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Abstract

The Ladybug5 is an integrated, multi-camera system that features a near-
spherical field of view. It is commonly deployed on mobile mapping systems to collect
imagery for 3D reality capture. This paper describes an approach for the geometric
modelling and self-calibration of this system. The collinearity equations of the
pinhole camera model are augmented with five radial lens distortion terms to correct
the severe barrel distortion. Weighted relative orientation stability constraints are
added to the self-calibrating bundle adjustment solution to enforce the angular and
positional stability between the Ladybug5’s six cameras. Centimetre-level 3D
reconstruction accuracy can be achieved, with image-space precision and object-
space accuracy improved by 92% and 93%, respectively, relative to a two-term lens
distortion model. Sub-pixel interior orientation stability and millimetre-level relative
orientation stability were also demonstrated over a 10-month period.

Keywords: camera calibration, Ladybug5, multi-camera system, relative
orientation stability, wide-angle lenses

Introduction

STATE-OF-THE-ART mobile mapping systems (MMSs) comprise multiple sensors for mapping
complex terrestrial environments. In addition to navigation sensors (Global Navigation
Satellite System (GNSS) receivers, inertial measurement units and so on) for trajectory
determination, they generally include multiple imaging sensors such as laser scanners and
digital cameras. Whether the MMS is vehicle-borne or backpack based, the Ladybug
imaging systems from FLIR Integrated Imaging Solutions are a common choice to facilitate
panoramic imaging in support of 3D reality capture. These systems, in particular the
Ladybug3 and Ladybug5, comprise six cameras integrated in a rigid housing to provide a

© 2020 The Authors

The Photogrammetric Record © 2020 The Remote Sensing and Photogrammetry Society and John Wiley & Sons Ltd



nearly spherical field of view. In their review of urban applications and methods, Wang
et al. (2019) summarise eight MMS systems, of which five include Ladybug5 devices.
Others report MMSs incorporating Ladybug cameras on robotic (Schneider and F€orstner,
2013), backpack (Rau et al., 2016) and land vehicle (Cui et al., 2017) platforms.

Despite the seemingly widespread use of these camera systems, few detailed reports exist
about their geometric calibration. Schneider and F€orstner (2013) report on the self-calibration
of a Ladybug3 system. In particular, they comment on deviations of the relative orientation
between cameras from the manufacturer’s values. Rau et al. (2016) describe the self-
calibration of the Ladybug5. They mention the need for higher-order radial lens distortion
terms and report large residual systematic errors. Bosch et al. (2015) describe a ray-tracing
approach for underwater use of a Ladybug3 system. Jarron et al. (2019a) provide a brief, initial
report on the self-calibration of the Ladybug5. Much more detailed treatment is given herein.

The purpose of this paper is to present a geometric modelling approach and calibration
assessment of a multi-camera imaging system, specifically, the FLIR Ladybug5. The system
in question is first described in detail in order to give proper context to the mathematical
modelling. Next, the geometric models used for the system observation equations,
constraints and lens distortions are described. Experiments to test the effectiveness of the
modelling approach are then described. The results and analyses that follow comprise
several quantitative assessments:

(1) the quality of the interior orientation parameters;
(2) the effectiveness of the radial lens distortion model;
(3) the quality of the relative orientation parameters; and
(4) the 3D measurement accuracy as a result of the modelling approach.

Camera System Description

The Ladybug5 Spherical Camera Imaging System from FLIR Integrated Imaging
Solutions comprises six cameras integrated in a rigid housing (Fig. 1). Each camera is a
Sony ICX655 (2/3″ charge-coupled device (CCD); 3�45 lm pixel size; 20489 2448 pixel
count; global shutter) fitted with a 4�4mm focal length lens. The system can output
uncompressed imagery at 5Hz or JPEG imagery at 10Hz.

The horizontal cameras are mounted with a roll angle of 90° so that the long
dimension of the sensor format is vertically oriented. As a result, the corresponding
horizontal and vertical angular fields of view of each camera are approximately 77�5° and
87�6°, respectively. The angular overlap between any two adjacent horizontal cameras is
approximately 5�5°. Their perspective centres nominally lie on a horizontal circle with an
approximate radius of 60mm. The sixth camera is oriented so that it looks vertically
upwards; its perspective centre is nominally 75mm above the plane containing those of the
horizontal cameras. The overlap of the vertical camera with the horizontal cameras’ fields of
view varies due to the rectangular image format.

Methodology

Collinearity Equations

The imaging geometry of a multi-camera system comprising n cameras is described by
two sets of parameters: the n sets of individual cameras’ interior orientation parameters
(IOPs); and the (n�1) sets of relative orientation parameters (ROPs) between cameras.
Observations in each individual camera are modelled by the collinearity condition that
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expresses the hypothesised straight-line relationship between object point i (X, Y, Z), its
image point (x, y) and the perspective centre of image j (Xc, Yc, Zc):

xij þ exij ¼ xpj � cj
m11ðXi � Xc

j Þ þ m12ðYi � Yc
j Þ þ m13ðZi � Zc

j Þ
m31ðXi � Xc

j Þ þ m32ðYi � Yc
j Þ þ m33ðZi � Zc

j Þ
þ Dxij ð1Þ

yij þ eyij ¼ ypj � cj
m21ðXi � Xc

j Þ þ m22ðYi � Yc
j Þ þ m23ðZi � Zc

j Þ
m31ðXi � Xc

j Þ þ m32ðYi � Yc
j Þ þ m33ðZi � Zc

j Þ
þ Dyij ð2Þ

where (xp, yp) are the coordinates of the principal point, c is the principal distance, and mpq

are elements of the rotation matrix M, which is parameterised in terms of the sequential
rotation angles x, / and j.

