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Abstract. We present a novel algorithm that robustly tracks 3D tra-
jectories of features on a moving human who has been recorded with
multiple video cameras. Our method does so without special markers in
the scene and can be used to track subjects wearing everyday apparel. By
using the paths of the 3D points as constraints in a fast mesh deformation
approach, we can directly animate a static human body scan such that
it performs the same motion as the captured subject. Our method can
therefore be used to directly animate high quality geometry models from
unaltered video data which opens the door to new applications in mo-
tion capture, 3D Video and computer animation. Since our method does
not require a kinematic skeleton and only employs a handful of feature
trajectories to generate lifelike animations with realistic surface defor-
mations, it can also be used to track subjects wearing wide apparel, and
even animals. We demonstrate the performance of our approach using
several captured real-world sequences, and also validate its accuracy.

1 Introduction

Nowadays, generating realistic and lifelike animated characters from captured
real-world motion sequences is still a hard and time-consuming task. Tradition-
ally, marker-based optical motion capture systems [1] reconstruct the motion of
a moving subject by measuring the 3D trajectories of optical beacons attached
to her body. The optical markers are then mapped to a kinematic skeleton struc-
ture [2]. Marker-free methods also exist that are able to measure human motion
in terms of a kinematic skeleton without any intrusion into the scene. Thereafter,
the model geometry and the skeleton need to be connected such that the surface
deforms realistically with the body motion by specifying the influence of each
bone on both rigid and non-rigid surface deformation [3].

Stepping directly from a captured real-world sequence to the corresponding
realistic moving character is still challenging. Several methods in the literature
are able to partly solve this problem. Since marker-based and marker-free motion
capture systems measure the motion in terms of a kinematic skeleton, they have
to be combined with other scanning technologies to capture the time-varying
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shape of the human body surface [4–6]. However, dealing with people wearing ar-
bitrary clothing from only video streams is still not possible. Time-varying scene
representations can also be reconstructed by means of shape-from-silhouette ap-
proaches [7], or with combined silhouette- and stereo-based methods [8]. Unfor-
tunately, the measured models often lack detail if only a small number of input
camera views is available and it is hard to preserve topological correspondences
over time. Researchers have also used physics-based methods to track simple
human motions if a kinematic skeleton is available [9]. However, the methods
can not be directly applied to objects made of a variety of different materials,
and they are not able to track arbitrarily dressed humans completely passively.

Instead, we present a robust skeleton-less approach to automatically cap-
ture the motion of a moving human subject and generate plausible and realistic
surface deformations from multiple video streams without optical markers. Our
algorithm is simple and versatile and enables us to directly animate a high qual-
ity static human scan from unaltered video footage which enables potential new
applications in motion capture, computer animation and 3D Video.

The main contribution of this paper is a simple and robust method to auto-
matically identify features on a moving human wearing everyday apparel, and
track their 3D trajectories. It does not employ any a priori information about
the subject, e.g. a kinematic skeleton, and can therefore be straightforwardly
applied to other subjects, e.g. animals or mechanical objects. We also present a
fast mesh deformation approach that uses only a handful of feature trajectories
to directly and realistically animate a static human body scan making it per-
forms the same motion as the captured subject. Our algorithm handles humans
wearing arbitrary and sparsely textured clothing. As an additional benefit, it
also preserves the mesh’s connectivity over time.

The remainder of this paper is structured as follows: Sect. 2 reviews the most
relevant related work and Sect. 3 briefly describes our overall framework. There-
after, Sect. 4 details our automatic approach to identify features and track their
3D trajectories without optical markers. Sect. 5 describes our fast deformation
scheme that is used to animate the static human model over the whole sequence
according to the constraints derived from the estimated 3D point trajectories.
Experiments and results with several captured real-world sequences are shown
in Sect. 6, and the paper concludes in Sect.7.

2 Related Work

In our research we capitalize on ideas that have been published in the fields of
object tracking, motion capture and scene reconstruction. For the sake of brevity,
we refer the interested reader to overview articles on object tracking [10, 11]. The
following, is by no means a complete list of references from the other two research
topics, but merely a summary of the most related categories of approaches.

Human motion is normally measured by marker-based or marker-less opti-
cal motion capture systems [1] that parameterize the data in terms of kinematic
skeletons. Unfortunately, these approaches can not directly measure time-varying
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body shape and they even fail to track people wearing loose apparel. To overcome
this limitation, some methods use hundreds of optical markings [5] for deforma-
tion capture, combine a motion capture system with a range scanner [4, 12] or a
shape-from-silhouette approach [6], or jointly use a body and a cloth model to
track the person [13]. Although achieving good results, most of these methods
require active interference with the scene or require hand-crafted models for each
individual.

