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Abstract

Generative reconstruction methods compute the 3D config-
uration (such as pose and/or geometry) of a shape by op-
timizing the overlap of the projected 3D shape model with
images. Proper handling of occlusions is a big challenge,
since the visibility function that indicates if a surface point
is seen from a camera can often not be formulated in closed
form, and is in general discrete and non-differentiable at oc-
clusion boundaries. We present a new scene representation
that enables an analytically differentiable closed-form for-
mulation of surface visibility. In contrast to previous meth-
ods, this yields smooth, analytically differentiable, and effi-
cient to optimize pose similarity energies with rigorous oc-
clusion handling, fewer local minima, and experimentally
verified improved convergence of numerical optimization.
The underlying idea is a new image formation model that
represents opaque objects by a translucent medium with a
smooth Gaussian density distribution which turns visibility
into a smooth phenomenon. We demonstrate the advantages
of our versatile scene model in several generative pose esti-
mation problems, namely marker-less multi-object pose es-
timation, marker-less human motion capture with few cam-
eras, and image-based 3D geometry estimation.

1. Introduction

Many vision algorithms employ a generative approach to

estimate the configuration θ of a 3D shape that optimizes a

function measuring the similarity of the projected 3D model

with one or more input camera views of a scene. In rigid

object tracking, for example, θ models the global pose and

orientation of an object, whereas in generative marker-less

human motion capture, θ instead models the skeleton pose,

and optionally surface geometry and appearance.

The ideal objective function for optimizing similarity has

several desirable properties that are often difficult to sat-

isfy: it should have analytic form, analytic derivative, ex-

hibit few local minima, be efficient to evaluate, and numer-

ically well-behaved, i.e. smooth. Many approaches already

fail to satisfy the first condition and use similarity functions

that cannot be expressed or differentiated analytically. This

necessitates the use of computationally expensive particle-

based optimization methods or numerical gradient approxi-

mations that may cause instability and inaccuracy.

A major difficulty in achieving the above properties is

the handling of occlusions when projecting from 3D to

2D. Only those parts of a 3D model visible from a cam-

era view should contribute to the similarity. In general, this

can be handled by using a visibility function V(θ) in the

similarity measure that describes the visibility of a surface

point in pose θ when viewed from a certain direction. For

many shape representations, this function is unfortunately

not only hard to formulate explicitly, but it is also binary for

solid objects, and hence non-differentiable at points along

occlusion boundaries. This renders the similarity function

non-differentiable.

In this paper, we introduce a 3D scene representation and

image formation model that holistically addresses visibility

within a generative similarity energy. It is the first model

that satisfies all the following properties:

1. It enables an analytic, continuous and smooth visibility

function that is differentiable everywhere in the scene.

2. It enables similarity energies with rigorous visibil-

ity handling that are differentiable everywhere in the

model and camera parameters.

3. It enables similarity energies that can be optimized

efficiently with gradient-based techniques, and which

exhibit favorable and more robust convergence in cases

where previous visibility approximations fail, such as

disocclusions or multiple nearby occlusion boundaries.

Our method approximates opaque objects by a translucent

medium with a smooth density distribution defined via a

collection of Gaussian functions. This turns occlusion and

visibility into smooth phenomena. Based on this representa-

tion, we derive a new rigorous image formation model that
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is inspired by the principles of light transport in translucent

media common in volumetric rendering [4], and which en-

sures the advantageous properties above.

Although visibility of solid objects is non-differentiable

by nature, we demonstrate experimentally in Section 6 that

introducing approximations on the scene level is advanta-

geous compared to state-of-the-art methods that employ bi-

nary visibility and use spatial image smoothing. We demon-

strate the advantages of our approach in several scenarios:

marker-less human motion capture with a low number of

cameras compared to state-of-the-art methods that lack rig-

orous visibility modeling [25, 9], body shape and appear-

ance estimation from silhouettes, and more robust multi-

object pose optimization compared to methods using local

visibility approximations [16].

