
EUROGRAPHICS 2014 / B. Lévy and J. Kautz
(Guest Editors)

Volume 33 (2014), Number 2

Interactive Motion Mapping for Real-time Character Control

Helge Rhodin1, James Tompkin1,2, Kwang In Kim1,3, Kiran Varanasi1,4, Hans-Peter Seidel1, Christian Theobalt1

1Max-Planck-Institute for Informatics, 2Intel Visual Computing Institute, 3Lancaster University, 4Technicolor Research

S
o

u
rc

e
T

ar
g

et

Figure 1: Different motions are easily mapped between very different morphologies for fast and versatile real-time character
control. We require only 4-8 interactively defined correspondences and support 3D point sequences and meshes as input.

Abstract
It is now possible to capture the 3D motion of the human body on consumer hardware and to puppet in real
time skeleton-based virtual characters. However, many characters do not have humanoid skeletons. Characters
such as spiders and caterpillars do not have boned skeletons at all, and these characters have very different
shapes and motions. In general, character control under arbitrary shape and motion transformations is unsolved
- how might these motions be mapped? We control characters with a method which avoids the rigging-skinning
pipeline — source and target characters do not have skeletons or rigs. We use interactively-defined sparse pose
correspondences to learn a mapping between arbitrary 3D point source sequences and mesh target sequences.
Then, we puppet the target character in real time. We demonstrate the versatility of our method through results on
diverse virtual characters with different input motion controllers. Our method provides a fast, flexible, and intuitive
interface for arbitrary motion mapping which provides new ways to control characters for real-time animation.

1. Introduction

New consumer input devices provide opportunities to in-
teractively animate virtual characters. For example, the Mi-
crosoft Kinect controller outputs the 3D positions of human
body skeletal joints in real time. With traditional skeleton-
based animation pipelines, human joint data can be mapped
to a virtual character so long as it has a similar skeleton
to a human, thus providing character control. However, of-
ten non-humanoid characters need to be controlled. For in-
stance, spiders can be parameterized by skeletons with dif-

ferent numbers of limbs. Characters like caterpillars have
no obvious bone rigging and, even if a skeletal mapping
could be defined, direct human skeletal control would be
difficult. In these cases, mapping and retargetting of human
motions would require time consuming manual work by ani-
mators. In general, retargetting has practical limitations, and
the question of how to map arbitrary motions remains.

Existing character control algorithms cannot map arbi-
trary source and target motions, and new approaches need
to fundamentally generalize. One approach is to deform

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI: 10.1111/cgf.12325

Rhodin et al. / Interactive Motion Mapping

meshes by using joints as deformation constraints, e.g., to
embody and move a chair [CIF12]. Another approach con-
trols a quadrupedal target skeleton by mapping the motion
to two humans, similar to a pantomime horse [VHKK12].
However, these approaches do not scale to target character
shape and motions that are very different from human.

Solutions to the generalized motion retargetting problem
need to map a source input space to the target output space
of a virtual character, even if that character is structurally
dissimilar to a human and even if its motion is not well rep-
resented by a skeleton. It should be possible to map an undu-
lating arm motion to a crawling caterpillar motion, or to map
a jockey saddle bounce motion to a horse gallop motion, all
without explicitly specifying spatial correspondences.

We move towards this goal with a solution for interac-
tive mapping and real-time character control. Our approach
is general and abstracts from the classical skeleton-rig-based
motion parameterization which is not suitable for mapping
structurally different motion spaces. We take as input a ref-
erence source sequence of sparse 3D points or meshes, such
as full body, hand, or face motion from any motion capture
system. This approach bypasses time consuming and poten-
tially error prone skeleton reconstruction. We also take as
input a target character as a sequence of meshes, and no
additional control rig is required. Thus, any animation type
can be puppeted by our system, be it keyframe animation,
physics-based simulation, or rig-based animation.

To achieve this, we represent both motions in dedicated
feature spaces and learn a mapping between these intermedi-
ate representations, with bounds stemming from a latent vol-
ume which constrains the predicted poses. Latent volumes
are bound from training motions which reduce the risk of
causing artifacts if new live source motions for puppetry are
unlike the reference source motions, and so they remove the
need for the puppeteer to restrict their poses only to those
correspondences defined. Further, this makes our approach
robust, and mappings learned for one source can be success-
fully applied to other sources, such as in training/repetition
scenarios or across actors.

Our approach is fast, flexible, and user friendly as our
algorithm only requires the specification of 4-8 temporal
correspondences between source and target sequences. We
neither require spatial correspondences, e.g., limb mapping,
nor correspondences to every pose in the target charac-
ter motion. This enables an efficient animate-correspond-
synthesize workflow: The user interactively corresponds
their body poses to the target character, the mapping is
learned in a few seconds, and then new animation is synthe-
sized in real-time. As this cycle is very fast, users can iterate
to find which source mappings are most intuitive and make
on-the-fly control adjustments. This naturally leads to ap-
plications in simple motion and party games; however, our
approach also gives new tools to animation artists. In con-
versations with animators, they found our system useful to

‘give life’ to existing animations through creative puppetry,
for example, to produce variation when animating crowds or
when adding timing nuances to a walk cycle through finger
tracking. In figures and in a supplementary video, we show
the performance and reliability of our method with a variety
of real-time control examples with different source and tar-
get motions, such as mapping full body motion of a human
to a caterpillar and mapping face motions onto a sheep.

We summarize our contributions:

• A real-time algorithm that can map between characters
with different topology from sparse correspondences.

• A latent volume representation that efficiently exploits un-
labeled data to allow robust character control.

• An automatic keyframe suggestion method to support the
user during correspondence selection.

