
Pattern Recognition 92 (2019) 146–155 

Contents lists available at ScienceDirect 

Pattern Recognition 

journal homepage: www.elsevier.com/locate/patcog 

Synchronisation of partial multi-matchings via non-negative 

factorisations 

Florian Bernard 

a , ∗, Johan Thunberg 

b , c , Jorge Goncalves c , Christian Theobalt a 

a MPI Informatics, Saarland Informatics Campus, Germany 
b Halmstad University, Sweden 
c LCSB Luxembourg, Luxembourg 

a r t i c l e i n f o 

Article history: 

Received 12 July 2018 

Revised 11 December 2018 

Accepted 23 March 2019 

Available online 23 March 2019 

Keywords: 

Partial permutation synchronisation 

Multi-matching 

Spectral decomposition 

Non-negative matrix factorisation 

a b s t r a c t 

In this work we study permutation synchronisation for the challenging case of partial permutations, 

which plays an important role for the problem of matching multiple objects (e.g. images or shapes). The 

term synchronisation refers to the property that the set of pairwise matchings is cycle-consistent, i.e. in 

the full matching case all compositions of pairwise matchings over cycles must be equal to the identity. 

Motivated by clustering and matrix factorisation perspectives of cycle-consistency, we derive an algo- 

rithm to tackle the permutation synchronisation problem based on non-negative factorisations. In order 

to deal with the inherent non-convexity of the permutation synchronisation problem, we use an initial- 

isation procedure based on a novel rotation scheme applied to the solution of the spectral relaxation. 

Moreover, this rotation scheme facilitates a convenient Euclidean projection to obtain a binary solution 

after solving our relaxed problem. In contrast to state-of-the-art methods, our approach is guaranteed to 

produce cycle-consistent results. We experimentally demonstrate the efficacy of our method and show 

that it achieves better results compared to existing methods. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

The problem of matching features across images or shapes is

a fundamental topic in pattern recognition and vision and has

a high relevance in a wide range of problems. Potential appli-

cations include shape deformation model learning [17,26] , object

tracking, 3D reconstruction, graph matching, or image registra-

tion. The fact that many tasks that seek for a matching between

a pair of objects can be formulated as the NP-hard quadratic as-

signment problem (QAP) [45] illustrates the difficulty of match-

ing problems. The more general problem of matching an entire

collection of objects, rather than a pair of objects, is referred to

as multi-matching . In general, such multi-matching problems are

computationally at least as difficult as pairwise matching prob-

lems, as they can be phrased in terms of simultaneously solving

multiple pairwise matching problems that are coupled via consis-

tency constraints. Using such couplings of pairwise problems is a

common approach for solving multi-matching problem in practice

[7,30,63,66] . 

Due to the importance and practical relevance of making use

of pairwise matchings to solve multi-matching problems, in this
∗ Corresponding author. 
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ork we focus on studying permutation synchronisation methods.

he aim of these methods is to process a given set of “noisy”

airwise matchings such that cycle-consistency is achieved. In the

ase of full matchings, cycle-consistency refers to the property

hat compositions of pairwise matchings over cycles must be

qual to the identity matching. Synchronisation methods have

een studied extensively both in the context of multi-matching

e.g. [16,28,40,43,44,47,50,59] ) as well as for general transforma-

ions (e.g. [2,8,14,24,25,52,56,61] ). One can interpret the synchroni-

ation methods as a denoising procedure, where the wrong match-

ngs (i.e. the noise) that account for cycle inconsistencies in the set

f pairwise matchings are to be filtered out. 

Most commonly, the synchronisation of pairwise matchings is

ormulated as an optimisation problem over permutation matri-

es. In the works by Pachauri et al. [44] and Shen et al. [50] , so-

utions for the synchronisation of permutation matrices based on

 spectral factorisation are presented. A major limitation of these

orks is that the method is only suitable for full permutation ma-

rices, i.e. it is assumed that all features are present in all objects

cf. Section 3.2 ). While this limitation has recently been addressed

n the work by Maset et al. [40] , in their work they do not aim

or cycle-consistency. Since the (unknown) true matchings must be

ycle-consistent, we argue that cycle-consistency is essential and

hould be strived for. 

https://doi.org/10.1016/j.patcog.2019.03.021
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2019.03.021&domain=pdf
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The main objective of this work is to present a novel approach

or the synchronisation of pairwise matchings that addresses the

entioned shortcomings of existing methods. To this end, we

resent an improved formulation for the permutation synchronisa-

ion problem that finds a non-negative approximation of the range

pace of the pairwise matching matrix. In contrast to [44] , our

pproach can handle partial pairwise matchings. Moreover, unlike

40,73] , our approach guarantees cycle-consistent matchings. 

Main contributions: The main contributions of our work on

he sychronisation of partial permutations can be summarised as

ollows: (i) Motivated by clustering and matrix factorisation per-

pectives of cycle-consistency in the set of pairwise matchings, we

erive an improved algorithm for permutation synchronisation based

n non-negative factorisations. (ii) While the proposed formula-

ion is non-convex, we propose a novel procedure for initialising

he variables. (iii) Moreover, we present a novel projection proce-

ure to obtain a binary solution from the relaxed formulation. (iv)

xperimentally we demonstrate that our method achieves superior

esults on synthetic and real datasets, while addressing the afore-

entioned shortcomings. 