Lens Distortion Modelling

The collinearity equations are augmented with both random error terms (ex, ey) and
correction terms (Dx, Dy) that model the systematic errors that cause departures from
collinearity due to lens distortion. The standard, two-term (p1, p2) Brown–Conrady model is
employed to model decentring distortion (Brown, 1966, 1971):

Dx ¼ p1ðr2 þ 2x2Þ þ 2p2xy ð3Þ

Dy ¼ p2ðr2 þ 2y2Þ þ 2p1xy ð4Þ

where r is radial distance with respect to the principal point and (x,y) are image coordinates
reduced to the principal point.

The severe barrel distortion inherent to the wide-angle lenses of the Ladybug5 system
requires five radial lens distortion terms (k1, k2, k3, k4, k5):

FIG. 1. The Ladybug5 system (image courtesy McElhanney Ltd).
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Dx ¼ xðk1r2 þ k2r
4 þ k3r

6 þ k4r
8 þ k5r

10Þ ð5Þ

Dy ¼ yðk1r2 þ k2r
4 þ k3r

6 þ k4r
8 þ k5r

10Þ: ð6Þ

Though the use of more than three radial lens distortion coefficients is not commonly
encountered, some software packages support inclusion of higher-order terms. Both the
FLIR Ladybug5 SDK and Agisoft PhotoScan/Metashape (Agisoft LLC, 2018) support
inclusion of the k4 term while Photometrix CameraCalibrator supports the addition of both
k4 and k5 (Photometrix, 2016).

Colour cameras can also possess chromatic aberrations due to light dispersion in the
lens. It can have both longitudinal and transverse components. The former amounts to
wavelength-dependent plane of best focus (principal distance) and the latter is wavelength-
dependent radial lens distortion. An experiment to quantify the presence of chromatic
aberration in the Ladybug5 system is reported in Lichti et al. (2019c). No significant
longitudinal chromatic effects were found and the lateral effect was only at the 1 to 2 pixel
level. Accordingly, these effects are omitted from the camera modelling herein.

Model Identification

A sequential model construction process is followed to identify significant terms in the
radial lens distortion model. An initial self-calibrating bundle adjustment comprising a
minimal set of IOPs is first performed. Generally, this might only include the principal
distance and the principal point and, perhaps, k1. For the Ladybug5, it also included k2 due
to the very high barrel distortion. Statistical, graphical and information-theoretical analyses
are then performed. The radial component of the image point residuals is plotted as a
function of radial distance. If a systematic trend can be observed in the scatter plot, the
distortion model is augmented by one term and the self-calibration adjustment is run again
with the new model. The root mean square of the residuals, RMSxy (Remondino et al.,
2017), is computed and analysed.

If the added term is significant, then RMSxy should be reduced by a significant amount.
Judging the significance of the reduction to RMSxy can be subjective and the parameter
significance test ignores inherent parameter correlations. Therefore, some additional
measures are computed. First, the statistical significance of each lens distortion parameter is
examined using the univariate testing procedure described by Shortis et al. (2000). Second,
the Akaike Information Criterion (AIC; Akaike, 1974) is used to ascertain whether the new
model is superior to the previous. If a systematic trend is still visible in the new set of
residuals, then the model complexity is increased and the process repeated until all trends
have been modelled. Accuracy assessment using independently surveyed check points can
also be performed to measure the significance of the model improvement in object space.

Relative Orientation Stability

Several approaches exist for modelling the relative orientation of multi-camera systems.
An exhaustive review of all such methods is beyond the scope of this paper, so interested
readers are referred to Detchev et al. (2018). Broadly speaking, they can be summarised as
belonging to one of two approaches:
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(1) explicitly modelled relative orientation; and
(2) added constraints that enforce stability of the ROPs.

Each approach makes the assumption that the relative position and orientation of the
cameras in their housing are mechanically stable.

In the first approach, one camera of the system is designated as the master camera and
the remaining sensors are designated as slave cameras. The exterior orientation parameters
(EOPs) of the master camera and the ROPs of the (n�1) cameras are estimated
simultaneously. There is no need to derive the ROPs after the self-calibrating bundle
adjustment since they explicitly appear in the model. Examples of this approach to
modelling multi-camera systems can be found for mobile mapping (Habib et al., 2011) and
laboratory-based, structural deformation measurement (Detchev et al., 2018).

The second modelling approach includes n sets of EOPs. The ROPs are not explicitly
modelled. Instead, constraints are added to the multistation bundle adjustment to express the
assumed relative stability of the cameras. The actual ROPs are derived from the EOPs post-
adjustment. Three position and three angular constraints can be written between each
camera pair. A total of 6(n�1) independent constraint equations can be added to the self-
calibration adjustment. This is the approach adopted for this work. It has been applied to
airborne multi-camera sensors (Tommaselli et al., 2013), multi-camera fisheye lens systems
(Campos et al., 2018), a general multi-projective system (Khoramshahi and Honkavaara,
2018), an underwater stereo camera system (Shortis, 2015) and a dual fluoroscopic imaging
system (Lichti et al., 2015).

