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ABSTRACT 
Real-time distributed multi-party/multi-stream systems are 
becoming more popular in many areas such as 3D tele-immersion, 
multi-camera conferencing and security surveillance. However, 
the construction of such systems in large scale is impeded by the 
huge demand of computing and networking resources and the lack 
of a simple yet powerful networking model to handle 
interconnection, scalability and quality of service (QoS) 
guarantees. We make two main contributions in the paper: (1) we 
propose a novel generalized ViewCast model for multi-
party/multi-stream video-mediated systems that fills the gap 
between high-level user interest and low level per-stream 
management, and (2) we demonstrate the ViewCast model by 
applying it to the multi-party 3D Tele-Immersive (3DTI) 
collaboration among geographically dispersed users. More 
specifically, we show how the ViewCast model is used in 
supporting stream data dissemination, coordination and QoS 
management among multiple 3D tele-immersive environments. 
We present our experimental results in both real implementation 
and simulation to show that our ViewCast-based solution achieves 
high efficiency, scalability, and quality in supporting multi-party 
3DTI collaboration. 

Categories and Subject Descriptors 
C.2.1 [Network Architecture and Design]; C.2.2 [Computer 
Communication Networks]; C.2.3 [Network Operations] 

General Terms 
Design, Algorithm, Performance, Experimentation 

Keywords 
3D Tele-immersion, Network Protocols, Distributed 
Application, Coordination, Adaptation, Multicast 

1. INTRODUCTION 
With the continuing cost drop of digital cameras, real-time 
distributed multi-party/multi-stream systems are becoming 
more popular including 3D Tele-Immersive (3DTI) 

environments ([6][3][17]) and multi-camera surveillance 
systems ([1][7]). The application model of multi-
party/multi-stream is shown in Figure 1, where each party 
is a site hosting multiple cameras that capture the local 
information represented by multiple video streams. Streams 
from different parties are then exchanged and aggregated 
through the network to provide a more comprehensive 
representation of a larger global environment as in the 
scenario of 3DTI environments, surveillance systems and 
video sensor network. 

SA,1

SA,2

SA,n

Party A

SB,1

SB,2

SB,m

Party B

SC,1

SC,2

SC,r

Party C

…

…

…network

SD,1

SD,2

SD,s

Party D

…

 
Figure 1. Multi-party/multi-stream application model 

Our work is motivated by the goal of connecting multiple 
3DTI environments to promote collaborative work among 
geographically distributed participants including education, 
entertainment, physical therapy, and artistic performance. 
Most existing 3DTI systems only support two parties 
across the Internet. Supporting multi-party 3DTI 
collaboration is challenging due to the huge demand of 
networking and computing resources which strictly limits 
the system scalability. In 3DTI systems, each party 
represents one environment where an array of 3D cameras 
is installed from various angles to cover a wide field of 
view (>180°) of the local scene. When a person enters the 
environment, his/her complete 3D model is captured and 
represented by 3D video streams each generated from a 3D 
camera. With the help of a global coordinate system, the 
3D representations of people from different remote places 
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can be merged and rendered together, creating a 
collaborative virtual space with a strong awareness of 
immersive experience for every participant (Figure 2). 

site 1

site 2

site 3

 
Figure 2. Collaborative tele-immersive environments 

To achieve realistic 3D visual effect the rendering process 
usually requires multiple streams from each environment. 
In our experimental implementation (TEEVE, [17][20]), 
one 3D video stream has the basic rate over 30 Mbps 
(currently 320×240 frame resolution and 10 frames/second) 
to support interactive communication, and each 
environment produces up to 10 such streams. The image 
resolution is being upgraded to 640×480. If all streams are 
sent, the overall bandwidth from one environment will 
soon exceed Gbps level. The problem would become even 
more exacerbated if N such environments were connected. 
Meanwhile, the time cost of rendering one 3D image frame 
is about 13.7 ms on average. The rendering cost grows 
linearly with the number of streams. Although proposed 3D 
video compression techniques ([14][18]) have relieved the 
bandwidth and rendering requirement, advanced protocols 
of multi-stream coordination, QoS adaptation and network 
topology are needed to make more efficient use of 
computing and networking resources. 

We take a novel approach by exploiting the user interest to 
reduce the resource consumption and provide quality 
guarantees. More specifically, we leverage an important 
and unique feature - view - in multi-party/multi-stream 
systems, which defines the field of interest or a viewing 
perspective that the users prefer to observe in the 
environment. For example, a view could be a viewpoint in 
3DTI environment or a geographical point in surveillance 
system. To render a particular view, the system needs to 
select and transmit a subset of streams for compositing the 
view to the receiver. 

