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Many graphics and vision problems can be expressed as non-linear least
squares optimizations of objective functions over visual data, such as images
and meshes. The mathematical descriptions of these functions are extremely
concise, but their implementation in real code is tedious, especially when
optimized for real-time performance on modern GPUs in interactive appli-
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cations. In this work, we propose a new language, Opt,1 for writing these
objective functions over image- or graph-structured unknowns concisely and
at a high level. Our compiler automatically transforms these specifications
into state-of-the-art GPU solvers based on Gauss-Newton or Levenberg-
Marquardt methods. Opt can generate different variations of the solver, so
users can easily explore tradeoffs in numerical precision, matrix-free meth-
ods, and solver approaches.

In our results, we implement a variety of real-world graphics and vi-
sion applications. Their energy functions are expressible in tens of lines
of code and produce highly optimized GPU solver implementations. These
solvers are competitive in performance with the best published hand-tuned,
application-specific GPU solvers, and orders of magnitude beyond a general-
purpose auto-generated solver.

CCS Concepts: � Software and its engineering → Domain specific lan-
guages; � Computing methodologies → Image processing; Graphics
systems and interfaces; Graphics processors; Procedural animation;

Additional Key Words and Phrases: Domain-specific languages, non-linear
least squares, Levenberg-Marquardt, Gauss-Newton, real-time optimization
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1. INTRODUCTION

Many problems in graphics and vision can be concisely formulated
as least squares optimizations on images, meshes, or graphs. For
example, Poisson image editing, shape-from-shading, and as-rigid-
as-possible warping have all been formulated as non-linear least
squares optimizations, allowing them to be described tersely as
energy functions over pixels or vertices [47, 50, 68].

In many of these applications, high performance is critical for in-
teractive feedback, requiring efficient parallel or GPU-based solvers
[11, 30, 54, 68, 73]. These solvers require optimizations that are not
expressible in generic sparse linear algebra software. For example,
these solvers are matrix-free; that is, they compute matrix values
on-the-fly rather than loading data from matrices materialized (i.e.,
stored) in memory. They also implicitly represent the sparse con-
nectivity of the matrices based on the structure of images or graphs,
rather than store it explicitly in memory. This approach can also be
applied to solvers that use the Levenberg-Marquardt algorithm [36,
39].

However, the efficiency of these solvers comes at enormous im-
plementation cost: the simple energy function must be manually
transformed into a complex product of partial derivative matrices
(e.g., JT F and JT Jp). Furthermore, the code tightly intertwines the
calculation of partial derivatives with operations performed by the
solver. Finally, this code has to be written by hand in GPU kernels;
the result is hundreds of lines of highly tuned CUDA code that is
hard to maintain and modify.

This article presents a new language, Opt, which makes this type
of high-performance optimization accessible to a wider community
of graphics and vision practitioners. Programmers write high-level
sum-of-squares energy functions over pixels or graphs, such as the
example shown in Figure 1 (left) for as-rigid-as-possible image
warping. Our compiler can transform these energies into efficient
GPU routines that compute products of the derivatives (e.g., JT J or
JT Jp). We provide a suite of solvers that use these routines to apply
either Gauss-Newton (GN) or Levenberg-Marquardt (LM) meth-
ods. The solvers use a parallel preconditioned conjugate gradient
inner loop based on either matrix-free or materialized approaches.
The resulting code can be used within both matrix-free and materi-
alized solvers.

Our system is able to achieve this due to four key ideas. First, we
provide an optimization framework that separates the details of a
particular energy from the details of the GN or LM solver approach.
The framework is general enough to allow both matrix-free and
materialized implementations. Second, our language provides key
abstractions for representing energies at a high level. Unknowns and
other data are arranged on 2D or 3D grids, meshes, or general graphs.
Energies are defined over these domains and access data through
stencil patterns (fixed-size and shift-invariant local windows). Third,
our compiler exploits the regularity of stencils and graphs to auto-
matically generate efficient GPU routines that can compute products
of derivatives such as JT J. Derivative terms required by these rou-
tines are created using hybrid symbolic-automatic differentiation
based on a simplified version of the D� algorithm [26]. Finally, we
use a specialized code generator to emit efficient GPU code for
the derivative terms and use metaprogramming to weave the solver
code with the generated routines to avoid runtime overhead.

Our method provides significantly better performance than tradi-
tional general-purpose solver libraries and matches state-of-the-art
custom applications. It is easy to change details in the solver (GN
versus LM), the numeric precision (float versus double), and matrix
storage (matrix-free versus materialized) without rewriting the ener-
gies or solvers. Programmers can quickly figure out the best settings

for a particular problem depending on the need for numerical sta-
bility and available computational resources.

In particular, we present the following contributions:

• We propose a high-level programming model for defining ener-
gies over image and graph domains.

• We introduce a generic framework for Gauss-Newton and
Levenberg-Marquardt optimization on GPUs that is capable of
abstracting the efficient matrix-free methods used in state-of-the-
art application-specific solvers.

• We provide algorithms based on symbolic differentiation that
exploit the regularity of energies defined on images and graphs
to produce efficient GPU routines that plug into our optimization
framework. Our optimizations produce code competitive with
handwritten routines.

• We implement a variety of state-of-the-art graphics problems,
including mesh/image deformations, smoothing, and shape-
from-shading refinement using Opt. We provide an evaluation
that shows that our implementations outperform state-of-the-art
application-specific solvers and are up to two orders of magnitude
faster than the CPU-based Ceres solver [1].

• We show how Opt’s abstraction allows the flexible generation of
many solver variants for these applications that explore tradeoffs
in GN versus LM, single versus double precision, matrix-free
versus materialized, and even hybrid solvers.

2. BACKGROUND

Non-linear Least Squares Optimization. Optimization methods are
used in the graphics and vision community to solve a wide range
of problems. We specifically focus on unconstrained non-linear
least squares optimizations [6], where a solver minimizes an en-
ergy function that is expressed as a sum of squared residual
terms: E(x) = ∑R

r=1 [fr (x)]2. The residuals fr (x) are generic
functions, making the problems potentially non-linear and non-
convex [9]. There has been an extensive effort in the literature to
solve these problems with a large variety of numerical optimiza-
tion approaches [13, 14, 21, 33, 43, 44, 66]. Gauss-Newton and
Levenberg-Marquardt [36, 39] are two common methods for solv-
ing problems in computer graphics and vision.

GN and LM are specifically tailored towards these kinds of prob-
lems. Their second-order optimization approach has been shown
to be well-suited for the solution of a large variety of problems
[38, 67] and has also been successfully applied in the context of
real-time optimization [68, 73]. If the non-linear energy is convex,
then GN and LM will converge to the global minimum; otherwise,
they will converge to some local minimum. Furthermore, GN and
LM internally solve a linear system. While these systems can gen-
erally be solved with direct methods, our solvers need to scale to
large problem sizes and run on massively parallel GPUs; hence,
we implement GN/LM with a preconditioned conjugate gradient
(PCG) [45] in the inner loop.

In our current implementation, we focus on GN and LM rather
than other variants such as L-BFGS [45], since they reflect the
approaches used in state-of-the-art handwritten GPU implementa-
tions, allowing us to compare our performance to existing solvers
directly. However, we believe our approach can be generalized in
future work to support such backends.

Application-specific GPU Solvers. Application-specific Gauss-
Newton solvers written for GPUs have been frequently used in
the past two years. Wu et al. [68] use a blocked version of GN to
refine depth from RGB-D data using shape-from-shading. Zollhöfer
et al. [73] minimize an as-rigid-as-possible energy [50] on a mesh as
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Fig. 1. From a high-level description of an energy, Opt produces high-performance GPU-based optimizers for many graphics problems.

part of a framework for real-time non-rigid reconstruction. Zollhöfer
et al. [72] use a similar solver to enforce shading constraints on a
volumetric signed-distance field to refine over-smoothed geometry
with RGB data. Thies et al. [54–56] transfer local facial expressions
between people in a video by optimizing photo-consistency between
the video and synthesized output. Dai et al. [11] solve a global
bundle adjustment problem to achieve real-time rates for globally
consistent 3D reconstruction, and Innmann et al. [30] optimize a
warp field for non-rigid surface reconstruction.

These solvers achieve high-performance by working matrix-free
on the problem domain. That is, during the PCG step, they never
form, or materialize the entire Jacobian J of the energy. Instead, they
compute it on demand, for instance, by reading neighboring pixels to
compute the derivative of a regularization energy. Performance im-
proves in two ways: first, they do not explicitly store and load sparse
matrix connectivity; rather, this is implied by pixel relationships or
meshes. Second, reconstructing terms is often faster than storing
them, since the size of the problem data is smaller than the full ma-
trix implied by the energy. Unfortunately, these application-specific
solvers are tedious to write, because they mix code that calculates
complicated matrix products with partial derivatives based on the
energy.

