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Fig. 1. Unlike current face reenactment approaches that only modify the expression of a target actor in a video, our novel deep video portrait approach enables
full control over the target by transferring the rigid head pose, facial expression and eye motion with a high level of photorealism.

We present a novel approach that enables photo-realistic re-animation of
portrait videos using only an input video. In contrast to existing approaches
that are restricted to manipulations of facial expressions only, we are the first
to transfer the full 3D head position, head rotation, face expression, eye gaze,
and eye blinking from a source actor to a portrait video of a target actor. The
core of our approach is a generative neural network with a novel space-time
architecture. The network takes as input synthetic renderings of a parametric
face model, based on which it predicts photo-realistic video frames for a
given target actor. The realism in this rendering-to-video transfer is achieved
by careful adversarial training, and as a result, we can create modified target
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videos that mimic the behavior of the synthetically-created input. In order
to enable source-to-target video re-animation, we render a synthetic target
video with the reconstructed head animation parameters from a source
video, and feed it into the trained network – thus taking full control of the
target. With the ability to freely recombine source and target parameters,
we are able to demonstrate a large variety of video rewrite applications
without explicitly modeling hair, body or background. For instance, we can
reenact the full head using interactive user-controlled editing, and realize
high-fidelity visual dubbing. To demonstrate the high quality of our output,
we conduct an extensive series of experiments and evaluations, where for
instance a user study shows that our video edits are hard to detect.
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1 INTRODUCTION
Synthesizing and editing video portraits, i.e., videos framed to show
a person’s head and upper body, is an important problem in com-
puter graphics, with applications in video editing and movie post-
production, visual effects, visual dubbing, virtual reality, and telep-
resence, among others. In this paper, we address the problem of
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synthesizing a photo-realistic video portrait of a target actor that
mimics the actions of a source actor, where source and target can be
different subjects. More specifically, our approach enables a source
actor to take full control of the rigid head pose, face expressions and
eye motion of the target actor; even face identity can be modified to
some extent. All of these dimensions can be manipulated together or
independently. Full target frames, including the entire head and hair,
but also a realistic upper body and scene background complying
with the modified head, are automatically synthesized.

Recently, many methods have been proposed for face-interior
reenactment [Liu et al. 2001; Olszewski et al. 2017; Suwajanakorn
et al. 2017; Thies et al. 2015, 2016; Vlasic et al. 2005]. Here, only
the face expression can be modified realistically, but not the full
3D head pose, including a consistent upper body and a consistently
changing background. Many of these methods fit a parametric 3D
face model to RGB(-D) video [Thies et al. 2015, 2016; Vlasic et al.
2005], and re-render the modified model as a blended overlay over
the target video for reenactment, even in real time [Thies et al.
2015, 2016]. Synthesizing a complete portrait video under full 3D
head control is much more challenging. Averbuch-Elor et al. [2017]
enable mild head pose changes driven by a source actor based on
image warping. They generate reactive dynamic profile pictures
from a static target portrait photo, but not fully reenacted videos.
Also, large changes in head pose cause artifacts (see Section 7.3),
the target gaze cannot be controlled, and the identity of the target
person is not fully preserved (mouth appearance is copied from the
source actor).

Performance-driven 3D head animation methods [Cao et al. 2015,
2014a, 2016; Hu et al. 2017; Ichim et al. 2015; Li et al. 2015; Olszewski
et al. 2016; Weise et al. 2011] are related to our work, but have
orthogonal methodology and application goals. They typically drive
the full head pose of stylized 3D CG avatars based on visual source
actor input, e.g., for games or stylized VR environments. Recently,
Cao et al. [2016] proposed image-based 3D avatars with dynamic
textures based on a real-time face tracker. However, their goal is
full 3D animated head control and rendering, often intentionally in
a stylized rather than a photo-realistic fashion.

We take a different approach that directly generates entire photo-
realistic video portraits in front of general static backgrounds under
full control of a target’s head pose, facial expression, and eye mo-
tion. We formulate video portrait synthesis and reenactment as
a rendering-to-video translation task. Input to our algorithm are
synthetic renderings of only the coarse and fully-controllable 3D
face interior model of a target actor and separately rendered eye
gaze images, which can be robustly and efficiently obtained via
a state-of-the-art model-based reconstruction technique. The in-
put is automatically translated into full-frame photo-realistic video
output showing the entire upper body and background. Since we
only track the face, we cannot actively control the motion of the
torso or hair, or control the background, but our rendering-to-video
translation network is able to implicitly synthesize a plausible body
and background (including some shadows and reflections) for a
given head pose. This translation problem is tackled using a novel
space-time encoder–decoder deep neural network, which is trained
in an adversarial manner.

At the core of our approach is a conditional generative adversarial
network (cGAN) [Isola et al. 2017], which is specifically tailored
to video portrait synthesis. For temporal stability, we use a novel
space-time network architecture that takes as input short sequences
of conditioning input frames of head and eye gaze in a sliding
window manner to synthesize each target video frame. Our target
and scene-specific networks only require a few minutes of portrait
video footage of a person for training. To the best of our knowledge,
our approach is the first to synthesize full photo-realistic video
portraits of a target person’s upper body, including realistic clothing
and hair, and consistent scene background, under full 3D control of
the target’s head. To summarize, we make the following technical
contributions:

• A rendering-to-video translation network that transforms
coarse face model renderings into full photo-realistic portrait
video output.

• A novel space-time encoding as conditional input for tempo-
rally coherent video synthesis that represents face geometry,
reflectance, and motion as well as eye gaze and eye blinks.

• A comprehensive evaluation on several applications to demon-
strate the flexibility and effectiveness of our approach.

We demonstrate the potential and high quality of our method in
many intriguing applications, ranging from face reenactment and
visual dubbing for foreign language movies to user-guided interac-
tive editing of portrait videos for movie postproduction. A compre-
hensive comparison to state-of-the-art methods and a user study
confirm the high fidelity of our results.

2 RELATED WORK
We discuss related optimization and learning-based methods that
aim at reconstructing, animating and re-writing faces in images
and videos, and review relevant image-to-image translation work.
For a comprehensive overview of current methods we refer to a
recent state-of-the-art report on monocular 3D face reconstruction,
tracking and applications [Zollhöfer et al. 2018].

