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Course Summary 
 

This course intends to give a thorough introduction to how to acquire and process 
multiple video streams for omni-perspective, interactive rendering of real-world, 
dynamic scenes. Attendees learn how to reconstruct and represent dynamic scene 
geometry from multi-video footage, as well as how to render time-varying scenes 
video-realistically from arbitrary viewpoints in real time. 

 
Syllabus 
     Basic part 
 
8:30 – 8:45  15 min Introduction - Magnor 
      What is video-based rendering ? 
      Why bother ? 
 
8:45 – 9:05  20 min Acquisition – Cheung 
      Camera hardware 
      Infrastructure 
      Pre-processing 
 
9:05 – 9:45  40 min Small-baseline VBR – Matusik, Magnor 
      3D TV 
      Dynamic light field warping 
 
9:45 – 10:15  30 min Wide-baseline VBR – Matusik, Pollefeys 
      Visual hull rendering 
      Photo hull on GPU 
 
     Advanced part 
 
10:30 – 11:00 30 min Camera calibration – Pollefeys 
      Intrinsic, extrinsic calibration 

Multi-camera network calibration 
Unsynchronized multi-video footage 

 
11:00 – 11:30 30 min Spacetime coherence – Cheung, Magnor 
      Visual hull across time 
      Scene flow 
      Spacetime-coherent reconstruction 
 
11:30 – 12:00 30 min Model-based VBR – Cheung, Theobalt 
      Kinematics modeling 

Marker-less motion capture 
Free-Viewpoint Video 

 
12:00 – 12:15 15 min Outlook & Discussion – Pollefeys, Magnor 
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About this course 
 

In recent years, image-based rendering techniques have advanced from static to 
time-varying scenes. Instead of still images, multiple synchronized video streams 
now capture the dynamic scene from different viewpoints. Suitably processed, 
this multi-video footage is all that is needed to seat “couch potatoes”  into the 
movie director's chair: video-based rendering (VBR) techniques let the user 
interactively navigate his or her viewpoint through the real-world, dynamic scene 
to experience movie action or sports events from any self-defined perspective. 
The course presents the state-of-the-art in video-based rendering research. Our 
goal is to empower course participants to use VBR techniques for their own 
projects. During the course, the necessary algorithmic concepts from computer 
graphics and computer vision are explained. In addition, we provide multi-video 
sequences and a lot of additional information on our web sites. 
The course syllabus is divided into two parts: In the first part, we cover multi-
video acquisition and VBR techniques that originate from still image-based 
rendering approaches.  After the break, more advanced topics are explained, 
including multi-camera calibration, VBR algorithms that take the temporal 
dimension into account, as well as approaches that make use of a-priori model 
information about scene content. We explain the how-to as clearly as possible, 
and we give an account of the advantages and limitations of each VBR technique.  
Besides rendering arbitrary views of real-world, dynamic scenes, VBR techniques 
are also immensely useful for providing the input modality to data-driven 
modeling approaches. By offering visually authentic models of dynamic natural 
phenomena, VBR is a key technology to synthesize realistic animations from real-
world examples. 

 
Prerequisites 
 

Participants should be familiar with the concept of image-based rendering. Some 
basic knowledge of computer vision fundamentals is helpful, but not mandatory. 
 
The course is geared towards graduate students interested in interdisciplinary 
graphics and vision research, as well as professionals from the movie/special 
effects industry and interactive entertainment industry.  

 
Additional resources 
 

The following web site has been set up to include links to on-line VBR resources 
and research groups worldwide that are active in VBR: 
 

http://www.video-based-rendering.org 
 
The web site is maintained by the course organizer to be up to date with latest 
developments in VBR research. New references to not-yet linked web sites are 
highly welcome ! 
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completing his Postdoctoral Fellowship in the Robotics Institute in 2004, German 
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Monica California, as a senior research scientist. 
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visualization, as well as data-based modeling techniques. He is currently lecturing 
courses on computer graphics and computer vision at Saarbrucken University, 
Germany. 
 
Wojciech Matusik is a visiting research scientist at Mitsubishi Electric Research 
Labs. He received a B.S. in EECS from the University of California at Berkeley 
in 1997, M.S. in EECS from MIT in 2001, and consequently Ph.D. in 2003. His 
primary research lies in computer graphics with an emphasis on modeling based 
on measured data. He also works on image-based rendering, modeling, and 
lighting where he developed efficient algorithms for computing and rendering 
visual hulls. He is currently developing end-to-end 3D TV systems. 

 
Marc Pollefeys is an Assistant Professor of Computer Science at the University 
of North Carolina at Chapel Hill. He received his M.S. and Ph.D. degrees from 
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of real world objects, scenes and events. Dr. Pollefeys has received several prizes 
for his research, including the prestigious Marr prize at ICCV '98. Recently he 
also obtained an NSF career award. He is the author or co-author of more than 60 
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serving on the program committees of major conferences such as ICCV, CVPR 
and ECCV and is a regular reviewer for most of the major vision, graphics and 
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"Interactive Geometric and Scientific Computations Using Graphics Hardware" 
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respectively. Christian is a final year PhD student in the Computer Graphics 
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include image- and video-based motion analysis, 3D computer vision, and image- 
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Introduction
8:30 – 8:45

Introduction
8:30 – 8:45

Marcus Magnor
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The Ultimate Goal The Ultimate Goal 

Scene from “The Matrix”, © Warner Bros. 2000

To the general public (and to most of us, too), computer graphics 
rendering is about creating spectacular visual impressions. As such, one 
application area of computer graphics is the generation of special effects 
for the movie industry where absolutely realistic-looking image sequences 
of imaginary worlds and/or “impossible” fly-throughs of seemingly real 
scenes must to be created. One would expect that modern technology is 
the key, offering utmost flexibility to the director and artistic designers.
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Behind the Scenes …Behind the Scenes …

http://http://whatisthematrix.warnerbros.comwhatisthematrix.warnerbros.com//

Reality, however, often looks a lot different. Conventional photographic 
techniques offer much easier ways to create realistically-appearing 
images, and computer graphics techniques only augment f/x production. A 
lot of creative post-processing flexibility is sacrificed this way, in this 
example by restricting possible later viewpoints to camera recording 
positions during the shot.
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Photography vs. 
Computer Graphics
Photography vs. 
Computer Graphics

+ Easy acquisition

+ Fast display
+ Natural appearance
– No flexibility

+ Unlimited flexibility

– Time-consuming modeling
– Expensive image synthesis
– Non-realistic appearance

Photographic techniques offer a very fast and inexpensive way to capture 
the natural visual impression of real-world scenes. Photos can be 
displayed almost immediately, independent of depicted scene complexity. 
However, the scene can only be displayed as recorded. Altering the scene 
or the viewpoint are impossible. 

Computer graphics rendering, on the other hand, allows manipulating the 
scene as well as the viewpoint almost arbitrarily. The price you have to 
pay for this flexibility, however, is the considerable effort needed to model 
the scene in terms of its abstract constituents: geometry, surface 
reflectance characteristics, illumination, and possibly animation. In 
addition, image synthesis consists of calculating the light distribution in the 
scene, possibly a very complex, time-consuming task (=> global 
illumination). Finally, despite a lot of effort, computer graphics-generated 
images may still have a somewhat artificial flavor if a scene would 
naturally display subtle visual cues that are missing from the rendered 
image.
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Image-based 
Modeling & Rendering
Image-based 
Modeling & Rendering

ImageImage

AnalysisAnalysis SynthesisSynthesis

Scene GeometryScene Geometry
AnimationAnimation

Reflectance CharacteristicsReflectance Characteristics
IlluminationIllumination

We want to combine the best of both worlds, photography and 
computer graphics. That is, we want to exploit the ease and 
naturalness of photographic acquisition and combine it with at least 
some of the flexibility that computer graphics rendering can offer.

Over the last decade, various image-based modeling and rendering 
techniques have been developed towards this goal. Based on 
conventional photos, a description of scene content in terms of 
geometry is derived. Some approaches even estimate reflectance 
and scene illumination. From this more abstract scene description, 
rendering techniques are able to create novel views of the recorded 
scene. 

Recovering model information from image data is traditionally part 
of computer vision research. With the development of image-based 
rendering techniques, the reconstruction of visually plausible 
models from image data has also become an important, active 
research area in graphics. Researchers from computer graphics 
and computer vision are working together to recover scene 
geometry, animation data (via non-invasive optical motion capture), 
surface characteristics and illumination conditions (inverse 
rendering) from images and video footage. 

In this tutorial, we limit ourselves to describe how to recover time-
varying geometry of a dynamic scene from synchronized video 
recordings. By using the recorded video images as texture, the 
scene can be re-displayed from arbitrary viewpoint. Scene 
illumination, however, remains fixed to the conditions present 
during recording. Ways to additionally recover surface reflectance 
and possibly also scene illumination is beyond the scope of our 
tutorial.
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Video-based RenderingVideo-based Rendering

• Goal

– Render dynamic, real-world scene from arbitrary viewpoint

• Means

– Reconstruct dynamic 3D shape from multiple video streams

– Fast, realistic rendering from shape + video

• Scenario

– Acquisition: synchronized video cameras

– Processing: consumer-market PC(s)

– Display: consumer-market PC, graphics hardware

• Applications

– Visual media (“Interactive Television”, “3D TV”)

– AR/VR (import realism into virtual worlds)

In the following, we will look at different approaches how to render real-
world, dynamic scenes at real-time frame rates from novel viewpoints. All 
discussed VBR techniques rely solely on calibrated, synchronized multi-
video footage as input, and all algorithms perform on consumer-market 
hardware. However, there is no “one size fits all” algorithm in VBR (at 
least, not yet). Specific algorithms are needed for different application 
scenarios, e.g., with respect to camera setup (small baseline vs. wide 
baseline) and processing performance (on-line vs. off-line).

The most immediate applications of VBR are in visual entertainment. For 
example, VBR may facilitate the TV set of the future to feature a joystick 
with which the viewer can freely navigate his/her viewpoint all around and 
through the scene. But also for VR applications, VBR offers importing 
genuine visual realism of dynamic objects into virtual environments, 
rendering training simulators, computer games, etc. even more authentic.
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Analysis Synthesis

Video-based 
Scene Analysis & Synthesis
Video-based 
Scene Analysis & Synthesis

Multi-View Video Rendered New View

Model-based VBR

Dynamic Light Fields

Visual/Photo Hull

Spacetime Coherence

Acquisition

Calibration

VBR starts with multi-video acquisition. Because attainable rendering 
quality is determined by the quality of the input data, a number of issues 
must be considered during the recording process.

To relate image data from different video cameras for processing, camera 
positions, orientations, and imaging characteristics must be accurately 
determined on-site.

Changing the viewpoint on a dynamic scene can be achieved in different 
ways. If many cameras are positioned sufficiently close together, the 
viewpoint can be changed by suitably re-sampling the dynamic light field 
(3D TV). Large numbers of cameras are needed for meaningful angular 
coverage. If recording cameras are spaced farther apart, parallax/disparity 
becomes obvious between adjacent camera views. By estimating dense 
depth maps per image, disparity can be compensated for during rendering 
(Dynamic Light Field Warping). Still, the number of cameras necessary to 
estimate dense depth robustly and to cover large viewing angles 
isconsiderable.

To reconstruct scene shape from only a handful of video recordings, 
complete 3D geometry must be considered. Approximate shape can be 
recovered robustly and fast (visual hull). For more accurate geometry,  
photo-consistency must be made use of (photo hull). 

Specifically in video-based rendering, temporal coherence can be 
exploited to achieve robust and consistent photo-consistent 
reconstructions (spacetime coherence). 

Finally, if scene content is  known a-priori, a parameterized geometry 
model may be matched to multi-video footage to obtain a high-quality 
shape description (model-based VBR).
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Course OutlineCourse Outline

• 8:45 – 9:05 Acquisition

• 9:05 – 9:45 Small-baseline VBR

• 9:45 – 10:15 Large-baseline VBR

• 10:15 – 10:30 Break

• 10:30 – 11:00 Camera Calibration

• 11:00 – 11:30 Spacetime Coherence

• 11:30 – 12:00 Model-based VBR

• 12:00 – 12:15 Summary & Outlook
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Acquisition
8:45 – 9:05
Acquisition
8:45 – 9:05

German Cheung
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AcquisitionAcquisition

• Very important!!

– Good acquisition system => good videos => less artifacts + simpler 
processing algorithms + better final results

– Cameras

– Infra-structure

– The capture

– Post-capture processing

Images courtesy of CMU Virtualized Reality™ Lab.

A good acquisition system is as important as good algorithms and software for 
image and video-based rendering.  High quality video images often eliminate the 
need of complicated processing algorithms and artist/manual intervention and 
generally produce better results with less artifacts. Building a good acquisition 
system involves choosing the right camera(s) and designing the capture 
infrastructure. The actual capture and post-capture processing are equally 
important. 
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Choosing The Right CameraChoosing The Right Camera

• Major properties to consider:

– Digital vs. analogue

– Resolution vs. bandwidth & processing time

– Frame mode vs. field mode (jagged images)

– 3 CCD vs. 1 CCD (color leaking especially bad for 
blue screening)

– Easy color adjustment for color calibration

There are several major considerations when choosing the right camera for your 
applications. Analogue cameras generally capture better images than digital 
cameras although the latter are becoming more and more popular because they 
are simpler to set up (without the need of extra capture cards). The higher the 
resolution of the video, the more details of the scene is captured but it also 
means higher bandwidth both during capture and processing. Frame mode (non-
interlaced) cameras are highly preferred over field mode (interlaced) cameras 
because the latter ones produce jagged images when capturing fast motion. 
Moreover, cameras with 1 CCD (as compared to 3 CCD) tend to have color 
leaking artifacts which are especially bad for background subtraction and blue 
screening (see next slide for examples of field-mode, color leaking artifacts). The 
ability to adjust color response is also important for multiple cameras system 
because cameras with vastly different color responses will produce mismatching 
color artifacts, especially when view-dependent rendering algorithms are used. 
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Image ArtifactsImage Artifacts

Jagged due to
motion

Image captured by
field mode camera

Image captured by
single CCD camera

Color leak

The picture in the left are taken with a camera in field mode. The interlaced odd 
and even fields create jagged image of the moving arm. The picture in the right is 
captured by a camera with only one CCD. There is “color leaking” (rings of RGB) 
from one pixel to another. 
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CamerasCameras

• Other considerations

– Frame rate (fast motion vs. slow motion)

– Lens (zoom in/out, wide angle vs lens distortion)

– Shutter speed vs Motion blur

– Dynamic range (lighting) 

Motion blur

Other minor factors to be considered for camera selection include lens selection 
(lens distortion effect caused by wide-angle lens),  frame rate (frame rate higher 
than 60Hz is desired when capturing very fast motion such as baseball pitching 
and golf swinging),  shutter speed adjustment to avoid motion blur (see the 
attached picture) and finally the dynamic range of the camera with respect to 
extreme lighting of the scene. 
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The Infra-structureThe Infra-structure

• Single vs Multiple (how many?) cameras

• Camera placement 

– Wide base-line (visual hull approach): cameras placed as 
“orthogonal” to each other as possible 

– Narrow base-line (stereo): pair cameras

– adding overhead cameras always help!

• Bandwidth, time-code, synchronization

• Lighting (as even and diffused as possible)

• Capturing software: multiple cameras/pc communications

• Geometric + color calibration of all cameras

Besides choosing a suitable camera, a good infra-structure is also important. The 
processing algorithms will probably determine the number of cameras used and 
their placements (adding overhead cameras almost always help). Camera 
synchronization and time-code are necessary to make sure the images from 
multiple cameras are captured and processed correctly time-wise. The bandwidth 
is always a problem especially for high speed and high resolution cameras (For 
10 cameras captured at 30f/s full RGB color with resolution of 640x480 amounts 
to approximately 270Mbytes/s of data). Lossy compression for faster data 
transfer and storage (such as jpg) is not recommended especially when blue 
screening is used. Finally fast and easy geometric calibration and color balancing 
(which can be difficult to do once there are more than 20 cameras) and reliable 
communications between the capture PCs are essential requirements of the 
capture system.
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Example System: CMU 
Virtualized Reality™ Lab.
Example System: CMU 
Virtualized Reality™ Lab.
– Started in 1996 as 3D Dome, 

now 3rd generation

– 24 PCs, 48 synchronized and 
time-coded cams. 

– continuous capture: 640 x 480 
resolution, 30f/s for over 2 hrs

– http://www.cs.cmu.edu/~virtualizedr

Images courtesy of CMU Virtualized Reality™ Lab.

3D Cage: 3rd generation 
Virtualized Reality™ Lab. 

The Virtualized Reality™ project was started in 1996 and was considered as the 
first system of its kind. The image shown in the left is the third generation of the 
laboratory which consists of 48 cameras controlled by 25 PCs. The cameras are 
time-coded and synchronized. The system can be used to capture scene at 30f/s 
at full color and resolution (640x480) continuously for over 2 hours. This facility is 
an ideal test-bed for performing VBR research. A detailed system design for the 
second generation of Virtualized Reality™ Lab. can be found in [Kanade et. al. 
1998] and its infra-structure is shown in the figure on the right.

[Kanade et. al. 1998] T. Kanade, H. Saito and S. Vedula. The 3D Room: 
Digitizing time-varying 3D events by synchronized multiple video streams. 
Technical Report CMU-RI-TR-98-34, Robotics Institute, Carnegie Mellon 
University, 1998.
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The CaptureThe Capture

• Plan and rehearse (make sure equipment works 
especially if you are hiring expensive actors)

• Clean up the background

• Always capture background images (even if you 
end up not using them)

• Instant playback of all captured videos, if possible

• Capture multiple times

Detailed planning and rehearsal will facilitate smooth operations during the actual 
capture. While some processing algorithms do not require background images, it 
is always useful to capture them. Another useful feature during capture is the 
ability to play back the captured videos (of at least a sub-set of all the cameras) 
for instant feedback. Finally if possible, capture multiple times and choose the 
best sequence to process. 
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Post-capture ProcessingPost-capture Processing

• Field mode correction
– Throw away one field and interpolate the other 

• Geometric calibration
– Recover both extrinsic and intrinsic parameters

• Silhouette generation
– Construct Visual Hull

– Restrict search window in stereo

– Mask out irrelevant information (processing speed)

After the capture, several post-capture steps will help ease subsequent  data 
processing. If field mode cameras are used, it is important to remove the jagged-
edge artifacts by removing either the odd or even field and interpolate the other 
for a full frame image. Geometric calibration is needed before building Visual 
Hulls (VH) or estimating depth information from the video using stereo. Note that 
wrong camera calibration can render a whole set of high quality videos useless. 
Silhouettes are essential in VH construction and useful in reducing for example 
the search window size in stereo calculation and thus reduce processing time. 
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Background SubtractionBackground Subtraction
Foreground image Background image Final silhouette

Difference

Connected 
component analysis

&
Morphological

(dilations + erosions)

Manual 
corrections

slow: not for real time

To generate silhouette image from a foreground and a background image, the 
difference of the two images are compared to a threshold (or a set of thresholds) 
to classify the image into silhouette and non-silhouette pixels. Connected 
component analysis (grouping the pixels into connected regions) is very effective 
in removing spurious pixels wrongly classified in the thresholding process. 
Morphological operations can then be used to further fill in holes of the silhouette 
image. Finally for difficult regions such as dark cast shadows, manual corrections 
may be needed  if precise silhouettes are required for subsequent processing.  
Note that the connected component analysis and morphological operations are 
slow processes and are not suitable for real-time applications. Chroma-keying 
such as that in [Smith and Blinn 1996] can also be used if the system is setup 
with blue screening. 

