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Abstract
We present a markerless tracking system for uncon-

strained human motions which are typical for everyday ma-
nipulation tasks. Our system is capable of tracking a high-
dimensional human model (51 DOF) without constricting
the type of motion and the need for training sequences. The
system reliably tracks humans that frequently interact with
the environment, that manipulate objects, and that can be
partially occluded by the environment.

We describe and discuss two key components that sub-
stantially contribute to the accuracy and reliability of the
system. First, a sophisticated hierarchical sampling strat-
egy for recursive Bayesian estimation that combines parti-
tioning with annealing strategies to enable efficient search
in the presence of many local maxima. Second, a simple
yet effective appearance model that allows for the combina-
tion of shape and appearance masks to implicitly deal with
two cases of environmental occlusions by (1) subtracting
dynamic non-human objects from the region of interest and
(2) modeling objects (e.g. tables) that both occlude and can
be occluded by human subjects. The appearance model is
based on bit representations that makes our algorithm well
suited for implementation on highly parallel hardware such
as commodity GPUs.

Extensive evaluations on the HumanEva2 benchmarks
show the potential of our method when compared to state-
of-the-art Bayesian techniques. Besides the HumanEva2
benchmarks, we present results on more challenging se-
quences, including table setting tasks in a kitchen environ-
ment and persons getting into and out of a car mock-up.

1. Introduction

Markerless human motion capture (HMC) has been in
the focus of computer vision research for more than a
decade now. The capability to observe articulated human
motions on a joint level with unintrusive methods is much
sought-after in areas such as human computer interaction
(HCI), computer graphics and animation, or robotics, to

name just a few. However, high-accuracy markerless mo-
tion capture systems to date are still constrained to well-
defined and controlled environments (as evident in the case
of the HUMANEVA [15] quasi-standard benchmarks), and
are often constricted to predefined types of motion.

Figure 1. Two challenging setups for HMC featuring dynamic en-

vironments and occlusions. The center column shows the failure

of shape-based methods. The right column shows the results using

our appearance model with implicit environment modeling.

In our work we investigate how to apply markerless mo-
tion tracking techniques to activity observation tasks that
include object manipulation and tasks that are performed
in realistic unmodified (living) environments. The selected
techniques must exhibit reliable performance in a large vari-
ety of scenarios with arbitrary types of motions while main-
taining computational tractability. Additional challenges
arising in this context are the segmentation of manipu-
lated objects from the moving human and occlusion effects
caused by environment objects that might also be dynamic
as in the case of opening doors.

We present a working system that is capable of extract-
ing high-dimensional human motion representations from
challenging sequences (Fig. 1). Within this paper we will
describe and discuss the techniques necessary to build such
a system and motivate our choices. We will also intro-
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duce novel methodological contributions that play a key
role in making the system run reliably and with high ac-
curacy: (1) We present a hierarchical sampling strategy that
outperforms state-of-the-art particle-filter based techniques,
especially when it comes to high-dimensional models. It
combines partitioning and annealing strategies that make it
highly efficient in overcoming local maxima of the weight
functions. (2) We present a simple yet effective color-based
appearance model that is computationally cheap and ide-
ally suited for parallelization on commodity GPUs. (3) We
show how to use this appearance model to not only enrich
the observation model, but to provide a means of implicit
environment modeling that can be used to disambiguate be-
tween human subjects, dynamic objects, and the environ-
ment in a simple and elegant way. Our representation does
not require a 3D model of the environment, that is hard to
come by in dynamic environments.

We provide extensive evaluation on the HumanEva2 test-
set and on several other minute-long sequences for various
application scenarios. Our main scenario is a kitchen envi-
ronment, where humans are observed during everyday ac-
tivities like cooking or setting the table. They frequently
interact with objects (pick and place) and the environment
(opening/closing cupboards and drawers), which leads to
partial occlusions of the subjects. Further evaluation is pro-
vided on a sequence of a human getting into and out of a car
mock-up, where strong occlusions occur.