Monocular Face Reconstruction. Face reconstruction methods aim
to reconstruct 3D face models of shape and appearance from visual
data. Optimization-based methods fit a 3D template model, mainly
the inner face region, to single images [Blanz et al. 2004; Blanz
and Vetter 1999], unstructured image collections [Kemelmacher-
Shlizerman 2013; Kemelmacher-Shlizerman et al. 2011; Roth et al.
2017] or video [Cao et al. 2014b; Fyffe et al. 2014; Garrido et al. 2016;
Ichim et al. 2015; Shi et al. 2014; Suwajanakorn et al. 2014; Thies et al.
2016; Wu et al. 2016]. Recently, Booth et al. [2018] proposed a large-
scale parametric face model constructed from almost ten thousand
3D scans. Learning-based approaches leverage a large corpus of
images or image patches to learn a regressor for predicting either
3D face shape and appearance [Richardson et al. 2016; Tewari et al.
2017; Tran et al. 2017], fine-scale skin details [Cao et al. 2015], or
both [Richardson et al. 2017; Sela et al. 2017]. Deep neural networks
have been shown to be quite robust for inferring the coarse 3D
facial shape and appearance of the inner face region, even when
trained on synthetic data [Richardson et al. 2016]. Tewari et al.
[2017] showed that encoder–decoder architectures can be trained
fully unsupervised on in-the-wild images by integrating physical
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Fig. 2. Deep video portraits enable a source actor to fully control a target video portrait. First, a low-dimensional parametric representation (left) of both
videos is obtained using monocular face reconstruction. The head pose, expression and eye gaze can now be transferred in parameter space (middle). We do not
focus on the modification of the identity and scene illumination (hatched background), since we are interested in reenactment. Finally, we render conditioning
input images that are converted to a photo-realistic video portrait of the target actor (right). Obama video courtesy of the White House (public domain).

image formation into the network. Richardson et al. [2017] trained
an end-to-end regressor to recover facial geometry at a coarse and
fine-scale level. Sela et al. [2017] use an encoder–decoder network
to infer a detailed depth image and a dense correspondence map,
which serve as a basis for non-rigidly deforming a template mesh.
Still, none of these methods creates a fully generative model for the
entire head, hair, mouth interior, and eye gaze, like we do.

Video-based Facial Reenactment. Facial reenactment methods re-
write the face content of a target actor in a video or image by trans-
ferring facial expressions from a source actor. Facial expressions
are commonly transferred via dense motion fields [Averbuch-Elor
et al. 2017; Liu et al. 2001; Suwajanakorn et al. 2015], parameters
[Thies et al. 2016, 2018; Vlasic et al. 2005], or by warping candidate
frames that are selected based on the facial motion [Dale et al. 2011],
appearance metrics [Kemelmacher-Shlizerman et al. 2010] or both
[Garrido et al. 2014; Li et al. 2014]. The methods described above
first reconstruct and track the source and target faces, which are
represented as a set of sparse 2D landmarks or dense 3D models.
Most approaches only modify the inner region of the face and thus
are mainly intended for altering facial expressions, but they do not
take full control of a video portrait in terms of rigid head pose, facial
expression, and eye gaze. Recently, Wood et al. [2018] proposed an
approach for eye gaze redirection based on a fitted parametric eye
model. Their approach only provides control over the eye region.
One notable exception to pure facial reenactment is Averbuch-

Elor et al.’s approach [2017], which enables the reenactment of a
portrait image and allows for slight changes in head pose via image
warping [Fried et al. 2016]. Since this approach is based on a single
target image, it copies the mouth interior from the source to the
target, thus preserving the target’s identity only partially. We take
advantage of learning from a target video to allow for larger changes
in head pose, facial reenactment, and joint control of the eye gaze.

Visual Dubbing. Visual dubbing is a particular instance of face
reenactment that aims to alter the mouth motion of the target actor
to match a new audio track, commonly spoken in a foreign language
by a dubbing actor. Here, we can find speech-driven [Bregler et al.

1997; Chang and Ezzat 2005; Ezzat et al. 2002; Liu and Ostermann
2011; Suwajanakorn et al. 2017] or performance-driven [Garrido
et al. 2015; Thies et al. 2016] techniques. Speech-driven dubbing tech-
niques learn a person-specific phoneme-to-viseme mapping from a
training sequence of the actor. These methods produce accurate lip
sync with visually imperceptible artifacts, as recently demonstrated
by Suwajanakorn et al. [2017]. However, they cannot directly con-
trol the target’s facial expressions. Performance-driven techniques
overcome this limitation by transferring semantically-meaningful
motion parameters and re-rendering the target model with photo-
realistic reflectance [Thies et al. 2016], and fine-scale details [Garrido
et al. 2015, 2016]. These approaches generalize better, but do not
edit the head pose and still struggle to synthesize photo-realistic
mouth deformations. In contrast, our approach learns to synthesize
photo-realistic facial motion and actions from coarse renderings,
thus enabling the synthesis of expressions and joint modification of
the head pose, with consistent body and background.

Image-to-image Translation. Approaches using conditional GANs
[Mirza and Osindero 2014], such as Isola et al.’s “pix2pix” [2017],
have shown impressive results on image-to-image translation tasks
which convert between images of two different domains, such as
maps and satellite photos. These combine encoder–decoder architec-
tures [Hinton and Salakhutdinov 2006], often with skip-connections
[Ronneberger et al. 2015], with adversarial loss functions [Goodfel-
low et al. 2014; Radford et al. 2016]. Chen and Koltun [2017] were
the first to demonstrate high-resolution results with 2megapixel
resolution, using cascaded refinement networks without adversarial
training. The latest trends show that it is even possible to train high-
resolution GANs [Karras et al. 2018] and conditional GANs [Wang
et al. 2018] at similar resolutions. However, the main challenge is
the requirement for paired training data, as corresponding image
pairs are often not available. This problem is tackled by CycleGAN
[Zhu et al. 2017], DualGAN [Yi et al. 2017], and UNIT [Liu et al.
2017] – multiple concurrent unsupervised image-to-image trans-
lation techniques that only require two sets of unpaired training
samples. These techniques have captured the imagination of many
people by translating between photographs and paintings, horses
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and zebras, face photos and depth as well as correspondence maps
[Sela et al. 2017], and translation from face photos to cartoon draw-
ings [Taigman et al. 2017]. Ganin et al. [2016] learn photo-realistic
gaze manipulation in images. Olszewski et al. [2017] synthesize a
realistic inner face texture, but cannot generate a fully controllable
output video, including person-specific hair. Lassner et al. [2017]
propose a generative model to synthesize people in clothing, and
Ma et al. [2017] generate new images of persons in arbitrary poses
using image-to-image translation. In contrast, our approach enables
the synthesis of temporally-coherent video portraits that follow the
animation of a source actor in terms of head pose, facial expression
and eye gaze.

