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ABSTRACT 
For real is t ic  a n i m a t i o n  of an  art if icial  cha rac t e r  a b o d y  model  
t h a t  r epresen t s  t he  cha rac t e r ' s  k inema t i c  s t r u c t u r e  is re- 
quired.  Hierarchica l  skele ton models  are widely used which  
represen t  bodies  as chains  of bones  w i th  i n t e r connec t ing  
joints .  In  video m o t i o n  cap ture ,  a n i m a t i o n  p a r a m e t e r s  are 
der ived from the  pe r fo rmance  of a sub jec t  in t he  real  world. 
For th i s  acquis i t ion  p rocedure  too, a k inema t i c  b o d y  model  
is required.  Typically,  t he  gene ra t ion  of such a mode l  for 
t r ack ing  and  a n i m a t i o n  is, a t  bes t ,  a s em i - au t oma t i c  pro- 
cess. We presen t  a novel  app roach  t h a t  e s t ima tes  a h ierar -  
chical skele ton model  of an  a r b i t r a r y  mov ing  sub jec t  f rom 
sequences of voxel d a t a  t h a t  were r econs t ruc t ed  f rom mul t i -  
view video footage.  Our  m e t h o d  does not  requi re  a-prior i  
i n fo rma t ion  a b o u t  t he  b o d y  s t ruc tu re .  We d e m o n s t r a t e  i ts  
performance using synthetic and real data. 

Categories and Subject Descriptors 
1.3.7 [ C o m p u t e r  Graphics]:  Three -Dimens iona l  G r a p h -  
ics and  R e a l i s m - - V i r t u a l  Reality; 1.4.8 [ Image  P r o c e s s i n g  
and C o m p u t e r  Vision]:  Scene Analysis--Motion, Track- 
ing, Time-varying Imagery; 1.5.1 [Pat tern  Recogn i t ion] :  
Models--Structural; 1.2.10 [Artif icial  Inte l l igence]:  Vi- 
sion a n d  Scene Understanding--Motion, Video Analysis 
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1. INTRODUCTION 
The generation of realistic artificial characters has always 

been a challenging problem in computer animation and in 
the development of 3D virtual worlds. Not only the design 
of a realistic physical appearance but also the generation of 
life-like motion is a prerequisite for a convincing visual im- 
pression. Many techniques have been developed that assist 
the animator in the latter task spanning from key-framing, 
over physics-based animation to motion capture. All these 
techniques have in common, that they rely on a kinematic 
skeleton model of the body which represents the character 
as a chain of bones and interconnecting joints. In motion 
capture, animation parameters are derived from the perfor- 
mance of a moving subject in the real-world. Many systems 
have been developed for capturing humans, but only the 
marker-based optical ones are general enough to be applied 
to a broader category of subjects, e.g. animals. The cap- 
tured parameters define the pose in terms of the configura- 
tions of the joints in the skeleton. The employed model has 
to be designed manually before the capturing session starts 
or it can be learned in a semi-automatic procedure [26]. Au- 
tomatic construction of models for arbitrarily shaped bodies 
has been difficult so far. 

We have developed a novel approach that enables the au- 
tomatic construction of a kinematic skeleton model of an ar- 
bitrary moving subject. Our method does with practically 
no a-priori information about the body structure. The in- 
puts to our system are sequences of voxel volumes of a mov- 
ing subject that can be reconstructed from multi-view video 
streams by means of a non-intrusive shape-from-silhouette 
approach. The system is flexible enough to derive the body 
structure of any type of subject that can be modeled as a 
linked kinematic chain, such as humans, most animals and 
several mechanical structure. We expect this approach to 
be a helpful tool for people working in computer anima- 
tion and motion analysis. Although our method is mainly a 
tool for reconstructing skeletons, we can also perform basic 
marker-less optical motion tracking. We demonstrate our 
system using volume sequences acquired in the real world, 
as well as synthetic voxel data created with a 3D animation 
package. 

2. RELATED WORK 
Commerc ia l  h u m a n  m o t i o n  c a p t u r e  sys tems  can  be  classi- 

fied as mechanica l ,  e lec t romagne t ic ,  or op t ica l  sys tems  [21]. 
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F i g u r e  1: V i s u a l i z a t i o n  of ou r  a l g o r i t h m ' s  workflow. 

