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Abstract

Multi-view stereo methods reconstruct 3D geometry from
images well for sufficiently textured scenes, but often fail
to recover high-frequency surface detail, particularly for
smoothly shaded surfaces. On the other hand, shape-from-
shading methods can recover fine detail from shading vari-
ations. Unfortunately, it is non-trivial to apply shape-from-
shading alone to multi-view data, and most shading-based
estimation methods only succeed under very restricted or
controlled illumination. We present a new algorithm that
combines multi-view stereo and shading-based refinement
for high-quality reconstruction of 3D geometry models from
images taken under constant but otherwise arbitrary illumi-
nation. We have tested our algorithm on several scenes that
were captured under several general and unknown lighting
conditions, and we show that our final reconstructions rival
laser range scans.

1. Introduction
Multi-view stereo (MVS) methods compute depth by tri-

angulation from corresponding views of the same scene
point in multiple images. Establishing correspondence is
difficult within smoothly shaded regions, so MVS methods
compute accurate depth for a sparse set of well-localized
points and must interpolate elsewhere. Seitz et al. present
a taxonomy and evaluation of MVS algorithms [26]. Re-
sults posted on the benchmark website [1] accompanying
that work show that today’s best-performing methods cap-
ture the rough shape of the scene well, but generally can-
not recover the high-frequency shape detail well. In con-
trast to MVS, shape-from-shading (SfS) methods compute
per-pixel surface orientation instead of sparse depth. SfS
techniques use shading cues to estimate shape from a sin-
gle image, usually taken under illumination from a single
direction [33]. It was shown that SfS approaches are able
to recover high-frequency shape detail, also if surfaces are
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Figure 1. Our approach reconstructs models of much higher detail
than state-of-the-art stereo approaches.

smoothly shaded. SfS reconstruction can therefore often
shine where stereo fails, and vice versa. Generalizing this
shading-based reconstruction to the multi-view case is not
easy, though. Recovered normal fields usually need to be in-
tegrated to obtain 3D geometry, which is non-trivial for gen-
eral surfaces seen from multiple viewpoints [22]. Further-
more, most SfS algorithms make strong assumptions about
the incident illumination, which effectively restricts most of
them to studio lighting conditions.

In this paper, we therefore propose a new multi-view re-
construction approach that combines the strengths of MVS
and SfS. It enables us to capture high-quality 3D geometry
of Lambertian objects from images recorded under fixed but
otherwise arbitrary unknown illumination. In the design of
our algorithm, we capitalize on recent progress in the field
of real-time rendering. By parameterizing incident illumi-
nation and visibility in the spherical harmonic (SH) domain,
the image formation model - the rendering equation - can be
efficiently evaluated, and even complex lighting effects un-
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der general illumination can be displayed in real-time [27].
In our work, we use the spherical harmonic formulation of
the imaging equation to solve the opposite problem, namely
to passively reconstruct high-quality geometry under gen-
eral illumination.

Contributions. In this paper, we propose a shape recon-
struction method that uses stereo for initial geometry es-
timation and shading-based shape refinement under gen-
eral and uncalibrated illumination. Our method estimates
high-fidelity shapes that include subtle geometric details
that cannot be captured by triangulation-based approaches.
We develop a new multi-view shading constraint for achiev-
ing this goal. For efficient computation, we use spherical
harmonics to estimate and encode arbitrary lighting con-
ditions and local visibility. We also develop an adaptive
anisotropic smoothness term for preserving high-frequency
details while filtering out noise. In addition, we show an
adaptive computation approach that takes the complexity of
lighting and visibility estimates into account at each surface
point for efficient computation.

We have tested and validated our approach on a variety
of real and synthetic scenes captured under several illumina-
tion conditions. The level of detail in our results rivals and
sometimes even goes beyond the quality of data obtained
with laser range scanners as shown in Figs. 1 and 10.

