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ABSTRACT
Tone mapping operators are designed to compress the dynamic
range of high dynamic range (HDR) images while preserving the
perceived image brightness, but they often enhance image noise in
the process, specially in low-light conditions. We propose a method
for reducing noise in images created by any tone mapping operator.
Our approach leverages the noise distribution of the HDR image
to guide the range kernel of a cross bilateral filter that is used to
denoise the tone mapped image. When the noise distribution is un-
known, we use a new method to automatically estimate it assuming
that the HDR image was produced as an average of multiple expo-
sures taken in RAW or JPEG compressed format. Our method per-
forms quantitatively better than existing denoising methods applied
on either the original HDR or the tone-mapped images directly, and
a user study confirms that it produces visually preferable results.

CCS Concepts
•Computing methodologies→Computational photography; Cam-
era calibration;
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1. INTRODUCTION
High Dynamic Range (HDR) images need to be tone mapped for

visualization on low dynamic range displays. Tone mapping opera-
tors (TMOs) reduce the dynamic range while trying to preserve the
original contrast, in particular true color gradients [26].

Any existing TMO is challenged by the presence of noise in the
HDR images, as it is hard to distinguish real light variations from
gradients caused by camera noise (a detailed description of cam-
era noise is given in Sec. 2). While this is less of a concern for
HDR images taken with sufficient light, it becomes critical for im-
ages taken under low light conditions. For example, outdoor shots
taken at dawn with poorly illuminated backgrounds, and indoor
shots where large parts of a scene are scarcely lit, often exhibit sig-
nificant noise. In such cases, existing TMOs create objectionable
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artifacts by amplifying the noise (see fig. 3-(a)).
Let us assume for a moment that the noise distribution in the

HDR image is known. Given this distribution, the first option to try
would be to apply a denoising algorithm [23] directly on the HDR
image, prior to tone mapping. However, any noise left after this
process could be amplified by the TMO. The user may thus fre-
quently need to alternate between denoising with more aggressive
parameters and tone mapping before obtaining a satisfactory result.

The second, less trivial, option to try would be to apply the tone
mapping transformation to the original (noisy) HDR image, recover
the noise distribution in the resulting image, and give this infor-
mation to a denoising algorithm applied on the tone mapped im-
age. Unfortunately, this is not feasible because the tone mapping
transformation is highly non-linear and depends upon the particular
TMO employed and its parameters. In addition, standard denoising
algorithms could fail to remove noise since the assumption of ad-
ditive Gaussian noise (even signal-dependent Gaussian or Poisson
noise) is not satisfied for images that have been tone-mapped.

Our first key contribution is to introduce a novel method which
uses knowledge of the HDR noise distribution to remove noise in
the tone mapped image, without knowledge of the tone mapping
transformation. In fact, our method is completely agnostic to the
TMO algorithm itself. We propose a new “HDR cross bilateral fil-
ter”, which assumes that the original HDR image noise distribution
is known (sec. 3).

To estimate the noise distribution in HDR images, one typically
needs to calibrate the camera directly [12], or have access to the
RAW exposure stack from which the HDR image was created [14].
Our second key contribution is to estimate the noise distribution
from the HDR image alone, without requiring the original expo-
sures. Our method takes into account the camera noise model to
predict the noise distributions of HDR images reconstructed from
RAW or JPEG exposure stacks (sec. 4).

Our approach can be easily used by non-professional users and
it is applicable for HDR images reconstructed from maximum-
likelihood averages of RAW or JPEG exposure stacks. We demon-
strate the high performance of our method by quantitative and qual-
itative comparisons to state-of-the-art filtering methods (sec. 5).

