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Figure 1: Our live facial reenactment technique tracks the expression of a source actor and transfers it to a target actor at real-time rates.
The synthetic result is photo-realisticly re-rendered on top of the original input stream maintaining the target’s identity, pose and illumination.

Abstract

We present a method for the real-time transfer of facial expressions
from an actor in a source video to an actor in a target video, thus
enabling the ad-hoc control of the facial expressions of the target
actor. The novelty of our approach lies in the transfer and photo-
realistic re-rendering of facial deformations and detail into the target
video in a way that the newly-synthesized expressions are virtually
indistinguishable from a real video. To achieve this, we accurately
capture the facial performances of the source and target subjects
in real-time using a commodity RGB-D sensor. For each frame,
we jointly fit a parametric model for identity, expression, and skin
reflectance to the input color and depth data, and also reconstruct the
scene lighting. For expression transfer, we compute the difference
between the source and target expressions in parameter space, and
modify the target parameters to match the source expressions. A
major challenge is the convincing re-rendering of the synthesized
target face into the corresponding video stream. This requires a
careful consideration of the lighting and shading design, which both
must correspond to the real-world environment. We demonstrate our
method in a live setup, where we modify a video conference feed
such that the facial expressions of a different person (e.g., translator)
are matched in real-time.

CR Categories: I.3.7 [Computer Graphics]: Digitization and Im-
age Capture—Applications I.4.8 [Image Processing and Computer
Vision]: Scene Analysis—Range Data

Keywords: faces, real-time, depth camera, expression transfer

1 Introduction

In recent years, several approaches have been proposed for facial
expression re-targeting, aimed at transferring facial expressions cap-
tured from a real subject to a virtual CG avatar [Weise et al. 2011;
Li et al. 2013; Cao et al. 2014a]. Facial reenactment goes one step
further by transferring the captured source expressions to a different,
real actor, such that the new video shows the target actor reenacting
the source expressions photo-realistically. Reenactment is a far more
challenging task than expression re-targeting as even the slightest
errors in transferred expressions and appearance and slight inconsis-
tencies with the surrounding video will be noticed by a human user.
Most methods for facial reenactment proposed so far work offline
and only few of those produce results that are close to photo-realistic
[Dale et al. 2011; Garrido et al. 2014].

In this paper, we propose an end-to-end approach for real-time facial
reenactment at previously unseen visual realism. We believe that
in particular the real-time capability paves the way for a variety
of new applications that were previously impossible. Imagine a
multilingual video-conferencing setup in which the video of one
participant could be altered in real time to photo-realistically reenact
the facial expression and mouth motion of a real-time translator. Or
imagine another setting in which you could reenact a professionally
captured video of somebody in business attire with a new real-
time face capture of yourself sitting in casual clothing on your
sofa. Application scenarios reach even further as photo-realistic
reenactment enables the real-time manipulation of facial expression
and motion in videos while making it challenging to detect that the
video input is spoofed.

In order to achieve this goal, we need to solve a variety of challeng-
ing algorithmic problems under real-time constraints. We start by
capturing the identity of the actor in terms of geometry and skin
albedo maps; i.e., we obtain a personalized model of the actor. We
then capture facial expressions of a source actor and a target actor
using a commodity RGB-D camera (Asus Xtion Pro) for each sub-
ject. The ultimate goal is to map expressions from the source to the
target actor, in real time, and in a photo-realistic fashion. Note that
our focus is on the modification of the target face; however, we want
to keep non-face regions in the target video unchanged.
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Real-time Face Tracking and Reconstruction Our first contri-
bution is a new real-time algorithm to reconstruct high-quality facial
performance of each actor in real time from an RGB-D stream cap-
tured in a general environment with largely Lambertian surfaces and
smoothly varying illumination. Our method uses a parametric face
model that spans a PCA space of facial identities, face poses, and cor-
responding skin albedo. This model, which is learned from real face
scans, serves us as a statistical prior and an intermediate representa-
tion to later enable photo-realistic re-rendering of the entire face. At
runtime, we fit this representation to the RGB-D video in real time
using a new analysis-through-synthesis approach, thus minimizing
the difference between model and RGB-D video. To this end, we
introduce a new objective function which is jointly optimized in the
unknown head pose, face identity parameters, facial expression pa-
rameters, and face albedo values, as well as the incident illumination
in the scene. Our energy function comprises several data terms that
measure the alignment of the model to captured depth, the alignment
to sparsely-tracked face features, as well as the similarity of rendered
and captured surface appearance under the estimated lighting. Note
that we fundamentally differ from other RGB and RGB-D tracking
techniques [Weise et al. 2011; Li et al. 2013; Cao et al. 2014a], as
we aim to manipulate real-world video (rather than virtual avatars)
and as we optimize for (dense) photo-consistency between the RGB
video and the synthesized output stream. In order to enable the mini-
mization of our objective in real time, we tailor a new GPU-based
data-parallel Gauss-Newton optimizer. The challenge in our setup is
the efficient data-parallel optimization of a non-linear energy with a
highly-dense Jacobian. To this end, we reformulate the optimization
by Zollhöfer et al. [2014] in order to minimize the amount of global
memory access required to apply the Jacobian matrix.

In practice, our system has two distinct stages. Immediately after
recording commences, identity, head pose, initial coarse skin albedo,
and incident illumination are jointly estimated in an interactive
calibration stage that is only a few seconds long. Once our system is
initialized, a personalized identity and fine-grained albedo map is
available. In the second stage, we fix the identity and albedo, and
continuously estimate the head pose, facial expression, and incident
lighting for all subsequent frames at real-time rates.

Expression Transfer and Photo-realistic Re-rendering Our
second contribution is a new technique to map facial expressions
from source to target actors, and a method to photo-realistically
render the modified target. The core idea behind the facial expres-
sion transfer is an efficient mapping between pose spaces under the
consideration of transfer biases due to person-specific idiosyncrasies.
For the final visualization of the target, we require face rendering
to be photo-realistic under the estimated target illumination, and
we need to seamlessly overlay face regions of the original target
video with the synthesized face. To this end, we use a data-parallel
blending strategy based on Laplacian pyramids. In addition, we
propose an efficient way to synthesize the appearance of the mouth
cavity and teeth in real time. To achieve this, we augment the face
with a parametric teeth model and a cavity texture which is deformed
along with the underlying shape template.

In our results, we demonstrate our reenactment approach in a live
setup, where facial expressions are transferred from a source to a
target actor in real time, with each subject captured by a separate
RGB-D sensor (see Fig. 1). We show a variety of sequences with
different subjects, challenging head motions, and expressions that
are realistically reenacted on target facial performances in real time.
In addition, we provide a quantitative evaluation of our face tracking
method, showing how we achieve photo-realism by using dense
RGB-D tracking to fit the shape identity (in contrast to sparse RGB
feature tracking). Beyond facial reenactment, we also demonstrate
the benefits of photo-realistic face capture and re-rendering, as we

can easily modify facial appearances in real-time. For instance, we
show how one would look like under different lighting, with different
face albedo to simulate make-up, or after simply transferring facial
characteristics from another person (e.g., growing a beard).