3 OVERVIEW
Our deep video portraits approach provides full control of the head
of a target actor by transferring the rigid head pose, facial expres-
sion, and eye motion of a source actor, while preserving the target’s
identity and appearance. Full target video frames are synthesized,
including consistent upper body posture, hair and background. First,
we track the source and target actor using a state-of-the-art monoc-
ular face reconstruction approach that uses a parametric face and
illumination model (see Section 4). The resulting sequence of low-
dimensional parameter vectors represents the actor’s identity, head
pose, expression, eye gaze, and the scene lighting for every video
frame (Figure 2, left). This allows us to transfer the head pose, ex-
pression, and/or eye gaze parameters from the source to the target,
as desired. In the next step (Figure 2, middle), we generate new
synthetic renderings of the target actor based on the modified pa-
rameters (see Section 5). In addition to a normal color rendering, we
also render correspondence maps and eye gaze images. These ren-
derings serve as conditioning input to our novel rendering-to-video
translation network (see Section 6), which is trained to convert the
synthetic input into photo-realistic output (see Figure 2, right). For
temporally coherent results, our network works on space-time vol-
umes of conditioning inputs. To process a complete video, we input
the conditioning space-time volumes in a sliding window fashion,
and assemble the final video from the output frames. We evaluate
our approach (see Section 7) and show its potential on several video
rewrite applications, such as full-head reenactment, gaze redirection,
video dubbing, and interactive parameter-based video control.

4 MONOCULAR FACE RECONSTRUCTION
We employ a state-of-the-art dense face reconstruction approach
that fits a parametric model of face and illumination to each video
frame. It obtains a meaningful parametric face representation for
the source Vs = {Is

f | f = 1, . . . ,Ns } and target Vt = {It
f | f =

1, . . . ,Nt } video sequence, where Ns and Nt denote the total num-
ber of source and target frames, respectively. Let P• = {P•

f | f =
1, . . . ,N•} be the corresponding parameter sequence that fully de-
scribes the source or target facial performance. The set of recon-
structed parameters encode the rigid head pose (rotation R• ∈SO(3)
and translation t• ∈R3), facial identity coefficients α • ∈RNα (ge-
ometry, Nα = 80) and β• ∈RNβ (reflectance, Nβ = 80), expression
coefficients δ• ∈RNδ (Nδ =64), gaze direction for both eyes e• ∈R4,
and spherical harmonics illumination coefficientsγ• ∈ R27. Overall,

our monocular face tracker reconstructs Np =261 parameters per
video frame. In the following, we provide more details on the face
tracking algorithm as well as the parametric face representation.

Parametric Face Representation. We represent the space of facial
identity based on a parametric head model [Blanz and Vetter 1999],
and the space of facial expressions via an affine model. Mathemati-
cally, we model geometry variation through an affine model v∈R3N
that stacks per-vertex deformations of the underlying template mesh
with N vertices, as follows:

v(α ,δ) = ageo +
Nα∑
k=1

αkb
geo
k +

Nδ∑
k=1

δkb
exp
k . (1)

Diffuse skin reflectance is modeled similarly by a second affine
model r∈R3N that stacks the diffuse per-vertex albedo:

r(β) = aref +
Nβ∑
k=1

βkb
ref
k . (2)

The vectors ageo ∈ R3N and aref ∈ R3N store the average facial
geometry and corresponding skin reflectance, respectively. The
geometry basis {bgeok }Nα

k=1 has been computed by applying principal
component analysis (PCA) to 200 high-quality face scans [Blanz
and Vetter 1999]. The reflectance basis {brefk }Nβ

k=1 has been obtained
in the same manner. For dimensionality reduction, the expression
basis {bexpk }Nδ

k=1 has been computed using PCA, starting from the
blendshapes of Alexander et al. [2010] and Cao et al. [2014b]. Their
blendshapes have been transferred to the topology of Blanz and
Vetter [1999] using deformation transfer [Sumner and Popović 2004].

Image Formation Model. To render synthetic head images, we
assume a full perspective camera that maps model-space 3D points
v via camera space v̂∈R3 to 2D points p=Π(v̂) ∈R2 on the image
plane. The perspective mapping Π contains the multiplication with
the camera intrinsics and the perspective division. We assume a
fixed and identical camera for all scenes, i.e., world and camera space
are the same, and the face model accounts for all the scene motion.
Based on a distant illumination assumption, we use the spherical
harmonics (SH) basis functions Yb : R3 → R to approximate the
incoming radiance B from the environment:

B(ri ,ni ,γ ) = ri ·
B2∑
b=1

γbYb (ni ). (3)

Here, B is the number of spherical harmonics bands,γb ∈R3 are the
SH coefficients, and ri and ni are the reflectance and unit normal
vector of the i-th vertex, respectively. For diffuse materials, an av-
erage approximation error below 1 percent is achieved with only
B = 3 bands, independent of the illumination [Ramamoorthi and
Hanrahan 2001], since the incident radiance is in general a smooth
function. This results in B2=9 parameters per color channel.

Dense Face Reconstruction. We employ a dense data-parallel face
reconstruction approach to efficiently compute the parameters P•

for both source and target videos. Face reconstruction is based on an
analysis-by-synthesis approach that maximizes photo-consistency
between a synthetic rendering of the model and the input. The
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reconstruction energy combines terms for dense photo-consistency,
landmark alignment and statistical regularization:

E(X) = wphotoEphoto(X) +wlandEland(X) +wregEreg(X), (4)

withX= {R•, t•,α •, β•,δ•,γ•}. This enables the robust reconstruc-
tion of identity (geometry and skin reflectance), facial expression,
and scene illumination. We use 66 automatically detected facial
landmarks of the True Vision Solution tracker1, which is a commer-
cial implementation of Saragih et al. [2011], to define the sparse
alignment term Eland. Similar to Thies et al. [2016], we use a robust
ℓ1-norm for dense photometric alignment Ephoto. The regularizer
Ereg enforces statistically plausible parameter values based on the
assumption of normally distributed data. The eye gaze estimate e•
is directly obtained from the landmark tracker. The identity is only
estimated in the first frame and is kept constant afterwards. All
other parameters are estimated every frame. For more details on
the energy formulation, we refer to Garrido et al. [2016] and Thies
et al. [2016]. We use a data-parallel implementation of iteratively
re-weighted least squares (IRLS), similar to Thies et al. [2016], to
find the optimal set of parameters. One difference to their work is
that we compute and explicitly store the Jacobian J and the residual
vector F to global memory based on a data-parallel strategy that
launches one thread per matrix/vector element. Afterwards, a data-
parallel matrix–matrix/matrix–vector multiplication computes the
right- and left-hand side of the normal equations that have to be
solved in each IRLS step. The resulting small linear system (97×97
in tracking mode, 6 DoF rigid pose, 64 expression parameters and 27
SH coefficients) is solved on the CPU using Cholesky factorization
in each IRLS step. The reconstruction of a single frame takes 670ms
(all parameters) and 250ms (without identity, tracking mode). This
allows the efficient generation of the training corpus that is required
by our space-time rendering-to-video translation network (see Sec-
tion 6). Contrary to Garrido et al. [2016] and Thies et al. [2016], our
model features dimensions to model eyelid closure, so eyelid motion
is captured well.