These create a robust and easy to set up system for interac-
tive motion mapping of characters with arbitrarily different
shapes and motions, which opens the door for more creative
and intuitive real-time character animation.

2. Related Work

Creating a skeleton rig for a character to be animated in
real time is a non-trivial and time-consuming task even for
animators [GGP∗00]. Skeleton-based character control with
captured motion data requires the solution of a complex re-
targetting problem [Gle98], since the dimensions and topol-
ogy of source and target skeletons may differ. Reusing mo-
tion behavior across characters is not straightforward, as mo-
tion retargetting produces awkward artifacts even when the
characters are similar in geometry.

Recent research in animation has suggested solutions to
simplify or bypass the skeleton-based character animation
process. Hecker et al. map skeletal motions to user-created
target characters with different morphologies [HRE∗08].
New control rigs and control parameters are estimated by
a particle-based inverse kinematics solver which makes the
character move appropriately. Bharaj et al. automatically es-
timate a skeleton for multi-component characters, and de-
scribe a way of mapping source motion to the inferred target
rig which succeeds as long as each target subchain can be as-
signed to an equivalent subchain in the source rig [BTST11].
However, both of these approaches still rely on skeletons and
are hard to map to soft-bodied creatures.

Data-driven animation schemes parameterize a char-
acter motion space by example motions. Animation re-
searchers have experimented with dimensionality reduction
techniques for data reduction and for designing new mo-
tion controllers [AM01,KRFC09], and both linear mappings
and non-linear approaches have been investigated. In linear
frameworks, the movement space can be considered to be
spanned by a set of basis shapes [TYAB01], or by a set of
basis trajectories for each point [ASKK10]. In this new ba-
sis space, the character can be controlled by modifying the

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

274

Rhodin et al. / Interactive Motion Mapping

influence of basis shapes or trajectories. Achter et al. pro-
pose a bilinear spatio-temporal basis that describes oscilla-
tions around a set of example shapes [ASK∗12]. Some an-
imation types cannot be well represented in a linear frame-
work, and so these techniques might lead to a small latent
control space with few meaningful dimensions. Non-linear
dimensionality reduction techniques, such as Gaussian pro-
cess latent variable models (GPLVM), kernel methods, or
multi-dimensional scaling (MDS), have also been applied to
animation parametrization [LWH∗12]. For example, Cash-
man and Hormann project arbitrary motions onto a 2D con-
trol plane, obtained through MDS, to create new animations
as paths within that latent space [CH12].

In contrast to these approaches, where each dimension
in the latent space affects the surface deformation globally,
direct local parameterizations in the source space are also
feasible. James and Twigg represent general mesh deforma-
tions with a set of proxy bones and skinning weights [JT05].
Kavan et al. and Jacobson et al. extend this framework for
fast and automatic computation [KSO10, JBK∗12]. Dynam-
ics can be integrated into the model by considering previ-
ous frames of motion. de Aguiar et al. use projection into a
linear latent space in combination with a second-order lin-
ear dynamic system to simulate cloth motion [dASTH09],
whereas Wang et al. use a non-linear system built through
Gaussian process dynamic models [WFH08].

All of these data-driven methods propose parameteriza-
tions for single characters, but do not analyze their suitability
for real-time motion mapping between very different charac-
ters. Feng et al. extract a set of control points from a single
mesh animation and use kernel canonical correlation anal-
ysis (CCA) between control points and mesh to reproduce
fine-scale surface details from the articulated movements of
an underlying skeleton [FKY08]. In our context, since the
animation is synthesized based only on control points from
a single mesh, their motion transfer approach can only be ap-
plied when source and target characters are identical or sim-
ilar in structure. Baran et al. map deformations of a source
character to a target character by means of mesh deforma-
tion [BVGP09]. The method relies on a set of example tem-
poral correspondences that encode the semantics of the map-
ping not usable for point based data as in many of our input
sources. Zhou et al. extend the framework of Baran et al. to
multi-component objects [ZXTD10]. One key difference of
our approach is that we implicitly build a pose prior from
all unlabeled samples in the target motion sequence, and not
just for the given correspondences. We experimentally show
the benefits of exploiting unlabeled data.

Our work also bears similarity to work on animation of
deformable characters. For example, Coros et al. build con-
trollers for purposeful motion of soft deformable characters
via rest state adaptation in an elastic simulation [CMT∗12].
The KinÊtre algorithm [CIF12] maps joint positions cap-
tured with Kinect onto a target character by means of a mesh

deformation framework. Vögele et al. map the skeleton mo-
tions of two humans in real time to a quadripedal target
skeleton, e.g., by mapping one skeleton to the front half of a
horse, and one to the back [VHKK12]. In both these works,
this mapping is limited to target characters with parts or sub-
skeletons resembling a human skeleton; further, the motion
mapping is an exact mapping between sources and target.
In contrast, we can map different source motions to differ-
ent target motions, even if source and target skeletons differ
greatly, and even if no skeleton is available.

Puppeteering techniques allow direct control of a char-
acter with a dedicated input device [Stu98]. Dontcheva et
al. obviate the common manual selection of corresponding
degrees of freedom by CCA on a dense temporally aligned
training sequence [DYP03]. Seol et al. puppet characters of
different topology; however, detailed manual selection of
features and a character rig are required [SOL13].

Yamane et al. describe an off-line approach to map the ex-
act motions of a human to a target humanoid character, e.g.,
a hopping motion to make a Luxo lamp hop, or a toddle to
control the walk of a penguin [YAH10]. With 30-50 corre-
spondences hand-distributed at important poses, they build a
mapping between source and target in a shared latent space
obtained by GPLVM. As this mapping is noisy, they regular-
ize with a post-process inverse kinematics solve with the tar-
get skeleton, as well as a further post-process to ensure foot
planting. Our approach differs in many key aspects: 1) We do
not require any pre-existing statisical relationship between
source and target motions, as is required by their shared la-
tent space. We demonstrate mappings between very differ-
ent source and target motions. 2) We employ efficient linear
models to enable real-time control. 3) Our method succeeds
with as few as 4 correspondences, which are automatically
suggested by our method and interactively refined in a sim-
ple interface. These key differences enable new real-time an-
imation possibilities and more user-friendly control.