2 Related Work

2.1 Facial Performance Capture

Traditional facial performance capture for film and game produc-
tions achieves high-quality results using controlled studio conditions
[Borshukov et al. 2003; Pighin and Lewis 2006]. A typical strategy
to obtain robust features is the use of invisible makeup [Williams
1990] or facial makers [Guenter et al. 1998; Bickel et al. 2007;
Huang et al. 2011]. Another option is to capture high-quality multi-
view data from calibrated camera arrays [Bradley et al. 2010; Beeler
et al. 2011; Valgaerts et al. 2012; Fyffe et al. 2014]. Dynamic ac-
tive 3D scanners, for instance based on structured light projectors,
also provide high-quality data which has been used to capture facial
performances [Zhang et al. 2004; Wang et al. 2004; Weise et al.
2009]. Under controlled lighting conditions and the consideration of
photometric cues, it is even possible to reconstruct fine-scale detail
at the level of skin pores [Alexander et al. 2009; Wilson et al. 2010].

Monocular fitting to RGB-D data from a depth camera by non-rigid
mesh deformation was shown in [Chen et al. 2013], but neither photo-
realistic nor extremely detailed reconstruction is feasible. Recently,
monocular off-line methods were proposed that fit a parametric
blend shape [Garrido et al. 2013] or multi-linear face model [Shi
et al. 2014] to RGB video; both approaches extract fine-scale detail
via lighting and albedo estimation from video, followed by shading-
based shape refinement.

While these methods provide impressive results, they are unsuited
for consumer-level applications, such as facial reenactment in video
telephony, which is the main motivating scenario of our work.

2.2 Face Re-targeting and Facial Animation

Many lightweight face tracking methods obtain 2D landmarks from
RGB video and fit a parametric face model to match the tracked
positions. A prominent example is active appearance models (AAM)
[Cootes et al. 2001] which are used to determine the parameters of
a 3D PCA model while only using 2D features [Xiao et al. 2004].
Another popular representation is the blend shape model [Pighin
et al. 1998; Lewis and Anjyo 2010] which embeds pose variation in
a low-dimensional PCA space; blend shapes can be constrained by
image feature points [Chuang and Bregler 2002; Chai et al. 2003].
The key advantage of these approaches is that they work on un-
constrained RGB input. Unfortunately, retrieving accurate shape
identities is either challenging or computationally expensive. An
alternative research direction is based on regressing parameters of
statistical facial models, enabling face tracking using only RGB [Cao
et al. 2013; Cao et al. 2014a] input. As these methods run at high
real-time rates, even on mobile hardware, they focus on animating
virtual avatars rather than photo-realistic rendering or detailed shape
acquisition.

Fitting face templates directly to multi-view or dense RGB-D input
enables facial reconstructions to reflect more skin detail [Valgaerts
et al. 2012; Suwajanakorn et al. 2014]; however, these methods are
relatively slow and limited to offline applications. Real-time perfor-
mance on dense RGB-D input has recently been achieved by tracking
a personalized blend shape model [Weise et al. 2011; Li et al. 2013;
Bouaziz et al. 2013; Hsieh et al. 2015], or by the deformation of a
face template mesh in an as-rigid-as-possible framework [Zollhöfer
et al. 2014]. The results of these methods are quite impressive, as
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they typically have ways to augment the low-dimensional face tem-
plate with fine-scale detail; however, they only show re-targeting
results for hand-modeled or cartoon-like characters. In this paper,
we focus on the photo-realistic capture and re-rendering of facial
templates, as our goal is the expression transfer between real ac-
tors. The main difference in our tracking pipeline is a new analysis-
through-synthesis approach whose objective is the minimization of
the photometric re-rendering error.

2.3 Face Replacement in Video

One type of face replacement techniques uses a morphable 3D model
as an underlying face representation that parameterizes identity, fa-
cial expressions, and other properties, such as visemes or face texture
[Blanz and Vetter 1999; Blanz et al. 2003; Blanz et al. 2004; Vla-
sic et al. 2005]. These systems can produce accurate 3D textured
meshes and can establish a one-to-one expression mapping between
source and target actor, thereby simplifying and speeding up expres-
sion transfer. Morphable models are either generated by learning
a detailed 3D multi-linear model from example data spanning a
large variety of identities and expressions [Vlasic et al. 2005], or
by purposely building a person-specific blend shape model from
scans of an actor using specialized hardware [Eisert and Girod 1998;
Alexander et al. 2009; Weise et al. 2011]. The morphable model
based face replacement technique of Dale et al. [2011] could be
used for similar purposes as ours to replace the face region of a
target video with a new performance. However, their approach is
neither automatic, nor real-time, and only works if the source and
target actor are the same person, and have comparable head poses in
the source and target recordings. Our method, on the other hand, is
fully automatic and tracks, transfers and renders facial expressions
in real-time between different individuals for a large variety of head
poses and facial performances.

Another line of research for synthesizing novel facial expressions
finds similarities in head pose and facial expression between two
videos solely based on image information. These image-based meth-
ods track the face using optical flow [Li et al. 2012] or a sparse set of
2D facial features [Saragih et al. 2011b], and often include an image
matching step to look up similar expressions in a database of facial
images [Kemelmacher-Shlizerman et al. 2010], or a short sequence
of arbitrary source performances [Garrido et al. 2014]. Many image-
based face replacement systems do not allow much head motion and
are limited in their ability to rendering facial dynamics, especially of
the mouth region. Moreover, most approaches cannot handle light-
ing changes, such that substantial differences in pose and appearance
may produce unrealistic composites or blending artifacts. In this pa-
per, we demonstrate stable tracking and face replacement results for
substantial head motion and because we model environment lighting
explicitly we also succeed under changing illumination. If the task
is to create a new facial animation, additional temporal coherence
constraints must be embedded in the objective to minimize possible
in-between jumps along the sequence [Kemelmacher-Shlizerman
et al. 2011]. Expression mapping [Liu et al. 2001] transfers a target
expression to a neutral source face, but does not preserve the target
head motion and illumination, and has problems inside the mouth
region, where teeth are not visible. In this paper, we generate a
convincingly rendered inner mouth region by using a textured 3D
tooth proxy that is rigged to the tracked blend shape model and
warping an image of the mouth cavity according to tracked mouth
features.

Our approach is related to the recent virtual dubbing method by
Garrido et al. [2015] who re-render the face of an actor in video such
that it matches a new audio track. The method uses a combination of
model-based monocular tracking, inverse rendering for reflectance,
lighting and detail estimation, and audio-visual expression mapping

Figure 2: Our live facial reenactment pipeline.

between a target and a dubbing actor. This yields highly realistic
results, but processing times are far from real-time.

3 Overview

The key idea of our approach is to use a linear parametric model for
facial identity, expression, and albedo as an intermediate represen-
tation for tracking, transferring and photo-realistically re-rendering
facial expressions in a live video sequence.

