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Abstract. We develop a method for the estimation of articulated pose, such as that of the human body or the human
hand, from a single (monocular) image. Pose estimation is formulated as a statistical inference problem, where the
goal is to find a posterior probability distribution over poses as well as a maximum a posteriori (MAP) estimate.
The method combines two modeling approaches, one discriminative and the other generative. The discriminative
model consists of a set of mapping functions that are constructed automatically from a labeled training set of
body poses and their respective image features. The discriminative formulation allows for modeling ambiguous,
one-to-many mappings (through the use of multi-modal distributions) that may yield multiple valid articulated
pose hypotheses from a single image. The generative model is defined in terms of a computer graphics rendering of
poses. While the generative model offers an accurate way to relate observed (image features) and hidden (body pose)
random variables, it is difficult to use it directly in pose estimation, since inference is computationally intractable.
In contrast, inference with the discriminative model is tractable, but considerably less accurate for the problem of
interest. A combined discriminative/generative formulation is derived that leverages the complimentary strengths of
both models in a principled framework for articulated pose inference. Two efficient MAP pose estimation algorithms
are derived from this formulation; the first is deterministic and the second non-deterministic. Performance of the
framework is quantitatively evaluated in estimating articulated pose of both the human hand and human body.

Keywords: human body pose, hand pose, nonrigid and articulated pose estimation, statistical inference, generative
and discriminative models, mixture models, expectation maximization algorithm

1. Introduction

An essential task for vision systems is to infer or es-
timate the state of the world given some form of vi-
sual observations. From a computational/mathematical
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perspective, this typically involves facing an ill-posed
problem; relevant information is lost via projection of
the three-dimensional world into a two-dimensional
image. In this paper, the focus is on inferring the pose
of an articulated object in an image, in particular the
pose of a human body or human hand. Humans can
often solve such pose inference problems, even when
given only a relatively poor-quality, low-resolution,



252 Rosales and Sclaroff

monocular image. It is believed that humans employ
extensive prior knowledge about human body structure
and motion in solving this ill-posed task (Johansson,
1973). In this paper, we consider how a computer vi-
sion system might learn such knowledge in the form of
probabilistic models, and how to employ such models
in an algorithm for reliable pose inference.

For purposes of computation, the estimation/
inference task can be defined as follows: given an ob-
servation vector x ∈ �c that was extracted from an
image of a person, estimate the parameterized articu-
lated pose as a vector h ∈ �t . The cue and target vector
spaces �c and �t are continuous. Generally speaking,
using a machine learning approach, this task may be
regarded as a function ϕ : �c → �t that maps an input
vector of visual observations to an output vector de-
scribing the best articulated pose; we refer to this task
as (MAP) estimation. More generally, in probabilistic
inference, the mapping function could produce a pos-
terior probability distribution, ϕ : �c → P , where P
is a family of probability density functions on �t . Note
that in general, solving the inference problem does not
imply solving the MAP estimation problem. A number
of general questions arise. What form should the map-
ping function ϕ take? How can the mapping function
be estimated from training data? How can the approach
incorporate prior knowledge about the problem struc-
ture? How can approximate inference be performed ef-
ficiently and accurately if exact inference is intractable?
These questions are fundamental and common in sta-
tistical learning, and only in limited instances are the
answers immediately clear (e.g., see Pearl, 1988).

Several perspectives or principles could be employed
to approach learning tasks. Often it is not clear which is
more suitable for the problem at hand. It will be useful
for the purpose of this paper to distinguish two per-
spectives: the generative and the discriminative learn-
ing perspectives (e.g., see Ng and Jordan, 2001). In the
case of learning generative models, a joint distribution
p(x, h) over the random variables of the model (for
simplicity consider only h and x) is estimated from
data. Then, given an observation, e.g., x, a poste-
rior probability p(h | x) over the unobserved random
variables could, in theory,1 be calculated by invoking
Bayes rule. In contrast, using discriminative models
the posterior distribution q(h | x) is directly built or
learned (see e.g., McLachlan, 1992; Rubinstein and
Hastie, 1997; Ng and Jordan, 2001) for further com-
parisons between these viewpoints). In this paper, we
favor the idea that for pose estimation, the advantages of

Figure 1. Example ambiguity in mapping body silhouette cues in

�c to articulated body poses in �t . Given silhouette x, poses a–h
are all valid hypotheses. In general, entire regions in �t may contain

valid poses.

each of these viewpoints could be exploited in a single
framework.

If we try to learn a mapping directly, let us say by
estimating the parameters of a parameterized function
φ : �c → �t as in a discriminative approach, we en-
counter several problems. The form required for φ may
not be simple, because the mapping from observations
to articulated poses is generally ambiguous (one-to-
many), and therefore no single function may perform
this mapping. An example is illustrated in Fig. 1; the
arm locations cannot be uniquely inferred given the
silhouette x and therefore, a–h are all plausible pose
configurations. The hands and arms can move in such
a way that the silhouette does not change. Note also
that pose c is the reflection of a: the camera looks at
the back rather than at the front of the body. There may
be different regions in �t that correspond to ranges of
valid poses, and these regions may not be connected;
e.g., some viewed from the front and others from be-
hind. An alternative, to be used in this paper, is to model
this image-pose relationship using multimodal distri-
butions. Our approach will allow us to keep this dis-
criminative model simple.

Let us now consider the inverse problem: given an ar-
ticulated pose vector h, generate its silhouette x. With
a computer graphics model of the human body, one
can easily render the silhouette x. Thus, using com-
puter graphics we can build a function ζ : �t → �c

(mapping pose parameters to image features) that can
be employed to define a generative model. This will
play an important role in developing the framework
presented in this paper. Note that this generative pro-
cess is not necessarily a one-to-one mapping, even for
given camera parameters, because of noise, clothing,
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anthropometric variations, etc.; nonetheless, it provides
an acceptable approximation in practice. While the
inverse mapping ζ provides very useful information
about the structure of the problem, unfortunately it can-
not be incorporated easily in a discriminative approach.
Despite how simple it is to evaluate ζ , its inverse may
still be complex or may not exist. In other words, in-
ferring h from x may be difficult.

In summary, the one-to-many nature of the problem
of mapping image features to body poses precludes
the use of discriminative supervised learning methods
that fit a single or a finite number of functions to the
data; e.g., neural networks regression, support vector
machine regression, boosting, etc. On the other hand,
we have access to ζ : �t → �c that given a body
pose can produce the corresponding image features,
which can be used to define a very accurate generative
model. However, as will be shown later, this accurate
generative model is challenging to use directly in body
pose inference. The view taken in this paper is that
it can be effective to use the individual advantages of
these two complimentary approaches (discriminative
and generative) to formulate an efficient solution to the
pose inference/learning problem.

The paper is structured as follows. Section 2 presents
the related work and how our work fits in with, and dif-
fers from existing approaches for pose estimation. Sec-
tion 3 starts by proposing independent discriminative
and generative models for the problem at hand without
explicitly creating a connection between them. Sec-
tion 4 assumes that these two models are given and in-
troduces inference. First inference is presented for each
model separately and its shortcomings discussed, then a
method that combines both models is introduced. Sec-
tion 4.3 presents the general formulation, while Sec-
tions 4.4 and 4.5 concentrate on algorithms. Section 5
shows how to learn the proposed models. Section 6
describes the applications considered and Section 7
presents the results of the experimental evaluation. Sec-
tion 8 provides a discussion of strengths and limitations
of the proposed approach, conclusions, and directions
for future work.

2. Related Work

In computer vision, recovery of articulated body pose
from images is often formulated as a tracking prob-
lem. Usually, link-joint models comprised of 2D or
3D geometric primitives are designed beforehand to
roughly match the specific morphology of the target in

question (Bregler, 1998; Deutscher et al., 2000; Gavrila
and Davis, 1995; Ormoneit et al., 2001; Rehg and
Kanade, 1995; Shimada et al., 1998; Felzenszwalb and
Huttenlocher, 2000; Sminchisescu and Triggs, 2001).
Three-dimensional deformable mesh models (Heap
and Hogg, 1996) have also been used as an alternative
to link-joint models. At each frame, these geometric
models are fitted to the image to minimize some cost
function that favors the overlap of the model and asso-
ciated image regions (or motion). Although usually not
stated, the fitting or cost function in many cases implic-
itly defines (or can be used to define) a generative model
of the observed image. Despite their descriptive power,
this family of approaches has a number of critical draw-
backs. Generally, a non-linear optimization problem
must be solved at every frame; this can sometimes be
equivalent to MAP estimation with a complex gener-
ative model. Careful manual placement of the model
on the first frame in a video sequence is also required.
Moreover, tracking in subsequent frames tends to be
sensitive to errors in initialization and numerical drift;
as a result, these systems cannot recover from tracking
errors in the middle of a sequence.

To address these weaknesses, specialized dynamical
models have been proposed (Isard and Blake, 1998;
Ormoneit et al., 2001; Pavlović et al., 2001). These
methods learn a prior distribution over some specific
motion class, such as walking. This prior is used to
predict and hopefully improve the pose estimates in
future frames. However, this strong prior substantially
limits the generality of the motions that can be tracked;
a prior for a given class of motions is generally useless
when used for tracking objects undergoing a different
class of motion; e.g., walking vs. dancing.

