S), the running time includes the computation of soft-segmentations.

Algorithm Gb (C+S) Gb (C) Pb [16] GD [15] Canny [4]

F-measure 0.67 0.65 0.65 0.62 0.58
Total time (sec.) 3.0 0.5 19.5 0.3 0.1

improved performance. In fact, given a pool of figure/ground segments using
CPMC [25], we obtained higher quality soft-segmentations by applying the same
PCA reconstruction procedure from Section 4. This raised Gb’s F-measure to
0.70 [26].

5.2 Occlusion Boundaries in Video

State-of-the-art techniques for occlusion boundary detection in video are based
on combining, in various ways, the outputs of existing boundary detectors for
static color images with optical flow, followed by a global processing phase [6–8,
24]. Table 3 compares Gb against reported results on the CMUMotion Dataset [6]
We use, as one of our layers, the flow computed using Sun et al.’s public code [27].
Additionally, Gb uses color and soft segmentation (Section 4). In contrast to the
other methods [6–8, 24], which require significant time for processing and opti-
mization, we require less than 1.6 seconds on average to process 230×320 images
from the CMU dataset (excluding Sun et al.’s flow computation). Figure 7 shows
qualitative results.

5.3 Occlusion Boundaries in RGB-D Video

The third set of experiments uses RGB-D video of a moving person. We com-
bine low-level color and depth input with large-displacement optical flow [28].
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Fig. 8. Detecting occlusion boundaries in RGB-D by combining color, depth and flow

Table 3. Occlusion boundary detection on the CMU Motion Dataset

Algorithm Gb Sundberg et al. [7] He & Yuille [8] Sargin et al. [24] Stein et al. [6]

F-measure 0.62 0.61 0.47 0.57 0.48

Figures 1 shows an example of the input layers and the output of our method.
We learned the parameters of our model from only 3 images of human-labeled
silhouettes. Figure 8 shows qualitative results. Note that in a single formulation,
Gb detects the moving occlusion boundaries and successfully learns to ignore
most of the other ones.

6 Conclusions

We present Gb, a novel model and algorithm for generalized boundary detection.
Our method effectively combines multiple low-level and mid-level interpretation
layers of an input image in a principled manner to achieve competitive results
on standard datasets at a significantly lower computational cost than current
methods. Gb’s broad real-world applicability is demonstrated through qualita-
tive and quantitative results on detecting boundaries in natural images, occlusion
boundaries in video and moving object boundaries in RGB-D data.
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Abstract. The rapid development of social video sharing platforms has
created a huge demand for automatic video classification and annota-
tion techniques, in particular for videos containing social activities of a
group of people (e.g. YouTube video of a wedding reception). Recently,
attribute learning has emerged as a promising paradigm for transferring
learning to sparsely labelled classes in object or single-object short ac-
tion classification. In contrast to existing work, this paper for the first
time, tackles the problem of attribute learning for understanding group
social activities with sparse labels. This problem is more challenging
because of the complex multi-object nature of social activities, and the
unstructured nature of the activity context. To solve this problem, we (1)
contribute an unstructured social activity attribute (USAA) dataset with
both visual and audio attributes, (2) introduce the concept of semi-latent
attribute space and (3) propose a novel model for learning the latent at-
tributes which alleviate the dependence of existing models on exact and
exhaustive manual specification of the attribute-space. We show that our
framework is able to exploit latent attributes to outperform contempo-
rary approaches for addressing a variety of realistic multi-media sparse
data learning tasks including: multi-task learning, N-shot transfer learn-
ing, learning with label noise and importantly zero-shot learning.

1 Introduction

With the rapid development of digital and mobile phone cameras and prolifer-
ation of social media sharing, billions of unedited and unstructured videos pro-
duced by consumers are uploaded to the social media websites (e.g. YouTube) but
few of them are labelled. Obtaining exhaustive annotation is impractically ex-
pensive. This huge volume of data thus demands effective methods for automatic
video classification and annotation, ideally with minimised supervision. A solu-
tion to these problems would have huge application potential, e.g., content-based
recognition and indexing, and hence content-based search, retrieval, filtering and
recommendation of multi-media..

In the paper, we tackle the problem of automatic classification and anno-
tation of unstructured group social activity. Specifically, we are interested in
home videos of social occassions such graduation ceremony, birthday party, and
wedding reception which feature activities of group of people ranging anything

A. Fitzgibbon et al. (Eds.): ECCV 2012, Part IV, LNCS 7575, pp. 530–543, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Wedding 
reception

Wedding
dance

Clapping hands, Slow moving,    Taking photos,  Crowd,    Dinning Room,

Party House, Coloured light, Indoor, People talking noise,

Laugher, Dancing Music, Candles, Camera zoom

Clapping hands,   Dancing,  Slow moving , Bride, Groom,  Party House,

Indoor, Dancing music, Tracking moving object

Birthday
party

Birthday
party

Clapping hands, Hugging,Slow moving, People singing, Taking photos,

Party house, Indoor, Song, People talking noise, Conversation,

Laugher, Birthday song, Wrapped presents, Baloon, Candles

Clapping hands, Blowing candles, Slow moving, People singing,

Group of people, Indoor, Song, People talking noise, Conversation,

Laugher, Birthday song, Square birthday cake, Baloon

Action attributes  Object attributes Scene attributes Sound attributes Camera moving attributes

Fig. 1. Examples in social activity attribute video dataset. Different types of attributes
of both visual and audio modalities are shown in different colour.

between a handful to hundreds (Fig. 1). By classification, we aim to categorise
each video into a class; and by annotation we aim to predict what are present in
the video. This implies a wide range of multi-modal annotation types including
object (e.g. group of people, cake, balloon), action (e.g. clapping hands, hugging,
taking photos), scene (e.g. indoor, garden, street), and sound (e.g. birthday song,
dancing music). We consider that the problem of classification and annotation
are inter-related and should be tackled together. There have been extensive works
on image classification and annotation [1]. However, little effort has been taken
on video data, especially on unstructured group social activity video.

We propose to solve the problem using an attribute learning framework, where
annotation becomes the problem of attribute prediction and video classification
is helped by a learned attribute model. Attributes describe the characterisitics
that embody an instance or a class. Recently, attribute-based learning [2,3,4,5,6]
has emerged as a powerful approach for image and video understanding. Essen-
tially attributes answer the question of describing a class or instance in contrast
to the typical (classification) question of naming an instance [2,3]. The attribute
description of an instance or category is useful as a semantically meaningful in-
termediate representation to bridge the gap between low level features and high
level classes [6]. Attributes thus facilitate transfer and zero-shot learning [6] to
alleviate issues of the lack of labelled training data, by expressing classes in terms
of well known attributes.

We contribute a new benchmarking multi-modal attribute dataset for social
activity video classification and annotation: unstructured social activity attribute
(USAA) dataset1. It comprises of 8 classes (around 1500 videos totally) and the
visual and audio content of each video is manually annotated using 69 multi-
modal binary attributes. Figure 1 shows examples of videos with annotated

1 Downloadable from http://www.eecs.qmul.ac.uk/~yf300/USAA/download/

http://www.eecs.qmul.ac.uk/~yf300/USAA/download/
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Fig. 2. (a) Our approach to semi-latent attribute space learning can be applied in
various problem contexts. (b) Representing data in terms of a semi-latent attribute
space partially defined by the user (solid axes), and partially learned by the model
(dashed axes). A novel class (dashed circle) may be defined in terms of both user and
latent attributes. (c) Model overview. New classes are learned via expression in terms
of learned semi-latent attribute-space from (b).

attributes. Learning these attributes can support a wide range of studies includ-
ing object recognition, scene classification, action recognition and audio event
recognition. There are a number of unique characters and challenges of this
dataset which can be beneficial to the wide community: (1) The data is weakly
labelled (each attribute annotation does not tell which part of the video con-
tribute to that attribute). (2) Different instances of one social activity video class
(Fig. 1) typically cover a wide variety of attributes (e.g., birthday party class
may or may not exhibit candles). One thus cannot make the assumption that a
class can be uniquely determined by a deterministic vector of binary attributes
[2]. (3) Even with 69 attributes, one cannot assume that the user-defined space
of attributes is perfectly and exhaustively defined due to limited annotation,
and subjectiveness of manual annotation. (4) The most semantically salient at-
tributes may not be the most discriminative and most discriminative attributes
may not correspond to semantic concept and thus can never be manually de-
fined. Discovering and learning those discriminative yet latent attributes thus
becomes the key.

To this end, in this paper we introduce the novel concept of semi-latent at-
tribute space. As illustrated in Fig. 1(b), this attribute space consists of three
types of attributes: user-defined (UD) attributes, class-conditional (CC) dis-
criminative latent attributes and background non-discriminative (BN) latent
attributes. Among the two types of latent attributes, the CC attributes are
discriminative attributes which are predictive of class, whilst the BN attributes
are uncorrelated to class of interest and should thus be ignored as background
data, e.g. random camera or background object movements which are common
characteristics of most unstructured social activity videos. It is crucial that these
three types of attributes should be learned jointly so that the CC attributes do
not repeat the user-defined attributes (UD attributes often are also discrimi-
native), and are separated explicitly from background attributes which explain
away irrelevant dimension of the data [7].
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To learn this semi-latent attribute space, we present a new approach to at-
tribute learning based on a probabilistic topic model [8,9]. A topic model is cho-
sen because it provides an intuitive mechanism for modelling latent attributes
using latent topics. We consider the attribute/topic learning process as semantic
feature reduction [6] from the raw data to a lower dimensional attribute space
(where the axes are the attribute/topic set) (Fig. 1(b)). Classification is then
performed in this semantic feature space. To learn the three types of attributes:
UD, CC, and BN, the topic model learns three types of topics, namely UD top-
ics, CC topics and BN topics. Among them the UD topics are learned supervised
using the labelled use-defined attributes, whilst the learning of CC is supervised
by the class label available during training, and the BN topics are learned un-
supervised. An important advantage of this approach is that it can seamlessly
bridge the gap between context where the attribute space is completely and
precisely specified by the user; and scenarios where the attribute space is com-
pletely unknown (Fig. 1(a)). This means that unlike existing approaches, our
approach is robust to the amount of domain knowledge / annotation budget
possessed by the user. Specifically, if the relevant attribute space is exhaustively
and correctly specified, we create a topic or set of topics for each attribute, and
learn a topic model where the topics for each instance are constrained to not
violate the instance-attribute labels. However, if the attribute space is only par-
tially known, we complete the semantic space using latent attributes by learning
two additional types of topics: CC topics to discover unique attributes of each
known class [9]; and BN topics to segment out background non-discriminative
attributes [7]. At the extreme, if the relevant attribute space is completely un-
known, the latent attributes alone can discover a discriminative and transferrable
intermediate representation. Figure 1(c) gives an overview of the process.

2 Related Work

Learning attribute-based semantic representations of data has recently been top-
ical for images [2,5,10,4,11]. The primary contribution of attribute-based repre-
sentations has been to enable transfer learning (via attribute classifiers) to learn
classes with few or zero instances. However, most of these studies [2,5,4,11] as-
sume that an exhaustive space of attributes has been manually specified. More-
over, it is also assumed that each class is simple enough to be determined by
a single list of attributes. In practice a complete space of relevant attributes is
unlikely to be available a priori since human labelling is limited and the space of
classes is unbounded. Furthermore, semantically obvious attributes for humans
do not necessarily correspond to the space of useful and computable discrimina-
tive attributes [12] (Fig. 1(b)).

A few studies ([3] for object and [13] for action) have considered augmenting
user-defined (UD) attributes with data-driven attributes which correspond to our
definition of class-conditional (CC) attributes. However these do not span the
full spectrum between unspecified and fully specified attribute-spaces as cleanly
as our model. Notably, they learn UD attributes and CC attributes separately.
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This means that the learned CC attributes are not necessarily complementary
to user-defined ones (i.e., they may be redundant). Additionally, some data-
driven attributes may be irrelevant to other discriminative tasks, and should
thus be ignored. This may not be a problem for annotating an object bound-
ing box [3] and a single object action without people interaction [13] where
background information does not present a big issue for learning discriminative
foreground attributes. It is however a problem for unstructured social activ-
ity video where shared characteristics (therefore attributes) across classes may
not be relevant for either classification or annotation. In our approach, by jointly
learning user-defined, class-conditional and background non-discriminative (BN)
attributes, we ensure that the latent attribute space is both complementary and
discriminative.

Probabilistic topic models [8] have been used quie extensively in modelling
images [1] and video [14,15,9,7]. However, the topic spaces in those models are
used for completely unsupervised dimensionality reduction. Here, we focus on an
attribute learning interpretation to learn a semantically meaningful semi-latent
topic-space, which leverages as much from any given prior knowledge, either in
the form of sparely labelled either class or user-defined attributes.

User-defined video attribute learning is related to the video concept detection
(video ontology) work in the multimedia community [16,17,18,19,20,21,22,23]
which has defined top-down shared visual concepts, in order to recognise them
in video. There are several TRECVID challenges about video ontologies, e.g. in
TRECVID Multimedia Event Detection 2. However, these studies generally con-
sider strongly labelled data and prescriptive ontologies and do not leverage dis-
criminative latent attributes for classification.

This paper makes the following specific contributions: (i) To study the is-
sue of unstructured group social activity video classification and annotation, we
present a multi-modal social activity attribute dataset to be made available to
the community. (ii) We propose a new topic-model based approach for attribute
learning. By learning a unified semi-latent space of user-defined and two types of
latent-attributes, we are able to learn a complete and discriminative attribute-
space in a way that is robust to any amount of user prior-knowledge. (iii) We
show how these properties improve a variety of tasks in the sparse data domain
including multi-task learning, N-shot and 0-shot transfer learning. (iv) Our uni-
fied framework enables us to leverage latent attributes even in zero-shot learning
which has not been attempted before.

3 Methods

3.1 Formalisation

Context. Prior work on detection or classification typically takes the approach
of learning a classifier F : X d → Z mapping d-dimensional raw data X to label

2 http://www.nist.gov/itl/iad/mig/med12.cfm

http://www.nist.gov/itl/iad/mig/med12.cfm
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Z from training data D = {(xi, zi)}ni=1. A variant of the standard approach
considers a composition of two mappings:

F = S(L(·)), L : X d → Yp, S : Yp → Z, (1)

where L maps the raw data to an intermediate representation Ya (typically with
a < d) and then S maps the intermediate representation to the final class Z.
Examples of this approach include dimensionality-reduction via PCA [24] (where
L is learned to explain the variance of x) or linear discriminants and multi-layer
neural networks (where L is learned to predict Z).

Attribute learning [2,6] exploits the idea of manually defining Y as a semantic
feature or attribute space. L is then learned by direct supervision with pairs of
instances and attribute vectors D = {(xi,yi)

n
i=1}. A key feature of this approach

is that it permits practical zero-shot learning: the recognition of novel classes
without training examples F : Xd → Z∗ (Z∗ /∈ Z) via the learned attribute
mapping L and a manually specified template S∗of the novel class. Attribute
learning can also assist general multi-task and N-shot transfer learning, where
we learn a second “target” dataset D∗ = {(xi, z

∗
i )}mi=1but m � n. Here, the

attribute mapping L is learned from the large “source” dataset, and is trans-
ferred to the target task, leaving only parameters of S to be learned. Most prior
attribute-learning work, however, assumes the semantic space Ya is completely
defined in advance, an assumption we would like to relax.

Semi-latent Attributes. We aim to define an attribute-learning model L
which can learn an attribute-space Ya from training data D where |y| = aud,
0 ≤ aud ≤ a. That is, only an aud sized subset of the attribute dimensions are
labeled, and ala other relevant latent dimensions are discovered automatically.
The attribute-space is partitioned into observed and latent subspaces: Ya =
Yaud

ud × Yala

la with a = aud + ala. To support a full spectrum of applications, we
should permit a = au (traditional attribute learning), and a = al (unsupervised
latent space).

3.2 Semi-latent Attribute Space Topic Model

LDA. To learn a suitably flexible model for L (Eq. (1)), we generalize LDA[8],
modeling each attribute as a topic. LDA provides a generative model for a dis-
crete dataset D = {xi} in terms of a latent topic yij for each word xij given
prior topic concentration α and word-topic parameters β. Assuming vector topic
proportions α we have

p(D|α, β) =
∏

i

∫ ⎛

⎝
∏

j

∑

yij

p(xij |yij , β)p(yij |θi)
⎞

⎠ p(θi|α)dθi, (2)

where j indexes individual words, θi|α is the Dirichlet topic prior for instance i,
xij |yij and yij |θi are discrete with parameters βyij and θi.
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Variational inference for LDA approximates the intractable posterior
p(θi,yi|xi, α, β) in terms of a factored variational distribution: q(θi,yi|γi, φi) =
q(θi|γi)

∏
j q(yij |φij) resulting in the updates:

φijk ∝ βxijk exp(Ψ(γik)), γik = αik +
∑

j

φijk . (3)

Semi-Latent Attribute Space (SLAS). With no user defined attributes (a =
ala, aud = 0), an a-topic LDA model provides a mapping L from raw data x to
an a-dimensional latent space by way of the variational posterior q(θ|γ). This
is a discrete analogy to the common use of PCA to reduce the dimension of
continuous data. However, to (i) support user-defined attributes when available
and (ii) ensure the latent representation is discriminative, we add constraints.

User defined attributes are typically provided in terms of size aud binary
vectors vud

z specifying which are present in class z [2,6] We cannot use v to
directly determine or constrain the LDA topic vector yud. This is because LDA
associates each word xij with a topic yij , and we don’t know word-attribute
correspondence.We only know whether each attribute is present in each instance.
To enforce this type of constraint, we define a per instance prior αi = [αud

i , αla
i ],

setting αud
i,k = 0 whenever vudz(i),k = 0. That is, enforcing that instances i of

class z lacking an attribute k can never use that attribute the explain the data;
but otherwise leaving the inference algorithm to infer attribute proportions and
word correspondence. Interestingly, in contrast to other methods, this allows
our approach to reason about how strongly each attribute is exhibited in each
instance instead of only modeling binary presence and absence.

To learn the latent portion of the attribute-space, we could simply leave the
remaining portion αla of the prior unconstrained; however while resulting latent
topics/attributes will explain the data, they are not necessarily discriminative.
Instead, inspired by [9,7], we split the prior into two components αla

i = [αcc
i , αbn].

The first, αcc
i = {αi,z}Nz

z=1, is a series of “class conditional” subsets ai,z corre-
sponding to classes z. For an instance i with label zi, all the other components
αcc
i,z �=zi

are constrained to zero. This enforces that only instances with class z can
allocate topics yccz and hence that these topics are discriminative for class z. The
second component of the latent space prior, αbg is left unconstrained, meaning
that in contrast to the CC topics, these “background” topics are shared between
all classes. When learned jointly with the CC topics, BN topics are therefore
likely to represent common non-discriminative background information [9,7] and
thus should be ignored for classification. This is supported by our experiments
where we show that better CC topics are learned when BN topics are present.

Classification. Defining the mapping L in Eq. (2) as the posterior statistic
γ in SLAS (Eq. (3)), the remaining component to define is the attribute-class
mapping S. Importantly, for our complex data, this mapping is not deterministic
and 1:1 as is often assumed [2,6]. Like [13], we therefore use standard classifiers
to learn this mapping from the γis obtained from our SLAS attribute learner.
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Zero-Shot Learning (ZSL) with Latent Attributes. To recognize novel
classes Z∗, we define the mapping S manually. Existing attribute-learning ap-
proaches [2,6] define a simple deterministic prototype vud

z∗ ∈ Yu for class z∗,
and classify by NN matching of data to prototype templates. For realistic un-
structured video data, huge intra-class variability means that a single proto-
type is a very poor model of a class, so zero-shot classification will be poor.
Counter-intuitively, but significantly more interestingly, we can actually lever-
age the latent portion of the attribute-space even without training data for novel
class z∗ (so long as there is at least one UD attribute, au ≥ 1) with the following
self-training algorithm:

1. Infer attributes γ∗ for novel test data X∗ (Eq. (3))
2. NN matching in the user-defined space γud,∗ against prototypes vud

z∗

3. For each novel class z∗:

(a) Find top-K most confident test-set matches {γl,z∗}Kl=1

(b) Self train a new prototype in the full attribute-space: vz∗ = 1
K

∑
l γl,z∗ .

4. NN matching in the full attribute space of γ∗ against prototypes vz∗ .

Previous ZSL studies are constrained to UD attributes, thus being critically
dependent on the completeness of the user attribute-space. In contrast, our ap-
proach uniquely leverages a potentially much larger body of latent attributes via
even a loose manual definition of a novel class. We will show later this approach
can significantly improve zero-shot learning performance.

4 Experiments

In this section we first introduce our new dataset, and then describe the quan-
titative results obtained for four types of problems: Multi-task classification;
learning with label noise; N-shot learning and ZSL. For each reported experi-
ment, we report test set performance averaged over 5 cross-validation folds with
different random selections of instances, classes, or attributes held out as appro-
priate. We compare the following models:

Direct: Direct KNN or SVM classification on raw data without attributes. SVM
is used for experiments with > 10 instances and KNN otherwise.3.

SVM-UD+LR: SVM attribute classifiers learn available UD attributes. A
logistic regression (LR) classifier then learns classes given the probability
mapped attribute classifier outputs.4 This is the obvious generalisation of
Direct Attribute Prediction (DAP) [2] to non-deterministic attributes.

SLAS+LR: Our SLAS is learned, then a LR classifier learns classes based on
the UD and CC topic profile.

3 Our experiments show that KNN performed consistently better than SVM until
#Instance > 10.

4 LR was chosen over SVM because it is more robust to sparse data.
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For all experiments, we cross-validate the regularisation parameters for SVM and
LR. For all SVM models, we use the χ2 kernel. For SLAS, in each experiment,
we keep the complexity fixed at 85 topics, up to 69 of which are UD attributes,
and the others equally divided between CC and BN latent attributes. The UD
part of the SLAS topic profile is estimating the same thing as the SVM attribute
classifiers, however the latter are slightly more reliable due to being discrimina-
tively optimised. As input to LR, we therefore actually use the SVM attribute
classifier outputs in conjunction with the latent part of our topic profile.

4.1 Unstructured Social Activity Attribute (USAA) Dataset:
Classes and Attributes

A new benchmark attribute dataset for social activity video classification and
annotation is introduced. We manually annotate the groundtruth attributes for
8 semantic class videos of CCV dataset [16], and select 100 videos per-class for
training and testing respectively. These classes were selected as the most complex
social group activities. As shown in Fig. 1, a wide variety of attributes have been
annotated. The 69 attributes can be broken down into five broad classes: actions,
objects, scenes, sounds, and camera movement. We tried our best to exhaustively
define every conceivable attribute for this dataset, to make a benchmark for un-
structured social video classification and annotation. Of course, real-world video
will not contain such extensive tagging. However, this exhaustive annotation
gives the freedom to hold out various subsets and learn on the others in order to
quantify the effect of annotation density and biases on a given algorithm. These
eight classes are birthday party, graduation party, music performance, non-music
performance, parade, wedding ceremony, wedding dance and wedding reception
(shown in Fig. 3). Each class has a strict semantic definition in the CCV video
ontology. Directly using the ground-truth attributes (average annotation density
11 attributes per video) as input to a SVM, the videos can be classified with
86.9% accuracy. This illustrates the challenge of this data: while the attributes
are informative, there is sufficient intra-class variability in the attribute-space,
that even perfect knowledge of the attributes in an instance is insufficient for
perfect classification. The SIFT, STIP and MFCC features for all these videos
are extracted according to [16], and included in the dataset. We report the base-
line accuracy of SVM-attribute classifiers learned on the whole test set in Fig. 4.
Clearly some can be detected almost perfectly, and others cannot be detected
given the available features.

4.2 Multi-task Learning

The main advantage of attribute-centric learning when all classes are known in
advance is exploiting feature sharing [25]. The statistical strength of data sup-
porting a given attribute can be aggregated across its occurrences in all classes.
This treats classification like a multi-task learning problem where the class mod-
els share parameters, rather than each class being modelled independently.
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Birthday party Graduation
Music
performance

Non-music
performance Parade

Wedding
ceremony

Wedding
dance

Wedding
reception

Fig. 3. Example frames from the eight class unstructured social activity dataset
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Fig. 4. Attribute-classification accuracy using SVM

Table 1 summarises our results. We first consider the simplest classification
scenario where the data is plentiful and the attributes are exhaustively defined.
In this case all the models perform similarly. Next, we consider a sparse data
variant, with only 10 instances per class to learn from. Here Direct KNN per-
forms poorly due to insufficient data. The attribute models perform better due
to leveraging statistical strength across the classes. To the most realistic case of
a sparsely defined attribute space, we next limit the attributes to a randomly se-
lected seven every trial, rather than the exhaustively defined 69. In this challeng-
ing case SVM+LR performance drops 10% while our SLAS continues to perform
similarly, now outperforming the others by a large margin. It is able to share
statistical strength among attributes (unlike Direct KNN) and able to fill out
the partially-defined attribute space with latent attributes (unlike SVM+LR).
Finally, the other challenge in learning from real-world sources of unstructured
social video is that the attribute annotations are likely to be very noisy. To

Table 1. Multi-task classification performance (%). (8 classes, chance = 12.5%).

Direct SVM+LR SLAS+LR

100 Inst, 69 UD 66 65 65

10 Inst, 69 UD 29 37 40

10 Inst, 7 UD 29 27 36

10 Inst, 7 UD, attribute noise 27 23 36



540 Y. Fu et al.
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Fig. 5. Confusion matrices for multi-task classification with 10 instances per class

simulate this, we repeated the previous experiment, but randomly changed 50%
of attribute bits on 50% of the training videos (so 25% wrong attribute annota-
tions). In this case, performance of the traditional attribute-learning approach
is further reduced, while the that of our model is unchanged. This is because
our model learns and leverages a whole space of latent attributes to produce a
robust representation which can compensate for noise in the UD attributes.

Fig. 5 shows the confusion matrices for the 10 instance, 7 attribute task. The
matricies for the traditional Direct KNN and SVM attribute classification have
vertical bands indicating consistent misclassifications. Our SLAS has the clearest
diagonal structure with little banding, indicating no consistent errors.

4.3 N-Shot Transfer Learning

In transfer learning, one assumes ample examples of a set of source classes, and
sparse examples of a disjoint set of target classes. To test this scenario, in each
trial we randomly split our 8 classes into two disjoint groups of four source and
target classes. We use all the data from the source task to train our attribute
learning models (SLAS and SVM), and then use these to obtain the attribute
profiles of the target task. Using the target task attribute profiles we perform N-
shot learning, with the results summarised by Table 6. Importantly, traditional
attribute learning approaches cannot deal with zero attribute situations. Our
SLAS performs comparably or better than both Direct-KNN and SVM+LR for
zero, seven and 34 attributes.This illustrates the robustness of our model to
the density of the attribute-space definition. Importantly, standard attribute-
learning (SVM+LR) cannot function with zero attributes, but our attribute
model maintains a significant margin over Direct KNN in this case.

4.4 Zero-Shot Learning

One of the most interesting capabilities of attribute-learning approaches is zero-
shot learning. Like N-shot learning, the task is to learn transferrable attribute
knowledge from a source dataset for use on a disjoint target dataset. However, no
training examples of the target are available. Instead, user manually specifies the
definition of each novel class in the semantic attribute space. Zero-shot learning
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1-shot 5-shot

Direct KNN SVM+LR SLAS+LR Direct KNN SVM+LR SLAS+LR

0 UD 30 - 34 34 - 42

7 UD 30 32 33 34 43 44

34 UD 30 37 35 34 47 48

Fig. 6. N-shot classification performance (%). (4 classes, chance = 25%)

is often evaluated in simple situations where classes have unique 1:1 definitions
in the attribute-space [2]. For our unstructured social data, strong intra-class
variability violates this assumption, making evaluation slightly more subtle. We
compare two approaches: “continuous” prototypes, where a novel class definition
is given by continuous values in attribute-space, and “binary” prototypes, where
the novel class is defined as a binary attribute vector. These correspond to two
models of human provided semantic knowledge: continuous or thresholded prob-
ability that a new class has a particular attribute. E.g., saying that cakes and
candles are definite attributes of a birthday party vs saying they might occur
with 90% and 80% probability respectively. To simulate these two processes of
prior knowledge generation, we take the mean and the thresholded mean (as in
[13,10]) of the attribute profiles for each instance.

Our results are summarised in Table 2. Using latent attributes to support
the user-defined attributes (Sec. 3.2) allows our SLAS model to improve on the
conventional user-defined attribute only approach to zero-shot learning. Inter-
estingly, continuous definition of class prototypes is a significantly more powerful
approach for both methods (Table 2, Continuous vs Binary). To illustrate the
value of our other contribution, we also show the performance of our model
when learned without free background topics (SLAS (NF)). The latent attribute
approach is still able to improve on using pure user-defined attribute, but by
a smaller margin. The BN topics generally improve performance by segment-
ing the less discriminative dimensions of the latent attribute space and allowing
them to be ignored by the classifier.

Table 2. Zero-shot classification performance (%). (4 classes, chance = 25%).

Continuous Binary

UD UD+Latent UD UD+Latent

SVM-DAP SLAS SLAS (NF) SVM-DAP SLAS SLAS (NF)

38 45 41 31 36 31

5 Conclusions

Summary. In this paper we have considered attribute learning for the chal-
lenging task of understanding unstructured multi-party social activity video. To
promote study of this topical issue, we introduced a new multi-modal dataset
with extensive detailed annotations. In this context, a serious practical issue is
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the limited availability of annotation relative to the number and complexity of
relevant concept classes. We introduced a novel semi-latent attribute-learning
technique which is able to: (i) flexibly learn a full semantic-attribute space when
attribute space is exhaustively defined, or completely unavailable, available in
a small subspace (i.e., present but sparse), or available but noisy; (ii) perform
conventional and N-shot while leveraging latent attributes and (iii) go signif-
icantly beyond existing zero-shot learning approaches (which only use defined
attributes), in leveraging latent attributes.. In contrast, standard approaches of
direct classification or regular attribute-learning fall down in some portion of the
contexts above (Section 4).

Future Work. There are a variety of important related open questions for future
study. Thus far, our attribute-learner does not consider inter-attribute correla-
tion explicitly (like most other attribute learners with the exception of [13]).
This can be addressed relatively straightforwardly by generalising the correlated
topic model (CTM) [26] for our task instead of regular LDA [8]. A correlated
attribute model should produce commensurate gains in performance to those
observed elsewhere [13].

We have made no explicit model [27] of the different modalities of observations
in our data. However explicit exploitation of the different statistics and noise-
processes of the different modalities is an important potential source of improved
performance and future study (e.g., learning modality-attribute correlations and
inter-modality correlations via attributes).

The complexity of our model was fixed to a reasonable value throughout (i.e.,
the size of the semi-latent attribute/topic-space), and we focused on learning
with attribute-constraints on some sub-set of the topics. More desirable would
be a non-parametric framework which could infer the appropriate dimensionality
of the latent attribute-space automatically. Moreover, we ware able to broadly
separate foreground and “background” topics via the different constraints im-
posed; however it is not guaranteed that background topics are irrelevant, so
not using them in classification may be sub-optimal. A more systematic way
(e.g., [7]) to automatically segment discriminative ”foreground” and distracting
”background” attributes would be desirable.

References

1. Wang, C., Blei, D., Li, F.F.: Simultaneous image classification and annotation. In:
Proc. CVPR (2009)

2. Lampert, C.H., Nickisch, H., Harmeling, S.: Learning to detect unseen object
classes by between-class attribute transfer. In: CVPR, pp. 951–958 (2009)

3. Farhadi, A., Endres, I., Hoiem, D., Forsyth, D.: Describing objects by their at-
tributes. In: Proc. CVPR (2009)

4. Farhadi, A., Endres, I., Hoiem, D.: Attribute-centric recognition for cross-category
generalization. In: CVPR (2010)

5. Parikh, D., Grauman, K.: Relative attributes. In: Proc. ICCV (2011)
6. Palatucci, M., Hinton, G., Pomerleau, D., Mitchell, T.M.: Zero-shot learning with

semantic output codes. In: Proc. NIPS (2009)



Attribute Learning for Understanding Unstructured Social Activity 543

7. Hospedales, T., Gong, S., Xiang, T.: Learning tags from unsegmented videos of
multiple human actions. In: Proc. ICDM (2011)

8. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. Journal of Machine
Learning Research 3, 993–1022 (2003)

9. Hospedales, T., Li, J., Gong, S., Xiang, T.: Identifying rare and subtle behaviours:
A weakly supervised joint topic model. PAMI (2011)

10. Farhadi, A., Endres, I., Hoiem, D., Forsyth, D.: Describing objects by their at-
tributes. In: Proc. CVPR (2009)

11. Mahajan, D., Sellamanickam, S., Nair, V.: A joint learning framework for attribute
models and object descriptions. In: Proc. ICCV (2011)

12. Parikh, D., Grauman, K.: Interactively building a discriminative vocabulary of
nameable attributes. In: CVPR (2011)

13. Liu, J., Kuipers, B., Savarese, S.: Recognizing human actions by attributes. In:
Proc. CVPR (2011)

14. Wang, Y., Mori, G.: Human action recognition by semilatent topic models.
TPAMI 31, 1762–1774 (2009)

15. Niebles, J.C., Wang, H., Fei-Fei, L.: Unsupervised learning of human action cate-
gories using spatial-temporal words. IJCV 79, 299–318 (2008)

16. Jiang, Y.G., Ye, G., Chang, S.F., Ellis, D., Loui, A.C.: Consumer video understand-
ing: A benchmark database and an evaluation of human and machine performance.
In: ICMR (2011)

17. Yanagawa, A., Loui, E.C., Luo, J., Chang, S.F., Ellis, D., Jiang, W., Kennedy, L.:
Kodak consumer video benchmark data set: concept definition and annotation. In:
Proc. ACM MIR (2007)

18. Gupta, A., Srinivasan, P., Shi, J., Davis, L.S.: Understanding videos, constructing
plots learning a visually grounded storyline model from annotated videos (2009)

19. Wang, M., Hua, X.S., Hong, R., Tang, J., Qi, G.J., Song, Y.: Unified video an-
notation via multigraph learning. IEEE Trans. Cir. and Sys. for Video Technol.
(2009)

20. Tang, J., Yan, S., Hong, R., Qi, G.J., Chua, T.S.: Inferring semantic concepts from
community-contributed images and noisy tags. In: Proc. ACM MM (2009)

21. Tang, J., Hua, X.S., Qi, G.J., Song, Y., Wu, X.: Video annotation based on kernel
linear neighborhood propagation. IEEE Transactions on Multimedia (2008)

22. Snoek, C.G.M., Worring, M.: Concept-based video retrieval. Foundations and
Trends in Information Retrieval 4, 215–322 (2009)

23. Snoek, C.G.M., Huurnink, B., Hollink, L., de Rijke, M., Schreiber, G., Worring,
M.: Adding semantics to detectors for video retrieval. IEEE Transactions on Mul-
timedia 9, 975–986 (2007)

24. Dollar, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior recognition via sparse
spatio-temporal features. In: VS-PETS, pp. 65–72 (2005)

25. Salakhutdinov, R., Torralba, A., Tenenbaum, J.: Learning to share visual appear-
ance for multiclass object detecti. In: Proc. CVPR (2011)

26. Blei, D., Lafferty, J.: A correlated topic model of science. Annals of Applied Statis-
tics 1, 17–35 (2007)

27. Putthividhy, D., Attias, H.T., Nagarajan, S.S.: Topic regression multi-modal latent
dirichlet allocation for image annotation. In: Proc. CVPR, pp. 3408–3415 (2010)



Statistical Inference of Motion in the Invisible

Haroon Idrees, Imran Saleemi, and Mubarak Shah

Computer Vision Lab, University of Central Florida, Orlando, USA
{haroon,imran,shah}@eecs.ucf.edu

Abstract. This paper focuses on the unexplored problem of inferring motion of
objects that are invisible to all cameras in a multiple camera setup. As opposed to
methods for learning relationships between disjoint cameras, we take the next
step to actually infer the exact spatiotemporal behavior of objects while they
are invisible. Given object trajectories within disjoint cameras’ FOVs (field-of-
view), we introduce constraints on the behavior of objects as they travel through
the unobservable areas that lie in between. These constraints include vehicle fol-
lowing (the trajectories of vehicles adjacent to each other at entry and exit are
time-shifted relative to each other), collision avoidance (no two trajectories pass
through the same location at the same time) and temporal smoothness (restricts
the allowable movements of vehicles based on physical limits). The constraints
are embedded in a generalized, global cost function for the entire scene, incor-
porating influences of all objects, followed by a bounded minimization using an
interior point algorithm, to obtain trajectory representations of objects that define
their exact dynamics and behavior while invisible. Finally, a statistical represen-
tation of motion in the entire scene is estimated to obtain a probabilistic distri-
bution representing individual behaviors, such as turns, constant velocity motion,
deceleration to a stop, and acceleration from rest for evaluation and visualization.
Experiments are reported on real world videos from multiple disjoint cameras
in NGSIM data set, and qualitative as well as quantitative analysis confirms the
validity of our approach.

1 Introduction

The proliferation of large camera networks in recent past has ushered research in multi-
ple camera analysis, and several methods have been proposed to address the problems of
calibration, tracking and activity analysis with some degree of reliability [1,2,3,4,5,6,7].
However, despite significant efforts in this area, the majority of literature has been con-
fined to solution of problems like object correspondence and activity correlation be-
tween visible objects, while estimation and inference of object behaviors in unobserv-
able regions between disjoint cameras has mainly remained unexplored. Such invisible
regions between disjoint cameras are always present as visual sensor networks have an
inherent inability to provide exhaustive coverage of all areas of interest, while failure
of a sensor is always a possibility which can result in loss of coverage of a particular
area that was previously being observed. Besides the issue of coverage, there are sev-
eral other applications that justify research into such inference: improving object cor-
respondences across cameras; estimating patterns of motion and scene structure; aiding
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Fig. 1. The first image depicts the input to our method - correspondences across multiple disjoint
cameras. In this case, there are five cameras, the FOV of cameras are shown with different col-
ors whereas invisible region is represented by black. Given the input, we reconstruct individual
trajectories using constraints introduced in this paper. Next, reconstructed trajectories are used
to infer expected behavior at each location in the scene, shown as thick color regions, where
the direction of motion is shown by HSV color wheel. We also infer different behaviors such as
stopping and turning from the reconstructed trajectories.

expensive operations for PTZ camera focusing by precise localization of unobservable
objects; and generalized scene understanding, etc.

In this paper, we pose the question of what information can be inferred about objects
while they are not observable in any camera, given tracking and object correspondence
information in a multiple camera setup? This is an under-constrained problem, for in-
stance, the correspondence provides two sets of constraints (position, velocity), but if
the object is invisible for a hundred time steps, then we have to solve for a hundred
variables. For instance, in the scenario shown in Fig. 1, the knowledge that an object
exits a camera’s FOV on the top, and enters another’s on the right is of little use in
guessing what its behavior was while invisible. The best we can do it to assume that ob-
ject moved with the constant velocity through the invisible region. But, this is a rather
strong assumption, since the object may have stopped at some unknown locations for
unknown amounts of time, or may have taken an indirect path between exit and re-entry
into the camera network. Such behavior is influenced by scene structure (such as allow-
able paths), obstacle avoidance, collision avoidance with other objects, and if the object
is a vehicle, it may further be influenced by dynamic aspects of the invisible scene such
as traffic signals. Besides being an assumption that is not always true, constant velocity
does not provide with any useful information about motion of object or the invisible
region itself. The question then becomes, can we do better than constant velocity? If we
assume absolutely no information about the invisible region and treat objects indepen-
dently, the answer is no. But, if we have correspondences for multiple objects available,
then the fact that motion of an object is dependent on proximal objects can be used to
constrain its movement to a certain degree. The idea of using object-specific contextual
constraints has been used as social force models for tracking [8] and simulation, and
for describing vehicular motion in transportation theory [9,10,11]. But, these models
differ in application from the problem addressed in his paper, in that they assume ob-
ject positions are known with certainty, we on the other hand, use these constraints as
costs which we minimize to obtain positions at each time instant. This is further compli-
cated by the fact that, each object affects motion of its nearby objects and thus, circular
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inter-dependencies exist between objects. This requires some form of precedence mech-
anism where some objects receive priority in the solution over others.

In the proposed approach, given object trajectories within disjoint cameras’ FOVs,
we introduce constraints on the behavior of objects as they travel through the unobserv-
able areas that lie in between. The first of these constraints is vehicle following, which
is based on the observation that trajectories of proximal vehicles that exit a camera and
enter another camera are time-shifted versions of each other. The second constraint is
collision avoidance, which ensures that vehicles do not collide with each other. The next
constraint temporal smoothness restricts the allowable movements of vehicles based on
physical limits. The last constraint behavior localization bounds the cost introduced by
collision avoidance ensuring that solution is non-trivial. The constraints are embedded
in a generalized, global cost function for the entire scene, incorporating influences of
all objects, followed by a minimization to obtain trajectory representations of objects
that define their exact dynamics and behavior while invisible. Finally, a statistical repre-
sentation of motion in the entire scene is estimated to obtain a probabilistic distribution
representing individual behaviors, such as turns, constant velocity motion, deceleration
to a stop, and acceleration from rest, for evaluation and visualization.

To the best of our knowledge, there are currently no methods in literature that attempt
to infer any salient properties for unobservable areas (trajectories, motion patterns, static
and dynamic behavior of objects). In addition to the applications listed earlier, such in-
ference will allow economically viable deployment of large sensor networks without
the need to cover all possible regions of interest, and learning of patterns of activity for
an invisible region will allow detection of anomalous behavior without directly observ-
ing it. To summarize our contributions, the proposed framework has the ability to infer
the following about an invisible scene without any observations:

• Estimation of object trajectories in (x, y, t) as they travel through the unobservable
area,

• Inference of static and dynamic aspects of the scene such as positions where objects
generally stop and traffic lights without direct observation, and

• Completely unsupervised discovery and statistical representation of salient object
patterns of motion for the entire scene including large invisible regions.

The organization of the rest of the paper follows. We briefly review relevant literature
in §2, followed by detailed problem formulation and solution in §3, inference of static
and dynamic scene structure in §4 and presentation of experimental evaluation in §5.

2 Related Work

The literature involving multi-camera scenarios contains techniques proposed for ob-
ject tracking as well as scene and activity modeling and understanding [12,13,14]. In
particular, many methods have been proposed specifically for analysis of disjoint, or
non-overlapping multiple cameras [4,6,5,15]. The objective of modeling camera rela-
tionships is to use these models to solve for hand-off between cameras, but the pat-
terns are modeled only for motion within the field of views of cameras. Dockstader
and Tekalp [16] use Bayesian networks for tracking and occlusion reasoning across
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calibrated overlapping cameras while in a series of papers [17,18,19], authors employ
Kalman Consensus Filter for tracking in multiple camera networks.

In terms of inference of topological relationships between multiple disjoint cameras,
Makris et al. [3] determined the topology of a camera network by linking entry and exit
zones using co-occurrence relationships between them, while Tieu et al. [20] avoid ex-
plicit feature matching by computing the statistical dependence between observations in
different cameras to infer network topology. Stauffer [21] proposed an improved linking
method to handle cases where exit-entry events may be correlated, but the correlation
is not due to valid object transitions. Another interesting area of research is the focus of
work by Loy et al. [7], where instead of assuming feature correspondences across cam-
eras, or availability of any tracking data, regions of locally homogenous motion are first
discovered in all camera views using correlation of object dynamics. A canonical cross
correlation analysis is then performed to discover and quantify the time delayed corre-
lations of regional activities observed within and across multiple cameras in a common
reference space.

For our purpose of behavior inference in unobservable regions, avoidance of object
collision in structured scenes is one of the most important cues. In this respect, research
in transportation theory has attempted to perform collision prediction and detection in
the visual domain. Atev et al. [22] propose a collision prediction algorithm using object
trajectories, and van den Berg et al. [23] solve the problem of collision avoidance for
independently moving robots that can observe each other. In our proposed framework,
however, it is essentially assumed that no collisions took place in the unobservable
region, and the goal is to infer unobserved object behavior given this assumption. Notice
that although some of the proposed constraints bear similarity to ‘motion planning’
algorithms in robotics [24], some of the significant differences include the fact that for
path planning the obstacles are directly observable and the length of time taken to reach
the destination is unconstrained. Our method essentially deals with the reverse problem
of path planning, i.e., inferring the path that has already been traversed. We therefore
propose a solution to a previously unexplored problem. In the following, we formally
define the problem and discuss our approach to solve it.

3 Problem Formulation and Solution

Given a set of trajectories (for only observable areas) that have been transformed to a
global frame-of-reference, we focus on the difficult and interesting scenario when the
unobservable region contains traffic intersections even though the solution we propose
in this paper can handle simpler situations such as straight roads as well. The input
variables of the problem are the correspondences, i.e., a vehicle’s position, velocity,
and time when it enters and exits the invisible region (or equivalently exits a camera’s
field of view and enters another’s).

Let pti, v
t
i , and ati denote the position, velocity and acceleration respectively, of the

ith vehicle at time t while traveling through the invisible region and ηi and χi be the
time instants it enters and exits the invisible region. Thus, given the pair of triplets for
entry (pη, vη, η) and exit (pχ, vχ, χ), our goal is to find pti for all t ∈ [ηi, χi], for each
vehicle which correspondingly determines vti and ati.
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Fig. 2. Depiction of constraints using vehicle trajectories in (x, y, t): (a) The point of collision
between green and black trajectories shown with a red sphere, whereas collision is avoided in (b).
(c) shows an example of vehicle-follwing behavior where vehicle in yellow trajectory follows the
one in red. In (d) the orange trajectory does not violate smoothness constraint but the one in black
does (abrupt deceleration).

A path Pi is a set of 2d locations traversed by a vehicle i and is obtained by con-
necting pη with pχ such that derivative of Pi is computable at all points i.e. there are
no sudden turns or bends. The path so obtained does not contain any information about
time. Associating each location in Pi with time gives us the trajectory {pti}. Two vehi-
cles i and j have the same path i.e., Pi ≡ Pj , if ‖pηi

i − p
ηj

j ‖ and ‖pχi

i − p
χj

j ‖ are less
than threshold T , and they have temporal overlap O(i, j) = 1, if ηi < χj ∧ ηj < χi.
Moreover, their paths intersect, i.e., i ⊥ j, if Pi obtained by joining pηi

i to pχi

i , intersects
with Pj .

Since inference of motion in invisible regions in a severely under-constrained prob-
lem, we impose some priors over the motion of vehicles as they travel through the
region. These priors in §3.1-3.4 below, are used as constraints that will later allow us to
reconstruct complete trajectories in the invisible region. The first two constraints (col-
lision avoidance and vehicle following) essentially capture the context of spatially and
temporally proximal vehicles while third constraint (smoothness of trajectories) estab-
lishes physical limits on the mobility of vehicles as they travel through the region. Using
these constraints, we propose an algorithm to reconstruct trajectories in §3.6.

3.1 Collision Avoidance

The first prior we exploit is the fact that vehicles are driven by intelligent drivers who
tend to avoid collisions with each other. The probability that a vehicle will occupy a
location at particular time becomes low if the same location is occupied by another
vehicle at that same time. This effectively reduces the possible space of the solution,
leaving only those solutions that have low probability of collisions. Consider the two
vehicle trajectories shown in Fig. 2(a) where black trajectory shows a vehicle making
a left-turn while vehicle with green trajectory moves straight. The corresponding 2d
paths, P intersect at the point marked with a red sphere. A collision implies that a sin-
gle point in (x, y, t) is occupied by more than one object. Collision avoidance, thus,
enforces that no two trajectories pass though the same (x, y, t) point. In Fig. 2(b), the
collision is avoided by a change in shape of the green trajectory. Note that, collision
avoidance doesn’t necessarily mean that vehicles change paths in space, but that they
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don’t occupy the same spatial location at the same time. Formally, let τ be the time when
vehicles with intersecting paths are closest to each other in (x, y, t), then the collision
cost for vehicle i given by:

Cα
i =

∑

j

exp

(
ωα · vτi .v

τ
j

‖pτi − pτj ‖

)
, where τ = argmin

t

∥∥pti − ptj
∥∥, (1)

∀j|i ⊥ j ∧ O(i, j) = 1, ωα being the weight. The above equation captures the cost
due to motion at the point of closest approach from all vehicles with respect to the ve-
hicle under consideration. The exponentiation softens the impact of collision to nearby
points in (x, y, t), thus forcing vehicles to not only avoid the same point but avoid close
proximity as well. Two proximal vehicles both moving with a high velocity will have a
high cost, however, if at least one vehicle is stationary, this cost will be low.

3.2 Vehicle Following

Like collision avoidance, this constraint reduces the solution space by making sure that
relative positions of adjacent and nearby vehicles remain consistent throughout their
travel in the invisible region. It is inspired from transportation theory, where vehicle
following models describe the relationship between vehicles as they move on the road-
way [9,10,11]. Many of them are sophisticated functions of distance, relative velocity
and acceleration of vehicles and have several parameters such as desired velocity based
on speed limit, desired spacing between vehicles and comfortable braking distance.

We, on the other hand, use vehicle following to define a spatial constraint between
leading and following vehicles. The leader l and follower f are given by the pair:

(l, f) =
{
(i, j)|Pi = Pj ,O(i, j) = 1 ∧ ηi < ηj ,

χi < χj ∧ �k|ηi < ηk < ηj ∨ χi < χk < χj

}
. (2)

We use the relationship between leader and follower to constrain the possible movement
of follower by forcing it to remain behind its leader throughout its travel through the
invisible region. This also caters for the correct stopping position of follower since it
must stop behind the leader and not occupy the same spot, an event which is highly
likely if we only take into account cost from collision. The vehicle-following cost for
follower given the leader is written as:

Cβ
i = exp

(
ωβ

∑

t

‖ptj − pti‖+
)
, (3)

where ‖ptj − pti‖+ = ‖ptj − pti‖, if ‖ptj − p
χj

j ‖ < ‖pti − p
χj

j ‖ and 0 otherwise; ωβ is the
weight associated to this cost.

Vehicle-following constraint enforces the condition that trajectories of vehicles ad-
jacent to each other following the same path are time-shifted versions of each other,
as can be seen in Fig. 2(c) where red and yellow trajectories belong to the leading and
following vehicles respectively.
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3.3 Smoothness of Trajectory

The smoothness constraint restricts the allowable movements of vehicles based on phys-
ical limits as it happens in real life. It prevents the solution from having abrupt acceler-
ation or deceleration as well as sudden stops. This is an object-centric constraint and is
computed as:

Cγ
i = exp

(
ωγ

∑

t

(
1−

√
π

2
N (

vti
vt−1
i

; 1, σγ)

))
, (4)

where ωγ is the weight, and N is the normal distribution with σγ = 0.25 variance.
The above equation ensures that distance in space-time volume between any two

adjacent points in a single trajectory is a small multiple of the other. In Fig. 2(d), the
orange trajectory is has low smoothness cost whereas black trajectory has higher cost
due to abrupt deceleration in the beginning.

3.4 Stopping Behavior Localization

The above three constraints do not completely specify the solution because trivial solu-
tions with high values of acceleration and deceleration can exist. This is possible when
a vehicle is made to stop with high deceleration i.e. near pηi

i , stays there as long as
possible before leaving the invisible region with high acceleration while satisfying the
smoothness constraint. This afraid-of-collision solution for a vehicle is not only incor-
rect, it also will result in wrong results for all of the following vehicles. The following
additional cost will rectify this problem avoiding such solution,

Cδ
i = exp

(
ωδ

∥∥∥xi,j − p
tϕ
i

∥∥∥
)
, j|i⊥j ∧ O(i, j) = 1, (5)

where ωδ is the associated weight, xi,j is the spatial point where vehicle paths intersect
and tϕ is the time when vehicle stops. This constraint dictates that stopping point for
a vehicle cannot be arbitrarily away from the possible collision locations, essentially
localizing the move-stop-move events in space and time.

3.5 Trajectory Parametrization

As mentioned earlier, given entry and exit locations, each trajectory is represented by a
2D path, P by joining the two locations in a way that allows for bends as they happen
in the case of turns. Parameterizing the curve by placing χ− η equidistant points for a
vehicle gives us a trajectory that represents motion with constant velocity. Parameteriz-
ing in this way reduces the number of variables to one-half (from 2D to 1D). Our goal
then becomes to find the temporal parametrization of the trajectory that minimizes cost
from the constraints. But, given that we might be dealing with thousands of vehicles,
each invisible for hundreds of time units, the extremely large variable space (∼ 106)
makes the problem intractable.

In order to make the problem tractable, we reduce the parameters defining a tra-
jectory to three: deceleration (φ), duration of stopping time (ϕ) and acceleration (ψ).
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321t=81 381 521 681

t=1101 14611301 16411361
Fig. 3. Each row is an example of trajectory reconstruction. Vehicle under consideration is shown
with squares, yellow depicts constant velocity, red is from proposed method and green square
marks the ground truth. Rest of the vehicles are shown in black. In first row, reconstruction with
constant velocity causes collisions at t = 381 and 521, and in the second row, between t = 1200
and 1500. On the other hand, proposed method and ground truth allow the vehicles to pass without
any collision.

The constant velocity case corresponds to φ = ϕ = ψ = 0. Thus, we can model
all cases between constant velocity to complete stopping by varying values of these
variables. However, since the exact duration of invisibility and end-point velocities are
known, we have only two-degrees of freedom making one of the variables dependent
on the other two. We choose φ and ϕ to represent the trajectory, while ψ is determined
based on time and velocity constraints. Thus, the parametrization results in constant or
zero acceleration and deceleration while satisfying entry and exit velocities.

3.6 Optimization for Motion Inference

Considering each vehicle individually, given the time it enters and exits the region, the
best estimate for its motion is constant velocity. However, since an invisible region (in
our case, an intersection) may involve vehicles traveling in from all directions, each
vehicle influences the motion of other vehicles. A constant velocity prediction for each
vehicle will result in collisions even though it may satisfy the constraints of vehicle-
following and smoothness.

Given entry and exit triplets of position, velocity and time for each vehicle, our goal
is to find the parameters φ and ϕ for all vehicles that pass though the invisible region.
Since each vehicle’s position at every time instant is conditionally dependent on all
other vehicles that also pass through the invisible region, this information is exploited
in the form of four constraints. The proposed solution iteratively minimizes the local
cost of each vehicle by making sure it satisfies the constraints, fixing its parameters and
then moving onto other vehicles.
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Algorithm 1. Algorithm to infer motion of vehicles given [pη, vη, η] and [pχ, vχ, χ] for
vehicles 1 : n
1: procedure INVISIBLEINFERENCE

2: Prioritize vehicles using Eq. 6
3: for all i← 1, n as per Θi do
4: Identify j|O(i, j) = 1 and i⊥j
5: φi, ϕi ← argmin

φ,ϕ
Cα

i + Cβ
i + Cγ

i + Cδ
i

6: Parameterize trajectory i according to φi, ϕi

7: end for
8: end procedure

We impose a prioritizing function on the trajectories, which is a linear function of
entry and exit times:

Θi = ωχχi + ωηηi. (6)

If we set ωχ = 1 and ωη = −1, the criteria becomes shortest duration first, on the other
hand, if ωχ = 1 and ωη = 0, the criteria becomes earlier exit first. The former biases
the solution towards high priority vehicles putting very strong constraints on vehicles
that spend longer times in the invisible region. We used the latter which makes more
intuitive sense also since vehicles will yield way to the a vehicle that exits before them.

The cost for each vehicle is the sum of costs due to collision, vehicle-following, and
smoothness including penalty for trivial solution. The parameters are bounded so that
−20 ft/s2 < φ < 0, and 0 < ϕ < χ− η, and the cost is minimized through an Interior
Point Algorithm with initialization provided by uniform grid search over the parameter
space. The summary for this simple algorithm is provided in Alg. 1 while Fig. 3 shows
the results on real examples.

4 Inference of Scene Structure

After obtaining trajectories using the method and constraints described in the previous
section, we now propose methods to statistically represent motion in the invisible re-
gion (§4.1), followed by extracting some key features of the scene such as locations of
stopping points (static) and timings of traffic signals (dynamic) in §4.2.

4.1 Statistical Representation of Motion

Given the inferred trajectory representations for objects in invisible region, we compute
the features, (xti, y

t
i , u

t
i, v

t
i , t), for each point on the ith trajectory derived from Pi, φi,

ϕi, and ψi, where ut = xt − xt−1, and vt = yt − yt−1. To obtain a probabilistic
distribution that represent individual behaviors, such as turns, constant velocity motion,
deceleration to a stop, and acceleration from rest, we first cluster feature points using the
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k-means algorithm, and then treat the clusters as components of a 4d Gaussian mixture
model, B for each leg of traffic. A feature point x induced by B is given as,

x ∼
NB∑

k=1

ωkN
(
·
∣∣∣μk,Σk

)
, (7)

where the mixture contains NB Gaussian components, each with parameters μ, Σ, and
mixing proportion ω. This representation serves as a generative model that summarizes
the spatiotemporal dynamics of objects induced by each behavior, and is potentially
useful for scene understanding, anomaly detection, tracking and data association, as
well as visualization of results of the proposed inference framework. For visualization,
we compute the per-pixel expected motion vectors conditioned on the pixel location
along each leg, i.e., EB

[√
u2 + v2, tan−1(v/u)|x, y], to obtain expected magnitude

and orientation of motion at each pixel for each behavior, and depict them using the
HSV colormap as is done for motion patterns [25].

4.2 Scene Structure and Status Inference

Given the exact motion and behavior of objects in the invisible regions, we propose to
estimate some key aspects of the scene structure and status to, show the importance
and usefulness of our framework, and allow evaluation. We briefly explain our methods
for finding the locations where vehicles exhibit the stopping behavior (equivalent to
stopping positions), and the times at which such behaviors occur (equivalent to status
of traffic signals) for each path in the invisible region.

We use the locations, ptϕi , for i|vi < T , to vote for regions corresponding to stop
positions. Specifically, given n vehicles, we compute the following kernel density esti-
mate of the 2d surface, Γ , representing probability of a pixel, p, belonging to stopping
location:

Γ (p) =
1

n
|H|− 1

2

n∑

i=1

K
(

H− 1
2

(
p − p

tϕ
i

))
, (8)

where K is a 2d Gaussian kernel with a symmetric, positive, diagonal bandwidth ma-
trix, H, of fixed horizontal and vertical variances, set to 10 pixels. Fig. 8(a,b) shows an
example of the distribution reflecting probabilities of pixels being stopping positions.
The proposed framework therefore estimates salient scene structure in a statistical man-
ner, without making a single observation within the scene.

Secondly, given the representation of behaviors learned earlier which divides the
scene into possibly overlapping segments corresponding to traffic intersection legs, by
thresholding

∫ ∫
PrBdudv, we can effectively estimate the signal status for each leg.

We use the following simple process: at a given time t, the inferred status (red, green)
of a traffic signal for a leg, l, is

∑
i ‖pt+1

i − pti‖, if i belongs to l and t > tϕ. Therefore,
if any vehicle traveling on leg l has a non-negligible velocity at its stopping positions,
it votes for the green signal for that leg at that time. The results of signal status and
transitions for all legs of traffic (blue), compared to the results obtained by applying the
same process to ground truth trajectories (black), are shown in Fig.8(c).
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Fig. 4. All trajectories inferred for each dataset shown in 3D. Left and right images are inferred
trajectories from Lankershim and Peachtree datasets respectively.

Fig. 5. Trajectories in (a) and (c) represent constant velocity while (b) and (d) show output of
proposed method. Collisions due to constant velocity prediction are marked with red spheres in
(a) and (c), but this does not occur in (b) and (d), which are the results of proposed trajectory
inference.

5 Experiments

We ran our experiments on two datasets from NGSIM (see [26] for details). The first
invisible region was from Lankershim 8:30am - 8:45am located at the intersection
of Lankershim/Universal Hollywood Dr. (LA) with a total of 1211 vehicles passing
through the region. The second invisible region was from Peachtree 4:00pm to 4:15pm
located at the intersection of Peachtree/10th Street NE (Atlanta) with 657 vehicles pass-
ing through the region. Both intersections were typical four-legged with three possible
paths that could be taken by a vehicle entering a particular leg, thus, resulting in 12 total
paths. Fig. 4 shows the trajectories that were output by Alg. 1 for both the datasets.

We next analyze the performance of motion inference employing the different con-
straints, followed by results for motion behaviors and scene structure. Figure 5 provides
qualitative results for motion inference where the (a,b) is from Peachtree and (c,d) from
Lankershim dataset. The black trajectory corresponds to the vehicle under considera-
tion while proximal vehicles which it could possibly collide with are shown in colors.
In both (a) and (c), the trajectories are drawn assuming constant velocity for each ve-
hicle. In (a), the vehicle collides with one of the vehicles whereas in (c), vehicle under
consideration collides with six different vehicles. The locations of collision are shown
with red spheres partially invisible due to other vehicles. Notice the change in shape in
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Fig. 6. (a,b) Error profile for our method (yellow) vs. constant velocity (black) for both datasets.
As can be seen, our method has lower error (it has smaller magnitude), thus provides more ac-
curate inference. (c) ROC curves for our method (solid) vs. constant velocity (dashed) for the
Lankershim (red) and Peachtree (green). The x-axis is the distance threshold in feet while y-axis
gives the percentage of points that lie within that threshold distance of the ground-truth.

(b) and (d) after inferring motion for all trajectories with the outcome that none of the
trajectories collides with the black trajectory. Both vehicle-following and smoothness
constraints are also visibly in effect in both the examples.

Fig. 6(a,b) gives a per-trajectory comparison of error with and without motion infer-
ence. These graphs for Lankershim and Peachtree respectively were obtained by com-
puting total error (in feet) for each trajectory by computing Euclidean distance of each
point to the groundtruth. The yellow bars correspond to motion inference whereas black
bars represent the case of using constant velocity only. Fig. 6(c) gives the ROC curves
for the two datasets. On the x-axis is the threshold distance in feet, on y-axis are the
percentage of points in all invisible trajectories that lie within that threshold. Using in-
ference, we get an improvement of at least 20% over the baseline in both datasets. After
obtaining the inferred trajectories, we statistically represented the motion in the invisi-
ble region using the method described in §4.1. Fig. 7 shows MoG for three different legs
where three columns represent constant velocity, proposed method and ground truth.

Figures 8 give results for some of the salient features of the invisible region using
§4.2. Fig. 8(a) shows the probability map superimposed on the image of invisible region
for locations where vehicles stop using only the inferred trajectories from Lankershim
whereas Fig. 8(b) shows the same probability map for Peachtree. It can be seen that
all of the locations are correct, just before the intersection due to collision avoidance
and extend beyond due to vehicle following constraint when vehicles queue up at in-
tersection. Figure 8(c) gives the probability of which traffic light was green at each
time instant using the proposed method (blue) and the results are also compared against
groundtruth (black). In this figure, we show traffic light behavior over time for 8 of the
12 paths as right turns do not get subjected to signals. Below each blue graph which
is obtained using inferred trajectories, is the black graph showing probability of that
light being green using groundtruth. The results show little difference, validating the
performance and quality of inference.
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Fig. 7. Each row is the Mixture of Gaussians representation for a particular path using constant
velocity, proposed method and ground truth. The patterns in the second and third column are
similar and capture acceleration, deceleration, start and stop behaviors whereas in first column,
all Gaussians have the same variance due to constant velocity.
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Fig. 8. Left (a,b): The probability map for stopping positions as inferred from Eq. 8 for both
datasets which are correct as vehicles in reality stop and queue before the signal. Right: Proba-
bility of green signal for each of eight possible legs. The x-axis is time and y-axis in each graph
is the probability from our method (blue) and groundtruth (black), which are evidently, perfectly
aligned in time.

6 Conclusion and Future Work

We presented the novel idea of understanding motion behavior of objects while they are
in the invisible region of multiple proximal cameras. The solution used three constraints,
two of which employ contextual information of neighboring objects to infer correct
motion of object under consideration. Though, an interesting proposal from the per-
spective of scene and motion understanding, the idea has several potential applications
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in video surveillance. Possible extensions include handling situations where correspon-
dences are missing or incorrect in some cases and to humans where social force models
can be leveraged in addition to current constraints.
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Abstract. Video analysis of crowded scenes is challenging due to the complex
motion of individual people in the scene. The collective motion of pedestrians
form a crowd flow, but individuals often largely deviate from it as they anticipate
and react to each other. Deviations from the crowd decreases the pedestrian’s
efficiency: a sociological concept that measures the difference of actual motion
from the intended speed and direction. In this paper, we derive a novel method
for estimating pedestrian efficiency from videos. We first introduce a novel crowd
motion model that encodes the temporal evolution of local motion patterns repre-
sented with directional statistics distributions. This model is then used to estimate
the intended motion of pedestrians at every space-time location, which enables
visual measurement of the pedestrian efficiency. We demonstrate the use of this
pedestrian efficiency to detect unusual events and to track individuals in crowded
scenes. Experimental results show that the use of pedestrian efficiency leads to
state-of-the-art accuracy in these critical applications.

1 Introduction

A key challenge to video analysis of crowded scenes is the complex motion introduced
by the intricate interactions between individual pedestrians. The large number of peo-
ple and their aggregated motion give rise to coherent motion that form the crowd flow.
Individuals in the crowd, however, constantly anticipate and react to others surrounding
them, causing pauses or changes in direction and speed. These subtle variations of indi-
vidual motion result in often large deviations from the crowd flow. These deviations are
the main source of difficulty for video analysis as they make individual tracking chal-
lenging for a microscopic approach and reduces the accuracy of crowd motion models
in a macroscopic approach.

Often pedestrians deviating from crowd flow are reacting to an interruption (e.g.,
someone cutting them off) or congestion. In such cases, the individual avoids colli-
sion by deviating from their intended motion. Efficiency is a well studied measure in
sociology [1] that quantifies the difference between the actual pedestrian motion and
his/her intended speed and direction. Helbing et al. [2] define and measure efficiency in
physical space (i.e., meters and seconds measured in the 3D world), and show its direct
relationship to crowd stability. To our knowledge, despite the possible applications to
visual crowd analysis, efficiency has not been addressed by the vision community.

A. Fitzgibbon et al. (Eds.): ECCV 2012, Part IV, LNCS 7575, pp. 558–572, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Going with the Flow: Pedestrian Efficiency in Crowded Scenes 559

To compute pedestrian efficiency the intended motion of each individual must be
known. Although it is impossible to know each individual’s intention, pedestrians form
emergent behaviors (e.g., lanes or clusters) that reveal clues to their intended directions.
Still [3] notes that emergent behaviors form because it is easier “to follow immediately
behind someone who is already moving in your direction.” In other words, the emergent
behaviors formed by pedestrians suggest where they intend to move. Such behaviors de-
pend on the scene and vary temporally [4], but tend to repeat [2], forming an underlying
space-time structure in the collective motion of the crowd. By learning this structure the
intended motion of pedestrians can be estimated and used to estimate efficiency.

In this paper, we present a novel method for estimating pedestrian efficiency from
videos and use it for video analysis of crowded scenes. Our key insight is that we may
estimate the intended motion of individual pedestrians by modeling the crowd motion.
First, we introduce a space-time model that captures the latent structure induced by
the motion of the crowd. For this, we use a collection of hidden Markov models over
directional statistics distributions of optical flow. By training this model on a short video
of the scene, we encode the temporally varying multi-modal flows in the image space
resulting from the emergent behaviors of the people in the crowd. Second, we use this
model to anticipate the motion at each space-time location of the video. These predicted
local motions can then be used to estimate the intended motion of individuals passing
through each of those space-time regions. We then compare this estimate to the actual
motion represented by the instantaneous optical flow to compute pedestrian efficiency
over the entire video volume. By doing so, we measure efficiency within the scene
without identifying each individual pedestrian.

We use our pedestrian efficiency estimate to robustly detect local and global unusual
activities and to dynamically adjust motion priors for tracking individuals in videos of
crowded scenes. The experimental results on a number of videos of real-world crowded
scenes show that our method enables the accurate computation of pedestrian efficiency
which in turn leads to better predictions of scene motions. As a result, the use of pedes-
trian efficiency achieves state-of-the-art accuracy in these two fundamental tasks in
video analysis that are especially challenging in crowded scenes.

2 Related Work

Macroscopic approaches to video analysis of crowded scenes view the crowd as a col-
lection of individuals obeying a set of analytical rules. Moore et al. [5] present a hydro-
dynamics model, treating each pedestrian as a particle in a fluid. As noted by Still [3],
however, emergent behaviors such as lane formations or clustering do not occur in flu-
ids. Particles are affected only by the external forces around them, but pedestrian motion
is a result of both external forces and reactions to other pedestrians. Efficiency decreases
when pedestrians react to one another, and is inversely related to the deviation from the
crowd motion. As such, automatically estimating pedestrian efficiency enables a bet-
ter understanding of how individuals interact with the crowd, and can be used to more
accurately predict their behaviors in the scene.

Mehran et al. [6] use a social force model but do not measure the full influence of the
crowd on the individual. They represent intended velocity using instantaneous optical
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Fig. 1. Pedestrian efficiency in videos can be defined by the difference between the intended and
actual motions represented with 3D optical flow vectors. Left: The intended direction u of an
individual may be inhibited causing them to move in a different direction v. Right: We mea-
sure the difference between these motions with arc-length on the unit sphere, which is inversely
proportional to efficiency.

flow, and the average optical flow as the pedestrian’s actual velocity. This assumption
is not valid in congested scenes: if an area is highly dense and pedestrians are moving
slowly, then the averaged (and instantaneous) optical flow has a low velocity and thus
their “interaction force” will not reflect the influence of the crowd on the pedestrian’s
speed. In addition, pedestrians tend to sway when their motion is restricted [7, 8], sug-
gesting that the instantaneous optical flow does not indicate their intended motion. As
we show in Sec. 7, by using a model of the crowd motion our method more accurately
estimates the intended motion, and can measure efficiency in high-density scenes.

Tracking and anomaly detection methods often degrade when pedestrian motion
largely deviates from the crowd motion. Minor, usual deviations appear as noise to
anomaly detection, and are often addressed by complex motion descriptors such as
distributions of space-time gradients [9] or dynamic textures [10]. Tracking methods
designed for crowds [11–13] lose the target when they deviate from the learned model.
Other methods based on motion patterns [14] also assume that objects follow domi-
nant flows. Efficiency indicates the severity of the deviation from the learned model,
which we can use to detect unusual crowd activities and track pedestrians with a greater
robustness to those deviations as we demonstrate.

3 Efficiency

Individuals move through public areas according to their personal goals and with walk-
ing speeds they feel comfortable. As shown in the left image in Fig. 1, they have an
intended speed and direction, which may be inhibited by surrounding pedestrians. Hel-
bing and Vicsek [1] define the influence of surrounding pedestrians on an individual as
the interaction rate, and show it is inversely related to efficiency. Rather than computing
efficiency for each pedestrian, we estimate efficiency at each space-time pixel location
in the video. By doing so, we may analyze the scene without having to detect and track
each pedestrian.

Let t denote time and p = [x, y]
T a 2D pixel location in the video. We denote the

intended motion of the pedestrian occupying pixel p at time t by

ut(p) = [Δx,Δy,Δt]
T
, (1)
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where Δx, Δy, and Δt is the change (movement) in the horizontal, vertical, and tem-
poral dimensions, respectively, and |ut(p)| = 1. The 2D optical flow ũt(p) induced
by this indented motion is computed by temporally normalizing this 3D optical flow
vector: ũt(p) = [Δx/Δt,Δy/Δt]. Similarly, let vt(p) be the 3D instantaneous optical
flow observed in the video.

We derive an image-space equivalent of the physical efficiency from Helbing et al. [2]

ũt(p) · ṽt(p)

|ũt(p)|2 . (2)

The bounds of Eq. 2, however, are not well defined. For example, if pedestrians move
faster than their intended speed (e.g., in a panic situation), then it is unbounded. As il-
lustrated on the right in Fig. 1, we compute the efficiency using the great-circle distance

et(p) = 1− arccos
(
ut(p)

Tvt(p)
)

π
(3)

that is bounded by [1, 0]. Since we represent motion using 3D optical flow vectors, Eq. 3
captures both differences in direction (longitudinal variations across the unit sphere) and
speed (latitudinal variations). To compute efficiency, however, we need the intended
motion ut(p). Next, we describe our crowd model which we use to estimate ut(p).

4 Directional Statistics Crowd Motion Model

In the absence of other pedestrians, individuals move in straight lines towards their
destinations. In higher densities, however, they naturally form organized structures (i.e.,
emergent behaviors) to utilize the available space and achieve a higher flow [15]. These
behaviors vary temporally [4] but tend to repeat [2]. We model this structured crowd
motion by training a collection of hidden Markov models (HMMs), one for each spatial
location in the frame. Our previous work [12, 9] also use a collection of HMMs but
retains appearance information in the form of spatial gradients. In this work, we train the
HMMs on directional statistics distributions of optical flow resulting in a more compact
and accurate representation. It is worth pointing out that other methods [13, 11] do not
retain the temporal dynamics of crowd flow.

As shown in Fig. 2(a), we subsample the video using a regular grid and represent the
motion in each sub-volume, or “cuboid.” Let ∇Ii be a 3D vector containing the image
gradient estimated in the horizontal, vertical, and temporal directions, respectively, and
{∇Ii | i = 1, . . . , N} be a set of N space-time gradients within a cuboid. When a
cuboid contains motion in a single direction, the space-time gradients lie on a plane
orthogonal [16] to the 3D optical flow q. Thus q can be estimated by solving [16]

[
1

N

N∑

i

∇Ii∇ITi

]

q = 0 . (4)

Note that we can use any optical flow estimation algorithm, for instance, those tailored
to large displacements [17], if necessary. In this work, we found our gradient-based
method sufficient and significantly faster than such dense estimation methods.
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Fig. 2. (a) We subdivide the video into space-time cuboids. (b) The 3D optical flow q estimated
from the cuboid is orthogonal to a plane in spatio-temporal gradient space. A gradient ∇Ii that
does not lie on the plane represents uncertainty in the flow, and is orthogonal to another possible
flow vector wi. (c) The set of these possible flow vectors forms a directional distribution on the
upper-hemisphere.

Cuboids containing motion in a single direction have gradients that are coplanar,
while those containing multiple moving objects have gradients that are not. As illus-
trated in Fig. 2(b), a space-time gradient ∇Ii that does not lie on the plane suggests
motion in another direction wi orthogonal to ∇Ii. The vector wi is a 3D flow vector

wi =
∇Ii × q×∇Ii
|∇Ii × q×∇Ii| , (5)

where × is the cross-product.
As shown in Fig. 2(c), the distribution {wi | i=1, . . . , N} exists on the upper hemi-

sphere of q. It’s shape characterizes the motion in the cuboid: narrow distributions rep-
resent motion in a specific direction, and wide distributions represent motion in multiple
directions. A natural representation is the von Mises-Fisher distribution [18]

p(x) =
1

c(κ)
exp

{
κμTx

}
, (6)

where μ is the mean direction, c(κ) is a normalization constant, and κ is the concentra-
tion parameter.

We train an HMM on the von Mises-Fisher distributions observed at each spatial grid
location. HMMs are defined by J hidden states, a J×1 initial probability vectorπ, a J×J
transition matrix A, and a set of J emissions densities {p(O|s=j) | j=1, . . . , J}. In
our model, each observation O={μ, κ} describes the motion within a specific cuboid.
Although κ is not necessary to estimate the intended motion, we include it for tracking
in Sec. 6.2. We consider μ and κ to be statistically independent and define the emission
densities analytically

p(O|s=j) = p(μ|s=j)p(κ|s=j) , (7)

where p(κ|s= j) is a Gamma distribution, and p(μ|s= j) a von-Mises Fisher distribu-
tion (i.e., the conjugate prior on μ [19]). We train the HMMs on a sample video of the
target scene using the Baum-Welch algorithm [20].
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Fig. 3. We estimate the intended direction by advancing each pixel location through a 3D flow
field (a) (color indicates speed and direction) that we predict from the HMMs. To estimate the
intended speed in scenes captured with a perspective projection, we fit a line to the top 5% of
speed measurements (b) at each longitudinal location of the frame (c).

5 Estimation of Intended Motion

Next, we use the trained HMMs to estimate the intended motion at each space-time lo-
cation in a different video of the same scene. We discuss direction and speed separately,
and combine them to compute the intended motion ut(p).

5.1 Intended Direction

Given the observed video up to time t and an HMM trained at spatial location p, we
compute zk(p) as a 1×J vector representing the likelihood of being in state j at time
t+ k

zk(p) = αtA
k , (8)

where A is the state transition matrix from the HMM, and αt is the scaled forward
message from the forwards-backwards algorithm [20]. As k→∞, Eq. 8 approaches the
stationary distribution of the Markov process (if it exists).

We use the set {zk(p)|k = 1, . . . ,K} to compute the optical flow after time t. We
select K large enough to approach the stationary distribution. Let fk(p) be the flow
predicted from zk(p)

fk(p) =

J∑

j=1

zk,j(p)E [p(μ|s=j)] , (9)

where p(μ|s=j) is the emission density from Eq. 7. The resulting flow field (i.e., fk(p)
for all spatial locations and values of k) represent the anticipated flow of the crowd.

As shown in Fig. 3(a), we estimate the future location of each point p by advancing
it through the anticipated flow field. Let f̃k(p) be the 2D optical flow computed from
fk(p), and p̂k the location of p at time k+t. The next location p̂k+1 is computed by
following the predicted flow at the previous point

p̂k+1 = p̂k + f̃k(p̂k) . (10)
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Eq. 10 is initialized with p̂0=p. The final location p̂K indicates, according the crowd
motion, the intended location of the pedestrian occupying p. The intended direction is
the difference of this point from the current location

ūt(p) =
1

Z
(p̂K − p) , (11)

where Z is a normalization term such that |ūt(p)| = 1.

5.2 Intended Speed

The walking speed of pedestrians has been well studied and is near constant if there is no
congestion. Zip’s [21] least-effort principle implies that pedestrians minimize metabolic
energy when walking at roughly 1.33 meters per second [22], which has been verified
in observational studies [23, 24]. For scenes recorded at a distance, we may assume
orthographic camera projection and thus a constant intended speed can be estimated for
all pedestrians. We approximate the intended speed as the maximum observed speed in
the training video. Intuitively, we are identifying the few instances where pedestrians
can move freely due to lulls in traffic or less-crowded areas. To address unreliable or
erroneous flow estimates, we use Chauvenet’s criterion [25] to remove outliers.

For near field views that exhibit perspective distortion, as shown in Fig. 3(b), we
estimate the intended speed by observing the relationship between each longitudinal
frame location. First, we identify the fastest 5% of speed measurements from each lon-
gitudinal frame location. Due to the perspective projection, the speeds across the frame
have near-linear relationship. We find a least-squares line fit to the speed measurements
to estimate the desired speed over the entire image. Outliers are also removed using
Chauvenet’s criterion.

Finally, given intended speed s(p) and direction ūt(p), we may compute the in-
tended motion

ut(p) =
[
ūt(p)

T , s(p)
]T

, (12)

and normalize such that |ut(p)| = 1.

6 Applications

The pedestrian efficiency computed for each frame of the video can be used to analyze
the scene despite the crowd. In this paper, we demonstrate its use in two critical video
analysis tasks that are particularly challenging for crowded scenes: anomaly detection
and pedestrian tracking.

6.1 Anomaly Detection

Low pedestrian efficiency is an indicator of unusual activities. Atypical motions de-
crease efficiency in local areas, and crowd disasters contain people moving irrationally.
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We can identify global anomalies, i.e., affecting a large portion if not the entire crowd,
as frames that have low average efficiency values

ēt =
1

|P|
∑

p∈P
et(p) ,

where P is the set of 2D pixel locations.
We may also detect local anomalies, such as individuals moving against the crowd

flow. Such offenders will exhibit low efficiency (since the training data lacks their in-
tended motion) and decrease the efficiency in their immediate vicinity (as surrounding
pedestrians must avoid them). We identify local unusual events as space-time regions
with low efficiency. Since many scenes naturally contain low efficiency (a congested
train station, for example), we normalize the efficiency ẽt(p) =

et(p)
Z(p) , where Z(p) is

the average efficiency at spatial location p of the training data.
We identify the space-time locations with low efficiency using a space-time Markov

random field. Details are omitted for limited space, but this can be achieved with binary
latent variables indicating whether the scene point exhibits usual activities or not. The
latent variables can be computed through energy minimization of an error function con-
sisting of a data term that returns the efficiency value if the scene point contains unusual
activity together with an Ising model smoothing term. This energy minimization can be
efficiently solved with graph-cuts [26, 27].

6.2 Tracking

Efficiency indicates how much an individual is conforming to the flow of the crowd. As
such, we may use it as a dynamic prior on the individual’s motion to probabilistically
track pedestrians in crowded scenes.

Let xt be the 2D pixel location at time t of a pedestrian being tracked. Object-centric
methods [28, 29] assume pedestrians exhibit smooth motion and impose (often first
order) stochastic dynamics to update the location

xt+1 = xt + ht + ε , (13)

where ht is a 2D flow vector and ε is (typically Gaussian) noise. Crowd methods
[12, 13, 11] use a learned model of the crowd

xt+1 = xt + c(xt) + ε , (14)

where c(xt) is the flow of the crowd at location xt. Using our model, c(xt) is the
predicted von Mises-Fisher distribution (μ and κ) from the HMM at location xt.

Macroscopic approaches assume the crowd motion model yields an accurate predic-
tion, and do not perform well when pedestrians deviate from the crowd (i.e., areas of
low efficiency). Microscopic (object-centric) approaches that rely on individual motion
models, such as a linear model, struggle in areas without visible backgrounds (often
high efficiency). We use pedestrian efficiency as an indicator of how much to trust the
crowd motion model and dynamically weight the two motion models

xt+1 = xt + et(xt)ct(xt) + [1− et(xt)]ht + ε . (15)
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(a) (b) (c) (d) (e) (f)

Fig. 4. Frames from six videos on which we evaluate our method. The concourse (a) [12],
street (b) [6], and sidewalk (c) [30] scenes contain pedestrians moving in many different di-
rections. The platform (d), escalator (f) (both from [31]), and intersection (e) [30] contain more
obvious emergent behaviors such as lane formation.

For the individual’s motion ht we use the expected vector of a von Mises-Fisher distri-
bution fitted to the previous flow observations. Intuitively, we are switching between the
crowd motion model and a simple individual motion model that maintains the momen-
tum at that location based on the pedestrian efficiency; when the pedestrian efficiency is
high go with the crowd flow and otherwise let the individual maintain its own previous
motion. Our final state-transition density is a von Mises-Fisher distribution computed
by weighting the expected directions and variances.

7 Experimental Results

Fig. 4 shows frames from six videos of crowded scenes that we use to evaluate our
method. For each scene, we train the HMMs on a sample video sequence, and use them
to compute the efficiency in a video of the same scene recorded at a different time.
The concourse (4(a) from [12]), sidewalk (4(c) from [30]), and street (4(b) from [6])
scenes have few physical obstacles and contain many interactions. The platform (d)
and escalator (f) (both from [31]) scenes contain low efficiency due to bottlenecks. The
intersection ((e) from [30]) contains pedestrians avoiding each other as they intersect in
the middle of the frame. Many of the videos are available from the respective authors.

Fig. 5 shows examples of pedestrians moving inefficiently. The left most example
shows an individual changing direction due to congestion. His intended direction is
to the left, and efficiency drops when moving around other pedestrians. The middle
example shows pedestrians avoiding an oncoming individual (video from [6]). Their
intended direction is vertical, and efficiency decreases as they move to the side. The

Fig. 5. Low efficiency (red=low efficiency, blue=high) due to congestion (left), pedestrians avoid-
ing an individual (middle), and a lack of motion (right). The yellow solid arrow is the intended
motion, and the green dashed arrow depicts the actual motion (optical flow).
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Average Error

Fig. 6. The accuracy of our estimate of future directions for a number of pedestrians (left), along
with averages compared with Mehran et al. [6] (right)

pedestrians in the right most example are standing still and exhibit lower efficiency
than those moving in the lower left of the image.