3. Method Overview

We wish to control a set of artist-created target motions — a
character. First, we learn a high-dimensional oriented bound-
ing box, or latent volume, which represents the space of con-
trollable target poses (Fig. 4, left, and Sec. 5.1). This offline
training computation takes about a minute. We wish to pup-
pet the target motions using arbitrary source motions, and so
the next step is for the user to interactively define a small
number of pose correspondences (4 to 8) between example
or reference source motions and the desired target motions
(Fig. 4, middle, and Sec. 5.2). The reference source motions
need only be performed once, and help is provided with au-
tomatic suggestions of appropriate poses. From these cor-
respondences, we learn a mapping between reference source
and target motions (Fig. 4, right, and Sec. 5.3), and this takes
less than one second. This completes the learning stage.

In the synthesis phase, live source motions are inputted to

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

275

Rhodin et al. / Interactive Motion Mapping

Translation

Orientation

Origin

Front
direction xt

trans

xt
rot

Figure 2: Global translation xtrans
t and rotation xrot

t of a gen-
eral pose (right) extracted in relation to the rest pose (left).

the learned motion transfer mapping to synthesize new mo-
tion sequences of the target character in real time (Fig. 6,
and Sec. 6). Live motions are similar repetitions of the refer-
ence source motions used to define correspondence, and can
vary in intensity, e.g., faster or slower, or arms raised less
high, and can be performed simultaneously to cause motion
combination or superposition effects. In most cases, the in-
put reference and live source motions will both come from
a tracking system such as Kinect, LeapMotion, or a face
tracker, which creates a system for interactive motion map-
ping and real-time character control.

In all our diagrams, the input reference source motion
used in training and the input live source used in synthesis
are shown in red, the input target motion is in green, and the
output synthesized motion is in blue.

4. Character Representation

Our source motion (x1, ...,xM) is a 3D point sequence with
M frames, from tracking devices like Kinect or from vertices
in a mesh sequence. Target character motions (y1, ...,yN)
are mesh sequences. Our representation must separate global
motion from character pose, e.g., to isolate a walk cycle from
world movement, so that we can independently map these
to different controls. We parametrize a motion into charac-
ter pose feature vectors (xpose

1 , ...,xpose
M), global translations

(xtrans
1 , ...,xtrans

M), and global rotations (xrot
1 , ...,xrot

M).

4.1. Global Motion

For each frame in the source xt (or target yt), we estimate the
global position and orientation of the character on the ground
plane as an offset to x1 by the least squares fit of xt to x1
using orthogonal Procrustes analysis [Sor09] (Fig. 2). Global
motion is represented by 3 degrees of freedom: a translation
vector xtrans

t ∈ R2 and a yaw rotation angle xrot
t ∈ R.

4.2. Pose

Source Point-based Representation We represent charac-
ter pose as the concatenated feature vector of 3D point posi-
tions and their velocities after compensating for global mo-
tion and mean centering. The velocities help disambiguate

2

b) Target mesh-based motions

a) Source point-based motions

Face transf. & vertices PCA space

⋮

Feature vector Vertices,edges

⋮

Vertices Feature vector Vertices & vertex velocities

Figure 3: a) Source point-based characters are represented
as vertex positions and velocities. b) Target mesh charac-
ters are decomposed into vertex positions and face transfor-
mations to model rotations explicitly, and are projected into
low-dimensional PCA space to reduce complexity.

similar poses in simple source motions (e.g., raising vs. low-
ering limbs). For a pose xt at time t, velocity vector ẋt =
(xt − xt−1)/∆t, where ∆t is the time between two frames.
The source pose vector is xpose

t = (x>t ,wẋt
>)>, which is

6V in length for a character of V vertices. Factor w balances
the contribution of static and dynamic information in the re-
gression and is set to 0.1. For noisy vertex position input,
we apply a small one-sided Gaussian filter to smooth tempo-
rally, with a 3-frame standard deviation (≈ 0.1 sec.).

Target Mesh Representation The simple point-based rep-
resentation leads to strong distortions if used for target mesh
characters. We remove distortions by exploiting information
contained in the connectivity of the mesh. We extend the
deformation gradient representation, which models surface
deformation by combining per face transformations [SP04],
with explicit vertex features (Fig. 3). We discuss the strength
of this representation against alternatives in Section 7.1.

For each mesh face f we extract the affine transformation
A f in relation to the rest pose and decompose it into rota-
tion and shear by polar decomposition. Rotations are com-
pactly stored in axis-angle form and the six degrees of free-
dom of the symmetric shear matrix are linearized to a vector.
To model the absolute position of potentially disconnected
mesh components, which is not included in the original de-
formation gradient representation, we additionally store all
vertex positions vi. Therefore, each pose vector ypose

t is a
concatenation of 3F rotation, 6F shear, and 3V point param-
eters for a character with F faces and V vertices.

