
ViewCast: View Dissemination and Management
for Multi-party 3D Tele-immersive Environments

Zhenyu Yang, Wanmin Wu, Klara Nahrstedt
University of Illinois at Urbana-Champaign

Department of Computer Science
201 N. Goodwin, Urbana, IL 61801, U.S.A.

{zyang2, wwu23, klara}@uiuc.edu

Gregorij Kurillo, Ruzena Bajcsy
University of California at Berkeley

Department of Electrical Engineering and Computer
Sciences, 253 Cory Hall, Berkeley, CA 94720, U.S.A.

{gregorij, bajcsy}@eecs.berkeley.edu

ABSTRACT
Real-time distributed multi-party/multi-stream systems are
becoming more popular in many areas such as 3D tele-immersion,
multi-camera conferencing and security surveillance. However,
the construction of such systems in large scale is impeded by the
huge demand of computing and networking resources and the lack
of a simple yet powerful networking model to handle
interconnection, scalability and quality of service (QoS)
guarantees. We make two main contributions in the paper: (1) we
propose a novel generalized ViewCast model for multi-
party/multi-stream video-mediated systems that fills the gap
between high-level user interest and low level per-stream
management, and (2) we demonstrate the ViewCast model by
applying it to the multi-party 3D Tele-Immersive (3DTI)
collaboration among geographically dispersed users. More
specifically, we show how the ViewCast model is used in
supporting stream data dissemination, coordination and QoS
management among multiple 3D tele-immersive environments.
We present our experimental results in both real implementation
and simulation to show that our ViewCast-based solution achieves
high efficiency, scalability, and quality in supporting multi-party
3DTI collaboration.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]; C.2.2 [Computer
Communication Networks]; C.2.3 [Network Operations]

General Terms
Design, Algorithm, Performance, Experimentation

Keywords
3D Tele-immersion, Network Protocols, Distributed
Application, Coordination, Adaptation, Multicast

1. INTRODUCTION
With the continuing cost drop of digital cameras, real-time
distributed multi-party/multi-stream systems are becoming
more popular including 3D Tele-Immersive (3DTI)

environments ([6][3][17]) and multi-camera surveillance
systems ([1][7]). The application model of multi-
party/multi-stream is shown in Figure 1, where each party
is a site hosting multiple cameras that capture the local
information represented by multiple video streams. Streams
from different parties are then exchanged and aggregated
through the network to provide a more comprehensive
representation of a larger global environment as in the
scenario of 3DTI environments, surveillance systems and
video sensor network.

SA,1

SA,2

SA,n

Party A

SB,1

SB,2

SB,m

Party B

SC,1

SC,2

SC,r

Party C

…

…

…network

SD,1

SD,2

SD,s

Party D

…

Figure 1. Multi-party/multi-stream application model

Our work is motivated by the goal of connecting multiple
3DTI environments to promote collaborative work among
geographically distributed participants including education,
entertainment, physical therapy, and artistic performance.
Most existing 3DTI systems only support two parties
across the Internet. Supporting multi-party 3DTI
collaboration is challenging due to the huge demand of
networking and computing resources which strictly limits
the system scalability. In 3DTI systems, each party
represents one environment where an array of 3D cameras
is installed from various angles to cover a wide field of
view (>180°) of the local scene. When a person enters the
environment, his/her complete 3D model is captured and
represented by 3D video streams each generated from a 3D
camera. With the help of a global coordinate system, the
3D representations of people from different remote places

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MM’07, September 23–28, 2007, Augsburg, Bavaria, Germany.
Copyright 2007 ACM 978-1-59593-701-8/07/0009...$5.00.

882

can be merged and rendered together, creating a
collaborative virtual space with a strong awareness of
immersive experience for every participant (Figure 2).

site 1

site 2

site 3

Figure 2. Collaborative tele-immersive environments

To achieve realistic 3D visual effect the rendering process
usually requires multiple streams from each environment.
In our experimental implementation (TEEVE, [17][20]),
one 3D video stream has the basic rate over 30 Mbps
(currently 320×240 frame resolution and 10 frames/second)
to support interactive communication, and each
environment produces up to 10 such streams. The image
resolution is being upgraded to 640×480. If all streams are
sent, the overall bandwidth from one environment will
soon exceed Gbps level. The problem would become even
more exacerbated if N such environments were connected.
Meanwhile, the time cost of rendering one 3D image frame
is about 13.7 ms on average. The rendering cost grows
linearly with the number of streams. Although proposed 3D
video compression techniques ([14][18]) have relieved the
bandwidth and rendering requirement, advanced protocols
of multi-stream coordination, QoS adaptation and network
topology are needed to make more efficient use of
computing and networking resources.

We take a novel approach by exploiting the user interest to
reduce the resource consumption and provide quality
guarantees. More specifically, we leverage an important
and unique feature - view - in multi-party/multi-stream
systems, which defines the field of interest or a viewing
perspective that the users prefer to observe in the
environment. For example, a view could be a viewpoint in
3DTI environment or a geographical point in surveillance
system. To render a particular view, the system needs to
select and transmit a subset of streams for compositing the
view to the receiver.