2. Related work

The complementary nature of MVS and SfS has long
been known [5], and much work has been done on effi-
ciently combining the two techniques. Leclerc et al. [19]
use stereo to provide initialization and boundary constraints
for SfS. Cryer et al. [6] combine depth maps from SfS and
stereo in the frequency domain using filtering. Rather than
fusing MVS and SfS results, Fua et al. [8] start with a coarse
mesh computed from binocular or tri-view stereo, then min-
imize an error function with stereo, shading, and smooth-
ness components. They handle slowly varying albedo of
Lambertian surfaces. Samaras et al. [25] iteratively estimate
both shape and illumination given multiple views taken un-
der fixed illumination. They assume piecewise constant
albedo. Jin et al. [13, 14, 15] have proposed a series of vari-
ational algorithms that combine MVS and SfS. Their recent
work [12] focuses on 3D reconstruction of Lambertian ob-
jects with piece-wise constant albedo.

The methods discussed above all neglect self-shadowing
(shadows cast by the scene onto itself). They also all assume
either a single distant light source, or a distant point light
source plus uniform ambient illumination. Even for the case
of multiple distant light sources, we are not aware of any
methods that do not require the number of light sources to
be known in advance. For more general capture scenarios,

the illumination is usually neither known nor simply a sum
of ambient lighting and a few distant point light sources.

Beeler et al. [4] recently proposed a high-quality stereo
method that uses shading-based refinement. Their refine-
ment embosses or extrudes the geometry at locations where
high-frequency shading variations are visible, producing
qualitatively pleasing results that are not intended to be
metrically correct. Although we consider only Lamber-
tian reflectance, prior work has also focused on reconstruct-
ing non-Lambertian objects. Yu et al. [32, 31] propose
two algorithms for modeling non-Lambertian objects illu-
minated by distant light sources. Both explicitly model
the reflectance using either a Phong or Torrence-Sparrow
model, then iteratively optimize the estimated shape and
reflectance. One of the methods [31] can be tailored to
handle unknown lighting directions, but only for Lamber-
tian objects. Yoon et al. [30] reconstruct geometry by com-
bining stereo and shading cues in a variational framework.
Their method handles general dichromatic surfaces using
the Blinn-Phong shading model and assumes known light-
ing directions. Because the algorithm is variational, it is
susceptible to local minima and is generally overly smooth.

The main difference between our method and the prior
art is that we combine MVS and SfS for general, unknown
illumination. Our approach is motivated by the work of
Basri et al. [3] and Ramamoorthi et al. [23], who observe
that light reflection is a convolution of a reflectance kernel
over the sphere of incoming light directions, and that the
Lambertian reflectance kernel acts as a low-pass filter which
preserves only the lowest frequency components of the illu-
mination. Thus, the illumination can be modeled well using
low-frequency spherical harmonics. Frolova et al. [7] fur-
ther analyze the accuracy of the spherical harmonic approx-
imation for far and near illumination. The spherical har-
monic lighting approximation has been used for photomet-
ric stereo [2] and multi-view photometric stereo [29]. Pho-
tometric stereo [28], however, assumes images taken under
different lighting conditions to fully constrain the surface
normal. Multi-view photometric stereo [11, 16, 10] com-
bines MVS and photometric stereo to achieve high-quality
reconstruction, but still requires multi-illumination images
to be captured. These methods also do not account for self-
shadowing. By contrast, our method assumes only a single
lighting condition and explicitly handles self-shadowing.
Besides spherical harmonics, wavelet is also employed to
represent the general illumination for relighting applica-
tions [10].

3. Algorithm
Our goal is to compute high-quality shape of a static ob-

ject based on given multiple images taken from different
viewpoints by combining MVS and SfS. The illumination
is assumed to be fixed and distant, but is otherwise general
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Figure 2. Outline of our processing pipeline.

and unknown. Cameras are assumed to be calibrated both
geometrically and radiometrically. We represent the geom-
etry using a high-resolution mesh model and the illumina-
tion using spherical harmonics. In order to keep the prob-
lem tractable, we henceforth assume that the albedo of the
object is constant. We will see in our results, though, that
this assumption does not prevent us from reconstructing de-
tailed shape models even in the presence of small albedo
variations. We also neglect inter-reflections on the object.

The workflow of our method is shown in Fig. 2. It has
three steps. First, we use existing MVS methods to cre-
ate an initial closed, 3D triangle mesh model of the object.
Next, we use this model to estimate the spherical harmonic
coefficients for the incident illumination (Sec. 3.2). Finally,
we refine the MVS geometry so that shading variations in
the input images are properly explained by our image for-
mation model and the estimated geometry (Sec. 3.3). The
next subsections review image formation using the SH illu-
mination model and explain the illumination estimation and
geometry refinement in detail. As we will describe, we han-
dle concave surfaces and self-occlusion by computing the
visibility of each vertex from all directions, and we adap-
tively tune the order of the SH approximation for higher
accuracy in areas with higher ambient occlusion (i.e., more
self-occlusion).