. Related work 

In this section we discuss prior work that is most relevant to

ur approach. 

Transformation synchronisation: Synchronisation methods 

ave been studied for various kinds of transformations. The syn-

hronisation of (special) orthogonal transformations has been

onsidered based on spectral methods [5,52,61] , semidefinite pro-

ramming [15,52,61] , or Lie-group averaging [14,24] . The case of

igid-body transformations, which is particularly relevant in the

ontext of vision, has been studied in semidefinite programming

rameworks [4,15] , as well as in the context of spectral approaches

3,8] . In general, spectral approaches are more scalable compared

o semidefinite programming methods. In addition to centralised

ethods, distributed synchronisation methods have also been pre-

ented, both for the case of undirected graphs [58] , as well as for

he more general case of directed graphs [56] . 

Permutation synchronisation: Since permutation matrices are

 subset of the orthogonal matrices, one could consider permuta-

ion synchronisation as a special case of the orthogonal synchro-

isation methods. However, in general the permutation synchroni-

ation problem appears to be more difficult due to the additional

inary constraints. Moreover, if one considers partial permutations,

his interpretation as special case is no longer valid. The synchroni-

ation of full permutation matrices has been presented by Pachauri

t al. [44] , with follow-up works that consider partial matchings

2,40] . We devote Section 3.2 to an in-depth explanation of these

pproaches, where we also identify their main weaknesses upon

hich our approach improves. 

Matching problems: Matching problems between two objects

re commonly formulated in terms of the linear assignment prob-

em (LAP) [13,42] or the quadratic assignment problem (QAP)

13,31,32,37] . When one matches graphs, the LAP corresponds to

atching node attributes only, whereas the QAP matches node at-

ributes as well as edge attributes [72] . Computationally, the dif-

erence between both is that the LAP is solvable in polynomial

ime (e.g. via the Hungarian method [42] or the Auction algo-

ithm [12] ), whereas the QAP is NP-hard [45] . Hence, for solving

APs in practice, existing approaches either resort to (expensive)

ranch and bound methods [6] , or to approximations, e.g. based

n spectral methods [18,35] , dual decomposition [57] , linear relax-

tions [54,55] , convex relaxations [1,7,21–23,30,46,71] , path follow-

ng [29,70,72] , or alternating directions [33] . 

Multi-matching problems: The problem of matching more

han two objects can be phrased as multi-graph matching (MGM)
roblems [7,27,28,30,51,62,65,67,67] , which in general are computa-

ionally very challenging. If one uses first-order terms only, so that

eometric relations between the features are not explicitly taken

nto account, multi-matching can efficiently be solved as (con-

trained) clustering problem [59,64] . The approaches described in

7,30,63,66] phrase MGM in terms of multiple pairwise matchings. 

he work in [73] is closely related to the permutation synchro-

isation methods [2,40,44] , as the authors formulate the multi-

atching problem directly in terms of a low-rank optimisation

roblem for a given set of pairwise matchings. However, the so-

btained matchings are generally not cycle-consistent. 

. Background 

Notation: Let 1 pq and 0 pq denote p × q matrices comprising of

nes and zeros, and we write 1 p and 0 p for q = 1 . We use X + to

enote that all negative elements in the matrix X are replaced by 0.

or an integer i ∈ N , we define [ i ] := { 1 , . . . , i } . For a p × q matrix X ,

nd the index sets A ⊆ [ p ], B ⊆ [ q ], we denote by X A,B the | A | × | B |

ubmatrix of X that is formed from the rows with indices in A and

he columns with indices in B . We use the colon notation to denote

he full index set, e.g. X : ,B = X A,B for A = [ p] . For matrices A ij , i ∈ [ p ],

 ∈ [ q ] of appropriate sizes, we use the shorthand notation [ A ij ] ij to

enote the block matrix 

 A i j ] i j := 

⎡ 

⎣ 

A 11 . . . A 1 q 

. . . 
. . . 

. . . 
A p1 . . . A pq 

⎤ 

⎦ . (1) 

he set of (full) permutation matrices is defined as 

 p := { X ∈ { 0 , 1 } p×p : X 1 p = 1 p , 1 

T 
p X = 1 

T 
p } . (2) 

he set of p × q partial permutation matrices P pq is defined as 

 pq := { X ∈ { 0 , 1 } p×q : X 1 q ≤ 1 p , 1 

T 
p X ≤ 1 

T 
q } . (3) 

.1. Partial permutation synchronisation 

Let k ∈ N , k > 2 be the total number of objects (e.g. images or

hapes) that are to be matched. We assume that in object i ∈ N ,

ith i ∈ [ k ], there are m i ∈ N features, where the total number of

eatures is denoted as m = 

∑ k 
i =1 m i . Moreover, we assume that

here is a total number of d ∈ N distinct features across all ob-

ects i ∈ [ k ] in the universe . We use P i j ∈ P m i m j 
to denote a (par-

ial) permutation that encodes the matching between the i th and

he j th object ( Fig. 1 (i)). The element ( P ij ) pq ∈ {0, 1} at position ( p,

 ), p ∈ [ m i ], q ∈ [ m j ] of matrix P ij is 1 iff the p th feature of ob-

ect i is matched to the q th feature of object j . For P i j ∈ P m i m j 
,

 := [ P i j ] i, j∈ [ k ] ∈ [ P m i m j 
] i, j∈ [ k ] is the m × m matrix of pairwise (par-

ial) matchings. 