4) Skeleton Reconstruction 

Video-based systems used in the industry typically require 
the person to wear optical markers on the body to whose 
3D locations a kinematic skeleton is fitted [26]. Since in 
many application scenarios no visual intrusion into the scene 
is desired, researchers in computer vision have investigated 
marker-free optical methods [12]. Some of these methods 
work in 2D and represent the body by a probabilistic re- 
gion model [30] or a stick figure [18]. More advanced al- 
gorithms employ a kinematic skeleton assembled of simple 
shape primitives, such as cylinders [25], ellipsoids [7], or su- 
perquadrics [13]. Inverse kinematics approaches linearly ap- 
proximate the non-linear mapping from image to param- 
eter space [3, 31] to compute model parameters directly. 
Analysis-through-synthesis methods search for optimal body 
parameters that  minimize the misalignment between image 
and projected model. To assess the goodness-of-fit, features, 
such as image discontinuities, are typically extracted from 
the video frames [13]. A force field exerted by multiple im- 
age silhouettes aligns a 3D body model in Ref. [10]. In 
Ref. [23] a combination of stereo and silhouette fitting is 
used to estimate human motion. A hardware-accelerated 
silhouette-based motion estimation is described in Ref. [5], 
and in Ref. [11] a particle filter is applied to estimate body 
pose parameters from silhouette views. 

Recently, sequences of shape-from-silhouette (visual hull) 
models have been considered as input data for human mo- 
tion estimation. Ellipsoidal body models [7], kinematic skele- 
tons [20], or skeleton models with attached volume sam- 
ples [29] are fitted to the volume data. Other visual hull- 
based approaches fit a pre-defined kinematic model with 
triangular mesh surface representation [2] to the volumes, 
or employ a Kalman Filter and primitive shapes for track- 
ing [22]. 

All previously mentioned marker-free techniques rely on 
some form of pre-designed body model or require a signif- 
icant amount of a-priori knowledge to generate the model 
from the data in a semi-automatic procedure. In contrast, 
we present an approach that estimates the moving subject's 
kinematic structure from the motion of individual rigid body 
parts that were automatically identified. We achieve this by 
combining a volume decomposition technique based on su- 
perquadric shells with a motion tracking of these primitive 
shapes. The derived model may then serve as a representa- 
tion for motion tracking. 

The idea of characterizing 3D point clouds by means of 
fitting primitive shapes is a common approach in 3D shape 

analysis (see [19] for a survey) where it is typically applied 
to static data. In Ref. [8], multiple superquadric shapes are 
used to decompose 3D point data into primitive sub-shapes. 
The same category of geometric primitives is used in com- 
puter vision for object recognition, range map segmenta- 
tion [17] and analysis of medical data sets [I]. A method 
for clustering triangle meshes which can also extract shape 
skeletons is described in [15]. 

Most similar to our approach is the work by Cheung et 
al. [6], where a person's skeleton and motion are estimated 
from visual hulls, and the work by Kakadiaris et al. [14] 
where body models are estimated from multiple silhouette 
images. Our method differs from these approaches in that 
it does not require a dedicated initialization phase where 
prescribed motion sequences are to be performed with each 
limb separately. Thus, our method requires far less a-priori 
information about the tracked subject. 

In contrast to our previous work [9], we now employ su- 
perquadrics, a class of shape primitives that can approxi- 
mate many volumes more accurately. Thus~ we designed a 
novel split and merge approach, a novel method for rigid 
body classification and a new criterion for joint localization. 

3. OVERVIEW 
Fig. 1 illustrates the main algorithmic workflow of our 

method. The system expects a voxel volume V(t) for each 
time step t of a motion sequence as input (Sect. 4). In step 1, 
the Superquadric Fit t ing step, each V(t) is packed with su- 
perquadric shells using a split and merge approach (Sect. 5). 
The result is a set of fitted shape primitives Q(t) and a list 
of associated voxel subsets S(t) for each time instant. The 
correspondences between superquadrics at different time in- 
stants are established by means of a dynamic programming 
method in step 2, the Correspondence Finding step (Sect. 6). 
The result of step 2 is a path for each primitive shape that 
describes its motion over time. Together, all superquadric 
paths form the path set P. Knowing their motion, the prim- 
itives are clustered into separate rigid bodies in step 3, the 
Body Part  Identification step (Sect. 7). After step 3, the 
motion of each rigid body over time is known, and joint lo- 
cations between neighboring bodies can be estimated in step 
4, the Skeleton Reconstruction step (Sect. 8). 