3.1. Image Formation Model

Assuming all objects in the scene are non-emitters and
the light sources are infinitely distant, the image irradiance
equation can be defined as [17]

B(x, ωo) =

∫
Ω

L(ωi)V (x, ωi)ρ(ωi, ωo) max(ωi·n(x), 0)dωi,

(1)
where B(x, ωo) is the reflected radiance, and the variables
x, n, ωi and ωo are the spatial location, the surface nor-
mal, and the incident and outgoing angles, respectively.
The symbol Ω represents the domain of all possible di-
rections, L(ωi) represents the incident lighting, V (x, ωi)
is a binary visibility function, and ρ(ωi, ωo) is the bidirec-
tional reflectance distribution function (BRDF) of the sur-
face. For convenience, we scale the incident illumination
by the albedo, letting La(ωi) = ρL(ωi).

3.2. Lighting Estimation

An initial mesh model of the object is reconstructed via
MVS [9, 20]. Based on this model, our method first es-
timates the SH coefficients for the incident illumination.
Here, we explicitly take the visibility function into ac-
count because we want to reconstruct non-convex objects.
For convenience, we define T (x, ωi) = V (x, ωi) max(ωi ·
n(x), 0). Representing La and T in Eq. (1) using low order
spherical harmonics, and due to the orthogonality of the SH
basis, the image irradiance equation becomes

B(x) =

∫
Ω

La(ωi)T (x, ωi)dωi =

n2∑
k=1

lktk, (2)

where n − 1 is the order of the SH, and lk and tk are, re-
spectively, the SH coefficients of lighting La and visibility
T . The irradiance B is known from the images, and the
MVS geometry gives us an approximation for the visibility
coefficient tk. First, we use the model to compute the visi-
bility of each vertex as a function of incident light direction.
For each vertex, the coefficients tk are the projection of the
product of the visibility function and the clamped cosine
function onto the SH basis functions. We calculate the co-
efficients l = {l1, . . . ln2} by minimizing the `1 norm of
the difference between the measured and computed image
irradiances at each mesh vertex:

l̂ = argmin
l

∑
i

∑
c∈Q(i)

|
n2∑
k=1

lktk − Ic(Pc(xi))|. (3)

Here, i is the vertex index, c is the camera index, Q(i) is
the set of cameras that can see the i-th vertex xi, Pc is the
projection matrix for camera c, and Ic(Pc(xi)) represents
the image intensity corresponding to vertex i and captured
by camera c. The `1 norm makes this estimation robust in
the presence of outliers like interreflections, specularities,
and errors in the MVS geometry.

We are estimating the low order SH coefficients for the
illumination here. The specified order number is automat-
ically decided by local occlusion situation on the surface,
see Sec. 3.4.

3.3. Shading-based Geometry Refinement

Given the current estimated geometry and illumina-
tion, the final step is to refine the geometry using shad-
ing information. For this step, we compute visibility for
each vertex using the current geometry, and assume that
it does not change during the refinement. If we define
Lv(x, ωi) = La(ωi)V (x, ωi), the image irradiance equa-
tion can be rewritten

B(x) =

∫
Ω

Lv(x, ωi) max(ωi · n(x), 0)dωi. (4)
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Figure 3. Anisotropic smoothness constraint: the smoothness
weight for each edge is determined by the image gradient along
the edge.

This is a convolution of Lv with the clamped cosine kernel,
which is determined by the surface normal. Letting gkm be
the SH coefficients for Lv and according to the Funk-Hecke
theorem [3], the convolution results in the same harmonic
scaled by gkm and another scalar αk. Thus, the image irra-
diance equation can be expressed as

B(x) =

n−1∑
k=0

k∑
m=−k

αkgkmYkm, (5)

where Ykm is the SH function. The scalar αk is defined as

αk =

√
4π

2k + 1
hk, (6)

where hk are the SH coefficients for the clamped cosine
function. Here, we have to allow the use of higher or-
der spherical harmonic approximations when necessary (see
Sec. 3.4). The function Ykm depends only on the surface
normal n.

