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We propose FaceVR, a novel image-based method that enables video tele-

conferencing in VR based on self-reenactment. State-of-the-art face track-

ing methods in the VR context are focused on the animation of rigged 3D

avatars (Li et al. 2015; Olszewski et al. 2016). Although they achieve good

tracking performance, the results look cartoonish and not real. In contrast

to these model-based approaches, FaceVR enables VR teleconferencing

using an image-based technique that results in nearly photo-realistic out-

puts. The key component of FaceVR is a robust algorithm to perform real-

time facial motion capture of an actor who is wearing a head-mounted

display (HMD), as well as a new data-driven approach for eye tracking from

monocular videos. Based on reenactment of a prerecorded stereo video

of the person without the HMD, FaceVR incorporates photo-realistic re-

rendering in real time, thus allowing artificial modifications of face and

eye appearances. For instance, we can alter facial expressions or change

gaze directions in the prerecorded target video. In a live setup, we apply

these newly introduced algorithmic components.
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1 INTRODUCTION

Modern head-mounted virtual reality displays, such as the Ocu-

lus Rift or HTC Vive, are able to provide very believable and

highly immersive stereo renderings of virtual environments to a
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user. In particular, for teleconferencing scenarios, where two or

more people at distant locations meet (virtually) face-to-face in

a virtual meeting room, VR displays can provide a far more im-

mersive and connected atmosphere than today’s teleconferencing

systems. These teleconferencing systems usually employ one or

several video cameras at each end to film the participants, whose

video(s) are then shown on one or several standard displays at

the other end. Imagine one could take this to the next level, and

two people in a VR teleconference would each see a photo-realistic

3D rendering of their actual conversational partner, not simply an

avatar, but in their own head-mounted display (HMD). The biggest

obstacle in making this a reality is that while the HMD allows for

very immersive rendering, it is a large physical device which oc-

cludes the majority of the face. In other words, even if each partic-

ipant of a teleconference was recorded with a 3D video rig, whose

feed is streamed to the other end’s HMD, natural conversation is

not possible due to the display occluding most of the face. Re-

cent advancements in VR displays are flanked by great progress

in face performance capture methods. State-of-the-art approaches

enable dense reconstruction of dynamic face geometry in real time,

from RGB-D (Bouaziz et al. 2013; Hsieh et al. 2015; Li et al. 2013;

Siegl et al. 2017; Weise et al. 2011; Zollhöfer et al. 2014) or even

RGB cameras (Cao et al. 2014a, 2015; Thies et al. 2016). A fur-

ther step has been taken by recent RGB-D (Thies et al. 2015) or

RGB-only (Thies et al. 2016) real-time facial re-enactment meth-

ods. In the aforementioned VR teleconferencing setting, a facial

self-reenactment approach can be used to show the unoccluded

face of each participant on the VR display at the other end. Un-

fortunately, the stability of many real-time face capture methods

suffers if the tracked person wears an HMD. Furthermore, existing

reenactment approaches cannot transfer the appearance of eyes,

including blinking and eye gaze—yet exact reproduction of the fa-

cial expression, including the eye region, is crucial for conversa-

tions in VR.

In our work, we therefore propose FaceVR, a new real-time facial

reenactment approach that can transfer facial expressions and re-

alistic eye appearance between a source and a target actor video.

Eye movements are tracked using an infrared camera inside the

HMD, in addition to outside-in cameras tracking the unoccluded

face regions (see Figure 1). Using the self-reenactment described

above, where the target video shows the source actor without the

HMD, the proposed approach, for the first time, enables live VR

teleconferencing. To achieve this goal, we make several algorith-

mic contributions:

—Robust real-time facial performance capture of a person

wearing an HMD, using an outside-in RGB-D camera stream,
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Fig. 1. We present FaceVR, a novel method to perform real-time gaze-aware facial reenactment with a virtual reality device (left). To capture a face, we use

a commodity RGB-D sensor with a frontal view; the eye region is tracked using a new data-driven approach based on data from an IR camera located inside

the HMD. Using the 3D reconstructed face as an intermediate, we can modify and edit the face in the target video, as well as re-render it in a photo-realistic

fashion, allowing for a variety of applications (e.g., removal of VR goggles or gaze re-targeting). In addition, we render our output in stereo (right), which

enables display on stereo devices such as other VR headsets.

with rigid and non-rigid degrees of freedom, and an HMD-

internal camera.

—Real-time eye-gaze tracking with a novel classification ap-

proach based on random ferns, for video streams of an HMD-

internal camera or a regular webcam.

—Facial reenactment with photo-realistic re-rendering of the

face region including the mouth and the eyes, using model-

based shape, appearance, and lighting capture.

—An end-to-end system for facial reenactment in VR, where

the source actor is wearing an HMD and the target actor is

recorded in stereo.

2 RELATED WORK

A variety of methods exist to capture detailed static and dy-

namic face geometry with specialized controlled acquisition setups

(Klehm et al. 2015). Some methods use passive multi-view recon-

struction in a studio setup (Beeler et al. 2011; Borshukov et al. 2003;

Fyffe et al. 2014; Pighin and Lewis 2006), optionally with the sup-

port of invisible makeup (Williams 1990) or face markers (Huang

et al. 2011). Methods using active scanners for capture were also

developed (Weise et al. 2009; Zhang et al. 2004).

Many approaches employ a parametric identity model (Blanz

et al. 2003; Blanz and Vetter 1999), and face expression (Tena et al.

2011). Blend shape models are widely used for representing

the expression space (Lewis et al. 2014; Pighin et al. 1998), and

multi-linear models jointly represent the identity and expression

space (Shi et al. 2014; Vlasic et al. 2005). Newer methods enable

dense face performance capture in more general scenes with

more lightweight setups, such as a stereo camera (Valgaerts et al.

2012), or even just a single RGB video at offline frame rates (Fyffe

et al. 2014; Garrido et al. 2013; Shi et al. 2014; Suwajanakorn

et al. 2014). Garrido et al. (2016) reconstruct a fully controllable

parametric face rig including reflectance and fine scale detail, and

Suwajanakorn et al. (2015) build a modifiable mesh model of the

face. Ichim et al. (2015) reconstruct a game-type 3D face avatar

from static multi-view images and a video sequence of face expres-

sions. More recently, methods reconstructing dense dynamic face

geometry in real time from a single RGB-D camera (Bouaziz et al.

2013; Hsieh et al. 2015; Li et al. 2013; Weise et al. 2011; Zollhöfer

et al. 2014) were proposed. Some of them estimate appearance

and illumination along with geometry (Thies et al. 2015). Using

trained regressors (Cao et al. 2014a, 2015), or parametric model

fitting, dense dynamic face geometry can be reconstructed from

monocular RGB video (Thies et al. 2016). Recently, Cao et al.

(2016) proposed an image-based representation for dynamic 3D

avatars that supports various hairstyles and parts of the upper

body.

The ability to reconstruct face models from monocular input

data enables advanced image and video editing effects. Given a

portrait of a person, a limitless number of appearances can be syn-

thesized (Kemelmacher-Shlizerman 2016) based on face replace-

ment and internet image search. Examples for video editing effects

are re-arranging a database of video frames (Li et al. 2012) such

that mouth motions match a new audio stream (Bregler et al. 1997;

Taylor et al. 2015), face puppetry by reshuffling a database of video

frames (Kemelmacher-Shlizerman et al. 2010), or re-rendering of

an entire captured face model to make mouth motion match a

dubbed audio-track (Garrido et al. 2015). Other approaches replace

the face identity in a target video (Dale et al. 2011; Garrido et al.

2014). When face expressions are modified, it is often necessary

to re-synthesize the mouth and its interior under new or unseen

expressions, for which image-based (Kawai et al. 2014; Thies et al.

2016) or 3D template-based (Thies et al. 2015) methods were exam-

ined. Recently, Suwajanakorn et al. (2017) presented a system that

learns the mapping between audio and lip motion. This learning-

based approach requires a large amount of person specific

training data and control the gaze direction. Vlasic et al. (2005)

describe a model-based approach for expression mapping onto

a target face video, enabling offline reenactment of faces under

controlled recording conditions. While Thies et al. (2015) enable

real-time dense tracking and photo-realistic expression mapping

between source and target RGB-D video, Face2Face (Thies et al.

2016) enables real time between captured RGB video of one actor

and an arbitrary target face video. Under the hood, they use a

real-time tracker capturing dense shape, appearance, and lighting.

Expression mapping and image-based mouth re-rendering enables

photo-realistic target appearance.

None of the aforementioned capture and reenactment ap-

proaches succeeds under strong face occlusion by a VR headset,

nor can combine data from several cameras—inside and outside the

display—and thus cannot realistically re-render the eye region and

appearance, including correct gaze direction. Parts of our method
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are related to image-based eye-gaze estimation approaches.

Commercial systems exist for eye-gaze tracking of the unoccluded

face using special externally placed cameras (e.g., from Tobii1),

or IR cameras placed inside a VR headset (e.g., from Pupil Labs,2

FOVE,3 or SMI4).

Appearance-based methods for gaze detection of the unoc-

cluded face from standard externally placed cameras were also

researched (Sugano et al. 2014; Zhang et al. 2015). Wang et al.

(2016) simultaneously capture 3D eye gaze, head pose, and facial

expressions using a single RGB camera at real-time rates. How-

ever, they solve a different problem from ours; we need to reenact

(i.e., photo-realistically synthesize) the entire eye region appear-

ance in a target video of either a different actor, or the same ac-

tor under different illumination, from input video of an in-display

camera. Parts of our method are related to gaze correction algo-

rithms for teleconferencing where the eyes are re-rendered such

that they look into the webcam, which is typically displaced from

the video display (Criminisi et al. 2003; Kononenko and Lempitsky

2015; Kuster et al. 2012). Again, this setting is different from ours,

as we need to realistically synthesize arbitrary eye region motions

and gazes, and not only correct the gaze direction.