Tracking We use a commodity RGB-D sensor to estimate the
parameters of the statistical face model, the head pose, and the
unknown incident illumination in the scene from the input depth
and video data. Our face model is custom built by combining a
morphable model for identity and skin albedo [Blanz and Vetter
1999] with the expression space of a blend shape model [Alexander
et al. 2009; Cao et al. 2014b] (see Sec. 4). The face model is
linear in these three attributes, with a separate set of parameters
encoding identity, expression, and reflectance. In addition to this
parametric prior, we use a lighting model with a Lambertian surface
reflectance assumption to jointly estimate the environment lighting.
This is necessary for robustly matching the face model to the video
stream and for the convincing rendering of the final composite. We
determine the model and lighting parameters by minimizing a non-
linear least squares energy that measures the discrepancy between
the RGB-D input data and the estimated face shape, pose, and albedo
(see Sec. 5). We solve for all unknowns simultaneously using a data
parallel Gauss-Newton solver which is implemented on the GPU for
real-time performance and specifically designed for our objective
energy (see Sec. 6). The tracking stage is summarized in Fig. 3

Reenactment Once we have estimated the model parameters and
the head pose, we can re-render the face back into the underlying
input video stream (see Sec. 5.2) in photo-realistic quality. By modi-
fying the different model parameters on-the-fly, a variety of video
modification applications become feasible, such as re-lighting the
captured subject as if he would appear in a different environment
and augmenting the face reflectance with virtual textures or make-up
(see Sec. 7.5). Yet, the key application of our approach is the transfer
of expressions from one actor to another without changing other
parameters. To this end, we simultaneously capture the performance
of a source and target actor and map the corresponding expression
parameters from the source to the target (see Sec. 7). While the
identity of the target actor is preserved, we can composite the syn-
thesized image on top of the target video stream. An illustration
of this pipeline based on our real-time tracking and fitting stage is
shown in Fig. 2.

4 Synthesis of Facial Imagery

To synthesize and render new human facial imagery, we use a para-
metric 3D face model as an intermediary representation of facial
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identity, expression, and reflectance. This model also acts as a prior
for facial performance capture, rendering it more robust with respect
to noisy and incomplete data. In addition, we model the environment
lighting to estimate the illumination conditions in the video. Both
of these models together allow for a photo-realistic re-rendering of
a person’s face with different expressions under general unknown
illumination.

4.1 Parametric Face Model

As a face prior, we use a linear parametric face modelMgeo (α, δ)
which embeds the vertices vi∈R3, i∈{1, . . . , n} of a generic face
template mesh in a lower-dimensional subspace. The template is
a manifold mesh defined by the set of vertex positions V = [vi]
and corresponding vertex normals N = [ni], with |V |= |N |= n.
The modelMgeo (α, δ) parameterizes the face geometry by means
of a set of dimensions encoding the identity with weights α and
a set of dimensions encoding the facial expression with weights
δ. In addition to the geometric prior, we also use a prior for the
skin albedoMalb (β), which reduces the set of vertex albedos of
the template mesh C = [ci], with ci ∈R3 and |C|=n, to a linear
subspace with weights β. More specifically, our parametric face
model is defined by the following linear combinations

Mgeo (α, δ) = aid + Eid α+ Eexp δ , (1)
Malb (β) = aalb + Ealb β . (2)

Here,Mgeo∈R3n andMalb∈R3n contain the n vertex positions
and vertex albedos, respectively, while the columns of the matrices
Eid,Eexp, andEalb contain the basis vectors of the linear subspaces.
The vectors α, δ and β control the identity, the expression and the
skin albedo of the resulting face, and aid and aalb represent the
mean identity shape in rest and the mean skin albedo. While vi and
ci are defined by a linear combination of basis vectors, the normals
ni can be derived as the cross product of the partial derivatives of
the shape with respect to a (u, v)-parameterization.

Our face model is built once in a pre-computation step. For the
identity and albedo dimensions, we make use of the morphable
model of Blanz and Vetter [1999]. This model has been generated
by non-rigidly deforming a face template to 200 high-quality scans
of different subjects using optical flow and a cylindrical parameteri-
zation. We assume that the distribution of scanned faces is Gaussian,
with a mean shape aid, a mean albedo aalb, and standard deviations
σid and σalb. We use the first 160 principal directions to span
the space of plausible facial shapes with respect to the geometric
embedding and skin reflectance. Facial expressions are added to
the identity model by transferring the displacement fields of two
existing blend shape rigs by means of deformation transfer [Sum-
ner and Popović 2004]. The used blend shapes have been created
manually [Alexander et al. 2009] 1 or by non-rigid registration to
captured scans [Cao et al. 2014b] 2. We parameterize the space of
plausible expressions by 76 blendshapes, which turned out to be a
good trade-off between computational complexity and expressibility.
Note that the identity is parameterized in PCA space with linearly
independent components, while the expressions are represented by
blend shapes that may be overcomplete.

4.2 Illumination Model

To model the illumination, we assume that the lighting is distant and
that the surfaces in the scene are predominantly Lambertian. This
suggests the use of a Sherical Harmonics (SH) basis [Müller 1966]
for a low dimensional representation of the incident illumination.

1Faceware Technologies www.facewaretech.com
2Facewarehouse http://gaps-zju.org/facewarehouse/

Following Ramamoorthi and Hanrahan [2001], the irradiance in a
vertex with normal n and scalar albedo c is represented using b=3
bands of SHs for the incident illumination:

L(γ,n, c) = c ·
b2∑

k=1

γk yk(n) , (3)

with yk being the k-th SH basis function and γ = (γ1, . . . , γb2)
the SH coefficients. Since we only assume distant light sources
and ignore self-shadowing or indirect lighting, the irradiance is
independent of the vertex position and only depends on the vertex
normal and albedo. In our application, we consider the three RGB
channels separately, thus irradiance and albedo are RGB triples. The
above equation then gives rise to 27 SH coefficients (b2 = 9 basis
functions per channel).

4.3 Image Formation Model

In addition to the face and illumination models, we need a represen-
tation for the head pose and the camera projection onto the virtual
image plane. To this end, we anchor the origin and the axis of the
world coordinate frame to the RGB-D sensor and assume the camera
to be calibrated. The model-to-world transformation for the face is
then given by Φ(v)=Rv + t, where R is a 3×3 rotation matrix
and t ∈ R3 a translation vector. R is parameterized using Euler
angles and, together with t, represents the 6-DOF rigid transforma-
tion that maps the vertices of the face between the local coordinates
of our parametric model and the world coordinates. The known
intrinsic camera parameters define a full perspective projection Π
that transforms the world coordinates to image coordinates. With
this, we can define an image formation model S(P), which allows
us to generate synthetic views of virtual faces, given the parameters
P that govern the structure of the complete scene:

P = (α,β, δ,γ,R, t) , (4)

with p= 160+160+76+27+3+3 = 429 being the total amount
of parameters. The image formation model enables the transfer
of facial expressions between different persons, environments and
viewpoints, but in order to manipulate a given video stream of a face,
we first need to determine the parameters P that faithfully reproduce
the observed face in each RGB-D input frame. In the next section,
we will describe how we can optimize for P in real-time. The use of
the estimated parameters for video manipulation will be described
in Sec. 7.

5 Parametric Model Fitting

For the simultaneous estimation of the identity, facial expression,
skin albedo, scene lighting, and head pose, we fit our image for-
mation model S(P) to the input of a commodity RGB-D camera
recording an actor’s performance. Our goal is to obtain the best fit-
ting parameters P that explain the input in real-time. We will do this
using an analysis-through-synthesis approach, where we render the
image formation model for the old set of (potentially non-optimal)
parameters and optimize P further by comparing the rendered im-
age to the captured RGB-D input. This is a hard inverse rendering
problem in the unknowns P and in this section we will describe
how to cast and solve it as a non-linear least squares problem. An
overview of our fitting pipeline is shown in Fig. 3.

