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Abstract

Both High Dynamic Range images and their tone
mapped correspondents contain relative luminance values
which have to be mapped on a scale of available gray levels
of a display. Such mapping includes brightness adjustment,
which has a direct impact on the final image appearance
and the observers’ assessment of image quality. We conduct
a psychophysical experiment in which subjects adjust image
brightness to match their preference. We observe that the
brightness choice is consistent across subjects and is pri-
marily affected by image content. We investigate popular
methods for automatic brightness adjustment and show a
significant inaccuracy for a group of images. The incorrect
brightness adjustment degrades in these cases perceived im-
age quality. We identify characteristics of images that are
highly correlated with the subjects’ choice of brightness and
develop an improved model for the brightness adjustment.

1. Introduction

Digital images are almost never displayed at the same
brightness levels as the original scenes. This is because
output media, regardless whether it is a display or a print,
can produce only limited range of brightness levels. There-
fore brightness adjustment is a necessary step when visual-
izing images. This is especially apparent for high dynamic
range (HDR) images, whose range of luminance values of-
ten exceeds that of a display. However, the brightness ad-
justment is equally important when visualizing standard low
dynamic range (LDR) contents, particularly when their con-
trast range is lower than offered by a display device. Fur-
thermore, the adjustment of brightness is in fact not only a
matter of choosing how bright an image should look, but

often involves decisions about whether at the cost of better
visibility of certain areas, other areas should loose details by
clipping the brightest and the darkest pixels. Consequently,
the brightness adjustment has a high impact on the image
appearance and communicated information, and directly in-
fluences observers in their judgment of image quality.

Brightness adjustment usually requires mapping a par-
ticular image luminance (HDR) or luma (LDR) value to a
selected brightness of a display, while the rest of pixel val-
ues are mapped according to a predetermined tone function.
In this paper we do not consider the problem of selecting a
proper shape of tone curve, which is a domain of tone map-
ping. Instead, we investigate how people manually adjust
image brightness and whether this process can be made au-
tomatic. This work validates and attempts to improve pop-
ular brightness estimation algorithms, which are important
part of every tone mapping operator.

Although, it may seem that the choice of image bright-
ness is a matter of individual subjective preferences and
style, previous study shows that brightness adjustment is
mostly determined by image content [16]. In this paper, we
further investigate subjective choices of preferred bright-
ness over a set of images with varied contents and dynamic
range. The purpose of this study is twofold: to determine
how consistent people are when selecting preferred bright-
ness levels, and to verify whether it is possible to automati-
cally determine the best brightness adjustment based on im-
age characteristic.

2. Related Work

The problem of image brightness adjustments has its ori-
gins in photography, printing, television, and has recently
evoked new interest in tone mapping. The major purpose
of brightness (exposure) adjustment in photography is map-
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ping the most important part of the scene to the middle den-
sities of a film or the middle code value of a digital sensor,
which offer the best preservation of contrast [7]. The most
important brightness adjustment is in fact performed by a
photographer, when he or she selects the point of interest,
which the camera uses for exposure control. Analog pho-
tography offers limited possibilities for image processing
inside a camera and therefore the final brightness adjust-
ment is performed when a print is developed [1]. Digital
cameras must produce acceptable images immediately after
an image is taken, therefore they often employ a sophisti-
cated image enhancement algorithms. However, the details
of these algorithms are usually trade secrets and very scarce
information can be found from publicly available publica-
tions. Such algorithms often involve the computation of
an image key value, which is used to preserve the overall
dark or bright appearance of the original scene and to pro-
duce better distinction between night and day-light scenes
[6, 14]. The key value is usually computed from image his-
togram and it indicates whether an image is overall dark,
bright or medium gray.

In television brightness adjustment primarily compen-
sates for the glare on a TV screen, which is caused by am-
bient light [12, p. 25]. Brightness setting of a TV screen
changes the display black level, which is the luminance
emitted for black color. High-end displays offer automatic
brightness compensation for ambient light, which is con-
trolled by the luminance sensor installed in a TV display.

Hard copy printing usually involves mapping a reference
white, which is the color that should be perceived as a white
diffuse surface, to the maximum lightness (relative bright-
ness) of the output medium, which is usually white paper.
However, there is no reliable way to estimate which image
color corresponds to the reference white, especially for the
scenes that contain color brighter than that reference, for
example specular highlights or light sources.