Other methods for constrained tracking include
Black et al. (1997), where a subspace of allowable mo-
tions is learned from a set of examples. These examples
and the model (usually linear) are expected to be suf-
ficient to span the set of possible motions to be seen
during tracking. Thus, pose inference involves finding
a linear projection of the observed data onto the motion
subspace. This subspace approach also limits the gen-
eralization power to motions very similar from those
seen in the training set. The underlying process to be
modeled is generally non-linear given the representa-
tions that are commonly used. We believe this process
cannot be effectively explained as a linear projection.

In our approach we avoid matching image features
(e.g., image regions, points, or articulated models) from
frame to frame. Therefore, we do not refer to our
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approach as tracking per se. This is in direct contrast
with the techniques mentioned above. A number of
other approaches also depart from the aforementioned
tracking paradigm. We summarize these next.

In Howe et al. (2000) a statistical approach is em-
ployed to reconstruct the 3D motions of a human figure.
The approach employs a Gaussian probability model
for short human motion sequences. It is assumed that
2D tracking of the joint positions in the image is given;
therefore, this assumption implicitly incurs the restric-
tions found in all tracking approaches.

In Song et al. (2000) dynamic programming is used
to calculate the best global matching of image points to
predefined body joints, given a learned probability den-
sity function of the position and velocity of body fea-
tures. This formulation implicitly restricted the prob-
ability model to the class of distributions defined by
graphical models with tree-width equal to three; thus,
inference was computationally feasible (Jordan, 1999;
Pearl, 1988). Still, in this approach, the image points
and model initialization must be provided by hand or
through some other method.

In Brand (1999), the manifold of human body dy-
namics is modeled via a hidden Markov model with an
entropic prior. Once the states are inferred from obser-
vations, a quadratic cost function is used to generate a
continuous path in configuration space, i.e., body pose
space.

In all of the non-tracking approaches just cited, mod-
els of motion were estimated from data. Although the
approach presented in this paper can be used to model
dynamics, we argue that when general human motion
dynamics are to be learned, the amount of training
data, model complexity, and computational resources
required can be impractical. As a consequence, models
with unacceptably large priors towards specific mo-
tions are generated. Although by not modeling the dy-
namics we may be ignoring information that could be
used to further constrain the inference process, there
are some benefits. For instance, a model for inferring

Figure 2. Simplified graphical illustration of our method for estimating body pose (deterministic algorithm): (a) given an input vector x, we

generate a set of hypotheses, (b) the inverse mapping function ζ is employed in evaluating each hypothesis.

body pose that does not consider dynamics provides
invariance with respect to speed (i.e., sampling differ-
ences) and direction in which motions are performed.
In addition, it is not as sensitive to temporary frame
errors (e.g., dropped frames). This happens simply be-
cause this model treats configurations as temporally
independent of each other. Other approaches that use
a single image include (Barron and Kakadiaris, 2000;
Haritaouglu et al., 1998; Taylor, 2000); however, most
of these methods also require that projected joint lo-
cations be given as input. In the approach presented in
this paper, this is not necessary.

The approach introduced is simple and also practi-
cal. It can be described as that of mapping visual fea-
tures to likely body configurations and can be, roughly
speaking, summarized as follows: At learning time,
several functions that map visual features to pose pa-
rameters are approximated from training data employ-
ing a machine learning paradigm. A unique aspect of
our approach is the combined use of (1) these mapping
functions (defining a discriminative model) with (2)
the inverse mapping function ζ (defining a generative
model). At inference time, after multiple poses have
been found using each of the above functions from just
the input visual features, then ζ transforms these pose
configurations back to the visual feature (observation)
space. In this space, we can then automatically choose
among a set of reconstruction hypotheses according to
a criterion of interest (see Fig. 1). Our approach avoids
the need for manual initialization or tracking; it thereby
avoids the consequent disadvantages of tracking. Re-
markably, relatively few computations are required for
inference. We will now formalize and explain our ap-
proach in detail.

3. Probabilistic Models

We propose a probabilistic, nonlinear method for
combining generative and discriminative models for



Combining Generative and Discriminative Models in a Framework 255

Table 1. Some mathematical symbols used in this paper.

Number of training examples N
Training set Z = {z1, . . . , zN }
Training example (input,output) pair zi = (υi , ψi )

Input (feature) training vector υi ∈ �c

Output (pose) training vector ψi ∈ �t

Generative and discriminative models probability distributions p,q (respectively)

Observation random variable (e.g., image moments) x ∈ �c

Hidden random variable of pose parameters h ∈ �t

Inverse (rendering) function (for generative model) ζ : �t → �c

Number of samples during inference S
A particular observation or input image feature x∗
Output (pose) hypothesis (a sample from q(h | x∗)) hk

Estimate of most likely output hypothesis ĥ

Discrete set of labels for mixture components C = {1, . . . , M}
Hidden random variables assigning mixture component to training samples y = (y1, . . . , yN ), yi ∈ C
Prior probability that mixture component k will be used λk = Q(y = k)

Mapping function parameter vector θk

Discriminative model parameters (to be learned) θ = (θ1, . . . , θM , λ1, . . . , λM )

Posterior probability of k-th mixture component for zi during EM Q̃(yi = k) = Q(yi = k | ψi , υi , θ )

articulated pose estimation. The framework employs
a set of M functions φk : �c → �t , each associated
with a mixture component in a mixture distribution;
together, these functions are able to approximate one-
to-many mappings. In our approach, the functions are
jointly estimated automatically from training data via
a variant of the Expectation-Maximization algorithm.
The learned conditional distribution over the output
space is then used as an approximation to that implied
by a more accurate model defined with the help of the
inverse function ζ (the generative model), for which
inference is intractable. This basic idea is shown in
a schematic way in Fig. 1. The approximation is em-
ployed in a similar way as a proposal distribution is
used to approximate sampling from a more complex
distribution.

We begin by formally defining both the discrimina-
tive and generative models to be employed. The dis-
criminative model will be estimated from training data
and the generative model will be defined by a rendering
function ζ . These models represent two views of the
same problem and will be used together in our frame-
work.

3.1. The Discriminative Model

Let Z = {z1, . . . , zN } be an observed training set of
input-output pairs zi = (υi , ψi ). Each υi ∈ �c is an
input (feature) vector, and each ψi ∈ �t is its corre-

sponding output (pose) vector. A summary of mathe-
matical symbols used in this formulation is provided in
Table 1.

We will approach our discriminative problem as
one of hidden variable density estimation. We be-
gin by introducing the unobserved random variable
y = (y1, . . . , yN ). In our model any yi has as domain
the discrete set C = {1, . . . , M} of labels for the spe-
cialized functions, and can be thought of as the func-
tion index used to map the i-th training pair, zi . Thus
M is the number of specialized functions. Our model
uses parameters θ = (θ1, . . . , θM , λ1, . . . , λM ), where
θk represents the parameters of the k-th mapping func-
tion, and is the prior probability that the k-th mapping
function will be used to map an input-output pair.

Assuming independence of observations given θ ,
we seek to maximize the sum of conditional log-
probabilities:

θ∗ = arg max
θ

∑
i

log q(ψi | νi , θ ) (1)

= arg max
θ

∑
i

log
∑

k

q(ψi | υi , yi = k, θ ), (2)

Due to the sum of terms inside the logarithm of
Eq. (2), this optimization is computationally costly
for large M . However, a variety of practical approx-
imate optimization methods exist, for example, meth-
ods that are based on alternating optimizations (Csiszar
and Tusnady, 1984). Expectation Maximization (EM)
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(Dempster et al., 1977; Neal and Hinton, 1998) updates
are described in Section 5.

3.1.1. Choice of a Likelihood Function. Note that
the above formulation is general. In particular, the form
of the probability q(ψ |υ, y, θ ) was not specified. A key
question in instantiating our approach is: what form
should q(ψ |υ, y, θ ) take? This is, the probability that
output ψ was generated by the function y, given the in-
put υ and model parameters θ . In this work we analyze
the following possible cases:

1. A Gaussian joint distribution of input-output vec-
tors: q(υ, ψ | y, θ ) = N ((υ, ψ); μy, 
y).

2. A Gaussian distribution, whose mean is the out-
put of the y-th mapping function: q(ψ | υ, y, θ ) =
N (ψ ; φy(υ, θ ), 
y).

This formulation can accept other forms for the like-
lihood function.

3.2. The Generative Model

Our approach also involves the use of a generative
model of images (or image features). In the problem
of human body pose estimation from a single image
this generative model can be defined in a simple way.
We will assume that an image or image features are
generated by sampling a pose from a prior distribution
p(h) and then generating an image using the rendering
function ζ such that:

p(x | h) = N (x; ζ (h), 
ζ ). (3)

It is important to notice that despite the fact that the
generative model can be defined in a simple manner, the
function ζ is of a complex form. In our case, this makes
probabilistic inference intractable as will be explained
later.

4. Inference

In this section, we refer to probabilistic inference as
finding a full probability distribution for h once an ob-
servation x = x∗ has been made (some image features
were observed).

4.1. Inference using the Discriminative Model Alone

A valid approach to estimating/inferring h is to use the
discriminative model alone. In our context, inference
involves finding a full probability distribution for h
given x∗; the discriminative model directly provides
this expression.