2. Related work
For numerical optimization of generative model-to-image

similarity, the objective function needs to consider surface

visibility, and needs to be differentiated. The problem is

that the (discrete) visibility function V is generally non-

differentiable at occlusion boundaries of solid objects, and

often hard to express in analytic form. Some approaches

avoid explicit construction of V by heuristically fixing oc-

clusion relations at the beginning of iterative numerical op-

timization, which can easily lead to convergence to erro-

neous local optima, or by re-computation of visibility be-

fore each iteration, which can become computationally pro-

hibitive. Commonly the object’s silhouette boundaries are

handled as special cases, different from the shape inte-

rior [17, 24, 26, 29]. These approaches optimize the model

configuration (e.g. pose and/or shape) such that the pro-

jected model boundaries align with multi-view input silhou-

ette boundaries (and possible additional features away from

the silhouette), e.g. [8, 21, 27, 22, 1].
The integration of binary visibility into the similarity

function is more complex. Analytic visibility gradients can

be obtained for implicit shapes [11] and mesh surfaces [7],

by resorting to distributional derivatives [30, 11, 7], and

by geometric considerations on the replacement of a sur-

face with another with respect to motions of the occlusion

boundary [13, 6, 16]. For multi-view reconstruction of con-

vex objects, visibility can be inferred efficiently from sur-

face orientation [15]. While these approaches yield similar-

ity functions that are mathematically differentiable almost

everywhere, non-differentiability is resolved only locally,

which still leads to abrupt changes of object visibility, as

illustrated in Figure 1. Efficient gradient-based numerical

optimization of the similarity does not fare well under such

abrupt and localized changes, leading to frequent conver-

gence to erroneous local optima.

OpenDR uses binary visibility, provides an open-source

renderer that models illumination and appearance of ar-
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Figure 1. Visibility comparison on a vertically moving sphere. Top

to bottom: solid scene with binary visibility, spatial image smooth-

ing, and our visibility model for positions θ∈{0.2,0.4,0.6,0.8,1}.
Bottom: plot of the red sphere’s visibility at the central pixel

(marked by the gray cross in the first image) versus sphere po-

sition θ for the different visibilities. Only our method is smooth at

the double occlusion boundaries at θ = 0.4 and θ = 0.8.

bitrary mesh objects, and computes numerically approxi-

mated derivatives with respect to the model parameters for

perspective projection [16]. Finite differences are used for

the spatial derivatives of pixel colors, as proposed for faces

by Jones and Poggio [14]. To attain smooth visibility at

single occlusion boundaries, spatial smoothing by convolu-

tion of the model projection with a smooth kernel [14, 30],

and coarse-to-fine pyramid representations [14, 2, 16] are

used. Some global dependencies in pose energy between

distant scene elements are also handled by coarse-to-fine

approaches. Our scene and visibility model handles such

global effects by design and is the only model that handles

the important case of double occlusion boundaries well, e.g.
at the point of complete occlusion of an object, see Figure 1.

Some recent methods abandon the use of surface repre-

sentation and instead employ an implicit 3D shape model

for performing tracking of full-body motion [19, 18, 25, 9],

hand motion [3, 23] and object poses [20]. The implicit sur-

faces can be considered smooth at reprojection boundaries

and are therefore well-suited for modeling a differentiable,

well-behaved visibility function. Stoll et al. [25] do marker-
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Figure 2. From left to right: A solid sphere actor model, our rep-

resentation by a translucent medium with Gaussian density visu-

alized on a checkerboard background for increasing smoothness

levels (m={0.0001, 0.01, 0.5}). Note the proper occlusion, e.g.
of the left arm and the torso.

less skeletal pose optimization from multi-view video, and

use a collection of volumetric 3D Gaussians to represent the

human body, as well as 2D Gaussians to model the images.

A coarse occlusion heuristic thresholds the overlap between

model and image Gaussians. This design allows for long-

range effects between model and observation, and avoids

expensive occlusion tests, but leads to a problem formula-

tion that is merely piecewise differentiable. Follow-up work

empowered tracking with a lower number of cameras by

augmenting generative pose tracking with part detections in

images [9]. None of these approaches uses a rigorous visi-

bility model, as we do in this paper.

