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ABSTRACT

People positioning and tracking in 3D indoor environments are chal-
lenging tasks due to background clutter and occlusions. Current
works are focused on solving people occlusions in low-cluttered
backgrounds, but fail in high-cluttered scenarios, specially when
foreground objects occlude people. In this paper, a novel 3D peo-
ple positioning and tracking system is presented, which shows it-
self robust to both possible occlusion sources: static scene objects
and other people. The system holds on a set of multiple cameras
with partially overlapped fields of view. Moving regions are seg-
mented independently in each camera stream by means of a new
background modeling strategy based on Gabor filters. People detec-
tion is carried out on these segmentations through a template-based
correlation strategy. Detected people are tracked independently in
each camera view by means of a graph-based matching strategy,
which estimates the best correspondences between consecutive peo-
ple segmentations. Finally, 3D tracking and positioning of people
is achieved by geometrical consistency analysis over the tracked 2D
candidates, using head position (instead of object centroids) to in-
crease robustness to foreground occlusions.

Index Terms— Background modeling, human template, 3D
tracking, geometrical consistency, occlusion robustness.

1. INTRODUCTION

Visual positioning and tracking of multiple people in indoor environ-
ments is an active research topic due to its applicability to surveil-
lance systems, security, and restricted access area control, intelli-
gent rooms, etc. Many works have addressed this task using one
single camera (as in [1]), and have satisfactorily solved it in con-
trolled environments: i.e. low cluttered background. However this
single-camera approaches fail in presence of foreground occlusions.
Recently, moving foreground occlusions have been partly overcome
in [2], by using several views (obtained by different uncalibrated
cameras) warped to find the ground areas where a moving object
may stand with high probability. However, this approach fails when
the static foreground clutter occludes the lower part of the moving
objects (which is a usual situation in real environments), avoiding a
correct projection of foreground objects on the ground plane.

To overcome these problems, a novel system for 3D positioning
and tracking of multiple people in highly cluttered environments is
proposed, solving both static and moving foreground occlusions us-
ing a multi-camera strategy. The overview of the system is depicted
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in Fig. 1. Moving regions are segmented in each frame by means of a
novel motion detection technique based on background subtraction,
that performs a multidimensional description of the background us-
ing a bank of Gabor filters. The resulting segmentation is correlated
with a set of human-shape templates with different scales and orien-
tations according to both the size of the room and the information
from the camera calibration, to find the most probable people seg-
mentations, discarding erroneously segmented regions mainly due to
shadows. People tracking is performed by means of a graph-based
matching strategy that finds the best correspondences between peo-
ple segmentations in consecutive frames. Resulting correspondences
representing people tracks are smoothed by means of a Kalman fil-
tering. Obtained 2D tracking information from different cameras is
then fed into the 3D positioning and tracking module. This final
stage decides which 2D objects correspond to the same 3D moving
object according to its geometrical coherence, and then models these
3D detected objects as cylinders to track them using a Kalman filter.
The system assumes fully-calibrated cameras and works on the top-
most points of moving objects (heads), as this feature shows greater
robustness to static foreground occlusions than others such as, e.g.
the centroid.

Fig. 1. Block diagram of the 3D positioning and tracking system

This paper is organized as follows: Section 2 describes the mov-
ing region segmentation strategy, which is used to detect people as it
is explain in the Sec. 3. Tracking process within each camera is de-
scribed in Sec. 4, while Sec. 5 presents the details of the 3D people
tracking and positioning module. Experimental results are presented
in Sec. 6, followed by the conclusions in Sec. 7.

2. MOVING REGION SEGMENTATION

Moving regions are segmented in the current image It, where t is
the time instant, by means of a background substraction strategy
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performed in a Gabor-based feature space. The background Bt is
modeled by a multidimensional image where each pixel is a feature
vector �F that characterizes its neighborhood, computed using a bank
of 16 Gabor-based filters according to (1).