Since it is impossible to know a pedestrian’s intentions, we cannot directly measure
the accuracy of our estimated intended motion. We can, however, assume that pedestri-
ans move in their intended direction over time. Let {x̂t|t=1, . . . , T } be a sequence of
ground-truth tracking locations for a specific pedestrian. We measure the error

1

T

T∑

t=1

arccos

(
ūt(x̂t)

T [x̂t+w − x̂t]

|x̂t+w − x̂t|
)

, (16)

where ūt is the estimated intended direction from Eq. 11, and w is a window size that
depends on the subject (typically the duration the subject is in the scene).

The left graph in Fig. 6 shows the estimation error for a number of subjects from
different scenes. For almost all of the subjects the estimation error is below 0.1 (about
6◦). None of the error rates exceed 0.2 which is small given the resolution of the video.
The theoretical maximum error is π, and thus at most the error is 0.2/π ≈ 6%. The
right table in Fig. 6 shows the average error for all scenes, and the error using the op-
tical flow for the intended motion as suggested by Mehran et al. [6]. Scenes with less
structure, such as the concourse and street, have higher errors due to the larger num-
ber of directions that pedestrians move. Compared with Mehran et al. [6], our method
achieves consistently lower errors.

7.1 Anomaly Detection

First, we detect global anomalies as frames with low average efficiency on the Uni-
versity of Minnesota Crowd Dataset [32]. The dataset contains a number of usual and
unusual video segments from 3 different scenes. For each scene, we train the HMMs
on a usual sequence, and estimate efficiency on the remaining sequences. A frame is
considered unusual if its average efficiency is below a specific threshold that is selected
empirically. Fig. 7(a) shows visualizations of the efficiency for usual (top) and unusual
activities (bottom) for the first scene. The pedestrians in the unusual frame (bottom)
exhibit lower efficiency than those in the usual frame (top).
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(a) (b) (c) (d)

Fig. 7. The efficiency on frames from the UMN data set (a) is high in usual scenes (top) and low
in unusual scenes (bottom). Pedestrians that move against the crowd exhibit low efficiency (b).
We detect such anomalies (c) with higher accuracy than our previous method [9] (d) (top) and
Mahadevan et al. [10] (bottom). The color indicates the detection results: blue are true positives,
red are false negatives, and pink are false positives.

The left graph in Fig. 8 shows the average efficiency plotted over time for a specific
scene in the UMN data set. The red and green points are the average efficiency from
clips of usual and unusual activities, respectively. The average efficiency drops during
all six clips of unusual activities. We vary the threshold to compute an ROC curve.
The area under the ROC curve was 0.92, which compares favorably with 0.96 in [6]
and 0.99 in [33]. Our slightly poorer performance is due to the higher efficiency at the
beginning and end of each unusual sequence (where pedestrians are moving normally)
as shown in the left graph in Fig. 8.

We evaluate our local anomaly detection method on the UCSD Anomaly Detection
Dataset [34] from [10] and videos of two train station scenes from [9]. We measure
detection accuracy by the average of the true positive rates and true negative rates. The
UCSD data set provides ground truth for some sequences. We hand-labeled the ground-
truth for the remaining sequences and those of the train station.

Fig. 7 shows example frames of local anomalies detected in both datasets. The in-
tended motion of pedestrians moving against the crowd cannot be determined, and thus
such individuals exhibit low efficiency as shown in Fig. 7(b). We successfully detect
such pedestrians as shown in Fig. 7(c). As shown in Fig. 7(d), efficiency is less sensi-
tive to minor deviations than our previous method [9] and that of Mahadevan et al. [10].

Fig. 8. Left: Efficiency drops when crowds in the UMN data set enter unusual states, as shown by
the green points in the graph. Middle: Accuracy of local anomaly detection for 9 sequences in the
UCSD Crowd Dataset [34] compared with [10]. Right: Accuracy of 8 sequences from two train
station scenes compared with our previous method [9]. Using efficiency achieves higher accuracy
for all sequences compared with other approaches.
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Table 1. Tracking errors averaged over multiple subjects for the different scenes using estimated
pedestrian efficiency compared with our previous crowd motion model approach [12] and that
of Rodriguez et al. [11]. Using efficiency achieves lowest error on almost all scenes. On the
concourse scene we achieve comparable results to our previous method [12].

Concourse Street Platform Escalator Intersection Sidewalk
Ours 8.7 3.3 2.8 8.5 3.1 7.4
Kratz and Nishino [12] 6.8 47.6 17.3 24.8 3.56 9.9
Rodriguez et al. [11] 24.7 14.8 29.9 60.4 25.9 11.9

The middle graph in Fig. 8 shows the detection accuracy of our method on 9 se-
quences compared with that of Mahadevan et al. [10], and the right graph in Fig. 8
compares the results on 8 sequences with our previous method [9]. We use the results
of Mahadevan et al. [10] posted on the web for comparison. The use of pedestrian effi-
ciency achieves consistently higher accuracy in both cases.

7.2 Tracking

We quantitatively evaluated our tracking method using hand-labeled ground truth of tar-
gets. Given a ground-truth location x̂t and tracking result xt, the tracking error |x̂t−xt|
is averaged over all frames {t=1, . . . , T }. Table 1 shows the tracking errors (average
over multiple subjects for each sequence) using the estimated pedestrian efficiency com-
pared with our previous method [12] and that of Rodriguez et al. [11]. Using pedestrian
efficiency achieves superior results on all scenes but one, and significantly lower er-
rors on the platform, escalator, and street scenes where pedestrians move with lower
efficiency due to higher density.

Pedestrians that deviate from the flow of the crowd present challenges to tracking.
Since such pedestrians naturally have low efficiency, our method is able to reliably
track them by gracefully switching to simple individual motion models as defined in
Eq. 15. The left most four images in Fig. 9 shows two tracking results using our method
and just the crowd motion model (Eq. 14). In both cases, the pedestrian is moving
against the crowd: the first is moving left to right, and the second is moving towards
the bottom of the frame. As shown in green, the crowd model assumes pedestrians are
moving with the crowd, drifts, and loses the target. Our method, shown in red, is able
to compensate for the anomaly and accurately track the targets. The middle graph in
Fig. 9 shows the tracking errors for 16 anomalous targets using both methods. Using
pedestrian efficiency achieves a consistently lower error.

The right graph in Fig. 9 shows the ratio of our tracking error to the tracking er-
ror using just the crowd model for different subjects. High ratios (i.e., 1) indicate that
our method performs similar to using just the crowd motion model, while a low ra-
tio indicates improvement by our method. The downward trend of the points show
the advantage of using pedestrian efficiency: our method vastly improves tracking in
crowds when pedestrians are moving inefficiently, and performs similarly to crowd mo-
tion models when pedestrians are moving with the flow.
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Fig. 9. Left: Tracking results of pedestrians deviating from the general crowd flow in the con-
course (top row) and UCSD dataset (bottom row) using our method (red) and just a crowd motion
model (green). The crowd motion model assumes that the pedestrians are moving with the crowd
causing the tracker to drift (left column) or lose the target (right column). Middle: Since such
anomalous pedestrians naturally have low efficiency, our method achieves a lower tracking error
for all the tested subjects. Right: Pedestrians moving inefficiently have a low ratio (close to 0)
and the downward trend indicates crowd motion models are only accurate when pedestrians are
moving efficiently.

8 Conclusion

In this paper, we introduced the use of pedestrian efficiency for video analysis of crowded
scenes. We showed that the pedestrian efficiency can be computed from a video with-
out detecting and tracking individuals. The computed pedestrian efficiency can be used
to reliably identify global and local anomalous activities, and robustly track individuals
through crowded scenes regardless of whether they are conforming to the crowd flow
or not. The experimental results show that the computation and use of pedestrian effi-
ciency can indeed enable more reliable video analysis of crowded scenes. We believe
that measuring efficiency is but the first step to recognizing the impact of individuality
on crowds, and provides new means to further study the complex interactions between
pedestrians in videos of crowded scenes.
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Abstract. Reconstructing an arbitrary configuration of 3D points from
their projection in an image is an ill-posed problem. When the points
hold semantic meaning, such as anatomical landmarks on a body, hu-
man observers can often infer a plausible 3D configuration, drawing on
extensive visual memory. We present an activity-independent method to
recover the 3D configuration of a human figure from 2D locations of
anatomical landmarks in a single image, leveraging a large motion cap-
ture corpus as a proxy for visual memory. Our method solves for anthro-
pometrically regular body pose and explicitly estimates the camera via a
matching pursuit algorithm operating on the image projections. Anthro-
pometric regularity (i.e., that limbs obey known proportions) is a highly
informative prior, but directly applying such constraints is intractable.
Instead, we enforce a necessary condition on the sum of squared limb-
lengths that can be solved for in closed form to discourage implausible
configurations in 3D. We evaluate performance on a wide variety of hu-
man poses captured from different viewpoints and show generalization
to novel 3D configurations and robustness to missing data.

1 Introduction

Figure 1(a) shows the 2D projection of a 3D body configuration. From this 2D
projection alone, human observers are able to effortlessly organize the anatomical
landmarks in three-dimensions and guess the relative position of the camera.
Geometrically, the problem of estimating the 3D configuration of points from
their 2D projections is ill-posed, even when fitting a known 3D skeleton1. With
human observers, the ambiguity is likely resolved by leveraging vast memories of
likely 3D configurations of humans [2]. A reasonable proxy for such experience
is available in the form of motion capture libraries [3], which contain millions of
3D configurations. The computational challenge is to tractably generalize from
the configurations spanned in the corpus, ensuring anthropometric plausibility
while discouraging impossible configurations.

1 As noted in [1], each 2D end-point of a limb subtends a ray in 3D space. A sphere
of radius equal to the length of the limb centered at any location on one of these
rays intersects the other ray at two points (in general) producing a tuple of possible
3D limb configurations for each location on the ray.

A. Fitzgibbon et al. (Eds.): ECCV 2012, Part IV, LNCS 7575, pp. 573–586, 2012.
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2D Anatomical Landmarks 3D Human Pose and Camera

Fig. 1. Given the 2D location of anatomical landmarks on an image, we estimate the
3D configuration of the human as well as the relative pose of the camera

Kinematic representations of human pose are high-dimensional and difficult
to estimate directly. Allowing only statistically plausible configurations leads to
compact representations that can be estimated from data. Linear dimensionality
reduction (such as PCA) is attractive as it yields tractable and optimal estima-
tion methods. It has been successfully applied to constrained deformable objects,
such as faces [4] and action-specific body reconstruction, such as walking, [5].
However, as we add poses from varied actions, the complexity of the distri-
bution of poses increases and, consequently, the dimensionality of the reduced
model needs to be increased (see Figure 2). If we expand the dimensionality,
linear models increasingly allow configurations that violate anthropometric con-
straints such as limb proportions, yet yield a projection in 2D that is plausible.
The goal is therefore to develop an activity-independent model while ensuring
anthropometric regularity.

In this paper, we present a method to reconstruct 3D human pose while
maintaining compaction, anthropometric regularity, and tractability. To achieve
compaction, we separate camera pose variability from the intrinsic deformability
of the human body (because combining both leads to an approximately six-fold
increase in the number of parameters [6]). To compactly model the intrinsic de-
formability across multiple actions, we use a sparse linear representation in an
overcomplete dictionary. We estimate the parameters of this sparse linear rep-
resentation with a matching pursuit algorithm. Enforcing anthropometric reg-
ularity through strict limb length constraints is intractable because satisfying
multiple quadratic equality constraints on a least squares system is nonconvex
[7]. Instead, we encourage anthropometric regularity by enforcing a necessary
condition (i.e., an equality constraint on the sum of squared lengths) as a con-
straint that is applied in closed form [8]. We solve for the model coefficients and
camera pose within the matching pursuit iterations, decreasing the reprojection
error objective in each iteration.

Our core contributions are: (1) a new activity-independent representation of
3D human pose variability as a sparse embedding in an overcomplete dictionary,
and (2) an algorithm, Projected Matching Pursuit, to estimate the sparse model
from only 2D projections while encouraging anthropometric regularity. Within
the matching pursuit iterations, we explicitly estimate both the 3D camera pose
and the 3D body configuration. We evaluate our method to test generalization,
and robustness to noise and missing landmarks. We compare against a standard
linear dimensionality reduction baseline and a nearest neighbor baseline.
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2 Related Work

For the single image pose recovery task, some of the earliest work is by Lee
and Chen [1] who assumed known limb lengths and recovered pose by pruning
a binary interpretation tree that enumerates the entire set of configurations for
an articulated body using physical and structural pruning rules and user input.
Taylor’s approach [9] used known skeletal sizes to recover 3D pose up to a weak
perspective scale; this method required human input to resolve the depth ambi-
guities at each joint. Jiang [10] used Taylor’s method [9] to generate hypotheses
followed by a nearest neighbor approach to prune the hypotheses. Parameswaran
and Chellappa [11] used a strong prior on skeletal size and employed 3D model
based invariants to recover the joint angle configuration but made restrictive as-
sumptions on the 3D configurations possible. Other approaches, such as Barron
and Kakadiaris [12], estimated anthropometry and pose using strong anthropo-
metric priors on limb lengths by generating a set of plausible poses based on
geometric constraints followed by a nonlinear minimization.

Discriminative approaches [13–16] have attempted to directly learn a mapping
from 2D image measurements to 3D pose. Several approaches have recovered 3D
pose from silhouettes. Elgammal and Lee [17] learned view-based activity man-
ifolds from 2D silhouette data. Rosales and Sclaroff [18] described a method to
learn the inversemapping from silhouette to pose. Salzmann andUrtasun [13] pro-
posed a method to impose physical constraints on the output of a discriminative
predictor. Discriminative methods, in general, require large amounts of training
data from varied viewpoints and deformations to be able to recover pose reliably
and do not generalize well to data that is not represented by the training set.

Enforcing structural constraints optimally is usually intractable. In the con-
text of deformable mesh reconstruction, Salzmann and Fua [19, 20] derived a
convex formulation for constraining the solution space of possible 3D configura-
tions by imposing convex inequality constraints on the relative distance between
reconstructed points. Wei and Chai [21] and Valmadre and Lucey [22] describe
deterministic algorithms to simultaneously estimate limb lengths and reconstruct
human pose. These methods require multiple images and manual resolution of
depth ambiguities at several joints.

In this paper, we present an automatic algorithm for recovering 3D body pose
from 2D landmarks in a single image. To achieve this, we develop a statistical
model of human pose variability that can describe a wide variety of actions,
and an algorithm that simultaneously estimates 3D camera and body pose while
enforcing anthropometric regularity.

3 Sparse Representation of 3D Human Pose

A 3D configuration of P points can be represented by X =
(
XT

1 , . . . ,X
T
P

)T ∈
R3P×1 of stacked 3D coordinates. Under weak perspective projection, the 2D
coordinates of the points in the image are given by

x =

(
IP×P ⊗

[
sx 0
0 sy

] [
1 0 0
0 1 0

]
R

)
X+ t⊗ 1P×1, (1)
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Fig. 2. Data Complexity. (a) As more actions and, consequently, diverse poses are
added to the training corpus, the maximum reconstruction error incurred by a linear
dimensionality reduction model increases. (b) Maximum reconstruction error for each
action separately using PCA. Each action can be compactly modeled with a linear
basis. (c) Using a sparse representation in an overcomplete dictionary estimated using
Orthogonal Matching Pursuit (OMP) achieves lower reconstruction error for 3D pose.

where x ∈ R2P×1, ⊗ denotes the Kronecker product, s ∈ R2×2 is a diagonal scale
matrix with sx and sy being the scales in the x and y directions , R ∈ SO(3)
and t ∈ R2×1 denote the rotation and translation parameters of the weak per-
spective camera that we collectively denote as C. We assume the camera intrinsic
parameters are known. Estimating X and C from only the image evidence x is,
fundamentally, an ill-posed problem. We see from Equation 1 we have 3P + 7
parameters that we need to estimate from only 2P equations.

If the points form a semantic group that deform in a structured way, such as
anatomical landmarks on a human body, we can reduce the number of param-
eters that need to be estimated using dimensionality reduction methods that
learn the correlations between the points [23]. Linear dimensionality reduction
methods (e.g., Principal Component Analysis (PCA)) can be used to represent
the points as a linear combination of a small number of basis poses,

X = µ+
K∑

i=1

biωi, (2)

where K is the number of basis poses, bi are the basis poses, ωi are the coef-
ficients, and µ ∈ R3P×1 is the mean pose computed from training data. Under
this model, we now have to estimate onlyK+7 parameters instead of the original
3P + 7 parameters.

A direct application of PCA to all the poses contained in the corpus2 raises
difficulties as shown in Figure 2(a). For a single action, PCA performs well.
As the diversity in actions in the data increases, the number of PCA compo-
nents required for accurate reconstruction increases, and the assumption of a

2 We use the Carnegie Mellon Motion Capture Database [3] to obtain a large corpus
of 3D human poses.
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low dimensional linear subspace becomes strained. In particular, the maximum
reconstruction error increases as the diversity in the data is increased because
PCA inherits the occurrence statistics of poses in the corpus and not just the
extent of variability.

3.1 Sparse Representation in an Overcomplete Dictionary

In Figure 2(b) we see that each individual action is compactly representable by a
linear basis. Therefore, an arbitrary pose can be compactly represented by some
subset of the set of all bases,

X = µ+
∑K

i=1 biωi,

{bi}i∈IB∗ ∈ B∗ ⊂ B, (3)

where µ is the mean pose, B ∈ R
3P×(

∑Na
i=1 Ni

b) is an overcomplete dictionary of
basis components created by concatenating N i

b bases computed from Na differ-
ent actions, B∗ is an optimal subset of B, and IB∗ are the indices of the optimal
basis B∗ in B. We validate this observation in Figure 2(c) by using Orthogonal
Matching Pursuit (OMP) [24, 25] to select a sparse set of basis vectors to recon-
struct each 3D pose in a test corpus. The sparse representation is able to achieve
lower reconstruction error with higher compaction on the test set than using
a full PCA model. It is instructive to note the behavior in Figure 2(c) of the
maximum reconstruction error, which usually correspond to atypical poses. For
human poses, we conclude that the sparse representation demonstrates greater
generalization ability than full PCA.

3.2 Anthropometric Regularity

Linear models allow cases where the 2D projection appears to be valid (i.e., the
reprojection error is minimized), but the configuration in 3D violates anthro-
pometric quantities such as the proportions of limbs. Enforcing anthropometric
regularity (i.e., that limb lengths follow known proportions) would discourage
such implausible configurations. For a limb3 between the ith and jth landmark
locations, we denote the normalized limb length as lij . The normalized limb
lengths are set by normalizing with respect to the longest limb of the mean pose
(µ). For a 3D pose X, we can ensure anthropometric regularity by enforcing

‖Xi −Xj‖2 = lij ,
∀(i, j) ∈ L (4)

where L = {(i, j)}Nl

i=1 is the set of pairs of joints between which a limb exists and
Nl is the total number of limbs in the model. Unfortunately, applying quadratic

3 We loosely define a limb to be a rigid length between two consecutive anatomical
landmarks in the tree.



578 V. Ramakrishna, T. Kanade, and Y. Sheikh

equality constraints on a linear least squares system is nonconvex. A necessary
condition for anthropometric regularity is

∑

∀(i,j)∈L
‖Xi −Xj‖22 =

∑

∀(i,j)∈L
l2ij . (5)

This constraint limits the sum of the squared distances between valid landmarks
to be equal to the sum of squares of the limb lengths4. The feasible set of the
constraint in Equation 5 contains the feasible set of the constraints in Equa-
tion 4. The necessary condition on the sum of squared limb lengths is therefore
a relaxation of the constraints in Equation 4. As shown in [8], this necessary
condition can be applied in closed form.

4 Projected Matching Pursuit

We solve for the pose and camera by minimizing the reprojection error in the
image. The resulting optimization problem can be stated as follows

min
Ω,C,IB∗

‖x− (I⊗ sR) (B∗Ω+ µ)− t⊗ 1‖2
s.t.

∑

∀(i,j)∈L
‖Xi −Xj‖22 =

∑

∀(i,j)∈L
l2ij ,

B∗ ⊂ B.
(6)

Although the problem is non-linear, non-convex, and combinatorial, it has the
following useful property in the set of arguments (C,Ω, IB∗): we can solve opti-
mally, or near-optimally, for each subset of the arguments given the rest. This
property suggests a coordinate descent-style algorithm. Algorithm 1 describes a
matching pursuit algorithm we refer to as Projected Matching Pursuit for coor-
dinate descent on the reprojection error objective.

4.1 Algorithm

The combinatorial challenge of picking the optimal set of basis vectors from
an overcomplete dictionary to represent a given signal is NP-hard. However,
techniques exist to solve the sparse representation problem approximately with
guarantees [25, 26]. Greedy approaches such as orthogonal matching pursuit
(OMP) [27, 25] reconstruct a signal v with a sparse linear combination of basis
vectors from an overcomplete dictionary B. It proceeds in a greedy fashion by
choosing, at each iteration, the basis vector from B that is most aligned with the
residual r (the residual is set equal to v in the first iteration). The new estimate
of the signal v̂ is computed by reconstructing using the basis vectors selected
at the current iteration and the new residual (r = v − v̂) is computed. The
iterations proceed on the residual until K basis vectors are chosen or a tolerance
on the residual error is reached.
4 Note that since we are using normalized limb-lengths, these constraints become
constraints on limb proportions rather than on limb lengths.
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Algorithm 1. Projected Matching Pursuit

1. Initialize r0 = x− (I⊗ sR)µ− t⊗ 1
2. While (‖rt‖ ≥ tol)

3. imax = argmax
i

〈rt, (I⊗ stRt)Bi〉
4. B∗ = [B∗ Bimax ]
5. Solve: {C∗,Ω∗} = argmin ‖x̂ − (I⊗ sR)B∗Ω‖2

subject to constraints in Equation (8) using Section 4.2 & Section 4.3
6. Recompute residual rt+1 = x− (I⊗ s∗R∗) (B∗Ω∗ + µ)− t∗ ⊗ 1
7. Set Ωt+1 = Ω∗

8. Return {C∗,Ω∗,B∗}

In our scenario, we do not have access to the signal of interest, namely the
3D pose X. Instead, we are only given the projection of the original 3D pose
in the image x. We present a matching pursuit algorithm for reconstructing a
signal from its projection and an overcomplete dictionary. At each iteration of
our algorithm, the optimal basis set B∗ is augmented by matching the image
residual with basis vectors projected under the current camera estimate and
adding the basis vector which maximizes the inner product to the optimal set.
Given the current optimal basis set B∗, the pose and camera parameters are re-
estimated as outlined in Section 4.2 and Section 4.3. The algorithm terminates
when the optimal basis set has reached a predefined size or the image residual
is smaller than a tolerance value. The procedure is summarized in Algorithm 1.
We have an intuitive and feasible initialization in the mean 3D pose computed
from the training corpus.

4.2 Estimating Basis Coefficients with Anthropometric
Regularization

To encourage anthropometric regularity we enforce the necessary constraint from
Equation 5 which limits the sum of squared limb lengths. We can write each 3D
landmark Xi = EiX, where Ei = [· · · 0 I3×3 0 · · · ] is a 3 × 3P matrix that
selects out the ith landmark.

We can write Eij = Ei − Ej , and express each limb length as ‖EijX‖ = lij .
Equation 5 can now be rewritten in matrix form as:

‖CX‖22 =
∑

∀(i,j)∈L
l2ij , (7)

where C is a 3Nl × 3P matrix of the Nl stacked Eij matrices. Where Nl is the
number of limbs.

Given the optimal basis set B∗ and the camera C, solving for the coefficients of
the linear model Ω can now be formulated as the following optimization problem:

min
Ω

‖x̂− sR⊗ IP×PB
∗Ω‖2

s.t. ‖CB∗Ω−Cµ‖22 =
∑

∀(i,j)∈L
l2ij ,

(8)
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where x̂ = x − sR ⊗ IP×Pµ − t ⊗ 1P×1. The above problem is a linear least
squares problem with a single quadratic equality constraint that can be solved
optimally in closed form as shown in [8].

There also exists a natural lower bound on the length of the limb between the
estimated joint locations, X∗

i and X∗
j , in terms of the image projections xi and

xj . Using the triangle inequality we can show that

‖X∗
i −X∗

j‖ ≥ ‖s−1(xi − xj)‖. (9)

The above inequality shows that the estimated limb lengths are bounded by the
length of the limbs in the image. Thus we can guarantee that the estimated limb
length will not collapse to zeros as long as the limb has finite length in the image.

4.3 Estimating Camera Parameters

Given the pose X = B∗Ω+µ, and the image projections x, we need to recover
the weak perspective camera parameters C. We solve this as an instance of the
Orthogonal Procrustes problem [28]. We first write x and X in matrix form as
x ∈ R

2×P and X ∈ R
3×P respectively. We denote the mean-centered image

projections as x̂ = sRX . Using the singular value decomposition, we can write

M = x̂X T (XX T )−1 = UDVT . (10)

We obtain the scale s by taking the first 2× 2 section of the matrix D and the
rotation by setting R = UVT .

5 Evaluation

We perform quantitative and qualitative evaluation of our method. We use the
Carnegie Mellon motion capture database for quantitative tests and compare our
results against using a representation baseline (direct PCA on the entire corpus)
and a non-parametric nearest neighbor method.

For all experiments, an overcomplete shape basis dictionary was constructed
by concatenating the shape bases learnt for a set of human actions. We use a
model with 23 anatomical landmarks. Each pose in the motion capture corpus
was aligned by procrustes analysis to a reference pose. Shape bases were then
learnt for the following motion categories- ‘running’, ‘waving’, ‘arm movement’,
‘walking’, ‘jumping’, ‘jumping jacks’, ‘run’, ‘sit’, ’boxing’,’bend’ by collecting se-
quences from the CMU Motion Capture Dataset and concatenating PCA com-
ponents which retained 99% of the energy from each motion category.

5.1 Quantitative Evaluation

Optical Motion Capture. To evaluate our methods we test our algorithm on
a sequence of mixed activities from the CMU motion capture database. We take
care to ensure that the motion capture frames come from sequences that were
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Fig. 3. Quantitative evaluation on optical motion capture. (a) We compare our method
against two model baselines - a nearest neighbor approach and a linear model that uses
PCA on the entire corpus. Reconstruction error is reported against annotation noise σ
on a test corpus. (b) We evaluate the sensitivity of the reconstruction to each anatom-
ical landmark annotation. (c) We show the sensitivity in reconstruction to missing
landmarks. The radius of each circle indicates the relative magnitude of error in 3D in-
curred when the landmark is missing (d) The additional reconstruction incurred when
the landmark is missing.

Fig. 4. Our method is able to handle missing data. We show examples of reconstruction
with missing annotations. The missing limbs are marked with dotted lines. We are able
to reconstruct the pose and impute the missing landmarks in 3D.

not used in the training of the shape bases. We project 30 frames of motion
capture of diverse poses into 4 synthetically generated camera views. We then
run our algorithm on the 2D projections of the joint locations to obtain the
camera location and the pose of the human. We report 3D joint position error
with increasing annotation noise σ in Figure 3(a).

We compare our method against two baselines. The first baseline uses as a
linear model, a basis computed by performing PCA on the entire training corpus.
Anthropometric constraints are enforced as in Section 4.2. The second baseline
uses a non-parametric, nearest neighbor approach that retains all the training
data. The 2D projections in each test example are matched to every 3D pose in
the corpus by estimating the best-fit camera using the method in Section 4.3.
The 3D pose that has the least reprojection error under the best-fit camera esti-
mate is returned. The results are reported in Figure 3. We find that our method
that used Projected Matching Pursuit achieves the lowest RMS reconstruction
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error. We also tested the effect of imposing an equality constraint on the sum-
of-squared limb length ratios and find that we deviate from the ground truth on
our test set by 13.1% on average.

We evaluate the comparative importance of the anatomical landmarks by
performing two experiments:

Joint Sensitivity.We test the sensitivity of the reconstruction to each landmark
individually. Each pose in the testing corpus is projected into 2D with syntheti-
cally generated cameras and each landmark is perturbed with Gaussian noise in-
dependently. Figure 3(b) shows the sensitivity of the reconstruction to each land-
mark. The maximum length of a limb in the image is 200 pixels, the minimum limb
length is 20 pixels, and the average length of a limb in the image is 94.5. pixels The
noise is varied to about 10% of the average limb length in the image.

Missing Data. An advantage of our formulation is the ability to handle missing
data. In Figure 4 we show examples of reconstructions obtained with incomplete
annotations. We perform an ablative analysis of the joint annotations by remov-
ing each annotation in turn and measure the increase in the reconstruction error.
We plot our results in Figure 3(d). The radius of each circle is indicative of the
error incurred when the annotation corresponding to that joint is missing. We
find that the extremal joints are most informative and help in constraining the
reconstruction.

Valmadre et al.
(Uses multiple images)

Our Method
(Uses a single image)

Fig. 5. Comparsion with recent work. Valmadre et al., estimate human pose using
multiple images and requires additional annotation to resolve ambiguities. Our method
achieves realistic results operating on a single image and does not require additional
annotation
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Fig. 6. Reconstruction with multiple people in the same view. The camera estimation
is accurate as the people are placed consistently.

(a) Reconstruction of people in arbitrary poses from internet images.

(b) Reconstruction of people viewed from varied viewpoints.

(c) Our algorithm applied to four frames of an annotated video.

Fig. 7. We acheive realistic reconstructions for people in (a) arbitrary poses, (b) cap-
tured from varied viewpoints and (c) monocular video streams
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Fig. 8. Failure Cases. The method does not recover the correct pose when there are
strong perspective effects and if the mean pose is not a good initialization.

5.2 Qualitative Evaluation

Comparison with Recent Work. We compare reconstructions obtained by
our method to recent work by Valmadre et al. [22]. Their method requires multi-
ple images of the same person and requires a human annotator to resolve depth
ambiguities. We present our comparative results in Figure 5. Our method is ap-
plied per frame to images of the ice skater Yu-Na Kim and compared to the
reconstructions obtained by Valmadre et al. We can see in Figure 5 that we are
able to obtain good reconstructions per image, without the requirement of a
human annotator resolving the depth ambiguities.

Internet Images. We downloaded images of people in a variety of poses from
the internet. The 2D joint locations were manually annotated. We present the
results in Figures 7(a) and 6. In Figure 6 we first obtained individual camera
and pose estimates for each of the annotated human figures. We then fixed the
camera upright at an arbitrary location and placed the human figures using
the estimated relative rigid pose. It can be seen that the camera estimates are
consistent as the actors are placed in their correct locations.

Non-standard Viewpoints. We also test our method on images taken from
non-standard viewpoints. We reconstruct the pose and relative camera from
photographs downloaded from the internet taken from viewpoints that have
generally been considered difficult for pose estimation algorithms. We are able
to recover the pose and the viewpoint of the algorithm for such examples as
shown in Figure 7(b).

Monocular Video. We demonstrate our algorithm on a set of key frames ex-
tracted from monocular video in Figure 7(c). The relative camera estimates are
aligned to a single view-point to obtain a sequence of the person performing an
action. Note that we are able to estimate the relative pose between the camera
and the human correctly resulting in a realistic reconstruction of the sequence.

6 Discussion

We presented a new representation for human pose as a sparse linear embed-
ding in an overcomplete dictionary. We develop a matching pursuit algorithm
for estimating the sparse representation of 3D pose and the relative camera from
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only 2D image evidence while simultaneously maintaining anthropometric regu-
larity. Every step in the matching pursuit iterations is computed in closed form,
therefore the algorithm is efficient and takes on average 5 seconds per image to
converge. We are able to achieve good generalization to a large range of poses
and viewpoints. A case where the algorithm does not result in good reconstruc-
tions are in images with strong perspective effects where the weak perspective
assumptions on the camera model are violated and in poses where the mean pose
is not a reasonable initialization (See Figure 8).
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Abstract. We consider labeling an image with multiple tiers. Tiers, one
on top of another, enforce a strict vertical order among objects (e.g. sky
is above the ground). Two new ideas are explored: First, under a sim-
plification of the general tiered labeling framework proposed by Felzen-
szwalb and Veksler [1], we design an efficient O(KN) algorithm for the
approximate optimal labeling of an image of N pixels with K tiers. Our
algorithm runs in over 100 frames per second on images of VGA resolu-
tions when K is less than 6. When K = 3, our solution overlaps with the
globally optimal one by Felzenszwalb and Veksler in over 99% of all pix-
els but runs 1000 times faster. Second, we define a topological prior that
specifies the number of local extrema in the tier boundaries, and give an
O(NM) algorithm to find a single, optimal tier boundary with exactly
M local maxima and minima. These two extensions enrich the general
tiered labeling framework and enable fast computation. The proposed
topological prior further improves the accuracy in labeling details.

1 Introduction

We consider labeling an image with multiple tiers. Tiers, one on top of another,
enforce a strict vertical order among objects. For example, the sky is above the
ground and bottles are placed on top of a table. For indoor images, the ceiling
is above the wall above the floor. In general, ordering may come from physical
laws like gravity or typical object arrangements, and is commonly seen in daily
life pictures. Figure 1 illustrates the setting for tiered labeling.

Other than the strict order among objects, we often have certain prior knowl-
edge that is useful for object labeling. One important prior is the regularity of
the shape of an object. A commonly used measure is the total variation of a
boundary curve, which only guarantees that a curve is locally smooth. We de-
fine instead the topological smoothness, which bounds and specifies the number
of local extrema of a shape boundary, and is useful for enforcing that a curve
is globally smooth and has a given number of peaks or valleys (Figure 2). We
explore this novel, topological prior in the multi-tier labeling framework.

1.1 Literature Review

Scene labeling assigns to each pixel a semantic label and has been widely studied
[2–7, 1, 8]. Let f : Ω → L be a labeling function mapping from the image grid

A. Fitzgibbon et al. (Eds.): ECCV 2012, Part IV, LNCS 7575, pp. 587–601, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Fig. 1. The tiered labeling problem partitions an input image (left) into multiple tiers
(right). Each tier (6 in total) is displayed with a different color. The labeling takes less
than 0.01 seconds on an image of resolution 640 × 480.

Ω to the label space L. Let fp be the label of pixel p. Labeling can often be
modeled as minimizing an energy function in the form of a Markov Random
Field (MRF)[2]:

min
f

⎧
⎪⎨

⎪⎩

∑

p∈Ω

Dp(fp)
︸ ︷︷ ︸
data cost

+λ
∑

(p,q)∈N
V (fp, fq)
︸ ︷︷ ︸

label inconsistency

⎫
⎪⎬

⎪⎭
(1)

where Dp(fp) is the data cost of assigning label fp to pixel p and V (fp, fq) is
the label inconsistency cost. N is a neighborhood system: (p, q) ∈ N means p
and q are neighbors. Finally, λ is a regularization parameter that balances the
two costs. Clearly, the role of the label inconsistency cost V is to enhance the
robustness of the labeling when the data cost Dp is insufficient.

The optimization in Equation (1) is known to be NP-hard [3], except when
special assumptions and constraints are applied [9, 4, 10, 7, 1, 8]. Of particular
interest is the work by Felzenszwalb and Veksler [1] who describe an O(N1.5)
algorithm for the globally optimal labeling of a three-tiered structure. In that
three-tiered structure, each tier is further allowed to be vertically decomposed
into an arbitrary number of segments. Here and throughout this paper N refers
to the number of image pixels. Unfortunately their algorithm would be too slow
for labeling scenes of more than three tiers because of its exponential dependency
on the number of tiers. Most recently Strekalovskiy and Cremers [8] extend the
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Fig. 2. Although these three pictures differ in scale and perspective, the boundary
that separates the sky from the rest has three distinguishable peaks in each image. In
this example, the number of local extrema of a boundary curve is a reliable prior that
conveys useful domain knowledge.

computation to multi-tiered labeling using a relaxation of the integer convex
program, but with an even greater time complexity. Their algorithm is also
approximate due to randomized rounding.

Total variation is the conventional measure of smoothness used to regularize
the shape of a tier boundary. However, this measure only encourages a tier
boundary to be smooth locally rather than globally. We think that the number
of extrema of a boundary curve is a useful topological measure of the degree of
global smoothness of a curve. Moreover, the number of extrema of a boundary
curve can be used as a prior in tiered labeling and in scene label transfer [11]. This
topological measure has been studied in the context of topological persistence
and simplification of a triangulated surface [12, 13] and recently as a soft prior for
one dimensional signal de-noising [14]. To the best of our knowledge this measure
has rarely been considered in MRF optimization or in scene label transfer.

1.2 Our Contributions

First, under a restricted cost model, we develop an O(KN) approximation al-
gorithm to solve the K-tier labeling problem. We find that our algorithm works
well in practice and runs in over 100 frames per second on images of resolution
640 × 480 when K is less than 6. When K = 3, our solution overlaps with the
globally optimal one [1] in over 99% of the pixels but runs 1000 times faster.
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Second, we propose to use the number of extrema to regularize the smoothness
of a boundary curve and show that this improves the accuracy of tiered labeling,
particularly for indoor scene labeling where the number of local extrema of each
boundary curve is known a priori (e.g. the ceiling-wall boundary has one local
maximum and the wall-floor boundary has one local minimum). We give an
efficient O(MN) algorithm to find an optimal tier boundary with exactly M
local extrema using dynamic programming, and demonstrate improved labeling
results in detail on a benchmark data set.

1.3 Organization

Section 2 presents the general framework of tiered labeling, our chosen restricted
cost model, and our linear time approximation algorithm for multi-tiered label-
ing. Section 3 defines the concept of topological smoothness and presents a linear
time algorithm to compute a binary labeling with the boundary curve containing
a given number of local maxima and minima. Section 4 tests our algorithm on
a selected indoor image data set and compares it to the baseline algorithm of
[1] in terms of quality and speed. We show that without sacrificing the quality
of the tiered-labeling, our algorithm yields running time improvement of several
orders of magnitude. Section 5 concludes.

2 Tiered Labeling

The three tiered labeling framework was first studied by Felzenszwalb and Vek-
sler [1]. At a high level, it divides an image into regions of top, middle, and
bottom. The middle region is further decomposed into a series of vertical stripes,
each with a unique label. We generalize this definition to include multiple tiers.
A formal definition is this: Let Ω = [1, · · · , R]× [1, · · · , C] be an image grid of
R rows and C columns. Given a Directed Acyclic Graph (DAG) 〈L,≺〉 where L
is a set of labels and ≺ is a partial ordering relation defined in L, we have:

Definition 1 (Tiered Labeling). A labeling function f : Ω → L is a tiered
labeling with respect to ≺ if either f(r, c) = f(r+1, c) or f(r, c) ≺ f(r+1, c) for
each column 1 ≤ c ≤ C and each row 1 ≤ r ≤ R − 1.

The relation graph can be further decomposed to a set of tiers if we run Breadth-
first Search (BFS) on the DAG and group labels that have the same depth from
the root into tiers. Note that labels within each tier have no particular ordering
between them. In this section we give an approximate labeling algorithm for the
K-tiered labeling problem. We first show that 1D tiered labeling can be solved
optimally in linear time with respect to the array size, multiplied by the size
of relation graph, using dynamic programming. We then solve the 2D tiered
labeling using 1D tiered labeling as submodules for cost approximation.
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Fig. 3. Left: the “above” relation ≺ organized in a directed acyclic graph. Right: one
possible tiered labeling in a one dimensional array.

2.1 1D Tiered Labeling

We first show that 1D tiered labeling can be optimally solved in O(EN) time
on a one dimensional array of size N where E is the number of edges in the
relation DAG 〈L,≺〉. The problem is to assign each pixel 1 ≤ i ≤ N a label fi
so that either fi = fi+1 or fi ≺ fi+1 for 1 ≤ i ≤ N − 1. The relation ≺ can be
understood as “above” and is imposed a priori. Figure 3 illustrates the setting.

We show how to solve the global optimization of Equation (1) using dynamic
programming. Let F (i, l) be the optimal cost when position i is labeled l. With-
out loss of generality, l takes positive integer values. We then have the following
recursive state equation:

F (i, l) = min
l′:l′≺l

⎧
⎪⎨

⎪⎩
F (i− 1, l′)
︸ ︷︷ ︸

recursion

+ V (l′, l)
︸ ︷︷ ︸

label inconsistency

+ Di(l)
︸ ︷︷ ︸

data cost

⎫
⎪⎬

⎪⎭
(2)

Dynamic programming computes F (i, l) for each 1 ≤ i ≤ N and each 1 ≤ l ≤ K.
Since each edge is visited once at each i, the overall time complexity is O(EN).
For the boundary conditions we specify: F (1, l) = D1(l) for each l ∈ L.

We point out that for 1D tiered labeling, both the data costD and the pairwise
potential V are allowed to take arbitrary forms.
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2.2 2D Tiered Labeling

While the 1D tiered labeling problem can be optimally solved efficiently for
arbitrary number of tiers, the 2D tiered labeling is far more difficult. In fact, it
is NP-hard to compute the general 2D tiered labeling problem as it is as difficult
as solving the general 2D MRF. We look for approximation algorithms instead.

Three simplifications are made for efficient computation. First, as a pre-
processing step we aggregate the cost of multiple labels within a single tier
into a single cost function. Let Dk be the aggregate cost of tier k. The set of
object labels in tier k is denoted Lk, a subset of L. We define for each pixel p:

Dk(p) = min
l∈Lk

Dp(l) . (3)

Then, the modified relation graph L is reduced to K tiers, each with a single
label. In other words, the modified relation graph has K nodes and K− 1 edges,
organized as a linear chain. We argue that this way of compressing the relation
graph does not cause serious problems as after assigning the tiered labels under
the modified relation graph, one can unfold the collapsed labels in each tier.

In the second simplification, we divide the K-tier labeling to a series of K− 1
binary labeling problems. Each binary labeling problem can be solved in O(N)
time. First, we use the 1D tiered labeling algorithm to compute the cumulative
cost Fc for each column c. Fc(i, k) is therefore the optimal cost of labeling po-
sition i as k at column c, and can be computed using Equation (2). Since the
modified relation graph is a linear chain, we label each tier as 1, 2, · · · ,K from
top to bottom. We start from the bottom tier and separate it from the rest of
the tiers.

In the third simplification, we restrict the pairwise potential V . Specifically,
V (fp, fq) can be arbitrary for (p, q) ∈ N in the same column. However, when
(p, q) ∈ N are in the same row, we take:

V (fp, fq) =

{
1 if fp �= fq
0 otherwise

. (4)

In other words, the pairwise potential is allowed to take an arbitrary form along
columns and takes the form of a Potts model along rows. Combining the second
and the third simplifications, the binary labeling problem is equivalent to finding
a single path {xc}Cc=1 of row indices for each column. This path separates the
bottom tier from the one above it. The problem formulation is therefore:

min
x1,··· ,xC

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

C∑

c=1

μc(xc) + λ

C−1∑

c=1

|xc+1 − xc|
︸ ︷︷ ︸
label inconsistency

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(5)

where

μc(xc) � Fc(xc, k − 1) +
R∑

r=xc+1

Dk(r, c) (6)
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Fig. 4. Decomposing a K-tiered labeling to a series of K − 1 binary labeling

stands for the data cost and can be evaluated in O(1) time if an integral image
is pre-computed for Dk. Let Ec(xc) be the optimal cost up to column c at pixel
xc. The recursive state equation for the global minimization is:

Ec(xc) = μc(xc) + min
1≤xc−1≤R

{Ec−1(xc−1) + λ|xc − xc−1|} . (7)

Thanks to the generalized distance transform [15], Equation (7) can be evalu-
ated in O(R) time. Since this dynamic program takes C steps, the overall time
complexity is O(RC) or O(N). Once tier k is separated, we proceed to tier k− 1
and separate it from the tiers above it in a similar way. Since each time the
binary labeling takes O(N) time, the overall time complexity is O(KN). Figure
4 illustrates this greedy construction.

The first simplification compresses the labeling graph into a linear chain. Once
the tiered labeling is done, one can further decompose each tier into vertical
bands to uncover possible multiple labels (Figure 5). This is essentially a one
dimensional problem because each column within each tier can only have one
label. Consider tier t and its label set Lt. Let C(i, l) be the optimal cost of
labeling column i as label l. Let D(i, l) be the data cost of labeling column i as
l. The state equation for recovering the labels within tier t is:

C(i, l) = min

{

λ+ min
l′∈Lt,l′ �=l

C(i− 1, l′), C(i − 1, l)

}

+D(i, l) . (8)

The time complexity for the dynamic program above is linear with respect to
the number of columns, multiplied by the square of the number of labels within
a tier. Since the number of labels is typically much smaller than the number of
rows of an image, the complexity can be safely neglected compared to the main
O(KN) algorithm.
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Fig. 5. Unfolding object labels by vertical decomposition

Because of the three simplifications made, our algorithm does not minimize the
exact MRF energy function in Equation (1). However, our algorithm guarantees
that the solution is a tiered labeling by construction. The advantages of our
algorithm lie in its practical efficiency of O(NK) complexity, the ability to label
multiple tiers beyond three, and good performance on par with other methods of
greater complexity. For instance, although the algorithm given in [1] is globally
optimal when K = 3, our solution differs from the globally optimal one in less
than 1% of the total pixels and runs over 1000 times faster than the O(N1.5)
algorithm in [1] in our experiments.

3 Topological Smoothness

In the discussion above we use the label inconsistency cost of Equation (4). While
this penalty function works generally well in practice, it induces a large penalty
for sharp transitions (Figure 6). Moreover, the total variation only quantifies the
local smoothness of a curve. Many scenes have tier boundaries that are globally
smooth in the sense that the borders contain only one or two local extrema. For
instance, in the work of [7], a scene is decomposed into top, left, right, bottom
and middle and the top and bottom tier boundaries have only one local minimum
and one local maximum respectively due to their polygonal representation.

We propose to use the number of extrema of a path to quantify its topological
smoothness. Our algorithm finds a minimal cost path with exactly M local ex-
trema, which is useful for the binary labeling problem described in the previous
section. Note that the new prior cannot be modeled appropriately in an MRF
formulation. Our algorithm can also be modified to find a path with at most
M local extrema or M local maxima, all with the same asymptotic complex-
ity. Let Fc(xc) be the total data cost of column c if the path passes through xc.
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Here one can simply evaluate Fc(xc) in O(1) time using a pre-computed integral
image representation. The objective under the topological smoothness prior is:

min
x1,··· ,xC

C∑

c=1

Fc(xc)

subject to: path {xc}Cc=1 has M local extrema

(9)

In this constrained optimization, we omit the label inconsistency cost because
we expect to use the number of extrema of the path to automatically enhance its
regularity. However, including the pairwise smoothness term: λ

∑C−1
c=1 |xc+1−xc|

does not increase the computational complexity of our algorithm thanks again
to the generalized distance transform. For ease of description we omit this term
in the rest of the discussion. The notion of a local maximum or minimum is this:

Definition 2 (Local Extrema). An interval [I, J ] is said to be a local maxi-
mum of {xc}Cc=1 if xI−1 < xI = xI+1 = · · · = xJ > xJ+1. The interval [I, J ] is
said to be a local minimum of {xc}Cc=1 if it is a local maximum of {−xc}Cc=1.

Let C(r, c,m, ↑) be the optimal cumulative cost of the path that contains m local
extrema before reaching pixel (r, c) through an ascending direction. Similarly,
let C(r, c,m, ↓) be the optimal cumulative cost of the path that contains m local
extrema before reaching pixel (r, c) though a descending direction. We have the
following alternating state equations for dynamic programming:

C(r, c,m, ↑) = Fc(r) + min

{

min
r′≥r

C(r′, c− 1,m, ↑),

min
r′>r

C(r′, c− 1,m− 1, ↓)
} (10)

C(r, c,m, ↓) = Fc(r) + min

{

min
r′≤r

C(r′, c− 1,m, ↓),

min
r′<r

C(r′, c− 1,m− 1, ↑)
} (11)

These state equations utilize the fact that a local maximum is created by an
ascending path followed by a descending path and a local minimum is created
by a descending path followed by an ascending path. The use of relation symbols
≥ and ≤ include the equality relations so that the path is allowed to move in
the same row across adjacent columns.

The boundary conditions need to be posed carefully. First, when c = 0, we
have for each 1 ≤ r ≤ R and 1 ≤ m ≤ M the following boundary condition:

C(r, 0,m, ↑) = C(r, 0,m, ↓) = +∞ (12)

Second, when k = 0, we pre-compute the data cost:

B(r, c) =

{
Fc(r) if c = 0

B(r, c− 1) + Fc(r) otherwise
. (13)
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Fig. 6. A cartoon city skyline. This tier boundary induces a large label inconsistency
by Equation (4) due to sharp transitions. However, the cost is low by the standard of
topological smoothness as the skyline contains only two local maxima. The number of
local maxima is a topological quantity that tolerates significant sharp transitions.

The boundary conditions for C are:

C(r, c, 0, ↑) = Fc(r) + min

{

min
r′≥r

C(r′, c− 1, 0, ↑),min
r′>r

B(r, c− 1)

}

(14)

C(r, c, 0, ↓) = Fc(r) + min

{

min
r′≤r

C(r′, c− 1, 0, ↓),min
r′<r

B(r, c− 1)

}

(15)

The boundary conditions rule out the case that a constant level curve followed
by an ascending or descending path may accidentally induce a local maximum
or minimum. The correctness of the dynamic programming then follows easily
by induction. The overall time complexity is O(MN) by following the state
equation and using a simple book-keeping method for updating the running min
in a sequential way.

4 Experiments

We demonstrate applications of multi-tier labeling with and without the topo-
logical smoothness constraint. We compare our approximation algorithm to
the O(N1.5) algorithm by Felzenszwalb and Veksler [1] on labeling a three-
tiered structure. Although their algorithm is globally optimal in terms of solv-
ing Equation (1), we show that our greedy construction achieves similar results
but runs much faster in practice. We collect 60 images from two benchmark
data sets [16, 17] and annotate the ground truth of a three tiered labeling.
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Table 1. Average accuracy over 60 images. “+Topology” refers to our tiered label-
ing under the topological smoothness constraint: the top tier boundary has one local
minimum and the bottom tier boundary has one local maximum. Global accuracy is
calculated on the whole image. Detail accuracy is counted on the cropped image. See
also Figure 8 for detailed visual comparison.

naive DP [1] Ours +Topology

Global Accuracy 0.80 0.96 0.96 0.97
Detail Accuracy 0.76 0.90 0.91 0.94
Timing (seconds) – 10.1 < 0.01 < 0.01
Overlap with [1] – 1 > 0.99 –

For fair comparison, both algorithms use the same feature costs. All the data
set and our C++/MATLAB implementation are available at authors’ website:
http://www.cs.duke.edu/~yuanqi.

We generate the pixel costs as follows: Let T,O,B be the collection of sampled
3D color vectors associated to the top, middle and bottom tier. Let d(p) be the
color vector at pixel p. We compute the ratio:

γ(p) =
mind∈T ‖d(p)− d‖

mind∈O
⋃

B ‖d(p)− d‖ (16)

and we assign the cost associated to T based on the ratio:

fT (p) =

⎧
⎨

⎩

+1 if γ(p) > 3
2−1 if γ(p) < 2
3

+ 1
2 otherwise

. (17)

The rationale behind the cost design is that the closer the feature resembles
T ’s features relative to the background features of O and B, the lower the cost.
Ambiguous features would receive a cost that is positive. fO(p) and fB(p) are
generated similarly under cyclic permutation of T,O,B. Since each tier is com-
posed of a single object, there is no need to invoke the step for recovering multiple
objects within a tier.

Figure 7 displays sample results and Table 1 shows numerical comparisons.
In summary, our algorithm runs 1000 times faster than [1] on test images and
differs from the optimal solution in less than 1% of all the pixels. Accuracy is
further improved under the topological prior. This improvement is not obvious if
tested on the whole image due to the fact that boundaries are thin. To magnify
this advantage we crop the boundary regions and test accuracy on this smaller
area (Figure 8). We achieve 4% improvement over Felzenszwalb and Veksler [1]
in details. Figure 9 shows that the topological prior tolerates sharp transitions
while traditional smoothness priors may fail.

http://www.cs.duke.edu/~yuanqi
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Fig. 7. Each row shows 4 out of 60 test images. From top to bottom: Input image,
ground truth, generated cost, tiered labeling of [1], our result, our result under topo-
logical smoothness constraint. Best viewed when enlarged and in color.
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Fig. 8. Left to right: the cropped image, result by [1], and our labeling with topological
constraints (1 local extremum allowed)

Fig. 9. Traditional prior such as total variation misses the sharp transition (left). Our
topological prior respects sharp transitions (right).
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5 Conclusions

We present an O(KN) greedy algorithm for the K-tier labeling of an image of
N pixels. In addition, we propose to use a novel topological prior to regularize
the tier boundaries and present an O(MN) algorithm for finding a minimal-
cost binary labeling with exactly M local extrema on the border. Our algorithm
for multi-tier scene labeling runs much faster than the previous method with-
out sacrificing the labeling accuracy. The accuracy is further improved under
the topological prior, which is simple in concept and equally efficient in imple-
mentation. One interesting question is whether our algorithm has a non-trivial
theoretical approximation bound relative to the globally optimal solution.

Acknowledgement: This work is supported by the Army Research Office under
Grant No. W911NF -10-1-0387 and by the National Science Foundation under
Grant IIS-10-17017.
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Abstract. TreeCANN is a fast algorithm for approximately matching
all patches between two images. It does so by following the established
convention of finding an initial set of matching patch candidates be-
tween the two images and then propagating good matches to neighboring
patches in the image plane. TreeCANN accelerates each of these compo-
nents substantially leading to an algorithm that is ×3 to ×5 faster than
existing methods. Seed matching is achieved using a properly tuned k-d
tree on a sparse grid of patches. In particular, we show that a sequence of
key design decisions can make k-d trees run as fast as recently proposed
state-of-the-art methods, and because of image coherency it is enough to
consider only a sparse grid of patches across the image plane. We then
develop a novel propagation step that is based on the integral image,
which drastically reduces the computational load that is dominated by
the need to repeatedly measure similarity between pairs of patches. As
a by-product we give an optimal algorithm for exact matching that is
based on the integral image. The proposed exact algorithm is faster than
previously reported results and depends only on the size of the images
and not on the size of the patches. We report results on large and var-
ied data sets and show that TreeCANN is orders of magnitude faster
than exact NN search yet produces matches that are within 1% error,
compared to the exact NN search.

Keywords: Approximate nearest neighbor search, patch matching.

1 Introduction

Patch-based methods are at the heart of many applications such as texture
synthesis [1], image de-noising [2] and image editing [3], to name a few. These
methods can often be reduced to Nearest Neighbor Field (NNF) estimation,
where the goal is to find, for each patch in one image, the most similar patch in
the other image.

The number of patches in an image is roughly equal to the number of pixels
and can be in the millions for high-resolution images. Therefore, NNF calculation
is a time consuming task that is usually performed using approximation meth-
ods. Previous approximation approaches were mostly based on hierarchical-tree

A. Fitzgibbon et al. (Eds.): ECCV 2012, Part IV, LNCS 7575, pp. 602–615, 2012.
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structures, such as k-d trees [4], coupled with dimensionality reduction meth-
ods (e.g. PCA). This works quite well in practice but is too slow to be used in
interactive editing tools, or so it was believed.

Recently, a novel method was introduced, termed PatchMatch [5], that follows
a different strategy for estimating the NNF. It achieves a substantial speedup
(compared to k-d trees) by exploiting the coherency of NNF. PatchMatch works
in rounds where in each round patches are assigned a random match and good
matches are propagated to their neighbors in the image plane. This achieves good
results even after a small number of iterations. The downside is that PatchMatch
is not accurate enough in its recommended configuration (5 iterations), compared
to the ground truth error, which is measured as the result of an exact NN search.
Moreover, when the coherency assumption does not apply, PatchMatch might
fail and lead to many mismatches, which severely degrade the mapping quality.
Therefore, applications that require accurate NNF might prefer k-d trees that
are slower but more accurate. The random search of PatchMatch was replaced
with Locality Sensitive Hashing (LSH) in [6] that showed this to improve both
accuracy and speed.

We show that a sequence of design decisions lets us accelerate the use of k-
d tree for seed initialization and a novel use of the integral image (II) lets us
accelerate the propagation step.

For seed initialization we use an extremely aggressive dimensionality reduction
coupled with relaxed k-d tree search. Relaxed search means that we only traverse
the tree from root to leaf and do not perform boundary tests to determine if the
closest point might in fact be in a nearby branch of the tree. The loss of accuracy
is partially compensated by the k-nn retrieval, as we retrieve the k top neighbors
from the tree and revaluate all of them. These design decisions accelerate k-d tree
search by an order of magnitude. Further acceleration is achieved by working
only on a sparse grid of patches.

In the propagation step we make novel use of the II. Specifically, consider a
region, in the source image, consisting of 3× 3 overlapping patches and suppose
we wish to match it to the corresponding region in the target image, based on
the current assignment of the central patch. Clearly, we can compute 8 patch
similarities to determine if to propagate the patch assignment from the central
patch to any of its 8 neighbors. But because the patches overlap we can save
considerable amount of time by calculating the difference image between the two
regions and constructing an II based on it. Computing patch similarity becomes
constant in the size of the patch. And since each patch participates in 9 such
region-to-region comparisons we obtain, in effect, a propagation step at a fraction
of the computational cost.

This propagation step leads naturally to a novel algorithm for exact NNF
estimation over the entire image. This is done by shifting the source image across
all locations of the target image, taking the difference image and computing the
II on it. Patch similarity can now be computed in constant time, regardless of
patch size. The overall complexity of this algorithm depends only on the size of
the images and is independent of the size of patches.
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We have extensively tested the TreeCANN algorithm on the recently presented
database [6]. Our experiments indicate that TreeCANN outperforms PatchMatch
and CSH, sometimes by up to an order of magnitude speedup, for the same
accuracy levels. In addition, TreeCANN can be tuned to reach nearly ground-
truth accuracy levels (less than 1% error), presenting more than ×100 speedup
compared to exact NN search.

2 Related Work

Patch-based sampling methods have become a popular tool for a wide variety of
computer vision and graphics applications.

In practice, most of these applications rely on the process of NNF calculation,
which is defined as follows: given two images (or regions) S and T , for every
patch in S find the NN (in terms of appearance) in T under a certain metric
(usually L2). When trying to deal with this task in a naive, brute-force way,
the computational time complexity of the algorithm is O(mM2) (where m is the
patch size andM is the number of patches in the image), denying it practical use.
Over the years more sophisticated techniques have been developed for exact NN
matching. For example, it was shown in [7], that the m factor can be eliminated
from the time complexity by exploiting the sequential overlap between patches.
This brings the overall cost to O(M2). Other exact methods are mostly based
on various hierarchical-tree structures.

Since exact NN methods are not fast enough, another group, known as Ap-
proximate NN algorithms, has been developed. All the hierarchical-tree based
techniques, such as TSVQ [8], FLANN [9] and the most commonly used k-d
tree [4] (frequently coupled with PCA dimensionality reduction technique), have
been successfully used.

In parallel with the development of the tree-based techniques, several algo-
rithms employed a different strategy, based on the coherent structure of images.
Ashikhmin [10] was the first to introduce an algorithm, which used a local prop-
agation technique during the texture synthesis process. This was shortly after
extended by Tong et al. [11], who presented the k-coherence.

The local propagation methods exploited the natural structure of images and
reduced memory foot print, relative to the tree-based algorithms, but failed to de-
fine a general framework and have been implemented only for the specific task of
texture synthesis. However, this situation changed with the introduction of Patch-
Match [5], which is also the one that inspired our work. PatchMatch and its gen-
eralized version [12] outperformed previous tree-structured techniques (specifi-
cally ANN+PCA) by up to an order of magnitude, and provided interactive per-
formance rates for a wide range of patch-based image editing applications. The
PatchMatch algorithm starts with an initialization stage, that performs a random
assignment of every patch in the source image S to a patch in the target image
T . Then it proceeds with a propagation of the good matches to the neighboring
patches in the image plane. This is followed by another random assignment step,
which prevents the algorithm from being stuck in local minima. The propagation
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and the random search stages is performed in an iterative manner, and the algo-
rithm usually converges after a small number of iterations.

Recently, a new algorithm, called Coherency Sensitive Hashing (CSH) [6], was
introduced. In CSH the random search stage of PatchMatch was replaced by a
much more efficient process, based on the LSH [13] technique. As a result, CSH
is more accurate, as well as 2-3 times faster than PatchMatch.

TreeCANN share the overall structure with CSH. They both use an estab-
lished ANN method to seed the propagation step, but there are several impor-
tant distinctions. First, we carefully choose the k-d tree parameters and show
empirically that they can bring k-d tree to perform on par with PatchMatch
and CSH. We then show that working on a sparse grid is enough to establish
the initial matches quickly. Finally, we proposes a novel use of the II to speed up
the propagation step. Aa a result, our propagation step requires just a single it-
eration. TreeCANN is faster, more accurate and with suitable parameter tuning
approaches the accuracy of exact NN while being orders of magnitude faster.

3 The TreeCANN Algorithm

Given source image S and target image T we define the NNF problem as a
function f : Z2 �→ Z

2 of values, defined over all possible patch coordinates (the
locations of patches’ upper-left corners). We assume that both images are of
equal size, denoted M . The size of a patch edge is denoted by r, and m = cr2

denotes the total number of values of a patch where c is the number of channels
in an image. We take the distance metric dist(s, t), between patches s and t to
be the L2 distance, where s and t are the locations of these patches in images S
and T , respectively.

Following the convention of [5,6] our algorithm consists of two main phases.
An initial guess (search) step that finds an initial mapping and a propagation
step that propagates good matches to neighboring patches. Because our initial
step is so effective we make do with a single propagation step.

The estimation of the TreeCANN algorithm’s performance is mostly accom-
plished by observations of the error measure, which is defined as a ratio between
the results’ errors , obtained by our algorithm, and the ground truth error levels,
calculated using an exact NN algorithm.

3.1 ANN Search

We make a number of design decisions to accelerate the performance of k-d trees,
and test them extensively, to make the best choice possible.

Aggressive Dimensionality Reduction: We evaluated a large number of
target dimensions and found that aggressive dimensionality reduction provides
the best trade off between accuracy and speed. Specifically, we define the target
dimension, dim(r), of a patch of size r to be a simple linear equation: dim(r) =
3 + r/2. For example, an 8× 8 RGB patch will be reduced from 192 = 8 ∗ 8 ∗ 3
to only 7 = 3 + 8/2 dimensions. This is the first design decision.
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We achieve dimensionality reduction by means of PCA and use a very small
set of patches to compute it. In all our experiments we use L = 100 random
patches (randomly selected from both S and T ) to compute leading principal
components. This is the first design decision we make. We also evaluated the
use of the Walsh-Hadamard kernels, as suggested in [6] and found that they
accelerate the dimensionality reduction step but hurt the k-d tree retrieval and
overall give comparable results. Therefore, we only focus of the use of PCA for
dimensionality reduction.

Relaxed ANN Search: k-d tree is extremely fast when the database contains
good matches to the query point. In this case k-d tree simply traverse the tree
from root to leaf and returns the nearest point encountered along the way. This
simple procedure is complicated because of boundary problems, where the search
must visit nearby branches of the tree to make sure that they do not contain a
closer point to the query. To address this, we relax k-d tree to retrieve points
which are within a factor of 1+e of the true closest point, for a certain e ≥ 0 [4].
This technique enables a substantial reduction of the number of leaf cells that
are visited, results in at least 3 fold improvement of the overall running-time,
while causing only a slight degradation of the accuracy levels. In our experiments
we found that e = 3 constitutes a good compromise between the speed and the
accuracy of our algorithm. This is the second design decision of our algorithm.

k-NN Retrieval: An aggressive dimensionality reduction, combined with a re-
laxed ANN search hurts accuracy and to combat that we retrieve k nearest
neighbors and then choose the nearest patch out of the k based on measuring
distance between the retrieved patches and the query patch in the original image
space. This is the third design decision we make.

We show the results of our design decisions in figure 1. The figure compares
several combinations of dimensionality reduction and k values. We show only the
case of r = 8 (i.e., RGB patches of size 8 × 8 pixels) on image of size M = 0.4
mega-pixels, and compare target dimensions of 5, 7 and 9. Results are averaged
over the data set of [6]. In all cases we use a relaxed k-d tree search. The graph
shows retrieval speed compared to retrieval error, where error is measured as
the ratio between the retrieved NN and the ground truth NN as computed by
exact NN search. As expected, increasing the target dimension reduces error but
increases retrieval time. We also include the PatchMatch curve for comparison.
For k = 1 the error obtained by a k-d tree, is much higher than the error obtained
by PatchMatch, and this is also to be expected. Nevertheless, as k grows, the
error levels drop sharply (for instance, for dim(8) = 5 or 7 the error drops by
a factor of 3, while the run-time increases only by a factor of 1.5). We found
that the value of k = 4 offers a good tradeoff between speed and accuracy and,
consequently, use this value in all our experiments.

Somewhat surprisingly, k-d tree alone, through a sequence of judicious design
decisions, outperforms PatchMatch in many points along the accuracy-speed
curve. We hope that highlighting these design decisions can benefit other appli-
cations that rely on ANN.
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Fig. 1. The performance, obtained by our algorithm, when only its first phase is
activated, for different k values. The results of the PatchMatch algorithm are added as
a reference.

Working on a Sparse Grid:We further accelerate seed assignment, and reduce
memory footprint, by working on a sparse grid of patches. Specifically, we define
a sampling grid gS , gT on images S and T , respectively. For gT = 1 we use all
patches in the image T in the k-d tree search. When setting gT = 2, then we use
only a quarter of the patches, which leads to much faster ANN search.

Likewise, for gS = 1 we use all patches in S to query the k-d tree, while for
gS > 1 we use less patches for query. The run-time of the TreeCANN algorithm
is roughly inversely proportional to the g 2

S parameter, as it directly influences
the second phase and the k-d tree search stage.

When increasing gS , we create passive (non-grid) patches, which passively
obtain their final mapping from the active grid patches, without participating
in the propagation process.

3.2 The Propagation Phase

Applying approximate NN search methods in conjunction with such an aggres-
sive PCA reduction would inevitably degrade the accuracy of the results (in
comparison to the earlier methods). Therefore, it is quite obvious that the results
of the first phase of the algorithm are not enough and that additional processing
is required in order to achieve the performance levels, which can compete with
the earlier methods.

The key observation here is that evaluating patch similarity is the most time
consuming part of both PatchMatch and CSH. Therefore, PatchMatch uses early
termination to quickly discard bad patch matches and CSH relies on Walsh-
Hadamard kernels as a fast approximation of the true Euclidean distance be-
tween patches. We, on the other hand, compute the exact distance between
patches and use the II to speed up the process. This is a crucial ingredient of
our algorithm.



608 I. Olonetsky and S. Avidan

Specifically, consider a region, in the source image, consisting of 3×3 overlap-
ping patches. For example, for patches of size 8× 8 pixels this will correspond to
a region of size 10 × 10 pixels. Now let the central patch s of the region match
some patch t in the target image and take a similar region around patch t.

In order to propagate good matches we wish to compute the similarity between
each of the 9 patches in the source region to their corresponding patches in the
target region. Naively doing so will require 9 patch similarity comparisons. But
because the patches overlap we can reduce the computational cost considerably
using the II.

To do so we take the difference between the source and target regions and
compute its II. Now we can compute the patch similarity for every patch in that
region in constant time, using the II.

This approach relies on the assumption that NNF is coherent so if patch
s is mapped to patch t, then the neighbor of patch s will match, with high
probability, to the corresponding neighbor of patch t.

Fig. 2. Left: Exploiting the piece-wise constant property of the T image. All the
red patches in the T image compose a window attributed to wT parameter (in this
case wT = 3). Right: Exploiting the coherency of the S image. All the red patches in
image S compose a window, attributed to the wS parameter (in this case wS = 3).
Both: Squares on the image represent pixel (and correspond to the upper-left corner of
patches). The full arrow represents an initial mapping, while the dotted ones represent
all the additional distances calculation.

But there is another assumption that is often made and it is that images are
piece-wise constant. This means that if patch s ∈ S was matched to patch t ∈ T ,
then because image T is piece-wise constant, there is a high probability that s
will also match one of the 8 neighbors of T (see Figure 2). In the experimental
section we show empirically (see Table 1) that the first assignment stage, using
k-d tree alone, brings about 50% of the patches in the source image to within a
distance of up to two pixels, in the image plane, from their optimal location in
the target image.
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This motivates us to perform the II based matching between a region centered
around patch s and regions centered around each of the 8 neighbors of patch
t, in addition to the matching between regions centered around t. This means
that, in total, each patch in the source image is matched against 81 = 9∗9 patch
locations.

As a concrete example, in case of patch size r = 8 the use of the II brings
to more than ×5 speed up of the propagation phase (15mM instead of 81mM
operations), and about a factor of 2 speed up for the overall algorithm.

4 An Exact NNF Algorithm

Ignoring the k-d tree initialization step and taking the II based propagation
step to the extreme we derive a novel exact NNF algorithm. Specifically, we
shift the source image over the target image, compute the integral difference
image for each such shift and store the patch similarity score (if smaller than
current minimum) of this shift for every patch in the source image. This leads
to an algorithm with complexity of O(M2) instead of O(mM2). Kumar at al.
[14] pointed out that finding the exact NN for all 21 × 21 patches between two
images, that are about 800 × 600 pixels each, would take over 250 hours. Our
exact NNF approach takes less than 20 minutes. We are also faster than the
method of Xiao at al. [7] because the constants of our algorithm are smaller.

5 Experiments and Results analysis

We use the efficient ANN (Approximate-k-Nearest-Neighbors) package of Mount
and Arya [15], coupled with a Matlab wrapper1. Our code is available online.
We profiled our code and found that running time is dominated by propagation
(about 40% of the time) and k-d tree search (about 30% of the time).

5.1 Choosing Database and Test-Setup

We compare TreeCANN with PatchMatch and CSH on a number of data sets and
report results in Figure 3. The first is the recently released database presented
in [6], that contain pairs of non-consecutive video frames, taken from the same
video scene (the distance between the images of one pair can vary from few to
several dozen frames). The second dataset consists of the Caltech-2562 object
recognition data set, where we divide this experiment into two tests. One where
both source and target images come from the same object class and another
experiment where the source and target images come from different classes.
Finally, we also evaluate our algorithm on the stereo3 database.

1 www.wisdom.weizmann.ac.il/~bagon/matlab.html
2 http://www.vision.caltech.edu/Image_Datasets/Caltech256/
3 http://vision.middlebury.edu/stereo/data/scenes2006/

www.wisdom.weizmann.ac.il/~bagon/matlab.html
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://vision.middlebury.edu/stereo/data/scenes2006/
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Fig. 3. The results, obtained by the PatchMatch, CSH and TreeCANN algorithms
for four different types of image pairs (r = 8,M = 1.6MB) : diff class - random
images from the caltech-256; same class - random images from the same classes in the
caltech-256; our DB - images from database presented in [6]; stereo+consec - consists
of consecutive frames and stereo image pairs.

There are a number of interesting observations to be made. First, we observe
that PatchMatch achieved its higher error rates on the dataset of [6]. This can be
explained by the fact that textured scenes are abundantly found in real-world
images (such as movie frames), and often cover a large part of these images.
These scenes usually contain similar repetitive patterns, which may cause the
PatchMatch algorithm to be stuck in local minima for a large number of image
regions, due to its mostly local nature. It is also worth noting that there is very
little difference in the performance of within vs. between Caltech-256 evaluation.
This suggests that variation within and between classes is quite similar.

We have performed a wide range of tests on the database of [6]. Our image
samples range from 0.1MB to 1.6MB size (all the image samples were produced
by the means of an under-sampling process of the same database), while the
chosen patch sizes are 4, 8 and 16. For all the cases an exact NN computation
was performed in order to obtain ground truth error levels. All the critical parts
of our algorithm were implemented in C++, while Matlab provided the required
code flow encapsulation. We use the PatchMatch and CSH code provided by the
authors of the respective papers. All our experiments were executed on a single
core configuration on a i5 750 (2.66 GHz) machine with 4GB of RAM memory.

5.2 Sparse Grid Acceleration

Our experiments show that we can significantly compensate for the performance
degradation when using gS > 1 with larger regions, denoted wS , and set wS =
2gS+1 in all our experiments. This ensures that wS will be just the right size to
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cover all the eight neighboring grid-patches, relative to one particular grid-patch,
but not more than that, in order to avoid unnecessary computations.

The grid approach also favorably affects the overall memory consumption of

the algorithm, as it equals to O(dim(r)
g2
I

M) (since equivalent values of gS and gT

are used in all our experiments, we substitute them with the gI parameter).

5.3 Performance Comparison

The main objective of our experiments was to perform a reliable comparison
between the PatchMatch, CSH and TreeCANN algorithms on various set ups.
Unlike previous methods, which presented an absolute error (an averaged L2

distance between the matching patches of a source and a target image), we
produce our graphs with a relative (to the ground-truth calculation) error, which
allows a true understanding of the algorithm’s accuracy.

The results of our test runs on the dataset of [6] are shown in Figure 4.
It shows, for example, that at the error level reached by PatchMatch after 5
iterations (5 is the number of iteration that was suggested in [5] as the most
cost-efficient point in the average case), our algorithm is five times faster (on
average) than PatchMatch and about two to three times faster than CSH. If
we examine a more specific set-up, like [r = 4,M = 1.6MB], the speed up
is almost an order of magnitude. More importantly, it appears that the biggest
improvement occurs in the most challenging (from the runtime perspective) case,
i.e. in the large image sizes. In this scenario, PatchMatch and CSH could not
provide reasonable run-times (and low error levels) for interactive applications.

In general, we can determine that while the minimal error level, which can
be achieved by the PatchMatch and the CSH algorithms, degrades as the im-
age size increases, our algorithm maintains almost identical accuracy results.
Furthermore, when comparing the runtime performances for lower error levels
(for example, gI = 3), the gap between the algorithms increases dramatically.
Finally, PatchMatch and CSH can not compete in the range of the lowest error
rates (gI = 2 or 1), obtained by TreeCANN algorithm.

In addition, TreeCANN approaches the absolute ground-truth, which was pre-
viously accomplished only by exceedingly slow LSH and k-d tree algorithms. For
small patch sizes we are only 3% less accurate than the ground-truth, and the
accuracy improves for larger patch sizes. And, as already noted, these perfor-
mance levels can be reached in a very reasonable time (less than 10 PatchMatch
iterations). Moreover, if the error rates are all that matters, one can slightly
tune several parameters of the algorithm, so that the distance to the ground-
truth will be reduced even further. For instance, changing the dimensionality
reduction function dim(r), and lowering the e parameter to e = 2, will result in
additional reduction of the already very low error rates, reaching accuracy levels
lower than 1% for all the patch sizes as shown if Figure 5.

In table 1 we explore another characteristic of the TreeCANN algorithm and
show the average mapping distance between the TreeCANN algorithm and the
Ground Truth. That is, we measure the distance, in the image plane, between
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Fig. 4. The relative error performance comparison between the PatchMatch, CSH and
the TreeCANN algorithms, versus the absolute run-time for different image sizes and
patch sizes. The numbers on the TreeCANN line indicate the values of the gi parameter
(i.e., how sparse is the grid that TreeCANN operate on), while those on the PatchMatch
and the CSH lines represent the number of iterations.

Fig. 5. Further reduction of the minimal error levels that can be obtained by
TreeCANN algorithm (M = 0.4MB)
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Table 1. The mapping distance error results for r = 8, M = 0.4MB and gI = 1. After
the k-d tree search, roughly 50% of the patches are matched to patches that are at
most two pixels away from the Ground Truth (GT) location. After the propagation
step this number grows to almost 83%.

dist to GT → 0 1 2 >2

Only k-d tree 28.5% 17.7% 4.0% 49.8%
k-d tree+prop. 81.6% 0.9% 0.4% 17.1%

the mapping suggested by TreeCANN and the mapping found by an exact NN
search. As can be seen, already after the k-d tree phase more than 50% of the
patches obtain either their optimal matching or one in a very close proximity
to the optimal location (dist ≤ 2 pixels). Furthermore, after the Propagation
phase the TreeCANN algorithm finds the optimal mapping for almost 82% of
the patches (Figure 6 depicts these results visually for a specific pair of images).
Additionally, for a particular image pair we show error images (in inverse colors)
which represent the (scaled) difference between the original image S and the
reconstructed images of the three algorithms. If examined closely it becomes ev-
ident that smaller mapping errors eventually translate to smaller reconstruction
errors, as TreeCANN algorithm presents the best results.

Fig. 6. From top-left to bottom-right: Image S, Image T, PM error, CSH error,
TreeCANN error and accuracy map. Error images shown in inverse color (brighter
color represents smaller error). The white pixels in the accuracy map indicate that the
optimal mapping was found for that specific patch.
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5.4 Exact NNF Performance

We have tested the performance of our exact NNF against those of [7] who
performed an extensive compassion between various exact NN methods. As can
be seen in Figure 7, our algorithm, which is not software optimized or hardware
accelerated, is more than four times faster compared to the N column CPU
method of [7], and is on par with their N column GPU approach.

Fig. 7. Exact NNF. Comparing our method to that of [7]. Left: The results of [7] (fig.
3a) with our results (denoted our Exact-NN). (the size of the S image is 256x256, and
the size of the T image is 278x278). Right: The results of the various methods reported
in [7] (fig. 9a), with our results overlaid for comparison (the size of the S image is
256x256, and the size of the T image is 128x128).

6 Discussions and Future Work

TreeCANN is the fastest algorithm for NNF estimation reported to date. It
does so by properly combining existing techniques at their optimal cost-effective
point. We show that k-d tree can perform as fast as other methods simply by
properly tuning its parameters. And the novel use of the II makes it possible to
match multiple patches at once, leading to large improvement in the speed of
the propagation step. Taken to the extreme the integral image can be used in an
optimal algorithm for exact NNF that is faster than previously reported results.

A wide group of applications, such as object detection, de-noising, and sym-
metry detection, require the NN patch matching algorithm, which finds several
closest matches rather than a single match. Thus, a simple functionality exten-
sion of our algorithm would be a detection of k nearest neighbors. With respect
to the TreeCANN’s performance, one of the obvious and probably the most sig-
nificant speedup improvements of our algorithm would be an implementation of
its multi-threaded and GPU versions.

Acknowledgments. This work was supported in part by an Israel Science
Foundation grant 1556/10.
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Robust Regression
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Abstract. Discriminative methods (e.g., kernel regression, SVM) have
been extensively used to solve problems such as object recognition, image
alignment and pose estimation from images. Regression methods typi-
cally map image features (X) to continuous (e.g., pose) or discrete (e.g.,
object category) values. A major drawback of existing regression meth-
ods is that samples are directly projected onto a subspace and hence
fail to account for outliers which are common in realistic training sets
due to occlusion, specular reflections or noise. It is important to notice
that in existing regression methods, and discriminative methods in gen-
eral, the regressor variables X are assumed to be noise free. Due to this
assumption, discriminative methods experience significant degrades in
performance when gross outliers are present.

Despite its obvious importance, the problem of robust discriminative
learning has been relatively unexplored in computer vision. This paper
develops the theory of Robust Regression (RR) and presents an effective
convex approach that uses recent advances on rank minimization. The
framework applies to a variety of problems in computer vision including
robust linear discriminant analysis, multi-label classification and head
pose estimation from images. Several synthetic and real world examples
are used to illustrate the benefits of RR.

Keywords: Robust methods, errors in variables, intra-sample outliers.

1 Introduction

Discriminative methods (e.g., kernel regression, SVM) have been successfully
applied to many computer vision problems. Unlike generative approaches that
produce a probability density over all variables, discriminative approaches pro-
vide a direct attempt to compute the input to output mappings for classification
or regression. Typically, discriminative models achieve better performance in
classification tasks, especially when large amounts of training data is available.

Linear and non-linear regression have been applied to solve a number of com-
puter vision problems (e.g., classification [1], pose estimation [2]). Although
widely used, a major drawback of existing regression approaches is their lack
of robustness to outliers and noise, that are common in realistic training sets
due to occlusion, specular reflections or image noise. To better understand the

A. Fitzgibbon et al. (Eds.): ECCV 2012, Part IV, LNCS 7575, pp. 616–630, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Fig. 1. The goal is to predict the yaw angle of the monkey head from image features.
Note the image features (image) contains outliers (hands of the monkey). (Left) Stan-
dard regression: projects the partially occluded frontal face images directly onto the
head pose subspace and fails to estimate the correct pose; (Right) Robust regression
removes the intra-sample outliers and projects only the cleaned input images without
biasing the pose estimation.

lack of robustness, let us consider the problem of learning a linear regressor from
image features X to pose angles Y (see Fig. 1) by minimizing (See notation1)

min
T

‖Y −TX‖2F . (1)

In the training stage, we learn the mapping T, and in testing we estimate the
pose by projecting the image features of the test image, Txtest. It is important
to notice that in training and testing, we assume X to be noise free. A single
outlier can bias the projection because we project the data directly onto the
subspace of T. For instance, Txtest, the dot product of xtest with each row of T,
can be largely biased by only one outlier. For this reason, existing discriminative
methods lack robustness to outliers.

Standard regression, Eq. (1), is optimal under the assumption that the error,
E = Y−TX, is normally distributed. However, it is well known that a small num-
ber of gross outliers can arbitrarily bias the estimation of the model’s parameters.
This is a thoroughly studied problem in statistics, and the last decades have wit-
nessed the fast paced development of the so-called robust methods [3–5]. However,
all these traditional robust approaches for regression are different from the prob-
lem addressed in this paper. There are two main differences: (1) these approaches

1 Bold uppercase letters denote matrices (D), bold lowercase letters denote column
vectors (e.g., d). dj represents the jth column of the matrix D. Non-bold letters
represent scalar variables. ‖A‖2F designates the Frobenius norm of matrix A. ‖A‖∗
is the Nuclear Norm (sum of singular values) ofA. �0 ofA, ‖A‖0, denotes the number
of non-zero coefficients in A. Ik ∈ �k×k denotes the identity matrix. 1n ∈ �n is a
vector of all 1s. 0k×n ∈ �k×n is a matrix of zeros. 〈A,B〉 denotes the inner product
between two matrices A and B. Sb(a) = sgn(a)max(|a|− b, 0) denotes the shrinkage
operator. Dα(A) is the Singular Value Thresholding (SVT) operator.
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do notmodel the error inXbut inY−TX, (2) theymostly consider sample-outliers
(the whole image is an outlier). This work proposes an intra-sample RR method
that explicitly accounts for outliers inX. Our work is related to errors in variables
(EIV)models (e.g., [6–8]). However, unlike existing EIVmodels, RR does not need
tohaveaprior estimate of thenoise andall parameters are automatically estimated.
We illustrate the power of RR in several computer vision tasks including head pose
estimation from images and robust lda for multi-label image classification.

2 Related Work

There exist extensive literature on robust methods for regression. Huber [3]
introduced M-estimation for regression, providing robustness to sample outliers.
Rousseeuw and Leroy proposed Least Trimmed Squares [4], which explicitly finds
a data subset that minimizes the squared residual sum. Parallel to developments
in the statistics community, the idea of subset selection has also flourished in
many computer vision applications. Consensus approaches such as RANSAC
[9] (and its ML and M-estimator variants [10, 11]) randomly subsample input
data to construct a tentative model. Model parameters are updated when a new
configuration produces smaller inlier error than its predecessors. However, these
methods rely on the assumption that the computation of the model parameters
of a subset is inexpensive and can only remove sample outliers.

To deal with noise in the variables, Error-In-Variable (EIV) approaches [7]
were proposed. However, existing EIV approaches rely on strong parametric as-
sumptions for the errors. For instance, orthogonal regression assumes that the
variance of errors in the input and response variables are identical [12] or their
ratio is known [13]. Under these assumptions, orthogonal regression can minimize
the gaussian error orthogonal to the learned regression vectors. Grouping-based
methods [14] assume that errors are respectively i.i.d. among the input and re-
spond variables, so that one can split the data into groups and suppress the
errors by computing difference of the group sum, geometric means or instru-
ment variables. Moment-based methods [15] learn the regression by estimating
the high-order statistics, i.e., moments, from the data of i.i.d. likelihood-based
methods [8] learn a reliable regression when the input and respond variables fol-
low a joint, normal and identical distribution. Total Least Square (TLS) [7] and
its nonlinear generalization [16], solve for additive/multiple terms that enforce
the correlation between the input and respond variables. TLS-based methods
relax the assumption in previous methods to allow correlated and non-identical
distributed errors. Nevertheless, they still rely on parametric assumptions on the
error. Unfortunately, in typical computer vision applications, errors caused by
occlusion, shadow and edges seldom fit such distributions.

