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Abstract

Markerless human motion capture has received much at-
tention in computer vision and computer graphics commu-
nities. A hierarchical skeleton template is frequently used
to model the human body in literature, because it simpli-
fies markerless human motion capture as a problem of esti-
mating the human body shape and joint angle parameters.
The proposed work establishes a skeleton based markerless
human motion capture framework, comprising of 1) an im-
proved deformation skin model suitable for markerless mo-
tion capture while it is compliant with the computer ani-
mation standard, 2) image segmentation by using Gaussian
mixture static background subtraction and 3) non-linear dy-
namic temporal tracking with Annealed Particle Filter. This
framework is able to efficiently represent markerless human
motion capture as an optimisation problem in the tempo-
ral domain and solve it by the classic optimisation scheme.
Several experiments are used to illustrate its robustness and
accuracy comparing with the existing approach.

1. Introduction

Human motion capture also known as 3D posture esti-
mation is a task of acquiring motion information from a
moving performer. It is a problem of estimating the parame-
ters of the human body model from the acquired data as the
position and configuration of the tracked performer change
over time. One class of applications are those where the es-
timated body model parameters are used directly, for exam-
ple to interact with a virtual world, drive an animated avatar
in a video game or for computer graphics character anima-
tion. Another class of applications use estimated parame-
ters to classify and recognise people, gestures or motions,
such as surveillance systems, intelligent environments, or
advanced user interfaces (sign language translation, gesture
driven control, gait, or pose recognition). Finally, the mo-
tion parameters can be used for motion analysis in applica-
tions such as personalised sports training, choreography, or
clinical studies of orthopedic patients. Currently available

commercial systems for motion capture require the subject
to wear special markers, body suits or gloves. The dedicated
hardware is not often affordable for individuals. In contrast
to such marker based motion capture, finding an economical
solution, which utilises markerless, unconstrained posture
estimation using only cameras, has gained increasing atten-
tion in computer vision. Recent efforts [22, 19, 1, 3, 14, 25]
have been focused on markerless human motion capture in
order to realise a cost-effective and easily deployed motion
capture system.

In markerless human motion capture, the silhouette is
often used to describe the shape of the human body, since
it is more robust to illumination variation and easier to be
matched and corresponded than colour and texture features.
However, when lacking colour and texture information, es-
sentially, the silhouette describes an image no more than
a contour line which only contains partial information of
the original image. Shape ambiguities can raise along the
depth direction. Considering an example of human body re-
construction from multi-view silhouette images, the shape-
from-silhouette [13] is often used to achieve reconstruction
by computing a spatial intersection “visual hull” of silhou-
ettes. Strictly speaking, the true visual hull is the maxi-
mal volume constructed from all possible silhouettes (infi-
nite number of silhouettes). It is not computable in almost
any practice circumstances. Alternatively, an “inferred” vi-
sual hull is computed with respect to only a finite number of
silhouettes. The inferred visual hull usually has greater vol-
ume than the actual human body. This can result in multiple
solutions when one attempts to fit the original human body
to the inferred visual hull. In fact, this fitting exercise is a
central part to solve markerless human motion capture. Fur-
thermore, human motion is a complex process concerned on
the human anatomy structure which involves interactions of
multiple bones and muscles, external forces and other fac-
tors. To model such a complicated human anatomy struc-
ture, the high-dimensional variable has to be used to pa-
rameterise the human motion and posture. Overall, it turns
out that the solution of markerless human motion capture is
subject to a non-convex and multi-modal optimisation in a
high dimensional space.



The proposed approach integrates a generic parameter-
isable human skeleton template with the deformable skin
which encourages the more accurate silhouette based likeli-
hood evaluation, performs run-time Gaussian mixture static
background subtraction to segment silhouettes from multi-
view images and finally incorporates parameterised human
pose as state variables and silhouettes as observations into
the Annealed Particle Filter framework to solve a global op-
timisation problem in high dimensional space.

