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Fig. 1. Our novel HeadOn approach enables real-time reenactment of upper body motion, head pose, face expression, and eye gaze in human portrait videos.
For synthesis of new photo-realistic video content, we employ a novel video-based rendering approach that builds on top of a fully controllable 3D actor
model. The person-specific model is constructed from a short RGB-D calibration sequence and is driven by a real-time torso and face tracker.

We propose HeadOn, the first real-time source-to-target reenactment ap-

proach for complete human portrait videos that enables transfer of torso and

head motion, face expression, and eye gaze. Given a short RGB-D video of

the target actor, we automatically construct a personalized geometry proxy

that embeds a parametric head, eye, and kinematic torso model. A novel real-

time reenactment algorithm employs this proxy to photo-realistically map

the captured motion from the source actor to the target actor. On top of the

coarse geometric proxy, we propose a video-based rendering technique that

composites the modified target portrait video via view- and pose-dependent

texturing, and creates photo-realistic imagery of the target actor under novel

torso and head poses, facial expressions, and gaze directions. To this end, we

propose a robust tracking of the face and torso of the source actor. We exten-

sively evaluate our approach and show significant improvements in enabling

much greater flexibility in creating realistic reenacted output videos.
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1 INTRODUCTION
Reenactment approaches aim to transfer the motion of a source

actor to an image or video of a target actor. Very recently, facial

reenactment methods have been successfully employed to achieve

highly-realistic manipulations of facial expressions based on com-

modity video data [Averbuch-Elor et al. 2017; Suwajanakorn et al.

2017; Thies et al. 2015, 2016, 2018; Vlasic et al. 2005]. Rather than

animating a virtual, stylized avatar (e.g., as used in video games),

these algorithms replace the face region of a person with a synthetic

re-rendering, or modify the target image/video under guidance of a

3D face model. This enables changing the expression of a target per-

son and creating a manipulated output video that suggests different

content; e.g., a person who is sitting still could appear as if he/she is

talking. Modern reenactment approaches achieve highly believable

results, even in real-time, and have enjoyed wide media coverage

due to the interest in general movie and video editing [Vlasic et al.

2005], teleconferencing [Thies et al. 2018], reactive profile pictures

[Averbuch-Elor et al. 2017], or visual dubbing of foreign language

movies [Garrido et al. 2015].

Even though current facial reenactment results are impressive,

they are still fundamentally limited in the type of manipulations

they enable. For instance, these approaches are only able to modify

facial expressions, whereas the rigid pose of the head, including

its orientation, remains unchanged and does not follow the input

video. Thus, only subtle changes, such as opening the mouth or

adding wrinkles on the forehead are realized, which severely limits
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the applicability to video editing, where the control of the pose of

the target person is also required. Furthermore, without joint modi-

fication of the head pose, the modified facial expressions often seem

out-of-place, since they do not well align with visual pauses in the

body and head motion; as noted by Suwajanakorn et al. [2017] this

significantly restricts the applicability in teleconferencing scenarios.

In this work, we thus go one step further by introducing HeadOn,
a reenactment system for portrait videos recorded with a commod-

ity RGB-D camera. We overcome the limitations of current facial

reenactment methods by not only controlling changes in facial ex-

pression, but also reenacting the rigid position of the head, of the

upper body, and the eye gaze – i.e., the entire person-related content

in a portrait video.

At the core of our approach is the combination of robust and accu-

rate tracking of a deformation proxy with view-dependent texturing

for video-based re-rendering. To achieve this, we propose a new

method to swiftly and automatically construct a personalized head

and torso geometry proxy of a human from a brief RGB-D initializa-

tion sequence. The shape proxy features a personalized parametric

3D model of the complete head that is rigged with blendshapes for

expression control and is integrated with a personalized upper torso

model. A new real-time reenactment algorithm employs this proxy

to photo-realistically map face expression and eye gaze, as well as

head and torso motion of a captured source actor to a target actor. To

this end, we contribute a new photo-realistic video-based rendering

approach that composites the reenacted target portrait video via

view- and pose-dependent texturing and video compositing.

In summary, we contribute the following:

• rapid automatic construction of a personalized geometry

proxy that embeds a parametric human face, eye, full head,

and upper body model,

• a photo-realistic, view-, and pose-dependent texturing and

compositing approach,

• a robust tracking approach of the source actor,

• and real-time source-to-target reenactment of complete hu-

man portrait videos.

2 RELATED WORK
Face reconstruction and reenactment have a long history in com-

puter graphics and vision. We focus on recent approaches based on

lightweight commodity sensors. For an overview of high-quality

techniques that use controlled acquisition setups, we refer to Klehm

et al. [2015]. Recently, a state-of-the-art report on monocular 3d

face reconstruction, tracking and applications has been published

that gives a comprehensive overview of current methods [Zollhöfer

et al. 2018]. In the following we concentrate on the most related

techniques.