The remainder is organized as follows. We briefly dis-
cuss related work in Section 2. Section 3 introduces our
framework for human motion tracking, where we explain
the novel hierarchical sampling strategy (3.1), the shape
model (3.2), our efficient appearance model (3.3), and the
layered representation for implicit environment modeling
(3.4). To directly motivate our choices, we provide exper-
imental evaluations along with the method descriptions in
the corresponding subsections. We finish in Section 4 with
a discussion of pros and cons of our method and conclude.

2. Related Work
In our work we are concerned with accurate markerless

human motion capture from multiple cameras. Moeslund et
al. [14] provide a survey and taxonomies of the field.

One of the most common image cues for pose estima-
tion is shape, often encoded in silhouettes [10, 7, 3, 16]
extracted using background subtraction. As silhouettes, es-
pecially in the monocular case, are ambiguous with respect
to self occlusions, edges are often used to refine detection
of human outlines [7, 3]. A richer description of shape can
be obtained by calculating the visual hull from several cam-
era views. Pose estimation is then performed by clustering
rigidly-moving parts to estimate joint positions [6, 1], or by
fitting a 3D model to the surface [12, 11]. While accurate,
these methods require a large number of cameras to provide
good results, and have not been tested under occlusions.

Color or texture information is less often used, partly

due to the high computational cost. Balan and Black [2]
use adaptive image templates that are updated over time.
Kehl and van Gool [12] apply color information to visual
hulls to find better nearest-neighbor correspondences be-
tween visual hull and model. Gall et al. [9] use an analysis-
by-synthesis approach to detect point correspondences be-
tween the image and a textured surface model. This ap-
proach partly resembles our work with respect to the model
synthesis, but is restricted to prominently textured clothing.

Pose tracking is usually performed from an initial esti-
mate using either Bayesian approaches [7, 3] or determinis-
tic optimization methods [12, 9]. Recently, exemplar-based
methods have been in the focus of attention. These do not
suffer from the high computational complexity in estimat-
ing the full DOFs of a human body. Two directions can
be distinguished. A discriminative approach is to learn a
direct mapping from observed image cues (such as silhou-
ettes, SIFT, HOGs) to body poses [10, 16, 5], which can
provide accurate estimates, especially given monocular vi-
sion. These methods are constricted to the type of features
they have been trained with and training has to be redone
when transfering to environments with different camera per-
spectives. Another exemplar-based approach is to learn a
low-dimensional embedding of the human pose space for
specific motions, that can be used to reduce the dimension-
ality of the problem [17]. However, such methods don’t
generalize over motions missing in the training set, and are
difficult to extend to the observation of everyday activities.

The HUMANEVA benchmarks [15] have been adopted by
the community as a means to compare different approaches
[16, 5]. They consist of actors performing predefined ac-
tions like walking, running or boxing in a large and unclut-
tered environment. Little to none work is known to us where
humans are observed performing everyday tasks in realistic
environments, interacting with objects and the environment.

3. Human Tracking Framework
We perform model-based tracking of human motions in

multi-camera environments with 3-4 static cameras. The
model we use [4] is articulated through 51 DOFs and is
able to provide realistic and highly accurate postures of hu-
man subjects (Fig. 2). It encodes biomechanical limits for
joint angles as well as body-part dependant inter-frame vari-
ances constricting the amount of motion between consecu-
tive frames. The outer shape of the model is represented
through a surface triangle-mesh (< 2000 triangles) and can
be adapted to different subjects.

The tracking problem is posed in a Bayesian framework
as one of estimating the posterior probability density func-
tion (pdf) p

(
xt

∣∣y1:t

)
for the pose xt at time t given a se-

quence of image observations y1:t up to time t. This pdf
can be obtained recursively using prediction and update
steps, given a motion model p

(
xt

∣∣xt−1

)
and an observation

model p
(
yt

∣∣xt

)
. While it is computationally intractable

to approximate the pdf, we use a hierarchical particle filter
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framework to find its modes and thus the most likely pose
estimate for each timestep.

