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Figure 1. (a) WatchSense enables on- and above-skin input on the back of the hand (BOH) through a wrist-worn depth sensor. (b) Our prototype mimics
a smartwatch setup by attaching a small depth camera to the forearm. (c) It tracks the 3D position of fingertips, their identities, and touch on the BOH
in real-time on consumer mobile devices. This enables a combination of mid-air and multitouch input for interactive applications on the move.

ABSTRACT
This paper contributes a novel sensing approach to support
on- and above-skin finger input for interaction on the move.
WatchSense uses a depth sensor embedded in a wearable device
to expand the input space to neighboring areas of skin and the
space above it. Our approach addresses challenging camera-
based tracking conditions, such as oblique viewing angles and
occlusions. It can accurately detect fingertips, their locations,
and whether they are touching the skin or hovering above
it. It extends previous work that supported either mid-air
or multitouch input by simultaneously supporting both. We
demonstrate feasibility with a compact, wearable prototype
attached to a user’s forearm (simulating an integrated depth
sensor). Our prototype—which runs in real-time on consumer
mobile devices—enables a 3D input space on the back of
the hand. We evaluated the accuracy and robustness of the
approach in a user study. We also show how WatchSense
increases the expressiveness of input by interweaving mid-air
and multitouch for several interactive applications.
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INTRODUCTION
This paper studies novel input capabilities enabled by com-
puter vision sensing on small wearable devices such as smart-
watches. Every new generation of such devices features better
displays, processors, cameras, and other sensors. However,
their small form factor imposes severe limitations on the effi-
ciency and expressiveness of input. Touch input is restricted to
a tiny surface, and gesture input may require moving a whole
body part [2]. We address these challenges by investigating
a class of emerging sensing techniques that support extend-
ing the input space to the space next to a wearable device.
This could solve the problems caused by small interactive sur-
face area. Additionally, it may enable a new possibility for
multi-device interaction: controlling not only the wearable
device itself but also relaying sensed input to allow inter-
action with nearby devices, such as TVs, smartphones, and
virtual/augmented reality (VR/AR) glasses [16, 24].

We contribute to an emerging line of research exploring richer
use of finger input sensed through a wearable device. In par-
ticular, we look at smartwatches, which have previously been
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supplemented by mid-air finger input [14, 20, 21, 22]. Recent
papers propose using the palm or forearm for gestures or touch
input (e.g., [25, 33, 34, 37]). This enlarges the size of input
space in which gestures can be comfortably performed. How-
ever, previous papers focused on either touch or mid-air inter-
actions. We address the combination of these two modalities,
with the aim of increasing the efficiency and expressiveness of
input. Recent advances in depth sensor miniaturization have
led to the exploration of using both touch and mid-air interac-
tions above smartphones [7]. To our knowledge, there is no
work that explores the use of both touch and mid-air input in
smaller, wearable form factor devices such as smartwatches.

Our second contribution is to address the technical challenges
that arise from sensing of fingers that touch the skin and/or
hover above the skin near a smartwatch with an embedded
depth sensor. Recent improvements to real-time finger track-
ing in mid-air [19, 28, 31, 38] cannot directly be employed due
the oblique camera view and resulting occlusions which are
common in body-worn cameras. To address these challenges
we propose a novel algorithm that combines machine learning,
image processing, and robust estimators.

Our novel method allows joint estimation of 3D fingertip
positions, detection of finger identities, and detection of fin-
gertips touching the back of the hand (BOH). Unlike previous
work [13, 22], our approach also detects finger identities which
can further increase input expressiveness. Our prototype (Fig-
ure 1 (b, c)), which mimics the viewpoint of future embedded
depth sensors, can detect fingertips, their identities, and touch
events in real-time (> 250 Hz on a laptop and 40 Hz on a
smartphone). Additionally, technical evaluations show that
our approach is accurate and robust for users with varying
hand dimensions.

The capability enabled by our approach allows for simulta-
neous touch and mid-air input using multiple fingers on and
above the BOH. A unified sensing approach that supports both
touch and mid-air, as well as finger identity detection is not
only beneficial for users but also provides more interaction
design possibilities. We show through several applications
that this novel input space (or volume) can be used for inter-
action on the move (e.g., with the smartwatch itself or with
other nearby devices), complementing solutions with touch or
mid-air alone. In summary, our paper contributes by:

• Exploring the interaction space of on- and above-skin input
near wearable devices, particularly smartwatches.
• Addressing the technical challenges that make camera-

based sensing of finger positions, their identities, and on-
skin touch a hard problem.
• Demonstrating the feasibility of our approach using a proto-

type, technical evaluations, and interactive applications.

WATCHSENSE
Figure 1 (a) illustrates the vision of WatchSense. We assume
that smartwatches will embed a depth sensor on their side,
overseeing the back of the hand (BOH) and the space above it.
In this section, we first outline the vision of embedded depth
sensors and how we prototype this vision. Then, we outline

the new interaction opportunities afforded by WatchSense, and
present the arising tracking challenges.