We fill the gap between traditional networking models (e.g., 
multicast) formulated at the stream level and the support of 
view concept inherent in the semantic level by a novel 
generalized ViewCast model. The basic idea of ViewCast is 
that the user only specifies his/her view interest. The 
problems including how to map a view to specific streams 
and how to control multi-streaming are left to ViewCast. 
The insight is that with an ultimate goal of satisfying the 

rendering quality of particular view, the model ensures that 
the underlying transmission layer can have more flexibility 
in customizing streaming topology for improved multi-
stream coordination and QoS adaptation. 

We have applied the ViewCast model for joining multiple 
3DTI environments in one collaborative session. Our 
solution to building multi-party/multi-stream system 
highlights the integration of ViewCast with an underlying 
application level multicast (e.g.,[10][15]) which is 
receiving increasing attention as an alternative to IP 
multicast. However, the process of constructing and 
maintaining ViewCast dissemination structure via multiple 
multicast trees becomes more complicated under our 
scenario. The key challenge is how to coordinate multiple 
multicast trees among streams and parties such that the 
resulting topology has the desired feature of QoS support, 
load balancing, high availability and resilience to view 
change. 

We embed the ViewCast concept in the implementation of 
3DTI infrastructure as a concrete example to illustrate the 
general ViewCast model and how it is used in building 
multi-party/multi-stream systems. Our collaborative virtual 
space currently has three major capturing/viewing 3DTI 
environments (with an average of 8 streams per site) and a 
few viewing sites connected across the Internet. The 
ViewCast-based distribution structure allows stable quality 
view rendering of the common virtual space. Meanwhile, 
extensive simulation tests indicate high efficiency, 
scalability and quality adaptation under larger scale of the 
3DTI system. 

In summary, our contribution is twofold: (1) we present for 
the first time a novel ViewCast model and (2) its 
application in enabling multi-party 3DTI collaboration. The 
remainder of the paper is organized as follows. In Section 2 
we give an overview of 3DTI environments and present the 
ViewCast model. In Section 3 we then formalize the 
maximum quality and minimum quality problem in 
supporting multi-party 3DTI environments. Our solution is 
described in Section 4, and the evaluation results in Section 
5. We finally discuss related work in Section 6, and 
conclude in Section 7.  

2. OVERVIEW 
We present an overview of the 3DTI environment (details 
in [17]) and the aspects related to the ViewCast model to 
facilitate further discussion. 

2.1 3DTI Environment 
There are three major tiers of 3DTI environment: 3D 
reconstruction, transmission and rendering. The 3D 
reconstruction tier is composed of multiple 3D cameras 
mounted at different angles in space. A 3D camera is a unit 
of four 2D digital cameras with one computer. The cameras 
are synchronized to take pictures at the same instant. The 
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pictures are then processed by the computer using 
trinocular stereo algorithm ([9]). The output 3D frame 
contains the color and coordinate information per pixel. 
Thus, each 3D camera produces one stream of frames 
corresponding to its angle. Since all cameras are capturing 
the same physical scene concurrently, the streams are 
semantically correlated. Their content constitutes a 
comprehensive representation of the scene. The 
transmission tier controls the streaming of 3D video across 
the network. The rendering tier takes the received streams 
from multiple sites and renders them in one common 
virtual space according to the current user view. Note that, 
since all cameras are calibrated with a global coordinate 
system, each of the streams can be independently rendered. 