Figure 2. Three human model examples rendered in different poses

with appearance information overlayed.

We currently expect that the first pose is initialized man-
ually. This needs to be done only approximately due to the
large convergence radius of the sampling strategy proposed
in section 3.1. Experiments have shown convergence up to
a pelvis translation of about 0.5 m when the initial posture
roughly resembles the observed pose.

Inner and outer model sizes also need to be manually set
during initialization and remain constant throughout track-
ing. To simplify the model adaptation we performed a PCA
of the size parameters from about 100 training exemplars.
The adaptation using the principal components takes about
2 min for an experienced user.

In the next subsections we describe our hierarchical sam-
pling strategy and the separate parts of the observation
model in more detail. As for the motion model, we do
not make use of informed motion priors to make sure we
are able to track any posture that can be physiologically de-
scribed by our model, which is an important prerequisite in
the observation of everyday tasks. Thus, we simply propa-
gate the last particle state and diffuse it with Gaussian noise
according to the body-part dependant inter-frame variances.

3.1. Hierarchical Sampling Strategy
Due to the non-linearity in both motion and observation

models, particle filters [8] are a common choice for estimat-
ing the pdf. However, standard Sampling Importance Re-
sampling (SIR) fails to approximate high-dimensional pdf s
due to the exponential growth in particles needed. There-
fore, one usually tries to estimate only the modes of the
pdf. Two sampling strategies have been proposed that claim
to do this efficiently, namely the annealed particle filter
(APF) [7] and partitioned sampling (PS) [13]. In APF, par-
ticles are gradually moved towards the global maximum of
the weight function in several iterations (layers). By bluring
the weight function in the initial layers, particles are able to
escape local maxima in early iterations, similar to simulated
annealing. PS on the other hand provides a hard partition-
ing on the state space, where the resulting smaller partitions
are estimated in sequential order using SIR.

While APF has been shown to provide good results in
HMC on some short sequences, PS has only been pro-
posed for hand tracking. Bandouch et al. [4] recently eval-

uated both approaches in the context of HMC with high-
dimensional models, and proposed a combination of both,
hinting at their complementary strengths. The intuition is
that APF as a soft partitioning approach still suffers from
exponential growth, whereas PS suffers from bad estimates
in early partitions. By using annealing layers inside the par-
titions, the size of these partitions can be increased, result-
ing in better overall estimates. However, it remains unclear
what type of hierarchical partitioning and also what order
of partitioning (e.g. arms first or legs first?) is best. While
this might not make a difference for noise-free simulation
data, in practice an incorrectly estimated early partition due
to noisy data irrevocably misleads the outcome (Fig. 4).

We ran a series of experiments on the HumanEva2
benchmark to verify the assertions from [4] and to find
an improved sampling strategy that is highly reliable in
practice given noisy observations. To provide comparable
results, all experiments were performed using our human
model (38 DOF; ignoring lower spine, hands and feet) in
combination with the shape-based observation model de-
scribed in section 3.2. We first evaluated the APF (Fig. 3a),
testing three different variants for constricting the amount
of diffusion to each body part with each new layer. In the
original version, the diffusion is reduced using a constant
factor. The first variant controls the amount of diffusion ac-
cording to the variances of particle states from the last iter-
ation. In the second variant, particles are diffused using the
state covariance matrix from the particle set in the last itera-
tion. This covariance scaled diffusion also provided the best
results, although the overall performance of the APF is un-
satisfying. While the torso is correctly estimated most of the
time, the limb positions are often wrong. We attribute this
to the fact that all body parts are estimated at once, which
results in a random shuffling of the outer limbs until their
preceding body parts could be localized.

We then tested PS (Fig. 3b) at comparable processing
times (1600 particles PS ∼ 10 layers 800 particles APF).
The order of partitioning was pose and lower torso, upper
torso, left thigh, left lower leg, right thigh, right lower leg,
left arm, left forearm and so on. Again, the results are un-
satisfying, which can be attributed to the large ambiguity in
the weight function when evaluating the lower torso.