Embedded Depth Sensors
Advances in time of flight (TOF) imaging technology have led
to rapid miniaturization of depth cameras. A few years ago,
the smallest TOF sensor (Swissranger SR40001) had a size
of 65×65×68 mm. Today, the PMD CamBoard PicoFlexx2

measures only 68×17×7.25 mm. While these sensors do
not yet fit into a smartwatch, the trend indicates that smaller
sensors will be integrated into smartwatches in the near future.

To study the utility of such embedded sensors already, we cre-
ated a prototype with viewing angles close to a hypothesized
integrated depth sensor. Figure 1 (b) shows our prototype
setup: a small depth sensor is attached to the user’s forearm
facing the wrist. Due to near range sensing limitations of these
sensors (usually designed for sensing up to 2 m) we had to
place them at a distance of 20 cm from the wrist. However,
we envision specially designed future TOF sensors will allow
better near range sensing capabilities.

Input Capabilities
WatchSense is capable of sensing fingertip positions and
identities (on the interacting hand) on and above the BOH.
This opens up new interaction opportunities for multi-finger
interactions—both while touching the BOH as well as in mid-
air. The resulting input space provides higher expressiveness
and degrees of freedom than skin-based touch. While this is
interesting for input directly to smartwatches, we envision that
watches will become an input sensing device for a large vari-
ety of other interactive devices (see WATCHSENSE-ENABLED
APPLICATIONS section for examples). Figure 2 highlights the
possible interaction combinations with WatchSense.

Touch and Mid-Air Tracking: With WatchSense, the BOH
can be used as a touchpad with the same operations: sensing
when a touch operation began, when the finger moved (report-
ing its x, y coordinates in the plane, where z is 0), and when
it is lifted (see Figure 2 (a)). Additionally, sensing the space
above the BOH allows for using mid-air gestures (see Figure 2
(b)). Here, however, the sensor reports 3D x, y, z coordinates.
Thus, WatchSense offers 3 degrees of freedom (DoF) per fin-
ger. Transitioning between touch and mid-air input allows for
similar interactions as shown in Air+Touch [7].

Finger Identification: WatchSense supports the identifica-
tion of fingers (see Figure 2 (c)). For instance, this allows
for assigning different interactions to different fingers (i.e.,
touching or gesturing with the thumb has a different meaning
than when doing so with the index finger). While we envi-
sion identifying all five fingers, in this paper we showcase the
interaction opportunities with the thumb and index finger.

Multi-Finger Touch & Mid-Air: Combining finger iden-
tification with touch and mid-air sensing (and the resulting
3 DoFs per finger) enables compound interactions. The ma-
trix in Figure 2 (d) showcases the possible combinations, and
the examples presented later in this paper highlight their use.
1Swissranger SR4000: http://hptg.com/industrial/
2CamBoard PicoFlexx: http://pmdtec.com/picoflexx/
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Figure 2. (a, b) WatchSense tracks fingertips in mid-air, and touch and position of touch on the back of the hand (BOH). (c) It also distinguishes between
different fingers (identity). In our prototype we can recognize the index finger and thumb. (d) The technical capabilities of WatchSense enable more
expressive interactions such as purely mid-air (top right), purely touch (bottom left), and combinations of them.

When the interacting hand is present, each finger is either
touching the BOH, or positioned mid-air. We use the follow-
ing terminology throughout the paper: the overall interaction
state is described by a tuple containing the thumb’s state and
the index’s state (i.e., if the thumb is touching, and the index
is not, the overall state is Touch + Mid-Air).

These combinations can be used with large variation. For
example, in Touch + Mid-air, the hand can be utilized as a
joystick, where the thumb acts as base, while the index finger
rotates around that base. In Touch + Touch, the BOH can
be utilized as a multitouch surface. Mid-air + Touch is can
be utilized when using the BOH as a single-touch touchpad.
However, the thumb’s mid-air position (and distance to the
index finger may be used for value-changing operations (e.g.,
adjusting the volume of a music player). Lastly, in Mid-air +
Mid-air, both fingers can gesture freely in 3D. We use this last
state as a delimiter for entry/exit to other states.

Resulting Challenges
We assume that a camera obtains an oblique depth map of the
BOH and the space directly above it. This differs greatly from
previous approaches that use depth sensing for multitouch
input. Imaginary Phone [12] and OmniTouch [13] assumed
a near-perpendicular view of the surface, easing separation
of the interaction surface from the interacting hand. These
systems showed limited accuracy when distinguishing touch
and hover states (e.g., OmniTouch reports 20 mm accuracy).
Other systems, such as Air+Touch [7] rely on a perfectly
planar, touch-sensitive surface on a smartphone in addition to
the depth sensor.