Parametric Face Representations. Current state-of-the-art monoc-

ular face tracking and reconstruction approaches heavily rely on

3D parametric identity [Blanz et al. 2003; Blanz and Vetter 1999]

and expression models [Tena et al. 2011] that generalize active ap-

pearance models [Cootes et al. 2001] from 2D to 3D space. Even

combinations of the two have been proposed [Xiao et al. 2004]. Re-

cently, large-scale models in terms of geometry [Booth et al. 2016]

and texture [Zafeiriou et al. 2017] have been constructed based on

an immense amount of training data (10,000 scans). For modeling

facial expressions, the de facto standard in the industry are blend-

shapes [Lewis et al. 2014; Pighin et al. 1998]. Physics-based models

[Ichim et al. 2017; Sifakis et al. 2005] have been proposed in research,

but fitting such complex models to commodity video at real-time

rates is still challenging. Some approaches [Shi et al. 2014a; Vlasic

et al. 2005] jointly represent face identity and expression in a single

multi-linear model. Joint shape and motion models [Li et al. 2017]

have also been learned from a large collection of 4D scan data. Other

approaches [Garrido et al. 2016] reconstruct personalized face rigs,

including reflectance and fine-scale detail from monocular video.

Liang et al. [Liang et al. 2014] reconstruct the identity of a face from

monocular Kinect data using a part-based matching algorithm. They

select face parts (eyes,nose,mouth,cheeks) from a database of faces

that best match the input data. To get an improved and personalized

output they fuse these parts with the Kinect depth data. Ichim et

al. [2015] propose to reconstruct 3D avatars from multi-view images

recorded by a mobile phone and personalize the expression space

using a calibration sequence.

Commodity Face Reconstruction and Tracking. The first commod-

ity face reconstruction approaches that employed lightweight cap-

ture setups, i.e., stereo [Valgaerts et al. 2012], RGB [Fyffe et al. 2014;

Garrido et al. 2013; Shi et al. 2014a; Suwajanakorn et al. 2014, 2015],

or RGB-D [Chen et al. 2013] cameras had slow off-line frame rates

and required up to several minutes to process a single input frame.

These methods either deform a personalized template mesh [Suwa-

janakorn et al. 2014, 2015; Valgaerts et al. 2012], use a 3D template

and expression blendshapes [Fyffe et al. 2014; Garrido et al. 2013],

a template and an underlying generic deformation graph [Chen

et al. 2013], or additionally solve for the parameters of a multi-

linear face model [Shi et al. 2014a]. Suwajanakorn et al. [2014; 2015]

build a modifiable mesh model from internet photo collections. Shi

et al. [2014b] key-frame based bundle adjustment to fit the multi-

linear model. Recently, first methods have appeared that reconstruct

facial performances in real-time from a single commodity RGB-D

camera [Bouaziz et al. 2013; Hsieh et al. 2015; Li et al. 2013; Thies

et al. 2015; Weise et al. 2011; Zollhöfer et al. 2014]. Dense real-time

face reconstruction has also been demonstrated based on monoc-

ular RGB data using trained regressors [Cao et al. 2014a, 2013] or

analysis-by-synthesis [Thies et al. 2016]. Even fine-scale detail can

be recovered at real-time frame rates [Cao et al. 2015].

Performance Driven Facial Animation. Face tracking has been ap-

plied to control virtual avatars in many contexts. First approaches

were based on sparse detected feature points [Chai et al. 2003;

Chuang and Bregler 2002]. Current methods for character anima-

tion [Cao et al. 2015, 2014a, 2013; Weise et al. 2009], teleconferences

[Weise et al. 2011], games [Ichim et al. 2015], and virtual reality

[Li et al. 2015; Olszewski et al. 2016] are based on dense alignment

energies. Olszewski et al. [2016] proposed an approach to control

a digital avatar in real-time based on an HMD-mounted RGB cam-

era. Recently, Hu et al. [2017] reconstructed a stylized 3D avatar,

including hair, from a single image that can be animated and dis-

played in virtual environments. General image-based modeling and

rendering techniques [Gortler et al. 1996; Isaksen et al. 2000; Kang

et al. 2006; Kopf et al. 2013; Wood et al. 2000] enable the creation of
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photo-realistic imagery for many real-world effects that are hard to

render and reconstruct at a sufficiently high quality using current

approaches. In the context of portrait videos, especially fine details,

e.g., single strands of hair or high-quality apparel, are hard to re-

construct. Cao et al. [2016] drive dynamic image-based 3D avatars

based on a real-time face tracker. We go one step further and com-

bine a controllable geometric actor rig with video-based rendering

techniques to enable the real-time animation and synthesis of a

photo-realistic portrait video of a target actor.

Face Reenactment and Replacement. Face reconstruction and track-
ing enabling the manipulation of faces in videos has already found

its way into consumer applications, e.g., Snapchat, Face Changer,

and FaceSwap. Face replacement approaches [Dale et al. 2011; Gar-

rido et al. 2014] swap out the facial region of a target actor and

replace it with the face of a source actor. Face replacement is also

possible in portrait photos crawled from the web [Kemelmacher-

Shlizerman 2016]. In contrast, facial reenactment approaches pre-

serve the identity of the target actor and modify only the facial

expressions. The first approaches worked offline [Vlasic et al. 2005]

and required controlled recording setups. Thies et al. [2015] pro-

posed the first real-time expression mapping approach based on an

RGB-D camera. Follow-up works enabled real-time reenactment of

monocular videos [Thies et al. 2016] and stereo video content [Thies

et al. 2017, 2018]. Visual video dubbing approaches try to match the

mouth motion to a dubbed audio-track [Garrido et al. 2015]. For

mouth interior synthesis, image-based [Kawai et al. 2014; Thies et al.

