
Self-learning Voxel-based Multi-camera Occlusion Maps for 3D
Reconstruction

Maarten Slembrouck1, Dimitri Van Cauwelaert1, David Van Hamme1, Dirk Van Haerenborgh1,
Peter Van Hese1, Peter Veelaert1 and Wilfried Philips12

1Ghent University, TELIN dept. IPI/iMinds, Ghent, Belgium
2Senior member of IEEE

maarten.slembrouck@ugent.be

Keywords: Multi-camera, Occlusion Detection, Self-learning, Visual hull

Abstract: The quality of a shape-from-silhouettes 3D reconstruction technique strongly depends on the completeness
of the silhouettes from each of the cameras. Static occlusion, due to e.g. furniture, makes reconstruction
difficult, as we assume no prior knowledge concerning shape and size of occluding objects in the scene. In
this paper we present a self-learning algorithm that is able to build an occlusion map for each camera from
a voxel perspective. This information is then used to determine which cameras need to be evaluated when
reconstructing the 3D model at every voxel in the scene. We show promising results in a multi-camera setup
with seven cameras where the object is significantly better reconstructed compared to the state of the art
methods, despite the occluding object in the center of the room.

1 INTRODUCTION

Occlusion is undesirable for computer vision appli-
cations such as 3D reconstruction based on shape-
from-silhouettes [Laurentini, 1994, Corazza et al.,
2006, Corazza et al., 2010, Grauman et al., 2003] be-
cause parts of the object disappear in the foreground-
background segmentation. However, in real-world
applications occlusion is unavoidable. In order to
handle occlusion, we propose a self-learning algo-
rithm that determines occlusion for every voxel in the
scene. We focus on occlusion as a result of static ob-
jects between the object and the camera.
Algorithms to detect partial occlusion are presented in
[Guan et al., 2006, Favaro et al., 2003, Apostoloff and
Fitzgibbon, 2005,Brostow and Essa, 1999]. However,
in these papers occlusion is detected from the camera
view itself by keeping an occlusion map which is a bi-
nary decision for each of its pixels. An OR-operation
between the foreground/background mask and the oc-
clusion mask, results in the input masks for the visual
hull algorithm. The major drawback to this approach
is that occlusion is in fact voxel-related, rather than
pixel-related: the same pixel in an image is occluded

This research was made possible through iMinds, an
independent research institute founded by the Flemish gov-
ernment.

when the occluding object is located between the ob-
ject and the camera, but not if the object is placed
between the camera and the occluding object. Pixel-
based occlusion detection results in a 3D model which
consists of far more voxels not belonging to the 3D
model because the occluder is also reconstructed and
depending on the position of the person, parts of the
occluder are still left over after subtracting the visual
hull of the occluder (we will show this in Section 5).
Therefore, we propose an occlusion map (one for each
camera) from a voxel perspective, in order to evaluate
each voxel separately. After the occlusion maps are
built, we can use this information and only evaluate
the camera views which are not occluded and there-
fore contribute to the 3D model.
We determine occlusion and non-occlusion based on
a fast algorithm of the visual hull concept. In order for
the system to work, the occlusion algorithm requires
someone walking in the scene to make occluded re-
gions appear. Subsets of the different camera views
are used to increase the votes for either occlusion or
non-occlusion for each voxel. A majority vote de-
cides about the final classification.
We also assign a quality factor to the subset of cho-
sen cameras because the volume of the visual hull
strongly depends on the camera positions. Instead of
counting integer votes, we increment by the quality
factor which depends both on the combined cameras

and the voxel position.
In Section 2 we explain the fast visual hull algorithm.
Section 3 proposes the self-learning occlusion algo-
rithm. We determine the quality factor for a camera
combination which is used for voting in Section 4. In
Section 5 we show the promising results of our test
setup.

2 FAST VISUAL HULL
COMPUTATION

The visual hull of an object is determined by its sil-
houettes as a result of the foreground-background
segmentation [Kim et al., 2006, Zivkovic, 2004] and
the intrinsically and extrinsically camera calibration
parameters. We use a voxel representation for the vi-
sual hull to reduce computation time. It is required
that all cameras face the same area, called the over-
lapping area, because that is the only area where a 3D
model can be built using all cameras with this imple-
mentation.