Independent of the work on EIV for regression, several authors have addressed
the issue of robust classification. On one hand, several authors have proposed
robust extension of LDA, where the empirical estimation of the class mean vec-
tors and covariance matrices are replaced by their robust counterparts (e.g., [17]).
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In machine learning, several authors [18, 19] have proposed a worst-case
FDA/LDA by minimizing the upper bound of the LDA cost function to in-
crease the separation ability between classes under unbalanced sampling. How-
ever, these methods are only robust to sample-outliers.

Our work is more related to recent work in computer vision. Fidler and
Leonardis [20] robustify LDA for intra-sample outliers. In the training stage,
[20] computed PCA on the training data, replaced the minor PCA components
by a robustly estimated basis, and combined the two basis into a new one. Then
the data is projected into the combined basis and LDA is computed. During
testing, [20] first estimates the coefficients of a test data on the recombined ba-
sis by sub-sampling the data elements using [21]. Finally, the class label of the
test data is determined by applying learned LDA on the estimated coefficients.
Although outliers outside of the PCA subspace can be suppressed, [20] do not
address the problem of learning LDA with outliers in the PCA subspace of the
training data. Zhu and Martinez [22] proposed learning a SVM with missing data
and robust to outliers. However, [22] requires that the location of the outliers to
be known. In contrast to previous works, our RR enjoys several advantages: (1)
it is a convex approach; (2) no assumptions, aside from sparsity, are imposed on
the outliers, which makes our method general; (3) it automatically cleans the
intra-sample outliers in the training data while learning a classifier.

Our work is inspired by existing work in robust PCA [23] and its recent ad-
vances due to rank minimization procedures [24, 25]. These methods model data
as the sum of a low-rank clean data component with an arbitrary large and
sparse outlier matrix. De La Torre and Black [23] increased PCA robustness by
replacing the least-square metric with a robust function, and re-weighted the
influences of each component in each sample based on a given influence function
(derivative of the robust function). [24, 25] separated a low-rank data matrix
from an assumed sparse corruption, despite its arbitrarily large magnitude and
unknown pattern. A major advantage of this approach is the convex formulation.
This approach has been extended to other problems such as background mod-
eling and shadow removal [25], image tagging and segmentation [26], texture
unwrapping [27] or segmentation [28]. These algorithms, however, were origi-
nally devised with tasks such as dimensionality reduction or matrix completion
in mind, which are unsupervised in nature. In this paper, we will further extend
the approach to detect intra-sample outliers in robust regression, and illustrate
several applications in computer vision.

3 Robust Regression (RR)

Let X ∈ �d×n be a matrix containing n d-dimensional samples possibly cor-
rupted by outliers. Formally, X = D + E, where D is the underlying noise-free
component and E contains the outliers. In regression problems, one learns a
mapping T from X to an output Y ∈ �dy×n. The outliers or the noise-free
component D are unknown, so existing methods use X in the estimation of T.
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In presence of outliers, this results in a biased estimation of T. Our RR solves
this problem by explicitly factorizing X into D plus E, and only computing T
using the clean free data D. RR solves the following optimization problem

min
T,D,E

η

2
‖W(Y −TDH)‖2F + rank(D) + λ‖E‖0 s.t. X = D+E, (2)

where W ∈ �dy×dy weights the output dimensions, T is the regression matrix
and H =

(
In − 11T /n

)
is a centering matrix. RR explicitly avoids projecting the

outlier matrix E to the output space by learning the regression T only from the
centered noise-free data DH. The second and third terms of (2) are similar to
RPCA [25] in that they respectively constrain D to a low dimensional subspace
and encourages E to be sparse. RR is different from RPCA plus regression since
it decomposes the input data X = D + E in a supervised manner; that is, the
clean data D will preserve the subspace of X that correlates with Y. For this
reason, the outlier component E computed by RR is able to correct outliers both
inside and outside the subspace spanned by D (see Section 4.1).

The original form of RR, Eq. (2), is cumbersome to solve as the rank and car-
dinality operators are neither convex or differentiable. Following the techniques
in [25], these operators are respectively relaxed to their convex envelopes: the
nuclear norm and the �1-norm. The cost function (2) is rewritten as

min
T,D,E

η

2
‖W(Y −TDH)‖2F + ‖D‖∗ + λ‖E‖1 s.t. X = D+E,

which can be efficiently optimized using an Augmented Lagrange Muliplier
(ALM) technique. Let D̂ = DH, we rewrite (3) as

min
T,D,D̂,E

η

2

∥
∥
∥W(Y −TD̂)

∥
∥
∥
2

F
+ ‖D‖∗ + λ‖E‖1 + 〈Γ1,X−D−E〉

+
μ1

2
‖X−D−E‖2F + 〈Γ2, D̂−DH〉+ μ2

2
‖D̂−DH‖2F , (3)

where Γ1 ∈ �d×n and Γ2 ∈ �d×n are Lagrange multiplier matrices, and μ1 and
μ2 are the penalty parameters. The resulting algorithm is summarized in Alg .1.

3.1 Robust LDA: An Extension of RR for Classification

Classification problems can be cast as a particular case of binary regression,
where each sample in X belongs to one of c classes. The goal is then to learn a
mapping from X to labels indicating the class membership of the data points.
LDA learns a linear transformation that maximizes inter-class separation while
minimizing intra-class variance, and typical solutions are based on solving a
generalized eigenvalue problem. However, when learning from high-dimensional
data such as images (n < d), LDA typically suffers from the small sample size
problem. One possible solution for this is formulating LDA as a least-squares
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Algorithm 1. ALM algorithm for solving RR (3)
Input: X, Y, parameters η, λ, ρ, γ

Initialization: T(0) = YXT (XXT + γIdx
),D̂(0) = T(0)+Y, E(0) = X − D(0),

Lagrange Multiplier Initialization:Γ
(0)
1 = X

‖X‖2 ,Γ
(0)
2 = D(0)

‖D(0)‖2
,μ

(0)
1 = dn

4
‖X‖1 , μ

(0)
2 = dn

4
‖D(0)‖1.

while

∥
∥
∥X−D(k)−E(k)

∥
∥
∥
F

‖X‖F
> 10−8,

∥
∥
∥D̂(k)−D(k)H

∥
∥
∥
F∥

∥
∥D̂(k)

∥
∥
∥
F

> 10−8 do

• Update T (assuming W = diag{wii}) :

T(k+1) = [t1, t2, · · · , tc], where t�i = w2
iiyiD̂

T (w2
iiD̂

(k+1)(D̂(k+1))T + γId)−1

and γ regularizes the scale of ti.

• Update D̂: D̂(k+1) =

[

η(T(k))T WT WT(k) + μ
(k)
2 Id

]−1 [

η(T(k))T WY − Γ
(k)
2 + μ

(k)
2 D(k)H

]

;

• Update D: D(k+1) = D1/β(Z(k+1)), Z(k+1) = D(k+1) − 1
β

− Γ
(k)
1

+ μ
(k)
1

[

D(k) − (X − E(k))
]

−

Γ
(k)
2 HT + μ

(k)
2

[

D(k)H(k) − D̂(k)
]

HT, and β ≥ ‖μ(k)
1 I + μ

(k)
2 HHT ‖F ;

• Update E: E(k+1) = S
λ/μ

(k)
1

(

X − D(k) + Γ
(k)
1

/μ
(k)
1

)

;

• Update Γ
(k+1)
1

= Γ
(k)
1

+μ
(k+1)
1

(X−D(k+1) −E(k+1)), Γ
(k+1)
2

= Γ
(k)
2

+μ
(k+1)
2

(D̂(k+1) −D(k+1)H),

μ
(k+1)
1 = ρμ

(k)
1 , μ

(k+1)
2 = ρμ

(k)
2 ;

end while
Output: T, D, E

(LS) problem [29]. LS-LDA [29] directly maps X to the class labels represented
by an indicator matrix. LS-LDA minimizes

min
T

∥
∥∥(YYT )−1/2(Y −TX)

∥
∥∥
2

F
, (4)

whereY ∈ �c×n is a binary indicatormatrix, such that yij = 1 ifxi belongs to class
j and yij = 0 otherwise. The normalization factorW = (YYT )−1/2 compensates
for different number of samples per class. T ∈ �c×d is a reduced rank regression
matrix (which has rank c− 1 if the data is centered). AfterT is learned, a test data
xtest ∈ �d×1 is projected by T onto the c dimensional output space spanned by
TX, then the class label of the test data xtest is assigned using k-NN.

When X is corrupted by outliers, Eq. (4) suffers from the same bias problem
as standard regression. RR, Eq. (3), can be directly applied to Eq. (4), yielding

min
T,D,E

η

2

∥
∥
∥(YYT )−1/2(Y −TDH)

∥
∥
∥
2

F
+ ‖D‖∗ + λ‖E‖1 s.t. X = D+E,

a Robust LDA formulation which can be easily solved as a special case of RR.

3.2 Testing for New Data Points

To remove outliers in a new testing sample Xt, we minimize

min
Qt,Et

η‖WT‖2F
2

∥∥Xt − (D11T /n+UQt)−Et

∥∥2

F
+ λ‖Et‖1, (5)

where U contains the principal components of the clean data D (preserving
99.99% energy), Qt are the coefficients such that a linear combination of U can
reconstruct the clean part of the data Xt. η and λ are the same parameters
used during training. After solving (5), the regression or classification for Xt is
computed as Yt = TUQt.
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4 Experimental Results

This section compares our RR methods against state-of-the-art approaches on
regression and classification. The first experiment uses synthetic data to illus-
trate the ability of RR to remove in-subspace outliers that existing methods
can not detect. The second experiment illustrates the application of RR to the
problem of head pose estimation from corrupted images. The final experiments
report comparisons of our RR against state-of-the-art multi-label classification
algorithms on the MSRC, Mediamill and TRECVID2011 databases.

4.1 Synthetic Data

This section illustrates the benefits of RR in a synthetic example. We have
generated 200 three dimensional samples, where the first two components are
generated from a uniform distribution between [0, 6], and the third dimension
is 0. In Matlab notation, D = [6 ∗ rand(2, 200);0T ], X = D + E, Y = T∗D,
where D ∈ �3×200 is the clean data. The error term, E ∈ �3×200, is generated
as follows: for 20 random samples, we added random Gaussian noise (∼ N (0, 1))
in the second dimension, this simulates in-subspace noise. Similarly, for another
20 random samples, we added random Gaussian noise (∼ N (0, 1)) in the third
dimension, this simulates noise outside the subspace. T∗ ∈ �3×3 is randomly
generated and used as the true regression matrix. The output data matrix is
generated as Y = T∗D ∈ �3×200. Fig. 2 (a) shows the clean data D with blue
“o”s, and the corrupted data X with black “×”s. For easiness of visualization, we
have only shown 100 randomly selected samples. The black line segments connect
the same samples before (D) and after corruption (X). The line segments along
the vertical direction are the out-of-subspace component of E = X −D, while
the horizontal line segments represent the in-subspace component of E = X−D.

We compared our RR with five state-of-the-art methods: (1) Standard least-
squares regression (LSR), (2) GroupLasso (GLasso) [30], (3) RANSAC [9], (4)
Total Least Square (TLS) [31] that assumes the error in the data is additive and
follow a gaussian distribution, (5) RPCA+LSR, which consist on first performing
RPCA [24] on the input data, and then learn the regression on the cleaned data
using standard LSR. The LSR learns directly the regression matrix T using the
data X. The other methods (2)-(5) re-weight the data or select a subset of the
samples input data X before learning the regression. We randomly select 100
samples for training and the remaining 100 data points for testing. Both the
training and testing sets contain half of the corrupted samples.

Fig. 2(b-f) visualizes the results of the regression for the different methods.
Fig. 2(b) shows the results of TX, once T is learned with GLasso. GLasso learns
a sparse regression matrix that re-weights the input data along dimensions, but
it is unable to handle within sample outliers. Observe how the samples are far
away from the original clean samples. Fig. 2(c) shows the subset of X selected by
RANSAC. Although we selected RANSAC parameters to obtain the best testing
error, many of the corrupted data points are still identified as inliers. Fig. 2(d)
shows results obtained by TLS, where TLS only partially cleaned the corrupted
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Fig. 2. (a) Original and corrupted 3D synthetic dataset. Black lines connect data points
before (D) and after corruption (X). (b)-(e) show the input data processed by several
baselines, and (f) shows that RR removes the in-subspace outliers.

data because the synthesized error cannot be modeled by a gaussian distribution
of equal error. Fig. 2(e) shows results obtained by the method RPCA+LSR,
that first computes RPCA to clean the data and then LSR. The data cleaned by
RPCA [24], DRPCA, is displayed with red “o”s. Because DRPCA is computed
in an unsupervised manner, only the out-of-subspace error (the vertical lines)
can be discarded, while the in-subspace outliers can not be corrected. Finally,
Fig. 2 (f) shows the result of RR. The clean data DRR is denoted by red“o”s.
Observe that our approach is able to clean both the in-subspace outliers (the
horizontal lines) and out-of-subspace (the vertical lines). This is because our
method computes jointly the regression and the subspace estimation.
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We also computed the error for the regressionmatrixT∗ (the first two columns)
and the testing error for Yt on the 100 test samples. Table 1 compares the mean
regression errormeasured by the Relative Absolute Error (RAE) between the true

labelsYt ∈ �3×100 and the estimated labels Ỹt.RAET = ‖T̃(:,1:2)−T∗(:,1:2)‖F

‖T∗(:,1:2)‖F
and

RAEY = ‖Ỹt−Yt‖F

‖Yt‖F
.The information in the third column ofT∗ is excluded in gen-

erating Y = TD. Therefore, we dismiss this column when evaluating RAET. As
shown in Table 1, RR produces the smallest estimation error for both T∗ and Yt

among the five comparedmethods, while GroupLasso,RANSAC andRPCA+LSR
produce small improvements over standard LSR due to their limitation to deal
with both the in-subspace and out-of-subspace corruptions.

Table 1. RAE error for Y and T for different methods

LSR GLasso RANSAC TLS RPCA+LSR RR

RAET 0.078 0.078 0.070 0.052 0.074 0.005

RAEY 0.0272 0.0274 0.0263 0.0261 0.0262 0.011

4.2 Pose Estimation from Images

This section illustrates the benefit of RR in the problem of head pose estimation
from corrupted images. We used a subset of CMU Multi-PIE database [32] that
contains 3707 face images of all 337 subjects from all 4 sessions. For each subject,
we used images taken under 11 head poses with yaw angle [−90◦, −75◦, −60◦,
−45◦, −15◦, 0◦, 15◦, 45◦, 60◦, 75◦, 90◦]. Each image is cropped around the face
region and resized to 50 × 60. We vectorized the images into a vector of 3000
dimensions in the matrix X ∈ �3000×3707 and the yaw angles of the images are
gathered as the output data Y ∈ �1×3707. To evaluate the robustness of the
compared methods, we simulate structured occlusions by adding white blocks
(0.1 times the image width) at 5 random locations (see Fig. 3a for examples of
corrupted images).

Table 2. Yaw angle error for different methods and corruption percentages

% of corruption 0% 20% 40% 80%

LSR 12.3◦ 14.5◦ 15.1◦ 17.3◦

GLasso 16.0◦ 17.8◦ 20.2◦ 21.1◦

RANSAC 12.2◦ 14.1◦ 14.9◦ 17.8◦

RPCA+LSR 13, 3◦ 15.4◦ 18.3◦ 20.4◦

RR 12.1◦ 13.0◦ 13.7◦ 15.2◦

Similar to the previous section, we have compared RR with four methods to
learn a regression from the imageX to the yaw angleY: (1) LSR, (2) GLasso [30],
(3) RANSAC [9], (4) RPCA+LSR. For a fair comparison, we randomly divided
the 3707 images into 10 folds and performed 10-fold cross-validation in methods
(2)-(4) to compute parameters of interest. The performance of the compared
methods is measured with the mean deviations of angle error on all test folders.
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(a) Examples of partially corrupted input images X

(b) Decomposition of images in (a) as X = DRPCA+ERPCA by RPCA

(c) Decomposition of images in (a) as X = DRR +ERR by RR.

Fig. 3. Decomposition of input images in (a) by RPCA (b) and RR (c)

Table 2 summarizes the results of methods (1)-(4) and RR when 0%, 20%,
40%, 80% of the images are corrupted in both the training and testing folders.
As expected, the LSR method produced larger angle error with the increasing
percentage of outliers. RANSAC produced comparable error as standard LSR
indicating that RANSAC is unable to select a subset of “inliers” to robustly
estimate the regressionmatrix. RPCA+LSR produced relatively larger yaw angle
error. This is because RPCA is unsupervised and lack the ability to preserve the
discriminative information in X that correlates with the angles Y. RR got the
smallest error and it is stable w.r.t. the percentage of corruption.

To further illustrate how RR differs from RPCA+LSR, Fig. 3 visualizes the
decomposition done by RR, i.e., X = DRR + ERR an by RPCA, i.e., X =
DRPCA + ERPCA, for the same input images. Images under all pose angles
(except −60◦ and 90◦) are corrupted with white blocks (see Fig. 3(a)). Fig. 3(b)-
(c) show that both RPCA and RR are able to remove most of the white blocks.
However RR preserves much less personal facial details in DRR than RPCA in
DRPCA (especially images under pose −60◦ and 90◦). With less facial details
and more dominant profiles, the regression trained on DRR (as in RR) is able to
model higher correlation with the pose angles than using DRPCA. This is why
RR tends to be more robust than the RPCA in estimating the pose angles.
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4.3 Robust LDA

This section evaluates our Robust LDA (RLDA) method on two multi-label and
one multi-class classification tasks: object categorization on the MSRC dataset,
action recognition in the MediaMill dataset and event video indexing on the
TRECVID 2011 dataset. Each dataset corpus and features is described below:

MSRC Dataset (Multi-label)2 has 591 photographs (see Fig. 4(a)) dis-
tributed among 21 classes, with an average of 3 classes per image. We mimic [1]
and divide each image into an 8× 8 grid and calculate the first and second order
moments for each color channel on each grid in the RGB space. This results in
a 384 dimensional vector, which we use to describe each image.

Mediamill Dataset (Multi-label) [33] consists of 43907 sub-shots divided
in 101 classes. We follow [1] and eliminate classes containing less than 1000 sam-
ples, leaving 27 classes. Then, we randomly select 2609 sub-shots such that each
class has at least 100 labeled data points. Each image is therefore characterized
by a 120-dimensional feature vector, as described in [33].

TRECVID 2011 Dataset (Multi-class)3 consists of video data in MED
2010 and the development data of MED 2011, totaling 9822 video clips belonging
exclusively to one of 18 classes. We first detect 100 shots for each video and
then use their center frames as keyframes. We describe each keyframe using
dense SIFT descriptors. From these, we learn a 4096 dimension Bag-of-Words
dictionary. Each video is represented by a normalized histogram of all of its
feature points. We used a 300 core cluster to extract the SIFT features, which
took about 2687 CPU hours in total. In the experiment, we randomly split the
dataset into two subsets, with 3122 entries for training and 6678 for testing.

(a) (b)

Fig. 4. Multi-label datasets for object recognition and action classification. Example
images in MSRC (a) and example keyframes in Mediamill (b).

We compared RLDA to the state of the art approach for Multi-Label LDA
(MLDA) [1], and to Robust PCA [24] followed by traditional LDA (RPCA+LDA).
For control, we also compare to LDA, PCA+LDA (preserving 99.9% of energy)
and a linear one-vs.-all SVM.

2 http://research.microsoft.com/en-us/projects/ObjectClassRecognition/
3 http://www-nlpir.nist.gov/projects/tv2011/

http://research.microsoft.com/en-us/projects/ObjectClassRecognition/
http://www-nlpir.nist.gov/projects/tv2011/
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For the classic LDA-based testing procedure, one first projects the test points
using the learned T from training; then for each projected test sample, find k-
nearest-neighbor (kNN) from the training samples projected by T; finally select
the class label from the class labels of k-neighbors by majority voting. How-
ever, this procedure is not appropriate in our evaluation for two reasons (1)
it’s not fair to use a fixed k for classes with different number of samples, e.g.,
samples per class are in [19, 200] for MSRC, [100, 2013] for Mediamill; (2) kNN
introduces nonlinearity to the LDA-based classifiers, which is unfair to linear
SVM. For these reasons, we use Area Under Receiver Operating Characteristic
(AUROC) as our evaluation metric. AUROC summarizes the cost/benifit ratio
over all possible classification thresholds. We report the average AUROC (over
5-fold Cross Validation) for each method under their best parameters in Ta-
ble 3. In the MSRC dataset results in Table 3, LDA performs the worst since
it’s most sensitive to the noise in data. SVM performs better than PCA+LDA
and RPCA+LDA. Our method (RLDA) leads to significant improvements over
the others due to its joint classification and data cleaning (for both gaussian
and sparse noise in the input). For Mediamill, LDA is just slightly worse than
PCA+LDA and RPCA+LDA due to the low noise level in the data. In this case,
RLDA does not “over-clean” the data, and performs similar to PCA+LDA and
RPCA+LDA.

Table 3. AUROC for Multi-label Object (MSRC) and Action (Mediamill) classifica-
tion. Higher value indicates better performance. Best results are in bold.

Database LDA SVM PCA+LDA MLDA RPCA+LDA RLDA

MSRC 0.6463 0.7863 0.7585 0.6313 0.7480 0.8170

Mediamill 0.7667 0.6230 0.7702 0.6658 0.7704 0.7710

To test our method in a large scale dataset, we run experiments on the
TREC2011 dataset. We used the Minimum Normalized Detection Cost (Min-
NDC), the evaluation criteria for MED 2010 and MED 2011 challenges sug-
gested by NIST. Fig. 5 shows that RLDA achieved the best class-wise MinNDC
for 8 out of 18 classes over other linear methods, i.e., LDA/MLDA, SVM and
RPCA+LDA. Note for the class-wise cases LDA andMLDA are identical. SVM is
heavily affected by outliers for the “Wedding Ceremony”, “Getting a vehicle un-
stuck” and “Making a sandwich” cases. For some classes, LDA and RPCA+LDA
are similar or better than RLDA. Nevertheless, among all linear algorithms, our
method (RLDA) obtains the best average MinNDC. In addition, to show how
nonlinearity affects the performances, we compared the kernelized version of the
LDA, RPCA+LDA and RLDA. Here we apply the homogeneous kernel maps
technique [34] to obtain a three order approximation of the χ2 kernel. Other
more accurate approximations are possible [35]. Fig. 5 shows that KRLDA still
obtain a better results, 13 out of 18 best class-wise MinNDC and best average
MinNDC over all classes.
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Fig. 5. MinNDC results for Media Event Detection on TREC2011. Lower value indi-
cates better performance. Best results are in bold.

5 Conclusion

This paper addressed the problem of robust discriminative learning, and presents
a convex formulation for RR. Our robust approach jointly learns a regression,
while removing the outliers that are not correlated with labels or regression
outputs. We illustrated the benefits of RR in several computer vision problems
ranging from RR for pose estimation, robust LDA to multi-labeled image classi-
fication. Experiments show that by removing outliers, our methods consistently
learn better representations and outperform state-of-the-art methods, in both
the linear and kernel spaces (using homogeneous kernel maps). Finally, our ap-
proach is general and can be easily applied to robustify other subspace methods
such as partial least square or canonical correlation analysis.

Acknowledgments. The second author was supported by the Portuguese Foun-
dation for Science and Technology through the CMU-Portugal program under
the project FCT/CMU/P11. The authors would like to thank Francisco Vicente
for the assistance with the experiment on the TRECVID 2011 Dataset.

References

1. Wang, H., Ding, C., Huang, H.: Multi-label Linear Discriminant Analysis. In: Dani-
ilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316,
pp. 126–139. Springer, Heidelberg (2010)

2. Huang, D., Storer, M., De la Torre, F., Bischof, H.: Supervised local subspace
learning for continuous head pose estimation. In: CVPR (2011)



Robust Regression 629

3. Huber, P.: Robust Statistics. Wiley and Sons (1981)
4. Rousseeuw, P., Leroy, A.: Robust Regression and Outlier Detection. Wiley (2003)
5. Meer, P.: Robust Techniques for computer vision. In: Medioni, G., Kang, S. (eds.)

Emerging Topics in Computer Vision. Prentice Hall (2004)
6. Gillard, J.: An Historical Overview of Linear Regression with Errors in both vari-

ables. Cardiff University, School of Mathematics, TR (2006)
7. Huffel, S.V., Vandewalle, J.: The Total Least Squares Problem: Computational

Aspects and Analysis. SIAM (1991)
8. Lindley, D.: Regression lines and the linear functional relationship. Suppl. J. Roy.

Statist. Soc. 9, 218–244 (1947)
9. Fischler, M., Bolles, R.: Random sample consensus: A paradigm for model fitting

with applications to image analysis and automated cartography. Comm. of the
ACM 24, 381–395 (1981)

10. Torr, P., Zisserman, A.: Mlesac: A new robust estimator with application to esti-
mating image geometry. CVIU 78, 138–156 (2000)

11. Choi, S., Kim, T., Yu, W.: Performance Evaluation of RANSAC Family. In: BMVC
(2009)

12. Adcock, R.: A problem in least squares. Analyst. 5, 53–54 (1878)
13. Kummel, C.: Reduction of observed equations which contain more than one ob-

served quantity. Analyst. 6, 97–105 (1879)
14. Wald, A.: The fitting of straight lines if both variables are subject to error. Ann.

Math. Statistics 11, 285–300 (1940)
15. Gillard, J., Iles, T.: Method of moments estimation in linear regression with errors

in both variables. Cardiff University, School of Mathematics, TR (2005)
16. Matei, B., Meer, P.: Estimation of nonlinear errors-in-variables models for com-

puter vision applications. IEEE Trans. PAMI 28, 1537–1552 (2006)
17. Croux, C., Dehon, C.: Robust linear discriminant analysis using s-estimators. Cana-

dian Journal of Statistics 29 (2001)
18. Kim, S., Magnani, A., Boyd, S.: Robust FDA. In: NIPS (2005)
19. Zhang, Y., Yeung, D.Y.: Worst-case linear discriminant analysis. In: NIPS (2010)
20. Fidler, S., Skocaj, D., Leonardis, A.: Combining reconstructive and discrimina-

tive subspace methods for robust classification and regression by subsampling.
PAMI 28, 337–350 (2006)

21. Leonardis, A., Bischof, H.: Robust recognition using eigenimages. CVIU 78, 99–118
(2000)

22. Jia, H., Martinez, A.: Support vector machines in face recognition with occlusions.
In: CVPR (2009)

23. De la Torre, F., Black, M.: A framework for robust subspace learning. International
Journal on Computer Vision 54, 117–142 (2003)

24. Candès, E., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? Jour-
nal of the ACM 58 (2011)

25. Wright, J., Ganesh, A., Rao, S., Peng, Y., Ma, Y.: Robust principal component
analysis: Exact recovery of corrupted low-rank matrices via convex optimization.
In: NIPS (2009)

26. Cabral, R., De la Torre, F., Costeira, J.P., Bernardino, A.: Matrix completion for
multi-label image classification. In: NIPS (2011)

27. Zhang, Z., Liang, X., Ma, Y.: Unwrapping low-rank textures on generalized cylin-
drical surfaces. In: ICCV (2011)

28. Cheng, B., Liu, G., Wang, J., Huang, Z., Yan, S.: Multi-task low-rank affinity
pursuit for image segmentation. In: ICCV (2011)



630 D. Huang, R.S. Cabral, and F. De la Torre

29. De la Torre, F.: A least-squares framework for component analysis. IEEE Trans.
PAMI 34, 1041–1055 (2012)

30. Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped
variables. Journal of the Royal Statistical Society, Series B 68, 49–67 (2007)

31. Golub, G., Loan, C.V.: Regression lines and the linear functional relationship.
SIAM J. Numer. Anal. 17, 883–893 (1980)

32. Gross, R., Matthews, I., Cohn, J.F., Kanade, T., Baker, S.: The cmu multi-pose,
illumination, and expression (multi-pie) face database. Technical report, CMU
Robotics Institute.TR-07-08 (2007)

33. Snoek, C., Worring, M., Gemert, J., Geusebroek, J.M., Smeulders, A.: The chal-
lenge problem for automated detection of 101 semantic concepts in multimedia.
In: ACM MM (2006)

34. Vedaldi, A., Zisserman, A.: Efficient additive kernels via explicit feature maps.
IEEE Trans. PAMI 34, 480–492 (2012)

35. Li, F., Lebanon, G., Sminchisescu, C.: Chebyshev Approximations to the His-
togram χ2 Kernel. In: CVPR (2012)



Domain Adaptive Dictionary Learning

Qiang Qiu1, Vishal M. Patel1, Pavan Turaga2, and Rama Chellappa1

1 Center for Automation Research, UMIACS, University of Maryland, College Park
2 Arts Media and Engineering, Arizona State University

qiu@cs.umd.edu, {pvishalm,rama}@umiacs.umd.edu, pturaga@asu.edu

Abstract. Many recent efforts have shown the effectiveness of dictio-
nary learning methods in solving several computer vision problems. How-
ever, when designing dictionaries, training and testing domains may be
different, due to different view points and illumination conditions. In this
paper, we present a function learning framework for the task of trans-
forming a dictionary learned from one visual domain to the other, while
maintaining a domain-invariant sparse representation of a signal. Domain
dictionaries are modeled by a linear or non-linear parametric function.
The dictionary function parameters and domain-invariant sparse codes
are then jointly learned by solving an optimization problem. Experiments
on real datasets demonstrate the effectiveness of our approach for appli-
cations such as face recognition, pose alignment and pose estimation.

1 Introduction

In recent years, sparse and redundant modeling of signals has received a lot of
attention from the vision community [1]. This is mainly due to the fact that
signals or images of interest are sparse or compressible in some dictionary. In
other words, they can be well approximated by a linear combination of a few
elements (also known as atoms) of a redundant dictionary. This dictionary can
either be an analytic dictionary such as wavelets or it can be directly trained
from data. It has been observed that dictionaries learned directly from data
provide better representation and hence can improve the performance of many
applications such as image restoration and classification [2].

When designing dictionaries for image classification tasks, we are often con-
fronted with situations where conditions in the training set are different from
those present during testing. For example, in the case of face recognition, more
than one familiar view may be available for training. Such training faces may be
obtained from a live or recorded video sequences, where a range of views are ob-
served. However, the test images can contain conditions that are not necessarily
presented in the training images such as a face in a different pose. The problem
of transforming a dictionary trained from one visual domain to another without
changing signal sparse representations can be viewed as a problem of domain
adaptation [3] and transfer learning [4].

Given the same set of signals observed in different visual domains, our goal
is to learn a dictionary for the new domain without corresponding observations.
We formulate this problem of dictionary transformation in a function learning

A. Fitzgibbon et al. (Eds.): ECCV 2012, Part IV, LNCS 7575, pp. 631–645, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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(a) Example dictionaries learned at known
poses with observations.

(b) Domain adapted dictionary at a
pose (θ = 17◦) associated with no
observations.

Fig. 1. Overview of our approach. Consider example dictionaries corresponding to faces
at different azimuths. (a) shows a depiction of example dictionaries over a curve on
a dictionary manifold which will be discussed later. Given example dictionaries, our
approach learns the underlying dictionary function F (θ,W). In (b), the dictionary
corresponding to a domain associated with observations is obtained by evaluating the
learned dictionary function at corresponding domain parameters.

framework, i.e., dictionaries across different domains are modeled by a paramet-
ric function. The dictionary function parameters and domain-invariant sparse
codes are then jointly learned by solving an optimization problem. As shown in
Figure 1, given a learned dictionary function, a dictionary adapted to a new do-
main is obtained by evaluating such a dictionary function at the corresponding
domain parameters, e.g., pose angles.

For the case of pose variations, linear interpolation methods have been dis-
cussed in [5] to predict intermediate views of faces given a frontal and profile
views. These methods essentially apply linear regression on the PCA coefficients
corresponding to two different views. In [6], Vetter and Poggio present a method
for learning linear transformations from a basis set of prototypical views. Their
approach is based on the linear class property which essentially states that if a
3D view of an object can be represented as the weighted sum of views of other
objects, its rotated view is a linear combination of the rotated views of the other
objects with the same weights [6], [7], [8]. Note that our method is more general
than the above mentioned methods in that it is applicable to visual domains
other than pose. Second, our method is designed to maintain consistent sparse
coefficients for the same signal observed in different domains. Furthermore, our
method is based on the recent dictionary learning methods and is able to learn
dictionaries that are more general than the ones resulting from PCA.

This paper makes the following contributions

– A general continuous function learning framework is presented for the task
of dictionary transformations across domains.

– A simple and efficient optimization procedure is presented that learns dictio-
nary function parameters and domain-invariant sparse codes simultaneously.

– Experiments for various applications, including pose alignment, pose and
illumination estimation and face recognition across pose, are presented.
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2 Overall Approach

We consider the problem of dictionary transformations in a learning framework,
where we are provided with a few examples of dictionariesDi with corresponding
domain parameter θi. Let the parameter space be denoted by Θ, i.e. θi ∈ Θ. Let
the dictionary space be denoted D. The problem then boils down to constructing
a mapping function F : Θ �→ D. In the simple case where Θ = R and D = R

n,
the problem of fitting a function can be solved efficiently using curve fitting
techniques [9]. A dictionary of d atoms in R

n is often considered as an n × d
real matrix or equivalently a point in R

n×d. However, often times there are
additional constraints on dictionaries that make the identification with R

n×d

not well-motivated. We present below a few such constraints:

– Subspaces: For the special case of under-complete dictionaries where the
matrix is full-rank and thus represents a choice of basis vectors for a d-
dimensional subspace in R

n, the dictionary space is naturally considered as
a Grassmann manifold Gn,d [10]. The geometry of the Grassmann manifold
is studied either as a quotient-space of the special orthogonal group or in
terms of full-rank projection matrices, both of which result in non-Euclidean
geometric structures.

– Products of subspaces: In many cases, it is convenient to think of the dictio-
nary as a union of subspaces, e.g. a line and a plane. This structure has been
utilized in many applications such as generalized PCA (GPCA), sparse sub-
space clustering [11] etc. In this case, the dictionary-space becomes a subset
of the product space of Grassmann manifolds.

– Overcomplete dictionaries: In the most general case one considers an over-
complete set of basis vectors, where each basis vector has unit-norm, i.e. each
basis vector is a point on the hypershere S

n−1. In this case, the dictionary
space becomes a subset of the product-space S

(n−1)×d.

To extend classic multi-variate function fitting to manifolds such as the ones
above, one needs additional differential geometric tools. In our case, we pro-
pose extrinsic approaches that rely on embedding the manifold into an ambient
vector space, perform function/curve fitting in the ambient space, and project
the results back to the manifold of interest. This is conceptually simpler, and
we find in our experiments that this approach works very well for the problems
under consideration. The choice of embedding is in general not unique. We de-
scribe below the embedding and the corresponding projection operations for the
manifolds of interest describe above.
– Subspaces: Each point in Gn,d corresponds to a d-dimensional subspace of

R
n. Given a choice of orthonormal basis vectors for the subspace Y, the

n × n projection matrix given by P = YY
T is a unique representation for

the subspace. The projection matrix represntation can then be embedded
into the ambient vector-space Rn×n. The projection operation Π is given by
Π(M) = UUT, where M = UΣVT is a rank-d SVD of M [12].

– Products of subspaces: Following the procedure above, each component of
the product space can be embedded into a different vector-space and the
projected back to the manifold using the corresponding projection operation.
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Fig. 2. The vector transpose (VT) operator over dictionaries

– Overcomplete dictionaries: The embedding from S
n−1 to R

n is given by a
vectorial representation with unit-norm. The projection Π : Rn �→ S

n−1 is
given by Π(V) = V

‖V‖ , where ‖.‖ is the standard Euclidean norm. A similar

operation on the product-space S
(n−1)×d can be defined by component-wise

projection operations.

In specific examples in the paper, we consider the case of over-complete dictio-
naries. We adopt the embedding and projection approach described above as a
means to exploit the wealth of function-fitting techniques available for vector-
spaces. Next, we describe the technique we adopt.

2.1 Problem Formulation

We denote the same set of P signals observed in N different domains as
{Y1, ...,YN}, where Yi = [yi1, ...,yiP], yip ∈ R

n. Thus, yip denotes the pth

signal observed in the ith domain. In the following, we will use Di as the vector-
space embedded dictionary. Let Di denote the dictionary for the ith domain,
where Di = [di1...diK], dik ∈ R

n. We define a vector transpose (V T ) operation
over dictionaries as illustrated in Figure 2. The V T operator treats each individ-
ual dictionary atom as a value and then perform the typical matrix transpose
operation. Let D denote the stack dictionary shown in Figure 2b over all N
domains. It is noted that D = [DVT]VT.

The domain dictionary learning problem can be formulated as (1). Let X =
[x1, ...,xP], xp ∈ R

K , be the sparse code matrix. The set of domain dictionary
{Di}Ni learned through (1) enables the same sparse codes xp for a signal yp

observed across N different domains to achieve domain adaptation.

arg
{Di}N

i ,X

min
N∑

i

‖Yi −DiX‖2F s.t. ∀p ‖xp‖o ≤ T, (1)

where ‖x‖o counts the number of non-zero values in x. T is a sparsity constant.
We propose to model domain dictionaries Di through a parametric function

in (2), where θi denotes a vector of domain parameters, e.g., view point angles,
illumination conditions, etc., andW denotes the dictionary function parameters.

Di = F (θi,W) (2)
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Applying (2) to (1), we formulate the domain dictionary function learning as (3).

arg
W,X

min

N∑

i

‖Yi − F (θi,W)X‖2F s.t. ∀p ‖xp‖o ≤ T. (3)

Once a dictionary is estimated it is projected back to the dictionary-space by
the projection operation described earlier.

2.2 Domain Dictionary Function Learning

We first adopt power polynomials to model DVT
i in Figure 2a through the fol-

lowing dictionary function F (θi,W),

F (θi,W) = w0 +

S∑

s=1

w1sθis + ...+

S∑

s=1

wmsθ
m
is (4)

where we assume S-dimensional domain parameter vectors and an mth-degree
polynomial model. For example, given θi a 2-dimensional domain parameter
vector, a quadratic dictionary function is defined as,

F (θi,W) = w0 + w11θi1 + w12θi2 + w21θ
2
i1 + w22θ

2
i2

Given Di contains K atoms and each dictionary atom is in the R
n space, as

DVT
i = F (θi,W), it can be noted from Figure 2 that wms is a nK-sized vector.

We define the function parameter matrix W and the domain parameter matrix
Θ as

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

w
(1)
0 w

(2)
0 w

(3)
0 ... w

(nK)
0

w
(1)
11 w

(2)
11 w

(3)
11 ... w

(nK)
11

.

.

.

w
(1)
mS w

(2)
mS w

(3)
mS ... w

(nK)
mS

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Θ =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 ... 1
θ11 θ21 θ31 ... θN1

.

.

.
θm1S θm2S θm3S ... θmNS

⎤
⎥⎥⎥⎥⎥⎥⎦

Each row of W corresponds to the nK-sized wT
ms, and W ∈ R

(mS+1)×nK . N
different domains are assumed and Θ ∈ R

(mS+1)×N . With the matrix W and
Θ, (4) can be written as,

DVT = WTΘ (5)

where DVT is defined in Figure 2b. Now dictionary function learning formulated
in (3) can be written as,

arg
W,X

min ‖Y − [WTΘ]VTX‖2F s.t. ∀p ‖xp‖o ≤ T (6)

where Y is the stacked training signals observed in different domains as illus-
trated in Figure 3. With the objective function defined in (6), the dictionary
function learning can be performed as described below:
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Fig. 3. The stack P training signals
observed in N different domains
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Lθi =logm(Rθi) 
Rθi =expm(Lθi) 

Fig. 4. Illustration of exponential maps expm
and inverse exponential maps logm [12]

Step 1: Obtain the sparse coefficients X and [WTΘ]VT via any dictionary
learning method, e.g., K-SVD [13].
Step 2: Given the domain parameter matrix Θ, the optimal dictionary function
can be obtained as [14],

W = [ΘΘT]−1Θ[[[WTΘ]VT]VT]T. (7)

Step 3: Sample the dictionary function at desired parameters values, and project
it to the dictionary-space using an appropriate projection operation.

2.3 Non-linear Dictionary Function Models

Till now, we only assume power polynomials for the dictionary model. In this
section, we discuss non-linear dictionary functions. We only focus on linearizeable
functions, and a general Newton’s method based approach to learn a non-linear
dictionary function is presented in Algorithm 2 in Appendix A.

Linearizeable Models. There are several well-known linearizeable models,
such as the Cobb-Douglass model, the logistic model, etc. We use the Cobb-
Douglass model as the example to discuss in detail how dictionary function
learning can be performed over these linearizable models.

The Cobb-Douglass model is written as,

DVT
i = F (θi,W) = w0 exp(

S∑

s=1

w1sθis + ...+

S∑

s=1

wmsθ
m
is ) (8)

The logarithmic transformation yields,

log(DVT
i ) = log(w0) +

S∑

s=1

w1sθis + ...+

S∑

s=1

wmsθ
m
is

As the right side of (8) is in the same linear form as (4), we can define the
corresponding function parameter matrix W and the domain parameter matrix
Θ as discussed. The dictionary function learning is written as,

arg
W,X

min ‖Y − [exp(WTΘ)]VTX‖2F s.t. ∀p ‖xp‖o ≤ T.
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Through any dictionary learning methods, we obtain [[exp(WTΘ)]T]VT and X.
Then, the dictionary function is obtained as,

W = [ΘΘT]−1Θ[log([[exp(WTΘ)]VT]VT)]T.

2.4 Domain Parameter Estimation

Given a learned dictionary function F (θ,W), the domain parameters θy asso-
ciated with an unknown image y, e.g., pose (azimuth, altitude) or light source
directions (azimuth, altitude), can be estimated using Algorithm 1.

It is noted that we adopt the following strategy to represent the domain
parameter vector θ for each pose in a linear space: we first obtain the rotation
matrix Rθ from the azimuth and altitude of a pose; we then compute the inverse

Input: a dictionary function F (θ,W), an image y, domain parameter matrix Θ
Output: an S-dimensional domain parameter vector θy associated with y
begin

1. Initialize with mean domain parameter vector: θy = mean(Θ) ;

2. Estimate θ(s), the sth value in θy ;
for s← 1 to S do

3. Obtain the value range to estimate θ(s)

θ
(s)
min = min (sth row of Θ) ;

θ
(s)
max = max (sth row of Θ) ;

θ
(s)
mid = (θ

(s)
min + θ

(s)
max)/2 ;

4. Estimate θ(s) via a search for the parameters to best represent y.
repeat

θmin ← replace the sth value of θy with θ
(s)
min ;

θmax ← replace the sth value of θy with θ
(s)
max ;

xmin ← min
x
|y − F (θmin,W)|22, s.t.|x|o ≤ t (sparsity) ;

xmax ← min
x
|y − F (θmax,W)|22, s.t.|x|o ≤ t (sparsity) ;

rmin ← y − F (θmin,W)xmin ;
rmax ← y − F (θmax,W)xmax ;
if rmin ≤ rmax then

θ
(s)
max = θ

(s)
mid ;

else

θ
(s)
min = θ

(s)
mid ;

end

θ
(s)
mid = (θ

(s)
min + θ

(s)
max)/2 ;

until |θ(s)max − θ
(s)
min| ≤ threshold ;

θ(s) ← θ
(s)
mid;

end
7. return θy;

end

Algorithm 1. Domain parameters estimation
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Fig. 5. Frontal face alignment. For the first row of source images, pose azimuths are
shown below the camera numbers. Poses highlighted in blue are known poses to learn
a linear dictionary function (m=4), and the remaining are unknown poses. The second
and third rows show the aligned face to each corresponding source image using the
linear dictionary function and Eigenfaces respectively.

exponential map of the rotation matrix logm(Rθ) as shown in Figure 4. We
denote θ using the upper triangular part of the resulting skew-symmetric matrix
[12]. The exponential map operation in Figure 4 is used to recover the azimuth
and altitude from the estimated domain parameters. We represent light source
directions in the same way.

3 Experimental Evaluation

We conduct our experiments using two public face datasets: the CMU PIE
dataset [15] and the Extended YaleB dataset [16]. The CMU PIE dataset con-
sists of 68 subjects in 13 poses and 21 lighting conditions. In our experiments
we use 9 poses which have approximately the same camera altitude, as shown
in the first row of Figure 5. The Extended YaleB dataset consists of 38 subjects
in 64 lighting conditions. All images are in 64 × 48 size. We will first evaluate
the basic behaviors of dictionary functions through pose alignment. Then we
will demonstrate the effectiveness of dictionary functions in face recognition and
domain estimation.

3.1 Dictionary Functions for Pose Alignment

Frontal Face Alignment In Figure 5, we align different face poses to the
frontal view. We learn for each subject in the PIE dataset a linear dictionary
function F (θ,W) (m=4) using 5 out of 9 poses. The training poses are high-
lighted in blue in the first row of Figure 5. Given a source image ys, we first
estimate the domain parameters θs, i.e., the pose azimuth here, by following
Algorithm 1. We then obtain the sparse representation xs of the source image
as minxs ‖ys − F (θs,W)xs‖22, s.t. ‖xs‖o ≤ T (sparsity level) using any pursuit
methods such as OMP [17]. We specify the fontal pose azimuth (00o) as the
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Fig. 6. Pose synthesis using various degrees of dictionary polynomials. All the synthe-
sized poses are unknown to learned dictionary functions and associated with no actual
observations. m is the degree of a dictionary polynomial in (4).

parameter for the target domain θt, and obtain the frontal view image yt as
yt = F (θt,W)xs. The second row of Figure 5 shows the aligned frontal view
images to the respective poses in the first row. These aligned frontal faces are
close to the actual image, i.e., c27 in the first row. It is noted that images with
poses c02, c05, c29 and c14 are unknown poses to the learned dictionary function.

For comparison, we learn Eigenfaces for each of the 5 training poses and obtain
adapted Eigenfaces at 4 unknown poses using the same function fitting method
in our framework. We then project each source image (mean-subtracted) on the
respective eignefaces and use frontal Eigenfaces to reconstruct the aligned image
shown in the third row of Figure 5. Our method of jointly learning the dictio-
nary function parameters and domain-invariant sparse codes in (6) significantly
outperforms the Eigenfaces approach, which fails for large pose variations.

Pose Synthesis. In Figure 6, we synthesize new poses at any given pose az-
imuth. We learn for each subject in the PIE dataset a linear dictionary function
F (θ,W) using all 9 poses. In Figure 6a, given a source image ys in a profile pose
(−62o), we first estimate the domain parameters θs for the source image, and
sparsely decompose it over F (θs,W) for its sparse representation xs. We specify
every 10o pose azimuth in [−50o, 50o] as parameters for the target domain θt,
and obtain a synthesized pose image yt as yt = F (θt,W)xs. It is noted that
none of the target poses are associated with actual observations. As shown in
Figure 6a, we obtain reasonable synthesized images at poses with no observa-
tions. We observe improved synthesis performance by increasing the value of



640 Q. Qiu et al.

  -16o 

Li
ne

ar
 

Co
bb

 
   m=1    m=2    m=3    m=4    m=5    m=6    m=7    m=8    m=9 

Source 
image 

(a) Pose c05 frontal alignment

  -44o 

Li
ne

ar
 

Co
bb

 

   m=1    m=2    m=3    m=4    m=5    m=6    m=7    m=8    m=9 

Source 
image 

(b) Pose c02 frontal alignment

1 2 3 4 5 6 7 8 9 10
15

20

25

30

35

Degree of a dictionary polynomial

PS
NR

Linear
Cobb−Douglass

(c) Pose c05 alignment PSNR

1 2 3 4 5 6 7 8 9 10
0

10

20

30

Degree of a dictionary polynomial

PS
NR

Linear
Cobb−Douglass

(d) Pose c02 frontal PSNR

Fig. 7. Linear vs. non-linear dictionary functions. m is the degree of a dictionary
polynomial in (4) and (8).

m, i.e., the degree of a dictionary polynomial. In Figure 6b, we perform curve
fitting over Eigenfaces as discussed. The proposed dictionary function learning
framework exhibits better synthesis performance.

Linear vs. Non-linear. In Figure 7, we conduct the same frontal face align-
ment experiments discussed above. Now we learn for each subject both a linear
and a nonlinear Cobb-Douglass dictionary function discussed in Section 2.3. As
a Cobb-Douglass function is linearizeable, various degrees of polynomials are ex-
perimented for both linear and nonlinear dictionary function learning. As shown
in Figure 7a and Figure 7c, the nonlinear Cobb-Douglass dictionary function
exhibits better reconstruction while aligning pose c05, which is also indicated
by the higher PSNR values. However, in Figure 7b and 7d, we notice that the
Cobb-Douglass dictionary function exhibits better alignment performance only
when m ≤ 7, and then the performance drops dramatically. Therefore, a linear
dictionary function is a more robust choice over a nonlinear Cobb-Douglass dic-
tionary function; however, at proper configurations, a nonlinear Cobb-Douglass
dictionary function outperforms a linear dictionary function.
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Fig. 8. Face recognition accuracy on the CMU PIE dataset. The proposed method is
denoted as DFL in color red.

3.2 Dictionary Functions for Classification

Two face recognition methods are adopted for comparisons: Eigenfaces [18] and
SRC [19]. Eigenfaces is a benchmark algorithm for face recognition. SRC is a
state of the art method to use sparse representation for face recognition. We
denote our method as the Dictionary Function Learning (DFL) method. For a
fair comparison, we adopt exactly the same configurations for all three methods,
i.e., we use 68 subjects in 5 poses c22, c37, c27, c11 and c34 in the PIE dataset
for training, and the remaining 4 poses for testing.

For the SRC method, we form a dictionary from the training data for each
pose of a subject. For the proposed DFL method, we learn from the training data
a dictionary function across pose for each subject. In SRC and DFL, a testing
image is classified using the subject label associated with the dictionary or the
dictionary function respectively that gives the minimal reconstruction error. In
Eigenfaces, a nearest neighbor classifier is used. In Figure 8, we present the face
recognition accuracy on the PIE dataset for different testing poses under each
lighting condition. The proposed DFL method outperforms both Eigenfaces and
SRC methods for all testing poses.

3.3 Dictionary Functions for Domain Estimation

Pose Estimation. As described in Algorithm 1, given a dictionary function,
we can estimate the domain parameters associated with an unknown image, e.g.,
view point or illumination. It can be observed from the face recognition experi-
ments discussed above that the SRC and eigenfaces methods can also estimate
the domain parameters based on the domain associated with each dictionary
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Fig. 9. Pose azimuth estimation histogram (known subjects). Azimuths estimated us-
ing the proposed dictionary functions (red) spread around the true values (black).

or each training sample. However, the domain estimation accuracy using such
recognition methods is limited by the domain discretization steps present in the
training data. We perform pose estimation along with the classification experi-
ments above. We have 4 testing poses and each pose contains 1428 images (68
subjects in 21 lighting conditions). Figure 9 shows the histogram of pose azimuth
estimation. We notice that poses estimated from Eigenfaces and SRC methods
are limited to one of the 5 training pose azimuths, i.e., −62o (c22), −31o (c37),
00o (c27), 32o (c11) and 66o (c34). As shown in Figure 9, the proposed DFL
method enables a more accurate pose estimation, and poses estimated through
the DFL method are distributed in a continuous region around the true pose.

To demonstrate that a dictionary function can be used for domain estimation
for unknown subjects, we use the first 34 subjects in 5 poses c22, c37, c27, c11
and c34 in the PIE dataset for training, and the remaining 34 subjects in the
rest 4 poses for testing. We learn from the training data a dictionary function
across pose over the first 34 subjects. As shown in Figure 10, the proposed DFL
method provides a more accurate continuous pose estimation.

Illumination Estimation. In this set of experiments, given a face image in
the Extended YaleB dataset, we estimate the azimuth and elevation of the single
light source direction. We randomly select 50% (32) of the lighting conditions in
the Extended YaleB dataset to learn a dictionary function across illumination
over all 34 subjects. The remaining 32 lighting conditions are used for testing.
For the SRC method and for each training illumination condition, we form a
dictionary from the training data using all 34 subjects. We perform illumination
estimation in a similar way as pose estimation. Figure 11a, 11b, and 11c show
the illumination estimation for several example lighting conditions. The proposed
DFL method provides reasonable estimation to the actual light source directions.
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Fig. 10. Pose azimuth estimation histogram (unknown subjects). Azimuths estimated
using the proposed dictionary functions (red) spread around the true values (black).
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Fig. 11. Illumination estimation in the Extended YaleB face dataset

4 Conclusion

We have presented a general dictionary function learning framework to trans-
form a dictionary learned from one domain to the other. Domain dictionar-
ies are modeled by a parametric function. The dictionary function parameters
and domain-invariant sparse codes are then jointly learned by solving an op-
timization problem with a sparsity constraint. Extensive experiments on real
datasets demonstrate the effectiveness of our approach on applications such as
pose alignment, pose and illumination estimation and face recognition. The pro-
posed framework can be generalized for non-linearizeable dictionary functions,
however, further experimental evaluations are to be performed.

Acknowledgment. This work was supported by a MURI grant N00014-10-1-
0934 from the Office of Naval Research.
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A A Nonlinear Dictionary Function Learning Algorithm

Input: signals in N different domains {Yi}Ni=1, domain parameter matrix Θ
Output: dictionary function W
begin

Initialization:
1. Create the stack signal Y and initialize D from Y using K-SVD;
2. Initialize W with random values ;
repeat

3. Compute current residuals: R← D− F(Θ,W) ;
4. Compute the row vector of derivatives w.r.t. W evaluated at Θ
P← ∇F(Θ,W) ;
5. Learn the linear dictionary function B using R = PB
6. Update the dictionary function parameters: W←W + λB

until convergence;
7. return W;

end

Algorithm 2. A general method for nonlinear dictionary function learning
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Abstract. A proper distance metric is fundamental in many computer
vision and pattern recognition applications such as classification, image
retrieval, face recognition and so on. However, it is usually not clear what
metric is appropriate for specific applications, therefore it becomes more
reliable to learn a task oriented metric. Over the years, many metric
learning approaches have been reported in literature. A typical one is
to learn a Mahalanobis distance which is parameterized by a positive
semidefinite (PSD) matrix M. An efficient method of estimating M is
to treat M as a linear combination of rank-one matrices that can be
learned using a boosting type approach. However, such approaches have
two main drawbacks. First, the weight change across the training sam-
ples may be non-smooth. Second, the learned rank-one matrices might be
redundant. In this paper, we propose a doubly regularized metric learn-
ing algorithm, termed by DRMetric, which imposes two regularizations
on the conventional metric learning method. First, a regularization is
applied on the weight of the training examples, which prevents unsta-
ble change of the weights and also prevents outlier examples from being
weighed too much. Besides, a regularization is applied on the rank-one
matrices to make them independent. This greatly reduces the redun-
dancy of the rank-one matrices. We present experiments depicting the
performance of the proposed method on a variety of datasets for various
applications.

Keywords: Regularized metric learning, boosting, PSD matrix.

1 Introduction

The choice of an appropriate distance or similarity measure over the input space
is critical to many computer vision and pattern recognition applications, includ-
ing but not limited to clustering and classification [1], image retrieval [2], shape
detection [3], face recognition [4–9], tracking [10]. There are many commonly
used distance metrics, e.g. Euclidean distance, L1-norm distance, χ2 distance,
and Mahalanobis distance etc. However, it is usually very hard to predict which
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distance measure is appropriate for a certain application with specific inputs.
Therefore, it is more apt to develop a task-dependent metric based on the avail-
able knowledge of the inputs. It was shown [1, 9] that a properly designed dis-
tance metric, compared with the standard distances, can significantly improve
the performance for many applications.

There are a lot of metric learning algorithms in the literature. A good metric
learning algorithm should be able to learn a metric that can amplify informa-
tive dimensions (feature) and squash non-informative dimensions. This is unlike
Euclidean distance, which treats every dimension equally and does not consider
the correlation between them.

In most cases, metric learning algorithms are derived from the labeled training
datasets, and the goal of the algorithm is to learn a metric which can separate the
instances of different classes apart, and bring together the instances belonging
to the same class. To be specific, the labeling of the inputs can be provided
mainly in three ways. First, the input constraint is (xi, yi) where xi ∈ R

D

is an instance and yi is its label. Second, the input constraint is ((xi,xj),yij)
where yij indicates whether xi and xj are “similar“ or “dissimilar“ [11]. An even
weaker representation often used in information retrieval [12] is the proximity
relationship over triplets (i, j, k), meaning that xi is closer to xj than to xk.
Proximity relationships are the most natural constraint for learning a metric,
and are of the weakest representation because proximity triplets can be derived
from the other kinds of constraints, but not vice versa.

In this paper, we propose a doubly regularized metric learning algorithm,
termed by DRMetric. Our goal is to learn a Mahalanobis distance metric which
tries to preserve the proximity relationships over the input. Mahalanobis dis-
tance metric is parameterized by a positive semidefinite (PSD) matrix [13, 14]1.
It has been well studied and advantages were shown over some other metrics
such as multidimensional scaling (MDS) [15], ISOMAP [16], and locally linear
embedding (LLE) [17].

Several aspects of our DRMetric are novel. First, we use the total Kullbak-
Leibler (tKL) divergence [18] to regularize the evolution of the weights on the
training triplets. tKL is a recently proposed divergence which has been proved
to be statistically robust [18]. The regularization automatically ensures that
the weight of the examples is upper bounded, therefore, the weight can not be
extremely large for outliers. Note that without regularization, the weight of an
outlier example will keep increasing, which may lead to serious problems such as
overfitting and inefficiency. Furthermore, for some noisy examples, their weight
may depict severe oscillations. This not only hampers the convergence rate of the
metric learning algorithm, but also leads to overfitting, and lowers the accuracy.
Second, we regularize the rank-one PSD matrices to minimize the dependence
between them. This regularization makes the rank-one matrices least correlated,

1 Strictly speaking, this matrix should be symmetric positive definite (SPD) in order
for it to be a metric. However, we relax the requirement and allow two different
instances to have zero distance.
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and therefore least redundant, which greatly decreases the number of rank-one
matrices needed and improves the efficiency.

The rest of the paper is organized as follows. In Section 2, we briefly review
the metric learning literature. In Section 3, we present the doubly regularized
linear programming metric learning algorithm, termed by DLMetric. In Section
4, we investigate DLMetric empirically by evaluating our algorithm on a number
of datasets for various applications. We also compare our method with the state-
of-the-art metric learning and other algorithms. Finally, we conclude the paper
in Section 5.

2 Literature Review

A good task dependent metric has attracted extensive attention recently. The
machine learning community has done many researches to automatically learn
a distance function from available knowledge of the dataset [13, 19, 20, 11].
Most existing works assume the metrics to be Mahalanobis distance, which are
parameterized by PSD matrices.

Various techniques have been proposed to learn a PSD matrix from the
dataset. Some techniques force the negative eigenvalues in the learned symmet-
ric matrix to be zero as in [11]. Some others set the matrix to be the inverse of
the covariance matrix of the centered data points in small subsets of points with
known relevant information [13]. In [20], the matrix exponential gradient update
was used which preserves symmetry and positive definiteness due to the fact that
the matrix exponential of a symmetric matrix is always an SPD matrix. In [21],
Iwasawa factorization was used to ensure the positive definiteness [21]. Most of
these techniques are limited from a scalability or a computational complexity
view point.

More recently, some researchers [1, 12] adapted the boosting technique to met-
ric learning. This kind of metric learning is based on an important theorem that
a PSD matrix with trace one can always be represented as a convex combination
of multiple rank-one PSD matrices. This is a generalization of boosting [22] in
the sense that the weak learner in these metric learning algorithms is a rank-one
matrix instead of a classifier. The main idea behind these boosting-based metric
learning algorithms is that at each iteration, they will learn a rank-one matrix
from the training examples that follow a distribution. The weighted rank-one
matrix is then added to the PSD matrix. This weight is typically related to
the rank-one matrix’s ability to discriminate the examples from different classes.
The higher the discriminatory power, the larger the weight, and vise versa. After
learning the rank-one matrix, the distribution of the examples is updated. The
examples are reweighted according to the rule that misclassified examples tend
to gain weight and correctly classified examples tend to lose weight. Therefore,
the rank-one matrices to be learned will be focused more on the examples that
were misclassified previously.

However, these methods are not statistically robust i.e., the learning process
is sensitive to noisy data and outliers [23, 24]. The reason is that the weight of
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noisy examples might switch between severe increase and severe decrease fre-
quently, which seriously slows down the convergence of the learning process.
Furthermore, the weight of outliers might keep increasing, which largely affects
the metric to be learned. To avoid these issues and inspired by the regularized
boosting [23, 24] techniques, we propose a regularized metric learning algorithm,
which regularizes the weight updating process involved in the training stage. Fur-
thermore, in order to reduce the redundancy of the learned rank-one matrices,
we add another regularization term to make the dependence between the learned
rank-one matrices as small as possible. In this way, we can use much fewer num-
ber of rank-one matrices (i.e. much fewer number of iterations) to form the PSD
matrix which parameterizes a suitable metric. Experimental results illustrate
that for a dataset of D dimensions, DRMetric is able to learn a relatively good
metric in D iterations.

3 Proposed Method

Given a dataset X = {xi}, with xi ∈ R
D, and its associated triplet set T =

{(i, j, k)}, with (i, j, k) meaning that xi is more similar to xj than to xk. Let
N = |T | denote the number of triplets in T . The goal is to learn a Mahalanobis
distance which preserves the relationship in T .

A Mahalanobis distance is parameterized by a PSD matrix M ∈ R
D×D. The

Mahalanobis distance between xi ∈ X and xj ∈ X based on M is

dM(xi,xj) = (xi − xj)
TM(xi − xj) (1)

To remove the scalability effect of the distance resulting from M, we require
tr(M) = 1. Since any trace-one PSD matrix can be decomposed as a convex
combination of rank-one trace-one PSD matrices, i.e.,

M =

D∑

l=1

wlulu
T
l ,ul ∈ R

D, ‖ul‖ = 1,w ∈ ΔD . (2)

To avoid notation clutter in later computations, we introduce a vector vn = [vnl],
where vnl corresponds to ul and the nth triplet (i, j, k), and is defined as

vnl = (xi − xk)
Tulu

T
l (xi − xk)− (xi − xj)

Tulu
T
l (xi − xj). (3)

A potentially appropriate M should be able to maximize the soft margin defined
in the following linear programming,

max
w,ρ,ζ

ρ− α

N∑

n=1

ζn

s.t.

t∑

l=1

wlvnl ≥ ρ− ζn , n = 1, · · · , N,

w ∈ Δt, ζ ≥ 0 ,

(4)
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where ζn is the slack variable, and α is a constant factor which penalizes the
slack variables.

The Lagrangian dual problem of (4) is

max
d,c,q

min
w,ρ,ζ

L(w, ρ, ζ,d, c,q) = −ρ+α
N∑

n=1

ζn−
N∑

n=1

dn(
t∑

l=1

wlvnl−ρ+ζn)+c(1Tw−1)−qT ζ,

(5)

where d, c, and q are non-negative regularizers. After some simple algebraic
manipulation we arrive at the dual problem of (4) given by,

min
d∈ΔN ,d≤α1

max
l=1,··· ,t

N∑

n=1

dnvnl. (6)

3.1 Regularization on d

The regularization on d is very important because for the non-regularized met-
ric learning algorithm, the weight of the training examples might change very
severely, i.e., the weight of a training example might oscillate significantly when
it is misclassified or correctly classified by the weak learners (rank-one matrices)
as shown in Fig. 1. This instability will seriously affect the learning efficiency,
accuracy, and also lead to overfitting. With regularization, severe oscillations
and instabilities can be prevented, which makes the algorithm converge faster,
i.e. need fewer number of rank-1 PSD matrices. Fig. 1 depicts that, using regu-
larization, the resulting weight change of the training data is stable.
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Fig. 1. Change in the weight of a training example in the Heart disease dataset from the
UCI repository, under metric learning without regularization and with regularization

To overcome the aforementioned instabilities, we add a regularization term to
the update of d in (6), i.e.,

min
d∈ΔN ,d≤α1

max
l=1,··· ,t

N∑

n=1

dnvnl + ηδ(d, d̂), (7)
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where η is the regularization coefficient that balances the margin and the smooth-
ness. η is set to be a fixed number2 as in [23] to make the number of iterations

upper bounded by a constant without hurting the accuracy. δ(d, d̂) is the tKL
divergence [23, 25], and

δ(d, d̂) =

∑N
n=1 dn log

dn

d̂n√
1 +

∑N
j=1 d̂j(1 + log d̂j)2

. (8)

Note that the regularization term δ(d, d̂) ensures that the evolution of d is
smooth.

Here, d̂ can be chosen in different ways. In this paper, we set d̂ = d0, where
d0 is the initialized distribution, this means d should not be far away from the
initialized distribution. Since d0 is user defined, it is usually set according to the
application problem and the data. One tends to initialize larger weight on the
examples with more importance, so we use δ(d,d0) as the regularizer. Note that
the dn is upper bounded by α as in (6), therefore the weight of the noisy examples
and outliers is prevented from being too large leading to possible domination in
the learning3.

To directly compute dt from (7) is complicated, instead, we will first find its
Lagrangian and use it to compute dt. To find the Lagrangian, we rewrite (7)
into the following form

min
β,d

β + ηδ(d,d0)

s.t.

N∑

n=1

dnvnl ≤ β, l = 1, · · · , t

d ∈ ΔN , d ≤ α1 .

(9)

The Lagrangian Ψ of (9) is given by,

Ψ(d, β,w, ξ, γ) = β+ηδ(d,d0)+
t∑

l=1

wl(
N∑

n=1

dnvnl−β)+
N∑

n=1

ξn(dn−α)+γ(d·1−1) (10)

where, wl, l = 1, · · · , t, ξn, n = 1, · · · , N and γ are non-negative regularizers.
Using some simple calculus and the KKT condition [26], we can simplify (10)
and get the partial Lagrangian

Ψ(d,w) = ηδ(d,dt) +
t∑

l=1

wl

N∑

n=1

dnvnl . (11)

2 η =
ε
√

1+(logN−1)2

2 log(ND)
, where N is the number of training samples, D is the dimension

of each training sample, and ε is the error tolerance of the margin between different
classes based on the learned metric [23].

3 To make such a d exist, we should require α ≥ 1/N . It was shown in [24] that
α = 1/s, and s ∈ {1, · · · , N} is a favorable choice.
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Now differentiating Ψ with respect to d, setting it to 0, and normalizing d, we
get,

dtn =
d0n exp

(
−c

∑t
l=1 wlvnl

)

Zt
, where c =

1

η

√√√√1 +

N∑

n=1

d0n(1 + log d0n)
2, (12)

and Zt is the normalization parameter to make
∑N

n=1 d
t
n = 1. Here if dtn > α,

then we manually set dtn = α.

3.2 Regularization on u

We put two constraints on u. First, we want it to maximize the margin. Second,
we require u to be independent of the previously learned ul, l = 1, 2, · · · , t, so
that the learned {u} will not be redundant. Therefore, the number of rank-one
matrices needed to form a good metric is reduced. The dependence between
u and ul is measured by ‖uTul‖2 ∈ [0, 1]. The larger ‖uTul‖2 is, the more
dependent they are. When ‖uTul‖2 = 0, u and ul are independent.

The two constraints on u are described as

max
u

N∑

n=1

dtn[(xi −xk)
TuuT (xi − xk)− (xi − xj)

TuuT (xi − xj)]− λ

t−1∑

l=1

‖uTul‖2, (13)

where λ is the regularization coefficient to penalize the dependence. (13) can be
rewritten as

max
u

uT {
N∑

n=1

dtn[(xi−xk)(xi−xk)
T − (xi−xj)(xi−xj)

T ]−λ

t∑

l=1

ulul}uT (14)

Let matrixAt =
∑N

n=1 d
t
n[(xi−xk)(xi−xk)

T−(xi−xj)(xi−xj)
T ]−λ

∑t
l=1 ulu

T
l ,

then ut+1 is the eigenvector corresponding to the largest eigenvalue of At.
The weight vector w for the rank-one matrices should satisfy the linear pro-

gramming problem (4) which can be solved using column generation [27] or a
gradient based method.

3.3 Building the Triplets

For each xi ∈ X, we first find the a instances {xj}aj=1 which are in the same
category as xi but are most different from xi. After that, we find the a nearest
neighbors {xk}ak=1 in a different category, then (i, j, k) will form a triplet. If
the size of X is small, we will use a larger a, otherwise, we will use a smaller
a. Furthermore, if the number of triplets is very large, we will randomly select
10 ∼ 50% of the triplets for training.

As a summary, the algorithm for the proposed DRMetric is presented in Algo-
rithm 1. The proof of the convergence is very similar to the proof from Schapire
and Singer [28].
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Algorithm 1. Doubly Regularized Metric Learning

Input: Dataset X = {xi}, xi ∈ R
D

Triplet set T = {(i, j, k) | xi is closer to xj than to xk}. N = |T |, the number of
triplets in T .
Output: M =

∑t
l=1 wlulu

T
l , ul ∈ R

D, ‖ul‖ = 1, w ∈ Δt, t is the number of
iterations.
Initialization: Initialize d0n, the weight of the nth triplet, n = 1, · · · , N , according
to the importance, or set d0n = 1/N by default.
for l = 1 to t do

Find the optimal ul according to (13);
Update the distribution d according to (12);
Update the weight w according to (4)

end for
Return M =

∑t
l=1 wlulu

T
l .

4 Experimental Results

The proposed algorithm is evaluated on a number of public domain datasets for
a variety of applications. We use the UCI machine learning repository [29] for
classification, use the COREL image dataset for content based image retrieval,
and use the Labeled Faces in the Wild (LFW) [30] dataset for face recognition.
We compare our method with many state-of-the-art metric learning and other
techniques. The results show that our proposed metric learning method is very
promising for many applications.

4.1 Classification

The classification experiments are performed on the UCI machine learning repos-
itory [29], which is a collection of datasets that have been extensively used for
analyzing machine learning techniques. The repository contains a large variety
of datasets, including very noisy datasets (e.g. the Optical Recognition of Hand-
written Digits dataset, the wine dataset) as well as relatively clean datasets,
which is optimal for testing the robustness and accuracy of classification algo-
rithms. We selected 9 datasets from the UCI repository. The selected datasets
include noisy and clean datasets, cover small size to large size datasets in terms
of number of instances in the datasets, and range from low dimension to high
dimension in terms of number of attributes per instance of the datasets. The
description of the selected datasets is shown in Table 1.

We use 5-fold cross validation to evaluate the proposed algorithm. The regular-
ization parameters α, η and λ are determined during the training and validation
stage, and they are set to be the numbers which maximize the performance on
the training dataset. The final result is the average of the results obtained over
the 5 runs. The proposed DRMetric is compared with many other non-metric
learning and metric learning algorithms, including Euclidean distance, L1-norm
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Table 1. Description of the selected UCI datasets

dataset � instances � attributes

Heart disease 303 74
Australian sign 6650 14
Blood transfusion service center 748 5
Artificial characters 6000 7
Glass identification dataset 214 10
Adult dataset 48842 14
Handwritten digits 5620 64
Wine dataset 178 13
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Fig. 2. The neighbor accuracy curves from different metrics on the Heart disease,
Australian sign and Blood transfusion service center datasets in the UCI repository

distance, χ2 distance, BoostMetric [9], MatrixBoost [1], ITML [14], and COP
[11]. The code for metric learning methods is obtained directly from the corre-
sponding authors or downloaded from the authors’ webpage. The classification
performance is measured based on neighbor accuracy curves. The neighbor ac-
curacy measures the percentage of correctly classified instances based on the kth
(k = 1, 3, 5, 7, 9) nearest neighbor. The average neighbor accuracy is shown in
Fig. 2. The comparison depicts that in general DRMetric yields higher classifi-
cation accuracy.

We also evaluate the 3-nearest-neighbor voting classification accuracy on sev-
eral UCI datasets including the Glass Identification dataset, the Adult dataset,
the Optical Recognition of Handwritten Digits dataset, and the Wine dataset.
The classification results are shown in Table 2, which reflects that the proposed
method outperforms the other methods.

Besides, for DRMetric, we examined the relationship between the classification
accuracy change and the number of iterations. The results are shown in Fig. 3,
which implies that when the number of iterations is less thanD (the dimension of
the dataset), the classification accuracy increases at a higher rate. However, when
the number of iterations is larger than D, the classification accuracy improves
very slowly. This means that, using our method, D rank-one matrices can form
a relatively high quality Mahalanobis distance.
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Table 2. Classification accuracy using different metrics on selected datasets from the
UCI repository

dataset Euclidean L1 χ2 ITML COP BoostMetric MatrixBoost proposed

Characters 0.7235 0.7452 0.7651 0.9114 0.8889 0.9147 0.9049 0.9288
Glass 0.6114 0.6404 0.6479 0.7975 0.7850 0.8135 0.7991 0.8204
Adult 0.6017 0.6249 0.6284 0.7760 0.7752 0.7981 0.7894 0.8075
Digits 0.6865 0.7107 0.7284 0.7352 0.7473 0.8014 0.8148 0.8290
Wine 0.7240 0.7261 0.7602 0.8625 0.8958 0.9074 0.9152 0.9161
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Fig. 3. The change of classification accuracy with related to the number of iterations
using DRMetric on the Heart disease (left), Australian sign (middle), and Blood trans-
fusion service center (right) datasets. The black disk corresponds the classification
accuracy when the number of iterations equals to the number of attributes.

4.2 Content Based Image Retrieval

The task for image retrieval is that given one image in a category, find the images
in the same category. We use the COREL image database [31] to evaluate our
method on content based image retrieval. The database contains 3400 real-world
images with 34 different categories, and 100 images per category.

Each image is represented as a 33 dimensional feature vector, which is a
combination of low level features including color features, edge features and
texture features. For color features, we first represent the images in the HSV color
space, and then compute the mean, variance, skewness of the HSV color to get a
9 dimensional feature vector. For edge features, the Canny edge detector [32] is
first applied to images to detect the edges, and the histogram for edge direction
was quantized into 9 bins of every 40 degrees, which resulted in 9 different
edge features. For texture features, we use the multi-resolution simultaneous
autoregressive (MASAR) model [33] to get 15 features. In total, there are 33
features for each image.

We use 10-fold cross validation to evaluate the proposed algorithm, i.e., 90%
images are used to learn the metric, and 10% images are used for evaluation.
We use every image in the test dataset as a query, if the retrieved image belongs
to the same category as the query image, the retrieval is correct. We measure
the retrieval performance based on the neighbor accuracy curves. Neighbor ac-
curacy measures the percentage of correctly retrieved images in the kth nearest
neighbors of the query images (k = 1, · · · , 40 in our experiments).
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We compared our method to many algorithms, including Euclidean distance,
L1-norm distance, χ2 distance, BoostMetric [9], MatrixBoost [1], ITML [14], and
COP [11]. The retrieval results are shown in Fig. 4. The results illustrate that
our proposed method achieves a higher neighbor accuracy when using 1st ∼ 25th
and 34th ∼ 40th nearest neighbors. However, it’s a little worse than MatrixBoost
when using the 26th ∼ 33rd nearest neighbors.

We compare the computational time of BoostMetric [9], MatrixBoost [1], and
DRMetric to learn the distance metric on the COREL database. All algorithms
are run on a laptop with Intel(R) Core(TM)2 CPU L7500 @1.6GHz, 4GB mem-
ory, GNU Linux and MATLAB (Version R2011a). The average CPU time taken
to converge for our algorithm is 167.68s, while BoostMetric takes 244.81s, and
MatrixBoost takes 239.28s.
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Fig. 4. Comparison of using different metric learning methods for content based image
retrieval on the COREL dataset

4.3 Face Recognition

In this scenario, the goal for face recognition is to do pair matching: given two
face images, determine if these two images belong to the same person. We use the
Labeled Faces in the Wild (LFW) [30] dataset. This is a fairly difficult dataset
for face recognition, because it has a large range of the variation (varying pose:
straight, left, right, up; expression: neutral, happy, sad, angry; eyes: wearing
glasses or not; clothes: wearing different clothes; size: small, medium or large)
seen in real life. It includes 13233 images of 5749 people collected from news
articles on the Internet. The number of images per person ranges from 1 to
530, and 1680 people have two or more distinct images in the dataset. This is
a popular dataset which has been used by many researchers [4, 6, 34, 8, 35] to
evaluate their face recognition frameworks.

In this experiment, we have compared the proposed DRMetric to the state-of-
the-art methods for the task of face pair-matching problem. To ensure fairness,
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we used the same features as used in the literature [4–9, 36]. Features of face
images are extracted by computing the 3-scale, 128-dimensional SIFT descrip-
tors [37], centered on 9 points of facial features extracted by a facial feature
descriptor, as described in [5]. In this way, we get 3 × 128 × 9 = 3456 features
in total for each image. PCA is then performed on the feature vectors to reduce
the dimension to 400 (because the result in [9] showed that dimension 400 is a
good compromise between performance and efficiency) for training. The triplets
are built according to Section 3.3. The number of generated triplets is 44794,
out of which, we use 20% (i.e. 8960) for training. We compared our method
with LDML funneled [38], Hybrid aligned [36], V1-like funneled [8], Simile [6],
Attribute + Simile [6], Background sample [39] Multiple LE + comp [4], and
FrobMetric [9]. All these methods except FrobMetric are more complicated than
our method, because they either use additional information, hybrid descriptors
or combination of classifiers. The performance is described using an ROC curve4

on which each point represents the average over the 10 runs of (false positive
rate, true positive rate) for a fixed distance threshold. The results from all other
techniques were taken from their latest published results. The comparison is
shown in Fig. 5, which depicts that our method is only slightly worse than the
two leading techniques (Attribute + Simile [6] and Background sample [39]) that
are much more complicated. Furthermore, our method is comparable to or better
than other state-of-the-art techniques on face recognition.
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Fig. 5. False positive (FP) rate versus true positive (TP) rate on face recognition using
different metric learning methods on the LFW dataset

4 If the distance, based on the learned metric, is above some threshold, the two images
will be declared as not belonging to the same person, and vice versa. For each
threshold, we get the corresponding FP/TPrate. By changing the thresholds, we get
a set of {FP/TPrate}, which forms the ROC curve. Using ROC curve to evaluate
face recognition methods is widely used in literature [38, 36, 6, 39, 8].
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5 Conclusions

We proposed an efficient and robust doubly regularized metric learning algo-
rithm DRMetric. It has two regularization parts. First, we use tKL to regularize
the update of the weight of the training examples. This avoids instabilities in
the weight change, and consequently avoids overfitting and make it more ro-
bust to noisy data as well as outliers. Second, we add a regularization to the
rank-one matrices enforcing them to be as independent as possible. In this way,
the redundancy of the learned rank-one matrices as well as the number of neces-
sary rank-one matrices are significantly reduced, which leads to higher efficiency.
Furthermore, DRMetric is robust and capable of handling a variety of datasets
for different applications. Though the idea behind DRMetric seems simple, its
robustness and applicability can not be undervalued.
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Abstract. Multiple Instance Learning (MIL) has been widely used in various
applications including image classification. However, existing MIL methods do
not explicitly address the multi-target problem where the distributions of positive
instances are likely to be multi-modal. This strongly limits the performance of
multiple instance learning in many real world applications. To address this prob-
lem, this paper proposes a novel discriminative data-dependent mixture-model
method for multiple instance learning (MM-MIL) approach in image classifica-
tion. The new method explicitly handles the multi-target problem by introducing
a data-dependent mixture model, which allows positive instances to come from
different clusters in a flexible manner. Furthermore, the kernelized representation
of the proposed model allows effective and efficient learning in high dimensional
feature space. An extensive set of experimental results demonstrate that the pro-
posed new MM-MIL approach substantially outperforms several state-of-art MIL
algorithms on benchmark datasets.

1 Introduction

With the pervasion of digital images, automatic image classification has become in-
creasingly important. Multiple-instance learning (MIL) [2] is a useful technique in ma-
chine learning that addresses the classification problem of a bag of data instances. In
multiple instance learning, each bag is composed of multiple data instances associated
with input features. The purpose of MIL is to accurately predict bag level labels based
on all the instances in each bag with the assumption that a bag is labeled positive if at
least one of its instances is positive, whereas a negative bag only contains negative in-
stances. In the case of image classification, each image is treated as a bag and different
regions inside the image are viewed as individual data instances [15].

The advantage of MIL ascribes to the fact that in training it only requires the label
information of a bag instead of individual instances in the bag. However, due to the la-
bel ambiguity in the instances, traditional supervised classification methods may not be
directly applied to MIL framework. Existing methods in solving MIL problem fall into
two categories. The first category is generative model based algorithms, such as axis
parallel hyper-rectangles [2], Diverse Density (DD) [9] and Expectation Maximization

A. Fitzgibbon et al. (Eds.): ECCV 2012, Part IV, LNCS 7575, pp. 660–673, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Fig. 1. Six images from COREL dataset. The top three images have a common concept ‘animal’.
The bottom three images form a concept ‘apple’. Different colors represent different clusters the
instances lie in.

DD (EM-DD) [10]. For example, EM-DD generates data instances in bags with their
labels in a joint manner. The second category is discriminative model based methods
including DD-SVM [7], MI-SVM [1], MILES [8], etc. These methods model the labels
of bags and data instances by the input features of data instances or bags. For exam-
ple, some methods based on SVM map features into a high dimensional feature space,
with a non-linear function, and then apply the standard kernelized large-margin SVM
framework to train a classifier from the constructed new features. These large margin
discriminative methods often generate more robust results compared to the generative
algorithms.

However, most existing multiple instance learning algorithms do not explicitly ad-
dress the multi-target problem, where positive instances often tend to have multi-modal
distributions or lie in different clusters in many real word applications. Two examples
are provided as follows. In the first example the concept is ‘animal’. There are vari-
ous kinds of animals in the training samples like fox, elephant and tiger (top row in
Fig.1). Different species have different characteristics in terms of color, size, shape, etc.
Therefore, the positive instances come from distinct clusters and form a multi-modal
distribution in the feature space. Even if the concept is relatively ‘small’, the instances
could still form several compact clusters. In another scenario, the concept is ‘apple’.
The images in the bottom row in Fig.1 show three training examples. All the three
images contain the concept ‘apple’. However, the positive targets in the pictures are
different as red apple, green apple and half-apple, which form different clusters. Please
note that the multi-target problem of multiple instance learning is different from multi-
class multiple instance learning since no specific class information is available for the
diversified representation of positive instances and all positive bags are labeled in the
same manner.

To address this problem, this paper proposes a novel data-dependent Mixture-Model
MIL (MM-MIL) approach in the discriminative learning framework to handle the multi-
modal distributions of positive data instances for image classification with multiple in-
stance learning. In particular, a set of latent variables are introduced to represent the
clusters associated with each data instance based on a multinomial logit model. Within
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each cluster, a logistic regression model is utilized to generate labels given the input
features of individual data instances. These two models are integrated together for rep-
resenting the assumption of multiple instance learning as each positive bag contains at
least one positive data instance and each negative bag does not contain any positive in-
stance. Furthermore, a kernelized presentation of the new method is proposed to allow
effective and efficient learning in high-dimensional space. An efficient inference algo-
rithm is derived for the proposed method based on a combination of Expectation and
Maximization (EM) method and gradient descent optimization.

To our best knowledge, the MM-MIL model is the first concrete research work that
explicitly addresses the multi-target problem in multiple instance learning. The main
contributions of this paper are: First, the proposed MM-MIL model introduces a data-
dependent mixture model that effectively captures the multi-modal distributions among
the instances and formalizes the problem into a regularization framework. Second, we
introduce an efficient inference algorithm to solve the optimization problem by com-
bining the EM method and gradient descent scheme. Third, a kernelization framework
is proposed to allow effective and efficient learning, especially for large scale image
dataset.

The rest of the paper is organized as follows. Section 2 discusses the related work
on MIL-based image classification. Section 3 proposes the novel MM-MIL method,
which includes the problem formulation, the inference algorithm and the kernelization
framework. We will also discuss the relationship between MM-MIL and some other
existing MIL algorithms. Section 4 presents an extensive set of experimental results on
different datasets for comparing the MM-MIL method with several state-of-the-art MIL
algorithms. Section 5 concludes and points out some possible future research directions.