[Smith and Blinn 1996]  A. Smith and J. Blinn. Blue Screen Matting. In Computer 
Graphics Annual Conference Series (Siggraph’96), pages 259-268, 1996.
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Region-based ApproachRegion-based Approach

• Fast but robust enough for real-time applications

• Remove shadows on the floor by calculating the angles 
between the color (RGB) vectors between the background 
pixel and the run-time pixel

Thresholds

silhouette extractor
+ shadow removal

Background Segmentation

For real-time background subtraction, the region-based approach is quite 
effective to produce reasonable silhouettes. A pre-processing step is used to 
collect statistics of the background image with its pixels divided into regions to 
allow different thresholds for different regions. For shadow removal, the angle 
between the RGB vectors of the run-time image pixel and the background image 
pixel is calculated. This angle is usually small for shadowed pixels which are then 
removed by a color angle threshold. Note that other more sophisticated but 
complex real-time background subtraction algorithms ( [Horprasert et. al. 1999] 
and [Ivanov et. al. 2000]) can also be used.

[Horprasert et. al. 1999] T. Horprasert, D. Harwood and L. Davis. A Statistical 
Approach for Real-time Robust Background Subtraction and Shadow Detection. 
In Proceedings of International Conference on Computer Vision (ICCV’99), 
Frame-rate Workshop, September, 1999.

[Ivanov et. al. 2000] Y. Ivanov, A. Bobick and J. Liu. Fast Lighting Independent 
Background Subtraction. International Journal on Computer Vision, 37(2):199-
207, 2000.
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Small-baseline VBR
9:05 - 9:45

Small-baseline VBR
9:05 - 9:45

Wojciech Matusik

Marcus Magnor
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3D TV – Our Vision 3D TV – Our Vision 

• Immersive

• Unobtrusive

• Multi-user

Just like a window!

In 1908, Gabriel Lippmann, who made major contributions to color 
photography and three-dimensional displays, contemplated producing a 
display that provides a “window view upon reality” [Lippmann 1908]. 
Stephen Benton, one of the pioneers of holographic imaging, refined
Lippmann’s vision in the 1970s. He set out to design a scalable spatial 
display system with television-like characteristics, capable of delivering full 
color, 3D images with proper occlusion relationships. The display should 
provide images with binocular parallax (i.e., stereoscopic images) that can 
be viewed from any viewpoint without special glasses. Such displays are 
called multiview autostereoscopic since they naturally provide binocular 
and motion parallax for multiple observers. 3D video usually refers to 
stored animated sequences, whereas 3D TV includes real-time 
acquisition, coding, and transmission of dynamic scenes. In this paper we 
present an end-to-end 3D TV system with 16 independent high-resolution 
views and autostereoscopic display.
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3D TV – Our Goals3D TV – Our Goals

• Capture light flowing through 
a “window”

• Real-time transmission

• Automultiscopic light field 
display

We present a system for real-time acquisition, transmission, and high-
resolution 3D display of dynamic multiview TV content. We use an array 
of hardware-synchronized cameras to capture multiple perspective views 
of the scene. We developed a fully distributed architecture with clusters of 
PCs on the sender and receiver side. We implemented several large, 
high-resolution 3D displays by using a multi-projector system and
lenticular screens with horizontal parallax only. The system is scalable in 
the number of acquired, transmitted, and displayed video streams. The 
hardware is relatively inexpensive and consists mostly of commodity 
components that will further decrease in price. The system architecture is 
flexible enough to enable a broad range of research in 3D TV. Our system 
provides enough viewpoints and enough pixels per viewpoint to produce a 
believable and immersive 3D experience.
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ChallengesChallenges

• Bandwidth

• Processing

• Real-time

• Multiview autostereoscopic display

• End-to-end system

• Automatic setup and calibration

This project comes with many challenges. First, it requires a huge amount 
of bandwidth and processing power. This is especially true since we would 
like our system to be real-time. It also requires building a multiview 
autostereoscopic display. Assembling all the pieces together also proved 
to be a challenge. Finally, we would like the system to be very easy to set-
up and calibrate.
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ContributionsContributions

• Real-time end-to-end 3D TV system 

• Distributed, scalable architecture

• Multiview video rendering

• Computational alignment for 3D displays 

We make the following contributions: System: the first real-time end-to-
end 3D TV system with 16 independent high-resolution views and
autostereoscopic display. Distributed architecture: In contrast to 
previous work in multiview video we use a fully distributed architecture for 
acquisition, compression, transmission, and image display. Scalability: 
The system is completely scalable in the number of acquired, transmitted, 
and displayed views. Multiview video rendering: A new algorithm 
efficiently renders novel views from multiple dynamic video streams on a 
cluster of PCs. High-resolution 3D display: Our 3D display provides 
horizontal parallax with 16 independent perspective views at 1024×768 
resolution. Computational alignment for 3D displays: Image alignment 
and intensity adjustment of the 3D multiview display are completely 
automatic using a camera in the loop.
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OutlineOutline

• Previous Work

• 3D Display

• System Architecture

• Display Calibration

• Rendering
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• Stereoscope [Wheatstone 1838]

• Parallax stereogram [Ives 1903]

• Integral display [Lippman 1908]

• Parallax panoramagram [Ives 1928]

• Lenticular sheets, 1930s

• Hologram [Gabor 1948]

Previous Work – BeginningsPrevious Work – Beginnings

A lot of the significant work in this area dates back to 19th and early 20th

century. This proves that people have been fascinated with the 3D for 
quite some time. Parallax displays emit spatially varying directional light. 
Much of the early 3D display research focused on improvements to
Wheatstone’s stereoscope. In 1903, F. Ives used a plate with vertical slits 
as a barrier over an image with alternating strips of left-eye/right-eye 
images [Ives 1903]. The resulting device is called a parallax stereogram. 
To extend the limited viewing angleand restricted viewing position of
stereograms, Kanolt [Kanolt 1918] and H. Ives [Ives 1928] used narrower 
slits and smaller pitch between the alternating image stripes. These
multiview images are called parallax panoramagrams. Stereograms and
panoramagrams provide only horizontal parallax. In 1908, Lippmann
proposed using an array of spherical lenses instead of slits [Lippmann
1908]. This is frequently called a “fly’seye” lens sheet, and the resulting 
image is called an integral photograph. An integral photograph is a true 
planar lightfield with directionally varying radiance per pixel (lenslet). It is 
widely acknowledged that the hologram was invented by Dennis Gabor in 
1948 [Gabor 1948], although the French physicist Aim´e Cotton first 
described holographic elements in 1901. Holographic techniques were 
first applied to image display by Leith and Upatnieks in 1962.
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• Model-based systems

[Kanade 97], [Gross 03], [Carranza 03]

• Light-field systems

[Levoy 96], [Gortler 96], [Schirmacher 01], [Yang 02],

[Wilburn 02], [Naemura 02]

• Multiview video compression and transmission

[Fehn 02], [Magnor 03], [Ramanathan 03], [Yang 02],

[Tanimoto 03], [Zitnick 04], [Smolic 03]

Previous Work – AcquisitionPrevious Work – Acquisition

One approach to 3D TV is to acquire multiview video from sparsely 
arranged cameras and to use some model of the scene for view 
interpolation. A lightfield represents radiance as a function of position and 
direction in regions of space free of occluders [Levoy and Hanrahan
1996]. Acquisition of dense, dynamic lightfields has only recently become 
feasible. Multiview video compression has mostly focused on static 
lightfields (e.g., [Magnor et al. 2003; Ramanathan et al. 2003]). There has 
been relatively little research on how to compress and transmit multiview
video of dynamic scenes in real-time. Most systems compress the
multiview video off-line and focus on providing interactive decoding and 
display. An overview of some early off-line compression approaches can 
be found in [Javidi and Okano 2002, Chapter 8].
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• Holographic displays

[St.-Hillaire 95], [Maeno 96], [Kajiki 96], [Stanley 00],

[Huebschman 03]

• Volumetric displays

[McKay 00], [Favalora 01]

• Parallax displays

[Nakajima 01], [Liao 02], [Moore 96], [Perlin 00]

• Multi-projector displays

[Raskar 98], [Li 02], [Humphreys 02]

Previous Work – DisplaysPrevious Work – Displays

Stephen Benton’s Spatial Imaging Group at MIT has been pioneering the 
development of electronic holography. Their most recent device, the Mark-
II Holographic Video Display, uses acoustooptic modulators,
beamsplitters, moving mirrors, and lenses to create interactive holograms 
[St.-Hillaire et al. 1995]. In more recent systems, moving parts have been 
eliminated by replacing the acousto-optic modulators with LCD [Maeno et 
al. 1996], focused light arrays [Kajiki et al. 1996], optically-addressed 
spatial modulators [Stanley et al. 2000], or digital micromirror devices 
[Huebschman et al. 2003]. Volumetric displays use a medium to fill or 
scan a three-dimensional space and individually address and illuminate 
small voxels [McKay et al. 2000; Favalora et al. 2001]. Parallax displays 
emit spatially varying directional light. Scalable multi-projector display 
walls have recently become popular [Li et al. 2002; Raskar et al. 1998]. 
These systems offer very high resolution, flexibility, excellent cost-
performance, scalability, and large-format images. Graphics rendering for 
multi-projector systems can be efficiently parallelized on clusters of PCs 
using, for example, the Chromium API [Humphreys et al. 2002].
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OutlineOutline

• Previous Work

• 3D Display 

• System Architecture

• Display Calibration

• Rendering
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• Ideally emit the same light in all directions

Regular PixelsRegular Pixels

Emitted Light

Pixels in regular displays emit the same light in all directions.
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View-dependent PixelsView-dependent Pixels

• Emit different amounts of light/color in different 
directions

Emitted Light

But we would like to have view-dependent pixels. These pixels emit 
different amount of light in different directions.
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View-dependent PixelsView-dependent Pixels

High Resolution Screen

Lens or Pinhole = Pixel

Emitted Light

One way to achieve this is to trade the spatial resolution in the display for 
angular resolution. We put an array of lenses or pinholes on the top of the 
high resolution screen. This will cause the light from different screen 
elements to be emitted in different directions.
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Rear Projection DesignRear Projection Design

Lens = Pixel

Emitted Light

Semi-transparent Material

Lens

We have built two types of prototypes. In the rear projection design we 
have have a semi transparent material sandwiched between to sheets of
lenslets. We illuminate the first lenslet sheet from different directions. This 
creates a high resolution screen on the semi-transparent screen. The light 
from the high resolution screen on the semi-transparent material is 
emitted in different directions.
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Our Rear Projection DisplayOur Rear Projection Display

Semi-transparent
material

Projection-Side
Lenticular Sheet

View er-Side
Lenticular Sheet

Projectors

View er

This slide show a diagram and a picture of our rear projection display. For 
the rear-projection system, two lenticular sheets are mounted back-to-
back with optical diffuser material in the center. We use a flexible rear-
projection fabric from Da-Lite Screen Company (www.da-lite.com). The 
back-to-back lenticular sheets and the diffuser fabric were composited by 
Big3D Corp. (www.big3d.com) using transparent resin that was UV-
hardened after hand-alignment. The front-projection system uses only one
lenticular sheet with a retro-reflective front-projection screen material from
Da-Lite mounted on the back. 



36

Front Projection DesignFront Projection Design

Reflective Material

Lens

Next we have explored a front-projection design. This is the one we were 
showing at e-tech last year. We illuminate the first lenslet sheet from 
different directions. This creates a high resolution screen on the retro-
reflective screen.
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Front Projection DesignFront Projection Design

Reflective Material

Lens

Emitted Light

The light is reflected back towards the user.



38

Our Front Projection DisplayOur Front Projection Display

Reflective
Material

Lenticular Sheet

Projectors

View er

This is the system diagram and the corresponding picture. The projection-side
lenticular sheet of the rear-projection display acts as a light multiplexer, focusing 
the projected light as thin vertical stripes onto the diffuser. The viewer-side
lenticular sheet acts as a light de-multiplexer and projects the view-dependent 
radiance back to the viewer. Note that the single lenticular sheet of the front-
projection screen both multiplexes and de-multiplexes the light.
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Limitations – Field of ViewLimitations – Field of View
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These systems come with some limitations. First of them is the limited 
field of view. In our case, the FOV is 30 degrees, leading to 180/30 = 6 
viewing zones. At the border between two neighboring viewing zones 
there is an abrupt view-image change (or “jump”) from view number 16 to 
view number one. The only remedy for this problem is to increase the 
FOV of the display.
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Limitations –
Discretization & Cross-talk
Limitations –
Discretization & Cross-talk
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The next limitations are discretization of the angular domain and cross-
talk. Angular domain of each view-dependent pixel is discretized into a 
relatively small number of intervals (in our case 16). This can cause inter-
perspective aliasing. Cross-talk occurs when values from a certain view 
spill over into the neighboring views.
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Display Trade-offsDisplay Trade-offs

• Horizontal and vertical parallax 3D TV

– requires O(n2) bandwidth, computation, & cost

• Horizontal parallax only 3D TV

– requires O(n) bandwidth, computation, & cost

– still produces immersive and convincing 3D experience 

When designing a 3D display there is a major trade-off. A display that 
provides both horizontal and vertical parallax requires n*n cameras, 
bandwidth, computation and cost (where n is the number of views in one 
direction). A display that provides horizontal parallax requires n cameras, 
bandwidth, computation, and cost and it still produces and immersive and 
convincing 3D experience. We have built a display with horizontal only 
parallax but all system components that we describe next would work for 
both types.
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OutlineOutline
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System ArchitectureSystem Architecture

Acquisition
Compression

Transmission
3D Display

A 3D TV system consists of three major components: (1) Acquisition using 
a camera array. (2)  Compression and Transmission. (3) Display using 
an automultiscopic display. The acquisition stage consists of an array 
of hardware synchronized cameras. Small clusters of cameras are 
connected to producer PCs. The producers capture live, 
uncompressed video streams and encode them using standard MPEG 
coding. The compressed video streams are then broadcast on 
separate channels over a transmission network, which could be digital 
cable, satellite TV, or the Internet. On the receiver side, individual 
video streams are decompressed by decoders. The decoders are 
connected by network (e.g., gigabit Ethernet) to a cluster of consumer 
PCs. The consumers render the appropriate views and send them to a 
standard 2D, stereo-pair 3D, or multiview 3D display.
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AcquisitionAcquisition

• Array (16) of hardware 
synchronized, calibrated, 
cameras

• Distributed acquisition 

Cameras

Camera Sync

Producers

Each camera captures progressive high-definition video in real-time. We 
are using 16 Basler A101fc color cameras (www.baslerweb.com) with 
1300×1030, 8 bits per pixel CCD sensors. The cameras are connected by
IEEE-1394 (FireWire) High Performance Serial Bus to the producer PCs.
The maximum transmitted frame rate at full resolution is 12 frames per 
second. Two cameras each are connected to one of eight producer PCs. 
All PCs in our prototype have 3 GHz Pentium 4 processors, 2 GB of RAM, 
and run Windows XP. We arranged the 16 cameras in a regularly spaced 
linear array. The optical axis of each camera is roughly perpendicular to a 
common camera plane. It is impossible to align multiple cameras 
precisely, so we use standard calibration procedures [Zhang 2000] to 
determine the intrinsic and extrinsic camera parameters.
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Compression & TransmissionCompression & Transmission

• Temporal encoding

– Each stream encoded separately

– Uses existing video standards (MPEG-2)

– Scalable

• Spatial (multiview) encoding

– Not scalable

– Not real-time

• Both temporal & spatial encoding

– Best compression

Transmitting 16 uncompressed video streams with 1300×1030 resolution 
and 24 bits per pixel at 30 frames per second requires 14.4 Gb/sec 
bandwidth, which is well beyond current broadcast capabilities.For 
compression and transmission of dynamic multiview video data there are 
two basic design choices. Either the data from multiple cameras is 
compressed using spatial or spatio-temporal encoding, or each video 
stream is compressed individually using temporal encoding. The first 
option offers higher compression, since there is a lot of coherence 
between the views. However, it requires that multiple video streams are 
compressed by a centralized processor. This compression-hub 
architecture is not scalable, since the addition of more views will 
eventually overwhelm the internal bandwidth of the encoder. 
Consequently, we decided to use temporal encoding of individual video 
streams on distributed processors. 
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Compression & TransmissionCompression & Transmission

Producers Broadcast (Cable, SatTV, Internet, etc.) Decoders

This strategy has other advantages. Existing broadband protocols and 
compression standards do not need to be changed for immediate real-
world 3D TV experiments and market studies. Our system can plug into 
today’s digital TV broadcast infrastructure and co-exist in perfect harmony 
with 2D TV. Similar to HDTV, the introduction of 3D TV can proceed 
gradually, with one 3D channel at first and more to follow, depending on 
market demand. Another advantage of using existing 2D coding standards 
is that the codecs are well established and widely available. Tomorrow’s 
digital TV set-top box could contain one or many decoders, depending 
whether the display is 2D or multiview 3D capable. Note that our system 
can adapt to other 3D TV compression algorithms [Fehn et al. 2002].