2. Related Works

Focusing on difficulties in the high dimensional optimi-
sation, Sminchisescu et al [23] proposed a global search
method that combines a local optimisation with a long
escape perturbation, while iteratively scaling the search
space by adjusting the perturbation covariance. Since their
method can effectively scale the search space and explore a
relatively large area, it is able to work even in the monoc-
ular image case. On the other hand, continuing the success
of the particle filter [8, 2] in non-linear generic object track-
ing, many works (e.g. [6]) attempt markerless human mo-
tion capture by utilising the particle filter. However, when
dimensionality increases, the particle filter does not scale
very well and often fails to approximate the posterior distri-
bution. This has been addressed in the method [7] proposed
by Deutscher et al. It firstly extends the particle filter by
augmenting simulated annealing [12] in the context of hu-
man motion capture, known as the Annealed Particle Filter
(APF). A similar approach annealed importance sampling
was stated in a statistics publication [17]. APF, which in-
herits advantages of simulated annealing, is able to escape
from local minima and find the global minimum, but good
tracking depends on a slow annealing schedule. In such
skeleton based approach, many studies[3, 26, 20, 7] use
simple geometry primitives (e.g. cylinder and box) to ap-
proximate the skin of the human body. This often results in
the mismatch between the silhouette and the human model,
and therefore it possible leads to the inaccurate silhouette
based likelihood evaluation.

Departing from the above point of view, many excel-
lent attempts have also tried on the learning based method.
Agarwal et al’s [1] method recovers human pose from a sin-
gle image by evaluating both regularised least squares and
the relevance vector machine regressor over both linear and
learned basis. Their method does not depend on pre-built
human model and label images, which usually is a gen-
eral assumption for other existing approaches. In Wang et
al’s work [25], the Gaussian process latent variable model
is used to learn the lower dimensional representation from
motion capture data, resulting in a non-parametric dynam-
ical model that accounts for uncertainty in the model. The
learning based approach can be generalised well to activi-

ties similar to the learned one, however, it has inability to
cope with unknown type activities.

Figure 1: Dynamical System Architecture

3. Framework Overview

The framework described in this section shares common
componentswith those tracking frameworks proposed in lit-
erature. Intuitively, it is constructed on the basis of the dy-
namical system that, given a pair of a hidden state and an
observation corresponding to a certain point of time, ex-
plicitly characterises the causality between the state and the
observation, and the dependency between the state and the
prior state in the temporal domain. Provided the state is
independent of other states, the first-order Hidden Markov
Model [5] is sufficient to capture the sequential character-
istics of states. The first order Hidden Markov Model as-
sumes only a dependency between the current state and the
previous state. All other states are ignored. Therefore, es-
timating the current state no longer requires storing all his-
torical states.



From the dynamical system point view, human motion
can be considered as a sequence of states (human poses) and
signals (associated observations) emitted from these states.
The above dynamical system can be contextualised by hu-
man motion capture. At a certain point of time t, there is an
observation yt that is the observable evidence of the human
pose, and a hidden state xt that is an underlying true pose.
The goal is to find a true state, given the current and histori-
cal observations. In reality (the solution within the dynami-
cal system is often analytically intractable), it is impossible
to obtain the exact value of the true state xt. Hence, a Monte
Carlo estimate x̂t is calculated instead. From the computer
vision literature, a recursive Bayesian formulation [8, 2],
which recursively calculates expectation of xt over the pos-
terior p(xt|yt:1), has been proven to be a reliable estimate
and is widely employed. It starts with the previous posterior
distribution, maximises a posterior by considering the prod-
uct of the observation likelihood and the prior in the sense
of the Bayesian paradigm. The optimal estimate is found
when the posterior probability is maximised. Maximising
the posterior probability substantially relies on a likelihood
function that measures how well an estimate state x̂t fits ob-
servation yt. The selection and design of such a likelihood
function could be very flexible, but it should obey the prin-
ciple of simplicity since most computational loads will be
spent in evaluating the likelihood function.

The Contextualised Dynamical Architecture illustrated
in Figure 1 depicts the overview of the framework. Initially,
the action of an actor at time t is captured as a digital im-
age. Subsequently, background subtraction is applied to this
image to generate a silhouette image represented by a bit
mask. In parallel, the pose is described by an articulated
skeleton associated with a parameter vector. A pseudo sil-
houette image can be rendered by applying perspective pro-
jection [9] with known camera calibration parameters. The
observation likelihood can then be evaluated by comparing
the overlapping area between the silhouette image and the
pseudo silhouette image of the estimate state x̂t. The de-
formable virtual human model is learned from the real actor
at the training stage, and prior knowledge about how the
pose evolves from time t to t + 1, is incorporated by em-
ploying a temporal dynamical model.

4. Skeletal Deformation

As a strong prior, the articulated human body model is
widely used in literature (e.g. [4, 7]) in order to reduce un-
necessary complexities of human motion capture. It pro-
vides a parametrisation1 of human pose, and allows mark-
erless human motion capture to be formalised as tracking of

1Such parametrisation has been extensively studied in computer anima-
tion and graphics. It has already appeared as the standard in industry.

Figure 2: Human Skeleton and Joint Angles

a hierarchical kinematic structure which is relative simple
and well studied.