We fill the gap between traditional networking models (e.g.,
multicast) formulated at the stream level and the support of
view concept inherent in the semantic level by a novel
generalized ViewCast model. The basic idea of ViewCast is
that the user only specifies his/her view interest. The
problems including how to map a view to specific streams
and how to control multi-streaming are left to ViewCast.
The insight is that with an ultimate goal of satisfying the

rendering quality of particular view, the model ensures that
the underlying transmission layer can have more flexibility
in customizing streaming topology for improved multi-
stream coordination and QoS adaptation.

We have applied the ViewCast model for joining multiple
3DTI environments in one collaborative session. Our
solution to building multi-party/multi-stream system
highlights the integration of ViewCast with an underlying
application level multicast (e.g.,[10][15]) which is
receiving increasing attention as an alternative to IP
multicast. However, the process of constructing and
maintaining ViewCast dissemination structure via multiple
multicast trees becomes more complicated under our
scenario. The key challenge is how to coordinate multiple
multicast trees among streams and parties such that the
resulting topology has the desired feature of QoS support,
load balancing, high availability and resilience to view
change.

We embed the ViewCast concept in the implementation of
3DTI infrastructure as a concrete example to illustrate the
general ViewCast model and how it is used in building
multi-party/multi-stream systems. Our collaborative virtual
space currently has three major capturing/viewing 3DTI
environments (with an average of 8 streams per site) and a
few viewing sites connected across the Internet. The
ViewCast-based distribution structure allows stable quality
view rendering of the common virtual space. Meanwhile,
extensive simulation tests indicate high efficiency,
scalability and quality adaptation under larger scale of the
3DTI system.

In summary, our contribution is twofold: (1) we present for
the first time a novel ViewCast model and (2) its
application in enabling multi-party 3DTI collaboration. The
remainder of the paper is organized as follows. In Section 2
we give an overview of 3DTI environments and present the
ViewCast model. In Section 3 we then formalize the
maximum quality and minimum quality problem in
supporting multi-party 3DTI environments. Our solution is
described in Section 4, and the evaluation results in Section
5. We finally discuss related work in Section 6, and
conclude in Section 7.

2. OVERVIEW
We present an overview of the 3DTI environment (details
in [17]) and the aspects related to the ViewCast model to
facilitate further discussion.

2.1 3DTI Environment
There are three major tiers of 3DTI environment: 3D
reconstruction, transmission and rendering. The 3D
reconstruction tier is composed of multiple 3D cameras
mounted at different angles in space. A 3D camera is a unit
of four 2D digital cameras with one computer. The cameras
are synchronized to take pictures at the same instant. The

883

pictures are then processed by the computer using
trinocular stereo algorithm ([9]). The output 3D frame
contains the color and coordinate information per pixel.
Thus, each 3D camera produces one stream of frames
corresponding to its angle. Since all cameras are capturing
the same physical scene concurrently, the streams are
semantically correlated. Their content constitutes a
comprehensive representation of the scene. The
transmission tier controls the streaming of 3D video across
the network. The rendering tier takes the received streams
from multiple sites and renders them in one common
virtual space according to the current user view. Note that,
since all cameras are calibrated with a global coordinate
system, each of the streams can be independently rendered.

2.2 ViewCast Model
Generally, the view concept reflects the user interest at a
higher-level, which distinguishes ViewCast from any
networking model at lower stream-level. The ViewCast
model basically specifies that when the user retrieves
content from a multi-party/multi-stream system, only the
user’s view interest is required. The ViewCast model
controls the stream selection dynamically according to the
view requirement and the status of resources with the
ultimate goal of sustaining the QoS for the rendered view.
Therefore, ViewCast has the advantages of improved
flexibility, customization, adaptability, coordination and
responsiveness under more dynamic and resource
constrained environment. We envision the application of
ViewCast in, for example, multi-camera conferencing,
surveillance system, 3D TV, and video sensor networks.
From the 3DTI prospective, we point out several important
properties of ViewCast as listed below. Most of the
features may apply to other multi-party/multi-stream
systems as well.
• Multi-party/multi-stream Environment. The assumption
for ViewCast is that each capturing source site supplies
multiple correlated streams corresponding to a single view.
• Semantic Stream Correlation. The feature of semantic
correlation is an important feature in multi-camera systems,
where the concept of view has very intuitive definition.
• Stream Differentiation. Along with semantic stream
correlation is the feature of stream differentiation. That is, a
given view should favor some of the streams over others.
In 3DTI environment, the rendering of 3D scene is view-
dependent and the contribution of each stream to the
rendering quality of the view could be different. As the
angle of a 3D camera shifts away from the user view, its
effective image resolution will decrease due to
foreshortening and occlusion. As illustrated in Figure 3,
given the user view (right part), cameras 4 and 5 are the
most important ones. Cameras 3 and 6 are less important
but will improve the visual quality if added. The rest
cameras are the least important.