We run an optimization for each vertex position that at-
tempts to minimize shading errors in all visible views. The
computed irradiance is unlikely to match the observed irra-
diance, for many reasons: interreflections, radiometric cal-
ibration errors, approximation errors for the spherical har-
monic illumination representation, and so on. Rather than
directly comparing irradiance values, we compare the gra-
dients of the observed and computed irradiances at each ver-
tex. This is natural, because shading is expected to be more
accurate for higher frequency shape components. Mathe-
matically, we define the multi-view shading gradient error
E0 as

E0 =
∑
i

∑
j∈N(i)

∑
c∈Q(i,j)

(
gc(i, j)− s(i, j)

)2
, (7)

where i and j are vertex indices,N(i) is the set of the neigh-
bors of the i-th vertex, c is the camera index, Q(i, j) is the
set of cameras which see vertex i and j, and g and s are
the measured image gradient and predicted shading gradi-
ent, respectively. We compute the gradients g and s with

direct differences, namely,

gc(i, j) = Ic(Pc(xi))− Ic(Pc(xj)), and

s(i, j) = B(xi)−B(xj).

The shading value B is calculated according to the Eq. (5).
With the estimated illumination, the only remaining unde-
fined variable in Eq. (5) is the normal n, which we can com-
pute from the vertices’ positions. We limit vertex displace-
ments to 3D locations that project into the object’s silhou-
ettes in all input views. Combining the silhouette and shad-
ing constraints gives the following new objective function
E1 for the multi-view shading gradient:

E1 =
∑
i

∑
j∈N(i)

∑
c∈Q(i,j)

d(i, j, c), (8)

where i, j, N(i), c, Q(i, j) are the same as in Eq. (7). The
function d(i, j, c) has the following form:

d(i, j, c) =

{
(gc(i, j)− s(i, j))2, M(xi) ·M(xj) 6= 0

∞, otherwise,

(9)
where ∞ is a large constant that imposes a severe penalty
if a vertex leaves the silhouettes, and M is a mask image
which is non-zero inside the silhouettes and zero outside.

Smoothness constraint In practice, we have found that
the shading gradient error alone leads to noisy reconstruc-
tions in areas where the normal is not sufficiently con-
strained or where errors in our image irradiance approxi-
mation are significant. Traditional smoothness terms might
erroneously remove fine shape detail. We thus use an
anisotropic smoothness constraint based on the image gra-
dient that filters noise while preserving details captured by
the shading gradient constraint. We observe that for objects
of uniform albedo, the image gradient can be used to infer
geometric smoothness. We use a small smoothness weight
in regions with large image gradients, allowing the shading
constraint to capture fine detail. In areas where the image
gradient is small, the shape is most likely smooth, so we use
a larger smoothness weight. Fig. 3 shows this idea.

The smoothness constraint is imposed between vertex
i and its 1-ring neighbors, with the weight being assigned
to the corresponding edges. An isotropic smoothness con-
straint would require the geometric differences between ver-
tex i and its neighbors to be as small as possible, with the
same weight for each edge. Our anisotropic smoothness
term, on the other hand, assigns different weights based
on the image gradient between neighboring vertices. The
weight of eij , for example, is determined by the correspond-
ing image gradient in the camera most directly facing the
vertex i. The weight for each edge is defined as

ws
ij = 1−min(ĝ(i, j), C)/C, (10)
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where ĝ(i, j) is the image gradient and C is a constant set-
ting a lower bound on the smoothness weight when the gra-
dient is large.

Combining the anisotropic weights with traditional mean
curvature flow [21], the smoothness term E2 becomes

E2 =
∑
i

‖
∑

j∈N(i)

ws
ijw

m
ij (xi − xj)‖22, (11)

where xi and xj are the positions of vertex i and j, and wm
ij

is the common cotangent weight. The cotangent weightwm
ij

is defined as

wm
ij =

1

2Ai
(cotαij + cotβij), (12)

where αij and βij are the two angles opposite to the edge
(vi, vj), and Ai is the Voronoi area of vertex vi.