Cycle-consistency of partial matchings: In contrast to full

atchings, where cycle-consistency refers to the property that

ompositions of pairwise matchings over cycles must be equal to

he identity matching, in the case of partial matchings one only

equires that compositions of pairwise matchings over cycles must

e a subset of the identity matching . Due to potential pairwise non-

atchings (i.e. zero rows or columns in P ij ) along a cyclic path,

ome of the original matchings may vanish. A convenient way to

efine cycle-consistency of partial matchings is based on universe

eatures: 

efinition 1. The matrix of pairwise (partial) matchings W =
 P i j ] i, j∈ [ k ] is said to be cycle-consistent (or synchronised ) iff there ex-

sts a set { P i ∈ P m i d 
: i ∈ [ k ] , P i 1 d = 1 m i 

} such that for all i, j ∈ [ k ] it

olds that P i j = P i P 
T 
j 

. 

The object-to-universe matching matrices P i ∈ P m i d 
can be inter-

reted as assignments of each feature of the i th object to one of
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Fig. 1. Conceptual illustration of (i) relative matchings, (ii) absolute matchings, (iii) the matrix factorisation perspective, and (iv) the graph of pairwise matchings. The objects 

are denoted by 1, 2 and 3, where corresponding features across objects are labelled by the same letter from A to D. The relative matchings are represented by the permutation 

matrices P ij (e.g. P 12 ), and the absolute matchings are represented by the permutation matrices P i (e.g. P 1 ) that match each feature to one of the universe features a, b, c, 

d. Since cycle-consistency holds in this case, the matrix W in (iii) can be factorised into UU T ( Lemma 2 ); and the graph of pairwise matchings in (iv) is a union of the 

disconnected cliques a, b, c and d ( Lemma 3 ). 
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the features in the universe ( Fig. 1 (ii)), where the � th row of P i is

the assignment of the � -th feature of object i to a particular feature

in the universe. The requirement P i 1 d = 1 m i 
ensures that each fea-

ture of object i is assigned to exactly one feature of the universe.

For U := { U ∈ [ P m i d 
] i ∈ [ k ] : U1 d = 1 m 

} ⊂ R 

m ×d , one can characterise

cycle-consistency of partial matchings in terms of a low-rank fac-

torisation [40] , which is also illustrated in Fig. 1 (iii): 

Lemma 2. The pairwise (partial) matching matrix W is cycle-

consistent iff there exists a matrix U ∈ U , such that W = U U 

T . 

Proof. To prove the statement we identify U =[
P T 

1 
P T 

2 
· · · P T 

k 

]T ∈ R 

m ×d . One can easily see, cf. Definition 1 ,

that cycle-consistency implies that there exists a U that has the

desired properties. Likewise, if a U ∈ U with W = U U 

T is given,

one can see that the blocks { P i } of U satisfy P i 1 d = 1 m i 
as well as

P i j = P i P 
T 
j 

. �

Optimisation problem: Lemma 2 shows that in the noise-free

case, the matrix of pairwise matchings W can be factorised as W =
 U 

T . Given a noisy W , a straightforward way to phrase the permu-

tation synchronisation problem is to consider the constrained non-

linear least-squares problem 

arg min 

U∈U 
‖ W −U U 

T ‖ 

2 
F . (4)

Since Problem (4) is non-convex, finding an exact solution is in-

tractable for reasonably large instances. Hence, various simplifica-

tions have been considered in the literature, as we describe next. 
.2. Spectral relaxations 

In this section we summarise the key ideas of existing spec-

ral relaxations, where we also identify their shortcomings when

ynchronising partial permutations. In order to avoid confusion, we

xplicitly mention that the reader should carefully distinguish be-

ween the d × d matrix U 

T U and the m × m matrix UU 

T , as both

erms will appear below. 

Full matchings: In the case of (cycle-consistent) full

atchings, it holds that U 

T U = k I d . Thus, ‖ W −U U 

T ‖ 2 
F 

=
 W , W 〉 −2 〈 W , U U 

T 〉 + 〈 U U 

T , U U 

T 〉 = const −2 〈 W, U U 

T 〉 . Hence, for

ull matchings, the authors of Pachauri et al. [44] relax the

onstraint U ∈ U to U 

T U = k I d , and then solve Problem (4) with

he relaxed constraints by eigendecomposition, followed by a

rojection step. 