• Inter-stream Coding Independency. We assume the
coding/decoding independency among streams (i.e., we
assume intra-stream coding as in [18]). Since each stream
can be independently transmitted and rendered, it is easier
to perform the view to stream mapping and to select
streams with different possible combinations. As illustrated
in Figure 3, given the user view and the orientation of
cameras ViewCast can select various subsets of streams (or
cameras) such as {4}, {4,5}, {4,5,3} or {4,5,3,6}…
depending on the quality and resource constraints. Inter-
stream coding independency provides more flexibility in
stream selection and QoS adaptation. Meanwhile, it also
adds design challenge as there are more choices.

reconstruction

1

5

7

3

8

4

6 2

3D camera

transmission

1

5

7

3

8

4

6 2

rendering

user
view

streams contributing
to user view

Figure 3. Stream differentiation regarding to view

• Open Model. From an OSI layering point, the ViewCast
model resides in the presentation layer. It maps between the
semantics in the application layer and the stream
manipulation in the session layer. More specifically, in
3DTI environments the ViewCast model only dictates
desirable characters of the application (e.g., the definition
of view and quality) and how these characters affect the
multi-streaming. However, the design choice of higher and
lower layers is open depending on specific requirements.
We are the first to identify a very core and ideal function in
the presentation layer.
• View Change. As observed, the view change operation
may occur frequently in 3DTI environments. There are two
consequences of view change. First, stream differentiation
varies with view change. For example, in Figure 3 when
the user view changes to the position of dotted arrow (right
part) cameras 1 and 2 will become the most important ones.
This variance distinguishes ViewCast from other systems
based on fixed stream differentiation such as layered
coding and multi-description coding. Second, as soon as
the view change is detected, the system must respond by
switching streams accordingly. Stream switching may be
costly. The direct impact to the user is the discontinuity of
rendering. If multicast protocol is used in the underlying
layer, then stream switching at a parent node may impact
the child nodes. The dynamics of view change presents a
critical challenge for designing system based on ViewCast.

884

The key idea of ViewCast is that by leveraging the high-
level view semantics the visual quality, which is closely
related to view, can be guaranteed, while the low-level
stream regulation layer can have larger flexibility for
topology construction and QoS adaptation so that the
resource constraints can be satisfied adaptively.

2.3 3DTI Session Architecture and Protocol
Figure 4 illustrates the 3DTI session architecture, which is
managed at two layers. At the local layer, each 3DTI
environment is managed by its service gateway (G), which
consists of one or more computers. When a 3D camera (C)
initiates, it registers with the service gateway to save the
meta-data of its stream. Due to the runtime cost of 3D
reconstruction, once a 3D frame is generated it is
forwarded to the service gateway through high-speed LAN
for further processing of data compression and streaming
control. The gateway manages rendering as well and
retrieves streams on behalf of its local renderers (R). Thus,
service gateway is an application level data aggregating
point at each 3DTI site. We implement ViewCast on top of
the end system multicast ([15]) which is becoming an
appealing alternative to IP multicast due to the advantage
of flexibility and easy deployment. At the application level,
service gateways collect multiple streams either from local
sources (i.e., cameras) or from remote sources (i.e., peer
service gateways). The collected streams are then
multicasted according to the current status of the overlay
network and the forwarding topology managed by the
session controller (explained next). Therefore, the service
gateway represents the node in the end system overlay
network.

C

C
C

G

R

C

C

C

G

R

G
R

C
G

R

R C

G service gateway

renderer camera

session
controller

LAN

LAN

LAN

LAN
Internet2

(MAN/WAN/LAN)

Figure 4. An overlay of 3DTI session

After the bootstrapping of local environment is completed,
the service gateway registers with the central session
controller at the global layer. The way session controller
manages is similar to other proposed schemes (e.g., [11]).
When a new service gateway joins the session, the session
controller informs other service gateways to let them
connect with each other and form the initial overlay graph,
G = 〈V, E〉. Then the session controller starts to receive and
serve view requests for each node and update the overlay
structure accordingly (more details provided in Section 4).

For simplicity, it is assumed that all participating service
gateways must register with the session controller before
the live session can start.
During a live 3DTI session, the user can switch its viewing
position of the virtual space via the input device (e.g.,
keyboard/mouse or head tracking) at the renderer. If the
view change cannot be resolved, the renderer will forward
it to the service gateway. The service gateway checks
whether it has the streams available for accommodating the
view change. Otherwise, it sends a view request to the
session controller to compute a new multicast topology for
coordinating the multi-streaming.
We take a centralized approach at the global layer because
of its low messaging cost and responsiveness to the
dynamics of 3DTI session. The approach is feasible in our
situation where the number of service gateways is within a
reasonable scale (≤ 20).

