
'$�
�

'$ Æ��

I N F O R M A T I K


 	

� �

Image-Based Reconstruction of
Spatially Varying Materials

Hendrik P. A. Lensch, Jan Kautz,
Michael Goesele, Wolfgang Heidrich,

Hans-Peter Seidel

MPI–I–2001–4-001 May 2001

FORSCHUNGSBERICHT RESEARCH REPORT

M A X - P L A N C K - I N S T I T U T
F Ü R

I N F O R M A T I K

Stuhlsatzenhausweg 85 66123 Saarbrücken Germany





Author’s Address

Hendrik P. A. Lensch, Jan Kautz, Michael Geosele,

Wolfgang Heidrich, Hans-Peter Seidel

Max-Planck-Institut für Informatik

Stuhlsatzenhausweg 85

66123 Saarbrücken

Germany

{lensch, kautz, goesele, hpseidel}@mpi-sb.mpg.de
heidrich@cs.ubc.ca



Keywords

Re�ectance & Shading Models, Physically Based Modeling, Computer Vi-

sion, Illumination, Image-Based Rendering, Rendering, Texture Mapping



1 Introduction
The use of realistic models for all components of image synthesis is a fundamen-
tal prerequisite for photorealistic rendering. This includes models for the geom-
etry, light sources, and cameras, as well as materials. As more and more visual
complexity is demanded, it is more and more often infeasible to generate these
models manually. Automatic and semi-automatic methods for model acquisition
are therefore becoming increasingly important.

In this paper we concentrate on the acquisition of realistic materials. In par-
ticular, we describe an acquisition process for spatially varying BRDFs that is ef-
ficient, reliable, and requires little manual intervention. Other methods described
in the literature (see Section 2 for an overview) are either focusing on homoge-
neous materials, or make assumptions on the type of material to be measured (e.g.
human faces). In our work, we measure spatially varying BRDFs without making
any additional assumptions. In particular, our contributions are

� a robust and efficient BRDF fitting process that clusters the acquired sam-
ples into groups of similar materials and fits a Lafortune model [11] to each
group,

� a method that projects every sample texel into a basis of BRDFs obtained
from the clustering procedure. This projection accurately represents the ma-
terial at that point and results in a compact representation of a truly spatially
varying BRDF.

We require only a relatively small number of high-dynamic range photographs
(about 20-25 images for one object), thereby speeding up the acquisition phase.

As a result of the fitting, clustering, and projection process, we obtain a com-
pact representation of spatially varying materials that is well suited for rendering
purposes (see Figure 9.1 for an example). The method works both for objects
consisting of a mixture of distinct materials (e.g. paint and silver, see Figure 9.3),
or for smooth transitions between material properties.
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In the following we first review some of the previous work in this area, before
we discuss the details of our own method. We start by describing the acquisition of
the measurement data (Section 3), explain the resampling of this data into our data
structures (Section 4), the BRDF fitting and material clustering steps (Sections 5
and 6), and finally a method for projecting the materials into a basis of BRDFs
(Section 7). Section 8 briefly describes our rendering method. In Section 9 we
present our results and then we conclude in Section 10.
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2 Related Work
The representation of real-world materials has recently received a lot of attention
in the computer graphics community. The approaches can be grouped into three
different categories: light field and image database methods with static illumina-
tion, dense sampling of the light and viewing directions to generate a tabular rep-
resentation of the BRDF, and finally the fitting of reflection models, often based
on a sparser set of samples. This last approach is the one we take and extend to
spatially varying BRDFs.

In the first category, there has been a number of approaches ranging from a
relatively sparse set of images with a geometric model [4] over the Lumigraph [7]
with more images and a coarser model to the light field [13] with no geometry
and a dense image database. Recently surface light fields [27, 18] have become
popular, which feature both a dense sampling of the directional information and
a detailed geometry. In contrast to these approaches, bidirectional texture func-
tions [1] also work for changes in the lighting conditions, although at very high
storage costs. In our work we use an algorithm similar to the function quantization
approach proposed by Wood et al. [27] to resample the image data into a compact
representation.

The traditional approach for dense sampling of reflectance properties is to use
specialized devices (gonioreflectometers), that position both a light source and a
sensor relative to the material. These devices can only obtain one sample for each
pair of light and sensor position and are therefore relatively slow.