Dimensionality Reduction We reduce the dimensionality
of mesh representations to D = 50 by principal component
analysis (PCA). D was chosen experimentally such that the
dimensionality is drastically reduced while still preserving
more than 99% of the original variance, and this improves
the memory footprint and performance of the mapping for
our real-time scenario. Henceforth, we refer to the resulting
feature vector as ypose

t ∈ RD. The reconstruction from this

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

276

Rhodin et al. / Interactive Motion Mapping

Target motion

(artist created)

Latent volume 𝕐′

2) Interactive correspondences (Sec. 5.2)

 (with automatic pose suggestions)

1) Offline target learning (Sec. 5.1)

 (~1 minute per target motion)

Φ𝑝𝑜𝑠𝑒

Source target

pose mapping

Pose global

translation mapping

Φ𝑡𝑟𝑎𝑛𝑠
 G

Define correspondences

3) Learning motion mapping (Sec. 5.3)

 (~1 second)

S
o

u
rc

e
T

ar
g

et
 Correspondences

𝕐

𝕐′ 𝕏

Figure 4: Learning a motion mapping: 1) Offline, an artist creates an unlabeled target motion. We learn latent volume Y′ and
the dependency Φ

trans between changes in pose and global translation G. 2) Sparse key pose correspondences are automatically
suggested and then interactively refined. 3) The map Φ

pose between source space X and target space Y is learned.

low-dimensional feature vector is explained when we come
to synthesize a new motion in Section 6.

5. Learning a Motion Mapping

We aim to learn a motion transfer function Φ : X→ Y be-
tween the space of source poses X and the space of target
poses Y based on a sparse set of labeled pose correspon-
dences L ⊂ X×Y.

This is an instance of the regression problem. In this
context, previous works have successfully applied combi-
nations of non-linear feature extraction (or data representa-
tion, e.g., GPLVM) and regression (e.g., kernel-based Gaus-
sian process regression (GPR)) to offline character anima-
tion [YAH10, VHKK12, LWH∗12]. However, our applica-
tion poses new challenges that are not well addressed in ex-
isting systems: 1) only a limited number of labeled corre-
spondences are given, and 2) character animation synthesis
should be real-time. Fortunately, unlike typical regression,
we have a set of unlabeled examples Uy ⊂ Y which is larger
than the labeled training set of correspondences. We exploit
this additional information on the potential variations to as-
sist the regression process and estimate a latent volume Y′
that effectively encodes and limits the predicted pose.

As such, our goals are three-fold (Fig. 4): 1) to learn a
mapping Φ

trans between pose and global translation for the
target sequence (y1, ...,yN), and to learn the range of admis-
sible target motion as a latent volume Y′ (Sec. 5.1); 2) to
generate pose correspondences L between reference source
motions and target motions, in which we adopt Bayesian re-
gression to suggest appropriate candidates (Sec. 5.2); and 3)
from these correspondences, to learn a motion transfer func-
tion Φ

pose between source and target poses (Sec. 5.3).

5.1. Offline Target Learning

The offline learning includes two steps (Fig. 4, left): learning
a mapping Φ

trans which links pose to global translation, and
the computation of the latent volume Y′.

Global Translation Map Global character motion
(ytrans

t ,yrot
t) often depends on the change of pose ẏpose

t , e.g.,
a pose in a run motion should cause more global translation
than a pose in a walk motion. We learn a relationship
between pose and translation with a linear map Φ

trans from
the target pose velocities, which uses the heuristic that a
quicker pose change leads to quicker locomotion:

Φ
trans⇐ argmin

W ∑
t=1,...,N

‖W |ẏpose
t |− ẏtrans

t ‖2 +‖σtransW‖2,

(1)
where velocities are estimated by finite differencing, |y| is
the coefficient-wise absolute value of vector y, and σtrans is
the regularization parameter (= 0.001). We apply Φ

trans dur-
ing synthesis to recover global translation, and separately ap-
ply rotations from the live source motion (Sec. 6).

Learning a Latent Volume We represent pose as a vector
ypose

t , an element of RD. However, characters are physical
objects whose pose variations are constrained by their bod-
ies, and the plausible range of variation in ypose

t is signifi-
cantly smaller than RD. For instance, human pose is limited
by joints, while caterpillar and crab poses are constrained by
their skins and carapaces.

Traditionally, these constraints have been explicitly con-
structed through virtual skeletons with fine-tuned degrees of
freedom and joint limits. In our case, we expect arbitrary
source and target animations and, accordingly, we have no a
priori knowledge about the admissible range of motions. Our
approach is to exploit the unlabeled data Uy for inferring im-
plicitly the admissible variations through a high-dimensional
oriented bounding box, or latent volume. By assuming that
the distribution of poses is approximated by a Gaussian dis-
tribution, we find the principal axes of variation by decorre-
lating Uy with PCA and estimating the range of motion to be
the minimum interval Ic encompassing all data points in Uy
across PCA components c. The effectiveness of this opera-
tion is empirically demonstrated in Section 7.

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

277

Rhodin et al. / Interactive Motion Mapping

5.2. Interactive Correspondence Selection

Given the latent volume of the target sequence, our next
goal along the way to defining the pose motion trans-
fer function Φ

pose is to label corresponding pose frame
pairs L= {(xpose

l1 ,ypose
l1), . . . ,(xpose

ln ,ypose
ln)} between the ref-

erence source and target sequences, where each label el-
ement (l1, . . . , ln) contains indices for xpose and ypose in
their respective frame ranges [1,M] and [1,N]. From existing
work, we might think that time-warping is a suitable method
to align reference source and target character sequences
by synchronising spatial correspondences; however, this as-
sumes a priori temporal or spatial correlations. For instance,
Vögele et al. use time-warping to align the legs of two hu-
mans to the front and rear limbs of a horse [VHKK12], but
this ‘limbed creature’ spatial correlation assumption fails for
arbitrary motions and characters.