The tone mapping in computer graphics originally set
different goals than tone mapping in photography. Tumblin
and Rushmeier [15] attempted to design an algorithm pro-
ducing images that would match the appearance of the orig-
inal scenes. Such appearance match is not only difficult to
realize because of the limited color reproduction capabili-
ties of displays, but is also not always desirable. Sometimes
the images that differ in the appearance from the original
scenes are preferred to images that give a perfect match. In
this respect, our goal is closer to the photographic image
reproduction, as we try to find the most preferred images,
rather than those that are the closest to the original scenes.

The problem of brightness adjustment for computed gen-
erated scenes is more difficult than for photographs, as there
is no photographer that could choose the appropriate points
of interest (focus and light measurement point) or adjust ex-
posure settings. In practice, tone mapping operators used in

computer graphics involve three different strategies of map-
ping scene luminance to the display brightness: with respect
to a diffuse surface perceived as white, or to a middle gray
surface, or to a black surface. These strategies are often
grounded in perceptual theories assuming that such map-
ping is performed by the human visual system. Not only
the psychophysical findings are often contradictory as to
which of them is actually the correct one, but also a good
estimation of which luminance level corresponds to a white
diffuse surface is not trivial. We review the actual algo-
rithms used in tone mapping in Section 5 and compare their
performance with our experimental data.

Yoshida et al. [16] studied how people adjust brightness,
contrast and color saturation to produce the most pleasing
images on a display. Our study further refines the results of
this work, by limiting the considerations to brightness and
employing a larger number of images and subjects.

This work as well as [16] demonstrates an alternative
approach to design of tone mapping operators. We clearly
state our goal, which is the most preferred brightness adjust-
ment, we collect experimental data and finally we fit math-
ematical models to them. We do not make any assumptions
about correctness of a particular visual model and work only
on the data collected in the experiment.

3. Experiment Design

We conducted an experiment in order to investigate how
people manually adjust brightness in digital images. The
subjective adjustments are later compared with automatic
methods of brightness adjustments.

3.1. Subjects

A group of 30 people participated in the experiment.
Their age was between 21 and 36, with the average of 24
years old. There were 8 females and 22 males in the group.
They had normal or corrected to normal visual acuity. Most
of the participants were students who completed a basic
computer graphics course. None of them was aware of ei-
ther the purpose or technical details of the experiment.

3.2. Stimuli

We used a set of 33 HDR images (see Figure 1), includ-
ing 22 outdoor pictures (16 taken in a daytime, and 6 in the
evening or at night) and 9 indoor pictures.

The images were displayed on the Miro TD490 19” LCD
display. Its minimum and maximum luminance levels were
2 and 217.8 cd/m2 respectively. Calibration of the monitor
involved measuring its luminance response curve with the
Minolta LS-100 luminance meter. The luminance was mea-
sured in a well illuminated room (300 lux), at the monitor
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Figure 1. Set of HDR images used in the experiment. Their dynamic range was between 1.68 and
3.85 in log10 units. Images were tone mapped using the photographic tone reproduction [14].

brightness and contrast settings of 80%, and color tempera-
ture set to warm. Series of measurements were taken for in-
creasing gray levels and at five different points on the screen
- in the center and at four points positioned a quarter of the
screen size from the corners. The luminance responses from
all the points were averaged, and together with the corre-
sponding gray level values formed an inverse lookup table
used to display the images on the monitor. The luminance
correction was performed on-the-fly by a fragment program
running in the graphics hardware.

Each displayed image had its brightness adjusted using
the formula:

log Rnew = log R + bri (1)

where bri is the brightness adjustment parameter, R is the
original linear value of the red tristimulus value (not gamma
corrected). Similar formulas were used for the green and
blue tristimulus values. Since the brightness adjustment op-
eration is performed in the logarithmic domain, the changes
of the bri parameter are approximately proportional to ob-
servable changes in image brightness.

3.3. Experimental Procedure

The participants adjusted the brightness level of the dis-
played images to match their preference. For each randomly
selected image from Figure 1, a pair of its renderings of dif-
ferent brightness was presented side-by-side. Each partic-
ipant chose the image that looked better in their opinion.
After that, a next pair of images was presented. Brightness
levels for each pair of images were found using the PEST
method (Parameter Estimation by Sequential Testing) [5].
Initial brightness estimate was random and the PEST pro-
cedure was stopped when the brightness change between
iterations was below visible difference. The images were
displayed at a viewing distance of approximately 0.5 me-
ters.