High-level Solvers. Higher-level solvers such as CVX [19, 20],
OpenOF [64], or ProxImaL [28] work directly from an energy
specified in a domain-specific language. CVX uses disciplined pro-
gramming to ensure that modeled energy functions are convex,
then constructs a specialized solver for the given type of convex
problem. Ceres [1] uses template meta-programming and operator
overloading to solve non-linear least squares problems on the CPU
using backwards auto-differentiation. Unlike Opt, these solvers do
not generate efficient GPU implementations and only work with
materialized matrices. OpenOF does run on GPUs, but uses mate-
rialized sparse matrices [64]. In contrast, Opt’s abstraction allows
solvers to use either matrix-free or materialized approaches; we
can even provide hybrids where only part of the energy is ma-
terialized. Matrix-free approaches can be significantly faster than
explicit matrices due to less memory transfer (Section 8.3). CPU
libraries such as Alglib [7], GTSAM [12], and g2o [34] abstract
the solver, requiring users to provide numeric routines for energy
evaluation and, optionally, gradient calculation. All of these solvers
create materialized Jacobians, and then use standard numerical lin-
ear algebra methods on these matrices to compute the Newton step.
They cannot optimize the compilation of energy terms and solver
code, unlike application-specific solvers, and require handwritten
gradients to run fast. Similar to high-level solvers, Opt only re-
quires a description of the energy, but it uses code transformations
to generate application-specific matrix-free (or hybrid) GPU solvers
automatically.

Simulation DSLs. Ebb [5] and Simit [32] are domain-specific
languages that allow the user to express and abstract linear algebra
compute operations over graphs (and in Ebb’s case, arbitrary rela-
tions such as regular grids) on heterogeneous architectures. Ebb and
Simit both focus on simulation but could be used to write non-linear
least squares solvers like those produced by Opt.

The user interface to Opt (specifying concise energy functions)
is fundamentally a higher-level abstraction than the direct spec-
ification of arithmetic to execute in Simit and Ebb. To write an
equivalent optimization in Simit or Ebb, a user must (1) write the
solver algorithm from scratch; (2) manually derive efficient arith-
metic code from the energy function (particularly tricky for fused
Jacobian kernels); and (3) decide up front which parts of matrix
multiplication are precomputed and cached versus recomputed on
the fly. Because Opt automates issues (1) and (2) and allows issue
(3) to be specified post-hoc, users can iterate far more rapidly on
their energy functions.

We prototyped a Gauss-Newton solver using Ebb for the Im-
age Warping example, but found the solver generated by Opt
was over 5× faster then the counterpart in Ebb. The implemen-
tation effort of the problem-specific solver in Ebb is similar to
a handwritten CUDA implementation, thus significantly higher
than specifying the energy in Opt. A future version of Opt could
emit Simit or Ebb code, and that may be a practical solution to
avoid maintaining multiple back-ends, but does not change the
basic system design or address issues (1), (2), and (3) laid out
above.

Differentiation Methods. Matrix-free approaches require efficient
derivative computation, since the derivatives are evaluated in the
inner iteration of the PCG loop. Numeric differentiation, which uses
finite differences to estimate derivatives, is numerically unreliable
and inefficient [26]. Instead, packages like Mathematica [65]
allow users to compute symbolic derivatives using rewrite rules.
Because they frequently represent math as trees, they do not handle
common sub-expressions well, making them impractical for large
expressions [26]. Automatic-differentiation is transformation on
programs rather than symbols [22, 24]. They replace numbers in a
program with “dual”-numbers that track a specific partial derivative
using the chain rule. However, because the transform does not
work on symbols, simplifications that result from the chain rule are
not always applied. We use a hybrid symbolic-automatic approach
similar to D�, which represents math symbolically but stores it as
a directed acyclic graph (DAG) of operators to ensure scalability
to large problems [26]. A symbolic representation of derivatives
is important for Opt, since solver routines use many derivative
terms that share common expressions. This cannot be addressed by
auto-differentiation methods.
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Fig. 2. An overview of the architecture of Opt, labeled with the sections
where each part is described.

Fig. 3. Laplacian smoothing energy for a one-component image, imple-
mented in Opt. Note that weights are the square root values, since theEnergy
function squares its inputs.

3. PROGRAMMING MODEL

An overview of Opt’s architecture is given in Figure 2. In
this section, we describe our programming model to construct
the problem specific energy functions. Section 4 describes our
generic solver framework on GPUs and describes the Gauss-
Newton and Levenberg-Marquardt solvers we implemented using
this framework. To operate matrix-free, this framework re-
quires application-specific solver routines (evalF(), evalJ(),
evalJTF(), applyJTJ()). Section 5 describes how our compiler
generates these routines from the energy.

We introduce our programming model using the example of
Laplacian smoothing of an image. A fitting term encourages a pixel
X to be close to its original value A:

Efit(i, j ) = [X(i, j ) − A(i, j )]2.

A regularization term encourages neighboring pixels to be similar:

Ereg(i, j ) =
∑

(l,m)∈N (i,j )

[X(i, j ) − X(l, m)]2,

where N (i, j ) = {(i + 1, j ), (i, j + 1)}.
The energy is a weighted sum of both terms:

E� =
∑

(i,j )∈I
wfitEfit(i, j ) + wregEreg(i, j ).

While this example is linear, Opt supports arbitrary non-linear en-
ergy expressions.

Language. Similar to shading languages such as OpenGL, Opt
programs are composed of a “shader” file that describes the energy
and a set of C APIs for running the problem. Figure 3 expresses the
Laplacian energy in Opt. Opt is embedded in the Lua programming
language and operator overloading is used to create a symbolic

Fig. 4. Opt API calls that use the Laplacian smoothing program.

Fig. 5. The Laplacian cost defined on the edges of a mesh instead of an
image. The graph represents explicit connectivity.

representation of the energy. The first line specifies problem dimen-
sions. Line 2 uses the function Unknown to declare the pixel array
that represents the unknown X. Array is used to declare constant
values such as the image A that will be fixed during optimization.
The last argument of these declarations is a numeric index that
associates the array with actual data provided by the C API.
Energy adds residual expressions to the problem’s energy. A key

part of Opt’s abstraction is that residuals are described at elements of
images or graphs and are implicitly mapped over the entire domain.
The term w_fit*(X(0,0) - A(0,0)) defines an energy at each
pixel that is the difference between the images. We support arrays
and energies that include both vector and scalar terms. The Energy
function implicitly squares the terms and sums them over the domain
to enforce the linear least-squares model. Terms can also include a
statically-defined stencil of neighboring pixels. The regularization
term w_reg*(X(0,0) - X(1,0)) defines an energy that is the
difference between a pixel and the pixel to its right. Our solver
framework exploits this regularity to produce efficient code.

API. Applications interact with Opt programs using a C API.
Figure 4 shows an example using this API. To amortize the
cost of preparing a problem used multiple times, we sepa-
rate the compilation (Opt_ProblemDefine), memory allocation
(Opt_ProblemPlan), and execution (Opt_ProblemSolver) of a
problem into different API calls.

Mesh-based problems. Opt also includes primitives for defining
energies on graphs to support meshes or other irregular structures.
Figure 5 shows an example that smooths a mesh rather than an
image. The Graph function defines a set of hyper-edges that connect
entries in the unknown together. In this example, each edge connects
two entries vertex0 and vertex1, but in general our edges allow
an arbitrary number of entries to represent elements, such as three-
element hyper edges to define triangles. Energies can be defined on
these elements, as seen in the regularization term (line 10), which
defines an energy on the edge between two vertices.

Boundaries. Defining energies on arrays of pixels requires han-
dling boundaries. By default an entire energy term is considered
to have zero energy if any of its accesses would be out of bounds,
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but we also provide the ability to have custom behavior by query-
ing whether a pixel is valid (InBounds) and selecting a different
expression if it is not (Select):

term = w reg*(X(0,0) - X(1,0))
Energy(Select(InBounds(1,0),term,0))

Boundary handling is optimized later in the compilation process to
ensure that it does not cause excessive overhead.

Pre-computing shared expressions. Energy functions for neigh-
boring pixels can share expensive-to-compute expressions. For in-
stance, our shape-from-shading example (Section 8) uses an ex-
pensive lighting calculation that is shared by neighboring pixels.
We allow the user to turn these calculations into computed arrays,
which behave like arrays when used in energy functions, but are
defined as an expression of other arrays:

computed lighting = ComputedArray(W,H,lighting calculation(0,0))

Computed arrays can include computations using unknowns, and
are recalculated as necessary during the optimization. Similar to
scheduling annotations in Halide [48], they allow the user to balance
recompute with locality at a high level.

