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Abstract

We present a new effective way for performance capture

of deforming meshes with fine-scale time-varying surface

detail from multi-view video. Our method builds up on

coarse 4D surface reconstructions, as obtained with com-

monly used template-based methods. As they only capture

models of coarse-to-medium scale detail, fine scale defor-

mation detail is often done in a second pass by using stereo

constraints, features, or shading-based refinement. In this

paper, we propose a new effective and stable solution to this

second step. Our framework creates an implicit representa-

tion of the deformable mesh using a dense collection of 3D

Gaussian functions on the surface, and a set of 2D Gaus-

sians for the images. The fine scale deformation of all mesh

vertices that maximizes photo-consistency can be efficiently

found by densely optimizing a new model-to-image consis-

tency energy on all vertex positions. A principal advan-

tage is that our problem formulation yields a smooth closed

form energy with implicit occlusion handling and analytic

derivatives. Error-prone correspondence finding, or dis-

crete sampling of surface displacement values are also not

needed. We show several reconstructions of human subjects

wearing loose clothing, and we qualitatively and quantita-

tively show that we robustly capture more detail than related

methods.
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1. Introduction

Performance capture methods enable the reconstruction

of the motion, the dynamic surface geometry, and the ap-

pearance of real world scenes from multiple video record-

ings, for example, the deforming geometry of body and

apparel of an actor, or his facial expressions [5, 7, 2, 18].

Many methods to capture space-time coherent surfaces re-

construct a coarse-to-medium scale 4D model of the scene

in a first step, e.g. by deforming a mesh or a rigged tem-

plate such that it aligns with the images [5, 18]. Finer

Figure 1. Given as input a multi-view video sequence (left - par-

ticular input frame) and a coarse mesh animation (middle - input

mesh), our method is able to efficiently reconstruct fine scale sur-

face details (right - refined mesh). Note the wrinkles and folds

reconstructed on the skirt.

scale shape detail is then added in a second refinement step.

In this second step, some methods align the surface to a

combination of silhouette constraints and sparse image fea-

tures [7]. But such approaches merely recover medium

scale detail and may suffer from erroneous feature corre-

spondences between images and shape. Photo-consistency

constraints can also be used to compute smaller scale de-

formations via stereo-based refinement [5, 14]. However,

existing approaches that follow that path often resort to dis-

crete sampling of local displacements, since phrasing dense

stereo based refinement as a continuous optimization prob-

lem has been more challenging [9]. Some recent methods

resort to shading-based techniques to capture small-scale

displacements, such as shape-from-shading or photometric

stereo [22, 21, 18]. However, the methods either require

controlled and calibrated lighting, or complex inverse es-

timation of lighting and appearance when they are applied

under uncontrolled recording conditions.

In this paper, we contribute with a new effective solution

to the refinement step using multi-view photo-consistency

constraints. As input, our method expects synchronized

and calibrated multiple video of a scene and a reconstructed

2014 Second International Conference on 3D Vision

978-1-4799-7000-1/14 $31.00 © 2014 IEEE

DOI 10.1109/3DV.2014.46

5



coarse mesh animation, as it can be obtained with previous

methods from the literature. Background subtraction or im-

age silhouettes are not required for refinement.

Our first contribution is a new shape representation that

models the mesh surface with a dense collection of 3D

Gaussian functions centered at each vertex and each hav-

ing an associated color. A similar decomposition into 2D

Gaussian functions is applied to each input video frame.

This scene representation enables our second contribu-

tion, namely the formulation of dense photo-consistency-

based surface refinement as a global optimization problem

in the position of each vertex on the surface. Unlike previ-

ous performance capture methods, we are able to phrase the

model-to-image photo-consistency energy that guides the

deformation as a closed form expression, and we can com-

pute its analytic derivatives. Our problem formulation has

the additional advantage that it enables implicit handling

of occlusions, as well as spatial and temporal coherence

constraints, while preserving a smooth consistency energy

function. We can effectively minimize this function in terms

of dense local surface displacements with standard gradient-

based solvers. In addition to these advantages, unlike many

previous methods, our framework does not require a poten-

tially error-prone sparse set of feature correspondences or

discrete sampling and testing of surface displacements, and

thus provides a new way of continuous optimization of the

dense surface deformation.