Partial matchings: For partial matchings, the authors of Maset

t al. [40] propose to maximise 〈 W, UU 

T 〉 based on eigendecompo-

ition. However, in the partial matchings case, in general U 

T U 
 = k I d ,

o that the objective 〈 W, UU 

T 〉 differs from the objective in Prob-

em (4) . Instead, for U ∈ U the objective 〈 W, UU 

T 〉 counts the num-

er of equal matchings between the matrices P ij and P i P 
T 
j 

for all i,

 . A further difficulty with partial matchings is related to the nec-

ssary projection due to the relaxation of the constraints, as we

escribe next. 

Projection: When the constraint U ∈ U is replaced by U 

T U =
 I d , after obtaining U based on the spectral decomposition of W ,

ne needs to project U onto the set U . Since for any orthogonal
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atrix Q ∈ R 

d×d it holds that (UQ )(UQ ) T = UQ Q 

T U = UU 

T , the fac-

orisation UU 

T is only determined up to such a matrix Q . Hence,

or projecting the blocks of U , one can choose a suitable orthogo-

al matrix Q in order to simplify the projection. For the full match-

ng case, the authors of Pachauri et al. [44] suggest to perform Eu-

lidean projections of the d × d blocks of UQ for the choice Q = P T 
1 

.

nder the assumption that W is relatively close to the form UU 

T ,

he matrix P 1 is near-orthogonal, such that the first block of UQ is

lose to the identity matrix, while the remaining blocks of UQ shall

ecome close to permutation matrices. 

Since for partial permutations the matrices P i are of dimen-

ion m i × d , where generally m i < d , the assumption that the P i are

ear-orthogonal breaks, and thus such a procedure is not applica-

le anymore (cf. Section 4.1 for details). As workaround, instead

f projecting the blocks of U onto U , the authors of Maset et al.

40] perform a projection of the blocks of UU 

T , such that the m × m

atrix proj (U U 

T ) is obtained. While it is reasonable (under small

oise assumptions) to assume that the blocks of UU 

T are close to

eing (partial) permutation matrices, in this approach one can-

ot guarantee that the matrix proj (U U 

T ) satisfies the conditions

n Lemma 2 , and thus, cycle-consistency is violated. 

Another approach for the projection is pursued by the authors

f Zhou et al. [73] and Arrigoni et al. [2] , where a greedy strategy

s employed for obtaining blocks of partial permutations from the

atrix of eigenvectors U . 

.3. Clustering perspective 

Here, we summarise the clustering perspective of synchroni-

ation (cf. [2,59] ), which will become useful to motivate our ap-

roach in Section 4 . For that, we consider the graph of pairwise

atchings G := G(W ) (cf. Fig. 1 (iv) for an illustration). The (non-

egative) m × m matrix W is considered as the adjacency matrix

f G, so that G comprises m nodes (recall that m = 

∑ 

i m i ). The

alue (W ) pq ∈ R at position ( p, q ) of W denotes the edge weight

hat represents the affinity of nodes p ∈ [ m ] and q ∈ [ m ], where

(W ) pq = 0 means that there is no edge. Note that w.l.o.g. we as-

ume (W ) pp = 1 for all p ∈ [ m ]. As shown by Tron et al. [59] , and

llustrated in Fig. 1 (iv), cycle-consistency can compactly be formu-

ated in terms of the graph of pairwise matchings: 

emma 3. The graph of pairwise matchings G(W ) is cycle-consistent

ff it is a union of disconnected cliques. 

roof. See Prop. 2 in [59] . �

emma 4. Let the graph of pairwise matchings G(W ) be cycle-

onsistent so that it is a union of the disconnected cliques C i ⊆ [ m ],

 ∈ [ d ] . It holds that all columns of the matrix W : ,C i 
∈ { 0 , 1 } m ×| C i | are

qual for a given i ∈ [ d ] . 

roof. We denote by c i , i ∈ [ d ], the number of elements in the i th

lique. Since G is a union of d disconnected cliques, there is a

ermutation P ∈ P m 

such that PWP T is the block-diagonal matrix

 W P T = diag (1 c 1 c 1 , . . . , 1 c d c d ) . Moreover, for P it holds that I : ,C i =
 

T I : ,A i for A i = { d i + 1 , d i + 2 , . . . , d i + c i } with d i = 

∑ i −1 
� =1 c � . From

 : ,C i 
= P T I : ,A i it follows that (P W ) : ,C i = (P W ) I : ,C i = (P W P T ) I : ,A i =

iag (1 c 1 c 1 , . . . , 1 c d c d ) I : ,A i = [ 0 T c i c 1 , . . . , 0 
T 
c i c i −1 

, 1 T c i c i , 0 
T 
c i c i +1 

, . . . , 0 T c i c d 
] T , 

hich shows that the columns of (P W ) : ,C i are equal. Hence, with

W being a permutation of the rows of W , the columns of W : ,C i 
ust also be equal. Since cycle-consistency implies symmetry of