2.1 Fast visual hull algorithm

Our fast visual hull algorithm loops over all voxels in
a bounded area. For each voxel, the foreground masks
are evaluated at its projected image coordinates for
each camera. A voxel is part of the visual hull, only if
all projections are classified as foreground. Algorithm
1 shows our fast visual hull implementation.

Algorithm 1 Fast visual hull algorithm
input: camera calibration, FG/BG-masks, bounded area

output: voxelated visual hull

for all voxel in voxel space do
while voxel occupied and not all camera views evalu-
ated do

lookup the voxel’s projection on next camera view
if projection is foreground then

classify voxel as occupied
else

classify voxel as unoccupied
end if

end while
end for

2.2 Optimization

Within a particular multi-camera setup, the projec-
tions of the voxels are always the same as long as
the cameras do not move. Therefore, we calculate the

image coordinates corresponding to each voxel cen-
ter in the scene in the precomputation phase of our
visual hull algorithm and use a lookup table to deter-
mine the image coordinates. Equation 1 shows how
the voxel center (X ,Y,Z) is projected onto the image
sensor, resulting in pixel coordinates (x,y). The pro-
jection matrix P is the product of the intrinsic camera
matrix and the transformation matrix (R|T).

x
y
1

=

P︷ ︸︸ ︷ fx 0 cx
0 fy cy
0 0 1

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

X

Y
Z
1

(1)

Note that this does not lead to an exact reconstruc-
tion because only the center of each voxel is evaluated
making it suitable for solid objects but not for objects
with holes. For each camera the traditional implemen-
tation projects eight points (voxel corners) and eval-
uates all pixels within their convex hull whereas we
only project a single point (voxel center) and evaluate
this pixel value. The major advantage of our approach
is that it increases the speed significantly (more than
8 times faster).

3 SELF-LEARNING OCCLUSION
ALGORITHM

Visual hull algorithms are inherently sensitive to mis-
classified pixels in the foreground-background seg-
mentation, the presence of which is to be expected
when camera views are occluded by one or more ob-
jects. Therefore we propose a self-learning algorithm
which determines for every voxel if it is occluded for
any of the cameras. Hence, the number of occlusion
maps equals the number of cameras in the room.

3.1 Deciding if a voxel is occluded

Deciding whether a voxel is occluded or not does not
seem to be an easy task. In previous research, occlu-
sion was determined from pixel perspective but this is
not sufficient because of the following reason. Con-
sider a piece of furniture in the middle of the scene
(e.g. a closet). From the perspective of a particular
camera, a person can stand in front of the furniture
or behind it, resulting in occlusion by the closet in
the latter case. But if we look at the occluding pix-
els from the camera view, we see the pixels are only
occluded when the person stands behind the closet.
When the person stands in front of it, those same pix-
els should not be considered as occluded pixels be-

cause they hold relevant information. Since standard
cameras do not have depth information it is not suf-
ficient to keep track of occluded pixels, therefore we
use occluded voxels.
To decide if there is occlusion, we make some as-
sumptions. One of these assumptions is that there
needs to be a consensus about the occupation of a
voxel in the space. This consensus is only possible
if a minimum number of cameras agree that a voxel
at a certain place in space is occupied. If there are
for example three cameras agreeing there is an ob-
ject at a certain position in space, but the fourth cam-
era does not detect anything there, then we can quite
safely assume that those unseen voxels are occluded
for the fourth camera. However, it is not clear how
many cameras need to agree about this visibility. One
could expect as much as possible, but this will fail if
there is a lot of occlusion because the consensus will
be lacking.
Since it is hard to decide whether a voxel is occluded
for a certain camera, we count votes for both cases:
occluded and non-occluded. Every voxel has a sepa-
rate count for each camera for both classes. The only
requirement is that a person needs to walk around in
the scene to make occluded regions appear. Voxels
outside the field of view of the cameras are directly
classified as occluded because these voxels are out of
sight. In the following sections we explain our detec-
tion mechanism for both occlusion and non-occlusion
in detail.

3.1.1 Visible

Figure 1 shows a flowchart explaining how we deter-
mine the absence of occlusion for camera C0. Basi-
cally, we randomly pick two other cameras and gen-
erate the visual hull from the masks of camera C0 and
these two cameras Ca and Cb. The voxels defining this
visual hull are the ones who are not occluded for all
these cameras, otherwise they should be carved out of
the visual hull.