�F = [GY (θm), RR(θm), RG(θm), RB(θm)], m ∈ {1, ..., 4} (1)

where GY (θm) is the Gabor filter [3] response applied over the lu-
minance channel of the image, which describes the spatial luminance
variations; RR(θm), RG(θm) and RB(θm) are the half-wave recti-
fied Gabor filter responses applied respectively over the red, green
and blue image channels of the image, which characterize the spa-
tial color distribution; and θm is the filter orientation, whose range
is {0, 45, 90, 135} degrees.

Each pixel of Bt is updated between the instant t − 1 and t
through (2) to make the model robust to slow illumination variations
and changes due to image noise

Bt(x, y) = (1− α)Bt−1(x, y) + αM t(x, y) (2)

where M t is a multidimensional image obtained by means of the
application of the aforementioned bank of Gabor-based filters over
It; and α is a variable that controls the weight of the current image
in the background model. Its value is a trade-off between adapting to
slow illumination variations (a low value of α) and fast ones (a high
value of α). Satisfactory results have been obtained using values in
the range (0.01, 0.1), depending on the variation of the background.

Background substraction is carried out by computing the Eu-
clidean distance between the feature vectors of Bt and M t. The
resulting image is thresholded by means of the Median Absolute
Deviation technique [4], obtaining the binary moving region seg-
mentation St.

3. PEOPLE DETECTION

Shadows and static foreground occlusions can produce situations
where a person is divided into several independent regions or where
static regions are segmented in St. These problems have been solved
correlating a set of human silhouettes, used as templates, over St to
estimate the most probable people segmentation. Since the camera
is calibrated, the range of the scale and the 3D orientation of the hu-
man silhouettes can be restricted according to the camera position
and size of the room. In the current implementation 16 normalized
human silhouettes have been used, four of them are shown in Fig. 2
as example. The correlation of the nth template, Tn, is computed
using the Mean Squared Error (MSE) as shown (3)

MSEt
n(x, y) =

Hn∑
i=1

Wn∑
j=1

(
Tn(x + i, y + j)− St(x, y)

)
2

(3)

where Hn and Wn are respectively the height and the width of the
nth template. All MSEt

n are combined by selecting the minimum
value for each pixel coordinate, and the result is used to perform a
non-minimal suppression, obtaining a combined matching error im-
age ,P t, that represents the most probable people locations. P t must
be properly thresholded to remove false detections due to segmented
shadows (a high threshold value), but allowing a certain mismatch-
ing produced by static foreground occlusions (a low threshold value).
According to the performed experiments, a threshold value in the
range (0.6, 0.75) allows to obtain an accurate people detection. Fig-
ure 3 shows four images depicting the people detection process.

Fig. 2. Four of the 16 human templates used in the correlation pro-
cess to detect people.

(a) (b)

(c) (d)

Fig. 3. (a) Frame showing a single person. (b) Moving region seg-
mentation corresponding to (a), affected by shadows. (c) The com-
bined matching error image P t. (d) Person detection where the
person has been bounded by a rectangle and his centroid has been
marked according to the human silhouette dimensions. Note that
shadows have been satisfactory removed.

4. 2D TRACKING

People tracking is carried out by means of a graph matching strategy
[5], that estimates the best correspondence between people segmen-
tations in consecutive frames based on the corresponding circum-
scribed rectangles. In absence of occlusions, the people matching
is straightforward, giving correct correspondences. As explained
in Sec. 5 the 3D tracking uses the head coordinates instead of the
correspondence coordinates (which represent the centroid of the hu-
man template). This is accomplished by vertically translating the
correspondence coordinates according to the dimensions of related
human template. Head coordinates along with the dimensions of
the corresponding template are smoothed using a Kalman filter to
minimize the impact of low accuracy people detections in situations
where static foreground objects occlude a significant part of a per-
son.

In the presence of occlusions, the graph matching strategy may
produce multiple correspondence for each occluded person. This
situation is addressed by the 3D tracker, which solves the uncertainty
by means of the tracking information of multiple cameras.
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Fig. 4. Pixel error measurement of a correspondence between two
points (final mean error would be (di + dj)/2, as in this case only 2
cameras are involved).