Related to our article is the work by Li et al. (2015), who capture

moving facial geometry while wearing an HMD with a rigidly at-

tached depth sensor. In addition, they measure strain signals with

electronic sensors to estimate facial expressions of regions hidden

by the display. As a result, they obtain the expression coefficients of

the face model which are used to animate virtual avatars. Recently,

Olszewski et al. (2016) proposed an approach for HMD users to

control a digital avatar in real time based on RGB data. The user’s

mouth is captured by a camera that is rigidly attached to the HMD

and a convolutional neural network is used to regress from the

images to the parameters that control a digital avatar. They also

track eyebrow motion based on a camera that is integrated into

the HMD. Both of these approaches only allow one to control a

virtual avatar—rather than a real video—and do not capture the

eye motion. Our approach takes this a step further and captures

facial performance as well as the eye motion of a person using an

HMD. In addition, we allow one to re-render and reenact the face,

mouth, and eye motion of a target stereo stream photo-realistically

and in real time.

Recently, Google presented an approach for HMD removal in

the virtual/mixed reality setting (Frueh et al. 2017), which shows

the great interest in such technology. Instead of removing the en-

tire HMD, they use translucent rendering techniques to reveal the

occluded eye region. They synthesize the eye region similar to our

method, based on the gaze estimation of an HMD-integrated SMI

eye tracker and static face geometry. In contrast, our approach

based on self-reenactment produces a stereo video of the person

completely without the HMD. Furthermore, we present a light-

weight eye tracking approach that is able to track eye motions

and enables us to synthesize new eye motions in a photo-realistic

fashion.

1http://www.tobii.com.
2http://www.pupil-labs.com.
3https://www.getfove.com.
4http://www.smivision.com.

Fig. 2. Hardware setups. A source actor experiences VR wearing an Oculus

DK2 headset (left). We track the source actor using a commodity RGB-D

sensor (front-facing), and augment the HMD with ArUco markers, as well

as an IR webcam in the inside (mounted with Add-on Cups2). The target

actor footage is captured with a lightweight stereo rig, which is composed

of two webcams (right).

3 HARDWARE SETUP

Our approach requires two different inputs. One is called source, it

is the live video feed of the person wearing an HMD. We call the

person in this video source actor. In addition to this live video, we

require a prerecorded stereo video of the person without the HMD.

This stereo video is the target video and the person in that video

is called target actor. Note that for self-reenactment the source and

target actor are the same person. The source actor is wearing an

HMD, and we use a lightweight hardware setup to reconstruct and

track the source actor’s face. To this end, we augment commod-

ity VR goggles with a simple IR webcam on the inside for track-

ing one eye. For tracking the rigid pose and facial expressions, we

use outside-in tracking based on a real-time RGB-D sensor (Asus

Xtion Pro), as well as ArUco AR markers on the front panel of the

HMD.

The tracking and reconstruction pipeline for the target actor dif-

fers. Here, we use a stereo setup which is composed of two com-

modity webcams. This allows for robust face tracking and genera-

tion of 3D video content that we can display on an HMD (which is

the case for VR teleconferencing). We prerecord the target actor’s

video stream, but we modify and replay it in real time. In addition,

we assume that the face in the target video is mostly unoccluded.

3.1 HMD for the Source Actor

To enable VR teleconferencing, we use an Oculus Rift DK2 HMD,

and we integrate a simple IR webcam to track the source actor’s

eyes. The camera is integrated inside the HMD with Oculus Rift

DK2 Monocular Add-on Cups, which allows us to obtain a close-up

camera stream of the right eye (Labs 2016) (see Figure 2, left). Al-

though we present results on this specific setup, our method is ag-

nostic to the HMD, and can be used in combination with any other

VR device, such as the VR Box, Samsung Gear VR, or HTC Vive.

The monocular camera, which we integrate in the DK2, captures

an IR stream of the eye region at a resolution of 640 × 480 pixels

at 120Hz. IR LEDs are used as active light sources such that bright

images can be obtained, and the camera latency is 5.7ms. The cam-

era is mounted on the top of the VR device lens and an IR mirror is

used to get a frontal view of the eye without interfering with the

view on the display. The camera is located close to the lenses (see

Figure 2, left), and captures images IE of the eye at real-time rates.

Note that our prototype has only one internal camera. Thus, we

use the stream of the right eye to infer and reenact the motion of
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Fig. 3. Tracking with and without ArUco Marker stabilization.

both the left and the right eye. This is feasible as long as we can

assume that the focus distance is the same as during calibration—

that is, eye vergence (squinting) does not change. If this assump-

tion does not hold, a second internal camera for the left eye can be

easily integrated into our design. In addition, we augment the DK2

by attaching two ArUco AR markers to the front of the HMD to

robustly track the rigid pose. During face tracking, this allows us

to decouple the rigid head pose from the facial expression param-

eters by introducing additional soft constraints obtained from the

markers. The combination of marker tracking and joint optimiza-

tion allows one to further stabilize the estimates of the rigid head

pose, leading to much higher tracking accuracy (see Figure 3).

Tracking of the source actor. For tracking the source actor in

real time, we use a commodity RGB-D camera. Specifically, we use

an Asus Xtion Pro RGB-D sensor that captures RGB-D frames of

640 × 480 pixels at 30fps (both color and depth). In every frame, the

camera captures an RGB image II and a depth image DI , which

we assume to be spatially and temporally aligned. Both images

are parameterized by pixel coordinates p, and each RGB value is

II (p) ∈ R3. Depth DI (p) ∈ R is re-projected into the same space

as II . Note that we are only considering visible pixel locations

p ∈ P on the face that are not occluded by the HMD.

3.2 3D Stereo Rig for Target Actor Tracking

To obtain a 3D reconstruction of the target actor, we use the binoc-

ular image stream of a lightweight stereo rig. Our setup is com-

posed of two commodity webcams (Logitech HD Pro Webcam

C920), which are rigidly mounted side-by-side and facing the same

direction on a stereo bar (see Figure 2, right). The camera rig cap-

tures a stereo stream of two RGB pairs I
(c )
I , c ∈ {1, 2} at real-time

rates. The two cameras are synchronized up to 33ms and capture

images at the resolution of 800 × 600 pixels at 30Hz. This stereo

content is used to capture the target 3D video content. We cali-

brate the stereo rig intrinsically and extrinsically using standard

OpenCV routines.

4 SYNTHESIS OF FACIAL IMAGERY

We parameterize human heads under general uncontrolled illu-

mination based on a multi-linear face and an analytic illumina-

tion model. A linear Principle Component Analysis (PCA) basis

is used for facial identity (Blanz and Vetter 1999) (geometry and

reflectance) and a blend shape basis for the expression variations

(Alexander et al. 2009; Cao et al. 2014b). This results in the spatial

embedding of the underlying mesh and the associated per-vertex

color information parameterized by linear models, F (T,α , β ,δ )
and C (β,γ ), respectively. The mesh has 106K faces and 53K ver-

tices. Here, T ∈ R4×4 models the rigid head pose, α ∈ R80 the geo-

metric identity, β ∈ R80 the surface reflectance properties,δ ∈ R76

the facial expression, and γ ∈ R3·9 the incident illumination situ-

ation. The 3 × 9 illumination coefficients encode the RGB illumi-

nation based on nine spherical harmonics (SH) (Ramamoorthi and

Hanrahan 2001) basis functions. For convenience, we stack all pa-

rameters of the model in a vector X = (T,α , β ,δ ,γ ) ∈ R269. Syn-

thetic monocular images IS and synthetic stereo pairs (I
(1)
S , I

(2)
S )

of arbitrary virtual heads can be generated by varying the param-

eters X and using the GPU rasterization pipeline to simulate the

image formation process. To this end, we use a standard pinhole

camera model Π (•) under a full perspective projection.

Mouth interior. The parametric head model does not contain

rigged teeth, a tongue, or a mouth interior, as these facial features

are challenging to reconstruct and track from stereo input due

to strong occlusions in the input sequence. Instead, we propose

two different image-based synthesis approaches (see Section 7).

The first is specifically designed for the self-reenactment scenario,

where source and target actor are the same person; here we cross

project the mouth interior from the source to the target video. For

arbitrary source and target actor pairs we improved the retrieval

strategy of Thies et al. (2016). This retrieval approach finds the

best suitable mouth frame in a mouth database, captured in a short

training sequence. In contrast to their approach, our retrieval clus-

ters frames into static and dynamic motion segments leading to

temporally more coherent results. The output of this step is then

composited with the rendered model using alpha blending (see

Section 7).

Eyeball and eyelid. We use a unified image-based strategy to syn-

thesize plausible animated eyes (eyeball and eyelid) that can be

used for photo-realistic facial reenactment in VR applications. This

novel strategy is one of the core components of this work and is

described in more detail in Section 6.

5 PARAMETRIC MODEL FITTING

Our approach uses two different tracking and reconstruction

pipelines for each (source and target) actor, respectively. The

source actor, who is wearing the HMD, is captured using an RGB-

D camera (see Section 3.1). Here, we constrain the face model F
by the visible pixels on the face that are not occluded by the HMD,

as well as the attached ArUco AR markers. The target actor re-

construction, which becomes the corresponding VR target content

that is animated at runtime, is obtained in a preprocess with the

lightweight stereo setup described in Section 3.2. For both track-

ing pipelines, we use an analysis-by-synthesis approach to find the

model parameters X that best explain the input observations. The

underlying inverse rendering problem is tackled based on energy

minimization as proposed in Thies et al. (2015, 2016).