2 Related Work

Image classification algorithms based on multi-instance learning (MIL) model the rela-
tionship between labels and regions [2,10,7,8]. An image is treated as a bag consisting
of multiple instances, ie, regions. Existing MIL algorithms can be divided into two cat-
egories, generative models and discriminative models. Generative model methods, like
EM-DD [10], try to learn a single target distribution to generate instances/bags and
their labels in a joint manner. Discriminative models focuses on modeling data/bag la-
bels given features of data instances, which include MI-SVM [1] and MILES [8] based
on kernelized support vector machine.

Many generative algorithms try to predict bag labels by first inferring the hidden
labels of individual instances. The Diverse Density (DD) [9] approach uses a scaling
and gradient search algorithm to find the prototype points in the instance space with
the maximal DD value. Zhang and Goldman [10] combined the idea of Expectation-
Maximization (EM) with DD and developed an algorithm, EM-DD, to search for the
most likely concept. These methods are quite efficient in learning, but they are based
on the assumption that that all positive instances form a tight cluster in the feature
space [3], which is not realistic in applications with diversified positive instances. The
research work in [9] briefly mentioned that it is possible to model multiple concepts
within a generative model, but no concrete prior research work has been conducted for
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this. We also designed the first concrete generative multiple instance learning algorithm
for multiple concepts in this paper. But the empirical results and discussions in section 4
show that our discriminative data-dependent mixture-model outperforms the generative
model for multiple instance learning with multiple concepts.

Most discriminative methods attempt to directly predict bag labels in a large margin
framework. DD-SVM [7] selects a set of instances using the DD function, and then a
SVM is trained based on the bag-level features summarized by these selected instances.
In MI-SVM [1], Andrews et al formulated MIL as a mixed integer quadratic program-
ming problem. Integer variables are used to select a positive instance from each positive
bag. A standard SVM framework is introduced to tune the variables. In the work of
MILES [8], bags are embedded into a feature space defined by all the instances. 1-norm
SVM is applied to train the bag-level classifiers. Some methods based on instance-level
information were also proposed. Yang et al [11] proposed an Asymmetric Support
Vector Machine-based MIL algorithm (ASVM-MIL) by defining an asymmetric loss
function to exploit instance labels. Ray et al [17] extended the DD framework by using
a Logistic Regression algorithm to estimate the equivalent probability for an instance
and a softmax function is used to combine the instance-level information to predict
the bag label. Boosting methods such as MILBoost [13] translated MIL into an Ad-
aBoost framework, where the combination function (eg, Integrated Segmentation and
Recognition (ISR) or noisy-or) is applied to combine instance labels into bag label. Fu
et al [3] proposed an instance selection MIL approach which aims to handle large scale
data. A kernel density estimator is first learned from all the negative instances in nega-
tive bags to reduce the number of positive candidates. One instance per positive bag is
selected to represent the concept. Standard SVM is then applied to train the classifier
based on constructed bag-level features. Discriminative methods are often more robust
and achieve improved performance compared to the generative approaches.

Recently, several MIL methods [23,27] has been used for online visual tracking. A
discriminative classifier is trained in an online manner to separate the object from the
background. Qi et al [6] explicitly modeled the inter-dependencies between instances
by using concurrent tensors to better capture images’ inherent semantics. Rank-1 tensor
factorization is applied to obtain the label of each instance. A kernelization framework
is then used for learning. In the work [25,32], Random Forest methods have been pro-
posed to dealing with the multi-class/multi-label problem in MIL. Hidden class labels
are defined inside bags as random variables. These random variables are optimized by
training random forests and using a fast iterative homotopy method for solving the non-
convex optimization problem. The multi-label issue is also addressed in work [5,26],
where multi-label MIL algorithms are introduced to simultaneously captures both the
connections between semantic labels and regions and the correlations among the labels
based on hidden conditional random fields. Most recently, Dan et al [29,30] introduce
the un-supervised learning methods under the maximum margin principle for multiple
instance clustering, where bag labels are not utilized in training. A semi-supervised
MIL approach [28] is also proposed by him in learning structured data. Multiple in-
stance active learning for localized content based image retrieval is proposed in [32].

However, none of existing works in multiple instance learning addresses the multi-
target problem where positive instances may lie in different clusters in the feature space.
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To address this issue, we propose the MM-MIL algorithm, which will be described in
the next section.

3 Mixture Model Multiple Instance Learning

This section presents the novel MM-MIL model that explicitly addresses the multi-
target problem in multiple instance learning. We first introduce some notations. Let bag
set B = {Bi}, i = 1, 2, . . . , N . Let L = {li} denotes the bag labels. li = 1 or 0
indicates Bi is a positive or negative bag. Let Bi = {Bij}, j = 1, 2, . . . , Ni where Bij

is the jth instance in bag Bi. Let yi = P (+|Bi) denotes the probability of Bi being
a positive bag and yij = P (+|Bij) denotes the probability of Bij being a positive
instance.

3.1 Problem Formulation

Given B and L, our goal is to maximize the following conditional probability:

P (L|B) =
N∏

i=1

P (li|Bi) =
N∏

i=1

P (+|Bi)
li(1 − P (+|Bi))

1−li (1)

In our method, we make a similar choice like many existing multiple instance learning
works, eg, IS-MIL [3], for modeling P (+|Bi) as follows:

P (+|Bi) = max
j

P (+|Bij) (2)

which means we select the instance with the maximum probability to be positive to
represent the bag. This is also consistent with the MIL assumption. It is also possible to
make other choices like a softmax [17] to combine instance labels.

As we discussed in section 2, traditional MIL algorithms do not explicitly address the
multi-target problem when modeling the probability of an instance being positive, ie,
P (+|Bij). For example, say the concept is ‘animal’ (Fig.1), the positive instance could
lie in a cluster that stands for ‘tiger’ where the bag should be labeled as positive. It is also
possible that the instance comes from an ‘elephant’ cluster which also indicates the bag
positive. In order to capture the multi-modal distribution, we encode a data-dependent
mixture model on P (+|Bij) assuming that there are M clusters that represent the M
targets in the feature space. A latent variable zm is introduced to denote the mth cluster
that the instance lies in. Then the probability of an instance to be positive can be written
as:

P (+|Bij) =

M∑

m=1

P (+|zm, Bij)P (zm|Bij) (3)

The first term P (+|zm, Bij) indicates the probability of Bij being positive within clus-
ter zm. We use a logistic regression model for the purpose, which is similar with the
logistic function chosen in [13] and [19]:

P (+|zm, Bij) =
1

1 + exp(−tTmBij)
(4)
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where tm is the model parameter in the mth cluster. The second term, P (zm|Bij),
in Eqn.3 indicates the probability that instance Bij lies in the cluster zm , which is
actually a multi-class distribution and we apply a multinomial logit model to capture
the underlying probability:

P (zm|Bij) =
exp(wT

mBij)∑M
r=1 exp(w

T
r Bij)

(5)

where wm is the model parameter. Both two parts in the mixture model are dependent
on the data instance Bij , which is more flexible to capture the dependencies among
instances. Let yijm = P (+|zm, Bij), θijm = P (zm|Bij). Note that

∑
m θijm = 1

for every instance. Substituting Eqn. 2,3,4 and 5 into Eqn.1 and taking the negative
logarithm on both sides we have:

E = −
N∑

i=1

(
(li ln(max

j

M∑

m=1

yijmθijm) + (1 − li) ln(1 −max
j

M∑

m=1

yijmθijm)

)
(6)

Maximizing the probability in Eqn.1 is equivalent to minimize Eqn.6. In order to avoid
overfitting, a regularizer is introduced on the model parameters, wm and tm. Then we
obtain the following optimization problem:

min
w,t

−
N∑

i=1

(
(li ln(max

j

M∑

m=1

yijmθijm) + (1− li) ln(1−max
j

M∑

m=1

yijmθijm)

)

+λ

M∑

m=1

||wm||2 + β

M∑

m=1

||tm||2

(7)

where λ and β are weight parameters. We now describe an iterative EM and gradient
descent algorithm for solving the above optimization problem.

3.2 Inference Algorithm

Directly minimizing Eqn.7 is intractable, as many terms are coupled together and a max
function makes it non-differentiable. The EM framework is a powerful tool in learning
mixture models [16]. In this section, we first derive an upper bound for Eqn.7 and then
an iterative EM scheme is developed to solve the optimization problem.

Inspired by IS-MIL [3] and MI regression [21], in the E-step of each iteration, we
remove the max function in Eqn.6 by choosing one instance per bag which has the
maximum probability to be positive based on the previous w and t as follows:

j∗ = argmax
j

M∑

m=1

yijmθijm (8)

Denote yim = yij∗m, θim = θij∗m since j∗ is fixed during the current iteration. Using
the fact

∑
m θim = 1, we can obtain 1−∑M

m=1 yimθim =
∑M

m=1 θim(1− yim). Then
Eqn.6 can be written as:
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E = −
N∑

i=1

(
li ln(

M∑

m=1

yimθim) + (1− li) ln(1−
M∑

m=1

yimθim)

)

= −
N∑

i=1

(
li ln(

M∑

m=1

θimyim) + (1− li) ln(

M∑

m=1

θim(1− yim))

) (9)

We now establish an upper bound of Eqn. 9 with Jensen’s inequality by observing that
logarithm function is a concave function and

∑
m θim = 1.

E ≤ −
N∑

i=1

M∑

m=1

θim(li ln yim + (1− li) ln(1− yim)) (10)

Denote γim = li ln yim + (1 − li) ln(1 − yim). In M-step, using a similar divide-
and-conquer strategy in [24], we minimize the above upper bound plus regularization
terms by splitting it into two slightly simpler sub-problems. The idea is that we first fix
θim = θpim that is obtained from the previous iteration, and then find t which optimize
the following sub-problem:

SP1 : −
N∑

i=1

M∑

m=1

θpimγim + β
M∑

m=1

||tm||2 (11)

Furthermore, we can fix yim = ypim that gives us γp
im and solve for the following

optimization problem for γ:

SP2 : −
N∑

i=1

M∑

m=1

θimγp
im + λ

M∑

m=1

||wm||2 (12)

SP1 is essentially a combination of weighted logistic regression and SP2 can be
viewed as a multi-class logistic regression. A direct gradient descent scheme could be
applied for solving these two sub-problems. We refer to chapter 4.3 in [22] for full de-
tails. By solving SP1 and SP2 iteratively in the M-step, the obtained optimal solutions
of w∗

m and t∗m are then substituted into Eqn.8 to update the instance chosen from each
bag.

3.3 Kernelization Framework

In this section, we will seek for optimal functions defined over the feature space on
the basis of a kernelized representation of two sub-problems, SP1 and SP2. Consider
SP1 first, since the objective function is point-wise, which only defines on the value of
tTmBij at the instances {Bij∗ : 1 <= i <= N}, based on the generalized representer
theorem [20], the minimizer exists and has a representation of the form:

tTmBi′ r =

N∑

i=1

αt
mik(Bi′ r, Bij∗) = kkkT

B
i
′
r
αt
mα
t
mα
t
m (13)
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where k(Bi′r, Bij) is a kernel function defined on the feature space of instance. A

Gaussian Kernel is defined as k(Bi′r, Bij) = exp(− ||B
i
′
r
−Bij ||2
2σ2 ), σ2 is the radius

parameter. Substituting Eqn.13 into SP1, we obtain:

SP1ker : −
M∑

m=1

((θl)
T
mKαt

m(θl)
T
mKαt

m(θl)
T
mKαt

m − θTmθ
T
mθ
T
m ln(1 + exp(Kαt

mKαt
mKαt
m))) + β

M∑

m=1

(αt
m)

T
Kαt

m(αt
m)

T
Kαt

m(αt
m)

T
Kαt

m (14)

whereθTmθ
T
mθ
T
m = [θp1m, . . . , θpNm],(αt

m)
T

(αt
m)

T
(αt

m)
T
= [αt

m1, . . . , α
t
mN ],(θl)Tm(θl)

T
m(θl)
T
m = [θp1ml1, . . . , θ

p
NmlN ]

andKKK is the Gram matrix with the kernel function defined above. To solve SP1ker, we
derive the partial derivative w.r.t.αt

mα
t
mα
t
m:

∂SP1ker
αt
mα
t
mα
t
m

= −(θl)TmK(θl)
T
mK(θl)
T
mK + θm

Tθm
Tθm
T exp(Kαt

mKαt
mKαt
m)

1 + exp(Kαt
mKαt
mKαt
m)

KKK + 2β(αt
m)

T
K(αt

m)
T
K(αt

m)
T
K (15)

With this obtained gradient, L-BFGS quasi-Newton method [18] is applied to solve this
optimization problem. Similar to the work [12] and [4], the minimizer of SP2 has a
form:

wT
mBi′r =

N∑

i=1

αw
mik(Bi′r, Bij∗) = kkkT

B
i
′
r
αw
mα
w
mα
w
m (16)

Substituting Eqn.16 into SP2, we obtain:

SP2ker : −
N∑

i=1

M∑

m=1

γp
im

exp(kBT
ij∗

αw
mkBT

ij∗
αw
mkBT

ij∗
αw
m)

∑
r exp(kBT

ij∗
αw
rkBT

ij∗
αw
rkBT

ij∗
αw
r )

+ λ

M∑

m=1

(αw
m)

T
Kαw

m(αw
m)

T
Kαw

m(αw
m)

T
Kαw

m (17)

The scheme for solve SP2ker is contained in [12], we refer to section 5 in [12] for
details on the optimization algorithm of the above multi-class kernel logistic regression.
The complete kernelization framework for MM-MIL is shown in Table 1. Note that in
the kernelization framework, the parameters are αtαtαt and αwαwαw, which are updated in the
M-step and are fixed and utilized to calculate yijm and θijm in the E-step.

3.4 Discussion

In the novel MM-MIL model, M is the number of latent clusters formed by the in-
stances. Different M will have different behavior. When M equals 1, which means we
assume all instance comes from one cluster, then Eqn.9 becomes:

E = −
N∑

i=1

(li ln yi + (1 − li) ln(1 − yi)) (18)

Now we discuss the relationship between our MM-MIL and some previous methods
when M = 1. If choosing ln yi to be a quadratic loss function, Eqn.18 is exactly the
EM-DD model. When modeling ln yi by a logistic loss function, the above model turns
out to be MI-Regression in work [21]. If putting a hinge loss function on ln yi, then
Eqn.18 could be optimized using a standard SVM framework in a similar way to MI-
SVM [1] and MILES [8]. With a value of M larger than 1, ie, the latent number of
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Table 1. Our full kernelized MM-MIL inference framework

Initialize M ,λ,β,σ and KKK
Initialize parameters αtαtαt and αwαwαw

Start EM iterations
E-step:

Calculate yijm based on Eqns.4 and 13
Calculate θijm based on Eqns.5 and 16
Select one instance per bag from Eqn.8

M-step:
Obtain αtαtαt by solving SP1ker
Obtain αwαwαw by solving SP2ker
Update θim and γim by Eqns.4,5,13 and 16
Repeat the above three steps until convergence

Update αtαtαt and αwαwαw repeat EM iteration until convergence

clusters increase, which makes our model more flexible in modeling the dependencies
between the instances. The desired value of M can be obtained by cross-validation
or utilizing some model selection criterions like the Bayesian Information Criterion.
This work uses cross validation and the empirical studies in section 4 show that robust
classification results can often be obtained with a reasonably wide range of M values.

4 Experimental Results

In this section, the MM-MIL is evaluated with three configurations of experiments.
First, MM-MIL is evaluated on several multi-target datasets to show the advantage of
data-dependent mixture model against several existing algorithms in this setting. Sec-
ond, MM-MIL is compared with existing MIL approaches in image classification on
the commonly used COREL and SIVAL benchmark datasets. Third, we provide more
experimental results to study the choice of M in terms of classification accuracy.

Each image is a bag and segments are instances. A set of low-level features is ex-
tracted from each segment to represent an instance, including color correlogram, color
moment, region size, wavelet texture and shape. Some model parameters in our exper-
iment are Gaussian Kernel radius σ2, and the weight parameters λ and β. We apply a
twofold cross-validation on the training set to obtain the optimal values. σ2 is chosen
from 1 to 15 where λ and β are selected from 0.01, 0.1, 1,10,100. The number of hidden
clusters M is picked in the same manner from 1 to 15. During each experiment, images
are randomly partitioned into two halves to form the training and the testing sets. Each
experiment is repeated 10 times and the average results are calculated.

4.1 Evaluation on Multi-Target Datasets

In order to illustrate the ability of MM-MIL in capturing the multi-modal concepts, we
merge several categories that form similar concepts together into a lager dataset. Within
our experiment, we construct three such merged data sets. The first merged data set, we
refer to MergeData1, is collected from the Tiger, Fox and Elephant data set [1] which
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Fig. 2. Examples of positive instances selected from different clusters (three different colors).
The left three columns are from MergeData2 and the right three columns are from MergeData3.
The first and third row contains twelve original images and the second and fourth row shows the
corresponding segmented regions.

form a general concept ‘animal’. The are 600 images in MergeData1 with 300 posi-
tive images and 300 negative ones. The second data set, MergeData2, is mixed from
three SIVAL categories, ie, DataMiningBook, RapBook and StripedNotebook, contain-
ing a common concept ‘book’. MergeData3 is combined by another three classes, Card-
boardBox, FabricSoftenerBox and GreenTeaBox, from SIVAL data set, where ‘box’ is
the ideal concept. Both MergeData2 and MergeData3 contain 360 images with half
positive images and half negative images, where the negative ones are randomly chosen
from other categories.

Various measurements can be applied for evaluating the performance. In our exper-
iments we will use AUC (area under the ROC curve), which is a widely used metric in
multi-instance learning tasks. The ROC curve shows the relationship between the true
positive rate and the false positive rate, and AUC measures the probability that a ran-
domly chosen positive image will be ranked higher than a randomly chosen negative
image [6].

We compare our MM-MIL with EM-DD, MI-SVM, mi-SVM, DD-SVM, MILES,
IS-MIL and MIForest. In order to obtain a full comparison, we also implement a gen-
erative multiple instance learning algorithm MC-EMDD for multiple concepts within
the EM-DD framework as we mentioned in section 2. In MC-EMDD, yij is modeled
by P (+|Bij) = maxt P (+t|Bij) where +t is the tth disjunctive concept [9]. The re-
sults are given in Table 2, which show that MM-MIL achieves the best results among
the key MIL methods on all three merged datasets. This is because all these merged
data sets strongly reflect the multi-target problem, and MM-MIL can effectively model
this underlying pattern with a data-dependent mixture. Although MC-EMDD also con-
siders multi-modal concepts, the results of MM-MIL are substantially better. Our hy-
pothesis is that MM-MIL benefits from both the smaller asymptotic error rate as a
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discriminative model and the data-dependent mixture modeling, while MC-EMDD is a
generative model and can be shown to use data-independent mixtures. Different from
previous methods, the proposed MM-MIL can not only label the regions (instances), but
also tell which cluster a positive instance lies in by computing the posterior probability
P (zm|Bij ,+). Figures 1 and 2 show several examples of positive instances selected
from different bags. As illustrated, the new MM-MIL algorithm successfully localizes
the target regions from each image and explicitly identifies the latent cluster the target
belongs to.

Table 2. Average AUC for merged datasets and benchmark datasets by different algorithms

Algorithms MergeData1 MergeData2 MergeData3 COREL SIVAL
EM-DD [10] 0.543 0.643 0.661 0.564 0.687
MC-EMDD 0.602 0.694 0.718 0.616 0.691
MI-SVM [1] 0.536 0.628 0.652 0.535 0.698
mi-SVM [1] 0.542 0.614 0.674 0.557 0.683
DD-SVM [7] 0.568 0.671 0.704 0.675 0.762
MILES [8] 0.574 0.682 0.726 0.683 0.814
MIForest [25] 0.669 0.675 0.731 0.671 0.784
IS-MIL [3] 0.661 0.745 0.768 0.697 0.805
MM-MIL 0.7130.7130.713 0.8150.8150.815 0.8540.8540.854 0.7900.7900.790 0.8190.8190.819

4.2 Evaluation on Benchmark Datasets

The COREL dataset contains 2000 images from 20 different categories, with 100 im-
ages in each category and the SIVAL benchmark includes 25 different image categories
with 60 images in each. COREL images contain various scenes and objects, eg, build-
ing, bus and elephant, where the target is typically close-ups and centered in the image.
SIVAL consists of images of single objects photographed under different backgrounds,
where objects may occur anywhere spatially in the image and also may be photographed
at a wide-angle or close up. These two benchmarks were used extensively in the pre-
vious MIL researches [7,8,6,5,14]. The COREL dataset contains diversified positive
instances while SIVAL dataset generally contains images with a single object in each
category.

MM-MIL is compared with EM-DD, MI-SVM, mi-SVM, DD-SVM, MILES, IS-
MIL and MIForest on these two benchmark datasets. M is chosen by cross-validation
as in section 4.1. The average AUC results are reported in Table 2 and it shows that MM-
MIL outperforms other methods on both COREL and SIVAL datasets. The AUC dif-
ference between MM-MIL and previous methods on SIVAL is relative small, whereas
the difference on COREL is larger. The reason is that for one category, the targets from
COREL images have very different features. For example, the ‘Dinosaur’ category con-
sists of various kinds of dinosaurs. While in SIVAL dataset, each category contains one
identical object with different backgrounds. Therefore, the AUC gap between MM-
MIL and existing method is larger on COREL than that on SIVAL images. The superior
performance of our method against existing discriminative MIL methods is mainly be-
cause: traditional MIL approaches are trying to learn one classifier for all instances/bags
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based on SVM framework, while our method first learn to separate instances into differ-
ent clusters, and then a classifier is trained inside each cluster. Therefore, our MM-MIL
method is more powerful in capturing the underlying patterns of the distribution of
instances.

4.3 Experiments with Different Number of Hidden Mixtures

Figure 3 illustrates how the performance of MM-MIL varies with different values of
M as the number of clusters. We plot the average AUC of MergeData1, MergeData2,
MergeData3, COREL and SIVAL against the number of clusters from 1 to 10. When M
equals 1, our proposed method degrades to a logistic regression model and has almost
the same power as existing discriminative algorithms. With increases of M , up to a
certain value, the performance saturates, which represents the true underlying pattern
in the dataset. As illustrated in Figure 3, the saturated M in MergeData1, MergeData2
and MergeData3 is around 3 which capture the true clusters in these datasets. The AUC
curve of COREL keeps increasing till M approaches 6, while the SIVAL curve is almost
flat since there is a single target in SIVAL dataset from each category. It can be seen
from Figure 3 that MM-MIL generates accurate results with a reasonably wide range of
M values.

Fig. 3. AUC curves on different number of clusters for MergeData, COREL and SIVAL

5 Conclusions

Multiple instance learning is an important research topic with many applications such
as image classification. Existing MIL methods do not explicitly address the multi-target
problem where the distributions of positive instances are likely to be multi-modal in
many practical applications. This paper presents a novel data-dependent mixture-model
approach in the discriminative framework for multiple instance learning, which explic-
itly addresses the multi-target problem. Furthermore, a kernelized framework is pro-
posed to allow efficient modeling within high dimensional feature space. Empirical
results in image classification have shown that the new method outperforms several
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existing MIL algorithms on several datasets with multi-target positive instances and is
consistently better than existing algorithms on benchmark datasets.

There are several possibilities to extend the research in this paper. For example, we
plan to investigate different methods of combining instance labels to bag labels. We
also plan to study the behavior of different types of kernels used in the classification.
Furthermore, we plan to explore a non-parametric Bayesian method for modeling mix-
tures.
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Abstract. Discriminative, or (structured) prediction, methods have pro-
ved effective for variety of problems in computer vision; a notable exam-
ple is 3D monocular pose estimation. All methods to date, however, relied
on an assumption that training (source) and test (target) data come from
the same underlying joint distribution. In many real cases, including stan-
dard datasets, this assumption is flawed. In presence of training set bias,
the learning results in a biased model whose performance degrades on
the (target) test set. Under the assumption of covariate shift we propose
an unsupervised domain adaptation approach to address this problem.
The approach takes the form of training instance re-weighting, where the
weights are assigned based on the ratio of training and test marginals
evaluated at the samples. Learning with the resulting weighted training
samples, alleviates the bias in the learned models. We show the efficacy
of our approach by proposing weighted variants of Kernel Regression
(KR) and Twin Gaussian Processes (TGP). We show that our weighted
variants outperform their un-weighted counterparts and improve on the
state-of-the-art performance in the public (HumanEva) dataset.

1 Introduction

Many problems in computer vision can be expressed in the form of (structured)
predictions of real-valued multivariate output, y ∈ R

dy , from a high-dimensional
multivariate input, x ∈ R

dx . In this paper, we focus on such models in the context
of articulated 3D pose estimation.

Articulated 3D pose estimation, particularly from monocular images and/or
video, is a challenging problem due to variability in person appearance, pose,
body shape, lighting, and motion. Despite these challenges, discriminative meth-
ods, have proved to be effective in recovering the 3D pose [1–17] in variety
of scenarios. In these methods the goal is to learn a direct (and often multi-
modal) mapping, f : R

dx → R
dy , from image features (e.g., bag-of-words of

HoG or SIFT descriptors) x ∈ R
dx to 3D poses y ∈ R

dy , typically expressed
as joint positions or angles. Probabilistic formulations do so by learning the
conditional distribution p(y|x) based on the training dataset of ntr image-pose
pairs – {(xtr

i ,y
tr
i )}ntr

i=1 (assumed to be independent and identically distributed
(i.i.d.) samples from the underlying joint density ptr(x,y)). A number of methods

A. Fitzgibbon et al. (Eds.): ECCV 2012, Part IV, LNCS 7575, pp. 674–687, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Covariate Shift Adaptation for Discriminative 3D Pose Estimation 675

[1–17] of this form have been proposed over the last decade that explore a gamut
of models, image features and learning architectures. However, in all cases it has
been assumed that the training and test distributions are one and the same, i.e.,
ptr(x,y) = pte(x,y), and hence the model learned using the training feature-
pose pairs can be directly applied to the test image features, xte, to infer the
output 3D pose yte.

The problem of dataset bias is starting to emerge as very prominent issue
in object categorization [18–22], where even large datasets (e.g., LabelMe or
ImageNet) have shown to exhibit significant (and often unexpected) biases [22]
in the form of lighting, object appearance and viewpoint to name a few. We
argue that similar issues exist in 3D pose estimation and need to be addressed if
one is to build a system that works outside of well calibrated laboratory setups
and datasets. The issues of dataset bias and overfitting to the training set, in 3D
pose estimation, are evident from poor generalization that one often sees when
applying such models to novel data. In addition, we argue that within dataset
bias is, at least in certain cases, as prevalent as the between dataset bias. While
in dataset creation an effort is typically made to make the training and test sets
as similar as possible, this is difficult to achieve precisely. For example, Urtasun
and Darrell in [16] show that performance decreases dramatically (to as low as
25% of the baseline) when training and test sequences are disjoint1. Note that
this is despite the fact that, even in the disjoint case, training and test sequences
were captured by the same static cameras and with no appreciable difference
in subject appearance and lighting. Similar degradation of performance is often
observed when a subject is not included in the training set, or when training
data comes from multiple subjects (and/or motions) and at the test time only
a single subject (and/or motion) is observed [5].

Unfortunately, the domain adaptation approaches proposed in [18–21] are
not adequate for addressing the bias in this case. First, they typically assume
categorical classification, as opposed to multi-valued (structured) predictions.
Second, and more importantly, they are supervised and assume existence of one
or more labeled instances from the test set to allow the transfer learning to
fine tune the source model to a target test set. In many scenarios, such as, 3D
pose estimation, obtaining 3D pose for a test image is infeasible. To this end,
we formulate a novel training instance re-weighting mechanism for addressing
the bias in (structured) prediction problems under the assumption of a covariate
shift [24] in an unsupervised manner; where we assume that p(y|x) = ptr(y|x) =
pte(y|x), but the marginals are different (ptr(x) �= pte(x)).

Contributions: The key contributions of this work is to shed some light on the
potential issues of dataset bias in the structured prediction problems, mainly,
3D pose estimation, and to propose a simple, yet effective, solution for handling
such bias through training instance re-weighting in a covariate shift adaptation
formulation. We illustrate the efficacy of our approach by proposing weighted

1 The baseline sampled training/test sets on per-frame bases from the full HumanEva-
I [23] dataset.
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variants of Kernel Regression and Twin Gaussian Processes and showing that
they outperform their non-weighted counterparts in various setups and with dif-
ferent image features. As a consequence we achieve state-of-the-art performance
on HumanEva-I dataset. The proposed training instance re-weighting, however,
is general and is amenable to most popular formulations (e.g., Linear Regres-
sion, Mixture of Experts, GPLVM, Kernel Information Embeddings), as well as
to other (structured) prediction problems in computer vision.

2 Related Work

Discriminative models are popular in vision for various tasks, including 3D hu-
man pose [1–17], human shape [25], hand pose [26, 27] and face pose [28] esti-
mation. The focus of this paper is on 3D pose estimation which we discuss next;
we also discuss transfer learning techniques that motivated our approach.

A variety of (structured) prediction methods have been proposed for 3D pose
estimation in the literature, including Nearest Neighbor regression (NN) [13],
linear Locally-Weighted Regression (LWR) [13], Linear Regression (LR) [2], Rel-
evance Vector Regression (RVR) [2], Kernel Regression (KR) [13] and Gaussian
Process Regression (GPR) [17]. The observation that the mapping from image
features to 3D pose is typically multi-modal, due to inherent imaging ambigu-
ities, has led to introduction of multi-modal alternatives and mixture models,
including Mixture of Linear Regressors (MoLR) [1], conditional Bayesian Mix-
ture of Experts (cMoE) [4, 8, 14, 15], Local GP Regression (LGPR) [16] and
Twin Gaussian Processes (TGP) [5], to name a few. Mixture models, such as
MoLR and cMoE, can produce multiple solutions (one for each expert) with
the hope that ambiguities can be resolved by an oracle [4, 8] or over time [14];
alternatively, optimization can be used to ascend to the most prominent mode
of the conditional distribution [5]. We leverage these prior methods and propose
an Importance Weighted Twin Gaussian Processes (IWTGP) model, based on
TGP [5], where importance weights adopt the model to the test data at hand in
an un-supervised fashion.

The methods outlined above differ significantly in learning and inference. The
issue of learning from large datasets was addressed in [4] using a forward feature
selection and bound optimization, allowing training of cMoE models from up-
ward of 100,000 input-output samples. A competing issue of learning from small
datasets has also received much attention, with most methods converging on in-
termediate shared low-dimensional latent representations (e.g., shared GPLVM
(sGPLVM) [6, 9] or shared Kernel Information Embeddings (sKIE) [12]) to ad-
dress overfitting with few input-output samples; some formulations were shown
to be amenable semi-supervised learning settings [8, 9, 12] where a large number
of unpaired marginal samples, which are drawn from the training distribution
(not test distribution), are available. We deal with training from large datasets,
as in [16] and [5], by first selecting an active set of input-output pairs (k Near-
est Neighbors to the test input feature vector x) and then learning an IWTGP
model for this reduced set. This results in a fixed model and inference complexity
regardless of training set size (apart from the initial kNN lookup).
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Our method is also motivated by recent works that study effects of dataset
biases in vision. The issue of dataset bias has recently emerged as a serious
problem in object categorization, with Torralba and Efros [22] showing that
significant biases exist in all current datasets. As a result, techniques for domain
adaptation in object categorization are starting to emerge [18–21]. However,
unlike our method, the focus of such techniques, so far, has been on a supervised
setting where one or more labeled examples are available at test time (in the
target domain). This allows the source models, obtained using training data, to
be adopted to the target test domain explicitly. A more recent variant by Kulis
et al. [19] introduces a method for doing this in a cross-domain setting, where the
representation of the features at train and test time may in itself be different. Our
setting, here, is substantially different, however, as we assume that no labeled
instances are present at test time. This makes the problem more challenging, but
at the same time more realistic for our target application, as it is unreasonable to
assume that accurate 3D pose can be annotated for monocular test images. This
setting is a special case of domain adaptation known as covariate shift [24], where
the training distribution ptr(x) and test distribution pte(x) over the inputs are
different (i.e., ptr(x) �= pte(x)) but the conditional distribution of output values,
p(y|x), remains same.

The influence of the covariate shift could be mitigated by re-weighting of the
log likelihood terms according to their importance within the test set. Since the
importance is generally unknown, the key issue of covariate shift adaptation is to
estimate these importance weights accurately. Following this idea, several direct
importance weight estimation methods have been recently proposed [29–32]. In
this paper, we adopt a novel importance weight estimation method called relative
unconstrained least-squares importance fitting (RuLSIF) [32], since it holds prac-
tical advantage over competing methods. Mainly, it is computationally efficient
and can naturally control the adaptiveness to the test distribution. In contrast
to [32], however, we adopt RuLSIF for (structured) real-valued predictions and
illustrate it’s efficacy on a real-world vision problem.

3 Covariate Shift in 3D Pose Estimation

At first glance, it may not be evident why dataset bias plays a role in discrimi-
native models, considering that discriminative methods are trying to model the
conditional distribution p(y|x) and it seems reasonable to assume that p(y|x) =
ptr(y|x) = pte(y|x) (even if ptr(x,y) �= pte(x,y)). In other words, how can the
fact that ptr(x) �= pte(x) effect the conditional distribution? The issue is that
the conditional models assume a certain functional form and typically choose
the optimal parameters (within this functional form) by minimizing the average
regression error (i.e., average discrepancy between the predicted and true values
on the training set). Intuitively this means that the learned model performs more
accurately in the denser regions than in the sparser regions of ptr(x), because the
denser regions dominate the average regression error. Hence, if ptr(x) �= pte(x),
the learned model may no longer be optimal for the test set.
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Fig. 1. Predicted outputs y by TGP (b) and IWTGP (c) under covariate shift in green.
(a) Samples from the model x = y+0.3 sin(2πy)+e where e ∼ N (0, 0.052); ◦ and × are
training and test samples respectively (for clarity we also illustrate marginals ptr(x)
and pte(x) in (b) and (c) bottom). Note that the input-output test samples are not
used in the training of TGP and the output test samples are not used in the training
of IWTGP, they are plotted in the figure for illustration purposes.

The formulation outlined in the previous paragraph is known in the transfer
learning community as one of covariate shift [24]. Under covariate shift setup it is
assumed that labeled training image-pose pairs {(xtr

i ,y
tr
i )}ntr

i=1 drawn i.i.d. from
p(y|x)ptr(x) and unlabeled test image features {xte

j }nte

j=1 drawn i.i.d. from pte(x)
(which is usually different from ptr(x)) are available. The goal of (structured)
prediction is to learn a mapping, f : Rdx → R

dy , which in the most general form
can be expressed as:

y = f(x) + e, (1)

where e ∈ R
dy is the noise. Under covariate shift this mapping is learned based on

a weighted set of training image-pose pairs {(wi,x
tr
i ,y

tr
i )}ntr

i=1. Re-weighting each
training instances by the ratio (a.k.a., importance weight), wi = w1(x

tr
i ; θ) =

pte(x
tr
i )

ptr(xtr
i )

, removes the training set bias producing an unbiased model under as-

sumption of covariate shift [24]. Note {xte
j }nte

j=1 are necessary to estimate the nu-
merator. The main challenge, however, is estimation of the importance weight;
we discuss this in detail in Section 4.

Before proceeding, however, we would like to illustrate the effect of covariate
shift on a synthetic toy example. In Figure 1, we illustrate the efficacy of our re-
weighting scheme under covariate shift by incorporating it into Twin Gaussian
Process (TGP); for details see Section 5.2. As can be seen, Importance Weighted
TGP (IWTGP) can predict the true test output well, while standard TGP fails
to predict the true test output, in particular, around x = 0.5. Note that in this
specific case the mean squared error (MSE) is improved by a large margin (from
0.038 to 0.002) by incorporating the importance weight into the learning.

4 Importance Weight Estimation

The importance weight may be computed by separately estimating densities
ptr(x) and pte(x) from training and test feature vectors and then taking their
ratio. However, density estimation is known to be a hard problem and taking
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the ratio of estimated densities tends to increase the estimation error [30]. Thus,
this two step approach is not appropriate in practice. We adopt a method that
allows us to directly learn the importance weight function without going through
density estimation. The method is called the relative unconstrained least-squares
importance fitting (RuLSIF) [32].

Let us first define the relative importance weight [32]:

wα(x) =
pte(x)

(1− α)pte(x) + αptr(x)
, 0 ≤ α ≤ 1, (2)

where α is the tuning parameter to control the adaptiveness to the test dis-
tribution. If α = 0 (i.e., w0(x) = 1) gives no adaptation, while α = 1 (i.e.,

w1(x) =
pte(x)
ptr(x)

) gives the full adaptation from ptr(x) to pte(x); 0 < α < 1 will

give an intermediate estimator2.
Let X tr(⊆ R

dx) be the domain of training image feature vector xtr and X te(⊆
R

dy) be the domain of test image feature vector xte. Suppose we are given ntr and
nte i.i.d. training and test image feature vectors, {xtr

i | xtr
i ∈ X tr, i = 1, . . . , ntr},

{xte
j | xte

j ∈ X te, j = 1, . . . , nte}, drawn from distributions with densities ptr(x)
and pte(x), respectively.

The final goal of relative importance weight estimation is to estimate the
relative importance weight based on the training and test image features. Let us
model the relative importance weight wα(x) by the following kernel model:

wα(x; θ) =

nte∑

�=1

θ� κ(x,x
te
� ) =

nte∑

�=1

θ� exp

(
−‖x− xte

� ‖2
2τ2

)
, (3)

where θ = (θ1, . . . , θnte)
� are parameters to be learned from data samples, �

denotes the transpose, κ(·, ·) is the Gaussian kernel and τ (> 0) is the kernel
bandwidth.

The parameters θ in the model wα(x; θ) are determined so that the following
expected squared-error J is minimized:

J(θ)=
1

2
Eqα(x)

[
(wα(x;θ)− wα(x))

2
]

=
(1− α)

2
Epte(x)

[
wα(x;θ)

2
]
+
α

2
Eptr(x)

[
wα(x;θ)

2
]−Epte(x)[wα(x; θ)]+Const.,

where qα(x) = (1−α)pte(x)+αptr(x), and we used wα(x)qα(x) = pte(x) in the
third term (see supplemental materials for derivation3).

2 α = 1 (i.e., w1(x) =
pte(x)
ptr(x)

) gives the full adaptation from ptr(x) to pte(x). However,

since the importance weight w1(x) = pte(x)
ptr(x)

can diverge to infinity under a rather

simple setting, e.g., when the ratio of two Gaussian function is considered [33], the

estimation of w1(x) = pte(x)
ptr(x)

is unstable and the covariate shift adaptation tends

to be unstable [24]. To cope with this instability issue, setting α to 0 < α < 1 is
practically useful for stabilizing the covariate shift adaptation, even though it cannot
give an unbiased model under covariate shift [32].

3 http://www.cs.brown.edu/~ls/Publications/eccv2012_supplemental.pdf

http://www.cs.brown.edu/~ls/Publications/eccv2012_supplemental.pdf
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Approximating the expectations by empirical averages, we obtain the follow-
ing optimization problem:

θ̂ = argmin
θ∈Rnte

[
1

2
θ�Ĥθ − ĥ

�
θ +

ν

2
θ�θ

]
, (4)

where νθ�θ/2 is included to avoid overfitting, and ν (≥ 0) denotes the regular-

ization parameter. Ĥ is the nte × nte matrix with the (�, �′)-th element

Ĥ�,�′ =
(1− α)

nte

nte∑

i=1

κ(xte
i ,xte

� )κ(x
te
i ,xte

�′ ) +
α

ntr

ntr∑

j=1

κ(xtr
j ,x

te
� )κ(x

tr
j ,x

te
�′ );

ĥ is the nte-dimensional vector with the �-th element ĥ� =
1

nte

∑nte

i=1 κ(x
te
i ,x

te
� ).

Then the solution to Eq. (4) can be analytically obtained as

θ̂ = (Ĥ + νI)−1ĥ, (5)

where I is the nte × nte-dimensional identity matrix.
The performance of RuLSIF depends on the choice of the kernel bandwidth τ

and the regularization parameter ν. Model selection of RuLSIF is possible based
on cross-validation with respect to the squared-error criterion J [32].

Computational Complexity: Learning RuLSIF has complexity O(n3
te) due to

the matrix inversion. However, when the number of test data is large, we may
reduce the number of kernels in Eq.(3) to bte(< nte). Then, the inverse matrix
in Eq.(5) can be efficiently computed with complexity O(b3te).

5 Importance Weighted 3D Human Pose Estimation

Given the derivation of the importance weight estimator, in previous section,
we now formulate two regression-based methods that take these weights into ac-
count. We start by formulating ImportanceWeighted Kernel Regression (IWKR),
which has a particularly simple form and allows learning of non-linear mapping
between the image features and the 3D pose. IWKR, similar to standard KR,
is well suited for unimodal predictions. However, in 3D pose estimation, the
mapping from image features to 3D pose has been shown to be multi-modal,
due to the inherent imaging ambiguities [14]. To address this, we also introduce
an Importance Weighted Twin Gaussian Process model, based on [5], which in
addition imposes structure on the output 3D poses. As a result, IWTGP is able
to estimate the most prominent mode, corresponding to the most likely 3D pose,
as opposed to averaging across modes as is the case with KR and IWKR.

5.1 Importance Weighted Kernel Regression

In kernel regression vector-valued regression function f , in Eq.(1), takes the
following form:

f(x;A) = A�k(x), (6)



Covariate Shift Adaptation for Discriminative 3D Pose Estimation 681

where A = [α1, . . . ,αdy ] ∈ R
(ntr+1)×dy is a model parameter, dy is the di-

mensionality of pose y, k(x) = [1,K(x,xtr
1 ),K(x,xtr

2 ), . . . ,K(x,xtr
ntr

)]�, and
K(x,x′) is a kernel function. We use the Gaussian kernel [34] in our experi-

ments: K(x,x′) = exp
(
− ‖x−x′‖2

2ρ2
x

)
, where ρx is the kernel bandwidth.

Under covariate shift setup, the use of relative importance weighted risk min-
imization was shown to be useful for adaptation from ptr(x) to pte(x) [32]:

min
A

⎡

⎣
ntr∑

i=1

wα(x
tr
i )‖ytr

i −A�k(xtr
i )‖2 +

γ

2

dy∑

j=1

‖αj‖2
⎤

⎦ , (7)

where wα(x) is the relative importance weight in Eq.(2), α is the tuning parame-
ter to control the adaptiveness to the test distribution, and γ ≥ 0 is the regular-
ization parameter; we call this importance weighted kernel regression (IWKR).

The solution to Eq.(7) can be obtained analytically by

Â = (K̃
tr
W (K̃

tr
)� + γI)K̃

tr
W (Y tr)�, (8)

whereK̃
tr
= [k(xtr

1 ), . . . ,k(x
tr
ntr

)] ∈ R
(ntr+1)×ntr ,Y tr = [ytr

1 , . . . ,y
tr
ntr

] ∈ R
dy×ntr ,

andW is the ntr×ntr-dimensional diagonalmatrix with (i, i)-th diagonal element
defined byW i,i = wα(x

tr
i ).

The above IWKR method includes two tuning parameters: kernel parameter
ρ and the regularization parameter γ. These parameters can be selected using
importance-weighted variant of cross-validation (IWCV) [35].

Computational Complexity: Learning IWKR has complexity O((ntr + 1)3).
Similar to RuLSIF, when the number of training data is large, we may reduce the
number of kernels in Eq.(6) to btr(< ntr+1). Then, the inverse matrix in Eq.(8)
can be efficiently computed with complexity O(b3tr). Since IWKR also includes
the estimation of relative importance weight and its complexity is O(b3te). Thus,
the complexity of IWKR is O(b3tr) +O(b3te).

5.2 Importance Weighted Twin Gaussian Process

We now propose the importance-weighted variant of twin Gaussian processes
[5] called IWTGP. The benefit of IWTGP over IWKR is that it can naturally
take into account the multi-modality present in the human pose estimation, by
incorporating structure over the output poses into the regression.

The Gaussian Process (GP) regression assumes a linear model in the function
space with Gaussian noise for the k-th dimension (e.g., joint position):

yk = fk(x) + ek, ek ∼ N (0, σ2), fk(x) = β�
k φ(x), (9)

where there is a zero mean Gaussian prior over the parameters βk ∼ N (0p,Σp);
0p is the p-dimensional zero vector and Σp is the p-dimensional covariance ma-
trix, φ(x) is the function which maps a dx dimensional input vector x into
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an p dimensional feature space. To make prediction for the test sample, one
needs to average over all possible parameter values, weighted by their posterior,
resulting in a Gaussian predictive distribution. GP has similar problems with
multi-modality as KR. To address this limitation, TGP encodes the relations
between both inputs and outputs using GP priors. This is achieved by minimiz-
ing the Kullback-Leibler divergence between the marginal GP of outputs (poses)
and observations (features); we refer the reader to [5] for derivation.

As a result, the estimated pose in TGP is given as the solution of the following
optimization problem [5]:

ŷ=argmin
y∈R

dy

[
L(y,y)−2l(y)�u−η log

[
L(y,y)−l(y)�(L+λyI)

−1l(y)
]]
, (10)

where u = (K + λxI)
−1k(x), η = K(x,x) − k(x)�u, K(x,x′) =

exp
(
− ‖x−x′‖2

2ρ2
x

)
and L(y,y′) = exp

(
− ‖y−y′‖2

2ρ2
y

)
are the Gaussian kernel

function for image feature vector x and pose feature vector y, ρx and
ρy are the kernel bandwidth, l(y) = [L(y,y1), . . . , L(y,yntr

)]�, k(x) =
[K(x,x1), . . . ,K(x,xntr)]

�, and λy and λx are regularization parameters to
avoid overfitting. This optimization problem can be solved using a second order,
BFGS quasi-Newton optimizer with cubic polynomial line search for optimal
step size selection [5].

Under covariate shift, the likelihood of Gaussian Process can be given as [24]

ntr∏

i=1

p(ytr
i |xtr

i ,β)wα(xtr
i ) ∝

ntr∏

i=1

1√
2πσ

exp

⎛

⎝−‖w
1
2
α (xtr

i )ytr
i − w

1
2
α (xtr

i )φ(xtr
i )�β‖2

2σ2

⎞

⎠ , (11)

where wα(x) is the relative importance weight function. Note, if we consider the
MAP estimate for Eq. (11) with a prior distribution over β, then we can show
that IWKR and Eq. (11) are one and the same.

Thus, the GP regression model under covariate shift can be represented by

w
1
2
α (x)yk = w

1
2
α (x)φ(x)

�βk + ek, ek ∼ N (0, σ2). (12)

That is, to achieve covariate shift adaptation in TGP, we need to simply re-

weight each input and output by w
1
2
α (x). Therefore, the output of the importance

weighted TGP (IWTGP) is given by

ŷ = argmin
y∈R

dy

[
L(y,y)− 2l(y)�uw

−ηw log
[
L(y,y)−l(y)�W

1
2 (W

1
2LW

1
2 +λyI)

−1W
1
2 l(y)

]]
, (13)

where uw = W
1
2 (W

1
2KW

1
2 + λxI)

−1W
1
2k(x), ηw = K(x,x) − k(x)�uw.

IWTGP can also be solved using a second order, BFGS quasi-Newton optimizer
with cubic polynomial line search for optimal step size selection. We ignore the
weighting for certain terms that are independent of y, and hence do not effect
the optimization, for simplicity.
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Computational Complexity: IWTGP requires matrix inversions of ntr × ntr

matrices, the complexity of solving Eq.(13) is O(n3
tr), which is impractical when

ntr is large. To deal with this issue, we first find the M nearest neighbors of a
test input and estimate IWTGP on the reduced set of training paired samples.
Then, the inverse matrix in Eq.(13) can be efficiently computed with complexity
O(M3). IWTGP also includes the estimation of relative importance weight, thus
the total complexity of IWTGP is O(M3) +O(b3te).

5.3 Importance Weighting for Other Methods

The proposed weighting methodology is amenable to most popular formulations
(e.g., Linear Regression, Mixture of Experts (MoE), GPLVM, KIE), as well as
to other (structured) prediction problems in computer vision. For example, in
Linear Regression importance weighting can be incorporate via Weighted Lin-
ear Regression. Incorporating importance weighting into MoE would amount
to secondary weighting on top of expert assignment; for MoE models with soft
expert assignments this would require very minor changes to the learning proce-
dure. Latent variants like GPLVM and KIE can also make use of the importance
weighting, for example, in KIE the importance weighted version of Mutual In-
formation can be used to learn an IWKIE model.

6 Experiments

We compare the performance of the proposed methods IWKR and IWTGP with
their un-weighted counterparts, KR [1] and TGP (we use public implementation
from [5]), and weighted k-Nearest Neighbors approach (WkNN) [13]. We report
performance on two publicly available datasets: Poser [2] and HumanEva-I [23].

Parameters: For Poser dataset, we experimentally (through grid search) set
the TGP and IWTGP parameters to λx = λy = 10−4, 2ρ2x = 5, and 2ρ2y = 5000.
For HumanEva-I dataset, we used the original parameter setting of [5]: λx =
λy = 10−3, 2ρ2x = 5, and 2ρ2y = 5× 105. The number of M nearest neighbors in
TGP and IWTGP is set to min(800, ntr). In RuLSIF, we set the α = 0.5 and
bte = min(500, nte). For KR and IWKR, we set btr = min(500, ntr), and all the
parameters are chosen by cross-validation (CV) and importance weighted CV; in
WkNN we set the number of nearest neighbors to 25. In addition, instead of using
the entire test set to adopt the model, we use a temporal window of 20 frames
(feature vectors) around the current test sample to compute the importance
weight for IWTGP and IWKR. This is more efficient and is also more realistic,
as one will typically not see the full set of test examples all at once.

Computational Speed: The overhead for importance weighting is small com-
pared to the base methods; for example, IWTGP is about 4% slower than TGP
when entire training set is used. Moreover, experimentally we observed that
IWTGP can be faster than TGP with few samples (see supplemental materi-
als). We attribute this to the fact that weighting in TGP can lead to an easier
optimization problem, offsetting the coast of the weight estimation itself.



684 M. Yamada, L. Sigal, and M. Raptis

Table 1. Performance of IWKR and IWTGP on Poser dataset

IWTGP TGP IWKR KR NN [12] GPLVM [6] sKIE [12]

Error (deg) 5.75 5.83 5.72 6.04 6.87 6.50 5.77/5.95

6.1 Poser Dataset

Poser dataset [2] consists of 1927 training and 418 test images, which are syn-
thetically generated, using Poser software package, from motion capture (Mocap)
data (54 joint angles per frame). The image features, corresponding to bag-of-
words representation with silhouette-based shape context features, and error
metric are provided with the dataset [2]. Since the Poser data is synthetically
generated and was tuned to unimodal predictions [2], there exists only a small
bias between training and test images/features.

Error Metric: The proposed error measure amounts to the root mean
square error (in degrees), averaged over all joints angles, and is given by:

Errorpose(ŷ,y
∗) = 1

54

∑54
m=1 ‖(ŷ(m) − y∗(m)) mod 360◦‖, where ŷ ∈ R

54 is
an estimated pose vector, and y∗ ∈ R

54 is a true pose vector.

Performance: Table 1 shows the pose estimation result averaged across the test
set. Proposed IWKR and IWTGP outperform their un-weighted counterparts,
reducing error by 5% and 2% respectively. IWKR and IWTGP also compare
favorably with other existing methods reported elsewhere. It is worth mentioning
that Shared KIE required a local model computed using a small neighborhood of
25 training samples to achieve comparable performance (with the global model
the performance drops from 5.77 to 5.95 degrees on average). In contrast, the
IWKR and IWTGP models are more global, since IWTGP takes 800 neighbors
into account and IWKR uses all the training data4.

6.2 HumanEva-I Dataset

HumanEva-I contains synchronized multi-view video and Mocap data. It con-
sists of 3 subjects performing multiple activities: walking, jogging, boxing, throw
and catch, and gesturing. We use the histogram of oriented gradient (HoG) fea-
tures (∈ R

270) proposed in [5] (we refer to [5] for details5). We use training and
validations sub-sets of HumanEva-I and only utilize data from 3 color cam-
eras with a total of 9630 image-pose frames for each camera. This is consistent
with experiments in [5]. We use half of the data (4815 frames) for training and
half (4815 frames) for testing; the test and training data is disjoint. Where fewer,
e.g., ntr = 500, training samples are necessary (as in Figure 2) we randomly sub-
sample ntr from the full training set; to alleviate the sampling bias we sample
10 times and average the resulting errors.

The bias in pose estimation can come in (at least) two forms: (1) the training
data may simply be biased and, for example, not contain the subject present in

4 While all the data is used it is dynamically re-weighed based on the importance
weight so not all of it is active at all times.

5 We thank the authors for making their features publicly available.
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Table 2. Performance on the entire HumanEva-I dataset averaged over all motions

Subject
Transfer Type Train Test IWTGP TGP IWKR KR WkNN

S1,S2,S3 S1 54.2 55.1 71.1 80.1 70.2
Selection Bias S1,S2,S3 S2 52.5 53.2 67.6 75.5 71.5

(C1) S1,S2,S3 S3 57.5 57.9 75.1 86.0 72.5

S1,S2,S3 S1 81.9 83.9 101.9 119.9 94.3
Selection Bias S1,S2,S3 S2 72.7 75.1 102.7 120.0 100.7

(C1-3) S1,S2,S3 S3 77.2 86.1 111.7 134.8 110.4

S2,S3 S1 126.2 126.9 137.3 168.4 128.2
Subject Transfer S1,S3 S2 116.7 116.6 130.5 141.5 130.6

(C1) S1,S2 S3 140.0 159.7 168.4 209.1 145.5

the test set (we call this subject transfer), or (2) the training data may contain
data from variety of subjects, motions and cameras, where as at test time only a
sub-set of that data is presented at any given time (we call this selection bias). To
evaluate our methods under such scenarios we propose 3 experiments of interest:

Selection bias (C1): Only camera 1 data is used for training and testing.
Selection bias (C1-3): All camera data is used for training and testing (3 ×

4815 = 14445 frames of training and 14445 frames of test data).
Subject transfer (C1): Test subject is not included in training phase.

Error metric: In HumanEva-I pose is encoded by (20) 3D joint markers de-
fined relative to the ‘torsoDistal’ joint in camera-centric coordinate frame, so y =
[y(1), . . . ,y(20)]� ∈ R

60 and y(i) ∈ R
3. Error (in mm) for each pose is measured

as average Euclidean distance: Errorpose(ŷ,y
∗) = 1

20

∑20
m=1 ‖ŷ(m) − y∗(m)‖,

where ŷ is an estimated pose vector, and y∗ is a true pose vector.

Performance: Figure 2 shows the average mean pose estimation error as a
function of training set size (averaged over all motions and 10 runs). The graphs
clearly show that IWTGP and IWKR outperform their un-weighted counter-
parts. Moreover, IWTGP overall compares favorably with existing methods in
terms of the overall performance. Table 2 shows performance using the entire
training set. IWTGP tends to have smaller error compared to all other methods.
Note that both the weighted and their un-weighted counterparts use the same
parameters and inference procedures; the key difference is in the interest weight-
ing that alters the learning. Moreover, paired t-tests were conducted for all ex-
periments, we observe that about 80% cases the importance weighted methods,
IWTGP and IWKR, statistically outperform their non-weighted counterparts at
p=0.05 (5%) significance. In certain settings, we see more drastic improvements,
e.g., 14% reduction in error in subject transfer with S3 using IWTGP (and 19%
using IWKR), or over 10% reduction in error in selection bias (C1-3) with S3. We
also see significant improvements on certain specific motions (see supplementary
material), where, for example, on gesture motion under selection bias we observe
improvement by 22.6 mm (reducing error by 20%) or under subject transfer by
64.5 mm (reducing error by 33%).
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Fig. 2. Performance on HumanEva-I dataset illustrated as a function of the number of
training samples; we averaged the error over all motions for each subject. Comparable
methods according to the paired t-test at the significance level 5% are specified by ‘◦’.

Conclusions: We propose a simple, yet effective, unsupervised method for ad-
dressing training set bias through covariate shift adaptation in (structured) pre-
diction problems. As part of our formulation, we also introduce importance
weighted variants of kernel regression (IWKR) and twin Gaussian processes
(IWTGP) which produce state-of-the-art 3D pose estimation performance on
standard datasets (HumanEva-I and Poser [2]). We view our approach as the
first step towards eliminating bias in structured prediction problems in vision.
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Abstract. Recent progress on Automatic Image Annotation (AIA) is
achieved by either exploiting low level visual features or high level se-
mantic context. Integrating these two paradigms to further leverage the
performance of AIA is promising. However, very few previous works have
studied this issue in a unified framework. In this paper, we propose a
unified model based on Conditional Random Fields (CRF), which es-
tablishes tight interaction between visual features and semantic context.
In particular, Kernelized Logistic Regression (KLR) with multiple visual
distance learning is embedded into the CRF framework. We introduce L1

and L2 regularization terms into the unified learning process for the dis-
tance learning and the parameters penalty respectively. The experiments
are conducted on two benchmarks: Corel and TRECVID-2005 data sets
for evaluation. The experimental results show that, compared with the
state-of-the-art methods, the unified model achieves significant improve-
ment on annotation performance and shows more robustness with in-
creasing number of various visual features.

Keywords: Automatic Image Annotation, multiple distance learning,
semantic context, alternating optimization.

1 Introduction

Automatic Image Annotation (AIA) has been an appealing research topic for
almost a decade. The challenge originates from the so called “semantic gap”,
namely the mismatch between image semantics and visual perception. A great
deal of research efforts have been devoted to bridge the semantic gap. Both low
level visual features and high level semantics are explored in previous literatures
[1–10].

In recent years, most impressive works of AIA can be categorized into two gen-
eral classes. The first class is exploring visual feature learning techniques, such
as feature selection [11], which combines multiple visual features to enhance
annotation performance. TagProp [12] obtains competitive result by using mul-
tiple similarity measurements learning. The second class is the semantic context
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Fig. 1. Illustrative images with annotations
for semantic context from Corel dataset

Fig. 2. Framework of the proposed Ker-
nelized Conditional Random Fields

modeling technique [13–16]. In the scenario of AIA, semantic context refers to
contextual relationships between concepts that co-occur frequently. For exam-
ple, “bridge” and “water” often appear in the same image. Intuitively, for images
annotated with “bridge”, it is more likely to observe “water”. Some illustrative
images with human annotated keywords from [1] are presented in Figure 1.
Probabilistic graphical model is adopted for semantic context modeling to boost
the performance of AIA [13]. Integrating these two paradigms to further lever-
age the performance of AIA seems very promising. However, very few previous
works have studied this issue in a unified framework.

In this paper, we propose the Kernelized Conditional Random Fields (KCRF),
a unified model that integrates semantic context modeling and sparse multiple
distance learning with tight interaction between them. To the best of our knowl-
edge, our work is the first attempt to integrate these two paradigms in a unified
framework for AIA. Within the unified framework, semantic contextual infor-
mation is directly utilized in learning the optimal multiple feature combination,
while at the same time the visual feature combination yields powerful support
for modeling the semantic context.

Our KCRF model is built on semantic level to capture the relationships be-
tween semantic keywords. Figure 2 illustrates the graph structure and frame-
work of our model. In the graph model, sites (nodes) represent concepts and
edges refer to the interactions between them. To explore multiple visual feature
learning, we introduce KLR [17] into the site potential. Our kernel function is
based on a weighted sum of distances of multiple visual features. The parame-
ter set of our unified model is made up of distance weights (visual parameters)
and CRF parameters (semantic context parameters). Different from previous
layered approaches [11, 18] that separate feature learning from image labeling,
our multiple distance learning and CRF parameter estimation are conducted
simultaneously subjecting to one unified object function, resulting in close inter-
actions between the two paradigms. A pairwise L1 and L2 regularization term is
introduced into the unified object function. Specifically, we impose L1 regulariza-
tion on the distance weight vector to obtain sparse distance combination, which
makes our model more robust when dealing with increasing number of visual fea-
tures. On the other hand, the semantic context parameters are penalized by L2
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regularization. We use an alternating optimization approach to estimate the op-
timal distance weights and CRF parameters iteratively.

To evaluate our model, we conduct experiments on Corel [1] and TRECVID-
2005 datasets. Comparing with the state-of-the-art approaches, such as non-
contextual methods and semantic context modeling methods, our model achieves
the best performance on these two datasets with significant improvement over the
others. Particularly, the experimental results show that, with increasing number
of visual features, our model is more robust.

The rest of the paper is organized as follows: Section 2 reviews some related
work. Section 3 presents the model setting. Section 4 and Section 5 detail the
alternating parameter estimation and model inference respectively. Section 6
presents the experiment setup, and Section 7 provides the experimental results.
Section 8 concludes the paper.

2 Related Work

Most of the previous AIA work[19, 2, 3] can be considered as propagating seman-
tic concepts from training images to unlabeled images based on visual similarity.
This idea is further developed by JEC [11] and TagProp [12]. Both methods fo-
cus on exploring optimal combination of multiple distances based on K-nearest
neighbor (KNN) technique. In [11], the authors also tried to introduce L1 regular-
ization for feature selection in logistic regression. However, due to the separation
of feature learning from image labeling, the logistic regression model does not
outperform the JEC model using equally weighted combination of various dis-
tances. Subsequently, TagProp [12] adopts metric learning in KNN and gives out
more competitive result.

Another remarkable technique is semantic context modeling. Feng and Man-
matha [15] use Markov Random Fields (MRF) and propose a framework for im-
age and video retrieval using discrete image features. Xiang et al. [13] adapted
MRF for semantic context modeling in AIA. Song et al. [16] propose the Con-
textualized Support Vector Machine, which employs contextual information to
adjust the classification hyperplane.

Considering the effectiveness of semantic context modeling technique and op-
timal combination of visual features, it is a rational attempt to integrate them
into one consistent framework to achieve better performance. MMCRF [18] tries
to make use of multiple visual features under Conditional Random Fields frame-
work, but the feature weights are learned independently from the image labeling.
Wang et al. [20] propose a Bi-relational Graph (BG) that combines the data
graph connecting images and the label graph connecting concepts through la-
bel assignments. Different from previous work, our model integrates semantic
context modeling and sparse multiple distance learning by using Kernel Logistic
Regression in CRF framework. Rather than resorting to a layered approach as
in [11], our sparse multiple distance learning and CRF parameter estimation are
conducted simultaneously subjecting to one unified object function.
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3 Kernelized Conditional Random Fields

In this section we present our Kernelized Conditional Random Fields model. De-
tailed description of the kernelized site potential and edge potential is described
subsequently.

3.1 General Conditional Random Fields

Conditional Random Fields (CRF) [21] uses discriminative models for the nodes
and the interactions between nodes. Let G = (S,E) be a graph with site set
S = {1, 2, ...,m} and edge set E. Let y = {y1, y2, ..., ym} be a set of random
variables indexed by S, and x ∈ χ be the feature vector of observed data.
Then (y,x) is said to be a conditional random field if, when conditioned on x,
the random variable yi obey the Markov property with respect to the graph:
P (yi|x,yS−{i}) = P (yi|x,yNi ), where S−{i} is the set of all nodes in G except
node i, Ni is the set of neighbors of node i in G, and yΩ represents the set of
labels on nodes in the set Ω. The conditional distribution over the labels y given
x is defined as,

P (y|x) = 1

Z
exp

(∑
i∈S

A(yi,x) +
∑
i∈S

∑
j∈Ni

I(yi, yj,x)

)
, (1)

where Z is a normalizing constant called the partition function, and -A and -I
are the site potential and edge potential respectively. Notice that in this paper
we only consider cliques of order up to two.

3.2 Kernelized Site Potential

AIA can be considered as a binary classification problem on each site of the
CRF model, i.e., yi ∈ {−1,+1} represents the absence/presence of the ith con-
cept. Hence we model site potential using a local discriminative classifier which
outputs the probability of label yi conditioned on the observation x on site i
ignoring its neighboring sites. In order to facilitate the use of multiple image
features within the context modeling framework, we employ kernelized logis-
tic regression (KLR) [17], the nonlinear kernelized variant of logistic regression,
to model the local class posterior. Given training set T = {(xn,yn)}Nn=1, the
posterior of label yi is defined as,

P (yi|x,αi) =
1

1 + exp(−yif(x,αi))
, (2)

where

f(x,αi) =

N∑
m=1

αm
i K(x,xm), (3)

N is the number of training images, αi = (α1
i , α

2
i , ..., α

N
i )T is the parameter for

site i and kernelK is the dot product matrix in a feature space. The construction
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of kernel will be explained in section 3.4. Finally the site potential is modeled
as,

A(yi,x) = uilog(P (yi|x,αi)) = uilog(
1

1 + exp(−yif(x,αi))
), (4)

where ui is the parameter controlling the contribution of site potential to the
overall conditional distribution. Larger value of ui indicates stronger effect of
site potential. We use a spherical Gaussian prior with expectation value 1 for ui,
which will be described later. Note that the logarithm transformation ensures
that our model degenerates into KLR if ui = 1 and the edge potential in Eq.1
is set to zero.

3.3 Edge Potential

Using a linear discriminative model, we define edge potential as,

I(yi, yj ,x) = vijyiyjP (yj|x), (5)

where vij is the parameter on edge (i, j) to be estimated, and P (yj |x) is the
conditional probability of label yj given observation x. The edge potential is
designed to favor identical labels at a pair of sites. When vij > 0, equal values
of yi and yj will raise the conditional probability Eq.1 with confidence P (yj |x),
while different value will cause punishment. In our experiment we use kernel
logistic regression [17] described in Section 3.2 to generate P (yj |x) before the
training procedure of our model. For each label yj(j = 1, ...,m), a KLR model
is learned and then used to obtain P (yj |x). Hence, P (yj |x) can be regarded as
a constant in Eq.5.

3.4 Kernel Construction

Through the use of Kernel our model is able to utilize multiple visual features
yielding stronger support to capture semantics. Specifically, a Gaussian radial
basis kernel is used on distance metric,

K(x,x′) = exp(−dw(x,x′)/2σ2), (6)

where σ is the width of the Gaussian kernel. The distance metric dw(x,x
′) is

defined as a weighted sum of distances of image x and x′ on different features,

dw(x,x
′) =

T∑
t=1

wtdt(x,x
′), (7)

where T denotes the number of features, dt(x,x
′) is the distance on the tth

feature, andw = (w1, w2, ..., wT ) is the feature weight vector. A larger value of wt

indicates higher importance of the corresponding feature, whereas a non-relevant
feature will be assigned with zero value. As a result, the whole parameter set of
our unified model consists of two parts, i.e., the conventional CRF parameters
{(αi, ui, vij)j∈Ni}i∈S on sites and edges, and the feature weight vector w.
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3.5 Concept Graph

The concept graph of our model is constructed based on concept co-occurrence
in the training set T = {(xn,yn)}Nn=1, where xn denotes the nth image, yn =
(yn1 , y

n
2 , ..., y

n
m) is the corresponding label vector with yni ∈ {−1,+1} indicating

the absence or presence of the ith concept, and N is the size of the training set. If
two keywords appear in the same training image, they are treated as associated,
and an edge between them is added to the graph G = (S,E). Accordingly, the
neighborhood of site i is defined as Ni = {j|j ∈ S ∧ (i, j) ∈ E}. We extract
a subgraph from G for every site to capture the semantic relationship more
precisely. The subgraph contains only the site in concern and its neighboring
sites as well as all the edges connecting them.

4 Alternating Parameter Estimation

Maximum likelihood is a widely used approach for CRF parameter estimation.
But the computation of the partition function in Eq.1 is a generally NP-hard
problem. To avoid this, we resort to the pseudo-likelihood scheme, which uses a
factored approximation on every site such that

P (y|x) ≈
∏
i∈S

P (yi|yNi ,x) =
∏
i∈S

1

Zi
exp

(
A(yi,x) +

∑
j∈Ni

I(yi, yj,x)

)
. (8)

Then the negative log pseudo-likelihood on the training set T is defined as,

L=−
N∑

n=1

∑
i∈S

{
uiF (yni ,x

n,αi)+
∑
j∈Ni

vijy
n
i y

n
j P (ynj |xn)− logZn

i

}
+RCRF +Rw,

(9)

where F (yni ,x
n,αi) is defined as,

F (yni ,x
n,αi) = log(1/{1 + exp(−f(xn,αi)y

n
i )}), (10)

where f(xn,αi) is defined in Eq.3. The partition function for site i on the nth

observation is,

Zn
i =

∑
yn
i

z(yni ,x
n,αi), (11)

where z(yni ,x
n,αi) is defined as

z(yni ,x
n,αi) = exp{uiF (yni ,x

n,αi) +
∑
j∈Ni

vijy
n
i y

n
j P (ynj |xn)}. (12)

Rw and RCRF are pairwise regularization terms on feature weight w and the
CRF parameters {(αi, ui, vij)j∈Ni}i∈S respectively. As these two parts of pa-
rameters have different effect on our model, we impose different kinds of penalty
on them. Specifically, to prevent our AIA model from overfitting, we use L2

regularization for RCRF . L1 regularization is adopted for Rw to perform sparse
multiple distance learning, which encourages non-relevant feature’s weight to be
zero.
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4.1 Alternating Parameter Estimation Procedure

An alternating procedure is proposed for parameter estimation. In CRF pa-
rameter estimation stage, the algorithm fixes w and optimizes (αi, ui, vij)j∈Ni ,
while in the sparse multiple distance learning stage, with fixed (αi, ui, vij)j∈Ni ,
it searches for the optimal w. At each stage of the algorithm, the regularization
term of fixed parameters is omitted, as it remains constant through the opti-
mization process. Consequently, the object functions of each stage differ slightly
with regularization terms. Detailed description of the object functions will be
given in subsequent sections. Before the training process, for each site i, we build
a training set Ti = {(xn,yn)}Ni

n=1 from the original training set T by randomly
selecting more balanced positive and negative samples. In our experiments the
parameter estimation procedure converge rapidly after two or three times of
parameters update alternations.

4.2 CRF Parameter Estimation

To optimize {(αi, ui, vij)j∈Ni}i∈S , we fix w and omit the corresponding regu-
larization. The estimation task is then reduced to the same problem as learn-
ing CRF parameters. Since there are no shared parameters among all sites,
(αi, ui, vij)j∈Ni can be trained per site. The negative log pseudo-likelihood of
site i is,

Li = −
N∑

n=1

{
uiF (yni ,x

n,αi) +
∑
j∈Ni

vijy
n
i y

n
j P (ynj |xn)− logZn

i

}
+Ri

CRF . (13)

In practice, edge parameters tend to be overestimated that we need to penalize
them more. Hence we introduce piecewise L2 regularization terms on αi, ui and
vij respectively,

Ri
CRF =

λ1

2
αT

i Kαi +
λ2

2
‖ui − 1‖2 + λ3

2

∑
j∈Ni

‖vij‖2, (14)

where K is the kernel matrix calculated using Eq.6 on the Training set T , λ1, λ2

and λ3 are constants controlling the strength of the penalty, which are chosen
empirically. Notice that the regularization term on αi is the same as KLR. The
regularization for ui forces it to stay around 1. The derivatives of Eq.13 with
respect to αi equals to

∂Li

∂αi
= −uiKMi + λ1Kαi, (15)

whereMi = (M1
i ,M

2
i , ...,M

N
i )T is a coefficient vector with each of its component

defined as

Mn
i =

yni
1 + exp(yni f(x

n,αi))
− 1

Zn
i

∑
yn
i

z(yni ,x
n,αi)

yni
1 + exp(yni f(x

n,αi))
.

(16)
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The derivatives of Eq.13 with respect to ui is

∂Li

∂ui
= −

N∑
n=1

{
F (yni ,x

n,αi)−
1

Zn
i

∑
yn
i

z(yni ,x
n,αi)F (yni ,x

n,αi)

}
+ λ2(ui − 1).

(17)

By differentiating Eq.13 with respect to vij , we will get

∂Li

∂vij
= −

N∑
n=1

{
ynj P (ynj ,x

n)(yni −
1

Zn
i

∑
yn
i

yni z(y
n
i ,x

n,αi))

}
+ λ3vij . (18)

To minimize Eq.13 we set its derivatives Eq.15, Eq.17 and Eq.18 to zero. Eq.13
is concave when λ1, λ2 and λ3 are given and can be easily minimized using a
projected gradient algorithm.

4.3 Sparse Multiple Distance Learning

At this stage we fix the CRF parameters and optimize the feature weight vector
w. Regularization term on CRF parameters is left out. We penalize w with L1

regularization. The object function becomes,

Lw = −
N∑

n=1

∑
i∈S

{
uiF (yni ,x

n,αi)+
∑
j∈Ni

vijy
n
i y

n
j P (ynj |xn)− logZn

i

}
+ C

T∑
t=1

|wt|,

(19)

where C is the coefficient controlling the level of sparsity of w. In practice
it is chosen empirically. As the absolute value function is not differentiable at
the zero value point, solving optimization problem Eq.19 is harder than solving
differentiable optimization problems. Here we take the sub-gradient [22] of the
second term in Eq.19 with respect to wt at zero,

∂Lw

∂wt
= −

N∑
n=1

∑
i∈S

{
ui

yni g(x
n,αi)

1 + exp(yni f(x
n,αi))

− 1

Zn
i

∂Zn
i

∂wt

}
+ Csign(wt), (20)

where sign(wt) = 1 if wt > 0, sign(wt) = −1 if wt < 0, and sign(wt) = 0 if
wt = 0, and g(xn,αi) is defined as,

g(xn,αi) =
N∑

m=1

αm
i K(xn,xm)(−dt(xn,xm)/2σ2), (21)

and the derivative of Zn
i in Eq.20 is,

∂Zn
i

∂wt
=

∑
yn
i

z(yni ,x
n,αi)uig(x

n,αi)(y
n
i −

1

1 + exp(−yni f(xn,αi))
). (22)

Using the method in [22], we compute the pseudo-gradient of the L1 penalty to
the extent that it does not change its sign. The limited memory BFGS algorithm
is adopted to obtain the optimization of the weight parameters.
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5 Model Inference

The inference problem of KCRF is to find the optimal label configuration y given
an image x:

y∗ ← argmax
y

P (y|x), (23)

where P (y|x) is defined in Eq.1. The iterative conditional modes (ICM) algo-
rithm is employed in our model. In the (k+1)th iteration, given the observation

x and labels on neighboring sites y
(k)
Ni

obtained in the last iteration, the algo-

rithm sequentially updates each y
(k)
i to y

(k+1)
i that yields maximal conditional

probability P (yi|y(k)
Ni

,x) defined in Eq.8. The update rule can be written as
follows

y
(k+1)
i =

{
+1, if P (yi = 1|y(k)

Ni
,x) > P (yi = −1|y(k)

Ni
,x)

−1, otherwise.
(24)

The ICM algorithm starts with the initial configuration that all labels are set to
be -1 and runs until convergence when two label vectors of consecutive iterations
are the same. If it does not converge after 10 iterations, the process will be
stopped. Ultimately it outputs the approximate result of the most probable
label configuration of the observation.

6 Experiment Setup

6.1 Experimental Datasets

Our experiments are conducted on two commonly used datasets: Corel 5k
Dataset: [1] is an important benchmark for AIA performance evaluation. It
contains 5000 images, where 500 of them are used for testing and the rest for
training. The whole vocabulary consists of 260 unique words with each image
annotated with 1-5 keywords; TRECVID-2005 Dataset contains about 108
hours broadcast news, which can well represents the real world scenario. A total
of 69,901 keyframes are extracted from these videos. It consists of 39 keywords.
For computational efficiency, we select training images from 90 videos and test-
ing images from the other 47 videos. For each keyword (concept), no more than
500 and 100 positive samples for training and testing respectively are included.
Finally 6,657 keyframes are used for training and 1,748 keyframes for testing.

6.2 Feature Extraction

22 visual features are utilized in the experiments, where 15 feature provided
by [12] are included. Apart from these features, we also extract Texture Co-
occurrence, Scalable Color, HarrWavelet, Edge Histogram, Color Moments, Color
Layout, and Color Correlogram according to MPEG7. All features except Gist
[23] are L1-normalized. Following previous work on distance calculation, we use
L2 metric for Gist, L1 for color histograms and χ2 for the rest.
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6.3 Evaluation Measurements

For AIA performance evaluation, we use recall, precision and F1 measure. For a
given query word w, let |WG| be the number of images with label w in the test
set, |WM | be the number of annotated images by our model with the same label,

then recall, precision and F1 are defined as recall = |WG

⋂
WM |

|WG| , precision =
|WC

⋂
WM |

|WM | and F1 = 2×recall×precision
recall+precision . We compute recall and precision for each

keyword and then average them to measure the overall annotation performance.
F1 is calculated with the derived mean recall and precision.

7 Experimental Results and Discussions

7.1 Performance Evaluation on Corel

In this section we evaluate the annotation performance of our method. TagProp
[12] is chosen for comparison due to its state-of-the-art performance and adopting
a metric learning approach. The code we use is provided by the authors. Different
from TagProp, KCRF’s multiple distance learning is embedded with semantic
context, thus the resulted distance combination is expected to capture semantics
more precisely. We conduct 9 rounds of experiments, where we start with 14
visual features and add 1 new feature incrementally in each subsequent round
until all the 22 features are used in the last round. The F1 of all the 9 round
experiments are given in Figure 3.

Fig. 3. F1 measure comparisons between KCRF and TagProp on Corel

It shows that KCRF outperforms TagProp in all cases, achieving the highest
improvement of 24.1% in F1 score when 14 features are used, where KCRF gets
0.36 while TagProp gets 0.29. Annotation accuracy increases from 14 features to
17 features are observed for both models, while KCRF is more stable producing
a smoother F1 score line. KCRF reaches the best F1 score of 0.41 with 17 fea-
tures, leading to an improvement of 10.8% over TagProp, which also reaches its
best F1 score of 0.37. F1 of KCRF remains the same afterward. But for TagProp
model, performance decrease occurs when more than 20 features are used. The
reason is that, the optimality of the distance weights is not guaranteed in Tag-
Prop, because it directly sets negative weight value to 0 to derive non-negative
weight vector [12]. Unlike TagProp, KCRF introduces L1 regularization to en-
sures sparsity of weight vector. Thus KCRF has higher stability with increasing
number of features.
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Table 1. Performance comparisons between KCRF and TagProp on Corel dataset.
N+, Length, Recall, Precision, F1 and Zero-weight denote the number of keywords
with non-zero recall value, average annotation length, average recall, average precision,
f1 score and number of features with zero weight respectively.

Models TagProp-14 KCRF-14 TagProp-18 KCRF-18 TagProp-22 KCRF-22
N+ 140 183 160 190 158 189
Length 5 5.2 5 4.9 5 5.0
Recall 0.33 0.41 0.42 0.47 0.42 0.48
Precision 0.26 0.33 0.33 0.36 0.32 0.36
F1 0.29 0.36 0.37 0.41 0.36 0.41
Zero-weight 2 6 9 9 10 10

We present some detailed statistics of 3 rounds of experiments in Table 1. For
the limit of page space, we cannot give out all results. Note that in Table 1, the
suffixes “-14”, “-18” and “-22” in the model name denote the number of features
it uses. “KCRF-22” gives out the highest precision of 0.48 and the highest recall
of 0.36.

7.2 Evaluation of the Unified Model

In this experiment we will clarify that, the performance improvements of KCRF
given in previous sections are brought by integration of context modeling and
multiple distance learning, rather than by either one of them individually. Thus
we compare KCRF to these two separate methods: First, the candidate for mul-
tiple distance learning is obtained by removing context modeling from KCRF.
Specifically, we set the edge potentials to 0 and it becomes Kernel Logistic Re-
gression (KLR) with sparse multiple distance learning. We use KLR-l1 to refer
to it in following sections. For KLR-l1, original KLR parameters and distance
weights are also estimated in an alternating fashion. Second, sparse multiple
distance learning is removed from our model, and we get the conventional Con-
ditional Random Fields (CRF) as a representative for context modeling. The
only difference between CRF and KCRF is the absence of multiple distance
learning. Distances of different features are combined with equal weight one for
CRF. The same distance metrics and kernel function are used for KCRF, KLR-l1
and CRF. Experiment is conducted on the Corel dataset. Here all the 22 fea-
tures are used. The annotation length of KLR-l1 is fixed to be 5, while CRF and
KCRF can decide the length automatically.

Experimental results are shown in Table 2. It can be observed that KCRF
gives out significant performance superiority over KLR-l1 and CRF. Specifically,
the recall, precision and F1 for our unified model are 0.48, 0.36 and 0.41 re-
spectively. It outperforms KLR-l1 by 24% and CRF by 13.9% in F1. We also
provide comparisons between distance weights of 22 features learned by KCRF
and KLR-l1 in Figure 4. From the figure, KCRF generates more sparse weight
vector than KLR-l1 and achieves better performance. It well demonstrates that
the proposed unified model is able to find the optimal distances combination and
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Table 2. Performance comparison with
KLR-l1 and CRF on Corel dataset

Models KLR-l1 CRF KCRF
N+ 157 166 189
Length 5 5.6 5.0
Recall 0.37 0.41 0.48
Precision 0.31 0.32 0.36
F1 0.33 0.36 0.41
zero-weight 6 0 10

Fig. 4. Feature Weights of 22 Features Pro-
duced by KCRF and KLR-l1

achieves better performance, which is not obtainable when using only the sparse
multiple distance learning. Hence, the integration of sparse multiple distance
learning and context modeling has significant advantages over the separated
methods.

7.3 Performance Comparison on Corel

To further evaluate KCRF, we compare it to the TagProp [12], the semantic
context modeling MRFA [13], and the other AIA methods such as MBRM [19],
the supervised multi-class labeling (SML) [2], and the Nearest Spanning Chain
(NSC) [3]. These models are representative techniques, and some of them achieve
the stat-of-the-art performance so far. Figure 5(a) gives out the experimental
results.

(a) Corel (b) Trecvid

Fig. 5. Performance Comparison with Other Methods on Corel and Trecvid Datasets

It shows that our KCRF model has the best performance with significant
improvement over the others. Specifically, the average recall, precision and F1
score of KCRF are 0.48, 0.36, and 0.41, realizing improvements in F1 score of
10.8% and 24.2% over TagProp and MRFA, which give out the second and the
third highest F1 of 0.37 and 0.33, respectively. Figure 6 gives some examples
of annotation results generated by KCRF and the corresponding ground-truth.
It shows that the annotations of our model captures the semantics of images
precisely.

7.4 Performance Comparison on TRECVID-2005

As MMCRF [18] also employs multiple visual features in CRF and achieves
very competitive result on this dataset, we choose it for comparison. Besides,
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Fig. 6. Comparisons of KCRF annotation results with ground-truth annotations on
Corel dataset and TRECVID-2005 dataset

MBRM [19], Tagprop [12] and the newly proposed BG model [20] are also in-
cluded for comparison. Experimental result is given in Figure 5(b). It shows that
our model also outperforms all the other methods with significant improvement.
Specifically, KCRF gives out the highest F1 score of 0.52, realizing an improve-
ment of 8.3% over TagProp and MMCRF, whose F1 scores are both 0.48. KCRF
also achieves the highest precision of 0.58. Some annotation examples of KCRF
are given in Figure 6 compared to the ground-truth. Specially, perfect match is
reported in the second keyframes.

8 Conclusion

We propose a novel Kernelized Conditional Random Fields model for AIA prob-
lem. It integrates semantic context modeling and sparse multiple distance learn-
ing in a unified framework. We conduct the experiments on the Corel dataset
and the TRECVID-2005 for evaluation. The experimental results show that
through integrated learning of “visual” parameters and “semantic” parameters,
our model is able to leverage the annotation performance significantly. Com-
pared to the state-of-the-art metric learning based AIA work, KCRF is more
robust and achieves higher annotation accuracy, especially with a bigger feature
set.
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Abstract. Recent years have seen greater interest in the use of discrim-
inative classifiers in tracking systems, owing to their success in object de-
tection. They are trained online with samples collected during tracking.
Unfortunately, the potentially large number of samples becomes a com-
putational burden, which directly conflicts with real-time requirements.
On the other hand, limiting the samples may sacrifice performance.

Interestingly, we observed that, as we add more and more samples, the
problem acquires circulant structure. Using the well-established theory
of Circulant matrices, we provide a link to Fourier analysis that opens
up the possibility of extremely fast learning and detection with the Fast
Fourier Transform. This can be done in the dual space of kernel ma-
chines as fast as with linear classifiers. We derive closed-form solutions
for training and detection with several types of kernels, including the
popular Gaussian and polynomial kernels. The resulting tracker achieves
performance competitive with the state-of-the-art, can be implemented
with only a few lines of code and runs at hundreds of frames-per-second.
MATLAB code is provided in the paper (see Algorithm 1).