2016] and template-based [Thies et al. 2015] approaches have been

proposed. Recently, Suwajanakorn et al. [2017] presented an impres-

sive system mapping audio input to plausible lip motion using a

learning-based approach. Even though all of these approaches ob-

tain impressive results, they are fundamentally limited in the types

of enabled manipulations. For instance, the rigid pose of the upper

body and head cannot be modified. One exception is the offline

approach of Elor et al. [Averbuch-Elor et al. 2017] that enables the

creation of reactive profile videos while allowing mapping of small

head motions based on image warping. Our approach goes one step

further by enabling complete reenactment of portrait videos, i.e.,

it enables larger changes of the head pose, control over the torso,

facial reenactment and eye gaze redirection, all at real-time frame

rates, which is of paramount importance for live teleconferencing

scenarios.

Recently, Ma et al. [Ma et al. 2017] proposed a generative frame-

work that allows to synthesize images of people in novel body poses.

They employ a U-Net-like generator that is able to synthesize im-

ages at a resolution of 256 × 256 pixels. While showing nice results,

they only work on single images and not videos; they are not able

to modify facial expressions.

3 METHOD OVERVIEW
Our approach is a synergy between many tailored components. In

this section we give an overview of our approach; before explaining

all components in the following sections. Fig. 2 depicts the pipeline

of the proposed technique. We distinguish between the source actor

and the target actor that has to be reenacted using the expressions

and motions of the source actor. The source actor is tracked in

Fig. 2. Overview of our proposed HeadOn technique. Based on the tracking
of the torso and the face of the source actor, we deform the target actor
mesh. Using this deformed proxy of the target actor’s body, we use our
novel view-dependent texturing to generate a photo-realistic output.

real time using a dense face tracker and a model-to-frame Iterative

Closest Point (ICP) method to track the torso of the person (details

are given in Sec. 6.1). To be able to transfer the expressions and the

rigid motion of the head as well as the torso to the target actor, we

construct a video-based actor rig (see Sec. 4). This actor rig is based

on the combination of the SMPL body model [Loper et al. 2015]

and a parametric face model that is also used to track the facial

expressions of the source actor. Our novel video-based rendering

technique (Sec. 5) allows us to render the target actor rig in a photo-

realistic fashion. Since the face model used to rig the target actor is

the same as the model used to track the source actor, we can directly

copy the expression parameters from the source model to the target

rig. To transfer the body pose, we compute the relative pose between

the tracked face and the torso. Using inverse kinematic we map the

pose to the three involved joints of the SMPL skeleton (head, neck

and torso joint; each having three degrees of freedom). In Sec. 7

and in the supplemental video we demonstrate the effectiveness of

our technique and we compare our results against state-of-the-art

approaches.

4 GENERATING A VIDEO-BASED ACTOR RIG
The first key component of our approach is the fully automatic gen-

eration of a video-based person-specific rig of the target actor from

commodity RGB-D input. The actor rig combines a unified para-

metric representation of the target’s upper body (chest, shoulders,

and neck, no arms) and head geometry with a video-based render-

ing technique that enables the synthesis of photo-realistic portrait

video footage. In this section, we describe the reconstruction of a

fully rigged geometric model of the target actor. This model is then

used as a proxy for video-based re-rendering of the target actor, as

described in Section 5. Fig. 3 shows an overview of the actor rig

generation pipeline.
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Fig. 3. Automatic generation of a fully controllable person-specific target actor rig. We reconstruct a coarse geometric proxy of the torso and head based on
a commodity RGB-D stream. To gain full parametric control of the target actor, we automatically rig the model with facial expression blendshapes and a
kinematic skeleton.

4.1 Input Data Acquisition
As input, we record two short video sequences of the target actor.

The first sequence is a short stream S = {Ct ,Dt }t of color Ct and
depth Dt images of the target actor under different viewing angles.

We assume that the target actor is sitting on a swivel chair and is

initially facing the camera. The target actor then first rotates the

chair to a left profile view (−90◦), followed by a right profile view

(+90◦), while keeping the body and head pose as rigid as possible.

Our starting pose is camera-facing to enable robust facial landmark

detection in the first frame, which is required for later registration

steps. Based on this sequence, we generatemost parts of our actor rig,

except eye gaze control, for which we need an additional recording

of the eye motion. In this sequence, the target actor faces the camera

and looks at a moving dot on a screen directly in front of him. The

actor follows the dot with his eyes without moving the head. This

sequence is used for an eye gaze transfer strategy similar to Thies et

al. [2017; 2018]. The complete recording of these two datasets takes

less than 30 seconds, with approximately 10 seconds for the body

and 20 seconds for the eye data acquisition step. Note, we only

capture images of the person in a single static pose. In particular,

we do not capture neck motions.

4.2 Reconstruction of the Upper Body and Head Proxy
We start with the reconstruction of the geometry of the torso and

head of the target actor, based on the recorded depth images Dt of

the body sequence. First, we estimate the rigid pose of the actor

in each frame, relative to the canonical pose in the first frame, us-

ing projective data association and an iterative closest point (ICP)

[Besl and McKay 1992; Chen and Medioni 1992] strategy based on a

point-to-plane distance metric [Low 2004]. We then fuse all depth

observations Dt in a canonical truncated signed distance (TSDF)

representation [Curless and Levoy 1996; Newcombe et al. 2011].

We are using the open source VoxelHashing [Nießner et al. 2013]

implementation that stores the TSDF in a memory efficient manner

to reconstruct the actor in its canonical pose. In all our experi-

ments, we use a voxel size of 4mm. Finally, we extract a mesh using

Marching Cubes [Lorensen and Cline 1987].