In MAP estimation we just have to maximize this
expression. That is, we want to find the most probable
output h ∈ �t for a given observation x∗ ∈ �c: ĥ =
arg maxh q(h | x∗) = arg maxh

∑
y q(h | x∗, y)Q(y),

where q(h | x∗) is a shorthand for q(h | x = x∗). Any
further treatment depends on the properties of the prob-
ability distributions involved.

In both Cases (1) and (2) considered in previous sec-
tions, we can write q(h | x, y)=N (h; φy(x), 
y). Thus,
in either case we have that q(h | x∗) is a mixture of Gaus-
sians and if we want to find the MAP estimate we need
to solve: ĥ = arg maxh

∑
y N (h; φy(x∗), 
y)Q(y).

This result was obtained by employing the MAP
principle using our discriminative model alone. Here
we have assumed that we know the model. In practice
we need to estimate or learn it (learning will be covered
in the next section), but in general, q(h | x) will usually
be an approximation to the true conditional distribution,
obtained using the training data. Even though we could
simply adopt the above MAP estimate as a solution, it
should not be surprising that we could improve upon
this by using our knowledge of p, the generative model.

4.2. Inference Using the Generative Model Alone

Using the generative model, inference involves finding
the posterior p(h | x = x∗) (p(h | x∗) as a shorthand):

p(h | x∗) = 1

p(x∗)
p(x∗ | h)p(h)

= 1

Z p
N (x∗; ζ (h), 
ζ )p(h) (4)

Z p =
∫

N (x∗; ζ (h), 
ζ )p(h)dh. (5)

There are however at least two difficult obstacles for
achieving this: (1) the integral in Eq. (5) cannot be
solved easily and (2) we do not have an expression for
p(h).

In MAP estimation we do not need to be concerned
about obstacle (1) since in MAP the goal is to find ĥ =
arg maxh p(h | x) = arg maxh N (x; ζ (h), 
ζ )p(h) be-
cause Z p is a constant with respect to this optimization
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problem. However, solving for ĥ given the observed
x∗ is a daunting task; the space of h is too large to
explore exhaustively and ζ (h) too complex to apply
standard directed search techniques adequately. If we
could start the search using a point h0 that we knew
was close enough to the best h then this problem could
be mitigated. This idea is often employed in solving
tracking problems, i.e., when we have close enough
frames (in time and space) and the previous frame esti-
mate(s) can be trusted. However, the goal in this paper
is to solve for pose from a single image, and so tracking
is not possible.

Both obstacles could be overcome if somehow we
could accurately obtain samples distributed according
to p(h | x). Those samples could be used to (1) approxi-
mate this posterior and (2) find the sample with highest
probability and use it as a MAP estimate or as an ini-
tial point to search for a better estimate. However, we
cannot even evaluate p(h | x) (otherwise the inference
problem would have been solved) and, in addition, ac-
curately sampling from a given distribution is an open
problem in general (Mackay, 1998).

4.3. Combining Generative and Discriminative
Models. Importance Sampling

In general, sampling can be used to estimate expecta-
tions of a given function I (h) with respect to some prob-
ability density π (h) that we can evaluate at any point,
but from which we cannot sample. Let us say we need
to calculate the integral I = ∫

π (h)I (h)dh, by approx-

imating I employing S samples: Î = 1
S

∑S
r=1 I (h(s)).

Let p(h | x∗) correspond to π (h) (I (h) can be any func-
tion of the pose), but note we cannot evaluate p(h | x∗).
However, in the importance sampling method, it is only
necessary to evaluate the distribution up to a multi-
plicative factor. It turns out that in our problem we can
evaluate the joint p(h, x∗) which is enough since it is
proportional to p(h | x∗).

The question is how to appropriately generate the
samples to obtain the best estimate. In the importance
sampling method we first come up with a proposal dis-
tribution π ′(h), which we can also evaluate but from
which it is possible to sample accurately; then we sam-
ple from π ′(h), but also correct for the bias introduced
when sampling, obtaining:

Î = 1

S

S∑
r=1

p
(
h(s), x∗)

π ′ (h(s)
) I

(
h(s)

)
. (6)

It can be shown that when S → ∞,
√

S(Î − I) ∼
N (0, σ 2

π ′ ), with: σ 2
π ′ = ∫

( p(h(s),x∗)
π ′(h)

I (h) − I)2π ′(h)dh.
Thus, the expected variance of our estimate is propor-
tional to σ 2

π ′ and inversely proportional to S (Mackay,
1998). Since minimizing variance is a reasonable cri-
terion to consider, we would like to know what the
optimal proposal distribution π ′ is in terms of minimiz-
ing the estimate variance σ 2

π ′ for a fixed S. The optimal
proposal distribution is given by a result in (Rubinstein,
1981; Cheng and Druzdzel, 2000):

π ′(h) = p(h, x∗)

∫
p(h, x∗)dh, (7)

which is equal to p(h | x∗).
This makes sense in our simple case (for a general

proof see (Rubinstein, 1981)), since this is the distri-
bution in the initial integral we wanted to solve. One
would expect that in the limit of infinite samples, the
best estimate for I whatever the function I is, should
be obtained when sampling from the exact distribu-
tion involved in the integral. Of course, we know that
in our case we cannot sample from it. However, now
we know (1) that from an importance sampling per-
spective, we should sample from p(h | x∗) to minimize
variance, which is a reasonable criterion, and also (2)
that in this result there is no reference to the explicit
p(h).

In this paper, the main reason behind using gener-
ative and discriminative models together is to tackle
this particular problem of sampling from a good dis-
tribution. We will use the learned distribution q(h | x)
(the discriminative model) to approximate p(h | x), but
just at x = x∗. As we will see in the next section, we
will build this approximation employing the maximum
likelihood principle. Given the well known relationship
between ML and KL divergence, this can also be seen
as finding a discriminative (conditional) distribution q
that is close to the sampled conditional p distribution
(empirical distribution) in terms of the KL divergence
(Amari, 1995) (see appendix for details).

4.4. Non-deterministic MAP Estimation: Multiple
Samples (MS)

We are usually interested in providing likely samples
from the posterior distribution, in particular we might
be interested in the most likely h. This is the idea behind
MAP estimation, where we are interested in finding
ĥ = arg maxh p(h | x∗) = arg maxh p(x | h∗)p(h).
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We know that the discriminative model distribution
q(h|x) tries to approximate p(h|x), and therefore it is
good at minimizing the variance of the estimator. Due
to this, we will use the discriminative model distribu-
tion to provide samples for MAP estimation. In MAP
estimation, we sample HSpl = {hs}s=1...S using the
proposal distribution q(h | x∗). Given the samples, the
problem becomes a discrete optimization problem that
can be solved easily (see Fig. 3 for pseudo-code):

ŝ = arg max
s

p(x∗ | hs)

= arg min
s

(x∗ − ζ (hs))

ζ (x∗ − ζ (hs)), (8)

by using the Gaussian form of p(x | h) as given in
Eq. (3). We remark that one can use the samples HSpl

as starting points to other more sophisticated methods.
For example we could use Markov chain Monte Carlo
(MCMC) sampling (Mackay, 1998; Zhu et al., 2003)
to search for regions of higher probability. Also, in-
stead of stochastic methods, we could employ standard
gradient descent methods to locally search for more
likely poses h (as in tracking). These methods may
be helpful for some distributions but in general have
several drawbacks: (1) They are usually very slow in
high dimensions and (2) given finite time, they are not
very useful/accurate if the posterior probability is very
complex. Some methods have been proposed to alle-
viate these problems, but this goes beyond our current
contribution. Keeping this extension in mind, in this pa-
per we simply use the original samples HSpl to search
for a MAP estimate. These estimates proved to be suf-
ficiently accurate during our experiments.

4.5. Deterministic MAP Estimation: Mean Output
(MO)

In certain applications, a fast method for computing
the MAP estimates is advantageous. Two examples are:
when working with multiple articulated bodies, and in
dynamic or on-line settings where it is necessary to
provide estimates at high rates. Even though the time
complexity of MS scales linearly with the number of
samples, this might not be fast enough. Motivated by
speed constraints, here we propose a very fast and sim-
ple MAP estimation algorithm that still performs well
in experiments. Unlike MS, this algorithm is determin-
istic.

The structure of the problem, as well as the form
of the discriminative distribution components (i.e.,

conditioned on the mixture label) q(h | x, y) employed
(Gaussian), make it possible to construct this determin-
istic approximation. The basic intuition is straightfor-
ward. For a given x = x∗, each mapping function φk

gives its most likely estimate for h. We then evalu-
ate the probability of each function’s estimate via the
generative model distribution p(x∗ | h). From our ex-
periments, we believe this approximation is good in
practice.