The tracking for the source and the target actor differ in the en-

ergy formulation. The source actor is partly occluded by the HMD;

there we measure dense color and depth alignment based on the

observations of the RGB-D camera. We restrict the dense recon-

struction to the lower part of the face using a predefined visibility
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mask. In addition, we use ArUco markers that are attached to the

HMD to stabilize the rigid pose of the face (see Figure 3).

As the target videos are recorded in stereo, we adapted the en-

ergy formulation to work on binocular RGB data. The results show

that our new stereo tracking approach leads to better tracking ac-

curacy than the monocular tracking of Thies et al. (2016).

For simplicity, we first describe the energy formulation for

tracking the target actor in Section 5.1. Then, we introduce the

objective function for fitting the face model of the source actor in

Section 5.2.

5.1 Target Actor Energy Formulation

To process the stereo video stream of the target actor, we introduce

a model-based stereo reconstruction pipeline that constrains the

face model according to both RGB views per frame. In other words,

we aim to find the optimal model parametersX constrained by the

input stereo pair {I(c )
I }

2
c=1. Our model-based stereo reconstruction

and tracking energy Etarget is a weighted combination of alignment

and regularization constraints:

Etarget (X) =
[
wsteEste (X) +wlanElan (X)

]
︸��������������������������������︷︷��������������������������������︸

alignment

+

[
wregEreg (X)

]
︸������������︷︷������������︸

regularizer

. (1)

We use dense photometric stereo alignment Este and sparse stereo

landmark alignment Elan in combination with a robust regulariza-

tion strategy Ereg. The sub-objectives of Etarget are scaled based on

empirically determined, but constant, weights wste = 100, wlan =

0.0005, and wreg = 0.0025 that balance the relative importance.

Dense photometric stereo alignment. We enforce dense photomet-

ric alignment of the input I
(c )
I and the synthetic imagery I

(c )
S . For

robustness against outliers, we use the �2,1-norm (Ding et al. 2006)

instead of a traditional least-squares formulation:

Este (X) =
2∑

c=1

1

|P (c ) |

∑
p∈P (c )

����I
(c )
S (p) − I

(c )
I (p)

����2
. (2)

Here, P (c ) is the set of visible model pixels p from the cth -camera.

The visible pixels of the model are determined by a forward ren-

dering pass using the old parameters. We normalize based on the

total number of pixels |P (c ) | to guarantee that both views have the

same influence. Note that the two sets of visible pixels are updated

in every optimization step, and for the forward rendering pass we

use the face parameters of the previous iteration or frame.

Sparse stereo landmark alignment. We use sparse point-to-point

alignment constraints in 2D image space that are based on per-

camera sets L (c ) of 66 automatically detected facial landmarks.

The landmarks are obtained by a commercial implementation5 of

the detector of Saragih et al. (2011):

Elan (X) =
2∑

c=1

1

|L (c ) |

∑
(l,k )∈L (c )

wl,k
��l − Π(Fk (T,α , β ,δ )��2

2. (3)

The projected vertices Fk (T,α , β ,δ ) are enforced to be spatially

close to the corresponding detected 2D feature l. Constraints are

5TrueVisionSolutions Pty Ltd.

weighted by the confidence measures wl,k , which are provided by

the sparse facial landmark detector.

Statistical regularization. To avoid implausible face fits, we apply

a statistical regularizer to the unknowns ofX that are based on our

parametric face model. We favor plausible faces where parameters

are close to the mean with respect to their standard deviations σid,

σalb, and σexp:

Ereg (X) =
80∑

i=1

⎡⎢⎢⎢⎢⎣
(
α i

σid,i

)2

+

(
βi

σalb,i

)2⎤⎥⎥⎥⎥⎦ +
76∑

i=1

(
δ i

σexp,i

)2

. (4)

σid andσalb are the standard deviations of the statistical face model,

and σexp is set to a constant value (=1).

5.2 Source Actor Tracking Objective

At runtime, we track the source actor who is wearing the HMD

and is captured by the RGB-D sensor. The tracking objective for

visible pixels that are not occluded by the HMD is similar to the

symmetric point-to-plane tracking energy in Thies et al. (2015). In

addition to this, we introduce rigid stabilization constraints which

are given by the ArUco AR markers in front of the VR headset.

These constraints are crucial to robustly separate the rigid head

motion from the face identity and pose parameters (see Figure 3).

The total energy for tracking the source actor at runtime is given

by the following linear combination of residual terms:

Esource (X) = wrgbErgb (X) +wgeoEgeo (X) +wstaEsta (X) +wregEreg (X). (5)

The first term of this objective Ergb measures the photometric

alignment of the input RGB image II from the camera and the

synthetically generated rendering IS :

Ergb (X) =
1

|P |
∑
p∈P

��IS (p) − II (p)��2. (6)

This color term is defined over all visible pixels P in the bottom

half of the face that are not occluded by the HMD, and we use the

same �2,1-norm as in Equation (2).

In addition to the photometric alignment, we constrain the face

model by the captured range data:

Egeo (X) = wpointEpoint (X) +wplaneEplane (X). (7)

Similar to Ergb, geometric residuals of Egeo are defined over the

same set of visible pixels on the face. The geometric term is com-

posed of two sub-terms, a point-to-point Epoint term, where DI
is the input depth and DS is the rendered depth (both are back-

projected into camera space),

Epoint (X) =
∑
p∈P

��DS (p) − DI (p)��2
2, (8)

as well as a symmetric point-to-plane term

Eplane (X) =
∑
p∈P

[
d2

plane (NS (p), p) + d2
plane (NI (p), p)

]
, (9)

where dplane (n, p) = [(DS (p) − DI (p))T · n], NI (p) is the input

normal, and NS (p) the rendered model normal.

In addition to the constraints given by the raw RGB-D sensor

data, the total energy of the source actor Esource incorporates rigid

ACM Transactions on Graphics, Vol. 37, No. 2, Article 25. Publication date: June 2018.



25:6 • J. Thies et al.

head pose stabilization. This is required, since in our VR scenario

the upper part of the face is occluded by the HMD. Thus, only the

lower part can be tracked and the constraints on the upper part of

the face, which normally stabilize the head pose, are missing. To

stabilize the rigid head pose, we use the two ArUco markers that

are attached to the front of the HMD (see Figure 3).

We first extract a set of eight landmark locations based on the

two markers (four landmarks each). To handle noisy depth input,

we fit two 3D planes to the frame’s point cloud that bound each

marker, respectively. We then use the resulting 3D corner positions

of the markers, and project them into face model space. Using these

stored reference positionsAk ,we establish the rigid head stabiliza-

tion energy Esta:

Esta (X) =
1

|S|
∑

(l,k )∈S

��l − Π(TAk )��2
2. (10)

Here, S defines the correspondences between the detected 2D

landmark positions l in the current frame and the reference po-

sitions Ak . In contrast to the other data terms, Esta depends only

on the rigid transformation T of the face and replaces the facial

landmark term used by Thies et al. (2015). Note that the Saragih

tracker is unable to robustly track landmarks in this scenario

since only the lower part of the face is visible. The statistical

regularization term Ereg is the same as for the target actor (see

Equation (4)).

5.3 Data-Parallel Optimization

We find the optimum of both face tracking objectives X∗source =

argminX Esource (X) and X∗target = argminX Etarget (X) based on

variational energy minimization, leading to an unconstrained non-

linear optimization problem. Due to the robust �2,1-norm used to

enforce photo-metric alignment, we find the minimum based on

a data-parallel Iteratively Re-Weighted Least-Squares (IRLS) solver

(Thies et al. 2016). At the heart of the IRLS solver, a sequence of

non-linear least-squares problems are solved with a GPU-based

Gauss-Newton approach (DeVito et al. 2016; Thies et al. 2015,

2016; Wu et al. 2014; Zollhöfer et al. 2014, 2015) that builds on an

iterative Preconditioned Conjugate Gradient (PCG) solver. The op-

timization is run in a coarse-to-fine fashion using a hierarchy with

three levels. We only run tracking on the two coarser levels using

seven IRLS steps on the coarsest and one on the medium level.

For each IRLS iteration, we perform one Gauss-Newton (GN) step

with four PCG steps. To exploit temporal coherence, we initialize

the face model with the optimization results from the previous

frame. First, this gives us a good estimate of the visible pixel count

in the forward rendering pass, and second, it provides a good

starting point for the GN optimization. Note that we never explic-

itly store JT J , but instead apply the multiplication of the Jacobian

(and its transpose) on-the-fly within every PCG step. Thus, the

compute cost for each PCG iteration becomes more expensive for

multi-view optimization of Etarget; although materialization is still

less efficient, since we only need a small number of PCG iterations.

6 AN IMAGE-BASED EYE AND EYELID MODEL

We propose a novel image-based retrieval approach to track and

synthesize the region of the eyes, including eyeballs and eyelids.

Fig. 4. Left: The eye calibration pattern used to generate training data

for learning our image-based eye-gaze retrieval. In the training phase, we

progress row-by-row in a zigzag order; each grid point is associated with

an eye-gaze direction. Right: To obtain robust results, we perform a hier-

archical classification where classes of the finer level are accumulated into

a smaller set of superclasses.

This approach is later used in all presented applications, espe-

cially in the self-reenactment for video conferencing in VR (see

Section 8.1). We chose an image-based strategy, since it is specific

to a person; it not only models the behavior of the eyeballs but also

captures idiosyncrasies of eyelid movement while enabling photo-

realistic re-rendering. Our approach uses a hierarchical variant of

random ferns (Ozuysal et al. 2010) to robustly track the eye region.