The participants were asked to make the choice within a
few seconds, after comparing the overall image appearance,
without focusing on details. Each participant ran through
the experiment once. Single session took approximately 25
minutes and was preceded by a short training session in-
cluding 2 images.

After the session each participant was asked to fill in
a questionnaire. The questionnaire included the question
about age, gender, experience in photography and experi-
ence in digital image editing (e.g. editing in Adobe Photo-
shop).

4. Experiment Results
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Figure 2. Brightness adjustment parameters,
bri, for all subjects and for each image.
The upper, center and lower line of the
boxes are at 75th, 50th and 25th percentile.
The whiskers show maximum and minimum
value. The crosses are outliers.

The results of the experiment for each image separately
are shown in Figure 2. The variances of the brightness
adjustment across subjects (upper and lower quartiles on
the plot) differ significantly between images; there are im-
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ages such as IMAGE 4, for which subjects chose consistent
brightness levels, as well as images for which preference of
brightness differed significantly, such as IMAGE 14. Both
images are shown in Figure 3 to illustrate the visible dif-
ference between the 25th and 75th percentile of subjective
choices. Although brightness levels for IMAGE 14 are vis-
ibly different, all three renderings shown in Figure 3 are
perfectly acceptable. Therefore the brightness adjustment
cannot be understood as a single number, but rather a range
of values (or random variable) that lead to plausible render-
ings.

Figure 3. Image 4 (top) and Image 14 (bottom)
for the brightness adjustment corresponding
to the 25th (left), 50th (center) and 75th (right)
percentile of the experiment result (see Fig-
ure 2).
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Figure 4. Distribution across subjects of the
brightness parameter relative to the image
mean brightness parameter.

It is interesting to further investigate how the choice of
brightness adjustment parameter is distributed across sub-
jects. Figure 4 illustrates the distribution of the brightness
parameter that is corrected for the variation across images.

The values are corrected by subtracting a mean brightness
adjustment for the corresponding image. The data is well
approximated with the normal distribution of σ = 0.2. Note
that the difference in bri parameter of 0.2 corresponds to ab-
solute luminance difference of 2/3 f-stop, which shows that
the brightness visibly differs between subjects.

Using the data collected in our questionnaire we examine
the influence of the factors, such as image content, gender,
experience in photography and experience in digital image
editing. Since the variances of bri parameter for images
are significantly different, we cannot use the ANOVA anal-
ysis and instead we use the nonparametric Kruskal-Wallis
test. As expected, brightness adjustment is affected by im-
age content (χ2 = 399.16, p = 0)1, which is also the most
significant factor. More interestingly, female participants
choose images that are significantly darker than male partic-
ipants (χ2 = 7.57, p = 0.0059), and the difference of mean
brightness adjustment is 0.07 in log10 units or 0.23 f-stops.
There is also a significant difference between the groups of
participants that are or are not experienced in photography
(χ2 = 35.81, p < 0.3 · 10−9), with photographers choosing
images 0.15 log10 units or 1/2 f-stops darker. Experience
in digital imaging was not statistically significant at the 1%
confidence level (χ2 = 4.87, p = 0.0274).

In the further analysis we will consider only the effect
due to the most significant factor, which is image content.
The other factors, though statistically significant, lead to
rather moderate visible differences (up to 1/2 f-stops). It
is also not clear that the results for the group of participants
can be generalized for a larger population.

5. Brightness Adjustment Algorithms

We compare several commonly used models for auto-
matic brightness adjustment with the results of our experi-
ment. We assume that an image is adjusted using the for-
mula:

log Rnew = log R − f(x;Y ) + c (2)

where f(x;Y ) is one of the models from Table 1, x are
model parameters, Y are image luminance values, and c is
a target logarithm luminance on a display. The intuitive in-
terpretation of the above formula is that we map the log-
luminance in an image equal f(x;Y ) (where f(x;Y ) could
be for example the mean of Y) to the log-luminance of the
display equal c.