The base vector (bX, bY, bZ) between cameras i and j can be defined as:

bX
bY
bZ

0
@

1
A

ij

¼ Mi

Xc
j � Xc

i
Yc
j � Yc

i
Zc
j � Zc

i

0
@

1
A: ð7Þ

Note that the choice of image space in which the constraint is parameterised is
arbitrary; camera i has been used here. The stability of the base vector components between
cameras i and j is enforced by constraining the difference in their base vector components at
two camera locations (1 and 2) to be zero:

Mi1

Xc
j � Xc

i
Yc
j � Yc

i
Zc
j � Zc

i

0
@

1
A

1

�Mi2

Xc
j � Xc

i
Yc
j � Yc

i
Zc
j � Zc

i

0
@

1
A

2

¼
0
0
0

0
@

1
Aþ

eDbX
eDbY
eDbZ

0
@

1
A

12

: ð8Þ

Others (Lerma et al., 2010; Tommaselli et al., 2013) report the option to constrain the
base vector length rather than its three components.

The development of the angular ROP stability constraints requires the intermediate
computation of the relative rotation matrix, which can be parameterised in terms of relative
angles Dx, D/ and Dj:

DMij ¼ MjMT
i ¼ R3ðDjijÞR2ðD/ijÞR1ðDxijÞ: ð9Þ

The constraints can be formulated in terms of the ROP angles themselves (Lichti et al.,
2015) or as functions of the relative rotation matrix elements (King, 1995; Tommaselli
et al., 2013). Here, the relative angles are constrained. Though the choice is perhaps
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somewhat subjective, the primary motivation is that the weighting (see below) for this
approach is more intuitive because the constraint standard deviations can be expressed in
angular units such as arc seconds rather than unitless direction cosines. The relative angles
can be derived from DMij according to the standard equations:

Dxij ¼ arctan
�Dm32

Dm33

� �
ð10Þ

D/ij ¼ arcsinðDm31Þ ð11Þ

Djij ¼ arctan
�Dm21

Dm11

� �
: ð12Þ

It should be noted that an alternative angle parameterisation is required to avoid the
gimbal lock problem if the secondary relative rotation angle is 90°.

The angular stability constraints enforce the differences between the relative angles
between cameras i and j captured at locations 1 and 2 to be zero:

arctan �Dm32
Dm33

� �
arcsin Dm31ð Þ
arctan �Dm21

Dm11

� �
0
BB@

1
CCA

1

�
arctan �Dm32

Dm33

� �
arcsin Dm31ð Þ
arctan �Dm21

Dm11

� �
0
BB@

1
CCA

2

¼
0
0
0

0
@

1
Aþ

eDDx
eDD/
eDDj

0
@

1
A

12

: ð13Þ

The ROP stability conditions can be incorporated either as absolute constraints (He
et al., 1992) or weighted constraints. If the constraints are weighted, the option used here,
they can be easily added to the least-squares normal equations by the summation-of-normals
method. In the implementation in this work, each constraint can be individually weighted by
specifying a standard deviation. In practice, however, they are weighted as groups. A single
standard deviation is defined for the group of base vector stability constraints. Likewise, a
standard deviation is defined for the group of relative-angle stability constraints.

The weighted constraints approach has the advantage of flexibility. The constraints can
be effectively turned on or off. That is, they can be added if doing so is deemed to be
appropriate: when the ROPs are indeed stable. Specifying very low group standard
deviations allows the constraints to effectively become absolute constraints. In a
complementary way, the ROP stability can be assessed using the residuals of the weighted
constraints. Sensor stability is an important issue and many efforts have been devoted to the
subject (for example, Shortis et al., 2000; Habib et al., 2014). Furthermore, if there is a
large sample of added constraints then they, along with other observable quantities, can be
appropriately weighted by analysing the estimated variance components.

Self-calibrating Bundle Adjustment

The self-calibrating bundle adjustment problem is formulated in terms of a constrained
Gauss–Markov model. The general form of the linearised image coordinate observations is
partitioned into three parameter groups:
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Ae
bde þ Ai

bdi þ Ao
bdo þ wp ¼ bvp ð14Þ

where Ae, Ai and Ao are the design matrices for the EOPs, the IOPs and the object point
coordinates, respectively; bde, bdi and bdo represent the correction vectors to the initial values
for these three groups of parameters; wp is the misclosure vector; and vp is the vector of
residuals. The associated weight matrix for this group of observations is denoted as Pp. The
linearised ROP stability constraints are given by:

Ae
bde þ wp ¼ bvp ð15Þ

where Ac, wc and vc are the design matrix, misclosure vector and residual vector,
respectively. The weight matrix for the constraints is denoted as Pc. The network datum is
defined by inner constraints imposed on the object points:

GT
o d̂o ¼ 0 ð16Þ

where Go is the design matrix. All EOPs, IOPs and object points are simultaneously
estimated in a multistation, self-calibrating bundle adjustment of equations (13)–(16) using
established procedures (Luhmann et al., 2014).

Experiments

Calibration Facility

Three datasets were captured with the Ladybug5 system in a dedicated indoor
calibration laboratory at the University of Calgary: two for calibration and one for accuracy
assessment. The laboratory is a temperature- and lighting-controlled environment and has
nominal dimensions of 11m9 11m9 4m. Some 500 Bubble-X targets are mounted on the
floor, the ceiling and the walls of the lab (Fig. 2). Bubble-X is an extruded plastic with two
outer skin layers and an internal lattice structure that makes it considerably stiffer than
paper or cardboard printed targets. It is a lightweight material and is not influenced by
humidity. The target pattern comprises a white circle on a black background that is printed
directly on the matte-finish surface. Several different target sizes exist in the room. Those
with 125mm radius were used for this work. Some temporary paper targets were also
mounted on the floor to densify the network.