4. NON-LINEAR LEAST SQUARES OPTIMIZATION
FRAMEWORK

Our optimization framework is a generalization of the design of
application-specific GPU solvers based on the Gauss-Newton ap-
proach [30, 54, 55, 68, 72, 73]. However, our solver API abstracts
away the specific algorithm details, allowing us to provide options
for both Gauss-Newton and Levenberg-Marquardt approaches [6,
36, 39]. We first describe the approach our specific solvers use, and
then show how we separate out the details of the application-specific
energy from the solver being used.

In the context of non-linear least square problems, we consider
the optimization objective E : R

N → R, which is a sum of squares
in the following canonical form:

E(x) =
R∑

r=1

[
fr (x)

]2
.

The R scalar residuals fr can be general linear or non-linear func-
tions of the N unknowns x. The objective takes the traditional form
used in the Gauss-Newton method:

E(x) = ∣∣∣∣F(x)
∣∣∣∣2

2
, F(x) = [f1(x), . . . , fR(x)]T .

The R-dimensional vector field F : R
N → R

R stacks all scalar
residuals fr . The minimizer x∗ of E is given as the solution of the
following optimization problem:

x∗ = argmin
x

E(x) = argmin
x

∥∥F(x)
∥∥2

2
.

It is solved based on a fixed-point iteration that incrementally com-
putes a sequence of better solutions {xk}K

k=1 given an initial estimate
x0. Here, K is the number of iterations, that is, x∗ ≈ xK . In every
iteration step, a linear least squares problem is solved to find the
best linear parameter update. The vector field F is first linearized
using a first-order Taylor expansion around the last solution xk:

F(xk + δk) ≈ F(xk) + J(xk)δk.

Here, J is the Jacobian matrix and contains the first-order par-
tial derivatives of F. By applying this approximation, the original

non-linear least squares problem is reduced to a quadratic problem:

δ∗
k = argmin

δk

∣∣∣∣F(xk) + J(xk)δk

∣∣∣∣2

2
.

After the optimal update δ∗
k has been computed, a new solution

xk+1 = xk + δk can be easily obtained. Since this problem is highly
over-constrained and quadratic, the least squares minimizer is the
solution of a linear system of equations. This system is obtained
by setting the partial derivatives to zero, which results in the well
known normal equations:

2 · J(xk)T J(xk)δ∗
k = −2 · J(xk)T F(xk).

This process is iterated for K steps to obtain an approximation to
the optimal solution x∗ ≈ xK .

The GN approach can be interpreted as a variant of Newton’s
method that only requires first-order derivatives and requires less
computation. To this end, it uses a first-order Taylor approximation
2(JT J) instead of the real second-order Hessian H.

LM additionally introduces a steering parameter λ to switch be-
tween GN and Steepest Descent (SD). To this end, the normal
equations are augmented with an additional diagonal term. This is
similar to Tikhonov regularization and leads to

2(J(xk)T J(xk) + λ diag (J(xk)T J(xk)))δ∗
k = −2J(xk)T F(xk).

The inverse of λ defines the radius of the trust region. LM guaran-
tees convergence by shrinking the trust region radius and resolving
the linear system when a proposed step fails to decrease cost. In the
current LM solvers generated by Opt, we allow users to specify an
initial trust region radius, minimum and maximum radii, and mini-
mum and maximum values to clamp entries of the diagonal damping
matrix. Our specific LM strategy is adapted from the Ceres solver
[1]. In our comparisons, we use the same parameter configuration
for both solvers.

4.1 Parallelizing the Optimization with PCG

The core of the GN/LM methods is the iterative solution of linear
least squares problems for the computation of the optimal linear
updates δ∗

k . This boils down to the solution of a system of linear
equations in each step, that is, the normal equations. While it is
possible to use direct solution strategies for linear systems, they are
inherently sequential, while our goal is a fast parallel solution on
a many-core GPU architecture with conceptually several thousand
independent threads of execution. Consequently, we use a parallel
preconditioned conjugate gradient (PCG) solver [63, 73], which is
fully parallelizable on modern graphics cards.

The PCG algorithm and our strategy to distribute the computa-
tions across GPU kernels is visualized in Figure 6. We run a PCGInit
kernel (one time initialization) and three PCGStep kernels (inner
PCG loop). Before the PCG solve commences, we initialize the
unknowns δ0 to zero. For preconditioning, we employ the Jacobi
preconditioner, which scales the residuals with the inverse diagonal
of JT J. Jacobi preconditioning is especially efficient if the system
matrix is diagonally dominant, which is true for many problems; for
instance, the Laplacian operator and most of its variations are diag-
onally dominant. When the matrix is not diagonally dominant, we
fall back to a standard conjugate gradient descent by user selection.
More general preconditioners could be provided as a parameter at
code generation time but are not a focus of this article. A detailed
overview of different preconditioning approaches in parallel solvers
is given in Reference [23], and matrix-free preconditioners are pro-
posed by References [4, 69]. We also default to single-precision
floating point numbers throughout, which matches the approach of
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Fig. 6. Generic GPU architecture for Gauss-Newton and Levenberg-
Marquardt solvers whose linearized iteration steps are solved in parallel
using the preconditioned conjugate gradient (PCG) method.

the recent application-specific solvers. We believe this strategy is a
good compromise between computational effort and efficiency.

Stencil-based Array Access. Our techniques for parallelizing
work are different for array and graph residuals. For arrays, we
group the computation required for each element in the unknown
domain onto one GPU thread. For a matrix product such as −2JT F,
each row of the output is generated by the thread associated with
the unknown. If the unknown is a vector (e.g., RGB pixel), then
all channels are handled by one thread, since these values will fre-
quently share sub-expressions.

The computations in a GPU thread can work matrix-free. For
instance, if they conceptually require a particular partial derivative
from matrix J, they can compute it from the original problem state,
which includes the unknowns and any supplementary arrays. Matri-
ces such as J, which are conceptually larger than the problem state,
do not need to be written to memory, which minimizes memory
accesses. Section 5 describes how we automatically generate these
computations from our stencil- and graph-based energy specifica-
tion.

Graph-based Array Access. For graph-based domains, such as
3D meshes, the connectivity is explicitly encoded in a user-provided
data structure. Users specify the mapping from graph edges to ver-
tices. Residuals are defined on graph (hyper-) edges and access un-
knowns on vertices. To make it easy for the user to change the graph
over time, we do not require a reverse mapping from unknowns to
residuals for graphs. Kernels that use the residuals (PCGInit and
PCGStep1) assign one edge in the graph to one GPU thread. Since
the output vectors have the same dimension as the unknowns, we
have to scatter the terms in the residual evaluations into these val-
ues. All threads involving partial sums for a given variable then
scatter into the corresponding parts of variables using a floating-
point atomic addition.

4.2 Modularizing the Solver

A key contribution of our approach is the modularization of
the application-specific components of GPU Gauss-Newton or
Levenberg-Marquardt solvers into compartmentalized solver rou-
tines. The first routine, evalF(), simply generates the application

Fig. 7. The Laplacian example represented in our IR.

specific energy for each residual. It only runs outside of the main
loop to report progress.

evalJTF. The second routine appears in the PCGInit kernel and
is shown in red in Figure 6. Here, the initial descent direction p0 is
computed using the application-specific evalJTF() routine, which
is generated by our compiler. It computes a matrix-free version of
−2JT F. evalJTF() is also responsible for computing the precondi-
tioner M, which is simply the dot product of a row of JT with itself.
For arrays, a thread computes the rows of an output associated with
one element of the unknown. For graphs, each thread only computes
the parts of the dot product between JT and F, which belong to the
handled residual.

applyJTJ. The third routine, applyJTJ(), is part of the inner
PCG iteration. It computes the multiplication of 2JT J with the
current descent direction pk , and incorporates the steering factor λ
when using Levenberg-Marquardt. Handling arrays and graphs is
similar to evalJTF(). It tends to use more values, since it needs
to compute entries from both J and JT . For many problems this
routine is the most expensive step, so it has to be optimized well.

evalJ. While evalJTF and applyJTJ are used in matrix-free
code, in some cases materialized matrices are faster. In these cases,
our solvers can use the evalJ routine, which calculates individual
entries in J that the solver can materialize in memory.

5. GENERATING SOLVER ROUTINES

A key idea of Opt is that we can exploit the regularity of stencil- and
graph-based energies to automatically generate application-specific
solver routines. We represent the mathematical form of the energy
as a DAG of operators, which we refer to as our intermediate rep-
resentation (IR). We transform the IR to create new IR expressions
needed for evalJTF(), applyJTJ(), and evalJ(). This process
requires partial derivatives of the energy. We then optimize this IR
and generate code that calculates it.