5 SYNTHETIC CONDITIONING INPUT
Using the method from Section 4, we reconstruct the face in each
frame of the source and unmodified target video. Next, we obtain the
modified parameter vector for every frame of the target sequence,
e.g., for full-head reenactment, we modify the rigid head pose, ex-
pression and eye gaze of the target actor. All parameters are copied
in a relative manner from the source to the target, i.e., with respect
to a neutral reference frame. Then we render synthetic conditioning
images of the target actor’s face model under the modified parame-
ters using hardware rasterization. For higher temporal coherence,
our rendering-to-video translation network takes a space-time vol-
ume of conditioning images {Cf −o |o=0, . . . , 10} as input, with f
being the index of the current frame. We use a temporal window of
size Nw =11, with the current frame being at its end. This provides
the network a history of the earlier motions.

For each frame Cf −o of the window, we generate three different
conditioning inputs: a color rendering, a correspondence image, and
an eye gaze image (see Figure 3). The color rendering shows the

1http://truevisionsolutions.net

Diffuse Rendering Correspondence Eye and Gaze Map

Fig. 3. The synthetic input used for conditioning our rendering-to-video
translation network: (1) colored face rendering under target illumination,
(2) correspondence image, and (3) the eye gaze image.

modified target actor model under the estimated target illumination,
while keeping the target identity (geometry and skin reflectance)
fixed. This image provides a good starting point for the following
rendering-to-video translation, since in the face region only the
delta to a real image has to be learned. In addition to this color input,
we also provide a correspondence image encoding the index of the
parametric face model’s vertex that projects into each pixel. To this
end, we texture the head model with a constant unique gradient
texturemap, and render it. Finally, we also provide an eye gaze image
that solely contains the white region of both eyes and the locations
of the pupils as blue circles. This image provides information about
the eye gaze direction and blinking to the network.
We stack all Nw conditioning inputs of a time window in a 3D

tensor X of sizeW ×H × 9Nw (3 images, with 3 channels each), to
obtain the input to our rendering-to-video translation network. To
process the complete video, we feed the conditioning space-time
volumes in a sliding window fashion. The final generated photo-
realistic video output is assembled directly from the output frames.

6 RENDERING-TO-VIDEO TRANSLATION
The generated conditioning space-time video tensors are the input to
our rendering-to-video translation network. The network learns to
convert the synthetic input into full frames of a photo-realistic target
video, in which the target actor now mimics the head motion, facial
expression and eye gaze of the synthetic input. The network learns to
synthesize the entire actor in the foreground, i.e., the face for which
conditioning input exists, but also all other parts of the actor, such as
hair and body, so that they comply with the target head pose. It also
synthesizes the appropriately modified and filled-in background,
including even some consistent lighting effects between foreground
and background. The network is trained for a specific target actor
and a specific static, but otherwise general scene background. Our
rendering-to-video translation network follows an encoder–decoder
architecture and is trained in an adversarial manner based on a
discriminator that is jointly trained. In the following, we explain
the network architectures, the used loss functions and the training
procedure in detail.

Network Architecture. We show the architecture of our rendering-
to-video translation network in Figure 4. Our conditional generative
adversarial network consists of a space-time transformation network
T and a discriminator D. The transformation network T takes the
W × H × 9Nw space-time tensor X as input and outputs a photo-
real image T(X) of the target actor. The temporal input enables the
network to take the history of motions into account by inspecting
previous conditioning images. The temporal axis of the input tensor
is aligned along the network channels, i.e., the convolutions in the
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Fig. 4. Architecture of our rendering-to-video translation network for an
input resolution of 256×256: The encoder has 8 downsampling modules
with (64, 128, 256, 512, 512, 512, 512, 512) output channels. The decoder
has 8 upsampling modules with (512, 512, 512, 512, 256, 128, 64, 3) output
channels. The upsampling modules use the following dropout probabilities
(0.5, 0.5, 0.5, 0, 0, 0, 0, 0). The first downsampling and the last upsampling
module do not employ batch normalization (BN). The final non-linearity
(TanH) brings the output to the employed normalized [−1, +1]-space.

first layer have 9Nw channels. Note, we store all image data in
normalized [−1,+1]-space, i.e, black is mapped to [−1,−1,−1]⊤ and
white is mapped to [+1,+1,+1]⊤.

Our network consists of two main parts, an encoder for com-
puting a low-dimensional latent representation, and a decoder for
synthesizing the output image. We employ skip connections [Ron-
neberger et al. 2015] to enable the network to transfer fine-scale
structure. To generate video frames with sufficient resolution, our
network also employs a cascaded refinement strategy [Chen and
Koltun 2017]. In each downsampling step, we use a convolution
(4 × 4, stride 2) followed by batch normalization and a leaky ReLU
non-linearity. The upsampling module is specifically designed to
produce high-quality output, and has the following structure: first,
the resolution is increased by a factor of two based on deconvolu-
tion (4 × 4, upsampling factor of 2), batch normalization, dropout
and ReLU. Afterwards, two refinement steps based on convolution
(3 × 3, stride 1, stays on the same resolution) and ReLU are applied.
The final hyperbolic tangent non-linearity (TanH) brings the output
tensor to the normalized [−1,+1]-space used for storing the image
data. For more details, please refer to Figure 4.

The input to our discriminator D is the conditioning input tensor
X (sizeW ×H × 9Nw ), and either the predicted output image T(X)
or the ground-truth image, both of sizeW × H × 3. The employed
discriminator is inspired by the PatchGAN classifier, proposed by
Isola et al. [2017]. We extended it to take volumes of conditioning
images as input.