3.1.2 Occluded

One could think that no absence of occlusion means
occlusion but that would be wrong because we can
only determine occlusion in the zone where the per-
son is walking and it strongly depends on the chosen
cameras. Determining occlusion is much more com-
plicated. Figure 2 shows the flowchart to understand
the algorithm. We first generate the visual hull with
only the camera of which we want to determine oc-
clusion, camera C0. We randomly pick three cameras
and reproject the generalized cone of C0 back on each
of the camera image planes of these cameras: Ca, Cb

pick 2
random
cameras

Cn...C1 ... CN

generate
visual hull

C0

Ca,Cb

Figure 1: Flowchart to determine which voxels are not oc-
cluded for camera C0. Two cameras are randomly picked
from the list and we calculate the visual hull from their
masks together with the mask of camera C0 from which we
try to determine the occlusion map. Since camera C0 con-
tributes to the visual hull the result is a shape which is not
occluded for these cameras.

and Cc. This reprojection results in a different mask
for each camera maskrepr,Cx with x = a, b or c.

An example is shown in Figure 3. In Figure 3a we see
the mask of camera C0. If we look closely we see that
only half of the person is visible in this mask which
means there is occlusion. Figure 3b shows the mask
from another camera (mask f gbg,Ca) which sees the en-
tire person. We compare mask f gbg,Ca with maskrepr,Ca
(Figure 3c), which is the reprojected visual hull from
camera C0 onto this other camera, according to (FG =
foreground and BG = background):

maskoccl,Cx(x,y) = maskrepr,Ca(x,y) = BG
∧ mask f gbg,Cx(x,y) = FG

(2)

The result (maskoccl,Ca) is shown in Figure 3d which
indicates the invisible parts for camera C0 in white.
The same calculations are made for the two other ran-
domly chosen cameras. These three masks, in re-
spect to the correct camera viewpoints, produce a vi-
sual hull which consists mostly of occluded voxels for
camera C0. Due to the visual hull algorithm, we can-
not guarantee that all of its voxels are really occluded,
hence the voting framework.

Notice that the self-learning occlusion algorithm
also solves another problem. Namely, when the
foreground-background segmentation continuously
fails to classify certain pixels as foreground, the votes
for occlusion will increase and the system will eventu-
ally ignore that camera for those pixels which offers a
great advantage since it would otherwise degrade the
3D model as well.

pick 3
random
cameras

generate
visual hull

Cn...C1 ... CN

reproject reproject reproject

determine
occlusion

determine
occlusion

determine
occlusion

generate
visual

hull with
occlusion

masks

C0

Ca Cb Cc

maskoccl,Ca

maskoccl,Cb

maskoccl,Cc

maskrepr,Ca maskrepr,Cb maskrepr,Cc

Figure 2: Flowchart to determine occlusion for camera C0.
First we pick three random cameras from the list (C1−CN)
and also calculate the visual hull for C0 only (in a bounded
area). Next, we reproject that visual hull on each of the sen-
sors of the chosen cameras. We then compare this repro-
jected mask with the original mask of the respective camera
(using formula 2). This results in occlusion masks for the
three randomly picked cameras. The visual hull generated
by these occlusion masks determines the occluded voxels
for camera C0 in that time frame. In case of static occlusion
the complete occlusion map will be built over time.

4 QUALITY FACTOR VOTING

In a multi-camera setup not all cameras are equally
relevant to a certain voxel in space. Not only the dis-
tance to the camera, but also the angles between the
cameras (with the voxel as center) determine the rele-
vance of the information added by each camera. The
self-learning occlusion algorithm takes this into ac-
count: we add this relevance as a quality factor to
the framework. Rather than counting the number of
votes, we count these quality factors Q (0 ≤ Q ≤ 1).
The count for both cases, toccluded and tvisible are kept:

toccluded = toccluded +Q
tvisible = tvisible +Q

(3)

The visual hull provides a qualitative tool for measur-
ing the relevance of a camera. For every camera we
add to the scene, the resulting 3D model is composed
by the same or less voxels, since every new camera
carves away zero or more voxels. In the next sec-

(a) mask f gbg,C0 (b) mask f gbg,Ca

(c) maskrepr,Ca (d) maskoccl,Ca

Figure 3: (a) The mask of the camera C0 for which occlu-
sion is checked. (b) The mask of one of the randomly cho-
sen camera views Ca (c). The reprojected image of the vi-
sual hull generated only by mask (a). (d) The occluded part
shown in white, which is combined with two other cameras
to calculate a visual hull and update the occlusion map.

tion we investigate the influence of angle differences
between given cameras with respect to the resulting
visual hull.