2. RELATED WORK
The tone mapping problem has been thoroughly investigated by

the computer graphics community. An excellent summary of the
numerous tone mapping techniques can be found in [26]. Model-
ing common photographic practices of film development in digital
media has been shown to be an effective tone mapping strategy. A
popular example in that direction is the photographic tone mapping
operator [25] that utilizes a global sigmoid-shaped tone curve in
combination with local dodging and burning operators. Another



(a) Tone mapped image (b) Non-local means (c) Bilateral filtering (d) BM3D (e) Our approach

Figure 1: Existing tone mapping operators often over-emphasize the noise of HDR images, specially for low-light scenes (a). Image
denoising methods, such as (b) non-local means [11], (c) bilateral filter [28], and (d) BM3D [5] are not effective due to the non-linear
noise distribution in tone mapped images. Our method predicts the noise of the original HDR image to effectively remove it (e).

popular approach has been local tone mapping where the HDR im-
age is decomposed into base and detail layers using shift variant
filtering, such as the bilateral filter [6]. Dynamic range is reduced
through tonal compression of only the base layer, without modify-
ing the detail layer. This way one can achieve significantly higher
local contrast compared to global tone mapping. Each tone map-
ping type produces images with a distinct visual style, and thus
using a specific operator is an artistic choice. Previous work on
tone mapping has also focused in understanding and utilizing how
the properties of the human visual system change for extremely low
luminance levels [9, 24, 16, 18]. These methods mainly focus on
faithfully modeling the loss of color and luminance contrast acuity
in dark scenes, but do not account for camera noise.

Camera noise is a well studied topic in the fields of optics and
photonics (c.f. [17] for an in-depth analysis of noise in CCD/CMOS
sensors). Noise factors can be classified into two categories: spatially-
dependent noise and spatially-independent noise. The first cate-
gory includes factors that depend on the particular pixel such as its
surface area (inducing photo-response non-uniformity noise) and
the level of heat-dependent distortions (inducing dark current non-
uniformity noise). The second category includes factors that affect
every pixel equally such as shot noise (associated to the Poisson
process of light emission) and readout noise (an umbrella term for
several sources that affect the acquisition process). In this paper,
we apply a simplified noise model (see sec. 4.1) that takes into ac-
count the spatially-independent sources (shot and readout noise)
and ignores other spatially dependent sources. The parameters of
the simplified model (i.e. a gain factor and the variance of the read-
out noise distribution) can be either recovered from a set of calibra-
tion images [17] or directly from photographs of a given scene [20,
10, 14]. In sec. 4.2 we propose a method to recover the parame-
ters from HDR images directly, which we will then use to guide the
filtering of noisy tone mapped images.

Image denoising has been a very active field in recent years (see [23]
for a recent overview). However, although this is considered a very
mature field [4], it has been mainly targeted at standard images (i.e.
low dynamic range (LDR) images). Existing state-of-the-art de-
noising strategies include non-local means filtering [2] in combina-
tion with efficient high dimensional filters [11], and strategies based
on collaborative filtering [5]. In contrast to existing work on LDR
images, we take advantage of noise models calibrated specifically
for HDR images to improve the denoising quality in tone mapped
images. This strategy significantly improves on the naive appli-
cation of the state-of-the-art denoising methods to HDR and tone
mapped images. Similar noise models have been applied in [13] to
the selection of suitable tone mapping parameters for noisy HDR
images.

3. HDR CROSS BILATERAL FILTERING
To function properly, a denoising algorithm needs an estimate of

the noise distribution of the image. However, such a distribution is
difficult to recover in a tone mapped image since it was created by
transforming an HDR image using (potentially) highly non-linear
processes. To address this difficulty, we observe that in the original
HDR domain, noise is linearly proportional to the light in the scene,
so its distribution is easier to model. We then propose to use the
pixel noise distribution of the original HDR image, and transfer
it to the tone mapped image by using a cross (or joint) bilateral
filtering approach [7]. Let us briefly summarize the general concept
of this filter, and see how it can be adapted to our setting.

Given a color image I, standard bilateral filtering [28] replaces
the color Ip of a pixel p by a weighted average of the color of the
surrounding pixels q. A domain kernel f gives higher importance
to closer pixels (e.g. a Gaussian kernel with standard deviation σ f ),
and a range kernel g gives higher importance to color values closer
to Ip (e.g. Gaussian with standard deviation σg). The filtered image
Jp is given by

Jp =
∑q∈Ω W (p,q)Iq

∑q∈Ω W (p,q)
, with weights (1)

W (p,q) = f (‖p−q‖ ;σ f )g(
∥∥Ip− Iq

∥∥ ;σg), (2)

where Ω is the image domain. In cross bilateral filtering [7] the
range kernel is guided using a different image Ĩ.