Realizing our scenario without additional sensors on the hand
poses new challenges: (1) the oblique view of the BOH causes
perspective distortion and additional occlusions, (2) the BOH
(as well as the forearm) is not a flat surface but curved, which
complicates touch detection, (3) multi-finger interaction re-
quires the discrimination and identification of fingertips, both

when touching and hovering, and (4) compute limitations on
mobile devices require the sensing technique to be fast with
low latency. WatchSense supports simultaneous and continu-
ous touch and mid-air interactions from an oblique view of the
BOH in real-time—even in the presence of these challenges.

RELATED WORK
The work presented in this paper builds on recent advances in
interacting on smartwatches and on associated limbs, mid-air
interaction techniques around wearable devices, as well as
hand and finger tracking.

Touch Interaction On and Around Smartwatches: Interac-
tion with consumer smartwatches is generally limited to touch
and speech. Two main strategies have been explored to extend
the capabilities of such devices: (1) on-device interaction, and
(2) on-body interaction.

On-device interactions beyond the touchscreen employ other
parts of the smartwatch. Pasquero et al. [26] extended input
to the device’s bezel. Xiao et al. [39] use the entire watch face
for additional input, e.g., through tilting, twisting or panning
it. WatchIt uses the wristband as alternative input canvas for
simple gestures [27]. WatchMI [40] uses existing sensors to
support pressure touch, twisting, and panning gestures. While
each of these systems is shown to be beneficial, they only
consider input directly on the device.

Smartwatches have largely planar body parts in close proxim-
ity (e.g., the hand and forearm). Thus, there is a large body
of research on skin-based input to free the interaction from
the watch itself. iSkin uses a thin skin overlay to detect touch
and strokes [36]. Skinput’s bio-acoustic sensing array allows
for detecting touch directly on the skin. SkinTrack [41] uses
the body as an electrical waveguide to support touch near
smartwatches. Laser-based range scanners [34, 33] as well as
infrared sensors placed at the device’s borders [3, 25, 32] are
vision-based approaches to detect on-skin touch and gesture
interaction around a device.

Wearable Technology CHI 2017, May 6–11, 2017,  Denver, CO, USA

3893



Most related, however, is the use of depth cameras to detect
skin-based input. Imaginary Phone used a depth camera to
detect interaction on the palm [12] to operate a mobile phone
which is not in sight. OmniTouch used a very similar setup
to turn arbitrary (planar) surfaces (also the user’s palm or
wrist) into projected, interactive surfaces [13]. WatchSense is
inspired by these systems, but we go beyond by recognizing
fingertip positions, identities, and touch on- and above-skin.

Gestural Interaction Around Wearable Devices: Mid-air
space around wearable devices has also been investigated for
input. Initially, researchers used that space for simple gestural
input. Gesture Watch [20], AirTouch [22], and HoverFlow [21]
used an array of infrared sensors to execute simple commands
through eyes-free gestures. More recently, researchers be-
gan exploring techniques that rely on more accurate mid-air
tracking. Here, they relied on magnetic tracking (e.g., Finger-
Pad [5], Abracadabra [14], and uTrack [6]), or small infrared
cameras (e.g., Imaginary Interfaces [11]). To test a set of in-
teraction techniques, researchers often relied on sophisticated
external tracking systems (e.g., [17, 15]). Finally, there is
research on using the fingers for gestural input, either using a
vision-based approach [19, 35], or through strain sensors on
the back of the hand [23].

The aforementioned systems solely used gestural input without
considering touch, which is a key feature of WatchSense. One
of the few systems considering both touch and mid-air during
an interaction is Air+Touch [7]. Their focus is on sequential in-
teractions near smartwatches, where mid-air interaction occurs
before, after or in between touches. In contrast, WatchSense
allows for simultaneous use of touch and mid-air.

Vision-based Tracking of Hands and Fingers: With the
advent of commodity depth sensors, research on articulated
hand tracking (e.g., Digits [19]) has gained more attention [18,
28, 31]. These approaches aim at reconstructing hand pose
from depth data, and would be, at first glance, an ideal solution
for our scenario. Unfortunately, these methods fail under
oblique views, occlusions, or additional objects in the scene.
In addition, they are not well-suited for detecting (multi-)touch
events. To bypass these issues, existing systems (that make
use of finger input) often simplify the problem: first, systems
avoid fully articulated hand tracking and only require detecting
discrete touch points (e.g., [38, 3, 1, 7]). Second, several
systems build on heuristic assumptions of the depth camera’s
location in relation to the interaction surface which is hard
to realize in practice. For example, both OmniTouch [13]
and Imaginary Phone [12] assume a perpendicular view of
the interaction surface, easing separation of the interaction
surface from the interacting hand. In addition, these systems
have limited accuracy when distinguishing touch and hover
states (e.g., OmniTouch reports 20 mm accuracy [13]). Other
systems, such as Air+Touch rely on a perfectly plain, touch-
sensitive interaction surface (a smartphone) [7].