2.2 ViewCast Model 
Generally, the view concept reflects the user interest at a 
higher-level, which distinguishes ViewCast from any 
networking model at lower stream-level. The ViewCast 
model basically specifies that when the user retrieves 
content from a multi-party/multi-stream system, only the 
user’s view interest is required. The ViewCast model 
controls the stream selection dynamically according to the 
view requirement and the status of resources with the 
ultimate goal of sustaining the QoS for the rendered view. 
Therefore, ViewCast has the advantages of improved 
flexibility, customization, adaptability, coordination and 
responsiveness under more dynamic and resource 
constrained environment. We envision the application of 
ViewCast in, for example, multi-camera conferencing, 
surveillance system, 3D TV, and video sensor networks. 
From the 3DTI prospective, we point out several important 
properties of ViewCast as listed below. Most of the 
features may apply to other multi-party/multi-stream 
systems as well. 
• Multi-party/multi-stream Environment. The assumption 
for ViewCast is that each capturing source site supplies 
multiple correlated streams corresponding to a single view. 
• Semantic Stream Correlation. The feature of semantic 
correlation is an important feature in multi-camera systems, 
where the concept of view has very intuitive definition. 
• Stream Differentiation. Along with semantic stream 
correlation is the feature of stream differentiation. That is, a 
given view should favor some of the streams over others. 
In 3DTI environment, the rendering of 3D scene is view-
dependent and the contribution of each stream to the 
rendering quality of the view could be different. As the 
angle of a 3D camera shifts away from the user view, its 
effective image resolution will decrease due to 
foreshortening and occlusion. As illustrated in Figure 3, 
given the user view (right part), cameras 4 and 5 are the 
most important ones. Cameras 3 and 6 are less important 
but will improve the visual quality if added. The rest 
cameras are the least important.  

• Inter-stream Coding Independency. We assume the 
coding/decoding independency among streams (i.e., we 
assume intra-stream coding as in [18]). Since each stream 
can be independently transmitted and rendered, it is easier 
to perform the view to stream mapping and to select 
streams with different possible combinations. As illustrated 
in Figure 3, given the user view and the orientation of 
cameras ViewCast can select various subsets of streams (or 
cameras) such as {4}, {4,5}, {4,5,3} or {4,5,3,6}… 
depending on the quality and resource constraints. Inter-
stream coding independency provides more flexibility in 
stream selection and QoS adaptation. Meanwhile, it also 
adds design challenge as there are more choices. 
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Figure 3. Stream differentiation regarding to view 

• Open Model. From an OSI layering point, the ViewCast 
model resides in the presentation layer. It maps between the 
semantics in the application layer and the stream 
manipulation in the session layer. More specifically, in 
3DTI environments the ViewCast model only dictates 
desirable characters of the application (e.g., the definition 
of view and quality) and how these characters affect the 
multi-streaming. However, the design choice of higher and 
lower layers is open depending on specific requirements. 
We are the first to identify a very core and ideal function in 
the presentation layer. 
• View Change. As observed, the view change operation 
may occur frequently in 3DTI environments. There are two 
consequences of view change. First, stream differentiation 
varies with view change. For example, in Figure 3 when 
the user view changes to the position of dotted arrow (right 
part) cameras 1 and 2 will become the most important ones. 
This variance distinguishes ViewCast from other systems 
based on fixed stream differentiation such as layered 
coding and multi-description coding. Second, as soon as 
the view change is detected, the system must respond by 
switching streams accordingly. Stream switching may be 
costly. The direct impact to the user is the discontinuity of 
rendering. If multicast protocol is used in the underlying 
layer, then stream switching at a parent node may impact 
the child nodes. The dynamics of view change presents a 
critical challenge for designing system based on ViewCast. 
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The key idea of ViewCast is that by leveraging the high-
level view semantics the visual quality, which is closely 
related to view, can be guaranteed, while the low-level 
stream regulation layer can have larger flexibility for 
topology construction and QoS adaptation so that the 
resource constraints can be satisfied adaptively.   

2.3 3DTI Session Architecture and Protocol 
Figure 4 illustrates the 3DTI session architecture, which is 
managed at two layers. At the local layer, each 3DTI 
environment is managed by its service gateway (G), which 
consists of one or more computers. When a 3D camera (C) 
initiates, it registers with the service gateway to save the 
meta-data of its stream. Due to the runtime cost of 3D 
reconstruction, once a 3D frame is generated it is 
forwarded to the service gateway through high-speed LAN 
for further processing of data compression and streaming 
control. The gateway manages rendering as well and 
retrieves streams on behalf of its local renderers (R). Thus, 
service gateway is an application level data aggregating 
point at each 3DTI site. We implement ViewCast on top of 
the end system multicast ([15]) which is becoming an 
appealing alternative to IP multicast due to the advantage 
of flexibility and easy deployment. At the application level, 
service gateways collect multiple streams either from local 
sources (i.e., cameras) or from remote sources (i.e., peer 
service gateways). The collected streams are then 
multicasted according to the current status of the overlay 
network and the forwarding topology managed by the 
session controller (explained next). Therefore, the service 
gateway represents the node in the end system overlay 
network. 
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Figure 4. An overlay of 3DTI session 

After the bootstrapping of local environment is completed, 
the service gateway registers with the central session 
controller at the global layer. The way session controller 
manages is similar to other proposed schemes (e.g., [11]). 
When a new service gateway joins the session, the session 
controller informs other service gateways to let them 
connect with each other and form the initial overlay graph, 
G = 〈V, E〉. Then the session controller starts to receive and 
serve view requests for each node and update the overlay 
structure accordingly (more details provided in Section 4). 