Objective Function. We train in an adversarial manner to find the
best rendering-to-video translation network:

T∗ = argmin
T

max
D

EcGAN(T,D) + λEℓ1 (T). (5)

This objective function comprises an adversarial loss EcGAN(T,D)
and an ℓ1-norm reproduction loss Eℓ1 (T). The constant weight of
λ=100 balances the contribution of these two terms. The adversarial
loss has the following form:

EGAN(T,D) = EX,Y
[
logD(X,Y)

]
+ EX

[
log

(
1 − D(X,T(X))

) ]
. (6)

We do not inject a noise vector while training our network to pro-
duce deterministic outputs. During adversarial training, the discrim-
inator D tries to get better at classifying given images as real or
synthetic, while the transformation network T tries to improve in
fooling the discriminator. The ℓ1-norm loss penalizes the distance
between the synthesized image T(X) and the ground-truth image Y,
which encourages the sharpness of the synthesized output:

Eℓ1 (T) = EX,Y
[
∥Y − T(X)∥1

]
. (7)

Training. We construct the training corpus T= {(Xi ,Yi )}i based
on the tracked video frames of the target video sequence. Typically,
two thousand video frames, i.e., about one minute of video footage,
are sufficient to train our network (see Section 7). Our training
corpus consists of Nt −(Nw −1) rendered conditioning space-time
volumes Xi and the corresponding ground-truth image Yi (using a
window size of Nw =11). We train our networks using the Tensor-
Flow [Abadi et al. 2015] deep learning framework. The gradients
for back-propagation are obtained using Adam [Kingma and Ba
2015]. We train for 31,000 iterations with a batch size of 16 (approx.
250 epochs for a training corpus of 2000 frames) using a base learn-
ing rate of 0.0002 and first momentum of 0.5; all other parameters
have their default value. We train our networks from scratch, and
initialize the weights based on a Normal distribution N(0, 0.2).

7 RESULTS
Our approach enables full-frame target video portrait synthesis un-
der full 3D head pose control. We measured the runtime for training
and testing on an Intel Xeon E5-2637 with 3.5 GHz (16GB RAM) and
an NVIDIA GeForce GTX Titan Xp (12GB RAM). Training our net-
work takes 10 hours for a target video resolution of 256×256 pixels,
and 42 hours for 512×512 pixels. Tracking the source actor takes
250ms per frame (without identity), and the rendering-to-video
conversion (inference) takes 65ms per frame for 256×256 pixels, or
196ms for 512×512 pixels.

In the following, we evaluate the design choices of our deep video
portrait algorithm, compare to current state-of-the-art reenactment
approaches, and show the results of a large-scale web-based user
study. We further demonstrate the potential of our approach on sev-
eral video rewrite applications, such as reenactment under full head
and facial expression control, facial expression reenactment only,
video dubbing, and live video portrait editing under user control.
In total, we applied our approach to 14 different target sequences
of 13 different subjects and used 5 different source sequences; see
Appendix A for details. A comparison to a simple nearest-neighbor
retrieval approach can be found in Figure 6 and in the supplemental
video. Our approach requires only a few minutes of target video
footage for training.

7.1 Applications
Our approach enables us to take full control of the rigid head pose,
facial expression, and eye motion of a target actor in a video por-
trait, thus opening up a wide range of video rewrite applications.
All parameter dimensions can be estimated and transfered from a
source video sequence or edited manually through an interactive
user interface.
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Fig. 5. Qualitative results of full-head reenactment: our approach enables full-frame target video portrait synthesis under full 3D head pose control. The
output video portraits are photo-realistic and hard to distinguish from real videos. Note that even the shadow in the background of the second row moves
consistently with the modified foreground head motion. In the sequence at the top, we only transfer the translation in the camera plane, while we transfer the
full 3D translation for the sequence at the bottom. For full sequences, please refer to our video. Obama video courtesy of the White House (public domain).

Input OursNearest Neighbor

Fig. 6. Comparison to a nearest-neighbor approach in parameter space (pose
and expression). Our results have higher quality and are temporally more
coherent (see supplemental video). For the nearest-neighbor approach, it is
difficult to find the right trade-off between pose and expression. This leads
to many results with one of the two dimensions not being well-matched.
The results are also temporally unstable, since the nearest neighbor abruptly
changes, especially for small training sets.

Reenactment under full head control. Our approach is the first that
can photo-realistically transfer the full 3D head pose (spatial position
and rotation), facial expression, as well as eye gaze and eye blinking
of a captured source actor to a target actor video. Figure 5 shows
some examples of full-head reenactment between different source
and target actors. Here, we use the full target video for training
and the source video as the driving sequence. As can be seen, the
output of our approach achieves a high level of realism and faithfully
mimics the driving sequence, while still retaining the mannerisms
of the original target actor. Note that the shadow in the background
moves consistently with the position of the actor in the scene, as
shown in Figure 5 (second row). We also demonstrate the high
quality of our results and evaluate our approach quantitatively in a
self-reenactment scenario, see Figure 7. For the quantitative analysis,

we use two thirds of the target video for training and one third for
testing. We capture the face in the training and driving video with
our model-based tracker, and then render the conditioning images,
which serve as input to our network for synthesizing the output. For
further details, please refer to Section 7.2. Note that the synthesized
results are nearly indistinguishable from the ground truth.

Facial Reenactment and Video Dubbing. Besides full-head reen-
actment, our approach also enables facial reenactment. In this ex-
periment, we replace the expression coefficients of the target actor
with those of the source actor before synthesizing the conditioning
input to our rendering-to-video translation network. Here, the head
pose and position, and eye gaze remain unchanged. Figure 8 shows
facial reenactment results. Observe that the face expression in the
synthesized target video nicely matches the expression of the source
actor in the driving sequence. Please refer to the supplemental video
for the complete video sequences.
Our approach can also be applied to visual dubbing. In many

countries, foreign-language movies are dubbed, i.e., the original
voice of an actor is replaced with that of a dubbing actor speaking
in another language. Dubbing often causes visual discomfort due
to the discrepancy between the actor’s mouth motion and the new
audio track. Even professional dubbing studios achieve only approx-
imate audio alignment at best. Visual dubbing aims at altering the
mouth motion of the target actor to match the new foreign-language
audio track spoken by the dubber. Figure 9 shows results where
we modify the facial motion of actors speaking originally in Ger-
man to adhere to an English translation spoken by a professional
dubbing actor, who was filmed in a dubbing studio [Garrido et al.
2015]. More precisely, we transfer the captured facial expressions
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Fig. 7. Quantitative evaluation of the photometric re-rendering error. We evaluate our approach quantitatively in a self-reenactment setting, where the
ground-truth video portrait is known. We train our rendering-to-video translation network on two thirds of the video sequence, and test on the remaining third.
The error maps show per-pixel Euclidean distance in RGB (color channels in [0, 255]); the mean photometric error of the test set is shown in the top-right. The
error is consistently low in regions with conditioning input, with higher errors in regions without conditioning, such as the upper body. Obama video courtesy
of the White House (public domain). Putin video courtesy of the Kremlin (CC BY). May video courtesy of the UK government (Open Government Licence).