 , the analogous statement also holds for the rows of W . �

Lemma 4 illustrates that one can cluster the columns (or

ows) of W to identify to which universe feature they belong

cf. Fig. 1 (iv)). 
. Proposed approach 

A key idea of our approach is to formulate the permutation syn-

hronisation problem in terms of a non-negative matrix factorisation

NMF) [34] . To be more specific, we propose to solve 

rg min 

V ≥0 ,H≥0 

‖ W −V H‖ 

2 
F , (5) 

here V ∈ R 

m ×d and H ∈ R 

d×m . Problem (5) is a relaxation of Prob-

em (4) , where the constraints V = H 

T are dropped, and the con-

traint set U is replaced by non-negativity constraints. At first

ight it may appear unnatural that one aims for an unsymmetric

actorisation VH of the symmetric matrix W . However, we have

ound that this is advantageous compared to a symmetric factori-

ation (see Fig. 2 ), which we believe is due to the following rea-

ons: (i) On the one hand, from a theoretical perspective the fac-

orisation VH enables to get a better rank- d approximation of W

cf. Lemma 2 ) compared to enforcing H 

T to be equal to V . (ii) On

he other hand, the unsymmetric NMF optimises over a higher-

imensional space, such that it has more freedom during the op-

imisation and is thus less prone to unwanted local optima of the

on-convex Problem (5) . (iii) Furthermore, with the inherent clus-

ering properties of NMF [19,20,36,39,68,69] , Problem (5) can also

e understood from the clustering point-of-view (cf. Section 3.3 ).

n the clustering perspective, the columns of the matrix V can be

een as the cluster centres , where each column of W is a conic

ombination of the columns of V , and the corresponding column

f H contains the coefficients. Since swapping the roles of V and

 is equivalent to factorising W 

T in place of W , using either V

r H for obtaining the cycle-consistent partial matchings from the

nsymmetric factorisation VH are equivalent, as also demonstrated

n Fig. 2 . Note that due to points (i) and (ii) it nevertheless is im-

ortant that the factorisation is unsymmmetric (cf. Fig. 2 ). 

The motivation for enforcing both V and H to be non-negative is

s follows: when cycle-consistency holds, the columns of V should

e non-negative and mutually orthogonal, so that each row in V

an contain at most one non-zero element. Thus, if the factor ma-

rix H is such that W = V H, then, since W is non-negative, H needs

o be non-negative. 

Next, we introduce our rotation scheme that is used for the ini-

ialisation of V and H , as well as for the projection of V onto U . 

.1. Rotation scheme 

For X i ∈ R 

m i ×d , i ∈ [ k ], let X = [ X T 
1 
, . . . , X T 

k 
] T ∈ R 

m ×d be a rank- d

atrix that comprises a low-rank approximation of W , i.e. W ≈ XX 

T .

or any orthogonal matrix Q we have that X X T = (XQ )(XQ ) T , so

hat we can freely choose Q and use ( XQ )( XQ ) T as low-rank ap-

roximation of W in place of XX 

T . The purpose of this section is

o describe a procedure to find a Q , such that XQ is closer to the



150 F. Bernard, J. Thunberg and J. Goncalves et al. / Pattern Recognition 92 (2019) 146–155 

(a) input (b) first iteration (c) second iteration (d) third iteration

Fig. 3. Illustration of the Successive Block Rotation Algorithm . In each subimage the k = 7 blocks are separated by red horizontal lines. (a) The input matrix X . (b) In the first 

iteration, the masking matrix C is initialised so that the third block (which is the largest one) contains an ( m 3 × m 3 )-dimensional identity matrix. Solving Problem (6) results 

in the rotated X rot . (c) In the second iteration, C is updated such that on the one hand all active elements of the previous X rot remain active, and on the other hand all the 

inactive rows in the block with the largest number of inactive rows will be activated (in this case the second block). (d) The third iteration produces X rot , where X rot ∈ U . 
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set U compared to X , which is for example beneficial for perform-

ing a Euclidean projection of X onto U . To this end, we generalise

the full-matching rotation scheme in [44] , which will be explained

in the next paragraph, such that one can find a suitable orthogonal

matrix Q for the case of partial matchings. 

Challenges: As discussed in Section 3.2 , in the case of full

matchings, i.e. m 1 = . . . = m k = d, the authors of Pachauri et al.

[44] set Q = X T 
i 

for one of the block indices i ∈ [ k ], e.g. Q = X T 
1 
,

so that XQ is close to a matrix that comprises blocks of permu-

tations. This is based on the assumption that the pairwise match-

ings XX 

T are close to the ground truth, which in turn implies that

(i) each X T 
i 

is near-orthogonal, so that X i X 
T 
i 

≈ I d ∈ P d for all i ∈ [ k ];

and that (ii) there exists an orthogonal Q ∈ R 

d×d such that XQ is

close to comprising blocks of permutation matrices, so that for all

j ∈ [ k ] there exists a P j ∈ P d such that X j X 
T 
i 

≈ P j . Essentially, due to

(i) and (ii) it is ensured that XQ is close to U whenever Q = X T 
i 

for

any i ∈ [ k ]. 