5.1 Input Data

The input for our facial performance capture system is provided by
an RGB-D camera and consists of the measured input color sequence
CI and depth sequence XI . We assume that the depth and color
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Figure 3: Overview of our real-time fitting pipeline.

data are aligned in image space and can be indexed by the same
pixel coordinates; i.e., the color and back-projected 3D position in
an integer pixel location p = (i, j) is given by CI(p) ∈ R3 and
XI(p) ∈ R3, respectively. The range sensor implicitly provides
us with a normal field NI , where NI(p) ∈ R3 is obtained as the
cross product of the partial derivatives of XI with respect to the
continuous image coordinates.

5.2 Implementation of the Image Formation Model

The image formation model S(P), which generates a synthetic view
of the virtual face, is implemented by means of the GPU rasterization
pipeline. Apart from efficiency, this allows us to formulate the
problem in terms of 2D image arrays, which is the native data
structure for GPU programs. The rasterizer generates a fragment
per pixel p if a triangle is visible at its location and barycentrically
interpolates the vertex attributes of the underlying triangle. The
output of the rasterizer is the synthetic colorCS , the 3D positionXS
and the normal NS at each pixel p. Note that CS(p), XS(p), and
NS(p) are functions of the unknown parameters P . The rasterizer
also writes out the barycentric coordinates of the pixel and the
indices of the vertices in the covering triangle, which is required to
compute the analytical partial derivatives with respect to P .

From now on, we only consider pixels belonging to the set V of
pixels for which both the input and the synthetic data is valid.

5.3 Energy Formulation

We cast the problem of finding the virtual scene that best explains the
input RGB-D observations as an unconstrained energy minimization
problem in the unknowns P . To this end, we formulate an energy
that can be robustly and efficiently minimized:

E(P)=Eemb(P) +wcolEcol(P) +wlanElan(P) +wregEreg(P) . (5)

The design of the objective takes the quality of the geometric em-
bedding Eemb, the photo-consistency of the re-rendering Ecol, the
reproduction of a sparse set of facial feature points Elan, and the
geometric faithfulness of the synthesized virtual head Ereg into ac-
count. The weights wcol, wlan, and wreg compensate for different
scaling of the objectives. They have been empirically determined
and are fixed for all shown experiments. In the following, we detail
on the different components of the objective function.

Geometry Consistency Metric The reconstructed geometry of
the virtual face should match the observations captured by the input
depth stream. To this end, we define a measure that quantifies the
discrepancy between the rendered synthetic depth map and the input
depth stream:

Eemb(P) = wpointEpoint(P) + wplaneEplane(P) . (6)

The first term minimizes the sum of the projective Euclidean point-
to-point distances for all pixels in the visible set: V

Epoint(P) =
∑
p∈V

‖dpoint(p)‖22 , (7)

with dpoint(p)=XS(p)−XI(p) the difference between the mea-
sured 3D position and the 3D model point. To improve robustness
and convergence, we also use a first-order approximation of the
surface-to-surface distance [Chen and Medioni 1992]. This is partic-
ularly relevant for purely translational motion where a point-to-point
metric alone would fail. To this end, we measure the symmetric
point-to-plane distance from model to input and input to model at
every visible pixel:

Eplane(P)=
∑
p∈V

[
d2plane (NS(p),p) + d2plane (NI(p),p)

]
, (8)

with dplane(n,p)=nT dpoint(p) the distance between the 3D point
XS(p) or XI(p) and the plane defined by the normal n.

Color Consistency Metric In addition to our face model being
metrically faithful, we require that the RGB images synthesized
using our model are photo-consistent with the given input color
images. Therefore, we minimize the difference between the input
RGB image and the rendered view for every pixel p∈V:

Ecol(P) =
∑
p∈V

‖CS(p)− CI(p)‖22 , (9)

where CS(p) is the illuminated (i.e., shaded) color of the synthe-
sized model. The color consistency objective introduces a coupling
between the geometry of our template model, the per vertex skin-
reflectance map and the SH illumination coefficients. It is directly
induced by the used illumination model L.

Feature Similarity Metric The face contains many characteristic
features, which can be tracked more reliably than other points. In
addition to the dense color consistency metric, we therefore track a
set of sparse facial landmarks in the RGB stream using a state-of-the-
art facial feature tracker [Saragih et al. 2011a]. Each detected feature
f j =(uj , vj) is a 2D location in the image domain that corresponds
to a consistent 3D vertex vj in our geometric face model. If F is
the set of detected features in each RGB input frame, we can define
a metric that enforces facial features in the synthesized views to be
close to the detected features:

Elan(P) =
∑
fj∈F

wconf,j ‖f j −Π(Φ(vj)‖22 . (10)

We use 38 manually selected landmark locations concentrated in the
mouth, eye, and nose regions of the face. We prune features based
on their visibility in the last frame and assign a confidence wconf

based on its trustworthiness [Saragih et al. 2011a]. This allows us
to effectively prune wrongly classified features, which are common
under large head rotations (> 30◦).

Regularization Constraints The final component of our objec-
tive is a statistical regularization term that expresses the likelihood
of observing the reconstructed face, and keeps the estimated parame-
ters within a plausible range. Under the assumption of Gaussian dis-
tributed parameters, the interval [−3σ•,i,+3σ•,i] contains ≈ 99%
of the variation in human faces that can be reproduced by our model.
To this end, we constrain the model parameters α, β, and δ to be
statistically small compared to their standard deviation:

Ereg(P) =
160∑
i=1

[(
αi

σid,i

)2

+

(
βi

σalb,i

)2]
+

76∑
i=1

(
δi

σexp,i

)2

. (11)

For the shape and reflectance parameters, σid,i and σalb,i are com-
puted from the 200 high-quality scans (see Sec. 4.1). For the blend
shape parameters, σexp,i is fixed to 1 in our experiments.
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Analytical Partial Derivatives In order to minimize the proposed
energy, we need to compute the analytical derivatives of the syn-
thetic images with respect to the parameters P . This is non-trivial,
since a derivation of the complete transformation chain in the image
formation model is required. To this end, we also emit the barycen-
tric coordinates during rasterizeration at every pixel in addition to
the indices of the vertices of the underlying triangle. Differentiation
of S(P) starts with the evaluation of the face model (Mgeo and
Malb), the transformation to world space via Φ, the illumination of
the model with the lighting model L, and finally the projection to
image space via Π. The high number of involved rendering stages
leads to many applications of the chain rule and results in high
computational costs.

6 Parallel Energy Minimization

The proposed energy E(P) :Rp→R of Eq. (5) is non-linear in the
parameters P , and finding the best set of parameters P∗ amounts to
solving a non-linear least squares problem in the p unknowns:

P∗ = argmin
P

E(P) . (12)

Even at the moderate image resolutions used in this paper (640×480),
our energy gives rise to a considerable amount of residuals: each
visible pixel p∈V contributes with 8 residuals (3 from the point-
to-point term of Eq. (6), 2 from the point-to-plane term of Eq. (8)
and 3 from the color term of Eq. (9)), while the feature term of
Eq. (10) contributes with 2 · 38 residuals and the regularizer of
Eq. (11) with p− 33 residuals. The total number of residuals is thus
m=8|V|+76+p−33, which can equal up to 180K equations for
a close-up frame of the face. To minimize a non-linear objective
with such a high number of residuals in real-time, we propose a
data parallel GPU-based Gauss-Newton solver that leverages the
high computational throughput of modern graphic cards and exploits
smart caching to minimize the number of global memory accesses.