1 Introduction

Tracking is a fundamental problem in computer vision, with applications in video
surveillance, human-machine interfaces and robot perception. Even though some
settings allow for strong assumptions about the target [1, 2], sometimes it is
desirable to track an object with little a-priori knowledge. Model-less tracking
consists of learning and adapting a representation of the target online.

A very successful approach has been tracking-by-detection [3–7]. This stems
directly from the development of powerful discriminative methods in machine
learning, and their application to detection with offline training. Many of these
algorithms can be adapted for online training, where each successful detection
provides more information about the target.

Almost all of the proposed methods have one thing in common: a sparse
sampling strategy [3, 5–7]. In each frame, several samples are collected in the
target’s neighborhood, where typically each sample characterizes a subwindow
the same size as the target (illustrated in Table 1). Clearly, there is a lot of
redundancy, since most of the samples have a large amount of overlap. This
underlying structure is usually ignored. Instead, most methods simply collect a
small number of samples, because the cost of not doing so would be prohibitive.

A. Fitzgibbon et al. (Eds.): ECCV 2012, Part IV, LNCS 7575, pp. 702–715, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Table 1. Overview of the main differences between standard tracking-by-detection and
the proposed approach. The speed is for a 64× 64 window region. See text for details.

Storage Bottleneck Speed

Random Sampling
(p random

subwindows)

Features from
p subwindows

Learning algorithm
(Struct. SVM [4],
Boost [3, 6]...)

10 - 25 FPS

Dense Sampling
(all subwindows,
proposed method)

Features from
one image

Fast Fourier
Transform

320 FPS

The fact that the training data has so much redundancy means that we are
probably not exploiting its structure efficiently. We propose a new theoretical
framework to address this. We show that the process of taking subwindows of
an image induces circulant structure. We then establish links to Fourier analysis
that allows the use of the Fast Fourier Transform (FFT) to quickly incorporate
information from all subwindows, without iterating over them.

These developments enable new learning algorithms that can be orders of
magnitude faster than the standard approach. We also show that classification
on non-linear feature spaces with the Kernel Trick can be done as efficiently as
in the original image space.

1.1 Previous Work

We will briefly discuss tracking-by-detection, but also other works that are rel-
evant to our specific approach.

The literature on visual object tracking is extensive, and a full survey is out-
side the scope of this paper.1 Like other works in tracking-by-detection, our
contributions are focused on the appearance model, as opposed to the motion
model and search strategy. Many use established learning algorithms such as
Boosting [6, 3], Support Vector Machines (SVM) [5], or Random Forests [7], and
adapt them to online training. Recent works have focused increasingly on prob-
lems specific to tracking, such as uncertainty in the training labels. Some notable
examples use Semi-Supervised Learning [6] and Multiple Instance Learning [3]
(MILTrack) to handle this. Going even further, Hare et al. [4] propose Struck, an
online version of Structured Output SVM. This is closer to our work, since the
framework allows sample selection over the possible subwindows (argmax step).
However, in practice, the number of samples is still limited.

The idea of exploring subwindow redundancy has been noted before, but
mostly in the context of detection, not training. Lampert et al. [10] use branch-
and-bound optimization to find the maximum of a classifier’s response without
necessarily evaluating it at all locations. Alexe et al. [11] propose a method that
can efficiently find the most similar subwindows between two images, which is

1 We refer the reader to 2 reviews: [8] is more in-depth, while [9, Sec. 3] is more recent.
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a related problem. Although they are useful and provide interesting insights, it
may still be desirable to compute the responses at many locations, for example
to allow more robust mode seeking or to evaluate the quality of the response [12].
An alternative is to use linear classification in a first stage, and then non-linear
classification on promising locations [13, 14], but the results can be suboptimal.

Also closely related are adaptive correlation filters, rooted on classical signal
processing [15, 12]. Their response can be evaluated quickly at all subwindows
using the Fast Fourier Transform (FFT). It’s possible to perform training on
the Fourier domain as well, minimizing the error of the filter’s response at all
subwindows of the training images. The crucial detail is that they never actu-
ally iterate over the subwindows. The Minimum Output Sum of Squared Error
(MOSSE) filter [12] has been shown to be competitive with the methods outlined
before, but at a fraction of the complexity, and runs at impressive speeds.

Because they can be interpreted as linear classifiers, there is the question of
whether correlation filters can take advantage of the Kernel Trick to classify
on richer non-linear feature spaces. Patnaik and Casasent [16] investigate this
problem, and show that, given the Fourier representation of an image, many
classical filters cannot be kernelized. Instead, they propose a kernelized filter
that is trained with a single subwindow (called Kernel SDF). An ideal solution
would implicitly train with all subwindows.

We believe that the method we propose achieves this goal. We are able to de-
vise Kernel classifiers with the same characteristics as correlation filters, namely
their ability to be trained and evaluated quickly with the FFT.

1.2 Contributions

The contributions of this paper are as follows:

1. A theoretical framework to study generic classifiers that are trained with all
subwindows (of fixed size) of an image. We call this approach dense sampling.

2. Proof that the kernel matrix in this case has circulant structure, for unitarily
invariant kernels (Theorem 1).

3. Closed-form, fast and exact solutions (all running in O(n2 logn) for n × n
images) for:
(a) Kernel Regularized Least Squares with dense sampling (Section 2.4).
(b) Detection at all subwindows with generic Kernel classifiers (Section 2.5).
(c) Computation of a variety of kernels at all subwindows, including the

popular Gaussian and polynomial kernels (Section 3).

4. Finally, we propose a tracker based on these ideas. We show it is competitive
with state-of-the-art trackers, but has a simpler implementation and runs
many times faster. Source code is provided.

2 Learning with Dense Sampling

The core component in tracking-by-detection is a classifier. Each frame, a set of
samples is collected around the estimated position of the target; samples close
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Fig. 1. Example results for coke and surfer sequences, best viewed in color. High
values in the response map are red/opaque, low values are blue/transparent. Notice
the highly localized responses, except when the target is under occlusion.

to the target are labeled positive and the ones further away are labeled negative.
Updating the classifier with these samples allows it to adapt over time. Due to
computational constraints, only a handful of random samples are collected [3–7].

We propose a radically different approach. We intend to train a classifier with
all samples: we call this dense sampling. Counter to intuition, this allows a more
efficient training. The reason is that the kernel matrix in this case becomes highly
structured, and we can exploit it to our advantage.

2.1 Regularized Risk Minimization

We start with a general formulation, mostly to introduce notation. Given a set of
training patterns and labels (x1, y1), . . . , (xm, ym), a classifier f(x) is trained by
finding the parameters that minimize the regularized risk. A linear classifier has
the form f(x) = 〈w, x〉+b, where 〈·, ·〉 is the dot product, and the minimization
problem is

min
w,b

m∑

i=1

L (yi, f(xi)) + λ ‖w‖2 , (1)

where L(y, f(x)) is a loss function, and λ controls the amount of regularization2.
This framework includes the popular Support Vector Machine (SVM), which

uses the hinge loss L(y, f(x)) = max (0, 1− yf(x)). An alternative is Regu-
larized Least Squares (RLS), also known as Ridge Regression, which uses the

quadratic loss L(y, f(x)) = (y − f(x))
2
. It has been shown that, in many prac-

tical problems, RLS offers equivalent classification performance to SVM [17].
It is well known that the Kernel Trick [18] can improve performance further,

by allowing classification on a rich high-dimensional feature space. The inputs
are mapped to the feature space using ϕ(x), defined by the kernel κ(x,x′) =
〈ϕ(x), ϕ(x′)〉. The Representer Theorem [18, p. 89] then states that a solution
can be expanded as a linear combination of the inputs: w =

∑
i αiϕ(xi).

Then, RLS with Kernels (KRLS) has the simple closed form solution [17]

α = (K + λI)
−1

y, (2)

where K is the kernel matrix with elements Kij = κ(xi,xj), I is the identity
matrix, and the vector y has elements yi. The solutionw is implicitly represented

2 The bias term b is not important in practice, when finding the maximum response.
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by the vector α, whose elements are the coefficients αi. We will show that the
matrix inversion in Eq. 2 can be avoided entirely for our purposes.

2.2 Circulant Matrices

The main observation that will allow efficient learning is that, under suitable
conditions, the kernel matrix becomes circulant. An n×n circulant matrix C(u)
is obtained from the n×1 vector u by concatenating all possible cyclic shifts of u:

C(u) =

⎡

⎢⎢⎢⎢⎢⎣

u0 u1 u2 · · · un−1

un−1 u0 u1 · · · un−2

un−2 un−1 u0 · · · un−3

...
...

...
. . .

...
u1 u2 u3 · · · u0

⎤

⎥⎥⎥⎥⎥⎦
. (3)

The first row is vector u, the second row is u shifted one element to the right
(the last element wraps around), and so on.

The motivation behind circulant matrices is that they encode the convolution
of vectors, which is conceptually close to what we do when evaluating a classifier
at many different subwindows. Since the product C(u)v represents convolution
of vectors u and v [19], it can be computed in the Fourier domain, using

C(u)v = F−1 (F(u)�F(v)) , (4)

where � is the element-wise product, while F and F−1 denote the Fourier trans-
form and its inverse, respectively.

The properties of circulant matrices make them particularly amenable to ma-
nipulation, since their sums, products and inverses are also circulant [19]. We
never have to explicitly compute and store a circulant matrix C(u), because it
is defined by u. These operations often involve the Fourier Transform of u.

There are a couple of different definitions of C(u) that we will find useful
[19]. One is that the row i of C(u) is given by P iu, where P is the permutation
matrix that cyclically shifts u by one element. The matrix power in P i applies
the permutation i times, resulting in i cyclic shifts.

Alternatively, the elements of C(u) can be defined as cij = u(j−i) mod n. That
is, a matrix is circulant if its elements only depend on (j− i) mod n, where mod
is the modulus operation (remainder of division by n). To make some derivations
easier, all indexes are zero-based.

2.3 The Kernel Matrix with Dense Sampling

We introduce the concept of dense sampling. For a matter of clarity, we start with
one-dimensional images with a single feature (ie., the pixel value). This allows
more intuitive proofs with simpler notation. However, they are readily transfer-
able to the case of 2D images with multiple channels, such as RGB images, and
dense SIFT or HOG descriptors. Appendix A.3 presents more details.
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Given a single image x, expressed as a n×1 vector, the samples are defined as

xi = P ix, ∀i = 0, . . . , n− 1 (5)

with P the permutation matrix that cyclically shifts vectors by one element, as
defined earlier. Intuitively, the samples are all possible translated versions of x
(except at the boundaries, discussed in Section 4.1). We will now prove that the
resulting kernel matrix is circulant, and show under what conditions.

Theorem 1. The matrix K with elements Kij = κ(P ix, P jx) is circulant if κ
is a unitarily invariant kernel.

Proof. A kernel κ is unitarily invariant if κ(x,x′) = κ(Ux, Ux′) for any uni-
tary matrix U . Since permutation matrices are unitary, Kij = κ(P ix, P jx) =
κ(P−iP ix, P−iP jx) = κ(x, P j−ix). BecauseKij depends only on (j−i) mod n,
K is circulant.

Corollary 1. K as defined above is circulant for dot-product and radial basis
function kernels. Particular examples are the polynomial and Gaussian kernels.

This is an important property that allows the creation of efficient learning algo-
rithms. We will now focus on applying this knowledge to KRLS.

2.4 Efficient Kernel Regularized Least Squares solution

Theorem 1 is readily applicable to KRLS. We will define vector k with elements

ki = κ(x, P ix), ∀i = 0, . . . , n− 1 (6)

which compactly represents the kernel matrix K = C (k). Notice that k is only
n× 1, while the full K would be n× n.

Some operations on matrices of the form C(u), like multiplication and inver-
sion, can be done element-wise on the vectors u, if they are transformed to the
Fourier domain [19].

By applying these properties to Eq. 2 and Eq. 6, we obtain the KRLS solution:

α = F−1

( F(y)

F(k) + λ

)
, (7)

where the division is performed element-wise. A detailed proof is in Appendix A.1.
Note that the vector α contains all the αi coefficients. This closed-form solu-

tion is very efficient: it uses only Fast Fourier Transform (FFT) and element-wise
operations. We’ll see in Sec. 3 that k can also be computed quickly with the FFT.

For n×n images, the proposed algorithm has a complexity of only O(n2 logn),
while a naive KRLS implementation would take O(n4) operations. This is done
without reducing the number of samples, which would sacrifice performance.
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2.5 Fast Detection

The general formula for computing the classifier response for a single input z is

y′ =
∑

i

αiκ(xi, z). (8)

This formula is typically evaluated at all subwindows, in a sliding-window man-
ner. However, we can exploit the circulant structure to compute all the responses
simultaneously and efficiently. Using the properties discussed earlier, the vector
with the responses at all positions is given by

ŷ = F−1
(F(k̄)�F(α)

)
, (9)

where k̄ is the vector with elements k̄i = κ(z, P ix). We provide an extended
proof in Appendix A.2. Just like the formula for KRLS training, the complexity
is bound by the FFT operations and is only O(n2 logn) for 2D images.

3 Fast Computation of Non-linear Kernels

The proposed training procedure is fast, but the question of how to evaluate non-
linear kernels quickly for all subwindows (ie., compute k and k̄) still remains.
As of this writing, this is a topic of active research [10, 11, 16].

Linear kernels are usually preferred in time-critical problems such as tracking,
because the weights vector w can be computed explicitly. Non-linear kernels
require iterating over all samples (or support vectors). The work that comes
closest to the goal of efficiently computing non-linear kernels at all locations is
by Patnaik [20]. Unfortunately, it requires inputs that have unit norm, and the
normalization may discard important information.

In this work, we propose closed-form solutions to compute a variety of kernels
at all image locations, in an efficient manner that fully exploits the problem
structure. The formulas are exact, and simple to compute.

3.1 Dot-Product Kernels

Dot-product kernels have the form κ(x,x′) = g(〈x,x′〉), for some function g.
In this case, the compact representation k of the kernel matrix (Eq. 6) will be
denoted by kdp. Each element of kdp is given by

kdpi = κ(x, P ix′) = g
(
xTP ix′) . (10)

With slight abuse of notation, we will say that g can also be applied element-wise
to an input vector, so kdp can be written as kdp = g

(
CT(x)x′) .

Since CT(u) = C(F−1(F∗(u))) , with ∗ denoting the complex-conjugate, and
using the convolution property from Eq. 4, we obtain the solution

kdp = g
(F−1 (F(x)�F∗(x′))

)
. (11)
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Eq. 11 means that a dot-product kernel can be quickly evaluated at all image
locations, using only a few FFT and element-wise operations. In particular, for
a polynomial kernel,

kpoly =
(F−1 (F(x)�F∗(x′)) + c

)d
. (12)

3.2 Radial Basis Function Kernels

RBF kernels have the form κ(x,x′) = h(‖x− x′‖2), for some function h. The
corresponding k from Eq. 6 will be denoted by krbf.

krbfi = κ(x, P ix′) = h
(∥∥x− P ix′∥∥2

)
(13)

We can expand the norm, obtaining

krbfi = h
(
‖x‖2 + ‖x′‖2 − 2xTP ix′

)
. (14)

The permutation P i doesn’t affect the norm of x′ due to Parseval’s identity.
Since ‖x‖2 and ‖x′‖2 are constant w.r.t. i, Eq. 14 is in the same form as for

dot-product kernels. Following the same derivation as in Section 3.1, we arrive
at the general solution for RBF kernels

krbf = h
(
‖x‖2 + ‖x′‖2 − 2F−1 (F(x)�F∗(x′))

)
. (15)

In particular, we have, for the Gaussian kernel,

kgauss = exp

(
− 1

σ2

(
‖x‖2 + ‖x′‖2 − 2F−1 (F(x)�F∗(x′))

))
. (16)

For an n×n image, direct kernel computation at n2 locations would take O(n4)
operations, however the corresponding frequency-domain solution brings this
complexity down to only O(n2 logn).

The generic formulas we derived for each kernel will quickly compute the k
and k̄ terms in KRLS training (Eq. 7) and detection (Eq. 9). We expect them
to be of general interest, however, and be useful for other kernel methods.

3.3 The Linear Case

The simplest kernel function, κ(x,x′) = 〈x,x′〉, which is just the dot-product
in the original space, is worth investigating. It produces a linear classifier that
does not make use of the Kernel Trick, so we can compute w explicitly, instead
of implicitly as α. Plugging it into the KRLS equations, we obtain:

w = F−1

( F(x)�F∗(y)
F(x)�F∗(x) + λ

)
. (17)

This is a kind of correlation filter that has been proposed recently, called Min-
imum Output Sum of Squared Error (MOSSE) [12, 15], with a single training
image. It is remarkably powerful despite its simplicity.
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Table 2. Tracker precisions at a threshold of 20 (percentage of frames where the
predicted location is within 20 pixels of the ground truth). This threshold was used by
Babenko et al. [3]. The best precision for each sequence is highlighted in bold.

MILTrack Struck MOSSE MOSSE2 Proposed method

coke11 0.61 0.97 0.71 0.71 1.00

faceocc 0.46 0.96 0.21 1.00 1.00

faceocc2 0.69 0.95 0.53 0.93 1.00

surfer 0.98 0.97 0.37 0.99 0.99

sylvester 0.90 0.95 0.78 0.90 1.00

tiger1 0.83 0.94 0.26 0.30 0.61

tiger2 0.93 0.91 0.25 0.22 0.63

dollar 0.82 0.96 0.39 1.00 1.00

girl 0.31 0.95 0.83 0.99 0.59

david 0.56 0.92 0.77 0.34 0.49

cliffbar 0.89 0.44 0.37 0.56 0.97

twinings 0.98 1.00 0.20 1.00 0.93

Note, however, that correlation filters are obtained with classical signal pro-
cessing techniques, directly in the Fourier domain. As we have shown, Circulant
matrices are the key enabling factor to extend them with the Kernel Trick.

4 Experiments

We used the techniques described above to implement a simple tracking system.
Many obvious improvements, like failure detection, motion and uncertainty mod-
els (eg., particle filter), or feature extraction, were deliberately left out. This was
done to reduce the confounding factors to a minimum, and provide an accurate
validation of the learning algorithm.

From now on, we will assume two-dimensional images. A thorough proof is
given in Appendix A.3. In practice it means that the 2D Fourier transform can
replace the 1D FT in all the previous equations.

4.1 Pre-processing

The proposed method can operate directly on the pixel values, with no feature
extraction. However, since the Fourier transform is periodic, it does not respect
the image boundaries. The large discontinuity between opposite edges of a non-
periodic image will result in a noisy Fourier representation. A common solution
is to band the original n× n image (xraw) with a cosine (or sine) window:

xij =
(
xraw
ij − 0.5

)
sin(πi/n) sin(πj/n), ∀i, j = 0, . . . , n− 1 (18)

Values near the borders will be weighted to zero, eliminating discontinuities.
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4.2 Training Outputs

During training, we must assign a label to each sample. In tracking-by-detection,
samples near the target center are positive and others are negative. But since
the square loss of KRLS allows for continuous values, we don’t need to limit
ourselves to binary labels. The line between classification (binary output) and
regression (continuous output) is essentially blurred.

Given the choice of a continuous training output, we will use a Gaussian
function, which is known to minimize ringing in the Fourier domain [21]. The
output will be 1 near the target location (i′, j′), and decay to 0 as the distance
increases, with a bandwidth of s:

yij = exp
(− (

(i− i′)2 + (j − j′)2
)
/s2

)
, ∀i, j = 0, . . . , n− 1 (19)

The continuous labeling yields spatially smooth classifier responses, which results
in more accurate position estimates than binary labeling (Table 2).

4.3 Overview

The tracker follows a simple pipeline. A window of a fixed size (double the
target size) is cropped from the input image, at the estimated target location.
No feature extraction is performed, other than a cosine window on the raw
pixel values (Eq. 18). The target is located by evaluating Eq. 9 and finding the
maximum response. Eq. 7 is then used to train a new model (α and x).

To provide some memory, the new model is integrated by linearly interpolating
the new parameters with the ones from the previous frame. We found that this
scheme, adapted from the work of Bolme et al. [12], is enough for our purposes.
Future work will explore other ways to aggregate samples over time.

4.4 Evaluation

We compared the proposed method with several state-of-the-art trackers, on 12
challenging videos. We used available ground truth data to compute precisions.

The best way to evaluate trackers is still a debatable subject. Averaged mea-
sures like mean center location error or average bounding box overlap can yield
unintuitive results, for example penalizing an accurate tracker that fails for a
small amount of time more than an inaccurate tracker.

Babenko et al. [3] argue for the use of precision plots. The plots show, for a
range of distance thresholds, the percentage of frames that the tracker is within
that distance of the ground truth. These plots are easy to interpret. More accu-
rate trackers have high precision at lower thresholds, and if a tracker fails it will
never reach a precision of 1 for a large range. They are shown in Fig. 2.

The parameters are fixed for all videos to prevent overfitting. We tested our
tracker with a Gaussian kernel. A polynomial kernel with appropriate parameters
gives similar results, but the Gaussian kernel is easier to adjust, since it has only
one parameter with an intuitive meaning. The bandwidth of the Gaussian kernel
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Algorithm 1 . MATLAB code for our tracker, using a Gaussian kernel
It is possible to reuse some values, reducing the number of FFT calls. An imple-
mentation with GUI is available at: http://www.isr.uc.pt/~henriques/

% Train ing image x( cu r r en t frame ) and t e s t image z ( next frame )
% must be pre−proce s sed with a co s i n e window . y has a Gaussian
% shape cen te r ed on the t a r g e t . x , y and z are M−by−N matr i c e s .
% Al l FFT operat ion s are standard in MATLAB.

funct ion a lpha f = training (x , y , sigma , lambda ) % Eq . 7
k = dgk (x , x , sigma ) ;
a lpha f = f f t 2 ( y ) . / ( f f t 2 ( k ) + lambda ) ;

end

funct ion re sponses = detection ( a lphaf , x , z , sigma ) % Eq . 9
k = dgk ( z , x , sigma ) ;
r e sponse s = r e a l ( i f f t 2 ( a lpha f .∗ f f t 2 ( k ) ) ) ;

end

funct ion k = dgk( x1 , x2 , sigma ) % Eq . 16
c = f f t s h i f t ( i f f t 2 ( f f t 2 ( x1 ) .∗ conj ( f f t 2 ( x2 ) ) ) ) ;
d = x1 ( : ) ’ ∗ x1 ( : ) + x2 ( : ) ’ ∗ x2 ( : ) − 2∗ c ;
k = exp(−1 / sigma ˆ2 ∗ abs (d) / numel ( x1 ) ) ;

end
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Fig. 2. Precisions plots for 6 sequences (percentage of frames where the predicted
location is within the threshold of the ground truth). Best viewed in color. See the
supplemental material for plots of the remaining sequences.
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is σ = 0.2, spatial bandwidth is s =
√
mn/16 for an m×n target, regularization

is λ = 10−2, and the interpolation factor for adaptation is 0.075.
We found that MOSSE [12] is tuned only for 64 × 64 images. However, to

provide a fair comparison, we made some improvements: regularization λ = 10−4,
spatial bandwidth proportional to target size (s =

√
mn/16), no failure detection

and no randomized initial samples. This is essentially our system with a linear
kernel (Sec. 3.3). We called it MOSSE2. All other parameters are the same as
with the Gaussian kernel. It has high accuracy on many sequences, but ours
shows equal or greater accuracy in 10 of the 12 sequences (see Table 2).

For non-deterministic trackers, we take the median of the precisions over 5
runs. The sequences twinings and cliffbar have large scale changes, so we
compare with versions of MILTrack [3], Online Ada-Boost (OAB) [3, Sec. 4] and
IVT [22] that track through scale. Even without a notion of scale, the proposed
method works well in these videos, as shown in Table 2.

Struck [4] achieves very good results (over 0.9 in most sequences), and out-
performs other trackers like MILTrack, OAB, SemiBoost [6] and FragTrack [23].
Still, it has lower accuracy than the proposed method because it optimizes
bounding box overlap. The proposed tracker is especially geared for high lo-
calization, because circulant matrix theory allows it to encode samples from all
locations. This includes, as negative samples, both distant distractors and small
displacements of the true target. The frequency-domain representation also al-
lows us to minimize ringing (Sec. 4.2), resulting in spatially smooth responses
(Fig. 1). This is not possible with unstructured random sampling.

Please note that the goal is not merely to show higher precisions. Indeed, every
tracker fails in at least one video. However, we can achieve very competitive
results with a much simpler and faster tracker. Most recent trackers rely on
heavy optimization methods, and manage budgets of support vectors or similar.
Our algorithm has only a few lines of code (Algorithm 1) and runs at hundreds
of frames-per-second. We also hope our theoretical analysis is of interest in itself.

5 Conclusion

We presented a theoretical framework to analyze and explore the consequences
of dense sampling in tracking-by-detection. The result is a collection of closed-
form, fast and exact solutions for online training, detection, and computation of
non-linear kernels. We expect this last contribution to find useful applications
outside of tracking. We also hope to have shown that some structures that occur
naturally in computer vision, such as Circulants, are still relatively unexplored.
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Appendix A.1: Dense Sampling KRLS Derivation

We will use the fact that K is circulant, replacing Eq. 6 in the generic KRLS
solution of Eq. 2. Observing that any identity matrix I is circulant, I = C(δ)

with δ = [1, 0, 0, . . . , 0]T , Eq. 2 becomes

α = (C(k) + λC(δ))
−1

y = (C(k+ λδ))
−1

y. (20)
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The properties of circulant matrices allow element-wise multiplication and in-
version in the Fourier domain [19]. Making use of these properties, and the fact
that F (δ) = �, where � is an n× 1 vector of ones,

α =
(
C
(F−1 (F(k) + λ�)

))−1
y = C

(
F−1

(
1

F(k) + λ

))
y. (21)

The division is performed element-wise. Using Eq. 4, we finally obtain

α = F−1

( F(y)

F(k) + λ

)
. (22)

Appendix A.2: Derivation of Fast Detection Formula

If we denote the test image by z, detection amounts to classifying all the shifted
test images zi = P iz. Each response is then given by

ŷi =
∑

j

αjκ(P
iz, P jx), (23)

since the training samples are xi = P ix (Eq. 5). Rewriting it in matrix notation,
the vector of all classifier responses is ŷ = C(k̄)α, where k̄ is the vector with
elements k̄i = κ(z, P ix). We can now apply the convolution property (Eq. 4):

ŷ = F−1
(F(k̄)�F(α)

)
. (24)

Appendix A.3: Generalization of Circulant Forms

For a matter of clarity, all of our derivations have assumed that the images are
one-dimensional. The 2D case, despite its usefulness, is also more difficult to ana-
lyze. The reason is that the 2D generalization of a circulant matrix, related to the
2D Fourier Transform, is a Block-Circulant Circulant Matrix (BCCM, ie., a ma-
trix that is circulant at the block level, composed of blocks themselves circulant).
All of the properties we used for circulant matrices have BCCM equivalents.

We will now generalize Theorem 1. A 1D image x can be shifted by i with
P ix. With a 2D image X , we can shift both its rows by i and its columns by i′

with P iXP i′ . Additionally, in an n2 × n2 matrix M composed of n× n blocks,
we will index the element i′j′ of the block ij as M(ii′),(jj′).

Theorem 2. The block matrix K with elements K(ii′),(jj′) = κ(P iXP i′ , P jXP j′)
is a BCCM if κ is a unitarily invariant kernel.

Proof. Because κ is unitarily invariant, we haveK(ii′),(jj′) = κ(X, P j−iXP j′−i′).
Since K(ii′),(jj′) depends only on (j− i) mod n and (j′− i′) mod n, K is BCCM.

K can now be constructed as C(K ′), where the n × n matrix K ′ has elements
kii′ = κ(X, P iXP i′), and C(·) constructs a BCCM. The relevant solutions can
then be re-derived with the 2D FT in place of the 1D FT.
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Abstract. Visual tracking is a challenging problem, because the target frequently
change its appearance, randomly move its location and get occluded by other ob-
jects in unconstrained environments. The state changes of the target are tempo-
rally and spatially continuous, in this paper therefore, a robust Spatio-Temporal
structural context based Tracker (STT) is presented to complete the tracking task
in unconstrained environments. The temporal context capture the historical ap-
pearance information of the target to prevent the tracker from drifting to the back-
ground in a long term tracking. The spatial context model integrates contributors,
which are the key-points automatically discovered around the target, to build a
supporting field. The supporting field provides much more information than ap-
pearance of the target itself so that the location of the target will be predicted
more precisely. Extensive experiments on various challenging databases demon-
strate the superiority of our proposed tracker over other state-of-the-art trackers.

Keywords: Spatio-temporal, context constraint, subspaces learning, multiple in-
stance boosting, unconstrained environments.

1 Introduction

Visual tracking attracts lots of attentions due to its core status in applications, e.g.
human-computer interaction, video surveillance, virtual reality, etc. For most of these
applications, trackers are demanded to work for a long time in unconstrained envi-
ronments, which greatly challenges the robustness of the trackers. To overcome this
difficulty, numerous complex models are designed, but most of them still focus on the
appearance of target itself (e.g. color, edge responses, texture and shape cues) [1,2] or
the difference between the target and background [3,4,5,6,7].

In real-world, the temporal and spatial information is important and necessary in
tracking task. In continuous frames, the target appearance changes gradually, and all of
the historical appearance variations in pose, scale and illumination have more or less
influences and constraints on the next appearance state. For example, no matter what
appearance changes happen to a panda, it is still a panda and the tracker should not
recognize it as another animal. Meanwhile, the target moves gradually from one loca-
tion to another location, rather than abruptly and discretely jumps. In another words,
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the spatial context presents strong or weak spatial correlation between the target and
the background. For example, if two similar pandas walk together, it is easy to jump
from one panda to another for the trackers which only focus on appearance features.
However, if the spatial context constraints are considered, the skip problem will be
circumvented because the surroundings around the two pandas are different. Unfortu-
nately, the spatio-temporal context information has not been paid enough attention in
the previous tracking strategies. In this paper, we propose a novel tracking framework
based on the spatio-temporal structural context to precisely predict the location of the
target, which is expected to be more robust than the previous methods.

1.1 Related Works

In recent decades, numerous tracking strategies have been proposed in literatures, which
perform well in some specific conditions. To better represent the target features, some
methods [1,2,8,9,10] model the appearance of the target in a generative way. Fragment-
based tracker [2] represents the target with histograms of local patches, which takes
structural information of the target itself and handles partial occlusion very well. How-
ever, its template is not updated over time and the correlation of target and surroundings
is not constructed. In [1], an Incremental Visual Tracker (IVT) adaptively updates its
appearance model with the historical and sequential appearance variations. While IVT
performs well in deformable motion and illumination variation, the lack of spatial in-
formation results in drift problem because the accumulated errors decrease the accuracy
of appearance model.

Some discriminative model [11,5,12] formulate the tracking task as a classification
problem which focuses on the difference between the target and the background. How-
ever, these trackers discard the historical separating function during updating which
leads the insufficient temporal information to predict next state. Yu et al. [4] combined
the generative model and discriminative model to describe different views of the target.
Experimentally, the combined tracker achieves more stable performances than single
generative or discriminative tracker as the result of mutual supervision. Nevertheless,
the tracker in [4] just incorporated the background information as negative samples
for training the classifier, and no semantic context is considered. Recently, tracking-
by-detection methods [3,7,6] are very popular and reliable in long term surveillance
sequences, because the appearance model will be corrected by detector over time and
the target will be re-located even if it has been out of view. However, these detection
based trackers are easily distracted by other objects that have similar appearance with
the target, which is the result of lacking strong spatio-temporal constraints.

For long-term tracking task in unconstrained environment, merely learning the de-
scriptive or discriminative features of the target cannot ensure the robustness of the
system. Yang et al. constructed a context-aware tracker (CAT) [13] to track random
field around the target instead of the target itself. The introduction of auxiliary ob-
jects that are suitable for tracking and have consistent motion correlations to the target
greatly prevents the tracker from being trapped into drifting problem. Amir Saffari et.
al [14] proposed a novel multi-class LPBoost algorithm to handle the tracking task.
They treated the tracking task as a multi-class classification problem where background
patterns become virtual classes. The proposed method performs well in constrained
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environments, but it fails to handle the complex environments, e.g. occlusion, back-
ground clutter and illumination variations. Similar as [13], in [15], Gu and Tomasi
considered the spatial relation between the similar target and track these similar tar-
gets simultaneously. However, the method ignores the temporary information of the
target which causes its sensitiveness to target appearance changes and it may collapse
when motion blur occurs due to the utilization of SIFT descriptors. Grabner et al. [16]
introduced the definition of supporters which are useful features to predict the target
location. The tracker in [16] utilizes strong motion coupling constraints to locate the
target even when the target is invisible, with the help of some other available related
context information. However, its detecting and matching all of the local features are
expensive and the motion of the object of the view is not easily predicted. To further ex-
pand the theory of supporter, Dinh et al. developed a new context framework based on
distracters and supporters [17]. The distracters are the regions that have similar appear-
ance as the target and the supporters are the local key-points around the target which
have the motion correlation with the target in a short time span. Although the introduc-
tion of context in these trackers expands the available information we can get from the
scene, the motion correlation between the target and the context is hard to define.

1.2 Our Approach

The novel spatio-temporal structural context based tracker (STT) we build here greatly
differs from the previous published models. For temporal context part, a new incremen-
tal subspace model is constructed to represent the gist of target with low dimensionality
feature vectors, in which several sequential positive samples are packed into one sub-
space to update the model. Most of the appearance information of the target, including
pose, scale, and illumination are efficiently incorporated into the model to help predict
the next state of the target, as shown in the left side of Fig. 1. For the spatial context
part, we introduce the contributors that are the regions having the same size and consis-
tent motion correlation with the target. The positions of these contributors are produced
by the key-point detection method SURF [18], which represent more information than
those non-key-points. Based on the success of Fragment Tracker [2], we also decom-
pose the target and the contributors into several small blocks. In another words, the
intra-structural information and the inter-structural features are incorporated. In uncon-
strained environment, it is not easy to dig out the strong contextual contributors to help
locate the target. Instead, numerous weak contextual contributors around the target can
be combined together into a strong supporting field, as shown in the right side of Fig. 1.
The representative features within the strong supporting field are optimally selected by
boosting method [5] from the weak features pool. The contributions and the differences
of our algorithm from other previous methods are as follows:

– The global temporal context model is constructed by the linear subspace method,
which is updated with continuous positive samples and the correlation between
them is considered.

– The appearance information of contributors is also considered in our model, and the
pairwise features are produced by the difference between target and contributors to
describe the spatial correlations.
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Global Temporal Contextt tt Local Spatial Context

Fig. 1. The instruction of the temporal context constraint and the spatial context constraint of
tracking task

– The target and contributors are decomposed into small blocks, hence the intra- and
inter- structural information is described.

– Instead of building complex motion models to represent the correlation between the
target and contributors, our approach efficiently utilizes boosting method to select
the most representative weak relations to construct a strong supporting field.

2 MAP Spatio-temporal Structure Context Based Tracker

The tracking task is formulated as a state estimation problem and the motion process
is assumed to be a Markovian state transition process. Let O1:i = {O1, · · · ,Oi} rep-
resent the observation data set up to time i. Zi is the state of the target at time i, which
contains the position and size information of the target. In our tracker, the state vector
Zi is composed by the position of the target centered at lt = (xt, yt), target width wt,
target height ht, which is defined as Zt = (xt, yt,wt, ht). The posterior probability is
estimated as the recursive equation:

p(Zt|O1:t) ∝ p(Ot|Zt)

∫
p(Zt|Zt−1)p(Zt−1|O1:t−1)dZt−1 (1)

where p(Ot|Zt) is the likelihood of the candidate samples provided by our spatio-
temporal structural context constraint. p(Zt|Zt−1) is the state transition probability and
p(Zt−1|O1:t−1) is the state estimation probability given all observations up to time t−1.
Similar as [5], we adopt the simplest greedy Maximum A Posteriori probability (MAP)
strategy to solve the above equation, where the motion model is specified as:

p(lt|lt−1) =

{
1 ‖lt − lt−1‖2 < r
0 ‖lt − lt−1‖2 ≥ r

(2)

where lt is the position of the target at time t, r is the search radius. The scale of the
target is similarly handled as the strategy utilized in [5].

Assume there are K contributors of the target of state s, which is represented as
f(s) = {f1(s), · · · , fK (s)}. The appearance model of the target in Equ. 1 is defined
based on the global temporal context and the local spatial context:

Z ∗
t = argmax

Zt

p(Ot|Zt) = argmax
Zt

{e−(1−α)U (Zt)−αU (Zt|f(Zt))} (3)
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where Z ∗
t is the optimal state at time t, α ∈ (0, 1) is the coherence parameter to bal-

ance the global temporal context constraint and the local spatial context constraint. The
energy function mentioned above consists of two terms: the global temporal context
constraint energy function U (Zt) and local spatial context constraint energy function
U (Zt|f(Zt)). In order to avoid the unreliable updating, we set the predefined thresholds
θs and θt to decide whether the spatial and temporal context models will be updated.
The algorithm of the proposed tracker is summarized in Algorithm 1 and the temporal
and spatial context models are detailed in the following sections.

Algorithm 1. Spatio-Temporal Structural Context based Tracker
1: Initialize target T , extract the contributors f (·).
2: Initialize the global temporal context model Mt and the local spatial context model Ms.
3: while run do
4: Sample the image to get the Candidates.
5: for all Candidates do
6: Calculate the global temporal context constraint energy U (Zt);
7: Calculate the local spatial context constraint energy U (Zt|f(Zt));
8: Combine them to get the energy of the Candidates (Eq. 3)
9: end for

10: Find the MAP solution of the Candidates to get the minimum energy state Z ∗
t (Eq. 3).

11: if U (Z ∗
t |f(Z ∗

t )) < θs and U (Z ∗
t ) < θt then

12: Update contributors around of the target state Z ∗
t .

13: Update the global temporal context model Mt with the optimal target state Z ∗
t .

14: Update the local spatial context model Ms with the generated contributors.
15: end if
16: end while

3 Global Temporal Context with Incremental Subspace Model

Target tracking is a physically and psychologically continuous process, hence all of
the prior information will be used to predict the next state of the target. The following
appearances of the target have more or less correlation to the previous appearance infor-
mation. For example, a man cannot abruptly change into a monkey based on historical
appearances. Under this premise, global temporal context exploits historical appearance
variations as an extra source of global constraints to estimate the configuration of the
target. Murphy et al. [19] exploit context features using a scene ’gist’, which influences
priors of the object existence and state, and the work of Torralba et al. [20] shows ’gist’
is sufficient to provide a useful prior for what types of objects may appear in the image.
This opens our mind that we also can use object ’gist’ to constrain the following states
of the target. Here, we define the ’gist’ as the feature vector that summarizes the tar-
get. A newly proposed incremental linear subspace method is used to reduce the high
dimensionality of the feature space, so that more historical information will be stored
and used efficiently.
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Unlike the Hall’s subspace learning method [21] and its variant [1], the newly pro-
posed subspace learning strategy updates the energy dissipation of subspace dimension
reduction in the updating process (Algorithm 2), which acquires the target features more
accurately. Meanwhile, it utilizes the combined samples in adjacent frames rather than
individual ones for updating. The proposed method is called Incremental Multiple In-
stance Subspace Learning (IMISL), which can eliminate the homogeneous noise in se-
quential samples effectively. An observed instance Ot ∈ R

d is a vectorized image patch
corresponding to the state Zt and d is the feature dimension of the observations. Let
Ωt = (μt,Vt,Λt, nt), where μt, Vt, Λt and nt represent the mean vector, the eigenvec-
tors, the eigenvalues and the number of samples of the subspace at time t respectively.
Let Λt = (λ1,t, · · · , λq,t). To evaluate the probability of a candidate belonging to the
subspace, similar to [22], the following equation is utilized:

U (Zt) =
ε(Ot)

2

2σ2
t

+ (d− q) log σt +

q∑
i=1

(
G2

i,t

2λi,t
+

1

2
logλi,t

)
(4)

where q is the reduction dimension of the subspace, ε(Ot) = ‖Ot − VV TOt‖2 is
the projection error of the candidate sample, σt is the energy dissipation in dimension
reduction of covariance matrix at time t and Gt = (G1,t, · · · ,Gq,t) = V T

t (Ot − μt).
The core problem in incremental subspace learning is the updating strategy. Our

proposed strategy utilizes the subspaces for updating instead of single samples, namely
merges the two subspaces into one subspace. We first compress D updating instances
into a local subspace. The subspace construction process can be completed by Eigen-
value Decomposition (EVD) or the efficient Expectation Maximization (EM) algorithm
proposed in [23]. A η-truncation is utilized to decide the reduction dimension of the
subspace to maintain the energy, that is q = argmini(

∑
i λi

tr(Λ) ≥ η). We derive from the
basic equations of the mean value and covariance matrix of the training data, that are:
μ(k) = 1

k

∑k
i=1 Ii, S (k) = 1

k

∑k
i=1(Ii − μ(k))(Ii − μ(k))T , where S (k) represents the

covariance matrix of the subspace, Ii is the updating sample and μ(k) is the mean value
of the samples. We get the covariance matrix of the merged subspace:

S (k+l) =
k

k + l
S (k) +

l

k + l
S (l) + yyT (5)

where y =
√

k·l
(k+l)2 (μ

(k) − μ(l)). Furthermore, the covariance matrix can be de-

composed as the following: S (k) = σ2
kI +

∑qk
i=1(λi,k − σ2

k)vi,kv
T
i,k , where σ2

k =
1

dk−qk

∑dk

qk+1 λi,k , and qk is the reduction dimension. Then plug the equation to (5):

S (k+l) =
kσ2

k + lσ2
l

k + l
I+

k

k + l

qk∑
i=1

(λi,k−σ2
k)vi,kv

T
i,k+

l

k + l

ql∑
i=1

(λi,l−σ2
l )vi,lv

T
i,l+yyT

(6)
where vi,k, λi,k, σk and vi,l λi,l, σl are the ith eigenvector, ith eigenvalue, energy
dissipation in dimension reduction of the covariance matrix S (k) and S (l) respectively.
We reformulate the Equ. 6 to get:

S (k+l) =
kσ2

k + lσ2
l

k + l
I + LLT (7)
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whereL = [
√
ρ(λ1,k − σ2

k)v1,k, · · · ,
√
ρ(λqk,k − σ2

k)vqk,k,
√
(1− ρ)(λ1,l − σ2

l )v1,l,

· · · ,√(1 − ρ)(λql,l − σ2
l )vql,l, y] and ρ = k

k+l .
Due to the computation complexity of decomposing matrix LLT directly, we decom-

pose LTL instead, to get the decomposition of matrix S (k+l). Let Q = LTL. The size
of matrix Q is q×q, where q = qk+ql+1. We utilize the partitioned matrix to represent

the matrix Q =

(
Σ β
βT α

)
, where Σ =

(
Σ1 A
AT Σ2

)
,α = yT y and

βi =

{ √
ρ(λi,k − σ2

k)v
T
i,ky 1 ≤ i ≤ qk√

(1− ρ)(λi,l − σ2
l )v

T
i,ly qk < i < q

A(i, j) =
√
ρ(1 − ρ)(λi,k − σ2

k)(λj,l − σ2
l )v

T
i,kvj,l

Σ1 = diag{ρ(λ1,k − σ2
k), · · · , ρ(λqk ,k − σ2

k)}
Σ2 = diag{(1− ρ)(λ1,l − σ2

l ), · · · , (1− ρ)(λql,l − σ2
l )}

Then the subspace updating process can be done efficiently by decomposing the matrix
LTL and the process is detailed in Algorithm 2. In this way, the ’gist’ features of the
target can be captured efficiently and be utilized to predict the state of the target in the
following frames.

Algorithm 2. The Subspace Updating Algorithm

1: Update the mean value of the subspaces, μ(k+l) = k
k+l

μ(k) + l
k+l

μ(l).

2: Set ρ = k
k+l

. Get the observation covariance matrix S (k+l) = (ρσ2
k + (1− ρ)σ2

l )I + LLT

3: Set Q = LTL =

(
Σ β
βT α

)
, the size of matrix Q is (q + 1) × (q + 1). Decompose Q as:

Q = UΓU T , where Γ = diag{ξ1, ξ2, · · · , ξq+1}, U TU = I . Then Vqk+ql+1 = LUΓ− 1
2 ,

where matrix Vqk+ql+1 = [v1,k+l, · · · , vqk+ql+1,k+l] is composed by the first qk + ql + 1
eigenvectors of the covariance matrix S (k+l).

4: The observation covariance matrix is represented as: S (k+l) = (ρσ2
k + (1 − ρ)σ2

l )I +∑qk+ql+1
i=1 ξivi,k+lv

T
i,k+l. The first qk + ql + 1 eigenvalues of the covariance matrix

can be updated as λi,k+l = σ(k+l)2 + ξi, and the sigma value is updated as σ2
k+l =

1
d−qk+l

(
∑qk+ql+1

i=qk+l+1 λi,k+l + (d− qk − ql − 1)σ(k+l)2), then σ(k+l)2 = ρσ2
k + (1− ρ)σ2

l ,

and qk+l = argmini(
∑

i λi,k+l
∑qk+ql+1

j=1 ξj
≥ η).

4 Local Spatial Context with Contributors

As discussed in Section 1.2, local spatial context information is derived from the area
that surrounds the target to track (here we use surrounding patches as local context
information, as shown in the left side of Fig. 1). The role of local context has been stud-
ied in psychology for the task of object detection [24,25], The study in [24] has proved
the effectiveness of local context for object detection, and Sinha et al. [25] found that
the inclusion of local contextual regions such as facial bounding contour substantially
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improves face detection performance. Besides, the works in [13,16,17] show that the
local context information including supporters and distracters will enforce the robust-
ness of the tracker, even when the target is partially invisible. However, different from
[13] which constructs complex relative motion model between the target and auxiliary
objects and [17] which statistically counts the matched supporters around the target,
our proposed strategy focuses on the weak correlation between every contributor and
the target, and then combines them to construct a strong classifier to locate the tar-
get. Multiple instance boosting is exploited to efficiently select the most representative
contributors and combines them together to build the supporting field.

For multiple instance boosting, each selected weak classifier corresponds to a weak
correlation, and the correlations are combined together to vote the score (namely the
spatial energy item in Equ. 3) of a candidate sample. The vote is expressed as:

U (Zt|f(Zt)) ∝ −
∑
i

hi
t (8)

where hi
t is the ith selected weak classifier at time t. Please refer to [5,26] for more

details about multiple instance boosting algorithm.

Contributor Selection. For the contributor, similar to [17], we defines it as the key
point around the target that can help to locate the target. Here, SURF descriptor is em-
ployed to find the contributors around the target which is generated by the fast Hessian
algorithm. When updating, the SURF descriptor is generated in the rectangle around the
center of the target with the width rd · w and height rd · h, where rd is the enlargement
factor and we set rd ∈ [0.1, 0.6] in our experiments, w and h are the width and height
of the target in the current frame respectively. If the extracted candidate contributors are
more than the required ones, we randomly select some of them to be the final contribu-
tors. On the other hand, if they are inadequate, we randomly generate some more points
to supplement them.

Feature Construction. In order to incorporate the structure information of the target,
we try to partition the target and contributors into a few blocks, and the structure infor-
mation is constructed with the relationships between each blocks. The structure infor-
mation comes from two parts: one is the mutual-pairwise features between the blocks
of the target and the contributors, and the other one is the self-pairwise features of inner
blocks of the target itself. Then, these numerous relations are collected to build a feature
pool. For simplicity, the structure features are produced by the difference between the
sums of pixel values in each block. Certainly, other relation expression strategy can be
considered, e.g., Normalized Cross-Correlation (NCC). The structure features between
the target and contributors deliver the holistic and detailed information of the supporting
field.

Separately divide the target and contributors into N = n1 × n2 blocks (we set n1 =
5, n2 = 5 in our experiments), I (x, y) represents the pixel value of the image at position
(x, y), and Pi(s) represents the ith block of the target or contributors corresponding
to the target state s . Here we define the distance function d(Pm(s1),Pn(s2)) of two
blocks:

d(Pm(s1),Pn(s2)) =
∑

(i,j)∈Pm(s1)

I (i, j)−
∑

(i,j)∈Pn(s2)

I (i, j) (9)



724 L. Wen et al.

Next, we collect all these weak relations to construct the feature pool. As defined in
Section 2, the contributors of the target of the state s are f (s) = {f1(s), · · · , fK (s)}.
The pairwise feature pool F is constructed from two parts, the self-pairwise feature
pool Fsp and the mutual-pairwise feature pool Fmp, that is F = Fsp ∪ Fmp. The
self-pairwise feature pool of the target itself is constructed as

Fsp = {d(Pi(s),Pj(s))|i = 1, · · · ,N ; j = 1, · · · ,N ; i �= j} (10)

The mutual-pairwise feature pool of the target and its contributors is constructed as

Fmp = {d(Pi(s),Pj(fk(s)))|i = 1, · · · ,N ; j = 1, · · · ,N ; k = 1, · · · ,K} (11)

Then the multiple instance boosting algorithm is utilized to select some of the most rep-
resentative relations to construct the supporting field. In this paper, the weak classifier
is adopted as in [11,5].

5 Experiments

5.1 Experimental Setup

We conduct some experiments to evaluate the performance of our spatial-temporal
structural context based tracker. Our tracker is implemented in C++ code and runs on
the standard PC platform. The tracker is evaluated on 10 publicly available sequences
which contains different challenging conditions, and these sequences have been issued
in previous works [5,27,7,6], which can be found in their own websites. Our tracker
is initialized with the first frame and it outputs the trajectory of the target. The quan-
titative comparison results of IVT[1], FragTrack[2], SemiBoost[3], CoGD[4], MIL[5],
PROST[6], VTD[27], TLD[7], ContextT[17] and our tracker are shown in Fig. 2, Table
1 and Table 2. More results can be found in the supplementary materials.

Parameters. The search radius r of the tracker is set in the interval [20, 50]. For the
global temporal context model, every 5 frames are combined together to update the
subspace model and the parameter η = 0.99 of η-truncation in subspace construction.
For the local spatial context model, K = 12 contributors are generated to construct the
supporting field and each of them are partitioned into 5 × 5 blocks. About 350 weak
relations are combined together to construct the supporting field. For the positive bags,
the samples are collected from the circle with the radius 8 and about 45 of the collected
samples are packaged. For the negative bags, 50 samples are collected from the ring
of the radius interval [12, 40]. The conservative updating threshold in our experiments
are set as θs ∈ [−20,−10] and θt ∈ [10, 20]. For the experimental results of other
trackers we cite here, we utilize the default parameters which are provided in public
available codes and choose the best one of 5 runs, or take the results directly from the
published papers. Specifically, we reproduce the CoGD tracker in C++ code and adopt
the parameters as described in [4].
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Fig. 2. Tracking results of our tracker, FragTrack[2], SemiBoost[3], CoGD[4], MIL[5],
PROST[6], TLD[7], VTD[27] and Context tracker[17]. The results of five trackers with relatively
better results are displayed.

5.2 Comparison with Other Trackers

Heavy Occlusion. The targets in sequence car and occlude2 undergo long-term heavy
occlusion for several times, and IVT which uses holistic appearances without any con-
sideration of spatial information fails to track the target precisely. Relatively, TLD and
Context Tracker perform very well in these two sequences, because the detection based
trackers will re-locate the target after the occlusion, even though they lose the target dur-
ing occlusion. Since the spatio-temporal context increases the possibility of our tracker
to find the real target, our tracker also has good performance. A similar object usually
confuses the trackers and finally misleads the trackers when it occludes the target, just
like what happens in sequence girl. As shown in Fig. 3, approximately at the frame
463, TLD and MIL drift away for the fully occlusion of the man’s face, whereas the
context around the target and efficient temporal constraint provide our tracker strong
discriminative ability to recognize the target.

Abrupt Motion and Motion Blur. The robustness of many trackers will be challenged
by the abrupt motion resulting from hand-hold camera in sequence pedestrian1. The
spatio-temporal context information provides enough information to ensure the robust-
ness of the tracker. Another great challenge for the trackers is the motion blur. The loss
of appearance features attributing to motion blur in the sequence animal and lemming
finally results in the inaccuracy of FragTrack, SemiBoost, and TLD. However, since our
temporal constraint model represents the target with low dimensionality ‘gist’ and the
context information that can be clearly captured helps to locate the target, our tracker
still has the best performance.

Cluttered Background. The cluttered background in sequence animal and football
actually confuses the tracker a lot, as shown in Figure 3. Lacking spatial constraints,
MIL are easily hijacked by other objects that have similar appearance with the target.
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Table 1. Comparison results of average error center location in pixel

Seq. STT IVT CoGD Semi MIL Frag PROST VTD TLD ContextT
girl 10.4 40.4 14.1 22.8 31.6 25.4 19.0 12.5 35.7 18.6

occlude2 9.39 19.7 13.3 25.2 14.2 21.5 17.2 9.40 14.9 9.25
animal 5.20 226 7.38 12.3 80.3 71.4 - 9.68 50.7 81.2

basketball 10.5 95.4 13.8 153 93.3 12.7 - 11 158 159
football 6.15 17.2 9.16 102 12.7 9.92 - 6.25 13.0 51.2

pedestrian1 5.14 109 6.75 30.3 40.3 11.5 - 62.6 8.75 61.5
panda 5.20 58.2 64.5 41.7 9.42 6.85 - 6.33 17.7 77.5

car 6.26 56.9 16.6 46.4 80.7 28.6 - 51.8 11.8 5.47
lemming 8.45 128 39.8 99.8 40.5 82.8 25.1 98 167 182

board 23.9 169 74.5 389 69.2 90.1 39.0 70.1 134 103

Table 2. Tracking results. The numbers indicate the count of successful tracking frames based
on the evaluation metric of PASCAL VOC object detection[28] in which the overlap ratio larger
than 0.5 is regarded as successfully detected.

Seq. Frames STT IVT CoGD Semi MIL Frag PROST VTD TLD ContextT
girl 502 497 353 482 388 378 378 447 502 219 328

occlude2 812 797 583 767 548 807 618 665 792 712 687
animal 71 71 3 62 56 5 13 - 66 43 48

basketball 725 715 75 335 90 175 630 - 601 15 50
football 362 346 246 292 65 272 302 - 357 272 55

pedestrian1 140 113 4 135 35 71 92 - 45 80 27
panda 1000 580 120 175 375 195 465 - 510 315 300

car 945 915 414 804 504 101 644 - 571 878 896
lemming 1336 1246 284 907 733 882 733 942 471 234 40

board 698 583 30 279 105 354 474 524 274 95 60

Although TLD considers positive and negative constraints and Context Tracker incor-
porates semantic context, they still frequently skip to other objects because they depend
too much on detectors. The complex background in sequence board and lemming sig-
nificantly increases the difficulty in tracking task. This is also the reason why many
trackers which ignore background information including FragTrack, IVT and VTD per-
form bad in these sequences. Although CoGD, MIL, and PROST take the background
into account, their performances are not as accurate as ours.

Large Variation of Pose and Scale. Some trackers such as FragTrack does not update
their model effectively and easily lose the target when 3D pose of the target changes
dramatically, as seen in sequence girl, board, and lemming. IVT, CoGD, and VTD adopt
online updating mechanism to learn the different appearances of the target, but the large
pose variation still drives them to drift away and they cannot recover. TLD and Context
Tracker are good at long term surveillance sequence, but they cannot track the target
precisely once large pose variation happens. When non-rigid motion happens in se-
quence panda and basketball, IVT and SemiBoost perform bad. Some other trackers
such as CoGD, MIL and TLD have relatively good tracking results, but they do not suc-
ceed all the time. Since VTD combines multiple basic models with different features of
the target, it performs well in these two sequences. Nevertheless, it does not consider
the surrounding information, thus its tracking performances are not satisfactory as ours,
as described in Table 1 and Table 2.
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girl �089 girl �316 girl �463 lemming �720 lemming �1040 lemming �1292

animal �012 animal �041 animal �054 football �156 football �290 football �362

basketball �022 basketball �485 basketball �700 board �073 board �574 board �602

car �520 car �687 car �786 pedestrian1�020pedestrian1�078pedestrian1�110

Fig. 3. Tracking results. The results of our tracker, CoGD[4], MIL[5], PROST[6], TLD[7],
VTD[27] and ContextT[17] are depicted as yellow, blue, black, light green, cyan, red and purple
rectangles respectively. Only the trackers with relatively better performances of each sequences
are displayed.
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Fig. 4. The red pentagram represents the true target position, the blue triangle represents the false
positive in the background and the magenta circle represents other surrounding patches. The
relation between the target and its surroundings can greatly enhance the discriminability of the
tracker.

5.3 Analysis

In these sequences, our proposed spatio-temporal structural context based tracker out-
performs some of the state-of-the-art trackers [1,2,3,4,5,6,7,27,17]. The reason why our
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STT is so stable is the introduction of global and local constraints, namely temporal
and spatial context. The linear subspace (the global temporal context constraint) repre-
sents the historical appearance variations of the target with low dimensionality feature
vectors. Only the gist of the object will be preserved and other noise and valueless in-
formation will be discarded during the process of subspace construction. Therefore, it
is easy to explain why STT is able to handle illumination variation, motion blur, and
appearance changes, because these annoying factors nearly will not influence the accu-
racy of our temporal context model. Particularly, we also can notice that STT is very
good at dealing with the distraction by other objects which is similar to the target. As
depicted in Fig. 4, when there exists a false positive near the target, while the appear-
ances of the target and the false positive are highly similar, the surroundings of these
two objects are totally varied. Once we incorporate the surrounding information around
the target to build the supporting field, it is easy to differentiate the target from the
false positive. Someone may doubt that STT will be drifted away by the surroundings if
it keeps being updated with the surrounding information. Unlike TLD, Semiboot, and
Context Tracker which utilize detectors to correct their trackers, STT is supervised by
the temporal context which only focuses the target itself. The mutual supervision of
spatio-temporal context ensures the long term stability of our STT.

6 Conclusion

In this paper, a spatio-temporal structural context based tracker is proposed. The ap-
pearance of target is described by the global temporal context information and the local
spatial context information. The structured spatial context model automatically discov-
ers the contributors around the target, and incorporates them to build a supporting field.
In order to prevent our tracker from being drifted away by the surroundings, a strong
temporal constraint model is included, which represents the target with low dimension-
ality feature vectors. Experimental comparison with the state-of-the-art tracking strate-
gies demonstrates the superiority of our proposed tracker. Our future work includes the
introduction of the adaptive balance coefficient between the global temporal context
constraint and the local spatial context constraint, which will provide more robustness.
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Abstract. This paper addresses the problem of tracking a large number
of targets moving in 3D space using multiple calibrated video cameras.
Most visual details of the targets are lost in the captured images because
of limited image resolution, and the remainder can be easily corrupted
due to frequent occlusion, which makes it difficult to determine both
across-view and temporal correspondences. We propose a fully automatic
tracking system that is capable of detecting and tracking a large number
of flying targets in a 3D volume. The system includes a 3D tracking
method in the framework of particle filter. Different from previous 2D
tracking methods, the proposed method models the 3D attributes of
targets and furthest collects weak visual information from multiple views,
which makes the tracker robust against occlusion and distraction. The
ambiguities in stereo matching when initializing trackers are handled by
an effective multiple hypothesis generation and verification mechanism.
The whole system is fully automatic in dealing with variable number of
targets and robust against detection and matching errors. Our system
has successfully been used by biologists to recover the 3D trajectories of
hundreds of fruit flies flying freely in a 3D volume.

1 Introduction

Tracking targets in video sequence captured by a single camera has been studied
for many years, there has however not been much research attention paid to
the problem of recovering 3D trajectories of a large group of moving objects.
Such phenomena is very common in nature, examples include bird flocks, insect
swarms and fish schools. Scientists are interested in their motion trajectories
because they give detailed information not only about the behavior of each
individual but also about the collective behavior of the community.

Recovering the 3D trajectory of target from single-view video is difficult unless
some strong assumptions are made [1]. Perhaps the most feasible way is to use
multiple synchronized cameras. Even with this setup, it is still challenging to
reconstruct the trajectories of a large number (sometimes hundreds) of targets,
which involves determining both across-view correspondences (stereo matching)
and temporal correspondences (visual tracking). The targets (fruit flies in our
experiment for example) may well resemble each other in appearance and one
target may be frequently occluded by other targets, all these challenges make it
difficult for traditional stereo matching and 2D tracking methods to cope with.

A. Fitzgibbon et al. (Eds.): ECCV 2012, Part IV, LNCS 7575, pp. 730–742, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Most stereo matching methods use the photometric consistency cue to find
correspondences between image pair of different views [2]. However in our case,
photometric consistency becomes hardly useful, because 1) the targets may look
alike which causes ambiguity in matching. 2) The targets are sometimes so small
that slight viewpoint change may result in great appearance variation. 3) Occlu-
sion happens frequently. Du et al [3] proposed a method that uses a motion cue
and the epipolar constraint instead of photo consistency to find correspondences.
They made an assumption that the 2D motion of the points to be matched in
both views is reliably obtainable which is also not valid in the problem here.

Tracking in each single-view video in our case also faces challenges. In our
imaging condition, temporal coherency in target appearance which is a crucial
cue in most 2D trackers becomes weak. The nearly identical appearances of the
targets may result in ambiguities and 2D trackers may be distracted by other
targets in the scene. Besides, as the targets are moving in 3D space, occlusion
happens frequently which makes the problem even more severe.

Aiming at overcoming these challenges discussed above, we design a tracking
system that is capable of reconstruct the 3D trajectories for hundreds of flying
animals (fruit flies) automatically. Although temporal visual coherency are weak
and vulnerable, we show in our system that if the target is properly modeled in
their native 3D space and multiple visual cues from multiple views are utilized
carefully, we are able to overcome several major challenges such as frequent
occlusion and make accurate estimation. Ambiguities in stereo matching are
better handled by a multiple hypothesis generation and verification mechanism.
The key idea of this mechanism is that whenever matching ambiguity occurs,
instead of making decisions right away, multiple hypotheses are maintained and
will be verified in later tracking stage where more evidence will be collected.
Thus the chance of making false decision has been greatly reduced.

2 Related Work

Particle filters (PF) have been successfully applied and extended to various track-
ing problems ever since it was first introduced in visual tracking [4], because of
their simplicity and the capability to handle nonlinearity and non-Gaussianity.
Many researchers have extended particle filter to multi-target tracking [5–8]. As
for single-view multi-target tracking, numerous approaches have been proposed
including multiple hypothesis tracking (MHT) [9], JPDAF [10] and greedy as-
signment [11]. Okuma et al [6] proposed a particle filter based tracking method
for tracking hokey players using the color histogram as observation model, when
a player newly enters the scene, it is detected and a tracker is started for it. Khan
et al [8] proposed a particle filter based method to track multiple targets that
frequently interact with each other. They used MCMC to sample the resulted
high-dimensional state space.

Some efforts have been made towards 3D tracking of multiple humans with
multiple cameras [12–14]. Human bodies are highly deformable and their motion
is complex but usually restricted on the ground plane, the targets we track are
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tiny with little visual details in captured images, the population size is much
larger and they are likely to freely fly to any area of a 3D volume. Compared
with human tracking, occlusion in our problem happens much more frequently
but each occlusion event lasts for shorter period.

Some previous works have attempted to track similar tiny targets in 3D. Du
et al [3] tracked particles using simply the nearest-neighbor strategy which first
produce 2D trajectory segments, and then these segments are matched across
different views using the epipolar constraint. Although some good stereo match-
ing results were reported, trajectories were broken into many segments which is
undesirable for many applications. Zou et al [15] proposed an off-line tracking
algorithm which sought to minimize a global energy function via dynamic pro-
gramming. Wu et al [16] proposed a method that linked the trajectory segments
generated from 2D tracking. Their methods involve multiple high-cost linear
assignment steps. The one to one assumption of linear assignment makes the
trajectories prone to breaking up because if a detected object has been assigned
to one tracker it cannot be assigned to another tracker which is invalid when
occlusion occurs. This constraint was relaxed in [17]. All these methods highly
depend on detection results.

3 Problem and Method

3.1 The 3D Multi-target Tracking Problem

Given video sequences from multiple cameras which have been geometrically
calibrated and temporally synchronized, our goal is to retrieve the 3D locations
at each time step for each target. Like other tracking problem, for each target in
the scene we can define a state space at t as st and the data available up to t as
z1:t, then the tracking problem becomes estimation of the posterior probability
density function p(st|z1:t). The state sequence {st | t ∈ N} is assumed to be a
first-order Markov process p(st|s1:t−1) = p(st|st−1). Under this basic probabilis-
tic framework, the task is now to build appropriate models that take advantage
of the information from multiple views.

3.2 State Space and Transition Model

Most single-view tracking methods consider intuitively the position of target in
image as state space. In fact, 2D image is the projection of 3D scene, occlusion
and distraction in 2D image may not actually have existed in 3D space. So the
first term we incorporated into the state space is the 3D location X = (x, y, z).
But 3D location alone only models translation in 3D space, a full rigid transform
has 6 degrees of freedom (with another three rotation angles A = (θx, θy, θz)). If
we ignore the non-rigid deformation of the target, we can model the full motion as
R = (X,A). We define the state at time t as st = (Rt, Rt−1)

T . And a transition
model is defined as

st = Bst−1 + vt−1, (1)
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where B is a 12 × 12 state transition matrix, and vt−1 ∼ N (0, Σ) is Gaussian
noise. This transition model translates from previous state to current state which
is physically more meaningful if 3D attributes have been modeled, and thus it
is more likely to achieve accurate estimation.

3.3 Observation Model

Background Modeling. Our goal is to build an automatic tracking system,
which is able to first of all find the targets from cluttered scene. We adopt a
simple backgroundmodeling method which outputs for each frame a probabilistic
map, the pixel value of which indicates the probability of each pixel belonging
to the foreground. Particularly, let Iit denote frame t of view i, we calculate the
background Bi

t as the median image of the previous p frames up to t

Bi
t = median(Iit−p+1, . . . , I

i
t). (2)

Then the probabilistic map is

F i
t ∝ |Iit −Bi

t|. (3)

By thresholding F i
t and finding the barycenters of resulted connected regions,

we are able to detect most of the moving targets in the scene.
Although simple, the above method works effectively for the detection of tiny

moving targets. We do not expect to detect all the targets in one detection, be-
cause detection miss is inevitable due to occlusion. But as the detection proce-
dure is carried out in every frame, the missed target is more likely to be detected
in later frames when occlusion disappears. The probabilistic map obtained here
is not just used for detection it also serves as one of the cues in the observation
model which will be discussed below.

Appearance. We have explained that in our case little visual details of the tar-
gets can be captured. A majority of the features that have been commonly used in
state-of-the-art tracking algorithms are invalid here, for example, color, texture,
edge etc. Even so, we found that calculating simple image metric such as sum of
square differences (SSD) and normalized-cross-correlation (NCC) between two
image patches work effectively in most of the cases. We think the reason is that
although each target may take up only a few pixels in image, these pixels jointly
encode a discriminative feature which is the combined product of target intrinsic
appearance, depth, orientation, background and illumination. These factors may
vary among different targets, but for one target during a period of sufficiently
long, they are approximately invariant. We choose NCC because it is more robust
under slight occlusion and illumination change.

If we have a 3D model of the target with texture mapped, we can project it
onto any image plane, get the predicted image and then check the appearance
consistency of predicted and captured image. But it is infeasible because such
textured 3D model is difficult to obtain. Therefore, we adopt a simplified strat-
egy: consider a target at time t0, its current state is st0 = (Xt0 , At0), Xt0 is
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(a) Appearance cue
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c
d

(b) silhouette cue

Fig. 1. (a) At t0, a circular window at xi
t0 is back-projected onto a plane that is parallel

to the image plane. The back-projected sample points then move with the target and
their pixel values are also kept as reference. (b) a, b, c and d indicate four different
states, and the four circles are their projected regions on image. State a has a higher
silhouette score than the other three, because its proportion of area belonging to the
foreground is the highest.

its 3D position, xi
t0 is the projected position on the ith camera (see Fig 1(a)).

A circular window around the xi
t0 is selected, and then the pixel values in this

window are kept in ri which is a vector whose length n is the number of pix-
els in the window. The pixel positions in the window are back-projected onto a
plane in 3D space which is parallel to the image plane (see Fig 1(a)), the back-
projected point set is termed Ωi

t0 . At time t, the target is in state st = (Xt, At),
we can compute a 3D rigid transform T i

t with the difference between st0 and st.
The 3D points in Ωi

t0 are transformed with T i
t and obtain a new 3D point set

Ωi
t = {T i

tX | X ∈ Ωi
t0}. we project transformed points to the image plane, and

the pixel values of the projected locations are preserved in a vector ait

ait = {Iit(PiT
i
tX) | X ∈ Ωi

t0} (4)

where Iit is the image at t of view i, and Pi is the projection matrix of camera i.
This procedure is carried out in every view. We calculate for each view the NCC
score between ait and the corresponding reference ri. By summing all the NCC
scores of all the views together we have

Ct
1 =

Nv∑

i=1

NCC(ait, ri) (5)

where Nv is the number of cameras. And the probability p(zt|st) using the ap-
pearance cue alone can be written as

papp(zt|st) ∝ expCt
1. (6)

Silhouette. When a 3D object projects onto the image plane, silhouette is
the area of the projection in the image. Like the appearance, with a known
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3D model, silhouette can be obtained by simply projecting the 3D model onto
the image plane. If the foreground/background segmentation has been perfectly
done we can then check the shape consistency of the predicted silhouette and
the segmented silhouette. However accurate 3D model is difficult to obtain and
the segmented area may contain the projections of several targets, so computing
the similarity between shapes does not always make sense.

Even so, we have managed to make full use of the coarse silhouette, because
they are obtained by subtracting static background and indicates there are mov-
ing things (probably being the targets we want to track) in that area. We seek
to check if the predicted silhouette is in the area of segmented foreground, or in
another word compute the proportion of the predicted silhouette that is in the
segmented foreground (see Fig 1(b))

Ct
2 =

Nv∑

i=1

‖{F i
t (PiT

i
tX) | X ∈ Ωi, F

i
t (PiT

i
tX) > thre}‖

‖Ωi‖ , (7)

where thre is a threshold used to threshold the foreground probabilistic map
F i
t , and ‖ · ‖ measures the cardinality of a set. Using the silhouette cue, the

probability p(zt|st) can be written as

psil(zt|st) ∝ expCt
2. (8)

By combining the two different cues together, we can build an observation model
as

p(zt|st) = αpapp(zt|st) + βpsil(zt|st), α+ β = 1, (9)

where α and β are the weights that are set experimentally. In our experiment,
we set α = 0.7 and β = 0.3, and the radius of window is set to 6.

3.4 Particle Filtering

Under the Markov assumption and by Bayes’ rule, the posterior probability
p(st|z1:t) can be formulated recursively [18]

p(st|z1:t) ∝ p(zt|st)
∫

p(st|st−1)p(st−1|z1:t−1)dxt−1. (10)

Instead of making strong assumptions on the above distribution such as linear
Gaussian in Kalman filter, particle filter approximates the posterior probability
with a set of particles {(snt , wn

t )}n=1...M , each particle is associated with a weight
wn

t . New samples are drawn from particles in the previous step using importance
sampling and moved independently using the transition model, and then they
are reweighted as

wn
t ∝ p(znt |s̃nt ),

M∑

n=1

wn
t = 1. (11)
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After we have a particle set that approximates p(st|z1:t), we simply compute the
expectation as

E(st|z1:t) =
M∑

n=1

wn
t s

n
t . (12)

3.5 Automatic Tracking System

We have introduced the probabilistic models that we use for tracking a single
target. In this section we will present the techniques that make the system fully
automatic.

1

2

3

1

4

1

2

3 4

a

a

view 1 view 2

Fig. 2. Top: At time t, a detected target a in the left image finds 4 candidate correspon-
dences in the right image using the epipolar constraint. Bottom: If correspondences can
be found in the previous time step t− 1 for a and the its 4 candidates, and the epipo-
lar constraint is used again, ambiguities have been reduced with only two candidates
remaining. Candidate 3 and 4 are removed. And then two trackers are started for the
target.

Multiple Hypothesis Generation. First of all, we build a target queue Q
which contains the targets that have been detected and are under tracking. We
then carry out detection on images of all the views at time t, the result is a set
of connected regions for each view. Some of the regions have been associated to
targets in Q, and we are now interested in those haven’t been assigned whose
barycenters are calculated as {gti}. We find their 2D locations {gt−1

i } in the
previous time t − 1 using a fast template matching algorithm [19]. This works
because the target’s appearance does not change much between two consecutive
frames. The result is a set of point pairs Gi = {(gti , gt−1

i )} for view i.
For every point pair in G1, we search in another set Gj , only those point

pairs whose two points in both time steps are close enough to the correspond-
ing epipolar lines are selected as candidates (see Fig 2). And the corresponding
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3D point pairs can be obtained through triangulation. These 3D points in this
set are projected onto other views to check if there is a target there (for the
binocular case, this step is ignored). The final candidates are those 3D point
pairs which both satisfy the two time step epipolar constraints between view
1 and view j and are visible by at least one other camera (for the binocular
case, the last condition is ignored). Ambiguities cannot be avoided in this step,
although we have done plenty of work to reduce them. We handle remaining
ambiguities using a strategy similar to MHT, that is, we associate for this target
multiple hypothetic trackers which are initialized using the candidates we have
found, and push the target into the Q and each tracker work independently and
is tested in later tracking. The angles in the state are simply set to zero. Wrongly
associated trackers are expected to terminate in several time steps.

Hypothesis Verification. Thus each target in Q may maintain several hy-
pothetic trackers after initialization. Each time after the particles of a tracker
have been reweighted, a score is counted to decide whether this tracker is work-
ing properly for the target it belongs to. We count the percentage of particles
whose computed appearance score Ct

1 and silhouette score Ct
2 are both below

predetermined thresholds. If the percentage is higher than some threshold for 5
consecutive time steps, the tracker is terminated. Setting these parameters seems
troublesome at first glance, but in our experiments we found that there is dis-
tinct difference between a properly working tracker and an incorrectly managing
one.

Key Frame Selection. Sometimes the target’s appearance change dramati-
cally and abruptly, tracking with a fixed reference texture may cause problem.
So we update reference at an interval of 8 frames but with much caution. We up-
date reference only when the above mentioned termination score is sufficiently
low. This ensures that the reference is selected when the tracker is in good
condition.

3.6 System Workflow

The workflow of the proposed tracking system is summarized in Fig 3, where bg
subtraction is short for background subtraction, and bg maps is the probabilistic
maps output by the background subtraction method.

4 Experiments

We use fruit flies as targets in our experiment. About two hundred insects are
put into a 35cm × 35cm × 25cm transparent acrylic box to freely fly within
the cube. Three OPAL-1000 digital CCD cameras were used to synchronously
capture videos at a frame rate of 120 fps and a resolution of 1024× 1024. We
implemented the proposed tracking method with Matlab and run it on a PC
with an intel i7 3.4 GHZ CPU and 8 GB RAM.
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target queue Qtracker

tracking

bg subtraction
initialization

bg maps

images

new targetsblobs
...

terminate?tracking

remove

Y

N

Fig. 3. One loop of the tracking system. The results of background subtraction are used
by both tracking and detection procedures. Tracking results are taken into considera-
tion in detection to avoid repetitive detection. Before tracking results are returned to
the target queue, some trackers that satisfy the termination condition are terminated.

Fig. 4. Some of the trajectories obtained by the proposed method. Left: 142 trajectories
that are longer than 40 frames. Right: 44 trajectories that are longer than 80 frames.

We captured videos of the flying fruit flies for about 2 seconds after they were
stimulated. All the resulted videos had a length of 234 frames. We obtained
1371 targets in our target queue, some targets were assigned several trackers,
and we only kept the longest of them. Most of trajectories that are too short
were created mistakenly, so we abandoned those targets whose longest trajectory
was short than 20 frames. And finally we got 239 trajectories, we display some
of them in Fig 4.

Because of lack of ground truth, it is difficult to evaluate the accuracy of
the computed 3D trajectories. But their projections on videos are observable. If
a trajectory is observed to be correct in more than one view until the target is not



Automatic Tracking of a Large Number of Moving Targets in 3D 739

visible to at least two view, we consider it a completed trajectory. Here we also
define two types of tracking errors. Target lost: when the target is still moving
and captured by at least one camera, but the tracker fails to track it. When
this occurs, the tracker is expected to terminate in several time steps. Tracker
distracted: when the target is still moving and visible by at least one camera,
but the tracker is distracted and tracks another target. In this case, the tracker
will not stop.

In order to evaluate the capability of the proposed method in handling occlu-
sions and distractions, we compare the proposed method with two 2D tracking
methods. The first one is a 2D particle filter method with template match-
ing as observation model (2DPF+TM), that is, the particles are reweighted
according to the NCC score of matching. And the state space is defined as
(xt, yt, xt−1, yt−1). The other is template matching which is a pure determin-
istic method without Bayesian filtering, and we update the template in every
5 frames. This method is termed 2DTM. Both of the two methods adopted a
10 × 10 window. The 142 trajectories which are longer than 40 frames from
our results were used for test. We initialized the 2D trackers with projection
of the start points of trajectories. We checked whether the trajectories for test
were correctly initialized by observing their projections on each view. If there
is a corresponding target for that trajectory on each view for a sufficiently long
time, then the chance of the trajectory being an outlier is negligible. We carried
out this 3 times to reduce random disturbance.

Table 1. Comparison results. > 40 percentage means the percentage of trackers that
track the right target for more than 40 frames.

Methods Distracted Lost > 40 percentage Completed Total

2DPF+TM 44 20 69% 54.9% 142
2DTM 61 37 52% 30.9% 142
Proposed method 2 7 100% 93.6% 142

The results of this experiment is in Table 1. We can see in this table that while
2D tracking methods suffered from occlusion and distraction in 2D images, the
proposed method was generally not affected by them. That’s because our trackers
work directly in 3D space and integrates information from multiple-views (see
Fig 5). We only found two distractions in our result, both of them were caused
by targets flying too close to each other in 3D space (Fig 6(a)).

It should be noted that the detection result was not perfect in our experiments,
not all the targets were immediately detected once they entered the scene. But
most of them were detected in the time steps afterwards. We can see in Fig
6(b), it is a diagram of the nunber of active trackers varying with time. At the
beginning, the number is 89, after 5 time steps it climbs to 140, that’s because
during that period a large number of targets were detected in the later frames
and no tracker was terminated. The variation of the number is the joint results
of detection and termination.
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Fig. 5. Particle distributions (red dots) when tracking under distraction. The yellow
circles are the estimated 2D locations, and the blue dashed circles are the target posi-
tions which have been marked manually. Top: in 2D tracking, distraction occurs when
one target is occluded by another target. Middle and bottom: By integrating data from
multiple views, the proposed method is generally immune from distraction in 2D image.

1

2

(a) 3D distractions (b) Number of active trackers

Fig. 6. (a) Two 3D distractions are found which causes the failures (1 and 2) of the
tracker. 1 happened because two targets moved close and flied in nearly one direction. 2
happened because two targets went close and one of them (orange) changed its direction
instantly. (b) Plot of the number of active trackers. The boxed curve shows a dramatic
increase in the number.
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5 Conclusion and Future Work

We have proposed in this paper a tracking system to automatically track a large
number of moving targets in 3D scene. Tracking is carried out directly in 3D
space and information from multiple views is integrated reasonably. We have
proposed several effective mechanisms which make the system fully automatic
and stabe. With our Matlab implementation and PC, the system took around 15
second to process the data of one time step when the target queue maintaining
about 140 active trackers. Our future work is to develop a GPU version of the
system, which can be used in long-period tracking of targets in some natural
particle-like systems.
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Abstract. This paper addresses the problem of optimal alignment of
non-rigid surfaces from multi-view video observations to obtain a tempo-
rally consistent representation. Conventional non-rigid surface tracking
performs frame-to-frame alignment which is subject to the accumulation
of errors resulting in drift over time. Recently, non-sequential tracking
approaches have been introduced which re-order the input data based on
a dissimilarity measure. One or more input sequences are represented in a
tree with reducing alignment path length. This limits drift and increases
robustness to large non-rigid deformations. However, jumps may occur in
the aligned mesh sequence where tree branches meet due to independent
error accumulation. Optimisation of the tree for non-sequential tracking
is proposed to minimise the errors in temporal consistency due to both
the drift and jumps. A novel cluster tree enforces sequential tracking
in local segments of the sequence while allowing global non-sequential
traversal among these segments. This provides a mechanism to create a
tree structure which reduces the number of jumps between branches and
limits the length of branches. Comprehensive evaluation is performed
on a variety of challenging non-rigid surfaces including faces, cloth and
people. This demonstrates that the proposed cluster tree achieves better
temporal consistency than the previous sequential and non-sequential
tracking approaches. Quantitative ground-truth comparison on a syn-
thetic facial performance shows reduced error with the cluster tree.

Keywords: dense motion capture, non-rigid surface alignment, non-
sequential tracking, minimum spanning tree, cluster tree, dissimilarity.

1 Introduction

Over the last decade, there has been an increasing research effort in spatio-
temporal reconstruction of dynamic surfaces using multi-view video and/or depth
acquisition. An important challenge is to transform the sequences of independent
surface measurements at each frame into the aligned sequences with consistent
temporal structure and correspondence. The problem of dense tracking for sur-
faces undergoing fast complex non-rigid motions over longer time periods has
been tackled by a number of techniques. They can be divided into two broad
groups according to the type of information they are primarily based on: image-
based techniques work directly with multi-view video sequences; geometry-based
techniques with a sequence of unregistered meshes reconstructed per frame.
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Image-based techniques commonly estimate a scene flow [1] between pairs
of frames based on image constraints from multiple views. Multi-view 2D opti-
cal flows combined with per-frame geometry of the surface yield a 3D motion
field which deforms a template mesh throughout the sequence [2]. Pons et al.[3]
use a variational formulation of matching image information across views and
over time to directly compute the surface shape and its motion field in alter-
nation. The shape and motion computation can also be joined into a single
complex optimisation [4]. Carceroni and Kutulakos [5] propose more efficient 3D
tracking of independent surface patches with their own shape and appearance
properties. Neumann and Aloimonos [6] iteratively refine shape and motion of
the multi-resolution subdivision surface model by optimisation of individual sur-
face patches. The patches can also be associated with triangle fans of a mesh
deformed over time [7, 8]. Their shape changes with the tracked mesh which
improves alignment of their textures with changing surface appearance in multi-
view videos. Accumulation of tracking errors is reduced by fixed patch textures
from the reference frame.

Geometry-based techniques directly create a temporally consistent represen-
tation of unregistered surface geometries [9–11] or fit a prior shape model to the
unregistered sequence [12]. Cagniart et al.[10] perform hierarchical matching of
overlapping rigid surface patches to sequentially track a sequence of multi-view
reconstructions. Wand et al.[9] propose so-called urshape representing the sur-
face and optimise its time-varying deformation field to fit a point cloud sequence.
The animation cartography approach [11] employs geometric feature tracking to
map surface regions to the 2D embedding space and build up a map of the com-
plete surface from partial observations. Existing image-based or geometry-based
approaches process input data sequentially which results in error accumulation
causing a drift of the tracked mesh or a complete failure if the frame-to-frame
alignment cannot handle rapid non-rigid deformation of the surface.

Non-sequential methods for surface tracking have been proposed which re-
order the input sequence to overcome the problems of drift and failure. Beeler et
al. [13] identify similar frames across a sequence of facial performance and use
them to anchor a sequential alignment of intermediate frames using multi-view
optic flow. In contrast, Budd et al. [14] optimise the traversal among all frames
of whole-body performance by introducing the use of a minimum spanning
tree in shape similarity space to re-order the frame-to-frame alignment process.
Non-sequential alignment has been extended to register multiple non-rigid mesh
sequences [14, 15].