Networks

For calibration dataset 1, images were captured from three nominal locations with the
Ladybug5 upright (Fig. 3(a)). At each location, nine sets of images were captured. The
camera system was rotated about its vertical axis by approximately 40° between acquisitions
so that the entire room was imaged by each of the horizontal cameras. This also provided
convergent imaging geometry for the horizontal cameras and roll diversity for the vertical
camera. Scale variation for the vertical camera imagery was provided by depth variation in
the target field itself: targets positioned at different heights on the unfinished ceiling and on
the walls were observed. Unfortunately, however, this network design did not include roll
angle diversity for the horizontal cameras. Note that many targets on the east side of the
room (right in Fig. 3(a)) were omitted due to very narrow intersection angle geometry. Both
these issues were rectified in calibration dataset 2.

The Photogrammetric Record
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Following a 10-month period during which the Ladybug5 was deployed on a vehicle-
borne MMS and used for many data collection missions, calibration dataset 2 was captured
with an improved network design (Fig. 3(b)). This also provided an opportunity to quantify
any changes in camera system geometry due to usage. The calibration network was
densified with additional temporary, paper targets affixed to the floor in order to provide a
more uniform distribution of observed points in the image plane. The network comprised
four nominal camera locations. Three were approximately at the same positions as in
calibration 1 while the fourth was closer to the east wall (right in Fig. 3(b)) so those targets
could be imaged with improved intersection geometry. Some highly tilted images were also
incorporated in the network. The Ladybug5 system was mounted on a monopod and
inclined up to 45° in two orthogonal directions at each nominal location. This provided the
necessary roll diversity for the horizontal cameras. An Xsens MTI series inertial
measurement unit was temporarily affixed to the camera system to observe the approximate
EOP values needed for the target measurement algorithm and subsequent bundle adjustment.

FIG. 2. Indoor calibration laboratory.

FIG. 3. Calibration networks. (a) Calibration dataset 1. (b) Calibration dataset 2 (10months after (a)).
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Accuracy Assessment

The targets were independently surveyed to provide reference 3D coordinates for
accuracy assessment. A single, high-resolution scan was acquired from the centre of the
room with a Faro Focus 3D terrestrial laser scanner (TLS). A circular patch around each
target was manually extracted from the point cloud. The centre coordinates were estimated
using the method described by Lichti et al. (2019b). Past experience with this instrument
has demonstrated that millimetre-level 3D coordinate accuracy can be achieved in a similar
environment with comparable dimensions (Lichti et al., 2019a).

Following the acquisition of calibration dataset 1, additional images were captured in
the indoor calibration laboratory. These were used for accuracy assessment to quantify the
effectiveness of the modelling approach proposed herein. The imagery was acquired from
two exposure stations separated by 2�8m. These images were not used for the calibration
but for independent accuracy assessment.

A total of 96 check points were observed in 10 horizontal images. Each image
contained between 8 and 40 check points; all but two contained 20 or more. Almost all
check points were observed in either two or three images. Two check points were observed
in four images. The check points were estimated as tie points in the bundle adjustment. The
ray intersection geometry of the tie points varied considerably, including both weakly and
strongly determined points. Four control points in the corners of the network were fixed in
the ensuing bundle adjustment to ensure that the estimated and reference coordinates from
the TLS were in the same system. Check point coordinate differences were computed by
subtracting the reference TLS coordinates from the photogrammetrically estimated values
and the root mean square error RMSEXYZ (Remondino et al., 2017) computed. Several
different adjustment cases were performed for the accuracy assessment. These are described
in more detail in subsequent sections.

Image Point Measurement

Images were captured in JPEG format since this is the standard operating procedure
when the Ladybug5 is deployed as part of a vehicular MMS. The RGB colour imagery was
converted to greyscale imagery (Grey) according to the International Commission on
Illumination CIE 1931 colour space model:

Grey ¼ 0�2125Rþ 0�7154Gþ 0�0721B ð17Þ

where R, G and B are the red, green and blue components, respectively.
Measurement of the 2D target centre coordinates was performed using the automated

detection and labelling algorithm described in Jarron et al. (2019b). The major steps of the
algorithm can be summarised as follows. Adaptive local thresholding of the greyscale image
was performed followed by connected components analysis to label each region in the
resulting binary image. Ellipse fitting based on the random sample consensus (RANSAC)
was performed to eliminate outliers, which was followed by a final least-squares ellipse fit.
A number of diagnostic tests were made to eliminate non-target regions. Prior knowledge,
such as approximate camera height, was utilised for some of the EOPs while a range of
candidate values was assumed for other EOPs. The known 3D target coordinates of the
calibration room were projected into the image using the EOPs and nominal camera IOPs.
The image point corresponding to each projected object point was selected according to the
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minimum distance. This process was accompanied by tests to reduce the occurrence of
incorrect labelling.

Relative Orientation Stability Constraint Weighting

As mentioned, the weighted-constraints approach offers great flexibility for the
enforcement of ROP stability. Here, three enforcement schemes were investigated: no
constraints; small variances; variances set by approximate iterative variance component
estimation (VCE). The high weights of the second approach meant that the constraints were
effectively absolute. The aim of the third approach was to determine the weights of each
group of observables (image coordinates, base vector stability constraints and relative-angle
stability constraints) such that their relative contribution is approximately equivalent.