More recently, image-based approaches have been proposed. These methods
are able to acquire a large number of samples at once. For example, Ward Lar-
son [25] uses a hemispherical mirror to sample the exitant hemisphere of light with
a single image. Instead of using curved mirrors, it is also possible to use curved
geometry to obtain a large number of samples with a single image. This approach
is taken by Lu et al [15], who assume a cylindrical surface, and Marschner et
al. [17] who obtain the geometry using a range scanner. Our method is similar
in spirit to the method of Marschner et al., but we are also dealing with spatially
varying BRDFs and we are fitting a reflection model rather than using a tabular
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form in order to achieve a compact representation.
A number of researchers have also described the fitting of reflection models

to the acquired sample data [2, 11, 22, 25, 28]. Of these methods, the ones by
Ward Larson [25] and Lafortune et al. [11] do not consider spatial variations.
Sato et al. [22] fit a Torrance-Sparrow model [24] to the data, and consider high-
frequency variations for the diffuse part but only per-triangle variations for the
specular part. This is also the case for the work by Yu et al. [28], which also takes
indirect illumination into account. In our work, we perform the measurements in
a darkened, black room, so that there is no indirect light coming from the outside
of the object. Indirect light within the object is assumed to be negligible, which
excludes the use of objects with extreme concavities.

Debevec et al. [2] describe a method for acquiring the reflectance field of hu-
man faces. In one part of their work they fit a specialized reflection model for
human skin to the measured data (consisting of about 200 images). Both specular
and diffuse parameters of the reflection model can vary rapidly across the surface,
but other parameters like the de-saturation of the diffuse component at grazing
angles are constant and only apply to human skin. In our work we try to avoid
making assumptions on the kind of material we are measuring.

Several different representation have been used for fitting BRDF data. In ad-
dition to the models used for measured data (e.g. Koenderink et al. [10], Lafor-
tune [11], Torrance-Sparrow [22, 28], Ward [25]), Westin et al. [26] have used
spherical harmonics for projecting simulated BRDF data. In our work we use the
Lafortune model because it is compact, well suited for optimization algorithms,
and capable of representing interesting BRDF properties such as off-specular
peaks and retro-reflection.
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3 Acquisition
We obtain the 3D models with a structured light 3D scanner and a computer to-
mography scanner both generating dense triangle meshes. The triangle meshes
are smoothed [5, 9], manually cleaned, and decimated.

All images are acquired in a measurement lab using a professional digital cam-
era. An HMI metal halide bulb serves as point light source for the BRDF mea-
surements. The interior of the photo studio is covered with dark and diffusely
reflecting felt to reduce the influence of the environment on the measurements.

Several views of each object are captured with different camera and light
source positions. For each view we acquire three sets of images: two images
to recover the light source position, one image of the object’s silhouette to register
the 3D model with the images. We then acquire a high dynamic range image [3]
of the object lit by the point light source by taking a series of photographs with
varying exposure time.

In addition, a series of calibration images of a checkerboard pattern is taken
whenever the lens settings are changed. The calibration method proposed by
Zhang [29] is used to recover the intrinsic camera parameters. Another high dy-
namic range image of a gray card with known camera and light position is taken
in order to compute the brightness of the light source.

To register the images with the 3D model we use a silhouette-based method [12]
that yields the camera position relative to the object. The light source position is
triangulated based on the reflections in a number of mirroring steel balls. The
details of that approach will be described elsewhere.
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4 Resampling of Radiance Values
After acquisition of the geometric model, high-dynamic range image recovery,
and registration, it is necessary to merge the acquired data for further processing.
For each point on the model’s surface we collect all available information using
two data structures.

The first one is a so calledlumitexeldenoted byL, which is generated for every
visible surface point. Each lumitexel stores the geometric and photometric data of
one point, i.e. its position~x and the normal̂n in world coordinates1. Linked to the
lumitexel is a list of radiance samplesRi, each representing the outgoing radiance
r of the surface point captured by one image plus the direction of the lightû and
the viewing direction̂v. û and v̂ are both given in the local coordinate frame of
the surface point spanned bŷn and a deterministically constructed tangent and
bi-normal.

A lumitexel can be seen as a very sparsely sampled BRDF. We define the error
between a given BRDFfr and a lumitexelL as:

Efr(L) =
1

jLj

X

Ri2L

s � I(fr(ûi; v̂i)ui;z; ri) +D(fr(ûi; v̂i)ui;z; ri); (4.1)

where jLj stands for the number of radiance samples linked to the lumitexel,
I(r1; r2) is a function measuring the intensity difference, andD(r1; r2) measures
the color-difference. We introduce the weights, to be able to compensate for noisy
data (e.g. a slightly wrong normal resulting in a wrong highlight). We always set
s � 1. Please note that sincer represents radiance and not reflectance, the BRDF
has to be multiplied by the cosine between the normal and the local light direction,
which isuz.