Figure 4. The order of limb partitioning can influence the outcome

given noisy observations: a) Original image b) Noisy foreground

mask c) Left leg first partitioning d) Right leg first partitioning

During the experiments we observed that APF manages
to find good estimates of the torso, but fails in estimating
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Figure 3. Tracking results on the HumanEva2 benchmark (sequence S4). Top-left: Annealed Particle Filter (38 DOF). Top-right: Partitioned

Sampling (38 DOF). Bottom-left: Proposed Method (38 DOF). Bottom-right: Comparison of all methods (51 DOF). Note that there seems

to be a systematic error (the error never drops below 5 cm) resulting from differences in relative joint positions between the ground truth

model and ours. Visually, our proposed method delivers near perfect results (see http://memoman.cs.tum.edu for videos).

the limbs. PS on the other hand is bad at estimating the
torso, but is able to estimate limb positions accurately when
given a good torso estimate. Thus, a combination of APF
for estimating the torso with PS for estimating the limbs
turns out to be beneficial for tracking. However, PS suf-
fers from another problem in practice. Whenever dealing
with noisy observations, the order of partitioning influences
the local maxima encountered on the way, which often re-
sults in limbs being interchanged (Fig. 4). This effect can
be weakened by introducing annealing steps to each par-
tition, but the overall problem remains. To overcome this
problem, we propose to divide particle evaluations into par-
allel pipelines of partitions with different sizes and order of
estimation (e.g. left arm first then right arm or vice versa or
both arms in one partition with annealing). Afterwards, par-
ticles emerging from the different pipelines are combined
and reweighted, so that the best strategy wins, as in a vot-
ing scheme. The high diversity of local sampling strategies
turns out to be the key to robust behavior by avoiding to get
stuck in local minima created by noisy image observations.

Our newly proposed sampling strategy consists of initial
covariance scaled annealing steps, where we estimate only
the state of the torso. Annealing proceeds until the iteration
terminates or the variances from the last iteration drop be-
low a threshold. Then, several parallel sampling strategies
for the limbs are started with different partition sizes and
order of execution. These also involve annealing steps, but
using less layers. Each of the partitions only uses a frac-
tion of the original particles, depending on the size of the
partition and on the number of parallel partitions. Finally,
particles from the parallel partitions are resampled based on
their weights, leaving the fittest to survive.

Due to space constraints, we can give only marginal
comments on implementation details of our method. An-
nealing partitions are implemented in the same way as de-
scribed in [7], while the resampling of particles from one

partition to another is performed as described in [13]. Par-
allel partitions are resampled into a new partition by con-
catenating the previously split particle sets and updating the
weights for the concatenated set before proceeding with the
next resampling step. We will not comment on the exact
size and order of the parallel partitions here, but we expect
the general concept to work well with different choices of
partitions, as long as enough diversity in partitioning is en-
sured (changing order of limb evaluations, changing size of
partitions). As a rule of thumb, the bigger the partitions
become, the more annealing layers should be introduced.

The results of our proposed approach on the benchmark
(Fig. 3c) show stable behavior and clearly outperform both
APF and PS. Even when using only a fraction of overall
particles (200 instead of 800), results are still much better
than in the former approaches. What is more, we repeated
the experiments using the best variants of each algorithm,
this time tracking the full 51 DOF of our model, includ-
ing the lower spine, hands and feet. Both APF and PS get
completely confused, while our strategy provides almost the
same quality results as in the 38 DOF case, due to the hard
partitioning of the state space (Fig. 3d). To the best of our
knowledge, our sampling strategy is the first to have shown
tracking success with such high-dimensional models using
a Bayesian approach without making use of training data.
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Figure 5. Results of the proposed method on all HumanEva2 se-

quences using different models than in Fig. 3

We also provide results of our approach on the other
sequence in the HumanEva2 benchmark, using different
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model adaptations (Fig. 5). As an example, model 1 for
sequence 2 was too small, resulting in slightly worse behav-
ior. Note that we used exactly the same parameters for all
experiments in this paper, and we did not learn or tweak pa-
rameters towards specific sequences. This especially means
that although HumanEva2 has been recorded at 60 Hz, we
used the larger inter-frame variances suitable for our own
25 Hz recordings. Processing took about 20 sec per frame
using our single-threaded C++ implementation on a con-
sumer laptop.