For partial matchings, point (i) is not valid anymore, because

generally not all the universe features are present in each ob-

ject i ∈ [ k ]. Hence, the X i ∈ R 

m i ×d are (generally) not orthogonal (as

they are not even square matrices), from which it follows that

X X T 
i 
(X X T 

i 
) T = X X T 

i 
X i X 

T 
 = X X T . For partial matchings, it is not suf-

ficient to consider only a single block X i of X for constructing Q .

Instead, one needs to aggregate information from rows of X that

come from different blocks X 1 , . . . , X k . We tackle this using the Suc-

cessive Block Rotation Algorithm ( SBRA ), as we describe next. 

Successive block rotation algorithm: Similarly as in [44] , we

assume that a given X forms a sufficiently good approximation XX 

T 

to the (unknown) ground truth matchings. With that, there must

exist an orthogonal Q such that XQ is close to an element of U , in

which case each row of XQ has a single element that is close to

one, with all other elements being close to zero. When we make

particular elements in XQ close to one by rotating X by Q , we say

that we activate these elements. 

For finding a suitable orthogonal matrix Q in the case of partial

matchings, we successively select elements of X that shall be acti-

vated. Moreover, we ensure that at most one element in each row

in XQ is activated, so that all other elements in these rows become

small (based on the above assumption). To this end, we employ an

(m × d) -dimensional binary matrix C , which has the purpose of
asking those elements that shall become activated in the rotated

Q . For now, let us assume that we are given a C ∈ {0, 1} m ×d . With

hat, we consider the problem 

 := arg max 
Q̄ T Q̄ = I d 

〈 C, X Q̄ 〉 , (6)

o that the orthogonal matrix Q is chosen such that the elements

f the rotated XQ are as large as possible at the active positions

 . This problem can be solved by setting Q = Ū ̄V T , for Ū �̄V̄ being

he singular value decomposition (SVD) of X 

T C . For example, in the

ase of full matchings, when using C = [ I d , 0 d,m −d ] 
T , the diagonal

lements of the first block X 1 of X are activated. With such a choice

f C we obtain X T C = X T 1 , which corresponds to the rotation ap-

roach in [44] with an additional SVD-based orthogonalisation of

 

T 
1 

. The important difference that makes our approach applicable

o partial matchings is that we successively construct the matrix C ,

ather than activating elements of a single block X i for some fixed

 . The Successive Block Rotation Algorithm ( SBRA ) is summarised as

ollows: 

(i) First, we initialise C to contain an m � × m � identity matrix in

the � th block, where � = arg max i m i . All other elements of C

are zero. 

ii) Given C , we obtain Q by solving Problem (6) . 

ii) Based on X rot = XQ, we update C so that the inactive rows of

X rot chosen from the block with the largest number of inactive

rows will be activated in the next step, as well as all active el-

ements remain active. 

Step (ii) and (iii) are repeated until there are no further ele-

ents of X rot that shall become activated. We illustrate our algo-

ithm in Fig. 3 . 

.2. Initialisation 

Since Problem (5) is non-convex, the initialisation of the matri-

es V and H plays a crucial role. We propose to initialise V and

 based on a rotation of the spectral factorisation of the pair-

ise matching matrix W . Hence, we first compute the best rank-

 approximation of W using eigendecomposition, so that W ≈ XX 

T ,

here X ∈ R 

m ×d is the matrix of the (scaled) most dominant eigen-

ectors of W . Subsequently, we rotate the columns of X with
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Fig. 4. Comparison of proposed vs. spectral initialisation (cf. Section 5.1 for details). 
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m  
 , so that it becomes closer to U , as described in Section 4.1 .

ince we use an NMF algorithm based on multiplicative updates

cf. Section 4.4 ) that requires a non-negative initialisation, we set

 = (XQ ) + and H = (XQ ) T + . In Fig. 4 we demonstrate that the pro-

osed initialisation procedure is superior compared to using the

pectral initialisation X + . 

.3. Projection onto U

After solving Problem (5) (with the algorithm described in

ection 4.4 ), we perform a projection-after-rotation, i.e. we find

 based on the SBRA ( Section 4.1 ), and then project VQ onto

to obtain U . This is done by solving k (independent) linear 

ssignment problems via the Auction algorithm [9,12] . Moreover,

imilarly to existing approaches (e.g. [40,73] ), we prune bad

atchings. To this end, we define a threshold θ ≥ 0 and remove

ll multi-matchings in U where VQ �U is smaller than θ , for �

enoting the Hadamard product. In order to ensure that U1 d = 1 m 

,

or each individual matching that is removed from a column of

 , we add a new column to U that contains all zeros apart from

 single element being one—as such, this feature is now matched

o its own universe feature (in the clustering perspective, it is a

luster comprising a single element, cf. Fig. 1 ). 

.4. Algorithm 

We call the overall synchronisation procedure NmfSync , which

s summarised in Algorithm 1 . NmfSync comprises the following

Algorithm 1: N mf S ync . (Reference [10] is cited in algorithm 

body part.) 