Non-sequential approaches reduce the drift and improve robustness to tracking
failures compared to sequential approaches. However, the independent accumula-
tion of errors along different alignment paths can lead to jumps in the resulting
mesh sequence where different paths meet. This paper addresses the problem
of optimising the tree structure for non-sequential tracking to balance between
drift and jump errors. The proposed concept is generalised for any frame-to-
frame alignment method and variety of non-rigid surfaces. This is demonstrated
by extensive evaluation on challenging datasets of faces, cloth and people.
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2 Problem Statement

Input is a sequence of measurements {Ot}Nt=1 of a deforming surface for frames
{t1, ..., tN}. It can consist of multiple segments from independent motions of
the surface. Each measurement Ot consists of a set of images from multiple
viewpoints Ict and a mesh Gt representing the current shape of the surface.
The mesh sequence {Gt}Nt=1 is temporally unregistered, thus each mesh Gt =
(X̂t, Ĉt) has time-varying vertex positions X̂t and time-varying connectivity Ĉt.
The required output is a temporally consistent mesh sequence {Mt}Nt=1 where the
vertex positions Xt of mesh Mt correspond to the same set of surface points in
every frame t and the connectivity of vertices C is fixed throughout the sequence.

Conventionally, the output mesh sequence {Mt}Nt=1 is obtained by sequential
tracking which concatenates frame-to-frame non-rigid alignment between succes-
sive frames ti, ti+1. The frame-to-frame alignment estimates the correspondence
between observations Oti , Oti+1 . Non-sequential tracking processes the input se-
quence {Ot}Nt=1 in an order different from the temporal order. The reordering
of {Ot}Nt=1 is guided by a measure which estimates difficulty of non-rigid align-
ment of measurements Ot between any two frames. Intuitively, the difficulty
of transition between frame ti and tj is represented by the dissimilarity be-
tween respective measurements d(Oti , Otj ). Given d(Oti , Otj ) between all pairs
of frames, paths to every frame are jointly optimised to have minimal length.
This reduces accumulation of alignment errors when the tracking is performed
along the paths.

The paths are represented by a traversal tree T = (N , E) which is a spanning
tree with the nodes N = {n1, ..., nN} corresponding to all frames {t1, ..., tN}
(Figure 1). The edges E = {(ni, nj), ...} are directed and weighted by the dis-
similarity d(Oti , Otj ). The non-sequential nature of tracking using the traversal
tree leads to the presence of cuts in the sequence at places where two different
alignment paths meet (marked red in Figure 1). Independent accumulation of
tracking errors along these paths can potentially manifest as glitches or jumps in
the resulting sequence {Mt}Nt=1. There is a trade-off between the minimisation
of tracking path length and a large number of cuts. Longer paths lead to larger
gradual drift but large amount of cuts introduce sudden glitches and jitter. The
proposed method reflects this trade-off and allows calculation of the traversal
tree which balances between these two kinds of artefacts.

The non-sequential traversal of the input sequence using T can be combined
with any frame-to-frame surface tracking technique working with {Ot}Nt=1. The
dissimilarity measure d has to be proportional to the alignment error of the
selected technique so it is valid for calculating T . However, d is designed as
an approximate measure which is significantly easier to compute than direct
alignment of the mesh M . Given T , a user needs to specify a shape and topology
of the mesh Mtr = (Xtr , C) for the root node nr. Mtr is subsequently tracked
between the pairs of frames along the branches of T from nr towards the leaves.
The result is a temporally consistent mesh sequence {Mt}Nt=1 which can span
across multiple separate captures of the same surface.
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Fig. 1. Structure of a traversal tree T on the input frame sequence {t1, ..., tN}. The cuts
separate adjacent frames which have different alignment paths along tree branches.

3 Minimum Spanning Tree

Non-sequential traversal of an input sequence based on the minimum spanning
tree has been introduced by Budd et al.[14]. It is computed in a shape dissimilar-
ity space and used for global alignment of multiple unregistered mesh sequences.
This concept is generalised here for an arbitrary dissimilarity d between multi-
modal measurements Ot in every frame. The space of all possible pair-wise tran-
sitions between frames of the sequence is represented by a dissimilarity matrix
D of size N ×N where both rows and columns correspond to individual frames
(Figure 2(a)). The elements D(i, j) = d(Oti , Otj ) define a cost of alignment be-
tween frames ti and tj . The matrix is symmetric (d(Oti , Otj ) = d(Otj , Oti)) and
has zero diagonal (d(Oti , Oti) = 0). The optimal traversal in this space can be
found through graph formulation of the problem as suggested in [14].

A fully-connected undirected graph G = (N ,D) is built from the matrix D.
The nodes N = {n1, ..., nN} are associated with frames and interconnecting
edges (ni, nj) ∈ D have the weight D(i, j). A traversal visiting all frames is de-
scribed by an undirected spanning tree T ′

s = (N , E ′) where E ′ ⊂ D. The optimal
tree T ′

MST is defined as the minimum spanning tree (MST) which minimises
the total cost of pair-wise alignment given by d as outlined in Equation 1. This
objective describes total non-rigid deformation of the surface which has to be
overcome following the traversal tree, and is optimised by Prim’s algorithm.

T ′
MST = argmin

∀T ′
s⊂G

⎛
⎝ ∑

∀(ni,nj)∈T ′
s

D(i, j)

⎞
⎠ (1)

The benefit of MST is that low-cost transitions are close to the root and the edges
with larger d are pushed towards the leaves. This reduces the accumulation of
errors along the branches and also limits the extent of a failure due to large
inter-frame dissimilarity to the ends of branches. The drawback of MST is that
it does not take into account the introduction of cuts and tends to temporally
over-fragment the sequence. T ′

MST then contains short off-shoots or re-shuffling
of consecutive frames on a single branch as illustrated in the lower right corner of
Figure 2(b). This happens mostly in slow-motion periods where TMST over-fits
to small changes in low range of d.
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(a) (b) (c) (d)

Fig. 2.Dissimilarity matrixD for a part of the dataset SyntheticFace (blue - low values,
red - high values) (a). Traversal tree TMST depicted in D (each directed edge (ti, tj) is
marked black at respective location D(i, j)). TMST is the directed T ′

MST with optimal
root by Equation 7 (b). Clustering Sβ illustrated in D as white squares for individual
clusters (c). Traversal tree Tβ based on the clustering Sβ (notice less fragmentation
and longer sequential segments than in (b)) (d).

4 Cluster Tree

To address shortcomings of MST the notion of temporal order of frames needs
to be incorporated into the algorithm generating the traversal tree. MST is
independent from the order of frames because the weight of edges in G does not
change with re-ordering of the sequence {Ot}Nt=1. A novel cluster tree is proposed
which enforces sequential tracking locally to reduce the fragmentation of the
sequence. The tree structure is still used to link the sequential segments together
to obtain global non-sequential traversal of the sequence. The resulting tree shape
is simpler with a smaller number of cuts which reduces the jumps/jitter in favour
of relatively smooth sequential drift which is perceptually more acceptable.

4.1 Frame Clustering

Intuitively, the segments traversed sequentially should contain little or no defor-
mation of the surface, thus there is a minimal accumulation of errors. Clusters of
similar successive frames form blocks with low d around the diagonal in the ma-
trix D (Figure 2(a)). Ideally, large clusters should be generated in slow-motion
segments and small clusters (even down to individual frames) in the segments
with significant surface motion. The summarisation method by Huang et al. [16]
is modified for the purpose of frame clustering. The clusters do not have any
representative key-frames but all frames are compared to each other to mea-
sure overall intra-cluster consistency. This provides a more general clustering
approach which suits our purpose better than grouping frames around a few
distinct exemplars.

A sequence of frames {t1, ..., tN} can be represented by a clustering S =
{F1, ..., FL} where a frame cluster Fi(tci, Δti) is a set of successive frames {tci−
Δti, ..., tci + Δti}. All L clusters have to cover together the whole sequence
F1∪...∪FL = {t1, ..., tN} and be pair-wise disjoint Fi∩Fj = ∅. The inconsistency
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of frames within cluster A(Fi) is defined in Equation 2 as a sum of dissimilarities
among them (the main difference to [16]).

A(Fi) =
1

2

tci+Δti∑
k=tci−Δti

(
tci+Δti∑

l=tci−Δti

D(k, l)

)
(2)

The clustering S is described by two costs: total intra-cluster inconsistency for
all clusters and the number of clusters L. They are weighted against each other
by the parameter β ∈< 0, 1 > to provide a combined cost which is minimised in
Equation 3.

Sβ = argmin
S

(
βL+ (1− β)

∑
∀Fi∈S

A(Fi)

)
(3)

The optimal set of clusters Sβ for the dissimilarity matrix D (Figure 2(c)) de-
pends on β which influences granularity of the clustering. A value closer to 1
returns smaller number of large clusters while a value closer to 0 returns larger
number of small clusters. For a given β Equation 3 is minimised through a
graph-based formulation as in [16].

4.2 Tree Calculation

A non-sequential traversal can be computed on the sequence of clusters instead
of the original frame sequence using MST as described in Section 3. The dissim-
ilarity matrix D is collapsed to a cluster dissimilarity matrix DF of size L × L
where rows and columns correspond to the individual clusters from Sβ . Equa-
tion 4 defines the dissimilarity DF (i, j) between the clusters Fi and Fj as the
minimal cost of transition between the respective clusters in the full matrix D.
A cluster pair (Fi, Fj) is then linked by the pair of frames (tk, tl) with minimal
dissimilarity.

DF (i, j) = min(D(k, l)) ∀tk ∈ Fi, ∀tl ∈ Fj (4)

The matrix DF is symmetric with zero diagonal elements as for D. A fully-
connected graph GF = (NF ,DF ) with nodes corresponding to the clusters
{F1, ..., FL} is built fromDF . The minimum spanning tree T ′

F = (NF , E ′
F ) among

the clusters is computed as in Equation 1.
Afterwards, the tree among clusters T ′

F needs to be transformed to a full span-
ning tree T ′

β interconnecting all frames. The set of nodes N for T ′
β is expanded to

the full sequence of frames {t1, ..., tN}. The set of edges E ′ for T ′
β firstly contains

a sparse set of links E ′
1 interconnecting the original clusters which is derived

from E ′
F (Equation 5). Secondly, E ′ contains a set of edges E ′

2 linking the rest of
the frames within the clusters to T ′

β. Because of low intra-cluster dissimilarity
of frames sequential traversal is enforced among them. Thus, E ′

2 defines chains
of frames in temporal order for all clusters (Equation 6).

E ′
1 = {(nk, nl) : (ni, nj) ∈ E ′

F , (Fi, Fj) ∼ (tk, tl)} (5)

E ′
2 =

⋃
∀Fi∈Sβ

{(nk, nl) : tk, tl ∈ Fi, |tk − tl| = 1} (6)
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The construction of T ′
β does not strictly create cuts at all boundaries between the

clusters. Typically, the minimal transition between temporally adjacent clusters
is the one linking the last frame of the first cluster to the first frame of the
second cluster. Therefore, the algorithm has an option to chain together several
neighbouring clusters into a single sequential segment if it is deemed optimal.

The tree T ′
β does not exactly define a traversal of the input sequence because

it is undirected and has no root node. The root node nr has to be selected to
set directions along the paths in T ′

β . The selection is made by minimisation of
Equation 7 which is derived from the criterion for a shortest path tree. The
length of weighted paths nl → nk from a candidate root node nl to all other
nodes nk has to be minimal.

nr = argmin
nl∈N

⎛
⎝ ∑

∀nk∈T ′
β

∑
∀(ni,nj)∈nl→nk

D(i, j)

⎞
⎠ (7)

The final traversal tree Tβ (Figure 2(d)) is created from T ′
β by setting the direc-

tion of the edges in E ′ according to the expansion of breadth-first search from
nr towards the leaves.

The shape of Tβ is influenced by the clustering parameter β. The granularity
of clustering Sβ influences a number of branches for Tβ. The cluster tree T0

for β = 0 is equivalent to TMST because all clusters contain one frame. With
increasing β trees become generally thinner with longer sequential branches. T1

for β = 1 is equivalent to purely sequential traversal because a single cluster for
the whole sequence is generated. The spectrum of possible cluster trees allows
a selection of Tβ which balances the trade-off between drift and jumps/jitter
for a given dataset. However, the optimal value of β has to be manually tuned
according to visual evaluation of the tracked mesh sequence.

5 Experiments

The proposed approach has been extensively tested under several different sce-
narios of deformable surfaces undergoing complex non-rigid motions. Table 1
summarises the datasets used which contain facial performances (SyntheticFace,
Face, DisneyFace [13]), whole-body performances (StreetDance [17]) and cloth
deformation (Garment). All datasets provide multi-view image sequences with
camera calibration and an unregistered mesh sequence. The absence of ground-
truth for real data is a common issue in dense surface tracking. To allow quanti-
tative evaluation of the methods the dataset SyntheticFace is artificially created.

Two different frame-to-frame tracking techniques are used according to the
nature of individual datasets. Image-oriented surface tracking (IOST) is used
for the face and cloth datasets [8]. The dissimilarity measure dIOST for IOST
is derived from the 3D trajectories of a sparse set of strong features robustly
tracked in {Ict }Nt=1. Geometry-oriented surface tracking (GOST) is used for the
whole-body performance [14]. The dissimilarity measure dGOST for GOST is
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Table 1. Description of datasets and frame-to-frame alignment methods used for their
evaluation. StreetDance [17] and DisneyFace [13] are publicly available. |X| denotes
the number of vertices of the tracked mesh M .

Dataset No. of cameras Resolution Fps No. of frames Method |X|
SyntheticFace 4 800× 950 25 355 IOST 2689

Face 4 1920 × 1080 25 355 IOST 2689

DisneyFace 7 1176 × 864 46 346 IOST 2700

Garment 4 1920 × 1080 25 320 IOST 425

StreetDance 8 1920 × 1080 25 1050 GOST 3484

based on comparison of Gt between frames using a shape histogram. Details of
IOST, GOST and d-measures are given in the supplementary material1.

The following traversals of the input sequence are compared across all datasets:
the standard sequential traversal (represented by β = 1), the non-sequential
traversal based on MST (represented by β = 0) and the non-sequential traversal
based on cluster tree. Multiple traversal trees Tβ are generated for the proposed
cluster-based approach to explore the spectrum of possible tree shapes between
the sequential traversal and MST. Figure 3 shows the number of clusters for the
tested values of β across individual datasets. The aligned sequence {Mt}Nt=1 is
obtained by applying the respective frame-to-frame alignment algorithm along
the branches of Tβ. The temporal consistency of mesh sequences resulting from
the individual Tβ has been visually assessed from the perspective of gradual
drift versus severity of jitter and rapid glitches (the best traversal tree is noted
in Figure 3). Due to the visual nature of results the reader is encouraged to
watch supplementary videos1.

5.1 Synthetic Facial Performance

The dataset SyntheticFace is derived from the real performance Face to achieve
realistic face motion. The aligned mesh sequence obtained for the dataset Face is
temporally smoothed across cuts to remove jumps. This represents the ground-
truth {MGT

t }Nt=1 which is textured with a fixed face texture to avoid introduction
of any inconsistencies between appearance changes and underlying motion. The
textured {MGT

t }Nt=1 is rendered into 4 virtual views to create {Ict }Nt=1 and the
ground-truth meshes serve as {Gt}Nt=1. The dissimilarity dIOST is computed from
3D trajectories of the vertices selected from {MGT

t }Nt=1. The initial mesh Mtr is
taken directly from {MGT

t }Nt=1 in the root frame, so that the resulting {Mt}Nt=1

can be compared directly the ground-truth.
To be valid for tree computation, dIOST needs to be proportional to the diffi-

culty of frame-to-frame alignment observed by IOST technique. This is analysed
by comparing the values of dIOST with the tracking errors EIOST reported
by the alignment algorithm. The graph in Figure 4(right) aggregates pairs of

1 Supplementary material including videos is available under:
http://cvssp.org/projects/face3d/eccv2012/index.html

http://cvssp.org/projects/face3d/eccv2012/index.html
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Fig. 3. Number of generated clusters for the tested values of β across the datasets.
The amount of clusters increases from the sequential traversal (β = 1) towards MST
(β = 0). β∗ corresponds to the tree which gives the visually best tracking outcome.

(dIOST , EIOST ) for every frame-to-frame transition across all traversals com-
pared for SyntheticFace. The relationship has a scattered monotonically increas-
ing trend. Low dissimilarities (dIOST < 0.4) do not affect the quality of tracking
and EIOST linearly increases for higher values of dIOST . The monotonic profile
validates the use of dIOST with IOST.

The ground-truth error of {Mt}Nt=1 with respect to {MGT
t }Nt=1 is an average

Euclidean distance of corresponding vertices across all frames {t1, ..., tN}. Figure
4(left) shows the graph of error for different β. The sequential tracking (β = 1)
leads to the highest error due to accumulated drift. The profile for cluster trees
demonstrates an improvement over MST (β = 0). In general, all non-sequential
traversals achieve similar average imprecision 0.25 − 0.26mm per vertex which
reflects the high quality of tracking. The ground-truth error reflects accumulation
of the drift, however it does not quantify glitches due to the cuts. Despite this
fact the graph of error correlates with visual assessment of the results and the
cluster tree T0.99 is selected as the best. The sequential result clearly suffers
from significant mesh distortions built up during fast expression changes. The
qualitative differences between T0.99 and MST are fairly small because of the
high-quality alignment achieved by IOST.

5.2 Facial Performance

The dataset Face containing fast changes of facial expressions poses a problem
for sequential tracking which results in mesh distortions in the most deforming
eye and mouth regions. The fragmentation in MST does not show as visible
jumps in most cases because IOST produces accurate alignments in spite of weak
skin texture. The best T0.95 yields accurate mesh sequence which improves over
MST by eliminating several small glitches around the eyes and on the lips. The
monotonic relationship of dIOST and EIOST shown in Figure 5(left) validates
dIOST for IOST on real data as well. The tracking errors are generally higher
than for SyntheticFace because of large changes in the face appearance during
deformations.
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Fig. 4. Graph of the ground-truth error for SyntheticFace across different traversals
given by β (left). The relationship of dissimilarity dIOST and tracking error EIOST for
SyntheticFace (right). Colour scheme marks data samples from the sequential traversal
(red) through β = 1 → 0 to MST(blue).

The dataset DisneyFace contains moderately expressive speech which is
tracked even by sequential traversal with small drift. Due to relatively low dif-
ficulty of the sequence the visual differences between MST and the best cluster
tree T0.996 amount to few noticeable glitches on the neck. Although the improve-
ment by the cluster tree is relatively small (similarly for the dataset Face), it
is significant because of the importance of accurate facial tracking for visual
effects. Quantitative comparison has been performed on DisneyFace with the
state-of-the-art non-sequential method for facial performance capture [13]. The
difference to the temporally consistent mesh sequence released by Beeler et al.is
calculated as for the dataset SyntheticFace with ground truth. The average ver-
tex distance across all frames is 0.312mm with the standard deviation 0.357mm
for the cluster tree T0.996. Note that the difference may be due to the errors
in either approach. Qualitatively, both techniques achieve comparable accuracy
and temporal consistency.

5.3 Cloth

The dataset Garment contains fast free-form motions of a textured top on a
subject’s upper torso. Sequential alignment leads to fast degradation of the mesh
at the beginning of sequence during rapid waving. Due to the partially repetitive
motion pattern the number of branches of MST is excessive in some parts of
the sequence. The increased presence of cuts causes many noticeable jumps. The
cleaner structure of the cluster tree T0.994 largely eliminates these artefacts apart
from a few visible glitches at the peaks of complicated motions. The difference
between MST and the cluster tree is more apparent than for the face because of
the more challenging surface deformations complicated by motion blur.
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Fig. 5. The relationship of dIOST − EIOST for Face (left) and dGOST − EGOST for
StreetDance (right)

5.4 Whole-Body Performance

The subject performing break-dance moves in loose uniform clothing is cap-
tured in the dataset StreetDance [17]. The sequence is composited from 3 dif-
ferent performances (Free, KickUp and FlashKick) to demonstrate the ability of
non-sequential approaches to align the data across separate motions. The mono-
tonic trend in Figure 5(right) validates the dissimilarity measure dGOST for the
GOST technique. However, the graph is more scattered in comparison to Figure
5(left) which caused by a more challenging dataset and use of geometry-based
alignment.

The sequential tracking gradually distorts the structure of the mesh but the
result by MST does not suffer from this severe slippage on the real surface.
However, the mesh jitters during static segments of the performance because of
significant re-ordering of frames. The best cluster tree T0.996 enforces sequential
processing of these segments which leads to a more coherent alignment. Figure 6
shows quantitatively this improvement by means of average acceleration across
all vertices. The peaks represent high acceleration related to fast changes of mesh
motion manifested as the jitter. T0.996 significantly reduces acceleration spikes in
a slow-motion segment of StreetDance in comparison to MST. In addition, gross
errors in the mesh shape (e.g. artificial connections between limbs) occur fre-
quently for MST during complex movements such as back-flip. They are largely
eliminated by T0.996 for the price of increased local drift at the peaks of motion.
However, this is perceptually more plausible than fast alternation between quite
differently distorted meshes. Overall, there is a clear superiority of results by the
cluster tree in comparison to MST.

5.5 Discussion

The experimental results across different types of surfaces prove the existence
of a trade-off between the accumulation of drift and the severity of glitches
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segment in StreetDance where the subject stands still. The peaks representing fast
change in motion correspond to high-frequency jitter in the aligned mesh sequence.

caused by cuts in temporal ordering. Perceptually, it is beneficial to increase the
amount of local drift in the temporally consistent mesh sequence in exchange
for the reduced amount of high-frequency jitter or glitches. Cluster trees provide
a mechanism to balance this trade-off and therefore achieve results superior to
fully sequential traversal or MST.

To analyse the trade-off between jumps and drift across the spectrum of trees,
two quantitative measures representing each aspect are proposed. The measure
SPL reflects the amount of potential drift in individual frames by a sum of path
lengths between the root node and all other nodes (similar to Equation 7). The
magnitude of potential glitch between adjacent frames separated by a cut is
expressed as a sum of the non-overlapping parts of paths leading to them from
the root node. The measure CUT is the total of these sums for all cuts created
by the tree. Examples of SPL and CUT profiles across the tree spectrum are
depicted in Figure 7 for the dataset SyntheticFace (graphs for the other datasets
available online1). The trend of SPL across the datasets has a clear maximum for
the completely accumulative sequential approach and generally decreases with
some fluctuations towards MST. The measure CUT decreases from MST with a
large amount of fragmentation towards the sequential traversal without any cuts.
The middle range of both measures fluctuates because the different granularity
of frame clustering given by β can lead to similar tree shapes. Some cluster trees
have worse properties than MST in each measure but the majority of trees show
an improvement in both. Intuitively, SPL and CUT should be combined into a
single criterion which would express optimality of a tree with respect to the drift
and jumps. This would enable automatic selection of the clustering parameter β
defining a tree shape. However, any straightforward combination of the measures
does not rank the trees consistently across different datasets, so that the order
correlates with visual assessment of the tracking results. A combined criterion
defining the optimal traversal tree for sequences with different types of surface
deformation is an open problem.
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Even with the single criterion reflecting sequential drift versus non-sequential
jumps the selected tree is optimal only with respect to the dissimilarity d used.
Because it is an approximate measure, the relationship to the actual difficulty
of frame-to-frame tracking is not likely to be perfectly linear. This is indicated
by the graphs between d and the tracking error E (Figures 4(right),5(left) for
IOST and Figure 5(right) for GOST) where the correlation is monotonic but
non-linear. This trend validates the use of the chosen measures for guiding the
tracking. However, the non-linearity can bias the tree shape away from the ideal
result (such as excessive branching due to over-fitting in low range of d which
does not influence much the quality of tracking). The consequences of the non-
ideal relationship can be alleviated by tuning of the tree shape through β. Even
with a perfect dissimilarity the problem of distributing alignment errors across
the sequence remains and needs to be optimised by the cluster tree.

6 Conclusion

This paper proposes a cluster tree to non-sequential tracking of non-rigid surface
sequences which balances accumulation of errors in frame-to-frame alignment
against jumps due to re-ordering of the data. The approach is generalised for
any type of non-rigid surface tracked by an arbitrary frame-to-frame method.
Evaluation is performed on a variety of datasets including facial, whole-body
performances and deformation of cloth. Results demonstrate qualitatively and
quantitatively improved temporal alignment against previous sequential and
non-sequential minimum-spanning tree approaches.
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Abstract. This paper presents a marker-less method for full body hu-
man performance capture by analyzing shading information from a se-
quence of multi-view images, which are recorded under uncontrolled and
changing lighting conditions. Both the articulated motion of the limbs
and then the fine-scale surface detail are estimated in a temporally co-
herent manner. In a temporal framework, differential 3D human pose-
changes from the previous time-step are expressed in terms of constraints
on the visible image displacements derived from shading cues, estimated
albedo and estimated scene illumination. The incident illumination at
each frame are estimated jointly with pose, by assuming the Lamber-
tian model of reflectance. The proposed method is independent of image
silhouettes and training data, and is thus applicable in cases where back-
ground segmentation cannot be performed or a set of training poses is
unavailable. We show results on challenging cases for pose-tracking such
as changing backgrounds, occlusions and changing lighting conditions.

1 Introduction

Marker-less capture of human skeletal motion from images is one of the well-
studied problems of computer vision, with recent advances being able to re-
construct human motion at increasing speed and accuracy and under lesser
controlled situations [1–7]. These methods have several applications in indus-
try: ranging from game and movie productions to use in biomechanics, ergon-
omy and sports sciences. However, despite great algorithmic advances, even
latest approaches can not yet be applied in arbitrary environments with possibly
changing lighting conditions, occlusions and starkly varying scene backgrounds.
This is why purposefully placing markers in the scene is still the method of
choice under such more challenging conditions [8]. Special effects professionals
and producers of 3D video content are sometimes interested beyond kinematic
motion parameters - demanding faithful and detailed dynamic 3D shape mod-
els of captured scenes, such that believable virtual actors or convincing novel
viewpoint renderings can be created. The research community has responded to
this requirement by developing so-called performance capture approaches, i.e,
methods that simultaneously capture shape, motion and possibly appearance
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of people in general apparel from a handful of video recordings [9–13]. Unfor-
tunately, many state-of-the-art performance capture approaches are limited to
studio settings with controlled lighting, controlled background, and to scenes
without static or dynamic occluders. This has prevented the use of performance
capture in practical applications such as outdoor movie sets or sports stadiums.

In this paper, we make a principal contribution towards the goal of model-
based performance capture under less controlled conditions. We propose an algo-
rithm that analyzes shading information to simultaneously estimate (a) human
skeletal motion parameters, (b) arbitrary and time-varying incident scene illu-
mination, (c) an approximation of surface reflectance, and (d) detailed dynamic
shape geometry - such as folds and muscle bulges. We accept as input a multi-
view video recorded from a synchronized and calibrated set of cameras, along
with a rough initial shape-template of the person given as a 3D mesh fit to a
kinematic skeleton. We do not require the subject to wear specific clothing or
markers. Unlike previous performance capture methods [9–13], we do not re-
quire a fully controlled scene background, such as green screen, and thus do not
expect exact foreground-background segmentations. We handle changing back-
ground and even some occlusions in the scene (Fig. 1). We do not rely on image
features such as SIFT; our method is suitable even when the subject wears
sparsely textured clothing.

The main idea in our paper is to mathematically formulate the image shading
constraint in terms of its differential towards the motion parameters of the kine-
matic chain representing human body pose. Along with pose, we simultaneously
estimate time-varying incident illumination, surface albedo and detailed surface
geometry in a joint framework. Thus, we integrate the human motion estimation
problem into the broader framework of multi view shape-from-shading.

Our major contributions in this paper are as follows.

1. We present a new theoretical formulation of performance capture that si-
multaneously recovers human articulated motion and time-varying incident
illumination, by a minimization of shading-based error.

2. We provide a solution to reconstruct both skeletal motion estimates and
finely detailed time-varying 3D surface geometry for human performances
that are recorded under general and changing illumination and in front of
less constrained background.

2 Related Work

For a thorough discussion and a historical perspective on human motion capture
from images, one should consult any of the surveys [5, 7, 14]. Research efforts
today can be broadly distinguished into studio-based methods which use multi-
ple synchronized and calibrated cameras to achieve a high level of accuracy, and
general purpose methods that work under fewer cameras in potentially cluttered
surroundings - albeit producing pose estimates of lower accuracy. Many of the
successful methods [15–17] validated on the HumanEva dataset [5] rely on a set
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(a) (b) (c)

Fig. 1. Shading based pose tracking: (a,b) Overlay of estimated pose with recorded
images - the actor is partially occluded by a person moving in the background (c)
Reconstructed high-detail 3D geometry. The inset shows folds of the yellow T-shirt
captured in 3D.

of training poses of tracking which limits their generalizability to new poses not
observed in the training set. Methods for performance capture [9–13], i.e, de-
tailed reconstruction of 3D surfaces along with skeletal motion, required studio
conditions and green-screen to facilitate background segmentation. By contrast,
in this paper we propose a shading-based approach that requires neither silhou-
ettes nor training data. Silhouette estimation is sometimes integrated into the
pose-estimation pipeline [18, 19] where 3D shape estimates are incorporated as
a prior into image segmentation step. In particular, Hasler et al. [18] use this
idea for an outdoor motion capture method. However, their approach does not
capture detailed time-varying surface geometry. Also, background segmentation
is an inherently error-prone step that fails in many cases; and hence should be
avoided if possible for 3D shape reconstruction. Stoll et al [6] recently proposed a
sums-of-Gaussian based holistic image and shape representation for pose track-
ing without silhouettes. But unlike them, we handle dynamic lighting changes,
and recover not only body pose but also dense 3D surface detail, by analyzing
image shading information.

Works in dynamic photometric stereo [20, 21] relied on specially engineered
illumination to recover normal orientations that could be integrated to obtain
the 3D surface. For example, a light-stage [21] captures images under temporally
multiplexed illumination : with the shape being recorded under multiple known
lighting conditions that provide a basis for describing light variations. These
works analyze image shading information at a dense scale and thus recover true
dynamic surface detail, instead of interpolating it from sparse image information
such as silhouettes. However, finding a temporally coherent parameterization of
the dynamic surface, despite some recent efforts [22, 23], remains a difficult task
- especially when skeletal articulated motion need also be simultaneously cap-
tured. Wilson et al [24] use stereo and optical flow in a light-stage setup to
obtain a temporally coherent parameterization for facial performance capture.
They compute optical flow amidst a subset of tracking frames that are all cap-
tured under the same incident lighting. By contrast, in this work, we address
arbitrary and unknown lighting conditions which can vary from frame-to-frame.
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Fig. 2.Overview: (a) input multi-view images (b) skeletal pose (c) incident illumination
(d) surface albedo (e) refined surface geometry. (b-e) are outputs of our method. Steps
(A,B) for estimating pose and lighting are alternated in a joint optimization framework.
In the step (C), final estimates of lighting, albedo and surface geometry are obtained.
These estimates at t are provided as input for the optimization at t+ 1.

Wu et al.[25] have recently published a work that combines the strengths of model
based performance capture with the inverse-rendering approaches of photomet-
ric stereo to reconstruct dynamic 3D surface detail that approaches the quality
of light-stage reconstructions, albeit under arbitrary and unknown lighting con-
ditions. The reconstructed surfaces are temporally coherent and aligned with
simultaneous skeletal motion estimates. However, in that method, performance
capture of the coarse geometry and dynamic shape refinement were treated as
subsequent and independent problems, and the first part required the scene to
be covered in green screen to enable coarse geometry estimation via silhouettes.
By contrast, we use illumination estimation and shading constraints throughout
the performance capture pipeline, i.e, for skeletal pose estimation and detailed
shape reconstruction.

Our work is also relevant to the broader problem of dynamic shape from shad-
ing. Zhang et al.[26] provide an elegant formulation for shape and motion esti-
mation under varying illumination, but the number of unknowns in the problem
make it severely under-constrained, limiting their approach to only rigid mo-
tion estimates. However, as mentioned by them and others, shading variations
provide cues for estimating flow even in texture-less regions. In this work, we
build upon this insight to estimate complete articulated human motion under
unknown and time-varying incident illumination, without relying on silhouettes
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or training data. To the best of our knowledge, this has not been attempted
before, to achieve results of even lower quality.

3 Overview

The input to our method is a multi-view video sequence of a moving actor cap-
tured using a sparse set of synchronized and calibrated cameras. Lighting in the
scene can be arbitrary and time-varying, and since no background subtraction is
required, no green-screen is expected and other potentially occluding elements
can be in the scene. A rigged 3D mesh model with an embedded skeleton is
provided as a template for tracking. We only need a smooth template mesh at a
low resolution; the fine-scale detail is added later by our method. Similar to [13],
the smooth template is built from a static laser scan of a person, alternatively
image-based reconstruction methods are also feasible. The embedded bone skele-
ton as well as the skinning weights for each vertex, which connect the mesh to
the skeleton, are obtained using standard tools.

An outline of the processing pipeline is given in Fig. 2. Given a set of captured
multi-view images (a) as input, at each time-step t+1 we estimate skeletal pose
(b), incident illumination (c), surface albedo (d), and detailed surface geometry
(e). For each of these variables, we solve an inverse-rendering problem that at-
tempts to make the rendered images as-close-as-possible to the captured image
data. In Step-A, starting with the skeleton and the refined mesh from time t, the
skeletal pose is optimized by assuming incident lighting and surface albedo from
t, thereby exploiting temporal coherence. In Step-B, the incident illumination
at time t+ 1 is estimated based on the skinned coarse mesh in the new skeletal
pose. The Step-A is then repeated by taking the newly estimated lighting which
results in a better pose estimate. The steps A and B constitute the main part
of our method and are described in Sec. 5. In Step-C, we re-estimate incident
lighting, surface albedo and then refine the surface geometry. The refined sur-
face now captures folds and bulges not describable by articulated motion. For
the initialization of the very first frame, we refer readers to Gall et al. [13] for
pose estimation based on the manually segmented silhouettes and Wu et al. [25]
to calculate the albedo value for each albedo segment, which could be provided
by the user or any albedo segmentation method.

4 Image Formation Model

Assuming the object being tracked is a non-emitter of light (i.e, no surface inter-
reflections), the reflectance equation describing the light transport at a certain
surface point on the object can be defined as [27]

I(q, ωo) =

∫
Ω

L(ωi)V (q, ωi)ρ(q, ωi, ωo)max(ωi · n(q), 0)dωi, (1)

where I(q, ωo) is the reflected radiance, and the variables q, n, ωi and ωo are
the spatial location, the surface normal, and the incident and outgoing light
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directions, respectively. The symbol Ω represents the domain of all possible
directions, L(ωi) represents the incident lighting, V (q, ωi) is a binary visibility
function, and ρ(q, ωi, ωo) is the bidirectional reflectance distribution function of
the surface at q. To simplify the reflectance equation, we assume the reflectance
to be Lambertian i.e, ρ(q, ωi, ωo) = ρ(q), and represent the light transport with
spherical harmonics (SH) so that the integral in the spatial domain will be
converted to a dot product in the frequency domain.

We define the variable G = LV and represent it with SH coefficients gk. Then
Eq. (1) will be simplified as follows:

I(q) = ρ(q)

d2∑
k=1

gk(q)Sk(n(q)), (2)

where Sk(n(q)) is the scaled SH basis function depending on the surface normal
directions n(q), and d − 1 is the order of SH used. When visible lighting and
albedo are known, the rendering value is determined by the surface normal only.
This equation is employed to provide the shading constraints for pose estimation
(Sec. 5) and later used for surface geometric refinement (Sec. 6).

5 Pose Estimation under Varying Illumination

At each time-step t+1, we perform a simultaneous estimation of body pose and
incident lighting, both of which may change from time t. In order to keep the op-
timization tractable, we assume that changes in body pose are independent from
changes in lighting, and alternate between the optimization of these variables.

We take as initialization the refined mesh and the embedded skeleton of time
t, as well as the estimated incident lighting and surface albedo. In Sec. 5.1, we
introduce how the mesh changes according to pose-changes. In Sec. 5.2, we define
the shading constraint used to estimate the pose parameters, given the incident
lighting. The optimization to minimize the shading error is described afterwards.
The method to estimate incident lighting is described in Sec. 5.3.

5.1 Surface Parameterization with Respect to Pose

We use the popular linear blend skinning approach to deform the mesh to a
skeletal pose. Similar to [1], we represent the articulated pose to be estimated by

a set of twists θk ξ̂k. The state of a kinematic chain is determined by a global twist
ξ̂ and the joint angles Θ = (θ1, · · · , θm). Assuming the state of the kinematic
skeleton of the previous time-step to be known, the unknowns for pose estimation
are the rigid motion of the root node and changes in joint angles which we denote
as φ = (Δξ̂,Δθ1, · · · , Δθm). Let qti be the position of vertex i at t. By using
exponential maps to represent each joint’s rigid motion and by linearizing the
rigid body transforms, the pose of the vertex i at t + 1 can be expressed with
the skinning equation as
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(
qt+1
i

1

)
=

m∑
j=1

wje
Δξ̂

∏
k∈T (j)

eξ̂k·Δθk

(
qti
1

)

≈
(
qti
1

)
+

⎛
⎝Δξ̂ +

m∑
j=1

wj

∑
k∈T (j)

ξ̂k ·Δθk

⎞
⎠
(
qti
1

)
=

(
qti
1

)
+Mq(i) · φ,

(3)

where T (j) determines the indices of joints preceding the joint k in the kinematic
chain, and Mq(i) is the matrix determining how the pose change influences the
change of vertex position. Each vertex i is assigned a set of skinning weights
wj that determine how much influence bone (or joint) j has on the deformation
of vertex i. Skinning weights are once defined during template building using
standard techniques [13]. A similar equation can be derived for the vertex normal
nt+1
i at time t+ 1 (

nt+1
i

0

)
≈
(
nt
i

0

)
+Mn(i) · φ, (4)

where Mn(i) is a matrix that determines how the pose change φ results in a
change in normal orientation.

5.2 Shading Constraint for Pose Estimation

Our shading constraint requires the rendered images of the optimal pose accord-
ing to our lighting model to be as-close-as-possible to the image data captured.
Following Eq. (2), the shading constraint for a single camera c is defined as

Es
c =

∑
i

(ρig(q
t+1
i ) · S(nt+1

i )− It+1
c (xt+1

i , yt+1
i ))2, (5)

where (xt+1
i , yt+1

i ) is the projection of the surface vertex qt+1
i , and g(qt+1

i ) and
S(nt+1

i ) are the vectors of SH coefficients gk and Sk of Eq. (2). We assume the
albedo ρi at time t+1 is the same as that at time t, thereby exploiting temporal
coherence in scene motion. However, both the lighting and geometry at time
t+1 are unknown. We attempt to estimate both of them in a unified framework
in order to properly account for shading changes due to changes in either light-
ing or pose. Since simultaneous estimation of both of them is computationally
challenging, we alternate between error minimization with respect to either of
these two variables. First we minimize the shading error to estimate the pose,
by assuming the lighting of the previous time-step, and thereafter we solve for
lighting. To do this, we linearize the SH term S(nt+1

i ) and the image intensity
term It+1

c . The SH term is expressed in a first-order Taylor-series expansion, and
using the terms of Eq. (4).

S(nt+1
i ) ≈ S(nt

i) +
∂S(nt

i)

∂nt
i

Δnt
i = S(nt

i) +
∂S(nt

i)

∂nt
i

Mn(i) · φ, (6)
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where
∂S(nt

i)
∂nt

i
is derivative of scaled SH function with respect to normal changes

Δnt
i, which are expressed in terms of pose changes φ.
Inspired by the formulation of optical flow, we linearize It+1(xt+1

i , yt+1
i ) as:

It+1(xt+1
i , yt+1

i ) = It+1(xt
i + ui, y

t
i + vi) ≈ It+1(xt

i, y
t
i) + It+1

x ui + It+1
y vi. (7)

Next, we derive the linear approximation for the flow (ui, vi) in an image from
the motion parameters φ. This is similar to the derivation in [1], but we use
the full perspective camera model instead of scaled orthographic projection [1],
as camera calibration is available for our system. Then, the image motion from
time t to time t+ 1 can be linearized as:
(
ui

vi

)
≈
(

s1
Zt

i
0 0 s3

0 s2
Zt

i
0 s4

)
· eξ̂c ·

(
Δqti
0

)
+

(
s1
Zt

i
2 0 0 0

0 s2
Zt

i
2 0 0

)
· eξ̂c ·

(
qti
1

)
·ΔZt

i , (8)

where s1, s2, s3, s4 are the acquired camera intrinsic parameters, eξ̂c acts as the
extrinsic matrix of the camera’s pose, Zt

i is the depth of qti for the current camera.
The linearization is based on the assumption that the rigid motion Δqti as well
as the relative depth change ΔZt

i are small enough. As both of them can be
expressed through pose change φ (from Eq. (3)), the flow (ui, vi) can ultimately
be expressed as a linear function of φ.

The shading constraint in Eq. (5) can be further improved by considering
the color similarity between the rendered color and the image color. The color
similarity is computed as the Euclidean distance in HSV space and appears as
a weighting factor αi in our shading constraint. This helps us avoid optimizing
the model where the template material does not yet match to its projection in
the image. Combining terms from multiple cameras, our non-linear multi-view
shading energy function is given as

E =
1

N

∑
c

∑
i

{αc
i(ρig(q

t+1
i ) · S(nt+1

i )− It+1
c (xt+1

i , yt+1
i ))}2, (9)

where N is the total number of constraints for error normalization (i.e, the num-
ber of pixels in all cameras getting the projection from the mesh), and αc

i is the
color similarity for pixel i in camera c. Using the previously described recipe of lin-
earization, this can be expressed in terms of pose parameters φ as a linear system:

H · φ = b (10)

Specifically, the kth rows of matrix H and vector b have the following form
(detailed derivation is in the supplementary document, r�3 refers to the last row
of the rotation matrix of the camera pose) :

Hk = αc
iρig(q

t+1
i ) · ∂S(n

t
i)

∂nt
i

Mn(i)− αc
i

[
s1
Zt

i
It+1
x , s2

Zt
i
It+1
y , 0, s3I

t+1
x + s4I

t+1
y

]
eξ̂cMq(i)

+αc
i

[
s1
Zt

i
2 I

t+1
x , s1

Zt
i
2 I

t+1
y , 0, 0

]
eξ̂c

[
qti
1

]
· [rT3 0

] ·Mq(i),

bk = αc
i I

t+1(xt
i, y

t
i)− αc

iρig(q
t+1
i ) · S(nt

i).

(11)
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Coarse-to-Fine Optimization. To minimize the non-linear error function of
Eq. (9), we iteratively solve Eq. (10) and linearize around the new solution. Note
that here after solving Eq. (10), we check if the original energy in Eq. (9) de-
creases to decide the appropriate step size for updating the solution, in a fashion
similar to Newton-Raphson style minimization with adaptive step size. Besides,
as given in Eq. (7), the linearization assumes that the local image intensity
variations can be approximated by a first-order Taylor expansion. So we adopt
a coarse-to-fine strategy for pose estimation - by building an image pyramid
through successively downsampling each captured image, and running the pose
estimation from coarsest images to the finest images. This helps us track big
motions and reduces the chance of getting stuck in local minima.

5.3 Lighting Optimization

In the general case, lighting changes can be abrupt and impossible to model.
However, for most cases, it can be assumed that the lighting at t + 1 changes
gradually from lighting at t. In our method, we optimize for pose and lighting
in a two pass strategy. For the first pass, we use the lighting at t to optimize
for pose at t + 1, as described in the previous section. For the second pass, we
estimate the lighting at t + 1 based on the new pose, and then use it to refine
the pose estimates. We have empirically observed that one additional iteration
of alternating optimization is sufficient for getting good estimates.

We derive the constraint for lighting optimization from the image formation
model defined in Eq. (1). But instead of Eq. (2), following Wu et al. [25], we use
a different type of linearization. We define T (q, ωi) = V (q, ωi)max(ωi · n(q), 0)
and then represent it with SH coefficients tk, while representing the incident
lighting L with SH coefficients lk. This gives the linearization:

I(q) = ρ(q)

d2∑
k=1

lktk. (12)

We compare the rendered intensity values with the captured image Ic and solve
for the lighting coefficients lk. In order to deal with outliers, i.e. erroneous projec-
tion due to the inaccuracy of the pose, we solve a �1 norm minimization problem
defined as:

l̂ = argmin
l

∑
i

∑
c∈Q(i)

|
d2∑
k=1

lktk − Ic(Pc(xi))|. (13)

Here, i is the vertex index, c is the camera index, Q(i) is the set of cameras that
can see the i-th vertex xi, and Pc is the projection matrix for camera c.

6 Dynamic Surface Refinement

After the pose and lighting estimation step, we have a coarse template model
that strikes the correct pose, as parameterized by the respective skeleton pose
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parameters. Different from linear skinning that we used in skeletal pose estima-
tion for its simplicity, we here use quaternion blend skinning[28] to render the
final shape of the surface mesh in the current pose, as it leads to higher quality
surface deformation, in particular around joints. When we have the coarse mesh
of time t + 1, we refine the vertex positions qi from shading cues as given in
Eq. (3). We refer to [25] for detailed explanation of this step. A minor difference
is that temporal consistency is taken into account for assigning albedo labels, by
formulating this as a Markov-Random-Field (MRF) problem with the data term
consisting of two values (i) the similarity of vertex color to the average color in
the material label and (ii) the label similarity with previous time-step.

7 Results

7.1 Quantitative Evaluation

In order to quantitatively evaluate our method, we generated a synthetic se-
quence of 100 frames with 10 camera views. The ground-truth skeleton and mesh
geometry are taken from the results of a previous performance capture method
of a human walking sequence. The ground-truth surface albedo map and dy-
namically changing illumination are manually assigned. With these generated
synthetic images as input, and given the mesh, skeleton, albedo segmentations
for the first frame, we run our algorithm on the remaining 99 frames. In Fig. 3,
we report the accuracy of our approach, with the mean joint position error of
only around 6 mm.

7.2 Real-Word Sequences

We use three real captured sequences for qualitatively evaluating our method.
The sequences were captured with 11 cameras in a studio, but unlike in the input
data of previous performance capture methods, the subject can wear sparsely
textured apparel, there is no need for green-screen background, and there may
be potentially occluding objects in the scene and dynamic background (Fig. 1).
Cameras recorded at a resolution of 1296 × 972 pixels, and at a frame rate of
40fps. Each sequence shows major illumination changes; they are induced by
an operator randomly setting control knobs for various lights in the studio -
these readings are not taken nor provided in any way to our method. Please also
note that some of the captured images are saturated, which our method handles
robustly. As can be seen in the overlayed images of our estimated skeleton and
3D shape in Fig. 4, good pose estimates are obtained despite the challenging
scene conditions. Even when a few cameras are partially occluded, our method
still works quite well thanks to the use of shading cues and multiple cameras
setup. High quality surface detail such as deforming cloth folds are also captured
(Fig. 6). We invite the readers to see the results in our accompanying video, which
is better suited for observing temporal information. Minor errors in skeletal joint
positions might cause the surface to jitter over time, which we remove in our
video results by temporal smoothing of the vertices.
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(a) (b) (c)

Fig. 3. Quantitative evaluation: (a) The mean error of joint positions. (b) The standard
deviation of joint position errors. (c) A generated synthetic image.

We compare the results of our method with a texture-based tracker that
does not estimate lighting explicitly at each frame. Instead, it assumes texture
from the first frame and uses optical flow for tracking; it loses track after a few
frames as the lighting changes significantly (see Fig. 5-b). We also implemented
a silhouette-based tracker [13] that explicitly performs background segmenta-
tion using chroma-keying on the captured images. Due to changing lighting and
moving background objects, the extracted silhouettes are sometimes misleading
and result in inaccurate pose estimates (see Fig. 5-c).

7.3 Computation Time

The computation time of our method depends on image resolution, mesh res-
olution and the order of SH used for representation. In our experiments, we
represented 3D shape using meshes of 80000 vertices, and used a 4th order SH
for representing lighting. With these values, our method takes about 10 min per
each frame on a standard CPU with a 2.6 GHz processor and 8 GB RAM. Specif-
ically, the computation times are 3 min for one-pass of pose estimation, which we
do twice for each frame. The lighting estimation step is quite fast, taking only
10 seconds. The other time-consuming part is the dynamic shape refinement,
which takes 4 min, of which 1 min is spent on visibility calculation. Striking a
trade-off between representation accuracy and computation time, we utilized a
low-resolution mesh (around 5000 vertices) to render the visibility map for each
vertex on the high-resolution mesh. As our code is unoptimized, we believe the
computational time can be further reduced by parallelizing the algorithm.

7.4 Limitations and Future Work

Our algorithm becomes less effective when the underlying shape template is not
accurate. For example, the rotation of the upper arm may not be modeled in the
skeleton. We corrected for such errors by manually adjusting the pose where the
algorithm failed (roughly one frame per 200 frames needed such correction in
our experiments). Please note that a global optimization strategy such as that
used in [13] can automatically handle such cases. Also since we estimate lighting
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(a) (b) (c) (d)

Fig. 4. Illumination changes in a real captured sequence: (a,c) Frames showing widely
different incident illumination (b,d) The output skeletal pose and mesh overlayed onto
the images. The insets show estimated illumination at each frame.

(a) (b) (c)

Fig. 5. Comparison with alternative tracking methods: (a) Our method (b) Texture-
based tracking (c) Silhouette-based tracking [13]

Fig. 6. Results of pose and 3D shape estimation: (a,b) Overlayed skeletal pose at
different frames and camera views (c) Fine-scale 3D shape reconstruction. The inset
shows dynamic cloth deformations captured from shading.
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and pose sequentially at each time-step, error accumulation may cause drift of
the tracker. In future work, we would like to address this issue by stronger priors
from data-driven modeling. Our assumptions of Lambertian reflectance and local
shading model may not be justified in some cases. Abrupt lighting changes, e.g,
the illumination generated by a controlled light stage, are also hard to model.
However, in such cases, the lighting pattern is known beforehand and can be
directly provided as input to our method. A final limitation is the computation
time for running our method which is too high for real-time deployment. We
would like to address these and other limitations in future work.

8 Conclusion

In this paper, we provide a novel shading based frame-work for human per-
formance capture under uncontrolled and dynamic lighting. Starting from syn-
chronized multi-view images, we estimate both the articulated human pose and
fine-scale time varying surface geometry. Key innovation is a novel iterative
pose optimization framework that exploits estimated lighting and shading cues.
Our approach does not expect carefully engineered backgrounds as it does not
perform silhouette extraction or any other form of background segmentation.
Ultimately, one of the goals of vision based motion capture is to obtain high
quality motion reconstructions using a very limited set of cameras in outdoor
situations. Even though we do not explicitly evaluate our method in outdoor
scenes, we believe that our work provides a crucial step towards this goal.
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Automatic Exposure Correction
of Consumer Photographs

Lu Yuan and Jian Sun

Microsoft Research Asia

Abstract. We study the problem of automatically correcting the exposure of an
input image. Generic auto-exposure correction methods usually fail in individ-
ual over-/under-exposed regions. Interactive corrections may fix this issue, but
adjusting every photograph requires skill and time. This paper will automate the
interactive correction technique by estimating the image specific S-shaped non-
linear tone curve that best fits the input image. Our first contribution is a new
Zone-based region-level optimal exposure evaluation, which would consider both
the visibility of individual regions and relative contrast between regions. Then a
detail-preserving S-curve adjustment is applied based on the optimal exposure
to obtain the final output. We show that our approach enables better corrections
comparing with popular image editing tools and other automatic methods.

1 Introduction

Exposure is one of the most important factors of determining the quality of a photo-
graph. In over-exposed or under-exposed regions, details are lost, and colors are washed
out. Despite that sophisticated metering techniques have been equipped on the cameras,
taking well-exposed photos remains a challenge for normal users. There are several
reasons: 1) the camera’s metering (e.g., spot, center-weighted, average, or multi-zone
metering) is not perfect. If the metering points/areas are not targeting the subject or
there are multiple subjects, the metering may fail. Fig. 1(a) is a failure case caused by
the backlit; 2) the assumption that the mid-tone of the subject is gray is sometimes in-
valid due to the complex reflectance of the world (e.g., a snow-white rabbit is often
captured as an undesired grayish rabbit without exposure compensation); 3) in-camera
post-processing capability is limited, especially for the low-end cameras.

To address this issue, some automatic methods like auto-level stretch [1] and his-
togram equalization [1] have been proposed to correct the exposure. For example, auto-
level stretch linearly maps the brightness to the maximum tonal range (e.g., [0, 255]).
This method, however, only uses the statistics of the whole image, without considering
each image region individually. For the backlit case in Fig. 1, auto-level stretch does not
take effect (see Fig. 1 (b)) since the image histogram has reached the maximum tonal
range (top-left of Fig. 1(a)). Histogram equalization [1] (and its variations [2]) better
distributes the intensity values over the histogram. Unfortunately, it would produce un-
realistic effects in photographs (see Fig. 1(c)).

If user assistance is allowed, the interactive correction method is more effective. For
instance, most photo editing software allow the user to manually adjust a non-linear tone

A. Fitzgibbon et al. (Eds.): ECCV 2012, Part IV, LNCS 7575, pp. 771–785, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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(a) input backlit portrait (b) Auto-Level, Photoshop (c) histogram equalization

(d) interactive correction and applied tone curve (e) our automatic correction and estimated tone curve 

Fig. 1. A typical under-exposed photo. On the top-left of (a), we show the luminance histogram
of the input image which has the maximum tonal range and peaks in shadows and highlights.

curve [3] (e.g., S-curve) to correct the dark/mid-tone/bright regions separately. Fig. 1(d)
is the assisted result by expert. But the best shape of the curve varies a lot from image
to image. Touching up every single image is impractical for typical consumers.

In this paper, we present an automatic exposure correction method that can estimate
the best image specific non-linear tone curve (the S-curve in our case) for a given image.
Unlike [4], we need no training data. Note that it is a non-trivial task since the variation
of input consumer photographs is so large. The key to the success of an automatic
correction is to know what the best exposure should be for every image region.

To address this fundamental issue, we borrow the concept of “Zone” from the well-
developed Zone System [5] in photography. The Zone system quantizes the whole ex-
posure range as eleven discrete zones. We formulate the exposure correction as a zone
estimation problem - we optimize a global objective function to estimate the desired
zone in each image region by simultaneously considering two goals: maximizing the
local details in each region, and preserving the relative contrast between regions.

After getting the estimated zone of every region, we propose a new non-linear curve-
based correction algorithm called detail-preserving S-curve adjustment, to push each
region to its desired zone, as much as possible. Compared with generic S-curve adjust-
ment [6][7][8], our detail-preserving S-curve adjustment can maintain local details and
avoid halo effects. Fig. 1(e) shows our estimated curve and final corrected result.

Like most automatic approaches, our approach does not address the user preference
issue [9]. The “correct” exposure may be defined as the one that achieves the effect the
photographer intended. However, our user studies show that an automatic correction
still benefits most typical consumers - especially for their daily photos processing. We
also show our new exposure optimization provides significant visual quality improve-
ment over pervious work. Since our correction is simple and robust, it can be chosen as
a better alternate in photo editing tools and a built-in camera component.
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2 Related Work

Automatic exposure control is one of the most essential research issues for camera
manufacturers. The majority of developed techniques are hardware-based. Representa-
tive work include HP “Adaptive Lighting” technology [10] , Nikon “D-Lighting” tech-
nology [11]. These methods compress the luminance range of images by a known tone
mapping curve (e.g., Log curve) and further avoid local contrast distortion by “Retinex”
processing [12]. Specific hardware has been designed to perform per-pixel exposure
control [13] or scene-based (e.g., backlit, frontlit [14] or face [15]) exposure control.
Some automatic techniques (e.g. [16]) are proposed to estimate the optimal exposure
parameters (shutter speed and aperture) during taking photos.

There are numerous techniques about software-based exposure adjustment, including
most popular global correction (e.g., auto-level stretch, histogram equalization [1]) and
local exposure correction [17][18]. However, these methods only use some heuristic
histogram analysis to map per-pixel exposure to the desired one, without considering the
spatial information of pixels (or regions). An interesting work [19] tries to enhancement
image via frequency domain (i.e., block DCT). But some fixed tone curves are used for
each image and blocking artifacts occasionally occur in their results.

Some algorithms [8][20] only consider the exposure of the regions of interest (ROI)
and assume it is most important to the whole image correction. Different from ours,
they use a known and predefined tone curve but we will estimate the specific curve for
every image. Some tone mapping algorithms [21] can also be used to estimate the key of
scene and infer a tone curve to map its original exposure to the desired key. However, the
key estimation is based on the global histogram analysis and is sometimes inaccurate.
Exposure fusion [22] combines well-exposed regions together from an image sequence
with bracketed exposures. In contrast, we only use a single image as the input.

Since the exposure correction is kind of subjective, recent methods [23][4][9] en-
hance the input image using training samples from internet or personalized photos.
However, our exposure correction is not relied on the selection of training images and
only focuses on the input image itself. Another issue worth mentioning is that our ap-
proach does not aim to restore completely saturated pixels like [24].

3 Automatic Exposure Correction Pipeline

Our exposure correction pipeline is depicted in Fig. 2 and divided to two main steps:
exposure evaluation and S-curve adjustment. Both components are performed in the
luminance channel. To avoid bias due to different camera metering systems, or user’s
manual settings, we would linearly normalize the input tonal range to [0, 1] at first.

The heart of our system is an optimization-based, region-level exposure evaluation
(see Section 4). In the exposure evaluation, we apply a Zone-based exposure analysis
to estimate the desired zone (i.e., exposure) for each image region. We first segment the
input image into individual regions (i.e., super-pixels). In each region, we measure vis-
ible details, region size, and relative contrast between regions. Then we formulate the
optimal zone estimation as a global optimization which takes into account all these fac-
tors. We also use the high level information (e.g., face) to set the priority of the regions.
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Fig. 2. Our automatic exposure correction pipeline

After the exposure evaluation, we estimate a best non-linear curve (S-curve) mapping
for the entire image to push each region to its optimal zone. We further introduce a
detail-preserving S-curve adjustment (see Section 5) instead of naı̈ve S-curve mapping
to preserve local details and suppress halo effects in the final result.

4 Region-Level Exposure Evaluation

The aim of our exposure evaluation is to infer the image specific tone curve for the
consequent detail-preserving S-curve adjustment. To achieve this goal, we first need to
know what is the “best” exposure of each region and how to estimate them all together.

4.1 Zone Region

To measure the exposure, we borrow the concept of “Zone” from Ansel Adams’ Zone
System [5], which is shown in Fig. 3(d). In Zone System, the entire luminance range [0,
1] is equally divided into 11 zones, ranging from O to X denoted by Roman numbers,
with O representing black, V middle gray, and X pure white; these values are known as
zones. In each zone, the mean intensity value is referred as its corresponding exposure.
This concept was also used in recent HDR tone mapping applications [21][25] and
realistic image composition [26].

We represent the image by a number of zone regions. We first decompose the image
into a set of regions by graph-based segmentation [27]. Each region falls into one of the
zones. Then, we merge the neighboring regions with the same zone value. To extract
high-level information (e.g., face/sky) for high priority of adjustment, we need to detect
facial regions [28] and sky regions [29]. All connected regions belonging to face/sky
regions are also merged. We call the final merged region as “zone region”. Fig. 3(a-c)
shows the procedure of the zone region extraction.

4.2 Optimal Zones Estimation

The optimal zone estimation can be formulated as a global optimization problem by
considering two aspects: maximizing the visual details and preserving the original rel-
ative contrast between neighboring zone regions.

Measure of Visible Details. The amount of visible details in under-/over-exposed re-
gions can be measured by the difference of the detected edges in these images which
are generated by applying different gamma-curves on the input image I (the process is
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(a) input image (b) segmented regions [10] (c) initial zones of grouped regions
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Fig. 3. Zone region extraction. In (c), different colors denote different zone regions, in which the
Roman numbers denote corresponding zone values.

(a)  input luminance channel (b) visible shadow edges (c) visible highlight edges (d) all visible edgessΩ hΩ allΩ

Fig. 4. Measure of visible details. In (b-d), white lines are detected edges by Canny operator.

Ri Rj

ijd

Fig. 5. Relative contrast dij is the histogram distance between two neighboring regions Ri, Rj

denoted as Igamma = Iγ). It is based on an observation: in an under-exposed region,
we can detect more/less visible edges after the gamma correction when the gamma γ is
smaller/larger, and the edge number difference between two gamma-corrected images
(one with small gamma, the other with large gamma) indicates the amount of recover-
able details. The similar process can be applied to the over-exposed region as well.

In our implementation, we use two default gamma values γ = 2.2 and γ−1 = 0.455.
We first detect edges on three images I, Iγ , Iγ

−1

by the same Canny operator [1] to
obtain three edge sets: Ω1, Ωγ , Ωγ−1 . The visible details in the shadow region (zone
value < V) and the highlight region (zone value > V) are measured by: Ωs = Ωγ−1 −
Ωγ−1

⋂
Ωγ and Ωh = Ωγ −Ωγ−1

⋂
Ωγ , shown in Fig. 4 (b)(c).

Note that the absolute differences Ωs and Ωh cannot be directly used since they
vary from image to image. To obtain a comparable measure, we compute the relative
visibility of details:

νs = |Ωs|/∣∣Ωall
∣
∣, νh =

∣
∣Ωh

∣
∣
/∣
∣Ωall

∣
∣ (1)
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where | · | indicates the edge number in a set, and Ωall = Ω1

⋃
Ωγ

⋃
Ωγ−1 is the union

of all three sets, shown in Fig. 4 (d).

Measure of Relative Contrast. We measure the relative contrast between zone regions
using their intensity histogram distance. This distance is defined as the minimum shift-
ing distance of two histograms to maximize their intersection (shown in Fig. 5). We use
the term “relative contrast” for this distance. For example, when their histograms are
too close, we say their relative contrast is small.

Zones Estimation as an Optimization. With the two measures defined, we formulate
the best zone estimation as a graph-based labeling problem. Each zone region is re-
garded as a node and any two neighboring zone regions are connected by a link. The
optimal labels Z = {z∗i } of nodes are the final desired zones. We define the Markov
Random Field (MRF) energy function E(Z) of the graph as:

Z∗ = argmin
Z

E(Z) = argmin
Z

(
∑

i
Ei + λ

∑

i,j
Eij),

where Ei is the data term of an individual region i, and Eij is the pairwise term be-
tween two adjacent regions i and j. In our work, the data term and pairwise term are
respectively specified by the form: Ei = −log(P (i)) and Eij = −log(P (i, j)).

The likelihood P (i) of a region i is measured by its visibility of details νi, the region
size Ci (normalized by the whole image size), and the important region size θi (nor-
malized by the whole image size). The important region is directly computed from the
probability map of facial/sky detector. We take into account all the three factors:

P (i) =

{
νsi × Ci × θi × ρ (ẑi − zi) , (zi < V)
νhi × Ci × θi × ρ (zi − ẑi) , (zi > V)

, (2)

where zi is the original zone, ẑi is the new zone and ρ(t) = 1/ (1 + exp(−t)) is a
sigmoid function. The likelihood would encourage shadow/highlight regions to move
to higher/lower zones. For mid-zones (zone V), it takes no effect.

The coherence P (i, j) is defined by the change of relative contrast between two
neighboring regions, from the original relative contrast dij (before the optimization) to
the new relative contrast d̂ij (after the optimization), which is denoted by

P (i, j) = Cj × G(d̂ij − dij), (3)

where G(·) is a zero-mean gaussian function with variance 0.15 and the weight Cj is
used so that relatively smaller regions contribute less. The coherence would penalize
the dramatic change of relative contrast.

To obtain the global optimum, we use a brute-force searching method to travel all
combinations of zone candidates for all regions because the total number of zone re-
gions is not very high after region merging. To automatically estimate the weight λ, we
first calculate the sum of data terms and the sum of pairwise terms across all combi-
nations of zone candidates. Then we set λ to the ratio of two summations. We found it
works very well in our experiments and does not require any tuning.
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Fig. 6. (a) S-curve, φs, φh control the magnitude of S-curve adjustment in the shadow range and
the highlight range respectively. (b) the curves of fΔ(x) weighted by different amount φ.

5 Detail-Preserving S-Curve Adjustment

After getting the optimal zone for every region, we might have mapped the zone value
(i.e., exposure) of each region to its desired zone individually. However, this local map-
ping has the risk to produce exposure distortion in relatively small regions because
these regions often contain insufficient information to estimate their optimal zones. To
address this issue, we use a non-linear tone curve to globally map the brightness of ev-
ery pixel to its desired exposure. We further preserve local contrast by fusion between
the global curve mapping and an adaptive local detail enhancement.

S-Curve Adjustment. Most photographers often use an S-shaped non-linear curve (S-
curve) to manually adjust the exposure in shadow/mid-tone/highlight areas. Fig. 6 (a)
shows a typical (inverse) S-curve. This kind of S-curve can be simply parameterized by
two parameters: shadow amount φs and highlight amount φh, which is denoted by:

f(x) = x+ φs × fΔ(x)− φh × fΔ(1 − x), (4)

where x and f(x) are the input and output pixel intensities. fΔ(x) is the incremental
function and empirically defined as: fΔ(x) = κ1x exp (−κ2x

κ3), where κ2 and κ3

control the modified tone range of the shadows or highlights. We use the default param-
eters (κ1 = 5, κ2 = 14, κ3 = 1.6) of fΔ(x) to make the modified tonal range fall in
[0, 0.5]. The effect of shadow/highlight amounts (φs, φh) is shown in Fig. 6 (b).

Inference of Correction Amounts. We infer the amounts (φs, φh) from the estimated
optimal zone in every region. For the shadow regions, we want to set the amount φs so
that the original zone value of each shadow region can be moved to its optimal zone
value, as much as possible. The amount φh can be estimated in a similar way.

Suppose the original exposure and new exposure of a shadow region i are respec-
tively ei and êi. (The relationship between the exposure and its corresponding zone
value is shown on Fig. 3(d)). The original exposure is calculated by the intensity mean:
ei =

∑
I/ci, where I is original intensity and ci is the region size. After the S-curve

adjustment (by Eqn. 4), the new exposure êi =
∑

f(I)/ci =
∑

(I + φs × fΔ(I))/ci.
Thus, the shadow amount φs of this region should be: φs = (êi − ei)× ci ×

∑
fΔ(I).

To consider all regions, we take the weighted average of the estimated shadow amounts
of all regions. We use the percentage of region size as the weight.
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(a) input image I (b) naive S-curve mapping  f(I) (c) detail-preserving S-curve   Î

Fig. 7. Comparison between direct S-curve mapping and detail-preserving S-curve adjustment

(a) input image (b) using Gaussian filter (c) using guided filter

Fig. 8. Comparisons of halo effects reduction between Gaussian filter and guided filter [30]

Detail-Preserving S-Curve Adjustment. If we directly apply the S-curve mapping (in
Eqn. 4) to the input image, we may lose local details. Fig. 7(b) shows such a case,
where the result looks too flat although dark areas are lightened. This undesired effect
is due to: moving the intensities from shadows and highlights to the middle will com-
press the mid-tones. Since the S-curve is usually monotonic, the contrast between two
neighboring pixels in the mid-tones could be reduced.

To address this issue, we propose a detail-preserving S-curve adjustment. Given an
input image I , we adaptively fuse its S-curve result f(I) with a local detail image
ΔI . Note that ΔI is the difference between the input image I and its low-pass filtered
version IF : ΔI = I − IF . Here, we compute IF by a fast edge-preserving low-pass
filter, the so-called guided filter [30] to suppress halo effects. In Fig. 8, we show the
result against a Gaussian filter. In our implementation, the radius is set to 4% of the
short side of the image I . The final output image Î is a weighted linear combination:

Î = f(I) + [2× f(I)(1 − f(I))]×ΔI, (5)

where the second term on the right side adaptively compensates for the reduction of lo-
cal details. The weight f(I)(1 − f(I)) reaches its maximum (when f(I) = 0.5) in the
mid-tone range where there is notable loss in local details. In other words, we add more
details back to the mid-tone than the shadow or highlight range. Specially in smooth
regions, the output is mainly determined by the S-curve results. Such an adaptive ad-
justment mechanism can help us produce more natural-looking results (Fig. 7(c))

For a color image, we need to compensate the possible reduction of color saturation
caused by the luminance adjustment, especially on shadows. To avoid this issue, we
transform it to YIQ color space and then scale the corresponding I, Q chroma values by
the adjustment of Y luminance values.
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Efficient Implementation. For efficient computation, we enforce two extra constraints
to largely reduce our search space of possible zone values: 1) Our adjustment uses the
global S-curve which would map the same input pixel values to the same output. Thus
we can consider the change of zone should be the same for the regions with the same
original zone values; 2) Since our employed S-curve won’t change values across the
middle gray (0.5), we can consider that the change of every zone is not allowed across
zone V. In addition, our exposure is evaluated on the down-scaled image with their long
edge no more than 400 pixels. So our segmentation and face/sky detection can be very
efficient. For an 16-megapixel RGB image, the whole evaluation and correction time is
0.3 second on Core2 Duo CPU 3.16GHz with single-thread, no SSE acceleration.

6 Experiments

6.1 Usability Study

Dataset: We perform our evaluation using a database of 4,000 images taken by our
friends (including amateur and professional photographers) with direct camera output.
These images varies on scenes, locations, lighting conditions and camera models (e.g.,
DSLR, compact, mobile cameras). We ask five subjects to divide all images into three
groups according to different extents of exposure problem. Three groups are “severely
badly-exposed, definitely need correction” (Group A), “slightly badly-exposed photos,
may require a little correction” (Group B), and “well-exposed, no more correction”
(Group C). Finally, we obtain three different datasets respectively: “Group A” (975
images), “Group B” (1,356 images) and “Group C” (1,669 images) according to the
majority agreement of five subjects. Fig. 9 (a) shows several examples.

Procedure: We will compare with automatic exposure corrections in several popular
photo editing tools to manifest our method would become a better candidate. All of
results are achieved by default parameters. We invite other 12 volunteers (7 males and
5 females) with balanced expertise in photography and camera use to perform pairwise
comparison between our result and one of three other images: 1) input image, 2) re-
sult by Windows Live Photo Gallery’s Auto-adjust, exposure only (http://download.live.
com/photogallery), 3) result by Google Picasa’s Auto-contrast (http://picasa.google.
com/). For each pairwise comparison, the subject has three options: better, or worse,
or no preference. Subjects are allowed to view each image pair back and forth for the
comparison. To avoid the subjective bias, the group of images, the order of pairs, and
the image order within each pair are randomized and unknown to each subject. This
usability study is conducted in the same settings (room, light, and monitor).

Usability Study Results: The main user study results are summarized in Fig. 9 (b).
Each color bar is the averaged percentage of the favored image over all 12 subjects (I-
shape error bar denotes the standard deviation). From results on “All Groups” (without
distinguishing the photos from different groups), we can see that the participants over-
whelmingly select our result over the input (70.2% vs. 5.9%), Photo Gallery (60.5% vs.
29.6%), and Picasa (58.3% vs. 12.5%).
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Fig. 9. Usability studies. (a) Examples from three groups: A (severely badly-exposed), B (slightly
badly-exposed), C (well-exposed). (b) pairwise comparison of ours against the input, Photo
Gallery, and Picasa, in all groups and three different groups respectively. Each color bar denotes
the average percentage of favored image (with I-shape standard deviation bars).

input images Photo Gallery results Picasa results our results

(a) 

(b) 

(c) 

Fig. 10. Examples randomly chosen from Group A. We can notice more details on foreground
faces (a), foreground audiences (b) and street scene (c). (Better View in Electronic Version).

(a)

input images our results

(b)

(c)

(d)

input images our results

Fig. 11. Two examples randomly chosen from Group B (a-b) and two from Group C (c-d)
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“Group A” results show that our approach works significantly better for severely
badly-exposed photos. The participants show a strong bias in preference towards our
correction when compared to input images (92.3% vs. 2.7%) and other automatic tools
(87% vs. 8.5% against Photo Gallery, 84% vs. 6.4% against Picasa). The results from
“Group B” indicate that slightly badly-exposed photos can benefit more from our cor-
rection than other methods as well. In “Group C”, our approach also performs very well
- for near 92% photos, our method does not make the result worse. It is quite nontrivial
and very important for practical use, especially for batch-processing photos.

Fig. 9 (b) also graphically show two phenomenons on “Group C” compared with
“Group A”: 1) the margin between our result favored and no preference is smaller, and
2) all standard derivations are larger. They both indicate that the exposure correction
itself is somewhat subjective especially for “not bad” photos. Subjects show different
tastes for good photos correction, which has been discussed in [9][4], but most of these
subjects consistently agree with our correction for relatively bad photos.

After the user study, we also ask all participants to articulate the criteria for their
feedbacks. We conclude the main criteria: 1) the over-/under-exposed regions of interest
should be well corrected; 2) well-exposed regions should not be over-corrected; and 3)
the colors in corrected images should look natural. Other feedbacks include “the color
of a few individual regions sometimes looks slightly unrealistic”, “in some cases, the
corrected results bring in some noise”, and “I want some parameters tuning so that I
can control the results.”. Overall, most participants like our correction and want to use
it for their daily photos processing.

Visual Quality Comparisons: Fig. 10 shows three examples from “Groups A”. These
photos show several common badly-exposed scenarios, such as outdoor backlit, dim-
light indoor environment, which are very challenging for existing tools. As we can
see, their corrections take no effect, but our method brings more visible details into
badly-exposed areas while preserving the original appearance in well-exposed areas.
Fig. 11(a)(b) show two examples from “Groups B”, whose exposures look somewhat
problematic. Our results look much more appealing, especially on important areas, e.g.,
over-exposed sky (Fig. 11(a)) and under-exposed face (Fig. 11(b)). Fig. 11(c)(d) show
two well-exposed examples from “Groups C”. Our corrections seem to be imperceptible
because the dark silhouette regions (Fig. 11(c)) have few detectable visible details and
the black clothes (Fig. 11(d)) have lower priority than well-exposed faces, which would
contribute little to the change of zone in our optimization.

6.2 Comparisons with Other Academic Methods

In consequent comparisons, our results are generated by the same parameters used in
useability study. In Fig. 12(b)(c), we compare with two traditional histogram equal-
ization algorithm [1][2] (by Matlab function histeq, adapthisteq). We can notice lo-
cal contrast reduction and undesired halo effects in their correction results shown in
Fig. 12(b)(c). However, our result shown in Fig. 12(e) looks more natural. We also com-
pare our method with a well-known tone-mapping operator [21] (shown in Fig. 12(d)).
Since their automatically estimated scene key is not accurate and tends to be higher than
the actual key in this case, their result looks a little over-exposed.
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(a) input images (b) histogram equalization(HE) (c) adaptive HE (d) tone reproduction (e) our results

Fig. 12. Comparisons with histogram equalizations [1], adaptive histogram equalization [2] and
tone reproduction [21]. The yellow/red arrows show unwanted halo effect/contrast reduction.
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Fig. 13. Comparison with internet-based restoration [23]. Images (a-c) are taken from their paper.
The reference result (b) is applied a fixed key. The yellow/red arrows show under-/over-exposed.

input exposure bracketed sequence sequence exposure fused result our corrected result only from (b)

(a)

(b)

(c)

Fig. 14. Comparison with Exposure Fusion [22] on input image sequence (taken from their pa-
per). Our algorithm only uses the single frame (b) as the input.

synthesized image sequenceinput image exposure fused result our corrected result

(a)

(b)

Fig. 15. Comparison with Exposure Fusion [22] on a single input image. We only use the input
image (depicted in Green box) while Exposure Fusion uses the synthesized image sequence with
different exposures from the input image. The red arrow shows unwanted artifacts.
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(a) input image (b) V. Bychkovsky et. al. [5] (c) our result (d) Retoucher E

Fig. 16. Comparisons with learning-based tonal adjustment [4]. Images (a,b,d) are taken from [4].

input image our result
input cropped patch our croppred patch

close-up views

Fig. 17. Our failure case on noise amplification

In Fig. 13, we directly use the image and result from internet-based image restora-
tion [23] for comparison. In this case, we can see our result has more visual details in
local under-exposed areas than their provided result. Besides, their approach exagger-
ates over-exposed sky areas while our method can preserve their original appearance.

Exposure Fusion [22] is a fairly new concept that fuses all well-exposed regions
together from a series of bracketed exposures. The good exposure is measured by some
features: contrast, saturation and closeness to middle gray. Fig. 14 shows an example
from their paper. We can see our result is visually approaching theirs, but our input is
only a single frame from their input sequence. To perceive how well their algorithm
works on a single input image, we make a modification of their method for comparison:
(1) applying a series of global brightness adjustment (e.g., multiplying luminance with
1/4, 1/2, 1, 2, 4) in Fig. 15(a); (2) applying a set of different gamma curves (e.g., gamma
values -3, -1.5, 1, 1.5, 3) in Fig. 15(b). Their results look either less vivid, or have lower
global contrast than ours.

We show the comparison with learning-based adjustment [4] and assisted correction
by expert in Fig. 16. As we can see, our result has more luminance details than their
result on under-exposed areas and even much closer to the assisted result (from “Re-
toucher E” mentioned in [4]). Here, please ignore the difference in colors and focus on
the luminance modification since the assisted adjustment includes both exposure cor-
rection and white balance. Without the need of training images, our approach obtain
appealing results as well.

Fig. 17 (d) shows the limitation of our method. Since the correction does not con-
sider the noise issue in our exposure evaluation, noise would become noticeable after
we lighten dark areas. The issue may be addressed by suppressing the excessive noise
amplification or applying denoising for these regions as preprocessing. We will further
explore this issue in the future work.



784 L. Yuan and J. Sun

7 Conclusions

We have presented an automatic method for the exposure correction of consumer pho-
tographs. The heart of this method is an optimization-based exposure evaluation and
a detail-preserving curve adjustment algorithm. By simultaneously considering visible
details in each region and relative contrast between regions, we are able to obtain ap-
propriate exposure at the region level and produce natural-looking results.
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Abstract. In this paper, we propose an effective locally nonlinear tone
mapping algorithm for compressing the High Dynamic Range (HDR) im-
ages. Instead of linearly scaling the luminance of pixels, our core idea is
to introduce local gamma correction with adaptive parameters on small
overlapping patches over the entire input image. A framework for HDR
image compression is then introduced, in which the global optimization
problem is deduced and two guided images are adopted to induct the
optimum solution. The optimal compression can finally be achieved by
solving the optimization problem which can be transformed to a sparse
linear equation. Extensive experimental results on a variety of HDR im-
ages and a carefully designed perceptually evaluation have demonstrated
that our approach can achieve better performances than the state-of-the-
art approaches.

Keywords: high dynamic range, tone mapping, locally nonlinear model,
guided image.

1 Introduction

HDR images can capture greater dynamic range of real world scenes than LDR
images by using 16 bit or even higher bits with floating point type. This wide
dynamic range allows HDR images to more accurately represent the intensity
levels in real world. Unfortunately, most of the modern display devices have
limited dynamic range. Hence, a number of tone mapping operators have been
proposed to compress the high dynamic range of HDR images to the displayable
range while preserve the visual contents[1–3]. These tone mapping operators are
useful not only for HDR photography but also for lighting simulation in realistic
rendering [4]. Therefore, the last three decades enjoy a boom of tone mapping
algorithms in both the computational photography community and computer
vision community [5, 4, 6–8].

In literature, the tone mapping operators can be roughly classified into two
categories: global operators and local operators. Global operators [9–13] can
be regarded as spatially uniform methods because the same mapping function
is used for all the pixels of the input HDR image. They are simple and fast.
However, they suffer from losing visual details in both bright areas and dark
regions because they compress all the structures and details without considering

A. Fitzgibbon et al. (Eds.): ECCV 2012, Part IV, LNCS 7575, pp. 786–799, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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the local luminance variation. Therefore a variety of local operators which model
spatial adaptation by using locally changing functions have been proposed to
compress the dynamic range while maintain or enhance the details [6, 14, 15, 2,
3]. Most local operators decompose the input HDR image into different layers
[1] or areas [16]. Different mapping functions for each layer or area are adopted
to compress the dynamic range and final results are achieved by a combination
of these layers or scales after contrast reduction. Most of these local operators
suffer from halo effects which are critical in HDR images. Then several operators
have been proposed to improve this flaw [15, 2, 14, 3].

Although many excellent tone mapping operators have been proposed, tone
mapping algorithm is still far beyond perfection. None of the present approaches
have met the most challenging goal that an ideal tone mapping operator should
achieve perceptually natural LDR images with precise details as well as free of
any kinds of distortions or halo effect.

The main purpose of this paper is to introduce an effective tone mapping
operator which can achieve perceptually pleasing results with fine details. The
output LDR image has a high contrast and free of distortions or halo effects.
Instead of linearly scaling the luminance of pixels, we propose a new tone map-
ping algorithm based on local gamma correction with adaptive parameters. Our
method is based on the Weber-Fechner Law [17] that the human eye’s subjective
perception of brightness is related to the physical stimulation of light intensity
in a manner which is similar with the power function used for gamma correction.

Our method benefits from the following two main contributions:

(1). An effective locally nonlinear model based on the Weber-Fechner Law
[17] is proposed. Our model coincides with the nonlinear relationship between
the physical magnitudes of stimuli and the perceived intensity of the stimuli.
Compared with the locally linear model [8], our model has not only a more
reasonable physical explanation, but also a wider applicability.

(2). When solving our locally nonlinear model, we add two constraint items
into our energy function to avoid distortions and then achieve perceptually pleas-
ing LDR images. Two guided images are creatively adopted in these two con-
straint items. These two guided images are critical for a natural LDR image
which has fine details but no distortions.

2 Previous Work

Because of the great advantages over LDR images[4, 7], HDR images as well as
tone mapping algorithms are therefore drawing a world of excellent researchers’
attention [4, 15, 2, 3, 5, 1, 6].

Debevec and Malik [4] proposed that a HDR image can be created from three
or more LDR images of the same scene under different exposures. With the
development of photograph technology, we can get access to HDR cameras which
can take HDR photos and videos directly now. Therefore, there is an increasing
demand for tone mapping algorithms. These tone mapping algorithms can be
roughly classified into two categories: global operators and local operators.
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The global tone mapping methods are simply mapped the input HDR image
Ih(x, y) to an output LDR image I l(x, y) = f(Ih(x, y)), where f() is a global
compression function which is spatially invariant, such as linear function, gamma
function [18], histogram based function [10] and the function adapted to tone
reproduction curves [12]. These methods are simple and fast, but always fail in
balancing between unveiling visual contents and preserving details.

Hence, local tone mapping methods are the recent literature to compress the
high dynamic range while maintain or enhance the details. Most of the local tone
mapping methods decompose the input HDR image into several layers or areas,
apply different compressing algorithm in different layers or areas and recombine
all the layers or areas into a LDR image. Similar with Durand [6], Farbman
[14] decomposed the HDR image into a base layer and a detail layer, while the
base layer is obtained by an alternative edge-reserving smoothing operator and
the detail layer is got by subtracting the base layer from the input HDR image.
Recently, Lee [16] segmented the input HDR image into different parts using
K-means algorithm and then applied automatic gamma correction in different
parts. However, how to appropriately deal with the scale decomposition, layer
separation or image segmentation is an another difficult problem. Besides, these
methods have a reputation of causing halo artifacts.

Later, Li [2] improved the condition of halo artifacts by using a symmetrical
analysis-synthesis filter bank and applying local gain control to the sub-bands.
Results illustrated that the method of Li can achieve more satisfactorily than
other multi-scale based methods. An alternative approach was also proposed by
Fattal [15]. In their framework, the gradient field of the luminance image is ma-
nipulated by attenuating the magnitudes of large gradients as well as magnifying
the small ones. Satisfactory results can be finally achieved by solving a Poisson
equation. This gradient domain method is good at preserving fine details in dark
regions and avoiding common artifacts.

More recently, Shan [8] provided us with a totally new tone mapping op-
erator that performs locally linear adjustments on small overlapping windows
over the entire input HDR image. They cast the compression task as a global
optimization problem and achieve an optimal solution by solving a sparse equa-
tion. Locally linear method can effectively suppress local high contrast even in
challenging HDR images. However, this method fails when luminance value of a
local patch changes abruptly. An another impressive tone mapping method is the
Local Laplacian filters [3]. Paris proposed a set of image filters using standard
Laplacian pyramids to achieve edge-aware tone mapping. Local Laplacian filters
can produce consistently high-quality results, especially in details manipulation.
However, the complexity of this algorithm is a little high. Another imperfect
point is that high-frequency textures are amplified by their detail-enhancing
filter so that their result does not have a natural appearance.