5.1 Intermediate Representation

Since the Opt language is embedded in Lua, we generate the IR by
running the Lua program, which uses overloaded operators to build
the graph. Figure 7 shows the IR that results from the Laplacian
example. Roots of the IR are residuals that we want to compute.
Leaves are constants (e.g., w_fit), input data (e.g., the known
image A(0,0)), and the the unknown image (e.g., X(0,0)). We de-
duplicate the graph as it is built, ensuring common-subexpressions
are eliminated. We scalarize vectors from our frontend in the IR to
improve the simplification of expressions that become zeros during
differentiation.

5.2 Differentiating IR

Since we do not always store the Jacobian J in memory, we need
to generate residuals on-the-fly. The approach we use for differen-
tiation is similar to Guenter’s D� [26]. It symbolically generates
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Fig. 8. Pseudocode of the OnePass algorithm for generating derivatives.
partial[i] is the partial derivative of the particular operator (e.g., *) with
respect to the argument i, which is defined for each operator.

new IR that represents a partial derivative of an existing IR node.
Unlike traditional symbolic differentiation (e.g., Mathematica), dif-
ferentiation is done on a graph where terms can share common
sub-expressions. In our implementation, we use OnePass, a simpli-
fication of D� that can achieve good results by doing the symbolic
equivalent of forward auto-differentiation [27]. Pseudocode for the
algorithm is given in Figure 8. It works by memorizing a result for
each partial derivative and generates a new derivative of an expres-
sion by propagating derivatives from its arguments via the chain
rule.

5.3 Generating IR for Matrix Products

The IR for evalF() is simply the input energy IR. We gener-
ate IR for evalJTF(), applyJTJ(), and evalJ() as transforma-
tions of this input IR. The first two terms are conceptually derived
from matrix-matrix or matrix-vector multiplications of the Jaco-
bian. Since we compute these values matrix-free, we must generate
the IR that will calculate the output given our specific problem.
Each term has two versions: one for handling stencil-based and one
for graph-based residuals.

5.3.1 Stencil Residuals. Our solver calls applyJTJ() to cal-
culate a single entry of g, where g = 2JTJp per thread. We need
to determine which values from J are required and create IR that
calculates them. The non-zero entries in J are determined by the
stencil of a particular problem. Figure 9 illustrates the process of
discovering the non-zeros. In the Laplacian case, the partials used
in these expressions are actually constants, because it is a linear
system. However, Opt supports the generic non-linear case, where
the partials will be functions of the unknown.

The pseudocode to generate JT J for stencils is shown in Fig-
ure 10. It first finds the residuals that use unknown x0,0, because
they correspond to the non-zeros of JT . Some of these residuals are
not actually defined at pixel (0, 0), but use x0,0 from neighboring
pixels. To find them, we exploit the fact that stencils are invertible.
For each residual template in the energy, we examine each place it
uses an unknown xi,j . We then shift that residual on the pixel grid,
taking each place it loads a stencil value and changing its offset by
(−i, −j ), which generates a residual in the grid that uses x0,0. We
find all the residuals using x0,0 by repeating the process for each use
of an unknown in the template. While we only allow constant stencil
offsets, in principle, this approach will work for any neighborhood
function that is invertible.

For each discovered residual, we need the other unknowns it
uses, which are found by examining the IR symbolically. We then
generate the expressions for the part of the matrix-vector products

that calculate g0,0. In this code, we symbolically compute the partial
derivatives that are the entries of J.

5.3.2 Graph Residuals. For graphs, residuals are defined on
hyper-edges rather than on the domain of the unknown and our
solver routines are mapped over residuals directly so we do not
need an inverse mapping from unknown to residual. Instead one
thread computes the part of an output that relates to the residual.
Pseudocode to generate applyJTJ() for graphs is given in Fig-
ure 11. At each residual, it generates one row of Jp, and then
performs the part of the multiplication for the rows of g that include
partials for that residual. The output of this routine is a list of IR
nodes that are atomically added into entries of g.

5.3.3 Variants. The approach to generate evalJTF() and
evalJ() is similar to that of applyJTJ(). The routine
create_jtf() is used to generate the expression r = −2JT F.
Each row of JT can be obtained using the same approach previ-
ously described. The partials in this row are then multiplied directly
with their corresponding residual term in F. Similarly, the routine
create_j() simply produces all the non-zero derivatives for a
particular residual that can be stored by the solver for use in mate-
rialized approaches.

In LM, we additionally need the term λ diag(JT J), which is in-
serted into the applyJTJ() routine when needed.

6. OPTIMIZING GENERATED SOLVER ROUTINES

We need to translate the IR for evalF(), evalJTF(), applyJTJ(),
and evalJ() into efficient GPU functions. We simplify the IR based
on polynomial simplification rules, optimize the handling of bound-
ary condition statements, and schedule the IR, which generates GPU
code.

Polynomial Simplification. Taking the derivative of the IR tends
to introduce more complicated IR. In particular, the application of
the multi-variable chain rules introduces statements of the form
d1 ∗p1 +d2 ∗p2 +· · · for each argument of an operator. Often some
partials are zero, and terms in the sum can be grouped together. We
take the approach of other libraries like SymPy [52] and represent
primitive math operations as polynomials. In particular, additions
and multiplications are represented as n-ary operators rather than
binary, and we include a pow operator that raises an expression to
a constant ac. Where possible, primitives are represented in terms
of these operators. For instance a/b is represented as ab−1 and
a − b as a + −1 ∗ b. Polynomial representation makes it easier
to find opportunities for optimization such as constant propagation
when the optimization first requires re-associating, commuting, or
factoring expressions.

Importantly, the polynomial representation also gives our sched-
uler freedom to reorder long sums and products to achieve other
goals, such as grouping terms with the same boundary statement
into a single if-statement or minimizing register pressure.

During construction, we optimize non-polynomial terms using
constant propagation and applying algebraic identities. Before low-
ering into code, we also apply a factoring pass that applies a greedy
multi-variate version of Horner’s scheme [10] to pull common fac-
tors out of large sums.

Bounds Optimization. Boundary conditions introduce another
source of inefficiency. Opt uses InBounds and Select to cre-
ate boundary conditions and masks. Translating these expressions
to code can introduce inefficiency in two ways. First, it is possi-
ble for the same bound to be checked multiple times. This fre-
quently occurs in applyJTJ() when two partials are multiplied
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Fig. 9. The process our compiler uses for generating applyJTJ() at a high-level. (a) The input to this transformation is a list of individual residuals defined in
the IR (fit, h_reg, v_reg) that form a template. (b) The residual template is repeated over the image to generate the actual energy function. (c) The compiler
considers a specific unknown x0,0, here shown with the residuals that refer to it, which are computed by the compiler. Unknowns and residuals are named
relative to this pixel (e.g., h_reg-1,0 is the horizontal residual from the pixel to the left). (d) The compiler then symbolically forms the result of g = 2JTJp,
here shown with the components needed to generate g0,0. The row of JT corresponding to unknown x0,0 is needed. It has one non-zero for each residual in
(c). This row will be multiplied against Jp. The only rows of Jp needed correspond to the residuals appearing in JT, since other rows will be multiplied by 0.
A row of Jp is calculated by multiplying non-zero entries in a row of J, which occur each time a residual uses an unknown, against the corresponding row of
p. (e) Finally, the compiler forms a matrix-free version of the expression for g0,0 implied by the matrix multiplications, calculating each partial using one-pass
differentiation.

together, since both partials often contain the same bound. Redun-
dant checks also occur when reading from arrays, since Opt must
always check array bounds to avoid crashes. This check is often
redundant with a Select already in the energy. Second, without
optimization, Select statements need to execute both the true and
false expressions. For many cases, this means that large parts of the
IR, including expensive reads from global memory, do not actually
need to be calculated but are performed anyway.

The common approach of generating two versions of code, one
for the boundary region and a bounds-free one for the interior, is
less effective on GPUs, because they group threads into wide vector
lanes of 32 elements, which increases the size of the boundary by
the vector width. For smaller sized problems, large portions of the
image fall in the boundary region.

Instead, we address these two sources of inefficiency directly. We
address the redundant bounds checks by augmenting our polyno-
mial simplification routines to handle bounds as well. We represent
bounds internally as polynomials containing boolean values b that
are either 0 or 1. A Select(b,e_0,e_1) is then represented as

b*e_0 + ∼b*e_1. We simplify booleans raised to a power be to
b. This representation allows polynomial simplification rules to re-
move redundant bounds through factoring. We favor booleans over
other values during factoring to ensure this simplification occurs.

We address excessive computation and memory use due to bounds
by determining when values in the IR need to be calculated. We
associate a boolean condition with each IR node that conservatively
bounds when it is used. These conditions are generated at Select
statements and propagated to their arguments. To improve the ef-
fectiveness of this approach, we split large sums into individual
reductions that update a summation variable. Each reduction can
then be assigned a different condition. When we actually schedule
code, we will only execute the code if its condition is true.