For simplicity, it is assumed that all participating service 
gateways must register with the session controller before 
the live session can start. 
During a live 3DTI session, the user can switch its viewing 
position of the virtual space via the input device (e.g., 
keyboard/mouse or head tracking) at the renderer. If the 
view change cannot be resolved, the renderer will forward 
it to the service gateway. The service gateway checks 
whether it has the streams available for accommodating the 
view change. Otherwise, it sends a view request to the 
session controller to compute a new multicast topology for 
coordinating the multi-streaming. 
We take a centralized approach at the global layer because 
of its low messaging cost and responsiveness to the 
dynamics of 3DTI session. The approach is feasible in our 
situation where the number of service gateways is within a 
reasonable scale (≤ 20). 

3. PROBLEM FORMULATION 
We formalize the basic problems of ViewCast using 3DTI 
environment as an illustrative example. As shown in Figure 
5, a node can request a view from a multi-stream source 
node. For example, node v2 requests a view (denoted as w2) 
from node v5. Depending on the view and available 
resources, each requesting node may get different subset of 
streams. As long as the quality and resource constrains are 
satisfied, nodes which have available streams can serve 
other nodes. Furthermore, a node can retrieve streams from 
multiple nodes in parallel. 
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Figure 5. ViewCast streaming 

We introduce the basic components of the ViewCast model 
based on the initial graph G = 〈V, E〉 as introduced earlier. 
Streams: In the multi-party/multi-stream system, a node vi 
generates a set of streams. We denote Si as the set of 
streams originated from node vi (i.e., Si = {si,1, si,2,…, si,|Si|}). 
Each stream si,j (1 ≤ j ≤ |Si|) has extra field-of-view (fov) 
information, denoted as si,j.fov which represents the view 
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information of that stream. Note that, it is possible to have 
Si = ∅ as the node may only serve rendering and viewing 
(i.e., no capturing cameras at the node vi). The complete 
stream space is denoted as S (i.e.,

i
i

v V
S S

∀ ∈
= U ). 

Nodes: V = {v1, v2,…, vN}. There are N nodes. In 3DTI 
environments, a node vi represents a service gateway which 
manages its local multiple streams. It can retrieve streams 
from other nodes as well by sending view request. Node vi 
is characterized by the following parameters. 
• Inbound and outbound bandwidth constraints, denoted 
as Ii and Oi respectively. For simplicity, we assume all 
streams have the same data rate. Then Ii and Oi are 
degrees measured as the number of streams vi can receive 
and send. The inbound (and outbound) capacity is 
partitioned into ‘reserved’ pins, where each bin hosts one 
3D video stream. 
• Set of inbound streams Ri where Ri ⊆ S – Si. We denote 
Ri(vj) as the set of streams received which are originated 
from node vj (i.e., Ri(vj) ⊆ Sj). 
• Set of outbound streams Fi where Fi ⊆ Ri ∪ Si. For 
stream s ∈ Ri , s is called a relay stream. Otherwise, 
stream s ∈ Si is called original stream. 
• Cost of stream. Consider a stream s at node vi (i.e., s ∈ 
Ri ∪ Si). If s ∈ Ri(vj) and the related streaming path of s 
from vj to vi is ( )j i

sp v v⎯→ , the cost of stream Ci(s) is 

defined as, 

( )

( ) ( )
j i

s
i

e p v v

C s C e
∈ ⎯⎯→

= ∑                    (1) 

where C is the cost function of edge (defined next). 
Otherwise, if s ∈ Si then Ci(s) = 0. The cost of stream 
reflects the delay from the source to the destination. 

Edges: E = {〈vi, vj〉 | vi ∈V ∧ vj ∈V }. We define a cost 
function C: E→ℜ, which maps an edge to a real number. 
The cost function indicates the delay along the edge. 
To summarize, for any node vi the following condition 
must always be satisfied. 