The models from Table 1 can be categorized according
to their assumptions into the following groups (model name
given in italic):

1The larger χ
2 value indicates higher influence of the factor on the

brightness adjustment. The p value is the probability that the clustered
groups (e.g. by gender) belong to the same population.
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Gray-world assumption. The most common algorithms
in tone mapping fall into the gray-world assumption cate-
gory. An average pixel luminance in an image is assumed
to be perceived as a gray tone of a medium brightness level.
Such match is also often assumed to be the goal of the adap-
tation processes in the human visual system. The luminance
of middle gray tone is either calculated as the mean of all
luminance in the image, or the logarithmic average (geo-
metric mean) [2, 14], or the median of log-luminance val-
ues.

Reference white. The human eye can easily identify
white diffuse surfaces in the context of a scene, thus such
a surface should also be depicted as white on a target dis-
play. The major difficulty of the algorithmic approach is
how to reliably estimate the luminance of a white diffuse
surface in an image. There are several heuristics that give
such estimation, from which the most common one assumes
that a fixed percentage of the brightest pixels creates spec-
ular reflections. Therefore, the white reference is estimated
as the maximum luminance after cutting off the given per-
cent of the highest luminance values (high percentile) [9].
Alternatively, one can assume that specular reflections exist
only in high frequency contents of an image [11], therefore
a luminance estimate of a white diffuse surface is the maxi-
mum luminance of a low-pass filtered image (maximum af-
ter blur). Also, the minimum derivative of the luminance
histogram can be used as an estimator of the threshold lu-
minance above which only highlights exist [8].

Reference black. We can also assume that the eye per-
ceives the tone scale of a scene with the reference to a black
diffuse surface. The reference black can be estimated as
the minimum luminance in the image, often after ignoring
a group of outliers using low percentile or after blurring to
remove the influence of noise (minimum after blur).

Hybrid methods. The brightness adjustment based
on the image key [6, 14, 13] involves also the gray-
world assumption, but is additionally corrected towards
darker shades for predominantly bright scenes and towards
brighter colors for predominantly dark scenes. The im-
age key is usually computed from low-percentile, high-
percentile and the mean or median value of log-luminance
(refer to Table 1).

6. Analysis

We confront the models introduced in the previous sec-
tion with the results of our subjective study. We fit each of
these models to the experimental data, by minimizing the
difference between the mean brightness adjustments from
our experiment, ˆbrik, and each model f (refer to Table 1):

arg min
c,x

∑

k=1..K

|| ˆbrik − f(x;Yk) − c||2 (3)

method equation

mean f = log
(

1
N

∑N

n=1 Yn

)

log average f = 1
N

∑N

n=1 Ln

median f = L[50]

high percentile f = L[p], p ∈ (50, 100]
low percentile f = L[p], p ∈ [0, 50)
min after blur f = min(L ∗ Kσ)
max after blur f = max(L ∗ Kσ)

image key f =
L[1]+L[99]

−2 1
N

P

N

n=1 Ln

L[99]
−L[1]

min derivative see [8] for details

Table 1. Equations for brightness adjustment.
Yn denotes luminance of the n-th pixel in an
image, Ln equals log Yn and N is the total
amount of pixels. The ∗ denotes convolution
with the Gaussian kernel Kσ with standard
deviation σ. L[p] is the p-th percentile of the
logarithmic luminance values in an image.

The minimization is performed for logarithm of the target
display luminance c (refer to the Equation 2) and the model
parameter x, which can be the percentile number, σ of the
Gaussian blur or no parameter, depending on the model. Yk

denotes luminance values of the k-th image and K is the to-
tal number of images used in the experiment. We judge the
accuracy of the fit by measuring the χ2 error. This measure
tests whether the predicted brightness lies within the stan-
dard deviation range of the preferred brightness adjustment
(χ2 < 1). Additionally, we measure correlation between
data to identify increased probability that a given assump-
tion indeed influences the choice of brightness.

The goodness of fit and the correlation coefficients for a
range of percentile numbers and Gaussian extends are illus-
trated in Figure 5(a)–5(c). The low percentile values result
in the best fit to the experiment data (9th percentile), while
the high values are considerably worse with the best result
for 99th percentile. Interestingly, high 100th, middle 44th,
and low 2nd percentile values show increased correlation
with the subject preferences. Figure 5(b) shows analysis for
maximum luminance in a blurred image. The small blur
gives better predictions than no blur or larger blur, and is
also better correlated with the choices of subjects. The best
prediction is obtained for σ = 2. In case of the minimum lu-
minance in a blurred image, Figure 5(c), the best prediction
and the strongest correlation is obtained for σ = 16.