We used our approach for reconstructing full-body per-

formances of human actors wearing loose clothing, and per-

forming different motions. Initial coarse reconstructions

of the scene were obtained with the approaches by Gall et

al. [7] and Starck and Hilton [14]. Our results (Fig. 1 and

Sect. 6) show that our approach is able to reconstruct more

of the fine-scale detail that is present in the input video se-

quences, than the baseline methods, for instance the wrin-

kles in a skirt. We also demonstrate these improvements

quantitatively.

2. Related Work

Marker-less performance capture methods are able to

reconstruct dense dynamic surface geometry of moving

subjects from multi-view video, for instance of people in

loose clothing, possibly along with pose parameters of an

underlying kinematic skeleton [16]. Most of them use

data from dense multi-camera systems and recorded un-

der controlled studio environments. Some methods em-

ploy variants of shape-from-silhouette or active or passive

stereo [23, 11, 14, 20, 17], which usually results in tempo-

rally incoherent reconstructions. Space-time coherency is

easier to achieve with model-based approaches that deform

a static shape template (obtained by a laser scan or image-

based reconstruction) such that it matches the subject, e.g.

a person [4, 5, 18, 1, 7] or a person’s apparel [2]. Some

of them jointly track a skeleton and the non-rigidly deform-

ing surface [18, 1, 6]; also multi-person reconstruction has

been demonstrated [10]. Other approaches use a generally

deformable template without embedded skeleton to capture

4D models, e.g. an elastically deformable surface or vol-

ume [5, 13], or a patch-based surface representation [3].

Most of the approaches mentioned so far either only recon-

struct coarse dynamic surface models that lack fine scale

detail, or coarse reconstruction is a first stage. Fine scale

detail is then added to the coarse result in a second refine-

ment step.

Some methods use a combination of silhouette con-

straints and sparse feature correspondences to estimate, at

best, a medium scale non-rigid 4D surface detail [7]. Other

approaches use stereo-based photo-consistency constraints

in addition to silhouettes to achieve denser estimates of

finer scale deformations [14, 5]. It is an involved problem

to phrase dense stereo-based surface refinement as a con-

tinuous optimization problem, as it is done in variational

approaches [9]. Thus, stereo-based refinement in perfor-

mance capture often resorts to discrete surface displacement

sampling which are less efficient, and with which globally

smooth and coherent solutions are harder to achieve.

In this paper, we propose a new formulation of stereo-

based surface refinement as a continuous optimization prob-

lem, which is based on a new surface representation with

Gaussian functions. In addition, our refinement method

also succeeds if silhouettes are not available, making the

approach more generally applicable.

An alternative way to recover fine-scale deforming sur-

face detail is to use shading-based methods, e.g. shape-

from-shading or photometric stereo [21]. Many of these ap-

proaches require controlled and calibrated lighting [8, 19],

which reduces their applicability. More recently, shading-

based refinement of dynamic scenes captured under more

general lighting was shown [22], but these approaches are

computationally challenging as they require to solve an in-

verse rendering problem to obtain estimates of illumination,

appearance and shape at the same time.

The method we propose has some similarity to the work

of Sand et al. [12] who capture skin deformation as a dis-

placement field on a template mesh; however, they require

marker-based skeleton capture, and only fit the surface to

match the silhouettes in multi-view video. Our problem for-

mulation is inspired by the work of Stoll et al. [15] who used

a collection of Gaussian functions in 3D and 2D for marker-

less skeletal pose estimation. Estimation of surface detail

was not the goal of that work. Our paper extends their basic

concept to the different problem of dense stereo-based sur-

face estimation using continuous optimization of a smooth

energy that can be formulated in closed form, and that has

analytic derivatives.
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Figure 2. Overview of our framework. Our approach refines the input coarse mesh animation by maximizing the color consistency between

the collection of 3D surface Gaussians, associated to the input vertices, and the set of 2D image Gaussians, assigned to image patches.

3. Overview

An overview of our approach is shown in Fig. 2. The in-

put to our algorithm is a calibrated and synchronized multi-

view video sequence showing images of the human sub-

ject. In addition, we assume as input a spatio-temporally co-

herent coarse animated mesh sequence, reconstructed from

multi-view video related approaches [7, 14].