Experiment Results

Adjustment Metadata

Table I provides a high-level summary of the two calibration datasets. Overall,
calibration 2 comprised fewer images (and, hence, fewer ROP stability constraints) but had
more object points, image point observations and degrees of freedom. As can be seen in
Fig. 4, the observations of datasets 1 and 2 cover nearly the entire image plane, respectively,
reaching 94% and 91% of the maximum radial distance of 1596 pixels. The distribution of
observations was improved in the second dataset thanks to the additional targets on the
floor.

Interior Orientation Parameter Estimates

The estimates and the precision of the basic IOPs from the two calibration datasets are
tabulated in Table II. Note that these results are from the case of very small variances for
the ROP stability constraints. The horizontal cameras’ xp precision is about 25% lower than
that of yp for calibration 1 due to the aforementioned lack of roll diversity. The inclusion of
highly tilted imagery in the second calibration dataset yielded the desired homogeneous
precision. The principal point precision for the vertical camera was homogeneous for both
calibrations due to the network design.

Principal distance precision among the horizontal cameras was homogeneous in both
datasets, with the first being slightly higher. In both cases, the vertical camera’s precision is
lower. In the first case, this is due to the lack of convergent imaging while in the second
case it was due to the lower number of observations appearing in the vertical camera
imagery. The scale variation did successfully de-correlate the principal distance from the
EOPs in the first calibration, as the largest correlation coefficient with the perspective centre

Table I. Calibration dataset metadata.

Calibration 1 Calibration 2

No. of images 262 206
No. of object points 119 362
No. of observed image points 6314 9742
No. of ROP stability constraint sets 627 402
Total degrees of freedom 11 903 17 913
Maximum observed radial distance (pixels) 1495 1456

LICHTI et al. Geometric modelling and calibration of a spherical camera imaging system
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position was 0�2. In the second calibration, the introduction of highly convergent vertical
camera images meant that many targets on the unfinished ceiling were partially or
completely occluded by ductwork, electrical conduit, water pipes and light fixtures. As a
result, the precision is lower. However, de-correlation from the EOPs was also achieved as
the largest correlation was 0�15.

Analysing Table II reveals there are differences in the basic IOPs of the two calibration
datasets. All are 0�8 pixels or less except for yp and the principal distance of the vertical
camera, which are about 1�4 and 2�1 pixels, respectively. These can be explained by the
network differences already described. Under the reasonable assumption that the parameter
estimates from the two datasets are uncorrelated, statistical testing was performed to assess
the significance of these differences. Seven parameters were identified as significantly
different at the 95% confidence level. Noting, however, that the linear equivalent of
0�8 pixels in image space is approximately 6mm in object space, which is smaller than the
mean object point precision from the check point analysis (see next section), these results

FIG. 4. Image point distribution for the calibration datasets (all images, all cameras).

Table II. Estimated interior orientation parameters (xp, yp, c) and their standard deviations r from the two
calibration datasets.

IOP Calibration Horizontal cameras Vertical

0 1 2 3 4 5

xp 1 1208�61 1205�25 1235�22 1226�66 1234�21 1218�00
2 1209�08 1205�49 1234�85 1226�73 1234�33 1218�36

r 1 0�16 0�16 0�15 0�15 0�15 0�07
2 0�11 0�12 0�12 0�11 0�11 0�14

yp 1 1012�74 1020�37 1016�62 1000�33 1021�52 1016�47
2 1011�95 1019�99 1016�57 1000�16 1021�81 1017�85

r 1 0�12 0�11 0�11 0�11 0�12 0�06
2 0�12 0�13 0�13 0�12 0�12 0�13

c 1 1234�91 1235�86 1239�54 1240�38 1239�51 1239�46
2 1235�25 1235�82 1238�95 1240�11 1239�08 1237�34

r 1 0�18 0�17 0�17 0�18 0�19 0�35
2 0�22 0�22 0�21 0�21 0�22 0�59

Pairs of parameter estimates that are significantly different are shown in bold. All figures in pixels.
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suggest that the remaining parameters of the interior geometry were stable over the time
between calibrations.

Radial Lens Distortion

The development of the radial lens distortion model is demonstrated with calibration
dataset 1 without enforcement of the relative orientation constraints. If the constraints are
heavily weighted, their addition to the bundle adjustment can lead to inflation of the image
point RMS. Thus, they were omitted so as to prevent possible biases in this model
development exercise.

The model fit following sequential addition of lens distortion terms is reported in
Table III. The RMSxy values are pooled estimates from all six cameras. The “base” model
comprises the first two terms, k1 and k2. The adjustment including only k1 did not converge
due to the extreme barrel distortion of the Ladybug5 system. The RMSxy estimates show a
clear, but gradually diminishing, improvement as a result of including each successive radial
lens distortion term. The final, five-term model exhibits an improvement amounting to an
order of magnitude over the initial two-term model. Analysis of the AIC revealed that the
final model was indeed superior to the others. Note that the final RMSxy is lower than that
reported in Table I due to omission of the ROP stability constraints.

Graphical analyses were used to support the model development. The scatter plots in
Fig. 5 represent the superimposition of the radial component for all residuals (vr) from all

Table III. Model fit as a function of increasing the number of radial lens distortion terms for calibration 1.

Radial lens distortion model terms RMSxy (pix) % improvement

k1, k2 4�94 –
k1, k2, k3 1�21 73
k1, k2, k3, k4 0�45 90
k1, k2, k3, k4, k5 0�38 92

FIG. 5. Radial component of the image point residuals (vr) in blue and moving average (MA) trend in red for
calibration 1. Radial distances from 0 to 1495 pixels.
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six cameras. The moving average (MA) trends show the presence of unmodelled systematic
distortions, except in the final model using all five terms. Note that unmodelled trends do
not reflect the exact behaviour of the missing term(s) but rather the residual errors from the
other terms trying to compensate for the missing terms, hence the multiple concavities in
the first three models in Fig. 5. The final case, with all five terms k1 to k5, shows a flat MA
trend, indicating that all systematic effects have been modelled up to the maximum
observed radial distance of 1495 pixels.