We remove noisy gradients from a tone mapped image using
cross bilateral filtering with a range kernel guided by the noise dis-
tribution of the original HDR image H. Let Hp be the irradiance
at pixel p in the HDR image. The noise distribution at every pixel
is assumed to be a Gaussian with mean Hp and standard deviation
σHp [27]; in sec. 4 we provide a method for estimating the σH auto-
matically. Using this distribution we compute the z-scores for each
pixel q as zq = |

Hp−Hq
σHp
|, and produce the range kernel g(zq), where

g is a Gaussian kernel with unitary standard deviation. To prevent
color bleeding in color images, for every averaged pixel q we take
the minimum score zq among the color channels.1 The final filter-
ing is computed by replacing the weights in (1) by

W (p,q) = f (‖p−q‖ ;σ f )g

(
min

c∈{R,G,B}

{∣∣∣∣∣Hc
p−Hc

q

kσ c
Hp

∣∣∣∣∣
})

, (3)

where parameter k is a user-defined parameter which controls the

1Ideally, color distances should be measured in a perceptually uni-
form color space [28], but the transformation of the corresponding
image noise distribution to such a space is not trival, and it does not
necessarily correlate with noise perception.



desired level of smoothing. Our HDR cross bilateral filter correctly
averages color values that are dissimilar in the tone mapped image
but which correspond to similar irradiance values in the HDR im-
age (see fig. 3-(d), insets), while preserving even faint edges in the
tone mapped result that are present in the HDR image.

4. AUTOMATIC ESTIMATION OF HDR IM-
AGE NOISE

Our approach requires an estimate of noise distribution of the
original HDR image. Methods for estimating the noise from sin-
gle (LDR) image exist, for instance, by segmenting a RAW image
into level sets to obtain an intensity mean-variance scatterplot from
which the parameters are estimated[10]. Using a similar scatter-
plot, Liu et al. [20] infer the noise distribution of JPEG images
by fitting the parameters of an image formation model for CCD
cameras, and then predicting the noise level of the image values.
Similarly, Heide et al. [15] model each step of the image forma-
tion pipeline such as demosaicking, denoising, and deconvolution
to reconstruct sharp images from noisy input. However, in order to
achieve a similar effect in tone mapped images, one would need to
include the tone mapping pipeline in the model for every existing
tone mapper. This is highly impractical, given the large number of
existing TMOs, and the number of parameters might become too
large to obtain a reliable estimate from a single image. Instead, we
advocate for performing the noise estimation in the original HDR
image (or the corresponding exposure stack) where a general image
formation model can be used.

There are methods to predict the noise distribution of HDR im-
ages under some conditions, for instance when averaging exposure
stacks captured with a pre-calibrated camera [12], or by calibrating
the camera from the exposure stack of the HDR image [14]. How-
ever, to the best of our knowledge, there are no methods to estimate
the noise distribution of HDR images when the original image stack
is not available. We thus introduce a novel, practical method that
handles the general case when only the tone mapped image and the
source HDR image are given.

To constrain the noise prediction, we assume that: i) the HDR
image was reconstructed as a weighted average of multiple pho-
tographs [21], ii) a maximum likelihood weighting scheme [27]
was employed (a reasonable assumption since most HDR images
are created this way), and iii) every well-exposed pixel contributes
to the average (e.g., no motion compensation). The noise predic-
tion performance will depend on how much the input HDR satis-
fies these assumptions. Similar to [20, 14], we perform a super-
pixel tessellation of the HDR image into regions with as-uniform-
as-possible irradiance. The tesselation is obtained via an energy-
minimization framework to ensure super-pixels are compact, and
do not cross image boundaries [29]. The irradiance mean and vari-
ance of these regions define a scatter-plot (fig. 2). The lower enve-
lope of this plot is a tight upper bound for the variance parameter of
the irradiance distribution [20] because any color variation within
a region with uniform irradiance can only be attributed to camera
noise. However, this upper bound might overestimate the variance
parameter due to a lack of uniform super-pixels for every irradi-
ance range. Therefore, we use the upper bound only as guidance
for fitting a noise model that assumes that the HDR image was con-
structed as the maximum likelihood irradiance estimate from mul-
tiple photographs. The model and the fitting process are described
next.