5. MULTI-CAMERA GEOMETRY-BASED 3D TRACKER

Once detection and tracking of people have been performed for each
of the system cameras separately, valuable 3D information can be
inferred through fusion. Particularly, 3D position, height and width
can be robustly estimated.

The proposed 3D tracking module takes, as input, 2D objects
tracked separately in each of the cameras composing the system. The
3D tracker is able to infer which 2D segmentations correspond to
different views of a real 3D object, and also to decide whether a 2D
segmentation must be seen as an error, and thus discarded. Once cor-
respondences between objects from different views are established,
position of the 3D objects can be estimated by triangulation. Corre-
spondences between 2D objects can be performed using appearance
modeling of objects [6], or geometrical consistency between 2D ob-
jects [7]. The proposed system follows the geometrical consistency
approach, allowing greater robustness against differences in acquisi-
tion conditions in different cameras (due to possible diverse sensor
responses, direct or varying illumination, etc.).

Although the centroid is the preferred feature for performing
geometrical consistency calculations [7], it depends directly on the
shape and size of the whole 2D blob. This results, for a 3D object,
in significant variations in 2D centroid positions due to static fore-
ground occlusions of the lower part of objects (mainly because of
furniture), and thus 3D object centroid projection and 2D blob cen-
troids may differ dramatically. Using the topmost central point of
2D blobs (2D head positions) increases the invariance to usual static
foreground occlusions. Estimation of the 3D head position is per-
formed by applying the linear triangulation method [8] to the 2D
head coordinates in the different cameras. At this point, 3D object
position can be inferred projecting it onto the (known) ground plane.

Correspondences between tracked 2D objects from different
cameras are established through exhaustive search across the whole
set of posible combinations, including those in which the 3D object
is not being seen by some of the cameras. Each possible combi-
nation gives an error measurement Em expressing its geometrical
coherence, and combinations with Em above a certain pixel thresh-
old pTh are immediately discarded. Computation of Em is depicted
in Fig. 4, and follows the expression

Em =
1

Nc

∑
∀c

dL2

(
�h2D

c , Pc

(
�h3D

))
(4)

where Nc represents the number of cameras supporting the 3D ob-
ject, dL2(·) is the Euclidean distance, �h2D

c is the head position of the
supporting blob in camera c, and Pc(�h

3D) is the projection of the 3D
reconstructed head position �h3D onto camera c image plane. This

mean pixel error measurement conveys a clear geometrical mean-
ing, as opposed to the utilization of the residual r of the equation
system of the linear triangulation method used in [7]. An additional
corrected error measurement Ec is also needed to promote those cor-
respondences involving a higher number of cameras, as Em tends to
penalize these desirable sets of 2D objects. Ec has been calculated
using Eq. (5). Ec has proved a good trade-off between different
numbers of cameras (see Sec. 6).

Ec = Em/10Nc (5)

The 3D tracking module deals essentially with 3D objects.
A particular combination of 2D object correspondences between
cameras is promoted to “3D object” whether has appeared in the
last Napp frames, and has simultaneously showed the lesser cor-
rected error Ec among all combinations. Results analysis shows that
Napp = 5 is a good trade-off between 3D object detection latency
and false alarm rate (see Sec. 6). New 3D objects are looked for
amongst those 2D objects that do not support any existing 3D object.
The system models each 3D object as a cylinder characterized by
�xgp

i (center of the cylinder base on the ground plane), hi (height) and
Ri (radius). Both �xgp

i and hi are immediately extracted from the lin-
ear triangulation method output. The radius R of the cylinder can be
estimated from the 3D head position �h3D and the 2D corresponding
objects using triangle similarity, through the expression

R =
1

Nc

∑
∀c

rc =
1

Nc

∑
∀c

[
1

2

wc

βc

(
cos2αc

)
dL2

(
�Cc, �h3D

)]
, (6)

where

αc = arctan(dc), with dc =
1

βc

dL2

(
�h2D

c , �pc

)
, (7)

and where wc is the width of the bounding box of the correspond-
ing 2D object, βc represents the focal length of the camera in terms
of pixel dimensions, �Cc is the camera optical center, and �pc is the
principal point position (in pixels) of camera c. Estimated cylinder
parameters are smoothed by a Kalman filter to ensure consistency
when the number of supporting 2D views changes.