Ri ⊆ S – Si ∧ Fi ⊆ Ri ∪ Si ∧ | Fi | ≤ Oi ∧ | Ri | ≤ Ii      (2) 
For any node pair (vi, vj) and stream s, if node vi forward 
stream s to node vj directly through edge 〈vi, vj〉 then the 
following condition must be satisfied, 

s∈ Fi ∧ [Ci(s) + C(〈vi, vj〉) ≤ D]             (3) 
where D is the delay bound for interactive communication. 
We name conditions (2) and (3) as the system constraints. 
View Model: The abstract concept of view reflects the user 
interest in retrieving the content. We denote wi,j as the view 
request of node vi to vj. In 3DTI environment, the view is 
represented by the direction and space of user-specified 
visible area. Objects inside the view are considered visible 

and rendered. The whole set of view requests is denoted as 
W (i.e., wi,j∈ W). 
Differentiation Function: The differentiation function is 
denoted as D: S ×W→ℜ, which gives the importance of a 
stream regarding to a given view and the fov of stream. 
The exact calculation of differentiation function can be 
found in [19]. If the environment is small enough, then the 
view can be simply represented as the direction vector in 
3D space. Suppose the view request is denoted by the unit 
vector wr and the direction of stream as the unit 

vector .s fov
uuur

. Then the differentiation function calculates 
the stream importance as in Equation (4). 

( , ) .D s w s fov w= ⋅
uuurr r

                           (4) 
In above equation, the value of the dot product is cosθ 
where θ  is the angle between the vectors of .s fov

uuur
and wr . 

When .s fov
uuur

 and wr  are close to each other, the dot 
product is close to 1, showing that stream s  is very 
important to the view. Otherwise, the value decreases to –1. 
Quality Function. The quality function of rendering is 
denoted as Q: 2S×W →ℜ, which dictates that the rendering 
quality of view depends on the set of streams received. 
Sometimes it could be quite complicated to derive an exact 
form of quality function as in the case of 3DTI 
environment. A simple approach is taken as in Equation (5). 

( , ) ( , )
s S

Q S w D s w
′∈

′ = ∑r r
                       (5)  

Given above definitions, there is the maximum quality 
problem of ViewCast as formalized below. 
Maximum Quality Problem 

1. to maximize   ,( , )
j

i i j
v V

Q R w
∈
∑ r

 

2. subject to system constraints (2) and (3) 
The maximum quality problem is NP-complete, which can 
be proved based on the layered peer-to-peer streaming 
problem proposed in [16]. Another related problem of 
ViewCast is the minimum quality problem as given below. 
Minimum Quality Problem 

1. to satisfy   ,, ,   ( ( ), )i j i j i jv v V Q R v w∀ ∈ ≥ Δ
r

 

2. subject to system constraints (2) and (3) 
where Δ is a given lowest bound on acceptable quality. The 
minimum quality problem is also NP-complete as shown 
by studies on finding minimum-cost degree-constrained 
multicast trees ([4][12]). 
In summary, we explain the basic idea of ViewCast under 
the 3DTI scenario. To simplify the explanation, certain 
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technical restraints are imposed on the model. However, 
those restraints are not inherent in the general ViewCast 
concept. For example, it is not required that all streams 
have similar data rate or quality. The essence of ViewCast 
includes the definition of view and whether it can be used 
to differentiate streams. 

4. SOLUTION 
There are two major goals for the ViewCast-based solution. 
• Minimum quality guarantee: each node should receive a 
minimum set of streams to have some quality guarantee of 
every other node inside its view. For 3DTI environments, it 
implies the consistent presence of all participants in the 
virtual space, which is critical for collaborative work. 
• View change resilience: when a node changes its view, 
the impact on other affected nodes should be minimized for 
the continuity of interaction. 

4.1 Minimum Quality Guarantee 
Because the minimum quality problem is hard, we propose 
heuristic using the priority-based approach ([19]) with the 
following steps. 

Step 1. For the view request wr and node vi, the 
importance of streams is calculated using ( , )D s wr  for s ∈ 
Si. 
Step 2. The streams are selected against a threshold, for 
example, ( , ) 0D s w ≥

r
(i.e., a 180° total view range). 