To justify this deterministic approximation, we note
that the probability of the mean is maximal in a Gaus-
sian distribution; i.e., it is the most-likely value of the
random variable. Formally, in both Case (1) and Case
(2) described earlier, q(E[h | x∗, y, θ ]|x∗, y, θ ]) ≥
q(h′|x∗, y, θ ), for any h′. Consider again the set
of samples HSpl = {hs}s=1...S generated in the
MS approximation. We can build a set of sam-
ples Hφ = {hφ

k }k=1...M that has the property

∀y, maxk q(hφ

k | x∗, y) ≥ maxs q(hs | x∗, y), simply by

setting hφ

k = φk(x∗, θ ).
This basic insight leads to a deterministic approxi-

mation for inference, the Mean Output solution (MO).
This approximate solution relies on the observation that
by considering the means φs(x∗), we would be con-
sidering the most likely output of each mapping func-
tion (i.e., each mixture component in the discriminative
model), given the input. We expect the discriminative
model to be a good approximation of our generative
model posterior distribution as discussed above. How-
ever, in general the MO approximation need not be
very accurate. The smaller the overlap among the dis-
tributions associated with each function, the better the
accuracy of this approximation; this in turn depends on
the means and covariances of the mixture components.

In MO approximate inference, the expression to be
minimized is the same as that used in Eq. (8), except
for the use of the M means instead of the S samples
(see Fig. 3 for pseudo-code):

k̂ = arg max
k∈C

p(x∗|hφ

k )

= arg min
k∈C

(
x∗ − ζ (hφ

k )
)



ζ

(
x∗ − ζ (hφ

k )
)
. (9)

This requires substantially less computation than
would be required in the MS approach.

5. Learning

In order to learn the discriminative model param-
eters we will employ an Expectation Maximization
(EM) approach. EM provides a general framework for
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Figure 3. Summary of MO and MS algorithms for MAP estimation.

solving the maximum likelihood parameter estimation
problem for statistical models with hidden variables,
like Eq. (2). Since the EM algorithm is well known
(Dempster et al., 1977; Amari, 1995; Neal and Hinton,
1998), we will only provide derivations specific to our
formulation.

Note that the unobserved random variables yi are in-
dependent given zi and θ . Thus, the E-step reduces to
computing the posterior probabilities for each yi given
the model parameters and observed data. We will de-
note this posterior Q(yi = k|ψi , υi , θ ) using the short-
cut notation Q̃(t)(yi = k). We then have:

Q̃(t)(yi = k) = λkq
(
ψi |υi , yi = k, θ (t−1)

)/
∑
j∈C

λ j q
(
ψi |υi , yi = j, θ (t−1)

)
.

(10)

Stated differently, this step estimates the responsibil-
ity of each mapping function, φk for each data point,
zi . Q̃(t)(yi = k) represents the so called responsibil-
ity of function k for data pair i . Also recall that λk =
Q(yi = k) is the prior probability that function k will
be used.

The M-step consists of finding θ (t) =
arg maxθ EQ̃(t) [log q(ψ, y|υ, θ )]. In both of our
cases we can show that this is equivalent to finding:

θ (t) = arg max
θ

∑
i

∑
k∈C

Q̃(t)(yi = k)

× [log q(ψi |υi , yi = k, θ ) + log Q(yi = k|θ )].

(11)

We now present solutions for the cases described
above.

5.1. Case (1)

In this case we have:

q(υ, ψ |y, θ ) = N (υ, ψ ; μy, 
y)

= N
([

υ

ψ

]
;

[
μυ

μψ

]
,

[

υυ
υψ




υψ
ψψ

])
y,

(12)

where the subscript y is simply the mapping func-
tion number. We can show that the parameter learn-
ing problem can be reduced to estimating a mixture
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of Guassians, where it is straightforward to estimate θ

using EM. Moreover, the probability of ψ given an ob-
served υ is also Gaussian: q(ψ |υ, y, θ ) = N (ψ ; μψ +




υψ
−1
υυ (υ − μυ), 
ψψ − 



υψ
−1
υυ 
υψ )y . Therefore

in case (1), each function φk is just the mean of the
conditional distribution

φk(υ, θ ) = (μψ + 


υψ
−1

υυ (υ − μυ))y=k . (13)

The confidence of the estimate is given by the covari-
ance 
k = (
ψψ − 



υψ
−1
υυ 
υψ )y=k . However, note

that this expression does not depend on the input, a
sometimes undesirable consequence of the model em-
ployed. Note also that each function φk is linear in the
input vector from �c.

5.2. Case (2)

In this case we have:

∂ E

∂λk
=

∑
i

Q̃(t)(yi = k)
∂

∂λk
log Q(yi = k|θ ) (14)

∂ E

∂
k
=

∑
i

Q̃(t)(yi = k)
∂

∂
k
log q(ψi |yi = k, υi , θk)

(15)

∂ E

∂θk
=

∑
i

Q̃(t)(yi = k)

[(
∂

∂θk
φk(υi , θk)

)


× 
−1
k (ψi − φk(υi , θk))

]
, (16)

where E is the cost function that we would like to
maximize in Eq. (11).

This gives the following update rules for λk and 
k ,
where Lagrange multipliers were used to incorporate
the constraint that the sum of the λk’s is 1:

λ
(t)
k = 1

N

∑
i

Q̃(t)(yi = k) (17)



(t)
k =

∑
i

Q̃(t)(yi = k)(ψi − φk(υi , θk))

× (ψi − φk(υi , θk))

/∑

i

Q̃(t)(yi = k)

(18)

To keep the formulation general, we have not yet
defined the form of the mapping functions φk . Whether
or not we can find a closed form solution for the update

of θk depends on the form of φk . For example if φk

is a non-linear function, we may have to use iterative
optimization to find θ

(t)
k . If φk yields a quadratic form,

then a closed form update exists.
Now, regarding our generative model, there is very

little learning involved. If ζ is very accurate, then we
could also tell very accurately the image that will be
generated given a body pose h. In practice ζ can be
defined only approximately. We account for this by
appropriately setting 
ζ depending of how much noise
is expected to be present in the observations. This can
also account for inaccuracies in the geometric model.

6. Example Application: Articulated
Pose from Visual Features

The formulation presented in this paper is general
enough to be applied in a number of supervised learning
problems for which the output-to-input (inverse) map is
relatively easy to compute; thus allowing us to specify
an accurate generative model (but for which inference
is difficult). To demonstrate and test our framework,
we have developed a system that uses our approach to
infer articulated pose from low-level visual features.
In particular, we focused on pose estimation of the hu-
man hand and body from a single image containing a
silhouette of the object. In this class of applications,
datasets of poses can be obtained via motion capture
gloves or body suits. Computer graphics rendering can
then be used to generate the input-output pairs needed
for our supervised learning. We will now give details
of this demonstration system.

6.1. 3D Hand Pose Estimation

The goal is to recover detailed 3D hand pose from sil-
houette features computed from a single color image.
Hand pose is defined in terms of the hand joint angles.
In general, we are also interested in global orientation
of the hand. We explore two applications: estimation
of the internal joint angles only, and later, estimation
of both internal joint angles and global orientation of
the hand.

6.1.1. Hand Model. We utilize the hand model pro-
vided in the VirtualHand programming library (1998).
The model parameters are 22 joint angles. For the in-
dex, middle, ring and pinky finger, there is an angle for
each of the distal, proximal and metacarpophalangeal
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joints. For the thumb, there is an inner joint an-
gle, an outer joint angle and two angles for the
trapeziometacarpal joint. There are also abduction an-
gles between the following pairs of successive fin-
gers: index/middle, middle/ring and ring/pinky. Fi-
nally, there is an angle for the palm arch, an angle
measuring wrist flexion and an angle measuring the
wrist bending towards the pinky finger. However, be-
cause the former two wrist angles also encode global
orientation, we decided not to model them in our ap-
plication. Hence, ignoring these two angles, our model
has 20 DOF for the internal hand configuration.

All of these 20 angles are relative to two global orien-
tation angles. These two angles will encode the camera
viewpoint (or alternatively hand 3D rotation). Imag-
ine a sphere surrounding the hand model, i.e., a fixed
hand center point is at the center of the sphere. For ease
of reference, we will employ the widely used latitude
and longitude notions. The first angle β1 represents the
latitude from which we view the hand, and the sec-
ond angle β2 represents the longitude. We have defined
β1 ∈ [0, π ], with zero and π being the poles of the
sphere and β2 ∈ [0, 2π ). Thus, in summary our full
hand model has 22 DOF.

6.1.2. 3D Hand Motion Datasets. Using a Cyber-
Glove, we collected approximately 9,000 examples of
3D hand poses. This data included hand configurations
from American Sign Language (ASL) and other con-
figurations informally performed by several subjects.
Using computer graphics and an artificial hand model,
we then rendered each captured hand pose from mul-
tiple viewpoints on the view sphere. We defined a set
of 86 viewpoint angle pairs (β1, β2) so that the sphere
surface is sampled approximately uniformly. Thus we
obtained a full dataset of 9, 000×86 views. Each view
has an associated binary image mask (silhouette), and a
22 DOF pose vector. Figure 4 shows the 86 viewpoints
used in the dataset for a particular configuration.

From these silhouettes, we extract the visual fea-
tures that will be used for further processing. In our
implementation, we used two classes of features (these
features are not used together): Hu moments and Alt
moments. Alt moments (Alt, 1962) are translation and
scale invariant, but not rotation invariant. Hu moments
(Hu, 1962) are invariant to translation and scaling, but
also invariant to rotation in the image plane. These mo-
ment features were used in our implementation because
they are relatively easy to compute, and they provide
invariants that are appropriate for our demonstration

Figure 4. Example of the 86 silhouettes obtained via computer

graphics rendering for a given a 3D hand pose. Views are distributed

approximately uniformly over the view sphere.

application. However, our general formulation can be
used with other visual feature representations if de-
sired. Detailed examination of the feature selection
problem is outside the scope of this paper, and remains
a topic for future research.