For every tracked frame, we also store the rigid transformation

of the body with respect to the canonical pose, which we need for

view-dependent texturing in a later step. For the eye calibration

sequence, we also estimate the rigid pose for each frame, by fitting

the previously obtained model using a projective point-to-plane ICP.

We need these poses later to enable the re-projection of the eyes in

the synthesis stage.

4.3 Multi-linear Face Model to Scan Fitting
To gain full parametric control of the person-specific actor model,

we automatically rig the reconstructed mesh. To this end, we first

fit a statistical morphable face model to establish correspondence

and then transfer facial blendshapes to the actor model. We use the

multi-linear face model of [Thies et al. 2016] that is based on the

statistical face model of Blanz and Vetter [Blanz and Vetter 1999]

and the blendshapes of [Alexander et al. 2009; Cao et al. 2014b].

Sparse Feature Alignment. The used model-based non-rigid regis-

tration approach is based on a set of sparse detected facial feature

points and a dense geometric alignment term. The sparse discrimi-

native feature points are detected in the frontal view of the body

calibration sequence using the True Vision Solution (TVS) feature

tracker
1
. This landmark tracker is a commercial implementation of

Saragih et al. [2011]. We lift the detected feature points to 3D by

projecting them onto the target proxy mesh using the recovered

rigid pose and the known camera intrinsics. The corresponding 3D

feature points on the template face are selected once in a preprocess-

ing step and stay constant for all experiments. The sparse feature

alignment term is defined as:

Esparse(α ,δ ,R, t) =
∑

(i, j)∈Csparse

���� [Rvi (α ,δ) + t] − pj
����2
2
.

Here, α is the vector containing the Nα = 80 shape coefficients of

the face model and the δ are the Nδ = 76 blendshape expression

weights.We include blendshapes during optimization to compensate

for non-neutral face expression of the actor. R is the rotation and t
the translation of the face model. The pj are the points on the proxy

mesh and the vi (α ,δ) are the corresponding sparse points on the

template mesh that are computed by a linear combination of the

shape and expression basis vectors of the underlying face model.

The tuples (i, j) ∈ Csparse define the set of feature correspondences.

Dense Point-to-Point Alignment. In addition to this sparse feature

alignment term, we employ a dense point-to-point alignment energy

1
http://truevisionsolutions.net/
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based on closest point correspondences:

E
dense

(α ,δ ,R, t) =
∑

(i, j)∈Cdense

���� [Rvi (α ,δ) + t] − pj
����2
2
.

The closest point correspondences C
dense

are computed using the

approximate nearest neighbor (ANN) library
2
. We prune correspon-

dences based on a distance threshold (thres
dist
= 10 cm) and on the

orientation of the normals.

Statistical Regularization. For more robustness, we use a statisti-

cally motivated regularization term that punishes shape and expres-

sion coefficients that deviate too much from the average:

E
regularizer

(α ,δ) =
∑
i

������ αi
σi,shape

������2
2

+
∑
i

������ δi
σi,exp

������2
2

.

Here, σi,shape and σi,exp are the standard deviations of the cor-

responding shape and blendshape dimensions, respectively. The

weighted sum of these three terms is minimized using the optimiza-

tion method of Levenberg-Marquardt.

Automatic Blendshape Transfer. The established set of dense point-
to-point correspondences allows us to build an expression basis for

the person-specific actor rig by transferring the per-vertex blend-

shape displacements of the face model. The basis is only transferred

inside a predefined face mask region, and if the correspondence

lies within a threshold distance (thres
transfer

= 5mm). We use a

feathering operation to smoothly blend out the contribution of the

transferred displacements close to the boundary of the mask. The

feathering is predefined through an alpha mask on the face model.

In addition, we transfer semantic information such as an eye region

and a mouth region mask.

4.4 Parametric Body Model to Scan Fitting
In contrast to facial expressions, which are mostly linear, body mo-

tion is non-linear. To accommodate for this, we use a kinematic

skeleton. We automatically rig the person-specific actor model by

transferring the skinning weights and skeleton of a parametric body

model. In our system, we use the SMPL [Loper et al. 2015] model. We

perform a non-rigid model-based registration to the reconstructed

3D actor model, in a similar fashion as for the face. First, the re-

quired 6 sparse feature points are manually selected. These markers

are used to initialize the shoulder position and the head position.

We then solve for the 10 shape parameters and the joint angles of

the kinematic chain of SMPL. After fitting, we establish a set of

dense correspondences between the two models. Finally, we trans-

fer the skinning weights, as well as the skeleton. We also use the

correspondences to transfer body, neck and head region masks with

corresponding feathering weights. Note, to ensure consistent skin-

ning weights of neighboring vertices, we apply Gaussian smoothing

(5 iterations of 1-ring filtering).

4.5 Tracking Refinement
To improve our results, we refine the per frame tracking information

of the depth sequence based on our final parametric actor rig. To

this end, we use the segmentation of the scan (head and body) and

2
http://www.cs.umd.edu/~mount/ANN/

re-track the calibration sequence independently for both areas. This

step compensates for miss-alignments in the initial tracking due to

slight non-rigid motions of the target during capture. The refined

tracking information leads to an improved quality of the following

video-based rendering step.