Alternatively, shape-from-silhouette algorithms [7], multi-view stereo approaches
[14], or methods combining silhouette and stereo constraints [8] can be used to
reconstruct dynamic scene geometry. To obtain good quality results, however,
several cameras are required and it is hard to generate connectivity-preserving
dynamic mesh models.

Some passive methods extract 3D correspondences from images to track sim-
ple deformable objects [15] or cloth [16]. They can also be employed to jointly
capture kinematic motion parameters and surface deformations of tightly dressed
humans [17, 18]. Researchers have also used physics-based shape models to track
textiles [19, 20] or simple articulated humans [9]. Unfortunately, none of these
methods is able to track people dressed in arbitrary everyday apparel completely
passively.

In contrast, we propose a skeleton-less method to directly capture the poses of
a moving human subject and generate plausible surface deformations from only
a handful of input video streams. This is achieved by first robustly identifying
and tracking image features in 3D space. Thereafter, using the 3D trajectories of
the features as constraints in a Laplacian mesh editing setting [21], the human
model is realistically animated over time. By relying on differential coordinates,
plausible shape deformations for the human scan are computed without having
to specify explicit material parameters. Our algorithm is simple, robust, easy to
implement and works even for moving subjects wearing wide and loose apparel.

3 Overview

An overview of our approach is shown in Fig. 1. Our system expects as input
a multi-view video (MVV) sequence that shows the person moving arbitrarily.
After acquiring the sequence, silhouette images are calculated via color-based
background subtraction and we use the synchronized video streams to extract
and track features in 3D space over time.

Our hybrid 3D point tracking framework jointly uses two techniques to es-
timate the 3D trajectories of the features from unmodified multi-view video
streams. First, features in the images are identified using the Scale Invariant
Feature Transform (SIFT). Furthermore, SIFT is able to match a feature to its
corresponding one from a different camera viewpoint. This allows us to generate
a set of pairwise pixel correspondences between different camera views for each
time step of input video. Unfortunately, tracking the features over time using
only local descriptors is not robust if the human subject is wearing sparsely
textured clothing. Therefore, we use a robust dense optical flow method as an
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Fig. 1. Overview of our framework: given a multi-view video sequence showing a human
performing, our method automatically identifies features and tracks their 3D trajecto-
ries. By applying the captured trajectories to a static laser-scan of the subject we are
able to realistically animate a human model making it move the same as its real-world
counterpart in the video streams.

additional step to track the features for each camera view separately to fill the
gaps in the SIFT tracking. By merging both source of information we are able
to reconstruct the 3D trajectories for many features over the whole sequence.

Our hybrid technique is able to correctly identify and track many 3D points.
In addition to the estimation of 3D point positions, our approach also calcu-
lates a confidence value for each estimation. Using confidence-weighted feature
trajectories as deformation constraints, our system robustly brings a static laser-
scanned triangle mesh M of the subject into life by making it follow the motion
of the actor recorded in the video frames.

4 Hybrid 3D Point Tracking

Our hybrid framework jointly employs local descriptors and dense optical flow
to identify features and estimate their 3D positions over time from multiple cali-
brated camera views. In contrast to many other approaches [22–24], we developed
an automatic tracking algorithm that works directly on the images without any
a priori knowledge about the moving subject. It is our goal to create a simple and
generic algorithm that can be used to track features on rigid bodies, articulated
objects and non-rigidly deforming subjects in the same way.

The input to our algorithm comprises of synchronized video streams recorded
from K cameras, each containing N video frames (Fig. 2a). In the first step,
we automatically identify L important features, also called keypoints, for each
camera view k and time step t and generate a set of local descriptors Fk,t =
{f0

k,t, . . . , f
L
k,t} using SIFT [25], Fig. 2b. We extract these features using the

interest point detector proposed by Lowe [26] that is based on local 3D extrema
in the scale-space pyramid built with difference-of-Gaussian filters. The local
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descriptors are built as a distinctive representation of the feature in an image
from a patch of pixels in its neighborhood.