3. PROBLEM FORMULATION
We formalize the basic problems of ViewCast using 3DTI
environment as an illustrative example. As shown in Figure
5, a node can request a view from a multi-stream source
node. For example, node v2 requests a view (denoted as w2)
from node v5. Depending on the view and available
resources, each requesting node may get different subset of
streams. As long as the quality and resource constrains are
satisfied, nodes which have available streams can serve
other nodes. Furthermore, a node can retrieve streams from
multiple nodes in parallel.

v2

v3

v4

v1

v5

v1 streams: S1,4 , S1,5
v5 streams: S5,1 , S5,7 , S5,8

S 1,4
 , S

1,5

S
1,4

v1 streams: S1,2 , S1,3 , S1,4
v5 streams: S5,1 , S5,8

S1,2 , S1,3

S1,2 , S1,3

w2 w3

w4

S5,1 , S5,8

S
5,1 , S

5,8

S
5,7

v1 streams: S1,2 , S1,3
v5 streams: S5,4 , S5,5 , S5,6

S5,4 , S5,5 , S5,6

user view

w2 w3

w4

Figure 5. ViewCast streaming

We introduce the basic components of the ViewCast model
based on the initial graph G = 〈V, E〉 as introduced earlier.
Streams: In the multi-party/multi-stream system, a node vi
generates a set of streams. We denote Si as the set of
streams originated from node vi (i.e., Si = {si,1, si,2,…, si,|Si|}).
Each stream si,j (1 ≤ j ≤ |Si|) has extra field-of-view (fov)
information, denoted as si,j.fov which represents the view

885

information of that stream. Note that, it is possible to have
Si = ∅ as the node may only serve rendering and viewing
(i.e., no capturing cameras at the node vi). The complete
stream space is denoted as S (i.e.,

i
i

v V
S S

∀ ∈
= U).

Nodes: V = {v1, v2,…, vN}. There are N nodes. In 3DTI
environments, a node vi represents a service gateway which
manages its local multiple streams. It can retrieve streams
from other nodes as well by sending view request. Node vi
is characterized by the following parameters.
• Inbound and outbound bandwidth constraints, denoted
as Ii and Oi respectively. For simplicity, we assume all
streams have the same data rate. Then Ii and Oi are
degrees measured as the number of streams vi can receive
and send. The inbound (and outbound) capacity is
partitioned into ‘reserved’ pins, where each bin hosts one
3D video stream.
• Set of inbound streams Ri where Ri ⊆ S – Si. We denote
Ri(vj) as the set of streams received which are originated
from node vj (i.e., Ri(vj) ⊆ Sj).
• Set of outbound streams Fi where Fi ⊆ Ri ∪ Si. For
stream s ∈ Ri , s is called a relay stream. Otherwise,
stream s ∈ Si is called original stream.
• Cost of stream. Consider a stream s at node vi (i.e., s ∈
Ri ∪ Si). If s ∈ Ri(vj) and the related streaming path of s
from vj to vi is ()j i

sp v v⎯→ , the cost of stream Ci(s) is

defined as,

()

() ()
j i

s
i

e p v v

C s C e
∈ ⎯⎯→

= ∑ (1)

where C is the cost function of edge (defined next).
Otherwise, if s ∈ Si then Ci(s) = 0. The cost of stream
reflects the delay from the source to the destination.

Edges: E = {〈vi, vj〉 | vi ∈V ∧ vj ∈V }. We define a cost
function C: E→ℜ, which maps an edge to a real number.
The cost function indicates the delay along the edge.
To summarize, for any node vi the following condition
must always be satisfied.

Ri ⊆ S – Si ∧ Fi ⊆ Ri ∪ Si ∧ | Fi | ≤ Oi ∧ | Ri | ≤ Ii (2)
For any node pair (vi, vj) and stream s, if node vi forward
stream s to node vj directly through edge 〈vi, vj〉 then the
following condition must be satisfied,

s∈ Fi ∧ [Ci(s) + C(〈vi, vj〉) ≤ D] (3)
where D is the delay bound for interactive communication.
We name conditions (2) and (3) as the system constraints.
View Model: The abstract concept of view reflects the user
interest in retrieving the content. We denote wi,j as the view
request of node vi to vj. In 3DTI environment, the view is
represented by the direction and space of user-specified
visible area. Objects inside the view are considered visible

and rendered. The whole set of view requests is denoted as
W (i.e., wi,j∈ W).
Differentiation Function: The differentiation function is
denoted as D: S ×W→ℜ, which gives the importance of a
stream regarding to a given view and the fov of stream.
The exact calculation of differentiation function can be
found in [19]. If the environment is small enough, then the
view can be simply represented as the direction vector in
3D space. Suppose the view request is denoted by the unit
vector wr and the direction of stream as the unit

vector .s fov
uuur

. Then the differentiation function calculates
the stream importance as in Equation (4).

(,) .D s w s fov w= ⋅
uuurr r

 (4)
In above equation, the value of the dot product is cosθ
where θ is the angle between the vectors of .s fov

uuur
and wr .

When .s fov
uuur

 and wr are close to each other, the dot
product is close to 1, showing that stream s is very
important to the view. Otherwise, the value decreases to –1.
Quality Function. The quality function of rendering is
denoted as Q: 2S×W →ℜ, which dictates that the rendering
quality of view depends on the set of streams received.
Sometimes it could be quite complicated to derive an exact
form of quality function as in the case of 3DTI
environment. A simple approach is taken as in Equation (5).