Scheduling and Code Generation. We translate optimized IR
into actual GPU code by scheduling the order in which the code
executes the IR. Our scheduler uses a greedy approach that is aware
of our boundary optimizations. It starts with the instructions that
generate the output values and schedules backwards, maintaining
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Fig. 10. Pseudocode of the compiler transformation that Opt uses to gen-
erate JT J from residual templates.

Fig. 11. Pseudocode of the compiler transformation that Opt uses to gen-
erate JT J for graph residual terms.

a list of nodes that are ready to be scheduled according to their
dependencies. It iteratively chooses an instruction from the ready
list that has the lowest cost, schedules it, and updates the list. Our
cost function first prioritizes scheduling an instruction with the
same condition as the previous instruction, grouping expressions
that have the same bounds together into a single if-statement. It then
prioritizes choices that greedily minimize the set of live variables at
that point in the program, which can provide a small benefit for large
expressions. We also prioritize the instruction that has been ready
the longest, which also helps reduce the required registers [57].

We translate the scheduled instructions into GPU code using
Terra [16]. Terra is a multi-stage programming language with meta-
programming features that allow it to generate high-performance
code dynamically. We use its GPU backend to produce CUDA code
for the solver routines. To improve the performance, we automati-
cally generate code to bind and load input data from GPU textures.
In addition to having better caching behavior, textures also can per-
form the bounds check for loads automatically. Finally, the solver
routines are inlined into the generic solver framework presented

earlier. Because this code is compiled together, there is no overhead
when invoking solver routines.

7. METAPROGRAMMING FLEXIBILITY

Our architecture separates the specification of the energy using the
Opt language from the specification of the LM/GN solvers, which
interact with the energy only through the abstract solver routines
generated by the compiler. This design facilitates various forms of
experimentation to produce fast and effective solvers. These choices
can be made quickly by changing flags in Opt.

LM versus GN. For matrix-free code, it can take significant ef-
fort to add LM extensions to a custom GN solver just to check
if they are needed. The application of JT J specifically requires
additional energy-specific code that can involve potentially compli-
cated derivatives. In Opt, a single flag enables LM while leveraging
the GN solver routine generators that are combined with the LM-
specific extensions. This allows for the speed of GN when possible,
but the convergence guarantees of LM when necessary.

Matrix-free versus Materialized. A key insight of previous hand-
written GPU methods [73] adapted by our framework is that it is
sometimes more efficient to compute J in-place rather than store
J or JT J as a sparse matrix. This approach can be faster for two
reasons. First, the locations of the non-zero entries in the matrix are
implicitly represented by the problem domain (either an image or a
graph), and are not loaded explicitly. Second, entries in the matrix
can often be recomputed using less total memory bandwidth than
loading the full J matrix. In the extreme case, such as Poisson Image
Editing described in the next section, the matrix is constant and the
non-zeros can be folded directly into the code. However, this does
not apply for compute-intense problems such as fully-differentiated
Cotangent-weighted Laplacian Smoothing, described in the Ap-
pendix, where the compute cost dominates bandwidth.

Opt addresses this trade off by allowing the (gradual) choice be-
tween matrix-free and fully-materialized operations. Opt can use
either a matrix-free or materialized approach. The matrix-free ap-
proach uses applyJTJ(), while the materialized approach uses
evalJ() to materialize J to GPU memory.

In our current implementation, we then use cuSPARSE, a high-
performance GPU sparse matrix library, inside our materialized
PCG solver [46]. This pathway can be extended to work with any
GPU sparse solver.

We can also represent hybrid approaches where expensive inter-
mediates are materialized using ComputedArray annotations in the
energy. The remaining parts of the computation are still computed
on demand. This middle ground is sometimes more efficient and is
easy to investigate using annotations; see our Shape from Shading
example in Figure 17.

Numerical Precision. Opt also allows users to switch between
float and double precision depending on the needs of the application
and the capability of the GPU compute platform. Although most
our graphics example problems are well-conditioned enough for
floating point precision, one might want to trade speed for more sta-
bility for ill-conditioned problems; for a detailed numeric evaluation
on a standard optimization benchmark, we refer to the Appendix.

Variants of Standard LM/GN. Many other kinds of solvers are
also just variants of LM/GN that can fit into the Opt model. For
instance, �p problems of the form

E(x) =
R∑

r=1

[
fr (x)

]p
,
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Fig. 12. Example applications written in Opt used in our evaluation. As a
proxy for simplicity of implementation, lines of code for the energy in Opt
are listed on the right, along with lines of code for the energy-specific code
required by handwritten custom solvers when available. Both numbers do
not include CPU code for data marshaling and setup.

which solve for norms other than L2, can be computed using Iter-
atively re-weighted least squares (IRLS), which iteratively solves
the least squares problem

E(x) =
R∑

r=1

wi

[
fr (x)

]2
,

where
[
fr (x)

]2
is a normal least squares function and wi =

[fr (x)]p−2 is fixed for the current iteration. Opt realizes these it-
erative solves by specifying the wi computation as fixed rather than
part of the unknown; thus, no derivatives are computed. The exam-
ple of Intrinsic Images, described in detail in the Appendix, uses
this type of solver to enforce sparsity on the solution.

Robust kernels are another common approach for non-linear least
squares optimization problems in computer vision. Here, auxiliary
variables are introduced to determine the relevance of a data term in
part of the optimization formulation. The Robust Mesh Deformation
example in the Appendix shows how this approach can be naturally
expressed in Opt.

For some problems, such as Dense Optical Flow, described in
the Appendix, unknowns are used to sample values from constant
images. We support this pattern using a sampled image operator,
which can be accessed with arbitrary (u, v) coordinates. When these
coordinates are dependent on the unknown image, the user provides
the directional derivatives of the sampled image as other input im-
ages, which will be used to lookup the partials for the operator in
the symbolic differentiation.

Domains. Opt is able to exploit the implicit structure and con-
nectivity of general n-dimensional arrays. In addition to images,
optimizations are often performed on volumetric grids (e.g., Refer-
ences [30, 72] or time-space (e.g., Reference [62]) domains, all of
which are subsets of n-D arrays and fall within the scope of Opt.

Fig. 13. The solvers generated by Opt perform better than application-
specific GPU solvers, despite requiring significantly less effort to implement.
Additionally, they outperform Ceres implementations by up to three orders
of magnitude, despite requiring similar implementation effort.

Volumetric Mesh Deformation, as described in the Appendix, is an
example of solving for unknowns on a 3D array.

Opt efficiently handles large numbers of unknowns at each lo-
cation in a regular array. For example, the Embedded Deformation
example, described in the Appendix, uses 12 unknowns per vertex.

Opt also efficiently handles explicit structure, provided in the
form of general graphs. These domains include manifold meshes
and general non-manifolds. For instance, non-rigid mesh deforma-
tion approaches (e.g., References [50, 51]) fall into this category,
as well as widely used global bundle adjustment methods [2, 49,
58]. Cotangent Laplacian Smoothing, described in the Appendix,
provides a graph connecting the wedge of triangles at each edge
together using graph hyper-edges.

Our abstraction also allows the energies on mixed domains. For
example, an objective may contain dense regularization terms af-
fecting every pixel of an image and a sparse set of correspondences
from a fitting term. Here, the regularization energy is implicitly
encoded in a 2D image domain, and the data term may be provided
by a sparse graph structure.

On all of these domains, Opt provides automatic derivation of
objective terms, and generates GPU solvers specifically optimized
for a given energy function at compile time.

Multi-pass Optimization. In many scenarios, solving a single
optimization is not enough, but instead requires multiple passes of
different non-linear solves. Often, hierarchal, coarse-to-fine solves
are used to achieve better convergence, or sometimes problem-
specific flip-flop iteration can be applied (e.g., ARAP flip-flop by
[50]). Another common case are dynamic changes in the structure
of the optimization problem. For instance, fitting a mesh to point-
cloud data in a non-rigid fashion is typically achieved by searching
for correspondences between optimization passes (e.g., non-rigid
iterative closest point) [38, 73]. Changes to the correspondences
also change the structure of the sparse fitting terms.
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Fig. 14. Convergence of both Opt and Ceres over time, including both double/single precision and GN/LM solvers for Opt. Per non-linear iteration (left), Opt
LM and Ceres converge at the similar rates, but Opt converges faster over time (right) by completing each iteration up to several orders of magnitude quicker.
Cost and time are both presented using log scale, while iteration count is linear. Vertical lines are drawn for each solver type at the iteration and time when
their cost dips below the final Ceres iteration. The performance gap for the fastest Opt solver variant (single-precision GN) versus Ceres is highlighted on each
of the graphs on the right. Even the full double-precision Opt LM implementation (often the slowest variant) outperforms Ceres by over an order of magnitude
on all problems.
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Fig. 15. Performance of Opt compared to Ceres (using a direct Cholesky solver or an iterative PCG for the linear solve) as problem size increases on two
example problems. Both unknown count and time to convergence are presented in log scale. Image Warping (left), which uses implicit connectivity in Opt,
has more drastic performance differences than ARAP Mesh Deformation (right). For small problems (<5k unknowns in these examples), GPU solvers are
inefficient, but the Opt generated solvers rapidly become significantly faster than their Ceres equivalent as problem size increases.