47

Distributed DisplayDistributed Display

• Decoders

– decode video streams

– send pixel streams to 
consumers

• Consumers

– render video streams

Decoders Consumers

Controller

Netw ork
Projectors

The decoders receive a compressed video stream, decode it, and store 
the current uncompressed source frame in a buffer. Each consumer
has a virtual video buffer (VVB) with data from all current source 
frames (i.e., all acquired views at a particular time instance). The 
consumer then generates a complete output image by processing 
image pixels from multiple frames in the VVB. Due to bandwidth and 
processing limitations it would be impossible for each consumer to 
receive the complete source frames from all the decoders. This would 
also limit the scalability of the system.
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Distributed DisplayDistributed Display

• Controller 

– decides where to send 
pixels

– ensures data flow to each 
consumer is at most k x 
video stream (k = 3)

– allows interactively 
changing display 
parameters

Decoders Consumers

Controller

Netw ork
Projectors

A controller PC is a very important component of this subsystem. Its tasks 
are: deciding where to route pixels & ensuring that data flow to each 
consumer is at most k* bandwidth of a video stream. It allows us to 
change display parameters interactively.
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Our System Our System 

Cameras

Camera Sync

Producers /
Decoders

Consumers

Gigabit
Ethernet

Projectors

Multi-view
Autostereoscopic

Display

Because we did not have access to digital broadcast equipment, we 
implemented the modified architecture producer PCs are connected by 
gigabit Ethernet to eight consumer PCs. Video streams at full camera 
resolution (1300×1030) are encoded with MPEG-2 and immediately 
decoded on the producer PCs. This essentially corresponds to a 
broadband network with infinite bandwidth and almost zero delay. We plan 
to introduce a more realistic broadband network simulation in the future. 
The gigabit Ethernet provides all-to-all connectivity between decoders and 
consumers, which is important for our distributed rendering and display 
implementation.
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Display CalibrationDisplay Calibration

• Geometric calibration

– Project checkerboard pattern

– Compute homographies

– Compute intersection

– Compute maximum rectangle

• Photometric Calibration

Projector Array

Calibration
Camera

Display Plane

Automatic projector calibration for the 3D display is very important. We 
first find the relationship between rays in space and pixels in the projected 
images by placing a camera on the projection side of the screen. Then we 
equalize the intensities of the projectors. For both processes, the display 
is covered with a diffuse screen material. We use standard computer 
vision techniques [Raskar et al. 1999; Li et al. 2002] to find the mapping of 
points on the display to camera pixels, which (up to unknown scale) can 
be expressed by a 3× 3 homography matrix. The largest common display 
area is computed by fitting the largest rectangle of a given aspect ratio 
(e.g., 4:3) into the intersection of all projected images.
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OutlineOutline
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• 3D Display

• System Architecture

• Display Calibration
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No RenderingNo Rendering
Cameras

Camera Sync

Retro-Reflector

Lenticular SheetProjectors

Viewer

3D Autostereoscopic Display

One possible implementation of our system uses a one-to-one mapping of 
cameras to projectors. In this case, the images need to be rectified using 
the camera calibration parameters, since the cameras are not accurately 
aligned. This approach is very simple and scales well. 
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Simple System LimitationsSimple System Limitations

• Physical alignment is difficult

• No flexibility

Unfortunately this does not quite work. This is because the physical 
alignment of the projectors and cameras is difficult. Furthermore, there is 
no flexibility at all. For example, suppose that we have a different number 
of projectors and cameras. You might also need to perform proper filtering 
to remove anti-aliasing.
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Lightfield RenderingLightfield Rendering

• Unstructured Lumigraph Rendering [Buehler 01]

– Blend 3 rays / pixel

• Closest ray

– 1 ray / pixel

Another, more flexible approach is to use image-based rendering to 
synthesize views at the correct virtual camera positions. We are using 
unstructured lumigraph rendering [Buehler et al. 2001] on the consumer 
side. As in regular lightfield rendering, the geometric proxy for the scene is 
a single plane that can be set arbitrarily. We choose the plane that is 
roughly in the center of our depth of field. The virtual viewpoints for the 
projected images are chosen at even spacings.
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Lightfield RenderingLightfield Rendering

• Flexible and interactive control of

– Proxy Plane

– Zero-disparity Plane

But the main advantage of lightfield rendering is the flexibility how we 
render the scene. In particular, I will explain how we can change 
interactively the proxy plane and zero-disparity plane. 



57

Lightfield RenderingLightfield Rendering

Proxy

Scene

��� ���������

Let’s assume we have the following scene. If our geometric proxy for 
lightfield rendering corresponds to the actual scene geometry. Then we 
can render views of this scene from arbitrary viewpoints well. In practice, 
we do not have the actual scene geometry.
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Lightfield RenderingLightfield Rendering

Proxy

Scene
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And instead we use a plane as a geometric proxy. Only parts of the scene 
that are close to this plane will appear sharp. The rest of the scene will be 
typically blurry. We can interactively change the position of this plane.
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Display
Plane

Effect of Display DisparitiesEffect of Display Disparities

Let’s look what happens on the display side. We have a choice what 
appears in front and what appears behind the physical display plane. A 
point in front has a disparity which is a distance between displayed pixels. 
A point behind has a disparity in the other direction as shown in the figure. 
A point on the display has zero disparity.
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Zero-disparity PlaneZero-disparity Plane

Zero-disparity
Plane

The points with zero disparity on the display lay on the a virtual plane that 
goes through the scene. We call this plane the zero disparity plane. We 
can move this plane backwards and forwards by choosing proper 
viewpoints in the light field rendering.
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Zero-disparity & Proxy PlaneZero-disparity & Proxy Plane

Zero-disparity
Plane

Proxy

In general the zero disparity plane and the proxy plane do not have to 
coincide. But it is best if they do so that the parts of the scene that have 
zero disparity are rendered very sharp and the parts of the scene with 
more disparity are not as sharp. This method reduces interperspective
aliasing.
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ConclusionsConclusions

• Real-time end-to-end 3D TV system

• Distributed, scalable architecture

• 3D TV is technically feasible and economically 
practical today

Most of the key ideas for the 3D TV system presented here have been 
known for decades, such as lenticular screens, multiprojector3D displays, 
and camera arrays for acquisition. The main advance over previous 
systems is to a large extent technological; such a system simply could not 
have been built until cameras and projectors were inexpensive enough 
and until computation was fast enough. We believe our system is the first 
to provide enough viewpoints and enough pixels per viewpoint to produce 
an immersive and convincing 3D experience (at least in the horizontal 
direction) without special glasses. It is also the first system that provides 
this experience in real-time for dynamic scenes.
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Dynamic Light Field WarpingDynamic Light Field Warping

• 2D-array of synchronized 
video cameras
– “window" to scene

– Parallax

• Warping
– Disparity compensation

– Dense depth information

• Pre-recorded, static scene 
background

• Unknown foreground
Stanford Multi-Camera Array

In our second example for small-baseline VBR, we now consider the case where 
our acquisition cameras are still placed close together, but the recorded images 
already show noticeable disparity, i.e., 3D scene points are projected to 3D 
image-space coordinates that differ by several pixels. As in the 3D TV system, 
many video cameras are arranged in a more or less regular grid with all cameras 
facing in the same direction. Small differences in camera orientation can be 
correct for using image rectification techniques. 

Static scene background is recorded prior to acquiring the unknown, dynamic 
scene foreground (the dancer in our example).  The cameras sample the scene’s 
dynamic light field. The array of cameras spans a surface we refer to as the 
recording hull. Dynamic light field warping is able to render the scene from any 
viewpoint situated on this recording hull.
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Depth-from-StereoDepth-from-Stereo

?

?

center-of-projection

baseline

epipolar line

center-of-projection

Because adjacent camera images show parallax, we have to be able to 
compensate for this disparity if we are to render aliasing-free images. For two 
images whose planes are aligned in parallel, disparity is the difference in pixel 
coordinates for the same 3D scene point. The amount of disparity is directly 
proportional to baseline length and inversely proportional to the distance from the 
camera pair. Through camera calibration, we know the baseline, camera imaging 
characteristics and therefore also the epipolar geometry. 

To compensate disparity for many cameras, it is convenient to first determine the 
distance of the 3D scene point to the cameras. Per-pixel scene depth is 
estimated by turning disparity compensation around: for each pixel in the left 
image, we find the corresponding pixel (along the epipolar line) in the right image. 
The difference in image coordinates is the point’s disparity, and via camera 
calibration we get its depth. The big challenge in depth-from-stereo is now how to 
robustly determine image correspondences.
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Depth DiscretizationDepth Discretization

• Correspondences
between image pixels

– Discrete disparity values

– Discrete depth levels

• For rectified images

– minimal distance 
scene-to-cameras:

• Finite search range

discrete depth levels

discrete pixels

In the depth estimation approach described in the following, we make use of the 
fact that for our purpose, scene depth can be discretized into finitely many depth 
levels. Because we record digital images, pixel correspondences can sensibly be 
stated only with finite precision. If we determine pixel correspondence by stating 
only integer pixel positions, the number of pixels along the epipolar line already 
limits the number of possible depth levels. If the optical axes are aligned in 
parallel, and the scene is at least a minimum distance away from the cameras, 
disparity range is further restricted.

In consequence, each pixel is the projection of a 3D scene point that must lie on 
one of n depth levels.
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Multi-View Depth EstimationMulti-View Depth Estimation

• Desirable properties

– Dense depth maps

– Robust

– Smooth

– Discontinuities preserved

– Globally consistent

– All images considered equally

– Per-pixel foreground/background 
segmentation

� Combinatorial Optimization
– [Kolmogorov & Zabih 2002] 

Depth-from-stereo has been investigated in computer vision for decades. 
Surprisingly, only relatively few algorithms have been proposed that can make 
efficient use of having more than 2 or 3 camera images of the scene available. 
Ideally, the depth estimation algorithm should meet a number of requirements. 
One approach that comes fairly close is based on combinatorial optimization.
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Min-Cut/Max-Flow 
Optimization
Min-Cut/Max-Flow 
Optimization
• Flow network
– Directed graph
– Weighted edges

• Capacities xi

– Flow from source s to sinkl t
• Maximal Flow
– Limited by “smallest edges"
– [Ford&Fulkerson 1962], [Goldberg&Tarjan 1988]

• O(n2m) (n nodes, m edges)

• s-t cut
– Cut through limiting edges
– Separation into two parts

• Binary optimization
– nodes vi remain connect either to s or to t

ss

vv22

vv33vv11

tt

xx11

xx22

xx33

xx55

xx66 xx77

xx44

The depth estimation algorithm we present is based on binary graph cuts. 
Consider a complex network of pipes of various different diameters and therefore 
different throughput, or capacity. What flows through this pipe network from one 
node, the source, to another node, the sink. How much water can maximally flow 
through the network ? Obviously, at the maximum flow some pipes are at the limit 
of their capacity while others could still transport more water. Given a network of 
different-capacity pipes, graph cut algorithms are able to determine which pipes 
are the limiting factor. Note that by cutting the network at these places, the graph 
is separated into to disjunctive parts, one still connected to the source, the other 
to the sink.

By finding a clever formulation of the depth-from-stereo problem in terms of a 
directed, weighted graph, depth can be reconstructed via binary graph-cut 
optimization.
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Depth Reconstruction via 
Combinatorial Optimization
Depth Reconstruction via 
Combinatorial Optimization

• For each pixels p∈ Pk in all cameras k
– Assign label l

• Finite number of different labels l = (ld , lb )

• ld depth level (multiple labels)

• lb foreground / background (binary label)

• Configuration λ
– Label assignment of all  pixels

– Associated error

The underlying idea is to assign to each pixel one of finitely many different labels. 
Each label stands for a different depth layer, and in our case also for the pixel 
classification as image fore- or background. A configuration is a specific 
assignment of labels to all pixels. Each configuration corresponds either to a 
specific scene geometry, or to an impossible case (as we will see in a moment). 
By comparing the scene geometry as expressed by the label configuration to the 
all camera images, a quantitative measure can be established how likely this 
configuration may be. A likely configuration would have a small error value, while 
a very unlikely configuration would correspond to a high error value. 
Consequently, impossible configuration should have an infinitely high error value.

The task is now to find that label configuration that corresponds to the smallest 
possible error value.
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αααα-Expansionαααα-Expansion

• Max-flow / Min-cut minimization
– Binary optimization
– Here: many different label

• Multiway graph cut problem: NP-hard

• α -Expansion  
– [Boykov et al., PAMI 2001]
– Iterative

• Many binary optimizations in sequence

– Initialization: allowed configuration
• Converges towards strong local minimum 

• Multiplicative factor to global minimum

If we had only two different labels to choose from, we could construct a 
graph whose source node represents one label and the sink node the 
other, while the other nodes would all correspond to all image pixels. All 
pixel nodes would be connected to the sink and source node, and more 
edges would link pixel nodes to represent potential correspondences. We 
would have to find a way to assign correct weights to the edges, but then 
the binary graph cut algorithm would separate the graph into two parts, 
with one part still attached to the source node label, and the other pixel 
nodes connected to the sink node label, and we would have our optimal 
configuration.

Unfortunately, we have more than two labels to choose from for each 
pixel. Because the multi-way graph cut problem is almost certainly NP-
hard, we have to use an iterative strategy. Alpha expansion works by 
starting from a possible configuration and considering all labels 
subsequently. It iterates over all labels until no better configuration can be 
found anymore. While it cannot guarantee to converge towards the global 
minimum, it always finds a strong local minimum whose error is larger 
than the global minimum by at most a multiplicative factor that is 
determined by the error function.
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αααα- Expansionαααα- Expansion

• Iteration 

– Consider label α:

• Find subset A of all pixels P such that:
if α is assigned to A, total error becomes minimal

– Repeatedly iterate over all possible labels 

– Terminate when total error decreases no further

• Determining A : binary problem !

– Equivalent to minimal s-t cut

The alpha expansion algorithm considers one label after the other. For 
each currently considered label, a binary graph is constructed, and the 
graph cut is determined. Thus, the multi-way graph cut problem is 
attacked by performing many binary graph-cut optimizations.
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Graph ConstructionGraph Construction

– Nodes correspond to pixels P

– Two special nodes

• Source λ current label configuration

• Sink α currently considered label  

– Edge weights

• Determined by energy functional

– [Kolmogorov & Zabih, ECCV’02]

– Additivity Theorem

› Sum of two graph-representable
functions is again graph-representable

pixels

sink

source

1p 2p np

α

λ

... ...

The graph is constructed as follows: The source node represents the 
current configuration, i.e., the individual label currently assigned to each 
pixel. The sink node is the label currently under scrutiny (e.g., the label for 
depth level 5, foreground). The edge weights are determined from an 
energy functional (that we will get to in a moment) in a clever way 
described by Kolmogorov and Zabih in their ECCV’02 paper.
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Energy Minimization 
via  Graph Cuts
Energy Minimization 
via  Graph Cuts

– Construct graph for λ, α

– Determine minimal s-t cut 
• Each pixel nodes remains connected 

either to the source or the sink

• Sum of all cut edge weights is minimal

– Assign label α to all pixels that 
remain connect to the sink

– Repeatedly iterate α
over all labels until no further 
energy minimization possible

1p 2p np

α

λ

... ...

cut

1p 2p np

α

λ

... ...

The s-t cut of this graph is computed. All pixels whose nodes remain 
connected to the source node are not altered, while those pixels that 
remain attached to the sink node are assigned the current sink node label. 
Together, the labels of all pixels constitute the new configuration. For the 
next step, a new graph is constructed with the updated configuration as 
source node and a different label as sink node. The algorithm iterates until 
no more energy-minimizing graph cuts become possible.
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Energy FunctionalEnergy Functional

– Represents knowledge about image formation process

• Concsistency, local similarity, Visiblity, Background

– Minimization: Find optimal configuration λ
• Assign best-matching label to each pixel p,q∈ P
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So far, we have not specified what makes a certain label configuration 
more (or less) probable than another given a set of multi-stereo images. 
This is the job of the energy functional. The energy functional represents 
our high-level knowledge about how the content of a set of images of a 
scene should behave. Our error functional consist of 4 terms that we are 
going to describe in more detail.
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Photo-ConsistencyPhoto-Consistency

cameras

depth levels
d d’

.
p

q

• Set I of interacting pixels 
{<p, l>,<q, l>}

– q∈Pk, p∉Pk from different cameras

– q closest pixel in camera k to
projection of  <p, l>

– p,q same label

• Projections of the 
same scene point
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The photo-consistency term represents our expectation that a scene point 
is similar in appearance in different images. Two pixels p and q from 
different cameras can only belong to the same scene point if they fulfill the 
epipolar constraint, i.e., p and q can potentially be the projections of the 
same 3D scene point, and if both pixels the same depth label l. All pixel 
pairs of a configuration that meet all three requirements form the set of 
interacting pixels. Reasonably, photo consistency can be measured for 
interacting pixels only, while for all other pixels the term is set to zero.
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Photo-ConsistencyPhoto-Consistency
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• Similarity measure C(p,q)

– Local neighborhood of p, q

– Normalized cross correlation (NCC)

• of color values

• of 2. derivative

– Laplacian filter

– edges, corners

camera 1

camera 2

p

q

For the interacting pixel pairs, we have to quantify their similarity. One 
convenient way to do so is to compute the normalized cross correlation 
(NCC) between the local neighborhoods of pixels p and q. If the regions 
around p and q are similar, the NCC is close to 1, else it is smaller. 