Fig. 8. Facial reenactment results of our approach. We transfer the expressions from the source to the target actor, while retaining the head pose (rotation and
translation) as well as the eye gaze of the target actor. For the full sequences, please refer to the supplemental video. Obama video courtesy of the White House
(public domain). Putin video courtesy of the Kremlin (CC BY). Reagan video courtesy of the National Archives and Records Administration (public domain).

Fig. 9. Dubbing comparison on two sequences of Garrido et al. [2015]. For
visual dubbing, we transfer the facial expressions of the dubbing actor
(‘input’) to the target actor. We compare our results to Garrido et al.’s. Our
approach obtains higher quality results in terms of the synthesized mouth
shape and mouth interior. Note that our approach also enables full-head
reenactment in addition to expression transfer. For the full comparison, we
refer to the supplemental video.

of the dubbing actor to the target actor, while leaving the original
target gaze and eye blinks intact, i.e., we use the original eye gaze
images of the tracked target sequence as conditioning. As can be
seen, our approach achieves dubbing results of high quality. In fact,
we produce images with more realistic mouth interior and more
emotional content in the mouth region. Please see the supplemental
video for full video results.

Interactive Editing of Video Portraits. We built an interactive editor
that enables users to reanimate video portraits with live feedback by

modifying the parameters of the coarse face model rendered into the
conditioning images (see our live demo in the supplemental video).
Figure 10 shows a few static snapshots that were taken while the
users were playing with our editor. Our approach enables changes
of all parameter dimensions, either independently or all together,
as shown in Figure 10. More specifically, we show independent
changes of the expression, head rotation, head translation, and eye
gaze (including eye blinks). Please note the realistic and consistent
generation of the torso, head and background. Even shadows or
reflections appear very consistently in the background. In addition,
we show user edits that modify all parameters simultaneously. Our
interactive editor runs at approximately 9 fps. While not the focus of
this paper, our approach also enables modifications of the geometric
facial identity, see Figure 11. These combined modifications show as
a proof of concept that our network generalizes beyond the training
corpus.

7.2 Quantitative Evaluation
We performed a quantitative evaluation of the re-rendering quality.
First, we evaluate our approach in a self-reenactment setting, where
the ground-truth video portrait is known. We train our rendering-to-
video translation network on the first two thirds of a video sequence
and test it on the remaining last third of the video, see Figure 7. The
photometric error maps show the per-pixel Euclidean distance in
RGB color space, with each channel being in [0, 255]. We performed
this test for three different videos and the mean photometric er-
rors are 2.88 (Vladimir Putin), 4.76 (Theresa May), and 4.46 (Barack
Obama). Our approach obtains consistently low error in regions
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Reference Expression Gaze

Rotation Translation Combined

Reference Expression Gaze

Rotation Translation Combined

Reference Expression Gaze

Rotation Translation Combined

Fig. 10. Interactive editing. Our approach provides full parametric control over video portraits (by controlling head model parameters in conditioning images).
This enables modifications of the rigid head pose (rotation and translation), facial expression and eye motion. All of these dimensions can be manipulated
together or independently. We also show these modifications live in the supplemental video. Obama video courtesy of the White House (public domain).

Reference Identity Change

Fig. 11. Identity modification. While not the main focus of our approach,
it also enables modification of the facial shape via the geometry shape
parameters. This shows that our network picks up the correspondence
between the model and the video portrait. Note that the produced outputs
are also consistent in regions that are not constrained by the conditioning
input, such as the hair and background.
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Fig. 12. Comparison to the image reenactment approach of Averbuch-Elor
et al. [2017] in the full-head reenactment scenario. Since their method is
based on a single target image, they copy the mouth interior from the
source to the target, thus not preserving the target’s identity. Our learning-
based approach enables larger modifications of the rigid head pose without
apparent artifacts, while their warping-based approach distorts the head
and background. In addition, ours enables joint control of the eye gaze
and eye blinks. The differences are most evident in the supplemental video.
Obama video courtesy of the White House (public domain).

Fig. 13. Comparison to Suwajanakorn et al. [2017]. Their approach produces
accurate lip sync with visually imperceptible artifacts, but provides no direct
control over facial expressions. Thus, the expressions in the output do not
always perfectly match the input (box, mouth), especially for expression
changes without audio cue. Our visual dubbing approach accurately trans-
fers the expressions from the source to the target. In addition, our approach
provides more control over the target video by also transferring the eye gaze
and eye blinks (box, eyes), and the rigid head pose (arrows). Since the source
sequence shows more head-pose variation than the target sequence, we
scaled the transferred rotation and translation by 0.5 in this experiment. For
the full video sequence, we refer to the supplemental video. Obama video
courtesy of the White House (public domain).

with conditioning input (face) and higher errors are found in regions
that are unexplained by the conditioning input. Please note that
while the synthesized video portraits slightly differ from the ground
truth outside the face region, the synthesized hair and upper body
are still plausible, consistent with the face region, and free of visual
artifacts. For a complete analysis of these sequences, we refer to the
supplemental video.
We evaluate our space-time conditioning strategy in Figure 16.