4. INPUT DATA 
It is our intent to demonstrate that the presented method 

is capable of reliably estimating kinematic body models from 
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F i g u r e  3: D i f f e r e n t  s u p e r q u a d r i c  shapes  o b t a i n e d  
w i t h  d i f fe rent  el a n d  e2. 

multi-view video data acquired in the real world. Unfortu- 
nately, it turns out to be difficult to find decent test subjects 
for the acquisition of multi-view video sequences of anything 
else but humans. Thus, in order to complement the human 
motion data that we recorded in our multi-camera studio, we 
created several synthetic data sets to demonstrate the flexi- 
bility of our approach. The synthetic sequences were gener- 
ated with 3D Studio Max T M  by placing animation skeletons 
into the surface meshes of a bird, a snowman and a monster. 
Animations with these models were created via key-framing. 
For each time frame of animation, a separate surface voxel 
set was exported. 

The video footage acquired in the real word was recorded 
in our multi-view video studio [28]. Eight synchronized cam- 
eras are placed in a convergent setup around the center of 
the scene. Each camera records at a resolution of 320x240 
pixels and at a frame rate of 15 fps which is the technical 
limit for external synchronization. The cameras are met- 
rically calibrated into a common coordinate system. From 
image silhouettes we reconstruct the voxel-based volume of 
the object. in the foreground by means of a space-carving 
approach [16]. In addition to simple shape-from-silhouette 
reconstruction, this method employs a color-consistency cri- 
terion over multiple camera views to enhance the reconstruc- 
tion quality. In our experiments, we carve surface voxel sets 
out of volume blocks of 2563 volume elements. 

5. SUPERQUADRIC FITTING 

5.1 Fitting a Superquadric to Voxel Data 
A superquadric is a closed curve defined as the solution 

of the implicit equation 

a~ y ~ m z 
(( ) ~  + (--)a2 ~2_)el -~- ( ~ 3 ) ' 1  ~_ 1 (1) 

In Eq. 1 al,  a2 and a3 are the radii along the three main 
axes, and el and e2 are roundness parameters. All points 
that fulfill this equation lie by definition on the surface 
of the superquadric. If one considers the left-hand-side of 
Eq. 1 being a function F(x,  y, z), a simple test for decid- 
ing if a point (x, y, z) lies inside (F  < 1), on the surface of 
(F = 1), or outside (F > 1) the primitive shape is feasi- 
ble. Depending on the roundness parameters, the shape of 
a superquadric shell mediates between circular and rectan- 
gular, enabling a variety of intermediate shapes (see Fig. 3). 
A superquadric in a general position is described by three 
additional rotation parameters (R~, Ry, Rz) and three trans- 
lation parameters (T~, Ty, Tz) with respect to the world ori- 
gin. Thus, in order to fit a superquadric Q to a set of N 
3D points (in our case surface voxels) such that its surface 
comes as close as possible to all points, 11 shape parame- 
ters Q = [al,a2,a3, c l ,e2 ,R~,Ru,Rz ,Tx ,Tv ,Tz]  need to be 
determined. The optimal parameters of a superquadric ap- 
proximating a 3D voxel set are found by numerically mini- 
mizing an error function that measures the distance between 

the shape's surface and the volume elements. 
The choice of a good error function is essential for the 

quality of the final fit. We have run experiments with several 
different distant measures and found the following one to 
produce the best results: 

N 

D = ala2a3 E ( F ( x i , y i , z i ) ~ l  _ 1)2 (2) 
N 

i = l  

In Eq. 2 N is the number of voxels and d = F(xi ,  yi, zi) ~1 - 1 
is an approximation to the distance of a volume element to 
the superquadric surface as proposed in Ref. [17]. The factor 
ala2a3 is included in order to prevent a shape primitive from N 
growing too much in one direction or uniformly in all direc- 
tions. We have evaluated several non-linear optimization 
schemes on test voxel sets to identify the most appropri- 
ate minimizer. We achieved best results with the LBFGS-B 
method [4], which is a quasi-Newton algorithm that permits 
the specification of bound constraints on the parameters. 
Results with other numerical optimization schemes such as 
Amoeba (a downhill-simplex variant), Powell's method (a 
direction set method), and the often used Levenberg-Mar- 
quardt optimizer were significantly worse (see Ref. [24] for 
information on these methods). This is mainly due to the 
fact that these methods don't  allow for constrains on the 
parameter space, and thus it happens frequently that the 
roundness parameters become negative which corresponds 
to inappropriate superquadric shapes. 