Input : W ∈ R m ×m , d, θ
Output : synchronised W 

sync 

// find best rank- d approximation of W (spectral method [44, 
40]) 

1 [ X, �] ← eig (W, d) , X ← X�0 . 5 

// initialise according to Secs. 4.1 and 4.2 
2 Q ← SBRA (X ) , V ← (XQ ) + , H ← V T 

3 Repeat 
// multiplicative updates of NMF [10], ε > 0 is a small 

number (numerics) 
4 H ← H � ((V T W ) � ((V T V ) H + ε)) // � is element-wise 

division 
5 V ← V � ((W H 

T ) � (W (H H 

T ) + ε) 

// normalise so that the columns of V and H 

T have the same 
� 2 -norms 

6 T ← diag (1 T m (V � V )) 0 . 5 , V ← V T −1 , H = T H 

// project onto U according to Section 4.3 
7 Q ← SBRA (V ) 
8 U ← proj U (V Q ) // project V Q onto U by solving k independent 

LAPs 
9 U ← prune (V Q, U, θ ) // prune uncertain matchings 
// compute synchronised W 

10 W 

sync ← U U T 
ain steps: (i) initialisation of V and H ( Section 4.2 ), (ii) minimisa-

ion of Problem (5) , (iii) projection of V onto U to obtain U ∈ U
 Section 4.3 ), and (iv) computation of the synchronised W 

sync =
 U 

T . 

. Experiments 

In this section we evaluate the robustness of NmfSync and

ompare it against existing permutation synchronisation ap-

roaches. To be more specific, we consider the Spectral method

44] , as implemented by the authors of Zhou et al. [73] to han-

le partial matchings based on a greedy rounding procedure, the

atchEig method [40] , and the MatchALS method [73] . In our

xperiments we first consider synthetic data in a wide range of

ifferent configurations, followed by experiments on real data. We

uantify the consistency of the pairwise matchings using the cycle-

rror 

 cycle (W ) = 

1 

k 3 

∑ 

i, j,� ∈ [ k ] 
‖ (P i� ) R i� , : (P � j ) : ,C � j 

− (P i j ) R i� ,C � j 
‖ F , (7) 

here for i, j ∈ [ k ], the sets R ij ⊆ [ m i ] and C ij ⊆ [ m j ] denote

he indices of non-zero rows and columns of P ij , respectively. We

se the ground truth error e gt ( gt-error ) to measure the discrep-

ncy between a given W and the ground truth pairwise match-

ngs W gt , which we define as e gt (W ) = ‖ W − W gt ‖ F . The f-score =
2 ·precision ·recall 
precision + recall 

summarises the precision and recall . 

.1. Synthetic data 

For our synthetic data experiments we generate the pairwise

atchings W for a given number of objects k , the universe size

 , the observation rate ρ , and the error rate σ as follows: For

ach i ∈ [ k ], we first sample a random (full) permutation matrix

 i ∈ P d . To obtain a partial permutation, we remove each row of

 i with probability 1 −ρ . As such, the number m i is implicitly de-

ermined by ρ , where the average of the m i is m̄ = ρd. Eventu-

lly, the ground truth matrix of cycle-consistent matchings is ob-

ained as W gt = [ P i j ] i, j∈ [ k ] = [ P i P 
T 
j 

] i, j∈ [ k ] . We obtain the noisy matrix

f pairwise matchings W by perturbing each block P ij of W gt indi-

idually by randomly selecting a proportion of σ of the rows of P ij ,

nd then shuffle the selected rows. Note that we perturb W gt in a

ymmetric fashion. For each evaluated configuration, we draw 100

amples of W and report the averaged results. 

Sensitivity analysis: In Fig. 5 we present results of our sensi-

ivity analysis with respect to the choice of the threshold parame-

er θ , as well as to the choice of the estimate of the universe size

 that is used as additional input to all the methods. For a wide

ange of thresholds θ our method results in a smaller gt-error com-

ared to the other methods while providing cycle-consistent results.

oreover, our method outperforms the other methods for varying

niverse sizes d . 

Comparison to other methods: The results of this experiments

re shown in Fig. 6 , where the rows show the cycle-error , the

t-error , the f-score , and the number of matchings ( # matchings );

nd the columns show four different evaluation scenarios where

n each scenario a different parameter varies along the horizontal

xis. While MatchEig and MatchALS generally result in a non-zero

ycle-error , i.e. the matchings are not cycle-consistent , the NmfSync

ethod guarantees cycle-consistent matchings. It can be seen that

he overall result quality of NmfSync is superior compared to the

ther methods. 