In addition, every 3D object stores its supporting 2D object iden-
tifiers in the last time step. In each time step all existing 3D objects
are updated, estimating the best 2D object combination among those
that differ, at most, in one of the objects regarding to the previous
correspondence. A 3D object is discarded whether, during Ndis con-
secutive frames, Em is above a certain pixel threshold pTh, or no set
of two or more 2D objects can support it. The analysis of the results
shows that Ndis = Napp is a reasonable selection.

6. RESULTS

The proposed multi-camera 3D tracking system has been evaluated
in a rectangular test-room (8×8.5 meters) with two entrance doors
reproducing a typical office environment (see Fig. 5 and 6). Four
identical and overlapping field-of-view cameras have been placed in
the four topmost corners of the room, although the implemented sys-
tem could handle an arbitrary number of different cameras (greater
than 2). All cameras have been manually calibrated, and referenced
with respect to a 3D coordinate system (�x, �y, �z) in which, for con-
venience, ground-plane equation is z = 0. Processed video streams
have a frame rate of 25 fps, and a resolution of 352×288 pixels. Ra-
dial distortion has been previously compensated, as it prevents cor-
rect 3D reconstructions and geometrical correspondences. A simple,
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(a) (b) (c) (d) (e)

Fig. 5. Single person undergoing static foreground occlusion. (a)(b)(d)(e) Four different camera views of the test room, with modeling
cylinder projection superimposed. (c) Bird’s-eye view of the test room containing 3D position and trajectory of the person.

(a) (b) (c) (d) (e)

Fig. 6. Two people with crossing trajectories, undergoing severe people-to-people occlusion. (a)(b)(d)(e) Four different camera views of the
test room, with modeling cylinder projections superimposed. (c) Bird’s-eye view of the test room containing 3D positions and trajectories.

bird’s-eye view model of the test room has been generated to show
the object evolution (Fig. 5 and 6).

Different situations have been evaluated in the test environment,
where multiple people undergo both inter-people and static fore-
ground occlusions, and enter and leave the room. System parameters
(listed across this paper) have been tuned according to an exhaustive
analysis of 2D and 3D tracking results. Some of them are dependent
on the working conditions (resolution and frame rate of the video
streams, extent of the monitored area, camera position, etc.).

Figure 5 shows a single man walking between two office desk
rows. The moving target is within the field of view of three of the
four cameras composing the system, undergoing severe static fore-
ground occlusions. However, the system is able to accurately locate
him in the room and even to estimate its height with great precision
(Fig. 5 (c)). Figures 5 (a)(b)(d)(e) show the projection of the model-
ing cylinder onto the camera planes, demonstrating the accuracy of
the 3D positioning.

Figure 6 shows a more complex situation where two people fol-
low crossing trajectories, undergoing severe people-to-people occlu-
sion in two of the four system cameras (Fig. 6 (b)(e)). The proposed
system is able to correctly track both people from non-occluded
views (Fig. 6 (a)(d)), as demonstrated in Fig. 6 (c).

7. CONCLUSIONS

The presented system positions and tracks multiple people in 3D in
complex scenarios, addressing not only inter-people occlusion but
also static foreground occlusion. A novel multidimensional back-
ground substraction technique along with a human template corre-
lation process allow to accurately detect people even when they are
significatively occluded by static foreground objects. However, the
accuracy of people locations may be decreased. On the other hand,
situations of strong occlusion between people can yield incorrect 2D
tracking information. These problems are overcome by means of a
3D geometrical approach with multiple cameras. This approach uses

the field of view of each camera to solve detection and 2D tracking
uncertainties by means of the efficient selection of the 3D people
location among the multiple 3D possible locations related to each
person. This allows to achieve an accurate 3D tracking and position-
ing of people. Excellent results have been obtained in high-cluttered
scenarios with multiple people.
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