3. Scene model

We propose a scene model that approximates solid objects

by a smooth density representation, resulting in a visibility

function that is well-behaved and differentiable everywhere.

In this section, we introduce our scene representation (§3.1),

give a physically-based intuition of the resulting visibil-

ity function in terms of a translucent medium (§3.2), and

present the corresponding image formation model (§3.3).

Results of our scene model applied to rigid pose tracking

and marker-less motion capture from sparse cameras are

shown in Sections 5 and 6.

3.1. Smooth scene approximation

Hard object boundaries cause discontinuities of visibility at

occlusion boundaries. To obtain a smooth visibility func-

tion, we propose a smooth scene representation. We diffuse

objects to a smooth translucent medium – with high density

at the inside of the original object and a smooth falloff to

the outside. In our model, the density defines the extinction

coefficient which models how opaque a point in space is,

and thus how much it occludes [4]. To obtain an analytic

form and for performance reasons, we use a parametric rep-

resentation for the density D(x) at position x as the sum of

scaled isotropic Gaussians G={Gq}q , defined as

D(x) =
∑
Gq∈G

Gq(x), where each Gaussian

Gq(x) = cq · exp
(
−
∥∥x− μq

∥∥2
2σ2

q

)
(1)

has a magnitude cq , center μq and standard deviation σq .

Appearance is modeled by annotating each Gaussian with

an albedo attribute aq . Figure 2 shows an example of the

colored density representation for a human actor, consisting

of Gaussians of varying size and albedo.

Our model leads to a low-dimensional scene representa-

tion parametrized by γ={cq,μq, σq,aq}q . For readability,
we useGq(x) for Gaussians and omit the dependence on γ.

The degree of opaqueness and smoothness is adjustable

by tuning the magnitudes cq and standard deviations σq

of the Gaussians. We discuss the conversion of a general

scene to our Gaussian density representation in Section 4.

While other smooth basis functions are conceivable, Gaus-

sians lead to simple analytic expressions for the visibility

that work well in practice. While our Gaussian representa-

tion is similar to Stoll et al.’s [25], its semantics of a translu-

cent medium is fundamentally different and our image for-

mation model with rigorous visibility is phrased in entirely

new ways, as explained in the following sections.

3.2. Light transport and visibility

Our computation of the visibility V of a 3D point from a

given camera position is inspired by the physical laws of

light transport in translucent media, and based on simula-

tion techniques from computer graphics [4]. As the translu-

cent medium is only used as a tool to model continuous vis-

ibility, we assume a medium with uniform absorption of all

colors without scattering. According to the Beer-Lambert

law of light attenuation, the transmittance (the percentage

of light transmitted between two points in space) decays ex-

ponentially with the optical thickness of a medium, i.e. the
accumulated density, as visualized in Figure 3. Specifically,

the transmittance T of a 3D point at distance s along a ray

from a camera position o in direction n is

T (o,n, s,γ) = exp

(
−
∫ s

0

D(o+ tn) dt

)
. (2)

Note that for a specific camera, n(u, v) is uniquely defined

for each pixel location (u, v); from now on, we use the short

notation n that is implicitly dependent on the pixel posi-

tion. With our Gaussian density representation, the density

at any point on a line through a sum of 3D Gaussians is

in turn the sum of 1D Gaussians. Specifically, inserting the

line equation x = o+sn into the 3D Gaussian Gq (1) re-

sults in a scaled 1D Gaussian of form c̄ exp
(
− (x−μ̄)2

2σ̄2

)
,
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Figure 3. Top: Raytracing of a Gaussian density. Bottom: Light

transport along the ray. The density along a ray is a sum of 1D

Gaussians (green), and transmittance (gray) falls off from one for

increasing optical depth. The radiance is the fraction of reflected

light that reaches the camera (red and blue areas). We use it to

compute the visibility of a particular Gaussian.

with μ̄ = (μ − o)�n and σ̄ = σ. The updated magni-

tude is c̄ = c · exp
(
− (μ−o)�(μ−o)−μ̄2

2σ̄2

)
. Using the Gaus-

sian form of the density, we can rewrite the transmittance

function (2) in analytic form in terms of the error function,

erf(s) = 2√
π

∫ s

0
exp(−t2) dt, as

T (o,n, s,γ) = exp

(
−
∫ s

0

∑
q

Gq(o+ tn) dt

)
(3)

= exp

⎛
⎝∑

q

σ̄q c̄q√
2
π

(
erf

(
−μ̄q√
2σ̄q

)
−erf

(
s−μ̄q√
2σ̄q

))⎞⎠ . (4)

Similar formulations are used for cloud rendering [31, 12].