(,) (,)
s S

Q S w D s w
′∈

′ = ∑r r
 (5)

Given above definitions, there is the maximum quality
problem of ViewCast as formalized below.
Maximum Quality Problem

1. to maximize ,(,)
j

i i j
v V

Q R w
∈
∑ r

2. subject to system constraints (2) and (3)
The maximum quality problem is NP-complete, which can
be proved based on the layered peer-to-peer streaming
problem proposed in [16]. Another related problem of
ViewCast is the minimum quality problem as given below.
Minimum Quality Problem

1. to satisfy ,, , ((),)i j i j i jv v V Q R v w∀ ∈ ≥ Δ
r

2. subject to system constraints (2) and (3)
where Δ is a given lowest bound on acceptable quality. The
minimum quality problem is also NP-complete as shown
by studies on finding minimum-cost degree-constrained
multicast trees ([4][12]).
In summary, we explain the basic idea of ViewCast under
the 3DTI scenario. To simplify the explanation, certain

886

technical restraints are imposed on the model. However,
those restraints are not inherent in the general ViewCast
concept. For example, it is not required that all streams
have similar data rate or quality. The essence of ViewCast
includes the definition of view and whether it can be used
to differentiate streams.

4. SOLUTION
There are two major goals for the ViewCast-based solution.
• Minimum quality guarantee: each node should receive a
minimum set of streams to have some quality guarantee of
every other node inside its view. For 3DTI environments, it
implies the consistent presence of all participants in the
virtual space, which is critical for collaborative work.
• View change resilience: when a node changes its view,
the impact on other affected nodes should be minimized for
the continuity of interaction.

4.1 Minimum Quality Guarantee
Because the minimum quality problem is hard, we propose
heuristic using the priority-based approach ([19]) with the
following steps.

Step 1. For the view request wr and node vi, the
importance of streams is calculated using (,)D s wr for s ∈
Si.
Step 2. The streams are selected against a threshold, for
example, (,) 0D s w ≥

r
(i.e., a 180° total view range).

Step 3. The selected streams are further differentiated into
several priorities according to their importance. In 3DTI
environments a node has around 8 streams. The stream
selection in Step 2 produces a subset of 3 to 4 streams. We
then define the set of priorities P as {p1, p2, p3, p4}, where
p4 is the highest priority. Next, we assign priorities to
selected streams according to (,)D s wr . In our case, the
stream having the largest value of (,)D s wr is assigned the
priority p4 and so forth.
Step 4. As mentioned earlier, the inbound (and outbound)
bandwidth resource is divided into bins with each bin
hosting one stream. Suppose it is needed to forward stream
s from node vi to node vj. If both nodes have available bins,
it is straightforward to establish the streaming. Otherwise,
the bin of lower priority stream can be pre-empted. For
example, if stream s has p4 priority based on the view, it
can take the bin in either vi or vj occupied by streams of
lower priority (i.e., p1,2,3). When the pre-emption is needed,
the bin of lowest priority stream will be taken first. The bin
allocation of selected streams is performed in descending
order of priority and terminated when the pre-emption is
not possible.
Currently, we control the QoS of view rendering at the per
stream granularity. When there is not enough resource to

transmit a stream at its full content, the streaming will be
dropped. However, it is an interesting problem to explore
whether a quantitative improvement could be achieved at
finer granularity (e.g., to transmit a stream with different
rate of quality) in ViewCast.

4.2 View Change Resilience
Suppose node vi and vj have similar views and vj is
streaming from vi. When node vi changes its view, streams
needed by vj may temporarily become unavailable. The
impact will grow as the size of dependent nodes increases.
As we notice, the view change operation is a frequent
phenomenon in 3DTI environment and may cause large
overhead if not treated properly.

Previous solutions rely on concepts of soft leave ([11]) and
buffering ([16]). Soft leave requires the changing node to
continuously serve old streams until affected nodes have
found replacement. Although doable, under multi-stream
scenario it would incur longer delay. Buffering let the
intermediate nodes continue streaming from cache to
absorb the propagation of quality degradation. However, it
is not a feasible approach for live communication.

We apply two techniques to improve the view change
resilience: source diversification and stream bundling.
Source diversification attempts to diversify the supplying
nodes to lower the dependency on each individual node.
Meanwhile, stream bundling distributes streams of the
same priority group among supplying nodes to even the
importance of each node.

The basic idea is illustrated in Figure 6, where nodes va, vb
have the same set of streams (i.e., s1,2,3,4) that can be
relayed to node vc. The stream priority of vc as determined
by its view (denoted as wc) is s1: p4, s2: p3, s3: p2 and s4: p1.
Under that, the streaming schedule on the right part is
considered better since it provides a more evenly
distribution of streaming quality among the sources. Note
that, source diversification improves load balancing in a
way similar to the SplitStream technique ([10]).

Va Vb

Vc

S1:P4 S2:P3 S3:P2 S4:P1

S1 S4 S2 S3

Va Vb

Vc

S1 S2 S3 S4

4

1
3

2

Wc

Figure 6. Source Diversifying and Stream Bundling

Finally, possible techniques at the application level can
also limit the overhead of view change effectively. For
example, in 3DTI environment most of the view change
occurs with small degree which can be tolerated by human

887

perception. The rendering tier sends view request only
when the view change is significant enough.