To this end, we propose a novel actor-specific and fully automatic

training stage. In the following, we describe our fully automatic

data generation process, the used classifier, and the optimizations

that are required to achieve fast, robust, and temporally stable gaze

estimates.

6.1 Training Data Generation

To train our image-based eye regression strategy, we require a suf-

ficiently large set of labeled training data. Since manual data an-

notation for every new user is practically infeasible, we propose a

very efficient approach based on a short eye calibration sequence.

During the training process, we display a small circle at differ-

ent positions of a 7 × 5-tiled image grid on the screen in front of

the user (see Figure 4, left). This allows us to capture the space of

all possible look-at points on the display. In addition, we capture

an image of a closed eye for the synthesis of eye blinks. The cap-

tured image dataIn is divided into 36 = 7 × 5 + 1 unique classes ln ,

where every class is associated with a view direction. The ground

truth gaze directions are given by the current position of the dot

on the screen in the training data. During training, the user fo-

cuses on the displayed dot with his eye gaze. We show every dot

for 2 seconds for each location. The data captured in the first

0.4 seconds is rejected to allow the user a grace period to adjust

his eye gaze to new positions. In the remaining 1.6 seconds, we

capture 50 frames which we use to populate the corresponding

class. After that, we proceed to the next class, and move the dot

to the next position. Note that the dot location for a given class

is fixed, but we obtain multiple samples within each class (one for

each frame) from the input data. This procedure progresses row-

by-row in a zigzag order (see Figure 4, left). Finally, we augment the

samples in each class by jittering each captured source image by

±1 pixels, resulting in 9 × 50 training frames per class. Each clus-

ter is also associated with a representative image of the eye region
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obtained from the captured input data. The representative image

of each class is given by the median of the corresponding video

clip, which is later used for the synthesis of new eye movements.

Finally, we add an additional class which represents eye blinks;

this class is obtained by asking the user to close his eyes at the end

of the training phase. This calibration sequence is performed for

both the source and target actor. Since the calibration sequence is

the same for both actors, we obtain one-to-one correspondences

between matching classes across actors. Note that for the source

actor, we directly use the image data that we observe from the

IR camera that is integrated into the HMD as training data. For

the target actor, we compute a normalized view of the eye from

the stereo video input using the texture space of the parametric

face model. These normalized views are later used to re-synthesize

the eye motions of the target actor (see Section 7). As detailed in the

following subsections, we use the data of the source actor to train

an eye-gaze classifier which predicts gaze directions for the source

actor at runtime. Once trained, for a given source input frame,

the classifier identifies cluster representatives from the target

actor eye data. The ability to robustly track the eye direction of

the source actors forms the basis for real-time gaze-aware facial

reenactment—that is, we are able to photo-realistically animate/

modify the eyes of a target actor based on a captured video stream

of the source actor. In the following, we detail our eye tracking

strategy.

6.2 Random Ferns for Eye-Gaze Classification

The training data {In , ln }Nn=1, which is obtained as described in the

previous section, is a set ofN input imagesIn with associated class

labels ln . Each label ln ∈ {cl }Cl=1
belongs to one of C classes cl . In

our case, the images of the eye region are clustered based on gaze

direction. We tackle the associated supervised learning problem by

an ensemble of M random ferns (Ozuysal et al. 2010), where each

fern is based on S features. To this end, we define a sequence of

K = MS binary intensity features F = { fk }Kk=1
, which is split into

M independent subsets Fm of size S . Assuming statistical indepen-

dence and applying Bayes rule, the log-likelihood of the class label

posterior can be written as

log P (cl |F) ∼ log

⎡⎢⎢⎢⎢⎣P (cl ) ·
M∏

m=1

P (Fm |cl )
⎤⎥⎥⎥⎥⎦ . (11)

The class likelihoods P (Fm |cl ) are learned using random ferns.

Each fern performs S binary tests, which discretizes the per-class

feature likelihood into B = 2S bins. At first, we initialize all bins

with one to prevent taking the logarithm of zero. In all experi-

ments, we use M = 800 ferns with S = 5 binary tests. Finally, the

class with the highest posterior probability is chosen as the clas-

sification result. Training takes only around 4.9ms per labeled im-

age, thus training runs in parallel to the calibration sequence. Once

trained, the best class is obtained in less than 1.4ms.

Hierarchical eye-gaze classification. To efficiently handle clas-

sification outliers, we perform eye-gaze classification on a two-

level hierarchy with a fine and a coarse level. The 35 + 1 classes

of the fine level are defined by the grid points of the zigzag cal-

ibration pattern shown in the left side of Figure 4. To create the

coarse level, we merge neighboring classes of the fine level into

Fig. 5. Comparison of a one- (orange) and a two-level (blue) classifier.

Ground truth data is obtained by a test subject looking at a dot that ap-

pears every 80 frames (2.6 seconds) at random (Sample Point); error is mea-

sured in normalized screen space coordinates in [0, 1]2. As shown by the

magnitude of the positional error, the multi-level classifier obtains higher

accuracy.

superclasses. For a set of four adjacent classes (overlap of one),

we obtain one superclass (see Figure 4, right). This leads to a grid

with 25 = 4 × 6 + 1 unique classes (rather than the 35 + 1 classes;

the class for eye blink is kept the same).

During training, we train the two hierarchy levels indepen-

dently. The training data for the fine level is directly provided by

the calibration pattern, and the data for the coarse level is inferred

as described above. At test time, we first run the classifier of the

coarse level which provides one of the superclasses. Then the clas-

sification on the fine level only considers the four classes of the

best matching superclass. The key insight of this coarse-to-fine

classification is to break up the task into easier sub-problems. In

other words, the classification on the coarse level is more robust

and less prone to outliers of the fern predictions since there are

fewer classes to distinguish between. The fine level then comple-

ments the superclass prediction by increasing the accuracy of the

inferred eye-gaze directions. In the end, this multi-level classifier

leads to high accuracy results while minimizing the probability of

noisy outliers. In Figure 5, we show a comparison between a one-

and a two-level classifier. The two-level approach obtains a lower

error (mean 0.217973, std. dev. 0.168094) compared to the one-level

approach (mean 0.24036, std. dev. 0.18595).

Temporal stabilization. We also introduce a temporal stabilizer

that favors the previously retrieved eye-gaze direction. This par-

ticularly helps in the case of small eye motions, where the switch to

a new class would introduce unwanted jitter. To this end, we adjust

the likelihood of a specific class P (cl ) using an empirically deter-

mined temporal prior such that the previously predicted eye-gaze

direction cold is approximately 1.05× more likely than changing

the state and predicting a different class:

P (cl ) =

{
p1 =

1.05
1+1.05 ≈ 0.512, if (cl = cold)

p2 = 1 − p1 ≈ 0.488, else
. (12)

We integrate the temporal stabilization on both levels of the clas-

sification hierarchy. First, we favor the superclass on the coarse

level using the aforementioned temporal prior. If the current and

previous prediction on the coarse level is the same, we apply a sim-

ilar prior to the view within the superclass. Otherwise, we use no

temporal bias on the fine level. This allows fast jumps of the eye

direction, which is crucial for fast saccade motion that pushes the

boundary of the 30Hz temporal resolution of the stereo setup.
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Fig. 6. Building a personalized stereo avatar. From left to right: We first jointly optimize for all unknowns of our parametric face model using a non-

rigid bundle adjustment formulation on the input of three stereo pairs. For tracking, we only optimize for expression, lighting, and rigid pose parameters

constrained by synchronized stereo input; this optimization runs in real time. Next, we train our data-driven eye tracker with data from an eye-calibration

sequence. In addition to eye calibration, we build a database of mouth stereo pairs, which captures the variation of mouth motion. Note that the mouth

database is only required if the mouth cross-projection is not used. As a result, we obtain a tracked stereo target, which is used during live reenactment

(this is the target actor).

7 FACE RIG AND COMPOSITING

Generation of a personalized face rig. At the beginning of each

recording, both of the source and target actor, we compute a

person-specific face rig in a short initialization stage. To this end,

we capture three keyframes with slightly different head rotations

to recover the user’s facial geometry and skin reflectance. Given

the constraints of these three keyframes, we jointly optimize for all

unknowns of our face model F —facial geometry, skin reflectance,

illumination, and expression parameters—using our tracking and

reconstruction approach. This initialization requires a few seconds

to complete; once computed, we maintain a fixed estimate of the

facial geometry and replace the reflectance estimate with a person-

specific illumination-corrected texture map.

In the stereo case, we compute one reflectance texture for each

of the two cameras. This ensures that the two re-projections ex-

actly match the input streams, even if the two used cameras have

slightly different color response functions. In the following steps,

we use this high-quality stereo albedo map for tracking, and we re-

strict the optimizer to only compute the per-frame expression and

illumination parameters. All other unknowns (the facial identity)

are person specific and can remain fixed for a given user.

To track and synthesize new eye motions in both videos (source

and target), we capture the person-specific appearance and motion

of the eyes and eyelids during a short eye-calibration sequence in

the initialization stage as described in Section 6.1.

Reenactment and real-time compositing. At runtime, we use the

reconstructed face model along with its calibration data (eye and

mouth; see Figure 6) to photo-realistically re-render the face of the

target actor. We first modify the facial expression parameters of the

reconstructed face model of the target actor to match the face ex-

pression of the source actor. The expressions are transferred from

source to target using the subspace deformation transfer approach

of Thies et al. (2016).