The transmittance of a medium is symmetric, it also mea-

sures the fractional visibility of a point x = o+ sn from

position o, which we denote by V(x,γ) := T (o,n, s,γ).

3.3. Image formation and Gaussian visibility

For image formation, we assume that all scene elements

emit an equal amount of light Le. To produce a discrete

image from the proposed Gaussian density model, we shoot

a ray through each pixel of a virtual pinhole camera. The

pixel color is the fraction of source radiance that is emitted

along the ray and reaches the camera (color and radiance

are related by the camera transfer function; we assume a

linear camera response and use pixel color and radiance in-

terchangeably). For the defined medium with pure absorp-

tion, the received radiance is the product of transmittance

T , densityD, albedo a and ambient radiance Le, integrated

along the ray x = o+ sn,

L(o,n) =

∫ ∞

0

T (o,n, s,γ)D(x(s))a(x(s))Le ds. (5)

This is a special form of the integrated radiative transfer
equation [4, 5], and it models the fact that each point in

space emits light proportional to its density D(x) and illu-

mination Le. For our Gaussian density with parameters γ
and fixed Le=1, we obtain

L(o,n,γ) =

∫ ∞

0

T (o,n, s,γ)
∑
q

Gq(o+ sn)aq ds. (6)

To obtain an analytic form, we approximate the infinite in-

tegral by sampling a compact interval Sq = {μ̄q+kλq | k∈
K⊂Z} around the mean of each Gq:

L̂(o,n,γ) =
∑
q

aq
∑
s∈Sq

λqT (o,n, s,γ)Gq(o+ sn), (7)

where λq∼ σ̄q is the sampling step length, which is adaptive

to the Gaussian’s size.

Gaussians have infinite support (Gq(x)>0 everywhere),

but each Gaussian’s contribution vanishes exponentially

with the distance from its mean, so local sampling is a good

approximation. In practice, we found that five samples with

K = {−4,−3, . . . , 0} and λ = σ̄ suffice. Importance sam-

pling could further enhance accuracy.

A final insight is that the inner sum in the radiance equa-

tion (7), the sum of the product of source radiance and trans-

mission, measures the contribution of each Gaussian to the

pixel color, and therefore computes the Gaussian visibility

Vq(o,n,γ) :=
∑
s∈Sq

λqT (o,n, s,γ)Gq(o+ sn), (8)

of Gq from camera o in direction n. The Gaussian vis-

ibility from pixel (u, v), Vq((u, v),γ), is equivalent to

Vq(o,n(u, v),γ). The radiance L̂ and Gaussian visibility

Vq depend on the set of all Gaussians in the scene. How-

ever, our model enables us to represent most scenes with

a moderate number of Gaussians (§4), such that the ana-

lytic forms of L̂ and Vq can be evaluated efficiently. For in-

creased performance, we also exclude Gaussians with mag-

nitude c̄q<10−5 for the given ray direction, which does not

impair tracking quality (see supplemental document).

4. Model creation
In principle, arbitrary shapes can be approximated using a

sufficiently large number of small, localized Gaussians. We

convert an existing mesh model to our representation by first

filling the object’s volume with spheres. In our experiments,

like the actor in Figure 2, we place spheres manually, but

automatic sphere packing could be used instead [28].

We then replace the spheres by Gaussians of ‘equal per-

ceived extent’. A translucent object forms its boundary at

the point of strongest transmittance change. To find suitable

parameters cq and σq that approximate a sphere of radius r,
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we place a GaussianGq at its center and analyze the visibil-

ity Vq(o,n, {cq, σq}) viewed from an orthographic camera

(i.e. n is fixed in view direction and o is the pixel location).