Besides matching relative pixel color values, it is a good idea to 
additionally emphasize correct matches of object edges and corners 
because our Human Visual System is very sensitive to image 
discontinuities. To do so, we compute the second derivative of our images 
by applying the Laplacian operator. In the Laplacian-filtered images, object 
edges and corners show up with high contrast. We calculate the NCC also 
between these high frequency-enhanced images and add it to the pixel-
color NCC value.
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OcclusionsOcclusions
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• set O of mutually occluding 
pixels {<p, l>,<q, l'>}

– {<p, l>,<q, l>} ∈ I corresponding 
pixels 

– ld < l'd : <p, ld> occludes <q, l'd>

• Impossible configuration
cameras

depth levels
d d’

.
p

q

When taking images of a three-dimensional scene from different 
viewpoints, parts of the scene are visible in some images but are occluded 
in other camera views. This causes some label assignments to be 
physically impossible

Our label-based discrete scene geometry representation allows us to 
elegantly determine which label assignments are not possible. In our 
example here, pixel p and q would be interacting pixels (i.e., correspond to 
the same 3D scene point at depth level d) if both were labeled l. However, 
pixel q is labeled l’ which corresponds to a larger depth level d’ (d’> d). But 
this cannot be because the scene point corresponding to pixel p occludes 
depth level d’ from view for pixel q. Thus, <p,l> and <q, l’> is an 
impossible configuration which must be prevented by assigning an
“infinitely” high energy to the visibility term. For possible configurations, 
the visibility term has no effect and is set to zero.
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SmoothnessSmoothness
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• Depth discontinuity and 
segmentation along edges

– p, q from same camera, neighbors

– If not same depth, 
fore-/background:
• Error measure dependent on 

second derivative
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The photo-consistency term is able to determine pixel correspondences 
most robustly in image regions of high variations. In more or less uniform 
image areas, mismatches can occur. To minimize faulty correspondence 
assignments, the smoothness term punishes neighboring pixels p and q in 
smooth image regions if both pixels have different labels. Smoothness is 
quantified by the average of the second-derivative image over the patch 
around the pixels. If the average values is low, the image is locally 
smooth, and the smoothness term is assigned a high value (2 Lmax-…). 
The smoothness term is evaluated for each image pixel p with respect to  
his 4 neighboring pixels q.
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Background SegmentationBackground Segmentation
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– Cb(p) Normalized cross-correlation
• local pixel color values 

video image – background image

– Punish high similarity

– Impossible configuration
• Pixel classified as background but different depth

– Uniform background
• correlation possibly erroneous
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Finally, we want to make use of the static background images we took 
prior to recording the action in order to enhance depth estimation 
robustness. If a pixel p is assigned a label indicating that it belongs to the 
foreground, its local neighborhood is compared to the corresponding 
background image via the normalized cross correlation (NCC) C. By 
assigning the NCC value to the background term in this case, high 
similarity between the current image and the background image is
punished, because it is likely that the pixel is actually depicting 
background. If the background region is uniform, the NCC value is not 
reliable, and we do not punish the pixel’s foreground label. If the pixel is 
assigned a label indicating that it belongs to the background, but its depth 
level is not identical to the background depth, the configuration is not 
possible, resulting in an “infinitely” high error value. This implies, of 
course, that we have estimated background scene depth previously. In 
fact, we just apply the same estimation approach described here to the 
background images by leaving out this last background segmentation 
term.
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Foreground/Background 
Stereo Results
Foreground/Background 
Stereo Results

– Static background 
images & depth

– Depth & classification for 
each pixel

The described algorithm returns dense depth maps and foreground 
segmentation masks for all recorded video images. The algorithm runs off-
line. On a conventional 1.7GHz PC, it takes about 65 seconds to iterate 
once over 65 labels for four 320x240-pixel images. 
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RobustnessRobustness

[[GoldlueckeGoldluecke & Magnor, CVPR'03]& Magnor, CVPR'03]

The use of background images to simultaneously estimate depth and 
segment scene foreground increases reconstruction robustness 
considerably. To evaluate estimation robustness, we rendered a set of 
synthetic images, giving us ground-truth per-pixel depth and segmentation 
information. To the pixel values we added Gaussian noise of different 
sigma, stated in 8-bit pixel values along the x axis. The graph shows the 
percentage of pixels that are assigned erroneous labels. Without
background images, error rate increases quickly with noise level. If 
background images are available, much more robust results are obtained. 
The amount of pixels assigned wrong depth or that are segmented 
wrongly is almost identical.
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Dynamic Light Field WarpingDynamic Light Field Warping

• Light field /  Lumigraph rendering

– Arbitrary viewpoint outside convex hull

– Random access to all images

• Bandwidth problem

• 3D warping

– Viewpoint on recording hull

• In-between camera positions

– 4 images per view

• Disparity-compensate neighboring images

• Blend warped images

Light field rendering and Lumigraph rendering re-sample the entire acquired 
image data to render any view from outside the scene’s convex hull. However, 
the light field data must be randomly accessed. For very large data sets, such as 
dynamic light fields, local memory and/or bandwidth quickly limit the overall light 
field size.

To achieve interactive rendering frame rates while streaming the dynamic light 
field from hard drive, we restrict the rendering viewpoint to lie on the recording 
hull spanned by all camera positions. In practice, this is not a major limitation as 
the scene is typically best resolved from viewpoints at distance similar to that of 
the recording cameras (see also [Zitnick et al., Siggraph’04]). For each rendered 
view, four images from camera positions closest to the desired viewpoint are 
taken into account.
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Warping & Blending 
on Graphics Hardware
Warping & Blending 
on Graphics Hardware

• Project regular triangle mesh onto depth map

• Warp mesh to viewpoint

• Projective texture-map triangle mesh

• Weight images according to distance from viewpoint

Dynamic light field warping can be implemented entirely on graphics hardware. 
The four dynamic light field images are uploaded as reference images to the 
graphics board as textures. For each image, a triangle or quad mesh is rendered 
whose vertices are assigned the depth values of the pixel labels they correspond 
to. The (x,y) vertex coordinates represent the mesh’s texture coordinates. The 
mesh is rendered from the desired viewpoint which automatically warps the mesh 
to correctly display the varying depths. The mesh is then projectively textured. 
The renderings from all four reference images are weightedly blended together 
according to spatial distance of the viewpoint from the respective camera 
positions.
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Interactive Rendering Interactive Rendering 

•Per time frame
– 4 images + depth maps 

• Warping
• Blending
• Visibility
– Depth buffer

• Sharp contours
– Fore- / Background

Per time frame, four images and depth-label maps are retrieved from hard drive. 
The images are uploaded to texture memory, while the depth maps are used to 
generate the warping meshes. Mesh resolution can be varied to trade off 
rendering speed vs. disparity compensation accuracy. Occlusions are accounted 
for by using the depth test.

To increase rendering quality, the output image can be rendered in two passes. 
First, only the static background is rendered, before  in a second pass the 
foreground is rendered. For enhanced rendering results, the edges along the 
foreground can be alpha-blended using an additional opacity mask [Zitnick et al, 
Siggraph’04].
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“ Camera Hopping”“ Camera Hopping”

Frozen frame (24 cameras)Frozen frame (24 cameras) Stanford MultiStanford Multi--Camera ArrayCamera Array

If simply hopping from camera to camera, the difference in image parallax is 
annoyingly visible.
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Disparity-compensated 
Rendering
Disparity-compensated 
Rendering

640x480, 30 fps (PC + GeForce3)640x480, 30 fps (PC + GeForce3)

[[GoldlueckeGoldluecke & Magnor,  VMV'02]& Magnor,  VMV'02]

In contrast, smooth transitions between camera views are obtained if dynamic 
light field warping is applied.
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Wide-baseline VBR
9:45 – 10:15

Wide-baseline VBR
9:45 – 10:15

Wojciech Matusik

Marc Pollefeys
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OverviewOverview

Visualizing and navigating within virtual environments composed of both 
real and synthetic objects has been a long-standing goal of computer 
graphics. The term “Virtualized Reality™”, as popularized by Kanade, 
describes a setting where a real-world scene is “captured” by a collection 
of cameras and then viewed through a virtual camera, as if the scene was 
a synthetic computer graphics environment. In practice, this goal has been 
difficult to achieve. Previous attempts have employed a wide range of 
computer vision algorithms to extract an explicit geometric model of the 
desired scene. We present algorithms for synthesizing virtual renderings 
of real-world scenes in real time. Not only is our technique fast, it also 
makes few simplifying assumptions and has few restrictions. 



88

Previous WorkPrevious Work

• Visual Hull
(Laurentini’94)

• Volume Carving
(Potmesil’87, Szeliski’93, Seitz’97)

• View-Dependent Texture Mapping
(Debevec’96, Debevec’98, Buehler’01)

• Virtualized Reality
(Rander’97, Kanade’97, Narayanan’98)

Many researchers have used silhouette information to distinguish regions 
of 3D space where an object is and is not present. The ultimate result of 
this carving is a shape called the object’s visual hull. A visual hull always 
contains the object. Moreover, it is an equal or tighter fit than the object’s 
convex hull. A common method used to convert silhouette contours into 
visual hulls is volume carving. This method removes unoccupied regions 
from an explicit volumetric representation. All voxels falling outside of the 
projected silhouette cone of a given view are eliminated from the volume. 
This process is repeated for each reference image. The resulting volume 
is a quantized representation of the visual hull according to the given 
volumetric grid. Kanade’s virtualized reality system is perhaps closest in 
spirit to the rendering system that we envision. Their initial 
implementations have used a collection of cameras in conjunction with 
multi-baseline stereo techniques to extract models of dynamic scenes.
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What is a Visual Hull?What is a Visual Hull?

Laurentini introduced the visual hull concept to describe the maximal 
volume that reproduces the silhouettes of an object. Strictly, the visual hull 
is the maximal volume constructed from all possible silhouettes. We 
compute the visual hull of an object with respect to a finite number of 
silhouettes. The silhouette seen by a pinhole camera determines a three-
dimensional volume that originates from the camera’s center of projection 
and extends infinitely while passing through the silhouette’s contour on the 
image plane. We call this volume a silhouette cone. All silhouette cones 
exhibit the hull property in that they contain the actual geometry that 
produced the silhouette. For our purposes, a visual hull is defined as the 
three-dimensional intersection of silhouette cones from a set of pinhole 
silhouette images.
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Why use a Visual Hull?Why use a Visual Hull?

• Can be computed robustly

• Can be computed efficiently

- =

background background 
+ + 

foregroundforeground

backgroundbackground foreground foreground 

We use the visual hull because silhouettes can be obtained robustly using 
well known methods such as background subtraction or blue-screen 
matting. The second reason is that visual hulls can be rendered efficiently.
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Image-Based vs. Polyhedral VHImage-Based vs. Polyhedral VH

trianglespoint samplesOutput

PVHIBVH

quadratic in # 
cameras

linear in # 
cameras

Complexity

15 frames/sec8 frames/secPerformance

per-triangleper-pixelVisibility

hardwaresoftwareRendering

There are a few major differences between IBVHs and PVHs. The major 
difference is shape representation. IBVH outputs surfels. PVH outputs 
triangles. Complexity is linear with the number of cameras for IBVH and 
quadratic for PVH Rendering is done in software for IBVH and in hardware 
for PVH. Visibility is computed per surfel for IBVH and per triangle for 
PVH. In early 2001, we could get 8 fps for IBVH and 15 fps for PVH. 
Today, these performances should be a few times faster.



92

Image-Based Visual HullImage-Based Visual Hull

Reference 1

Reference 2

Desired

IBVH algorithm: As depicted here, much of the computation can be done 
in the 2d image domain. For a particular desired viewing ray (shown in 
blue), we compute its projection onto the reference views as line 
segments shown here in red. In each of these reference views, we
compute the intersection of the projected segment with the 2d silhouette. 
The resulting intervals can be lifted back into 3D to the viewing ray. The 
intersection of all computed intervals gives the visual hull sample. Efficient 
computation requires us to be able to quickly intersect the projected rays 
with the 2d silhouette representation.
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ObservationObservation

• Incremental computation along scanlines

Desired

Reference

The main observation needed to make this step efficient is that as one 
traverses the desired pixels along a scanline, the projected viewing rays in 
the reference views trace out a pencil of rays with monotonically 
increasing angles around the epipole. This will allow us to efficiently 
compute line/silhouette intersection efficiently.
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BinningBinning

Epipole

• Sort silhouette edges into bins

In each reference view, we first break the image domain up into a set of 
bins. Each silhouette vertex defines a bin boundary. Each silhouette edge 
is placed in all  bins it falls in.
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BinningBinning

• Sort silhouette edges into bins

Epipole

Bin 5

Bin 1

Bin 2

Bin 3

Bin 4
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ScanningScanning

Epipole

Bin 1

We then traverse the pixels in each scanline of the desired view. As we 
trace across the scanline, we simultaneously track the projected view ray 
as it moves across the bins. Thus, for each projected view ray, we only 
need to test a small number of silhouette edges for intersection.
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Epipole
Bin 2

ScanningScanning
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Epipole
Bin 2

ScanningScanning
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Epipole
Bin 2

ScanningScanning
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Epipole

Bin 4

ScanningScanning
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Epipole

Bin 5

ScanningScanning
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IBVH ShapeIBVH Shape

The images are computed at 400x400 resolution. The colors represent distance 
to the camera (white – close, black – far). The external contours of the computed 
model look smooth and do not exhibit quantization artifacts characteristic to the 
volumetric approaches.
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Polyhedral Visual HullsPolyhedral Visual Hulls

An algorithm to compute polyhedral visual hulls: In order to compute the 
visual hull with respect to the input silhouettes, we need to compute the 
intersection of the cones defined by the input silhouettes. The resulting 
polyhedron is described by all of its faces. Note that the faces of this 
polyhedron can only lie on the faces of the original cones, and the faces of 
the original cones are defined by the projection matrices and the edges in 
the input silhouettes.Thus, a simple algorithm for computing the visual hull 
might do the following: For each input silhouette si and for each edge e in 
the input silhouette si we compute the face of the cone. Then we intersect 
this face with the cones of all other input silhouettes. The result of these 
intersections is a set of polygons that define the surface of the visual hull.

Reduction to 2D: The intersection of a face of a cone with other cones is 
a 3D operation (these are polygon-polyhedron intersections). We observe 
that these intersections can be reduced to simpler intersections in 2D. 
This is because each of the silhouette cones has a fixed scaled cross-
section; that is, it is defined by a 2D silhouette. Reduction to 2D also 
allows for less complex 2D data structures to accelerate the intersections. 
To compute the intersection of a face f  of a cone cone(si) with a cone 
cone(sj), we project f onto the image plane of silhouette sj. Then we 
compute the intersection of projected face f with silhouette sj. Finally, we 
project back the resulting polygons onto the plane of face f.
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Computing the PVHComputing the PVH

View 1 View 2 View 3

Lifted to 3D

We demonstrate the procedure with a simple example. Here we have
three silhouettes of a cube. First, we are going to compute surface due to 
view 1. We process each silhouette edge for view 1. We project each 
extruded edge onto view 2 & 3. We compute the intersections of the 
projected extruded edge with silhouette 2 & 3. We lift the intersections 
back to 3D and compute their intersection.
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Computing the PVHComputing the PVH

View 1 View 2 View 3

Lifted to 3D

We process 2nd silhouette edge of view 1.



106

Computing the PVHComputing the PVH

View 1 View 2 View 3

Lifted to 3D

We process 3rd silhouette edge of view 1.
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Computing the PVHComputing the PVH

View 1 View 2 View 3

Lifted to 3D

We process 4th silhouette edge of view 1.
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Computing the PVHComputing the PVH

View 1 View 2 View 3

Lifted to 3D

We process 5th silhouette edge of view 1.
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Computing the PVHComputing the PVH

View 1 View 2 View 3

Lifted to 3D

We process 6th silhouette edge of view 1.
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Computing the PVHComputing the PVH

View 1 View 2 View 3

Lifted to 3D

Similarly we process all silhouette edges of view 2.
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Computing the PVHComputing the PVH

View 1 View 2 View 3

Lifted to 3D

Similarly we process all silhouette edges of view 3.
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Final ResultFinal Result

And this is the final result of the intersection in 3D. The colors red, green, and 
blue correspond to each reference view.
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Acceleration Using Edge-
Bins
Acceleration Using Edge-
Bins

Epipole

Efficient Intersection of the Projected Cone Faces with a Silhouette. Using 
the edge bin data structure, we can compute efficiently the intersection of the 
projected cone ci with the silhouette sj of some other cone cj . In order to compute 
the intersection we process the faces of cone ci in consecutive order. We start 
by projecting the first face f1 onto the plane of silhouette sj . The projected face f1
is defined by its boundary lines with the values αp1, αp2. First, we need to find a 
bin b = {αstart, αend, S}  (S is a set of edges in bin b) such that α p1� (αstart, αend). 
Then, we intersect the line α p1 with all the edges in S. Since the edges in S are 
sorted based on the increasing distance from the projected vertex of cone ci we 
can immediately compute the edges of the resulting intersection that lie on line 
αp1. Next, we traverse the bins in the direction of the value αp2. As we move 
across the bins we build the intersection polygons by adding the vertices that 
define the bins. When we get to the bin b = {αstart, αend, S} such that αp2� (αstart, 
αend) we intersect the line αp2 with all edges in S and compute the remaining 
edges of the resulting polygons. It is important to note that the next projected 
face f2 is defined by the boundary lines αp2, αp3. Therefore, we do not have to 
search for the bin αp2 falls into. In this manner we compute the intersection of all 
projected faces of cone ci with the silhouette sj.

Example: Given the projected edge (yellow) and a sample silhouette, we would 
like to compute the intersection(orange) efficiently.
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Acceleration Using Edge-
Bins
Acceleration Using Edge-
Bins

Epipole

Bin 1

First, we are going to find the bin of the start of the projected extruded edge and 
intersect it with all edges in the bin.
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Acceleration Using Edge-
Bins
Acceleration Using Edge-
Bins

Epipole

Bin 1
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Acceleration Using Edge-
Bins
Acceleration Using Edge-
Bins

Epipole
Bin 2

Next, we are going to traverse all bins towards the other extent of the projected 
extruded edge and add all vertices/edges in the bins. 
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Acceleration Using Edge-
Bins
Acceleration Using Edge-
Bins

Epipole

Bin 3
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Acceleration Using Edge-
Bins
Acceleration Using Edge-
Bins

Epipole

Bin 4
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Acceleration Using Edge-
Bins
Acceleration Using Edge-
Bins

Epipole

In this way, we can compute this intersection efficiently. Note that, now we do not 
need to search for the first bin of the next projected extruded edge.