4.1 Noise model for HDR images
Assuming maximum-likelihood weighting when averaging the n

photographs (ii), our noise model assumes that the irradiance mea-
surement at pixel p given by the HDR image is sampled from a
Gaussian distrubtion [27]. The parameters of the distribution, i.e.
the expected irradiance Xp and the variance σ2(Xp) for each p, can
be estimated as

Xp =

∑
n
i=1 w(i)

p
X (i)

p

σ 2
(

X(i)
p

)

∑
n
i=1 w(i)

p
1

σ 2
(

X(i)
p

) , and (4)

σ
2(Xp) =

1

∑
n
i=1 w(i)

p
1

σ 2
(

X(i)
p

) , (5)

where X (i)
p ,σ2

(
X(i)

p

)
are the parameter estimates obtained from each

input photograph with index i. The weight w(i)
p = [Xp < X (i)

max] ex-

cludes saturated values from the average, where the value X (i)
max rep-

resent the maximum irradiance measurable on each photograph i
before saturation occurs.

Following the camera noise model in [14], σ2
(

X(i)
p

)
of irradiance

measurement X (i)
p at pixel p is approximated by

σ
2
(

X(i)
p

)
≈

X (i)
p + C(i)

t(i)

t(i)
, (6)

where t(i) is the exposure time, and C(i) =
σ

2(i)
R

(g(i))2 is a constant that

depends on the camera gain g(i) and readout noise σ
2(i)
R parameters

(these parameters vary between photographs depending on the ISO
setting).

Therefore, in order to estimate the variance parameter σ2(X) for
each pixel in a given HDR image X , we need to estimate 3n+ 1
parameters: t(i), the saturation point X (i)

max, the constant C(i) of each
photograph used to reconstruct X , and the number of photographs
n. Our model-based self-calibration procedure to estimate these
parameters is described next.

4.2 Estimation of the Noise Model Parameters
The model-based self-calibration proceeds in four steps:
1) Super-pixel tesselation of the HDR image The HDR image

is tessellated into super-pixels, i.e. into a subsets {S j} of spatially
adjacent pixels, where each subset {S j} has as low color variation
as possible [29]. For each super-pixel {S j}, the irradiance sample
mean and sample variance (S̄ j,σ

2
j ) of the corresponding pixels are

computed independently for each color channel (fig. 2, blue dots).
2) Selection of super-pixels with low irradiance variation The

irradiance range x is divided into nr intervals of equal length in
log-scale (nr = 100 in practice). For each interval xr, the set of
super-pixels whose mean falls within the interval are selected, and
the one with minimum variance among them is singled out. This
yields the set U = {(S̄r,σ

2
r )}

nr
r=1, where each element (S̄r,σ

2
r ) is

the super-pixel of minimal spatial irradiance variance for the cor-
responding interval. The sample variance of each super-pixel in U
provides an upper bound for the variance parameter of the irradi-
ance distribution in the corresponding interval.

3) Estimation of upper bound of the variance parameter From
the set U , a piece-wise-linear function σ2

NP : x→R is constructed to
approximate the points in U using constrained least-squares linear
regression. In the following, we refer to σ2

NP as the non-parametric



self-calibrated variance (fig. 2, cyan curve). Given the linear rela-
tion between irradiance and its variance (eq. 6), the curve is con-
strained to be positive and monotonically-increasing.

4) Estimation of noise parameters as energy minimization
Since σ2

NP might over-estimate the variance parameter of the ir-
radiance distribution, this curve cannot be used directly to guide
the filtering of tone mapped images derived from X . Neverthe-
less, this upper bound can be used to guide the estimation of the
parameters of the noise model for HDR images (sec. 4.1). Tak-
ing σ2

NP as a noisy observation of the noise model, the parameters

Pn = {t(i),X (i)
max,C(i)}n

i=1 are estimated as the minimum of an en-
ergy function that penalizes deviations from the noise model on
each interval. This energy function is defined as

E(Pn) =
nr

∑
r=1

(
logσ2

NP(xr)− logσ2
Pn
(xr)

logσ2
NP(xr)

)2

, (7)

where σ2
Pn
(X) is the estimate for the variance parameter obtained

by replacing the parameters Pn in (5) and (6). In the following,
we refer to σ2

Pn
as the model-based self-calibrated variance. Log-

arithms are used in eq. 7 to better deal with the non-linear rela-
tionship between the parameters and the variance (i.e. logσ2(Xi) ≈
log[X + C(i)

t(i) ] + log t(i) is linear in log t(i) as C→ 0). The denomi-
nator serves as a normalization factor to dampen the effect of large
over-estimates in σ2

NP (e.g. at upper irradiance levels in Fig. 2-b,c).
We minimize the energy in (7) following an iterative approach.