Up to date, there are two primary standards describing
modelling of the human body in computer animation, H-
Anim (Humanoid Animation) 1.1 standard [10] and Body
Animation MPEG4 standard [11], and three major motion
capture formats C3D, BVH/BVA, ASF/AMC which are
used to store and retrieve the motion capture data. These
two standards and three data formats share commons in a
way of defining a generic human skeleton structure. This
is not a coincidence. Any simple and compact representa-
tion of the human body should naturally fit to the anatomy
of the human body. The proposed human body skeleton is
therefore designed to be conformed to H-Anim standard and
the ASF/AMC format. This consideration enables a natural
integration to the skeleton-based animation scheme in the
computer animation standard.

The human model used in this work is based on the skele-
ton illustrated in Figure 2, which has total 27 segments and
167 degrees of freedom (DOFs). Avoiding too complicated
representation, only 10 articulated segments (the ankle and
wrist joints are optional) and 25 DOFs are considered as
important and modelled for tracking. The translation and
orientation of the entire model are described by 6 DOFs.
The rest of 19 DOFs is used to describe the joint angles of
limbs. Thereby, any point bP in a local kinematic coor-
dinate frame b can be transformed to the point wP in the
world coordinate frame w by:

wP =
N∏
i

T (θi)bP

where, N is the number of transformations. T (θ i) is a ho-
mogeneous transformation matrix specified by θ i a particu-
lar set of joint angels and a translation.

Because of conforming to the humanoid skeleton stan-
dard, rather than using geometry primitives to approximate
the skin, the skin can be imported from any 3D object for-
mat. The 3D skin mesh can be then associated with the hi-
erarchical skeleton by assigning a group of vertices to each
bone. This is sometimes referred to as rigging. Each vertex
in the mesh is associated and controlled by multiple bones



Figure 3: Vertex blending. The bones are drawn in triangu-
lar solids, vertices are drawn in circles. Vertices are shaded
according to its associated bones. The movement of bones
drive the vertices to be transformed up to the scale of vertex
weights, ultimately leading to skin deformation.

with a scaling factors called vertex weights2. As a result,
Portions of the skin can be deformed to account for transfor-
mations of multiple bones. Instead of animating each vertex
individually, the skeleton is manipulated, and the skin is de-
formed automatically. As an example illustrated in Figure
3, vertices are assigned to the bones according to geomet-
rical distances. As the child bone is rotated, its associated
vertices are transformed up to the scale of vertex weights.
Therefore, the vertices which are far from the parent bone
are transformed further. Conversely, the vertices close to
the parent bone almost remain as before.

This is formally stated in the Skeletal Subspace De-
formation (SSD) algorithm [16] which is based on the
weighted blending of an affine transformation of each joint
by:

vd = (
M∑
i=1

wiT (θi))v0

where, M is the number of joints, vd is a vertex after de-
formation, wi is vertex weights and v0 is a vertex in the
registered initial pose. Although SSD suffers from inherent
limitations of the linear blending [15] (known as“collapsing
joints” and “twisting elbow problem” which in general, are
the mesh deformed by SSD loses volume as the joint rota-
tion increases), this simple algorithm still remains the most
popular deformation scheme because it is computationally
efficient.

Figure 4c and 4d show the silhouette matching examples
for a already tracked posture using the proposed model and
Balan et al’s model in [4]. The non-overlapping area is sig-
nificantly reduced by using the SSD scheme, resulting in
the more accurate matching evaluation.

2Vertex weights are often assigned by the computer graphics software.

(a) (b) (c) (d)

Figure 4: Image segmentation by static background subtrac-
tion and silhouette matching examples (The original silhou-
ettes are coloured by blue, the generated model silhouettes
are coloured by yellow)

5. Static Background Subtraction

The silhouette is a suitable shape descriptor for marker-
less human motion capture. Its generation and quality are
vital important for subsequent processes. Any noise appear-
ing in silhouettes will eventually remain in the inferred vi-
sual hull and corrupt the shape of the original body. Poor
silhouette extraction usually is a primary reason leading to
the failure of tracking.

In this work, static background subtraction used is in
a way similar to the method described in [24]. Initially,
the static background statistics are modelled by the pixel-
wised Gaussian mixtures which account for general vari-
ations in the static background. As the static background
statistics are collected in the three periods, each of them
can be modelled by a Gaussian distribution. Therefore,
each pixel-wised Gaussian mixture model has three tem-
poral components. When the object appeared, any pixel
with the probability deviating from the normal static range,
which is a pre-defined threshold, is labelled as foreground,
otherwise is labelled as background. The background
pixel value x should satisfy the following criterion:p(x) =∑k

i=1 ηiN(x, ui, σ
2
i ) > Cthres where, ui is the mean value

of the static background, σ2
i is the variance of the static

background, Cthres is the pre-defined threshold and ηi is
component coefficients for Gaussians. The component co-
efficients and a normal static threshold can be learned from
correctly segmented images or determined according to the
feedback from an interactive segmentation approach. This
method is robust, fast and easy to be incorporated into the
markerless human motion capture framework. An example
of the segmentation result is shown in Figure 4a and 4b.



