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Abstract

Statistical human body models, like SCAPE, capture
static 3D human body shapes and poses and are applied
to many Computer Vision problems. Defined in a statisti-
cal context, their parameters do not explicitly capture se-
mantics of the human body shapes such as height, weight,
limb length, etc. Having a set of semantic parameters
would allow users and automated algorithms to sample the
space of possible body shape variations in a more intu-
itive way. Therefore, in this paper we propose a method
for re-parameterization of statistical human body models
such that shapes are controlled by a small set of intuitive se-
mantic parameters. These parameters are learned directly
from the available statistical human body model. In or-
der to apply any arbitrary animation to our human body
shape model we perform retargeting. From any set of 3D
scans, a semantic parametrized model can be generated and
animated with the presented methods using any animation
data. We quantitatively show that our semantic parameter-
ization is more reliable than standard semantic parameteri-
zations, and show a number of animations retargeted to our
semantic body shape model.

1. Introduction
With the use of 3D laser scanners, static 3D human body

shapes can be captured at different poses to enable the cre-

ation of statistical human body models covering a large

variety of shapes and poses. However, it is not possible

to continuously scan 3D human bodies performing some

Figure 1. Human meshes in different poses produced by our frame-

work

continuous motion. Therefore, marker based human body

tracking systems are used to capture human motions that

can then be applied to 3D body shapes for creating real-

istic 3D animations. Even though statistical human body

models, like SCAPE [4], provide excellent results and are

applied to many problems, their parameters have only sta-

tistical meaning and do not capture explicitly semantics of

the human body shape like height, weight, limb length, etc.

Providing a set of semantic parameters would allow users

and automated algorithms to sample the space of possible

body shape variations more intuitively. Using such sam-

pling, creating large and realistic datasets becomes much

easier than by capturing raw data using acquisition plat-

forms. In many machine learning applications (pose esti-

mation, activity recognition etc.) a large set of training data

is required for the algorithms to work reliably. Manual ac-

quisition of this data, e.g. scanning people using laser scan-

ners, measuring their semantic parameters (height, weight,

age, sex etc.), capturing their motion while doing different

activities and removing background and noise from the ac-
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quired images is a tremendous amount of work. Often those

databases contain thousands to millions of entries as learn-

ing algorithms generally perform better when more train-

ing data is available. Such databases were already created

by MSR and used for their human pose estimation method

based on randomized classification [16] and later regression

trees [7], however not many details are given about the con-

struction of the database.

Therefore, in this paper we propose a framework that en-

ables the construction of such annotated 3D shape datasets

based on a set of semantic parameters and animate them

using arbitrary human motion capture data. This greatly

reduces the amount of manual work and can be used in ma-

chine learning algorithms where large amount of data are

required for good generalization. Our contributions is a re-

parametrization of the statistical human body models from

the body model itself, i.e. without requiring manual anno-

tation of large corpora of shapes and a new way of learning

that parametrization based on regression forests that per-

forms much better than previous approaches based on sim-

ple linear regression. We used a simple retargeting tech-

nique similar to cyclic coordinate descent [13, 18], which

allows applying arbitrary animation to our body shape mod-

els. The presented methods are not limited to human data

sets. Any set of 3D scans can be used to generate a semantic

parametrized model, which can then be animated with the

presented methods using any skeleton/animation data. In

the reminder of this paper we first review related work, then

present our two contributions and show evaluations.

2. Related work
Statistical human body shape models have been intro-

duced for the first time in 2D by Changbo Hu et al. [10].

Later, Anguelov et al. [4] proposed a 3D human body shape

and pose model called SCAPE (Shape Completion and An-

imation of People). In SCAPE two models a learned: the

first one describes the human shape the other the human

pose. The combination of both models results in a para-

metric human model that covers shape and pose. However

no semantic mapping is described and the data used in their

work is not publicly available. By modeling muscle defor-

mations, animations are defined by the movement of dif-

ferent markers on the body. For our framework we use the

work and data of Hasler et al. [9] which builds on top of

SCAPE encoding shape and pose in the same way. Here

again the combined model for pose and shape makes it diffi-

cult to integrate external animations. As they have released

the data used to create the model, it is possible to recreate

it leaving out the pose deformation part to produce humans

all taking on the same pose but with different shapes.