This bin is exactly the same as where we ended this intersection.
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PVH ShapePVH Shape

Our system computes polyhedral visual hull models at a peak 15 frames per 
second, which is the frame rate at which our cameras run. The rendering 
algorithm is decoupled from the model construction, and it can run up to 30 
frames per second depending on the model complexity. The actual frame rates of 
both components, especially rendering, are dependent on the model complexity, 
which in turn depends on the complexity of the input silhouette contours. In order 
to maintain a relatively constant frame rate, we simplify the input silhouettes with 
a coarser polygonal approximation. The amount of simplification is controlled by 
the current performance of the system. We show flat-shaded renderings of a 
polyhedral visual hull that was captured in real-time from our system. These 
images demonstrate the typical models that our system produces. The main 
sources of error in creating these models is poor image segmentation and a small 
number of input images.
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View-Dependent RenderingView-Dependent Rendering

• Camera weighting 
factors are computed at 
each

– pixel (IBVH)

– vertex (PVH)

• Visibility information is 
incorporated

We can greatly improve the appearance of the visual hull model by 
texturing it with the video images. We use a type of view-dependent 
texture mapping for this purpose. In our approach, each surface element 
is textured with images from multiple cameras. The images are blended 
together according to camera weighting factors.The weighting factors are 
computed at surface element for IBVH and at each vertex of the model for 
PVH. With a small number of cameras, visibility is an important 
consideration. That is, we don’t want to texture a polygon with a camera 
that did not see that surface point.
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Camera WeightingCamera Weighting

Model 
Vertex

Camera 1

Camera 2

Camera 3

Camera 4

Camera 5

θ2

θ3

θ1

3 closest 
cameras 
ordered as
θθθθ2  ≤≤≤≤ θθθθ3 ≤≤≤≤ θθθθ1Desired View

This is  how we compute the camera weighting factors at each vertex.  I’ll 
explain the process for a single vertex of the model. Let’s assume five 
cameras view the vertex. We wish to determine view-dependent camera 
weighting factors based on a desired view. The approach that we use is 
based on the approach in the Unstructured Lumigraph Rendering. This 
approach is designed for continuous blending of images from cameras 
that are arranged in any position. First, we find a fixed number of cameras 
closest to the desired one. Closeness is measured by the angular
difference between the desired viewing ray and the camera viewing rays. 
In this case, we’ve chosen the 3 closest cameras, although you can 
choose 2 or more. The cameras that are not chosen (cameras 4 and 5) 
are assigned weights of zero.
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Camera WeightingCamera Weighting

Model 
Vertex

Camera 1

Camera 2

Camera 3

Camera 4

Camera 5

Desired View

Relative
Weights
w(θ1) = 0

w(θ2) ≥ w(θ3)

Our relative
weight 
function
w(θθθθ) = 1 - θθθθ/θθθθmax

Next we compute relative weights for the three chosen cameras. To 
maintain continuity, weights are chosen such that the weight of the 
farthest camera (camera 1) is zero. On the other hand, a maximum weight 
is assigned to cameras whose viewing rays coincide with the desired 
viewing ray (this case does not occur in this example).  Weights
monotonically decrease from the maximum to zero. In this case, camera 2 
has the largest weight and camera 3 the next largest. For use in
rendering, the relative weights are renormalized so that they add to one. In 
our system, we use the particularly simple relative weight function that is 
shown here. It has a maximum value of 1 when the desired viewing ray 
coincides with a camera viewing ray, and it falls off linearly to zero at the 
farthest camera angle.
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ResultsResults

Interpolating the camera weights over the entire model results in a 
blending field.We can visualize the blending field by assigning each 
camera a single color, and then blending these colors according to the 
blending field. Here is a blending field in which the 4 source cameras have 
been assigned the colors red, green, blue, and yellow.  
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SystemSystem

Server

Camera 
Client

Camera 
Client

Camera 
Client

Camera 
Client

The current system uses four calibrated Sony DFW-V500 IEEE-1394 
video cameras. Each camera is attached to a separate client (600 MHz
Athlon desktop PC). The cameras are synchronized to each other using 
an external trigger signal. Each client captures the video stream at 15 fps 
and performs the following processing steps: First, it segments out the 
foreground object using background subtraction. Then, the silhouette and 
texture information are compressed and sent over a 100Mb/s network to a 
central server. The central server (2x933MHz Pentium III PC) performs 
the majority of the computations. The server application has the following 
three threads: • Network Thread - receives and decompresses the 
textures and silhouettes from the clients. • Construction Thread -
computes the silhouette simplification, volume intersection, and visibility. • 
Rendering Thread - performs the view-dependent texturing and display. 
Each thread runs independently of the others. This allows us to efficiently 
utilize the multiple processors of the server. It also enables us to render 
the visual hull at a faster rate than we compute it. As a result, end users 
perceive a higher frame rate than that at which the model is actually 
updated.
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ConclusionsConclusions

• Visual hulls can be computed robustly and 
efficiently

• Visual hulls with view-dependent textures 
are convincing representations

Visual hulls can be computed robustly and efficiently. I have demonstrated this 
showing two different algorithms. The visual hull provides a useful model whose 
combination of accurate silhouettes and textures provides surprisingly effective 
renderings that are difficult to distinguish from a more exact model.
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Photo-consistencyPhoto-consistency

•Plane-sweep multi-view depth estimation
[Collins, CVPR’96] 

One of the constraints to estimate depth from multiple images is photo-
consistency.  This constraints expresses the fact that pixels that 
correspond to a point on the true object surface should have a consistent 
appearance, i.e. in general have the same color.  A simple and efficient 
approach to compute depth based on this principle is the plane-sweep 
approach.  The approach consist of sweeping a plane through the volume 
under consideration.  For each location of the plane, all the images are 
projected on the plane and the algorithm verifies how similar pixels 
projected from different images are.   Along rays corresponding to pixel of 
a reference view, the best match is chosen as the depth estimate for that 
pixel.  

In the slide an example is shown that corresponds to a virtual thea pot in 
front of a canvas.  On the top-right the images corresponding to the four 
cameras are blended together, on the bottom-right the corresponding sum-
of-absolute-differences between RGB values is shown.  Black corresponds 
to a perfect match.  
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Stereo on GPUStereo on GPU
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[Yang and Pollefeys, CVPR’03] 
[Yang and Pollefeys, JRI’05]

When only two views are being considered, photo-consistency corresponds to 
stereo computations.  There has been a lot of emphasis on this special case in 
the area of computer vision and many algorithms have been proposed.  Those 
vary from fast real-time algorithms that perform an independent per-pixel 
computation of the depth/disparity to algorithms that try to estimate a global 
optimal solution over the whole image.  

Here we show results from a fast real-time algorithm that runs on the GPU 
(Graphics Processing Unit).  
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(1x1)

(1x1+2x2)

(1x1+2x2
+4x4+8x8)

(1x1+2x2
+4x4+8x8
+16x16)

Matching cost aggregationMatching cost aggregation

• Fast multi-resolution 
mipmap aggregation

Because by only considering a single pixel at a time results are often ambiguous, 
especially when only two images are considered, typically the absolute difference 
is summed over a small neighborhood of pixels, assuming that neighboring pixels 
will mostly be at the same depth.  For our real-time algorithm implemented on the 
GPU we use the build-in MipMap box filter to approximate the sum over a 
number of different neighborhood sizes.  One can see how the results improve as 
more MipMap levels are included in the computation. 
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Novel view synthesisNovel view synthesis
[Yang et al., PG’02]

In fact, in stead of computing depth, this approach can also immediately be used 
to for novel view synthesis.  In this case the reference view corresponds to the 
desired novel view and the color for a pixel is chosen as the consensus color 
from the multiple input cameras (i.e. the one yielding the smallest sum-of-
absolute-differences). 
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Dealing with specular highlightsDealing with specular highlights
[Yang, Pollefeys and Welch, ICCV’03]

• Extend photo-consistency to include highlights

The traditional approach to photo-consistency assumes that to be photo-
consistent pixels must have the same RGB values.  While this is true for 
Lambertian/diffuse surfaces (assuming the cameras have been photometrically
calibrated), this is not true in general.  In particular, for specular surfaces one can 
expect to have a mix between the diffuse RGB component of the surface 
reflection and the specular reflection of the light color.  Assuming the color of the 
light is white, this means that and RGB value that corresponds to 
(Rd,Gd,Bd)+S.(1,1,1) would also be photo-consistent (with (Rd,Gd,Bd) being the 
diffuse color) and S the amount of specular reflection.   In practice one also has 
to take saturation into account as shown on the upper right of the slide.  

When using this new photo-consistency measure, it becomes possible to perform 
space-carving on specular surfaces, even in the presence of large area light-
sources.  A few examples are shown on the slide.  The reconstruction example of 
the theapot + openGl book is shown with and without the use of our extended 
photo-consistency measure. 
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Silhouettes + photo-consistencySilhouettes + photo-consistency

• Global graph-cut for exact silhouettes and trade-off 
between photo-consistency and smoothness

[Sinha and Pollefeys, submitted ICCV’05]

Silhouette and photo-consistency constraints are complementary.  Ideally, both 
constraints would be used together in a single optimization for the object shape.  
Several approaches have been proposed that attempt to integrate both 
approaches.  In this slide we illustrate a global graph-cut based approach.  The 
graph is constructed so that each valid cut represents a surface that exactly 
satisfies the silhouette constraints.  The minimal cut then yields the best possible 
trade-off between photo-consistency and smoothness.  A few examples are given 
of the initial visual hull that is used for the graph construction and then the 
resulting shape after graph-cut optimization. 
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Break
10:15 – 10:30

Break
10:15 – 10:30
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Camera Calibration
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Camera Calibration
10:30 – 11:00

Marc Pollefeys
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Pinhole camera modelPinhole camera model

linear projection in homogeneous coordinates!

On this slide we introduce the pinhole camera model.  This model is appropriate 
for perspective cameras and is a good approximation for most real camera.  3D 
points and 2D points are represented by homogeneous 4-vectors respectively 3-
vectors, lambda is a non-zero scale-factor.  A 3D point X is first transformed to 
camera coordinates through a Euclidean transformation.  Then the point is 
projected to a normalized 2D point.  This point which is equivalent to the 
incoming ray is then transformed by the calibration matrix K to obtain pixel 
coordinates.  The calibration matrix K contains the intrinsic camera parameters.  
fx and fy represent the focal length measured in the width resp. height of pixels 
and (px,py) correspond to the location of the principal point. For photocameras
fx=fy, but for video cameras (which are typically not rotated on their side during 
acquisition), this is not necessarily the case.  All those effects can be combined in 
a single 3x4 projection matrix.  
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Simple camera calibrationSimple camera calibration

need 6 or more known points
(not all on a single plane!)

(fig. from Hartley & Zisserman)

The traditional camera calibration technique consists of recording a picture of a 
know object.  Each known correspondence between 2D image coordinates and 
3D world coordinates provide 2 linear equations on the projection matrix.  In 
general 6 points are sufficient to yield a unique solution (as long as at least 2 of 
them are not coplanar with the others).  
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Radial distortionRadial distortion

(fig. from Hartley & Zisserman)

Most real lenses exhibit some amount of radial distortion, especially wide angle 
lenses.  To obtain accurate results it is therefore important to take this effect into 
account.  Radial distortion can approximately be modeled by having the distance 
from the principal point after distortion be a low-order even polynomial of the 
distance before distortion.    κi are the distortion coefficients. For a typical lens 
one or two coefficients are sufficient to remove most of the distortion, but for wide 
angle lenses more coefficients might be required.  There also exist specific 
models of distortion for fish-eye lenses and other non-standard lenses.  
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• Calibration matrix relates directions to pixels

• Image of square provides all directions on 
planar horizon
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Planar calibrationPlanar calibration
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Knowing the intrinsic camera parameters allows to measure angles between 
incoming rays.  Inversely, knowing angles between a sufficient number of 
incoming rays would be sufficient to compute the calibration matrix K.  When 
imaging a square, we know the angle between two sets of parallel lines, i.e. 90 
degrees.  The viewing rays corresponding to those two directions –i.e. the rays 
corresponding to the vanishing points- therefore also have to be orthogonal.  It is 
also simple to obtain the bisector as shown in the construction and, since 3 points 
form a basis for a projective line, all other angles along this line.  When imaging 3 
or more squares it becomes possible to establish a 2D basis in the image plane 
so that all angles can be determined and therefore also the calibration matrix.  
The planar calibration approach proposed by Zhengyou Zhang and also 
implemented by Jean-Yves Bouguet are based on this principle.  
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Planar calibration:
Zhang & Bouguet
Planar calibration:
Zhang & Bouguet

• Calibration toolboxes available

http://www.vision.caltech.edu/bouguetj/calib_doc/

http://research.microsoft.com/~zhang/calib/ [Zhang, ICCV’99/PAMI’00]

(Matlab toolbox, also available in Intel’s OpenCV)

Several toolboxes have been made available that use concepts similar to the 
ones explained on the previous slide.  A checkerboard pattern is used and the 
approach explained on the last slide is used to obtain an initial estimate of 
calibration matrix.  Then, the solution is refined non-linearly taking into account 
radial distortion.  The approach was proposed by Zhengyu Zhang at ICCV’99 and 
an executable is available on his webpage.  Jean-Yves Bouguet has made a 
matlab toolbox available that implements a similar approach.  Besides computing 
the calibration those approaches also compute the relative position of the plane 
with respect to the camera and vice-versa and can thus also be used to recover 
the relative position between multiple cameras.  Bouguet’s algorithm has also 
been implemented in Intel’s OpenCV computer vision libraries.  
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LED-based calibrationLED-based calibration

• Moving LED in front of synchronized camera system 
provides multi-view correspondences

• Use structure from motion  

http://www.cis.upenn.edu/group/tele-immersion/research/downloads/EasyCal/

http://cmp.felk.cvut.cz/~svoboda/SelfCal/ [Svoboda et al]

[Barreto et al.]

An alternative approach that is very popular for the calibration of multi-camera 
rigs is to use a LED or a small light that is moved around the volume of interest.  
If this is done in the dark it is relatively easy to identify the LED in all the images 
and therefore one can easily obtain large numbers of multi-view correspondences 
by moving the LED around.  Standard computer vision techniques can then be 
used to compute the intrinsic and extrinsic camera parameters for all the 
cameras.   This approach has been implemented by many people and in many 
systems. Researchers have made several toolboxes available.  Links to those 
toolboxes are given on this slide.  
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Camera Network CalibrationCamera Network Calibration

• Offline Calibration Procedures

– Planar pattern

– moving LED

– known points

• Requires physical access to environment

• Active Camera Networks

– How do we maintain calibration ?

Here a brief overview of the alternative techniques for camera network calibration 
is given.  Most of those techniques require the acquisition of specific calibration 
data and can therefore not be performed on-line without access to the 
environment and without disturbing normal operation.  This is a major 
disadvantage in cases where it might be necessary to re-calibrate the system 
during operation, such as with active camera systems (e.g. with pan-tilt-zoom).  A 
possible solution consists of using a specially prepared floor (as in the picture 
taken from the IBM website).  In the coming slides we’ll investigate a more 
general approach base on silhouettes.  
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Can we compute the 
calibration on-line?
Can we compute the 
calibration on-line?

• Feature-based?  

– Hard to match features 
between very different views

– Foreground: not many 
features

– Background: limited overlap

• Silhouette-based?

– Necessary for visual-hull

– But approach is not obvious
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What are the options for on-line camera network calibration?

The data we use was recorded by Peter Sand at MIT for his Siggraph 2003 
paper. He used a co-located motion capture system for the calibration.  In the 
coming slides we will show how it is possible to obtain the complete calibration 
accurately by analysing the silhouettes.  The data consists of 4 minutes of video 
recorded by for unsynchronized camcorders.  
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Multiple View Geometry of 
Silhouettes
Multiple View Geometry of 
Silhouettes
• Frontier Points

• Epipolar Tangents

• Points on Silhouettes in 2 views do not correspond in general 
except for projected Frontier Points

• Always at least 2 extremal frontier points per silhouette

• In general, correspondence only over two views
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The key message of this slide is that there are a few specific silhouette points –
the frontier points- for which the epipolar constraint has to be satisfied and that 
can therefore be used to compute the fundamental matrix.   
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Calibration from Silhouettes: 
prior work
Calibration from Silhouettes: 
prior work
Epipolar Geometry from Silhouettes  

[Porril and Pollard’91],[Astrom et al’96]

Structure-and-motion from Silhouettes

• Trinocular rig/rigid object [Joshi et al’95]

• Orthographic [Vijayakumar’96]

• Circular motion, at least to start [Wong and Cipolla’01]

• Refinement only [Yezzi and Soatto’03]

None really applicable to calibrate visual hull system

There has been a lot of prior work on calibration from silhouettes.  However, 
surprisingly, none of those techniques allow to calibrate effectively a visual-hull 
system which is probably the most popular shape-from-silhouette technique.  
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Camera Network Calibration 
from Silhouettes
Camera Network Calibration 
from Silhouettes
• 7 or more corresponding frontier points needed to compute 

epipolar geometry for general motion

• Hard to find on single silhouette and possibly occluded

• However, Visual Hull systems record many silhouettes!

In general, to compute the epipolar geometry between two cameras, it is 
necessary to have 7 or more correspondences or in our case 7 or more frontier 
points.  While it might sometimes be possible to identify those on a single 
silhouette, this is not true in general and many of the frontier points can be self-
occluded by the object itseld (e.g. the elbow in the example given in the slide).  
However, in the case of a camera system observing a dynamic object, many 
different sets of silhouettes are available.
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Camera Network Calibration 
from Silhouettes
Camera Network Calibration 
from Silhouettes
• If we know the epipoles, it is simple

• Draw 3 outer epipolar tangents (from two silhouettes)

• Compute corresponding line homography H-T (not unique)

• Epipolar Geometry F=[e]xH

If the epipoles would somehow be known, then the rest of the epipolar geometry 
is easy to compute.  Indeed, in this case frontier points are found as the points 
where epipolar lines are tangent to the silhouette.  Three sets of corresponding 
epipolar tangents would then uniquely determine the mapping of the bundle of 
epipolar lines from one image to the other.  Even if we only use the outer epipolar
tangents (which can never be self occluded), only two pairs of silhouettes are 
necessary.  The rest of the available silhouettes could be used to verify or refine 
the solution. 
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Let’s just sample: RANSACLet’s just sample: RANSAC

• Repeat 
– Generate random hypothesis for epipoles ( (2 )4 )
– Compute epipolar geometry 
– Verify hypothesis and count inliers

until satisfying hypothesis 
• Refine hypothesis 

– minimize symmetric transfer error of frontier points
– include more inliers

Until error and inliers stable

(use conservative threshold, e.g. 5 pixels, 
but abort early if not promising)

(use strict threshold, e.g. 1 pixels)
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[Sinha, Pollefeys and McMillan, CVPR’04]

As there is no simple way to compute the location of the epipoles, we propose to 
just sample at random.  Basically, we generate a hypothesis for an epipole by 
selecting two random tangents to a particular silhouette.  Wherever they intersect 
is our epipole hypothesis.  This is done in two corresponding frames (in two 
different cameras) independently. The size of our sampling space is bounded, i.e. 
(2pi)^4.  Each hypothesis is verified by counting how many of the other frames 
support this hypothesis.  Once a reasonable solution has been found it is refined 
using a non-linear minimization step.  
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A Compact Representation for 
Silhouettes
Tangent Envelopes

A Compact Representation for 
Silhouettes
Tangent Envelopes

• Convex Hull of Silhouette.

• Tangency Points

for a discrete set of angles.

• Approx. 500 bytes/frame, i.e. small memory footprint

• Tangency Computations are efficient.