4.1 Quality factor for two cameras

We first consider the two-dimensional problem. In
case of two cameras we can visualize the influence
of the angle variation by keeping both cameras at the
same distance of the object. Because the overlapping
area equals infinity for small angles, we decided to re-
strict the overlapping space in a well defined circular
area. Figure 4 shows three different angles: 20◦, 90◦

and 180◦. For an aperture angle of 20◦ they result in
a visual hull of 2.99%, 0.75% and 4.08% respectively
of the space described by the circle through C1 and
C2, and the voxel as its center. In Figure 5 we see
the overlapping area as a function of the angle (range
from 0◦ till 180◦.
We distinguish three different zones: 0− 20◦, 20−
160◦ and 160− 180◦. In the first part, the overlap-
ping area is equal to infinity because the overlapping
area is not bounded, both cameras are looking in the
same direction from the same position. In the second
part, we find a more or less symmetrical course with
90◦ corresponding to the minimum overlapping area.
The third part results in a constant overlapping area
because both cameras are then facing each other. The
quality factors need to show the same trend.

(a) (b) (c)

Figure 4: Overlapping area for an angle of 20◦, 90◦ and 180◦ between camera C1 and C2 for a certain voxel in space. We
see that the overlapping area (dark gray area) presents respectively 2.99%, 0.75% and 4.08% of the marked space (lightgray
area). We notice an angle of 90◦ reduces the overlapping area significantly.

0 20 40 60 80 100 120 140 160 180
Angle be tween the 2 cameras (degrees)

0.00

0.01

0.02

0.03

0.04

0.05

Fr
ac

ti
on

s
of

 o
ve

rl
ap

Overlapping area be tween cameras

Figure 5: The fraction of overlap between views of two
cameras equidistant from a certain voxel, both having a
viewing angle of 20◦, as a function of the angle between
the cameras. The graph between 180◦ and 360◦ is a hori-
zontally mirrored version of this first part.

4.2 Proposed quality calculation for
multiple cameras

In case of more cameras, we determine the qual-
ity factor of the chosen cameras with a practical ap-
proach. Since we have a fully calibrated camera
setup, we are able to determine the visual hull of vir-
tual objects with a number of cameras in this space
and because we know the virtual object, we are able
to compare the volume of the visual hull with the vol-
ume of the original object. Because voxels are cubes,
we opted for this shape. Each cube has the center of
a voxel as its own center. In order to reconstruct the
cube, the corners of the cubes are projected on each
of the image planes (equation ??). The convex hull
of these image coordinates represents the projection
of the virtual cube on the image plane. Consequently,
the visual hull of the cube is build from these projec-
tions.

From the previous section we know that the volume
of the visual hull VV H strongly depends on position of
the cameras, hence we use VV H to calculate the quality
factor Q. The combination of cameras that has the
smallest visual hull needs to be granted the highest
quality. Therefore we calculate the ratio of the volume
of the original cube Vcube and the volume of this visual
hull VV H and use this as quality factor Q (equation 4).

Q =
Vcube

VV H
(4)

From the properties of a visual hull, we know that
VV H ≥Vcube. Therefore Q always satisfies 0≤Q≤ 1.
The most accurate results are obtained by using the
voxels as cubes to calculate the visual hull. However,
in that case, we need subvoxel precision, which would
increase the memory usage significantly. Therefore,
we chose to use the same voxel resolution (2 cm3)
as the voxel resolution we use for the visual hull algo-
rithm and we use cubes with edges equal to a multiple
of the voxel resolution (e.g. 20 cm3).
In the pre-computation phase we calculate the qual-
ity factors for all possible combinations of three cam-
eras. In case of seven cameras, that means