6.1 Core Solver

We minimize the non-linear least-squares energy E(P) in a Gauss-
Newton framework by reformulating it in terms of its residual r :

Rp → Rm, with r(P) = (r1(P), . . . , rm(P))T . If we assume
that we already have an approximate solution Pk, we seek for
an parameter increment ∆P that minimizes the first-order Taylor
expansion of r(P) around Pk. So we approximate

E(Pk + ∆P)≈
∥∥∥r(Pk) + J(Pk)∆P

∥∥∥2
2
, (13)

for the update ∆P , with J(Pk) the m×p Jacobian of r(Pk) in the
current solution. The corresponding normal equations are

JT (Pk)J(Pk)∆P = −JT (Pk)r(Pk) , (14)

and the parameters are updated as Pk+1 =Pk + ∆P . We solve
the normal equations iteratively using a preconditioned conjugate
gradient (PCG) method, thus allowing for efficient parallelization
on the GPU (in contrast to a direct solve). Moreover, the normal
equations need not to be solved until convergence since the PCG
step only appears as the inner loop (analysis) of a Gauss-Newton
iteration. In the outer loop (synthesis), the face is re-rendered and the
Jacobian is recomputed using the updated barycentric coordinates.
We use Jacobi preconditioning, where the inverse of the diagonal
elements of JTJ are computed in the initialization stage of the PCG.

Close in spirit to [Zollhöfer et al. 2014], we speed up convergence by
embedding the energy minimization in a multi-resolution coarse-to-
fine framework. To this end, we successively blur and resample the

Figure 4: Non-zero structure of JT for 20k visible pixels.

input RGB-D sequence using a Gaussian pyramid with 3 levels and
apply the image formation model on the same reduced resolutions.
After finding the optimal set of parameters on the current resolution
level, a prolongation step transfers the solution to the next finer level
to be used as an initialization there.

6.2 Memory Efficient Solution Strategy on the GPU

The normal equations (14) are solved using a novel data-parallel
PCG solver that exploits smart caching to speed up the computation.
The most expensive task in each PCG step is the multiplication of
the system matrix JTJ with the previous descent direction. Pre-
computing JTJ would take O(n3) time in the number of Jacobian
entries and would be too costly for real-time performance, so instead
we apply J and JT in succession. In previous work [Zollhöfer
et al. 2014], the PCG solver is optimized for a sparse Jacobian and
the entries of J are computed on-the-fly in each iteration. For our
problem, on the other hand, J is block-dense because all parameters,
except for β and γ, influence each residual (see Fig. 4). In addition,
we optimize for all unknowns simultaneously and our energy has
a larger number of residuals compared to [Zollhöfer et al. 2014].
Hence, repeatedly recomputing the Jacobian would require signif-
icant read access from global memory, thus significantly affecting
run time performance.

The key idea to adapting the parallel PCG solver to deal with a
dense Jacobian is to write the derivatives of each residual in global
memory, while pre-computing the right-hand side of the system.
Since all derivatives have to be evaluated at least once in this step,
this incurs no computational overhead. We write J , as well as JT ,
to global memory to allow for coalesced memory access later on
when multiplying the Jacobian and its transpose in succession. This
strategy allows us to better leverage texture caches and burst load
of data on modern GPUs. Once the derivatives have been stored in
global memory, the cached data can be reused in each PCG iteration
by a single read operation.

The convergence rate of our data-parallel Gauss-Newton solver for
different types of facial performances is visualized in Fig. 5. These
timings are obtained for an input frame rate of 30 fps with 7 Gauss-
Newton outer iterations and 4 PCG inner iterations. Even for expres-
sive motion, we converge well within a single time step.

6.3 Initialization of Identity and Albedo

As we assume that facial identity and reflectance for an individual re-
main constant during facial performance capture, we do not optimize
for the corresponding parameters on-the-fly. Both are estimated in
an initialization step by running our optimizer on a short control
sequence of the actor turning his head under constant illumination.
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Figure 5: Convergence of the Gauss-Newton solver for different facial performances. The horizontal axis breaks up convergence for each
captured frame (at 30 fps); the vertical axis shows the fitting error. Even for expressive motion, we converge well within a single frame.

In this step, all parameters are optimized and the estimated identity
and reflectance are fixed for subsequent capture. The face does not
need to be in rest for the initialization phase and convergence is
usually achieved between 5 and 10 frames.

For the fixed reflectance, we do not use the values given by the linear
face model, but compute a more accurate skin albedo by building a
skin texture for the face and dividing it by the estimated lighting to
correct for the shading effects. The resolution of this texture is much
higher than the vertex density for improved detail (2048× 2048 in
our experiments) and is generated by combining three camera views
(front, 20◦ left and 20◦ right) using pyramid blending [Adelson et al.
1984]. The final high-resolution albedo map is used for rendering.

7 Facial Reenactment and Applications

The real-time capture of identity, reflectance, facial expression, and
scene lighting, opens the door for a variety of new applications. In
particular, it enables on-the-fly control of an actor in a target video
by transferring the facial expressions from a source actor, while
preserving the target identity, head pose, and scene lighting. Such
face reenactment can, for instance, be used for video-conferencing,
where the facial expression and mouth motion of a participant are
altered photo-realistically and instantly by a real-time translator or
puppeteer behind the scenes. In this section, we will simulate such a
scenario and describe the hardware setup and algorithmic compo-
nents. We will also touch on two special cases of this setup, namely
face re-texturing and re-lighting in a virtual mirror application.

7.1 Live Reenactment Setup

To perform live face reenactment, we built a setup consisting of two
RGB-D cameras, each connected to a computer with a modern graph-
ics card (see Fig. 1). After estimating the identity, reflectance, and
lighting in a calibration step (see Sec. 6.3), the facial performance of
the source and target actor is captured on separate machines. During
tracking, we obtain the rigid motion parameters and the correspond-
ing non-rigid blend shape coefficients for both actors. The blend
shape parameters are transferred from the source to the target ma-
chine over an Ethernet network and applied to the target face model,
while preserving the target head pose and lighting. The modified
face is then rendered and blended into the original target sequence,
and displayed in real-time on the target machine.

7.2 Expression Transfer

We synthesize a new performance for the target actor by applying
the 76 captured blend shape parameters of the source actor to the
personalized target model for each frame of target video. Since the
source and target actor are tracked using the same parametric face
model, the new target shapes can be easily expressed as

Mgeo (αt, δs) = aid + Eid αt + Eexp δs , (15)

Figure 6: Wrinkel-level detail transfer. From left to right: (a) the
input source frame, (b) the rendered target geometry using only the
target albedo map, (c) our transfer result, (d) a re-texturing result.

where αt are the target identity parameters and δs the source ex-
pressions. This transfer does not influence the target identity, nor the
rigid head motion and scene lighting, which are preserved. Since
identity and expression are optimized separately for each actor, the
blend shape activation might be different across individuals. In order
to account for person-specific offsets, we subtract the blendshape
response for the neutral expression [Garrido et al. 2015] prior to
transfer.