Given that we have to do this many times, it is important to have an efficient 
representation for our hypothesis generation and verification steps.  Since we 
only consider the outer epipolar tangents, we can use the convex hull of the 
silhouettes in stead of the silhouettes themselves (which is a lot cheaper and 
more efficient). 
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Epipole Hypothesis and 
Computing H
Epipole Hypothesis and 
Computing H
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In this slide the epipolar geometry hypothesis generation is described.  The 
additional tangent is used to uniquely determine the transfer between epipolar
lines from image to the other for the hypothesis under consideration.  It is 
important to consistently pick not only the angles at random, but also the frames 
that are used to be robust to incorrect silhouettes (e.g. segmentation error) and to 
epipoles falling within a particular silhouette.  
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Model VerificationModel Verification
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In this slide the verification step of our approach is illustrated.  The red line was 
transferred from another image and in this case is far from the actual tangent 
(measured in pixels at the point of tangency).  Therefore, this particular frame 
does not support the hypothesis under consideration.  The blue points show the 
distribution of the tangency points in the image for this hypothesis.  It is typical for 
horizontally displaced cameras to have most points near the feet and the head.  
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RemarksRemarks

• RANSAC allows efficient exploration of 4D 
parameter space (i.e. epipole pair) while being 
robust to imperfect silhouettes

• Select key-frames to avoid having too many 
identical constraints (e.g. when silhouette is 
static for a while)

While in general RANSAC (Random Sampling Consensus) is used only for 
robustness, here it is also used to explore the search space for the epipoles.  
RANSAC efficiently handles both at the same time without having to decide how 
much effort is spend on robustness and how much is spend on exploration.  

It is advised to discard frames that do not provide any additional information.  If a 
person would not move for a period of time, then all those frames would provide 
the same information which besides being inefficient risks to confuse RANSAC 
(as it might find a lot of support for an incorrect hypothesis).
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Computed 
Fundamental Matrices    
Computed 
Fundamental Matrices    

On average our approach generates one correct solution every 5000 hypothesis.  
This number was relatively similar for different datasets.  This requires about 15 
sec computation time.  
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From epipolar geometry to 
full calibration
From epipolar geometry to 
full calibration

• Not trivial because only matches between two views

• Approach similar to Levi et al. CVPR’03, but practical

• Key step is to solve for camera triplet

• Assemble complete projective camera network

• Projective bundle, self-calibration, metric bundle

(also linear in v)

(v is 4-vector )

/!������0 ������������%������������������

Having computed the epipolar geometry is not sufficient.  In fact, if the cameras 
are not yet calibrated the problem is complicated by the fact that we only have 
two-view correspondences (the tangency points are only visible in two views). 
However, given the epipolar geometries between one camera and two previously 
calibrated cameras, the relative pose of the new camera can also be determined 
uniquely in a projective frame.  In fact, this step also refines one of the epipolar
geometries so that it becomes consistent with the others (the result of this can be 
seen on the next slides).  By applying this procedure recursively a complete 
camera network can be calibrated.  Note that this does not require the epipolar
geometry between all views to be computed.  

Once the projective calibration is obtained, it can be refined using a bundle 
adjustment (for simplicity we assume that the tangency points do not move).  
After this self-calibration and metric bundle adjustment can be used to obtain the 
final calibration of the camera network.  
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Computed Fundamental 
Matrices    
Computed Fundamental 
Matrices    

On this slide some results for computed epipolar geometries are shown.  The 
black lines are the initial result and the colored lines are after enforcing 
consistency at the projective level (before projective bundle adjustment).  It can 
be noticed that enforcing consistency already provides a significant improvement.  
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Computed Fundamental 
Matrices    
Computed Fundamental 
Matrices    

same for two other pairs of cameras. 



162

Metric Cameras and Visual-Hull 
Reconstruction from 4 views
Metric Cameras and Visual-Hull 
Reconstruction from 4 views
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Here we show the final result of the calibration for the complete camera network 
and the visual-hull reconstruction for one particular set of corresponding 
silhouettes.  Those results were obtained automatically from the four 4 minute 
video sequences.  
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Validation experiment:
Reprojection of silhouettes
Validation experiment:
Reprojection of silhouettes

In this slide we verify the consistency of our results. If segmentation and 
calibration were perfect, back-projecting the visual hull (grey) should perfectly fill 
the silhouettes.  The white regions are due to errors.  Here it can be noticed that 
those are mostly located at moving body parts.  Given that the cameras were 
unsynchronized this can be expected and is probably due to sub-frame temporal 
offsets between the video streams.
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What if the videos are 
unsynchronized?
What if the videos are 
unsynchronized?

For videos recorded at a constant frame rate, 
same constraints are valid, up to some extra 
unknown temporal offsets

What can we do when the video cameras are unsynchronized so that an 
unknown temporal offset exists for each video stream?
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Synchronization from 
silhouettes
Synchronization from 
silhouettes

• Add a random temporal offset to RANSAC 
hypothesis generation, sample more ( (2 )4 t )

• Use multi-resolution approach:
– Key-frames with slow motion, rough synchronization

– Add key-frames with faster motion, refine synchronization

– Possibility for sub-frame synchronization

[Sinha and Pollefeys, ICPR’04]

It turns out that it is feasible to sample over one more unknown.  To remain 
efficient we use a multi-resolution approach.  First we focus on slow moving 
silhouettes as those will allow us a rough synchronization.  Then we include fast 
changing silhouettes to allow for a fine synchronization.  

In practice, we have noticed that there is one clear peak around the correct 
temporal offset and that there can be a few small secondary peaks related to the 
repetitive nature of some of the recorded motion.  
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Synchronize camera networkSynchronize camera network

• Consider oriented graph with offsets as branch value

• For consistency loops should add up to zero

• MLE by minimizing 
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After pairwise calibration results can be refined by enforcing consistency over the 
whole network.  The final synchronization results were accurate up to 1/3 of a 
frame or 1/100 of  a second. 
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Sub-frame silhouette 
interpolation
Sub-frame silhouette 
interpolation
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[Sinha and Pollefeys, 3DPVT’04]

If the synchronization accuracy is sub-frame, then it makes sense to interpolate 
the silhouettes to predict the shape of the silhouette for exactly corresponding 
times.  We have shown that this reduces the re-projection errors by a factor 
three.  This is especially important for fast moving body parts.
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Spacetime Coherence
11:00 – 11:30

Spacetime Coherence
11:00 – 11:30

German Cheung

Marcus Magnor
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Spatial CoherenceSpatial Coherence

• For multiple images at single time instance 

– only spatial coherency exist

O C2

C1

C3

C4

Spatial constraints between multiple images 
(e.g. stereo, space carving, visual hull)

For static object or images taken at a single time instance, only spatial coherency 
exists between multiple camera images. These spatial constraints arise from 
spatial relationship between the cameras. Visual Hull construction is an good 
example of using the spatial constraints to estimate the shape of an object. 
Another examples are stereo and space carving [Kutulakos and Seitz 00] which 
uses color information besides the spatial constraints. 

[Kutulakos and Seitz 00] K. Kutulakos and S. Seitz. A Theory of Shape by Space 
Carving. International Journal of Computer Vision, 38(3):199-218, 2000. 
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Spatial-Temporal CoherenceSpatial-Temporal Coherence

• For multiple videos of moving objects
– Constraints extended across time and space

O O

t = 1 t = 2

Spatial-temporal constraint between multiple 
images and over time (t=1 and t=2)

Motion

For moving (or deforming) objects in multiple video images, the constraints 
extend across both time and space due to the motion of the object. Generally the  
problem becomes more difficult because the effect of the shape and motion of 
the object are always coupled tightly in the video images, especially for non-rigid 
objects. Structure from Motion  (SFM) [Tomasi and Kanade 1992] is an example 
which applies spatial temporal coherence to simultaneously estimate the motion 
and structure of a moving rigid object. Another example is space-time stereo 
[Zhang et. al. 2004] which can be applied to deformable objects such as faces. 

[Tomasi and Kanade 1992] C. Tomasi and T. Kanade. Shape and Motion from 
Image Streams Under Orthography: A Factorization Method. International 
Journal of Computer Vision, 9(2):137-154, November 1992. 

[Zhang et. al. 1004] L. Zhang, N. Snavely, B. Curless and S. Seitz. Spacetime
Faces: High-Resolution Capture for Modeling and Animation, ACM Annual 
Conference on Computer Graphics (Siggraph 04), pages 548-558, August, 2004. 
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Spatial-Temporal Constraints 
for Visual Hull (VH)
Spatial-Temporal Constraints 
for Visual Hull (VH)

Cam 1 Cam 2

6 DOF motion

Space

Time

t1

t2

Rigid 
Object 

– Visual Hull Across Time [Cheung et. al. 2005a]

• Extract 3D Colored Surface Points (CSPs) on both VHs

• Align the CSPs across images in time and space to recover the motion

Visual Hulls

Space-time
constraints

For a moving rigid object, there is only 6 Degree-of-freedom (DOF) between 
frames and the problem is inherently easier than deformable objects. There 
exists geometric constraints between the Visual Hulls of a rigid object constructed 
at two different frames.  Combining these temporal constraints (which based on 
the principle of constructing VHs) with multiple-camera stereo (spatial 
constraints), the motion of the rigid object can be recovered using the Visual Hull 
Across Time algorithm: first extract points called Colored Surface Points (CSPs) 
on the surface of the object at each frame separately and then use these CSPs
to align the Visual Hulls between two frames as shown in the next slide. 
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Visual Hull Across TimeVisual Hull Across Time

(RT, - RT t)
2D Images

t1

3D CSPs

Error between the projected colors on
2D images at t1 and 3D CSPsat t2

Error between the projected colors on
2D images at t2 and 3D CSPsat t1

(R, t)

t2

Here it shows how the spatial-temporal constraints are applied to recover the 
motion of an object by aligning the extracted CSPs with the silhouette and color 
images in an error minimization framework. The CSPs at t1 is transformed with 
an initial guess of the motion (of the object from t1 to t2)  and the transformed 
CSPs are projected onto the images at t2. Two kinds of errors are used. The first 
is geometric error which is the distance between the projected point and the 
silhouette image. The second is photometric error which is the difference 
between the projected colors and the color of the CSPs (note that only 
photometric error is shown in the figure above).  Similar errors are calculated by 
transforming the CSPs (using the inverse motion) at t2 and projecting them onto 
the images at t1. The 6 DOF motion can then be estimated by minimizing the 
combined errors. Details of the Visual Hull Across Time algorithm can be found in 
[Cheung et. al. 2005a].

[Cheung et. al. 2005a] K.M. Cheung, S. Baker and T. Kanade. Shape-From-
Silhouette Across Time Part I: Theory and Algorithms. International Journal 
of Computer Vision, Vol. 62, No. 3, May, 2005, pp. 221 - 247. 
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Non-Rigid ObjectsNon-Rigid Objects
Cam 1 Cam 2Space

Time

t2

t1

Non-rigid 
Object 

Non-rigid
motion
(infinite DOF) Spatial-Temporal

constraints of 
multiple images

of multiple 
frames of a 

non-rigid object?

• 3D Scene Flow [Vedula et. al. 2005a]: analogue to 2D optical flow 
between two temporal images

For deformable objects, the problem is much more difficult due to the infinite 
possible motions of each point on the object. In [Vedual et. al. 2005a], the idea of 
scene flow, an analogue to the 2D optical flow between two images taken 
successively in time, is introduced to estimate 3D motions in non-rigid dynamic 
scene.

[Vedual et. al. 2005a] S. Vedula, S. Baker,  P. Rander, R. Collins and T. Kanade. 
Three-dimensional Scene Flow. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, Vol. 27, No. 3, March, 2005, pp. 475 - 480. 
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Scene FlowScene Flow
• Scene flow is the (instantaneous) three-dimensional motion field of 3D 

points in a dynamic scene 

• Optical Flow in 2D is in fact the projection of the 3D Scene Flow onto 
the image

Figures courtesy of Sundar Vedula

Scene flow is the instantaneous motion field of 3D points in a dynamic scene. It is 
especially useful in representing the motion of non-rigid object. 3D scene flow is a 
generalization of 2D optical flow. In fact, optical flow is the projection of scene 
flow on the images as shown in the figure. 
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Scene Flow EstimationScene Flow Estimation

Cam 1 Cam 2

t2

t1
Shape

Construction

2D
Optical
Flow

2D
Optical
Flow

The 3D scene flow
is estimated from 

the 2D optical
flows and the 

camera centers

scene flow

Scene flow can be estimated from a set of spatial-temporal images by a two step 
approach.  Firstly the shape of the non-rigid object at t1 is estimated using 
camera images captured at t1. At the same time, 2D optical flows between t1 and 
t2 for each camera are estimated. To recover the scene flow of a point on the 
surface of the reconstructed shape, the point is projected onto the optical flows 
images of each camera and the 2D optical flows at the projected point are 
combined to estimate the 3D scene flow using the camera centers as shown in 
the figure. Visibility has to be taken into account when projecting the 3D surface 
points onto the optical flow images.  In [Vedula et. al. 2001] an an algorithm is 
introduced to simultaneously estimate the shape and scene flow in one step while  
in [Carceroni and Kutulakos 2001], an algorithm is proposed to estimate scene 
flow in the 3D scene domain directly (instead of through 2D optical flows). 

[Vedula et. al. 2001] S. Vedula, S. Baker, S. Seitz and T. Kanade. Shape and 
Motion Carving in 6D. In Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR '00), June, 2000.

[Carceroni and Kutulakos 2001] R. Carceroni and K.Kutulakos. Multi-view Scene 
Capture by Surfel Sampling: From Video Streams to Non-rigid 3D Motion, Shape 
and Reflectance. In Proceedings of the IEEE International Conference on 
Computer Vision, pages 60-67, 2001. 
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Examples of Recovered 
Scene Flows
Examples of Recovered 
Scene Flows

Images courtesy of Sundar Vedula

Here are examples of  the recovered scene flow of the dance example shown in 
the previous slide. 
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Application: Spatial 
Temporal View Interpolation
Application: Spatial 
Temporal View Interpolation

Images courtesy of Sundar Vedula

One application of scene flow is for interpolating a dynamic scene both spatially 
and temporally. The scene flows provide a continuous motion flow of the 
deformable object which can be used to change the speed of the object during 
rendering to create special effects such as slow motion or motion blur. Details of 
this application can be found in [Vedula et. al. 2005b].

[Vedula et. al. 2005b] S. Vedula, S. Baker and T. Kanade. Image-Based Spatio-
Temporal Modeling and View Interpolation of Dynamic Events. ACM 
Transactions on Graphics, April, 2005. 
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Spacetime-coherent 
Reconstrution
Spacetime-coherent 
Reconstrution

PerPer--time steptime step
Visual HullVisual Hull

PerPer--time steptime step
Photo HullPhoto Hull

SpacetimeSpacetime--
coherent coherent 
surfacesurface

Having video streams available allows us to exploit the fact that motion in nature 
is continuous (we exclude quantum leaps). By making global use of temporal 
coherence, we can obtain much better reconstruction results than if we 
reconstruct geometry from each time frame separately.

In the example shown, eight equally-space video cameras recorded a dancer 
from the perimeter of the stage. All cameras where positions at about eye level, 
no camera recorded the dancer from the top. At the depicted time instant, the 
dancer holds her arms in front of her torso, so no camera has a clear view of the 
area between arms and the torso. If reconstructed only from the images of this 
moment, the visual hull encloses the volume between arms and torso, and also 
the photo hull cannot do much better. By enforcing temporal coherence over all 
time frames, however, the temporally obstructed region gets automatically 
interpolated to be consistent with previous and later time steps, leading to a much 
more plausibly reconstruction result.
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Spacetime-coherent 
Reconstruction
Spacetime-coherent 
Reconstruction

• 3D surface in 4D spacetime
– Weighted minimal surface

– Photo-consistency

• cameras i,j

• visibility υi

• No. camera pairs Vs,t

• Normalized dross correlation χi,j

• Cross correlation area A
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To exploit temporal coherence, we regard the time-varying object surface 
as a three-dimensional hyper-surface in four-dimensional spacetime. If we 
cut this 3D hyper-surface along a hyper-plane of constant time, we get the 
2D object surface in 3D space at that time instant.

We first write down our problem in theoretical terms. We want to find the 
3D hyper-surface \Sigma that, when integrating an error functional \Phi 
over its domain, yields a minimum error. To quantify the error, we use the 
photo-consistency of all camera images.

The same approach has been pursued to solve different problems in 
computer vision, e.g. active contours (snakes), tracking, as well as static 
surface modeling.
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Weighted Minimal 
Hyper-Surfaces 
Weighted Minimal 
Hyper-Surfaces 

– Wanted: k-dimensional hyper-surface

– that minimizes

• Weighting fct. can depend on position and normal

– Necessary condition 

Euler-Lagrange equation
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[[GoldlueckeGoldluecke & Magnor, ECCV’04]& Magnor, ECCV’04]

So far, we have only formulated the problem in mathematical notation. To 
explicitly state the hyper-surface \Sigma that minimizes the integral over 
the weight function \Phi, we have to come up with a different equation that 
can be solved.

As it turns out, the necessary condition for \Sigma to minimize the error 
integral can be stated as a Euler-Lagrange equation. In fact, this partial 
differential equation is valid for arbitrary dimensions k and weight functions 
\Phi that depend on position s and normal direction n(s).  

•\Phi_s and \Phi_n denote the derivative of \Phi with respect to s and n

•< , > denotes the dot product

•S is the second fundamental tensor, also referred to as shape operator or 
Weingarten map, and Tr(S) = div(-n)
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Numerical SolutionNumerical Solution

• Evolution equation

– τ : evolution parameter

– Level-set method

• u(x,τ) > 0 outside Στ

• u(x,τ) < 0 inside Στ

• u(x,τ) = 0 : surface

• Differential operator

– Identities

– Product rule in reverse ( )
�
�
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To find the solution to the Euler-Lagrange equation, we make use of an iterative 
approach. Starting from an initial surface (to which we’ll  get in a second), the 
evolution equation updates the surface \Sigma_\tau by moving all surface points 
in the (negative) normal direction by an amount set by the differential operator 
\Psi. The iteration terminates when the stationary solution of the evolution 
equation is found, i.e., when \Psi=0 everywhere on the surface. 

We use the level-set method to numerically evolve the surface, i.e., we the 
update grid cells u for each iteration step tau. The surface \Sigma corresponds to 
u=0, the zero level set. It is implicitly defined in-between neighboring grid cells 
where u becomes negative (or positive).