4.3 ViewCast Management
The main task of ViewCast management is to serve view
request (wi,j), which is performed by the session controller
for each node (vi). The main serve_view algorithm is
sketched in Table 1 using notations introduced in Section 3.

Table 1. View Management Algorithm
serve_view(vi, wi,j)
 S ← get_streams(S, wi,j)
 for each s ∈ S in descending order of priority

v ← find_source (s, vi)
if (v = = null)
 report rejection
end
out ← find_out_bin(s, v, vi)
in ← find_out_bin(s, v, vi)
if (out = = null or in = = null)
 report rejection
 return
end
serve_stream(s, v, out, vi, in)

 end
 fix_victim()
end

find_source(s, dst)
 for each v ∈ V other than dst
 if (v can stream s to dst under system constraints)
 if (v has extra outbound bins)
 V1 ← V1 ∪ v
 else
 V2 ← V2 ∪ v
 end
 end
 end
 if (V1 ≠ ∅)
 return v∈V1 where v has the least forwarding to dst
 else
 return v∈V2 where v has pre-emptable bins
 end
end

The get_streams routine calculate the differentiation
function (,)D s wr with the given view (wi,j). The selected

streams are assigned priority and saved in S .

The find_source routine searches for a supplying node
that can stream s to node vi while obeying system
constraints. It first scans the nodes which have available
bins. Then it picks up the node that has the minimum
forwarding load to node vi for load balance and source

diversification (break even with the minimum total
forwarding load). If such node is not available, it looks for
a node which has the bins that can be pre-empted. For
stream bundling, each node maintains the sum of priorities
(sp) for every other node. For example, if node vi serves p3
and p2 streams for node vj, then spi(vj) will be 5. The bigger
this sum the higher the streaming quality that node vi serves
node vj. Therefore, when there are several candidate nodes
for relaying one stream to a destination node, the one with
the smaller sum will be selected to achieve stream bundling.

The find_out_bin and find_in_bin routines are
pretty straightforward. They return either an unused bin or
a bin used by lower priority stream for pre-emption. For
selecting an outbound bin to be pre-empted, we prefer to
choose the lowest priority stream. For selecting an inbound
bin to be pre-empted, one important consideration is to
select a stream that is least used in forwarding to reduce the
pre-emption cost, because once an inbound stream is pre-
empted all child nodes that rely on it will not be streaming
from the parent node any more.

The serve_stream maintains the bookkeeping of
inbound and outbound bins of source and destination nodes.
When pre-emption is performed, the affected nodes are
saved in the victim set.

The fix_victim routine tries to fix the broken link
caused by pre-emption. To reduce the cost, this routine
only fixes the broken link related to higher priority streams
(e.g., p4 and p3). Otherwise, the affected node will simply
ignore the lost stream and propagate the message to its
child nodes. The propagation will terminate either when the
pre-empted stream is not important for all child nodes or
some child nodes have found new sources. The process is
similar when the view change happens.

After the serve_view routine is completed, the session
controller calculates the new topology and broadcasted to
all nodes (i.e., service gateways).

5. EVALUATION1
We have integrated the ViewCast model in our 3DTI
implementation which connects three major environments
(UC Berkeley ↔ UIUC ↔ NCSA) and a few other
viewing nodes across the Internet. Each major environment
has up to 8 streams. Throughout one entire tele-immersive
session, the whole system provides sustainable streaming
of the common virtual space with an average frame rate of
10 frames per second (with the frame resolution of
320×240 pixels and the basic data rate of 30 Mbps). Figure

1 We refrain from comparing our protocol with existing multi-cast

protocol because the existing solutions are based on per-stream
subscription, and ours solution regulates stream adaptation
according to user request on view. It is thus very difficult to
reach a fair comparison.

888

7 shows the variation in rendering quality measured in peak
signal-to-noise ratio (PSNR) against the rendering with all
streams following view changes. For smaller view changes,
the most important stream usually resides in the inbound
bins of the receiver. Therefore, the quality loss is relatively
smaller. The reverse is true for larger view changes.

 26

 28

 30

 32

 34

 36

 38

 0 20 40 60 80 100 120

P
S

N
R

 (
dB

)

Frame Number
Figure 7. Quality variation due to view changes

For a more extensive evaluation, we simulate the ViewCast
model in a 3DTI system of 4-20 nodes. For a fixed number
of nodes, two hundred random configuration samples are
generated to compute the average (and variance) of certain
evaluation metrics. The configuration of each sample
specifies, 1) the in-degree bound and out-degree bound for
each participating node vi, 2) the view wi,j of each node,
and 3) the topology of underlying overlay network. More
details are presented in the following subsections.