After transferring the blend shape parameters, the synthetic target
geometry is rendered back into the original sequence using the target
albedo and estimated target lighting as explained in Sec. 5.2.

7.3 Wrinkel-Level Detail Transfer

Fine-scale transient skin detail, such as wrinkles and folds that
appear and disappear with changing expression, are not part of our
face model, but are important for a realistic re-rendering of the
synthesized face. To include dynamic skin detail in our reenactment
pipeline, we model wrinkles in the image domain and transfer them
from the source to the target actor. We extract the wrinkle pattern of
the source actor by building a Laplacian pyramid [Burt and Adelson
1983] of the input source frame. Since the Laplacian pyramid acts
as a band-pass filter on the image, the finest pyramid level will
contain most of the high-frequency skin detail. We perform the same
decomposition for the rendered target image and copy the source
detail level to the target pyramid using the texture parametrization of
the model. In a final step, the rendered target image is recomposed
using the transferred source detail.

Fig. 6 illustrates our detail transfer strategy, with the source input
frame shown on the left. The second image shows the rendered
target face without detail transfer, while the third image shows the
result obtained using our pyramid scheme. The last image shows
a re-texturing result with transferred detail obtained by editing the
albedo map (see Sec. 7.5). We also refer to the supplementary video
for an illustration of the synthesized dynamic detail.

7.4 Final Compositing

Our face model only represents the skin surface and does not include
the eyes, teeth, and mouth cavity. While we preserve the eye motion
of the underlying video, we need to re-generate the teeth and inner
mouth region photo-realistically to match the new target expressions.
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Figure 7: Final compositing: we render the modified target geom-
etry with the target albedo under target lighting and transfer skin
detail. After rendering a person-specific teeth proxy and warping a
static mouth cavity image, all three layers are overlaid on top of the
original target frame and blended using a frequency based strategy.

This is done in a compositing step, where we combine the rendered
face with a teeth and inner mouth layer before blending the results
in the final reenactment video (see Fig. 7).

7.4.1 Teeth Proxy and Mouth Interior

To render the teeth, we use two textured 3D proxies (billboards) for
the upper and lower teeth that are rigged relative to the blend shapes
of our face model and move in accordance with the blend shape
parameters. Their shape is adapted automatically to the identity by
means of anisotropic scaling with respect to a small, fixed number
of vertices. The texture is obtained from a static image of an open
mouth with visible teeth and is kept constant for all actors.

A realistic inner mouth is created by warping a static frame of an
open mouth in image space. The static frame is recorded in the cali-
bration step of Sec. 6.3 and is illustrated in Fig. 7. Warping is based
on tracked 2D landmarks around the mouth and implemented using
generalized barycentric coordinates [Meyer et al. 2002]. The bright-
ness of the rendered teeth and warped mouth interior is adjusted to
the degree of mouth opening for realistic shadowing effects.

7.4.2 Image Compositing

The three image layers, produced by rendering the face and teeth
and warping the inner mouth, need to be combined with the original
background layer and blended into the target video. Compositing is
done by building a Laplacian pyramid of all the image layers (see
also Sec. 7.3) and performing blending on each frequency level sep-
arately. Computing and merging the Laplacian pyramid levels can
be implemented efficiently using mipmaps on the graphics hardware.
To specify the blending regions, we use binary masks that indicate
where the face or teeth geometry is. These masks are smoothed on
successive pyramid levels to avoid aliasing at layer boundaries, e.g.,
at the transition between the lips, teeth, and inner mouth.

7.5 Re-Texturing and Re-Lighting Applications

Face reenactment exploits the full potential of our real-time system
to instantly change model parameters and produce a realistic live
rendering. The same algorithmic ingredients can also be applied
in lighter variants of this scenario where we do not transfer model
parameters between video streams, but modify the face and scene
attributes for a single actor captured with a single camera. Exam-
ples of such an application are face re-texturing and re-lighting in
a virtual mirror setting, where a user can apply virtual make-up

Figure 8: Re-texturing and re-lighting of a facial performance.

1st Level 2nd Level total
#res Syn Ana #res Syn Ana

S1 33k 10.7ms 13.2ms 132k 1.6ms 7.1ms 32.6ms
S2 18k 11.5ms 8.2ms 72k 1.7ms 4.3ms 25.7ms
S3 22k 11.5ms 9.5ms 85k 1.7ms 5.2ms 27.9ms

Table 1: Run times for three of the sequences of Fig. 5 (S1: Still,
S2: Speaking, S3: Expression). Run time scales with the number of
visible pixels in the face (distance from actor to camera), which is
largest for S1, but all are real-time. ’#res’ is the number of residuals
on that coarse-to-fine level, ’Syn’ the time needed for the synthesis
step and ’Ana’ the time needed for the analysis step. All timings are
average per-frame values computed over approx. 1000 frames.

or tattoos and readily find out how they look like under different
lighting conditions. This requires to adapt the reflectance map and
illumination parameters on the spot, which can be achieved with the
rendering and compositing components described before. Since we
only modify the skin appearance, the virtual mirror does not require
the synthesis of a new mouth cavity and teeth. An overview of this
application is shown in Fig. 8. We show further examples in the
experimental section and the supplementary video.

8 Results

We evaluate the performance of our tracking and reconstruction
algorithm, and show visual results for facial reenactment and vir-
tual mirror applications. For all our experiments, we use a setup
consisting of an Nvidia GTX980, an Intel Core i7 Processor, and an
Asus Xtion Pro RGB-D sensor that captures RGB-D frames at 30
fps. In order to obtain high-resolution textures, we record color at a
resolution of 1280×1024, and upsample and register depth images
accordingly. Since a face only covers the center of an image, we can
safely crop the input to 640×480. During the evaluation, it turned out
that our approach is insensitive to the choice of parameters. There-
fore, we use the following values in all our experiments: wcol = 20,
wlan = 0.125, wreg = 0.025, wpoint = 2, wplane = 10.

8.1 Real-time Facial Performance Capture

We track several actors in different settings, and show live demon-
strations in the supplementary video. Tracking results for facial
reenactment (see Sec. 8.2) are also shown in Fig. 15. Our approach
first performs a short calibration phase to obtain the model identity
and albedo (see Sec. 6.3). This optimization requires only a few
seconds, after which the tracker continues to optimize expression
and lighting in real time. Visually, the estimated identity resembles
the actor well and the tracked expressions are very close to the input
performance. In the following, we will provide a quantitative analy-
sis and compare our method to state-of-the-art tracking approaches.
Note however, that facial tracking is only a subcomponent of our
algorithm.
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Figure 9: Tracking accuracy. Left: the input RGB frame, the tracked
model overlay, the composite and the textured model overlay. Right:
the reconstructed mesh of [Valgaerts et al. 2012], our reconstructed
shape, and the color coded distance between both reconstructions.

Run Time Performance capture runs in real-time, leveraging a
3-level coarse-to-fine hierarchy to speed up convergence. In our
experiments, we found that the finest level does not contribute to
stability and convergence due to the noise in the consumer-level
RGB-D input and the lack of information in the already upsampled
depth stream. Hence, we only run our Gauss-Newton solver on the
1st and 2nd coarsest levels. Per-frame timings are presented in Table
1 for different sequences. Major pose and expression changes are
captured on the 1st (coarsest) level using 7 Gauss-Newton iterations
and 4 PCG steps, while parameters are refined on the 2nd level
using a single Gauss-Newton iteration with 4 PCG steps. We also
refer to Fig. 5 for a convergence plot. Preprocessing, including the
2D feature tracker, takes about 6ms, and blending the face with
the background 3.8ms. Detail transfer between two actors for face
reenactment takes about 3ms.