Since the SIFT descriptors are invariant to image scale, rotation, change in
viewpoints, and change in illumination, they can be used to find corresponding
features across different camera views. Given an image Ik,t, from camera view k

and time step t, and the respective set of SIFT descriptors Fk,t, we try to match
each element of Fk,t with the set of keypoints from all other camera views. We
use a matching function similar to [25], which assigns a match between f i

k,t and
a keypoint in Fj,t if the Euclidean distance between their invariant descriptor
vectors is minimum. In order to discard false correspondences, nearest neighbor
distance ratio matching is used with a threshold TMATCH [27] .

After matching the keypoints across all K camera views at individual time
steps, we gather all R correct pairwise matches into a list of pixel correspon-
dences Ct = {c0

t , . . . , c
R
t } by using all reliable matches found for each time step

t (Fig. 2c). Each element cr
t = ((camu, P i

t ), (camv, P
j
t )) stores the information

about a correspondence between two different camera views, i.e. that pixel P i
t

in camera camu corresponds to pixel P
j
t in camera view camv at time t.

Unfortunately, tracking the features over time using only the list of corre-
spondences C and connecting their elements at different time steps is not robust,
because it is very unlikely that the same feature will be found at all time in-
stants. This is specially true if the captured images show subjects performing
fast movements, where features can be occluded for a long period of time, or
when the subject wears everyday apparel with sparse texture. In the latter case,
SIFT only detects a small number of keypoints per time step, which is usually
not enough for tracking articulated objects. Therefore, in order to robustly re-
construct the 3D trajectories for the features we decided to use optical flow to
track both elements of all cr

t for each camera view separately, i.e. the pixel P i
t is

tracked using camera view camu and the pixel P
j
t using camera view camv.

The 2D flow-based tracking method works as follows: for each camera view
k, we track all pixels over time using the warping-based method for dense optical
flow proposed by Brox et al. [28]. After calculating the optical flow o

t

k
(Ik,t, Ik,t+1)

between time step t and t + 1 for camera k, we use o
t

k
to warp the image Ik,t

and we verify for each pixel in the warped image if it matches the corresponding
pixel in Ik,t+1. We eliminate the pixels that do not have a partner in t+1 and the
pixels that belong to the background by comparing the warped pixels with the
pre-computed silhouette SILk,t+1. This process is repeated for all consecutive
time steps and for all camera views. As a result, we construct a tracking list
Dk = {E0, . . . , Eg} with G pixel trajectories for each camera view k (Fig. 2d).
Each element Ei = {P i

0, . . . , P
i
N} contains the positions of the pixel P i

t for all
time steps t.

The last step of our hybrid tracking scheme merges the optical flow tracking
information with the list of correspondences to reconstruct the 3D trajectories for
all features. We take pixel correspondences from all time steps into account. For
instance, if a matching cr

t is detected by SIFT only at the end of the sequence we
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Fig. 2. Using the synchronized video streams as input (A), our hybrid approach first
identifies features in the images using SIFT (B) and then matches these features be-
tween different pairs of camera views based on their descriptors (C). In addition, we
track these features for each camera view separately using optical flow (D). At the end,
reliable 3D trajectories for the features are reconstructed by merging both information
(E).

are still able to recover the anterior positions of the feature by using the optical
flow information.

For each entry cr
t = ((camu, P i

t ), (camv, P
j
t )), we verify if the pixel P i

t is
found in Dcamu

and if the pixel P
j
t is found in Dcamv

. In case both elements are
found, we estimate the position of the respective 3D point, mmr(t), for the whole
sequence (Fig. 2e), otherwise cr

t is discarded. The 3D positions are estimated by
triangulating the viewing rays that start at the camera views camu and camv

and pass through the respective image plane pixel at P i
t and P

j
t . However, due to

inaccuracies, these rays will not intersect exactly at a single point. However, we
can compute a pseudo-intersection point posr

t = {x, y, z} that minimizes the sum
of squared distance to each pointing ray. We also use the inverse of this distance,
cvr, as a confidence measure indicating how reliable a particular feature has been
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located. If cvr is below a threshold TCONF we discard it, since it indicates that
cr
t assigns a wrong pixel correspondence between two different camera views.

We also discard a trajectory mmr if it does not project into the silhouettes
in all camera views and at all time steps. This way, we can prevent the use of
3D points whose trajectories degenerate over time as deformation constraints.
We assess silhouette-consistency using the following measure:

TSIL(mmr) =
N∑

t=0

K∑

k=0

PROJk
sil(posr

t , t) (1)

where PROJk
sil(posr

t , t) is a function that evaluates to 1 if mmr(t) projects in-
side the silhouette image of camera view k at time step t, and it is 0 otherwise.
We only consider mmr a reliable 3D trajectory if TSIL(mmr) > TRSIL. Ap-
propriate values for the thresholds are found through experiments.