In all of these examples, custom code is required at specific
stages during optimization. To support this code in Opt, we take
an approach similar to multi-pass rendering in OpenGL. Between
iterations of the Opt solver or between entire solves, users can
perform arbitrary modifications to the underlying problem state in
C/C++. Optimization weights can be changed (e.g., for parameter
relaxation), underlying data structures may be dynamically updated
(e.g., correspondence search or feature match pruning in bundle
adjustment problems), or hierarchical and flip-flop strategies can be
applied using multiple-passes. This approach allows Opt to support
a wide range of solver approaches, while still providing an efficient
optimization back end for their inner kernels.

8. EVALUATION

To evaluate Opt, we implemented several optimization problems
in the language that are summarized in Figure 12, and described
in more detail in the Appendix. These include variants of image,
volume, and mesh-based problems from the graphics and vision
literature. We evaluate overall performance by comparing Opt to
four state-of-the-art application-specific matrix-free solvers opti-
mized for GPUs and to five solvers using the high-level Ceres
library [1]. We further evaluate the benefits and tradeoffs of Opt’s
ability to generate matrix-free, fully-materialized, or intermediate
solver variants. We also show the efficiency of our automatically-
generated solver routines (e.g., applyJTJ) by comparing them to
hand-optimized equivalents. Finally, we implement five other prob-
lems that demonstrate the generality and expressiveness of Opt,
referenced in Section 7, and described in detail in the Appendix.
The Opt code used for the energies of each example is also provided
in the Appendix.

Results are reported as throughput on entire solve steps using a
GeForce 1080 GTX, and for CPU results, an Intel Core i7-6700K
CPU 4.00GHz.

8.1 Comparison with Custom Solvers

We compare solvers generated by Opt to existing state-of-the-art
CUDA-based application-specific matrix-free solvers optimized for
GPUs for ARAP Image Warping, Shape From Shading, ARAP

Fig. 16. Comparison of the performance between the fully materialized
and the best matrix-free variant available in Opt, measuring the speed of
a linear iteration in PCG. The matrix-free approach is more efficient in all
cases besides Cotangent-weighted Laplacian Smoothing. The materialized
version creates the JT J matrix outside of the PCG loop. This incurs a once-
per-PCG-solve cost not captured by these graphs, so materialized versions
will perform even worse than reported here when there are a small number
of inner PCG iterations.

Mesh Deformation, and Poisson Image Editing. Each of the origi-
nal solvers took months to write, debug, and optimize in CUDA. As
a concrete example, debugging the handwritten matrix-free appli-
cation routine in the custom ARAP image warping originally took
weeks due to the complicated cross terms that create dependencies
between offsets of one pixel and the angles at a neighbor. In these
comparisons, we select the Gauss-Newton backend of Opt to match
the algorithmic design in the handwritten reference implementa-
tions.
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Fig. 17. Opt lets programmers specify hybrid materialization approaches,
which are sometimes more efficient than either full matrix-free, or fully
materialized approaches. Here, we show different strategies for the Shape
From Shading example. Materializing just the lighting term (Lighting) out-
performs fully matrix free, and fully materialized by 2–7×.

The Opt solvers are both significantly easier to write and
faster than the handwritten application-specific solvers. In Opt, the
energies for each problem could be written in tens of lines of code
(Figure 12). Furthermore, Opt outperforms the handwritten solvers
for all these example problems by 10–75%; see Figure 13.

Opt can outperform custom solvers, because all Opt solvers ben-
efit from optimizations made to the system. The Opt solver for
ARAP Mesh Deformation runs 55% faster than custom code due
to our reduction-based approach for calculating residuals. In the
original solver, the authors only tried the simpler approach of using
one pass to compute t = (Jp) and a second for JT t. Opt’s high-level
model allowed us to experiment with different approaches more
easily during development. In Shape From Shading, the Opt solver
runs more than 30% faster than the handwritten CUDA solver.
Some of this improvement is due to using texture objects to rep-
resent the images, which is an optimization that the original au-
thors did not have time to implement. The ARAP Image Warping
solver generated by Opt runs about 75% faster (likely due to better
bounds handling) than the handwritten CUDA solver we compare
against.

Since Poisson Image Editing is a linear problem, we also com-
pare against a custom Cholesky solver with pre-ordering using
Eigen [25], a high-performance linear-algebra library for CPUs.
The Gauss-Newton method handles linear least-squares problems
in a unified way that does not require algorithmic changes. When
all residuals are linear functions of the unknowns, J just becomes a
constant matrix independent of x. All second order derivatives are
zero, which implies that the Gauss-Newton approximation is exact
and the optimum can be reached after a single non-linear iteration.
The entire Opt solve was 50 times faster than Eigen’s matrix solve
(not including its matrix setup time), due to Opt’s ability to implic-
itly represent the connectivity of the matrix.

8.2 Comparison with General Purpose Solver

We also compare Opt against the high-level Ceres library, which
is also able to generate a solver using only an energy specification
but does not support GPU or matrix-free execution. The solvers
generated by Opt are 1–3 orders of magnitude faster than Ceres on
our example problems (Figure 13). For accurate comparison, we
setup both Opt and Ceres to use the same LM configuration, and
plot their convergence over time in Figure 14. To get the fastest
results for the internal linear system, we configure Ceres to use its
parallel PCG solver for Image Warping and Shape From Shading,
and Cholesky factorization for Mesh Deformation.

One reason Opt is faster than Ceres is because Opt can repre-
sent the connectivity of problems on image and n-D array domains
implicitly through stencil relations, while Ceres requires the user
to specify energies using a graph formulation. The performance

Fig. 18. Performance comparison between using the implicit connectivity
of a regular grid for the Image Warping problem versus using an explicit
graph representation. Both unknown count and time to convergence are
presented in log scale. For medium to large size images, the explicit approach
takes twice as long. Here, we configured Opt to produce Gauss-Newton
solvers that run for 8 nonlinear iterations of 100 linear iterations each.

difference for Mesh Deformation is less dramatic than image-based
examples, because in this case Opt needs to load the connectivity
of the problem from the graph data structure. However, Opt still
benefits from repetitive stencil terms that are embedded in the gen-
erated code, as well as the massive parallelization of the GPU-based
solver and on-the-fly computations. The Opt generated solver runs
over 720 times faster on Shape From Shading, a relatively complex
problem, due in part to a smart materialization strategy enabled by
Opt; see Section 8.3. The performance benefits of Opt become more
pronounced as problem size increases (Figure 15).

8.3 Matrix-Free versus Materialized Solvers

As mentioned in Section 7, a powerful property of Opt is the
ability to use matrix-free representations or hybrid representations
while still supporting fully materialized solvers. We show the dif-
ference between matrix-free and materialized approaches in Fig-
ure 16. Here, Opt uses cuSPARSE for the inner multiply of the
PCG solver [46]. Note that cuSPARSE only provides the function-
ality for linear algebra and by itself it cannot tackle non-linear least
squares problems due to a lack of auto- or symbolic differentiation.

Except for the highly non-linear Cotangent-weighted Laplacian
Smoothing problem, all examples perform between 1.16 and 3 times
faster using matrix-free approaches.

Opt also allows for intermediate materialization strategies, which
allows users to choose which terms to precompute at the beginning
of each non-linear iteration, using the ComputedArray construct
described in Section 7.

We show the performance of the linear iterations for different ma-
terialization strategies on Shape From Shading in Figure 17. The lin-
ear iterations are most efficient when we materialize the (compute-
intensive) lighting term and its gradient, but recompute the rest of
the Jacobian every linear iteration in a matrix-free approach.

8.4 Implicit versus Explicit Connectivity

The examples throughout the article demonstrate that Opt can
handle both implicit connectivity on regular grids and explicit
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Fig. 19. The effect of our optimizations on generated code for solver routines including polynomial simplification (poly), bounds optimization (bounds),
texture loads (texture), and register minimization (register), compared to a baseline with no optimization (none). The optimizations are necessary to match the
performance of handwritten equivalents, and in many cases the functions run significantly faster.

connectivity as specified by hypergraphs. It is difficult to quan-
tify the performance improvement due to using an implicit repre-
sentation of connectivity in general, but we provide a comparison
between the two approaches on the Image Warping example in
Figure 18. We compare the performance of Opt using a Gauss-
Newton solver over the standard regular grid representation of an
image, and Opt using a Gauss-Newton solver over an explicit graph
representation of the image. For very small image sizes the perfor-
mance difference is minimal, but as image size increases the explicit
approach takes about twice the amount of time to complete. The
implicit approach saves both memory and bandwidth.