5.1 User Request Specification
We compare our solution with stream-based multicast
protocols in terms of user request specification. In existing
multicast protocols (e.g., [11]), users have to explicitly
specify which streams they wish to subscribe from which
sites. This per-stream request paradigm requires significant
input from users which may be too tedious or error-prone.
ViewCast, in contrast, allows users to specify subscription
requests with only the view information per site. This high-
level request paradigm frees users from specifying per-
stream request one by one, and meanwhile achieving high
degree of customization.
We use the total number of requests made at all sites as the
metric to evaluate the ease of user request specification. In
the simulation experiments, the session is heavily loaded,
as each node always subscribes to all other sites in the
system (i.e., the worst case). The number of requests users
have to make in total if a stream-based multicast protocol
were used is thus the total number of streams that have
been acquired by the nodes in the system after running the
ViewCast protocol. Figure 8 shows that even in the worst

case, ViewCast requires much less user input than its
conventional multicast counterpart.

5.2 System Quality
One important goal as described in Section 4 is to achieve
minimum quality guarantee, that is, each request is satisfied
by at least one important stream. We evaluate this
minimum guarantee in terms of the rejection ratio defined
as the ratio of the number of rejected requests and the total
number of requests. A request is said to be rejected if and
only if no single stream is provided to serve it. Again, the
worst case (i.e., each site subscribes to all other sites) is
evaluated. Figure 9 shows that near zero rejection ratio is
achieved for all random samples.

 0

 100

 200

 300

 400

 500

 600

 4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 N
um

be
r

of
 R

eq
ue

st
s

Number of Nodes

stream-based multicast
viewcast

Figure 8. User request specification

Another important goal as described in Section 3 is to
maximize the system quality subject to bandwidth
constraints at each node. We define optimal quality as the
quality without stream pre-emption. Figure 10 shows that
our ViewCast protocol achieves near-optimal system-wide
visual quality by the overlapping of the ‘optimal quality’
line and the ‘achieved quality’ line.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 R
ej

ec
tio

n
R

at
io

Number of Nodes

viewcast

Figure 9. Minimum quality guarantee

889

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 S
ys

te
m

 Q
ua

lit
y

Number of Nodes

optimal system quality
achieved quality

Figure 10. Near-optimal and stable system quality

5.3 Fairness
We ensure fairness among nodes in the system by load-
balancing when selecting the forwarding node to serve an
incoming view request. As in the previous experiments, the
worst-case ViewCast session is used. We measure the
average and variance of the out-degree utilization of nodes
after the system overlay is constructed. This considers
subscription requests at the initialization phase of a
ViewCast session without taking the later view change into
account. The out-degree utilization of a node is defined as
the ratio of the used out-degree and the out-degree bound
of the node. The average out-degree utilization as shown in
Figure 11 is high and approaches 1.0 as the size of the
system grows. Also note that it never exceeds 1.0 because
we always satisfy bandwidth constraints at each node. The
small variance of out-degree utilization as shown in Figure
11 demonstrates that the nodes in the system share roughly
the same responsibilities of forwarding streams, and thus
fairness is achieved.
We also evaluate how much of each node’s out-degree is
used to relay streams received from other nodes. Figure 11
further shows that consistently about a quarter of each
node’s out-degree is dedicated for forwarding streams. This
indicates the strength of our multicast-based protocol that
substantially reduces the burden of each source node
compared to the conventional unicast solution.

5.4 View Change Cost
One way of observing the cost of view change is to exam
the number of broken streams that need to be fixed. In the
routine of fix_victim (Section 4), we keep track of the
number of fixed streams and plot the data in Figure 12. The
figure shows that the average number of fixed streams is
quite small (< 2) and gradually decreases when the number
of nodes increases.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 4 6 8 10 12 14 16 18 20

U
til

iz
at

io
n

R
at

io

Number of Nodes

average out-degree utilization
average fraction used for relaying

Figure 11. Average out-degree utilization and Average

fraction of out-degree for relaying

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 N
um

be
r

of
 F

ix
ed

 S
tr

ea
m

s

Number of Nodes

average number of fixed streams

Figure 12. Average number of fixed streams

6. RELATED WORK
The most important application of the ViewCast concept is
in the multi-party/multi-stream environment for QoS
management, which distinguishes it from available
protocols and techniques in several aspects.
Multicast protocols including application level multicast
(e.g., [8][11][13][15]) are mostly concerned with efficient
transmission of particular stream for a group of receivers.
In contrast, ViewCast is a higher-level concept which is
focused on the coordination of multi-streaming among
multiple groups.
Coordination protocol for multiple streams was proposed
for supporting tele-immersive system ([3]). However, the
protocol only dealt with a pair of nodes with its main
function of aggregating the information of each flow. The
questions of how to apply it in 3DTI environments and
how to interconnect multiple nodes were not addressed.
The awareness driven model has been applied in
collaborative virtual environment ([2][5][11]) for quality of
service management. Given the awareness information of

890

the user, the model dynamically selects the set of sources
and the quality. Usually, each source represents one
audio/video stream with multiple levels. However, the
limitation of the model is its incapability of handling
multiple correlated streams at each source and among
sources as required in multi-party/multi-stream systems.