As analyzed above, all these local operators firstly define a local measurement
and then find a simple mapping function such as linear scaling. Although these
tone mapping operators have achieved great success in many cases, the ideal
target is still far away.
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3 Motivation and Model

3.1 Motivation

We are motivated mainly by the following facts. On the one hand, the Weber-
Fechner Law [17] states that subjective sensation is proportional to the logarithm
of the stimulus intensity. Compared with LDR image, HDR image can more
precisely model the illumination variation in the real world. Thus it implies that
the relationship between the input HDR image and the desired output LDR
image is nonlinear and can be represented in a manner that is similar to the
power function used for gamma correction. On the other hand, locally linear
hypothesis which achieves great success in LDR image can not guarantee that
it is still reasonable in HDR image because luminance value of a HDR image
may vary a lot even in a local patch. The existing locally linear operator [8] (see
Figure 1(a)) abruptly adopts locally linear hypothesis and therefore causes some
distortions when a patch is bright enough or contains both dark and bright
pixels. For instance, when a patch contains both dark and bright pixels (see
Figure 1(c)), the dynamic range of the dark pixels will be compressed at the
same rate as the bright ones, which results in losing details in this patch, as
shown in Figure 2(c) and Figure 3(d).

Hence, a new locally nonlinear operator is needed to compress the contrast
of a local patch as well as enhance the visual contents, even when luminance in
this patch changes abruptly. Local gamma correction with adaptive parameters
is therefore proposed to meet this demand, as shown in Figure 1(b). Exten-
sive experimental results on a variety of HDR images have demonstrated the
correctness of our motivation.

3.2 Model

In this part, we introduce our local gamma correction model. Given an input
HDR image with radiance map I, we compute the radiance map J of the out-
put LDR image through J = f(I), where f(·) is a local compression function
which should satisfy the local monotonic constraint. Considering a local patch
Ωt centering at pixel t, the local gamma correction model is

j(i) = αti(i)
βt i ∈ Ωt, (1)

where j is a vector of luminance values in the local patch Ωt of the output LDR
image J and i is a vector of luminance values in the same local patch of the
input HDR image I. j(i) denotes the i-th element of j and the same with i(i).
Parameter αt and βt are constant values in each local patch, while αt denotes
the multiplier and βt is the index value. From the image’s perspective, α and β
are named guided images in this paper, as shown in Figure 3(e) and Figure 3(f)
respectively, which we will introduce in details in Section 4.3.

Note that the locally linear model is a particular case of our locally nonlinear
model. Actually, when parameter β equals 1, our model turns into the locally
linear model.
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Fig. 1. Illustration of the locally linear model and our locally nonlinear model. (a) the
locally linear model. (b) locally nonlinear model. (c) a local patch of the input HDR
image, the left are relevant digital numbers and the right are luminance values. (d) the
output local patch after tone mapping using our locally nonlinear method.

Fig. 2. Comparisons with the locally linear model [8]. (a) input HDR image. (b) result
of Shan(β1=0.7). (c) result of Shan(β1=0.9). (d) our result.

Following we illustrate the advantage of our locally nonlinear model over the
locally linear model in details. Instead of linearly compressing the contrast of a
patch in an input HDR image, we adopt the local gamma correction strategy
which can not only effectively compress the bright pixels but also enhance the
dark ones in one hit even in challenging patches, as shown in Figure 1(d) and
the sky-leaves part in Figure 3(h). The locally linear model usually fails when
luminance value of a local patch changes abruptly, as shown in Figure 2(d)
and Figure 5(c). In this situation, the dark pixels will turn bright because of
q(intercept item of local linear model [8]) which determines the base radiance
level (see Figure 1(a)). That is the reason why we adopt a new constraint item
of q. Meanwhile, the dynamic range of the dark region will be compressed at
the same rate as the bright pixels, which results in losing details in this patch.
These flaws can be witnessed in the black area of the cow in Figure 2(c) and
the sky-leaves in Figure 3(d). That is another reason why we introduce locally
nonlinear model instead of locally linear model.
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4 Algorithm and Implementation

4.1 Model Transformation

When dealing with nonlinear model, we generally transform them to another
domain in which nonlinear model turns to be linear model. After applying log-
arithmic transformation on both sides of Eq. (1),we get:

log j(i) = βt log i(i) + logαt i ∈ Ωt. (2)

Set y(i) = log j(i), x(i) = log i(i), wt = βt, bt = logαt, we get

y(i) = wtx(i) + bt i ∈ Ωt. (3)

Comparing Eq. (3) with Eq. (1), we find that locally nonlinear model in image
domain is equivalent to linear compression in logarithmic domain.

4.2 Model Solution

The most common way to solve the parameters of linear regression problem can
be described as

min
wt,bt

∑

i∈Ωt

(‖y(i)− wtx(i)− bt‖2 + λ‖wt‖2
)
. (4)

However, the optimal solution of problem (4) are not so good, as shown in
Figure 3(b). Therefore, inspired by [8], we adopt some prior information which
are presented as the guided images to guide parameter wt and bt. In order to get
no distortion results, we add a new constraint item in which b∗ (namely the α
image) is adopted to constrain the variation of parameter bt. We also introduce
a new approach to calculate w∗ (namely the β image) to guide parameter wt.
These two guided images will be discussed in details in Section 4.3. As a result,
the question now turns into minimize the local regression error et as follows

min
wt,bt

et, (5)

where
et = ‖yt − wtxt − bt‖2 + λt‖wt − w∗

t ‖2 + τt‖bt − b∗t‖2). (6)

Here λt = μw∗
t
−2 and τt = νb∗t

−2 are regularization parameters in which μ =
ν = 0.1. Denote yt = [y(1), y(2), . . . , y(K)]T and xt = [x(1), x(2), . . . , x(K)] in
which K is the pixel number in each window. Extend xt = [xt;1] ∈ R2×K ,

wt = [wt, bt]
T ∈ R2×1, w∗

t = [w∗
t , b

∗
t ]

T ∈ R2×1, Dt =

[
λt, 0
0, τt

]
∈ R2×2, we get

et = ‖xt
Twt − yt‖2 + 1

2
(wt −w∗

t)
TDt(wt −w∗

t). (7)

The second term in Equation (7) is a variation of typical manifold regulariza-
tion [19]. Similar with classical optimization of manifold learning, we can solve



792 H. Gu et al.

Equation (7) in derivation or iterative forms. Here we adopt the derivation form
[20]. By taking the partial derivatives of et with respect to wt and setting it to
zero, we have

wt = (xtxt
T +Dt)

−1(xtyt +Dtw
∗
t), (8)

Substituting Eq. (8) into (7) and then taking the partial derivatives of et with
respect to yt, we can get

det
dyt

= (It − xt
T (xtxt

T +Dt)
−1xt)yt − xt

T (xtxt
T +Dt)

−1Dtw
∗
t , (9)

where It ∈ RK×K is an identity matrix. Then the total regression error of the
input HDR image can be evaluated as

E(Y) =
∑

t

et. (10)

Note that yt is just a subvector of the target LDR luminance image Y. Define a
selection matrix St ∈ RK×N (N is the total number of pixels in the input HDR
image) as

St(i, j) =

{
1 if yt(i) is the j-th element of Y,
0 otherwise.

So yt = StY. By taking the derivatives of Eq. (10) with respect to t and setting
it to zero we get

UY = V, (11)

where
U =

∑

t

St
T
(
It − xt

T (xtxt
T +Dt)

−1xt

)
St, (12)

and
V =

∑

t

St
Txt

T (xtxt
T +Dt)

−1Dtw
∗
t . (13)

Now we conclude that the optimal compression can be computed by solving a
sparse linear Eq. (11). After we get the LDR luminance image Y in logarithmic
domain, we can achieve the LDR luminance image J in image domain by setting
J = exp(Y).

As mentioned earlier, our method operates on the input HDR image’s lumi-
nance channel I. In order to reconstruct the RGB channels, we adopt an approach
similar to method of Schlick[21]

Jc =

(
Ic
I

)s

J c ∈ {r, g, b}, (14)

where Ic and Jc denote one of the RGB color channels before and after tone
mapping. The parameter s is the saturation factor. Our results show that s ∈
[0.5, 0.8] works well for most HDR images.

The matrix U ∈ RN×N in Eq. (12) is symmetric and sparse, and the number
of nonzero elements of each row is (2

√
K − 1)2. The computation complexity of

constructing matrix U is about O(NK2).
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Fig. 3.Guided images and its affection. (a) input HDR image. (b) Shan’s result without
guidance map. (c) Shan’s guidance map[8]. (d)Shan’s result. (e) our α image. (f) our
β image. (g) result of local linear model with our two guided images. (h) our result.

4.3 Guided Image

In order to guide the modification of local contrast, Shan [8] proposed the concept
of guidance map. With the help of guidance map, they can get more satisfactory
result, as shown in Figure 3(b), (d). Bright regions in the guidance map indicate
that the same areas of the input HDR image should be enhanced, otherwise
should be compressed.

However, their approach usually fails when pixel values in a patch is bright
enough, as shown in Figure 2(b),(c) and Figure 5(b),(c). Therefore we add a
new contraint item b∗ (namely guided image α) to constrain the variation of
our intercept item b. From Figure 3(e), we can see that the guided image α
has given a reasonable restriction to our intercept item b which denotes the
luminance base. Figure 3(g) is achieved by the locally linear model with our two
guided images. Compared with Figure 3(d), Figure 3(g) is free of the distortions
caused by improper intercept item, as shown in sky parts in the rectangle.

A good estimation of guided images becomes very important since they are
so critical for a satisfactory result. Fortunately, we find that there are several
proper formulations. Following we discuss two essential components in construct-
ing guided images. Since illumination is the main reason of causing the high
dynamic range problem, local mean value is needed to estimate the illumination
[5]. Local variance is critical to preserve the details because the target of tone
mapping is compressing the high dynamic range while preserving the details.
If we take these two components into consideration, the explicit formulation of
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guided image is less critical. Finally, we choose the formulation of our two guided
images as follows:

w∗
t =

1

uρ1

t + λσρ2

t

. (15)

b∗t = uρ3

t + λσρ4

t , (16)

where ut and σt denotes the mean value and variation of the local patch centering
in pixel t respectively. λ = 0.1 balances between the contribution of mean and
value and ρi(i ∈ {1, 2, 3, 4}) are parameters which need to be toned.

Compared with the guidance map of Shan [8], our guided image has two
advantages. Firstly, our approach is not sensitive to parameters. Default value
ρ1 = 0.5, ρ2 = 0.2, ρ3 = 0.25, ρ4 = 0.05 works well for most HDR images.
Secondly, our approach can achieve more natural results, as shown in Figure
3(g). From Figure 3(c),(f), we can find that our guided image is more sensitive
to illumination changes, especially at the leaves parts and the path.

5 Experimental Results

In our experiments, it takes most of the time to construct the sparse matrix U,
similarly with soft matting [20]. Therefore a multigrid method [22] is adopted to
accelerate the computation. It takes about 5 seconds to process a 600×800 pixel
image on a PC with a 2.83GHz Intel Core2 Processor using Matlab. We have
tested several window size of 3*3, 5*5, 7*7, 9*9 and found that our algorithm
was not sensitive to window size. In order to see structures of input HDR images
more clearly, most of the input images are enhanced by global linear scaling.
The codes of the compared methods are downloaded from their homepage with
default parameters recommended by their original authors.

In Figure 4, we compare our approach with three typical global operators and
locally linear method [8]. Compared with global linear scaling, global gamma
correction can enhance more details. Global gamma correction in logarithmic
domain can get a more natural result. However, all these global results are still
unpleasing because of losing details or contrast. The locally linear model can
get a high contrast result, but it sometimes causes distortions, as shown in red
rectangle of Figure 4(e). On the contrary, our method can achieve a natural high
contrast result without distortion or halo effects.

Next, we compare our method with locally linear approach in Figure 5. Locally
linear method has some distortions in white regions, such as the white area in
Figure 2(b), (c) and Figure 5(c). This kind of distortions, to some extent, can
be improved by tuning the parameters. But it is really difficult to find proper
parameters which can balance between unveiling the details in dark region and
avoiding distortions in bright areas. Locally linear method also fails in patches
which contain both dark pixels and bright pixels, for instance the sky-leaves in
Figure 3(d). We have further found that local linear model is sensitive to patch
size since the luminance value is more likely to vary abruptly in a larger window.
Our method does not have these problems.
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Fig. 4. Results compared with global operators and locally linear algorithm[8]. (a)
input HDR image. (b) result of global linear scaling. (c) result of global gamma cor-
rection (β=0.2). (d) result of global gamma correction in logarithmic domain(β=0.6).
(e) result of the locally linear method (β1=0.9)[8] (f) our result. HDR image courtesy
of Mark D. Fairchild[23].

In Figure 6 and Figure 7, we compare our method to six state-of-the-art tone
mapping operators. Both Durand’s Fast Bilateral Filtering method [6] and Farb-
man’s edge-preserving multi-scale decompositions [14] have good performance in
terms of preserving the details in bright regions. However, Farbman’s method
outperforms in details enhancing and details reproduction in dark regions. Com-
pared with these two methods, our operator is better at preserving the details
as well as getting a higher contrast, as shown in the statue part in the middle
rectangle. Kuang [23] incorporates the spatial processing models in human vi-
sual system and propose a new image appearance model which is based on the
iCAM framework. Their method does well in some other HDR images, but fails
in Figure 6(d). Their result seems a little dim. Locally linear method [8] works
quite well in the roof areas but has some distortions in the window parts. Their
image has a high contrast but is not good at unveiling the dark regions with
the recommended parameters of his paper. Li [2] compresses HDR images with
subband architectures and successfully get a quite satisfactory result. Li’s sub-
band method can get a high contrast image with precise details in most HDR
images. However, in many cases, her method does not enhance details in dark
regions very well, as shown in the roof areas in the top rectangle. Figure 7(b)
also shows that the red channel of her result is a little abnormal. Paris [3] has
proposed an impressive method of tone mapping in terms of details enhancing.
Their method also does well in unveiling the dark regions as well as preserving
the details in bright areas. Unfortunately, their result does not have a high con-
trast or a perceptually pleasing appearance. Some distortions can also be found
in Figure 7(e). Compared to those state-of-the-art approaches, our approach can
effectively compress the dynamic range of the bright areas as well as enhance
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Fig. 5. Results compared with the locally linear model. (a) input HDR image. (b) the
best results of the locally linear model balanced between compression and distortion:
β1=0.7. (c) results of the locally linear model using his recommendatory parameter:
β1=0.6,β2=0.2,β3=0.1. (d) our result. HDR image courtesy of Mark D. Fairchild[7].

Fig. 6. Results compared with six state-of-the-art approaches. (a) input HDR image.
(b) result of Durand [6]. (c) result of Li [2]. (d) result of Kuang [23]. (e) result of
Farbman [14]. (f) result of Shan(β1 = 0.6,β2 = 0.2,β3 = 0.1) [8]. (g) result of Paris[3].
(h) our result. HDR image courtesy of Paul Debevec[4].
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Fig. 7. More comparisons with Li[2] and Paris[3]. (a),(d) input HDR image. (b) result
of Li [2]. (e) result of Paris[3]. (c),(f) our result.

the details in dark regions without distortions or artifacts. From the perceptual
perspective, our result has a high contrast and looks natural.

6 User Study

Finding whether a tone mapping operator suffers from distortions or halo effects
is an easy work. However, it is quite difficult to evaluate whether this tone
mapping operator is better than that operator because there is no convincing
objective criteria. Fortunately, Yoshida[24] has done a perceptual evaluation of
tone mapping operators. Therefore, we designed a similar perceptual evaluation
of the above six state-of-the-art tone mapping operators.

The experiment was performed on the Internet with the participation of 23
human observers. The original input HDR image and output LDR images of
seven operators were displayed on four web pages. Four perceptually criteria
were tested in this experiment, namely naturalness, overall contrast, detail re-
production in dark and bright regions. The observer was asked to vote at most
two images to the displayed seven LDR results according to one of the above
four criteria. In each web page, eight images were displayed randomly in case of
interact. All of the 23 participants were graduate students and researchers of our
Lab. None of them were known for the goal of our experiment or tone mapping
operators. Table 1 shows the vote results on Figure 6. Due to the limited space,
more details about the experiments and more vote results on other tested images
will be illustrated in the supplementary.

From Table 1, we can find that our method achieved better performances than
the state-of-the-art approaches in terms of naturalness and detail reproduction
in dark regions. Methods of Shan[8] and Paris[3] did well in detail reproduction
in bright regions while Li’s approach[2] outperformed in overall contrast.
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Table 1. Perceptual evaluation of the seven tone mapping operators on Figure 6

���������Criteria
Author

Durand Li Kuang Farbman Shan Paris Our

Naturalness 2 7 1 8 1 4 15

Overall Contrast 1 15 0 4 1 4 9

Details in Dark Regions 3 2 2 4 1 8 12

Details in Bright Regions 6 2 1 3 13 10 1

Total Votes 15 26 4 19 16 26 37

7 Conclusions

In this paper, we have introduced a new local operator for HDR image compres-
sion. The main contributions of our work are from two aspects. First, we propose
an effective locally nonlinear model-local gamma correction with adaptive pa-
rameters. Our model has three properties: reasonable physical explanation, wide
applicability and easy implementation. Second, we introduced two constraint
items into our energy function and induced a close form solution by solving a
sparse linear equation. With two guided images, our algorithm can not only ef-
fectively preserve the fine details but also achieve a natural high contrast result
without any distortions or halo effects. Comparisons with six state-of-the-art
methods have demonstrated that our approach can achieve better performances
than the state-of-the-art approaches. Future work will concentrate on expanding
our locally nonlinear model and applying it to different possible applications.
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Abstract. A broad range of image processing applications require image
databases during development and testing. Whilst some image databases
have been assembled with specific applications in mind, others are in-
tended for more general use, with image content that is purposefully not
application-specific. General-purpose image databases are in frequent use
in the development of new compression algorithms, including in the eval-
uation of the efficacy of lossy compression techniques via statistical and
human (perceptual) image quality assessment methods. The question of
how the images featuring in standard image databases are selected is
important, but is rarely quantitatively justified. In this article, we de-
scribe the compilation of a new image database of high-definition color
images. We present statistical analyzes both of the images that feature
in the most widely used extant databases, and the new database that we
have compiled, in order to evaluate how broad a range of the statistics
measured each database spans.

1 Introduction

The development of new image processing algorithms often requires image data-
bases for testing and validation. Often, algorithms under development are quite
specific, such as those for face recognition and stereo correlation, and corre-
spondingly specific databases for these and other narrowly defined problems
exist. However, a number of general-purpose image databases exist, wherein the
content of the specific images selected for inclusion is not tailored to satisfy a
particular final application, but aims to be useful in a broad range of applica-
tions, such as in the development of new compression algorithms, image quality
assessment (IQA), and in the analysis of the statistical properties of natural
images.

Several IQA image databases are in widespread use. These include LIVE
[1][2][3], IRCCyN/IVC [4], CSIQ [5], TID [6], A57 [7], Toyama [8] and WIQ
[9]. These databases comprise a number of lossless images (not always exclusive
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to each database, see below), along with a set of degraded versions of each im-
age, typically distorted to different degrees with a range of different distortion
methods. In studies examining the limits of the human visual system (HVS),
one common database was assembled by van Hateren [10], comprising a set of
calibrated grayscale images of natural scenes. Since this database contains some
man-made structures, in some studies, a subset of the available images is used
(e.g. DOVES [11]). A further calibrated natural image database for color images,
without the objective of being for general use, or being a representative subset of
the real world, is also available: the McGill Calibrated Colour Image Database
[12] (Tabby). Calibration ensures that observed luminance and chrominance are
veridically represented when images are digitized, but is unnecessary for most
applications.

In Table 1, the size and constitution of a number of common image databases
are provided. All incorporate images at a relatively low spatial resolution. His-
torically, one reason for this is that several core applications (such as IQA, and
the study of HVS properties) require that image are presented to observers on
a monitor without resampling (which introduces imperfections), i.e., are shown
at their native resolution on a display device that has a corresponding spatial
resolution, thereby imposing a limit on the maximum useful spatial resolution
of images featuring in the database. When image resampling is not a concern,
other resolutions may be used, as is the case with databases used for in develop-
ment of new image compression algorithms, such as [13], in which images up to
7116× 5412 at 16-bits per plane are provided. In almost all common databases,
image from Kodak Lossless True Color Image Suite [14] are used, which possess
relatively low spatial resolutions (768× 512 or 512× 768).

Clearly, both the number and content of the images provided in each database
will influence the results of specific studies to some degree. In IQA studies, qual-
ity metrics will fluctuate significantly, contingent upon the database used for
testing. In [15], the authors propose that statistical metrics (such as PSNR and
SSIM) work better in databases incorporating images at a wide range of quality
settings, since findings will be less informative where very high quality images
are used, in which distortions may be barely perceptible, as a consequence of the
limited acuity of the HVS. In addition to image resolution, and the severity of
distortion introduced, it is also likey that the content of each of the images fea-
turing in standard image databases will affect performance, potentially limiting
the generalizability of results.

A common characteristic of all databases is the apparently arbitrary (or at
least scantily documented) protocol for the selection of images. For CSIQ, de-
scribed in [5], nothing is said about the selection of the 30 original images,
except that they are divided into five categories: animals, landscape, people,
plants and urban. The same can be said about the 10 images selected in IVC
database [17], although many of these are standard images in widespread use
by the image processing community. The images in LIVE [3] were selected to
ensure diverse image content, and originate from the Kodak Lossless True Color
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Image Suite, the Internet and CD-ROMs. Specifically, images include pictures
of faces, people, animals, close-up shots, wide-angle shots, natural scenes, man-
made objects, images with distinct foreground/background configurations, and
also images without any specific object of interest. Almost all images featuring
in the Toyama database originate from the Kodak Suite, and all-bar-three also
feature in the LIVE database. Reference images used in TID20008 are obtained
by cropping from the Kodak Suite. Once again, the selection procedure is largely
undocumented. Furthermore, the image cropping performed to reduce image size
will alter global image statistics, reducing scope for the comparison of results
with those of LIVE and Toyama. The WIQ database is restricted to special
distortion cases [18], such as those produced by packet loss in wireless commu-
nication, comprising a number of images well-known to the image processing
community, rather like IVC, although in grayscale form. In Fig. 1 eight common
images featuring in the LIVE, Toyama and TID2008 (which uses cropped ver-
sions) databases are shown, along with the names used in each database; the
ubiquitous nature of these images means that they have borne a significant in-
fluence on the IQA field.

Our objective in this study is to compile a new database, denoted GID (Gen-
eral Image Database [16]), in which the selection of images is justified through
the objective analysis of low-level scene statistics (rather than selecting images
by hand that appear to possess a range of desirable properties), and in which
images may be further categorized by their semantic content. By labeling test
images according to a range of statistical metrics, the image processing commu-
nity may test algorithms under development by selecting images with specific
statistical properties, enabling them to triangulate the efficacy of algorithms
across a range of input conditions, look for input statistic-performance correla-
tions, and so on.

Fig. 1. Common images from LIVE, Toyama & TID2008 Databases
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Table 1. Properties

Name LIVE Toyama CSIQ IVC A57 TID WIQ

resolution <768x512 768x512 512x512 512x512 512x512 512x384 512x512
original images 29 14 30 10 3 25 7
Distorted imag. 779 168 866 235 54 1700 80

Distortions 5 2 5 3 6 17 1
Observers1 23 16 25 15 838

Color RGB RGB RGB RGB Gray RGB Gray

Name 2 van Hateren DOVES Tabby

resolution 1526x1024 1024x768 786x576
original images 4168 101 850

Color Gray Gray Color
1 In average number of observers per image.

2 Not IQA databases.

2 Image Statistics

In image processing, 2D images are represented in Cartesian space as matrix of
M×N pixels, such that M is taken as the image width, and N the image height.
Grayscale images are constructed from a single 2D plane, and color images from
multiple planes. Examples include RGB, the standard colorspace for image ac-
quisition and display systems, and HSV, the cylindrical coordinate system useful
for color analysis, feature extraction, and other procedures that benefit from the
independent representation of chrominance and luminance. Each image plane
may be represented with 8 (the most usual), 10, 12 or even 16 bits per pixel
(bpp). In HSV colorspace, the V plane represents image luminance, and is there-
fore functionally equivalent to a grayscale image; the H plane represents of the
color of each pixel (pixel hue), and S represents the saturation (vibrancy) of that
color [19][20]. In Fig. 2, the relationship between H , S and V coordinates are
shown. H is often measured from 0 to 360. However, in many image processing
operations, only the V plane is used.

In recent years, for a variety of applications, the statistical properties of nat-
ural images have become important, and the pictures that feature in common
image databases have been subject to frequent analysis. Applications requiring
that the statistical properties of images are examined include the development

Fig. 2. Color planes in HSV model
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Table 2. Pearson Product-Moment Correlation Coefficients (r) for V and H planes

V H

SD SK U E CRMS SD SK U E CRMS

M 0.51 -0.76 -0.63 0.70 0.51 M -0.49 -0.69 -0.10 -0.15 -0.49

SD -0.33 -0.42 0.58 0.99 SD -0.38 -0.27 0.57 0.90

SK 0.60 -0.53 -0.32 SK 0.63 0.05 0.24

U -0.82 -0.42 U -0.83 -0.27

E 0.58 E 0.57

of perceptual image compression algorithms, gaze prediction [21], biometrics and
automated indexing and categorization systems. Images may be subject to a wide
range of first order, second order and higher order statistics; commonly reported
statistics include mean luminance (M), standard deviation (SD), or variance,
RMS contrast (CRMS), histogram skewness (SK), uniformity (U), and entropy
(E), along with power spectrum analysis (e.g., via the Discrete Fourier Trans-
form). Formulas for calculating a number of basic statistics are provided below,
where if I(i, j) is the intensity value of the plane I being analyzed, at coordinate
(i, j) in an image size of M × N , then Ī is the average in the plane analyzed,
and pk the cumulative frequency of intensity k of the L possible values in the
image:

M =
1

MN

M∑

i=1

N∑

j=1

I(i, j); (1)

SD =

√√√√ 1

MN − 1

M∑

i=1

N∑

j=1

(I(i, j)− Ī)2; (2)

CRMS =

√√√√ 1

MN

N−1∑

i=0

M−1∑

j=0

I(i, j)− Ī (3)

SK =

√√√√
L−1∑

k=1

(k − Ī)3pk (4)

U =
L−1∑

k=1

p2k; (5)

E =

L−1∑

k=1

pklog2pk; (6)

Spatial frequency analyzes typically use the V plane (assuming we are working
in HSV colorspace), since chrominance planes are known to exhibit similar spec-
tral behavior [22]. A number of image statistics are correlated - for instance, an
image with a very skewed (high or low) luminance distribution is unlikely to
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Fig. 3. Ranked image statistic dispersions (SD) for each image database. Error bars
are +/- 1.96 SEM.

possess high RMS contrast. Table 2 shows the degree of correlation [23] between
these statistics (in V and H planes) for all images in all image databases listed
above. We see strong correlations (r >0.5) between many of the image statistics
calculated, with many other medium sized correlations (r =0.3-0.5). In particu-
lar, SD and CRMS appear to be colinear, so we take CRMS as an indicator of
contrast. Likewise, since E and U are very closely correlated, we take E as an
indicator image complexity.

In Fig. 3, the dispersion of each image statistic defined is shown for each im-
age plane. Normalized ranking each database (0 for lowest and 1 for the highest.
See Table 3) reveals that the LIVE and van Hateren database (vHt) have the
greatest variability across the statistics measures, and DOVES (a subset of the
van Hateren database) the lowest variability. The same analysis in the H plane
reveals that the CSIQ database has the greatest variability across the statis-
tics measures, whereas LIVE have the lowest. At this point, the choice of IQA
database for the highest variability is between GID and CSIQ, however, further
image properties are to be examined.

Sometimes, log intensity is considered, so charts of the histograms of ln(I(i, j))−
average(ln(I)) [24][25] were calculated. In Fig. 4, histograms of some representa-
tive databases for the plane V are shown. In the databasewith the greatest number
of images, van Hateren, positive skew is appreciable (ς = 2.7). This is attributed
by some authors [24] to the presence of (high intensity) daytime sky in many im-
ages. Similar skewness values are obtained for IQA databases. GID yields the low-
est skewness value (ς = 2.29), whereas LIVE, CSIQ and Tabby have ς = 2.46,
ς = 2.50, and ς = 2.49, respectively. In these cases, high intensity values that pre-
dominate over low intensity values are not only due to sky, but to many other parts
of image content, such as clothes, stones, or sails. The intensity distribution shows
a uniform distribution for all databases, except for CSIQ which has irregularities
in the tails of histograms. This could be due to the inclusion of images with many
pixels with intensities concentrated in the extremes, like in snow leaves, roping
(note that green pixels have high intensity in the V plane), sunsetcolor, or family.
This kind of image should be included in a database for IQA, since despite being
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Table 3. Image databases ranked for each image statistic in V and in H plane, and
ranked overall

Name CRMS E M SK points Name CRMS E M SK points

vHt1 0.65 0.76 0.35 0.31 2.07 CSIQ 1.00 0.00 0.58 1 2.58
LIVE 1 0.68 0 1 2.68 Tabby 1 0.74 0.54 1 0 2.28
Tabby1 0.64 0.55 0.70 0.15 2.04 GID 0.00 1 0.80 0.16 1.96
GID 0.43 0.47 0.65 0.22 1.77 LIVE 0.20 0.25 0 0.03 0.48
CSIQ 0.36 0.31 1 0 1.67

DOVES1 0 0 0.31 0.02 0.33
1 Not an IQA database.

Fig. 4. Histograms of ln(I(i, j))− average(ln(I)) for V and H planes

statistically unusual, it is entirely natural. However, where the number of images
in a set it as a premium, such images should be relatively sparse. In GID, statis-
tically unusual images exist, producing a higher dispersion in the distributions of
core image statistic, but at the same time, due to the small proportion of such
images overall, our histograms don’t have marked irregularities.

Histograms of some representative databases for pixels in the H plane are
shown in right Fig. 4. We observe higher skewness for Tabby in this plane
(ς = 4.91), which could be explained by the concentration of some colors in
the images, since this database is not intended as a representation of the real
world and is not specifically intended for use in the development of image pro-
cessing algorithms. LIVE and CSIQ have ς = 1.62 and ς = 1.66 respectively.
The shape of the histograms shows irregularities in both cases, which could be
due to their low number of images, and a wide range in LIVE database. GID
has a ς = 2.3 and uniformly wide shape, so we can conclude that from the point
of view of color information, GID has rich uniform distribution with respect to
other IQA databases.

Concerning other statistics, gradients are the simplest way to analyze the
relationship between pairs of pixels. The forward difference gradient at a pixel
(i, j) in the plane I can be calculated as:
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Dx(i, j) = ln(I(i+1, j))− ln(I(i, j));Dy(i, j) = ln(I(i, j+1))− ln(I(i, j)) (7)

D(i, j) =
√

Dx(i, j)2 +Dx(i, j)2 (8)

It is accepted that the gradient histogram has a very sharp peak at zero, and
falls off quickly [26]. This distribution can be modeled as e−xα

with α < 1 [27].
The reason for this shape is connected to the general mixture of large smooth
surfaces with few high contrast edges. Analyzing the α values in the databases
available, it tends to be higher where a greater proportion of natural images are
used, since then the edges are similarly distributed in all images and directions.
Thus, we get α = 0.853 for van Hateren, α = 0.82 for CSIQ, α = 0.79 for LIVE
and Tabby, and α = 0.76 for GID. In Fig. 5 the log(histogram) is shown in order
to appreciate differences in the tails. Note the assymetry exhibited in the van
Hateren database, which is due to many sky portions in images, although this
could be due to other image properties. The CSIQ database has symmetrical
tails, indicating that, on average, edges go all directions and are generally less
noticeable. LIVE has concave tails on both sides, which could be due to the
fact that edges are a strong component in images. GID and Tabby, like van
Hateren, have a concave tail only on the left, indicating that the gradients of
these databases may be a better representation of real world. The analysis of
gradients in the H plane do not give different properties between the color im-
ages databases.

The analysis of Fourier power spectrum is also usually done to obtain im-
age statistics. These analyses show how low frequencies contain the most power,
which decrease as a function of frequency. Analyzing the amplitude as a function
of frequency (P ) in a log-log scale over a sufficient number of images, the result
can be modeled as P = 1/fβ, where P = 1/fβ is the spectral slope. Some works
obtain β for different image ensembles (man-made, vegetation, etc.), and it can
be assumed that the average spectral slope varies from 1.8 to 2.4, with most
values clustering around 2.0 (a brief review of this and the related references
can be found in [26]). Other studies analyze the shape of the power spectrum
signature. Fig 6 shows the V plane power spectrum signatures of with 50% (red),
60% (blue), 75% (green) an 90% (yellow) of the energy over the power spectrum
of the databases analyzed. It can be seen how signatures are coarse when the
number of images are low, whereas it is well defined if the number of images is
high. Also, the red signature is small when the number of images is high, indicat-
ing that the low frequencies are the main component of the images, so particular
properties of some image of the dataset do not change this. In [28] it is shown
how the kind of images produce special shapes for their signatures. Thus, it can
be seen how van Hateren and DOVES have the shape of natural objects, though
the lower number of images in DOVES makes these shapes wider. Tabby has a
mixture of man-made objects and natural objects, which is an expected result,
since it is a mixture of different types of images. GID shows similar behavior,
although weighted slightly towards the natural shape.
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Fig. 5. Log-histograms of D for V plane

Higher order statistics are only valid if the image exhibits stationary statistics,
like Wavelets or Gabor. These statistics cannot be used to select individual
images of a big set, but the final results have to be coherent with the results
shown, and there must not be significant differences in the new set defined with
respect to the figures presented.

3 Image Selection

The image selection process aims to find a global representation of the real world,
including natural scenes and other image types (see Fig. 7). Furthermore, multi-
dimensional classification enable studies to focus upon different types of images.
The number of images N is limited due to the main target of these images,
that is, development and validation of IQA metrics. It is necessary to take into
account that each original image has to be distorted using n distortion types.
For each distortion, m different levels are applied, such that each one of the
Nmn images is evaluated by one of O observers. Finally, NmnO observations
are compiled for analysis. For each distortion types, n, artifacts that reflect com-
mon coding and transmission systems are included, sometimes via simulation.
The number of distortion levels, m, may be high, but it is typically considered
unnecessary to include a large number of levels, since subjective evaluation is
often limited to 5 rating categories (imperceptible, perceptible, slightly annoy-
ing, annoying, very annoying) [29]. The number of observers, O, should be large
enough to be statistically representative. Thus, N should be chosen in order to
achieve a sufficiently representative set of real world images, and span a range
of image statistics, but at the same time ensure that subjetive experiments are
feasible (both in terms of time and cost).



Statistical Properties of IQA Databases 809

a) van Hateren b) DOVES c) GID

d) CSIQ e) LIVE f) Tabby

Fig. 6. Mean power spectrum signature for each image database

Fig. 7. Example GID images

The set of 500 images provided in GID may be reduced without loss of rep-
resentivity. We use a random selection process to reduce the number of images
from the original collection required without loss of global statistical characteris-
tics. Of the common subsampling methods available: Simple Random Sampling,
Stratified Random Sampling, and Cluster Sampling, since we only consider the
image as a set (without exclusive subsets), simple random sampling was used
with the reservoir sampling algorithm [30]. First, we get a subset of 200 images,
denominated GID200. From this subset, we repeat the random process to select
50 images, this is the GID50 subset. Iteratively, we try to reduce the value of N ,
in this case to 12, and from GID50 we repeat the random process four different
times, to select GIDA

12, GIDB
12, GIDC

12 and GIDD
12. In Fig. 8 the first order

statistics of the V plane for GID and for all the mentioned subsets can be seen.
We can see how the dispersion and complexity represented by the parameters
mentioned in the previous section are mantained in GID200 and have a slight
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Fig. 8. Ranked image statistic dispersions (SD) for each image subset images. Error
bars are 1.96 SEM. subset images.

Fig. 9. Log-histograms of D for the V plane for subsets

reduction in GID50, especially in CRMS , and is significant in the other subsets,
especially in entropy and skewness. Similar behavior is obtained in the H plane,
as we can see in Fig. 8. The skewness of log intensity histograms on ln(I(i,j))-
average(ln(I)) for GID200, GID50, GIDA

12, GIDB
12, GIDC

12, GIDD
12 are ς = 2.29,

ς = 2.28, ς = 2.11, and ς = 2.44, ς = 2.42, ς = 2.39, and ς = 2.33. Significant
differences with the reduction of number of images in the subsets were not found.
The gradients in the subsets, even in the smaller subsets, gave similar results
to the full set GID, as we can see in Fig. 9. The power spectrum of signatures
of the subsets are shown in Fig. 10. We can see how the main properties are
maintained for GID200 and GID50, while we get quite different shapes when we
reduce the number of images to 12, changing then the average image type.
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a) GID200 b) GID50 c) GIDA
12 d) GIDB

12 e) GIDC
12 f) GIDD

12

Fig. 10. Spectral signatures of GID subsets

4 Conclusions and Future Work

We have analyzed several sets of images databases that are used for different
purposes, and we have seen how they have very different properties. The images
contained in these databases are used for the development of new image pro-
cessing algorithms, including lossy compression, image quality assessment, etc.
The properties of the set can have an influence on the algorithms developed. In
this paper we have compiled a new set of images, with two important differences
with respect to previous databases: the use of high definition resolution, and the
use of a large number of images. We have analysed this set and compared their
statistics with other databases.

After this, we obtained some subsets of the original one, and it was seen that
their representativity is maintained when N is reduced from 500 to 200 and even
to 50, rendering subjective image quality rating feasible. The reduction of N to
12 had an impact on some statistics.

Our next task is to complete subjective image quality evaluation for these im-
ages (spefically, GID50). With this analysis, we will obtain the results for smaller
subsets (GIDA

12, GIDB
12, GIDC

12, GIDD
12), so we can determine the influence of

the number of images, and of the image statistics, on the evaluation of image
quality.
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project TIN2010-21378-C02-02 and by Universidad Politècnica de Valècia under
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Abstract. This paper addresses the problem of the supervised assessment of hi-
erarchical region-based image representations. Given the large amount of par-
titions represented in such structures, the supervised assessment approaches in
the literature are based on selecting a reduced set of representative partitions and
evaluating their quality. Assessment results, therefore, depend on the partition se-
lection strategy used. Instead, we propose to find the partition in the tree that best
matches the ground-truth partition, that is, the upper-bound partition selection.
We show that different partition selection algorithms can lead to different conclu-
sions regarding the quality of the assessed trees and that the upper-bound partition
selection provides the following advantages: 1) it does not limit the assessment
to a reduced set of partitions, and 2) it better discriminates the random trees from
actual ones, which reflects a better qualitative behavior. We model the problem as
a Linear Fractional Combinatorial Optimization (LFCO) problem, which makes
the upper-bound selection feasible and efficient.

1 Introduction

Region-based hierarchical image representations have proven their applicability in many
fields such as segmentation, filtering, information retrieval [1]; object detection [2–4],
contour detection [5, 6], etc.

Any hierarchy of nested regions based on a set of non-overlapping regions can be
represented by a binary tree of regions (such as Binary Partition Trees (BPT) [1] or
Ultrametric Contour Map (UCM) trees [5]), so although this work is focused on this
type of trees, the results are generalizable to any hierarchy of regions such as quad
trees [7].

A supervised assessment has been the most used to prove the validity of these repre-
sentations, that is, comparing the results to a set of manually-generated partitions known
as ground truth. However, comparing the large collection of partitions represented in a
hierarchy to a non-hierarchical partition is not straightforward.

The approaches found in the literature consist in selecting a set of representative
partitions from the tree and comparing them to the ground-truth partitions. This way,
for each partition of the ground-truth database, there will be a set of values that indicate
the quality of that particular tree.
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To average these results on a whole database, the representative partitions of the
tree on each image of the database have to be put in correspondence (align) with the
representative partitions of the trees of the rest of images, that is, there has to be a
common parameter that indexes each set of representative partitions (e.g. their number
of regions). Overall, aggregate results depend on a partition selection algorithm and
an alignment procedure.

For instance, in [8, 9], the set of selected partitions are the ones formed in the merg-
ing sequence, aligned by their number of regions. The latter proposes a second align-
ment based on the accumulated merging cost threshold. In [5], the selected regions are
also the ones in the merging sequence, but the alignment parameter is the confidence
threshold on the ultrametric contour map.

Ideally, assessment results should depend mainly on the trees themselves, otherwise
it is not clear whether the obtained results are due to the tree itself, or to the alignment
and partition selection algorithms. To make results independent of the former, [5] pro-
poses the Optimal Image Scale (OIS) analysis, which averages the best result in the
representative set of each tree.

This paper proposes a technique to make the assessment results independent of the
partition selection algorithm via the upper-bound partition selection, that is, comput-
ing the optimal results that can be achieved by any partition selection procedure.

In the case of the OIS, the maximum performance for each image is searched by brute
force among all possible partitions in the merging sequence [5]. However, exhaustively
searching the upper-bound performance among all possible partitions in a tree to make
results independent of the partition selection algorithm is not computationally feasible.
To overcome this limitation, we propose to model the problem of finding the best par-
tition selection as a Linear Fractional Combinatorial Optimization (LFCO), which can
be efficiently solved by the procedure presented in [10].

We show that the upper-bound partition selection has the following advantages in
the assessment of region-based hierarchies. First, it expands the range of partitions as-
sessed beyond the merging sequence. Note that this is a relevant feature, since there
are image analysis works such as [2, 1] that extract partitions that are not in the merg-
ing sequence, and so such partitions would not be covered by the previous selection
approaches. Second, we demonstrate that the partition selection technique may mis-
lead the assessment of the tree quality, in the sense that the ranking between results
is different from the upper-bound in a significant number of cases of the experiments.
Finally, we show that the upper-bound partition selection has a better discriminative
power between the baseline method of computing the hierarchy randomly and actual
hierarchies.

The remainder of the paper is organized as follows: Section 2 presents the different
trees that are used in this work and Section 3 expounds on the supervised techniques
found in the literature to assess these hierarchies. Then, in Section 4 we present the step-
by-step deduction and motivation of the LFCO model that we propose to find the upper-
bound partition selection. Section 5 presents the experiments performed to evaluate and
compare our algorithm and in Section 6 we draw the conclusions.
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2 Hierarchy Creation Algorithm

In this paper we explore a region-based hierarchical image representation consisting of
a binary tree, where each node represents a region in the image, and the parent node
of a pair of regions represents their merging. This structure is referred to as Binary
Partition Tree (BPT) in [1, 2, 8, 9]. The Ultrametric Contour Map (UCM) [5] hierarchy
of regions is also a binary tree.

The algorithm to build both BPT and UCM is a greedy region merging algorithm
that, starting from an initial partition P0, iteratively merges the most similar pair of
neighboring regions. The concept of region similarity is what makes the difference be-
tween both approaches.

In the case of the BPT, each region is represented by a model such as the color
mean and contour complexity [8] or the color histogram [9], and the region similarity
is obtained comparing their models. The UCM [5], in contrast, defines the dissimilarity
between two neighboring regions as the strength of the Oriented Watershed Transform
(OWT) of the globalized Probability of boundary (gPb) in the common boundary.

σ1

R1
R3

R2
R4

σ2

R5

R3

R4 σ3

R5 R6 R7

R1 R2 R3 R4

R5

R1 R2 R3 R4

R5

R1 R2

R6

R3 R4

R7

R5

R1 R2

R6

R3 R4

Fig. 1. BPT creation process: Above, the merging sequence partition set where, from left to right,
two neighboring regions are merged at each step. The common boundary between them is high-
lighted. Below, the BPT representation depicted by a tree, where the region formed from the
merging of two segments is represented as the parent of the two respective nodes.

The merging process ends when one single region remains, the whole image, which
is represented by the root of the tree. The set of mergings that create the tree, from the
starting partition to the whole image, is usually referred to as merging sequence and the
set of partitions that are iteratively formed in the process is known as merging-sequence
partition set.

To illustrate the process of creation of the hierarchies, Figure 1 shows the tree and the
partition at each step of the merging sequence. In this example, the merging sequence
is {R1+R2→R5 , R3+R4→R6 , R5+R6→R7}, and the merging-sequence partition
set is formed by the four represented partitions.
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3 Hierarchy Quality Assessment

The quality of a hierarchical region-based image representation is usually assessed in
a supervised environment, that is, comparing how accurate the representation is with
respect to a human-generated ground truth. Given that a hierarchical region-based im-
age representation is a structured set of image partitions from the most detailed ones
(more regions) to the coarsest ones (less regions), an intuitive approach to assess the
representation could be to compare a set of representative partitions selected from the
hierarchy and aligned by an index that represents the level of detail.

This is the approach followed in [8, 9], where the quality of the tree is represented
by the assessment of the set of selected partitions in the so-called merging-sequence
partition set, that is, the partitions formed at each step of the tree merging sequence.
The number of regions is the index that represents the level of detail of the partitions.
In other words, to assess the trees for various ground-truth images, the sets of partitions
are put in correspondence by their number of regions to obtain an average result.

In [5], the same selection approach applies, but in this case the partitions to be as-
sessed are selected via the thresholding of the Ultrametric Contour Map (UCM) at
different levels of confidence. Therefore, the difference here is that the partitions are
aligned with respect to this threshold value.

In other words, the same threshold for two UCM trees can correspond to different
number of regions. This way, the aggregate results on a database will be different de-
pending on the alignment used.

The strategy to average the results aligning them with respect to a certain parameter
is referred to as Optimal Dataset Scale (ODS) in [5]. To avoid the dependence of the
results of an alignment process, the same work proposes the Optimal Image Scale (OIS)
which, in contrast, averages the quality of the best partition in the selected set for each
image. That is, the rationale behind the OIS is to average the upper-bound performance
of the UCM trees, avoiding the use of an alignment.

However, limiting the partitions assessed to those of a reduced set among all found
in a hierarchy is also masking the real upper-bound performance of the technique, since
this approach is not assessing all the partitions represented in the tree.

The proposal of this work is to find the upper-bound performance regardless also of
the representative partition set selection, that is, independently of whether we assess
those partitions from a thresholding of the UCM, those forming the set of merging-
sequence partitions, etc. We will refer to the resulting selection strategies as upper-
bound ODS and upper-bound OIS (ubODS and ubOIS, respectively).

The number of partitions represented in a binary tree, however, grows rapidly with
respect to the number of initial regions, so it would not be feasible to assess all of them
using brute force. To do so, the main objective of this paper is to model the problem as
a Linear Fractional Combinatorial Optimization (LFCO) problem [10], which allows
us to find the partitions that entail the upper-bound quality using a feasible algorithm.

The F measure for boundary detection (Fb) [5] measures the trade-off between
the precision and recall of the matching between the boundary pixels of the ground
truth and the assessed partition. Although this measure was initially designed to assess
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contour detectors, [5] states that: “While the relative ranking of segmentation algo-
rithms remains fairly consistent across different benchmark criteria, the boundary bench-
mark appears most capable of discriminating performance.”

As we will present on the following section, Fb can be written in the fractional form
of an LFCO, and thus fulfills the objective of feasibility. Therefore, adding the good
behavior of this measure perceived by [5], we will base our assessment on the F measure
for boundary detection Fb.

4 Upper-Bound Partition Selection

The computation of Fb is based on a global optimal matching between the set of bound-
ary pixels of the partition to be assessed and those of the ground truth. To avoid per-
forming a matching for each of the partitions represented in a tree, which is computa-
tionally prohibitive, we propose an algorithm that performs a local matching between
the ground truth and each of the pieces of region boundaries of the tree. This allows us
to efficiently find the upper bound of the optimal global matching for any represented
partition.

Formally, let P0 be the partition on which a hierarchy H is built and R1 . . . Rn its
regions. Let {Ri1+Ri2 →Ri3}, i=1 . . . n−1 be the merging sequence that forms H .
We define σi as the common boundary between the regions that are merged at step i of
the merging sequence. (Figure 1 depicts σ1, σ2, and σ3 of the example tree.) Note that
this set of common boundaries is not the full set of common boundaries between pairs
of regions of P0, but only those between regions merged in the hierarchy H .

Let P be the set of all partitions represented in the hierarchyH . Any partitionP ∈ H
can be unequivocally described by the set of σi that forms its boundaries. Let p ∈
{0, 1}n−1 be a binary vector such that pi = 1 if the boundaries of P contain σi. In
Figure 1, for example, the set of merging-sequence partitions can be identified by the
vectors: p = (1, 1, 1), (0, 1, 1), and (0, 0, 1).

This way, one can define a bijection between the set of partitions P and a subset
χ ⊂ {0, 1}n−1. Our approach to find the partition that entails the best matching relies
on modeling the problem as a binary search in χ and solving it using computationally
feasible techniques.

Specifically, we will model the upper-bound partition selection as a Linear Fractional
Combinatorial Optimization (LFCO) problem [10]:

LFCO: maximize
x

t · xT

f · xT
s.t. x∈ χ ⊂{0, 1}n−1 (1)

being f,t∈R
n−1 and all the constraints that define χ linear.

Section 4.1 explores the constraints that have to be put to the vector p in order for the
corresponding partition to be valid within the hierarchy (that is, define χ) and how to
make them linear. Next, Section 4.2 presents how the Fb of a partition with respect to a
ground truth can be obtained from p in the form of an LFCO such as that of Equation 1.
Finally, Section 4.3 adds the needed constraints to be able to find the ubODS.
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4.1 Forcing the Partition to Be in the Hierarchy

Not all combinations of boundaries σi form a valid partition of the hierarchy and thus
not all p ∈ {0, 1}n−1 correspond to feasible solutions of our problem. Recalling the ex-
ample of Figure 1, for instance, the partition corresponding to [1 0 1] is a valid partition
in the hierarchy, while the ones corresponding to [1 0 0] or [1 1 0] are not.

Let Σi = {ij|j = 1 . . . ni} be the indices of the set of boundaries σij between pairs
of regions among the children of the two regions that define σi. In the example, for σ3,
Σ3 = {1, 2}.

Then, if the two regions that form σi are merged (pi = 0), all the pairs of regions
that form the boundaries indexed by Σi are forced to be also merged (pij =0). Formally
pi = 0 ⇒ pij =0 ∀ ij ∈ Σi, or equivalently the following constraints:

pi = 1 or
∑

ij∈Σi

pij = 0 (2)

In other words, if the boundary between two regions is not in the partition, the bound-
aries between any pair of their children cannot be in the partition either.

The binary search problem we are modeling will be much more efficient to solve if
it is linear. The following linear constraint is equivalent to Equation 2:

∑

ij∈Σi

pij ≤ K pi (3)

where K is a sufficiently large constant, which in our problem can be set to n, the
number of regions.

To conclude, the set of partitions represented in the hierarchy H can be identified
with the set:

χ =

{
p ∈ {0, 1}n−1

∣∣∣∣
∑

ij∈Σi

pij ≤ n pi

}
.

In the sequel, any partition P in the hierarchy H will be identified by its corresponding
binary vector p ∈ χ.

4.2 Upper-Bound Partition Selection as an LFCO

For a given partition P ∈ H (p ∈ χ), let TP be the set of matched boundary pixels
with the boundary pixels of a ground truth partition, i.e. true positives, and FP the false
positives set. We can write that |TP | = ∑n−1

i=1 pi |σm
i |, |FP | = ∑n−1

i=1 pi |σu
i |, where

σi = σm
i ∪ σu

i is a division of the boundary pixels between matched and unmatched,
respectively.

The first approach we propose is to perform a single matching between the boundary
pixels of the original partition P0 and those of the ground-truth partition, and define σm

i

and σu
i as those sets of pixels of σi matched or unmatched, respectively.

If we define σm =
(|σm

1 |, . . . , |σm
n−1|

) ∈ N
n−1, σ = (|σ1|, . . . , |σn−1|) ∈ N

n−1,
the problem of finding the partition in the hierarchy with the best Fb with respect to the
ground truth can be written as:
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F : maximize
p

Fb = 2
(σm,0) · (p,1)T
(σ,|Pgt|) · (p,1)T

, s.t. (3)

This type of problem is referred to as a Linear Fractional Combinatorial Optimization
(LFCO) problem in [10], which also presents an efficient way to solve it. The remainder
of this section is devoted to present the limitation of this approach: the ground-truth
multi-matching and the solution we propose.

Ground-Truth Multi-Matching
The previous matching strategy presents the following problem: the matching is car-
ried out at the level of the original partition P0, assuming it is optimal for all possible
combinations of pieces of boundaries in the hierarchy. More precisely, this approach
assumes that the sets σm

i and σu
i do not depend on the partition p being analyzed; or

in other words, that the optimal matching for any partition p can be obtained from the
initial matching on P0.

In order to illustrate this problem, Figure 2 depicts an example partition (a) and
the correspondent ground truth (b). If pixels are matched globally, as presented in the
previous section, let us assume that all pixels in σ1 are matched to all M ground-truth
pixels. Then, we would have that σm

1 = M and σm
2 = 0, that is, no pixel in σ2 would be

matched at the level of P0. When computing the number of matched ground-truth pixels
for the partition identified by p = (0, 1), we would find that the number of matched
pixels is σm · p = 0, but the right portion of the ground-truth boundary should be
matched to σ2, that is, the correct result should be σm · p = M/2.

σ1

σ2

σm
1

ω1

(a) (b) (c)

Fig. 2. Ground-truth multi-matching representation: (a) Partition being assessed, (b) ground truth,
(c) both partitions overlaid. The points are plotted to highlight the division of the boundary pixels
into sets.

The approach we propose to solve this issue is to perform n−1 matchings between
the pixels of the ground-truth partition and those of each σi, and define σm

i and σu
i as

those sets of pixels locally matched or unmatched, respectively. In other words, some
pixels of the ground truth can be matched with more than one boundary segment, and
thus we call it multi-matching.

Formally, once performed the n − 1 matchings between the ground-truth boundary
pixels and each σi, each boundary pixel of the ground truth may be matched to a bound-
ary pixels of some σi (from 1 to n−1) of the partition. Understanding the set of indices
of each σi involved in the multi matching as a signature of each of the ground-truth
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boundary pixels, we divide these ground-truth boundary pixels into groups of equal
signature.

This way, for instance, we will have a set of unmatched pixels, n− 1 sets of single-
matched pixels which we will denote as σm

i (see Figure 2), and the rest will have more
than one index in the signature. Intuitively, we will count a ground-truth boundary pixel
as matched only if any of the σi in its signature is in the partition but not counting it
more than once.

To do so, and in order to have a compact modeling, let us group the set of ground-
truth boundary pixels with equal signature and define the set as ωj . Moreover, let us
assume we have m different multiple-index sets of pixels ωj with signatures Ωj =

{sj1, . . . , sjk}. For instance, the pixels in the set ω1 of the example of Figure 2 (see
(c)) are each of them multi-matched to pixels in σ1 and σ2, then their signature is
Ωj = {1, 2}. Let q ∈ {0, 1}m be a vector such that qj = 1 if the set of pixels in
ωj should be considered as matched. The value of qj is function of the values in the
signature, that is, qj = 1 if any psji

= 1 and 0 otherwise. Mathematically:

qj = psj1
or psj2 or · · · or psjkj

The equivalent linear constraints that define this equation are:

qj ≤
∑

s∈Ωj

ps (4)

qj ≥ ps ∀ s ∈ Ωj (5)

Let us define σ =
(|σm

1 |, . . . , |σm
n−1|

) ∈ N
n−1 be the vector of single-matched number

of ground-truth boundary pixels for each σi, and ω = (|ω1|, . . . , |ωm|) ∈ N
m the vector

of the number of ground-truth boundary pixels with equal signature. Then, the problem
F can be rewritten as:

F : maximize
p,q

Fb = 2
(σ,ω, 0) · (p,q, 1)T

(σ,0, |Pgt|) · (p,q, 1)T
(6)

subject to (3), (4), (5)

which, as wanted, fulfills the form of an LFCO as in Equation 1, identifying x =
(p,q, 1) as the binary-valued variable of the problem.

4.3 ubODS: Sweeping the Number of Regions

The problem 6 finds the optimal single partition in terms of Fb so, in other words, it
finds the upper-bound Optimal Image Scale (ubOIS) partition. Given that a hierarchy
represents a collection of partitions of varying number of regions, it would also be
desirable to explore the upper-bound Optimal Dataset Scale (ubODS) from sweeping a
varied range of number of regions.
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To do so, we add the following constraint, that forces the result to have a specific
number of regions N :

∑
i pi = N − 1, and sweep all the values of N between 1 and n.

5 Experiments

We compare the upper-bound partition selection technique against the merging-sequence
partition analysis on four different hierarchies. The first one is the Ultrametric Contour
Map (UCM) tree [5]. Then, two different BPT: the Normalized Weighted Euclidean
distance between Models with Contour complexity (NWMC) tree [8], and the Indepen-
dent Identically Distributed - Kullback Leibler (IID-KL) tree [9]. As a baseline we use a
randomly-generated tree (Random), that is, a tree that is formed by iteratively merging
random pairs of neighboring regions.

The trees are built on the 200 test images of the BSDS500 [5]. Each tree is compared
with each of the multiple ground-truth partitions available and the result averaged, as
proposed by [11] to handle multiple-partition ground truths. In order for the compari-
son to be fair, the base partition P0 on which the tree is built is the same for the four
techniques: the one obtained with the UCM with 100 regions.

The upper-bound partition selection algorithm is implemented in MATLAB, publicly
available at https://imatge.upc.edu/web/?q=node/1352. The optimiza-
tion itself of the LFCO is done by the IBM ILOG CPLEX Optimizer (free of charge
for academic use), which is called directly by the MATLAB code. The scripts to fully
reproduce the experiments and figures of this paper are also released.

In turn, the boundary matching code used in all the experiments has been obtained
from [12]. Note that, this original code represents the boundaries of a partition in the
pixel grid, that is, as a mask in which the pixels swept by the boundaries moved half
pixel up and left are activated, which leads to an ambiguous representation. This ambi-
guity can be solved using the contour grid [13], which we use in our code. The numer-
ical impact of this change of representation is not significant but the code obtained is
much simpler and more readable.

5.1 ODS and OIS

Table 1 shows the mean Optimal Dataset Scale (ODS) and Optimal Image Scale (OIS)
Fb values for the 200 image ground-truth pairs, and for the four compared hierarchies.
The two first columns refer to the merging-sequence partition selection technique and
the two last columns show the values for the upper-bound partition selection technique.

Comparing the quality of the hierarchies, the UCM tree presents better results than
the rest of hierarchies. However, the main objective of this paper is not to compare the
hierarchies themselves, but the partition selection techniques on which the assessment
is based.

Regarding the comparison between ODS and OIS, the latter is coherently higher
than the former. An improvement is also observed between the merging-sequence and
the upper-bound techniques, which is, again, coherent with the theory.

Moreover, what really makes the difference between comparison techniques is their
relative values, that is, how well the assessment discriminates the quality between the

https://imatge.upc.edu/web/?q=node/1352
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Table 1. ODS and OIS Fb values for the
merging-sequence and upper-bound partition
selection techniques

Merging sequence Upper bound
ODS OIS ubODS ubOIS

UCM 0.587 0.622 0.669 0.695
NWMC 0.542 0.581 0.658 0.684
IID-KL 0.538 0.571 0.634 0.654
Random 0.523 0.537 0.589 0.603

Table 2. Relative ODS and OIS Fb values for
the merging-sequence and upper-bound parti-
tion selection techniques

Merging sequence Upper bound
ODS OIS ubODS ubOIS

UCM 1 1 1 1
NWMC 0.30 0.51 0.86 0.89
IID-KL 0.23 0.40 0.56 0.56
Random 0 0 0 0

different hierarchies. In particular, good assessment techniques should be able to cor-
rectly discriminate between a random tree and the other techniques. To evaluate this
aspect, Table 2 shows the relative values of ODS and OIS, that is, assigning 0 to the
random tree, 1 to UCM, and scaling the rest of the values accordingly.

If the measurement techniques were equivalent, the relative values should not change,
but there are significant differences in these relative values, meaning that the conclu-
sions extracted from the assessment can vary depending on the criterion used.

As introduced previously, a desirable property of the assessment techniques is a high
discrimination of the random tree. In other words, it is obvious that the random trees
must be far away from any real hierarchy. Under this point of view, the upper-bound
assessment provides much better behavior.

As an example, the IID-KL tree is much closer to the random tree than to the UCM
tree for ODS, while for the upper-bound ODS (ubODS), the IID-KL tree is halfway
between the two, which is qualitatively more accurate.

The improvement obtained in the OIS with respect to the ODS highlights the rele-
vance of the alignment algorithm on the results obtained. The same way, the improve-
ment of the upper-bound analysis ubODS and ubOIS with respect to ODS and OIS is
an indicator of the impact of the partition selection algorithm on the assessment.

Focusing on the sorting of the algorithm quality for the two top-rated hierarchies
(UCM and NWMC), in 529 of the 1800 cases studied (9 parameterizations on 200
images), the ranking provided by the merging sequence analysis is not coherent with the
one provided by the upper-bound. In other words, different partition selection strategies
can lead to different decisions with respect to which is the best hierarchy based on a
supervised assessment.

5.2 Upper-Bound Precision-Recall Curves

A region-based hierarchy is a structured set of image partitions at different scales, and
thus comparing them to non-hierarchical partitions via the OIS and ODS Fb may obvi-
ate the assessment of some parts of the tree. The precision recall curves on boundary
detection, instead, can give us a global picture of the quality of the hierarchy, sweeping
the partitions at different scales.
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Fig. 3. Merging-sequence (left) and upper-bound (right) precision-recall curves

Figure 3 shows the precision-recall curves for the four hierarchies studied. In the
figure of the left, the points have been obtained using the merging-sequence partition
selection whereas, in the figure of the right, the proposed upper-bound partition selec-
tion has been used.

In the range of interest of the hierarchies, that is, the range of better Fb, similarly
to the results of the previous section, the upper-bound precision-recall curves better
discriminate between the random hierarchy and the rest of trees. In the range of higher
number of regions, close to the leaves of the tree, the different curves are much closer
than in the merging sequence, which reflects that, in this range, the original partition
is more influent than the hierarchy itself. Note that, coherently, all curves meet in the
point corresponding to 100 regions, because each tree contains only one partition with
the maximum level of detail: P0.

To better visualize the differences between the precision-recall curves and their upper-
bound equivalents, Figure 4 shows them both in the same axis, leaving the IDD-KL tree
out for the sake of clarity of the plot.

Note that, for each type of hierarchy, both curves start from the same point at high
number of regions and tend to converge for few regions. In the middle range, corre-
sponding also to the better Fb values, the gain obtained with the upper-bound assess-
ment is much more relevant for the NWMC tree than for the rest of trees, which rein-
forces the possibility that different partition selection techniques can lead to discrepant
results.

5.3 Computational Cost

Although a supervised assessment is usually performed offline, a reduced computa-
tional cost is of paramount importance. The faster the method is, the larger the datasets
in which researchers will tune and test their algorithms, which results in a more solid
research. This section compares the computational cost of the proposed evaluation tech-
niques (ubODS and ubOIS) in front of ODS and OIS.

ODS requires computing the boundary matching for k different number of regions,
thus the whole time is k times the cost of a boundary matching, which we will re-
fer to as t(BM ). OIS requires the ODS computation and find the Fb maximum for
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Fig. 5. Computational cost analysis for vary-
ing number of samples (k)

each image, so the cost is also k · t(BM ). The cost of ubODS is one boundary multi-
matching t(BMM ) and k LFCO optimizations t(LFCO). Finally, the cost of ubOIS
is t(BMM ) + t(LFCO), since one single optimization finds the optimal number of
regions, thus not needing the computation of ubODS.

The mean values obtained in the experiments for each of these processes are:
t(BM ) = 0.34 s, t(BMM ) = 0.64 s, and t(LFCO) = 0.21s. Thus, the mean time
spent for each technique is t(ODS )= t(OIS)=k · 0.34 s, t(ubODS)=0.64+k·0.21 s,
and t(ubOIS)=0.85 s. Figure 5 shows the relative cost of the upper-bound techniques
with respect to the cost of the merging-sequence ones. The higher the number of sam-
ples k, the lower the relative cost of the upper-bound techniques. The computation of
ubODS is approximately 25% faster than ODS and OIS, while ubOIS, thanks to the fact
that a single optimization is enough, is considerably faster.

5.4 Worst-Discrepancy Graphical Results

To get a qualitative idea of the type of discrepancies between the region selection tech-
niques, Figure 6 shows the most discrepant example of partition selection on the UCM
tree for 6, 10, and 20 regions selected, that is, the three results whose partition selected
in the merging sequence is more dissimilar with the upper-bound one.

The differences observed between the two strategies are visually relevant. In the first
and second columns (6 and 10 regions), the merging sequence analysis obviates the
main object of interest or part of it, while in the upper-bound partition selection the
object is present in the selected partition. In the last column (20 regions) the upper-
bound selection is capable of highlighting the higher importance of the background
object with respect to the background as in the ground truth.

To sum up, the upper-bound partitions (Figure 6.d) represent the quality of the tree
much better than those of the merging sequence (Figure 6.c), or in other words, the
region selection masks the actual quality of the tree.
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(a)

(b)

(c)

(d)

Fig. 6. Worst-case results on UCM trees: (a) images of the BSDS500 test set, (b) their multiple
ground-truth partitions, (c) partitions selected from the merging sequence with 6, 10, and 20
regions, respectively, and (d) the upper-bound partitions with the same number of regions

6 Conclusions

This paper presents the upper-bound partition selection algorithm as a supervised as-
sessment of hierarchical region-based image representations. It consists in finding,
among all possible partitions represented in the hierarchy, the partition that best match
the ground truth, instead of assessing just a reduced set of representative partitions.

The quality assessment measure used is the so-called F measure for boundary de-
tection (Fb), which is known to present a good behavior among the existing measures.
To be able to efficiently analyze all possible partitions in a hierarchy, we model the
problem as a Linear Fractional Combinatorial Optimization (LFCO) problem.

The experiments show that the ubODS and ubOIS assessment techniques better rep-
resent the quality of the tree: 1) they cover partitions that are omitted in the merging
sequence (and are used in image analysis works) and reach much better Fb values, 2)
their performance discrimination between the random and the actual techniques is much
better. Some visual examples corroborate that the merging-sequence selected partitions
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are not good representatives of the quality of the tress. Overall, an assessment based
on the previous techniques in the literature can mislead the conclusions that can be
extracted.

We make the MATLAB code to compute the ubODS and ubOIS publicly available,
as well as all the scripts to fully reproduce the experiments and figures of this paper.
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Abstract. Large-scale image retrieval benchmarks invariably consist of
images from the Web. Many of these benchmarks are derived from on-
line photo sharing networks, like Flickr, which in addition to hosting
images also provide a highly interactive social community. Such com-
munities generate rich metadata that can naturally be harnessed for
image classification and retrieval. Here we study four popular bench-
mark datasets, extending them with social-network metadata, such as
the groups to which each image belongs, the comment thread associated
with the image, who uploaded it, their location, and their network of
friends. Since these types of data are inherently relational, we propose
a model that explicitly accounts for the interdependencies between im-
ages sharing common properties. We model the task as a binary labeling
problem on a network, and use structured learning techniques to learn
model parameters. We find that social-network metadata are useful in
a variety of classification tasks, in many cases outperforming methods
based on image content.

Keywords: Image Classification, Social Networks, Structured Learning.

1 Introduction

Recently, research on image retrieval and classification has focused on large image
databases collected from the Web. Many of these datasets are built from online
photo sharing communities such as Flickr [1,2,3,4] and even collections built
from image search engines [5] consist largely of Flickr images.

Such communities generate vast amounts of metadata as users interact with
their images, and with each other, though only a fraction of such data are used by
the research community. The most commonly used form of metadata considered
in multimodal classification settings is the set of tags associated with each image.
In [6] the authors study the relationship between tags and manual annotations,
with the goal of recovering annotations using a combination of tags and image
content. The problem of recommending tags was studied in [7], where possible
tags were obtained from similar images and similar users. The same problem
was studied in [8], who exploit the relationships between tags to suggest future
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Fig. 1. The proposed relational model for image classification. Each node represents an
image, with cliques formed from images sharing common properties. ‘Common prop-
erties’ can include (for example) communities, e.g. images submitted to a group; col-
lections, e.g. sets created by a user; annotations, e.g. tag data; and user data, e.g. the
photo’s uploader and their network of friends.

tags based on existing ones. Friendship information between users was studied
for tag recommendation in [9], and in [10] for the case of Facebook.

Another commonly used source of metadata comes directly from the camera,
in the form of exif and GPS data [11,12,13,14]. Such metadata can be used to
determine whether two photos were taken by the same person, or from the same
location, which provides an informative signal for certain image categories.

Our goal in this paper is to assess what other types of metadata may be
beneficial, including the groups, galleries, and collections in which each image
was stored, the text descriptions and comment threads associated with each
image, and user profile information including their location and their network
of friends. In particular, we focus on the following three questions: (1) How can
we effectively model relational data generated by the social-network? (2) How
can such metadata be harnessed for image classification and labeling? (3) What
types of metadata are useful for different image labeling tasks?

Focusing on the first question we build on the intuition that images sharing
similar tags and appearance are likely to have similar labels [2]. In the case of
image tags, simple nearest-neighbor type methods have been proposed to ‘prop-
agate’ annotations between similar images [15]. However, unlike image labels
and tags – which are categorical – much of the metadata derived from social
networks is inherently relational, such as collections of images posted by a user
or submitted to a certain group, or the networks of contacts among users. We
argue that to appropriately leverage these types of data requires us to explicitly
model the relationships between images, an argument also made in [16].

To address the relational nature of social-network data, we propose a graphical
model that treats image classification as a problem of simultaneously predict-
ing binary labels for a network of photos. Figure 1 illustrates our model: nodes
represent images, and edges represent relationships between images. Our intu-
ition that images sharing common properties are likely to share labels allows us
to exploit techniques from supermodular optimization, allowing us to efficiently
make binary predictions on all images simultaneously [17].
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In the following sections, we study the extent to which categorical predictions
about images can be made using social-network metadata. We first describe how
we augment four popular datasets with a variety of metadata from Flickr. We
then consider three image labeling tasks. The creators of these datasets obtained
labels through crowdsourcing and from the Flickr user community. Labels range
from objective, everyday categories such as ‘person’ or ‘bicycle’, to subjective
concepts such as ‘happy’ and ‘boring’.

We show that social-network metadata reliably provide context not contained
in the image itself. Metadata based on common galleries, image locations, and
the author of the image tend to be the most informative in a range classification
scenarios. Moreover, we show that the proposed relational model outperforms a
‘flat’ SVM-like model, which means that it is essential to model the relationships
between images in order to exploit these social-network features.

2 Dataset Construction and Description

We study four popular datasets that have groundtruth provided by human anno-
tators. Because each of these datasets consists entirely of images from Flickr, we
can enrich them with social network metadata, using Flickr’s publicly available
API. The four image collections we consider are described below:

– The PASCAL Visual Object Challenge (‘PASCAL’) consists of over 12,000
images collected since 2007, with additional images added each year [1].
Flickr sources are available only for training images, and for the test images
from 2007. Flickr sources were available for 11,197 images in total.

– The MIR Flickr Retrieval Evaluation (‘MIR’) consists of one million images,
25,000 of which have been annotated [2]. Flickr sources were available for
15,203 of the annotated images.

– The ImageCLEF Annotation Task (‘CLEF’) uses a subset of 18,000 images
from the MIR dataset, though the correspondence is provided only for 8,000
training images [3]. Flickr sources were available for 4,807 images.

– The NUS Web Image Database (‘NUS’) consists of approximately 270,000
images [4]. Flickr sources are available for all images.

Flickr sources for the above photos were provided by the dataset creators. Using
Flickr’s API we obtained the following metadata for each photo in the above
datasets:

– The photo itself
– Photo data, including the photo’s title, description, location, timestamp,

viewcount, upload date, etc.
– User information, including the uploader’s name, username, location, their

network of contacts, etc.
– Photo tags, and the user who provided each tag
– Groups to which the image was submitted (only the uploader can submit a

photo to a group)
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Table 1. Dataset statistics. The statistics reveal large differences between the datasets,
for instance images in MIR have more tags and comments than images in PASCAL,
presumably due to MIR’s bias towards ‘interesting’ images [2]; few images in PASCAL
belong to galleries, owing to the fact that most of the dataset was collected before this
feature was introduced in 2009. Note that the number of tags per image is typically
slightly higher than what is reported in [2,3,4], as there may be additional tags that
appeared in Flickr since the datasets were originally created.

CLEF PASCAL MIR NUS ALL
Number of photos 4546 10189 14460 244762 268587
Number of users 2663 8698 5661 48870 58522
Photos per user 1.71 1.17 2.55 5.01 4.59
Number of tags 21192 27250 51040 422364 450003
Tags per photo 10.07 7.17 10.24 19.31 18.36
Number of groups 10575 6951 21894 95358 98659
Groups per photo 5.09 1.80 5.28 12.56 11.77
Number of comments 77837 16669 248803 9837732 10071439
Comments per photo 17.12 1.64 17.21 40.19 37.50
Number of sets 6066 8070 15854 165039 182734
Sets per photo 1.71 0.87 1.72 1.95 1.90
Number of galleries 1026 155 3728 100189 102116
Galleries per photo 0.23 0.02 0.27 0.67 0.62
Number of locations 1007 1222 2755 22106 23745
Number of labels 99 20 14 81 214
Labels per photo 11.81 1.95 0.93 1.89 2.04

– Collections (or sets) in which the photo was included (users create collections
from their own photos)

– Galleries in which the photo was included (a single user creates a gallery
only from other users’ photos)

– Comment threads for each photo

We only consider images from the above datasets where all of the above data was
available, which represents about 90% of the images for which the original Flickr
source was available (to be clear, we include images where this data is absent,
such as images with no tags, but not where it is missing, i.e., where an API call
fails, presumably due to the photo having been deleted from Flickr). Properties
of the data we obtained are shown in Table 1. Note in particular that the ratios
in Table 1 are not uniform across datasets, for example the NUS dataset favors
‘popular’ photos that are highly tagged, submitted to many groups, and highly
commented on; in fact all types of metadata are more common in images from
NUS than for other datasets. The opposite is true for PASCAL, which has the
least metadata per photo, which could be explained by the fact that certain
features (such as galleries) did not exist on Flickr when most of the dataset was
created. Details about these datasets can be found in [1,2,3,4].

In Figure 2 we study the relationship between various types of Flickr metadata
and image labels. Images sharing common tags are likely to share common labels
[15], though Figure 2 reveals similar behavior for nearly all types of metadata.
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Fig. 2. Relationships between Flickr metadata and image labels provided by external
evaluators. All figures are best viewed in color. Scatterplots show the number of images
that share a pair of properties in common, with radii scaled according to the logarithm
of the number of images at each coordinate. All pairs of properties have positive cor-
relation coefficients. ImageCLEF data is suppressed, as it is a subset of MIR and has
similar behavior.

Groups are similar to tags in quantity and behavior: images that share even a
single group or tag are much more likely to have common labels, and for images
sharing many groups or tags, it is very unlikely that they will not share at least
one label. The same observation holds for collections and galleries, though it is
rarer that photos have these properties in common. Photos taken at the same
location, or by the same user also have a significantly increased likelihood of
sharing labels [11]. Overall, this indicates that the image metadata provided by
the interactions of the Flickr photo-sharing community correlates with image
labels that are provided by the external human evaluators.

All code and data is available from the authors’ webpages.1

3 Model

The three tasks we shall study are label prediction (i.e., predicting groundtruth
labels using image metadata), tag prediction, and group recommendation. As
we shall see, each of these tasks can be thought of as a problem of predicting
binary labels for each of the images in our datasets.

Briefly, our goal in this section is to describe a binary graphical model for each
image category (which might be a label, tag, or group), as depicted in Figure 1.

1 http://snap.stanford.edu/, http://i.stanford.edu/~julian/

http://snap.stanford.edu/
http://i.stanford.edu/~julian/
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Table 2. Notation

Notation Description

X = {xn . . . xN} An image dataset consisting of N images

L = {−1, 1}L A label space consisting of L categories.
yn ∈ L The groundtruth labeling for the image xn.
yn
c ∈ {−1, 1} The groundtruth for a particular category c.

Yc ∈ {−1, 1}N The groundtruth for the entire dataset for category c.
ȳc(xn;Θc) ∈ {−1, 1} The prediction made image xn and category c.
Ȳc(X;Θc) ∈ {−1, 1}N Predictions across the entire dataset for category c.

θnodec ∈ R
F1 Parameters of first-order features for category c.

θedgec ∈ R
F2 Parameters of second-order features for category c.

Θc = (θnodec ; θedgec ) Full parameter vector for category c.
φc(xi) ∈ R

F1 Features of the image xi for category c.

φc(xi, xj) ∈ R
F2 Features of the pair of images (xi, xj) for category c.

Φc(X, Y ) ∈ R
F1+F2 Aggregate features for labeling the entire dataset X as Y ∈

{−1, 1}N for category c.
Δ(Y, Yc) ∈ R+ The error induced by making the prediction Y when the

correct labeling is Yc.

Each node represents an image; the weight wi encodes the potential for a node
to belong to the category in question, given its features; the weights wij encode
the potential for two images to have the same prediction for that category. We
first describe the ‘standard’ SVM model, and then describe how we extend it to
include relational features.

The notation we use throughout the paper is summarized in Table 2. Sup-
pose we have a set of images X = {xn . . . xN}, each of which has an associated
groundtruth labeling yn ∈ {−1, 1}L, where each ync indicates positive or nega-
tive membership to a particular category c ∈ {1 . . . L}. Our goal is to learn a
classifier that predicts ync from (some features of) the image xn.

The ‘Standard’ Setting.Max-margin SVM training assumes a classifier of the
form

ȳc(xn, Θc) = argmax
y∈{−1,1}

y · 〈φc(xn), Θc〉, (1)

so that xn has a positive label whenever 〈φc(xn), Θc〉 is positive. φc(xn) is a
feature vector associated with the image xn for category c, and Θc is a parameter
vector, which is selected so that the predictions made by the classifier of (eq. 1)
match the groundtruth labeling. Note that a different parameter vector Θc is
learned for each category c, i.e., the model makes the assumption that the labels
for each category are independent.

Models similar to that of (eq. 1) (which we refer to as ‘flat’ models since
they consider each image independently and thus ignore relationships between
images) are routinely applied to classification based on image features [18], and
have also been used for classification based on image tags, where as features one
can simply create indicator vectors encoding the presence or absence of each
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tag [2]. In practice this means that for each tag one learns its influence on the
presence of each label. For image tags, this approach seems well motivated, since
tags are categorical attributes. What this also means is that the tag vocabulary
– though large – ought to grow sublinearly with the number of photos (see Table
1), meaning that a more accurate model of each tag can be learned as the dataset
grows. Based on the same reasoning, we encode group and text information (from
image titles, descriptions, and comments) in a similar way.

Modeling Relational Metadata. Other types of metadata are more naturally
treated as relational, such as the network of contacts between Flickr users. More-
over, as we observed in Table 1, even for the largest datasets we only observe a
very small number of photos per user, gallery, or collection. This means it would
not be practical to learn a separate ‘flat’ model for each category. However, as
we saw in Figure 2, it may still be worthwhile to model the fact that photos from
the same gallery are likely to have similar labels (similarly for users, locations,
collections, and contacts between users).

We aim to learn shared parameters for these features. Rather than learning
the extent to which membership to a particular collection (resp. gallery, user)
influences the presence of a particular label, we learn the extent to which a pair
of images that belong to the same gallery are likely to have the same label. In
terms of graphical models, this means that we form a clique from photos sharing
common metadata (as depicted in Figure 1).

These relationships between images mean that classification can no longer
be performed independently for each image as in (eq. 1). Instead, our predictor
Ȳc(X, Θc) labels the entire dataset at once, and takes the form

Ȳc(X,Θc) = argmax
Y ∈{−1,1}N

N∑

i=1

yi · 〈φc(xi), θ
node
c 〉

︸ ︷︷ ︸
wi

+

N∑

i=1

N∑

j=1

δ(yi = yj) 〈φc(xi, xj), θ
edge
c 〉

︸ ︷︷ ︸
wij

,

(2)

where φc(xi, xj) is a feature vector encoding the relationship between images
xi and xj , and δ(yi = yj) is an indicator that takes the value 1 when we make
the same binary prediction for both images xi and xj . The first term of (eq. 2)
is essentially the same as (eq. 1), while the second term encodes relationships
between images. Note that (eq. 2) is linear in Θc = (θnodec ; θedgec ), i.e., it can be
rewritten as

Ȳc(X, Θc) = argmax
Y ∈{−1,1}N

〈Φc(X, Y ), Θc〉. (3)

Since (eq. 2) is a binary optimization problem consisting of pairwise terms, we
can cast it as maximum a posteriori (MAP) inference in a graphical model,
where each node corresponds to an image, and edges are formed between images
that have some property in common.

Despite the large maximal clique size of the graph in question, we note that
MAP inference in a pairwise, binary graphical model is tractable so long as the
pairwise term is supermodular, in which case the problem can be solved using
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graph-cuts [17,19]. A pairwise potential f(yi, yj) is said to be supermodular if

f(−1,−1) + f(1, 1) ≥ f(−1, 1) + f(1,−1), (4)

which in terms of (eq. 2) is satisfied so long as

〈φc(xi, xj), θ
edge
c 〉 ≥ 0. (5)

Assuming positive features φc(xi, xj), a sufficient (but not necessary) condition
to satisfy (eq. 5) is θedgec ≥ 0, which in practice is what we shall enforce when we
learn the optimal parameters Θc = (θnodec ; θedgec ). Note that this is a particularly
weak assumption: all we are saying is that photos sharing common properties
are more likely to have similar labels than different ones. The plots in Figure 2
appear to support this assumption.

We solve (eq. 2) using the graph-cuts software of [20]. For the largest dataset
we consider (NUS), inference using the proposed model takes around 10 sec-
onds on a standard desktop machine, i.e., less than 10−4 seconds per image.
During the parameter learning phase, which we discuss next, memory is a more
significant concern, since for practical purposes we store all feature vectors in
memory simultaneously. Where this presented an issue, we retained only those
edge features with the most non-zero entries up to the memory limit of our ma-
chine. Addressing this shortcoming using recent work on distributed graph-cuts
remains an avenue for future study [21].

4 Parameter Learning

In this section we describe how popular structured learning techniques can be
used to find model parameter values Θc so that the predictions made by (eq. 2)
are consistent with those of the groundtruth Yc. We assume an estimator based
on the principle of regularized risk minimization [22], i.e., the optimal parameter
vector Θ∗

c satisfies

Θ∗
c = argmin

Θ

[
Δ(Ȳ (X;Θ), Yc)︸ ︷︷ ︸

empirical risk

+
λ

2
‖Θ‖2︸ ︷︷ ︸

regularizer

]
, (6)

where Δ(Ȳ (X;Θ), Yc) is some loss function encoding the error induced by pre-
dicting the labels Ȳ (X;Θ) when the correct labels are Yc, and λ is a hyperpa-
rameter controlling the importance of the regularizer.

We use an analogous approach to that of SVMs [22], by optimizing a convex
upper bound on the structured loss of (eq. 6). The resulting optimization problem
is

[Θ∗, ξ∗] = argmin
Θ,ξ

[
ξ + λ ‖Θ‖2

]
(7a)

s.t. 〈Φ(X, Yc), Θ〉 − 〈Φ(X, Y ), Θ〉 ≥ Δ(Y, Yc)− ξ, (7b)

θedgec ≥ 0 ∀Y ∈ {−1, 1}N .
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Note the presence of the additional constraint θedgec ≥ 0, which enforces that
(eq. 2) is supermodular (which is required for efficient inference).