We define two experimental datasets:

1. Hand-Single-View: In this dataset, the hand is
viewed from only one viewpoint (β1 = π/2, β2 =
0), generally making the palm of the hand vis-
ible. Silhouette features are computed using Alt
moments. This yields approximately 9,000 input-
output pairs.

2. Hand-All-Views: In this dataset, the hand is viewed
from all 86 viewpoints. Silhouette features are com-
puted using Hu moments. This yields approximately
750,000 input-output pairs.

6.1.3. Hand Detection and Segmentation. For live
video input, we use video sequences collected with a
color digital camera. It is assumed that these sequences
have a static background and only one person is present.
In this implementation, we are not considering hand
occlusion analysis, which by itself is a difficult task.
Our system tracks both hands of the user automatically
using a skin color tracker (Sigal et al., 2000; Rosales
et al., 2001).

6.2. 2D Human Body Pose Estimation

In this application, our goal is to recover the articulated
pose of a human body observed in a single image. The
methodology followed is very similar to that used in the
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estimation of hand pose. However, instead of joint an-
gles, body pose will be represented in terms of marker
positions at a predetermined set of joints. We will es-
timate the 2D positions of these body markers in the
image plane.

6.2.1. Human Body Model. The human body model
is defined in terms of 20 3D marker positions (60 DOF).
The 20 markers are distributed as follows: three mark-
ers for the head, three markers for the hip/back bone
articulation, plus one marker for each shoulder, elbow,
wrist, hand, knee, ankle, and foot. For computer graph-
ics rendering, the body model is composed of cylinders
of equal width. The cylinders connect the markers to
form the standard human body structure. The thorax is
modeled using a wider cylinder. Because we are only
interested in the shape of the projected model, we do
not include texture or illumination in our rendering.

6.2.2. Human Body Pose Dataset. Human body mo-
tion capture data was obtained from several sources:
http://www.biovision.com, the dataset used by Brand
(1999), and several demo sequences in the software
package Character Studio. In total there are 32 captured
sequences that depict variations of different activities:
dancing, walking, kicking, waving, throwing, jump-
ing, signaling, crouching down. The total number of
frames collected is approximately 7,000, mostly at 30
frames/second. Using computer graphics and our artifi-
cial body model, we then rendered each frame from 16
equally-spaced viewpoints on the equator of the view
sphere centered at the hip of the body model. For each
view, we also used the camera model to obtain the 2D
marker positions in the image plane. Thus we obtained
a full dataset of approximately 7, 000×16 views. Each
view has an associated binary image mask (silhouette)
and a 40 DOF projected marker vector. From the sil-
houettes, we extract the visual features that will be used
as input. We have chosen Alt moments (Alt, 1962) as
our visual features, mainly due to their ease of com-
putation and invariance to translation and scaling. We
call this the Body-All-Views dataset.

6.2.3. Detection and Segmentation. For live video
input, we use sequences collected with a color digital
camera. It is assumed that these sequences have a static
background, only one person is present, and the person
is fully-visible. We use a simple and widely-used hu-
man body segmentation scheme (Hogg et al., 1983;
Wren et al., 1997). The technique employs statistical

learning to acquire a model of the background appear-
ance, where each pixel’s color (luminance) is repre-
sented by a Gaussian distribution. Segmentation is then
approached using maximum-likelihood, where each
pixel is classified as belonging to the background or
the foreground (human body).

6.3. Common Implementation Details

We now briefly discuss implementation details com-
mon to both applications.

6.3.1. Mapping Functions. In Section 3, it was not
specified what class of (deterministic) mapping func-
tions φk were to be used. Our framework is practically
independent of this choice. However, from Eq. (16) we
can notice that there are clear advantages in the M-
step if these functions are differentiable with respect
to their parameters. In the case of quadratic or linear
functions, the M-step can be performed exactly in one
step. However, the power of these functions is limited.
In our implementation each function takes the form of
a multi-layer perceptron with one hidden layer (MLP);
a widely used feedforward neural network architec-
ture. For this non-linear function there does not exist
a closed-form solution for Eq. (16), but it can be seen
that the M-step is like a weighted version of backprop-
agation repeated for each MLP in the mixture. We used
four to five iterations of the conjugate gradient descent
method per M-step.

6.3.2. Generative Model Details: Inverse Functions.
There are at least two ways to define this function.
On one hand, ζ could be a computer graphics render-
ing function. On the other hand, we could estimate
an approximate ζ̂ given a set of output-input train-
ing examples. In our implementation, we experimented
with both ideas. For ζ , we used computer graphics
renderings of our hand and body models obtained via
OpenGL. For ζ̂ , we used a one-layer MLP, with twenty
hidden nodes (however, the method is overall indepen-
dent of the functional form chosen). In our experience,
this provided an adequate and efficient approximation
for our dataset.

The approximate inverse function is useful primarily
because it is faster to compute than a graphical render-
ing followed by visual feature computation. The key
issue to keep in mind is that the inverse mapping is as-
sumed to be simple (one-to-one or even many-to-one)
or that it has a known form, otherwise if we assume



Combining Generative and Discriminative Models in a Framework 263

too simple functional forms, we would only introduce
more estimation errors. In our case, this is just a prac-
tical issue. If the inverse mapping is too complex to
approximate easily, we could always rely on the avail-
able inverse function ζ .

6.3.3. Computational Performance. For an Athlon
1400 PC with 2 GB memory, running unoptimized Mat-
lab 6.0 code, it takes approximately five hours to train
a model with 10 dimensions (input) and 10 dimensions
(output), using 4500 patterns, and 40 single hidden
layer MLPs with five hidden nodes each. The system
can infer body poses at approximately 11 frames per
second, using the Mean Output (MO) algorithm. This
approach’s related computations take approximately
70% of this time. This time includes OpenGL-based
rendering of body poses in ζ . The rest is spent in seg-
mentation and feature calculations. The Multiple Sam-
ple (MS) algorithm takes time proportional to the num-
ber of samples used. Of course, segmentation and fea-
ture computation for the segmented image is done only
once. We noticed that for our implementation, if we
use the approximate inverse function, ζ̂ , the rendering
time is reduced to approximately one-fourth.

6.3.4. Early Stopping During Training. During
model training, we used cross-validation for early stop-
ping and to avoid over-fitting as follows:

• Training data: Stop if the log-likelihood changes less
than 0.5% averaged over the last ten iterations.

• Held out data: Stop if the held out data log-likelihood
average change is negative over the last ten iterations.
Held out data was chosen in the same way as the
training and test data.

• Number of iterations: Stop if a maximum of 200
iterations is reached.

7. Experimental Results

We now present experimental results obtained using
our approach in estimating the pose of the human
hand and body. For many additional performance ex-
periments not included due to space limitations, the
reader is referred to (Rosales, 2002) and for several
MO estimation videos to http://www.csail.mit.edu/∼
romer/DGHandVideos.htm. The application indepen-
dent Matlab code can be found at http://www.csail.mit.
edu/∼romer/DGCode.htm.

7.1. Hand Pose Estimation Given a Fixed Camera
Viewpoint

In our first experiments, our approach is tested in the
task of recovering 3D human hand pose given a fixed
camera viewpoint: a view towards the palm of the hand.
For training, we used the Hand-Single-View dataset,
which contains a total of approximately 9,000 exam-
ples. Of these, 3,000 were used for training and the rest
for testing. All experiments were performed on a test
set that shared no common poses with the training set.
The input-output pairs were then defined as follows.
The input consisted of 10 Alt moments computed from
the silhouette of the hand, as described in Sec. 6.1. The
output consisted of 20 joint angles of a human hand
linearly encoded by nine values using Principal Com-
ponent Analysis (PCA).

The number of mixture components for the discrim-
inative model (mapping functions) was set to 20. This
number was found to be optimal in the sense of the Min-
imum Description Length (MDL) principle (Rissanen,
1986); we found this number via a rough model search,
by testing MDL and getting the score for the optimized
model with 10, 12, . . . , 24 functions. Each mapping
function was a MLP with seven hidden nodes.

7.1.1. Quantitative Results. We randomly selected
approximately 4,000 frames not included in the train-
ing set. Since ground-truth is available, we used the
average absolute difference per joint angle (between
ground-truth and estimate) as error measure. Table 2
summarizes our results.

These experiments quantitatively confirmed that
MO inference provides a reasonable approximation,
at least for this dataset. Recall from Section 4.5 that
MO inference was based on the premise that the
most-likely reconstruction given by each discrimina-
tive mixture component provides a good approxima-
tion to the best solution given by the full probability
distribution.