3.2. Shape Model
We use a very simple and common observation model in-

side the particle filter framework, that is based on silhouette
shapes extracted from multiple cameras. Besides its sim-
plicity, it has several advantages over more complex shape
models such as visual hulls when it comes to occlusions and
dynamic objects, as will be pointed out later.

For better clarity we introduce the following notations
for logical operations on binary image masks I:

AND(IA, IB)[x, y] = IA[x, y] ∧ IB [x, y]
OR(IA, IB)[x, y] = IA[x, y] ∨ IB [x, y]

DIFF(IA, IB)[x, y] = IA[x, y] � IB [x, y]
XOR(IA, IB)[x, y] = IA[x, y] � IB [x, y]

NOT(I)[x, y] = ¬I[x, y]

COUNT(I) =
∑

x,y

I[x, y] ; I[x, y] ∈ {0, 1}

Here, I[x, y] corresponds to the binary value of the image
mask I at pixel [x, y]. The four binary operators AND, OR,
DIFF and XOR correspond to pixelwise intersection (∧),
union (∨), difference (�) and symmetric difference (�) op-
erations on the two image masks IA and IB . NOT specifies
inversion (¬). To simplify matters, we assume that these
operations work on the image masks of all cameras in par-
allel. The COUNT operation then sums up the non-zero
pixels of all cameras.

For evaluating the quality of a pose estimate (i.e. parti-
cle), the shape of human subjects is evaluated by silhou-
ette comparison of the model projection masks IP and bi-
nary foreground masks IF extracted using a background
subtraction technique. In this notation, the commonly pro-
posed SSD error measure [3, 7] between selected points on
the model and the foreground masks would correspond to
COUNT(DIFF(IP , IF ))). However, we use the sum of a
pixelwise logical symmetric difference as error measure eS :

eS = COUNT(XOR(IP , IF )) (1)

This is justified in that the projection should not only be ex-
plained well by the foreground mask, but also should the
foreground mask be covered as good as possible by the pro-
jection. When ignoring this, arms tend to stick to the torso

unless other visual cues, e.g. edges (that tend to be unreli-
able with clothing), are incorporated. However, it should
be noted that using the symmetric difference requires the
whole image mask to be processed on the contrary. We al-
leviate the increased computational expense by representing
image masks using runlength-encoding.

3.3. Appearance Model
When using three or more cameras, silhouette shapes

are a sufficiently rich and unambiguous descriptor of hu-
man poses [3, 4], as also proved in our experiments. This
changes in the presence of additional foreground objects,
or when there are occlusions from the environment. Color-
based appearance models can help to disambiguate the fore-
ground, but the large computational expense of such meth-
ods, that often involves calculation of Mahalanobis dis-
tances to given color clusters (for each pixel and for every
particle), makes them tedious to use in practice.

We introduce a simple yet effective appearance model
where color channels are represented as bitmasks. The
3D colorspace is divided into voxels of equal size. Each
set bit in a bitmask represents the index of color voxels
inside the color cluster. When using 32 bit Integers for
each color channel, the colorspace is divided into a grid of
32 × 32 × 32 = 32768 different colors, and a color clus-
ter is represented by 3 integers. Testing whether a color is
inside a given color cluster now becomes very efficient us-
ing bitwise logical AND operations, and correspondence is
established when all three resulting Integers are non-zero.
This computation can be highly optimized using techniques
such as loop-unrolling, or parallelization on GPUs.

Unfortunately, in this representation it is only possi-
ble to represent rectangular clusters of colors in the 3D
colorspace. To account for the typical shape of Gaus-
sian color distributions, where the principal component is
aligned along the luminance direction, we thus propose to
use the HLS colorspace, which better captures the shape
of typical color distributions in man-made environments
(Fig. 6). To account for the fact that hue and saturation loose
significance at high and low luminance, and that hue also
looses significance at low saturation, additional masking is
applied to the bitmasks of respective colors using precom-
puted lookup-tables.