5 VIDEO-BASED RENDERING
To synthesize novel portrait videos of the target actor, we apply

video-based rendering with image data from the input video se-

quences and the tracked actor model as geometric proxy. With

video-based rendering it is possible to generate photo-realistic novel

views, in particular, we can correctly synthesize regions for which

it is difficult to reconstruct geometry at a sufficiently high quality,

i.e., hair. To achieve good results, we need good correspondence

between the parametric 3D target actor rig and the video data cap-

tured in the calibration sequence, as they are obtained in our refined

tracking stage (see Sec. 4.5). Based on these correspondences, we

cross-project images from the input sequences to the projection of

the deformed target actor model. We warp separately according

to the torso and head motion, facial expression, and eye motion,

and we take special care for the proper segmentation of fore- and

background. An overview of our view-dependent image synthesis

pipeline is shown in Fig. 4, and the single steps are described in the

following sections.

5.1 Spatio-temporal Foreground Segmentation
First, we generate a foreground/background segmentation (Fig. 5)

using a novel space-time graph cut approach (Fig. 6). We initialize

the segmentation of the given image domain I by re-projecting the

reconstructed and tracked proxy mesh to the calibration images to

obtain an initial maskM. Afterwards, we compute segmentation

masks F , B,Uf , andUb . F and B are confident foreground and

background regions. Between them is an uncertainty region, with

Uf being the probable foreground region, and Ub the probable

background region.

The confident foreground region F = M ⊖ S is computed

by applying an erosion operator M. The confident background

B = I \ (M ⊕ S) is the complement of the dilation ofM. In the re-

maining region of uncertainty, we perform background subtraction

in HSV color space using a previously captured background image.

If the pixel color differs from the background image more than a

threshold, the pixel is assumed to be most likely a foreground pixel

and assigned toUf , otherwise toUb . Finally, we remove outliers

using a number of further erosion and dilation operations.

The resulting regions are used to initialize the GrabCut [Rother

et al. 2004] segmentation algorithm
3
. Performing the segmentation

per frame can result in temporally incoherent segmentation. Thus,

we apply GrabCut to the entire 3D space-time volume of the calibra-

tion sequence. We do so by executing the approach independently

on all x-, y-, and t-slices. The resulting foreground masks are com-

bined in a consolidation step to generate the final foreground alpha

mask (see Fig. 6).

3
https://opencv.org
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Fig. 4. Overview of the view-dependent image synthesis. Starting with a depth image of our target actor (left), we search for the closest frames in the input
sequence, independently for the current head, neck, and body positions. For each such frame, a warp field is computed, and the frames are warped to the
correct position. The warped images are then combined after a background subtraction and composited with the background to achieve a photo-realistic
re-rendering. The shown uv displacements are color coded in the red and green color channel.

Fig. 5. Our temporal background subtraction: the top row shows the input
color images and the middle row the extracted foreground layer using our
space-time graph cut segmentation approach. The bottom row shows a
background replacement example.

5.2 Image Warping
Using the color data observed during the scanning process, we

propose a view-dependent compositing strategy, see also Fig. 4.

Based on the skinning weights, the body is clustered into body

parts, which are textured independently. For each body part, we

first retrieve the color frame of the calibration sequence that best

matches its current modified orientation. We then initialize the

per-view warp fields exploiting the morphed 3D geometry and

cross-projection. To this end, we back-project the model into the

retrieved frame using the tracking information. Then, we compute

a warp field, i.e., a 2D displacement field in image space. The warp

field maps from the re-projection in the retrieved image and the

projection of the current model into screen space. Using a Laplacian

image pyramid, we extend the warp field to the complete image

domain. Finally, we use the extended warp field as described above

Fig. 6. Temporal GrabCut. On the left we show the output of the origi-
nal GrabCut approach and on the right our temporal modified GrabCut.
Our approach combines the segmentation results along the xt , yt and xy
planes. The results on the left show the foreground masks retrieved from the
xy GrabCuts. Our extension of GrabCut to the temporal domain reduces
flickering artifacts, thus, the foreground segmentations in the xt and yt
planes are smoother.

and apply it to the retrieved image frames. Thus, we ensure that

we also re-synthesize regions that are not directly covered by the

proxy mesh, e.g., hair strands, and that we do not render parts of

the mesh where actually the background is visible. The final per-

region warps are blended based on a feathering operation using

the body, neck, and head masks. Note, our image-based warping

technique preserves the details from the calibration sequence since

we select the texture based on the pose of the corresponding body

part. This selection can be seen as a heuristic of finding the texture

with minimal required warping to produce the output frame. Thus,

detailed images with hair strands can be synthesized.

6 REAL-TIME REENACTMENT
Our approach enables real-time reenactment of the head and torso in

portrait videos. This requires real-time tracking of the source actor

and an efficient technique to transfer the deformations from the
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source to the target. To this end, we apply our video-based rendering

approach to re-render the modified target actor in a photo-realistic

fashion. In the following, we detail our real-time upper body and

face tracking approach, and describe the deformation transfer. In

order to ensure real-time reenactment on a single consumer level

computer, all components are required to run in a relatively short

time span.

6.1 Source Tracking
We track the source actor using a monocular stream from a commod-

ity RGB-D sensor (see Fig. 1). In our examples, we use either an Asus

Xtion RGB-D sensor or a StructureIO sensor
4
. Our default option

is the StructureIO sensor, which we set up for real-time streaming

over WiFi in a similar configuration as Dai et al. [2017]. The Struc-

tureIO sensor uses the RGB camera of the iPad, allowing us to record

the RGB stream at higher resolution (1296 × 968) compared to the

640×480 resolution of the Asus Xtion. However, the WiFi streaming

comes also with a latency of a few frames which is noticeable in the

live sequences in the accompanying video, and the overall framerate

is typically 20Hz due to the limited bandwidth.