Step 3. The selected streams are further differentiated into 
several priorities according to their importance. In 3DTI 
environments a node has around 8 streams. The stream 
selection in Step 2 produces a subset of 3 to 4 streams. We 
then define the set of priorities P as {p1, p2, p3, p4}, where 
p4 is the highest priority. Next, we assign priorities to 
selected streams according to ( , )D s wr . In our case, the 
stream having the largest value of ( , )D s wr is assigned the 
priority p4 and so forth. 
Step 4. As mentioned earlier, the inbound (and outbound) 
bandwidth resource is divided into bins with each bin 
hosting one stream. Suppose it is needed to forward stream 
s from node vi to node vj. If both nodes have available bins, 
it is straightforward to establish the streaming. Otherwise, 
the bin of lower priority stream can be pre-empted. For 
example, if stream s has p4 priority based on the view, it 
can take the bin in either vi or vj occupied by streams of 
lower priority (i.e., p1,2,3). When the pre-emption is needed, 
the bin of lowest priority stream will be taken first. The bin 
allocation of selected streams is performed in descending 
order of priority and terminated when the pre-emption is 
not possible. 
Currently, we control the QoS of view rendering at the per 
stream granularity. When there is not enough resource to 

transmit a stream at its full content, the streaming will be 
dropped. However, it is an interesting problem to explore 
whether a quantitative improvement could be achieved at 
finer granularity (e.g., to transmit a stream with different 
rate of quality) in ViewCast. 

4.2 View Change Resilience 
Suppose node vi and vj have similar views and vj is 
streaming from vi. When node vi changes its view, streams 
needed by vj may temporarily become unavailable. The 
impact will grow as the size of dependent nodes increases. 
As we notice, the view change operation is a frequent 
phenomenon in 3DTI environment and may cause large 
overhead if not treated properly. 

Previous solutions rely on concepts of soft leave ([11]) and 
buffering ([16]). Soft leave requires the changing node to 
continuously serve old streams until affected nodes have 
found replacement. Although doable, under multi-stream 
scenario it would incur longer delay. Buffering let the 
intermediate nodes continue streaming from cache to 
absorb the propagation of quality degradation. However, it 
is not a feasible approach for live communication. 

We apply two techniques to improve the view change 
resilience: source diversification and stream bundling. 
Source diversification attempts to diversify the supplying 
nodes to lower the dependency on each individual node. 
Meanwhile, stream bundling distributes streams of the 
same priority group among supplying nodes to even the 
importance of each node. 

The basic idea is illustrated in Figure 6, where nodes va, vb 
have the same set of streams (i.e., s1,2,3,4) that can be 
relayed to node vc. The stream priority of vc as determined 
by its view (denoted as wc) is s1: p4, s2: p3, s3: p2 and s4: p1. 
Under that, the streaming schedule on the right part is 
considered better since it provides a more evenly 
distribution of streaming quality among the sources. Note 
that, source diversification improves load balancing in a 
way similar to the SplitStream technique ([10]). 

Va Vb

Vc

S1:P4  S2:P3 S3:P2 S4:P1

S1 S4 S2 S3

Va Vb

Vc

S1 S2 S3 S4

4

1
3

2

Wc

 
Figure 6. Source Diversifying and Stream Bundling 

Finally, possible techniques at the application level can 
also limit the overhead of view change effectively. For 
example, in 3DTI environment most of the view change 
occurs with small degree which can be tolerated by human 
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perception. The rendering tier sends view request only 
when the view change is significant enough. 

4.3 ViewCast Management 
The main task of ViewCast management is to serve view 
request (wi,j), which is performed by the session controller 
for each node (vi). The main serve_view algorithm is 
sketched in Table 1 using notations introduced in Section 3. 

Table 1. View Management Algorithm 
serve_view(vi, wi,j) 
    S   ← get_streams(S, wi,j) 
    for each s ∈ S  in descending order of priority 

v ← find_source (s, vi) 
if (v = = null) 
    report rejection 
end 
out ← find_out_bin(s, v, vi) 
in ← find_out_bin(s, v, vi) 
if (out = = null or in = = null) 
    report rejection 
    return 
end 
serve_stream(s, v, out, vi, in) 

    end 
    fix_victim() 
end 
 
find_source(s, dst) 
    for each v ∈ V other than dst 
        if (v can stream s to dst under system constraints) 
            if (v has extra outbound bins) 
                V1 ← V1 ∪ v 
            else 
                V2 ← V2 ∪ v 
            end 
        end 
    end 
    if (V1 ≠ ∅) 
        return v∈V1 where v has the least forwarding to dst 
    else 
        return v∈V2 where v has pre-emptable bins 
    end 
end 

The get_streams routine calculate the differentiation 
function ( , )D s wr with the given view (wi,j). The selected 

streams are assigned priority and saved in S . 