1hats denote unit vectors and arrows denote vectors of arbitrary length.
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Figure 4.1:The correspondence between pixel position and point position~x on
the object is computed by tracing a ray through the image onto the object. At
every~x a local normal̂n can be computed from the triangle’s vertex normals.

4.1 Assembling Lumitexels

Collecting all radiance samples for a lumitexel requires a resampling of the input
images for the particular point on the surface. At first, one has to determine the
set of surface points for which a lumitexel should be generated. In order to obtain
the highest quality with respect to the input images, the sampling density of the
surface points must match that of the images.

Every triangle of the 3D model is projected into each image using the previ-
ously determined camera parameters. The area of the projected triangle is mea-
sured in pixels and the triangle is assigned to the imageIbest in which its projected
area is largest. For every pixel within the triangle inIbest a lumitexel is generated.

The position~x of the surface point for the lumitexel is given by the intersection
of the ray from the camera through the pixel with the mesh (see Figure 4.1). The
normaln̂ is interpolated using the triangle’s vertex normals.

A radiance sampleRj is now constructed for each imageIj in which ~x is
visible from the camera position and the surface point is lit by the point light
source. The vectorŝuj andv̂j can be directly calculated. The associated radiance
is found by projecting~x onto the image plane and retrieving the colorcj at that
point using bilinear interpolation. Note, that forIbest no bilinear interpolation is
necessary andcbest can be obtained without resampling since~x exactly maps to
the original pixel by construction. The radiancerj of the radiance sampleRj

is obtained by scalingcj according to the brightness of the light source and the
squared distance from the light source to~x.
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5 BRDF Fitting
In this section we will first detail the Lafortune BRDF model [11] that we use
to fit our given lumitexels. Then we will explain how this fit is performed using
Levenberg-Marquardt optimization.

5.1 Lafortune Model

BRDFs are four-dimensional functions that depend on the local viewing and light
direction. The dependence on wavelength is often neglected or simply three dif-
ferent BRDFs are used for the red, green, and blue channel. We use the later
approach.

Instead of representing a measured BRDF as a 4D table the measured samples
are in our case approximated with a parameterized BRDF. This has two advan-
tages. Firstly, the BRDF requires much less storage since only the parameters are
stored and secondly, we only require a sparse set of samples that would not be
sufficient to faithfully represent a complete tabular BRDF.

Many different BRDF models have been proposed (e.g. [24, 25]) with different
strengths and weaknesses. Our method may be used together with any parameter-
ized BRDF model. We have chosen the computationally simple but general and
physically plausible Lafortune model [11] in its isotropic form:

fr(û; v̂) = �d +
X

i

[Cx;i(uxvx + uyvy) + Cz;iuzvz]
Ni; (5.1)

This model uses only a handful of parameters.û and v̂ are the local light and
viewing directions,�d is the diffuse component,Ni is the specular exponent, the
ratio betweenCx;i andCz;i indicates the off-specularity of lobei of the BRDF.
The sign ofCx;i makes the lobei either retro-reflective (positiveCx;i) or forward-
reflective (negativeCx;i). The albedo of the lobei is given by the magnitude of the
parametersCx;i andCz;i. From now on we will denote the BRDF withfr(~a; û; v̂),
where~a subsumes all the parameters of the model, i.e.�d,Cx;i,Cz;i, andNi. In the
case of only one lobe~a is 12-dimensional (4 parameters for each color channel).
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5.2 Non-Linear Fitting

The Lafortune BRDF is non-linear in its parameters, which means that we have
to use a non-linear optimization method to fit the parameters to the given data.
As in the original work by Lafortune et al. [11], we use the Levenberg-Marquardt
optimization [20] to determine the parameters of the Lafortune model from our
measured data. This method has proven to be well-suited for fitting non-linear
BRDFs.

Instead of BRDF samples we use radiance samples as our input data, which
means we are not directly fitting the BRDFfr(~a; û; v̂) but the radiance values
fr(~a; û; v̂)uz to the radiance samplesRi in order to avoid the numerically prob-
lematic division byuz.

We also ensure that the fitting process works well and does not get stuck in
undesired local minima by initializing the fitting routine with parameters that cor-
respond to an average BRDF.