7. CONCLUSION
We present the ViewCast model, a novel concept inside the
presentation layer for constructing multi-party/multi-stream
system in cooperative networking environment. The main
idea of the model is to take the view specification as the
main goal for managing multiple correlated streams. We
illustrate various aspects of the model using a real example
of its application in 3DTI environment. As shown in real
experiments across the Internet and simulations, when
combined with application level multicast, ViewCast
achieves low cost, efficient resource usage and high
rendering quality. The experimental results encourage the
possible usage of the model in other similar systems.

8. ACKNOWLEDGMENTS
We would like to acknowledge the support of this research
by the National Science Foundation (NSF SCI 05-49242
and NSF CNS 05-20182). The presented views are those of
authors and do not represent the position of NSF. We
would also like to thank our colleagues in NCSA, Dr. Peter
Bajscy and Miles Johnson, for their cooperation.

9. REFERENCES
[1] A. Girgensohn, F. Shipman, A. Dunnigan, T. Turner and L.

Wilcox, Support for effective use of multiple video streams
in security, In Proceedings of ACM international workshop
on Video surveillance and sensor networks (VSSN’06), 2006.

[2] C. Greenhalgh and S. Benford, Massive: a collaborative
virtual environment for teleconferencing, In ACM
transactions on Computer Human Interactions, 1995.

[3] D.E. Ott and K. Mayer-Patel, Coordinated multi-streaming
for 3D tele-immersion, In Proceedings of ACM international
conference on Multimedia (MM’04), 2004.

[4] F. Bauer and A. Varma, Degree-constrained multicasting in
point-to-point networks, In Proceedings of IEEE conference
on computer communications (INFOCOM’95), 1995.

[5] G. Reynard, S. Benford, C. Greenhalgh, and C. Heath,
Awareness driven video quality of service in collaborative
virtual environment, In Proceedings of the SIGCHI
conference on Human factors in computing systems (CHI’98),
1998.

[6] H.H. Baker, N. Bhatti, D. Tanguay, I. Sobel, D. Gelb, M.E.
Goss, J. MacCormick, K. Yuasa, W.B. Culbertson, and T.
Malzbender, Computation and performance issues in
Coliseum: an immersive videoconferencing system, In

Proceedings of ACM international conference on Multimedia
(MM’03), 2003.

[7] J.-G. Lou, H. Cai and J. Li, A real-time interactive multi-
view video system, In Proceedings of ACM international
conference on Multimedia(MM’05), 2005.

[8] J. Jannotti, D. Gifford, K. Johnson, M. Kaashoek, and J.
O’Toole, Overcast: Reliable multicasting with an overlay
network, In Proceedings of ACM symposium on Operating
Systems Design and Implementation (OSDI’00), 2000.

[9] J. Mulligan and K. Daniilidis, Real-time trinocular stereo for
tele-immersion, In Proceedings of International conference
on image processing, 2001.

[10] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A.
Rowstron, and A. Singh, SplitStream: high-bandwidth
multicast in cooperative environments, In Proceedings of
ACM symposium on Operating systems principles (SOSP’03),
2003.

[11] M. Hosseini and N.D. Georganas, Design of a multi-sender
3D videoconferencing application over an end system
multicast protocol, In Proceedings of the eleventh ACM
international conference on Multimedia (MM’03), 2003.

[12] R. Ravi, M.V. Marathe, S.S. Ravi, D.J. Rosenkrantz, and
H.B. Hunt, Approximation algorithms for degree-constrained
minimum-cost network-design problems, Algorithmica, 2001.

[13] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, Scalable
application layer multicast, In Proceedings of ACM Special
Interest Group on Data Communication (SIGCOMM’02),
2002.

[14] S.-U. Kum, K. Mayer-Patel, and H. Fuchs, Real-time
compression for dynamic 3D environment, In Proceedings of
ACM conference on Multimedia (MM’03), 2003.

[15] Y. Chu, S. Rao, and H. Zhang, A case for end system
multicast, In Proceedings of ACM Sigmetrics, 2000.

[16] Y. Cui and K. Nahrstedt, Layered Peer-to-Peer Streaming, In
Proceedings of International workshop on network and
operating systems support for digital audio an video
(NOSSDAV’01), 2001.

[17] Z. Yang, Y. Cui, B. Yu, J. Liang, K. Nahrstedt, S.-H. Jung
and R. Bajscy, TEEVE: the next generation architecture for
tele-immersive environments, In Proceedings of the 7th
International Symposium on Multimedia (ISM’05), 2005.

[18] Z. Yang, Y. Cui, Z. Anwar, R. Bocchino, N. Kiyanclar, K.
Nahrstedt, R.H. Campbell, and W. Yurick, Real-time 3D
video compression for tel-immersive environments. In
Proceedings of SPIE multimedia computing and networking
(MMCN’06), 2006.

[19] Z. Yang, B. Yu, K. Nahrstedt and R. Bajcsy, A multi-stream
adaptation framework for bandwidth management in 3D tele-
immersion, In Proceedings of the 16th International
Workshop on Network and Operating System Support for
Digital Audio and Video (NOSSDAV’06), 2006.

[20] TEEVE project, http://cairo.cs.uiuc.edu/teleimmersion/,
http://tele-immersion.citris-uc.org/

891