The results of analysis are summarized in Table 2. To
interpret the target luminance on the display c from equa-
tion (2), which is optimized for each model, we map it to
a uniform scale of gray shades G where 1 denotes white,
0.5 middle gray and 0 is black. The G value in Table 2
distinctively identifies the assumption that each model fol-
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Figure 5. Goodness of fit χ2 (left) and correla-
tion coefficients r (right) to estimate best pa-
rameters for percentile and blur based bright-
ness adjustment. The horizontal lines indi-
cate value 1 for χ2 and 0.5 for r.

lows. The max after blur model maps to a G value above
white what suggests that this model predicts certain level of
highlights luminance rather than a diffuse white surface.

Out of the methods we analyzed, the best model of pre-
ferred brightness in the experiment can be obtained with the
image key. The reference black and gray-world methods
generally perform similarly and superior to the reference
white methods. On the other hand, reference white and ref-
erence black methods have higher correlation with the ex-
periment data than gray-world methods, although again the
image key has the highest correlation. Still several images
remained unpredicted by any of the methods, although the
subjects have been consistent about their preference. Below,
we discuss the results in detail.

6.1. Gray-world Assumption

The algorithms based on the gray-world assumption ad-
just brightness close to the preferred setting in the exper-

method χ2 P r G
1. model, eq.5 0.37 100% 0.73 0.6
2. model, eq.4 0.37 94% 0.76 0.5
3. image key 0.48 87% 0.75 0.5
4. log average 0.67 79% 0.44 0.5
5. low percentile (9th) 0.81 76% 0.54 0.2
6. min after blur σ = 16 0.90 64% 0.63 0.1
7. median 0.96 76% 0.10 0.5
8. mean 1.30 61% 0.25 0.7
9. high percentile (99th) 1.33 70% 0.56 1.0

10. max after blur σ = 2 1.35 58% 0.63 1.1
11. min derivative 5.13 34% 0.01 0.7

Table 2. Ranking of brightness adjustment
methods. χ2 is the mean error with which the
model describes the experiment, χ2 < 1 de-
notes error within the standard deviation. P
is the percentage of adjustments within the
standard deviation of experiment data, r is
the correlation coefficient, and G is the target
brightness on the display. Refer to Section 6.

iment, with logarithmic average giving the smallest error
χ2 = 0.67. However, they fail (χ2≥1) on about 21% of
images while choices of the subjects are consistent. This in-
cludes images containing details in the bright areas, which
have been adjusted too bright, thus saturating interesting
parts, and the images with blurred bright backgrounds, as
in many portraits, which have been adjusted too dark. Also
low contrast images in 50% of cases have been preferred
much brighter than adjusted by the algorithm.

The adjustment based on the image key improves the ac-
curacy for several images by maintaining the expected sub-
jective scene appearance. However, the images with blurred
background and containing night scenes are still not well
adjusted. Yoshida et al. [16] also reports high correlation of
the image key with the percentage of clipped pixels, which
is related to the image brightness adjustment.

6.2. Reference White

The reference white assumption, a competing theory to
the gray-world assumption, performed the least accurately.
Our analysis does not undermine the theory, but rather im-
ply that current heuristics to identify diffuse white surface
are not robust enough. Particularly, the minimum derivative
approach successfully accounts for spiky specular reflec-
tions, but fails in the presence of broad reflections or direct
lights commonly encountered in natural images. However,
an increased correlation of high percentile and maximum
after blur deserves attention when developing an improved
brightness adjustment model.
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6.3. Reference Black

The models based on reference black assumption, which
is generally not supported by psychophysical evidence, per-
form surprisingly well on the observations from the experi-
ment in case of both low percentile and minimum after blur.
Again, rather than favoring the reference black over the ref-
erence white assumption, the stability of the results suggests
that the estimation of black diffuse surface is far more ac-
curate than of the white one. However, since this group
of adjustments consistently failed on images with detailed
bright areas, one can conclude that it is the information in
the bright areas that people prefer to see.

7. Improved Brightness Adjustment

While there are a few images that cannot be accurately
predicted by any of the models from Table 1, we observe
that some images are well corrected by one model, while
the other images by the other model. This motivates us to
check if there exists a linear combination of models which
results in an improved goodness of fit.