We solve for magnitude cq and standard deviation σq such

that the transparency at the Gaussian’s center, 1 − Vq , is
equal to a constant m, and the inflection point of Vq lies at

distance r from the center. Here, m is a free parameter de-

termining the level of smoothness and translucency, see Fig-

ure 2. This is a useful tool to tune robustness versus speci-

ficity, as we demonstrate in Section 6.3.2. This procedure

aligns the perceived Gaussian size with the reference sphere

outline while maintaining a consistent opacity across Gaus-

sians of different size. An example is Figure 1, where the

inflection point is aligned with the binary occlusion bound-

ary. The optimization is necessary, as the inflection point

of visibility deviates from the density’s inflection point, and

parameters cq and σq jointly influence its location.

For generative tracking, the configuration of the tracked

model θ needs to be mapped to our scene representation

using a function γ(θ). In rigid object tracking, γ(θ) is a

single rigid transform that determines the position μq of all

Gaussians Gq; the sizes σq and densities cq are then fixed.

For skeletal motion capture, each Gaussian is rigidly at-

tached to a bone in the skeleton, and θ represents global

pose and joint angles. Other mappings for non-rigidly de-

forming shapes can be easily used, too.

5. Pose optimization
Reconstruction methods based on our representation will

compute θ from a set of image observations {Io}o captured

from different camera positions o, by minimizing an objec-

tive function of the general form

F(θ, {Io}o) =
∑
o

D(γ(θ), Io) + P(θ), (9)

where D(γ, I) is a data term, e.g. photo-consistency, and
P(θ) is a prior on configurations, e.g. a general regulariza-

tion terms. With our image formation model (§3.3), we can

formulate a photo-consistency-based model-to-image over-

lap in a fully visibility-aware, yet analytic and analytically

differentiable way as:

Dpc(γ, I) :=
∑

(u,v)∈I

∥∥∥L̂(o,n(u, v),γ)− I(u, v)
∥∥∥2
2
, (10)

where I(u, v) is the image color at pixel (u, v).
In Section 6.1, we use the photo-consistency energy

Fpc(θ, {Io}o) =
∑

o Dpc(γ(θ), Io) without prior for rigid

object tracking and body shape and appearance estimation.

We also demonstrate our approach for marker-less hu-

man motion capture. The generative method by Stoll et
al. [25] uses a Gaussian representation for the skeletal body

model, and transforms the input image into a collection of

Gaussians using color clustering. Their data term sums the

color-weighted overlap of all image and projected model

Gaussians using a scaled orthographic projection and with-

out rigorous visibility handling, see their paper for details.

For visibility-aware motion capture, we define a new

pose energy Fmc with a perspective camera model and a

new visibility-aware data term that accumulates the color

dissimilarity d(I(u, v), aq) over all pixels (u, v) in image I
and Gaussians Gq , weighted by the Gaussian visibility Vq:
Dmc(γ, I)=

∑
(u,v)

∑
q

d(I(u, v), aq)Vq(o,n(u, v),γ). (11)

To analyze the influence of our new visibility function in

isolation, we adopt the remaining model components from

the baseline method of Elhayek et al. [10]. To compen-

sate for illumination changes, colors are represented in HSV

space and the value channel is scaled by 0.2. To ensure tem-

poral smoothness and anatomical joint limits, accelerations

and joint limit violations are quadratically penalized in the

prior term P(θ). Motion capture with the new visibility-

aware energy leads to significantly improved results, as we

demonstrate in Section 6.3.

For all our experiments on rigid and articulated tracking,

we utilize a conditioned conjugate gradient descent solver

to minimize the objective function. The analytic derivatives

of the objective functions Fpc and Fmc with respect to all

parameters are listed in the supplemental document.

6. Results
We first validate the advantageous properties of our model

in general (§6.1), and then show how our scene representa-

tion and image formation model lead to improvements over

the state of the art in rigid object tracking (§6.2), shape es-

timation, and marker-less human motion capture (§6.3).