A good initial set of parameters to start the minimization 
with is found by fitting a regular ellipsoid to the voxel data 
(a regular ellipsoid can be expressed as a superquadric by 
setting el : e2 = 1). The ellipsoid's position T_i~, T_iy, T_iz 
coincides with the voxel set's center of gravity, the directions 
of its three main axes are identical to the directions of the 
eigenvectors of the voxel set's covariance matrix [7]. The 
initial radii a_il, a_i2, a_i3 along the main axes are found as 
a_ij = 2.  X/~,  Aj being the eigenvalue corresponding to 
eigenvector j [1]. The initial rotation R_i~, R_iu, R_iz is also 
derived from the directions of the eigenvectors. 

5,2 Split and Merge 
Using the method described in Sect. 5.1 for each time 

step, we fill the voxel volumes with superquadric shells. We 
achieve this by applying a hierarchical split and merge ap- 
proach [8]. The procedure starts with a split stage, approx- 
imating the whole voxel volume first by one superquadric 
which is subdivided into two superquadrics if this reduces 
the overall fitting error (Fig. 2). The split stage recursively 
processes each newly created superquadric in the same way, 
thereby producing a hierarchical decomposition of the voxel 
set. The split stage is performed for each voxel volume V(t)  
individually. 

The merge stage follows the split stage and improves the 
fitting result by merging pairs of neighboring superquadrics 
into one. It is performed only for the voxel volume V(1) of 
the first time step. 

In the following the individual steps of the split stage and 
the merge stage are detailed. 

5.2.1 Split  S tage 

For each V(t): 

1 The whole set of 3D voxels V(t)  is approximated by 
one superquadric Q. 
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Object Split Stage (all V(t)) Merge Stage (V(1) 0nly) 

Split level 0 1 4 7 

F i g u r e  2: I l l u s t r a t i o n  of t he  spl i t  a n d  m e r g e  p r o c e d u r e  us ing  t he  s n o w m a n  m o d e l  as a n  e x a m p l e .  

2 The set of 3D voxels is split into two subsets $1 and $2 
along the plane P orthogonal to the major inertia axis 
of the voxel set (Note that P contains the centroid of 
the set). 

3 $1 and $2 are approximated individually by one su- 
perquadric each. For each subset, the procedure is 
repeated from step 2. 

We obtain a set of shapes Qspt~t (t) and a set of correspond- 
ing voxel subsets Ssvzit (t) that approximate the voxel model 
V(t). After a sufficient number of subdivisions (in our case 
typically 7), there is a high likelihood that  all points in one 
voxel subset belong to the same rigid body of the moving 
subject 's kinematic skeleton. Nonetheless, it is still possible 
that more than one superquadric is fitted to one rigid body 
(e.g. four superquadrics to the upper arm). 

5.2.2 Merge Stage 
For V(1) only: 

For each subset of voxels S~ E Ssptit, we determine the 
list K~ = {Snl .... Snk} of neighboring voxel subsets 
(Sr~l, .., Snk E Sspli t) .  

For each possible pairing of the voxel set Si and one 
neighboring voxel set Sj C Ki, a merged voxel set Mj 
is created. A novel superquadric is fitted to each Mj 
and the fitting error Dj is computed (Eq. 2). From 
all paired superquadrics whose Dj is smaller than the 
sum of fitting errors of the superquadrics it was created 
from, the one with the lowest Dj is chosen to replace 
the two primitives it emerged from. 

A new set of superquadrics is obtained. The procedure 
is repeated from step 1. It terminates when no further 
reduction of the fitting error is possible. 

We perform the merging step only on the first voxel vol- 
ume V(1). If we were considering voxel volumes from dif- 
ferent time steps independently and merging superquadrics 
only due to structural criteria, it would not be possible to 
prevent erroneous merges across rigid body boundaries. The 
resulting set of shapes is the starting point for the corre- 
spondence finding step (Sect 6) which exploits the temporal 
dimension to prevent merging across boundaries of separate 
bodies. 

The result of the split and merge process is a set of su- 
perquadrics Q(t) and a set of voxel subsets S(t) for each 
y(t). 