In arbitrary cases, selecting good correspondences be-
tween reference source motions and target motions requires
some skill as it is not always intuitive which source mo-
tions will lead to good control. To ease this process, we ex-
ploit a Bayesian regression model (detailed in Sec. 5.3) to
provide assistance in two different use cases. As correspon-
dences are defined and as L increases in size, this model
provides us with the most probable corresponding pose ypose

∗
for the current source pose xpose, where the probability den-
sity P(ypose|xpose) is inferred from the present set of cor-
respondences L and where the variance corresponds to the
uncertainty of the prediction. Therefore, we choose the pre-
dicted variance as a metric q(xpose) to suggest correspon-
dences which will make mappings with good control.

Performance-based Often it is natural to perform the de-
sired reference source motions, and so in this mode the
user defines correspondences to target poses by perform-
ing the reference source motions and timing button presses.
For instance, when capturing reference source motions with
Kinect, our system uses a hand-held remote-controlled trig-
ger which the user activates when their poses align to the
desired target poses. To help the user, q is shown as a bar
which increases in size and changes color from red to green
when the performed pose is underrepresented by the present
correspondence selection, i.e., when the performed pose ex-
plains much of the remaining variance (Fig. 5, bottom).

Automatic Correspondence Suggestion In other cases, the
reference source motion is captured offline, or the user may
wish to refine performance-based correspondences. For each
target correspondence ypose

l , we suggest the 5 largest local
maxima of q

(
xpose

1 , ...,xpose
M

)
from the reference source as

candidates. Users can accept one of the suggestions, or are
able to make adjustment with a pose time slider. After ac-
ceptance, the pose correspondence is added to L, metric q is
instantly recomputed for the updatedL, and new suggestions
are proposed for the next correspondence (Fig. 5, top).

Figure 5: Top: Automatic correspondence suggestion for
mapping source face tracking data to a sheep character.
The confidence plot score allows users to fine-tune the sug-
gestions. Bottom: Performance-based correspondence defi-
nition, where the confidence of the current pose being a good
controller is visualized to the user as a colored bar.

5.3. Learning a Pose Mapping

Given our correspondences, the next step is to learn
Φ

pose, the pose transfer function. We construct a lin-
ear map Φ

pose(xpose) = Mxpose that fits to a given
set of labeled correspondences L. Matrix M is of size
D× input pose dimension. Adopting the standard Bayesian
linear regression framework, we apply an identical isotropic
Gaussian prior to each row of M; row(M) ∼ N (0, I) with
N (m,C) being a Gaussian distribution with mean vector m
and covariance matrix C, and a Gaussian noise model:

ypose = f (xpose)+ εI, (2)

where f is to be estimated and ε ∼ N (0,σ2). We set the
noise value σ

2 to 0.05 for all our results; manual tuning
may further improve results. We concatenate xpose with 1
to model a constant offset between source and target.

Marginalizing the prior of M and the likelihood (Eq. 2)
over M, we obtain the predictive Gaussian distribution on
the output target pose ypose given test input xpose

∗ [RW06]:

p(ypose|xpose
∗ ,L) = N(σ−2Y X>A−>xpose

∗ ,

xpose
∗
>A−1xpose

∗ I), (3)

where A = σ
−2XX>+ I and matrices X = (xpose

l1 , . . . ,x
pose
ln),

Y = (ypose
l1 , . . . ,y

pose
ln) are formed from L. The map Φ

pose is

then defined as the mode ypose
∗ = σ

−2Y X>A−>xpose
∗ of the

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

278

Rhodin et al. / Interactive Motion Mapping

Input poses Pose prediction Latent volume

constraint
Output poses

Pose velocities Rotation from source Character translation

Translation

1) Pose mapping

2) Global motion mapping

Φ𝑡𝑟𝑎𝑛𝑠

Φ𝑝𝑜𝑠𝑒

Φ𝑟𝑜𝑡

Figure 6: Synthesis: 1) Given a new input pose, the distri-
bution of most likely target poses is inferred through Φ

pose

(Sec. 5.3) and constrained by the latent volume to obtain
the final target character pose. 2) The global translation is
inferred through Φ

trans from pose velocities (Sec. 5.1) and
source rotation is mapped to output rotation by Φ

rot (Sec. 6).

predictive distribution for test input xpose
∗ . Computing Φ

pose

is equivalent to ridge regression. The Bayesian framework
provides the variance xpose

∗
>A−1xpose

∗ of the predictive dis-
tribution which corresponds to the uncertainty on the made
prediction. This information is exploited as metric q(xpose

∗)
for suggesting label candidates as shown in Sec. 5.2. We ap-
ply Φ

pose to live source motions in the next section.

6. Synthesis

With pose mapping Φ
pose, we can now sequentially map

endless live source motions (· · · ,χt−1,χt , · · ·) to create
new output motions (· · · ,γt−1,γt , · · ·). Input χ and out-
put γ are novel, and are not contained in the training data
(x1, ...,xM),(y1, ...,yN). As summarized in Fig. 6, synthe-
sizing each output frame γt is performed in two steps: 1) In-
ferring the pose γ

pose
t by Φ

pose on χ
pose
t , constrained by the

latent volume; and 2) Applying the global translation map
and rotation map Φ

trans,Φrot on the newly synthesized pose
γ

pose
t to obtain global motion velocities γ̇

trans
t , γ̇rot

t . Finally,
these are integrated to yield γ

trans
t ,γrot

t .

The latent volume constrains a new pose estimate γ
pose
t

by projecting onto the PCA space and clipping each PCA
component c to the respective interval Ic. The effect is that
of a high dimensional bounding box in RD whose sides are
aligned with the principal axes of pose variation. This en-
sures that the outputs are strictly contained in the volume
spanned by Uy, and unwanted deformations of the target
character are prevented (see Sec. 7.1). Except for the latent
volume bounding, all operations are linear and only depend
on the most recent frames. This allows real-time control.