8.5 Evaluation of Generated Solver Routines

Our approach relies on the symbolic translations of energy functions
into efficient solver routines using the optimizations described in
Section 6. Compared to handwritten code, this code is much easier
to write and maintain, but inefficient translations could make it too
slow. To show the effectiveness of our symbolic translations and
optimization, we compare our generated solver routines to hand-
written versions that were taken from the pre-existing CUDA code
and slotted into our solver.

Figure 19 shows the results of our optimizations compared to
the handwritten versions of solver routines ported from the CUDA
examples and modified to use texture loads. The baseline (labeled
“none” in the figure) roughly simulates how an auto-differentiation
approach based on dual numbers would perform.

Our optimizations increase performance up to 8× in the case of
Shape From Shading, and are necessary for Opt to perform at or
above the speed of handwritten code. Performing polynomial sim-
plifications improves the results of all examples. The improvement
is more pronounced for the image-based examples, probably be-
cause graph-based examples are bottle-necked by fetching sparse
data from memory rather than by the expressions themselves.

Our optimizations remove redundant bounds checks and un-
necessary reads that can occur when compiling expressions that
test boundary conditions. They include representing bounds as
booleans, factoring the bounds out of polynomial terms, and
scheduling expressions to run conditionally. They provide a sig-
nificant improvement for both Shape From Shading and Image
Warping. Mesh Deformation does not improve, because it does not
use Select.

Shape From Shading shows a significant benefit from texture use,
and our register minimization heuristic provides a small benefit to
Shape From Shading’s JTJ function.

8.6 Limitations and Future Work

Currently the Opt language limits what energies can be expressed
efficiently. On images, our implementation limits energies to a
constant-sized neighboring stencil. However, we can extend Opt
to support other neighborhood functions such as affine transforma-
tions of indices as long as the neighborhood function is invertible.
We also plan to extend our graph language to support the ability to
reference a variable number of neighbors (such as the edges around
a vertex) to make certain energies easier to express. While some of
our specific optimizations are tailored to GPUs, the overall approach
of symbolically calculating and simplifying functions needed by the
solver is applicable to other platforms such as multi-core CPUs, or
even networked clusters of machines for large problems.

Finally, there are a lot of optimization problems in graphics that
are not suited to the Gauss-Newton or Levenberg-Marquardt ap-
proach. Many optimization problems in the graphics literature are
more efficiently solved using other techniques such as shape defor-
mation with an interior-point optimizer [37] or mesh parametriza-
tion using quadratic programming [31]. Although these problems
are not the focus of this article, their solvers would also benefit from
the architecture proposed in Opt, where a general solver library is
augmented with automatically derived application-specific routines.

9. CONCLUSION

We have introduced Opt, a domain-specific language that generates
high-performance, application-specific GPU solvers from a high-
level energy description based on stencils and graphs. Solvers gen-
erated with Opt are not only orders of magnitude faster than Ceres
but also outperform state-of-the-art hand-coded application-specific
solvers that have been tuned with many months of tedious imple-
mentation effort. Opt is also highly flexible: it can generate solvers
with either floating or double point precision, solvers that are matrix-
free, materialized, and even intermediate hybrids, and variations of
GN and LM such as IRLS or robust solvers. Further, Opt provides
its own parallel PCG routines to solve for the linear intermediate
systems; however, it can also hand off the linear solve to other
GPU solvers such as cuSPARSE. Overall, we believe that Opt’s
approach of using abstracted solvers with automatically-generated
application-specific routines can be extended to work with more ex-
pressive energy functions, more platforms beyond GPUs, and more
kinds of solvers. Eventually, we hope that computer graphics and vi-
sion practitioners can put most energy functions from the literature
into a system like Opt and automatically get a high-performance
solver. We believe that Opt is a significant first step in this direction.
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APPENDIX

In this Appendix, we provide additional details and evaluations for
Opt. In Section A, we detail the descriptions of our test example
problems that we have implemented and evaluated in Opt. The prob-
lems are split into two categories: first, those where we compare the
performance against other solvers; and second, those that demon-
strate the flexibility of Opt. In Section B, we evaluate Opt’s numer-
ical behavior on a standard optimization benchmark. We provide
numbers for different solver variations generated with Opt: float
versus double and Gauss-Newton versus Levenberg-Marquardt. In
Section C, we show how our example problems are written in Opt.
We provide the Opt energies, which are similar to graphics shaders.

A. DETAILED DESCRIPTION OF EXAMPLE
PROBLEMS

Along with the main contribution of Opt, we provide 10 different
example optimization problems in Opt. We chose the first four ex-
ample applications (see Section A.1), since they are commonly used
in graphics research and optimized GPU code previously existed or
could be easily adapted for the problem. For these problems, we
implemented their energies in Opt and compare against previously
written custom CUDA implementations. The handwritten CUDA
baselines are (improved) versions of the authors’ state-of-the-art
implementations. We also implemented these applications in the
Ceres solver for direct comparison to another high-level solver [1].
The remaining applications detailed in Section A.2 show how a
variety of different applications can be solved using the Opt pro-
gramming model.

A.1 Performance Examples

A.1.1 Image Warping. As-rigid-as-possible Image Warping is
used to interactively edit 2D shapes in a way that minimizes a
warping energy. It penalizes deviations from local rigidity, while
warping to a set of user-specified constraints [17]. It co-optimizes
the new pixel coordinates along with the per-pixel rotation.

The CUDA implementation was adapted from the handwritten
solver created by Zollhöfer et al. [73] for real-time non-rigid re-
construction. It requires around 480 lines of code to implement.
Of that, 200 were devoted to the Gauss-Newton solver, and 280 to
expressions for the solver routines. In this comparison, we jointly
solve for rotations and translations, following the handwritten ref-
erence implementation. Note that alternating between rotation and
translation in a global-local flip-flop solve is also feasible in Opt;
however, overall convergence is typically worse than the joint solve
[Zollhöfer et al. 73]. In comparison, the solver generated by Opt
runs about 75% faster (likely due to better bounds handling) and
only requires about 20 lines of code to describe. Ceres code is more
comparable in size to Opt, at around 100 lines, but it runs 100 times
slower.

A.1.2 Mesh Deformation. As-rigid-as possible mesh deforma-
tion [50] is a variant of the previous example that shows Opt’s
ability to run on mesh-based problems using its graph abstraction.
It defines a warping energy on the edges of the mesh rather than
neighboring pixels and uses 3D coordinate frames.

The CUDA solver was also adapted from Zollhöfer et al. [73].
It is similar in size to the previous example, with around 200 lines
devoted to expressing the energy, applyJTJ, and evalJTF calcu-
lations. Opt performs around 25 times faster than a Ceres example,
which is implemented in around 100 lines of code.

A.1.3 Shape From Shading. In the Shape From Shading exam-
ple, we use an optimizer to refine depth data captured by RGB-D
scanners [68]. It uses a detailed color image and an estimate of the
lighting based on spherical harmonics to refine the lower resolution
depth information.

Shape from Shading, which is adapted from Wu et al.’s work [68],
is our most complex problem. The original implementation was a
patch solver variation of a Gauss Newton solver that used shared
memory at the expense of per-iteration convergence. For a more di-
rect comparison, we ported the original code into a non-patch solver,
which actually improved the convergence time over the author’s
implementation. The CUDA code includes 445 lines to express
the energy, applyJTJ, and evalJTF calculations. It took several
months for a group of researchers to implement and optimize. In
comparison, the Opt solver code is around 100 lines and runs more
than 30% faster. Some of this improvement is due to using texture
objects to represent the images, which is an optimization that the
original authors did not have time to do.

Shape from Shading also benefits from using pre-computed ar-
rays. We instruct Opt to pre-compute a lighting term and a boundary
term that are expensive to calculate and used by the energy of mul-
tiple pixels. Without this annotation, Opt runs over 7 times slower.
We expect that other complicated problems will have similar be-
havior and pre-computed arrays will give the user an easy way to
experiment with how the computation is scheduled.

A.1.4 Poisson Image Editing. Poisson Image Editing is used
to splice a source image into a target image without introducing
seams [47]. Its energy function preserves the gradients of the source
image while matching the boundary to gradients in the target image.
The energy formulation in this function makes J constant, and our
matrix-free solver is able to inline those constants into the solver
routines rather than load them from memory.