.2. Real data 

In our second set of experiments we consider real-world

atching problems based on the Graffiti [41] , EPFL [53] and the
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Middlebury [49] datasets, all of which come with ground truth

registrations. Our evaluations are based on the well-established

protocol of Zhou et al. [73] , which was for example also used

in [59] . To obtain the pairwise matchings W , we first extract

SIFT features [38] from the images, and then obtain the pairwise
atchings based on simple nearest neighbour matching. Then, we

se the so-obtained pairwise matchings as input to the synchro-

isation methods. We consider the fraction of correct matchings

FCM), which indicates the fraction of matchings that have an error

ess than a specified threshold. Since the true number of correct
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Fig. 7. Results for the datasets Graffiti (#1–#8, θ= 0 . 4 ), EPFL (#9–#14, θ = 0 ), and Middlebury (#15–#18, θ= 0 ). Each plot shows the fraction of correct matchings (FCM) 

that have an error smaller than or equal to the threshold on the vertical axis (relative to the largest image dimension). The solid lines show results that are cycle-consistent, 

whereas the dashed lines show results that do not exhibit cycle-consistency. The title of each plot shows the size of the pairwise matching matrix m in parentheses. 

Considering FCM and cycle-error at the same time, NmfSync is superior compared to other approaches. 
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atchings is unknown (cf. [59] ), the FCM is computed relative to

he number of image features, as done in [73] . 

Results: In Fig. 7 we show quantitative results. The first three

ows show the FCM for the individual problem instances #1 to

18, where the solid lines indicate cycle-consistent results ( Nmf-

ync ) and the dashed lines indicate cycle-inconsistent matchings

all other methods, with the exception of Spectral in a few in-

tances). Note that the multi-image matching problems in the

raffiti dataset are easier compared to the EPFL and Middlebury

atasets, as the overlap of the visible object parts in the Graffiti

mages are much larger. This also explains that the values of the

relative) FCM scores in the other two datasets are lower (in this

ase the number of features in an image is an overly conservative

pper bound for the true number of matchings). Considering the

CM and cycle-consistency, NmfSync clearly outperforms the other

ethods. For the moderately-sized problem instances #1 to #16,

here m is between 372 and 12, 238, all methods have compara-

le runtimes, with the exception of MatchALS being substantially

lower. Note that MatchALS cannot be used for processing the very

arge instances #17 and #18 due to its unscalability in terms of

emory (cf. Section 5.3 ). 

.3. Discussion & limitations 

Due to the pruning of uncertain matchings in NmfSync based

n θ ( Section 4.3 ), the total number of obtained matchings of Nmf-

ync varies depending on the input quality. For example, the third

olumn in Fig. 6 illustrates that when increasing the error rate

hile keeping other parameters fixed, the number of matchings

eturned by NmfSync decreases. This reflects that our method im-
licitly takes into account the larger input corruption. Note that

ther methods also prune uncertain matches. 

While the Auction algorithm [12] for solving the LAP has

roughly) cubic worst-case complexity [11] , the analysis in [48] sug-

ests that the average complexity is in the regime O(d 2 log d) . Our

otation scheme involves the computation of an SVD with com-

lexity O(d 3 ) . Both, the LAP and the SVD are solved O(k ) times.

e have observed that the spectral decomposition and the NMF

lgorithm, with per-iteration complexity O(m 

2 d) , usually dominate

he overall runtime. In contrast to MatchALS , our method never

equires the computation of the dense and large m × m matrix VH

cf. Algorithm 1 ), such that NmfSync is much more memory effi-

ient. With that, our method is able to handle very large problem

nstances, as we show in Fig. 7 for instances #17 and #18, where

 goes up to ≈ 160, 0 0 0. 

One property that is common to all existing synchronisation

ethods is that they only consider given (partial) matchings with-

ut explicitly incorporating any higher-order information (such as

istances between pairs of features positions). While in certain ap-

lications ignoring higher-order information is desirable (e.g. when

t is simply not available), in other cases such information could

e leveraged to obtain more reliable matchings. Hence, albeit be-

ng computationally challenging, we believe that the incorporation

f higher-order terms (e.g. in the spirit of the QAP) into synchro-

isation problem formulations is an interesting direction for future

ork. 

. Conclusions 

Based on a non-negative factorisation of the matrix of pair-

ise matchings, we have presented the NmfSync method for the
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synchronisation of partial permutation matrices. We have found

that even though the ground truth pairwise matching matrix W is

symmetric, from a computational perspective it is actually benefi-

cial to perform an unsymmetric factorisation (cf. Fig. 2 ). In order to

deal with the non-convexity of our formulation, we have proposed

a novel scheme for rotating the solution of the spectral relaxation

such that it provides a suitable initialisation for the NMF. More-

over, we have generalised the projection-after-rotation approach of

the Spectral method [44] , so that it can handle partial matchings

( Section 4.3 ). In contrast to the MatchALS method [73] , and the

more recent MatchEig method [40] , our approach is guaranteed to

produce a cycle-consistent solution. Since cycle-consistency is an

intrinsic property of the (unknown) true matchings, we argue that

it is important to achieve. Furthermore, we have demonstrated that

NmfSync is comparable to existing methods in terms of scalability,

and that it quantitatively outperforms existing approaches on var-

ious datasets. Due to these favorable properties, we believe that

NmfSync is a significant contribution towards the field of (partial)

permutation synchronisation. 
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