After processing all elements of C for all time steps, we generate a list with
reliable 3D trajectories for the features. The list L3D = {mm0, . . . ,mmh} =
{(LP0, LE0), . . . , (LPH , LEH)} assigns to each trajectory mmi, a tuple (LPi, LEi)
containing the 3D point positions, LPi = {posi

0, . . . , posi
N}, and the respective

list of confidence values for each estimated 3D position, LEi = {cvi
0, . . . , cv

i
N}.

As shown in Sect. 6, our hybrid approach is able to identify and accurately
track many 3D points for sequences where the human subject is performing fast
motion, even when he is dressed in everyday apparel.

5 Feature-based Laplacian Mesh Tracking

It is our goal to animate the human scan making it move the same way as
its real-world counterpart in the video streams by using the reconstructed 3D
point trajectories as motion constraints. For this purpose, we first roughly align
the human model with the 3D point positions at the first time step of video
(our reference), Fig. 3(a). This is automatically done by applying a PCA-based
alignment scheme to a reconstructed volumetric shape-from-silhouette model
of the moving subject. Thereafter, we select H target vertices VT = {vTh|h ∈
{0 · · ·H}} in the human model M by choosing vertices that are closest to the
3D point positions at the reference time step, Fig. 3(b). These target vertices
VT are used to guide the mesh deformation method.

We deform the human scan by employing a Laplacian mesh deformation
scheme that jointly uses rotational and positional constraints on the target ver-
tices VT in a similar way as [29]. The details of the human model M are encoded
in its differential coordinates. The differential coordinates d of M are computed
once at the beginning of the sequence by solving a matrix multiplication of the
form d = Lv, where L is the discrete Laplace operator based on the cotangent-
weights, and v is the vector of M ’s vertex coordinates [30]. Thereafter we perform
the following three processing steps for each time step t:

Since the differential coordinates d are rotation-dependent [31], we need to
first calculate the local rotations that should be applied to d. We derive these
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Fig. 3. After aligning the 3D point positions (A) with the human model at the ref-
erence time step (B), our method reconstructs a novel pose jointly using rotational
and positional constraints on the target vertices which we derived from the 3D feature
trajectories (C).

rotational constraints from the 3D trajectories. The local rotation for each target
vertex vTh of M is calculated from the rotation of the corresponding 3D point
mmh(t) between reference time and time t by means of a graph-based method,
Fig. 3. To this end, 3D points are considered as nodes in a graph, and edges
between them are determined by constructing the minimal spanning tree [32]
using the approximated geodesic distance as edge weights. For each 3D point
mmh(t), we find the minimal rotation that makes its outgoing edges at the
reference time match its outgoing edges at time t (i.e. using the Jacobian).
This local rotation is then converted into a quaternion qmmh(t). Since we want
the target vertices VT to perform the same rotations as the 3D points, we set
qvT h

= qmmh(t) for all H 3D points.
Using the estimated rotations for the target vertices, we interpolate them over

M using the idea proposed in [33] in order to estimate rotations for each vertex
of the model. Each component of a quaternion q = [w, q1, q2, q3] is regarded as a
scalar field defined over the entire mesh. A smooth interpolation is guaranteed by
regarding these scalar fields as harmonic fields. The interpolation is performed by
solving the Laplacian equation Lq = 0 over the whole mesh using the constrained
target vertices as Dirichlet boundary conditions and normalizing the resulting
quaternions.

At the end, we reconstruct the vertex positions v of M such that the mesh
best approximates the rotated differential coordinates, as well as the positional
constraints. This can be formulated as a least-squares problem of the form

argmin
v

{‖Lx − (q · d · q)‖2 + ‖Av − p‖2}. (2)

which can be transformed into a linear system

(LT L + AT A)v = LT (q · d · q) + AT p. (3)

In Eq. 3, p is the vector of positional constraints of the form vj = pos
j
t , j ∈

{1, . . . , H} specified for the H target vertices and derived from the position of
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the 3D points at time t. The matrix A is a diagonal matrix containing non-zero
weights Aij = c ∗ cv

j
t , c being a constant, only for constrained vertices j. We

weight the target vertex position pos
j
t for vTj at time t proportional w.r.t its

corresponding confidence value since small values for cv
j
t indicate inaccuracies

in the estimated 3D position. As demonstrated in Sect. 6, this weighting scheme
leads to a better visual animation quality for the animated human scans.