We optimize a cost function summing the shading gradi-
ent E1 and smoothness constraints E2, defined as

E = λE1 + (1− λ)E2, (13)

where λ is a weighting factor. Optimizing all the vertex
positions simultaneously is computationally intractable be-
cause of the non-linear SH function. Optimizing vertices
one at a time, however, does not afford enough flexibility
to adjust the local surface shape. Our algorithm visits each
vertex in turn in a fixed order, optimizing the positions of
a patch comprising the vertex and its 1-ring neighbors in
each step. To avoid self-intersections as far as possible, we
restrict vertex motion to be along the initial surface normal
direction.

We could iterate by recomputing visibility using the re-
fined geometric model, re-estimating lighting, refining the
geometric model, and so on. In practice, however, we find
that one pass suffices for an accurate reconstruction.

3.4. Adaptive Geometry Refinement

For convex Lambertian objects, low-order spherical har-
monics suffice to approximate the irradiance well. For more
complex objects, however, we must use high-order approx-
imations, which are slower to compute. We use the local
ambient occlusion [18] to adapt the order of the SH approx-
imation to the geometry. Ambient occlusion corresponds
roughly to an integral over the local visibility hemisphere,
so it is high for vertices with more local self-occlusion.
We segment the mesh into two sets based on whether the
ambient occlusion at each vertex is over a threshold, and
use high-order and low-order SH approximations for ver-
tices with high and low ambient occlusion, respectively
(Fig. 6 (d)(e)). Although the SH approximation error de-
pends on the specific visibility function at each vertex, not
just its integral, we have found that the ambient occlusion
gives a good balance between reconstruction accuracy and
computational complexity.

Figure 4. An example visibility map and its SH representations of
different order.

Position[‰] Normal[deg.] Runtimemean std mean std
MVS result 1.44 1.24 8.66 6.93

adaptive, no smoothing 1.17 1.13 8.53 9.99 2 hours
adaptive + smoothing 1.15 1.07 7.05 6.03 2 hours
4th order + smoothing 1.19 1.13 7.28 6.28 1 hour
16th order + smoothing 1.13 1.06 6.91 6.17 4 hours

Table 1. Quantitative evaluation on synthetic data. First column:
position error (in ‰ of bounding box dimension). Second row:
error in surface normal direction in degrees. Third row: run time.

4. Results
We validated our algorithm using a synthetic bunny

model, shown in Fig. 5, and four real world data sets: an
angel statue (Fig. 1), a sculpture of a fish (Fig. 7), a plas-
ter cast of a face (Fig. 10), and a crumpled sheet of paper
(Fig. 9). For the real world models, we took between 22 and
33 photos with a Canon 5D Mark II from calibrated posi-
tions. We captured images at the full camera resolution and
cut out the region of interest containing the object, yielding
images of around 800 × 600 pixels. For some models we
also captured laser range scans with a Minolta Vivid 910.
We used Furukawa’s method [9] to generate the initial MVS
models for the angel and the paper, and Liu’s method [20]
for the bunny, the fish and the face. These MVS results
are re-meshed to get a uniform triangulation, resulting in
30000 vertices for the bunny and 200000 vertices for the
real scenes. We use DirectX to render a cube-map for the
visibility function at each vertex in the re-meshed result.
Fig. 4 shows an example visibility map and its SH repre-
sentations at different orders. For the synthetic model, we
used 4 simulated area light-sources (Fig. 5 (e)). The real ob-
jects were captured in two different environments: a large
indoor atrium environment with a variety of light sources
at different locations and distances (lighting I), and a room
with several rows of standard office lighting on the ceiling
(lighting II), Fig. 8. For the lighting estimation, we used
conjugate gradient to solve the `1 minimization problem in
Eq. (3). The shape is then refined by minimizing Eq. (13)
using the Lebvenberg-Marquardt algorithm.

Parameters There are two tunable parameters in our
method, λ in Eq. (13), and C in Eq. (10). Experimentally,
we determined λ = 0.3 for all data sets. C was set to 20 for
the bunny model, 100 for the angel model, and 50 for the
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Figure 5. Evaluation on synthetic data.