6.1. General validation

We validate the smoothness and global support of our visi-

bility handling using a scene with simple occlusions: a red

sphere, initially hidden by an occluder, moves up vertically

and becomes visible (Figure 1). In our model, the visibility

V of the red sphere (a single Gaussian) is smooth, and hence

differentiable with respect to position γ (blue line). This is

in contrast to surface representations which are only piece-

wise differentiable: binary visibility functions have discon-

tinuities (red line), and visibility with partial pixel cover-

age is continuous but non-differentiable at occlusion bound-

aries (dashed red line). Methods that smooth pixel intensi-

ties spatially as a post-process obtain smoothness at single

occlusion boundaries. However, when an object occludes

or disoccludes behind another occlusion boundary, like the

red sphere becoming visible behind the black sphere, and

thus two or more occlusion boundaries are in spatial vicin-

ity, visibility is non-differentiable and localized (green line).
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Target Initial Ours OpenDR

pose density mesh pyramid per pixel

Figure 4. 3D reconstruction of a red sphere (position) and blue

cube (position and orientation) using photo-consistency energy

Fpc from one image for three different initializations. Top to bot-

tom: initialization with overlap to final pose, distant initialization,

occluded initialization (the occluded cube is shown in yellow).

OpenDR does not find the right solution for initializations without

overlap or when far from the solution, and fails under full occlu-

sions. Our method finds the correct pose in all three cases.

Improper handling of this case is a major limitation in prac-

tical applications, for instance in motion capture where an

arm may disocclude from behind the body. Our approach

handles these cases by considering near-visible objects, it

‘peeks’ behind occlusion boundaries.

6.2. Object tracking

We show the advantages of our representation for gradient-

based multi-object pose optimization from a single view un-

der photo-consistency and compare against OpenDR [16].

The nine parameters in θ for the synthetic test scene are the

3D position of a red sphere, and position and orientation of

the blue cube. Both objects shall reach the pose shown in the

Target image of Figure 4. We compare the optimization of

Fpc with m=0.1 using our model, OpenDR with per-pixel

photo-consistency, and OpenDR with a Gaussian pyramid

of 6 levels. The optimizer is initialized with 100 random and

three manual cases (rows in Figure 4). Without smoothing,

OpenDR fails in all cases as object and observation bound-

ary do not overlap sufficiently (last column). With smooth-

ing, OpenDR captures 70% of all random initializations,

when one object is fully occluded it fails (fifth column, last

row). Our solution captures the correct pose in 88% of all

random initializations, even under full occlusion if the oc-

cluded object is in the vicinity of the occlusion boundary

(forth column, last row). Only in few cases an erroneous

local minimum is reached. Averaged over all successful op-

timizations, the 3D Euclidean positional error of the sphere

is 7×10−3 times its diameter (ours) vs. 4×10−5 (OpenDR)

and for the cube 1.7×10−2 (ours) vs. 1.3×10−2 (OpenDR).

In essence, the density approximation (one Gaussian for the

sphere, 27 Gaussians for the cube) increases robustness and
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Figure 5. Reconstruction accuracy against marker-based ground

truth. Stoll et al. looses track of the arms after frame 150, and

Elhayek et al. lacks accuracy during the first half of the sequence.

Our method has a 3.7 cm average joint position error – 45% better

than Stoll et al. with 7 cm and best overall (dashed lines).

is essential for certain scene configurations. The inaccuracy

due to the approximation of sharp edges is of small scale,

≈ 10−2 compared to OpenDR, model and observation align

very well when visualized as meshes (fourth column).

We show in the supplemental document that our ap-

proach also enables accurate generative geometry and ap-

pearance estimation of non-trivial 3D shapes from images.

6.3. Marker-less human motion capture

We now show the benefits of our approach for marker-less

human motion capture on three multi-view video sequences

with single and multiple actors1. Our approach optimizes

Fmc in the skeletal joint parameters (see Section 5). We

compare against the purely generative approach by Stoll

et al. [25], and the recent combination of their generative

method with a ConvNet-based joint detection [9], which

was previously the only approach capable of marker-less

skeletal motion capture in outdoor scenes with only 2–3

cameras.