In principle, a rotation map Φ
rot could be learned in a sim-

ilar way to Φ
trans; however, in practice this requires target

sequences to contain sufficient examples of character rota-
tion, and this is often not the case. Instead, the target rota-
tion is controlled directly from source rotation χ

rot
t through

Φ
rot : χ

rot→ rχ
rot, with r manually adjusted to the agility of

the character. Practically, this leads to intuitive control where
rotating the body in front of Kinect also rotates the character.

6.1. Mesh Reconstruction

While the motion mapping is simple, we still need to re-
turn from our dedicated feature space. This is more compli-
cated for mesh sequences as we decompose them into ver-
tex positions vi and per-face rotations and shears A f , and
project these into PCA space (Sec. 4). Thus, given a new
pose γ

pose
t in feature space, first, the PCA coefficients are

back-projected to obtain face transformations A f and posi-
tional features vi. After the mapping procedure, the transfor-
mations of A f and vi might be inconsistent and might yield a
disconnected surface. We reconstruct a coherent surface by
solving a Poisson system similar to Sumner et al. [SP04] (see
supplemental document for a more detailed explanation).

7. Evaluation

Our dataset consists of 8 different motions. The CMUHu-
man mocap data from the CMU Motion of Body Database,
the KinectHuman sequences captured with a Kinect sensor,
and the LeapMotion sequence from the Leap motion con-
troller are all point-based sequences. Face contains 66 2D
feature points tracked automatically from a video sequence.
Elephant, Horse, Caterpillar, and Sheep are mesh sequences
created by artists containing different motions. The data ac-
quisition processes for KinectHuman and LeapMotion are
real-time. Table 1 details these sequences and the number of
correspondences between them.

The (hyper-)parameters of our algorithm are: temporal
motion derivative weight w = 0.1 (Sec. 4), latent volume
dimensionality D = 50 (Sec. 4.2), pose and translation re-
gression regularization parameters σ = 0.05,σtrans = 0.001
(Sec. 5.3), and per-character rotation angle r (Sec. 6). Except
for r, which is a data-dependent fixed ratio, these parameters
were tuned once and fixed throughout the entire set of ex-
periments. Experiments were performed at 30-40fps on an
Xeon 3.6Ghz Quad-Core for meshes of 3-16k triangles.

Figure 7 (left) shows how KinectHuman-Handwave is
transfered to Horse. Although our algorithm was not ex-
plicitly directed to focus on the right hand in synthesizing
the target, it successfully inferred the desired effect from
only 4 correspondences. The hand waving speed controls
the target motion speed. Any combination of source and
target is possible — we replace KinectHuman-Handwave
with KinectHuman-Jockey in Figure 7 (right), and now knee
bounces control the target.

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

279

Rhodin et al. / Interactive Motion Mapping

Figure 7: KinectHuman-Handwave arm motions (left) and
KinectHuman-Jockey (right) knee bend motions synthesize
Horse gallops.

Figure 8: Examples of motion transfer to a caterpillar. Left:
Mapping learned from CMU Human-Walk style C and ap-
plied on different styles A,B,C varying in speed and step
size, which displays the capability of style transfer. Right:
KinectHuman-Various and the synthesized Caterpillar.

Figure 8 (left) shows an example where a CMUHuman
walk is transferred to a Caterpillar that has different topol-
ogy in static shape and demonstrates completely distinct dy-
namics in motion. With only 4 labels, our algorithm suc-
cessfully recovered the underlying correspondence in class.
Further, this mapping can be directly applied to other source
motions, and we puppet the caterpillar with stylized slow,
medium, and fast walks.

Figure 8 (right) shows a more challenging scenario with
walking, leaning, raising of the thorax, and jumping. This
wider range of motions was covered by 8 interactively de-
fined example correspondences. In Figure 11 and in the sup-
plemental video, we show that the linearity of our mapping
allows for realistic superposition of motions such as turn and
crawl, head-lift and bend, and jump out of a head-lift pose.

In Figure 9, we show the transfer of facial motion be-
tween a human (Face) and a sheep (Sheep-Face) using only 6
example correspondences. The video shows correspondence
refinement following automatic correspondence suggestion.

Figure 10 shows the last example in which a KinectHu-
man controls a Sheep. Local arm and global body motions
of the source sequence are assigned to walking and jump-
ing of the sheep based on 6 correspondences. Our algorithm
well-generalizes these different classes of motions. In prac-
tical applications, a fine-detailed geometry (such as fleece)
can be added to generate a visually pleasing character.

7.1. Alternative Approaches

The advantage of the combined shape space is shown in Fig-
ure 13 with a map from an Elephant to Horse. Raw point
features lead to distortions when synthesizing rotational mo-
tions and the deformation gradient representation is agnostic

Figure 9: Examples of facial motion transfer learned from
6 correspondences. The first and second columns: Face and
the second and fourth columns: the synthesized Sheep.

Table 1: Target character frame length, walk cycles frame
length, and the number of source-target pose correspon-
dences for each sequence. † denotes Kinect and Elephant.

Source char. Kinect † Kinect CMU Leap,Face Mocap
Target char. Caterp. Horse Sheep Caterp. Sheep Lamp

Target frames 700 12 57 100 100 35
Target walk cycle length 20 12 18 150 n/a n/a
correspondences 8 4 6 4 6 8

to vertical translation. The latent volume and use of unla-
beled data is compared to pure PCA in Figure 12. The gain
from the remaining method components, such as the veloc-
ity features and regularization, are especially noticeable in
motion; our supplemental video shows these gains along-
side a comparison of our model to weighted nearest neighbor
lookup and to the method of Yamane et al. [YAH10].