(7
3

)
= 35

unique combinations for every voxel. To reduce com-
putation time we opt to calculate the aforementioned
quality factors for an oversampled voxel space (ev-
ery 10cm in each direction). The quality factors of
the intermediary voxels are calculated from its eight
nearest neighbours in this oversampled voxel space
using weighted averaging (Figure 7). Equation 5 cal-
culates this weighted average. We define Pcube,i as
one of the eight nearest corners from the oversampled
voxel space. The weights are equal to the euclidean
distance between such a corner point Pcube,i and the
point P we want to calculate the interpolated quality
factor for. Qi represents the quality factor of the voxel
at Pcube,i.

(a) (b) (c) (d)

(e) (f) (g)

Figure 6: One horizontal layer (1.20 m above ground level) of the occlusion maps of all cameras. (a) bottom right corner, (b)
upper right corner, (c) upper left corner, (d) lower left corner, (e) upper left corner, (f) lower left corner and (g) lower right
corner. The top row shows the occlusion maps from cameras at 3.5 m from the ground, the bottom row from the cameras
1.2 m from the ground. The black rectangle represents the occlusion object. We distinguish five classes: occluded (red),
non-occluded (green), undecided (blue), unknown (gray) and out of sight (black). Errors in the occlusion map are due to noise
in the foreground-background images.

Pcube,1 Pcube,2

Pcube,6

Pcube,7

Pcube,3Pcube,4

Pcube,8

Pcube,5

P

Figure 7: Interpolation of intermediary voxels. Red filled
squares represent voxels from the oversampled voxel space
while the blue squares inside the cube represents a voxel
from the normal voxel space. Green dashed lines represent
the distance from the center of the voxel P to one of the
cube corner voxels.

QP =

8
∑

i=1
d(Pcube,i,P)Qi

8
∑

i=1
d(Pcube,i,P)

(5)

5 RESULTS

5.1 Test setup

We made a test setup of 8m×4m×3.5m (w× l× h)
with seven cameras, four of them placed in the top
four corners and three others about 1.2 m from the
ground on the vertical edges. In the middle of the

room we placed an occluding object (Figure 8). All
cameras have 780×580 px image resolution. We cal-
ibrated all cameras intrinsically and extrinsically. In
the next phase we asked a person to walk through the
room. The aim is to visit each voxel near occluding
objects at least once. However, the more often the per-
son visits a certain voxel, the more certain the system
becomes about occlusion or no-occlusion at that cer-
tain voxel. Because we only take into account static
occlusion for the moment, we can run the occlusion
detection once and use the results later on. In case
of random camera combinations, we need to compute
three visual hulls per camera per frame, hence 21 vi-
sual hulls (with seven cameras). This roughly results
in 0.5 frames per second.

5.2 Classification

In Figure 6 we see the results of the algorithm.1

The visited voxels have been classified into five
classes: occluded (red), non-occluded (green), unde-
cided (blue), unknown (gray) and out of sight (black).
The voxels are classified by the votes toccluded, tvisible
and whether the voxel is visible by the camera:

1More results of the occlusion maps of these sequences
can be found at
http://telin.ugent.be/˜mslembro/?q=node/14

http://telin.ugent.be/~mslembro/?q=node/14

Class=

occluded if toccluded > tvisible
non-occluded if toccluded < tvisible
undecided if toccluded = tvisible
unknown if toccluded = tvisible = 0
out of sight if voxel not in field of view

(6)
Note that in the final occlusion map we assume un-
decided and out of sight as occluded and unknown as
non-occluded and hence distinguish only two classes:
occluded and non-occluded.

5.3 VISUAL HULL RESULTS

Using the generated occlusion maps we are now able
to reconstruct a person, walking trough the room,
without losing occluded parts. The occlusion maps of
all cameras are evaluated to determine for each voxel
separately which cameras are relevant to build the 3D
model. Only cameras classified as non-occluded for
a voxel are taken into account. In Figure 8 we see
the visual hull constructed with and without occlusion
mapping. The 3D model of the person is significantly
more recognizable in Figure 8j which takes the occlu-
sion into account.