The Levenberg-Marquardt optimization outputs not only the best-fit parameter
vector~a, but also a covariance matrix of the parameters, which provides a rough
idea of the parameters that could not be fitted well. This information is used in
our splitting and clustering algorithm, as explained in the next section.
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6 Clustering
In this section we will explain how we cluster the given lumitexels so that each
clusterCi corresponds to one material of the object. Given a set of BRDFsffig,
each clusterCi consists of a list of all the lumitexelsLi for which fi provides
the best approximation. Determining these clusters is a problem closely related
to vector quantization [6] andk-means clustering [14, 16], both of which work
in affine spaces. Unfortunately, we do not have an affine space when clustering
BRDF samples, and we are therefore employing a different method.

The general idea is to first fit a BRDFfr to an initial cluster containing all
the data. Then we generate two new BRDF modelsf1 andf2 using the covariance
matrix from the fit (explained in more detail below) representing two new clusters.
The lumitexelsLi from the original cluster are then distributed according to the
distanceEf1(Li) andEf2(Li) into the new clusters. We then recursively choose
another cluster, split it, and redistribute the lumitexels and so on. This is repeated
until the desired number of materials is reached, as detailed in Section 6.4.

6.1 Lumitexel Selection

The fitting procedure described in Section 5 performs a relatively large number
of operations per radiance sample. Thus, it is expensive to fit a BRDF using all
lumitexels (and all radiance samples contained in the lumitexels) generated by the
assembling procedure. Instead, it is sufficient to consider only a few thousand
lumitexels at the beginning. Later on, we increase the number for an accurate fit.

A first, naive approach to choosing this subset for fitting selects everyn-th
lumitexel regardless of its reliability or possible contribution. However, as stated
in [28] and [23], for a robust estimation of the specular part of a BRDF it is very
important to include radiance samples within the specular lobe of the material.
Unfortunately, these brightest pixels statistically also carry the largest error.

Following these ideas we select more lumitexels in areas where a highlight is
likely to occur. These areas are determined by the surface normal, the light source
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position and a synthetic BRDF with a broad highlight.

6.2 Splitting

Fitting just a single BRDF to the initial cluster of course is not sufficient if the
concerned object consists of more than one material. In order to decide which
cluster to split, we compute the following error for all clustersCj:

E(Cj) =
X

Li2Cj

Efr(Li) 8Cj: (6.1)

The clusterCj with the largest error will be split into two new clusters each with a
different BRDF. Further materials can be extracted by further splitting the clusters.

But how do we split a cluster? The BRDF fitted to a cluster represents the
average material of the lumitexels in that cluster. Fitting the BRDF using the
Levenberg-Marquardt algorithm (see Section 5) will also provide us with the co-
variance matrix of the samples. The eigenvector belonging to the largest eigen-
value of this matrix represents the direction in which the variance of the samples
is highest, and is therefore a good choice for the direction in which the parameter
space is to be split.

Let ~a be the fitted parameter vector of the BRDFf(~a; û; v̂) for clusterC. ~e
denotes the eigenvector belonging to the largest eigenvalue� of the corresponding
covariance matrix. We then construct two new BRDFs:

f1(~a+ ��~e; û; v̂) and f2(~a� ��~e; û; v̂); (6.2)

where� is a scaling factor to adapt� to a moderate value. Two new clustersC1

andC2 are generated by distributing every lumitexelLi of clusterC either toC1

if Ef1(Li) < Ef2(Li), or toC2 otherwise. In the next step,f1 andf2 are fitted to
best approximate the lumitexels in the new clusters.

6.3 Reclustering

Because the parameters of the BRDF fitted to a multi-material cluster are not
necessarily the center of the parameters of the contained materials and due to
improper scaling of� and other reasons like noise, the performed split will not
be optimal and the two new clusters may not be clearly separated, e.g. in the case
of two distinct materials some lumitexels belonging to one material may still be
assigned to the cluster of the other material.

A better separation can be achieved by iterating the procedure of distributing
the lumitexelsLi based onEf1(Li) andEf2(Li), and then fitting the BRDFs again.
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Figure 6.1:Split-recluster-fit process (SRF). The initial BRDF is split into two
new BRDFs using the covariance matrix. The lumitexels from the initial cluster
are distributed according to their distance to the BRDFs. Then we fit the BRDF
again to each new cluster. We now iterate the reclustering and fitting until the
resulting BRDFs and cluster have converged.
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Figure 6.2:The complete splitting and reclustering algorithm including the global
reclustering, which is similar to the recluster-fit iteration, only that all lumitexels
are distributed among all clusters.
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The iteration stops when the number of lumitexels in the generated cluster does
not change any more. In our experiments this reclustering operation leads to a
clear separation of materials and is done after each split. The split-recluster-fit
(SRF) process is visualized in Figure 6.1.