8. Discussion

Our final algorithm is a design that reflects the requirements
imposed by the application scenario: interactive correspon-
dence declaration, real-time mapping, and versatility to very
different source and target sequences. Here, we briefly dis-
cuss how these choices were made.

Linear Regression The choice of a linear regressor over
non-linear algorithms is not driven by the complexity but by
the wish to succeed with sparse labels. With only 4-8 exam-
ples, the training and learning time of Gaussian process re-
gression is comparable to linear regression but requires care-
ful tuning of additional parameters. However, in our setting,
the quality of outputs obtained from the linear regression
was approximately equivalent to the output from non-linear
ones.

Even for the linear regressor (with limited complexity),
the problem is severely ill-posed as the number of correspon-
dences is much smaller than the dimensionality of input and
output data points. Exploiting a priori knowledge is essential
for regularizing the regression process. Fortunately, unlike
typical regression, we exploit unlabeled examples Uy ⊂ Y
to estimate a latent volume Y′ that effectively encodes and
limits the plausible motion range.

Latent Volume One of our main contributions is that we
demonstrate that a simple orthogonal transform followed by

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

280

Rhodin et al. / Interactive Motion Mapping

Figure 10: With appropriate rendering, our system can cre-
ate expressive characters. We integrate our motion transfer
method into a professional animation-rendering pipeline to
show transfer from sparse input to fine geometry.

Superposition Reduced

intensity

1 2 3-6 7 8

Figure 11: Top: Correspondences labeled between joint po-
sitions and caterpillar mesh to control bending (1-2), crawl
(3-6), head lift (7) and jump (8). Bottom: New pose synthesis
of the caterpillar character showing intermediate and newly
inferred superposition of, e.g., bend and crawl.

independent bounding of variables is effective for regulariz-
ing the regression process (see Sec. 5.1). Recently, automatic
approaches have been proposed for implicitly inferring the
constraints from the data using principal component analy-
sis (PCA) or GPLVM.

In preliminary experiments, classical use of PCA for es-
timating constraints — PCA followed by significant dimen-
sionality reduction — was insufficient for our purpose. Fur-
thermore, flexible GPLVMs or sophisticated non-linear den-
sity estimators are too inefficient for interactive applications
due to their high computational complexity in learning and
prediction. Learning can take several hours even for low
dimensional skeleton characters [LWH∗12], and prediction
has yet to be achieved in real time [YAH10].

Our latent volume representation is the result of the trade-
off between performance and quality. In general, when prop-
erly regularized, sophisticated non-linear algorithms should
lead to as good or better representations of plausible mo-
tion spaces; unfortunately, these algorithms cannot be used

a) b) c) d)

Figure 12: Comparison of our method to related mapping
techniques. The horse pose is synthesized from Kinect in-
put through a) a linear map without unlabeled examples, b)
in a PCA latent space of dimension 10, c) by our method,
and d) our method without unlabeled examples. Artifacts are
marked in red, successfully regularization in green.

2

a) Input b) Point features c) Hybrid (our) d) Def. gradient

Figure 13: Result of deformation transfer using a) point fea-
tures that lead to shrinkage artifacts, b) our artifact free rep-
resentation, and c) the deformation gradient representation
which does not capture vertical translations.

in real-time applications. Direct bounding by the sparse cor-
respondences without considering the unlabeled data for
decorrelation and support estimation is insufficient as it im-
properly restricts the admissible range and thereby leads to
jerky animations (see supplemental video).

8.1. Limitations

Currently, our method yields too coarse a control to steer
characters with broader dynamics. For example, only the ba-
sic facial expressions are transferred to the sheep in Figure 9.
To enable this, regression and latent volume representation
may need to resort to more flexible non-linear alternatives
while retaining the computational efficiency for real-time
applications. Applying the current method on clustered mo-
tion categories is one step in this direction.

During synthesis, we do not address collision detection,
interaction of multiple components, or interaction with the
environment. To achieve this, a post-processing similar to
Yamane et al. would have to be extended to work in real
time on mesh characters [YAH10].

Our algorithm is only applied to single source/target se-
quences. For complex puppetry applications, it might be
helpful to allow multiple humans to control (different parts
of) the same target. Conversely, a single human could control
the movement of a swarm of small characters as a whole.

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

281

Rhodin et al. / Interactive Motion Mapping

9. Conclusion

We have presented a data driven method for real-time control
of virtual characters that offers fast and flexible interactive
motion mapping. Our contribution is a mapping from source
to target characters that ensures robustness by limiting the
range of admissible poses through the use of a dedicated la-
tent volume. Unlike other approaches, we interactively de-
fine only 4-8 correspondences between sequences, and so we
must robustly learn this mapping by using unlabeled frames.
This allows puppetry with many different motion sources
such as body-, face-, and hand-tracking systems. Combined
with the automatic correspondence suggestion, this leads to
an animation system for quickly defining mappings between
very different shapes and motions, and then intuitively con-
trolling characters in real time.

Acknowledgements

We thank Gottfried Mentor and Wolfram Kampffmeyer for
their character animations and helpful feedback and Robert
Sumner and Jovan Popovic for the horse and elephant mod-
els. This work was partially supported by the ERC Starting
Grant CapReal.