The tracking of the source actor consists of two major parts, the

face tracking and the upper body tracking as can be seen in Fig. 7.

Fig. 7. Source actor tracking: Top: example input sequence of a source actor.
Bottom: corresponding tracking results as overlay. The fitted face model is
shown in red and the proxy mesh for tracking the upper body in green.

6.1.1 Facial Performance Capture. Facial performance capture is

based on an analysis-by-synthesis approach [Thies et al. 2015] that

fits the multi-linear face model that is also used for automatic rig-

ging. We jointly optimize for the model parameters (shape, albedo,

expression), rigid head pose, and illumination (first three bands of

spherical harmonics) that best reproduce the input frame. The en-

ergy function is composed of a sparse landmark term that measures

the distance of the model to detected 2D features (computed by the

TVS marker tracker), a dense photometric appearance term that

measures the color differences in RGB space, and a dense geometry

term that considers point-to-point and point-to-plane distances from

the model to the depth observations. For real-time performance,

the resulting optimization problem is solved using a data-parallel

Gauss-Newton solver. For more details on dense facial performance

capture, we refer to Thies et al. [2015; 2016].

4
https://structure.io/

6.1.2 Upper Body Tracking. In order to track the upper body of

the source actor within the limited computational time budget, we

first compute a coarse mesh of the upper body. To achieve this mesh,

we average a couple of depth frames that show the frontal facing

source actor (about 20 frames). We use the tracking information of

the face to determine the region of interest in this averaged depth

map. That is, we segment the foreground from the background and

use the region below the neck. We then extract the proxy mesh by

applying a connected component analysis on the depth map. We

track the rigid pose of the upper body with a model-to-frame ICP

that uses dense projective correspondence association [Rusinkiewicz

and Levoy 2001] and a point-to-plane distance measure.

6.1.3 Eye Gaze Tracking. To estimate the eye gaze of the source

actor, we use the TVS landmark tracker that detects the pupils and

eye lid closure events. The 2D location of the pupils (P0, P1 ∈ R2,
left and right pupil) are used to approximate the gaze of the person

relative to the face model. We estimate the yaw angle of each eye

by computing the relative position of pupil between the left (C
0,l )

and right eye corner (C0,r ):

yaw0 =
| |P0 −C

0,l | |2

| |P0 −C
0,l | |2 + | |P0 −C0,r | |2

· 90◦ − 45
◦ .

The pitch angle is computed in a similar fashion.We ignore squinting

and vergence, and average the yaw and pitch angle of the left and

right eye for higher stability. Finally, we map the yaw and pitch

angle to a discrete gaze class that is defined by the eye calibration

pattern, which was used to train the eye-synthesis for the target

actor. If eye closing is detected, we overwrite the gaze class with the

sampled closed eye class. This eye class can then be used to retrieve

the correctly matching eye texture of the target rig.

6.2 Expression, Pose, and Gaze Transfer
Since the face model of the source actor uses the same blendshape ba-

sis as the target rig, we can directly copy the expression parameters.

In addition, we apply the relative body deformations of the head,

neck and torso to the corresponding joints of the kinematic skeleton

of the target rig. These relative body deformations are computed via

inverse kinematics using the tracked face and the tracked torso of

the source actor. Since the rigid pose of the source and target actor is

the same after applying the skeleton deformations, we can copy the

mouth interior from the source to the target. In order to compensate

for color and illumination differences, we use Poisson image editing

[Pérez et al. 2003] with gradient mixing. We use predefined masks

on the face template to determine the regions that must be copied

and the areas where gradient mixing is applied (between the source

image content and the synthesized target image). Using the eye class

index estimated by our gaze tracker, we select the corresponding

eye texture from the calibration sequence and insert the eye texture,

again using Poisson image blending. To produce temporally smooth

transitions between eye classes, we blend between the eye texture of

the current and preceding frame. Fig. 8 shows the used textures and

the extent of the eye and mouth blending masks that were applied

to generate our reenactment results.
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Fig. 8. Final compositing of the eye and mouth region; from left to right:
driving frame of the source actor (used for mouth transfer), target actor eye
class sample that corresponds to the estimated gaze direction of the source
actor, cross-projection of the mouth and the eyes to the deformed target
actor mesh, and the final composite based on Poisson image blending.

Table 1. Breakdown of the timings of the steps of our reenactment pipeline:
dense face tracking (DenseFT), dense body tracking (DenseBT), deformation
transfer (DT), morphing of the target actor mesh and image-based video
synthesis (Synth), and cross projection and blending of the eyes and the
mouth region. The first row shows timings for 640x480 resolution (Asus
Xtion) and the second row the timings for 1296x968 (StructureIO).

DenseFT DenseBT DT Synth CB FPS

Avg. 10.91ms 1.34ms 1.13ms 4.41ms 3.25ms 47.5Hz
Std.Dev. 0.43 0.14 0.04 0.20 0.09

Avg. 13.49ms 4.31ms 1.17ms 14.11ms 10.81ms 22.8Hz
Std.Dev. 0.43 0.21 0.09 0.31 0.21

7 RESULTS
In this section, we test and evaluate our approach and compare

to state-of-the-art image and video reenactment techniques. All

following experiments have been performed on a single desktop

computer with an Nvidia GTX1080 Ti and a 4.2GHz Intel Core

i7-7700K processor.