When more than two clusters have been generated by successive binary splits
and a new material is clearly distinguished, it is helpful to clean the other clusters,
which were not involved in the last split, from all lumitexels belonging to the
newly discovered material. This can be done in a global reclustering step by
redistributing all initial lumitexelsLi to the clusterCj with

j = argmin
k

Efk(Li): (6.3)

And again, the BRDFs of all involved clusters have to be refitted. This global
reclustering is repeated several times to clearly separate the materials. We stop
this iteration when the percentage of change is smaller than some�, or a maximum
number of iterations is reached. The complete splitting and reclustering algorithm
is depicted in Figure 6.2.

6.4 Termination of the Splitting Process

We still have to decide when to stop the splitting process. To do this we require
the user to input the estimated number of materialsjM j. We stop the splitting
and clustering process after2jM j � 1 clusters have been created. We use this ad-
ditional number of clusters to compensate for the often noisy and not absolutely
accurate radiance samples (e.g. slightly wrong normals, noise in the images, mis-
registration, etc.).

This means that we do not have a one to one mapping between actual materials
and clusters. This is not crucial since the projection, which we will present in the
next section, uses a weighted sum of several BRDFs to accurately represent every
lumitexel.
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Figure 6.3: The clustering process at work. In every image a new cluster was
created. The object was reshaded using only the single BRDFs fitted to each
cluster before the projection into a basis of multiple BRDFs.
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7 Projection
As can be seen in Figure 6.3 the representation of an object by a collection of only
a few clusters and BRDFs make the virtual object look flat because real surface
exhibit changes in the reflective properties even within a single material. These
changes cannot be represented by a single BRDF per cluster since all lumitexels
within the cluster would be assigned the same BRDF parameters.

To obtain truly spatially varying BRDFs we must find a specific BRDF for
each lumitexel. But the sparse input data does not allow to fit a reliable or even
meaningful BRDF to a single lumitexel because each lumitexel consists of only
a few radiance samples. In addition, you would need to acquire a highlight in
every lumitexel to reliably determine the specular part, as already explained in
Section 6.1.

The solution is to project each lumitexel into a basis of BRDFs (see Sec-
tion 7.1). The BRDFf�i of a lumitexelLi is represented by the linear combination
of m BRDFsf1; f2; : : : ; fm:

f�i = t1f1 + t2f2 + : : :+ tmfm; (7.1)

with t1; t2; : : : ; tm being positive scalar weights. This forces the space of solutions
(i.e. the possible BRDFs for a pixel) to be plausible since the basis BRDFs are
already reliably fitted to a large number of radiance samples.

Given the BRDFs, the weights have to be determined for each lumitexel. Let
rj=1:::jLij be the radiance values of the lumitexelLi. The weights are found by
a least square optimization of the following system of equations using singular-
value decomposition:
0
BBB@

r1
r2
...

rjLij

1
CCCA =

0
BBB@

~f1(û1; v̂1) ~f2(û1; v̂1) � � �

~fm(û1; v̂1)
~f1(û2; v̂2) ~f2(û2; v̂2) � � �

~fm(û2; v̂2)
...

...
. . .

...
~f1(ûjLij; v̂jLij)

~f2(ûjLij; v̂jLij) � � �

~fm(ûjLij; v̂jLij)

1
CCCA

0
BBB@

t1
t2
...
tm

1
CCCA ;

(7.2)
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with ~f(û; v̂) := f(û; v̂)uz. Compared to the non-linear fitting of BRDF model
parameters (see Section 5.2), we now have a linear problem to solve with a smaller
degree of freedom and even more constraints. Above equation shows only the
system for one color channel, whereas the weightsti have to be the same for all
channels. In contrast to this, BRDF parameters would require a distinct set of
parameters per channel.

The least square solution may contain negative values for sometk. But neg-
ative weights may result in an oscillating BRDF that represents only the given
radiance sample accurately but will produce unpredictable values for other view-
ing and light directions, we therefore settk to zero and compute another least
square solution for the remainingt’s, until all t’s are positive.

7.1 Basis BRDFs

The next question is how to determine the set of basis BRDFs. Since the changes
of the surface properties within one material tend to be small, a distinct set of basis
BRDFs is assigned to each cluster.