Figure 5 shows example reconstructions obtained via
the MO approach. In many cases, the reconstruction is
close to the ground truth. In other cases, the silhouette
is highly ambiguous, and the reconstruction does not
match ground truth. A good example is shown in im-
age pair number 24 (the last row-pair, fourth column),
where the camera’s image plane is perpendicular with
the axis of the pinky finger. Note that the estimated hand
pose disagrees with the ground-truth in the several joint
angles associated with this finger. Similar effects with
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Table 2. Mean absolute error Ê and variance σ 2
Ê . Inference performance using different rendering functions (ζ and ζ̂ ) and inference

algorithms (MO-MAP and MS-MAP). Also shown, the average error of the 20 most probable reconstructions given by MS (MS-20).

Note that the error for MS-20 does not have to be higher than that for MS-MAP. As a point of comparison, results are presented for

an algorithm that randomly chooses one of the training examples as result (Rand/train). The average range of the data is also shown

as a reference point. All units are in radians.

MO-MAP (ζ̂ ) MS-MAP (ζ̂ ) MS-20 (ζ̂ ) MO-MAP (ζ ) MS-MAP (ζ ) MS-20 (ζ ) Rand/train Range

Ê 0.1322 0.1667 0.1465 0.1651 0.1769 0.1785 0.4294 1.55

σ 2
Ê 0.0317 0.0415 0.0371 0.0425 0.0452 0.0547 0.1630 –

Figure 5. 40 examples of estimated hand poses chosen uniformly at random. Reconstruction found using the Mean Output (MO) approach.

The inverse function used was estimated from data. Each example consists of a pair of images: ground-truth (top), and estimate obtained using

the mean output algorithm (bottom).

other joint angles can be seen in example pairs 8, 16,
27, etc.

Ambiguous configurations are indeed very common
with a binary image representation. Note that in other
ambiguous cases shown in Fig. 5 reconstruction is
closer to ground truth, e.g., pairs 19, 20, etc. Possible
reasons for this agreement are diverse:

1. The input is not really ambiguous (probabilistically
speaking) in the observation space. The other pos-
sible outputs (geometrically speaking) associated
with this input may be very unlikely given the train-
ing set. This depends on the underlying structure of
the configuration manifold. One of the main goals of
a learning algorithm is to find this structure. Indeed

these results show that our algorithm finds this struc-
ture, since in most cases, MO finds a valid point in
the manifold.

2. The learned discriminative model was accurate
at modeling the given input using a single
mixture component; i.e., few mapping functions
were trained to map this input, therefore the
rest of the functions produced irrelevant (bad)
outputs.

3. By chance, among many very similarly probable so-
lutions, the right one was chosen. Of course, even
with the help of chance in this case, the discrimi-
native model needed to be accurate enough at ap-
proximating the true posterior so that samples were
relevant at all.
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Table 3. Performance of the MLP approach as described in the text. The table shows the mean absolute error and variance using the same

training/test sets as our method (see Table 2). Each entry in the table shows the average of ten trials. Overall the performance of our method

is from 1.09 to 1.48 times better than MLP (corresponding to the worst and best performance from Table 2) using the same number of free

parameters, corresponding to 22 hidden nodes in the MLP. Even when the MLP has 46 hidden nodes—requiring over twice as many free

parameters—performance of our method is still superior.

Number of Hidden Nodes 16 22 28 34 40 46 52 58 64

ÊMLP 0.2039 0.1953 0.1851 0.1784 0.1733 0.1735 0.1792 0.1891 0.2003

σ 2
ÊMLP

0.0354 0.0324 0.0294 0.0280 0.0266 0.0259 0.0341 0.0419 0.0512

7.1.2. Performance Comparison with Respect to Dis-
criminative Model Alone and a Competing Approach.
In this section we experimentally compare our method
with the purely discriminative part of the formulation,
where no generative model is employed. One can see
this test as a way to measure how effectively the gen-
erative model disambiguates among poses; thus, illus-
trating its level of contribution in the overall approach.
In addition, for further validation, we also compare
our method against the standard MLP, trained using
backpropagation to globally map image features to 3D
poses.

As before we follow the MAP principle to determine
the best pose ĥ given input features and a model. Recall
from Section 4.1 that the MAP estimate is given by
ĥ = arg maxh

∑
y N (h; φy(x∗), 
y)Q(y). Since this

function is not concave, we used a simple heuristic
to choose a maximum. We performed gradient ascent
starting at each of the M points {φy(x∗)}y∈C , and set ĥ
to the highest point ever reached.

As expected this method performed poorly. The
mean absolute error and variance for this dataset were
0.3702 and 0.2117 respectively, just better than ran-
domly choosing a pose from the training set (which
provided mean and variance of 0.4294 and 0.1630
respectively). This is not surprising since the dis-
criminative model alone is not designed to “know”
what the right mixture component is, given any in-
put presented. More formally, the mixture parame-
ters Q(y) do not depend on the input. The high vari-
ance can be attributed to the inconsistent usage of
good and bad functions to map the input. The role
of the generative model in our approach is essen-
tially that of providing information about what func-
tion (mixture component) is appropriate for the given
input.

We also compared our full approach against the
widely used MLP. Note that unlike above, here we used
one MLP in the standard way, that is as a function ap-
proximation approach to map input to outputs using
the whole training set in the standard backpropagation

learning scheme. MLP is an off-the-shelf yet, com-
monly effective method.

For this comparison, we varied the number of param-
eters (number of weights and biases) in a considerably
broad range. Results are shown in Table 3 as a function
of the number of hidden nodes. In order to establish
a fair comparison with our model, we need to use the
same number of parameters. It is easy to show that in
order to achieve this, the number of hidden nodes of the
MLP must be equal to K

√
M , where K is the number

of hidden nodes for each function in our approach and
M is the number of functions. For this experiment this
number is 22.

By comparing the results from Tables 2 and 3 we can
observe that when the MLP employs the same num-
ber of free parameters, our proposed discriminative-
generative method gives 1.09 to 1.48 times better accu-
racy, relative to the worst and best performance shown
in Table 2. When MLP is allowed to have more param-
eters, our method still outperforms the MLP on average
(0.97 to 1.31 times better); however, for a few inputs
the performance is similar or better for MLP. Note that
when the number of parameters for the MLP is larger,
the variance also diminishes considerably. However,
we should remark that to achieve such performance,
the MLP needed to employ roughly 1.8 times the num-
ber of parameters employed by our model.

7.1.3. Experiments with Real Images. We now test
our approach using uncalibrated video sequences,
where the camera is pointing towards the palm of a
person’s hand. On average, the hand occupied an area
of approximately 200 × 200 pixels. Segmentation
was obtained as described in Section 6.1.3. In the first
experiment, we use the MO approach to obtain a single
best estimate for each segmented hand. Estimates
for 40 frames, taken 0.9 seconds apart, are shown in
Fig. 6. Visually we can notice that in most cases the
estimate is a plausible explanation of the segmented
silhouette. However, there are also a few inaccurate
reconstructions.
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Figure 6. Hand pose estimates in real video sequences (RV) using the Mean Output algorithm (MO). 40 examples of estimated hand poses

captured every 0.9 secs from real video (RV). Reconstruction found using the Mean Output (MO) approach. The inverse function

was computed using computer graphics rendering.

In general, it is expected that the model cannot per-
form well in all configurations (this is true for al-
most any machine learning model) due to the following
reasons:

1. The proposal distribution q(h | x) does not resemble
the true posterior distribution p(h | x) at the partic-
ular x = x∗: learning is the result of optimizing an
expected or average error.

2. The real hand and synthetic hand model features
are similar but not the same. Anthropometric differ-
ences can influence inference accuracy.

3. Even the best model could fail in some configu-
rations. Information theory tells us that this is al-
ways the case except when the amount of infor-
mation in the features (about the pose) is equal
to the entropy of the body pose configurations; in
other words, when features tell us everything needed
about the configuration. Otherwise, there might be
multiple explanations for a given visual feature
vector.

In order to test the ability of the system to pro-
vide these multiple explanations, we tested the Mul-
tiple Samples (MS) approach. Figure 7 shows the es-
timates found using MS. These estimates can be in-
terpreted as possible hypotheses of hand configura-
tions given the silhouettes. Note that MS tends to
bias the hypotheses towards samples from the dis-

tribution q(h|x∗), but we can account for this when
building a full probability distribution, as explained in
Section 4.3.

7.2. 3D Hand Pose Reconstruction Given an
Unrestricted Camera Viewpoint

Our approach is now tested in the task of recover-
ing 3D human hand pose from an unknown cam-
era viewpoint. For training, we used the Hand-All-
Views dataset, which contains a total of approximately
750,000 examples. Of these, 18,000 were used for train-
ing and the rest for testing. The input-output pairs were
then defined as follows. The input consisted of seven
Hu moments computed from the silhouette of the hand,
as described in Section 6.1. The output consisted of 20
internal joint angles of the hand and two orientation an-
gles. This 22 DOF representation was linearly encoded
by nine values using PCA.

The number of mixture components (or mapping
functions) was set to 45. This number was determined
via the MDL criterion, as before (testing for the best
MDL score using a model with 35, 37, . . . , 51 func-
tions). Each function was a MLP with seven hidden
nodes.