In comparison, our work builds on less heuristic assumptions
while accurately detecting fingertips on and above the inter-
acting surface. Taking inspiration from [30, 13, 22] we use
a combination of machine learning, image processing, and
robust estimators to solve the challenging vision problem. Our

approach is flexible and can be retrained to fit a wide range
of depth sensor positions (e.g., in the device itself), surfaces
(e.g., upper arm). Additionally, we obtain information about
finger identity that increases the expressiveness of interactions
possible with our approach.

IMPLEMENTATION
We now describe our depth camera-based method for support-
ing expressive mid-air and multitouch interactions. Our focus
is on fingers interacting on and above the BOH from an arm-
worn camera. Our approach is fast and accurate—we can track
the position of fingertips to within 15 mm, and touch points to
within 10 mm. Our approach is also flexible—it can be reused
with only a few changes to suit other wearable cameras, and
viewpoints.

Previous methods [13, 22] for near-surface finger interaction
support estimation of the following: (1) 3D hover/touch po-
sitions of fingertips, and (2) exact detection of finger touch
events. Our approach supports these and additionally also
(3) automatically, and robustly identifies fingertips (currently
index finger and thumb). This allows us to support a richer
set of mid-air and multitouch interactions. Our approach also
delivers better touch detection tolerances than previous work.

Prototype System
Our prototype can run on desktops, laptops, tablets, and smar-
phones and relays sensed fingertip positions, labels, and touch
events through a WebSocket connection. Clients such as smart-
watches, smartphones, public displays, or smartglasses can
obtain this information wirelessly.

In our prototype, we use the PMD CamBoard PicoFlexx cam-
era, which is currently the smallest commercially available
depth sensor. We found its size, resolution, and noise char-
acteristics suitable for the BOH scenario. However, we also
support other close range sensors like the Intel Senz3D depth,
and the Intel RealSense F200. We position the sensor on
the forearm (20 cm above the wrist) facing the BOH (see
Figure 1). Placing the sensor closer to the wrist was not pos-
sible because commercial TOF cameras have limited near
range sensing capability. Their infrared illumination source—
designed for ranges >50 cm—saturates pixels with depth less
than 20 cm thus making depth estimation unreliable. Specially
designed cameras with less intense illumination sources will
allow nearer sensing ranges.

Algorithm Description
Estimating fingertip positions, and touch events from an
oblique view of the BOH is a hard problem. Even state-of-the-
art articulated RGB-D hand trackers would fail under these
conditions [28, 31]. We use a detection rather than tracking
strategy to help recover in case of failure. Our approach fea-
tures a novel combination of random forests, advanced image
processing, and robust estimators to achieve stable and accu-
rate fingertip, finger identity, and touch detection. Figure 3
provides an overview of our approach.

Random Forests for Classification: We use per-pixel classi-
fication forests which have been shown to produce state-of-the-
art results in human pose estimation and other segmentation
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Figure 3. Overview of WatchSense implementation. After preprocess-
ing the input depth image we use random forests to segment interacting
hand from the BOH, and detect fingertips and identities. These segmen-
tation masks are used together with robust estimators and flood filling
to obtain fingertip positions, and touch points.

problems [29, 18, 31]. We only provide a brief overview (for
details, see [9]). Our contribution shows that random forests
in combination with other techniques enable new interaction
opportunities for on- and above-skin wearable interaction.

Given an image, a classification forest is trained to label each
pixel into a class label (e.g., part of a human body). At test
time, for each input pixel, a tree in the forest makes a predic-
tion about which part it likely belongs to. The output from all
trees in the forest is aggregated to provide a final prediction

about the pixel’s class as p(c |x,τ) = 1
T

T
∑

t=1
pt(c |x,τt), where

p is the predicted class distribution for the pixel x given for-
est hyperparameters τ , T is the number of random trees that
makes a prediction pt . We use depth-based feature response
functions similar to the one described in [29].

Input Preprocessing and Segmentation: The input depth
map encodes real-world depth at each pixel. Noise in the depth
map is removed using morphological erosion and a median
filter to produce a filtered depth map [10]. To make subse-
quent steps in our method more robust, we first use a binary
classification forest that segments the two interacting hands
into BOH and interacting hand (see Figure 3). At training
time, we composite images of the BOH only and other hand
only to create combined training images. This allows fast
generation of large amounts of annotated data. At testing time,
segmentation generates two depth maps—one contains only
the BOH and the other contains only the interacting hand.

Fingertip Detection and Recognition: The goal of this part
is to detect and estimate the 3D position and identity of in-
teracting fingertips. In our prototype, we assume that only
two fingers interact (i.e., index finger and thumb)—however
our approach is flexible and can support more than two finger-
tips. Additionally, we trained our method to be robust to false
positives on unsupported fingers. The key improvement over
previous work is our ability to detect fingertips and also their
unique identity even after periods of occlusion. In contrast,
[22] uses only one finger while [13] uses heuristics to assign
unique IDs without actually knowing finger identity. As we
show in the applications section, fingertip identity allows us
to create more expressive interactions previously not possible.