Finding the optimal set of BRDFsf1; f2; : : : ; fm, that minimizes the error

E�(C) =
1

jCj

X

Li2C

Ef�i(Li) (7.3)

for a clusterC, wheref�i denotes the least square projection of the lumitexel
Li as defined in Equation 7.1, is a problem of principal function analysis (PFA)
(see [27]). Principal function analysis is closely related to principal component
analysis (PCA) with the important difference that functionsfm are optimized in-
stead of vectors. Unfortunately, the PFA does not reduce to a simple eigenvalue
problem as PCA does. To minimizeE�(C), we again perform a least square op-
timization using the Levenberg-Marquardt method, this time fittingm BRDFs si-
multaneously. Within each iteration we recompute the projectionf�i of lumitexel
Li into the currently estimated basis.

As for every optimization problem the initial parameters (BRDFs) are quite
important. For a given clusterC, we use the following BRDFs as a basis:

� fC , the fitted BRDF of clusterC,

� the BRDFs of spatially neighboring clusters to match lumitexels at cluster
boundaries,

� the BRDFs of similar clusters with respect to the material,

� and two BRDFs based onfC , one with slightly increased and one with de-
creased diffuse component�d and exponentN .
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In our experiments it turned out that this initial basis together with the projec-
tion already produces very good results with small errors. In most cases the PFA
computed almost negligible changes to the initial BRDFs. This is to be expected
because the initially chosen basis constructed through splitting and clustering al-
ready approximates the material properties quite well.
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8 Rendering
As explained in Section 4.1 we know the position of every lumitexel, as well as
the triangle it belongs to and the 2D coordinates within that triangle.

This information can then be used to generate an index texture for the full
object. For every texel, that texture contains an index to the cluster it belongs to.
Then we generate a weight texture map for every cluster that stores the weights
resulting from the projection into the basis BRDFs. The parameters for the basis
BRDFs of every cluster are stored in a small table.

Raytracing such an object is very simple, since for every point on the object
that is raytraced we can simply look up the cluster the texel belongs to. Then we
evaluate the basis BRDFs for the local light and viewing direction and compute
the weighted sum using the weight texture map. So rendering basically reduces to
evaluating a few BRDFs per pixel. Another big advantage of this representation
is that mip-mapping can easily be used. Since the weighted sum is just a linear
operation, the weights of neighboring texels can simply be averaged to generate
the next coarser mip-map level.

If the original images are of high resolution and hence the object is sampled
very densely, point sample rendering using forward projection is a viable alterna-
tive. It completely avoids the generation of texture maps and the resulting data
can be used with almost no further processing. This method is used to display our
results.
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9 Results
We applied our algorithm to three different objects consisting of different materi-
als with varying reflection properties in both the diffuse and the specular part. The
model of the angels was generated by extracting an isosurface of a computer to-
mography scan. The geometry of all other models was captured using a structured
light 3D scanner. Some statistics about the meshes and the number of acquired
views are listed in Table 9.1. Acquisition of 20 views (each needing about 15
photographs) takes approx. 2.5h. The high dynamic range conversion and the reg-
istration with the 3D model takes about 5h but is a completely automated task.
The clustering and the final projection takes about 1.5h.

In Figure 6.3 you can see how five successive split operations partition the lu-
mitexels of the bird into its five materials. The splits were performed as described
in Section 6. Only the per-cluster BRDFs determined by the clustering process
are used for shading, making the object look rather flat. After performing the pro-
jection step every lumitexel is represented in a basis of four BRDFs, now resulting
in a much more detailed and realistic appearance, see Figure 9.2.

The bust in Figure 9.1 shows another reconstructed object with very different
reflection properties. The bronze look is very well captured.

In Figure 9.3 you can see a comparison between an object rendered with an
acquired BRDF (using the projection method) and a photograph of the object.
You can see that they are very similar, but differences can be seen in highlights
and in places where not enough radiance samples were captured. Capturing more
samples will increase the quality. Furthermore our rendering algorithm does not
include shadow computation, e.g. making the grooves in the hair look flat.

Another difference is due to the fact that the diffuse color of one lumitexel
may not be represented in any of the constructed clusters because the number of
lumitexels belonging to the same material can be so small that they nearly vanish
in the mass of lumitexels of the cluster they are currently assigned to. This effect
can for example be observed at the mouth of the larger angel which in reality
exhibits a much more saturated red, see Figure 9.3.