Starting with n = 1, C(1) = 0, and X (1)
max = ∞, we jointly estimate

t(1) and C(1) using the Quasi-Newton method (t(i),C(i) > 0). Then,
we add a second photograph (n = 2) and select the saturation point
X (2)

max ∈ {xr}nr
r=1 that minimizes the energy (7); the exposure times

and the constant are re-estimated for each candidate xr. We repeat
the same procedure for each additional photograph until the target
number of photographs n is reached, and select the parameter con-
figuration with the minimum energy. The number of photographs
n is considered as a hyper-parameter. It was set to n = 3 in our
experiments, however, it would be possible to let the algorithm au-
tomatically select a value for n, e.g. by adding an additional error
term to penalize photographs with similar parameters [1].

Discussion Fig. 2 illustrates the result of the self-calibration pro-
cess on three images of different types: 1) the simulated HDR im-
age of fig. 4; 2) the HDR image reconstructed from RAW pho-
tographs from fig. 1; and 3) the HDR reconstructed from JPEG pho-
tographs from fig. 3. The plots corresponding to RAW and JPEG
images indicate that the rate of increase of the irradiance variance
parameter with respect to irradiance mean parameter is well ap-
proximated, but the absolute values of the variance are lower than
the grounth truth (e.g. by a factor k, applied in Eq. 3). Two reasons
explain this behavior. First, the model does not take into account
the distribution of the sample variance for super-pixels. Therefore,
the resulting upper bound σ2

NP is lower than the expected value by
an amount proportional to the expected sample variance. Second,
in the case of JPEG images, the variance of super-pixel irradiances
is drastically reduced by in-camera processing such as denoising,
and luminance and color compression.

5. EXPERIMENTAL VALIDATION
In this section, we experimentally show that our HDR cross bilat-

eral filter improves the quality of tone mapped images, irrespective
of the TMO employed. First, we performed an empirical evaluation
of the denoising quality (sec. 5.1); second, we conducted a quan-
titative evaluation of the correlation between tone mapped images
obtained by applying different denoising strategies and the original

HDR image (sec. 5.2); and third, a qualitative validation through a
user study (available in the supplementary material2). These evalu-
ations indicate that our approach produces high quality results out-
performing existing alternatives, and that the HDR noise distribu-
tion estimate can be used during filtering to improve the quality of
tone mapped images.

5.1 Empirical evaluation
We captured eight night scenes using a Canon EOS 5D Mark

III, four examples are shown in figs. 1 and 3 (all eight photos are
available in the supplementary material). Each scene was captured
as a bracketed-exposure sequence (-3, 0, +3EV) in aperture prior-
ity mode and automatic ISO setting. Note that our method han-
dles the variation on ISO settings by estimating a gain factor per
exposure (eq. 6). The photographs were saved both in RAW and
JPEG format. We reconstructed two HDR images per scene (one
from RAW and one from JPEG) using the method of [19] with
pre-calibrated camera parameters [12]. For JPEG sequences, the
inverse camera response was estimated from a RAW-JPEG image
pair: first, we applied black level subtraction and white balancing
to the RAW image (using the values reported in the JPEG file), and
second, we fitted a smooth, monotonically increasing curve to the
corresponding RAW-JPEG image values. We also use the Still Life
scene (courtesy of Industrial Light and Magic, see bottom row of
fig. 3) [31]. Each HDR image was tone mapped using the operator
of Fattal et al. [8] using settings that emphasize gradients (β = 0.8,
fig. 3-(a)). The corresponding tone mapping is aesthetically inter-
esting but contains severe noise.