The find_source routine searches for a supplying node 
that can stream s to node vi while obeying system 
constraints. It first scans the nodes which have available 
bins. Then it picks up the node that has the minimum 
forwarding load to node vi for load balance and source 

diversification (break even with the minimum total 
forwarding load). If such node is not available, it looks for 
a node which has the bins that can be pre-empted. For 
stream bundling, each node maintains the sum of priorities 
(sp) for every other node. For example, if node vi serves p3 
and p2 streams for node vj, then spi(vj) will be 5. The bigger 
this sum the higher the streaming quality that node vi serves 
node vj. Therefore, when there are several candidate nodes 
for relaying one stream to a destination node, the one with 
the smaller sum will be selected to achieve stream bundling. 

The find_out_bin and find_in_bin routines are 
pretty straightforward. They return either an unused bin or 
a bin used by lower priority stream for pre-emption. For 
selecting an outbound bin to be pre-empted, we prefer to 
choose the lowest priority stream. For selecting an inbound 
bin to be pre-empted, one important consideration is to 
select a stream that is least used in forwarding to reduce the 
pre-emption cost, because once an inbound stream is pre-
empted all child nodes that rely on it will not be streaming 
from the parent node any more. 

The serve_stream maintains the bookkeeping of 
inbound and outbound bins of source and destination nodes. 
When pre-emption is performed, the affected nodes are 
saved in the victim set. 

The fix_victim routine tries to fix the broken link 
caused by pre-emption. To reduce the cost, this routine 
only fixes the broken link related to higher priority streams 
(e.g., p4 and p3). Otherwise, the affected node will simply 
ignore the lost stream and propagate the message to its 
child nodes. The propagation will terminate either when the 
pre-empted stream is not important for all child nodes or 
some child nodes have found new sources. The process is 
similar when the view change happens. 

After the serve_view routine is completed, the session 
controller calculates the new topology and broadcasted to 
all nodes (i.e., service gateways).  

5. EVALUATION1 
We have integrated the ViewCast model in our 3DTI 
implementation which connects three major environments 
(UC Berkeley ↔ UIUC ↔ NCSA) and a few other 
viewing nodes across the Internet. Each major environment 
has up to 8 streams. Throughout one entire tele-immersive 
session, the whole system provides sustainable streaming 
of the common virtual space with an average frame rate of 
10 frames per second (with the frame resolution of 
320×240 pixels and the basic data rate of 30 Mbps). Figure 
                                                                 
1 We refrain from comparing our protocol with existing multi-cast 

protocol because the existing solutions are based on per-stream 
subscription, and ours solution regulates stream adaptation 
according to user request on view. It is thus very difficult to 
reach a fair comparison. 
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7 shows the variation in rendering quality measured in peak 
signal-to-noise ratio (PSNR) against the rendering with all 
streams following view changes. For smaller view changes, 
the most important stream usually resides in the inbound 
bins of the receiver. Therefore, the quality loss is relatively 
smaller. The reverse is true for larger view changes. 
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Figure 7. Quality variation due to view changes 

For a more extensive evaluation, we simulate the ViewCast 
model in a 3DTI system of 4-20 nodes. For a fixed number 
of nodes, two hundred random configuration samples are 
generated to compute the average (and variance) of certain 
evaluation metrics. The configuration of each sample 
specifies, 1) the in-degree bound and out-degree bound for 
each participating node vi, 2) the view wi,j of each node, 
and 3) the topology of underlying overlay network. More 
details are presented in the following subsections. 

5.1 User Request Specification 
We compare our solution with stream-based multicast 
protocols in terms of user request specification. In existing 
multicast protocols (e.g., [11]), users have to explicitly 
specify which streams they wish to subscribe from which 
sites.  This per-stream request paradigm requires significant 
input from users which may be too tedious or error-prone. 
ViewCast, in contrast, allows users to specify subscription 
requests with only the view information per site. This high-
level request paradigm frees users from specifying per-
stream request one by one, and meanwhile achieving high 
degree of customization.  
We use the total number of requests made at all sites as the 
metric to evaluate the ease of user request specification. In 
the simulation experiments, the session is heavily loaded, 
as each node always subscribes to all other sites in the 
system (i.e., the worst case). The number of requests users 
have to make in total if a stream-based multicast protocol 
were used is thus the total number of streams that have 
been acquired by the nodes in the system after running the 
ViewCast protocol. Figure 8 shows that even in the worst 

case, ViewCast requires much less user input than its 
conventional multicast counterpart. 