Our method refines the initial coarse animation such that

the fine dynamic surface details are incorporated to the

meshes. First, we create an implicit representation of the in-

put mesh using a dense collection of 3D Gaussian functions

on the surface with associated colors. The input images are

also represented as a set of 2D Gaussian associated to image

patches in each camera view. Thereafter, continuous opti-

mization is performed to maximize the color consistency

between the collection of 3D surface Gaussians and the set

of 2D image Gaussians. The optimization displaces the 3D

Gaussians along the associated vertex normal of the coarse

mesh which yields the necessary vertex displacement.

Our optimization scheme has a smooth energy function,

that, thanks to our Gaussians-based model, can be expressed

in closed form. It further allows us to analytically com-

pute derivatives, enabling the possibility of using efficient

gradient-based solvers.

4. Implicit Model

Our framework converts the input coarse animation and

input multi-view images into implicit representations us-

ing a collection of Gaussians: 3D surface Gaussians on the

mesh surface with associated colors and 2D image Gaus-

sians, with associated colors, assigned to image patches in

each camera view.

4.1. 3D Surface Gaussian

Our implicit model for the input mesh is obtained by

placing a 3D Gaussian at each mesh vertex vs, ∀s ∈
{0 . . . ns − 1}, ns being the number of vertices. A 3D un-

normalized isotropic Gaussian function on the surface is de-

fined simply with a mean μ̂s, that coincides with the vertex

location, and a standard deviation σ̂s (equally set to 7 mm

for all 3D Gaussians on surface) as follows:

Gs(x̂) = exp

(
−
||x̂− μ̂s||

2

2σ̂2
s

)
(1)

with x̂ ∈ R
3. Note that although Gs(x̂) has infinite sup-

port, for visualization purposes we represent its projection

as a square having center (i.e. diagonals intersection) in μ̂s

and side length equal to 2σ̂s mm (see Fig. 3).

We further assign a HSV color value ηs to each surface

Gaussian. In order to derive the colors we choose a refer-

ence frame where the initial coarse reconstruction is as close

as possible to the real shape. This is typically the first frame

in each sequence. For each vertex vs of the input mesh,

we first choose the camera view that sees vertex vs best,

i.e. where normal and camera viewing direction align best.

Thereafter, the 3D Gaussian associated to vs is projected

to the image from the best camera view and the underlying

pixel color average is assigned as a color attribute.

4.2. 2D Image Gaussian

Our implicit model for the input images of all cameras

c ∈ {0 . . . nc − 1}, nc being the number of cameras, is ob-

tained by assigning 2D Gaussian functions Gi(x), x ∈ R
2,

to each image patch, i ∈ I(c), of all camera views. Simi-

lar to Stoll et al. [15] we decompose each input frame into

squared regions of coherent color by means of quad-tree

decomposition (with maximal depth set to 8). A 2D Gaus-

sian is assigned to each patch (Fig. 4), such that its mean
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Figure 3. A representation of our collection of 3D Gaussian on

the surface. Our surface Gaussians, here illustrated as tiny red-

bordered squares, are assigned to vertices of the input coarse mesh

(only in the skirt region in this example).

Figure 4. The input image (left) and the estimated collection of

2D image Gaussians (right). The image Gaussians are assigned

to patches of coherent color in the input image and the underly-

ing average pixel color is assigned to the Gaussians as additional

attribute.

μi ∈ R
2 corresponds to the patch center, and its standard

deviation σi to half of the square patch side length. The un-

derlying average HSV color ηi is also assigned to the 2D

Gaussians as additional attribute.

4.3. Projection of 3D Surface Gaussians

In order to evaluate the similarity between the 3D surface

Gaussians Gs and the 2D image Gaussians Gi, we project

each Gs to the 2D image space. The 3D surface Gaussian

mean μ̂s is projected using the camera projection matrix P ,

similarly to any 3D point in the space, as follows:

μs =

⎛
⎜⎝

[Pμ̂h
s ]x

[Pμ̂h
s ]z

[Pμ̂h
s ]y

[Pμ̂h
s ]z

⎞
⎟⎠ ∈ R

2 (2)

with [Pμ̂h
s ]x,y,z being the respective coordinates of the pro-

jected mean in homogeneous coordinates (i.e. the 4th di-

mension is set to 1). The 3D standard deviation is projected

using the following formula:

σs =
σ̂sf

[Pμ̂h
s ]z

∈ R (3)

where f is the camera focal length.