6. CORRESPONDENCE FINDING 
After subdividing each voxel volume using primitive shapes, 

a set of correspondences C(t, t + 1) between each pair of su- 
perquadric sets Q(t) and Q(t + 1) at subsequent time steps 
is computed. The set of correspondences describes for each 
shape primitive in Q(t) to which member of Q(t + 1) it is 
related. For every superquadric, the correspondences indi- 
cate from which 3D location at t to which position at t + 1 
it moves. 

Assuming that  we can keep the number of superquadrics 
constant for all time instants, the correspondences enable 
the reconstruction of a complete motion path for each indi- 
vidual shape primitive over the duration of the whole input 
sequence. The correspondence finding procedure looks at 
each pair of superquadric sets Q(t) and Q(t + 1) at subse- 
quent time instants separately. 

Since the number of shape primitives in the sets Q(t) 
and Q(t + 1) may differ, we employ a two-stage procedure 
to establish the correspondences and to reorganize the su- 
perquadrics such that their number at each time instant is 
constant. This way we establish a bijective correspondence 
mapping between superquadrics at subsequent time steps. 

Technically, the correspondences from t to t + 1 are es- 
tablished by searching for correspondences from t + 1 to t 
which are, in the end, inverted. In the first stage, a corre- 
spondence for each individual shape primitive is established 
to a superquadric at the preceding time instant by means 
of a dynamic programming approach [27]. The error func- 
tion used in this optimization procedure is the Euclidean 
distance between the superquadric centers. 

Dynamic programming establishes a first set of correspon- 
dences. After the first stage, two cases of degenerate corre- 
spondences may occur that need to be corrected in a second 
stage in order to establish a bijeetive mapping. 

The first case, the unmatched superquadric (Fig. 4 A), 
occurs if there exists a superquadric Qi at time t to which no 
superquadric from time t + 1 established a correspondence. 
To solve this problem, the superquadric Q2 E Q(t+l) closest 
to Qi according to the Euclidean distance is selected. The 
voxel subset associated to Q2 is split in two and two new 
superquadries Q3 and (24 are fitted to the newly created 
voxel subsets. Q3 inherits the original correspondence to 
time t from Q2, Q4 establishes a new correspondence to Qi. 

The second case, the multi-match (Fig. 4 B), arises if more 
than one superquadric from Q(t + I) found the same part- 
ner in Q(t). We solve this problem by merging all the su- 
perquadrics at t + 1 corresponding to the same superquadric 
at t. This is achieved by merging all the associated voxel 
subsets and fitting a new shape primitive. 
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The two degenerate cases are corrected subsequently. Af- 
ter stage two of the correspondence finding, the correspon- 
dence directions are inverted. By this means, for each prim- 
itive in Q(t) exactly one partner from Q(t + 1) is found. 

After all time steps have been processed in this way, each 
superquadric set contains the same number of shapes as the 
set Q(1). Note that in order to establish correct correspon- 
dences C(t, t + 1) the superquadric sets are modified as well. 
For each shape primitive in Q(1) a complete motion path 
over the whole sequence can be identified by linking subse- 
quent correspondences. The so-created set of paths P con- 
tains for each Q~ E Q(1) a path Pi, Pi being an ordered set of 
3D coordinates P~ = {(xi(t), y~(t), z~(t)) It  valid time step} 
of the superquadric center at time t. Fig. 5 (1) shows ex- 
ample paths of individual superquadrics that  we found with 
our approach. 

t t+l  t+l 

Initial set of  correspondences Corrected set of  correspondences 

(A) Unmatched Superquadric 

t t+l 
Initial set of  correspondences 

0 - - - 0  
CZ) = 0  
0 ~ = 0  

t t+l 
Corrected set of  correspondences 

(B) Multi-match 

F i g u r e  4: H a n d l i n g  d e g e n e r a t e  cases  d u r i n g  co r re -  
s p o n d e n c e  f inding.  

7. BODY PART IDENTIFICATION 
The paths of P provide all necessary information we need 

to identify separate rigid bodies in the kinematic skeleton 
of the moving subject. In case we are analyzing volume 
data of a human, this means that  the paths enable us to 
identify, for example, the upper arm segment or the lower 
leg segment. Implicitly, we make the simplifying assumption 
that  individual kinematic elements can be represented as 
rigid structures that  do not undergo strong deformations. 