7.2.1. Quantitative Results. As before, we com-
puted the absolute error in estimating hand pose, and
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Figure 7. Example estimated hand poses obtained using the Multiple Sample (MS) approach and real video (RV). The inverse function was

estimated from data. Columns 1 and 2 show the input video frame and the MO solution, columns 3–7 show sorted samples (1–4 and 12) obtained

via the MS approach where S1 is the most probable sample.

quantitatively compared this measure across views.
Figure 8 shows the error of the most likely estimate
found using the MO approach. From the graphs we
see that views towards the palm of the hand (90◦) are
slightly easier to reconstruct on average, while the vari-
ance seems similar across views. As expected, the av-
erage error is higher than that obtained for the fixed
view hand pose reconstruction experiments. It seems
that for unrestricted hand views it is a bit advantageous
to use the computer graphics inverse function ζ . This
is probably because estimating this inverse mapping ζ̂

over unrestricted viewpoint is more complicated than
for only frontal hand views (and the mapping is likely
to be more complex also).

Figure 9 shows the results using the MS approach.
Figure 9(a) shows the error associated with the best
sample. This error behaves very similarly to the MO
error. Figure 9(b) shows the average error computed

using the best 20 samples. This error is higher than that
of the best sample. Note that this is not an obvious re-
sult given that the best sample is determined without
having knowledge of ground-truth. In fact, if the aver-
age error of the best 20 samples were lower than that
of the best sample, then we could infer that our algo-
rithm is very inaccurate at determining what samples
are better. Thus this result positively endorses the MS
algorithm.

For comparison, we used the ground-truth to se-
lect the best sample, based on minimum error. In
other words, we have an oracle that picks the sample
closest to the ground-truth. The resulting performance
graph is shown in Fig. 9(c). This represents the lower-
bound on the reconstruction error using the learned
forward model. The graph is interesting in the sense
that it separates the errors from the forward and inverse
models.
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Figure 8. Mean Output (MO) inference performance for unrestricted view tests at given viewpoint latitudes (averaging over longitude). The

inverse function is (a) the estimated ζ̂ (b) the computer graphics rendering ζ . A frontal view of the hand palm is at latitude β1 = π/2, longitude

β2 = 0. For reference, the performance of an algorithm that chooses the estimate at random from the training data is shown. The angle range is

in average 1.87 radians.

7.2.2. Performance Comparison with Respect to Dis-
criminative Model Alone and a Competing Approach.
In parallel with Section 7.1.2, we now compare our full
method against the purely discriminative portion. This
is done to illustrate the value of the generative model in
the overall approach. As before, we also compare our
method against the standard MLP for this dataset.

Using the discriminative model alone, the mean ab-
solute error and variance for this dataset were 0.6102
and 0.5117 respectively. Since the importance of the
generative method in the overall approach should,
by now, be more clear, we will not discuss this
point further. Results are analogous to those from
Section 7.1.2.

As before, we compare our full approach against
the standard MLP, which is trained on the same train-
ing set as our approach. Results are shown in Ta-
ble 4. Note that when the MLP contains 47 hidden
nodes, the number of parameters is comparable with
that of our discriminative-generative model. The per-
formance of our approach for this dataset is shown in
Figs. 8 and 9.

At first sight the performance comparison seems
similar to that of our previous task with fixed view-
point. However, a more careful look at Table 4 reveals
that (1) our method clearly outperforms the MLP even
when the MLP uses more than double the number of
parameters with respect to our model, a significant
difference from Section 7.2.2 (fixed viewpoint) where

performance was more even when letting the MLP
have more parameters; (2) also unlike Section 7.2.2
the variance is much larger than that of the estimates
computed by our approach. The key difference
between the fixed viewpoint dataset and this dataset
(unrestricted view) was that mapping visual-features
to hand-pose is much more ambiguous when any view
is allowed. This illustrates that function approximation
methods are generally not well-suited for one-to-many
inference problems, and our method can indeed
provide a more clear advantage in these cases.

7.2.3. Experiments with Real Images. We test our
approach using video of hands (in any orientation)
collected from a single uncalibrated camera. Pose

Table 4. Performance of the standard MLP approach. Each entry

in the table shows the mean absolute error and variance averaged

over ten trials. Overall the performance of our method is 1.31

times better than this approach using the same number of free

parameters, corresponding to 47 hidden nodes in the MLP. The

performance of our approach is 1.28 times better when the MLP

has 83 hidden nodes.

Number of

hidden nodes 35 47 59 71 83 95

ÊM L P 0.5775 0.5714 0.5585 0.5534 0.5511 0.5514

σ 2
ÊM L P

0.3572 0.3680 0.3512 0.3637 0.3794 0.4111
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Figure 9. Multiple Samples (MS) inference for unrestricted view tests at given viewpoint latitudes (averaging over longitude). The inverse

function is the estimated ζ̂ . A frontal view to the hand palm is at latitude β1 = π/2, longitude β2 = 0. (a) Most probable sample. (b) Average

over all samples (20 most probable samples taken). (c) Best sample (determined using ground-truth information for comparison). For reference,

the performance of an algorithm that chooses the estimate at random from the training data is shown. The angle range is in average 1.87 radians.

estimates from 40 frames (taken every 0.9 secs apart)
obtained via the MO approach are shown in Fig. 10.
In this experiment, there was usually visual agreement
between reconstruction and estimate as seen in the fig-
ure. Note that even for a human observer, looking at
the segmented silhouettes in the figure, reconstruc-
tion is sometimes ambiguous. There are also some
configurations for which the system did not perform
correctly.

Figure 11 shows the estimates obtained via the MS
approach. The frames shown were taken approximately
every 0.9 seconds. We can see some limitations of
the Hu moment feature space: sometimes, different
hand orientations are very similar in the feature space.

These apparently different hypotheses are close to each
other in terms of their probability, given the features.
This problem might be alleviated by using a differ-
ent input feature space. At an extreme one might con-
sider the full silhouette as a feature. Of course there
are important trade-offs to take into account when
considering different features; e.g., invariants and di-
mensionality.

7.3. 2D Human Body Pose Reconstruction

In order to show that our approach can be employed,
with no change, to perform other similar tasks (possibly
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Figure 10. 40 examples of estimated hand poses captured every 0.9 secs from real video (RV). Reconstruction found using the Mean Output

(MO) approach. The inverse function was computed using computer graphics rendering.

with a different representation), here we now conduct
performance tests in the task of estimating human body
pose from a single image. The goal is to estimate the
2D locations of body markers in the image, given visual
features computed from the person’s silhouette. In this
experiment, we use the Body-All-Views dataset, which
contains a total of of over 100,000 samples. Of these,
8,000 were used for training and the rest for testing.
The input-output pairs were defined as follows. The
input consisted of the 10 Alt moments computed from
the silhouette. The output consisted of 20 2D marker
positions (40 DOF), which were then linearly encoded
by nine values using PCA.

The number of mixture components in the discrim-
inative model was set to 15. This number was deter-
mined via the MDL criterion, exactly as before. Each
function is a MLP with seven hidden nodes.

7.3.1. Quantitative Results. Figure 12 shows the re-
construction obtained with the MO approach for frames
taken from three synthetic sequences excluded from the
training set. The agreement between reconstruction and
observation is easy to perceive for all frames. Also, for
self-occluding configurations, the estimate is still sim-
ilar to ground-truth.

Figure 13 shows the average marker error and vari-
ance per body orientation in percentage of body height.
Note that the error is bigger for orientations closer to 0

and π radians. This intuitively agrees with the notion
that at those angles (side-views), there is less visibil-
ity of the body parts. We consider this performance
promising, given the complexity of the task and the
simplicity of the approach. Just as a reference point,
by choosing poses at random from those in the train-
ing set, the RMSE was 10.35% of body height (with
a standard deviation of 4.4%). In related work, quan-
titative performance has usually been ignored, in part
due to the lack of ground-truth and standard evaluation
datasets.

7.3.2. Experiments with Real Images. We now test
the approach using real video sequences of human body
motion. We use the basic segmentation approach de-
scribed in Section 6.2.3 to obtain silhouettes. Figure 14
shows examples of system performance obtained via
the MO approach for several relatively complex mo-
tion sequences. Even though the characteristics of the
segmented body differ from the ones used for train-
ing, good performance is still achieved. Most recon-
structions are visually close to what can be thought
of as the right pose reconstruction. Body orientation
is also accurate. In the Figure, we can see two par-
ticularly difficult configurations at the second row of
real video (RV) images, fourth-sixth columns; the arm
configuration is difficult to estimate. This could be due
to the lack of relevant training data, as a consequence
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Figure 11. Example estimated hand poses obtained using the Multiple Sample (MS) approach and real video (RV). The inverse function was

computed using computer graphics rendering. Columns 1 and 2 show the input video frame and the MO solution, columns 3–7 show sorted

samples (1–4 and 12) obtained via the MS approach where S1 is the most probable sample.

Figure 12. Example reconstruction of frames from test sequences with computer graphics-generated silhouettes.
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Figure 13. Root mean-square-error (divided by number of markers)

and variance per camera viewpoint (every 2π/32 rads.). Units are

percentage of body height. Approx. 110,000 test poses were used.

the discriminative model q may not approximate the
generative model p very well around the input vec-
tor. In general, an important issue to keep in mind is
that the visual differences between the rendered model
and the real body observed could become critical and
thus accurate rendering may be desirable. This varies
from application to application; however in any case
the general inference approach presented here remains
the same.