In the final compositing stage, we render the mouth texture, the

eye textures, and the (potentially modified) 3D face model on top

of the target video using alpha blending. Instead of a static face

texture, we use a per-frame texture based on the current frame of

the target video. This leads to results of higher resolution, since

slight misalignments during the generation of the personalized

face rig have no influence on the final texture quality.

Synthesis of mouth interior. To enable high-quality reenactment

of the mouth in the target video, we propose two different ap-

proaches. The method of choice depends on the specific use-case.

In the self-reenactment scenario, which is the case for HMD re-

moval (see Section 8.1), we directly project the mouth interior of

the source video to the target video. We use Poisson image blend-

ing (Pérez et al. 2003) to seamlessly blend the mouth texture into

the modified target video. This ensures an accurate reproduction

of the correct mouth shape and interior in the case of identical

source and target identity. The Poisson equation is solved on the

GPU using the Jacobi iterative method.

In the case of stereo reenactment, where the source and the

target actor differ, we built a database of target mouth interiors

using a short calibration sequence as proposed by Thies et al.

(2016). In this scenario, cross-projection cannot be applied, as this

would change the identity of the target actor. The mouth motion

database is clustered into static and dynamic motion segments

based on the space-time trajectory of the sparse 2D landmark

detections. We select the mouth frame from the database that

has the most similar spatial distribution of 3D marker positions.

In contrast to Thies et al. (2016), we prefer frames that belong to

the same motion segment as the previously retrieved one. This

leads to higher temporal coherence and hence less visual artifacts.

The retrieved mouth frames do not exactly match the transferred

facial expression. To account for this, Thies et al. (2016) stretch

the texture based on the face parameterization leading to visual

artifacts—that is, unnaturally stretched teeth, which are tempo-

rally unstable. To alleviate this problem, we propose a new strategy

and match the retrieved texture to the outer mouth contour of the

target expression using a saliency preserving image warp (Wang

et al. 2008). For a comparison of both approaches, we refer to

the accompanying video. We use a modified as-rigid-as-possible
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Fig. 7. Comparison in the case of self-reenactment between the two pro-

posed image-based mouth interior synthesis strategies. Cross-projection

(right) leads to more natural and higher quality mouth interiors than the

retrieval-based approach.

regularizer that takes local saliency of image pixels into account.

The idea is to deform the mouth texture predominantly in regions

that will not lead to visual artifacts. Stretching is most noticeable

for the bright teeth, since they are perfectly rigid in the physical

world, while it is harder to detect in the darker regions that corre-

spond to the mouth interior. Therefore, we use pixel intensity as a

proxy to determine local rigidity weights (a high value for bright

and low value for dark pixels) that control the amount of warping

in different texture regions. This is based on the assumption that

the teeth are the predominant white pixels in the mouth region.

As can be seen in Figure 7, the mouth cross-projection ap-

proach leads to more natural results and captures more details such

as the movement of the tongue compared to the retrieval-based

approach.

Synthesis of the eye region. Our eye gaze estimator is specifi-

cally developed to allow a one-to-one correspondence between the

source and the target actor (see Section 6). Thus, after tracking the

source actor, we know the index of the gaze class in the eye data-

base of the target actor. To synthesize temporally coherent and

plausible eye motion, we temporally filter the eye motion by av-

eraging the retrieved view direction of the gaze class in a small

window of frames. Afterward, we use the average view direction

to perform the texture lookup. As described earlier (Section 6.2),

we use an additional class in our eye gaze classification strategy to

represent lid closure. To obtain temporally smoother transitions

between an open and closed eye, we temporally filter the eye tex-

ture based on an exponential average (a factor 0.8 for the retrieved

texture and 0.2 for the last result). Figure 8 shows an exemplary

eye blink transition. Since the eye images of the target live in the

space of the face model texture space, they can directly be used in

the final rendering process.

8 RESULTS

In this section, we evaluate our gaze-aware facial reenactment

approach in detail and compare against state-of-the-art tracking

methods. All experiments run on a desktop computer with an

Fig. 8. Eye blinking.Consecutive frames from left to right. The IR input im-

age captured by the camera mounted inside the HMD (top row) is used to

retrieve realistic eye textures (middle row). In the final compositing stage,

the texture is seamlessly blended with the target face (bottom row).

Nvidia GTX1080 and a 3.3GHz Intel Core i7-5820K processor. For

tracking the source and target actor, we use our hardware setup as

described in Section 3. Our approach is robust to the specific choice

of parameters, and we use a fixed parameter set in all experiments.

For stereo tracking, we set the following weights in our energy for-

mulation: wste = 100.0, wlan = 0.0005, wreg = 0.0025. Our RGB-D

tracking approach uses wrgb = 100.0, wgeo = 10000.0, wsta = 1.0,

and wreg = 0.0025.

As our main result, we demonstrate self-reenactment for VR

goggles removal. In Appendix A, we also show gaze correction in

monocular live video footage and gaze-aware facial reenactment.

All three applications share a common initialization stage that is

required for the construction of a personalized face and eye/eyelid

model of the users (see Section 7). The source video content is al-

ways captured using the Asus Xtion depth sensor. Depending on

the application, we use our lightweight stereo rig or the RGB-D

sensor to capture the target actor.

8.1 Self-Reenactment for VR Video Conferencing

Our real-time facial reenactment approach can be used to facilitate

natural video chats in virtual reality. The major challenge for video

conferencing in the VR context is that the majority of the face is

occluded by the HMD; therefore, the other person in a VR conver-

sation is unable to see the eye region. Using self-reenactment, the

users can alter both the facial expression and the eye/eyelid motion

of the prerecorded video stream. This virtually removes the HMD

from the face and allows users to appear as themselves in VR with-

out suffering from occlusions due to the HMD (see Figure 9). In

addition, the output video stream mimics the eye motion, which

is crucial since natural eye contact is essential in conversations.

Additionally, we show HMD removal examples with a matching

audio stream in the supplemental video. This shows that the final

result is well aligned with the voice of the source actor.

Although compression is not the main focus of this article, it

is interesting to note that the reenactment results can be easily

transferred over a network with low bandwidth. To transmit the

3D video content at runtime to the other participants in a video

chat, we only have to send the model parameters, as well as the eye

and mouth class indices. The final modified stereo video can be di-

rectly synthesized on the receiver side using our photo-realistic re-

rendering. Given that current video chat software, such as Skype,

still struggles under poor network connections, our approach may

be able to boost visual quality.
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Fig. 9. Self-reenactment for VR video conferences. Our real-time facial

reenactment approach allows one to virtually remove the HMD by driv-

ing a prerecorded target video of the same person. Note that these results

employ the mouth cross-projection strategy to fill in the mouth interior.

Evaluation of face identity estimation. The identity of the tar-

get actor is obtained using our model-based stereo bundle ad-

justment strategy. We compare our identity estimate with the

approach of Thies et al. (2016) (Face2Face) (see Figure 10). As a ref-

erence, we use a high-quality structured light scan of the same per-

son taken with a David 3D scanner. Our approach obtains a better

reconstruction of the identity; especially the chin, nose, and cheek

regions are of higher quality. Note that we estimate the identity by

model-based bundle adjustment over three stereo pairs. Face2Face

uses only the three images of one of the two RGB cameras.

Fig. 10. Accuracy of reconstructed identity. We compare our result against

Face2Face (Thies et al. 2016). Note that our approach obtains a better shape

estimate of the chin, nose, and cheek regions. For reference, we use a struc-

tured light reconstruction from a David 3D scanner. The mean Hausdorff

Distance of Face2Face is 3.751mm (RMSE 4.738mm). Our approach has

a mean distance of 2.672mm (RMSE 3.384mm).

Fig. 11. Stereo alignment. We compare the photometric alignment accu-

racy of our approach to Face2Face (2016). Face2Face only obtains a good

fit to the image captured by the left camera (average error of 0.011), but

the re-projection to the right camera suffers from strong misalignments

(average error of 0.019). In contrast, our stereo tracking method obtains

consistently low errors for both views (average error of 0.011 left and 0.012

right).

Evaluation of face tracking accuracy. In Figure 11, we evaluate

the stereo alignment accuracy of our approach and compare to the

monocular face tracker of Face2Face (Thies et al. 2016). As input,

we use the binocular image stream captured by our custom stereo

setup (see Section 3). We measure the photometric error between

the input frames and the re-projection of the tracked face model.

The tracking of Face2Face is based on the left camera stream, since

this approach uses only monocular input data. Thus, Face2Face

obtains a good fit with respect to the left camera (average error

of 0.011), but the re-projection regarding the right camera suffers

from strong misalignments (average error of 0.019). In contrast,

our stereo tracking approach obtains consistently low errors for

both views (average error of 0.011 left and 0.012 right), since we di-

rectly optimize for the best stereo overlap. For the aforementioned

reenactment applications in VR, it is crucial to obtain high-quality

alignment with respect to both camera streams of the stereo setup.

We evaluate the accuracy of our approach on ground truth data

(see Figure 12). As ground truth, we use high-quality stereo re-

constructions obtained by Valgaerts et al. (2012). To this end, we
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Fig. 12. Ground truth comparison. We evaluate the photometric and geo-

metric accuracy of our stereo tracking approach (RGB Stereo). As ground

truth, we employ the high-quality stereo reconstructions of Valgaerts

et al. (2012). Our approach achieves consistently low photometric and geo-

metric error for both views. We also compare to Thies et al. (2015) (RGB-D

Mono) and Face2Face (2016) (RGB Mono). Both approaches show con-

sistently higher photometric error, since they do not optimize for stereo

alignment. Note that the RGB-D tracker uses the ground truth depth as

input.