For each iteration step, the differential operator \Psi must be numerically 
evaluated from local grid point values u. Using two identities and applying the 
product rule of calculus in reverse, we can derive a representation of \Psi that 
can be numerically computed.
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Practical ImplementationPractical Implementation

• Evolution equation 

• Differential operator 

• Iterative solution

– Narrow-band

– Adaptive step size

• CFL condition
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We evaluate the evolution equation on a regular 4D grid u^xyzt (3 spatial + 1 
temporal dimensions). During each iteration step, grid cell values are updated. To 
reduce computation, we do not compute values for all grid cells but only for cells 
that are close the zero level set. Step size \Delta\tau must be adapted for each 
iteration step to meet the Courant-Friedrichs-Levy condition that ensures that the 
zero-level set surface does not wander by more than maximally one grid cell 
diameter (diam cell) per iteration step.
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Differential Operator –
Numerical Evaluation
Differential Operator –
Numerical Evaluation

– Finite differences

1. n blue cell

2. Φ blue cell

3. div(Φn) red cell

4. Φn blue cell

5. divΣΣΣΣ(Φn) red cell
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The differential operator must be evaluated for each grid cell individually. Because of its second-
order derivatives, we need values from grid cells up to 2 cells away from the grid cell under 
consideration. In the image on the top right, we have collapsed the three spatial dimensional 
into one dimension. The center cell has actually 8 directly neighboring (blue) grid cells (6 
spatial plus 2 temporal direct neighbors).

1. Using finite differences, we first compute the 4D normal directions of all adjacent (blue) cells 
from the values of the neighboring (green) grid cells.

2. The error functional \Phi is determined for the blue cells.

3. From the blue cell values, div(\Phi n) is computed for the center (red) cell as shown on the 
lower right. 

4. The second term is more complicated to evaluate. First \Phi_n is computed for the blue cells 
using finite differences.

5. From \Phi_n at the blue cells, a 4x4 matrix U=\Phi_ns is set up for the center (red) cell. From 
an arbitrary orthonormal base of the tangent plane in s, the 3x3 matrix V_ij=b^T_i U b_j is 
computed. The trace of V, Tr(V) is then equal to the second term of the differential operator 
(for details see [Goldluecke & Magnor, CVPR’04])

First, the normal directions of blue cells’ normals are 

characteristics

To numerically evalutate differential 
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Grid InitializationGrid Initialization

• Visual Hull
• +1 inside

• -1 outside

• -1..1 on the boundary

• Convergence towards minimum

– Evolution equation

• “Force” against normal direction

The grid cells must be initialized to start iterating the evolution equation. The 
visual hull turns out to be very well suited for grid initialization. From the 
segmented input images, we can easily determine the visual hull for each time 
step as a voxel model. All voxels (grid cells) inside the visual hull are set to +1, 
while all grid cells outside are set to -1. Boundary voxels can be assigned an 
intermediate value derived from partial silhouette projection.

Note that the Euler-Langrange equation that we just solved is a necessary 
condition, i.e., it can in theory also yield a maximum value of the energy function. 
However, the visual hull has the advantageous property that it is always at least 
as large or larger than actual object geometry. By always updating the surface 
against surface normal direction, i.e., inward, we can be sure that our evolution 
equation always converges towards a local minimum.

In theory, we are not guaranteed to find the global minimum. We found, however, 
that the convergence results appear very plausible. Intuitively, the large number 
of time steps constraints the space of likely solutions so much that, when starting 
from the visual hulls, the closest minimum appears to be at least very close to the 
global minimum.
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Distributed ComputationDistributed Computation

• Process Pi :

– Transmits time slice 

– Receives time slices

– Evaluates differential operator Ψ for cells near zero level set

– Transmits maximum value to determine new step size

�t it

� ±±t iit 2,1

As can be guessed, the algorithm is computationally expensive. For many cells of 
the four-dimensional grid, the differential operator must be repeatedly evaluated. 
Because for operator evaluation, each grid cell requires values only from nearby 
cells, the algorithm can be parallelized to run on a distributed system. For 
example, the algorithm can be subdivided into multiple processes where each 
process reconstructs the spatial grid cell values at one time step t (red slice). On 
a cluster, for example, each process runs on a separate processor, and the 3D 
grid for the time step is kept in local memory. For its computations, the process 
(red) requires grid cell values from the 2 previous and the next 2 time steps, 
reconstructed by other processes. On the other hand, the process also sends the 
reconstruction for time step t to its neighbor time-step processes.

To determine the step size for the next iteration step from the CFL-criterion, the 
maximum operator value of each process is sent to a separate process. The 
algorithm stops when the maximum operator value falls below a preset threshold, 
indicating that a stationary solution of the surface evolution equation has been 
reached.
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Computational CostComputational Cost

• Grid resolution
– Up to 128x128x128 cells per time slice

– As many time slices (=processes) as time frames

• Computation

– Sun Fire 15K, 75 UltraSPARC III+ 900MHz

535MB180MB80MBMemory

120036060time [s]

1283643323grid res.

Here are some figures to evaluate computational cost. Because temporal 
coherence is taken into account globally, all images and grid cells must be 
accessible simultaneously. To avoid swapping data from and to hard drive, we 
use a small computer cluster. On each processor node, one or more processes 
are run, while the associated reference images and reconstructed grid cell values 
are stored in local memory.
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Rendering Rendering 

30 fps, 640x480 resolution (PC + GeForce4)30 fps, 640x480 resolution (PC + GeForce4)

64x64x64 cells64x64x64 cells

To render the zero level set model, we can either reconstruct triangle meshes 
using, e.g. marching cubes. Alternatively, we render the grid cells adjacent to the 
zero level set using billboard rendering [Goldluecke & Magnor, ICIP’03]. At 64^3-
voxel resolution, the dynamic model can be updated and rendered at real-time 
frame rates on conventional graphics hardware.
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Model-based VBR
11:30 – 12:00

Model-based VBR
11:30 – 12:00

German Cheung

Christian Theobalt
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Human Kinematics ModelingHuman Kinematics Modeling

• Advantages:

– Video-based: non-invasive

– Automatic: no manual intervention

– 3D shape+skeleton+segmentation+texture

– Built from scratch, no generic models or 
primitives

– Single system: modeling+marker-less 
motion capture

Although there exists precise full body laser-range scanner to capture human 
body shape, they are usually expensive and difficult to use. Moreover, they do 
not recover the very important joint skeleton information of the body. A vision-
based human kinematic modeling system has the advantages of being non-
invasive and relatively cheaper. In particular the system to be described uses 
multiple video streams to recover the 3D shape, skeleton, segmentation and 
texture information of a human body automatically without human intervention 
and the need of pre-existing models (the only knowledge is the joint structure of 
the human body). The same camera system set up can also be used for marker-
less motion capture once the kinematic model of the person is built. 
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Basic Idea: Refined Shape 
(Visual Hull) Over Time
Basic Idea: Refined Shape 
(Visual Hull) Over Time

QuickTime™ and a
YUV420 codec decompressor

are needed to see this picture.

8 silhouettes
from one time instance

240 silhouettes
from 30 time instances

– Body is rigid

– Motions (need not to be known) between frames  

Silhouette sequences

The main technical idea behind the vision-based modeling system is Visual Hull 
Across Time as discussed previously.  Visual Hull is a great method to estimate 
the shape of an object. However, VH constructed using small number of cameras 
are very coarse and therefore not useful in body shape modeling. The shape 
estimate can be improved drastically (as shown in the images above) by 
combining and refining VHs constructed over time. The basic assumptions made 
are that the body is rigid (which can be made valid as shown in the next slide) 
with rigid motions (the actual motions do not have to be known as they will be 
estimated in the process) from  the captured video. 
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System Setup System Setup 

Un-calibrated turn-table

The system setup is fairly simple with 8 synchronized, calibrated and color 
balanced cameras. To facilitate the capturing process, a un-calibrated turn-table 
with medium speed (2 rev./min.) is used to induce motions of the whole body. 
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Shape AcquisitionShape Acquisition

Extract
3D points

Capture videos
Align 3D points

frame #1 frame #30

Refine shape

8 silhouettes 240 silhouettes

QuickTime™ and a
MPEG-4 Video decompressor

are needed to see this picture.

(fast motion: 10 x recording speed)

Textured shape

Voxels are projected on 
the images to get texture

The subject is asked to remain still (for the rigidity assumption) on the turntable 
for 30s during capture. By extracting the 3D CSPs (please refer to the notes in 
the space-time section) and align them over time, the motion of the body in the 
video is estimated. Once the motions have been  recovered, the silhouette 
images extracted over the whole sequence are used to build a precise shape 
model of the body. The voxels are projected onto the color images to get the 
texture of the body shape. Note that space carving can be used instead of VH 
construction once the motions are estimated.  
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Joint Skeleton EstimationJoint Skeleton Estimation

Capture videos Extract
3D points

Estimate joint location

QuickTime™ and a
MPEG-4 Video decompressor

are needed to see this picture.

(fast motion: 2 x recording speed)

Align

frame #1 frame #15

Segment

frame #1 frame #15

Iterate

Joint skeleton

Combining
results of
all joints

By using a similar idea, the  joint locations of the body are estimated by asking 
the subject to exercise each joint one at a time so that the body can be 
considered as a two-link articulated object. The VHs are iteratively aligned and 
segmented into the two (linked) body parts. Once the motion and segmentation 
of all frames have been estimated, the joint location can be estimated easily by 
solving a least square problem. 
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Merging Shape & SkeletonMerging Shape & Skeleton

Kinematic
model

Skeleton

Shape

QuickTime™ and a
MPEG-4 Video decompressor

are needed to see this picture.

QuickTime™ and a
MPEG-4 Video decompressor

are needed to see this picture.

Shape videos(fast motions)

Joint videos

Once the body shape and joint skeleton have been estimated, they are merged 
together to form a complete kinematic model of the subject.
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Application: Video-based
Motion Transfer
Application: Video-based
Motion Transfer
• Marker-less motion capture

• Video-based motion transfer

Videos of martial arts 
master kung-fu fighting

Videos of ballet 
expert dancing 

Videos of martial arts 
master dancing 

Videos of ballet expert 
kung-fu fighting

Once the kinematic models have been built, they can be used to perform marker-
less motion capture and video-based motion transfer. The same body modeling 
camera system is used to track the motions of the subjects. Photo-realistic videos 
of one subject performing the motion of the other is rendered using a video-based 
rendering algorithm.
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Motion Capture using Error 
Minimization
Motion Capture using Error 
Minimization

22 DOF kinematic model
(6 DOF: torso+head
4 DOF: each limb)

Videos of new motion

Photometric 
error

Geometric 
error

Estimated 
joint angles Q

and global 
motion (R, t)

min  (Photometric error + Geometric error)
R, t, Q

Motion tracking can be formulated as a minimization problem. With an estimate 
of the motion parameters (the joint angles), the model is projected back onto the 
color and silhouette images. The photometric and geometric errors between the 
projected model and the images are used as the minimization criteria. Details of 
both the kinematic modeling and marker-less motion capture system and 
algorithms can be found in [Cheung et. al. 2005b].

[Cheung et. al. 2005b] K.M. Cheung, S. Baker and T. Kanade. Shape-From-
Silhouette Across Time: Part II: Applications to Human Modeling and 
Markerless Motion Tracking. International Journal of Computer Vision, Vol. 63, 
No. 3, August, 2005, pp. 225 - 245.
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Marker-less Motion CaptureMarker-less Motion Capture

Here are some example frames from a tracked dancing sequence and a tracked 
throwing sequence from two different subjects.
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Video-based Motion TransferVideo-based Motion Transfer

• Differences from other IBR algorithms

– Moving articulated object (human bodies)

– “Extrapolation” (new motion to different person) vs. 
“Interpolations” (replay motion of same person)

– Pixels come from an ensemble of images across 
both time and space 

There are three major differences between the video-based motion transfer 
system described here from the other IBR algorithms. Firstly, the objects in the 
videos are not still objects but articulated human bodies. Moreover, the transfer is 
an “extrapolation” process which renders new motion to a different subject as 
opposed to the “interpolation” process which only replays motion of the same 
subject. Also the rendered pixels are taken from images across both time and 
space. 
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Rendering AlgorithmRendering Algorithm

Frame 1 
(Reference frame)

Source 
images

Frame J

Camera 1
Camera 2

Camera K

Virtual
camera

Target image

Articulated mesh model
after target motion

data is applied

Source 
motion data

Step 2

P1PJ

Source model
points

Step 2

ΣΣΣΣ

Step 4

Computed 
viewing 
angles

Step 4

P
Step 1

Target pixel

Step 3Step 3

Occluded 
pixels not used

Assumption: motion in source images are tracked

The rendering algorithm assumes there is a set of videos (with J frames and K 
cameras) of the subject (who is being rendered to perform the new motion) as 
source images. The motions in the source images are assumed to be tracked 
using the marker-less capture system.  As a start, the new motion is applied to 
transform the articulated model. To render the motion from a target camera point 
of view, a ray is cast from a pixel from the image plane to intersect with the 
transformed model to locate the target model point P (Step 1). Using the tracked 
motion of the source data, the source model points P1 to PJ at each source 
frame are calculated (Step 2). These source points are then projected onto the 
corresponding source images and those projected pixels that are not occluded 
are taken as the source pixels (Step 3). Finally the source pixels are averaged 
with weights proportional to the viewing angles between the target camera  and 
the source cameras. 
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Rendering ResultsRendering Results

The top image shows frames of a real sequence of a male subject miming a 
throw motion. The bottom image shows the corresponding frames of a photo-
realistically synthesized sequence of a female subject performing the same 
motion. The throw motion is transferred from the male subject to the female 
subject using only vision-based algorithms. Details of the rendering algorithm and 
more results can be found in [Cheung et. al. 2004].

There are several limitations on this video-based motion transfer system. First of 
all, since the  body parts are treated as rigid, smooth skinning is a major problem 
around joints. This also means that muscle deformation and clothing are not 
modeled. Artifacts are also caused by uneven scene lighting and self-shadows. 
Finally the appearance of the subject in the synthetic video depends solely on the 
images in the video source.  

[Cheung et. al. 2004] K.M. Cheung, S. Baker, J. Hodgins and T. Kanade. 
Markerless Human Motion Transfer. Proceedings of the 2nd International 
Symposium on 3D Data Processing, Visualization and Transmission, September, 
2004. 
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Model-based 
Free-Viewpoint Video
Model-based 
Free-Viewpoint Video

MultiMulti--view video recordingview video recording Silhouette extractionSilhouette extraction
Generic modelGeneric model

adaptationadaptation

SilhouetteSilhouette--based modelbased model--fittingfittingMultiMulti--view texturing view texturing 
Interactive renderingInteractive rendering

[[CarranzaCarranza et al., et al., SiggraphSiggraph 2003]2003]

In free-viewpoint video the viewer is given the possibility to freely change his 
viewpoint onto a 3D rendition of a dynamic real-world scene. In order to generate 
a free-viewpoint video, the problems of acquisition of input data, reconstruction of 
a dynamic scene descriptions, and rendering in real-time have to be solved 
simultaneously.

This slide illustrates the workflow between algorithmic components of a model-
based system to reconstruct and render free-viewpoint videos of human actors 
[Carranza et al., Siggraph’03]. Inputs to our system are multiple frame-
synchronized video streams showing a moving person that have been captured 
with calibrated video cameras. Image silhouettes of the person in the foreground 
are extracted from each video frame. A generic human body model consisting of 
16 segments, a triangle mesh surface geometry with roughly 21000 triangles, and 
a kinematic skeleton made of 17 joints is employed to represent the time-varying 
appearance of the human. An analysis-by-synthesis approach based on 
silhouette-overlap is used to adapt the model in shape and proportions to the 
actor, and to determine pose parameters for each time step of video. Real-time 
renditions of the captured scene are generated by projectively texturing the 
moving body model from the input video frames that are appropriately blended.  



202

Silhouette MatchingSilhouette Matching

•Model Initialization & Marker-free Motion Capture
– Non-linear minimization of pose/scaling parameters

– Criterion: overlap between image 
silhouettes and body model projection

• Area of intersection

• Robust against silhouette inaccuracies

– Graphics hardware acceleration

• Pixel-wise XOR (stencil buffer)

• 8 camera views / frame buffer read-write

• 105 pose evaluations / sec. (GeForce 3) Silhouette XOR

Besides 35 parameters to specify the pose, our body model features for each 
segment a uniform scaling parameter, as well as 16 Bézier parameters for fine-
tuning the appearance of the surface. Our analysis-by-synthesis approach 
employs the overlap between the projected model silhouettes and the image 
silhouettes in all camera views for two purposes:

1) Initialization: The geometry of the model is adapted to optimally represent the 
appearance of the real-world equivalent. 

2) Marker-free Motion Capture: after the model has been customized, its pose is 
matched to the pose of the actor at each time step of the input video footage.

Both tasks require non-linear optimizations in the model parameters, the first one 
being performed in the pose and scaling parameters simultaneously, the second 
one being performed in the pose parameters only. The error function to be 
minimized computes the non-intersecting areas between the projected model and 
input silhouettes in all camera views. Conveniently, an estimate for this is 
obtained via the binary XOR between image and model silhouettes in all views. It 
can be efficiently evaluated on state-of-the-art graphics hardware using the 
stencil buffer. On a PC featuring an Intel Xeon 1.8 GHz CPU and an Nvidia
GeForce3 GPU, we can perform 105 energy function evaluations using 8 
cameras and a frame size of 320x240 pixels.
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InitializationInitialization

Initial model positioning

Scale local vertex 
coordinates using 4 
1D Bézier curves curves => 
16 control values per 
segment

Non-uniform segment scaling

Body Pose Estimation

iterate
Uniform skeleton rescaling

Initialization 
pose

The shape and proportions of the body model are adapted to the shape of 
the actor in an iterative optimization procedure. Inputs are silhouette 
images of the actor striking a dedicated initialization pose. In a first step 
the position and orientation of the torso segment in 3D space is
determined. The space of pose parameters for the torso is sampled 
regularly to find an optimal starting point for a subsequent downhill 
optimization that determines the final torso pose.

Thereafter, the method iterates between determining a new set of pose 
parameters for the whole model (explained on the next slide), and 
determining a new set of uniform scaling parameters for each segment. 

Finally, optimal parameters for the 1D Bézier scaling functions are found 
that bring the segment outlines into optimal accordance with the multi-
view silhouettes. On the hands and feet no Bézier scaling is performed.

The estimation of the optimal scaling parameters is performed 
hierarchically. It starts with the root of the skeleton (located in the torso) 
and proceeds layer-by-layer further down the skeleton hierarchy until the 
terminating nodes (head, hands and feet are reached).