Figure 6. Adaptive geometry refinement: Our reconstruction using adaptive SH order (c) is almost as accurate as the high order case (b),
which is obviously better than the low order case (a). The SH order used for every vertex (e) depends on its ambient occlusion value (d).

other real-world models. Generally, the selection of C de-
pends on the level of image noise and uniformity of the albe-
dos. For instance, less uniform albedos require a higher C.
The per-vertex ambient occlusion threshold value (Sec. 3.4)
was set to 0.1. 4-th order SH approximations were used
for vertices with low ambient occlusion. Vertices over the
threshold used 14-th and 16-th order approximations for the
real and synthetic sets, respectively.

Runtime performance The algorithm’s run time depends
on the mesh density, the SH order, and the cube map dimen-
sions for rendering and SH projection. The bunny mesh
has 30000 vertices and was computed using visibility cube
maps with 64×64 facets. Using unoptimized code on a stan-
dard PC with a 2.66 GHz Core 2 Quad processor, render-
ing the visibility map takes 33 minutes, and optimizing the
shape takes roughly 1 hour and 30 minutes. Higher SH or-
ders improve reconstruction quality, particularly in starkly
occluded areas, Fig. 6 (a), (b). Reconstruction of the bunny
with 4-th order SH coefficients (Fig. 6 (a)) takes roughly
1 hour, but produces less accurate results than a full recon-
struction with 16-th order (Fig. 6 (b)) which takes 4 hours to
compute. Adaptive refinement reduces the runtime to only
2 hours with accuracy comparable to using high order coef-
ficients throughout (Fig. 6 (c)).

Synthetic scene Our synthetic dataset was generated by
rendering 20 images of the “bunny” model at 800 × 600
pixel resolution. Fig. 5 (a) shows an example image. The

MVS result (Fig. 5 (b)) lacks fine scale detail. Our refine-
ment without anisotropic smoothing (Fig. 5 (c)) brings out
more detail, but also has artifacts on the surface. In contrast,
our complete reconstruction approach (Fig. 5 (d)) shows the
high-frequency shape detail nicely with no disturbing arti-
facts. Table 1, a numerical evaluation of the reconstruction
error w.r.t. the ground truth model, confirms the accuracy
of our results.

Real-world scenes Our algorithm produces results of
similarly high quality for the real objects as shown in
Figs. 1, 7, 9, and 10. While the MVS reconstruction consis-
tently fails to capture high-frequency details, our algorithm
produces results with an accuracy that rivals and sometimes
exceeds the quality of a laser range scan. For instance, in
Fig. 10 our approach not only brings out the birth marks
and pimples in the skin, but also extracts ridges on the rub-
ber cap that are completely masked by measurement noise
in the laser scan. Although the angel statue in Fig. 1 has a
slightly varying albedo, our algorithm achieves high-quality
results. Thus, in practice the constant albedo assumption is
not a strict limitation. Fig. 7 shows reconstructions of a fish
figurine captured under two very different lighting condi-
tions (lighting I and II). In both cases, our final model is
very accurate and close to the laser scan.

Limitations The approach is subject to a few limita-
tions. The constant albedo assumption limits the applica-
tion range. In future, we intend to modify the approach to
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Figure 7. Fish reconstructed under two lighting conditions (cf Fig. 8) - in both cases, our final result (e),(f) is much more detailed than the
MVS results ((d) is only shown for lighting II and is better than MVS results for lighting I) and close to the laser scan (a).

Figure 8. Comparing estimated lightings (c), (d), (f) to the captured
environment map (a), (e) and the ground-truth SH representation
(b).

handle clearly varying surface albedo. Another limitation
comes from the assumption of Lambertian reflectance. We
would like to amend the approach to be applied to more
general materials. Besides, as we use low-order spherical
harmonics to represent the lighting, our method may lose ef-
fectiveness for band-limited illumination. Also, our method
assumes a good initial guess of the geometry and would suf-
fer from a failure of the MVS. In future, we intend to start
from a mesh obtained by active sensing methods [24].

5. Conclusion
We presented a new approach for purely image-based

reconstruction of 3D models with extremely high surface
detail. The core of the method is a shading-based refine-
ment strategy for stereo reconstructions that succeeds under
general unconstrained illumination. An efficient represen-
tation of visibility and lighting in the spherical harmonic
domain enables the method to reliably estimate incident il-
lumination and exploit it for high-quality shape improve-
ment. Both visual and quantitative analysis show that our
purely image-based results even rival laser range scans.
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