Table 1. Tracking Accuracy of Our Approach (RGB Stereo)

Compared to Thies et al. (2015) (RGB-D Mono)

and Face2Face (2016) (RGB Mono)

Photometric Geometric

Left Right Left Right
RGB Mono 0.0130 0.0574 0.2028 0.1994

RGB-D Mono 0.0123 0.0183 0.0031 0.0031

RGB Stereo (Ours) 0.0118 0.0116 0.0046 0.0046

Note: Our approach achieves low photometric and geometric errors for both views
since we directly optimize for stereo alignment.

synthetically generate a high-quality binocular RGB-D stream

from the reference data. Our approach achieves consistently low

photometric and geometric errors. We also compare against the

state-of-the-art face trackers of Thies et al. (2015) (RGB-D Mono)

and Face2Face (Thies et al. 2016) (RGB Mono) on the same dataset.

All three approaches are initialized using model-based RGB-(D)

bundling of three (stereo) frames. The RGB Mono and RGB-D

Mono trackers show consistently higher photometric errors for

the right input stream, since they do not optimize for stereo align-

ment (see also Table 1). Given that Face2Face (Thies et al. 2016)

only uses monocular color input, it suffers from depth ambiguity,

which results in high geometric errors. Due to the wrong depth

estimate, the re-projection to the right camera image does not cor-

rectly fit the input. The RGB-D-based tracking approach of Thies

et al. (2015) resolves this ambiguity and therefore obtains the high-

est depth accuracy. Note, however, that this approach has access to

the ground truth depth data for the sake of this evaluation. Since

Fig. 13. Comparison to the commercial Tobii EyeX eye tracking solution.

The ground truth data is obtained by a test subject looking at a dot on

the screen that appears every 80 frames (2.6 seconds) at random (Sample

Point); error is measured in normalized screen space coordinates in [0, 1]2.

We plot the magnitude of the positional error of Tobii EyeX (orange) and

our approach (blue). Our approach obtains a consistently lower error.

the two cameras have slightly different response functions, the re-

constructed model colors do not match the right image, leading

to high photometric error. Only our model-based stereo tracker

is able to obtain high-accuracy geometric and photometric align-

ment in both views. This is crucial for the creation of 3D stereo

output for VR applications, as demonstrated earlier. Neither of the

two other approaches achieves this goal.

8.2 Evaluation of Eye Tracking Accuracy

We evaluate the accuracy of our monocular eye-gaze classification

strategy on ground truth data and compare to the commercial To-

bii EyeX eye tracker.6 To this end, a test subject looks at a video

sequence of a dot that is displayed at random screen positions for

80 successive frames (2.6 seconds given 30Hz input)—this provides

a ground truth dataset. During this test sequence, we capture the

eye motion using both the Tobii EyeX tracker and our approach.

We measure the per-frame magnitude of the positional 2D error

of Tobii and our approach with respect to the known ground truth

screen positions (see Figure 13). Note that screen positions are nor-

malized to [0, 1]2 before comparison. As can be seen, we obtain

consistently lower errors. On the complete test sequence (more

than 74 seconds), our approach has a mean error of 0.206 (std. dev.

0.178). In contrast, the Tobii EyeX tracker has a higher error of

0.284 (std. dev. 0.245). The high accuracy of our approach is cru-

cial for realistic and convincing eye reenactment results. Note that

the outside-in tracking of Tobii EyeX does not generalize to the

VR context, since both eyes are fully occluded by the HMD. In the

supplemental video we also evaluate the influence of head motion

on the retrieved eye texture. As can be seen in the video sequence,

the head motion has less impact on the eye texture retrieval.

We also compare our reconstructions to the state-of-the-art ap-

proach of Wang et al. (2016) (see Figure 14, left). For the complete

sequence, we refer to the supplemental video. Our reconstructions

are of similar quality in terms of the obtained facial shape and the

retrieved gaze direction. Note that in contrast to Wang et al. (2016),

our approach additionally enables realistic re-rendering of the ac-

tor (see Figure 14, right), which is the foundation for VR goggles

removal and reenactment in virtual reality at the cost of a short

person specific calibration sequence.

6http://www.tobii.com/xperience/.

ACM Transactions on Graphics, Vol. 37, No. 2, Article 25. Publication date: June 2018.

http://www.tobii.com/xperience/


25:12 • J. Thies et al.

Fig. 14. Comparison to Wang et al. (2016). From left to right: RGB input,

output of Wang et al., our Phong rendered output with retrieved eyes, and

final realistic face re-rendering using our approach.

Fig. 15. Perceptual side-by-side comparison for the self-reenactment

scenario.

8.3 Perceptual Evaluation

To quantify the quality of our approach, we perform a side-by-side

ground truth comparison for the self-reenactment scenario (see

Figure 15). To this end, we employ the same sequence as source

and as target. This enables us to measure the color difference be-

tween the real video and the synthesized output. In the VR sce-

nario, the source is wearing an HMD, thus we are only able to

track and transfer the expressions of the lower part of the face. To

measure the loss of information, we evaluate both scenarios, full

reenactment and reenactment of only the lower part of the face. We

refer to the supplemental video for the complete video sequence.

Full facial reenactment results in a mean error of 0.01067 measured

in RGB color space. Due to the lack of eyebrow motion, the reen-

actment of only the lower part of the face has a slightly higher

error of 0.01086.

We also conducted a pilot study with 18 participants (working

in the field of computer graphics) to evaluate the realism of our re-

sults. A variety of different stereoscopic videos were shown. The

first video is a real video of an actor wearing an HMD, followed by

result videos of our approach. The participants were asked to rate

the realism and the impression of sitting face-to-face to a person

(from 1 (very good) to 6 (very bad)). The original video achieved

a score of 1.75 and a score of 2.5625, respectively. The videos cre-

ated with our stereoscopic reenactment method achieved a score

of 2.281 and 2.09. Our approach produces good quality and the

preliminary perceptual evaluation shows that we improved the

Fig. 16. A setup with a rigidly mounted RGB-D camera (Intel Realsense

F200) allows for cross-projection of the mouth independently of the head

rotation.

impression of sitting face-to-face to a person, which is of para-

mount importance for making VR teleconferencing viable.

9 LIMITATIONS

Although FaceVR is able to facilitate a wide range of face appear-

ance manipulations in VR, it is one of the early methods in a new

field. As such, it is a first step and thus constrained by several lim-

itations. While our eye tracking solution provides great accuracy

with little compute cost, it is specifically designed for the VR sce-

nario. In contrast to Wang et al. (2016) our approach is person spe-

cific, but allows us to re-synthesize eye motion photo-realistically.

Since our eye tracking approach is only based on one eye in the VR

device, we correctly capture vergence and squinting; one would

need to add a second IR camera to the HMD, which is a straight-

forward modification. As discussed in Section 7, we only employ

one class for lid closure and apply a simple blending between open

and closed eyes, explicitly modeling in-between states can further

improve the results (Bermano et al. 2015). The cross-projection of

the mouth interior, which is used in the self-reenactment scenario,

requires a similar head rotation in the source and target sequence.

If the head rotations differ too much, noticeable distortions might

occur in the final output. Therefore, we also tested a setup similar

to Li et al. (2015), where the camera is rigidly attached to the HMD

(see Figure 16). Note that the original system of Li et al. is only able

to animate a digital avatar and it does not allow for photo-realistic

gaze-aware self-reenactment of a person. The setup decreases the

ergonomics of the HMD, but ensures a frontal view of the mouth

that can be easily transferred to a front facing virtual stereoscopic

avatar.

The major limitation of our approach is that we cannot mod-

ify the rigid head pose of the target videos. This would require a

reconstruction of the background and the upper body of the ac-

tor including hair and so forth, which we believe is an interesting

research direction.

Our VR face tracking is based on the rigid head pose estimates

and the unoccluded face regions. Unfortunately, the field of view

of the IR camera attached to the inside of the device is not large

enough to cover the entire occluded face region. Thus, we can-

not track most of the upper face except the eyeballs. Here, our

method is complementary to the approach of Li et al. (2015); they

use additional sensor input from electronic strain measurements to

fill in this missing data. The resulting constraints could be easily

included in our face tracking objective; note, however, that their

approach does not enable gaze-aware facial reenactment. In the

context of facial reenactment, we have similar limitations as Thies

et al. (2015) and Face2Face (Thies et al. 2016)—that is, we cannot
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handle occlusions in the target video such as those caused by mi-

crophones or waving hands. We believe that this could be ad-

dressed by computing an explicit foreground-face segmentation;

the work by Saito et al. (2016) already shows promising results to

specifically detect such cases.

10 CONCLUSION

In this work, we have presented FaceVR, a novel approach for real-

time gaze-aware facial reenactment in the context of virtual re-

ality. The key components of FaceVR are robust face reconstruc-

tion and tracking, data-driven eye tracking, and photo-realistic

re-rendering of facial content on stereo displays. Therefore, we

are able to show a variety of exciting applications, especially self-

reenactment for teleconferencing in VR. We believe that this work

is a stepping stone in this new field, demonstrating some of the

possibilities of the upcoming virtual reality technology. In addi-

tion, we are convinced that this is not the end of the line, and we

believe that there will be even more exciting future work targeting

photo-realistic video editing to improve the VR experience, as well

as many other related applications.
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APPENDIX

In this appendix, we show additional use-cases of FaceVR. Besides

self-reenactment for video conferences in VR, FaceVR produces

compelling results for a variety of other applications, such as gaze-

aware facial reenactment, reenactment in virtual reality, and re-

targeting of somebody’s gaze direction in a video conferencing

call.