After applying this algorithm to the whole sequence, our mesh deformation
approach is able to animate the human scan making it correctly follow the mo-
tion of the actor recorded in all video frames. As shown in Sect. 6, our approach
preserves the details and features of the mesh and is able to generate plausi-
ble and realistic surface deformation for subjects wearing even loose everyday
apparel.

6 Results and Discussion

We tested our method on several real-world sequences with different male and
female test subjects recorded in our studio. Our acquisition procedure works as
follows: we first acquire the scanned model with a Vitus SmartTM full body laser
scanner. After scanning, the subject immediately moves to the nearby area where
she is recorded with eight synchronized video cameras that run at 25 fps and
provide 1004x1004 pixels frame resolution. The calibrated cameras are placed in
an approximately circular arrangement around the center of the scene and color-
consistency across cameras is ensured by applying a color-space transformation
to each camera stream. The captured video sequences are between 150 and 400
frames long and show a variety of different clothing styles. We captured different
motions ranging from simple walking to yoga and capoeira moves.

As shown in the second and third columns of Table 1, our hybrid 3D point
tracking approach is able to identify and track many features in 3D space accu-
rately. The average confidence value (CV) for the 3D point positions are large,
which corresponds to position errors of around 1.0−2.2cm. Three different frames
for the yoga (YOGA) and walking (WALK) sequences with selected features
shown as dots can be seen in the upper row of Fig. 4. Looking at the tempo-
ral evolution one can see that the features are reliably tracked over time. The
left images in the middle row of Fig. 4 also show two closeups on the legs in
the walking sequence. Features were accurately tracked despite the appearance
ambiguities caused by the trousers with homogeneous color. If we had used only
SIFT descriptors to track these features, it would have been impossible to track
them in these homogeneous areas.

High tracking accuracy and reliability even in such difficult situations is up-
held by additionally taking into account optical flow information. Even if a cor-
respondence was only found for one time step, we can reconstruct the complete
trajectory for this feature by looking at the optical flow information. This second
source of information also enables us to apply a very high threshold TMATCH

which eliminates unreliable 3D feature matches already at an early stage.
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Fig. 4. (upper row) Selected features tracked in three different frames for the yoga
and walking sequences; (middle and lower row) two frames of the walking sequence
in detail and side-by-side comparisons between input video frames and reconstructed
poses for the human scan. Our framework correctly tracks 3D trajectories of features
even in the presence of occlusions or appearance ambiguities. By combining the 3D
point trajectories with our mesh deformation method, our algorithm is able to directly
animate a human body scan.

Before using the 3D point trajectories to guide the deformation of the human
scan we first choose a subset of NM points from the initial set of 3D trajectories
L3D at the reference time step. This subset of points should be distributed
evenly on the model surface. This is done by ramdonly choosing a element in
L3D and all adjacent points next to it at the reference time step by using a
distance threshold TDIST . We compare the confidence values for this group of
elements and choose the point with the maximum confidence value. We continue
the same procedure choosing another point in L3D until all selected points are
separated by a distance TDIST , and consequently distributed over the model’s
surface. We conducted several experiments with different values for TDIST and
found out that in general, values between 10cm and 20cm produce best results.
For a typical sequence, this leads to around 20 − 50 selected points. Note that
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Fig. 5. Overlap between the reprojected model (red) and the input image for the female
and male subjects. Our framework is able to correctly reconstruct their pose even when
they are wearing wide and loose apparel.

although our hybrid 3D tracking approach is able to correctly track many more
points over time, even a subset of points is sufficient to track body poses reliably.
Our selection criteria also enable us to eliminate multiple trajectories of the same
feature (stemming for different camera pairs) which bears no useful information

The middle (right) and lower row of Fig. 4 shows several side-by-side com-
parisons between input video frames and tracked poses of the human scan. Our
algorithm reliably recovers the poses and creates plausible and realistic surface
deformations for the male actor performing a capoeira move and even for the
female subject wearing a long dress. Due to the occlusion of the limbs or the
wide and loose apparel, tracking the motion of these subjects over time would
have been hard with a normal motion capture system. More captured real-world
results are shown in the accompanying video.

Due to the lack of ground truth for our experiments, we evaluate our results
by overlapping the reprojected model with the input images as shown in Fig. 5.
We also calculate a multi-view overlap measure by counting the average number
of pixels that do not match between the reprojected model and the input image
silhouettes for all camera views and all time steps. As shown in the plot in Fig. 6,
our system automatically animates the human scan making it follow the motion
of the real-world actor with a consistent silhouette-accuracy of more than 94%.