For numerical minimization we employ a standard downhill direction set 
method such as Powell’s method. The shape parameters of the model 
remain fixed for the duration of a free-viewpoint video.
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Body Pose EstimationBody Pose Estimation
– Challenges

• Many local minima

• Fast limb motion 

• Constraint: no inter-penetrations

– Hierarchical decomposition
– Grid search

PosePose
ParametersParameters

at at tt--11

PosePose
ParametersParameters

at at tt

Grid Grid 
searchsearch

Only with a completely passive marker-free motion capture approach the same 
video material can be used for motion and texture estimation. Determining the 35 
pose parameters for each time step of video is a challenging problem since the 
non-convex energy-functional exhibits many local minima. Potentially rapid limb 
motion and constraints on allowable body poses require the parameter search 
space itself to be constrained. Only this way robust convergence to the correct 
solution can be assured.

We initialize the optimization search for one time step t with the parameters found 
at t-1. The problem’s search space is constrained by performing a hierarchical 
optimization that exploits structural knowledge about the body. The poses of 
individual kinematic sub-chains in the skeleton are determined separately. Body 
segments are considered in descending order with respect to the skeleton 
hierarchy and their respective influence on the silhouette appearance. In 
consequence, we first determine the torso pose, thereafter the poses of arms, 
legs, and head, and finally the parameters for the hands and feet. 

For arms and legs we employ a custom 4-degree-of-freedom parameterization. 

In order to handle rapid body motion the pose determination for each limb is 
preceded with a regular grid search in the 4D pose space. The best grid point 
found is used as starting point for the subsequent downhill optimization. 
Interpenetrating limb poses are also discarded during grid sampling.

Optionally, the complete pose estimation scheme is iterated.
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Silhouette-based 
Motion Capture
Silhouette-based 
Motion Capture

The video shows three of the input camera views and the body model correctly 
following the motion of the dancer.
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Model Fitting AccelerationModel Fitting Acceleration

•Performance bottlenecks
– Energy function

• Transfer bandwidth (frame buffer read/write)

• Rendering model geometry

– Optimization

•Improvements
– Modified XOR evaluation

– Distributed Model Fitting

[Theobalt et al.; Vision, Modeling and Visualization, 2003][Theobalt et al.; Vision, Modeling and Visualization, 2003]

The performance of the model fitting method is limited by two factors: the time 
needed to evaluate the XOR energy function and the runtime of the numerical 
minimizer itself.

The performance of the energy function evaluation on the GPU is constrained by 
the overhead inflicted by the necessary frame-buffer read/write operations, as 
well as the overhead to render the model geometry.

The performance of the pose determination procedure is constrained by the fact 
that on a single PC one can only optimize the pose for one body segment at a 
time. Given more CPUs, however, the parameters for independent segments on 
the same level of the skeleton hierarchy could be efficiently estimated in parallel.

Thus, we have enhanced the GPU-based XOR computation in order to capitalize 
on the compartmentalized nature of the pose determination problem [Theobalt et 
al., VMV’03]. The implicit parallel structure of the problem also suggests a 
distributed implementation of the motion capture sub-system as a whole. 
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Accelerated Energy Function
Evaluation
Accelerated Energy Function
Evaluation
– XOR evaluation in 

sub-window

– Pre-rendering of non-moving body parts

Mask of Mask of 
unchanging body partsunchanging body parts

Output stencilOutput stencil
with errorswith errors

Corrected Corrected 
energy functionenergy function

[Theobalt et al.; Vision, Modeling and Visualization, 2003][Theobalt et al.; Vision, Modeling and Visualization, 2003]

We modify the error function evaluation in two ways in order to exploit the 
compartmentalized nature of the pose determination problem:

1) Instead of rendering the frames in full size, the rendering window for each 
camera views is confined to a limited area around the image plane location of 
that kinematic sub-chain which is currently optimized. By this means the 
amount of data that has to be transferred during frame-buffer read/write is 
significantly reduced.

2) The rendering overhead for the body model can be reduced if only the 
geometry of those body parts is displayed whose pose is currently optimized. 
The additional error in the XOR value in each camera view that is inflicted by 
not showing large parts of the model has to be compensated. We do this by 
applying an image-mask of unchanging body parts that is generated prior to 
the optimization.  The bottom figure illustrates the process for one camera 
view.
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Distributed ImplementationDistributed Implementation

– Client-server setup

– 5 PCs – 5 CPUs and 5 GPUs

– Fitting procedure

• Server : torso 

• Clients/server in parallel: arms, 
legs, head

• Clients in parallel: feet, hands

[Theobalt et al.; Vision, Modeling and Visualization, 2003][Theobalt et al.; Vision, Modeling and Visualization, 2003]

Our distributed pose determination system is a client-server setup using 5 PCs, 
i.e. 5 CPUs and 5 GPUs. The hierarchical pose estimation procedure first 
determines the parameters of the torso on the server. The result is transferred to 
all clients. Now, the server and the clients determine the parameters of legs, 
arms and head in parallel. The results are broadcasted via the server before, in a 
final step, the poses of hands and feet are determined. 
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ResultsResults

•Average pose estimation time (s)

1.761.16Sub-window, pre-render, 
5 computers

10.103.30Sub-window, pre-render, 
single computer

14.107.98XOR single computer

Seq. BSeq. AMethod

Xeon 1.8 Xeon 1.8 GhzGhz , 512 MB RAM, GeForce3, 512 MB RAM, GeForce3

The table shows average times needed for determining the pose of the body 
model at a single time step with the different algorithmic alternatives for silhouette 
fitting. The results we obtained with two test sequences are shown. Seq.A
exhibits mostly slow body motion, whereas Seq.B shows an expressive jazz 
dance performance. Motion capture with the non-accelerated XOR computation 
on a single computer takes between 8s and 14s. A significant speed-up is 
obtained if we apply the enhanced energy function evaluation with sub-window 
constraint and body-part pre-rendering. By employing our distributed 
implementation we achieve average fitting times close to 1s. 
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Refined Model FittingRefined Model Fitting

•Silhouettes

– Robustly detectable

– Sensitive to large-scale motion

•Object texture

– Highly detailed

– Sensitive to small movements

� Exploit texture for fine-tuning model parameters

The silhouette-based analysis-by-synthesis approach described on the previous 
slides enables us to reconstruct a dynamic scene description without having to 
modify the input video footage in any form, e.g. with optical markings in the 
scene. This is a necessary precondition if texture information is taken from the 
video streams as well. 

Image silhouettes can be computed robustly and our motion capture approach is 
fairly insensitive to measurement noise in the image data. However, although a 
silhouette-based approach robustly captures poses on a large scale, the exact 
pose of some body parts is hard to infer exactly. Slight pose inaccuracies can 
often be observed for those segments whose shape exhibits very few features on 
the silhouette outline that guide the optimization towards the correct parameters, 
such as the head.

We thus propose to enhance the original motion capture method into a hybrid 
approach that jointly uses silhouettes and texture information from the video 
frames for pose determination. The texture information enables the correction of 
slight pose inaccuracies that exist in the silhouette fit.
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Texture-enhanced Motion 
Capture
Texture-enhanced Motion 
Capture
• 2D Optical Flow ui

– projection of 3D point motion dx/dt
into 2D image plane i

• Optical Flow vs. Scene Flow

– Jacobian matrix

• Known from camera model

– Optical Flow, Jacobian & Geometry

• Solve for 3D motion dx/dt

zyx
i

i ,,∂
∂= u

J

dt

d
ii

x
Ju =

[Theobalt et al., Pacific Graphics, 2003][Theobalt et al., Pacific Graphics, 2003]

Our texture-enhanced motion capture method employs the scene flow, 
the 3D equivalent of the 2D optical flow in the image plane, to compute 
corrective pose updates.

The 2D optical flow is the projection of the 3D motion field of a dynamic 
scene into the image plane of a recording camera.

A sea of algorithms has been proposed in the computer vision literature to 
compute this 2D flow field between two subsequent depictions of the 
scene. In our implementation we employ the method by Lukas and 
Kanade (see [Theobalt et al., PG’03] for references to the original 
literature).

The scene flow corresponding to a set of optical flows in multiple camera 
views is the set of 3D motion vectors, one for each point in the scene, 
whose projections are the 2D optical flows. The differential relationship 
between the optical flow and the scene flow is described by a Jacobian
matrix whose entries can be determined from the matrix of a calibrated 
camera.

Given a set of optical flows from multiple calibrated camera views, and full 
knowledge about the 3D geometry, it is possible to infer the scene flow 
vector for each point on the geometry by solving a linear equation system.
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Motion Field-guided
Model Fitting Algorithm
Motion Field-guided
Model Fitting Algorithm

• Estimate model pose for t+1
– Silhouette fitting

• Render image estimates I’ j,t+1

– Texture model with images I j,t

• For each model vertex
– Determine projection coordinates and visibility 

in each image

– Compute optical flow between I j,t+1 and I’ j,t+1

– Calculate 3D vertex motion from motion field

• Update model to conform with motion field

In a predictor-corrector-scheme, we employ the scene flow determination method 
for computing differential pose updates that correct inaccuracies in the silhouette-
fit.

In a first step, an estimate of the pose parameters at time t+1 is computed using 
the original silhouette-based motion capture technique.

Using this first pose estimate, we predict the appearance of the model by 
rendering and projectively texturing it with the camera images from the previous 
time step I j,t. This way, we generate novel images I’ j,t+1 showing the predicted 
model appearance at time t+1 in each camera view j. 

For each vertex it is determined in which cameras it is visible. For each camera 
that sees the vertex, the optical flow between its projection into I’ j,t+1 and I j,t+1, is 
computed. Using all the 2D flow vectors found for this vertex, the corresponding 
3D scene flow vector is computed using the method outlined on the previous 
slide. 

This way, a scene flow field is generated which describes for each vertex a 
position update that brings the model into a pose that is photo-consistent with all 
camera images. The corrective flow field is translated into a set of corrective 
pose parameters for the model by means of a shape registration method 
originally proposed by Horn (see [Theobalt et al., PG’03]).



213

Differential Pose UpdateDifferential Pose Update

Before sceneBefore scene--flowflow--basedbased
pose updatepose update

After registering torso, After registering torso, 
head, and upper arm and upper leghead, and upper arm and upper leg

3D flow vectors purposefully exaggerated

The figure on the left shows the body model in the pose that was found via 
silhouette–fitting.

The green arrows are corrective scene flow vectors that have been computed for 
all vertices in the body model using the predictor-corrector scheme described on 
the previous slide. The length of the flow vectors has been purposefully 
exaggerated in order to better visualize the flow field.

The figure on the right shows the pose of the model after the corrective pose 
update parameters for the torso, the head, the upper arms and the upper legs 
have been applied to the skeleton. 
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ResultsResults

• Purely 
silhouette-based
pose 
determination

• Pose 
determination
with differential
update

The four figures illustrate the visual improvements achievable with the texture-
enhanced motion capture method. The top row shows screen-shots of free-
viewpoint videos that have been reconstructed with pure silhouette-fitting.

The bottom row shows renditions from the same virtual camera views but with 
the scene-flow-based pose correction applied. Improvements are mainly visible in 
the face and on the torso. Block artifacts in the images are due to the limited 
camera resolution of 320x240 pixels.
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RenderingRendering

– Render model geometry in captured pose

– Dynamic projective texturing with camera images

• Per-vertex blending and interpolation in fragments

– Texture information (camera image)

– Visibility

– View-independent spatial blending weights

– Optional: view-dependent weights
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The reconstructed 3D videos are rendered by displaying the body model in the 
sequence of captured poses, and projectively texturing it with the video frames at 
each time step of video. 

For vertex i in the model we compute the final color ci by appropriately weighting 
and summing the color contributions from each input camera view texj(i) .Visj(i) is 
the visibility of vertex i in camera view j, � j(i) is a spatial blending weight 
depending on the relative orientation of the vertex with respect to the input 
camera. We can assume that the reflectance of most garments is close to 
lambertian. It is thus valid to compute the spatial texture blending weights only 
based on the orientation of a vertex with respect to the input cameras. The 
camera which sees a surface element most head-on is assigned the highest 
blending weight. 

However, in order to model view-dependent reflectance effects appearing in 
some garments, an optional view-dependent rescaling factor � j(i) can be included 
into the color computation. It weights the camera contributions depending on the 
relation between outgoing viewing direction and camera viewing direction. The 
per-vertex blending weights are interpolated in the fragment stage of the GPU.
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Video TexturingVideo Texturing

•Time-varying texture
– Cloth folds

– Local shadows

– Facial expressions

•Detail preservation
– Small inaccuracies between 

geometry and silhouettes

– Soft shadow visibility

– Camera image dilation

– Controllable spatial blending 
weights

By generating a novel texture for each time step of video, subtle dynamic details 
in surface appearance, such as wrinkles in clothing, local shadows and facial 
expressions are faithfully reproduced (see three Figs. In top row, block artifacts 
are due to the limited camera resolution of 320x240).

Although our automatic model initialization approach generates a body geometry 
that matches the appearance of the actor very well, small geometry 
misalignments between the virtual and the real human may still exist. In These 
mismatches may lead to erroneous projections of parts of the texture belonging 
to occluding geometry onto actually more distant parts of the body (bottom left 
Fig.). Furthermore, seams originating from projected silhouette boundaries may 
appear on the body.

We employ three techniques to counter these effects. Firstly, we compute the 
visibility of each vertex from a set of slightly displaced camera views (soft shadow 
visibility). This way, projection artifacts at occlusion boundaries are prevented 
(bottom right Fig.). Secondly, we dilate the segmented video frames at the 
silhouette boundaries to prevent the seams. Thirdly, we apply a special method 
to compute controllable spatial texture blending weights which is illustrated on the 
next slide.
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Controllable View-independent 
Spatial Texture Blending
Controllable View-independent 
Spatial Texture Blending
– dependent on surface-to-camera

orientation
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The easiest way to compute a view-independent spatial blending weight for 
vertex i and camera j, � j(i), is to apply the reciprocal of the angle � j(i) between 
the vertex normal and the viewing vector towards the camera.

We propose alternative spatial blending weights, � ’j(i), that give a better control 
over the influence of each camera on the appearance of the final texture. The 
alternative weight computation assigns a proportionally high weight to the camera 
which sees the vertex most head-on. The sharpness value � controls the amount 
by which the influence of the best camera is exaggerated. In the limit, ����� , only 
the best camera is contributing to the color of the vertex. The three figures on the 
bottom of the slide illustrate the influence of the sharpness value on the final 
renditions.



218

View-dependent 
Rescaling Weights
View-dependent 
Rescaling Weights

– Dependent on orientation with
respect to output viewpoint       
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Optionally, a weight � j(i) can be computed that view-dependently rescales the 
view-independent blending weights.

The weight � j(i) for vertex i and camera j is the reciprocal of the angle � j(i)  
between the viewing direction towards the camera and the current outgoing 
viewing direction.
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Free-Viewpoint Video ViewerFree-Viewpoint Video Viewer

– Rendering: 30 fps (GeForce3)

The top right image shows a screen-shot of our renderer which displays free-
viewpoint videos at 30 fps on an Nvidia GeForce3 GPU.

The bottom row shows screen-shots of free-viewpoint videos that have been 
rendered from virtual camera views different from any input camera view.

The input video footage for these sequences (as well as all the other sequences 
shown on previous slides) has been captured with 8 video cameras that provide 
an image resolution of 320x240 pixels each.



220

ResultResult

A free-viewpoint video of ballet dancer that we have reconstructed with our 
method.
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Small-baseline VBRSmall-baseline VBR

• 3D TV

– [Matusik & Pfister, Siggraph’04]

• Dynamic light field warping

– [Goldluecke & Magnor, VMV’02]

– [Zitnick et al., Siggraph’04]
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Depth-from-StereoDepth-from-Stereo

• Pairwise Stereo
– Fast [Atzpatin et al., T-CSVT'04], [Criminisi & Blake, CVPR'04]

• Multi-view
– Graph cuts [Kolmogorov & Zabih, ECCV'02]
– With segmentation [Goldluecke & Magnor, CVPR'03]
– On GPU [Yang et al. PG’02], [Yang and Pollefeys CVPR’03], 

[Yang et al. ICCV’03], [Yang and Pollefeys RTI’05]

• In space-time
– Active triangulation [Zhang et al., CVPR'03], [Davis et al., CVPR'03]

•With opacity
– Transparency & matting [Szeliski & Golland, ICCV'98]
– Opacity hulls [Matusik et al., Siggraph'02]

• Overview
– [Scharstein & Szeliski, IJCV'02],[Szeliski & Zabih, LNCS 1883, '99]
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Wide-baseline VBRWide-baseline VBR

• Visual hull
– Volumetric [Potmesil, CVGIP'87],[Szeliski, CVGIP'93]
– Image-based [Matusik et al., Siggraph’00]
– Polygonal [Matusik et al., EG’01],[Franco&Boyer, BMVC'03]
– On hardware [Li et al., GI'04]

• Photo hull
– Voxel coloring [Seitz & Dyer, CVPR’97]
– Space carving [Kutulakos & Seitz, ICCV’99]
– Roxels [De Bonet & Viola, ICCV’99]
– On GPU [Slabaugh et al., 3DPVT'02,[Li et al., EG'04]

• Silhouettes and photo-consistency
– [Sinha and Pollefeys, submitted to ICCV’05]
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Camera network calibrationCamera network calibration

• Silhouette-based camera network calibration

[Sinha et al,CVPR’04][Sinha and Pollefeys,ICPR’04] 
[Sinha and Pollefeys, 3DPVT’04]
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Spacetime CoherenceSpacetime Coherence

• Scene flow
– Scene flow [Vedula et al., ICCV’99, CVPR’00]
– Surfel sampling [Carceroni & Kutulakos, ICCV’01]
– Spacetime trajectories [Neumann & Aloimonos, 

IJCV’02]
– Visual hull alignment & refinement 

[Cheung et al., CVPR’03]

• Spacetime-coherent reconstruction
– Theory [Goldluecke & Magnor, ECCV’04]
– Practice [Goldluecke & Magnor, CVPR’04]
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Model-based VBRModel-based VBR

• A-priori model usage

– Fitting 3D parameterized model [Lowe, PAMI'91]

– Force field, distance maps [Brunie et al. ECCV'92]

– Photo registration [Neugebauer & Klein, CGF'99]

• Analysis-by-synthesis

– Model pose [Koch, PAMI'93], [Eisert et al., T-CSVT'00]

– Camera calibration [Eisert et al., VMV'02]

– Photo registration [Lensch et al., PG'00]

– Motion capture [Carranza et al., Siggraph'03]

• Free-Viewpoint Video

– Silhouette-based motion capture [Carranza et al., Siggraph’03]

– Texture-based refinement [Theobalt et al., PG’03] 

– Analysis in parallel [Theobalt et al., VMV’03] 
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VBR ResourcesVBR Resources

www.video-based-rendering.org
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