In order to identify individual rigid bodies, we make use of 
the fact that the mutual Euclidean distance between any two 
points on the same body does not change while the skeleton 
is moving. Thus, if the mutual distance between the motion 
paths of two superquadrics over time is subject to significant 
variations, it is most likely that the two primitives do not 
lie inside the same rigid body. 

This criterion gives us a procedure at hand which enables 
clustering individual superquadrics into separate kinematic 
elements of the whole body. We employ a voting-based test 
that analyzes the curve of Euclidean distances between su- 
perquadric paths over time. The value of the distance curve 
di,j(t) between the paths of two superquadrics Qi E Q(1) 
and Qj E Q(1) at time t is defined as the Euclidean distance 
between their respective positions on the paths at t. In or- 

der to decide if Qi and Qj lie on the same rigid body we 
look for the presence of two features in the distance curves. 

The first feature is a significant change in the first deriva- 
tive of d~,j at some time step t. For each t at which d~,j (t) > 
Tdc~,, Tde~iv being a derivative threshold, a voting counter 
vc(i, j)dc~iv is increased by one. 

The second feature arises at every time step for which the 
value of the distance curve differs by more than a threshold 
from the initial distance value di,j (1). Thus, for each t with 
IId~,j (t)-d~,j (1)II > Tdiyf, Tdiff being a difference threshold, 
a second voting counter ve(i, j)diyy is increased by one. 

The final vote vc(i,j) is the sum of the two previously 
mentioned voting counters vc(i, j) = vc(i, j)der~ +vc(i, J)d~H. 
If this final vote is larger than a threshold T~ote, the distance 
curve fails the test and the superquadrics are considered to 
be on different rigid bodies. 

To eliminate spurious peaks in a distance curve due to 
noise, a median filter is applied to it before applying the 
distance criterion. By means of our voting-based scheme 
and appropriate thresholds (found through experiments) it 
is possible to perform robust path comparison even in the 
presence of measurement noise. 

We apply the voting-based test to classify individual rigid 
bodies as follows: 

1 A seed superquadric Qseed E E(1) is selected and a 
distance curve dseed,k with each superquadric Qk E 
E(1) \ {Qs~d} is computed. 

2 For each Qk the voting-based test is applied to dseed,k, 
and Qk is classified as lying on the same rigid body if 
the test is passed. 

3 The procedure iterates by restarting from step 1 and 
selecting a new seed from all superquadrics that  have 
not yet been assigned to a rigid body. 

The seed Qse~d in the first iteration is the superquadric 
nearest to the center of gravity (COG) of the voxel set V(1). 
In the subsequent iterations, the selected seed is the su- 
perquadric nearest to the COG of the body part that was 
found in the preceding iteration. This seed selection cri- 
terion is a heuristics which enables the construction of a 
hierarchy of rigid bodies in the moving character. The rigid 
body detected first is considered to be the root of the skele- 
ton hierarchy. Each subsequently detected rigid body is con- 
sidered to be on the next lower hierarchy level, and to be 
connected to the root. The whole classification procedure 
is recursively applied to each individual rigid body on the 
next lower hierarchy level, thereby further refining the set 
of detected body parts. 

In case of a human subject this strategy leads to the iden- 
tification of one rigid body for the torso and one for each 
arm, each leg and the head in the first iteration. Now the 
procedure is repeated for each limb which produces the final 
correct subdivision into body parts. 

For each V(t) it is now known which voxel subsets form a 
rigid body and how the rigid bodies move over time. Fig. 5 
shows individual body parts as they were found in some of 
our test data sets. 

8. SKELETON RECONSTRUCTION 
In the final step we use the detected rigid bodies and their 

motion to estimate the 3D locations of joints in the skele- 
ton hierarchy. Joint finding can be performed for each time 
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F i g u r e  5: M o t i o n  p a t h s  o f  ind iv idua l  s u p e r q u a d r i c s  as t h e y  w e r e  found  by  our  m e t h o d  (1) .  I n d i v i d u a l  b o d y  
p a r t s  d e t e c t e d  in d i f f e ren t  t e s t  s u b j e c t s  (2) , (3) , (4) .  

step individually, but we usually regard the skeleton recon- 
structed for the first time instant as the reference model. 
The rigid body hierarchy, and thus the information which 
rigid bodies are connected, has already been determined in 
the Body Part Identification step (Sect. 7). For each pair 
of connected adjacent rigid bodies Ba and Bb the joint lo- 
cation is estimated relative to the boundary voxels between 
the voxel subsets associated with B~ and Bb. The joint 
location at time t is estimated as the center of gravity of 
the set of voxels which contains all those voxels from both 
voxel subsets that  have at least one adjacent voxel from the 
other voxel subset, respectively. This is a simple but efficient 
heuristic approach which produces good results for our test 
data. 