Without space-time conditioning, the photometric error is signifi-
cantly higher. The average errors over the complete sequence are
4.9 without vs. 4.5 with temporal conditioning (Barack Obama) and
5.3 without vs. 4.8 with temporal conditioning (Theresa May). In
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Fig. 14. Comparison to the state-of-the-art facial reenactment approach
of Thies et al. [2016]. Our approach achieves expression transfer of similar
quality, while also enabling full-head reenactment, i.e., it also transfers the
rigid head pose, gaze direction, and eye blinks. For the video result, we
refer to the supplemental video. Obama video courtesy of the White House
(public domain).

addition to a lower photometric error, space-time conditioning also
leads to temporally significantly more stable video outputs. This
can be seen best in the supplemental video.
We also evaluate the importance of the training set size. In this

experiment, we train our rendering-to-video translation network
with 500, 1000, 2000 and 4000 frames of the target sequence, see
Figure 15. As can be expected, larger training sets produce better
results, and the best results are obtained with the full training set.
We also evaluate different image resolutions by training our

rendering-to-video translation network for resolutions of 256×256,
512×512 and 1024×1024 pixels. We evaluate the quality in the self-
reenactment setting, as shown in Figure 17. Generative networks
of higher resolution are harder to train and require significantly
longer training times: 10 hours for 256×256, 42 hours for 512×512,
and 110 hours for 1024×1024 (on a Titan Xp). Therefore, we use a
resolution of 256×256 pixels for most results.

7.3 Comparisons to the State of the Art
We compare our deep video portrait approach to current state-of-
the-art video and image reenactment techniques.

Comparison to Thies et al. [2016]. We compare our approach to
the state-of-the-art Face2Face facial reenactment method of Thies
et al. [2016]. In comparison to Face2Face, our approach achieves
expression transfer of similar quality. What distinguishes our ap-
proach is the capability for full-head reenactment, i.e., the ability to

also transfer the rigid head pose, gaze direction, and eye blinks in
addition to the facial expressions, as shown in Figure 14. As can be
seen, in our result, the head pose and eye motion nicely matches the
source sequence, while the output generated by Face2Face follows
the head and eye motion of the original target sequence. Please see
the supplemental video for the video result.

Comparison to Suwajanakorn et al. [2017]. We also compare to
the audio-based dubbing approach of Suwajanakorn et al. [2017],
see Figure 13. Their AudioToObama approach produces accurate lip
sync with visually imperceptible artifacts, but provides no direct
control over facial expressions. Thus, the expressions in the output
do not always perfectly match the input (box, mouth), especially
for expression changes without an audio cue. Our visual dubbing
approach accurately transfers the expressions from the source to
the target. In addition, our approach provides more control over
the target video by also transferring the eye gaze and eye blinks
(box, eyes) and the general rigid head pose (arrows). While their
approach is trained on a huge amount of training data (17 hours),
our approach only uses a small training dataset (1.3minutes). The
differences are best visible in the supplemental video.

Comparison to Averbuch-Elor et al. [2017]. We compare our ap-
proach in the full-head reenactment scenario to the image reenact-
ment approach of Averbuch-Elor et al. [2017], see Figure 12. Their
approach does not preserve the identity of the target actor, since
they copy the teeth and mouth interior from the source to the target
sequence. Our learning-based approach enables larger modifications
of the head pose without apparent artifacts, while their warping-
based approach significantly distorts the head and background. In
addition, we enable the joint modification of the gaze direction and
eye blinks; see supplemental video.

7.4 User Study
We conducted two extensive web-based user studies to quantita-
tively evaluate the realism of our results. We prepared short 5-
second video clips that we extracted from both real and synthesized
videos (see Figure 18), to evaluate three applications of our approach:
self-reenactment, same-person-reenactment and visual dubbing. We
opted for self-reenactment, same-person-reenactment (two speeches
of Barack Obama) and visual dubbing to guarantee that the motion
types in the evaluated real and synthesized video pairs are match-
ing. This eliminates the motion type as a confounding factor from
the statistical analysis, e.g., having unrealistic motions for a public
speech in the synthesized videos would negatively bias the out-
come of the study. Our evaluation is focused on the visual quality
of the synthesized results. Most video clips have a resolution of
256×256 pixels, but some are 512×512 pixels. In our user study, we
presented one video clip at a time, and asked participants to re-
spond to the statement “This video clip looks real to me” on a 5-point
Likert scale (1–strongly disagree, 2–disagree, 3–don’t know, 4–agree,
5–strongly agree). Video clips are shown in a random order, and
each video clip is shown exactly once to assess participants’ first
impression. We recruited 135 and 69 anonymous participants for
our two studies, largely from North America and Europe.
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Fig. 15. Quantitative evaluation of the training set size. We train our rendering-to-video translation network with training corpora of different sizes. The error
maps show the per-pixel distance in RGB color space with each channel being in [0, 255]; the mean photometric error is shown in the top-right. Smaller
training sets have larger photometric errors, especially for regions outside of the face. For the full comparison, we refer to the supplemental video. Obama
video courtesy of the White House (public domain). May video courtesy of the UK government (Open Government Licence).

Fig. 16. Quantitative evaluation of the influence of the proposed space-time
conditioning input. The error maps show the per-pixel distance in RGB color
space with each channel being in [0, 255]; the mean photometric error is
shown in the top-right. Without space-time conditioning, the photometric
error is higher. Temporal conditioning adds significant temporal stability.
This is best seen in the supplemental video. Obama video courtesy of the
White House (public domain).May video courtesy of the UK government
(Open Government Licence).

Fig. 17. Quantitative comparison of different resolutions. We train three
rendering-to-video translation networks for resolutions of 256×256, 512×512
and 1024×1024 pixels. The error maps show the per-pixel distance in RGB
color space with each channel being in [0, 255]; the mean photometric error
is shown in the top-right. For the full comparison, see our video. May video
courtesy of the UK government (Open Government Licence).

Fig. 18. We performed a user study to evaluate the quality of our results and
see if users can distinguish between real (top) and synthesized video clips
(bottom). The video clips include self-reenactment, same-person-reenact-
ment, and video dubbing. Putin video courtesy of the Kremlin (CC BY).
Obama video courtesy of the White House (public domain). Elizabeth II
video courtesy of the Governor General of Canada (public domain).

The results in Table 1 show that only 80% of participants rated real
256×256 videos as real, i.e. (strongly) agreeing to the video looking
real; it seems that in anticipation of synthetic video clips, partici-
pants became overly critical. At the same time, 50% of participants
consider our 256×256 results to be real, which increases slightly to
52% for 512×512. Our best result is the self-reenactment of Vladimir
Putin at 256×256 resolution, which 65% of participants consider
to be real, compared to 78% for the real video. We also evaluated
partial and full reenactment by transferring a speech by Barack
Obama to another video clip of himself. Table 2 indicates that we
achieve better realism ratings with full reenactment comprising fa-
cial expressions and pose (50%) compared to transferring only facial
expressions (38%). This might be because full-head reenactment
keeps expressions and head motion synchronized. Suwajanakorn
et al.’s speech-driven reenactment approach [2017] achieves a re-
alism rating of 64% compared to the real source and target video
clips, which achieve 70–86%. Our full-head reenactment results are
considered to be at least as real as Suwajanakorn et al.’s by 60%
of participants. We finally compared our dubbing results to VDub
[Garrido et al. 2015] in Table 3. Overall, 57% of participants gave
our results a higher realism rating (and 32% gave the same rating).
Our results are again considered to be real by 51% of participants,
compared to only 21% for VDub.
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Table 1. User study results for self-reenacted videos (n=135). Columns 1–5
show the percentage of ratings given about the statement “This video clip
looks real to me”, from 1 (strongly disagree) to 5 (strongly agree). 4+5=‘real’.