For each scene, we denoised the tone mapped image using non-
local means [11], standard bilateral filtering [28], and BM3D [5]
(fig. 3-(b)–(d)), using the optimal parameters obtained from the
quantitative evaluation in sec. 5.2. No method can perform effec-
tive denoising in all cases. This result is expected as the assump-
tions made by image denoising algorithms (e.g., additive Gaussian
noise) are not satisfied in tone mapped images. In contrast, af-
ter estimating the noise distribution of the original HDR image,
our method performs better denoising while preserving the image
structure (fig. 3-(e)). The supplementary material shows more re-
sults with additional tone mapping operators [25, 22].

5.2 Quantitative evaluation
For quantitative evaluation, we used a total of 12 rendered HDR

images from Ward’s image collection [31]. Here, we report results
for the file rend13_o7B0.hdr. Results for the other 11 images, pro-
vided in the supplementary material, show similar behavior. These
synthetic images are virtually noise-free (except possible rendering
noise, e.g. Monte Carlo noise), so they can be used as a clean plate
to simulate noisy images with arbitrary distributions. First, we cre-
ated a noise-free HDR image by merging the three noise-free expo-
sures (a tone mapped version is shown in fig. 4-(a) for display pur-
poses). Then, we generated a noisy HDR image by capturing three
simulated noisy photographs (using the EOS 5D noise parameters
estimated in sec. 5.1). We applied the same HDR reconstruction
pipeline and tone mapping algorithm described in sec. 5.1, and ob-
tained a noisy HDR-tone mapped image pair (fig. 4-(b)). Taking the
noise-free HDR image as ground truth, we compared our method
quantitatively with the result of applying a denoising algorithm di-
rectly on i) the final tone mapped image, and ii) the HDR image.

2http://www.disneyresearch.com/publication/
hdr-image-noise-estimation/
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Figure 2: Noise estimation from HDR images. First, we extract the mean irradiance and variance of the super-pixels in an HDR
image (blue); the lower envelope of this mean-variance scatter plot (cyan) defines an upper bound for the image variance. Given this
upper bound, we fit a HDR image noise model to predict the image variance (magenta); our prediction lays within a factor (k = 2 for
RAW, k = 8 for JPEG) of the true variance (yellow) (see sec. 4.2). Our noise model accounts for HDR images produced as the average
of multiple photographs (vertical gray lines represent the boundary of the photograph’s contribution).
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(a) Input (b) Non-local means (c) Bilateral filtering (d) BM3D (e) Ours

Figure 3: Comparison of image denoising algorithms. (a) Input tone mapped image created using [8]); (b) [11]; (c) [28]; (d) [5]; (e)
Our method. Still Life courtesy of Industrial Light and Magic. Please see the supplementary material for additional results.

5.2.1 Comparison with denoising the tone mapped
image

To evaluate the quality of our denoising method, we compared it
with three image denoising strategies: non-local means [11], stan-
dard bilateral filtering [28], and BM3D [5]. We evaluated our HDR
cross bilateral filter using three different noise estimates: i) the
ground truth noise distribution, ii) the non-parametric self-calibration
σ2

NP, and iii) the model-based self calibration σ2
Pn

. The resulting de-

noised images are shown in fig. 4.
As mentioned earlier, we seek to compare the resulting denoised

images with the original, noise-free HDR image. Inspired by the
structure similarity component of the well-known SSIM quality
metric [30], we used the normalized cross-correlation because it
captures similarity to the original HDR, while normalizing for the
expected changes in brightness and contrast due to the tone map-
ping process. A similar approach has recently been used success-
fully in other HDR-related applications [3].



(a) Noise-free image (b) Noisy image (c) Non-local means (d) Bilateral filtering (e) BM3D (f) Our result (σ2
Pn

)

Figure 4: Rendered scene used to quantitatively evaluate the quality of our method with respect to image denoising strategies. (a) tone
mapped version of the noise-free HDR image; (b) input noisy tone mapping; (c)-(f) best denoising result for each method according
to normalized cross-correlation with the noise-free HDR image (fig. 5). Results better visualized in electronic version. Image courtesy
of Greg Ward. Please see the supplementary material for qualitative results on 11 additional ground truth test images from [31].
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Figure 5: Quantitative comparison with standard image denoising methods applied before and after tone mapping, for different
values of each denoising method’s varied parameter (see text). For two different TMOs, the plots show the normalized cross-
correlation (NCC) obtained by non-local means [11], bilateral filter [28], BM3D [5], and our HDR cross bilateral filter. In addition,
we also show the NCC obtained by pre-denoising the HDR image using a noise-aware filter [12] followed by tone mapping (solid
horizontal line). The NCC of our method is higher than the alternative HDR and tone mapping denoising methods. The legend is the
same for both plots. Please see NCC curves on 11 additional ground truth test images from [31] in the supplementary material.