A common animation technique, called Linear Blend
Skinning (LBS) was described by Lewis et al. [14]. The an-

imation is stored in terms of skeleton and a set of animation

matrices, which transform the bones of the reference skele-

ton in each frame. The vertices of the mesh are attached

to one or more bones by weights describing their degree of

attachment to the bone. The final transformation for each

vertex is a linear combination of the movement of the bones

multiplied by their weights. This technique is very common

in Computer Graphics applications as it is easy to compute

and can also be implemented entirely on modern graph-

ics hardware exploiting the high parallelism for additional

speed [12]. In [1], Allen et al. present a more sophisticated

animation technique by interpolation between preregistered

scans. A human model is generated using principal com-

ponent analysis on 250 registered human scans [2] similar

to the methods used by Hasler et al. in a later publication

[3]. Both of them, as well as recent Movie Reshape [11]

where a standard kinematic skeleton is fitted to the shape

of the average human and scaled with the deforming shape

by expressing each joint in terms of the surrounding sur-

face vertices, presented semantic mapping as a linear ap-

proximation on the whole PCA subspace. More precisely,

they have measured people before scanning them and then

learn a linear mapping between these semantic parameters

and principal component vectors. By contrast we do not

need any a priori semantic information and can extract and

learn it directly from the data. Moreover, our approach per-

mits to model non-linear relationships between the semantic

parameters and the weights of the PCA vectors. We mea-

sure accuracy of the semantic mapping and compared it to

the methods based on linear mapping. Our method, where

the semantic mapping is learned from the statistical shape

model, shows much better accuracy.

In the field of automatic animation of arbitrary meshes

by a given skeleton, Liu et al. [15] fit a skeleton into an ar-

bitrary mesh by creating a repulsive force field inside the

mesh and choose the local minima as joint positions which

are later refined. The mesh is then attached to the fitted

skeleton according to the distance between the bones and

the surface. Finding the vertex weights based only on dis-

tance produces problems in complex deformation areas like

toes, shoulders and hips. Therefore, we relied on the work

of Baran and Popović [5] as their algorithm takes an existing

skeleton to find the best embedding. The best fit is found by

optimizing both a discrete and a continuous error function.

This is ideal as the skeleton will be given by the selected

animation. However the skeleton has to be tagged with ad-

ditional hints, marking some joints as symmetric, near the

floor or inside big volumes which improves the results but

has to be done by hand. Additionally the method for find-

ing the skin attachment to the bones is more sophisticated

as it takes into account the structure of the model instead of

solely using the proximity of the bone. The vertex weights

are found solving a heat equation on the surface of the body.

One bone is heated to 1 degree while all others are forced
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to 0 degrees. The resulting heat equilibrium on the skin

(values between 0 and 1) are taken as weights for the bone

heated to 1 degree.

3. Methods
Our method can be split into two parts: the creation of a

realistic, semantically parametrized 3D human mesh and its

animation using a motion capture database.

3.1. Human model and mesh generation

In the first step of our approach, the goal is to compute

a parametrized human model that is able to produce 3D hu-

man meshes in a broad variety of shapes. Given as input a

few semantic parameters describing the human body (such

as height, weight, hip size, etc.), this model generates a 3d

human mesh that can later be used in the animation step.

In the current work, we propose to decompose this problem

into two subtasks: (1) to generate a first low dimensional

human model using PCA and (2), to learn a semantic map-
ping that relates the low-dimensional space spanned by the

eigenvectors to human semantic variations. In the follow-

ing, we start by describing the construction of a human PCA

model.

3.1.1 Low dimensional human mesh model through
PCA

Based on the work of N. Hasler et al. [9], we propose to

use approximately 200 full body 3D scans to generate a

parametrized model of the human body. By registering all

scans to a template model consisting of 6449 3D vertices,

a semantically unified description is created. This permits

pointwise comparison of every pair of scans, and ensures

that corresponding vertices lie at the same semantic posi-

tion on all scans. To create a generative human model, a

principal component analysis (PCA) is performed, thereby

reducing the dimensionality from 6449×3 = 19347 to 228:

M = M +
m∑

i=1

αiai (1)

where M ∈ R
6449×3 is the final mesh parametrized by 3D

vertex coordinates, generated as a linear combination of

the mean mesh M and the principal components ai with

different weights αi. With this model a 3D human shape

can be fully described by the set of weights αi. While

principal components permit to describe main shape varia-

tions of the 3D human mesh over a population, those are

difficult to interpret in terms of human semantics. Though

it would be possible to inspect visually the variations of

individual weights for the eigenvectors, it would not be

possible to describe what effect this parameter has on

the model. To solve this problem, we propose to learn

a semantic mapping, to model the relationship between

intuitive parameters like height, weight, waist size, etc.

and the PCA weights. It can be understood as a function

S(ς) = α, where α ∈ R
m is the vector of all αi a set

of all PCA coefficients controlling the shape and ς is a

vector containing all the intuitive semantic parameters. In

the following, we describe how to automatically measure

human semantic parameters and to learn such a semantic

mapping.

3.1.2 Measuring semantic parameters

In order to learn a semantic mapping, we need to create a

large training set of corresponding human PCA weights and

semantic parameters. Using the eigenvectors αi and their

standard deviation σi computed from the principal compo-

nent analysis, a large set of 10,000 human meshes is gen-

erated by randomly sampling with 3σi for each factor. The

higher sampling range was chosen to produce a greater va-

riety of meshes. As by construction, vertices on the meshes

are always on the same semantic position, we can define

and measure semantic parameters on the average model and

deform the measurement together with the mesh. Previous

methods used manual annotation of shape examples which

is cumbersome. We create the annotations at arbitrary den-

sity directly from shape instances of the PCA model and

save the annotation time. For this work, six measurements

were chosen: height, breast size, waist size, hip size, leg

length and shoulder size. All of them can be described on

the mean model by specifying the vertices that lie on the

line of the measurement. For example, all vertices that de-

fine the waist build a ring around the body. The length of

this waist measure can then easily be computed by calculat-

ing the distance from one vertex to its neighbor and adding

it to the total distance. After a full round, the circumference

of the waist is determined. For further precision, all vertices

are projected to a plane with the up vector of the coordinate

system (pointing from the feet to the head) as normal vector

to the plane. This prevents a false length increase when the

vertices are slightly moved up and down by the PCA de-

formations. For values like height and leg length only the

height entry in the vertex position is used so the real height

is measured even when the vertex moves to the side. Fig-

ure 2 shows the described measurements first on the mean

mesh and then on three other randomly generated meshes.

The vertices defining the lines have moved correctly and

still define the same body property. In the next section, we

detail how to learn our semantic mapping from this dataset

using regression forests.
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Figure 2. Automatic measurements of height, breast size, waist

size, hip size, leg length and shoulder size shown on the average

model and on three random examples

3.2. Learning the semantic mapping using regres-
sion forests

Our goal is to learn a function S relating an input x to

a continuous output y based on a set of samples, where

x ∈ R
n represent the n semantic values ς = (ς1, ..., ςn)

measured from the mesh and y = α = (α1, ..., αm) ∈ R
m

represents the according weights for the eigenvectors that

generate this mesh. To learn this highly non-linear mapping,

we propose to use regression random forests. We show later

that this results in a much better performance than the lin-

ear mappings on the whole space used in the related works.

In [6], Criminisi et al. demonstrate that random forests are

state-of-the-art learners that can be used for many different

tasks such as classification, regression or density estima-

tion. Recently, they have gained increased interest in com-

puter vision, as they show impressive results in a wide range

of applications as human pose estimation [16] or semantic

segmentation [17]. Basically, a random forest consists of

an ensemble of decorrelated decision trees that provides a

piece-wise approximation of the function S . Using a di-

vide and conquer strategy, each tree first partitions the input

space, i.e. subdivides the training data into consistent sub-

sets using decision functions, and then models the mapping

S locally in each part of the input space. More precisely,

a tree consists of a collection of split nodes and leaves that

contain, respectively, the decision functions and the local

estimates of S.

In this work, we base the decision functions on so-called

axis-aligned splits, that subdivide the incoming training in-

stances based on their value in one randomly selected di-

mension in the input space. In the leaves, we propose

to model the semantic mapping locally by using a multi-

dimensional linear function g:

gA,b(x) = Ax+ b (2)

where A ∈ R
m×n is a matrix and b ∈ R

m is a vector.