Tracking Accuracy To evaluate the accuracy of the reconstructed
face shape, we capture the facial performance of synthetic input
data with known ground truth geometry. This data was generated
from a sequence of 200 high-quality facial meshes, obtained by the
binocular performance capture method of Valgaerts et al. [2012] 3,
by rendering successive depth maps from the viewpoint of one of
the cameras. By construction, the synthetic depth sequence and
the input RGB video have the same HD resolution and are aligned.
Our results for a representative frame of synthetic input is shown in
Fig. 9. We display the Euclidean distance between our reconstruction
and the ground truth, as computed between the closest vertices on
both meshes and color coded according to the accompanying scale.
We see that our reconstruction closely matches the ground truth
in identity and expression, with an average error of 1.5mm and a
maximum error of 7.9mm over all frames. While we are able to
achieve a high tracking accuracy, our face prior does not span the
complete space of identities. Consequently, there will always be
a residual error in shape for people who are not included in the
training set.

Tracking Stability Fig. 10 demonstrates the tracking stability un-
der rapid lighting changes. All shots are taken from the same se-
quence in which a light source was moved around the actor. Each
shot shows the complete face model rendered back into the video
stream using the albedo map with an inserted logo as well as the
per-frame lighting coefficients. Note that the auto white balance of
the sensor attempts to compensate for these lighting changes. In our
experiments, we found that optimizing for the lighting parameters
during tracking and re-rendering eliminates auto white balancing ar-
tifacts (i.e., the synthesized model will not fit the changed brightness
in the input color).

Fig. 11 shows the robustness of our method under large and fast head
motion. The third and fourth row depict the tracked and textured face
model overlaid on the original sequence. The second row visualizes

3Available at http://gvv.mpi-inf.mpg.de/projects/FaceCap/

Figure 10: Stability under lighting changes.

Figure 11: Stability under head motion. From top to bottom: (a)
2D features of [Saragih et al. 2011a], (b) our 3D landmark vertices,
(c) overlaid face model, (d) textured and overlaid face model. Our
method recovers the head motion, even when the 2D tracker fails.

the 38 tracked landmark vertices from the feature similarity term
of Eq. (10). The projections of these vertices can be compared to
the feature locations of the 2D tracker of Saragih et al. [2011a];
this difference is used in the energy term. Even when the sparse 2D
tracker fails, our method can recover the head pose and expression
due to the dense geometric and photo-consistency terms.

Tracking Energy We evaluate the importance of the data terms
in our objective function; see Fig. 12. To this end, we measure
the residual geometric (middle) and photometric error (bottom) of
the reconstructed pose. Geometric error is computed with respect
to the captured input depth values. Photometric error is measured
as the magnitude of the residual flow field between the input and
re-rendered RGB image. As we can see, relying only on the simple
feature similarity measure (first column) leads to severe misalign-
ments in the z-direction, as well as local photometric drift. While
using a combination of feature similarity and photometric consis-
tency (second column) deals with the drift in the re-rendering, the
geometric error is still large due to the inherent depth ambiguity. In
contrast, relying only on the geometric consistency measure (third
column) removes the depth ambiguity, but is still prone to photomet-
ric drift. Only the combination of both strategies (fourth column)
allows for the high geometric and photometric accuracy required in
the presented real-time facial reenactment scenario.

Comparison to FaceShift We compare the tracking results of our
approach to the official implementation of FaceShift, which is based
on the work of Weise et al. [2011]. Note, this sequence has been
captured with a Microsoft Kinect for Windows sensor. Our method
is still able to produce high-quality results, despite the fact that the
face covers a smaller 2D region in the image due to the camera’s
higher minimum range. In terms of the model-to-depth alignment
error, our approach achieves comparable accuracy (see Fig. 13). For
both approaches, the measured mean error is about 2mm (standard
deviation of 0.4mm). Our approach achieves a much better photo-
metric 2D alignment (measured as the magnitude of the residual
flow field between the re-rendering and the RGB input); see Fig. 13
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Figure 12: Importance of the different data terms in our objective function: tracking accuracy is evaluated in terms of geometric (middle)
and photometric error (bottom). The final reconstructed pose is shown as an overlay on top of the input images (top). Mean and standard
deviations of geometric and photometric error are 6.48mm/4.00mm and 0.73px/0.23px for Feature, 3.26mm/1.16mm and 0.12px/0.03px for
Features+Color, 2.08mm/0.16mm and 0.33px/0.19px for Feature+Depth, 2.26mm/0.27mm and 0.13px/0.03px for Feature+Color+Depth.

(bottom). The photometric error for the FaceShift reconstruction is
evaluated based on an illumination-corrected texture map generated
based on the approach employed in our identity initialization stage.
While the mean error for FaceShift is 0.32px (standard deviation of
0.31px), our approach has a mean error of only 0.07px (standard
deviation of 0.05px). This significant improvement is a direct result
of the proposed dense photometric alignment objective. Specifically
in the context of photo-realistic facial reenactment (e.g., see Fig. 15),
accurate 2D alignment is crucial.

Comparison to Cao et al. 2014 We also compare our method to
the real-time face tracker of Cao et al. [2014a], which tracks 2D
facial landmarks and infers the 3D face shape from a single RGB
video stream. In a first comparison, we evaluate how well both
approaches adapt to the shape identity of an actor. To this end, we
use a high-quality structured light scanner to capture a static scan
of the actor in rest (ground truth). We then capture a short sequence
of the same rest pose with a commodity RGB-D camera for fitting

Figure 13: Comparison to FaceShift. From top to bottom: Recon-
struction overlaid on top of the RGB input, closeups, geometric
alignment error with respect to the input depth maps, and photomet-
ric re-rendering error. Note that while FaceShift [Weise et al. 2011]
is able to obtain a comparable model-to-depth alignment error, our
reconstructions exhibit significantly better 2D alignment.

the shape identity. The results of both methods are shown in Fig. 16,
along with the per-vertex Euclidean distance to the ground truth scan.
The error color scale is the same as in Fig. 9. Overall, our method
approximates the identity of the actor better; however, please note
that Cao et al. [2014a] only use RGB video data as input.

In Fig. 14, we compare our 3D tracking quality to Cao et al. [2014a]
for the input sequence in the top row. Overall, we get more ex-
pressive results and a closer visual fit to the input expression. This
is illustrated by the eyebrow raising in the second column and the
cheek folding in the fourth column. A close visual fit to the input
video is necessary for the applications that we aim for, namely a re-
rendering of the geometry for believable video modification. Again,
we would like to point out that Cao et al. [2014a] only track a sparse
set of features. While less accurate, their method is significantly
faster and runs in real-time even on mobile phones.