The statistical significance of each radial lens distortion term was evaluated. In all four
model cases, all terms are significant at the 95% confidence level with only one exception:
k2 for the vertical-looking camera with the full five-term model (Table IV). In this instance,
the test value was 1�92, so it was in fact only marginally insignificant. Statistical testing for
the second calibration dataset revealed that all 30 terms of the full model were significant.
These outcomes, should, however, be tempered by the fact that high correlations – that are
ignored in the individual significance testing – exist among the radial lens distortion
coefficients. An example of the correlation coefficients for one camera is given in TableV.
Some are quite large. Importantly, though, there were no high correlations with any of the
EOPs; the largest coefficient was 0�46.

The best measure of the effectiveness of the radial lens distortion model is the
independent accuracy assessment with check points (Table VI). Similarly to the results in
Table III, the addition of each model term results in a significant, but diminishing,
improvement. A bias of up to 1 cm exists in the first two models and the third case does not
meet precision expectations. The five-term model is the only one for which the RMSEXYZ

met the expected accuracy of 13mm, the mean tie point coordinate precision. Thus, despite

Table IV. Radial lens distortion term significance for calibration 1.

Radial lens distortion model terms Total number of terms Number of significant terms

k1, k2 12 12
k1, k2, k3 18 18
k1, k2, k3, k4 24 24
k1, k2, k3, k4, k5 30 29

Table V. Sample correlation coefficient matrix for radial lens distortion coefficients.

k1 k2 k3 k4 k5

k1 1
k2 �0�974 1
k3 0�931 �0�988 1
k4 �0�885 0�962 �0�993 1
k5 0�843 0�933 0�976 �0�995 1

Table VI. Accuracy assessment as a function of the number of radial lens distortion terms for calibration 1.

Radial lens distortion model terms Mean difference (mm) RMSEXYZ (mm) % improvement

k1, k2 8 152 –
k1, k2, k3 10 36 76
k1, k2, k3, k4 3 18 88
k1, k2, k3, k4, k5 2 10 93
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the high correlations between terms, the inclusion of five radial lens distortion terms
improves the solution within a laboratory setting.

Both decentring distortion parameters were statistically significant for both calibration
datasets. However, the decentring effect is considerably smaller than that of the radial lens
distortion. The decentring profile reaches only 2�1 pixels at the maximum radial distance.
Therefore, decentring distortion was not analysed further.

Model Fit and Relative Orientation Parameters

TableVII reports the RMS for the image points, the base vector components and the
relative angles. The ROPs were derived from the estimated EOPs following adjustments
with all three enforcement schemes. Regardless of the weighting scheme used, the quality of
the fit of the observations to the sensor model is slightly lower in the second dataset. For
both datasets, the imposition of the small-variance ROP stability constraints had the effect
of inflating the RMSxy. However, the constraints were clearly effective in enforcing ROP
stability as the RMS values varied from a couple of millimetres and a couple of degrees to
insignificant figures. The constraint enforcement case with VCE-derived weights had less
impact in terms of inflating the image point coordinate residuals. ROP stability was
enforced to the level of about one-quarter of a millimetre for base vector components and
less than one-half of an arc minute for the relative angles.

Differences between the ROPs of the two calibrations were computed for the small-
variance enforcement scheme. The statistics are presented in Table VIII. The results suggest
that even after repeated use, the relative geometry of the Ladybug5 system is stable at the 1
to 2millimetre level.

Accuracy Assessment – ROP Stability Constraints

As mentioned, several adjustments were performed for the accuracy assessment.
Predetermined IOPs were implemented as constants and predetermined ROPs, implemented
as weighted constraints (equations (7), (10), (11) and (12)) with small variances so as to
effectively make them absolute constraints. IOP and ROP estimates from all three weighting

Table VII. Derived relative orientation parameter statistics. Note the different units for the RMSangle column.

Calibration ROP stability enforcement RMSxy (pixel) RMSbase (mm) RMSangle (°/″)

1 None 0�38 2�48 2�16°
1 Small variance 0�48 0�002 0�04″
1 VCE 0�42 0�28 26″
2 None 0�61 1�93 3�76°
2 Small variance 0�66 0�000 0�04″
2 VCE 0�62 0�24 23″

Table VIII. Statistics of the differences between the derived relative orientation parameters from calibrations
1 and 2.

Base vector components (mm) Relative angles (″) Linear equivalent at 10m (mm)

Mean �0�5 �25 �1�2
Maximum 1�9 79 3�8
RMS 0�8 40 1�9
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schemes were tested. Each adjustment comprised 198 degrees of freedom. Jarron et al.
(2019a) provide an initial report on differences between estimated and factory calibration
parameters. Since very large differences between radial lens distortion profiles beyond
r= 1000 pixels are reported, the factory-determined values were not used. Several
combinations of factory parameters and parameters determined by this paper’s methodology
were tested and are summarised in Table IX.