We experiment with several linear combinations of the
models listed in Table 1 and find the best fit by optimizing
Equation 3. Parameters x include both the linear coeffi-
cients and the parameters of the tested methods. An im-
provement in brightness adjustment accuracy for the com-
bination of two models is observed for the two percentiles:

f = 0.55 · L[2] + 0.45 · L[99]. (4)

Equation (4) predicts 94% of images with the fit qual-
ity χ2 = 0.37 and outperforms any method analyzed so
far. While these particular percentiles, 2nd and 99th, give
the best prediction, in general a combination of high and
low percentiles is significantly more accurate than other
possibilities as illustrated in Figure 6. In these cases the
brightness adjustment is driven by the amount of informa-
tion clipped in both dark and bright areas of the image.
The 100% prediction rate for images in the experiment is
achieved with the combination of three percentiles:

f = 0.28 · L[9] + 0.37 · L[42] + 0.35 · L[100], (5)

with the fit quality χ2 = 0.37. Interestingly these three
estimates correspond to the local maxima of correlation co-
efficient for percentile, Figure 5(a). Therefore one can ar-
gue that a robust brightness adjustment has to be based on
the relative distribution of low, high and mid-tones in the
image. Interestingly, this is confirmed by the equation of
empirically derived image key [13] which also performed
well in our analysis.

Linear combinations of other brightness adjustment
methods performed less accurately. The model fitting re-

sults for the two best performing linear combinations are
given in Table 2.
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Figure 6. Percentage of adjustments within
the standard deviation of experiment data for
linear combination of two percentiles. The
linear coefficients are optimized for each pair
such that the best accuracy is obtained.

8. Applications

There are three major applications where the presented
brightness models can improve the results: gradient domain
image enhancements, tone mapping operators, and conver-
sion of camera RAW files to 8bit images. We discuss them
in detail below.

The derivation and integration steps used in the gradi-
ent domain algorithms produce images with an unknown
constant offset, which is responsible for brightness adjust-
ment. In case of local processing an appropriate offset is
chosen to match the brightness at the borders of a local re-
gion. However, when the full image is processed, no clues
are available and in most cases such final adjustment is left
to the user for manual correction. Instead, applying the pre-
sented brightness adjustment can assure good appearance
of images processed with such methods as gradient domain
tone mapping [4, 10] or bilateral filtering [3], as shown in
Figure 7.

Several tone mapping operators, such as [2, 14], include
brightness adjustment methods based on the gray-world as-
sumption, which is usually implemented as the logarithmic
average. Since the model from equation (4) maps to the
same display gray level, it can replace the logarithmic aver-
age, thus achieving more preferable brightness and higher
overall image quality. Alternatively, the model can be ap-
plied as post-processing of a tone mapping operator. Once
the images have been tone-mapped to the dynamic range
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Figure 7. The image key outputs a dark image
(top) which perhaps resembles the scene ap-
pearance, while the model from Equation 5
(bottom) gives bright image which better de-
picts strength of detail preserving tone map-
ping [10].

that matches the target display, the model can be used to
fine-tune their brightness.

A critical brightness adjustment happens during the auto-
matic exposure in digital cameras. Unfortunately, the light
measuring devices in most digital cameras calculate the ex-
posure from incomplete information about the scene and in
certain conditions interesting parts of photograph become
overexposed. Photographers often intentionally underex-
pose images in such conditions and capture in RAW format
which has a larger dynamic range. Thus a preferable expo-
sure can be adjusted using the presented models at a later
stage, while viewing or converting the RAW files to 8bit
images.

9. Conclusions

The results of our experiment indicate that image con-
tent is the major factor affecting people’s decision on the
preferred image brightness. We fit several popular models
for computing brightness adjustment to the data collected in
the experiment. We find that a linear combination of three
percentiles gives the best goodness of fit. This suggests that
the most reliable method of brightness adjustment should
take into account all three anchoring approaches: the gray-
world assumption, reference white and reference black. We
demonstrate the application of an automatic brightness ad-
justment in the context of tone mapping, gradient-domain
processing and rendering of camera RAW files.

In the future work we would like to validate more com-
plex models of brightness adjustment, which take into ac-
count spatial image information, such as presence of de-
tails. We would also like to extend our study to a larger set
of images and use several displays of different brightness
and contrast levels.
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