The primary goal of our system is to reconstruct a kine- 
matic skeleton model. Nonetheless, since we are able to 
build such a model for each time step of a motion sequence, 
approximate motion tracking of the moving subject is also 
feasible. Although applying our joint localization scheme to 
each time step of video is not tracking in a strict sense since 
we do not apply the same body model in each frame, it is 
still possible to obtain a first rough estimate of the motion 
parameters. In the future, we plan to further evolve our sys- 
tem into a complete motion tracking approach that employs 
the same body model at each time step of video. 

9. RESULTS AND DISCUSSION 
We evaluated the performance of our system using syn- 

thetic and real data sets. The synthetic data sets we used 
were the moving snowman (on avg. 8000 voxels per time 
step), the bird (on avg. 11000 voxels per time step), and 
the monster (on avg. 14000 voxels per time step). Motion 
sequences with these models were created using 3D Studio 
Max TM. The snowman was animated using one point of ar- 
ticulation at the neck, the derived skeleton and the correctly 
detected two body parts are shown in Fig. 6. In order to 
create the bird data set we animated 4 joints in a kinematic 
skeleton, one at the neck, one at the tail and two at the roots 
of the wings. The skeleton which was found by our method 
nicely coincides with the actual kinematic model we used 
for animation (Fig. 6). Our most complex data set is the 
monster, a lizard-like four-legged creature. In total, we used 
15 joints for animating its motion, 2 in the tail, 3 in each 
leg and i at the neck. The skeleton of the creature that  we 
estimated is shown in Fig. 6. In the monster data set, it was 
hard to identify the feet as separate rigid bodies since their 
motion is only very marginal compared to the rest of the 
body. In general, it is difficult to find decent segmentation 
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F i g u r e  7: P l o t  of  r e c o n s t r u c t e d  ( d a s h e d )  aga in s t  
g r o u n d  t r u t h  y - c o o r d i n a t e  o f  one  j o i n t  in t h e  snow-  
m a n  s k e l e t o n  for each  t i m e  s t e p  o f  t h e  i n p u t  se- 
q u e n c e .  

thresholds if the relative motion between two body parts is 
hardly noticeable. 

Since for the synthetic sequences we know the ground 
t ruth joint positions, we can provide an estimate of the accu- 
racy of our approach. For visual illustration we plot in Fig. 7 
the reconstructed y-coordinate against the true y-coordinate 
of one joint in the snowman skeleton for each time step of 
the input sequence. With the exception of some outliers, the 
difference in y-coordinates is small (mostly below 2% with 
respect to the length of the body, 5% in the worst case). 

We also ran experiments with video footage of a mov- 
ing person that  was recorded in our multi-view video stu- 
dio. From the multi-view silhouette frames shape-from- 
silhouette voxel models were reconstructed. Although the 
space carving approach eliminates most of the typical arti- 
facts in shape-from-silhouette volumes that  are due to in- 
sufficient visibility, some noise still appears in the form of 
bulky arms and legs. In our tests we analyzed a sequence 
of 40 frames, roughly 22500 voxels each, in which the per- 
son is only moving the arms and the head. This way it is 
possible to nicely demonstrate the working principle of our 
method. Since no motion is performed with the lower ex- 
tremities, the torso and the legs are classified as belonging 
to the same rigid body (Fig. 6). Even though the sequence 
is very short, the kinematic structure of the arms, the leg 
and the head are correctly found. Little inaccuracies in the 
detected locations of the elbow joints can be observed. This 
is mainly due to the fact that  the sequence is very short and 
that  the person wears comparably wide cloths. 
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F i g u r e  6: T o p  r o w :  M o n s t e r  w i t h  3 D  S t u d i o  s k e l e t o n ,  a n i m a t e d  j o i n t s  a r e  s h o w n  as  s p h e r e s  (1);  m o t i o n  o f  
i n d i v i d u a l  b o d y  p a r t s  (2) ;  e s t i m a t e d  s k e l e t o n  w i t h i n  v o x e l  s e t ,  j o i n t s  a r e  s h o w n  as  ( b l u e )  s p h e r e s  b e t w e e n  
b o n e s ,  b o n e s  a r e  s h o w n  in  w h i t e  (3 ) , (4 ) .  S e c o n d  r o w :  S n o w m a n  w i t h  3 D  S t u d i o  s k e l e t o n  (1);  e s t i m a t e d  b o d y  
p a r t s  (2) ;  r e c o n s t r u c t e d  s k e l e t o n  (3) .  T h i r d  r o w :  B i r d  w i t h  3 D  S t u d i o  s k e l e t o n  (1);  e s t i m a t e d  b o d y  p a r t s  
a n d  t h e i r  m o t i o n  (2);  r e c o n s t r u c t e d  s k e l e t o n  (3 ) , (4 ) .  B o t t o m  r o w :  V o x e l  s e t s  f r o m  i n p u t  s e q u e n c e  (1 ) , ( 2 ) ;  
i d e n t i f i e d  b o d y  p a r t s  a n d  s k e l e t o n  i f  o n l y  u p p e r  e x t r e m i t i e s  m o v e  (3);  e s t i m a t e d  s k e l e t o n  o n l y  (4) .  