In particular, we estimated the normalized cross-correlation (NCC)
between the result of: i) tone mapping the noise-free HDR image
directly and ii) denoising the tone mapping of the noise-corrupted
HDR image. For each denoising method, we estimated the NCC
for a wide range of values of its intrinsic parameter: For non-local
means and bilateral filtering, the intrinsic parameter is the standard
deviation of the range kernel (σg in (1)), for BM3D it is the stan-
dard deviation σ of the additive Gaussian noise that is assumed to
corrupt the image, and for our method, the parameter is the multi-
plier of the estimated standard deviation (k in (3)).

Figure 5 shows the resulting NCC for each method and parame-
ter setting, and for two TMOs [8, 25]. The NCC is highest for the
three settings of our method (see sec. 4 for a reminder on each set-
ting; “pre-calibrated” denotes the noise model estimated using [12]),
indicating their superior ability to reduce noise while preserving
the structure of the original HDR image. All three of the other ap-
proaches (non-local means, standard bilateral filtering and BM3D)
achieved lower NCC values, showing the benefit of exploiting HDR
image noise information during denoising.

5.2.2 Comparison with denoising the HDR image
We also tested the effect of denoising the HDR image before

tone mapping. For this test, we denoised the HDR image using the
signal-dependent denoising method of Granados et al. [12] which
takes into account the predicted noise distribution of the HDR im-

age. Fig. 5 shows that the NCC of the pre-filtered HDR image was
lower than the one obtained with our method. Moreover, even set-
ting aside NCC evidence, we argue that HDR images can never
be completely noise-free because their numerical values are quan-
tized. This quantization noise can always be amplified by TMOs,
especially gradient-domain tone mappers. Therefore, we argue that
post-filtering is a more principled approach for denoising tone mapped
images than pre-filtering the source HDR images.

5.3 Limitations and Future Work
Our approach is subject to the following limitations. First, our

method estimates the HDR image noise distribution by taking the
lower bound of the color mean-variance scatter plot of a superpixel
tessellation of the image (sec. 4.2). However, this lower bound
is affected by the uncertainty of the sample standard deviation.
Such uncertainty is not accounted for in our model, and therefore,
the actual lower bound could be higher than the one estimated by
our method, yielding suboptimal results such as the ones shown
in fig. 6. Second, the algorithm expects as input the (assumed or
known) number of images averaged during HDR reconstruction.
This parameter could also be estimated automatically by testing
different numbers and selecting the lowest one that properly ex-
plains the noise distribution. And third, the current strategy (bi-
lateral filtering) only considers local neighborhoods around each
pixel. Other strategies, such as non-local means, could be extended
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Figure 6: The main reason for failure is inaccurate self-
calibration. This yields two main consequences: competing
methods may perform better (top row), and our self-calibration
procedure may be too conservative, leading to suboptimal re-
sults (bottom row). Bottom row: Candelstick Point State Park
Community Theater lighting design, courtesy of Charles Ehrlich

to use the noise distribution of the HDR image as a reference space
for comparing local neighborhoods.

6. CONCLUSION
Tone mapping operators aim to preserve perceived luminance

differences in high dynamic range (HDR) images, but they some-
times strongly emphasize image noise, particularly in low-light sce-
narios. We introduce a new HDR cross bilateral filtering method to
remove noise in HDR images that were tone mapped with any op-
erator by using the noise distribution of the original HDR image
as guide. We also contribute with the first self-calibration method
to estimate the noise distribution of HDR images, generated by
maximum-likelihood average of RAW or JPEG exposure stacks,
when the images in the stack are not available. Quantitative and
qualitative evaluation show that the proposed method is more ef-
fective than signal-dependent HDR denoising, and image-based de-
noising strategies that do not consider the noise in the original HDR
image.
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