In Table 9.1 we list RMS errors computed between all the radiance samples
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model T V L R C B 1-RMS C-RMS P-RMS F-RMS

angels 47000 27 1606223 7.6 9 6 .2953 .1163 .1113 .1111
bird 14000 25 1917043 6.3 5 4 .1513 .0627 .0387 .0387
bust 50000 16 3627404 4.2 3 4 .1025 .0839 .0583 .0581

Table 9.1:This table lists the number of triangles (T) of each model, the number
of views (V) we used to reconstruct the spatially varying BRDFs, the number
of acquired lumitexels (L) and the average number of radiance samples (R) per
lumitexel, the number of partitioned material clusters (C), the number of basis
BRDFs (B) per cluster, the RMS error for a single average BRDF (1-RMS), the
RMS error when using per-cluster BRDFs, the RMS error after projecting every
lumitexel into the basis of BRDFs, and finally the RMS error after doing a PFA
on the basis BRDFs and projecting every lumitexel into the new basis.

of a model and the reconstructed BRDFs. You can see that the error considerably
decreases when going from one average BRDF to per-cluster BRDFs and then to
per-pixel BRDFs (using projection). As already mentioned the PFA only slightly
changes the RMS error.

Generally it can be said that for all the models only a few clusters were needed
to accurately represent all the materials since the projection takes care of material
changes. In our experiments even Lafortune BRDFs consisting of a single lobe
were sufficient to form good bases for the clustering and projection.

The projection method also compensates for imprecise normals, and hence no
refitting of the normals is needed. Using exactly reconstructed normals for exam-
ple by applying a shape-from-shading approach such as the one by Rushmeier et
al. [21] may yield even better results.

Due to the lack of a test object that had a single base color but varying specu-
larity, we experimented with artificially generated data. The tests proved that our
clustering algorithm is also able to clearly distinguish materials that have the same
color but different specularity, even when noise was introduced in the data.
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Figure 9.1:A bronze bust rendered
with a spatially varying BRDF,
which was acquired with our re-
construction method.

Figure 9.2:This image shows the bird with
the spatially varying BRDF determined by
projecting each lumitexel into a basis of
BRDFs. Note the subtle changes of the
materials making the object look realistic.
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Figure 9.3: Left side: Photograph of model. Right side: Model with acquired
BRDF rendered from nearly the same view with similar lighting direction. The
difference in the hair region is due to missing shadow computations during ren-
dering.
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10 Conclusions and Future Work
We have presented an algorithm and demonstrated a system for reconstructing
a high-quality spatially varying BRDF from complex solid objects using only a
small number of images. This allows for accurately shaded, photorealistic render-
ing of these objects from new viewpoints and under arbitrary lighting conditions.

The output of our algorithm also allows to modify the object’s geometry while
preserving material properties, since the fitted BRDFs are represented on a per-
texel basis and do not change with the geometry.

Both the number of input views required by our algorithm and the size of the
output data are very small compared to previous approaches for representing real-
world objects, like surface light fields or reflection fields which needed up to 600
images [27].

We have demonstrated the quality and accuracy of our approach, by applying
it to different objects. The resulting spatially varying BRDFs accurately represent
the original materials.

Until now interreflections within the object are not considered, but it should be
easy to remove the effects of interreflections by simulating secondary reflection
using the results obtained by the presented algorithm, or e.g. using techniques
from [19].

We also want to investigate the possibility to do hardware accelerated render-
ing with the spatially varying BRDFs. Since our data can be represented as tex-
ture maps and the Lafortune model is computationally fairly simple, this should
be easily possible, e.g. using techniques from [8] or from [27].

23



11 Acknowledgements
We would like to thank Kolja Kähler, Christian Rössel, Mario Botsch and the IMP
Erlangen for acquiring the 3D meshes used in this paper. Thanks also to Hartmut
Schirmacher for proofreading and valuable discussions.

24



Bibliography
[1] K. Dana, B. van Ginneken, S. Nayar, and J. Koenderink. Reflectance and

texture of real-world surfaces.ACM Transactions on Graphics, 18(1):1–34,
January 1999.

[2] P. Debevec, T. Hawkins, C. Tchou, H.-P. Duiker, W. Sarokin, and M. Sagar.
Acquiring the Reflectance Field of a Human Face. InProc. SIGGRAPH,
pages 145–156, July 2000. ISBN 1-58113-208-5.

[3] P. Debevec and J. Malik. Recovering High Dynamic Range Radiance Maps
from Photographs. InProc. SIGGRAPH, pages 369–378, August 1997.

[4] P. Debevec, C. Taylor, and J. Malik. Modeling and rendering architecture
from photographs: A hybrid geometry- and image-based approach. InProc.
SIGGRAPH, pages 11–20, August 1996.

[5] M. Garland and P. Heckbert. Surface Simplification Using Quadric Error
Metrics. InProc. SIGGRAPH, pages 209–216, August 1997.

[6] A. Gersho and R. Gray. Vector Quantization and Signal Compression.
Kluwer Acad. Publishers, 1992.