In the following, we will detail briefly the training of our

regression forest.

3.2.1 Forest learning

Given a set of training instances (x, y) ∈ T ⊂ R
n × R

m,

learning is the process of choosing the best decision func-

tions within the nodes and estimating the best model pa-

rameters in the leaves. In the present work, our training

set consists of vectors x containing the semantic parameters

such as height or hip size and their corresponding output y
that contains the weights of the PCA eigenvectors for mesh

construction. During the training phase, a tree is grown by

recursively splitting the training data. As detailed in [6],

at each node, the parameters of the decision function, in

our case a dimension of the input space as well as a thresh-

old, is chosen in a greedy fashion by maximizing an ob-

jective function called information gain. Recursive splitting

stops when the maximum tree depth is reached or when the

amount of training instances falls below a certain threshold,

and a leaf node is created.

In a leaf, the parameters of the prediction function

gA,b(x) are estimated from the subset τ ⊂ T of training

instances that reach this leaf. In the case of our linear pre-

dictor model, we estimate the matrix A∗ and the vector b∗

by minimizing the squared difference between the line and

the actual values in the sample pair (x, y):

(A∗,b∗) = argmin
A,b

∑

(x,y)∈τ

(Ax+ b− y)2 (3)

3.2.2 Shape parameter prediction

Once the forest has been trained, prediction can be per-

formed for an unseen input x by combining the output of the

different trees. The input x traverses each tree, choosing re-

cursively the left or right child node based on the evaluation

of the decision function. Once a leaf node is reached, a pre-

diction can be computed by using the stored linear model.

The combined prediction y of the forest is averaged over all

predictions yt of all trees: y = 1
T

∑T
t=1 yt, where T is the

number of trees in the forest.

To conclude this section, a full human mesh can be gen-

erated from few simple semantic parameters by using the

previously trained regression random forest to estimate the

factors αi in equation 1 for the principal components with

which the position of the vertices can be computed.

3.3. Human mesh animation

Given the semantic 3D human body shape, our goal now

is to apply an animation from any available motion capture

database. Here we use the CMU Motion Capture Database
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as it provides a large variety of animations1, but any avail-

able motion database can be used.

Skeletons from public motion capture databases differ in

skeletal dimensions and joint configurations. In order to an-

imate any arbitrary target body shape with arbitrary input

motion data we need to solve two problems. We need to

rescale and embed the motion data skeleton into our tar-

get shape, and we need to adjust the joint angles from the

motion capture file to match the shape of the target model.

Solving this problem is known as retargeting. A lot of work

has been done in this area which is nicely summarized in

a SIGGRAPH06 course of J. P. Lewis and Frederic Pighin

[14]. However since our target application does not require

perfect retargeted animation, but rather generation of larger

database of animated 3D shapes to be used by the learning

algorithms we use a very simplified retargeting algorithm

that will be briefly described below.

3.3.1 Skeleton embedding

We rely on the Pinocchio system [5] for fitting the given

skeleton inside the 3D mesh and compute Linear Blend

Skinning for encoding how much this particular bone influ-

ences that vertex. In practice we alter Pinocchio system in

order to produce good results with the output meshes from

the semantic mapping and the target animation skeletons

from the CMU motion capture database.

3.3.2 Skeleton remapping

The standard human skeleton provided with the Pinocchio

library produces good results with the meshes from the

semantic mapping. So instead of training the weights of

Pinocchio’s penalty functions to work with the CMU skele-

tons, we use Pinocchio’s simple skeleton counting 17 bones.

This ensures faster execution time, better embedding results

and greater generalization. After the continuous optimiza-

tion, the skeleton has to be replaced by the target skeleton

from the animation. This replacement needs to be done by

a skeleton matching algorithm, that is fast and robust for

different target skeletons. Here, the two skeletons to be

matched are considered as directed acyclic graphs with 3D

position information in the nodes representing the skeleton

joints. First, leaf nodes of both graphs are extracted, then

head, hands and feet nodes are found in both sets of leaves.