A.1 Gaze-Aware Facial Reenactment

Our approach enables real-time photo-realistic and gaze-aware fa-

cial reenactment of monocular RGB-D and 3D stereo videos (see

Figures 19, 17 and 18).

In both scenarios, we track the facial expressions of a source ac-

tor using an external Asus Xtion RGB-D sensor, and transfer the

facial expressions—including eye motion—to the video stream of a

target actor. The eye motion is tracked using our eye-gaze classi-

fier based on the data captured by the external camera (monocular

RGB-D reenactment) or the internal IR camera which is integrated

into the HMD (stereo reenactment). We transfer the tracked facial

motion to a RGB-D or stereo target video stream using the pre-

sented facial reenactment approach. The modified eye region is

synthesized using our unified image-based eye and eyelid model

(see the main article for more details). This allows the source ac-

tor to take full control of the face expression and eye gaze of the

target video stream at real-time frame rates. Our approach leads to

plausible reenactment results even for greatly differing head poses

in the target video (see Figure 20).

Fig. 17. Gaze-aware facial reenactment of monocular RGB-D video

streams. We employ our real-time performance capture and eye tracking

approach to modify the facial expressions and eye motion of a target video.

In each sequence, the source actor’s performance (top) is used to drive the

animation of the corresponding target video (bottom). Note that these re-

sults employ the mouth retrieval strategy to fill in the mouth interior.

Fig. 18. Self-reenactment for VR video conferences. Our real-time facial

reenactment approach allows one to virtually remove the HMD by driving

a prerecorded target video of the same person. Note that these results

employ the mouth retrieval strategy to fill in the mouth interior.

A.2 Gaze Correction for Video Conferencing

Video conference calls, such as Skype chats, suffer from a lack of

eye contact between participants due to the discrepancy between

the physical location of the camera and the screen. To address

this common problem, we apply our face tracking and reenact-

ment approach to the task of online gaze correction for monocular

live video footage (see Figure 21). Our goal is the photo-realistic

modification of the eye motion in the input video stream using

our image-based eye and eyelid model. To this end, we densely

track the face of the user, and our eye-gaze classifier provides us

with an estimate of the gaze direction—that is, we determine the

2D screen position where the user is currently looking. Given the

eye tracking result, we modify the look-at point by applying a

delta offset to the gaze direction which corrects for the different
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Fig. 19. Gaze-aware facial reenactment of stereo target video content. We

employ our real-time gaze-aware facial reenactment approach to modify

the facial expressions and eye motion of stereo 3D content. The input (i.e.,

source actor) is captured with a frontal view and an internal IR camera.

With our method, we can drive the facial animation of the stereo output

videos shown below the input—the facial regions in these images are syn-

thetically generated. We employ the mouth retrieval strategy to fill in the

mouth interior. The final results are visualized as anaglyph images on the

right.

Fig. 20. Reenactment results for different rigid head poses of the target

actor. The mouth interior in the frontal view is of highest quality, since the

mouth database consists of front facing mouth textures. Rigid rotations

of the target actor’s face still lead to plausible results with only minor

distortions.

Fig. 21. Gaze correction. A common problem in video chats is the dis-

crepancy between the physical location of the webcam and the screen,

which leads to unnatural eye appearance (left). We use our eye tracking

and retrieval strategy to correct the gaze direction in such a scenario, thus

enabling realistic video conversations with natural eye contact (right).

positions of the camera and screen. Finally, we retrieve a suitable

eye texture that matches the new look-at point and composite it

with the monocular input video stream to produce the final output.

A gaze correction example is shown in Figure 21.

REFERENCES
Oleg Alexander, Mike Rogers, William Lambeth, Matt Chiang, and Paul Debevec.

2009. The digital emily project: Photoreal facial modeling and animation. In Pro-
ceedings of ACM SIGGRAPH 2009 Courses. Article 12, 15 pages.

Thabo Beeler, Fabian Hahn, Derek Bradley, Bernd Bickel, Paul Beardsley, Craig
Gotsman, Robert W. Sumner, and Markus Gross. 2011. High-quality passive facial
performance capture using anchor frames. ACM Trans. Graph. 30, 4, 75:1–75:10.

Amit Bermano, Thabo Beeler, Yeara Kozlov, Derek Bradley, Bernd Bickel, and Markus
Gross. 2015. Detailed spatio-temporal reconstruction of eyelids. ACM Trans.
Graph. 34, 4, Article 44, 11 pages.

Volker Blanz, Curzio Basso, Tomaso Poggio, and Thomas Vetter. 2003. Reanimating
faces in images and video. In Proceedings of EUROGRAPHICS, Vol. 22. 641–650.

Volker Blanz and Thomas Vetter. 1999. A morphable model for the synthesis of 3D
faces. In Proceedings of SIGGRAPH. 187–194.

George Borshukov, Dan Piponi, Oystein Larsen, J. P. Lewis, and Christina Tempelaar-
Lietz. 2003. Universal capture: Image-based facial animation for “The Matrix
Reloaded.” In Proceedings of SIGGRAPH Sketches. 16:1.

Sofien Bouaziz, Yangang Wang, and Mark Pauly. 2013. Online modeling for realtime
facial animation. ACM Trans. Graph. 32, 4, Article 40, 10 pages.

Christoph Bregler, Michele Covell, and Malcolm Slaney. 1997. Video rewrite: Driving
visual speech with audio. In Proceedings of SIGGRAPH. 353–360.

Chen Cao, Derek Bradley, Kun Zhou, and Thabo Beeler. 2015. Real-time high-fidelity
facial performance capture. ACM Trans. Graph. 34, 4, Article 46, 9 pages.

Chen Cao, Qiming Hou, and Kun Zhou. 2014a. Displaced dynamic expression regres-
sion for real-time facial tracking and animation. ACM Trans. Graph. 33, 4, Article
43, 10 pages.

Chen Cao, Yanlin Weng, Shun Zhou, Yiying Tong, and Kun Zhou. 2014b. FaceWare-
house: A 3D facial expression database for visual computing. IEEE Trans. Vis. Com-
put. Graph. 20, 3, 413–425.

Chen Cao, Hongzhi Wu, Yanlin Weng, Tianjia Shao, and Kun Zhou. 2016. Real-time
facial animation with image-based dynamic avatars. ACM Trans. Graph. 35, 4, Ar-
ticle 16.

Antonio Criminisi, Jamie Shotton, Andrew Blake, and Philip H. S. Torr. 2003. Gaze
manipulation for one-to-one teleconferencing. In Proceedings of ICCV.

Kevin Dale, Kalyan Sunkavalli, Micah K. Johnson, Daniel Vlasic, Wojciech Matusik,
and Hanspeter Pfister. 2011. Video face replacement. ACM Trans. Graph. 30, 6,
130:1–130:10.

Zachary DeVito, Michael Mara, Michael Zollhöfer, Gilbert Bernstein, Jonathan Ragan-
Kelley, Christian Theobalt, Pat Hanrahan, Matthew Fisher, and Matthias Nießner.
2016. Opt: A domain specific language for non-linear least squares optimization
in graphics and imaging. arXiv:1604.06525.

Chris H. Q. Ding, Ding Zhou, Xiaofeng He, and Hongyuan Zha. 2006. R1-PCA: Rota-
tional invariant L1-norm principal component analysis for robust subspace fac-
torization. In Proceedings of ICML. ACM, New York, NY, 281–288.

Christian Frueh, Avneesh Sud, and Vivek Kwatra. 2017. Headset removal for virtual
and mixed reality. In Proceedings of ACM SIGGRAPH Talks 2017.

Graham Fyffe, Andrew Jones, Oleg Alexander, Ryosuke Ichikari, and Paul Debevec.
2014. Driving high-resolution facial scans with video performance capture. ACM
Trans. Graph. 34, 1, Article 8, 14 pages. DOI:http://dx.doi.org/10.1145/2638549

ACM Transactions on Graphics, Vol. 37, No. 2, Article 25. Publication date: June 2018.

http://dx.doi.org/10.1145/2638549


FaceVR: Real-Time Gaze-Aware Facial Reenactment in Virtual Reality • 25:15

Pablo Garrido, Levi Valgaerts, Ole Rehmsen, Thorsten Thormaehlen, Patrick Perez,
and Christian Theobalt. 2014. Automatic face reenactment. In Proceedings of CVPR.

Pablo Garrido, Levi Valgaerts, Hamid Sarmadi, Ingmar Steiner, Kiran Varanasi, Patrick
Perez, and Christian Theobalt. 2015. VDub—modifying face video of actors for
plausible visual alignment to a dubbed audio track. In Proceedings of EUROGRAPH-
ICS.

Pablo Garrido, Levi Valgaerts, Chenglei Wu, and Christian Theobalt. 2013. Recon-
structing detailed dynamic face geometry from monocular video. ACM Trans.
Graph. 32, 158:1–158:10.

Pablo Garrido, Michael Zollhöfer, Dan Casas, Levi Valgaerts, Kiran Varanasi, Patrick
Pérez, and Christian Theobalt. 2016. Reconstruction of personalized 3D face rigs
from monocular video. ACM Trans. Graph. 35, 3, 28.

Pei-Lun Hsieh, Chongyang Ma, Jihun Yu, and Hao Li. 2015. Unconstrained realtime
facial performance capture. In Proceedings of CVPR.

Haoda Huang, Jinxiang Chai, Xin Tong, and Hsiang-Tao Wu. 2011. Leveraging motion
capture and 3D scanning for high-fidelity facial performance acquisition. ACM
Trans. Graph. 30, 4, Article 74, 10 pages. DOI:http://dx.doi.org/10.1145/2010324.
1964969

Alexandru Eugen Ichim, Sofien Bouaziz, and Mark Pauly. 2015. Dynamic 3D avatar
creation from hand-held video input. ACM Trans. Graph. 34, 4, Article 45, 14 pages.