Fig. 9 shows results from our live setup using the StructureIO

sensor; please also see the accompanying video for live footage. As

the results show, our approach generates high-quality reenactments

of portrait videos, including the transfer of head pose, torso move-

ment, facial expression, and eye gaze, for a large variety of source

and target actors. The entire pipeline, from source actor tracking

to video-based rendering, runs at real-time rates, and is thus appli-

cable to interactive scenarios such as teleconferencing systems. A

breakdown of the timings is shown in Tab. 1.

In the following, we further evaluate the quality of the synthesized

video output and compare to recent state-of-the-art reenactment

systems. Comparisons are also shown in the accompanying video.

Evaluation of Video-based Rendering. To evaluate the quality im-

provement due to our video-based rendering approach, we compare

it with the direct rendering of the colored mesh obtained from the

3D reconstruction; see Fig. 10. Both scenarios use the same coarse

geometry proxy that has been reconstructed using VoxelHashing

[Nießner et al. 2013]. As can be seen, the video-based rendering

approach leads to drastically higher quality compared to simple

voxel-based colors. Since the proxy geometry can be incomplete,

holes become visible in the baseline approach, e.g., around the ears

and in the hair region. In our video-based rendering approach, these

regions are filled in by our view- and pose-dependent rendering

strategy using the extended warp field, producing complete and

highly-realistic video output. Since the actor was scanned with

closed mouth, opening of the mouth leads to severe artifacts in

the baseline approach, while our mouth transfer strategy enables a

plausible synthesis of the mouth region. Finally, note how the hair,

including its silhouette is well reproduced.

Evaluation of Eye Reenactment. We compare our eye gaze reen-

actment strategy to the deep learning-based DeepWarp [Ganin et al.

2016] approach, which only allows for gaze editing. As Fig. 11 shows,

we obtain results of similar quality if only gaze is redirected. Note,

in contrast to our method, DeepWarp is not person specific, i.e.,

to re-synthesize realistically looking eyes, we need a calibration

sequence.

Photometric Error in Self Reenactment. To evaluate the quality of

our entire reenactment pipeline, we conducted a self-reenactment

comparison. We first build a person-specific rig of a particular actor

and then re-synthesize a sequence of the same actor. In this scenario,

we can consider the source video as ground truth, and compare it

with our synthesized result. Three frames of the comparison are

shown in Fig. 12. The first image shows the reference pose, so

this frame contains no error due to motion. Thus, the error of the

first frame (0.04 ℓ2 distance in RGB color space) shows the error

of our rerendering, and thus can be seen as baseline for the other

frames. The average color difference error of the following frames

is 0.0528, which is very close to this baseline. We assume that most

of the additional error is due to the rigid misalignment of the head,

which stems from the low-dimensional kinematic model. Please

note that while the synthesized images do not match the ground

truth perfectly, the visual quality of the results is nonetheless close

to photo-real, and head and body pose are plausible.

Comparison to Face2Face. A comparison to Face2Face [Thies

et al. 2016] is shown in Fig. 13. Face2Face only reenacts facial ex-

pression, and does not adapt head movement or eye gaze. Hence,

the video flow of Face2Face often seems out-of-place, since the

timing of all motions do not align, as noted by Suwajanakorn et

al. [2017]. The effect is particularly visible in live videos, and it

severely restricts the applicability to teleconferencing settings. Our

approach achieves comparable quality of single frames, and gen-

erates more believable reenactment results by jointly re-targeting

the rigid head pose, torso motion, facial expression, and eye gaze

direction. Note that our technique copies the mouth from the source

actor to the final output. Thus, the identity of the target person is

slightly changed. Since Face2Face uses a database of mouth interiors

of the target actor, the identity is unchanged. While it is straight-

forward to incorporate the mouth retrieval technique presented in

Face2Face, we decided against it, because it drastically increases

the length of the calibration phase and usability (since only mouth

interiors that have been seen in the calibration sequence can be
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Fig. 9. Real-time portrait video reenactment results of our system for a variety of source and target actors. The source actor drives the head motion, torso
movement, facial expression, and the eye gaze of the target actor in real time.
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Fig. 10. Evaluation of video-based rendering: we compare our video-based
rendering (right) and a simple colored-mesh actor proxy (middle). Both
scenarios use the same coarse geometric proxy. Our video-based rendering
approach leads to drastically higher realism in all regions and produces
photo-realistic video output, while the colored-mesh lacks this fidelity.

Fig. 11. Gaze redirection comparison: we compare our eye reenactment
strategy (left) to the DeepWarp [Ganin et al. 2016] gaze redirection approach
(right). Note that DeepWarp merely modifies gaze direction, but does not
perform a full reenactment of portrait videos.

reproduced; note that also expressions with different rigid poses of

the head would have to be captured in such a calibration).

Comparison to Bringing Portraits to Life. We also compare

our method with Bringing Portraits to Life, an off-line image

reenactment approach [Averbuch-Elor et al. 2017], which creates

convincing reactive profile videos by transferring expressions and

slight head motions of a driving sequence to a target image. It

only requires a single image of the target actor as input, but does

not provide any control over the torso motion and gaze direction.