Figure 6. Left: RGB color cube; Right: HLS dual cone color

representation at comparable spatial alignment.
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Color clusters for each triangle in the human mesh are
initialized from the given first pose, and are refined during
tracking. By rendering our model using a z-buffer algorithm
with the triangle index as color, we can associate visible col-
ors to the triangles in our model. We only add new colors
when they are sufficiently close to the cluster mean, and
when the triangle normal is approximately facing towards
a camera. The corresponding bitmask representations are
calculated considering the mean and the eigenvalues of the
colors in each cluster. In the future we plan to shift the lu-
minance mean in each frame according to a histogram com-
parison between frames to account for changes in lighting.

We incorporate the appearance model into our observa-
tion model by estimating how well a rendered color projec-
tion of our model matches with the image colors. The sum
of all consistent color values forms the correlation measure
cA. Given the error eS from our shape model, a combined
weight ω is calculated as follows:

ω = α · (1−NORM(eS)) + β ·NORM(cA) (2)

where α and β are constants used for balancing the con-
tributions of shape and appearance (we use α = 0.7 and
β =0.3), and NORM scales the error and correlation mea-
sures to an interval between 0 (lowest encountered value)
and 1 (highest encountered value).

We have implemented the combined observation model
on a GPU using the NVidia CUDA API, and were able to get
a speed gain of ∼2 when compared to the optimized CPU
implementation of only the shape model using runlength-
encoding. Experiments on the quality of tracking indi-
cate that color-based tracking is beneficial when estimating
the head orientation, but does not necessarily improve the
overall tracking quality of other body parts, or reduce the
amount of particles needed.

3.4. Implicit Environment Model
The learned appearance for our human model can be

used to cope with two problematic cases encountered in real
environments, namely the presence of dynamic non-human
foreground objects, and occlusions by the environment. For
dealing with these cases, we introduce a new binary layer
mask IB into our observation model, that will be used to
block regions from processing. This mask is set (1) for all
pixels that should be processed, and unset (0) for regions
to be blocked. Blocking is then achieved by masking out
the respective parts in both the foreground mask IF and the
projection mask IP before evaluating the shape error eS and
the appearance correlation cA:

IF = AND(IF , IB) (3)

IP = AND(IP , IB) (4)

Dynamic non-human foreground objects: In this case dy-
namic objects (possibly manipulated by the human subject)

or dynamic parts of the environment (doors, cupboards,
drawers) appear inside the foreground mask and mix with
the human silhouettes. To filter these parts, we introduce a
human appearance mask IH that is set whenever a pixel’s
color resembles a color in our appearance model. Such a
mask can be calculated efficiently using a binary lookup ta-
ble for each color voxel index (32768 entries) that is calcu-
lated once when the appearance model is updated. We then
remove non-human parts from the foreground mask IF and
add them to the blocking mask IB using the following op-
erations:

I ′F = AND(IF , IH) (5)

I ′B = AND(IB , NOT(DIFF(IF , I ′F ))) (6)

Adding non-human parts to the blocking region is impor-
tant, as we have no idea whether the dynamic object might
be occluding the human. It also weakens the influence of
erroneously removed parts of the humans, as they will be
ignored without penalizing the shape model. Fig. 7 gives an
example on the effectivity of these simple operations.
Environmental occlusions: In this case static objects in the
environment partially occlude the observed subjects (e.g. ta-
bles, chairs). However, these objects can also be occluded
by the subjects, as there is no persistent spatial ordering. We
mark regions that are candidates for occlusions (e.g. tables)
by unsetting these regions in the blocking mask IB . This
needs to be done once during camera setup and can be done
by a user within seconds by choosing a polygonal region
to be considered. Such regions will by default be ignored
during evaluation. To prevent valid observations of human
body parts to be blocked, e.g. when arms are visible above
a table, we exclude all human-like foreground regions from
blocking:

I ′′B = OR(I ′B , I ′F ) (7)

Fig. 8 shows exemplar results using this kind of occlusion
modeling. The amount of occlusion that can be compen-
sated depends on the number of cameras used and their
placement, i.e. each body part should always be observable
from at least three cameras. Scenarios with more occlusion
thus require more cameras.
Experimental Results: We have evaluated our system in-
cluding the implicit environment models on several minute-
length sequences in a kitchen environment, where humans
are observed while setting a table. Although we are not
able to provide quantitative results on these sequences
due to missing ground truth data, videos are available at
http://memoman.cs.tum.edu. In these sequences,
several actors (with different body shapes) frequently inter-
act with the environment by picking up objects from draw-
ers or cupboards and placing them on a table. Furthermore,
while standing near the table, the legs are occluded in two
out of four views. When using only the shape-based obser-
vation model, the results of our tracker are either inaccurate
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Figure 7. Example frame with opened cupboard (from left to right): a) original image b) unmodified foreground mask IF c) tracking

results without using appearance d) foreground mask I ′
F after non-human foreground removal e) tracking results using our method. Each

row shows one camera view. White color in the mask represents set bits.

Figure 8. Example frame with occlusion from table (from left to right): a) original image b) tracking results without using blocking layer

and appearance c) original user-specified blocking mask IB d) blocking mask I ′′
B after exclusion of human-like parts e) tracking results

using our method. Each row shows one camera view. White color in the mask represents set bits (blocked regions are black).

or fail completely (Fig. 7 and Fig. 8). Using the implicit
environment modeling, the sequences can be correctly pro-
cessed without the need for reinitialization (Fig. 9). Most of
the problems encountered in our evaluation either stem from
the failure to separate peoples silhouettes from the back-
ground, or from inaccurate body models, which indicates
the importance of good body models in accurate HMC.

We have further evaluated our methods in a completely
different setup, where we track persons while getting into
and out of a car mock-up as used in ergonomic studies.
Here, occlusions given by the mock-up and the seat are
much stronger than in the kitchen sequences. Nonetheless,
we were able to track a sequence of 2500 frames at good
accuracy (Fig. 10). The original video sequences to our ex-
periments are available on request.

4. Discussion and Conclusion
We have shown how to reliably track human fullbody

motions with high accuracy for challenging tasks such as
everyday manipulation activities involving dynamic objects
and frequent occlusions in realistic environments. A key
aspect herein is our robust sampling strategy that is able to
find yet unobserved states. Without the ability to sample rel-

evant parts of the state space, the best observation models
will fail. While our observation models seem simple, they
are computationally tractable, provide good accuracy, and
are well-suited for the kind of implicit environment mod-
eling we propose. To achieve comparable results for the
sequences presented using e.g. visual hulls, the amount of
cameras necessary would probably be untractable.

Although there are still steps that need manual initial-
ization, the necessary amount of user input both for pre-
and post-processing is small when compared to marker-
based tracking systems. Our ongoing research is aimed
at automating all initialization steps and at developing im-
proved motion models for efficient prediction of dynamics.
This will help to reduce the number of particles needed for
tracking. Further speed-ups are expected from fully exploit-
ing the potential for parallelization inherent to our particle-
filter-based framework.
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advances in vision-based human motion capture and anal-

ysis. Computer Vision and Image Understanding (CVIU),
104(2):90–126, 2006.

[15] L. Sigal, L. Sigal, M. J. Black, and M. J. Black. Humaneva:

Synchronized video and motion capture dataset for evalua-

tion of articulated human motion. Technical report, Brown

University, 2006.

[16] R. Urtasun and T. Darrell. Sparse probabilistic regression for

activity-independent human pose inference. In CVPR, 2008.

[17] R. Urtasun, D. Fleet, and P. Fua. 3D People Tracking with

Gaussian Process Dynamical Models. In CVPR, 2006.

2047