Real videos Our results
res 1 2 3 4 5 ‘real’ 1 2 3 4 5 ‘real’

Obama 256 2 8 10 62 19 81% 13 33 11 37 6 43%
Putin 256 2 11 10 58 20 78% 3 17 15 54 11 65%
Eliabeth II 256 2 6 12 59 21 80% 6 32 20 33 9 42%
Obama 512 0 7 3 49 42 91% 9 35 13 36 8 44%
Putin 512 4 13 10 47 25 72% 2 20 15 44 19 63%
Eliabeth II 512 1 7 4 55 34 89% 7 33 10 38 13 51%
Mean 256 2 8 10 60 20 80% 7 27 15 41 9 50%
Mean 512 2 9 6 50 34 84% 6 29 12 39 13 52%

Table 2. User study results for expression and full head transfer between two
videos of Barack Obama compared to the input videos and Suwajanakorn
et al.’s approach (n=69, mean of 4 clips).

Ratings
1 2 3 4 5 ‘real’

Source video (real) 0 8 6 43 42 86%
Target video (real) 1 14 14 47 23 70%
Suwajanakorn et al. [2017] 2 20 14 47 17 64%
Expression transfer (ours) 9 37 17 29 9 38%
Full head transfer (ours) 3 31 16 37 13 50%

Table 3. User study results for dubbing comparison to VDub (n=135).

Garrido et al. [2015] Our results
1 2 3 4 5 ‘real’ 1 2 3 4 5 ‘real’

Ingmar (3 clips) 21 36 21 20 2 22% 4 21 25 42 8 50%
Thomas (3 clips) 33 36 11 16 4 20% 7 25 17 42 9 51%
Mean (6 clips) 27 36 16 18 3 21% 6 23 21 42 9 51%

On average, across all scenarios and both studies, our results are
considered to be real by 47% of the participants (1,767 ratings), com-
pared to only 80% for real video clips (1,362 ratings). This suggests
that our results already fool about 60% of the participants – a good
result given the critical participant pool. However, there is some
variation across our results: lower realism ratings were given for
well-known personalities like Barack Obama, while higher ratings
were given for instance to the unknown dubbing actors.

8 DISCUSSION
While we have demonstrated highly realistic reenactment results
in a large variety of applications and scenarios, our approach is
also subject to a few limitations. Similar to all other learning-based
approaches, ours works very well inside the span of the training
corpus. Extreme target head poses, such as large rotations, or ex-
pressions far outside this span can lead to a degradation of the
visual quality of the generated video portrait, see Figure 19 and the
supplemental video. Since we only track the face with a parametric
model, we cannot actively control the motion of the torso or hair, or
control the background. The network learns to extrapolate and finds
a plausible and consistent upper body and background (including
some shadows and reflections) for a given head pose. This limitation

Fig. 19. Our approach works well within the span of the training corpus.
Extreme changes in head pose far outside the training set or strong changes
to the facial expression might lead to artifacts in the synthesized video. This
is a common limitation of all learning-based approaches. In these cases,
artifacts are most prominent outside the face region, as these regions have
no conditioning input. May video courtesy of the UK government (Open
Government Licence). Malou video courtesy of Louisa Malou (CC BY).

could be overcome by also tracking the body and using the underly-
ing body model to generate an extended set of conditioning images.
Currently, we are only able to produce medium-resolution output
due to memory and training time limitations. The limited output
resolution makes it especially difficult to reproduce fine-scale de-
tail, such as individual teeth, in a temporally coherent manner. Yet,
recent progress on high-resolution discriminative adversarial net-
works [Karras et al. 2018; Wang et al. 2017] is promising and could
be leveraged to further increase the resolution of the generated out-
put. On a broader scale, and not being a limitation, democratization
of advanced high-quality video editing possibilities, offered by our
and other methods, calls for additional care in ensuring verifiable
video authenticity, e.g., through invisible watermarking.

9 CONCLUSION
We presented a new approach to synthesize entire photo-real video
portraits of a target actors in front of general static backgrounds.
It is the first to transfer head pose and orientation, face expression,
and eye gaze from a source actor to a target actor. The proposed
method is based on a novel rendering-to-video translation network
that converts a sequence of simple computer graphics renderings
into photo-realistic and temporally-coherent video. This mapping is
learned based on a novel space-time conditioning volume formula-
tion. We have shown through experiments and a user study that our
method outperforms prior work in quality and expands over their
possibilities. It thus opens up a new level of capabilities in many
applications, like video reenactment for virtual reality and telep-
resence, interactive video editing, and visual dubbing. We see our
approach as a step towards highly realistic synthesis of full-frame
video content under control of meaningful parameters. We hope
that it will inspire future research in this very challenging field.
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A APPENDIX
This appendix describes all the used datasets, see Table 4 (target
actors) and Table 5 (source actors).

Table 4. Target videos: Name and length of sequences (in frames).Malou
video courtesy of Louisa Malou (CC BY). May video courtesy of the UK
government (Open Government Licence). Obama video courtesy of the
White House (public domain). Putin video courtesy of the Kremlin (CC BY).
Reagan video courtesy of the National Archives and Records Administration
(public domain). Elizabeth II video courtesy of the Governor General of
Canada (public domain). Reagan video courtesy of the National Archives
and Records Administration (public domain).Wolf video courtesy of Tom
Wolf (CC BY).

Ingmar Malou May Obama1 Obama2
3,000 15,000 5,000 2,000 3,613

Putin Elizabeth II Reagan Thomas Wolf
4,000 1,500 6,984 2,239 15,000

DB1 DB2 DB3 DB4
8,000 18,138 6,500 30,024

Table 5. Source videos: Name and length of sequences (in frames). Obama
video courtesy of the White House (public domain).

Obama3 David1 David2 DB5 DB6
1,945 4,611 3,323 3,824 2,380
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