5. Surface Refinement

We employ an analysis-by-synthesis approach to re-

fine the input coarse mesh animation, at every frame,

by optimizing the following energy E(M) with respect

to the collection of 3D surface Gaussian means M =
{μ̂0, . . . μ̂ns−1}:

E(M) = Esim − wregEreg (4)

The term Esim measures the color similarity of the pro-

jected collection of 3D surface Gaussians with the 2D image

Gaussians obtained from each camera view. The additional

term Ereg is used to keep the distribution of the 3D sur-

face Gaussians geometrically smooth, whereas wreg is an

user defined smoothness weight, typically set to 1. Since

we constrain the 3D Gaussians to move along the corre-

sponding vertex (normalized) normal direction Ns:

μ̂s = μ̂orig
s +Nsks ∈ R

3 (5)

aiming at maintaining a regular distribution of 3D Gaus-

sians on the surface, we only need to optimize for single

scalar values ks, s ∈ {0 . . . ns − 1}.

5.1. Similarity Term

We exploit the power of the implicit Gaussian represen-

tation of both input images and surface in order to derive a

closed-form analytical formulation for our similarity term.

In principle, one pair of image Gaussian and projected sur-

face Gaussian should have high similarity measures when

they show similar properties in terms of color and their

spacial localization is sufficiently close. This measure can

be formulated as the integral of the product of the pro-

jected surface Gaussian Gs(x) and image Gaussian Gi(x),
weighted by their color similarity T (δis), as follows:

Eis = T (δis)

∫
Ω

Gi(x)Gs(x)∂x (6)

In the above equation δis = ||ηi − ηs|| ∈ R
+ measures the

Euclidean distance between the colors, while T (δ) : R →
R is the Wendland radial basis function modeled by:

T (δ) =

⎧⎪⎨
⎪⎩
(
1− δ

Δ

)4(
4 δ
Δ + 1

)
if δ < Δ

0 otherwise

(7)

where Δ is esperimentally set to 0.05 for all test sequences.

The main advantage of using a Gaussian representation is

that the integral in Eq. 6 has a closed-form solution, namely

another Gaussian with combined properties:

Eis = T (δis)2π
σ2
sσ

2
i

σ2
s + σ2

i

exp

(
−
||μi − μs||

2

σ2
s + σ2

i

)
(8)
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We first calculate the similarity for all components of the

two models for each camera view. Then, we normalize the

result considering the maximum obtainable overlap Eii =
πσ2

i , of an image Gaussian with itself, and the number of

cameras nc as follows:

Esim =
1

nc

nc−1∑
c=0

∑
i∈I(c)

min
(∑ns−1

s=0 Eis, Eii

)
Eii

(9)

In this equation, the inner minimization implicitly han-

dles occlusions on the surface as it prevents occluded Gaus-

sians projections into the same image location to contribute

multiple times to the energy. This is an elegant way for

handling occlusion while preserving at the same time en-

ergy smoothness. In fact, exact occlusion detection and

handling algorithms are non-smooth or hard to express in

closed-form.

In order to improve computational efficiency, we evalu-

ate Eis only for visible surface Gaussians from each camera

view. The Gaussian overlap is then computed against visi-

ble projected Gaussians and 2D image Gaussians in a local

neighborhood.

5.2. Regularization Term

Our regularization term constraints the 3D surface Gaus-

sians in the local neighborhood and each Gaussian such that

the final reconstructed surface is sufficiently smooth. This

is accomplished by minimizing the following equation:

Ereg =

ns−1∑
s=0

∑
j∈Ψ(s)

T (δsj) (ks − kj)
2
, (10)

where Ψ(s) is a set of surface Gaussian indices that are

neighbors of Gs, δsj ∈ R
+ is the geodesic surface distance

between Gs and Gj measured in number of edges, and T (δ)
is defined in Eq. 7, where Δ = 2 edges.