The first case, using factory ROPs, some factory IOPs and the authors’ lens distortion
coefficients, shows decimetre-level agreement of photogrammetrically determined and
scanned coordinates, but the range in coordinate differences is greater than metre-level. The
large differences exist at weakly determined points that nominally lie on the baseline
between camera stations (Fig. 6). Utilising all author-derived IOPs considerably improves
the results by 43% in RMSEXYZ and 52% in terms of the 3D coordinate difference range.
The 3D range is the diagonal of the rectangular prism spanned by the range of coordinate
differences in each dimension. Centimetre-level accuracy is achieved with IOPs (without
known ROPs enforced). Adding the known ROPs as constraints does not improve accuracy
in terms of RMSEXYZ but does reduce the range of coordinate differences. The improvement
is gained in the outliers that occur at the narrow intersection angles (Fig. 6). Without the
ROP constraints, the differences in any one coordinate were up to 4 cm. With the

Table IX. Accuracy assessment statistics. All weighting schemes are “small variance” unless otherwise
indicated.

RMSEXYZ

(mm)
%

improvement
3D coordinate
difference range

(mm)

%
improvement

Factory ROPs, xp, yp and c, our lens
distortions (calibration 1)

133 – 1391 –

Factory ROPs, our IOPs (calibration 1) 76 43 675 52
Our IOPS, no ROPs (calibration 1) 10 92 95 93
Our IOPs and ROPs (calibration 1) 9 93 68 95
Our IOPs and ROPs (calibration 2) 10 92 95 93
Our IOPs and ROPs (calibration 1, VCE) 7 95 49 96
Our IOPs and ROPs (calibration 2, VCE) 10 92 94 93

FIG. 6. Check point coordinate differences. Left: with factory ROPs, xp, yp and c, the authors’ lens distortions
(calibration 1). Right: with the authors’ IOPs and ROPs (calibration 1).
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constraints, differences were up to 3 cm. Using the IOPs and ROPs from the second
calibration produced similar results, though the range of differences was degraded slightly
due to the changes in parameters reported in Tables II and VIII.

For all cases discussed in the preceding paragraph, the IOPs and ROPs were derived
from the small-variance weighting scheme. Use of the parameters from the VCE weighting
scheme (final two rows of Table IX) produced comparable accuracy to that achieved with
the small-variance parameters. In fact, the calibration 1 results are slightly superior in terms
of both measures. The slightly less accurate results using the calibration 2 parameters are in
line with the findings above.

ROP Stability Constraints – Parameter Correlations

The ROP stability constraints impose functional dependencies between EOPs. Although
their effectiveness has been demonstrated, the question of whether the solution is degraded
by the small-variance weighting remains. Therefore, an analysis of correlations among EOPs
and with IOPs has been undertaken. Table X presents a summary of large correlation
coefficients, defined as having a magnitude greater than 0�9, for all three weighting schemes
for both datasets.

Using the unconstrained case as a benchmark, imposing the small-variance stability
constraints increases the number of high EOP–EOP correlations by nearly two orders of
magnitude for both calibrations. The high correlations in the unconstrained case are due to
local weaknesses in network geometry that were exacerbated by the constraints.
Interestingly, the VCE weighting actually reduces, albeit very slightly, the number of high
EOP–EOP correlations, so there is no adverse effect caused by their introduction.

The low number of high EOP–IOP correlations in the unconstrained case demonstrates
the success of the network design to reduce projective compensation. The use of the small-
variance constraints introduces several hundred high correlations. The VCE weighting does
introduce some correlations, but the number is an order of magnitude smaller.

It should be borne in mind that the total number of off-diagonal elements in the
parameter correlation matrices is large: 3 942 210 and 5 671 542 for calibrations 1 and 2,
respectively. Thus, the percentage of large correlations in the small-variance case is less
than 1%. However, the introduction of these dependencies may be the cause of the slightly
worse results for the small-variance accuracy assessment for calibration 1 in comparison
with the VCE results. In terms of good practice, the VCE enforcement approach is
recommended since it avoids the introduction of adverse correlations.

Conclusions

An approach for the geometric modelling and calibration of a multi-camera, spherical
imaging system, the Ladybug5, has been presented. Results from multiple calibration

Table X. Number of correlation coefficients with a magnitude greater than 0�9.
Calibration ROP stability enforcement EOP–EOP EOP–IOP

1 None 226 0
1 Small variance 20 168 754
1 VCE 218 36
2 None 184 26
2 Small variance 8957 512
2 VCE 182 52
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datasets were presented to demonstrate the effectiveness of the methodology. Image
coordinate observations agreed with the model at the sub-pixel level. Centimetre-level 3D
reconstruction accuracy in object space was achieved using the parameters determined with
the proposed approach. Accuracy was improved by 95% over what could be achieved using
the manufacturer’s IOPs and ROPs. The severe barrel distortion caused by the system’s
wide-angle lenses necessitated the adoption of a five-term radial lens distortion model.
Although this is unconventional and the distortion coefficients are inherently very highly
correlated, it was found to be successful. Inclusion of five radial lens distortion terms led to
a 92% improvement in model fit in terms of residual RMS and a 93% improvement in 3D
object space accuracy. The relative position and orientation of the system’s six cameras
were effectively modelled with relative orientation stability constraints implemented as
weighed constraints. Analysis of the system calibration after a 10-month period of usage
revealed sub-pixel stability of most IOPs and millimetre-level stability of the ROPs.

Two different approaches to weighting the ROP stability constraints were investigated.
It may be tempting to enforce the constraints rigidly with very small variances (high
weights) to accurately model the assumed mechanical stability among the individual sensors
of a multi-camera system. However, the approach of determining the stability constraint
weights using VCE has been demonstrated to be superior for the calibration of the
Ladybug5 system. The relaxed weighting achieved comparable (or slightly better) accuracy,
did not introduce adverse parameter correlations and resulted in only minor inflation of the
image point coordinate residuals.