Figure 4. Fingertip detection. (a) Training time: Different users wear
colored fingertip caps to provide pixel training data for fingertip loca-
tions. (b, c) Testing time: Fingertips and their respective labels are accu-
rately detected from only depth images in real-time.

We rely on a random forest that classifies pixels into one of
three classes: IndexFinger, Thumb, Background. More classes
can be added if needed. At training time, we collected color
and depth image pairs from multiple users interacting with the
BOH wearing colored markers (see Figure 4). These markers
were automatically detected in the color image and mapped
onto the depth image. This provides labels for the forest to
be trained on—we collected 20000 image pairs from different
users to maximize forest generalization.

At testing time, given an input depth image, the forest classifies
pixels into one of the three classes. The result, shown in
Figure 4, produces a group of pixels that are labelled into one
of the fingertips. We remove noise in the resulting pixels by
a median filter and morphological erosion. We then obtain
a robust estimate for the 2D fingertip position on the image
by applying the MeanShift algorithm [8] which is robust to
outliers. The final 2D position is then backprojected using the
depth map to obtain the 3D fingertip position along with its
identity (see Figure 4).

Our approach is resilient to temporary tracking failures since
the fingertips are detected frame-by-frame. For added stability,
we filter the final positions with the 1efilter [4]. Because
we identify fingertips uniquely we can support more expres-
sive interactions previously not possible, as we show in our
interactive applications.

Touch Detection: The second goal is to robustly detect finger-
tips touching the BOH. This is a hard because depth sensors
have noise and limited precision. The oblique camera view,
general BOH shape, and camera motion make it even harder.
We experimented with various techniques including distance
computation from a plane fitted to the BOH. However, we
found that flood filling, similar to the approach used by Omni-
Touch [13], worked best.

Figure 5 illustrates touch detection with flood filling. For
each detected fingertip, we seed the flood filling process at its
2D position. We then fill a fixed mask around the fingertip
such that pixels of a certain depth in front of and behind the
fingertip (i.e., towards or away on the camera z-axis) are filled.
We empirically chose the near and far thresholds to be 50 mm
and 20 mm, respectively, which we found to cover a wide
range of motion of the BOH and finger orientations. Whenever
more than 40% of the mask is filled, we activate a touch event.
For robustness, we only do so when more than 10 frames (at
the device runtime framerate) in sequence were detected as
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touching. As we show later, this method’s touch detection
tolerance varied from 1 mm to about 10 mm for different users
which is better than the 20 mm reported by [13].

Figure 5. Touch detection. (a) When there is no touch, flood fill is
restricted to filling only in parts of the finger. (b, c) When the finger
touches flood fill grows into the BOH filling a larger area (White: seed
point, Brown: flood filled pixels).

TECHNICAL EVALUATION
We evaluated several key performance aspects of our method:
(1) accuracy of fingertip tracking while touching the BOH and
hovering above it, (2) reliable minimum distances (tolerance)
between finger and the BOH to separate touch and hover, and
(3) classification accuracy of the random forest. We first report
our method’s runtime performance.

Runtime Performance
Our approach runs in real-time on an Intel Core i7 laptop at
>250 Hz, at >40 Hz on a recent smartphone (OnePlus 3), and at
35 Hz on a tablet (Nexus 9). All components of our method run
completely on the CPU. Given the simplicity of our method
and the increasing compute capability of wearables, we expect
to be able to run our method directly on smartwatches in the
future. Please see the supplementary video for a demonstration
of our method running in real-time on different devices.

Touch Accuracy
The goal of this evaluation is to assess the accuracy of fingertip
position and touch detection. We model our evaluation on
OmniTouch [13] and SkinTrack [41].

Method: We recruited 13 right-handed volunteers (2 female)
from our institution, ranging in age from 23 to 36 years (mean
28.1 years). Their backs of the hand widths varied from 70 mm
to 90 mm, and lengths varied from 60 mm to 80 mm (mean di-
mension was 82×70 mm). The length of index fingers ranged
from 69 mm to 86 mm (M=79 mm), and the thumb length was
between 55 mm and 70 mm (M= 63.5 mm). Since skin color
affects depth and noise at each pixel, we recruited participants
with diverse skin colors. An evaluation session took around
15 minutes. Data from one participant had to be excluded
because of a software issue that affected the camera.

Design and Task: The touch accuracy task measures how
accurately we can detect touch points on the BOH. We had two
conditions in this task: (a) in the seated condition, participants
were seated and their forearm was supported by the desk, (b)
in the standing condition, participants stood without any arm-
support. Participants then had to repeatedly touch dots on the
back of their hand using either the thumb or their index finger.
The computer next to the participants showed the dot they had
to touch. The experiment began when participants pressed the

spacebar, which would cause the first dot to be highlighted.
Then participants had to touch that dot on the back of their
hand, and subsequently press the spacebar to switch to the
next trial. If there was no touch recorded prior to pressing the
space-bar, participants could not advance to the next trial, and
an error was recorded. We recorded x, y, z-coordinates for
both fingers, and which finger was touching (or not).