5.3. Optimization

Our formulation allows us to compute analytic deriva-

tives of the energy (Eq. 4), for which we provide complete

derivation in an additional document. The derivative of the

similarity term, with respect to each ks, s ∈ {0 . . . ns − 1}
is:

∂

∂ks
(Esim) =

1

nc

nc−1∑
c=0

∑
i∈I(c)

⎧⎪⎨
⎪⎩

∂
∂ks

(Eis)

Eii
if
∑ns−1

s=0 Eis < Eii

0 otherwise

(11)

The derivative of the overlap Eis is defined as:

∂

∂ks
(Eis) = T (δis)4π

σ2
sσ

2
i

σ2
s + σ2

i

exp

(
−
||μi − μs||

2

σ2
s + σ2

i

)
·

·

[
[PcN

h
s ]z

(
− 1 +

σ2
s

σ2
s + σ2

i

−
||μi − μs||

2σ2
s

(σ2
s + σ2

i )
2

)
·

·
1

[μs]z
+

(μi − μs)
∂

∂ks
(μs)

σ2
s + σ2

i

]

(12)

where Pc is the projection matrix of camera c, Nh
s is

the vertex normal associated to the model gaussian Gs in

homogeneous coordinates (i.e. the 4th dimension is set to

0), [μs]z is the z-component of the projected mean, and

∂

∂ks
(μs) =

⎛
⎜⎜⎝

[PNh
s ]

x
−[μs]x[PNh

s ]
z

[P (μ̂h
s+Nh

s ks)]z

[PNh
s ]

y
−[μs]y [PNh

s ]
z

[P (μ̂h
s+Nh

s ks)]z

⎞
⎟⎟⎠ ∈ R

2. (13)

The derivative of the regularization term Ereg is given by:

∂

∂ks
(Ereg) = 4

∑
j∈Ψ(s)

T (δsj) (ks − kj) (14)

We efficiently optimize our energy function E(M) using a

conditioned gradient ascent approach. The general gradient

ascent method is a first-order optimization procedure that

aims at finding local maxima by taking steps proportional

to the energy gradient. The conditioner is a scalar factor

associated to the analytical derivatives that increases (resp.

decreases) step-by-step when the gradient sign is constant

(resp. fluctuating). The use of the conditioner brings three

main advantages: it allows for faster convergence to the fi-

nal solution, it prevents typical zig-zag-ing while approach-

ing local maxima, and it constraints at the same time the

analytical derivative size.

6. Results

We tested our approach on three different datasets:

skirt, dance and pop2lock. Input multi-view video se-

quences, as well as camera settings and initial coarse

mesh reconstruction were provided by Gall et al. [7] and

Starck and Hilton [14]. All the sequences are recorded

with 8 synchronized and calibrated cameras and number of

frame ranging between 250 and 721 (see Table 1). The

input provided coarse mesh are obtained utilizing low-

quality refining technique based on sparse feature match-

ing, shape-from-silhouette and multi-view 3D reconstruc-

tion, and therefore lack of surface details.

In order to refine the input mesh sequences, we first sub-

divide the input coarse topology, by inserting additional

9



Sequence Frames Gs Iter/s Frame/min

skirt 721 3053 2.01 0.8

dance 573 3430 1.90 0.76

pop2lock 250 3880 1.67 0.66

Table 1. Computation time for the input sequences. The table

shows the amount of frames for each sequence, as well as amount

of 3D surface Gaussians Gs, iteration per second and frames per

minute.

triangles and vertices, aiming at increasing the scale level

of detail. Then we generate a collection of Gaussians on

the surface as explained in Sect. 3. Since for the input se-

quences most of the fine-scale deformations happen on the

clothing, we decided to focus on the refinement of those ar-

eas, generating surface Gaussians only for the correspon-

dent vertices. Table 1 shows the amount of 3D surface

Gaussians created for each sequence.

When rendering the final resulting mesh sequences, we

added an extra epsilon to the computed vertex displace-

ments equal to the standard deviation of the surface Gaus-

sians used. This is needed in order to compensate for the

small surface bias (shrink along the normal during opti-

mization) that is due to the spatial extent of the Gaussians.