6 CONCLUSION

In this paper we presented a self-learning occlusion
map algorithm derived from the voxel perspective to
improve the 3D reconstruction of an object in a scene
with static occlusion. The method is based on the vi-
sual hull concept and builds a separate occlusion map
for each camera. We designed a voting framework in
order to classify voxels as occluded or non-occluded.
We showed promising results from our test setup with
seven cameras and one occluding object.

7 FUTURE WORK

As a first step we chose to only allow purely static
occlusion. It is however also possible to have objects
which are moved around in the scene e.g. chairs. The
occlusion maps could be continuously updated in a
parallel process. We could also estimate the shape of
the occluding objects in the scene. If the camera po-
sitions and orientations are then changed. New occlu-
sion maps could be automatically generated from the
old ones without having to run the occlusion detection
again.

(a) (b)

(c) (d)

(e) (f)

(g)

(h) Damaged
3D model due
to ignoring
occlusion

(i) State of the
art

(j) Recogniz-
able 3D model
thanks to occlu-
sion maps

Figure 8: a) - (g) Input images of all camera views. In (h) we
ignore the occlusion information leading to an incorrect 3D
shape. () shows the state of the art method where we see a
lot of extra voxels which should not belong to the 3D model.
In (j) on the other hand we still recognise a person in the 3D
model because the cameras responsible for degrading the
3D shape are ignored.

REFERENCES

Apostoloff, N. and Fitzgibbon, A. (2005). Learning spa-
tiotemporal t-junctions for occlusion detection. In
Computer Vision and Pattern Recognition, 2005.
CVPR 2005. IEEE Computer Society Conference on,
volume 2, pages 553–559. IEEE.

Brostow, G. J. and Essa, I. A. (1999). Motion based de-
compositing of video. In Computer Vision, 1999. The
Proceedings of the Seventh IEEE International Con-
ference on, volume 1, pages 8–13. IEEE.

Corazza, S., Mündermann, L., Chaudhari, A., Demattio,
T., Cobelli, C., and Andriacchi, T. (2006). A mark-
erless motion capture system to study musculoskele-
tal biomechanics: Visual hull and simulated anneal-
ing approach. Annals of Biomedical Engineering,
34(6):1019–1029.

Corazza, S., Mündermann, L., Gambaretto, E., Ferrigno,
G., and Andriacchi, T. P. (2010). Markerless motion
capture through visual hull, articulated icp and sub-
ject specific model generation. International journal
of computer vision, 87(1-2):156–169.

Favaro, P., Duci, A., Ma, Y., and Soatto, S. (2003). On
exploiting occlusions in multiple-view geometry. In
Computer Vision, 2003. Proceedings. Ninth IEEE In-
ternational Conference on, pages 479–486. IEEE.

Grauman, K., Shakhnarovich, G., and Darrell, T. (2003). A
bayesian approach to image-based visual hull recon-
struction. In Computer Vision and Pattern Recogni-
tion, 2003. Proceedings. 2003 IEEE Computer Society
Conference on, volume 1, pages I–187. IEEE.

Guan, L., Sinha, S., Franco, J.-S., and Pollefeys, M. (2006).
Visual hull construction in the presence of partial
occlusion. In 3D Data Processing, Visualization,
and Transmission, Third International Symposium on,
pages 413–420. IEEE.

Kim, H., Sakamoto, R., Kitahara, I., Toriyama, T., and
Kogure, K. (2006). Robust foreground segmentation
from color video sequences using background sub-
traction with multiple thresholds. Proc. KJPR, pages
188–193.

Laurentini, A. (1994). The visual hull concept for
silhouette-based image understanding. Pattern Anal-
ysis and Machine Intelligence, IEEE Transactions on,
16(2):150–162.

Zivkovic, Z. (2004). Improved adaptive gaussian mixture
model for background subtraction. In Pattern Recog-
nition, 2004. ICPR 2004. Proceedings of the 17th In-
ternational Conference on, volume 2, pages 28–31
Vol.2.

	Introduction
	Fast visual hull computation
	Fast visual hull algorithm
	Optimization

	Self-learning occlusion algorithm
	Deciding if a voxel is occluded
	Visible
	Occluded

	Quality factor voting
	Quality factor for two cameras
	Proposed quality calculation for multiple cameras

	Results
	Test setup
	Classification
	Visual hull results

	Conclusion
	Future work