Fig. 14 shows results of the comparison. We achieve similar quality

in general, but Bringing Portraits to Life struggles for larger

head pose changes. In comparison, our approach enables free head-

pose changes, and provides control over the torso motion, facial

expression, and gaze direction. Since our method runs at real-time

rates, our approach can also be applied to live applications, such as

teleconferencing.

Comparison to Avatar Digitization. In Fig. 15, we also compare

to the Avatar Digitization approach of Hu et al. [2017]. From a

single image, this approach generates an avatar, that can be animated

and used for instance as a game character. However, the approach

Fig. 12. Self-Reenactment Evaluation: the first column of the images shows
the reference pose of the source and target actor; all following deformations
are applied relative to this pose. For this experiment, we rigidly align the
reference target actor body to the reference frame of the source actor in
order to be able to compare the outputs. We compare the result to the source
image using a per-pixel color difference measure. The other two columns
show representative results of the test sequence with expression and pose
changes. In the bottom row, the color difference plot of the complete test
sequence is depicted. The mean ℓ2 color difference over the whole test
sequence is 0.0528 measured in RGB color space ([0, 1]).

Fig. 13. Comparison to Face2Face [Thies et al. 2016]; from left to right:
source actor, the reenactment result of Face2Face, and our result. In gray,
we show the underlying geometry used to generate the output images.

(as well as comparable avatar digitization approaches [Ichim et al.

2015]) generate stylized avatars that are appropriate as game-quality

characters and that can be used in gaming and social VR applications.

In contrast, we aim to synthesize unseen video footage of the target

actor at photo-realistic quality as shown in Fig. 9.
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Fig. 14. Comparison to Bringing Portraits to Life [Averbuch-Elor et al.
2017]: Our approach generalizes better to larger changes in head and body
pose than the image-warping based approach of Averbuch-Elor et al. [2017].
In addition, our methods enables the joint modification and control of
the torso motion and gaze direction. Note that while their approach runs
offline, ours allows control the entire portrait video at real-time frame rates,
allowing application to live teleconferencing.

Fig. 15. Avatar Digitization reconstructs stylized game-quality characters
from a single image. In this example, the avatar was generated from the
first image of the second row in Fig. 14.

8 LIMITATIONS
We have demonstrated robust source-to-target reenactment of com-

plete human portrait videos at real-time rates. Still, a few limitations

remain, and we hope that these are tackled in follow-up work. One

drawback of our approach is the requirement of a short scanning

sequence based on an RGB-D camera. While RGB-D sensors are

already widespread, the ultimate goal would be to built the video-

based target rig based on an unconstrained monocular video of the

target actor, without a predefined calibration procedure. In addition,

scene illumination is currently not estimated, and therefore illumi-

nation changes in reenacted videos cannot be simulated. We also

do not track and transfer fine scale details such as wrinkles since

they are not represented by the used multi-linear face model (see

Fig. 16). While Cao et al. [Cao et al. 2015] demonstrate tracking of

fine scale details, it has not be shown how to transfer these wrinkles

to another person. This is an open question that can be tackled in

the future. Under extreme pose changes, or difficult motion of hair

Fig. 16. Limitation: Fine scale detail such as wrinkles are not transferred.
The close-ups show the difference between the input and the output.

Fig. 17. Limitation: Strong head rotations or occlusions in the input stream
of the source actor lead to distortions in the reenactment result.

(see Fig. 18), the reenacted results may exhibit artifacts as neither

the model nor the video-based texturing may be able to fully rep-

resent the new view-dependent appearance. In Fig. 17 we show

failure cases that stem from extreme head rotations and occlusions

in the input stream of the source actor. Note that the proposed tech-

nique has the same limitations as other state-of-the-art reenactment

methods like Face2Face [Thies et al. 2016]. In particular, the used

analysis-by-synthesis approach to track the face uses the parameters

of the previous frame as an initial guess, thus, fast head motions

require high frame rates of the input camera otherwise the tracking

is disturbed by the motion (for more details on the limitations of the

face tracking we refer to the publications [Thies et al. 2015, 2016]).

Our approach is also limited to the upper body. We do not track the

motions of the arms and hands, and are not able to re-synthesize

such motions for the target actor. Ideally, one would want to control

the whole body; here, we see our project as a stepping stone towards

this direction, which we believe will lead to exciting follow up work.

We do believe that the combination of a coarse deformation proxy

with view-dependent textures will generalize to larger parts of the

body, if they can be robustly tracked.

9 CONCLUSION
We introduced HeadOn, an interactive reenactment system for hu-

man portrait videos. We capture facial expressions, eye gaze, rigid

head pose, and motions of the upper body of a source actor, and

transfer them to a target actor in real time. By transferring all rele-

vant motions from a human portrait video, we achieve believable
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Fig. 18. Limitation: Hair is statically attached to the skeleton structure of
the delegate mesh.

and plausible reenactments, which opens up the avenue formany im-

portant applications such as movie editing and video conferencing.

In particular, we show examples where a person is able to control

portraits of another person or to perform self-reenactment to easily

switch clothing in a live video stream. However, more fundamen-

tally, we believe that our method is a stepping stone towards a much

broader avenue in movie editing. We believe that the idea of coarse

geometric proxies can be applied to more sophisticated environ-

ments, such as complex movie settings, and ultimately transform

current video processing pipelines. In this spirit, we are convinced

and hopeful to see many more future research works in this exciting

area.
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