The principal difficulty in optimizing (eq. 7a) lies in the fact that (eq. 7b)
includes exponentially many constraints – one for every possible output Y ∈
{−1, 1}N (i.e., two possibilities for every image in the dataset). To circumvent
this, [22] proposes a constraint generation strategy, including at each iteration
the constraint that induces the largest value of the slack ξ. Finding this constraint
requires us to solve

Ŷc(X;Θc) = argmax
Y ∈{−1,1}N

〈Φc(X, Y ), Θc〉+Δ(Y, Yc), (8)

which we note is tractable so long as Δ(Y, Yc) is also a supermodular function
of Y , in which case we can solve (eq. 8) using the same approach we used to
solve (eq. 2). Note that since we are interested in making simultaneous binary
predictions for the entire dataset (rather than ranking), a loss such as the average
precision is not appropriate for this task. Instead we optimize the Balanced Error
Rate, which we find to be a good proxy for the average precision:

Δ(Y, Yc) =
1

2

[ |Y pos \ Y pos
c |

|Y pos
c |︸ ︷︷ ︸

false positive rate

+
|Y neg \ Y neg

c |
|Y neg

c |︸ ︷︷ ︸
false negative rate

]
, (9)

where Y pos is shorthand for the set of images with positive labels (Y neg for neg-
atively labeled images, similarly for Yc). The Balanced Error Rate is designed to
assign equal importance to false positives and false negatives, such that ‘trivial’
predictions (all labels positive or all labels negative), or random predictions have
loss Δ(Y, Yc) = 0.5 on average, while systematically incorrect predictions yield
Δ(Y, Yc) = 1.

Other loss functions, such as the 0/1 loss, could be optimized in our frame-
work, though we find the loss of (eq. 9) to be a better proxy for the average
precision.

We optimize (eq. 7a) using the solver of [23], which merely requires that we
specify a loss function Δ(Y, Yc), and procedures to solve (eq. 2) and (eq. 8). The
solver must be modified to ensure that θedgec remains positive. A similar modifi-
cation was suggested in [24], where it was also used to ensure supermodularity
of an optimization problem similar to that of (eq. 2).

5 Experiments

We study the use of social metadata for three binary classification problems:
predicting image labels, tags, and groups. Note some differences between these
three types of data: labels are provided by human annotators outside of Flickr,
who provide annotations based purely on image content. Tags are less structured,
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can be provided by any number of annotators, and can include information that
is difficult to detect from content alone, such as the camera brand and the photo’s
location. Groups are similar to tags, with the difference that the groups to which
a photo is submitted are chosen entirely by the image’s author.

Data Setup. As described in Section 3, for our first-order/node features φc(xi)
we construct indicator vectors encoding those words, groups, and tags that ap-
pear in the image xi. We consider the 1000 most popular words, groups, and
tags across the entire dataset, as well as any words, groups, and tags that occur
at least twice as frequently in positively labeled images compared to the overall
rate (we make this determination using only training images). As word features
we use text from the image’s title, description, and its comment thread, after
eliminating stopwords.

For our relational/edge features φc(xi, xj) we consider seven properties:

– The number of common tags, groups, collections, and galleries
– An indicator for whether both photos were taken in the same location (GPS

coordinates are organized into distinct ‘localities’ by Flickr)
– An indicator for whether both photos were taken by the same user
– An indicator for whether both photos were taken by contacts/friends

Where possible, we use the training/test splits from the original datasets, though
in cases where test data is not available, we form new splits using subsets of the
available data. Even when the original splits are available, around 10% of the
images are discarded due to their metadata no longer being available via the
Flickr API. This should be noted when we report results from other’s work.

Evaluation. Where possible we report results directly from published materials
on each benchmark, and from the associated competition webpages. We also re-
port the performance obtained using image tags alone (the most common form
of metadata used by multimodal approaches), and a ‘flat’ model that uses an in-
dicator vector to encode collections, galleries, locations, and users, and is trained
using an SVM; the goal of the latter model is to assess the improvement that
can be obtained by using metadata, but not explicitly modeling relationships
between images. To report the performance of ‘standard’ low-level image models
we computed 1024-dimensional features using the publicly-available code of [25];
although these features fall short of the best performance reported in competi-
tions, they are to our knowledge state-of-the-art in terms of publicly available
implementations.

We report the Mean Average Precision (MAP) for the sake of comparison
with published materials and competition results. For this we adopt an approach
commonly used for SVMs, whereby we rank positively labeled images followed
by negatively labeled images according to their first-order score 〈φc(xi), θ

node
c 〉.

We also report performance in terms of the Balanced Error Rate Δ (or rather,
1 − Δ so that higher scores correspond to better performance).
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5.1 Image Labeling

Figure 3 (left) shows the average performance on the problem of predicting
image labels on our four benchmarks. We plot the performance of the tag-only
flat model, all-features flat model and our all-features graphical model.

For ImageCLEF, the graphical model gives an 11% improvement in Mean
Average Precision (MAP) over the tag-only flat model, and a 31% improvement
over the all-features flat model. Comparing our method to the best text-only
method reported in the ImageCLEF 2011 competition [3], we observe a 7%
improvement in MAP. Our method (which uses no image features) achieves
similar performance to the best visual-only method. Even though the images
were labeled by external evaluators solely based on their content, it appears
that the social-network data contains information comparable to that of the
images themselves. We also note that our graphical model outperforms the best
visual-only method for 33 out of 99 categories, and the flat model on all but 9
categories.

On the PASCAL dataset we find that the graphical model outperforms the
tag-only flat model by 71% and the all-features flat model by 19%. The perfor-
mance of our model on the PASCAL dataset falls short of the best visual-only
methods from the PASCAL competition; this is not surprising, since photos in
the dataset have by far the least metadata, as discussed in Section 2 (Table 1).

On the MIR dataset the graphical model outperforms the tag-only and all-
features flat models by 38% and 19%, respectively. Our approach also compares
favorably to the baselines reported in [26]. We observe a 42% improvement in
MAP and achieve better performance on all 14 categories except ‘night’.

On the NUS dataset our approach gives an approximately threefold improve-
ment over our baseline image features. While the graphical model only slightly
outperforms the tag-only flat model (by 5%), we attribute this to the fact that
some edges in NUS were suppressed from the graph to ensure that the model
could be contained in memory. We also trained SVM models for six baseline
features included as part of the NUS dataset [4], though we report results using
the features of [25], which we found to give the best overall performance.

Overall, we note that in terms of the Balanced Error Rate Δ the all-features
flat model reduces the error over the tag-only model by 18% on average (the all-
features flat model does not fit in memory for the NUS data), and the graphical
model performs better still, yielding a 32% average improvement over the tag-
only model. In some cases the flat model exhibits relatively good performance,
though upon inspection we discover that its high accuracy is primarily due to
the use of words, groups, and tags, with the remaining features having little
influence. Our graphical model is able to extract additional benefit for an overall
reduction in loss of 17% over the all-features flat model. Also note that our
performance measure is a good proxy for the average precision, with decreases
in loss corresponding to increases in average precision in all but a few cases.

Although we experimented with simple methods for combining visual features
and metadata, in our experience this did not further improve the results of our
best metadata-only approaches.
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Fig. 3. Results in terms of the Mean Average Precision (top), and the Balanced Error
Rate (bottom). ‘Flat’ models use indicator vectors for all relational features and are
trained using an SVM. Recall that using our performance measure, a score of 0.5 is no
better than random guessing. Comparisons for the ImageCLEF and PASCAL datasets
are taken directly from their respective competition webpages; SVM comparisons for
the MIR dataset are taken directly from [26].

5.2 Tag and Group Recommendation

We can also adapt our model to the problem of suggesting tags and groups for an
image, simply by treating them in the same way we treated labels in Section 5.1.
One difference is that for tags and groups we only have ‘positive’ groundtruth,
i.e., we only observe whether an image wasn’t assigned a particular tag or sub-
mitted to a certain group, not whether it couldn’t have been. Nevertheless, our
goal is still to retrieve as many positive examples as possible, while minimizing
the number of negative examples that are retrieved, as in (eq. 9). We use the
same features as in the previous section, though naturally when predicting tags
we eliminate tag information from the model (sim. for groups).

Figure 3 (center and right) shows the average performance of our model on the
100 most popular tags and groups that appear in the ImageCLEF, PASCAL, and
MIR datasets. Using tags, groups, and words in a flat model already significantly
outperforms models that use only image features; in terms of the Balanced Error
Rate Δ, a small additional benefit is obtained by using relational features.

While image labels are biased towards categories that can be predicted from
image contents (due to the process via which groundtruth is obtained), a variety
of popular groups and tags can be predicted much more accurately by using
various types of metadata. For example, it is unlikely that one could determine
whether an image is a picture of the uploader based purely on image contents, as
evidenced by the poor performance of image features the ‘selfportrait’ tag; using
metadata we are able to make this determination with high accuracy. Many of
the poorly predicted tags and groups correspond to properties of the camera



840 J. McAuley and J. Leskovec

CLEF labels

Taken by friends
Taken by the same person
Taken in the same location

Number of common galleries
Number of common collections

Number of common groups
Number of common tags

PASCAL labels MIR labels NUS labels tags (MIR) groups (MIR)

Fig. 4. Relative importance of social features when predicting labels for all four
datasets, and groups, and tags on the MIR dataset (weight vectors for tags and groups
on the remaining datasets are similar). Vectors were first normalized to have unit sum
before averaging, as the models are scale-invariant.

used (‘50mm’, ‘canon’, ‘nikon’, etc.). Such labels could presumably be predicted
from exif data, which while available from Flickr is not included in our model.

5.3 Social-Network Feature Importance

Finally we examine which types of metadata are important for the classification
tasks we considered. Average weight vectors for the relational features are shown
in Figure 4. Note that different types of relational features are important for
different datasets, due to the varied nature of the groundtruth labels across
datasets. We find that shared membership to a gallery is one of the strongest
predictors for shared labels/tags/groups, except on the PASCAL dataset, which
as we noted in Section 2 was mostly collected before galleries were introduced in
Flickr. For tag and group prediction, relational features based on location and
user information are also important. Location is important as many tags and
groups are organized around geographic locations. For users, this phenomenon
can be explained by the fact that unlike labels, tags and groups are subjective,
in the sense that individual users may tag images in different ways, and choose
to submit their images to different groups.
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Abstract. We address the problem of visual tracking of arbitrary ob-
jects that undergo significant scale and appearance changes. The classical
tracking methods rely on the bounding box surrounding the target ob-
ject. Regardless of the tracking approach, the use of bounding box quite
often introduces background information. This information propagates
in time and its accumulation quite often results in drift and tracking
failure. This is particularly the case with the particle filtering approach
that is often used for visual tracking. However, it always uses a bounding
box around the object to compute features of the particle samples. Since
this causes the drift, we propose to use segmentation for sampling. Rely-
ing on segmentation and computing the colour and gradient orientation
histograms from these segmented particle samples allows the tracker to
easily adapt to the object’s deformations, occlusions, orientation, scale
and appearance changes. We propose two particle sampling strategies
based on segmentation. In the first, segmentation is done for every prop-
agated particle sample, while in the second only the strongest particle
sample is segmented. Depending on this decision there is obviously a
trade-off between speed and performance.

We perform an exhaustive quantitative evaluation on a number of
challenging sequences and compare our method with the number of state-
of-the-art methods previously evaluated on those sequences. The results
we obtain outperform majority of the related work, both in terms of the
performance and speed.

1 Introduction

Visual object tracking is one of the major research problems in Computer Vision.
It is essential for numerous applications, such as surveillance [1], action recog-
nition [2] or augmented reality [3]. One of the classical approaches for object
tracking is particle filtering. It generalizes well to any kind of objects, models
well non-Gaussian noise and is able to run in real-time. The observation models
that have been used with particle filtering are either colour histograms [4] or his-
tograms of oriented gradients [5]. These observation modes are computed from
the bounding boxes surrounding the target object. While using bounding boxes
is fast and convenient, they often capture undesirable background information

A. Fitzgibbon et al. (Eds.): ECCV 2012, Part IV, LNCS 7575, pp. 842–855, 2012.
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Fig. 1. Tracking results for some of our evaluation sequences. From top to the bottom
row respectively sequences are named: Mountain-bike, Entrance, UAV, Cliff-dive 1. The
Entrance sequence has been captured with a stationary camera while in the other three
sequences both the object and camera are moving.

as most objects do not fit into a rectangle very well. This information is further
propagated to all sample particles and often causes drift. This is particularly
true for deformable objects, like humans, where the bounding box sometimes
includes very large portions of the background.

The recent trend in visual tracking is related to learning the object’s appear-
ance. The tracking then becomes a classification problem where the goal is to
discriminate the object of interest from the background [6]. The appearance of
the object can be learned offline or online. These approaches are traditionally
called tracking-by-detection or online learning approaches and have performed
very well on demanding tracking scenarios, e.g. sport activities, pedestrian track-
ing or vehicle tracking. Although they are often robust against occlusions, de-
formations, orientation, scale and appearance changes, their computational cost
makes most of them inefficient for real-time applications. In addition, the pres-
ence of false positive detections causes drifting. The drifting is closely related to
the area from which the object’s features are extracted. It is usually determined
from a rectangular bounding box. However, the object does not usually fit per-
fectly inside the box, so the additional background information is included in the
extracted features. For instance, this results in learning background in the track-
ers based on the online learning of the object appearance. Again, the presence of
the background information becomes more critical for deformable objects where
the bounding box always includes that type of noise. To overcome this problem
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Godec et al. [7] recently proposed an approach that removes a bounding box
constraint and combines segmentation and online learning. However, due to the
very expensive learning procedure based on Hough forests the efficiency of this
tracker is far from real time.

Our objective is to overcome majority of these limitations and provide a gen-
eral purpose tracker that can track arbitrary objects whose initial shape is not
a priori known in challenging sequences in real-time. These sequences contain
clutter, partial occlusions, rapid motion, significant viewpoint and appearance
changes (Fig. 1). We propose to use the standard particle filter approach based on
colour and gradient histograms and incorporate the object shape into the state
vector. Since the classical particle filter based on bounding box surrounding par-
ticle samples drifts due to sometime abrupt amount of captured background, we
propose to use segmentation at the particle sample locations propagated by a
basic dynamic motion model. This allows having particle samples of arbitrary
shapes and collecting more relevant regions features than when the bounding
box is used. Consequently the object state vector strongly depends on the ob-
ject’s shape. Relying on segmentation allows the tracker to easily adapt to the
object’s deformations, occlusions, orientation, scale and appearance changes. We
propose two particle sampling strategies based on segmentations. In one case the
segmentation is done for every propagated particle sample and therefore is more
robust to large displacements, scales and deformations, but it is more time con-
suming. The other strategy is to do the segmentation on the particle sample
with the highest importance weight and propagate its shape to all other sam-
ples. This is definitely less robust and more critical in difficult sequences where
object shape and position change dramatically from frame to frame, but in all
other sequences, where this is not the case, is sufficient and comes with the great
computational complexity reduction leading to very fast runtime of up to 50 fps.
Depending on this decision, there is obviously a trade-off between speed and
performance.

We tested our method on a number of available sequences used by the recent
state-of-the-art methods. We demonstrated the advantage of our method over
normal particle filtering based on bounding box and made a comparison with
many state-of-the-art trackers. This analysis showed that in many cases our
method outperforms related approaches both in terms of speed and performance.

1.1 Related Work

There is notable literature on visual object tracking. Given the limited space, we
focus on work mostly related to particle filtering and learning-based approaches
as well as methods that do not rely on rectangular bounding boxes. Starting
from the probabilistic methods, Isard and Blake [8] introduced the particle fil-
ter, namely condensation algorithm, for tracking curves. Later on, the method
was also applied to colour based tracking [9]. Similarly, Pérez et al. [4] proposed
a colour histogram based particle filtering approach. However, the colour distri-
bution fails to describe an object in situations where the object is of a similar
colour as the background. For that reason, Lu et al. [5] incorporated a gradient
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orientation histogram in the particle filter. The most common particle filter-
ing algorithm, the bootstrap filter [10], has been combined with a classifier [11]
in order to be created an advanced motion model. All these methods rely on
bounding boxes for sampling and therefore are sensible to the particle samples
erroneously taken from the background. A more recent approach combines an
off-line and an online classifier in the bootstrap filter’s importance weight esti-
mation [1]. In all cases, incorporating a classifier into the particle filter has an
important impact on the runtime.

In the domain of a unified tracking and segmentation, the object is presented
from a segmented area instead of a bounding box. Particularly impressive is the
probabilistic approach of Bibby and Reid [12]. They have combined the bag-
of-pixels image representation with a level-set framework, where the likelihood
term has been replaced from the posterior term. Even though this approach
adapts the model online and is not based on the bounding box, it is susceptible
to the background clutter and occlusions. Chockalingam et al. [13] divided the
object into fragments based on level-sets as well. Recently, Tsai et al. [14] have
proposed a multi-label Markov Random Field framework for segmenting the im-
age data by minimizing an energy function, but the method works only offline.
The complexity of all these methods increases their computational cost signif-
icantly. In addition to the object segmentation, Nejhum et al. [15] have used
a block configuration for describing the object. Each block corresponds to an
intensity histogram and all together share a common configuration. This repre-
sentation forms the searching window which is iteratively updated. Nevertheless,
the bounding box representation is still present but in a small scale.

The first work on learning-based approaches was published by Avidan [6] and
Javed et al. [16], where tracking is defined as a binary classification problem. A
set of weak classifiers is trained online and afterwards boosted to discriminate
the foreground object from the background. The idea of online training has
been continued by Grabner et al. [17] for achieving a real-time performance in
a semi-supervised learning framework. In this approach, the samples from the
initialization frame are considered as positive for online training and during
the runtime the classifier is updated with unlabelled data. Babenko et. al [18]
have proposed a multiple instance learning (MIL) approach for dealing with the
incorrectly labelled data during the training process. The MIL classifier is trained
with bags of positive and negative data, where a positive bag contains at least
one positive instance. More recently, Kalal et al. [19] have combined the KLT
tracker [20] with an online updated randomized forest classifier for learning the
appearance of the foreground object. The tracker updates the classifier and the
classifier reinitializes it in case of a drift. Similarly in [21], the appearance model
of the tracker evolves during time. All the above approaches present mechanisms
for preventing the drifting effect in some form. However, they are all trained
with data extracted from a bounding box. As a result, background information
is highly probable to penetrate into the training process which will eventually
lead to drift assuming arbitrarily shaped objects.
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Godec et al. [7] have gone a step further into online learning by removing
the rectangular bounding box representation. They have employed the Hough
Forests [22] classification framework for online learning. In this approach, the
classification output initializes a segmentation algorithm for getting a more ac-
curate shape of the object. The approach is relatively slow, but it delivers promis-
ing results on demanding tracking sequences. In the proposed work, we similarly
make use of the segmentation concept as well but we incorporate this into a much
faster particle filter tracker instead of using a non-bounding box classification
approach.

2 Particle Filter Based Visual Object Tracking

The particle filter has shown to be a robust tracking algorithm for deformable
objects with non-linear motion [8]. The tracking problem is defined as a Bayesian
filter that recursively calculates the probability of the state xt at time t, given the
observations z1:t up to time t. This requires the computation of the (probability
density function) pdf p(xt | z1:t). It is assumed that the initial pdf p(x0 | z0) =
p(x0) of the state vector, also known as the prior, is available. z0 is an empty
set indicating that there is no observation. In our problem the state consists
of the object’s shape S and 2D position of the shape’s centre of mass xc, yc
and is defined as xt = [xc, yc, S]

T . The prior distribution is estimated from the
initial object shape. The initial shape can be either manually drawn or estimated
from segmenting a bounding box which surrounds the object. Finally, the pdf
p(xt | z1:t) can be computed from the Bayesian recursion, consisting of two
phases called prediction and update. Assuming that the pdf p(xt−1 | z1:t−1) is
available and the object state evolves from a transition model xt = f(xt−1,v),
where v is a noise model, then in the prediction phase the prior pdf p(xt | z1:t−1)
at time t can be computed using the Chapman-Kolmogorov equation:

p(xt | z1:t−1) =

∫
p(xt | xt−1)p(xt−1 | z1:t−1)dxt−1 (1)

The probabilistic model of the state evolution p(xt | xt−1) is defined by the
transition model. When at time t an observation zt becomes available, the prior
can be updated via Bayes’ rule:

p(xt | z1:t) = p(zt | xt)p(xt | z1:t−1)

p(zt | z1:t−1)
= (2)

=
p(zt | xt)

∫
p(xt | xt−1)p(xt−1 | zt−1)dxt−1∫

p(zt | xt)p(xt | z1:t−1)dxt

where the likelihood p(zt | xt) is defined by the observation model zt = h(xt,nt)
with known statistics nt. In the update phase, the observation zt is used to
update the prior density in order to obtain the desirable posterior of the current
state. The observation in our method comes from colour p(zcolt | xt) and gradient
orientation p(zort | xt) histograms.
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Since posterior density cannot be computed analytically, it is represented by a
set of random particle samples {xt

i}i=1···Ns
with associated weights {wt

i}i=1···Ns
.

The most standard particle filter algorithm is Sequential Importance Sampling
(SIS). Theoretically, when the number of samples becomes very large, this so
called Monte Carlo sampling becomes an equivalent representation to the usual
analytical description of the posterior pdf. Each particle sample represents a
hypothetical object state and it is associated with an importance weight. The
calculation of the weight is based on the observation likelihood and weight from
the previous time step.

However, a common problem with the SIS particle filter algorithm is the de-
generacy phenomenon. This means that after a few iterations the majority of
particles will have negligible weight. To overcome this problem the bootstrap
filter, which is based on the Sampling-Importance-Resampling (SIR) technique,
aims to remove low importance samples from the posterior distribution. When
the number of particle samples with high importance weight drops under a con-
stant threshold, the resampling step is executed. There, every sample contributes
to the posterior with proportion to its importance weight. The weight estimation
is given by:

w
(i)
t = w

(i)
t−1 · p(zt | x(i)

t ) = w
(i)
t−1 · p(zcolt | x(i)

t )p(zort | x(i)
t ),

Ns∑
i=1

w
(i)
t = 1 (3)

After the resampling step, the samples are equally weighted withw
(i)
t−1 being con-

stant (i.e. 1/Ns). The importance weight calculation cost is increased linearly
with the number of the the particle samples. Detailed description and discussion
of particle filtering can be found in [10]. Next, we detail elements of our parti-
cle filtering approach including observation and transition model as well as the
segmentation of the particle samples.

2.1 Observation Model

Our observation model relies on two components, the colour and gradient ori-
entation histograms. Concerning the colour information, we use the HSV space
similar to [4] since it is less sensitive to illumination changes. The colour distribu-
tion is invariant to rotation, scale changes and partial occlusion. For the gradient
orientation histogram, we compute the histogram of oriented gradients (HOG)
descriptor [23]. The strong normalization of the descriptor makes it invariant to
illumination changes.

The likelihood of the observation model p(zt | x(i)
t ) for each particle sample

i = 1 . . .Ns is calculated from the similarity between the current q(xt−1) =
{qn(xt−1)}n=1,...,Nc and the predicted state q(xt) = {qn(xt)}n=1,...,Nc distri-
butions represented by colour histograms, where Nc is the number of colour
bins. The state distribution of the gradient orientation histogram is formu-
lated in the same way. We use the Bhattacharyya coefficient ρ[q(xt−1),q(xt)] =∑Nc

i=1

√
qi(xt−1)qi(xt) for measuring the similarity of two distributions. As a
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result, the distance measure is equal to d =
√
1− ρ[q(xt−1),q(xt)]. In the pro-

posed method, likelihoods of both colour and gradient orientation histograms
are estimated using the Bhattacharyya coefficient and an exponential distri-

bution, resulting in p(zcolt | x
(i)
t ) = e−λdcol being the colour likelihood and

p(zort | x(i)
t ) = e−λdor being the gradient orientation likelihood. The final im-

portance weight is consequently given by:

w
(i)
t = p(zcolt | x(i)

t )p(zort | x(i)
t ) = e−λdcole−λdor (4)

where λ is a scaling factor. While dcol and dor are the distances of the colour
and orientation histogram respectively.

2.2 Transition Model

The transition model of the particle filter has the same importance as the obser-
vation model for achieving an accurate forward inference. The variance and/or
non-linearity of the motion of different objects do not allow to use a simplified
motion model, like the constant velocity in [1]. In our work, the transition model
of the particle filter is based on a learnt second order autoregressive model. The
Burg method [24] is used for deriving two second order autoregressive functions,
independently for the x and y direction. The last term of the object’s state, the
shape, is represented by a constant term in state space, which is estimated from
the segmentation.

2.3 Segmentation of the Particle Samples

The particle filter algorithm treats the uncertainty of the object’s state by esti-
mating the state’s distribution. In the state model we introduce the shape term
S for discriminating the foreground object from the background information
during sampling. The shape term is assumed to be known while a segmentation
algorithm is employed for estimating it. Finally, the sample’s observation is free

of background during the likelihood p(zt | x(i)
t ) estimation.

In the current work, the choice of the segmentation algorithm is important. We
require that the segmentation algorithm is fast, generic and provides two-class
segmentation output. Therefore, we chose the GrabCut algorithm, a graph-cut
segmentation approach [25]. The algorithm is incorporated with the particle filter
for refining the shape of the particle samples.

The area to be segmented is always slightly larger than the area of the sample’s
shape. Based on the current shape, an initial bounding box is specified where
everything outside of it is considered as background and the interior area is
considered uncertain. With such input, GrabCut segments the foreground object
inside the rectangular area occupied by the particle.

The computational cost of the GrabCut algorithm scales with the size of the
area which has to be segmented. Even though the speed of the GrabCut is
appropriate for small regions of interests like our particle samples, the overall
computational complexity grows with the number of particle samples. For that
reason we have implemented two different sampling strategies.
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2.4 Sampling Strategies

To investigate the approximation of the state distribution, we propose two sam-
pling strategies based on the segmentation output. In the first strategy each
particle sample is segmented in every iteration in order to refine its shape.
We name this sampling strategy a multiple particle filter samples segmentation
(Multi-PaFiSS ) strategy and use this name in our experimental evaluation. The
second sampling strategy that we call the single particle filter samples segmenta-
tion (Single-PaFiSS ) strategy is based on segmentation of the sample with the
highest importance weight and then propagating its shape to the rest particle
samples.

The first sampling strategy is more robust and better adapts to the object’s
large deformations and scale from frame to frame. However, it comes at the price
of increased computational complexity. On the contrary, the second strategy
is not that robust to large appearance and scale changes, but it is extremely
fast and in many situations also performs well as our experimental validation
indicates.

2.5 Segmentation Artifacts and Failure

The proposed algorithm is dependent on the segmentation output for refining
the shape of the particle samples. Subsequently, a segmentation failure could
obstruct the algorithm’s pipeline. We identify two possible failure modes. In one
case, the segmentation delivers more than one segmented areas of the same class
(Fig. 2b). In the second case, the segmentation explodes by including almost the
whole area to a single class or segments everything as background. These two
common problems can occur when the GrabCut algorithm is used.

The first failure mode provides a successful segmentation output. However,
there are some small isolated areas, which we call artifacts, that are often present
in the output (Fig. 2b). In our experiments, it never happened to have artifacts
with an area larger than 5% of the segmented area. By applying a two-pass
connected component labelling, we locate the shape with the largest area and
exclude the smaller artifacts.

The second failure mode is more critical because we cannot recover a meaning-
ful segmentation (Fig. 2d). The reason for the failure of the GrabCut algorithm
is poor quality of the image, failure of the edge extraction and when the colour
of the object is not discriminative enough from the background color. Hopefully,
this type of failure is easily identified in our algorithm by comparing the current
output with the segmentation of the particle sample in the previous time instant
based on a threshold. The overlap of the two areas is being compared. In the case
of a segmentation failure, the shape of the particle samples becomes rectangular
until a new shape is estimated. Thereby, the algorithm continues the tracking
task without segmentation refining.
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(a) (b) (c) (d)

Fig. 2. Segmentation artifacts and failure: The figures (a) and (c) show input images.
(b) The red car is correctly segmented, but there are two connected components. One
is a car and the other is a line marking that is an artifact. We eliminate it by keeping
the largest connected component. (d) The segmentation algorithm failed to segment
(c) and labeled background as foreground object. In this case the shape of the particle
samples becomes rectangular until a new shape is estimated

3 Experiments

In order to demonstrate the advantages of the proposed algorithm, we evaluate it
on standard tracking sequences used in other related work and we also offer five
new challenging sequences1. For evaluating our algorithm, we have implemented
two versions of our method according to the sampling strategy. The evaluation
dataset includes videos with objects of different classes that undergo deforma-
tions, occlusions, scale and appearance changes. The test video sequences come
from the following datasets: ETH Walking Pedestrians (EWAP) [26], Pedestrian
dataset [27], Comets project [28] and the Aerial Action Dataset [29]. In total,
we used 13 sequences for evaluation. The comparison is done with the standard
particle filter and three recent approaches. We compare the two versions of our
method with the TLD [19], MIL [18] and HoughTrack [7] algorithms.

The evaluation dataset includes the ground-truth annotations in which the tar-
get object is outlined by a bounding box in every frame. We use this type of an-
notation for all test sequences. This type of annotation is not the appropriate
way to describe complex objects (e.g. articulated), but it is the standard annota-
tion method. Therefore, our ground-truth are bounding box representations cen-
tered on the centre of mass of the segmented area. HoughTrack [7] segmentation
based tracking algorithmproduces bounding boxes for evaluation in the same way.
TLD [19] and MIL [18] have already a bounding box output and they do not re-
quire any modification. Then the overlap between the tracker’s bounding box and
the annotated one is calculated, based on the PASCAL VOC challenge [30] over-
lap criterion. In all experiments, we set the overlap threshold to 50%. Addition-
ally, we evaluate the computational cost of each method by estimating the average
number of tracked frames per second (fps) for every sequence.

3.1 System Setup

Both versions of our method have fixed parameters for all sequences. There
are two parameters which affect the performance of the system: the number of

1 The evaluation dataset can be found at http://campar.in.tum.de/Chair/PaFiSS

http://campar.in.tum.de/Chair/PaFiSS
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particle samples and the threshold indicating the segmentation failure. Since
we do not depend on the bounding box, we found out experimentally that the
performance of our method does not increase with the number of the samples.
Hence, the number of samples is set to 50 and the segmentation failure thresh-
old to the 40% overlap between two successful consecutive segmentation. All
methods have been downloaded from the web and executed with their default
settings. All experiments are carried out on a standard Intel i7 3.20 GHz desktop
machine.

3.2 Comparison to the Standard Particle Filter

The proposed method is compared to the standard particle filter (SPF ) to prove
the superiority of the non-rectangular sampling. For comparison, we imple-
mented the standard bootstrap particle filter [10]. We tested it on all of our
sequences but choose the Entrance sequence for comparison, since it nicely
demonstrates that the amount of background, captured with the bounding box,
causes drift. Based on the 50% overlap criterion of the PASCAL VOC chal-
lenge [30], the standard way of sampling totally fails (Fig 3). Since we also
noticed that the increase of the number of samples does not increase the perfor-
mance of SPF, we also set it to 50. In contrast, the proposed method excludes
the background information from the likelihood estimation and keeps tracking
the object until the end of the sequence.

(a) (b) (c) (d)

Fig. 3. Failure of the Standard Particle Filter (SPF ). (a): The overlap over time plot,
based on the PASCAL VOC challenge [30] criterion, shows the performance of the
SPF and the two versions of our method. Other images: SPF tracker gradually drifts
due to collecting background information

3.3 Comparison to the state-of-the-Art

The comparison to the latest online learning methods aims to show the out-
standing performance of the computationally inexpensive single sampling Single-
PaFiSS strategy and the more accurate multiple segmentation Multi-PaFiSS
strategy of our method. Table 1 shows that both strategies of our method
outperform the other approaches. While Table 2 shows that Single-PaFiSS is
considerably faster than the other approaches.

We introduce the sequences Entrance, Exit 1, Exit 2 and Bridge for evaluation
of occlusions, scale and appearance changes. All of them come from outdoor and
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Table 1. Results for 13 sequences: Percentage of correct tracked frames based on the
overlap criterion (> 50%) of the PASCAL VOC challenge [30]. The average perentage
follows in the end.

Sequence Frames Single-PaFiSS Multi-PaFiSS TLD [19] MIL [18] HT [7]

Actions 2 [29] 2113 82.30 89.87 8.18 8.42 8.61

Entrance 196 96.42 98.46 35.20 35.20 64.79

Exit 1 186 100 100 74.19 17.74 100

Exit 2 172 96.51 98.83 59.88 95.93 100

Skiing [7] 81 13.50 48.14 6.17 8.64 46.91

UAV [28] 716 64.26 88.68 47.90 58.10 73.46

Bridge 55 10.90 10.90 10.9 12.72 12.65

Pedestrian 1 [27] 379 1.84 11.60 66.22 56.20 12.40

Pedestrian 2 [26] 352 83.23 94.73 98.57 89.20 96.30

Cliff-dive 1 [7] 76 100 94.73 55.26 63.15 56.57

Mountain-bike [7] 228 18.85 40.35 36.84 82.89 39.03

Motocross 2 [7] 23 95.65 69.56 73.91 60.86 91.65

Head 231 82.68 84.41 77.05 33.34 61.47

Average 65.53 70.92 49.88 47.87 58.73

Table 2. Speed results for 13 sequences: Average frames per second (fps) for every
sequence. The total average fps follows in the end.

Sequence Frames Single-PaFiSS Multi-PaFiSS TLD [19] MIL [18] HT [7]

Actions 2 [29] 2113 6.07 0.50 3.76 19.09 1.35

Entrance 196 51.17 5.79 5.44 20.60 1.75

Exit 1 186 39.73 4.17 5.29 21.10 1.83

Exit 2 172 21.07 1.92 4.57 17.79 1.57

Skiing [7] 81 83.67 4.71 4.25 24.65 2.93

UAV [28] 716 36.50 4.30 6.50 27.3 4.58

Bridge 55 22.17 1.46 4.38 19.4 1.67

Pedestrian 1 [27] 379 18.82 2.51 5.87 24.43 1.56

Pedestrian 2 [26] 352 29.46 3.14 2.73 18.72 1.73

Cliff-dive 1 [7] 76 6.46 0.55 8.97 30.24 2.48

Mountain-bike [7] 228 37.79 3.22 4.53 26.53 2.81

Motocross 2 [7] 23 10.05 1.45 3.95 23.28 1.78

Head 231 7.50 0.76 9.74 34.40 7.51

Average 28.23 2.65 5.38 23.64 2.20

dynamic environments where the illumination varies. Furthermore, the main
characteristic of the sequences is the simultaneous motion and deformations of
the target objects.

There is a number of sequences where we have achieved better results than the
other methods. For instance, in Actions 2 sequence both of our sampling versions
outperform the other methods because of the adaption to the scale changes.



Segmentation Based Particle Filtering for Real-Time 2D Object Tracking 853

Fig. 4. Additional tracking results (first row: Motocross 2, second row: Exit 2, third
row: Skiing, fourth row: Head). The Exit 2 and Head sequences have been captured
with a stationary camera while in the other two sequences both the object and camera
are moving.

In Exit 1 and Exit 2 sequences, both versions of our method and HoughTrack
give similar results, while TLD partially drifts. MIL succeeds in Exit 2 but it
does not scale in Exit 1 sequence. Next, in the Skiing sequence the abrupt motion
leads TLD and MIL to complete failure while only HoughTrack tracks partially
the object until the end. In our algorithm, the segmentation fails to refine the
object’s shape after some time and the algorithm completely drifts.

In general, we face the segmentation failure problem when the quality of the
image data is low, like in the Pedestrian 1 sequence. As long as the tracker is
dependent on the segmentation output for getting the object’s shape, a possible
failure can cause drift. However, our algorithm continues tracking the object by
fitting a bounding box to the most recent object shape and sampling using the
bounding box, up to small scale changes. This behavior can be observed in the
Single-PaFiSS sampling strategy while in Multi-PaFiSS, it rarely occurs.

Another segmentation failure can be observed in Cliff-dive 1 sequence where
there is an articulated object in low qualitative image data. Consequently there is
high probability that the segmentation can provide incorrect information about
the shape of the object. For that reason Single-PaFiSS performs better than
Multi-PaFiSS where there are multiple segmentations per frame. In Bridge se-
quence, our algorithm failed to track the object because there is full occlusion.
It is a situation which we do not treat with the current framework. The same
failure result occurred with the other approaches.
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Taking into consideration the evaluation results, one can conclude that the
idea of using a probabilist searching method with the combination of shape based
sampling produces a robust tracker. The two evaluated implementations of our
method give similar results but Single-PaFiSS is considerably faster than all the
other methods. Fig. 1 and 4 show some of our results for selected frames.

4 Conclusion

We have presented a simple yet effective method for tracking deformable generic
objects that undergo a wide range of transformations. The proposed method
relies on tracking using a non-rectangular object description. This is achieved
by integrating a segmentation step into a bootstrap particle filter for sampling
based on shapes. We investigated two sampling strategies which allow a great
trade-off between performance and speed. In the first version, we have reached
a better performance by segmenting every particle sample while in the second,
we have a less accurate but significantly faster algorithm. During the evaluation
on a wide variety of different sequences, our method outperforms recent state-
of-the-art object tracking approaches on most sequences or performs at least on
par. In future work, we will increase the robustness of the segmentation (e.g. by
using spatio-temporal information) and speed by parallelizing our method.
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Abstract. We present an online video segmentation algorithm based
on a novel nonparametric Bayesian clustering method called Bayesian
Split-Merge Clustering (BSMC). BSMC can efficiently cluster dynami-
cally changing data through split and merge processes at each time step,
where the decision for splitting and merging is made by approximate
posterior distributions over partitions with Dirichlet Process (DP) pri-
ors. Moreover, BSMC sidesteps the difficult problem of finding the proper
number of clusters by virtue of the flexibility of nonparametric Bayesian
models. We naturally apply BSMC to online video segmentation, which is
composed of three steps—pixel clustering, histogram-based merging and
temporal matching. We demonstrate the performance of our algorithm
on complex real video sequences compared to other existing methods.

1 Introduction

Clustering is a primitive problem widely used in many computer vision applica-
tions. While clustering algorithms have typically been invented for static data,
some applications involve dynamic data evolving over time, which often makes
the problem much more difficult; clustering results should be consistent in the
temporal domain and adaptive to the changes of existing data and the arrivals of
new data. Clustering with such constraints is called evolutionary clustering [1]
and most of existing algorithms are limited to simple extensions of standard
clustering techniques by enforcing temporal smoothness [1, 2].

In computer vision, video segmentation is an important example of evolution-
ary clustering. As a generalization of image segmentation, it aims to cluster the
pixels into related groups throughout an input video. However, video segmen-
tation is not straightforward to be handled by ordinary evolutionary clustering
techniques because natural videos often involve drastic changes and complex
cluster structures. Due to this challenge, many video segmentation algorithms
are designed in batch method, which process the entire spatio-temporal video
volume offline [3–5]. However, batch processing on the spatio-temporal volume
is generally expensive in time and space, and often intractable; the development
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of fast and robust online video segmentation algorithm would be essential for
the situations with limited resources and real-time requirements.

On the other hand, many video segmentation algorithms suffer from the choice
of the proper number of segments as it dynamically changes over time. One possi-
ble solution is using nonparametric Bayesian methods such as Dirichlet Process
Mixture (DPM) [6] based on the Dirichlet process [7]. There is a prior work
to apply the DPM to adapting the number of clusters over time in evolving
datasets [8]. For video segmentation, a DPM based algorithm was proposed by
extending the static DPM using MCMC for inference [9]. However, both gener-
alizations assume slow evolutions of data. Especially in [9], videos are assumed
to be moderately changing and relatively simple because of the limitation of the
expensive MCMC steps for inference.

In this paper, we propose an online video segmentation technique based on
a novel clustering algorithm called Bayesian Split-Merge Clustering (BSMC).
BSMC efficiently organizes clusters through split and merge processes and de-
termines the number of clusters in evolving data, based on the Dirichlet process.
It is inspired from Bayesian Hierarchical Clustering (BHC) [10]—a probabilistic
version of agglomerative hierarchical clustering. BSMC is a probabilistic version
of top-down and bottom-up split-merge clustering, where the initial clustering of
the current data is given by the model at the previous time step. The proposed
algorithm efficiently handles the temporal variations of data by incremental up-
date of clustering through split and merge operations from the initial clusters
at each time step; it maintains structural consistencies in time and adapts to
substantial changes from old clusters. Note that BHC is a bottom-up cluster-
ing algorithm, which is not easily extended for evolving data. BSMC is nicely
applied to the online video segmentation problem and efficiently handles the
drastic variations in real-world video sequences with greater accuracy compared
to other online segmentation method [9]. The advantages of our video segmen-
tation algorithm are as follows:

• Contrary to many existing algorithms, the proposed algorithm is an online
algorithm.

• It performs cluster-wise split-merge inference for clustering in contrast to
point-wise inference in DP mixture models; at each time step, it can rapidly
adapt to dynamic changes in video, while MCMC methods require many
iterations to converge to the solution.

• It sidesteps the difficult problem of finding the proper number of segments
by employing flexible nonparametric Bayesian models.

This paper is organized as follows. We first describe general nonparametric
Bayesian clustering in Section 2 and discuss BSMC algorithm in Section 3. Sec-
tion 4 describes the application of our algorithm to video segmentation. Our
technique is tested on synthetic data and real video sequences, and its perfor-
mance is illustrated in Section 5.
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2 Nonparametric Bayesian Clustering

2.1 Mixture over Partitions

Clustering on the input dataset X = {x1, . . . ,xN} is a task to find a mutually-
exclusive partition {X1, . . . ,XK} of X, where K can vary from 1 to N . The
number of possible partitions is O(NN ). In nonparametric Bayesian clustering
models, each partition of X is given a probability that measures how well the
partition reflects the structure of a dataset. Hence, one can write the marginal
probability of X as a mixture over partitions as

p(X) =
∑

φ∈Φ(X)

p(X, φ) =
∑

φ∈Φ(X)

p(X|φ)p(φ), (1)

where Φ(X) is a set of all partitions of X , and p(φ) is a prior distribution over
partition φ. p(X|φ) is a likelihood for X given a partition φ, which is given by

p(X|φ) =
Kφ∏

k=1

p(Xφ
k), (2)

where {Xφ
k}Kφ

k=1 is a set of Kφ clusters corresponding to φ. Each cluster is char-
acterized by its parameter θk, which defines a probabilistic model generating
the data that belong to the kth cluster.1 In non-Bayesian models, we find the
optimal parameters for all clusters by point estimation. In Bayesian models, we
place a prior distribution over parameters and integrate them out. Therefore,
the probability of cluster p(Xφ

k)—in other words, the probability that the data

in Xφ
k are independently drawn from the same model—is computed as

p(Xφ
k) =

∫ { ∏

xn∈Xφ
k

p(xn|θk)
}
p(θk)dθk, (3)

which is computed easily provided that p(θk) is a conjugate prior for p(xn|θk).
Using these probabilities, we compute a score for a partition φ by the joint
probability p(X , φ). As a result, finding the optimal partition of X reduces to
finding the partition with maximum joint probability as

φ∗ = argmax
φ∈Φ(X)

p(X, φ). (4)

Note that we do not place any hypothesis on the number of clusters, which means
that solving Eq. (4) bypasses the model selection problem. However, finding φ∗

is often impractical because of the huge search space and the intractable com-
putation of posterior p(X|φ). The most popular approach to solve the problem
is MCMC sampling, which draws indefinite number of samples from p(φ|X) and
finds reasonable partitions based on the samples.

1 For example, if the underlying probabilistic model is Gaussian, the parameter would
be the mean and covariance of a cluster.
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2.2 Prior for Partitions

To define the joint probability p(X, φ), we need a prior p(φ) that is a probability
distribution over partitions φ. One of choices for the prior is Dirichlet process
(DP) [7], which is a random measure on discrete distributions with infinite sup-
ports; Dirichlet Process Mixture (DPM) refers to the nonparametric Bayesian
models with the DP prior. Under the DP, a random partition of dataset is easily
drawn by Chinese restaurant process [6], which is a predictive distribution of DP.
Suppose that x<n = {x1, . . . ,xn−1} are partitioned into K clusters {Xk}Kk=1.
Then, for the nth point xn,

p(xn ∈ Xk, 1 ≤ k ≤ K|x<n) =
Nk

n+ α− 1
(5)

p(xn ∈ XK+1|x<n) =
α

n+ α− 1
, (6)

where Nk = |Xk|. This implies that xn may belong to the existing clusters
or create a new cluster. Here, α is a concentration parameter that controls the
tendency to create a new cluster. Using these conditional distributions, the joint
distribution of φ is given as

p(φ) =
αKφ

Γ (α)

Γ (N + α)

Kφ∏

k=1

Γ (Nφ
k ), (7)

where Γ denotes the gamma function. Note that this probability is not affected
by the ordering of the data, which is referred to as exchangeability.

2.3 Bayesian Hierarchical Clustering (BHC)

Instead of drawing indefinite number of samples from p(φ|X), one can reduce
the search space and find the optimal solution by selecting the best among the
possible partitions. BHC [10], a probabilistic version of agglomerative hierarchi-
cal clustering, reduces the search space using a tree representing the hierarchical
structure of the dataset. It computes the probability of merging based on the pos-
terior distribution of DPM and merges the pairs whose merging probability is
the largest. Unlike traditional hierarchical clustering methods, it automatically
determines whether the tree requires additional merging or not by means of the
posterior probability. Therefore, it is free from the model selection problem.

More specifically, let X be a dataset to be clustered. BHC computes p(X|T ),
where T is the tree composed of the elements in X. Instead of summing all
possible partitions, BHC sums over the tree-consistent partitions, which are the
partitions existing under the tree, representing the hierarchical cluster struc-
ture of the dataset. p(X|T ) is computed recursively from the bottom, where
each data point corresponds to one node. Let Xi be a set of data in the sub-
tree rooted by Ti, Xj be another node in the same level and Xk = Xi ∪ Xj .



860 J. Lee et al.

Initial clustering First split Second split Merge

Fig. 1. Example of clustering by BSMC. A single cluster is split and merged through
the split and merge stage to perform clustering.

There are two possible options: Xi and Xj belong to the one cluster Xk or they
are separate clusters. Therefore, p(Xk|Tk) is recursively computed as

p(Xk|Tk) = πkp(Xk|Hk) + (1− πk)p(X i|Ti)p(Xj |Tj), (8)

where Hk is a hypothesis that Xk is a single cluster and πk is a prior probability
for Hk that is recursively computed from the DP prior. (Note that p(Xk|Hk) is
equivalent to (3).) By the Bayes rule, the posterior probability for Hk is

P (Hk|Xk) =
πkp(Xk|Hk)

πkp(Xk) + (1− πk)p(X i|Ti)p(Xj |Tj)
, (9)

and p(Hk|Xk) > 0.5 means that Xi and Xj should be merged. Therefore, the
algorithm can determine the stopping level naturally while greedily merging the
pair with the largest posterior probability in Eq. (9) at each iteration.

3 Bayesian Split-Merge Clustering (BSMC)

BHC is a batch clustering algorithm that always starts its merge process from
the bottom level; it is not desirable for evolving data since previous clustering
results are ignored completely. Therefore, we propose an alternative hierarchical
clustering algorithm called Bayesian Split-Merge Clustering (BSMC). BSMC is a
probabilistic version of traditional split-merge clustering algorithm such as ISO-
DATA [11]. As its name implies, BSMC obtains the optimal partition through
split and merge procedures. The decision of splitting or merging depends on the
approximate posterior of partitions based on Bayesian clustering model. There-
fore, it can bypass the model selection problem. Moreover, BSMC is appropriate
for evolving data since it can start clustering from any intermediate level of the
propagated tree.

Given an initial partition, we recursively split clusters in so-called the split
stage as long as the probability of splitting is larger than 0.5. After that, pairs of
clusters are merged in a recursive manner as long as the probability of merging
is larger than 0.5, which is done in the merge stage. The procedure for BSMC is
illustrated in Fig. 1.
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3.1 Initial Partitions

At each time step, the initial partition φ0 is obtained from the previous clustering
result. If a new data point enters, a new cluster is created for the new data point.
If no initial partition is given—for example, at the first time step, φ0 is set to a
single cluster containing all data.

3.2 Split Stage

Let X = {x1, . . . ,xN} be a dataset, φ0 be an initial partition and φ be the
incumbent solution at a new time step. (The time index is omitted for simplicity.)

Initially, we set φ = φ0, which corresponds to {Xφ
k}Kφ

k=1. In the split stage, we
test whether any of these clusters should be split into two or more clusters. By
the Bayesian clustering model, the posterior probability of φ is given by

p(φ|X) =
p(X |φ)p(φ)∑

φ′∈Φ(X) p(X|φ′)p(φ′)
. (10)

To estimate this posterior without considering all partitions, we test the parti-
tions made by splitting current clusters. Let φs be a partition that the current
cluster Xφ

k is split into two clusters Xφs

i and Xφs

j and other clusters remain
unchanged. One can propose φs by any appropriate bisecting algorithm such as
k-means clustering, spectral clustering or graph cut. Then, we obtain

p(φ|X) <
p(X|φ)p(φ)

p(X|φ)p(φ) + p(X|φs)p(φs)
=

{
1 +

p(X|φs)p(φs)

p(X|φ)p(φ)
}−1

, (11)

which computes a loose upper bound of p(φ|X) using φs only. The upper bound
gets tighter as p(X , φs) increases. Although the bound is not tight for the accu-
rate computation of p(φ|X), it is sufficient to check the optimality of φ.

Suppose that we define the split probability psplit as

psplit = 1−
{
1 +

p(X|φs)p(φs)

p(X|φ)p(φ)
}−1

. (12)

If psplit > 0.5, p(φ|X) < 0.5 by Eq. (11). Therefore, we conclude that φ is not
optimal. The ratio in psplit can easily be computed since the terms for clusters

other than Xφ
k are canceled out. Using DP prior in Eq. (7), psplit is given by

psplit = 1−
{
1 +

αΓ (Nφs

i )Γ (Nφs

j )p(Xφs

i )p(Xφs

j )

Γ (Nφ
k )p(X

φ
k)

}−1

. (13)

If psplit > 0.5, we set φ = φs. Then, for the two split clusters Xφs

i and Xφs

j , we
repeat the same procedure recursively as long as psplit > 0.5. The recursion for
all initial clusters achieves the partition that is not desirable to split any further.
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Fig. 2. A partition that requires postprocessing. The
isolated black circle in the red cross cluster can simply
be allocated to the red cross cluster in the postprocessing
stage.

3.3 Merge Stage

In the merge stage, we determine whether any pairs of split clusters should be
merged—for example, the [blue] and the [green] clusters in Figure 1 are more

natural to be merged after split stage. Let Xφ
i and Xφ

j be a pair of clusters
under the current optimal partition. By the similar arguments in Section 3.2,
we check whether p(φ|X) is large enough by proposing a merged partition. Let

φm be a partition that merges Xφ
i and Xφ

j into Xφm

k and leaves other clusters
unchanged. Similar to the split stage, pmerge is given by

pmerge = 1−
{
1 +

Γ (Nφm

k )p(Xφm

k )

αΓ (Nφ
i )Γ (Nφ

j )p(X
φ
i )p(X

φ
j )

}−1

. (14)

If pmerge > 0.5, we conclude that φ needs to be improved. As in BHC, we compute
pmerge for all pairs of clusters and merge the pairs with the largest pmerge. We
repeat the same procedure as long as the largest pmerge > 0.5.

3.4 Quality of the Solution

We can prove that p(φ|X) always increases by the splitting and merging:

1−
{
1 +

p(X|φ′)p(φ′)
p(X|φ)p(φ)

}−1

>
1

2
⇐⇒ p(X|φ′)p(φ′) > p(X|φ)p(φ), (15)

where φ′ ∈ {φs, φm}. Although this does not guarantee the optimality, it justi-
fies the use of BSMC for the situations where good initial solutions are given,
like video segmentation. According to our observation, BSMC provides quality
solutions for complex and fast changing videos.

3.5 Postprocessing

Contrary to other point-wise inference algorithms, BSMC is a cluster-wise algo-
rithm. Although this cluster-wise operations make BSMC efficient, some point-
wise errors might occur as presented in Fig. 2. Since the overall cluster structure
is found after the split and merge stage, these errors are easily fixed by allocat-
ing each point to the clusters having the closest center. The entire procedure of
BSMC is summarized in Algorithm 1.
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Algorithm 1. Bayesian Split-Merge Clustering

Input: Initial partition φ0 and dataset X = {x1, . . . ,xN}.
Output: Optimal partition φ∗.

Initialize φ = φ0.
• Split stage
for k = 1, . . . , Kφ do

Propose φs by bisecting Xφ
k into Xφs

i and Xφs

j .
if psplit > 0.5 then

Split Xφ
k into Xφs

i and Xφs

j (Set φ← φs.)

Recursively split Xφs

i and Xφs

j .
end if

end for
• Merge stage
Compute pmerge for all pairs of split clusters.
while The maximum pmerge > 0.5 and Kφ > 1 do

Merge the maximum pmerge pair (φ← φm) and update pmerge.
end while
• Postprocessing
for n = 1, . . . , N do

Allocate xn to the cluster with the closest mean.
end for
φ∗ ← φ.

4 Video Segmentation

BSMC can be naturally applied to video segmentation in the spatio-temporal
domain. In this section, we describe three steps to accomplish video segmentation
results perceptually consistent and temporally coherent.

4.1 Pixel Clustering

We first extract RGB color values (or xy-RGB vectors to incorporate spatial con-
straints) from all pixels in the input image and cluster them. Since our method
does not suffer from the problem of choosing the proper number of segments, it
can deal with changing number of segments throughout the video. Furthermore,
we can provide the clustering result in the previous frame as an initial partition
when a new frame arrives. Then, the initial clusters are typically split near the
boundaries of moving objects and the split clusters merge to build new clus-
ters. This approach gives segmentation results that are consistent in the major
boundaries. We call this procedure pixel clustering.

4.2 Second Merge Stage by Histogram Feature

Since pixel clustering employs local features only, clustering results may not be
consistent temporally due to the jitters in the regions involving complex textures
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and coherent with human perception that often treats semantically related but
textured areas as a single segment.

To overcome such limitations, we adopt the idea of region-based segmentation
proposed in [4]. We run the second merge stage, based on histogram features
obtained from regions resulting from the pixel clustering. Using these histogram
features, the similarities between regions are measured by color distributions of
the regions. Therefore, two textured regions with similar color distributions may
have high probability of merging. To define the similarity between histograms,
we introduce a probabilistic model for histograms. Let h = [h1 . . . hK ]� be a
K-bin color histogram. Following [12], we use the multinomial distribution for
the likelihood of histograms, which is given by

p(h|β) = M !
∏K

k=1 hk!

K∏

k=1

βhk

k , (16)

where M =
∑

k hk is a normalization constant2, β = [β1 . . . βK ]� is a parameter
that defines the probability of each bin. We use the Dirichlet distribution for β
that is a conjugate prior of multinomial distribution as

p(β|π) =
Γ
(∑K

k=1 πk

)

∏K
k=1 Γ (πk)

K∏

k=1

βπk−1
k , (17)

where π is a hyperparameter for Dirichlet distribution. Now, we can define pmerge

under these probabilistic models. Denoting two sets of histograms by Hi =
{hi,1, . . . ,hi,Ni} and Hj = {hj,1, . . . ,hj,Nj}, which represent two clusters of
regions, the probability of merging these two clusters is given by

pmerge = 1−
{
1 +

Γ (Ni +Nj)p(H i ∪Hj)

αΓ (Ni)Γ (Nj)p(Hi)p(Hj)

}−1

. (18)

We iteratively merge regions as long as the maximum pmerge is greater than
0.5. Note that we can restrict candidates pairs to be adjacent to each other to
incorporate spatial constraints.

4.3 Matching Clusters between Frames

Since our algorithm is based on the splitting and merging process, maintaining
segment identities across frames is not straightforward . We present a simple
solution to match clusters between adjacent frames to maintain cluster identity.
Suppose that Ht and Ht+1 are the sets of histograms extracted from the regions
made by clustering at the frame t and t + 1, respectively. We perform another
merge stage on Ht ∪Ht+1; if ht,i and ht+1,j belong to the same cluster, they
are matched and identified as a same segment. An additional benefit of this
strategy is improved temporal coherency; erroneously separated segments in Ht

can be merged using additional information given by Ht+1. The entire process
of segmentation is summarized in Fig. 3.

2 We normalize h and multiply M to compare regions with different sizes.
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Fig. 3. Video segmentation process. 1. Passing initial partition 2. Pixel segmentation
using BSMC 3. Histogram-based merging. 4. Matching two frames.

5 Experiments

5.1 Clustering Simulation

To evaluate the solutions by BSMC, we compared BSMC with collapsed Gibbs
sampler for DPM [13], BHC [10] and DPChain [8] on a synthetic dataset.
The dataset is composed of 16 frames evolving over time where points in each
frame are generated from a Gaussian mixture model (Fig.4(a)). Throughout the
sequence, the characteristics of data including the number of clusters change
drastically over time, which violates the assumption of temporal smoothness in
evolutionary clustering.

For all algorithms, we used the Gaussian likelihood and Gaussian-Wishart
prior as parameters:

p(x|μ,Λ) = N (x|μ,Λ−1) (19)

p(μ,Λ) = N (μ|m, (τΛ)−1)W(Λ|W , ν) (20)

where μ is the mean of a cluster, Λ is a precision and {m, τ, ν,W } are hyperpa-
rameters. In all experiments, we set m and W to the sample mean and precision
of the dataset and fixed τ = 0.01 and ν = 15. BSMC employed k-means clus-
tering for bisection. We iterated 100 times for the collapsed Gibbs sampler and
DPChain. For DPChain, initial labels are given by the result of the previous
time step. We controlled the smoothness parameter λ to 0.5 (DPChain1) and 1
(DPChain2). Smaller λ means more temporal smoothness. For all algorithms ex-
cept BHC, we conducted clustering 10 times and averaged the results to handle
randomness.
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Fig. 4. (a) Synthetic dataset generated using Gaussian mixture models with moving
centers. (b) Average computing time in seconds.

According to our experiments, the accuracies of all algorithms are almost
identical. However, in terms of running time, BSMC is faster at least by three
orders of magnitude than all other algorithms (Fig. 4(b)). The computing time of
BSMC is dominated by the bisecting algorithm due to its cluster-wise inference.
Therefore, provided that the bisecting algorithm is efficient, BSMC would be
significantly faster while maintaining comparable clustering performance.

5.2 Video Segmentations

We tested our algorithm on real world video sequences, which include dynamic
movements and complex patterns. We compared our method with a offline al-
gorithm, hierarchical graph-based video segmentation (EHGBVS) [4], and an
online algorithm, Bayesian order-adaptive clustering (BOAC) [9].

For pixel clustering, we used k-means clustering in the split stage, and the
Gaussian likelihood and Gaussian-Wishart prior for underlying probabilistic
models. For color histograms in histogram merging, we employed 3D color his-
tograms. For the BOAC, we used 4-bin RGB histograms for each channel and
set the window radius to 2. We iterated 100 times for the first frame and 2 ∼ 5
times for the rest of frames. For EHGBVS, we used the default settings provided
in the project website.3

Qualitative Comparison. We tested five sequences: skating (180 × 320, 185
frames), jump (224 × 352, 157 frames), sprint (320 × 480, 442 frames), matrix
(272 × 480, 171 frames) and earth (170×400, 98 frames).4 Note that, contrary to
the online algorithms such as BSMC and BOAC, EHGBVS is a batch algorithm

3 http://neumann.cc.gt.atl.ga.us/segmentation/
4 All videos are downloaded from YouTube except the earth sequence, which is ob-
tained from http://cpl.cc.gatech.edu/projects/videosegmentation/ [4].

http://neumann.cc.gt.atl.ga.us/segmentation/
http://cpl.cc.gatech.edu/projects/videosegmentation/
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48 48 48 48 48
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Fig. 5. Comparison of three video segmentation algorithms. From top to bottom, skat-
ing, jump, sprint, matrix and earth sequence are presented. From left to right, original
sequence and the results by BSMC, BSMC with spatial constraints, BOAC and EHG-
BVS are illustrated. Frame numbers are shown at upper-left corners.
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Fig. 6. Average ARI and NMI values of three algorithms for five sequences

that performs a global optimization for segmentation. Also, it can maintain seg-
ment identities in 3D spatio-temporal volume and has advantage to visualize
results with less flickering. However, our algorithm still demonstrates visually
good performance compared to EHGBVS with consistency in region boundaries
while BOAC produces many noisy segments (Fig. 5). As the tested videos in-
volve nontrivial patterns and drastic motions, BOAC requires many iterations for
convergence. BSMC was approximately 4 ∼ 8 times faster than BOAC in our
MATLAB implementation; for the skating sequence, ours took 207 secs while
BOAC took 1647 secs. EHGBVS is implemented and run on a completely dif-
ferent systems with parallel architecture; direct comparison of running time is
unavailable.

Quantitative Evaluation. We compared three algorithms quantitatively based
on ground-truths manually constructed by five people. We evaluated the seg-
mentation result by Adjusted Rand Index (ARI) [14] and Normalized Mutual
Information (NMI) [15] for randomly selected frames from each sequence. We
emphasize again that EHGBVS is an offline method which is expected to out-
perform online methods since it clusters past, present and future frames simulta-
neously. BSMC outperforms the BOAC except for the matrix sequence for both
ARI and NMI, while being comparable to EHGBVS as illustrated in Fig. 6.

6 Conclusion

We proposed a novel on-line clustering algorithm called Bayesian split-merge
clustering. BSMC can cluster evolving data efficiently and flexibly, while pre-
serving temporal consistency and adapting to drastic changes. We applied our
algorithm to online video segmentation through three steps—pixel clustering,
merge by histogram, and temporal matching—and obtained good segmentation
results with significantly improved efficiency.
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Spatially Structured Multi-object Segmentation
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Abstract. In many segmentation scenarios, labeled images contain rich
structural information about spatial arrangement and shapes of the ob-
jects. Integrating this rich information into supervised learning tech-
niques is promising as it generates models which go beyond learning class
association, only. This paper proposes a new supervised forest model for
joint classification-regression which exploits both class and structural
information. Training our model is achieved by optimizing a joint ob-
jective function of pixel classification and shape regression. Shapes are
represented implicitly via signed distance maps obtained directly from
ground truth label maps. Thus, we can associate each image point not
only with its class label, but also with its distances to object boundaries,
and this at no additional cost regarding annotations. The regression com-
ponent acts as spatial regularization learned from data and yields a pre-
dictor with both class and spatial consistency. In the challenging context
of simultaneous multi-organ segmentation, we demonstrate the potential
of our approach through experimental validation on a large dataset of 80
three-dimensional CT scans.

1 Introduction

Semantic image segmentation consists of assigning a categorical label to each
pixel in an image. A common approach is to cast segmentation as a multi-label
classification problem and employ a classification algorithm. In this context,
supervised learning techniques have gained increased interest. Relying on the
availability of annotated data, they permit to learn the relationship between
visual features of pixels and their class labels during their training phase. Given
an unseen image, the learned classifier is then able to predict the correct label
assignment for each pixel.

Decision forests have emerged as a promising, flexible model for image un-
derstanding [1–4]. In particular, classification and regression forests have shown
great performance in the tasks of supervised classification and regression such
as human pose estimation [5], recognition [6], localization [7], or classification
[8, 9]. Classification forests are popular because they are probabilistic and effi-
cient, and naturally handle multi-class problems. Moreover, they often compare
favorably with respect to other techniques [10, 11].

A. Fitzgibbon et al. (Eds.): ECCV 2012, Part IV, LNCS 7575, pp. 870–881, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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In their original implementation classification forests provide as output a class
posterior distribution for each pixel independently. Recent work has started to
investigate new and more complex models of structured-output forests to enable
spatially consistent predictions [12–15]. However, accessible structural informa-
tion about the shapes and spatial arrangement of objects present in ground truth
annotations, i.e. label maps, is not fully exploited in previous approaches.

The main contribution of this paper is a novel joint classification-regression
formulation based on decision forests which incorporates this extra information.
In each tree, we learn a discrete-continuous predictor based on class and spatial
consistency by extracting structural information from label maps. The key inno-
vation within our approach is a simple yet elegant modification of the training
objective function which enables joint learning of classification and regression.
We employ signed distance maps (SDMs) in a regression objective as efficient
representations of information about shapes and spatial arrangement.

Similar to pictorial structures [16] our model is particularly suited for images
with multiple objects whose organization shows some consistency (e.g. facial
features, limbs in a human body, internal organs in medical scans, etc.).

Classification and regression have been combined before in the context of
decision forests for body joint prediction [17] and object detection [18]. Both
approaches are quite different to ours. In [17], the prediction model is a single
continuous regressor, for which training is performed either based on a classi-
fication or regression objective function. In [18], the training objective alter-
nates between classification and regression, but is not based on a joint objective
function.

There are many other methods which aim at solving the problem of struc-
tured multi-object segmentation. Active shape and appearance models [19], or
random fields [20] are among the most successful ones. A comparison with these
methods is beyond the scope of this paper. Here, we focus on one particular ap-
proach based on classification forests, and demonstrate how performance can be
substantially improved through simple modifications. We believe that an isolated
view on this particular modification yields more insights than a broader compar-
ison with substantially different methods. Further, we believe that our proposed
modifications can be easily integrated in existing, more complex approaches.

Experimental validation of our model is carried out on multi-organ segmen-
tation on a challenging labeled dataset of 3D medical CT scans of 80 patients.

2 Classification-Regression Forests

In the following, we will derive a general formulation for joint classification-
regression in the context of decision forests. At the same time, we will provide
the necessary details for our application of multi-object segmentation. We refer
the interested reader to [2] for more details on forests.
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(a) CT scan (b) Label map (c) SDM liver (d) SDM kidney (e) SDM pelvis

Fig. 1. An example slice of a 3D input image in (a) with ground truth label map in
(b). Besides class membership, the label map contains additional information such as
a distance for each pixel to all objects of interest obtained from signed distance maps
as shown in (c)-(e). The zero-level is overlaid on the distance maps for clarity. Pixels
inside an object have negative distances.

2.1 Decision Forests for Supervised Learning

In its most general form, the goal of supervised, discriminative learning is to
obtain the posterior distribution p(y|x), where x ∈ R

m is some observation
represented by a feature vector, and y ∈ R

n is the output or prediction variable.
Learning this distribution allows us to make predictions for new (unseen) data,
e.g. by inferring the maximum-a-posteriori (MAP) estimate ŷ=argmaxy p(y|x).

We assume that a set of K training examples S = {(xk,yk)}Kk=1 is available,
from which we can learn the distribution p(y|x). In image segmentation, the
entity xk corresponds to a collection of image features – e.g. intensity or textural
information – extracted for an individual pixel k. The output variable is the
(one-dimensional) discrete class label yk∈C, where C is a finite set of labels (or
objects). The aim is then to learn a predictor that determines the probability
for assigning a particular class label to a pixel of a previously unseen test image.

We employ the decision forest framework which tackles the learning problem
in a divide-and-conquer fashion. A decision forest is an ensemble of (probabilis-
tic) decision trees, where each tree t yields its own distribution pt(y|x). By
iteratively subdividing the training set within the associated features space Rm,
posterior distributions can be learned “locally” on smaller training subsets. In-
jecting randomness into the training phase decreases the correlation between
individual trees, and increases generalization (see [1] for details).

Tree testing: A (binary) decision tree is a set of two types of nodes, the split
nodes and the leaf nodes. While split nodes store decision functions, leaf nodes
store empirical distributions. In order to make a prediction for previously unseen
data x, we push x through the tree, starting at the root node. At each split node,
a (binary) decision function is applied to x, which determines whether it is sent
to the left or right child node. Once the data point reaches a leaf node, we can
simply read out the stored distribution pt(y|x). The overall prediction of the
forest with T trees can be obtained by averaging the individual tree predictions:
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p(y|x) = 1

T

T∑

t=1

pt(y|x) . (1)

Tree training: The role of training is to optimize the parameters of the decision
functions and to determine the leaf node distributions. To this end, a (possibly
random sub-) set of training examples S is simultaneously pushed through the
tree. Let us denote by Si the training set reaching node i, where S0 = S at the
root node with index 0. At each split node the incoming set Si is divided into
two disjunct, outgoing sets SL

i and SR
i which are sent to the left and right child

nodes. The split is based on a decision function operating on the feature vectors
of incoming training examples. Most commonly used split functions are so called
axis-aligned functions fv,τ , defined as:

fv,τ=̂(v · x ≥ τ) , (2)

where v is a m-dimensional binary (random) vector and τ ∈ R is a threshold.
Note that v has only one non-zero entry and permits thereby to select one
dimension from the m-dimensional feature space. τ is then either (randomly)
drawn from the range of the feature values, or optimized via exhaustive search.
Based on the decision function the training examples are separated into two
subsets.

Following a greedy optimization strategy, different (randomly generated) split
function candidates are evaluated and the most discriminative one is found based
on maximizing an objective function such as the information gain:

I(Si,SL
i ,SR

i ) = H(Si)−
∑

j∈{L,R}

|Sj
i |

|Si| H(Sj
i ) , (3)

where H(·) is the entropy. In case of classification with a finite set of discrete
labels C, H is defined as the Shannon entropy

H(S) = −
∑

y∈C
p(y|x) log p(y|x) , (4)

where p(·) is the empirical class distribution estimated from the training set
S. Good split functions should maximize the information gain which minimizes
the uncertainty of the empirical distributions. When the tree growing process
reaches a predefined depth, iterative splitting of the training data stops. The
current node becomes a leaf where the empirical distribution over the incoming
training examples is stored. The tree depth has an impact on the generalization
of the tree as it directly influences the resolution of the partition of the feature
space.

As a consequence of the objective function in Eq. (3), the training procedure
yields leaf nodes with peaked class distributions. At test time, an unseen data
point should take the same path along the tree nodes as training examples with
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similar features. The empirical distribution over those training examples would
then provide a good prediction for the test point.

After setting out the basics of decision forests in a classification scenario,
next we discuss our main contribution: a joint classification-regression model
employed within the same forest.

2.2 Joint Classification-Regression

Classification forests have been widely used in practice. In this paper we argue
that in some applications their discriminative power can be improved by a sim-
ple yet elegant modification within the learning procedure. So far, the training
of classification forests is only based on the ground truth class labels. The key
idea of our approach is to explore also the spatial structure of objects. In fact,
the same ground truth, i.e. label maps, contain information about the shapes
of objects, and in multi-class problems, about relative positions and spatial ar-
rangement (see Fig. 1 for an example). The integration of this rich information
into the supervised learning can yield better predictions. To this end, we for-
mulate a joint classification-regression approach where the training objective
is to increase both class and spatial consistency. We introduce two prediction
variables where c ∈ C corresponds to a one-dimensional discrete classification
output, and r ∈ R

n is a n-dimensional continuous regression variable. The role
of this variable is described in detail in Sec. 2.3. For now, let us assume it cap-
tures some continuous shape parameters. Given the same input variable x as
before, our goal is now to learn the joint probability p(c, r|x). Using the chain
rule, we can rewrite this joint distribution as p(c, r|x)=p(r|c,x) p(c|x). In order
to learn this distribution within the framework of decision forests, we define the
joint entropy as

H(S) = −
∑

c∈C

∫

r∈Rn

p(c, r|x) log p(c, r|x) dr

= −
∑

c∈C
p(c|x) log p(c|x)

︸ ︷︷ ︸
Shannon Entropy: Hc

+
∑

c∈C
p(c|x)

(
−
∫

r∈Rn

p(r|c,x) log p(r|c,x) dr
)

︸ ︷︷ ︸
Weighted Differential Entropy: Hr|c

.

(5)

During training, we maximize the same objective function as defined in Eq. (3),
where now the entropy becomes H(S)=Hc(S)+Hr|c(S).

The two entropies Hc and Hr|c may live within quite different ranges depend-
ing on the problem and its dimensionality, and one of them could easily overrule
the other one during optimization. Hence, we propose the following normaliza-
tion step

H(S) = 1

2

(
Hc(S)
Hc(S0)

+
Hr|c(S)
Hr|c(S0)

)
, (6)
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where each entropy is normalized w.r.t. the root node entropy. This normaliza-
tion maps both initial entropies at the root node to one, and the information gain
measures the relative improvement w.r.t. the inherent entropy of the training set.

2.3 Spatial Consistency via Distance Regression

In order to capture the spatial information contained in the label maps, we
employ Euclidean signed distance maps (SDMs) as an implicit representation of
shape. Assuming there are n different objects to be segmented, we can determine
n distance maps per training image. Note that we treat the background as an
extra class, so we have |C| = n+1 number of classes, and no distance map is
computed for the background class. Also note, that it is not necessary that
all objects are present in all images. In practice, we can make use of indicator
variables encoding the presence of an object which allows us to ignore missing
data in the computation of statistics. For sake of simplicity, in the following we
assume that all objects are present in all images.

The distance maps allow us to assign n-dimensional vectors r = (d1, ..., dn)
�

to each pixel in the training set, where dc is the distance of a pixel to the closest
boundary point of the object with class index c. Negative distances are assigned
to pixels inside an object. This is an efficient way of enriching the training set to
S = {(xk, ck, rk)}, where now each data point carries both information about its
class membership and its relative positions w.r.t. the shapes of all objects. The
regression component r captures both shape and spatial layout of the objects,
which in a common classification approach would remain hidden in the label
maps. This supplementary information comes at no additional cost regarding
annotations. This is a major advantage since acquiring ground truth data can
be tedious and time-consuming, in particular, in the medical domain.

For efficient training of our joint model, we need a compact representa-
tion for the conditional distribution p(r|c,x) which can be efficiently stored
in the leaf nodes. We employ n-dimensional multivariate Normal distributions
p(r|c,x) =̂ N (μr|c, Σr|c|r, c,x), one distribution per class label c. Those can
be efficiently stored by keeping only the means and covariance matrices. Addi-
tionally, Gaussian distributions have a closed-form definition for the differential
entropy such that

Hr|c =
∑

c∈C
p(c|x)

(
1

2
log

[
(2πe)n|Σr|c|

])
, (7)

where | · | denotes the determinant of a matrix.
Optimizing the information gain w.r.t. this entropy encourages splits which

reduce the covariance over spatial location. This is the case when elements within
subsets belonging to the same class are also spatially consistent. In fact, the re-
gression component acts as a learned spatial regularization. In order to demon-
strate this effect, we perform a small experiment. We take one 2D image (a
coronal slice from a 3D CT scans) for training a single tree using the standard
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Fig. 2. (a,b) Leaf node region maps overlaid on ground truth segmentation. The maps
illustrate the spatial regularization effect of the regression component. (c) Progression
of different parts of the joint entropy (Eq. (6)) compared to standard classification.

classification objective function, and another tree using our joint objective func-
tion. To visualize the resulting “clustering” of training points, we use the same
image at test time and store for each pixel the index of the reached leaf node.
From these index maps we extract the cluster regions as shown in Fig. 2(a,b).
Each closed region corresponds to a particular leaf node in the corresponding
tree. At the same tree depth, training jointly on the combined classification-
regression objective yields leaf nodes with clusters of training examples which
are both consistent in terms of class membership and spatial location.

Robust Parameter Estimation. The regression part of our joint predictor
model requires estimation of means and covariances of the corresponding Gaus-
sians N (μr|c, Σr|c|r, c,x). This is commonly done via maximum likelihood (ML)
estimation. Since we estimate the empirical distributions conditioned on the class
label, the sample size for a particular distribution can become quite small. In
order to overcome statistical problems when only few samples are available, we
employ a more robust Bayesian estimation where the parent distribution of a
child node plays the role of the prior. The mean is then estimated as

μchild

r|c =
|Schild

r|c |
κ+ |Schild

r|c | μ̄
child

r|c +
κ

κ+ |Schild

r|c | μ
parent

r|c . (8)

The covariance matrix is then computed as

Σchild

r|c =
|Schild

r|c |
Z

Σ̄child

r|c +
ν + n− 1

Z
Σparent

r|c +
κ |Schild

r|c |
Z (κ+ |Schild

r|c |) Ψr|c , (9)

where Z=ν+n−1+|Schild

r|c | and Ψr|c=(μparent

r|c − μ̄child

r|c )(μparent

r|c − μ̄child

r|c )�. Variables
μ̄child

r|c and Σ̄child

r|c are ML estimates of mean and covariance computed over the

subset Schild

r|c . Variables μparent

r|c and Σparent

r|c correspond to the mean and covariance

of the parent node. κ and ν are two parameters which permit to control the trade-
off between the prior and the empirical information w.r.t. sample size. In fact,
when the number of training examples |Schild

r|c | is sufficiently large (|Schild

r|c | >>
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κ, ν), the ML estimates dominate. When the number of training samples gets
closer to the values of κ and ν the estimate of Σchild

r|c relies more on the parent.

2.4 Forest Predictions

Our joint classification-regression model allows to make two kinds of predictions
at test time. The obvious one is regarding the most probable class label given a
new data point, i.e. a pixel of a test image. This MAP estimate can be obtained
by simply computing

ĉ = argmax
c∈C

p(c|x) . (10)

Note, that test efficiency from a computational perspective is exactly the same
as with standard classification forests. By obtaining the labels for all pixels, we
determine the multi-object segmentation of the image.

We can also make predictions regarding the regression component. The most
probable estimate of object distances for a pixel can be obtained by

r̂ = argmax
r

p(r|x)
= argmax

r

∑

c∈C
p(r|c,x)p(c|x) , (11)

which requires some sort of mode finding algorithm. Based on our Gaussian
model, an alternative, robust estimate can be obtained via the mixture mean

r̃ =
∑

c∈C
p(c|x)μr|c . (12)

The regression allows us to estimate SDMs which could be of great use for in-
stance in object alignment applications. One could think of defining a (weighted)
matching criterion on both image intensities and regressed SDMs. The SDM part
could potentially make the alignment less sensitive to initialization and more ro-
bust w.r.t. large transformations. The focus in this paper is on the segmentation
part, and we are mainly interested in the label maps obtained via Eq. (10).
However, we will also show results of SDM regression in the following section.

3 Experimental Validation

We evaluate our approach on the task of multi-organ segmentation in 3D med-
ical CT scans. To this end, we collected a large dataset of 80 highly variable
patient scans, in which 6 major organs have been manually delineated by an ex-
pert. The set of organs include liver, spleen, left and right kidney, left and right
pelvic bone. To demonstrate the potential of our joint classification-regression
strategy, we aim at isolating the effect of the proposed objective function, and
therefore compare it directly with standard classifcation forests. The challenges
in multi-organ segmentation arise from overlapping intensity profiles of different
organs, variability in patient anatomy, presence of pathologies, and image noise.
However, the human anatomy exhibits a highly structured spatial arrangement
of inner parts. Hence, our approach is paricularly suitable for this task.
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3.1 Experimental Setup and Training Parameters

For both methods, standard classification forest and our joint approach, we use
the same fixed set of parameters. We train decision forests with 50 trees and a
maximum tree depth of 20. We use bagging during training, which means each
tree is trained on a random subset containing 10% of the total number of training
image points. At each split node, we evaluate 100 different features from a pool
of 1000 randomly generated features. For each feature, and the corresponding
set of feature responses from the training points, we try 10 different thresholds
uniformly distributed along the range of responses.

We employ five different types of features, where four of them are variants of
3D box features efficiently computed on integral images [21]: (i) a simple look-up
of intensity in a smoothed version of the input image (Gaussian smoothing with
σ=2mm), (ii) average intensity in a randomly sized box centered at the image
point, (iii) average intensity in a randomly sized box displaced by a random offset
from the image point, (iv) intensity difference between the local intensity and a
displaced box as in feature (iii), (v) intensity difference between two displaced
boxes as defined in (iii). These features can capture both local and long-range
contextual visual information. The range of the box sizes varies between 10
and 100mm. The displacements of boxes are drawn from an [0,100]mm interval.
Concerning the Gaussian update for the mean and covariance estimation within
the nodes, we choose κ = 10 and ν = 10.

Fig. 2(c) shows the progress along tree depth of different parts of the entropy
averaged over all trees. We make the following observations: i) the classification
part Hc progresses almost identical compared to standard classification; ii) the
regression part Hr|c decreases mainly after a tree depth of 10.
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Fig. 3. Segmentation errors over four different scores. DSC measures the agreement
between prediction and ground truth where 1 indicates perfect results. MSD, RMS-
SD, and HD determine the surface distance in millimeters between prediction and
ground truth where 0 indicates perfect results. Scores for classification forests are the
black bars on the left, scores for our joint classification-regression are the gray bars on
the right. All four scores indicate improved segmentation results for our approach.
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Fig. 4. From left to right: Slice from 3D input image, ground truth segmentation,
MAP estimate of standard classification forest, MAP estimate of our joint approach,
regressed distance maps for liver and left kidney obtained via Eq. (12).
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3.2 Results

We split the 80 CT scans in two non-overlapping sets with each 40 scans and then
perform a two-fold cross-validation. Hence, we can report overall segmentation
errors computed on all 80 scans. The quantitative results for individual organs
and the average performance are summarized in Fig. 3. Further qualitative re-
sults are shown in Fig. 4. We report errors w.r.t. ground truth annotations over
four different segmentation scores, namely Dice’s similarity coefficient (DSC)
measuring the agreement between label maps (also known as F-score combining
precision and recall into one value), and three surface distance measures. The
mean surface distance (MSD), root-mean-square surface distance (RMS-SD),
and Hausdorff distance (HD) are computed by determining the euclidean dis-
tances between segmentation boundaries extracted from the label maps. Note,
that medical scans are always metrically calibrated (while the actual physical
resolution between images varies). The unit of the last three errors is therefore
in millimeters. All four scores indicate an improved performance when using
our joint classification-regression approach. It is important to note, that both
methods have access to exactly the same feature space. The difference in the
segmentation results stems only from the modification of the training objective
function, which favors features in the greedy optimization which are yield both
class and spatial consistency in the splits.

In particular, the improvement w.r.t. RMS-SD and HD is important. Both
measures are sensitive to segmentation errors with larger distances. Here, the
regularization effect of the regression component helps in removing outliers. This
is confirmed by visual inspection of the qualitative results in Fig. 4. We observe
that the segmentations for our joint approach are spatially more consistent and
spurious results present in the standard classification are suppressed. We also
show exemplary distance maps for the liver and left kidney. The regressed dis-
tance at each image point is the mixture mean as defined in Eq. (12).

4 Conclusion

We propose joint classification-regression forests as a novel supervised learning
approach for the segmentation of spatially structured objects. Our experiments
demonstrate that joint optimization yields superior results with both class and
spatial consistency. This is achieved via a simple modification of the training
objective combined with efficient representation of shape regression at no ad-
ditional cost regarding annotations. A promising direction, where our method
could be of direct use, is learning application-specific energy functions – e.g. in
the context of random fields [12, 15]. Here, our joint model could be used to learn
strong unaries which exhibit spatial smoothness learned from the training data.
Other tasks, such as human pose estimation [5, 17] could also benefit from joint
learning. In conclusion, we believe our model adds an important component to
the framework of decision forests beyond the task of pixel-wise classification.



Joint Classification-Regression Forests 881

References

1. Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001)
2. Criminisi, A., Shotton, J., Konukoglu, E.: Decision Forests: A Unified Framework.

Foundations and Trends in Computer Graphics and Vision 7(2-3) (2011)
3. Ho, T.K.: Random Decision Forests. In: ICDAR, vol. 1, pp. 278–282 (1995)
4. Ho, T.K.: The Random Subspace Method for Constructing Decision Forests.

PAMI 20(8), 832–844 (1998)
5. Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kip-

man, A., Blake, A.: Real-Time Human Pose Recognition in Parts from a Single
Depth Image. In: CVPR, pp. 1297–1304 (2011)

6. Amit, Y., Geman, D.: Shape Quantization and Recognition with Randomized
Trees. Neural Computation 9, 1545–1588 (1997)

7. Criminisi, A., Shotton, J., Robertson, D., Konukoglu, E.: Regression Forests for
Efficient Anatomy Detection and Localization in CT Studies. In: Menze, B., Langs,
G., Tu, Z., Criminisi, A. (eds.) MICCAI 2010. LNCS, vol. 6533, pp. 106–117.
Springer, Heidelberg (2011)

8. Bosch, A., Zisserman, A., Munoz, X.: Image Classification Using Random Forests
and Ferns. In: ICCV (2007)

9. Maree, R., Geurts, P., Piater, J., Wehenkel, L.: Random Subwindows for Robust
Image Classification. In: CVPR (2005)

10. Caruana, R., Karampatziakis, N., Yessenalina, A.: An Empirical Evaluation of
Supervised Learning in High Dimensions. In: ICML, pp. 96–103 (2008)

11. Yin, P., Criminisi, A., Essa, I., Winn, J.: Tree-based Classifiers for Bilayer Video
Segmentation. In: CVPR, pp. 1–8 (2007)

12. Payet, N., Todorovic, S.: (RF)2 Random Forest Random Field. In: NIPS (2010)
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