To compare against a CUDA version, we adapted the Image
Warping CUDA example to use the Poisson Image Editing objective
function, which uses about 67 lines for the energy, evalJTF, and
applyJTJ. Opt performs about 10% faster and uses only about
15 lines of code. Since this problem boils down to solving a linear
system of equations, we also compare against Eigen [25], a high-
performance linear-algebra library for CPUs using Cholesky with
pre-ordering, since it was fastest. The entire Opt solve was 50 times
faster than Eigen’s matrix solve (not including its matrix setup time),
due to Opt’s ability to implicitly represent the connectivity of the
matrix.

A.2 Expressiveness Examples

Our performance evaluations (see Section A.1) focus on examples
from the literature where state-of-the-art handwritten code previ-
ously existed and can be compared. Opt’s programming model
is also able to handle a wider variety of general non-linear least
squares problems, which is at the core of many computer graphics
and vision problems.

A.2.1 Embedded Deformation. Embedded Deformation is a
popular alternative method to as-rigid-as-possible deformation [51].
Rather than solving for a per-vertex rotation parameterized by Eu-
ler angles, Embedded Deformation solves for a full transformation
matrix and enforces the rotations via additional soft-constraints.
Compared to writing a solver by hand, writing Embedded Defor-
mation in Opt was an easy process, since it only required increasing
the number of unknowns and changing the energy terms of our as-
rigid-as-possible energy, which amounted to tens of lines of code
and under an hour of work. Gauss-Newton solvers are fragile on
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Fig. 20. Opt easily allows exploration of different �p-norms by generating
IRLS solvers. In [41], smaller values of p better separate reflectance and
shading.

this energy function, so we configured Opt to generate an LM solver
instead. The solver it produces can deform a 12k vertex mesh at an
interactive rate of 5 frames per second and only requires an energy
function of around 40 lines.

A.2.2 Cotangent-Weighted Laplacian Smoothing. Cotangent-
weighted Laplacian Smoothing is a method for smoothing meshes
that tries to preserves the area of triangles adjacent to each edge [15].
It adapts well to meshes with non-uniform tessellations. This exam-
ple highlights Opt’s ability to define residuals on larger components
of a mesh by defining a hyper-edge in our graph representation that
contains all the vertices in a wedge at each edge. We show the power
of Opt by implementing a small variant that allows the cotangent
weights to be recomputed during deformation instead of using the
values from the original mesh. This variant is normally hard to
write, since it introduces complicated derivative terms. Opt gener-
ates them automatically, making it easier to experiment with small
variants on existing energy functions. Opt generates a solver from
around 45 lines of code that can smooth a 44k vertex mesh at 3.3fps.

A.2.3 Dense Optical Flow. Dense Optical Flow computes the
apparent motion of objects between frames in a video at the pixel
level. We implement a hierarchical version of Horn and Schunck’s
algorithm [29] using an iterative relaxation scheme. Because opti-
cal flow is searching for correspondences in images, its unknowns
are used to sample values from the input frames. We support this
pattern using a sampled image operator, which can be accessed with
arbitrary (u, v) coordinates. When these coordinates are dependent
on the unknown image, the user provides the directional derivatives
of the sampled image as other input images, which will be used
to lookup the partials for the operator in the symbolic differentia-
tion. The solver Opt generates from around 20 lines of code solves
optical flow at 5.38MP/s.

A.2.4 Intrinsic Image Decomposition. Intrinsic Image Decom-
position separates an input image into its reflectance and shading
components. This problem dates back to the seminal Retinex [35]
work, which assumes that large gradients are more likely to cor-
respond to reflectance than shading variation. Current approaches
[8, 41] implement this assumption based on energy minimization
by enforcing reflectance sparseness and shading smoothness. We
reimplemented a basic version of [41] in Opt to show its ability to
solve optimization problems that involve sparsity inducing norms;
see Figure 20. Specifying the three objectives (reproduction of input
image, �p reflectance sparsity and �2 shading smoothness) only re-
quires 37 lines of code in the Opt language. Opt solves the intrinsic
image decomposition problem for 461k unknowns (pixel resolution
of 640 × 360, 2 unknowns per pixel), in less than 25.1ms, fast
enough to operate in real time on 30Hz video. Internally, Opt min-
imizes the energy based on Iteratively Reweighted Least Squares
(IRLS).

A.2.5 Volumetric Mesh Deformation. Volumetric Mesh
Deformation is an alternative approach to mesh deformation that
warps an underlying 3D grid that the mesh is embedded in; for

example, see [30]. The structure of the problem is implicit in
the grid representation, so we stand to gain more than standard
graph problems by using Opt over a solver that materializes the
intermediate matrices. To demonstrate this performance benefit,
we implemented this problem in both Ceres and Opt. The solver
Opt generates from 27 lines of code solves for the deformation of
a 4961 voxel grid at 21.4ms, sufficient for real-time applications.
This is more than 760× faster than the Ceres solver.

A.2.6 Robust Non-Rigid Alignment. Robust optimization is an
alternative to robust norms that is often used for computer vision
problems. The idea is to introduce auxiliary variables that weight
data points as part of the optimization process. For instance, this
strategy is often used in bundle adjustment or non-rigid deformation
frameworks to determine the reliability of correspondences [38,
58, 71, 73]. In Opt, it is easy to add these terms using additional
unknowns for energy functions on single and mixed domains. We
implemented a robust term along with a fitting term for our Mesh
Deformation example in only three extra lines of solver code; the
solver it produces can deform a 10k vertex mesh at an interactive
rate of 3.7 frames per second. In this example, we include a data
fitting term that constrains the deformation based on a target point
cloud using a point-to-plane term; that is, a non-rigid ICP. As ground
truth 3D captures, we use the data from Vlasic et al. [59, 60]. To
make the problem harder, we introduce artificial noise by adding
spurious correspondences that are far off from the surface. During
the optimization, the robust optimization minimizes the weight of
these outliers, and is able to achieve a robust non-rigid alignment of
the mesh with respect to the target point cloud. A visual comparison
with and without robust optimization is shown in Figure 21, bottom
right.

B. NUMERIC EVALUATION

In this section, we provide a numeric evaluation of Opt. Our aim
is not to evaluate performance but rather to exercise numerics. To
this end, we implemented all univariate energies from the National
Institute of Standards and Technology (NIST) benchmark for non-
linear least squares problems,2 a standardized benchmark for opti-
mization. These objectives are non-linear regression problems that
contain few unknowns (2–9) each with up to a few hundred data
points; they are classified by three levels of difficulty (lower, av-
erage, higher). On all of these problems, we run four Opt solvers,
float versus double and GN versus LM, as well as the Ceres solver,
which uses LM with double precision. The results are visualized in
Figures 22 and 23. As we can see there is virtually no difference
between the solver types on easier problems, on some of the harder
problems combinations of the numerically more stable double pre-
cision and LM are necessary—our reference is to match Ceres.

C. EXAMPLE ENERGY SPECIFICATIONS

Figures 24 through 33 list the Opt code for each of the ten energy
functions described in Section A. Opt code is based on the Lua
programming language, but uses specialized operations to specify
the dimensions and types of unknowns and other variables. All
energy functions are centered at a local origin, with all access being
relative to this origin, which is replicated over the domain of each
energy function.

2http://www.itl.nist.gov/div898/strd/nls/nls_main.shtml.
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Fig. 21. Visualization of our example problems implemented in Opt.
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Fig. 22. Cost vs. iterations on the first 15 univariate problems from the NIST non-linear least squares optimization benchmark: http://www.itl.nist.
gov/div898/strd/nls/nls_main.shtml.
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Fig. 23. Cost vs. iterations on the last 11 univariate problems from the NIST non-linear least squares optimization benchmark: http://www.itl.nist.gov/
div898/strd/nls/nls_main.shtml.
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Fig. 24. Image Warping energy function in Opt.

Fig. 25. ARAP Mesh Deformation energy function in Opt.
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Fig. 26. Shape from Shading energy function in Opt.
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Fig. 27. Poisson Image Editing energy function in Opt.

Fig. 28. Embedded Mesh Deformation energy function in Opt.
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Fig. 29. Cotangent Mesh Smoothing energy function in Opt.

Fig. 30. Optical Flow energy function in Opt.
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Fig. 31. Volumetric Mesh Deformation energy function in Opt.

Fig. 32. Robust Mesh Deformation energy function in Opt.
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Fig. 33. Intrinsic Image Decomposition energy function in Opt.
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2008. Articulated mesh animation from multi-view silhouettes. In
ACM Trans. Graph. (TOG), Vol. 27. ACM, 97.

[60] Daniel Vlasic, Pieter Peers, Ilya Baran, Paul Debevec, Jovan Popović,
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