Due to the  hierarchical  opt imizat ion  the  most  t ime con- 
suming components  of our approach are the  split and merge 
steps. Processing our test  sequences on an Intel  Neon T M  3.0 
GHz we measured run- t imes of the  spli t t ing in the  range 
of 120-160 s per  t ime step of the  input  sequence, and of 
the  merging in the range of 250-1000 s per  t ime step. All 
the o ther  processing steps in our a lgor i thm run significantly 
faster. Correspondence finding takes 7-19 s for one t ime in- 
stant,  skeleton reconstruct ion 0.3-0.5 s, and body part  iden- 
t if ication 3-6 s per t ime instant.  

An impor tan t  advantage of our me thod  over related ap- 
proaches is tha t  it es t imates  the  body  s t ructure  of an arbi- 
t ra ry  moving subject  wi th  a min imum of a-priori informa- 
tion. No special ini t ial ization mot ion is required to recon- 
s t ruct  the body  model,  any mot ion sequence is equally ap- 
propriate.  Our exper iments  wi th  real video da ta  show tha t  
the  me thod ' s  performance does not  significantly deter iorate  
if measurement  noise is present in the  volume data.  

In its current  state,  the  system is subject  to a couple of 
l imitations.  Even though we don ' t  prescribe an initializa- 
t ion motion,  two different adjacent  rigid body segments  can 
only be discr iminated if at least once in a sequence a rel- 
at ive mot ion between them can be observed. We consider 
this a principal  problem of a non-informed mot ion analysis 
approach and not  a l imi ta t ion tha t  is specific to our method.  
Fur thermore ,  we expect  tha t  the  sys tem's  performance will 
de ter iora te  if voxels of individual  rigid bodies merge fre- 
quent ly  wi th  the rest of the volume (e.g. if the  arms are 
often kept t ight  to the  torso). 

Al though our me thod  does not  opera te  on the same accu- 
racy level as marker-based approaches for skeleton deriva- 
t ion and mot ion  tracking, it is nonetheless a useful tool  in 
s i tuat ions where visual interference with  the  captured  scene 
is inappropr ia te  and no informat ion about  the s t ructure  of a 
moving subject  is available. In future,  we will extend our ap- 
proach to a complete skeleton learning and tracking method, 
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that  uses the body structure learned in the first i teration to 
follow the motion without the use of optical markers. 

10. CONCLUSIONS AND FUTURE WORK 
We presented a novel approach for estimating a kinematic 

model of an arbitrari ly structured moving body from se- 
quences of voxel volumes reconstructed from video footage. 
We demonstrated that  our algorithm is equally well-suited 
for the reconstruction of kinematic skeletons of animals and 
humans. In addition to estimating body models the ap- 
proach can also perform a simple motion tracking. 

In general, we believe that  the method is an algorithmic 
component that  can be used in combination with many non- 
intrusive motion estimation algorithms described in the lit- 
erature. This combination creates a very powerful marker- 
free tracking system applicable to a large class of moving 
subjects. To demonstrate this in the future, we intend to 
further evolve the approach into a complete motion capture 
system by combining it with a volume-based motion track- 
ing scheme. 
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