Evaluation. Our results (Fig. 1, Fig. 5 and the accompa-

nying video) show that our approach is able to plausibly re-

construct more fine-scale details, e.g. the wrinkles and folds

in the skirt, and produces closer model alignment to the im-

ages than the baseline methods ([7, 14]).

In order to verify the quantitative performance of our ap-

proach, we textured the model by assigning surface Gaus-

sians colors to the correspondent mesh vertices. Then, we

used optical flow to generate displacement flow vectors be-

tween the input images and the reprojected textured mesh

models (original and refined) for all time steps. Fig. 6 plots

the average optical flow displacement error difference be-

tween the input and the resulting animation sequences over

time for a single camera view. As shown in the graphs,

our method decreases the average flow displacement error,

leading to quantitatively more accurate results.

We created an additional experiment to verify the perfor-

mance of our refinement framework. For this experiment,

we first spatially-smooth the input mesh sequence aiming at

eliminating most of the baked-in surface details, if any. The

smooth mesh animation is then used as input to our system.

As we show in Fig. 7 and in the accompanying video, our

approach is able to plausibly refine the input smooth mesh

animation, reconstructing fine-scale details in the skirt, t-

shirt and shorts. Quantitative evaluation for the smooth in-

put sequence is provided in an additional document.

We evaluated the performance of our system on an Intel

Xeon Processor E5-1620, Quad-core with Hyperthreading

and 16GB of RAM. Table 1 summarizes the performances

Figure 5. Comparison of the results of our refinement capture

method against the baseline provided by [7, 14] for the pop2lock

(top), dance (middle) and skirt (bottom) sequences. From left

to right: input image, color-coded normals of the input mesh and

color-coded normals of the rendered output refined mesh.

we obtained for the three tested sequences. We believe we

can further reduce the computation time by parallelizing or-

thogonal steps and implementing our method on GPU.

Limitations. Our approach is subject to a few limi-

tations. We assume the input mesh sequence to be suffi-

ciently accurate, such that smaller details can be easily and

correctly captured by simply displacing vertices along their

correspondent vertex normals. In cases where the input re-

constructed meshes present misalignments with respect to

the images (e.g. pop2lock) or if it is necessary to recon-

struct stronger deformations, then our method is unable to

perform adequately. In this respect, our refinement should

be reformulated allowing more complex displacements, e.g.

without any normal constraint. However such weaker prior

on vertices motion requires more complex regularization

formulation in order to maintain smooth surface, also to

handle unwanted self-intersections and collapsing vertices.

On top of that the increased number of parameters to opti-

mize for (i.e. 3 times more, when optimizing for all 3 ver-

tices dimensions, x, y and z) would spoil computational ef-

ficiency and raise the probability of getting stack in local

maxima solutions. The risk of returning local maxima solu-

tions is still high when employing local solvers (e.g. gradi-

ent ascent) on non-convex problems as in our case. A pos-

sible solution is to use more advanced solvers, e.g. global

solvers, when computational efficiency is not a requirement.

Another limitation of our approach is the inability to
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Figure 7. Results of our refinement capture method for the smoothed dance (top), pop2lock (middle) and skirt (bottom) animation

sequences. From left to right: input image, rendered input mesh, rendered output refined mesh, zoom at the rendered input mesh, and zoom

at the rendered output refined mesh.

densely refine plain colored surfaces with few texture (e.g.

pop2lock and dance). A solution here is to employ a more

complex color model that takes into account e.g. illumina-

tion and shading effects, at the cost of increased computa-

tional expenses. We would like to investigate these limita-

tions as a future work.

7. Conclusions

We presented a new effective framework for perfor-

mance capture of deforming meshes with fine-scale time-

varying surface detail from multi-view video recordings.

Our approach captures the fine-scale deformation of the

mesh vertices by maximizing photo-consistency on all ver-

tex positions. This can be done efficiently by densely op-

timizing a new model-to-image consistency energy func-

tion that uses our proposed implicit representation of the

deformable mesh using a collection of 3D Gaussians for the

surface and a set of 2D Gaussians for the input images. Our

proposed formulation enables a smooth closed-form energy

with implicit occlusion handling and analytic derivatives.

We qualitatively and quantitatively evaluated our refinement

strategy on 3 input sequences, showing that we are able to

capture and model finer-scale details.
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