Masahide Kawai, Tomoyori Iwao, Daisuke Mima, Akinobu Maejima, and Shigeo
Morishima. 2014. Data-driven speech animation synthesis focusing on realistic
inside of the mouth. J. Inf. Process. 22, 2, 401–409.

Ira Kemelmacher-Shlizerman. 2016. Transfiguring portraits. ACM Trans. Graph. 35, 4,
Article 94, 8 pages.

Ira Kemelmacher-Shlizerman, Aditya Sankar, Eli Shechtman, and Steven M. Seitz.
2010. Being John Malkovich. In Proceedings of ECCV. 341–353.

Oliver Klehm, Fabrice Rousselle, Marios Papas, Derek Bradley, Christophe Hery,
Bernd Bickel, Wojciech Jarosz, and Thabo Beeler. 2015. Recent advances in fa-
cial appearance capture. In Proceedings of EUROGRAPHICS STAR Reports. DOI:
http://dx.doi.org/10.1111/cgf.12594

D. Kononenko and V. Lempitsky. 2015. Learning to look up: Realtime monocular gaze
correction using machine learning. In Proceedings of CVPR. 4667–4675.

Claudia Kuster, Tiberiu Popa, Jean-Charles Bazin, Craig Gotsman, and Markus Gross.
2012. Gaze correction for home video conferencing. ACM Trans. Graph. 31, 6,
164:1–174:6.

Pupil Labs. 2016. Home Page. Retrieved April 4, 2018, from https://pupil-labs.com/
pupil/.

J. P. Lewis, Ken Anjyo, Taehyun Rhee, Mengjie Zhang, Fred Pighin, and Zhigang Deng.
2014. Practice and theory of blendshape facial models. In Proceedings of EURO-
GRAPHICS STAR Reports. 199–218.

Hao Li, Laura Trutoiu, Kyle Olszewski, Lingyu Wei, Tristan Trutna, Pei-Lun Hsieh,
Aaron Nicholls, and Chongyang Ma. 2015. Facial performance sensing head-
mounted display. ACM Trans. Graph. 34, 4, Article 47.

Hao Li, Jihun Yu, Yuting Ye, and Chris Bregler. 2013. Realtime facial animation with
on-the-fly correctives. ACM Trans. Graph. 32, 4, Article 42 .

Kai Li, Feng Xu, Jue Wang, Qionghai Dai, and Yebin Liu. 2012. A data-driven approach
for facial expression synthesis in video. In Proceedings of CVPR. 57–64.

Kyle Olszewski, Joseph J. Lim, Shunsuke Saito, and Hao Li. 2016. High-fidelity facial
and speech animation for VR HMDs. ACM Trans. Graph. 35, 6, Article 221.

Mustafa Ozuysal, Michael Calonder, Vincent Lepetit, and Pascal Fua. 2010. Fast key-
point recognition using random ferns. IEEE Trans. Pattern Anal. Mach. Intell. 32,
3, 448–461.

Patrick Pérez, Michel Gangnet, and Andrew Blake. 2003. Poisson image editing. In
Proceedings of ACM SIGGRAPH. ACM, New York, NY, 313–318.

F. Pighin, J. Hecker, D. Lischinski, R. Szeliski, and D. Salesin. 1998. Synthesizing real-
istic facial expressions from photographs. In Proceedings of SIGGRAPH. 75–84.

F. Pighin and J. P. Lewis. 2006. Performance-driven facial animation. In Proceedings of
ACM SIGGRAPH Courses.

Ravi Ramamoorthi and Pat Hanrahan. 2001. A signal-processing framework for in-
verse rendering. In Proceedings of SIGGRAPH. ACM, New York, NY, 117–128.

Shunsuke Saito, Tianye Li, and Hao Li. 2016. Real-time facial segmentation and per-
formance capture from RGB input. In Proceedings of ECCV.

Jason M. Saragih, Simon Lucey, and Jeffrey F. Cohn. 2011. Deformable model fitting
by regularized landmark mean-shift. Int. J. Comput. Vis. 91, 2, 200–215.

Fuhao Shi, Hsiang-Tao Wu, Xin Tong, and Jinxiang Chai. 2014. Automatic acquisition
of high-fidelity facial performances using monocular videos. ACM Trans. Graph.
33, 6, Article 222.

Christian Siegl, Vanessa Lange, Marc Stamminger, Frank Bauer, and Justus Thies.
2017. FaceForge: Markerless non-rigid face multi-projection mapping. IEEE Trans.
Vis. Comput. Graph.23, 11, 2440–2446.

Y. Sugano, Y. Matsushita, and Y. Sato. 2014. Learning-by-synthesis for appearance-
based 3D gaze estimation. In Proceedings of CVPR. 1821–1828. DOI:http://dx.doi.
org/10.1109/CVPR.2014.235

Supasorn Suwajanakorn, Ira Kemelmacher-Shlizerman, and Steven M. Seitz. 2014. To-
tal moving face reconstruction. In Proceedings of ECCV. 796–812.

Supasorn Suwajanakorn, Steven M. Seitz, and Ira Kemelmacher-Shlizerman. 2015.
What makes Tom Hanks look like Tom Hanks. In Proceedings of ICCV.

Supasorn Suwajanakorn, Steven M. Seitz, and Ira Kemelmacher-Shlizerman. 2017.
Synthesizing Obama: Learning lip sync from audio. ACM Trans. Graph. 36, 4, Ar-
ticle 95, 13 pages. DOI:http://dx.doi.org/10.1145/3072959.3073640

Sarah L. Taylor, Barry-John Theobald, and Iain A. Matthews. 2015. A mouth full of
words: Visually consistent acoustic redubbing. In Proceedings of ICASSP. IEEE, Los
Alamitos, CA, 4904–4908.

J. Rafael Tena, Fernando De la Torre, and Iain Matthews. 2011. Interactive region-
based linear 3D face models. ACM Trans. Graph. 30, 4, Article 76, 10 pages.

Justus Thies, Michael Zollhöfer, Matthias Nießner, Levi Valgaerts, Marc Stamminger,
and Christian Theobalt. 2015. Real-time expression transfer for facial reenact-
ment. ACM Trans. Graph. 34, 6, Article 183, 14 pages.

Justus Thies, M. Zollhöfer, M. Stamminger, C. Theobalt, and M. Nießner. 2016.
Face2Face: Real-time face capture and reenactment of RGB videos. In Proceedings
of CVPR.

Levi Valgaerts, Chenglei Wu, Andrés Bruhn, Hans-Peter Seidel, and Christian
Theobalt. 2012. Lightweight binocular facial performance capture under uncon-
trolled lighting. ACM Trans. Graph. 31, 6, Article 187.

Daniel Vlasic, Matthew Brand, Hanspeter Pfister, and Jovan Popovic. 2005. Face trans-
fer with multilinear models. ACM Trans. Graph. 24, 3, 426–433.

Congyi Wang, Fuhao Shi, Shihong Xia, and Jinxiang Chai. 2016. Realtime 3D eye gaze
animation using a single RGB camera. ACM Trans. Graph. 35, 4, Article 118.

Yu-Shuen Wang, Chiew-Lan Tai, Olga Sorkine, and Tong-Yee Lee. 2008. Optimized
scale-and-stretch for image resizing. ACM Trans. Graph. 27, 5, Article 118.

Thibaut Weise, Sofien Bouaziz, Hao Li, and Mark Pauly. 2011. Realtime performance-
based facial animation. ACM Trans. Graph. 30, 4, Article 77.

Thibaut Weise, Hao Li, Luc J. Van Gool, and Mark Pauly. 2009. Face/Off: Live facial
puppetry. In Proceedings of SCA. 7–16.

Lance Williams. 1990. Performance-driven facial animation. In Proceedings of SIG-
GRAPH. 235–242.

Chenglei Wu, Michael Zollhöfer, Matthias Nießner, Marc Stamminger, Shahram Izadi,
and Christian Theobalt. 2014. Real-time shading-based refinement for consumer
depth cameras. ACM Trans. Graph. 33, 6, Article 200.

Li Zhang, Noah Snavely, Brian Curless, and Steven M. Seitz. 2004. Spacetime faces:
High resolution capture for modeling and animation. ACM Trans. Graph. 23, 3,
548–558.

Xucong Zhang, Yusuke Sugano, Mario Fritz, and Andreas Bulling. 2015. Appearance-
based gaze estimation in the wild. In Proceedings of CVPR.

Michael Zollhöfer, Angela Dai, Matthias Innmann, Chenglei Wu, Marc Stamminger,
Christian Theobalt, and Matthias Nießner. 2015. Shading-based refinement on
volumetric signed distance functions. ACM Trans. Graph. 34, 4. Article 96.

Michael Zollhöfer, Matthias Nießner, Shahram Izadi, Christoph Rehmann, Christo-
pher Zach, Matthew Fisher, Chenglei Wu, Andrew Fitzgibbon, Charles Loop,
Christian Theobalt, and Marc Stamminger. 2014. Real-time non-rigid reconstruc-
tion using an RGB-D camera. ACM Trans. Graph. 33, 4, Article 156.

Received September 2017; revised January 2018; accepted February 2018

ACM Transactions on Graphics, Vol. 37, No. 2, Article 25. Publication date: June 2018.

http://dx.doi.org/10.1145/2010324.1964969
http://dx.doi.org/10.1111/cgf.12594
https://pupil-labs.com/pupil/
http://dx.doi.org/10.1109/CVPR.2014.235
http://dx.doi.org/10.1145/3072959.3073640