Afterwards, common parents of pairs of leaves, mainly cor-

responding to shoulder and hip joints, are matched in both

graphs. In the final step joints between the leaves and par-

ents are matched and unmatched joints, like thumbs, are

placed inside the mesh such that their connected bones are

scaled and rotated according to the transformation of their

parent bones.

1http://mocap.cs.cmu.edu

Figure 3. A complex skeleton embedded in the mesh.

This modified skeleton is now put back into the Pinoc-

chio algorithm, so that the skin of the mesh can be attached

to it. Pinocchio attaches the vertices of the model to the

bones of the skeleton to make it possible to transfer motion

from the skeleton to the mesh.

3.3.3 Animation retargeting

The actual skeleton to be animated is the one returned from

the skeleton fitting algorithm described above. It may have

different bone lengths and a different pose than the origi-

nal skeleton from the CMU database. Thus, a new set of

joint parameters associated to each bone has to be com-

puted in order to produce correct animation of the new tar-

get shape. Finding this new joint parameters is known as

retargeting in Computer Graphics and any sophisticated al-

gorithm can be used. However, due to the less restrictive

nature of our application that is the generation of a large

database of various human body shapes and poses, we are

not concerned about usual artifacts of retargeting, such as

foot skating, and, therefore, perform a simple and efficient

retargeting technique similar to Cyclic Coordinate Descent

(CCD) [13, 18] but without enforcing explicit end-effector

placement constraints.

4. Results
In this section, we evaluate our approach for mesh gen-

eration and semantic mapping in comparison to existing so-

lutions.

4.1. Human PCA model

Given 228 different scans in the standard pose, we per-

form PCA resulting in 228 eigenvectors ai and one mean

shape M . For the semantic mapping only the first 25 eigen-

vectors are used as the others mostly contained noise and

do not improve the semantic mapping. The training of the

regression forest is significantly faster as the output dimen-

sionality is reduced from 228 to 25. To create a training

set for the regression forests, the 25 principal components

were randomly sampled with 3σ (σ being their standard de-

viation) generating 10, 000 random human meshes. Each

mesh is then automatically associated to its corresponding

259



Our semantic mapping approach

(in cm) height breast size waist size hip size leg length shoulder size

mean -1.545e-07 0.5894 0.7111 0.1980 -1.0371 0.9387

variance 8.007e-13 4.7540 2.7176 0.9891 0.1279 33.5327

Table 1. Error in cm resulting from our proposed semantic map-

ping with regression random forests

semantic parameters using the methods described in section

3.1.2. As semantic parameters, we choose height, shoulder

size, breast size, waist size, hip size and leg length.

In the end, our training data consists of 10, 000 meshes,

each of them associated to a vector containing six semantic

parameters. Figure 2 illustrate these semantic parameters

shown directly on the mesh.

4.2. Semantic mapping

A randomized regression forest was trained on the previ-

ously generated data. In this scenario, we can automatically

measure all semantic parameters directly on the mesh. So

we propose to evaluate our semantic mapping approach by

comparing the input semantic parameters with their values

measured directly on the resulting mesh (after reconstruc-

tion with PCA). For instance, if we give a height of 2m as

input, we can compute the error by measuring it directly on

the resulting mesh. To find the best parameters for the ran-

dom forest, the error was computed for many combinations

of parameters. For the final application, 50 trees with depth

15 are chosen although more trees are generally performing

better, the improvement was marginal beyond 50 trees. The

number of trials for split planes used in randomize node op-

timization is 13 and the minimal number of samples in one

leaf is set to 30 to find a reliably probabilistic line.

Results of our quantitative evaluation are shown in table

1. The best results are found for the height. This is ex-

plained by the fact that the height is captured by a single

principal component from the PCA. So the height value can

be directly encoded into the factor α1 of the first eigenvector

a1 of equation 1.

The same evaluation is performed with a standard linear

semantic mapping. The results are shown in table 2. Shoul-

der size was not used for this test as it was not a semantic

parameter on their model. Comparing both tables shows the

significant improvements by the new method. In all cases

the mean error is closer to zero meaning it is more centered

around the desired value. The variance and in consequence

the standard deviation is greatly reduced.

Both tables 2 and 1 are visualized in figure 4.

Comparing both tables shows the significant improve-

ments by the new method. In all cases the mean error is

closer to zero meaning it is more centered around the de-

sired value. The variance and in consequence the standard

deviation is greatly reduced.