5.2 System Quality 
One important goal as described in Section 4 is to achieve 
minimum quality guarantee, that is, each request is satisfied 
by at least one important stream. We evaluate this 
minimum guarantee in terms of the rejection ratio defined 
as the ratio of the number of rejected requests and the total 
number of requests. A request is said to be rejected if and 
only if no single stream is provided to serve it. Again, the 
worst case (i.e., each site subscribes to all other sites) is 
evaluated. Figure 9 shows that near zero rejection ratio is 
achieved for all random samples. 
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Figure 8. User request specification 

Another important goal as described in Section 3 is to 
maximize the system quality subject to bandwidth 
constraints at each node. We define optimal quality as the 
quality without stream pre-emption. Figure 10 shows that 
our ViewCast protocol achieves near-optimal system-wide 
visual quality by the overlapping of the ‘optimal quality’ 
line and the ‘achieved quality’ line. 
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Figure 9. Minimum quality guarantee 
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Figure 10. Near-optimal and stable system quality 

5.3 Fairness 
We ensure fairness among nodes in the system by load-
balancing when selecting the forwarding node to serve an 
incoming view request. As in the previous experiments, the 
worst-case ViewCast session is used. We measure the 
average and variance of the out-degree utilization of nodes 
after the system overlay is constructed. This considers 
subscription requests at the initialization phase of a 
ViewCast session without taking the later view change into 
account. The out-degree utilization of a node is defined as 
the ratio of the used out-degree and the out-degree bound 
of the node. The average out-degree utilization as shown in 
Figure 11 is high and approaches 1.0 as the size of the 
system grows. Also note that it never exceeds 1.0 because 
we always satisfy bandwidth constraints at each node. The 
small variance of out-degree utilization as shown in Figure 
11 demonstrates that the nodes in the system share roughly 
the same responsibilities of forwarding streams, and thus 
fairness is achieved. 
We also evaluate how much of each node’s out-degree is 
used to relay streams received from other nodes. Figure 11 
further shows that consistently about a quarter of each 
node’s out-degree is dedicated for forwarding streams. This 
indicates the strength of our multicast-based protocol that 
substantially reduces the burden of each source node 
compared to the conventional unicast solution. 

5.4 View Change Cost 
One way of observing the cost of view change is to exam 
the number of broken streams that need to be fixed. In the 
routine of fix_victim (Section 4), we keep track of the 
number of fixed streams and plot the data in Figure 12. The 
figure shows that the average number of fixed streams is 
quite small (< 2) and gradually decreases when the number 
of nodes increases. 
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Figure 12. Average number of fixed streams 

6. RELATED WORK 
The most important application of the ViewCast concept is 
in the multi-party/multi-stream environment for QoS 
management, which distinguishes it from available 
protocols and techniques in several aspects. 
Multicast protocols including application level multicast 
(e.g., [8][11][13][15]) are mostly concerned with efficient 
transmission of particular stream for a group of receivers. 
In contrast, ViewCast is a higher-level concept which is 
focused on the coordination of multi-streaming among 
multiple groups. 
Coordination protocol for multiple streams was proposed 
for supporting tele-immersive system ([3]). However, the 
protocol only dealt with a pair of nodes with its main 
function of aggregating the information of each flow. The 
questions of how to apply it in 3DTI environments and 
how to interconnect multiple nodes were not addressed. 
The awareness driven model has been applied in 
collaborative virtual environment ([2][5][11]) for quality of 
service management. Given the awareness information of 
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the user, the model dynamically selects the set of sources 
and the quality. Usually, each source represents one 
audio/video stream with multiple levels. However, the 
limitation of the model is its incapability of handling 
multiple correlated streams at each source and among 
sources as required in multi-party/multi-stream systems. 

7. CONCLUSION 
We present the ViewCast model, a novel concept inside the 
presentation layer for constructing multi-party/multi-stream 
system in cooperative networking environment. The main 
idea of the model is to take the view specification as the 
main goal for managing multiple correlated streams. We 
illustrate various aspects of the model using a real example 
of its application in 3DTI environment. As shown in real 
experiments across the Internet and simulations, when 
combined with application level multicast, ViewCast 
achieves low cost, efficient resource usage and high 
rendering quality. The experimental results encourage the 
possible usage of the model in other similar systems. 
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