Figure 14: State-of-the-art comparison for fitting shape expressions
(i.e., tracking) assuming a fixed shape identity (cf. Fig. 16). From
top to bottom: (a) input color sequence, (b) result of [Cao et al.
2014a] (RGB input), (c) our result (RGB-D input),

8.2 Facial Reenactment

The core of our approach is the live facial reenactment setup as
shown in Fig. 1. Fig. 15 shows examples of three different actor
pairs, with the tracked source and target shown at the top and the
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Figure 16: State-of-the-art comparison for fitting the shape identity
on a neutral expression. From left to right: (a) structured light scan
(ground truth), (b) result of [Cao et al. 2014a], (c) our result. Using
depth data allows us to achieve a better identity fit.

Figure 17: Re-texturing and re-lighting a facial performance.

reenactment at the bottom. As can be seen, we are able to track vari-
ous kinds of expressions resulting in a photo-realistic reenactment.
For the main results of this paper, we refer to the supplementary
video, where we show many examples with a variety of actors.

8.3 Virtual Mirror

Our photo-realistic re-rendering can be also used to create a virtual
mirror, where re-texturing and re-lighting can be applied to a single
RGB-D input stream. For re-texturing, we apply a new texture to
the albedo map, such as a logo, and render the face back into the
video. To re-light the face, we replace the estimated illumination
coefficients by new ones, and render the estimated face geometry
under the new lighting. To avoid high-frequency changes of the
illumination, we only re-light the foreground of the coarsest level of
the Laplacian input pyramid that is used to composite the final output.
Note that the coarsest level of the Laplacian pyramid contains only
the low frequencies of the image.

9 Limitations

A limitation of our method is the assumption of Lambertian sur-
face reflectance and smoothly varying illumination, which is pa-
rameterized by spherical harmonics. These may lead to artifacts in
general environments (e.g., with strong subsurface scattering, high-
frequency lighting changes, or self-shadowing). Note, however, that
our method shares this limitation with related (even off-line) state-
of-the-art approaches (e.g., general shape-from-shading methods or
most monocular face capture methods).

In contrast to the method of Cao et al. [2014a], our real-time tracker
uses dense depth and color information, which allows for tight fitting,
but also leads to a high number of residuals. Currently, this makes it
infeasible for our approach to run on a mobile platform, and requires
a desktop computer to run in real time. Very fast head motion or
extreme head poses, such as a lateral side view, may also lead to
tracking failures. However, as the 2D sparse features can be robustly
tracked without relying on temporal coherency, we can easily recover
from tracking failures, even if previous frames were significantly
misaligned. Unfortunately, darker environments introduce noise to
the RGB stream of commodity depth sensors, such as the Kinect
or PrimeSense, which reduces temporal tracking stability. While
we are able to track extreme mouth expressions, the illusion of the
mouth interior breaks at some point; i.e., if the mouth is opened
too wide, the mouth interior warping and the teeth proxy lead to
unnatural-looking results.

Our facial reenactment transfers expression characteristics from the
source to the target actor. Thus, the reenacted performance may
contain the unique style of the source actor, which is undesired in
some situations. We transfer blend shape parameters one-to-one, but
to account for personal differences in blend shape activation, a better
mapping might be learned from the captured performances. We also
assume that all actors share the same blend shapes, which might not
be true in practice. An adaptation of the blend shapes to the actor [Li
et al. 2013; Bouaziz et al. 2013] may improve tracking results.

Copying wrinkles from people with significantly different skin detail
leads to implausible results. Predicting an actor- and expression-
specific facial detail layer requires a custom-learned detail model.
Unfortunately, this would involve a learning phase for each actor
and expression. Nonetheless, our simple transfer strategy produces
convincing results at real-time rates for a large variety of facial
shapes, especially if the age of the actors is similar.

Maintaining a neutral expression for the target actor is not a hard
constraint, as the non-rigid motion of the target is also tracked.
However, if the synthesized face does not completely cover the input
(i.e., due to strong expression changes), artifacts may appear. This
could be solved using in-painting or by extending the face model
(e.g., adding a neck).

10 Conclusion

We have presented the first real-time approach for photo-realistic
transfer of a source actor’s facial expressions to a target actor. In con-
trast to traditional face tracking methods, our aim is to manipulate
an RGB video stream, rather the animation of a virtual character. To
this end, we have introduced a novel analysis-through-synthesis ap-
proach for face tracking, which maximizes photometric consistency
between the input and re-rendered output video. We are able to solve
the underlying dense optimization problem with a new GPU solver
in real time, thus obtaining the parameters of our face model. The
parameters of the source actor are then mapped in real time to the
target actor, and in combination with the newly-synthesized mouth
interior, we are able to achieve photo-realistic expression transfer.

Overall, we believe that the real-time capability of our method paves
the way for many new applications in the context of virtual reality
and tele-conferencing. We also believe that our method opens up
new possibilities for future research directions; for instance, instead
of tracking a source actor with an RGB-D camera, the target video
could be manipulated based on audio input.
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Figure 15: Results of our reenactment system. The gray arrows show the workflow of our method.
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A List of Mathematical Symbols

Symbol Description

α,β, δ shape, albedo, expression parameters

Mgeo,Malb parametric face model

aid,aalb average shape, albedo

Eid, Ealb, Eexp shape, albedo, expression basis

σid,σalb,σexp std. dev. shape, albedo and expression

n number of vertices

V ,C,N set of vertices, albedos and normals

vi, ci,ni i-th vertex position, albedo and normal

L(γ,n, c) illumination model

γ illumination parameters

yk k-th SH basis function

b number of SH bands

c single channel albedo

Φ(v) model-to-world transformation

R rotation

t translation

P vector of all parameters

p number of all parameters

S(P) image formation model

Π full perspective projection

p integer pixel location

CI , XI , NI input color, position and normal map

CS , XS , NS synthesized color, position and normal map

V set of valid pixels

E(P) objective function

Eemb geometric embedding term

Ecol photo-consistency term

Elan feature term

Ereg regularization term

Epoint point-to-point term

Eplane point-to-plane term

dpoint(p) point-to-point distance

dplane(p) point-to-plane distance

wcol photo-consistency weight

wlan feature weight

wreg regularization weight

wpoint, wplane geometric embedding weights

F set of detected features

f j j-th feature point

wconf,j confidence of j-th feature point

r(P) residual vector

J(P) jacobian matrix

m number of residuals

Pk parameters after the k-th iteration

∆P parameter update
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MÜLLER, C. 1966. Spherical harmonics. Springer.

PIGHIN, F., AND LEWIS, J. 2006. Performance-driven facial
animation. In ACM SIGGRAPH Courses.

PIGHIN, F., HECKER, J., LISCHINSKI, D., SZELISKI, R., AND
SALESIN, D. 1998. Synthesizing realistic facial expressions from
photographs. In Proc. SIGGRAPH, ACM Press/Addison-Wesley
Publishing Co., 75–84.

RAMAMOORTHI, R., AND HANRAHAN, P. 2001. A signal-
processing framework for inverse rendering. In Proc. SIGGRAPH,
ACM, 117–128.

SARAGIH, J. M., LUCEY, S., AND COHN, J. F. 2011. Deformable
model fitting by regularized landmark mean-shift. IJCV 91, 2,
200–215.

SARAGIH, J. M., LUCEY, S., AND COHN, J. F. 2011. Real-time
avatar animation from a single image. In Automatic Face and
Gesture Recognition Workshops, 213–220.

SHI, F., WU, H.-T., TONG, X., AND CHAI, J. 2014. Automatic
acquisition of high-fidelity facial performances using monocular
videos. ACM TOG 33, 6, 222.
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