Apparatus: In the seated condition, participants rested their
arm on a desk. The desk and chair used in our experiment were
height-adjustable. The setup was replicated at two locations.
Both seated and standing conditions took place in the front of
a 55” 4K display or a 25” full HD display. The display and
tracker were run on an Intel Xeon Dual Core (2.5 GHz) or on
an Intel Xeon E3-1246 (3.5 GHz) machine. Half the partici-
pants were assigned to use the Creative Senz3D depth sensor
while the other half used the PMD CamBoard PicoFlexx.

Procedure: In each of the two stages, participants either
began with the index finger or the thumb, and performed all
trials with that finger, before changing to the other finger. Half
of our participants started with the index finger (the other half
started with the thumb). The presentation of order in which
the nine dots had to be touched was randomized for all tasks.
In both touch accuracy tasks, each dot was touched 6 times
per finger, resulting in 2 (Tasks) × 2 (Fingers) × 9 (Dots) × 6
(Repetitions) = 216 data points.

Before the experiment began, participants filled a question-
naire containing demographic information. We then measured
the size of their hands as well as the length of their thumbs
and index fingers. Afterwards, we fitted the prototype on the
forearm, and added 3×3 dots on a participant’s back of the
hand using a stencil to ensure equal separation of those dots
(dots were separated by 20 mm).

Results: Figure 6 plots the distribution of touch points on the
BOH—separately for standing/sitting, and the two cameras
used. Black crosses represent ground truth positions. The plots
show that accuracy for index finger touch positions is high
in sitting and standing conditions across both two cameras.
For the Senz3D, the mean standard deviation for the index
finger was 4.1 mm for sitting (3.7 mm for standing). For the
PicoFlexx sensor, the mean standard deviation was 5.2 mm for
sitting (3.7 mm for standing). The thumb performed slightly
worse for both cameras. For the Senz3D, the thumb’s mean
standard deviation was 7.7 mm for sitting (8.4 mm for stand-
ing). For the PicoFlexx sensor, the mean standard deviation
was 6.0 mm for sitting (7.6 mm for standing). We attribute
this difference to the lack of sufficient samples for the thumb
during random forest training. We, however, observe that the
PicoFlexx camera performed better for the thumb than Senz3D.
We would also like to highlight that our standard deviations
improve over previous work [13] in spite of a smaller inter-dot
distance of 20 mm instead of 30 mm.

Touch Tolerance
The goal was to assess the hover interval, where touch and
hover detection is ambiguous. As we had no automated way of
obtaining ground truth information for hover states, the evalua-
tion was conducted through a series of manual measurements.
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Figure 6. Evaluation of touch accuracy on the BOH. Each image represents the 2D touch position distribution for a particular finger, condition, and
camera [Senz3D is (a)–(d), PicoFlexx is (e)–(h)]. The plots contain all touch points recorded by the tracker during each trial. Ground truth positions are
marked with a black plus symbol, and ellipses denote 95% confidence intervals. Index finger performed best for both sitting and standing conditions
for all cameras. We attribute the relatively worse performance of the thumb to the lack of sufficient training data for the fingertip classification forest.

Participants: We recruited two right-handed volunteers (62
and 66 years). An evaluation session took 30 minutes.

Design, Task, and Procedure: In order to provide as reliable
measurements as possible, two tables were used to support
the participant’s arms during the evaluation. Participants were
seated, resting their arm on one table, the other arm was rest-
ing on an adjacent elevation table with the hand hanging over
the edge of the table. Before starting the evaluation, the partic-
ipant’s hand was annotated with 9 dots in the same way as in
the touch accuracy evaluation.

The measurements were recorded through a five step proce-
dure: (1) The elevation table was lowered until the finger
touched the BOH, (2) the BOH and finger were aligned to
touch a particular dot, (3) the table was elevated to a non-
ambiguous hover state, (4) the finger was then lowered in small
steps (<1 mm) through the area of ambiguity and stopped
when a touch state was obtained for more than 2 seconds, and
(5) the finger was then elevated in similar steps until a hover
state was obtained for more than 2 seconds. Measurements
were recorded at the end of steps (4) and (5). The procedure
was repeated for all of the nine dots for both fingers leading to
72 total dots.

Results: All measurements of non-ambiguous touch and
hover states fell within an interval between 1 mm and 10 mm.
This indicates that our algorithm is capable of reliably detect-
ing a touch state at 1 mm distance from the BOH. Further, it

reliably detects hovering when the finger is 10 mm away from
the surface. Compared to previous state of the art [13], which
reported their interval to be between 10 mm and 20 mm, this
is a notable improvement.