[7] S. Gortler, R. Grzeszczuk, R. Szelinski, and M. Cohen. The Lumigraph. In
Proc. SIGGRAPH, pages 43–54, August 1996.

[8] J. Kautz and H.-P. Seidel. Towards Interactive Bump Mapping with
Anisotropic Shift-Variant BRDFs. InEurographics/SIGGRAPH Hardware
Workshop, pages 51–58, August 2000.

[9] L. Kobbelt. Discrete fairing. InProc. of the 7th IMA Conf. on the Mathe-
matics of Surfaces, pages 101–131, 1996.

[10] J. Koenderink, A. van Doorn, and M. Stavridi. Bidirectional Reflection Dis-
tribution Function expressed in terms of surface scattering modes. InProc.
4th Europ. Conf. on Computer Vision, pages 28–39, 1996.

25



[11] E. Lafortune, S. Foo, K. Torrance, and D. Greenberg. Non-Linear Approx-
imation of Reflectance Functions. InProc. SIGGRAPH, pages 117–126,
August 1997.

[12] H. Lensch, W. Heidrich, and H.-P. Seidel. Automated Texture Registration
and Stitching for Real World Models. InPacific Graphics ’00, pages 317–
326, October 2000.

[13] M. Levoy and P. Hanrahan. Light Field Rendering. InProc. SIGGRAPH,
pages 31–42, August 1996.

[14] S. Lloyd. Least squares quantization in PCM.IEEE Trans. on Information
Theory, IT-28:129–137, 1982.

[15] R. Lu, J. Koenderink, and A. Kappers. Optical Properties (bidirectional
reflectance distribution functions) of velvet.Applied Optics, 37(25):5974–
5984, September 1998.

[16] J. MacQueen. Some methods for classification and analysis of multivariate
observations. InProc. of the 5th Berkeley Symp. on Mathematical Statistics
and Probability, volume 1, 1967.

[17] S. Marschner, S. Westin, E. Lafortune, K. Torrance, and D. Greenberg.
Image-based BRDF Measurement Including Human Skin. In10th Euro-
graphics Workshop on Rendering, pages 131–144, June 1999.

[18] G. Miller, S. Rubin, and D. Ponceleon. Lazy decompression of surface light
fields for precomputed global illumination. In9th Eurographics Workshop
on Rendering, pages 281–292, June 1998.

[19] S. Nayar, K. Ikeuchi, and T. Kanade. Recovering Shape in the Presence
of Interreflections. InIEEE Int. Conf. on Robotics and Automation, pages
1814–1819, 1991.

[20] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery.Numerical Recipes
in C: The Art of Scientific Computing (2nd ed.). Cambridge University Press,
1992. ISBN 0-521-43108-5.

[21] H. Rushmeier, G. Taubin, and A. Guéziec. Applying Shape from Lighting
Variation to Bump Map Capture. In8th Eurographics Workshop on Render-
ing Workshop, pages 35–44, June 1997.

[22] Y. Sato, M. Wheeler, and K. Ikeuchi. Object Shape and Reflectance Model-
ing from Observation. InProc. SIGGRAPH, pages 379–388, August 1997.

26



[23] H. Schirmacher, W. Heidrich, M. Rubick, D. Schiron, and H.-P. Seidel.
Image-Based BRDF Reconstruction. InProc. of the 4th VMV Conference,
pages 285–292, November 1999.

[24] K. Torrance and E. Sparrow. Theory for off-specular reflection from rough-
ened surfaces.Journal of Optical Society of America, 57(9), 1967.

[25] G. Ward Larson. Measuring and Modeling Anisotropic Reflection. InProc.
SIGGRAPH, pages 265–272, July 1992.

[26] S. Westin, J. Arvo, and K. Torrance. Predicting Reflectance Functions From
Complex Surfaces. InProc. SIGGRAPH, pages 255–264, July 1992.

[27] D. Wood, D. Azuma, K. Aldinger, B. Curless, T. Duchamp, D. Salesin, and
W. Stuetzle. Surface Light Fields for 3D Photography. InProc. SIGGRAPH,
pages 287–296, July 2000.

[28] Y. Yu, P. Debevec, J. Malik, and T. Hawkins. Inverse Global Illumination:
Recovering Reflectance Models of Real Scenes From Photographs. InProc.
SIGGRAPH, pages 215–224, August 1999.

[29] Z. Zhang. Flexible Camera Calibration By Viewing a Plane From Unknown
Orientations. InInt. Conf. on Computer Vision, pages 666–673, September
1999.

27