6. Optimisation by Annealed Particle Filter

6.1. Particle Filter

Particle filter is built on the basis of the recursive
Bayesian filter which is firstly formulated in [8, 18], which
generalises the temporal dependencies of a sequential dy-
namical system by First-order Hidden Markov Model in the
sense of the Bayesian paradigm. The mathematical formu-
lation is given by:

p(xt|y1:t) ∝ p(yt|xt)
∫

p(xt|xt−1)p(xt−1|y1:t−1)dxt−1

Intuitively, above formula states that the predictive posterior
is dependent upon likelihood-weighted expectation of tem-
poral dynamics/transition priori p(xt|xt−1) with respect to
the previous posterior p(xt−1|y1:t−1).

Combining recursive Bayesian filter with importance
sampling, particle filter can be briefly described below:

Let {xi
t, w

i
t}N

i=1 denotes a set of N random sam-
ples xi

t with associated normalised importance weights
wi

t(
∑N

i=1 wi
t = 1) at time t. Providing that the N number

of samples is reasonable large with respect to the dimen-
sions of the state vector x, an empirical estimate of posterior
p(xt|y1:t) at time t can be approximated as:

p(xt|y1:t) ≈
N∑

j=1

wj
t δxj

t
(xt)

where, δxj
t
(xt) is Kronecker delta function. Further, the

estimate state x̂t can be evaluated by the expectation of the
posterior probability:

x̂t = E[xt]p(xt|y1:t) =
∫

xtp(xt|y1:t)dxt ≈
N∑

i=1

wi
tx

i
t

Assuming that the current state and observation are depen-
dent solely upon the immediate previous state and current
observation, the primary task of the algorithm is to deter-
mine importance weights wi

t. This is done by iteratively
updating importance weights by:

wi
t ∝ wi

t−1

p(yi
t|xi

t)p(xi
t|xi

t−1)
π(xi

t|xi
t−1, y

i
t)

(1)

where, p(yi
t|xi

t) is the observation likelihood, p(xi
t|xi

t−1) is
the temporal dynamics, and π(xi

t|xi
t−1, y

i
t) is the important

distribution.

6.2. Annealed Particle Filter

APF [7] incorporates simulated annealing for minimis-
ing the energy function E(yt, xt) or, equivalently, maximis-
ing the observation likelihood p(yt|xt) in the particle filter.

The observation likelihood is essential to approximate the
posterior distribution and often formulated in a form of the
Boltzmann distribution:

p(yt|xt) = exp{−λE(yt, xt)} (2)

where, E(yt, xt) is an energy function between yt and xt. λ
annealing variable is an inverse of the product of the Boltz-
mann constant and the temperature.

One simple energy function E(yt, xt) can be defined as:

E(yt, xt) =
1

Nv

Nv∑
i=1

Ds(yt, xt) + αDc(yt, xt) (3)

where, Nv is the number of views. Ds(yt, xt) measures
differences between the observed silhouette y t and the sil-
houette generated by the particle xt. Dc(yt, xt) measures
differences between contours which is used to emphasise
the shape consistency. α is used to balance the silhouette
and contour term.

The optimisation of APF is iteratively done according to
a predefined M -phase schedule {λ = λ1, ..., λM}, where
λ1 < λ2 < ... < λM , known as the annealing sched-
ule. At time t, considering a single phase m, initial par-
ticles are outcomes from the previous phase m−1 or drawn
from the temporal model p(xi

t|xi
t−1, y

i
t). Then, all particles

are weighted by their observation likelihood p(y t|xt), re-
sampled probabilistically to select good particles which are
highly likely to near the global minimum. Finally, particles
are perturbed by a Gaussian noise with zero mean and the
diagonal covariance matrix.

Besides λm, another two important parameters a sur-
vival rate αm and a perturbation covariance matrix Pm con-
trol and tune a pace how samples are superseded and per-
turbed to concentrate on the minimum of the energy func-
tion. Given the survival rate αm and particles at the current
phase, λm can be determined as suggested in [7] by:

αmN

N∑
i=1

(wi
t,m)2 =

(
N∑

i=1

wi
t,m

)2

(4)

where, N is the number of particles, w i
t,m =

exp{−λmE(yi
t, x

i
t,m)}.