A number of possibilities for future work exist. Perhaps paramount among these is the
possibility to model wide-angle lenses like those of the Ladybug5 with a fisheye lens
model. A preliminary investigation of this approach yielded promising results (Jarron et al.,
2019c). The concept is the fisheye model compensates for the majority of the barrel
distortion, leaving only a residual radial lens distortion signal that should require fewer
coefficients. Although the high correlations between coefficients did not degrade the results
in this study, it would be advantageous to utilise a model free from strong functional
dependencies as a general principle. Scope exists for future investigation into the use of the
VCE weighting for the ROP stability constraints applied to other multi-camera systems and
the exact correlation mechanisms. Future work may also include a stability test of
calibration with temperature changes or physical impact when used for mapping.
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R�esum�e

Le Ladybug5 est un syst�eme int�egrant plusieurs cam�eras et caract�eris�e par un champ de vision quasi-
sph�erique. Il est couramment d�eploy�e en cartographie mobile en vue de l’acquisition d’images pour la
reconstruction 3D. Cet article d�ecrit une approche pour la mod�elisation g�eom�etrique et l’auto-calibration de ce
syst�eme. Aux �equations de colin�earit�e du mod�ele st�enop�e sont ajout�es cinq termes de distorsion optique pour
corriger une forte distorsion en barillet. Des contraintes pond�er�ees de stabilit�e de l’orientation interne sont
prises en compte dans la compensation par faisceaux lors de l’auto-calibration afin de maintenir la stabilit�e
angulaire et positionnelle entre les six cam�eras du syst�eme Ladybug5. Une pr�ecision centim�etrique peut être
atteinte dans la reconstruction 3D, avec un taux d’am�elioration de 92% et 93% respectivement dans l’espace
image et l’espace objet. L’exp�erience met en �evidence sur une p�eriode de dix mois une stabilit�e sub-pixellaire
pour l’orientation interne et une stabilit�e de niveau millim�etrique pour l’orientation relative.

Zusammenfassung

Das integrierte Multikamerasystem Ladybug5 besitzt ein nahezu sph€arisches Bildfeld. Es wird in vielen
mobilen Mappingsystemen zur Bilddatenerfassung f€ur eine 3D Modellierung eingesetzt. Dieser Beitrag stellt
einen Ansatz f€ur die Modellierung der Geometrie und die Selbstkalibrierung dieses Systems vor. Die
Kollinearit€atsgleichungen der Zentralprojektion werden um f€unf Terme f€ur eine radiale Verzeichnung erg€anzt,
um die starke tonnenf€ormige Verzeichnung zu korrigieren. Um die gegenseitige Lage- und Orientierungsstabilit€at
der sechs Kameras des Ladybug5 Systems zu erzwingen werden gewichtete Stabilit€atsbedingungen f€ur die
relative Orientierung zur B€undelausgleichung f€ur die Selbstkalibrierung hinzugef€ugt. Damit k€onnen
Genauigkeiten der 3D Rekonstruktion im Zentimeterbereich erzielt werden. Das bedeutet eine Steigerung der
Pr€azision im Bildraum und Genauigkeit im Objektraum von 92% bzw. 93%, bezogen auf ein €ubliches
Verzeichnungsmodell mit zwei Parametern. €Uber einen Zeitraum von zehn Monaten konnte die Stabilit€at der
inneren Orientierung im Subpixel-Bereich und die Stabilit€at der relativen Orientierung im Millimeterbereich
nachgewiesen werden.

Resumen

Ladybug5 es un sistema que integra m�ultiples c�amaras captando un campo de visi�on casi esf�erico. Por lo
general, se implementa en sistemas m�oviles de cartografiado recopilando im�agenes para la captura de realidad
3D. Este art�ıculo describe un modelo geom�etrico y de autocalibraci�on para este sistema. Las ecuaciones de
colinealidad del modelo de c�amara estenopeica se han extendido con cinco t�erminos de distorsi�on radial de la
lente para corregir la severa distorsi�on de barril. Restricciones ponderadas de estabilidad de la orientaci�on
relativa se agregan a los par�ametros de autocalibraci�on en la soluci�on de ajuste por haces para reforzar la
estabilidad angular y posicional entre las seis c�amaras del sistema Ladybug5. Se puede alcanzar una precisi�on
en la reconstrucci�on 3D a nivel de cent�ımetros. Compar�andolo con un modelo de distorsi�on radial de solo dos
t�erminos se puede obtener una mejora de la precisi�on en el espacio imagen y en el espacio objeto de un 92% y
93% respectivamente. La orientaci�on interior a nivel de subp�ıxeles y la orientaci�on relativa a nivel milim�etrico
se han demostrado estables en un per�ıodo de diez meses.
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摘要

Ladybug5为一整合性多相机系统，具有近球形视野。常应用于行动制图系统，收集影像以搜集3D现
况。本文提出对该系统几何建模和自率的一种方法。本方法采用共线式相机模型附加五个径向透镜畸变差

参数，以校正严重的筒形透镜畸变。为提升Ladybug5的六个相机间角度与位置之稳定性，自率光束法平差

中加入带权相对方位约制。本方法可以达成厘米级的3D重建，相对于两阶段的处理方式，本方法影像空

间精度与物空间精度分别提高92％与93％。经由十个月的时间，实验还证实达成次像元内方位稳定度，以

及相机间毫米级相对方位稳定性。
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