Random Forest Classification Accuracy
Additionally, we also report accuracy of using random forests
for classification. When training our classification forests,
we adopted a rigorous cross-validation procedure to tune the
parameters. For the best parameters chosen the per-pixel clas-
sification accuracy was 77% for fingertip detection, and 98.8%
for hand segmentation.

WATCHSENSE-ENABLED APPLICATIONS
To illustrate the novel input capabilities enabled by Watch-
Sense, we built several demonstrator applications. We thus
explore how WatchSense can support existing multitouch inter-
actions such as pinch-to-zoom, as well as open up completely
new opportunities, thanks to finger identification and com-
pound interactions. To further showcase flexibility, we show
our prototype running on different hardware platforms and
depth sensors. We also show cross-platform interaction, i.e.,
WatchSense can run on a mobile device but be used for inter-
action with another surrounding device (e.g., HoloLens), or
even several surrounding devices simultaneously.

Music Controller: When the WatchSense app runs on a mo-
bile device (running Android), it provides a music player con-

Wearable Technology CHI 2017, May 6–11, 2017,  Denver, CO, USA

3897



Figure 7. CardboardBoxes game for VR/AR. (a, b) Users select a box
with the index finger (Mid-air + Touch). (c) Pinching with both fingers
scales the box (Touch + Touch). (d) Thumb touching while index finger
in mid-air allows translating the selected box (Touch + Mid-air).

troller feature by default. To allow for most mobility, we use
the PicoFlexx camera with tracking being performed on the
mobile device. It enables users to control three functions: (1)
adjust volume, (2) change sound track, and (3) toggle music
playback. Because of the unique capability of recognizing
fingertips, we support the above functions with simple inter-
action techniques. To adjust the volume, users can touch the
BOH with their index finger (Mid-air + Touch) to increase the
volume or with their thumb (Touch + Mid-air) to decrease it.
Touching the BOH with both fingers (Touch + Touch) toggles
music playback or pausing. Finally, users can switch to the
previous or next tracks by swiping with the index finger either
towards or away from the sensor (Mid-air + Touch).

We performed a pilot study to compare WatchSense with a
default design on Android smartphones for controlling music.
The default design used a rocker switch for volume control
and touch display for changing tracks and toggling playback.
For the study, we created a list of 25 actions that users had
to perform as quickly and as accurately as possible. These
actions were were chosen randomly (with replacement) from 5
possible music control actions (volume up, volume down, next
track, previous track, pause/play). There were two conditions:
(1) default Android controls, (2) WatchSense controls. We re-
cruited 3 users who first performed Android controls followed
by WatchSense. Users rested their hand on the table adja-
cent to the phone (Android) and the BOH (WatchSense) until
instructed to start performing the action. The timer stopped
when users brought their hand back to the original position.

On average, users took 31.9 s to complete actions with the
Android controls while they took only 31.4 s with the Watch-
Sense controls. WatchSense controls were faster in particular
for volume control. Moreover, WatchSense allowed operating
the phone application in eyes-free fashion.

Virtual/Augmented Reality (VR/AR) Input: We built a
game for virtual or augmented reality glasses called Card-
boardBoxes. Users can play with tens of cardboard boxes

Figure 8. (a) WatchSense setup to control a maps application on a smart-
watch. (b) The index finger touching the BOH can be used to pan the
map (Mid-air + Touch). (c) Both fingers touching while pinching zooms
the map (Touch + Touch). (d) Thumb touching while index finger in
mid-air allows map layer selection (Touch + Mid-air).

strewn across a virtual or real environment. This game show-
cases the 3D interaction capabilities of WatchSense. Users
can select a box from the scene by gazing at an object and
touching the BOH with their index finger (Mid-air + Touch,
see Figure 7). Once selected, boxes can be moved around the
scene or scaled. Moving is achieved by a Touch + Mid-air ges-
ture with the index finger’s 3D position relative to the thumb
being used for mapping the box’s 3D position relative to the
observer. Scaling the box can be achieved by pinching on the
BOH with both fingers (Touch + Touch).

In VR mode, tracking runs on a smartphone as a background
app. We use the Google Cardboard API to render the game
on the same device. Please see the supplementary video for
more details. In AR mode, tracking can run on any device
which relays sensed input to a heads-up display (we run it
on a smartphone for mobility). The game is rendered on a
HoloLens3 which allows for natural interaction with both the
game and the environment. The default HoloLens interaction
modality of using free hand gestures to move objects can be
fatiguing for users. In contrast, our approach allows users to
move objects with only finger movements. Additionally, with
a pinch gesture on the BOH users can scale objects—this is
not an easy task with current freehand gestures.

Map on a Watch: By combining on-BOH and mid-air input,
we created more expressive interactions for a map application
than a smartwatch allows. Our solution uses three interactions:
(1) touching the BOH using the index finger (Mid-air + Touch),
allowing for single-touch interactions like on the screen (i.e.,
dragging the map), (2) when both fingers touch the back of
the hand (Touch + Touch), users zoom in or out, (3) when only
the thumb is touching (Touch + Mid-air), a pop-up menu is
shown allowing for switching display modes (map, transit,
and satellite). Selection is performed by changing the distance
between the two fingers through moving the index finger.