Overall, the APF algorithm for a typical frame can be
summarised in the Algorithm 1.

7. Experiments

Experiments were conducted on the publicly available
MOCAP (Synchronized Video and MOCAP dataset) and
HumanEva-I dataset [20, 4, 21] from Brown University.
These datasets are aimed to quantitative evaluation for artic-
ulated human motion, and contain multiple videos, multiple



Algorithm 1 Anneal Particle Filter for a typical frame at
time t

Require: appropriate αm is defined, previous particles
xt−1, observation yt, the number of phases M and the
initial covariance matrix P0 are given
for m = 1 to M do

1) Initialise N particles xi
t from the previous phase or

the temporal model p(xi
t|xi

t−1, y
i
t).

2) Calculate the energy E(yt, xt) for all particles using
the equation (3).
3) Find the λm by solving the equation (4).
4) Update weights for all particles using the equation
(2).
5) Resample N particles from the important distribu-
tion.
6) Perturb particles by Gaussian noise with covariance
Pm = αmPm−1 and mean µ = 0.

end for

subjects with properly documented body parameters, cam-
era calibration parameters and motion capture ground truth.
The motion capture data was captured simultaneously using
a calibrated marker-based motion capture system and mul-
tiple high-speed video capture systems.

The first experiment is on the MOCAP dataset that
contains a walking subject with total 529 frames, 4-view
grayscale images synchronised in hardware at 60 Hz and
motion capture data which was collected using a 6 cam-
era Vicon system at 120 Hz. Mocap and image data was
synchronised in software by sub-sampling and aligning the
two data streams. The results of the proposed method are
compared with the results of Balan et al’s Annealed Parti-
cle Filter. The position error in 10 centimetres and body
orientation error in degrees against the ground truth data
are plotted in Figure 5. Since the initial pose comes from
ground truth, the position errors of both Balan et al ’s and
the proposed method appear relatively small. As the track-
ing process proceeds, both methods deviate from the ground
truth data and experience the larger errors. However, the
proposed method is able to maintain the errors on average
fewer than 8 centimetres for the position error. The body
orientation error fluctuates around 8 degrees. Although it
appears less accurate than Balan et al ’s method, it still
provides comparable results. Particularly, Balan et al ’s
method mistracked the right arm (highlighted in yellow) at
the frame 35 (illustrated at last row and left 4 columns in
Figure 6) and the left leg (highlighted in light blue) at the
frame 135 (illustrated at the last row and right 4 columns
in Figure 6). Since the more human-like model is used, the
silhouette based likelihood evaluation becomes more accu-
rate, the proposed method is able to track correctly in both
situations.
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Figure 5: The position error and body orientation error
against the ground truth data

The second experiment was conducted on the
HumanEva-I dataset that contains software synchro-
nised data from 7 video cameras (4 grayscale and 3 colour)
and motion capture data3. Figure 7 illustrates the tracking
at the frame 17, 91, 198 and 418, respectively. For every
two rows, the top row shows the original image data from 4
greyscale and 3 colour cameras. The bottom row shows the
tracking results with the human skeleton model projected
on the original images. Overall, the tracking result is
robust, except that the orientation of the head is not quite
accurate. The reason for this is because the shape of the
head is close to a sphere which is central symmetry and has
a high possibility to raise ambiguities.

8. Conclusion and Future work

This paper has demonstrated a skeleton-based marker-
less human motion capture framework that utilises a skele-
tal deformation scheme to improve the likelihood evalua-
tion accuracy, static background subtraction and the global
optimisation by the annealed particle filter as its basic com-
ponents. It has outlined a systemic way to understand the

3Since this project is undergoing, the quantitative evaluation against
motion capture data is not available and only visual results are provided at
this stage.



Figure 6: Left and right 4 columns are tracking results for frame 35 and 135, respectively. The rows from top to bottom
correspond to the original images, the proposed method’s and Balan et al’s results (Ground truth is coloured in black),
respectively. Note the circled parts are mistracked in Balan et al’s results and correctly tracked in the proposed method’s
results.

nature of complex markerless human motion capture prob-
lem and solve it within a well-defined framework. Exper-
iments have also shown the proposed approach is able to
solve the problem efficiently on the real data and perform
more robust than the existing approach on some situations.

Future work will continue to investigate the markerless
human motion capture with more emphasis on the temporal
dependencies. It may employ machine learning methods to
encode temporal dependencies in human motion in order to
help the global optimisation.
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