We also performed experiments to evaluate the performance of our framework
in animating the human scan. Table 1 summarizes the results we have obtained
employing quality and accuracy measures for several sequences. The column
VOL shows the average volume change in the animated scan over the whole
sequence. This measure is a numerical indicator for implausible deformations.
The preservation of mesh quality is analyzed by looking at the average distortion
of the triangles, QLT. It is computed by averaging the per-triangle Frobenius
norm over the mesh and over time [34]. This norm is 0 for an equilateral triangle
and approaches infinity with increasing degeneracy. Finally, the column labeled
OVLP contains the average multi-view overlap between the reprojected model
and the input image silhouettes over time.
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Fig. 6. Multi-view silhouette overlap for several captured sequences. Our system au-
tomatically makes the static human scan follow the motion of the captured real-world
actor with high precision.

Table 1 shows that the volume change in the animated human scan is in the
range of normal non-rigid body deformations, and that triangles remain in nice
shape. It also shows that our mesh deformation approach reconstructs the poses
of the scan with high accuracy, even if the subjects wear wide and loose everyday
apparel.

We performed experiments to demonstrate the importance of the confidence
value as a weight in Eq. 3 (Sect. 5) as well. Our experiments show that when using
the confidence value in our mesh deformation approach, surface deformations are
generated in a more reasonable and lifelike way, which leads to a better visual
animation quality.

SEQ FEAT CV [m−1] OVLP VOL QLT

CAPO 1207 65.18 95.4% 3.2% 0.03
DANC 1232 58.30 95.6% 1.8% 0.01
YOGA 1457 112.23 93.7% 3.6% 0.10
WALK 2920 71.78 95.5% 1.5% 0.01
DRSS 3132 45.72 94.4% 2.0% 0.01

Table 1. For each captured real-world sequence, the number of identified features
(FEAT) and the average confidence value (CV) are shown. We also employ accuracy
and quality measures for the animated scan, i.e. changes in volume (VOL), distor-
tion of triangles (QLT) and multi-view silhouette overlap (OVL), to demonstrate the
performance of our framework.
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Our results show that our purely passive tracking method can automatically
identify and track the 3D trajectories of features on a moving subject without
the need of any a priori information or optical markers. By combining it with
our fast deformation technique it also enables us to directly and realistically
animate a static human scan making it follow the same motion as its real-world
counterpart even if he wears casual everyday apparel.

Nonetheless, our algorithm is subject to a few limitations. Currently, if the
subject moves very quickly, the optical flow method may fail to track the 2D
features. However, in such situations one might use one of the many high-speed
camera models available today for capturing fast scenes. Another limitation is
the run time of our tracking system. Currently, we need around 3-5 minutes per
multi-view frame on a Pentium IV with 3GHz, with more than 90% of the time
spent for the SIFT and optical flow calculations. We are planning to investigate
the use of lower image resolutions for tracking without compromising the overall
tracking accuracy. Our fast mesh deformation approach, on the other hand, can
generate animations at 5 fps for models comprising of 20k to 50k triangles.

Another problem is that our mesh deformation method does not handle vol-
ume constraints [35]. In starkly under-constrained settings such a constraint
would prevent inaccurate deformations, however at the cost of slower runtimes.
Also, in some situations, e.g. very wide apparel, a volume constraint might even
prevent correct deformations. Finally, although our algorithm correctly captures
the body deformations at a coarse scale, the deformations of subtle details, such
as small wrinkles, are not captured. We are planning to extend our method in the
future to also capture these details by means of a multi-view stereo algorithm.

Despite these limitations our automatic method is a simple, flexible, easy to
implement and reliable purely passive method to robustly track 3D trajectories
of features on a moving human and even other subjects. These features can then
be used to animate a static human body scan making it perform the same motion
as the captured subject recorded from only a handful of cameras.

7 Conclusion

We have presented a new skeleton-less approach to automatically identify fea-
tures and track them on a moving subject who has been recorded with only
eight video cameras. Our algorithm does not require optical markings, does not
need a priori information about the tracked subject, and behaves robustly even
for humans wearing sparsely textured and wide apparel. By applying the cap-
tured feature trajectories as constraints in a fast mesh deformation approach,
we can make a high-quality human scan move and deform in the same way as
its real-world counterpart in the input video footage. We expect that our new
mesh-based paradigm will pave the trail for many new applications in motion
capture in general, 3D Video and character animation.
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