3https://www.microsoft.com/microsoft-hololens
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Figure 9. (a) WatchSense setup for image exploration on a large exter-
nal display. (b) The index finger touching the BOH can be used to pan
the image across the display (Mid-air + Touch). (c) Both fingers touch-
ing while pinching allows zooming within the lens (Touch + Touch). (d)
Thumb touching while index finger in mid-air shows a zoom lens and
allows moving the lens over the image (Touch + Mid-air).

Image Exploration on a Large Display: This application
maps inputs to a large external display showing a satellite
image for an exploration task (see Figure 9). There are four
modes of interaction: (1) using only the index finger (Mid-air
+ Touch) on the BOH allows for dragging the entire image
across the display, (2) when touching the BOH with the thumb
only (Touch + Mid-air), a fisheye lens is shown, which can be
moved by moving the thumb, (3) touching the BOH with both
thumb and index finger (Touch + Touch) allows for resizing
the lens (unlike zooming the map in the watch application),
and (4) having the thumb touch the BOH with the index finger
in mid-air allows for changing the zoom level within the lens.
Again, this solution is more expressive than what would be
possible with touch or mid-air alone.

Controlling a Game: WatchSense also enables joystick-like
input for a wearable device. This is achieved by touching the
BOH with thumb and controlling pitch (forward/backward tilt
of the hand) and roll (left/right tilt of the hand). Figure 10
shows this Touch + Mid-air gesture: the interacting hand
forms a joystick with the thumb as base and the index fin-
ger acting as the top. Our game is a space game involving
space navigation and shooting other spaceships and asteroids.
Three interactions were implemented: (1) pitch controls the
forward and backward motion of the spacecraft (up/down on
the display), (2) roll controls the left and right movement of
the spacecraft, and (3) the index finger in air controls firing by
quickly moving it down and up again in a trigger-like fashion.

LIMITATIONS AND FUTURE WORK
WatchSense is a solution for fast and expressive multitouch and
mid-air input on and above the BOH. In particular, it supports
new combinations of mid-air and multitouch input leading to
more expressive input capabilities. Future work will need to
address some limitations of WatchSense in both the sensing
and input design dimensions.

Figure 10. WatchSense allows for joystick-like directional control for
gaming. Here a 2D spacecraft shooting game is controlled by compound
Touch + Mid-air gesture. The spaceship fires when the index finger is
quickly moved towards the BOH and up again.

First, our prototype is bulky because the depth sensor has to be
placed about 20 cm from the wrist due to near range sensing
limitations. Future work should explore depth sensing tech-
nology for near range sensing. Second, we support detection
of index finger and thumb but currently do not support more
fingers. Tracking more fingers can potentially enrich the in-
put capabilities of WatchSense. Third, it might be possible
to extend our algorithm to support input on and above arbi-
trary surfaces and manipulated objects to broaden potential
application scenarios.

We demonstrated the capabilities of WatchSense that can en-
able new forms of expressive input. Evaluating usability of
our interaction techniques was beyond the scope of the paper.
Future works needs to examine the usability of new gestures
made possible by WatchSense. Finally, the interactions that
we propose represent only a subset of the possible interaction
space. More research is needed to explore how detection of
fingertips, their identities, and touch can enable richer input.
Future work should also look at more complex gesture patterns
that can be tracked by WatchSense.

DISCUSSION AND CONCLUSION
This paper has contributed to methods for extending the inter-
action capabilities of small form factor wearable computers.
WatchSense allows extending the input space on wearable de-
vices to the back of the hand and the space above it. The BOH
offers a natural and always-available surface for input, which
can now be utilized in different postures, on the move, and
even if the hand is carrying an object. Because WatchSense
estimates fingertip locations, identities, and touch positions,
it can support interactions that were previously not possible.
In particular, continuous interaction and familiar multitouch
gestures like pinch can be carried out on the back of the hand
and combined with mid-air gestures thus increasing the expre-
siveness of input. Finger identification adds the possibility to
trigger events and map controls to index and thumb separately.

Detecting fingertips, their identities, and touch on the BOH in
real-time from the viewpoint of an embedded depth camera
is a hard computer vision problem. Direct combination of
previous approaches cannot be used due to large wrist motion
and the oblique viewpoint. Our novel algorithm provides a
fast, accurate, and robust solution for jointly sensing fingertip
locations, identities, and touch on the BOH. It tackles the
issues posed by oblique viewpoint, occlusions, fast motions,
and fingertip ambiguity.
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Finally, we have demonstrated that the BOH can not only be
used to expand the input space for smartwatches, but also for
relaying input to ambient devices such as public displays. This
raises the exciting new possibility of rich, device-agnostic
input enabled by sensing from a wearable device.
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