References
[AM01] ALEXA M., MÜLLER W.: Representing animations by

principal components. CGF (Proc. Eurographics) 19, 4 (2001),
411–418. 2

[ASK∗12] AKHTER I., SIMON T., KHAN S., MATTHEWS I.,
SHEIKH Y.: Bilinear spatiotemporal basis models. ACM TOG
31, 2 (2012), 1–12. 3

[ASKK10] AKHTER I., SHEIKH Y., KHAN S., KANADE T.: Tra-
jectory space: a dual representation for nonrigid structure from
motion. IEEE TPAMI 33, 7 (2010), 1442–1456. 2

[BTST11] BHARAJ G., THORMÄHLEN T., SEIDEL H.-P.,
THEOBALT C.: Automatically rigging multi-component char-
acters. CGF (Proc. Eurographics) 30, 2 (2011), 755–764. 2

[BVGP09] BARAN I., VLASIC D., GRINSPUN E., POPOVIĆ J.:
Semantic deformation transfer. ACM TOG (Proc. SIGGRAPH)
28, 3 (2009), 36:1–36:6. 3

[CH12] CASHMAN T. J., HORMANN K.: A continuous, editable
representation for deforming mesh sequences with separate sig-
nals for time, pose and shape. CGF (Proc. Eurographics) 31,
2pt4 (2012), 735–744. 3

[CIF12] CHEN J., IZADI S., FITZGIBBON A.: KinÊtre: animat-
ing the world with the human body. In Proc. UIST (2012),
pp. 435–444. 2, 3

[CMT∗12] COROS S., MARTIN S., THOMASZEWSKI B., SCHU-
MACHER C., SUMNER R., GROSS M.: Deformable objects
alive! ACM TOG (Proc. SIGGRAPH) 31, 4 (2012), 69:1–69:9.
3

[dASTH09] DE AGUIAR E., SIGAL L., TREUILLE A., HODGINS
J. K.: Stable spaces for real-time clothing. ACM TOG (Proc.
SIGGRAPH) 29, 3 (2009), 106:1–106:9. 3

[DYP03] DONTCHEVA M., YNGVE G., POPOVIĆ Z.: Layered
acting for character animation. ACM TOG (Proc. SIGGRAPH),
Siggraph (2003), 409. 3

[FKY08] FENG W.-W., KIM B.-U., YU Y.: Real-time data
driven deformation using kernel canonical correlation analysis.
ACM TOG (Proc. SIGGRAPH) 27, 3 (2008), 91:1–91:9. 3

[GGP∗00] GLEICHER M., GRASSIA S., POPOVIC Z., ROS-
NTHAL S., THINGVOLD J.: Motion editing: Principles practice
and promise. In SIGGRAPH 2000 Course Notes 26 (2000). 2

[Gle98] GLEICHER M.: Retargeting motion to new characters. In
Proc. SIGGRAPH (1998), pp. 33–42. 2

[HRE∗08] HECKER C., RAABE B., ENSLOW R. W., DEWEESE
J., MAYNARD J., VAN PROOIJEN K.: Real-time motion retar-
geting to highly varied user-created morphologies. ACM TOG
(Proc. SIGGRAPH) 27, 3 (2008), 27:1–27:9. 2

[JBK∗12] JACOBSON A., BARAN I., KAVAN L., POPOVIĆ J.,
SORKINE O.: Fast automatic skinning transformations. ACM
TOG (Proc. SIGGRAPH) 31, 4 (2012), 77:1–77:10. 3

[JT05] JAMES D. L., TWIGG C. D.: Skinning mesh animations.
ACM TOG (Proc. SIGGRAPH) 24, 3 (2005), 399–407. 3

[KRFC09] KRY P., REVERET L., FAURE F., CANI M.-P.: Modal
Locomotion: Animating Virtual Characters with Natural Vibra-
tions. CGF (Proc. Eurographics) 28, 2 (2009), 289–298. 2

[KSO10] KAVAN L., SLOAN P.-P., O’SULLIVAN C.: Fast and
efficient skinning of animated meshes. CGF (Proc. Eurograph-
ics) 29, 2 (2010), 327–336. 3

[LWH∗12] LEVINE S., WANG J. M., HARAUX A., POPOVIĆ Z.,
KOLTUN V.: Continuous character control with low-dimensional
embeddings. ACM TOG (Proc. SIGGRAPH) 31, 4 (July 2012),
1–10. 3, 5, 9

[RW06] RASMUSSEN C., WILLIAMS C.: Gaussian Processes for
Machine Learning. Adaptative computation and machine learn-
ing series. University Press Group Limited, 2006. 6

[SOL13] SEOL Y., O’SULLIVAN C., LEE J.: Creature features:
online motion puppetry for non-human characters. In Proc. SCA
(2013), SCA ’13, ACM, pp. 213–221. 3

[Sor09] SORKINE O.: Least-squares rigid motion using SVD.
Technical notes, ETHZ (2009). 4

[SP04] SUMNER R. W., POPOVIĆ J.: Deformation transfer for
triangle meshes. ACM TOG (Proc. SIGGRAPH) 23, 3 (2004),
399–405. 4, 7

[Stu98] STURMAN D.: Computer puppetry. Computer Graphics
and Applications, IEEE, February (1998). 3

[TYAB01] TORRESANI L., YANG D., ALEXANDER G., BRE-
GLER C.: Tracking and modeling non-rigid objects with rank
constraints. In Proc. CVPR (2001), pp. 493–500. 2

[VHKK12] VÖGELE A., HERMANN M., KRÜGER B., KLEIN
R.: Interactive steering of mesh animations. In Proc. SCA (2012),
pp. 53–58. 2, 3, 5, 6

[WFH08] WANG J. M., FLEET D. J., HERTZMANN A.: Gaus-
sian process dynamical models for human motion. IEEE TPAMI
30, 2 (2008), 283–298. 3

[YAH10] YAMANE K., ARIKI Y., HODGINS J.: Animating non-
humanoid characters with human motion data. In Proc. SCA
(2010), pp. 169–178. 3, 5, 8, 9

[ZXTD10] ZHOU K., XU W., TONG Y., DESBRUN M.: Defor-
mation transfer to multi-component objects. CGF (Proc. Euro-
graphics) (2010), 319–325. 3

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

282