We first quantitatively compare against both methods

using the average Euclidean reconstruction error against

ground-truth 3D joint positions (from a concurrently run

marker-based system) using two cameras of the indoor se-

quence Marker [9], see Figure 5. All three algorithms use

the same skeleton with 44 pose parameters, 72 Gaussians

and data terms using HSV color space [9] to be compara-

ble. The implicit model needed for our approach is created

as described in Section 4. Our method improves over the

baseline [25] by a 45% lower average error (3.7 cm versus

7 cm), as the baseline cannot track large parts of the se-

quence at all from only two views. Compared to Elhayek et
al., who use a discriminative component together with gen-

erative tracking, our method with visibility-aware, purely

1A table describing each scene and the relevant parameters, such as

number, type and resolution of cameras, how many actors, pose parame-

ters, run time etc., is given in the supplemental document.
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Stoll et al. [25] ours (m=0.1) ours (m=0.1)Elhayek et al. [9]

Figure 6. Pose estimates for the Marker sequence, using two views

for reconstruction. Our method properly handles occlusion of the

legs in frame 38 (left), and has much higher accuracy for frame

131 (right), here viewed from a third camera not used for tracking.

generative tracking is more precise for the first 250 frames

and comparable for the last frames, where all three methods

show errors due to ambiguities with the black background.

We thus achieve similarly robust marker-less captured with

only two cameras as their more complex method. These

quantitative improvements also manifest as clear qualitative

pose improvements, as shown in Figure 6. The proper vis-

ibility handling overcomes failures of previous techniques

when arms and legs occlude. Please see the supplemental

material for videos. We also show that the qualitative accu-

racy of our new marker-less approach captured with only

four cameras on the Walker sequence from [25] is compara-

ble to their 12-camera result.

We repeat the same comparison on the outdoor sequence

Soccer with two actors, strong occlusions and fast actions,

from only three views. Again, we obtain significantly better

accuracy than Stoll et al. in terms of 3D joint position, in

particular for the limb joints (see Figure 7), as their results

quickly show severe failures with so few cameras. To ana-

lyze the impact of occlusions, we run our method once for a

single actor, and in a second run we jointly track both actors

(in total 84 parameters and 182 Gaussians). Simultaneous

optimization not only handles self-occlusions but also the

mutual occlusion of both actors. This improves by 10.6%

and demonstrates the strength of precise and differentiable

occlusion handling (see also Figure 8).

In the supplemental document we also analyze the per-

formance of our approach when evaluating our data term for

cells of a quad tree that clusters pixels of similar color, as in

Stoll et al., instead of for all pixels of the input images .

6.3.1 Radius of convergence

Our improved scene model with rigorous visibility handling

leads to more well-behaved similarity energies with a large

radius of convergence, i.e. they converge for points further

away from the global minimum, and a smooth energy land-
scape with few local minima (already observed in OpenDR

comparison). We now validate these properties for the mo-

tion capture energy Fmc, see Figure 9 left. For frame 83

Avg. error [cm]

ours Stoll et al. [25] Elhayek et al. [9]
all joints 7.18 10.72 4.53

limbs 4.81 9.39 4.80

Ground truth ours (m=0.1) Stoll et al. [25] Elhayek et al. [9]

Figure 7. Reconstruction accuracy for the Soccer sequence against

manually annotated ground truth and comparison to [25] and [9].