In this work, we did not pursue use of a more real-
istic human body renderer. Due to differences in shape
and width of body components observed in training
versus testing, the visual features may differ. This is a
relevant point since in almost all learning models, it is
expected that the training data be a good approxima-
tion to the real test data. Improving the match between

Figure 14. Reconstruction obtained from observing a human subject (every 10th frame).

visual features used in training and testing, and thus po-
tentially the overall performance, is an area that we plan
to investigate in future research. Despite the fact that we
have ignored differences in anthropometric character-
istics between CG and real silhouettes, the performance
observed for both articulated objects (hands—human
bodies) is very promising given that only a single image
is assumed available.

8. Conclusions

In this paper, we have described a novel method that al-
lows us to infer 3D and 2D articulated body pose from
observed visual features in a single image, a problem
usually regarded as ill-posed. This was done by com-
bining generative and discriminative models to solve
the complex probabilistic inference problem. This ap-
proach is most useful when the generative model is ac-
curate (e.g., we have an inverse mapping function) but it
is difficult to perform inference using this model alone.

In order to solve the inference problem (and also
perform MAP estimation), we have shown that a math-
ematically sound approach is to use a discriminative
model and learn its parameters using relevant training
data. The probability distribution implied by the dis-
criminative model can be used as a proposal distribu-
tion to generate samples and find a posterior probability
distribution (perform approximate inference) under the
(accurate but complex) generative model.

When comparing it to other relevant methods, we
can find alternative interpretations of this framework.
The use of a generative model (through ζ ) affords an
alternative to complex discriminative models; for ex-
ample, it is an alternative to the gating networks of the
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Mixture of Experts model (Jordan and Jacobs, 1994).
In general, instead of learning increasingly complex
discriminative models such as Hinton et al. (1998) and
Friedman (1991), we can exploit an accurate genera-
tive model and learn a simpler discriminative model. A
clear advantage of using a generative model in this way
is that it can provide useful information on the structure
of the problem, a structure that discriminative models
try to blindly uncover from the available data.

Our approach was demonstrated in a computer vision
system that can estimate the articulated pose parame-
ters of a human body or human hands, given features
computed from a single image. This is a particularly
difficult problem because this mapping is highly am-
biguous and it is infeasible to perform inference using
the generative model. We have obtained promising re-
sults even using a very simple set of image features,
such as moment invariants of the body silhouette. Fur-
ther experimental evaluation can be found in Rosales
(2002).

This approach offers several advantages over many
previous methods for articulated pose estimation.
These have tried in numerous ways to use camera ge-
ometry and/or model registration to perform pose es-
timation, resulting in iterative procedures that require
careful choice of initial conditions (model placement).
We have shown how in some cases these alternative
approaches could be seen as inferring a posterior distri-
bution using the generative model only. While we have
used a camera model in defining our generative model,
we have not attempted to solve the resulting optimiza-
tion problem directly; instead we have had the help of
the proposed discriminative model. Thus, in contrast
with many past approaches, no iterative minimization
methods are used in pose inference. Moreover, infer-
ence is fully automatic—no manual initialization of the
articulated model is required.

Our method does not use iterative optimization for
inference, but a valid question is why not iterate the
input-output mappings several times? In fact, there ex-
ist approaches that use a series of top-down along with
bottom-up iterations for estimation, with the further
claim that these iterations may perform error correc-
tion (e.g., when the observation is noisy). However, the
process of re-iterating up and down and obtaining esti-
mates alternating between a pair of spaces (or sets) does
not, in general, guarantee (1) convergence towards the
desired value (pose in our case) (2) monotonic improve-
ment of the solution, or (3) convergence at all. Only un-
der specific conditions can this desirable behavior be

attained (see e.g., (Csiszar and Tusnady, 1984)). In our
case, these conditions cannot be proven, and therefore,
we prefer not to use this re-iterating methodology (one
condition requires that the spaces be convex).

A set of previous approaches attempt to learn ar-
ticulated model dynamics (Brand, 1999; Howe et al.,
2000; Song et al., 2000); however, learning dynamics
requires substantially more training data, and tends to
produce systems that are biased towards specific mo-
tions (this can be good news if the range of motions,
rather than just that of configurations, is known be-
forehand or comprises the training set). Our framework
avoids this and infers pose from a single image only. It
is clear that in highly-constrained domains and where
motion is available, models of dynamics can provide an
enormous advantage. In this paper we have approached
a different problem, estimating body pose from a single
image, where multiple frames are not provided.

Several interesting problems remain for future work.
Within the context of articulated pose estimation, per-
formance can be improved in several ways. We have
observed that in practice segmentation of real video is
noisy, especially when compared with the clean seg-
mentation obtained in the experiments with synthetic
data. As we found in our experiments, our method pro-
duces qualitatively good pose estimates for real video.
However, significant differences in the overall limb
(arms/legs) width in the silhouette can sometimes lead
to errors in pose estimation. Such differences arise due
to morphological image operations and segmentation
parameters, significant clothing, or anthropometric dif-
ferences between the subjects and the computer graph-
ics model used in generating training data. We believe
that it should be possible to address this by includ-
ing training data that is representative of the variations
we expect across humans (through a more complex
graphics rendering process or noise model). An alter-
native solution is to adapt the system to work with the
body morphology properties specific to the input im-
ages observed; for example by defining an additional
morphological parameter to relate user specific body
properties to the standardized computer generated mor-
phology used for training. A tighter integration of pose
estimation with image segmentation is a more difficult
problem worth exploring, that could provide greater
robustness to noise or even occlusion. Some of these
topics are the subject of current research.

Another general problem is to learn what the best
features are for specific problems or datasets. This clas-
sic problem has spawned numerous approaches. From
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general information theoretic (Cover and Thomas,
1991) techniques based on maximizing mutual infor-
mation to approaches specific to image processing
(Iijima et al., 1973). Roughly speaking, one wants to
obtain features that can distinguish among the patterns
we care about, for a specific task or data set. In gen-
eral this problem is difficult because the structure of the
space of all possible features cannot be represented in a
simple way, and is not amenable to efficient optimiza-
tion. This concept can be seen as that of learning the
features, and it is closely connected to that of learning
the mapping functions, in fact they can be seen as two
views of this problem.

Methods for incorporating knowledge of dynamics
in the same framework should be investigated. In this
work we have concentrated on estimating pose from
single images. This of practical importance in many
tasks, such as model initialization (e.g., for tracking),
recovery (e.g., when tracking is lost or not reliable),
pose from single image (e.g., when photographs need to
be used as sources), etc. The “pose from a single image”
problem is different from, and in some ways more dif-
ficult than, pose tracking with dynamics information.

While promising advances have been made in esti-
mating pose from a single view, extending our frame-
work to incorporate the above concepts remains a topic
for future investigation.

Appendix

The KL divergence between the empirical distribution
pe (represented by the training data) and the model q is:

KL(pe(x, h)||q(x, h))

=
∫

pe(x, h) log[pe(x, h)/q(x, h)]dhdx. (19)

If θ parameterizes the conditional q(h | x), then the
minimum of the above expression can be proven to be
equivalent to:

arg min
θ

E pe(x)[KL(pe(h | x)||q(h | x))], (20)

In practice, the expectation becomes a sum over the
training data pairs, and we obtain Eq. (1). Thus, the
optimal distribution in this sense is the one that results
from solving Eq. (1), to obtain q(h | x). Of course, we
assume that the data is composed by representative ex-
amples from p, so that the empirical distribution pe is
at all useful.

Equation (7) justifies this choice since it tells us that
in order to find a good approximation for the posterior
p(h|x) we should find a proposal distribution that is
similar to it, as intuitively expected. We may then ask
if we could use this proposal distribution alone. The
reason why this is not a good idea is that, since we can-
not usually find a proposal distribution that matches
the true posterior perfectly, using this proposal distri-
bution alone is expected to perform worse than when
combined with our accurate generative model. In fact,
this was experimentally verified in Sections. 7.1.2 and
7.2.2. This is mainly because in regions where the pro-
posal distribution q is bad at approximating p, we can
always evaluate p and note the error or discrepancy.

The distribution q(h | x) is an approximation to
p(h|x) in the space of all distributions with the struc-
ture specified by the discriminative model (a mixture
model in our case). For Gaussian mixture models, it is
know that this approximation can be made as accurate
as we wish in the limit of infinite data and mixture com-
ponents. Interestingly, obtaining a good approximation
to the posterior does not explicitly require knowledge
of the prior p(h) in our generative model. Note that the
training data indirectly provides some of this informa-
tion through the learned discriminative model (in fact
the data could further be used to directly estimate p(h)
if necessary).

Throughout the paper we showed MAP estimation.
For the sake of completeness, if we are interested in
computing an approximation to the probability of a
body pose h, given an observation of features x∗, we
use the expression:

p̂(h | x∗) = 1

Ẑ p
N (x∗; ζ (h), 
ζ )p(h), (21)

with Ẑ p given by 1
S

∑S
s=1 p(x∗, h(s))/q(h(s)|x∗),

using importance sampling with proposal distribution
q(h | x∗) to obtain the samples h(s).
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Note

1. However, in practice this task can be intractable or lack analytic

solutions. This is an important problem in statistics.
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