Linear Semantic mapping

(in cm) height breast size waist size hip size leg length

mean -1.9923 1.5960 -2.4732 -3.7087 -8.4568

variance 0.9175 160.7080 26.4817 32.2614 50.1143

Table 2. Error in cm resulting from the standard linear semantic

mapping

Figure 6. Successive increase of shoulder size from 100 cm to 140

cm with steps of 10 cm

4.3. Animation

In some cases Pinocchio has problems to find the exact

position of degree two joints. Especially the elbow joints

are sometimes placed too high in the upper arm or too low

in the lower arm. For the case of generating artificial motion

capture datasets this problem can be accepted as the pose es-

timation algorithms do not capture such fine details. Figure

5 shows different meshes animated in the same frame of a

simple running , punching or slide flip animation. This fig-

ure shows how well different models are animated by the

same skeletal animation. Although the shapes of all meshes

differ greatly, the animation is applied nicely to all of them.

Figure 6 shows the performance of the semantic mapping

on the example of shoulder size. By keeping every other

semantic parameter constant, the shoulder size is increased

from 100 cm to 140 cm in 5 steps of 10 cm.

Linear blend skinning as animation technique also comes

with its well known limitations. As it is a simple linear in-

terpolation of transformations sharp creases and bends pro-

duce artifacts that are not natural. In poses where the human

skin would fold and touch itself linear blend skinning has

problems. Figure 7 shows one problem that occurs when

the shape of the motion captured human and the shape of

the animated mesh are very different. The left arm of the

mesh intersects the left leg. The captured person had much

thinner upper legs so this movement is valid. However the

animated mesh has rather large hips and legs so the self in-

tersection occurs. This problem also persists the other way

round.

Although in some extreme cases problems can be seen

in the animation, the presented algorithms work well for the

purpose of generating artificial training data sets. Addition-

ally, the presented methods can also be used for different

purposes such as generating crowds or custom characters in

computer games.
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Figure 4. Visualization of the results in table 1 and 2

Figure 5. Different meshes in the same frame of a running, punching, side flip and pantomime animation.

Figure 7. Self intersections can occur when the captured person

and the mesh differ greatly in shape

5. Discussion and Conclusion

We presented a method to create a semantically mean-

ingful parametrized human model from a set of full body

3D scans. The human meshes generated by the model can

then be animated with any given skeletal animation data.

The results of comparing the proposed semantic mapping

from understandable and intuitive body measurements to

the internal representation of the human body show a sig-

nificant improvement to existing methods. Furthermore, we

propose a framework for creating a large database of 3D

human shape animations using a motion capture database.

Our approach is not limited to human datasets and any set of

3D scans can be used to generate a semantic parametrized

model. The arbitrary model can be animated with the pre-

sented methods using any skeleton/animation data that fits

the general appearance of the mesh.

Although producing good results, the presented methods

could be improved in some parts. Using the principal com-

ponent analysis as first dimensionality reduction method

may not be the best choice. If the initial set of human scans

appears to fall into different dense groups in the high di-
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mensional spaces a clustering method like the mean shift

algorithm can be used to identify those clusters. The princi-

pal component analysis could then be used on each individ-

ual cluster to capture finer details from the scans. Adding

more or different semantic parameters to the model is sim-

ple as they can be defined on the mean shape and those def-

initions generalize well to all possible meshes. Parameters

like arm length, head size or biceps size could easily be

added and would then produce a greater variety on the re-

sulting meshes. As the semantic measuring is directly possi-

ble on the mesh it would be possible to use the output of the

randomized forest as a starting point for a non linear min-

imization, that would lead to a fine tuned resulting mesh.

The error between actual measurements on the result and

the user input is minimized. The simplest approach for this

would be gradient free minimization algorithms, although

the gradient could be calculated on the principal compo-

nents and then be used for more sophisticated minimization

techniques. Changing the animation technique from linear

blend skinning to more complex methods and or utilizing a

sophisticated IK solver could remove some artifacts intro-

duced during animation.

In future work, we will aim at dressing the resulting

mesh using the recently published DRAPE (DRessing Any

PErson) methods by Guan et al. [8] to produce more chal-

lenging data for pose estimation.
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