The figure illustrates a case of ambiguity across two views, where

the generative approach [25] looses track of the person’s arm. Our

approach and the approach from Elhayek et al. [9] instead keep

good average tracking with low 3D reprojection error for all joint

positions, see the table above.

ours (2 actors) ours (1 actor)

Figure 8. Reconstruction for the Soccer sequence with comparison

to tracking and modeling all versus a single actor. As shown in the

figure, tracking of both subjects at the same time is advantageous

as occluding regions are effectively handled by our approach.

of the Marker sequence, we initialized the shoulder joint

with α ∈ [−127◦, 43◦] and analyzed different choices of

m. As expected, the energy Fmc is smoother and contains

fewer local minima for smaller values ofm. We measure the

convergence radius by optimizing from 100 initializations

with α equally spaced over the shown interval and count

successful convergences. While all configurations succeed

for initializations α ∈ [−100◦,−20◦] close to the mini-

mum α = −58◦, only smoother versions (m ≥ 0.1) con-

verge for distant initializations, see Figure 9 right. The case

m=0.0001models very sharp object boundaries, and hence

gives results similar to methods with binary visibility.
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Figure 9. A 1D slice through the energy landscape (for the shoul-

der joint angle) for different smoothness values m. Higher values

lead to a smoother energy with fewer local minima, and larger

peaks further from the occlusion boundary (at α = −75). The
global minimum of all configurations aligns well with the Eu-

clidean distance to the ground truth (at α = −58). Right: Con-

vergences from 100 initializations within the shown interval.

6.3.2 Visibility gradient and smoothness level

In our final experiment, we show that our new differentiable

and well-behaved visibility function is essential for the suc-

cess of our approach in marker-less human motion capture

with very few cameras. For the Marker sequence, we fix

the visibility for each Gaussian and each camera prior to

each iteration of the gradient-based optimizer, i.e. changes
in occlusion are ignored during optimization. This setup

quickly looses track of the limbs and fails completely after

110 frames, see Figure 10. Moreover, to analyze the behav-

ior of our method for different degrees of smoothness in our

scene model, we compare multiple fixed smoothness levels.

The best trade-off between smoothness and specificity is at-

tained for m = 0.1. Which we use for all our experiments

unless otherwise specified.

6.3.3 Computational complexity and efficiency

Our implementation of functions Fmc and Fpc and their gra-

dients has complexity O(NIN
2
qNK +NθNq) for NI in-

put pixels (summed over all views), and a scene of Nq

Gaussians, NK radiance samples and Nθ parameters. The

quadratic complexity in terms of the number of Gaussians

originates from the handling of multiple occlusion bound-

aries (occlusion test for each pair of Gaussians). Our energy

is nevertheless efficient to evaluate as the Gaussian density

allows to model even complex objects, such as a human,

by few primitives. For higher accuracy, coarse-to-fine ap-

proaches could be applied. For the Marker sequence the per-
formance is 8.1 gradient iterations per second for Fmc, 10K

input pixels (pixels far from the model do not contribute
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fixed visibility m = 0.5 m = 0.1 m = 0.01

Figure 10. Reconstruction accuracy of joints for different smooth-

ness levels m, and for pre-computed fixed visibility per Gaussian.

and are excluded), 72 Gaussians, and 44 pose parameters.

The experiments are executed for 200 iterations on a quad-

core CPU with 3.6 GHz. As the visibility evaluation of each

pixel is independent, further speedups could be obtained by

stochastic optimization and parallel execution on GPUs.

6.4. Discussion and conclusion

We presented a new scene model and corresponding image

formation model that approximates a scene by a translucent

medium defined by Gaussian basis functions. This inten-

tionally smoothes out shape and appearance.While this may

introduce some uncertainty of shape models, it enables a

visibility function and an image formation model that are

differentiable everywhere, and efficient to evaluate. Ana-

lytic pose optimization energies were already used for mo-

tion capture [25, 9], but visibility was only approximated.

Our new approach advances the state of the art by enabling

analytic, smooth and differentiable pose energies with ana-

lytic and differentiable visibility. It also leads to larger con-

vergence radii of these similarity energies. This not only en-

ables us to perform purely generative motion capture at the

same accuracy but with far fewer cameras than Stoll et al.
[25], but also to achieve comparable accuracy with only 2–3

cameras as the more complex method by Elhayek et al. [9]
which combines generative and discriminative approaches.

OpenDR and other surface models may more accurately

represent shape and texture, and also integrate light sources

into the scene model. This allows for higher alignment pre-

cision for some shapes, but it comes at the cost of a smaller

convergence radius, failure under full occlusion, and lower

computational efficiency than with our model.
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